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Abstract This paper introduces a recently proposed direct method, the so-called
stress compensation method (SCM), for shakedown analysis of engineering struc-
tures under variable repeated mechanical and thermal loads. Instead of establishing
the mathematical programming formulation, the SCM performs a two-level iterative
procedure based on a series of linear finite element (FE) solutions. By adding an
extra stress (named the compensation stress) to the yield regions which may occur
at every load vertex of the given loading domain to adjust the total stress to the
yield surface and re-solving the equilibrium equations, the residual stress field for
static shakedown analysis is constructed. An effective and robust iteration control
scheme is presented to check the change of the compensation stress in the inner
loop and to update the shakedown load multiplier in the outer loop. The numerical
scheme of this method is successfully implemented into the Abaqus platform, which
makes it become a general utility tool for shakedown analysis of complex struc-
tures. Numerous examples related to pressure vessel and power plant engineering
are presented to illustrate the performance of the method for shakedown analysis of
large-scale engineering structures under multi-dimensional loading domain.
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1 Introduction

In the fields of petrochemical industry, nuclear energy, civil engineering and power
plant engineering, many structural components made of ductile metals operate under
cyclic loadings. Locally, these components may exhibit material plastic yielding
during operation. In this case, it is rather conservative to adopt the traditional elastic
analysis design. On the contrary, the limit and shakedown analysis makes use of
the plasticity of materials, and therefore reflects the nature of bearing capacity and
the actual safety margin of structures. Design methods considering the limit and
shakedown analysis are now becoming increasingly popular in practical engineering
applications [1].

The shakedown analysis aims to determine the load-bearing capacity of structural
components under the action of cyclic loadings, so that these components will not
fail due to the instantaneous collapse, incremental collapse or alternating plasticity.
As is known that, there are two methods of evaluating the shakedown limit [2]:
step-by-step (SBS) incremental procedures and direct method.

In the SBS method, a sequence of cyclic steady calculations at different loading
levels are performed, andmeanwhile, the loads are adjusted to approach to the shake-
down limit using the trial-and-error procedures [2]. However, these time stepping
calculation processes are often cumbersome and time-consuming, because every
load cycle may include many increments and it usually takes a number of load cycles
to compute the response of structure to be stable. Furthermore, the shakedown limit
calculated may be inaccurate because of the ambiguous stopping conditions and the
accumulative errors in numerical calculations.

In the direct method, the shakedown limit is calculated directly using the shake-
down theory, with no needing to perform these cumbersome time stepping calcu-
lations. In addition, only the bounding envelope rather than the detailed history of
applied loads is required. Most of the direct methods transform the shakedown anal-
ysis into a special mathematical programming problem, which contains many equal
and unequal restriction conditions. Many optimization methods, such as the second
order cone programming [3], the sequential quadratic programming, the complex
method [4], the interior point method (IPM) [5, 6], and the nonlinear Newton-type
iteration algorithms [7–9], are widely applied for solving the shakedown problems.
However, themesh discretization of finite element (FE) analysis produces a great deal
of degrees of freedom, which will generate a large-scale mathematical programming
problem, especially when a practical engineering structure is considered. Except
for the mathematical programming methods, some other numerical direct methods
have been developed which avoid the difficulties of direct optimization, including
the elastic compensation method [10, 11], the linear matching method [12–14], the
residual stress decomposition method [15, 16], and the stress compensation method
(SCM) [17, 18]. Up to now, it is still a challenge and important topic to develop effi-
cient and reliable computational methods so that the limit and shakedown theories
can displaywell their applications in engineering practice and solve broader practical
problems.
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Asoneof directmethods recently proposed, theSCMpresents good computational
advantages in solving the shakedownproblemof elastic-perfectly plastic (EPP)mate-
rial under multiple thermomechanical loadings, especially for large-scale complex
engineering structures. In this paper, the authors introduce the SCM from the funda-
mental theory, the numerical procedure, and its applications to practical engineering
structures in the fields of pressure vessel and power plant engineering.

2 SCM for Shakedown Analysis

2.1 Melan’s Static Shakedown Theorem

For a body of volume V , the stress σ(x, t) of a point x at the instant t can be
decomposed into a fictitious elastic stress σE (x, t) and a residual stress ρ(x, t), i.e.

σ(x, t) = σE (x, t) + ρ(x, t) (1)

where σE (x, t) is the stress solution of an elastic body with the same geometry and
load conditions as the body.

If a structure is subjected to multiple loads Pi (x, t), i = 1, 2, . . . , N , where each
load Pi (x, t) is decided by a time-dependent loading parameterμi (t) and a base load
P0
i (x). The loading history P(x, t) can be expressed as

P(x, t) =
N∑

i=1

Pi (x, t) =
N∑

i=1

μi (t)P0
i (x) (2)

Referring to Eq. (2), the fictitious elastic stress σE (x, t) is expressed as

σE (x, t)=
N∑

i=1

σi (x, t) =
N∑

i=1

μi (t)σ
0
i (x) (3)

where σ0
i (x) is the elastic stress for the base load P0

i (x).
The static shakedown theorem is stated as follows: a body will shake down, if

there exists a time-independent residual stress field ρ(x), such that its superposition
with the fictitious elastic stress field λ · σE (x, t), resulting in a stress state σ(x, t),
does not violate the yield condition at every material point [19].

σ(x, t) = λ · σE (x, t) + ρ(x) (4)

f = F(σ(x, t)) − σy(θ) ≤ 0 ∀x ∈ V,∀t
∇ · ρ(x) = 0 in V

ρ(x) · n = 0 on St (5)
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Fig. 1 A polyhedron of eight vertices in 3D loading space [21]

where λ is the load multiplier; f is the yield function; σy(θ) is the temperature-
dependent yield stress corresponding to temperature θ ;∇· is the divergence operator;
and n is the unit outward normal to the surface St . It is worth noting that the yield
function f is required to be convex in σ − θ space [20]. After each update of the
load multiplier, the yield stress is also calculated and updated.

It is noted that in most situations the loading parameters μi (t) are not known but
only their bounds. If the bounds of each loading parameter are as follows:

μ−
i ≤ μi (t) ≤ μ+

i (6)

the bounding envelope of applied loads is determined, which is a polyhedron of
NV = 2N vertices. Figure 1 displays a polyhedron of eight vertices (B1, B2, B3, B4,
B5, B6, B7 and B8) in three-dimensional (3D) loading space when three loads varying
independently within their own limits are considered [21].

The theorem proposed by König indicates that, if a body shakes down over a
specific load path traversing all vertices of a polyhedron, then it shakes down over
any load path contained within the bounding envelope [2]. Therefore, the shakedown
conditions are only tested on these load vertices.

2.2 Description of the SCM

The total strain rate ε̇(t) contains the elastic strain rate ε̇E (t), thermal strain rate
ε̇θ (t), plastic strain rate ε̇p(t), and residual elastic strain rate ε̇er (t), i.e.
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ε̇(t) = λ
[
ε̇E (t) + ε̇θ (t)

] + ε̇p(t) + ε̇er (t) (7)

Making use of the principle of virtual work, the FE global equilibrium equation
is established as
(∫

V
BT · D · BdV

)
· u̇(t) = λ

∫

V
BT · D · [

ε̇E (t) + ε̇θ (t)
]
dV +

∫

V
BT · D · ε̇p(t)dV

(8)

Here D · ε̇p(t) is replaced by the compensation stress σC(t), which is calculated
by

σC(t) = ξ(t) · σ(t), ξ(t) =
{

σ̄ (t)−σy(θ)

σ̄ (t)

(
σ̄ (t) > σy(θ)

)

0
(
σ̄ (t) ≤ σy(θ)

) (9)

where σ̄ (t) is the equivalent stress. Then Eq. (8) is written as

K · u̇(t) = λ

∫

V
BT · σ̇E (t)dV + λ

∫

V
BT · D · ε̇θ (t)dV +

∫

V
BT · σC(t)dV

where K=
∫

V
BT · D · BdV (10)

The residual stress field for static shakedown is obtained by

ρ̇(t) = D · B · u̇(t) − λσ̇E (t) − λD · ε̇θ (t) − σC(t) (11)

ρ(t + �t) = ρ(t) +
∫ t+�t

t
ρ̇(t)dt (12)

The SCM for shakedown analysis consists of two iteration loops. The numerical
implementation is as follows:

(1) Calculate the fictitious stress field for each base load, initialize the residual stress
field ρ = 0, and set an initial load multiplier λini . Enter the outer loop where
the number of iterations is marked as k.

(2) Enter the inner loop where the number of iterations is marked as m. For each
load vertex i, calculate the total stress at every Gauss point.

σ(ti ) = λ(k)σE (ti ) + ρ(ti ) (13)

(3) Calculate the compensation stress σC(ti ) and the dimensionless parameter ξ

using Eq. (9).
(4) After traversing all the load vertices, the residual stress ρ

(m+1)
0 is updated by

Eqs. (14)–(16).
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K · �u =
NV∑

i=1

{
λ(k)

∫

V
BT · [

�σE (ti ) + D · �εθ (ti )
]
dV +

∫

V
BT · σC(ti )dV

}

(14)

�ρ = D · B · �u − λ(k)
NV∑

i=1

�σE (ti ) − λ(k)D ·
NV∑

i=1

�εθ (ti ) −
NV∑

i=1

σC(ti ) (15)

ρ
(m+1)
0 = ρ

(m)
0 + �ρ

(m+1)
0 , where �ρ

(m+1)
0 = 1

NV
�ρ(m+1) (16)

(5) Check the convergence of the dimensionless parameter ξ for all Gauss points
using

∣∣ξ (m+1)(ti ) − ξ (m)(ti )
∣∣ ≤ tol1 (17)

where tol1 is tolerance limit parameter. If ξ is convergent the execution step
continues,whichmeans the completionof an inner loop, otherwise the procedure
returns to Step (2).

(6) Calculate the maximum value of the dimensionless parameter ξ (m + 1)(ti ), i.e.

ξ (k+1)
max = max

(
ξ (m+1)(ti )

)
(18)

(7) Examine the convergence rate

ξ (k+1)
max

ξ
(k)
max

≤ tol2, and ω > 0.1 (19)

where ω is a control parameter. If Condition (19) is satisfied, the load multiplier
λ(k) is modified by

λ(k+1) = λ(k)
(
1 − ω

2 · ξ (k+1)
max

)
(
1 − ω · ξ

(k+1)
max

) (20)

and ω is halved ω = ω
/
2. Otherwise, the load multiplier λ(k+1) is updated by

λ(k+1) = λ(k)
(
1 − ω · ξ (k+1)

max

)
(21)

(8) Check whether ξ (k+1)
max vanishes within a desired tolerance tol3.

ξ (k+1)
max ≤ tol3 (22)

(9) Repeat Steps 2–8 till Condition (22) holds. The shakedown limit multiplier λsh

is determined as
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λsh = λ(k+1) (23)

The flowchart of the SCM for shakedown analysis is shown in Fig. 2. The itera-
tion control scheme presented allows the numerical procedure to generate a series of
decreasing loadmultipliers, and if the tolerance parameters are appropriately adopted
the load multipliers will approach smoothly to the shakedown limit multiplier. The
value of tol1 inEq. (17) used to stop the inner loop can influence the accuracy and effi-
ciency of the method. Given that the accuracy of shakedown limit multiplier depends
on the final solution of the residual stress and has little relationship to the interme-
diate solutions, the dynamically changed values of tol1 are used here to balance the
accuracy and efficiency of the method. The update of load multiplier via Eq. (21)
cannot strictly prevent the load multipliers from overshooting below the target value
of shakedown limit multiplier. To address this problem, the numerical strategy via
(19)–(21) is followed. Although the overshooting might happen in extreme cases,
the value is small enough to be negligible. When Condition (19) is satisfied, the load
multiplier is adjusted to a value above the shakedown limit multiplier and the process
goes on. Thus, the presented method generates a series of decreasing load multiplier
approaching to the actual shakedown limit multiplier from above. Because Melan’s
static shakedown theorem is adopted and when the procedure ends all conditions of
this theorem are satisfied, the shakedown limit multiplier calculated is a lower bound
solution within the predefined tolerance tol3.

3 Numerical Examples and Engineering Applications

TheSCMhas the significant advantage that it can be incorporated into commercial FE
software so that users can establishFEmodels conveniently. The numerical procedure
is implemented into Abaqus platform via user subroutines in this work. The SCM
is applied to solve numerous numerical examples. In all examples presented, the
materials are assumed homogeneous, isotropic and elastic-perfectly plastic and obey
von Mises yield criterion. It is noted that the limit analysis is a special case of
shakedown analysis of only one load vertex. All calculations are performed on the
computer with 16 GB RAM and Intel Core i7 at 3.39 GHz.

3.1 Square Plate with a Central Circular Hole

The first example is a square plate with a central circular hole under a combination of
biaxialmechanical loads and thermal load [18]. Figure 3 displays the structural geom-
etry of d

/
L = 0.05, D

/
L = 0.2 and the quarter FEmodel. The mesh discretization

consists of 432 elements (Abaqus CPS8) with 3 × 3 Gauss points. The material
properties of the structure are listed in Table 1.
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Fig. 2 Flowchart of the SCM for shakedown analysis [21]
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Fig. 3 Geometry of the holed plate and its quarter FE model

Table 1 Material properties of the square plate with a central circular hole

Young’s modules E (GPa) Poisson’s ratio v Yield stress σy (MPa) Coefficient of thermal
expansion α (°C−1)

208 0.3 360 5 × 10−5

The holed plate is subjected to three loads, including twouniformnormal tractions,
P1 and P2, and a temperature difference, �θ(t),

θ = θ0 + �θ
ln

(
5D

/
2r

)

ln(5)
(24)

The base loads are selected as P∗
1 = P∗

2 = 360MPa, θ0 = 0, and �θ∗ = 90.2
°C. The maximum von Mises stress of the holed plate under the base thermal load
is σθ . Three loading cases are considered here.

(1) Case I

The three loads vary independently in their own ranges.

0 ≤ P1 ≤ μ1P
∗
1

0 ≤ P2 ≤ μ2P
∗
2

0 ≤ �θ ≤ μ3�θ∗ (25)

(2) Case II
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The normal traction,P2, and the thermal load,�θ , vary independently, but the normal
traction, P1, keeps constant.

P1 = μ1P
∗
1

0 ≤ P2 ≤ μ2P
∗
2

0 ≤ �θ ≤ μ3�θ∗ (26)

(3) Case III

The normal tractions, P1 and P2, keep constant, but the thermal load, �θ , varies.

P1 = μ1P
∗
1

P2 = μ2P
∗
2

0 ≤ �θ ≤ μ3�θ∗ (27)

The SCM is applied to calculate the shakedown domains of the plate for the three
loading cases. Figure 4a, b and c show the 3D shakedown domains of the plate for
cases I, II and III, respectively. In Fig. 4a, 111 computed points plot the shakedown
surface, consisting of the planes A-B-C and B-C-D. It is noted that all the shakedown
limit points are dominated by alternating plasticity. In Fig. 4b, the shakedown surface
consists of the plane B-C-D-E and surface A-B-E. It is noted that the points in the
plane B-C-D-E are dominated by alternating plasticity whilst the points in the surface
A-B-E are dominated by ratcheting. In Fig. 4c, the shakedown surface consists of
the surfaces A-B-E-D, B-C-F-E and the plane D-E-F-G. It is noted that the points
in the plane D-E-F-G are dominated by alternating plasticity whilst the points in the
surfaces A-B-E-D and B-C-F-E are dominated by ratcheting.

To verify the correctness of the calculated results, the SBS incremental elastic-
plastic calculations are performed for several specified load points that are depicted
as the red, black and blue markers with lettersM, N and P in Fig. 4b and c. It should
be noted that, in both Fig. 4b and c, the load pointsM, N, P are located in shakedown
region, alternating plasticity region and ratcheting region, respectively. As results,
for the load points M, N and P (Fig. 4b), the effective plastic strain histories of a
Gauss point over the first 15 load cycles are displayed in Fig. 5. And for the load
pointsM,N and P (Fig. 4c), the effective plastic strain histories of a Gauss point over
the first 30 load cycles are displayed in Fig. 6. It can be seen clearly from Fig. 5 and
Fig. 6 that the effective plastic strain histories for load pointsM, N and P exhibit the
shakedown, alternating plasticity and ratcheting behavior, respectively. These SBS
incremental elastic-plastic analyses reveal the different failure mechanisms expected
and verify the correctness the results calculated by the SCM.
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Fig. 4 Shakedown domains
of the holed plate in 3D
loading space
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Fig. 5 Effective plastic strains over the first 15 load cycles at a Gauss point of the holed plate from
load combinations M, N and P for case II

Fig. 6 Effective plastic strains over the first 30 load cycles at a Gauss point of the holed plate from
load combinations M, N and P for case III

3.2 Header Component

The second example is a header component from power plant engineering. As shown
in Fig. 7, the header component includes a main pipe and two vertical branch
pipes with same geometric dimensions. The mesh discretization consists of 27,540
elements (Abaqus C3D20R) and 139,251 nodes, as shown in Fig. 8. The material
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properties are listed in Table 2. In the cooling and reheating process, the header
component bears complicated load conditions because of the mutual effects with the
rest parts of piping system.

Two clusters of loads are applied to the header component, whose base loads are
listed in Table 3. For the first load cluster, the internal pressure, Pi , is applied to inner
surfaces, and additional tensions caused by the internal pressure are applied to the
ends of main and branch pipes. For the second load cluster, the bending moments,

Fig. 7 Geometry of the header component

Fig. 8 FE model of the header component
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Table 2 Material properties of the header component

Young’s modules E (GPa) Poisson’s ratio v Yield stress σy (MPa)

200 0.3 165

Mmx and Mmy , are applied to the outboard main pipe end, and the bending moment
Mbz is applied to the inboard branch pipe end. It is noted that three bending moments
vary simultaneously. Hence, the amplitudes of two clusters of loads are determined
by two dimensionless factors, P0, andM0. The loading cases of interest are displayed
in Fig. 9.

The SCM is applied to calculate the shakedown limits of the header component
for the four loading cases. As results, four corresponding shakedown boundaries are
presented in Fig. 10. For the loading cases a and b, the shakedown boundaries are all
dominatedby alternatingplasticitywhilst for the loading cases c andd, the shakedown
boundaries (curve 1 and curve 4 in Fig. 10) are dominated by alternating plasticity
and the shakedown boundaries (curve 2 and curve 3 in Fig. 10) are dominated by
ratcheting. It is noted that the loading case b is proportional loading. Thus, the

Table 3 Base loads applied to the header component

Load P0 M0

Internal pressure
Pi (MPa)

Main tension Pma
(MPa)

Branch tension Pbr
(MPa)

Mmx
(kNm)

Mmy

(kNm)

Mbz

(kNm)

Value 3.64 −24.60 −29.15 240 −160 −9.6

Fig. 9 Four loading cases of interest
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Fig. 10 Shakedown domains of the header component: P0 versus M0

shakedown limit will be the lower one between the plastic limit load and the twice
of elastic limit load. As a comparison, the elastic boundary is also plotted in Fig. 10.
The shakedown boundary curve for the loading case b coincides well with the curve
decided by the twice of elastic limit load.

To the authors’ knowledge from literature reported, it is the first to show the solu-
tion of the shakedown problem with comparable degrees of freedom of FE model
[17]. The SCM iterative procedure for shakedown analysis presents good conver-
gence. The CPU time required to complete a calculation does not exceed 40 min
using this personal computer. The equivalent residual stress field constructed for
static shakedown for the header component is shown in Fig. 11.

3.3 Pipe with an Oblique Nozzle

The third example is a pipe with an oblique nozzle considering the temperature-
dependent yield stress. Figure 12 displays the geometry of the structure. This compo-
nent is subjected to high temperature and internal pressure. When equipment starts
up or shuts down, the component bears large temperature variation, and the material
properties vary with temperature. Figure 13 displays the FE model that consists of
3,170 elements and 16,928 nodes.
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Fig. 11 The equivalent residual stress field constructed for static shakedown for the header
component

Fig. 12 Geometry of the pipe with oblique nozzle
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Fig. 13 FE model of the pipe with oblique nozzle

Outside air keeps constant temperature θ0 and the temperature of inside fluid
follows the curve in Fig. 14, which is expressed as θ(t) = θ0 + �θ(t). The initial
temperature of structure and the environment temperature are both θ0 = 20 °C. The
base pressure is P0 = 16.5 MPa. Some material parameters are listed in Table 4. The
temperature-dependent yield stress is as follow:

Fig. 14 Temperature history of the inside fluid
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Table 4 Material parameters
of the pipe with oblique
nozzle

Parameters Value

Thermal expansion coefficient α 2.0 × 10−5

Thermal conductivity k (W/(m °C)) 20

Specific heat capacity c (J/(kg·°C)) 440

Transfer coefficient pipe-air h1 (W/(m2·°C)) 300

Transfer coefficient pipe-fluid h2 (W/(m2·°C)) 800

Density ρ (kg/m3) 7800

Yield stress σ y (MPa) 240

Young’s modulus E (MPa) 2.1 × 105

Poisson’s ratio v 0.3

σy(θ) = σy0 + 3 MPa − 0.15 MPa
/ ◦C × θ (28)

First, the temperature history is calculated via a transient heat transfer analysis.
Then, the thermal elastic stress history is calculated based on the obtained temper-
ature via the structural stress analysis. Nodes 5,451 and 6,308 are selected to show
the temperature histories of inside and outside surfaces of the structure, as displayed
in Fig. 15. It is obvious from Fig. 15 that the structure bears the maximum temper-
ature gradient at t = 12,000 s, which leads to the maximum thermal elastic stress.
Figure 16a and b, display the von Mises stress fields of the pipe under single thermal
load and single base pressure, respectively. Figure 17 displays two typical loading
cases considered. For loading case I, temperature and internal pressure vary indepen-
dently. For loading case II, temperature is cyclic but internal pressure keeps constant.
The SCM is applied to calculate the shakedown limits of this pipe considering the
temperature-dependent yield stress.

Fig. 15 Temperature histories of node 5451 and node 6308
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a Thermal stress field at t=12000 s

b Mechanical stress field

Fig. 16 Von Mises stress fields of the pipe with oblique nozzle

The shakedown domains of the pipe considering the temperature-dependent and
temperature-independent yield stresses for two loading cases are shown in Fig. 18.
For loading case I, shakedown boundaries AD and A′D are dominated by alternating
plasticity. For loading case II, shakedown boundaries AB and A′B′ are dominated
by alternating plasticity but shakedown boundaries BC and B′C are dominated by
ratcheting. For both loading cases, shakedown boundaries are narrowedwhen consid-
ering the reduction of yield stress by temperature. It is noted that in regions AB and
A′B′, the thermal loading is dominant and the yield stress is largely reduced by high
temperature, thus the shakedown limit is significantly decreased.
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Fig. 17 Two typical loading cases

Fig. 18 Shakedown domains of the pipe with oblique nozzle considering temperature-dependent
and temperature-independent yield stresses under two loading cases

Figure 19 displays a typical iteration process of load multipliers for shakedown
analysis of the pipe with oblique nozzle considering the temperature-dependent yield
stress. The horizontal segment indicates the execution of inner loop whilst the leap
indicates an update of the load multipliers in the outer loop. The CPU time required
for each iteration is about one quarter of that for a complete elastic FE analysis.
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Fig. 19 Typical iteration process of loadmultipliers for shakedown analysis of the pipewith oblique
nozzle considering the temperature-dependent yield stress

3.4 Torispherical Head with a Piping Nozzle

The forth example is a torispherical head with a piping nozzle, whose geometric
parameters are shown in Fig. 20 [21–24]. The applied loads include uniform pressure
P , axial force F , in-plane bending moment Min, out-of-plane bending moment Mout,
twisting moment T , and thermal loading defined by a temperature difference �θ .
The basic material properties are listed in Table 5.

Fig. 20 Geometry of the torispherical head with a piping nozzle
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Table 5 Material properties
of the torispherical head with
a piping nozzle

Yield stress, σy0 (MPa) 340

Young’s modulus, E (MPa) 2.0 × 105

Poisson’s ratio, v 0.3

Coefficient of thermal expansion, α (/°C) 1.6 × 10−5

Specific heat capacity, c (J/(kg·°C)) 500

Thermal conductivity, k (W/(m·°C)) 15

Density, ρ (kg/m3) 7900

Figure 21 displays the FE model of the torispherical head with a piping nozzle
that includes 10,809 elements (Abaqus C3D20R) and 54,804 nodes. To eliminate
boundary effects, the lengths of nozzle and of cylindrical shell are about 3di and
Da , respectively. The cylindrical shell end is restrained in vertical direction but is
free in radial direction. It is noted that an additional equivalent axial tension induced
by internal pressure is applied to the nozzle end. All nozzle loads are applied to a
master node which is coupled to the nozzle end using the Beam-typeMPC constraint
technique.

The SCM is applied to calculate the plastic limit and shakedown limit loads of
the torispherical head with a piping nozzle under various loading conditions, whose
results are listed in Table 6. For comparison and verification, the results calculated
by the elastic-plastic incremental method within Abaqus are also listed in Table 6. It
is noted that the plastic limit load is determined by 15-times elastic slope criterion

Fig. 21 FE model of the torispherical head with a piping nozzle
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Table 6 Shakedown limit and plastic limit loads calculated with two methods

Loading case SCM Abaqus

Shakedown limit
load

Plastic limit load Double elastic
limit load

Plastic limit load

Pressure, P
(MPa)

3.004 3.511 3.004 3.523

Axial force, F
(kN)

833.8 1451.8 833.9 1463.2

Twisting
moment, T (kN
m)

364.5 546.4 364.5 551.9

Out-of-plane
moment,Mout
(kN m)

127.9 237.8 127.9 239.2

In-plane
moment,M in
(kN m)

107.6 248.7 107.7 252.1

Thermal
loading, �θ

(°C)

236.0 – 236.0 –

[23] is adopted and the shakedown limit load is determined as the lower one between
the plastic limit load and the twice of elastic limit load.

It is evident from Table 6 that the shakedown limit loads calculated with the SCM
are very close to the twice of elastic limit loads calculated with Abaqus and are lower
than the plastic limit loads. This indicates that these shakedown limit loads are all
dominated by alternating plasticity. Furthermore, the good agreement, a maximum
relative error of 1.36%, of the plastic limit loads calculatedwith the SCMandAbaqus
shows that the SCM is reliable. It is noted that the thermal loading, causing secondary
stress, will not lead to the plastic collapse of structures.

For further comparison, Table 7 gives the comparison of the present solutions [21]
with results from literature [22, 23] for different single loads. The present results are
approximately in agreement with these reported in [22, 23]. The small difference in
value is due to different methods used and different types and sizes of FE meshes
selected.

The 3D shakedown domains of the torispherical head with a piping nozzle are
investigated. The loading conditions of interest include three independently varying
loads, as listed in Table 8. The corresponding loading domain is similar to that
displayed in Fig. 1.

As results, four 3D shakedown domains obtained by the SCM are displayed in
Figs. 22, 23, 24 and 25. It is noted that the dimensionless loads, normalised by the
yield stress σy0 , are adopted, and more than 100 calculated points are used to depict
each of the shakedown boundary surface. In these figures, the red lines represent the



160 H. Peng et al.

Table 7 Comparison of the present solutions with results from literature

Type Loading case Present [21] Hsieh [23] Simon [22]

Elastic limit load Pressure (MPa) 1.502 1.370 1.524

Axial force (kN) 416.9 450.0 483.1

In-plane moment (kN m) 53.9 64.7 55.4

Out-of-plane moment (kN
m)

64.0 66.5 –

Twisting moment (kN m) 182.3 193.8 –

Shakedown limit load Pressure (MPa) 3.004 – 3.047

Axial force (kN) 833.8 – 965.9

In-plane moment (kN m) 107.6 – 110.7

Out-of-plane moment (kN
m)

127.9 – –

Twisting moment (kN m) 364.5 – –

Plastic limit load Pressure (MPa) 3.511 3.54 –

Axial force (kN) 1451.8 1630.0 –

In-plane moment (kN m) 248.7 282.6 –

Out-of-plane moment (kN
m)

237.8 265.8 –

Twisting moment (kN m) 546.4 625.0 –

Table 8 3D loading domains of interest

Loading condition Loading domain

P, F, and M in 0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ Min ≤ μ+
3 Min0

P, F, and Mout 0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ Mout ≤ μ+
3 Mout0

P, F, and T 0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ T ≤ μ+
3 T0

P, F, and �θ 0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ �θ ≤ μ+
3 �θ0

shakedown boundary curves of the structure under specific two-dimensional loading
domains.

In above examples, the material properties are independent to temperature (see
Table 5). Here a temperature-dependent yield stress σy(θ) is considered, which is a
linear function of θ , i.e.

σy(θ) = σy0 − 0.3 × (θ − 20 ◦C) (29)

Taking a loading condition as an example, i.e.

0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ �θ ≤ μ+
3 �θ0 (30)
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Fig. 22 3D shakedown domain: in-plane bending moment, internal pressure, and axial force

Fig. 23 3D shakedown domain: out-of-plane bending moment, internal pressure, and axial force
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Fig. 24 3D shakedown domain: twisting moment, internal pressure, and axial force

Fig. 25 3D shakedown domain: thermal loading, internal pressure, and axial force
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Fig. 26 3D shakedown domains with the temperature-dependent and temperature-independent
yield stresses: thermal loading, internal pressure, and axial force

the resulting 3D shakedown domain considering the temperature-dependent yield
stress σy(θ) is displayed as the green surface in Fig. 26. For comparison, the 3D
shakedown domain with a constant yield stress σy0 is displayed in Fig. 26 (the cyan
surface) additionally.

Although the same geometric parameters and similar loading conditions with
the paper by Simon et al. [22] are used, the completely different shakedown anal-
ysis method is employed to demonstrate the performance of the presented SCM in
solving large-scale shakedown problem. More complicated loading cases including
out-of-plane moment is considered in this paper so that the full geometric model is
establishedwhile only one-half of the geometricmodel is adopted in [22]. In addition,
this paper investigates the influence of temperature-dependent yield stress on shake-
down boundary. In general, when using the mathematical programming method,
such as the IPM, to solve shakedown problem, the computing time depends on the
number of loads [22, 25]. However, the computing time has little relationship to the
loading scenario using the SCM presented in this paper. For a FE model consisting
of 10,809 quadratic elements and 54,804 nodes in this numerical example, the CPU
time required by the SCM varies from 0.2 h to 0.4 h, while for a FE model consisting
of 6,376 linear elements and 9,645 nodes, the computing time by the IPM is less than
10 h [22]. It is evident that the SCM is capable of solving the shakedown problem
for large-scale practical engineering structures in reasonable time.
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4 Concluding Remarks

In this paper, a recently proposed direct method, SCM, has been introduced to solve
the shakedown problem for large-scale practical engineering structures considering
the complex loading conditions. In first, the theoretical and numerical aspects of
the SCM have been presented. The SCM includes the two-level iterative procedure
based on a series of linear FE solutions, instead of using amathematical programming
technique. The inner loop constructs the residual stress field for static shakedown
while the outer loop updates load multipliers using an effective and robust iteration
control scheme.Then the numerical procedure of theSCMhas been implemented into
the Abaqus platform, making it become a general utility tool for shakedown analysis
of complex structures. Next four numerical examples, including square plate with a
central circular hole, header component, pipe with an oblique nozzle, torispherical
head with a piping nozzle, have been presented to illustrate the performance of the
method. The 3D loading domain and the effect of temperature on yield stress have
also been considered. The calculated results have been validatedwith the SBS elastic-
plastic incremental method and results from literature. It has been proven that the
SCM is a powerful tool for performing shakedown analysis of large-scale structures
under complex multi-loading systems with huge computational advantage, and has
application prospects in the structural design and integrity assessment of practical
engineering structures. Although the present paper only introduces the application
of the method to the elastic-perfectly plastic material, the shakedown analysis with
consideration of material hardening has been accomplished and these works will be
reported in forthcoming paper.
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