
Recent Updates of the Residual Stress
Decomposition Method for Shakedown
Analysis

Ioannis A. Kapogiannis and Konstantinos V. Spiliopoulos

Abstract Almost every structure or mechanical component is exposed to repeated
loading conditions. As a result, materials exceed the elastic regime and plastic
strains develop. The outcome of these loadings may be estimated either using a
time-consuming step by step analysis or adopting modern Direct Methods which
are capable to predict final cyclic states, like the elastic shakedown (safe state), the
alternating plasticity, or the ratcheting (unsafe states). Towards this direction, the
Residual Stress Decomposition Method (RSDM) was developed. The RSDM esti-
mates the asymptotic cyclic state of a structure exposed to a given cyclic loading. The
RSDM-S is based on the same theoretical background as RSDM and was developed
in order to estimate the shakedown domain of a structure. Both methods have been
tested for cyclic thermal and mechanical loads. In the present work, the RSDM-S is
updated towards faster convergence by avoiding some unnecessary calculations and
extended to account also for cyclic imposed displacements. Computational imple-
mentation was performed in an open source research oriented finite element analysis
program. Three-dimensional brick elements are used to deal model complex geome-
tries. Thematerial adopted is elastic perfectly plastic vonMises type of law.Examples
of application are given, proving the versatility of the approach.

1 Introduction

Most structures and mechanical components are subjected to variable repeated loads
and applied displacements. Typical variable loadings, like traffic loads, are applied
to bridges, pavements, railway structures. Other structures, like buildings, bridges,
pipelines, during their lifetime, undergo different earthquake actions, which may be
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considered as variable imposed displacements to their base. Mechanical engineering
parts may also be subjected to variable mechanical and/or thermal loads. All these
structures are usually designed to operate in the elastic regime, even if this leads to
cost-ineffective solutions. However, the high level of variable loading or excessive
applied displacementsmay force structural ormechanicalmembers to develop plastic
strains that eventually will end up to an asymptotic limit state such as ratcheting, low
cycle fatigue or shakedown [1]. It may happen that, up to a specific limit of imposed
displacement or load, inside the plastic regime, the plastic strains are stabilized and
the structure responds elastically again. This safe state is known as shakedown,which
has an effect to extend the life cycle of a structure.

When the exact load history is known one may estimate whether a structure will
shakedown, using time-consuming step-by-step procedures. Thus, there is a need for
faster procedures. Direct methods offer this possibility, as they attempt to find the
stabilized state without tracing the whole load path. Also, when the exact loading
history is not known, but only its variation intervals, they offer the only way to
determine the shakedown limits. Most of these approaches are connected to the
extremum theorems of structural plasticity and use optimization algorithms. Recent
applications include railway structures [2] and pavements [3]. Direct methods, not
related to mathematical programming, have also been proposed like the Simplified
Theory of Plastic Zones (STPZ) method [4] or the Linear Matching Method (LMM)
which has been recently extended to include limited kinematic hardening [5].

Another direct method, that does not use optimization algorithms, called Residual
Stress Decomposition Method for Shakedown (RSDM-S) has been developed for
the evaluation of shakedown domains [6, 7]. Its roots are in RSDM [8, 9], a direct
method that may estimate the asymptotic cyclic state of a structure under a given
cyclic loading. The basic idea behind both approaches is the decomposition of the
expected in this state cyclic residual stresses in Fourier series, whose coefficients
are estimated in an iterative way. The two procedures may be easily attached to any
existing finite element program.

In the present work RSDM-S is slightly reformulated to avoid unnecessary calcu-
lations. Also, the initial parameters of the method are revisited towards the minimum
number of iterations needed for a smooth and robust convergence. In the previous
versions of theRSDM-S the loadingwas considered to bemechanical and/or thermal.
However, boundary displacements varying within prescribed limits, are also possible
[10]. The RSDM-S is herein extended to account for cyclic imposed displacements.
Additionally, the portability of the method is demonstrated, while it is embedded in
an open source finite element research-oriented computer code FEAP [11]. Brick
elements have been used so that difficult geometries may be handled in either two or
three dimensions. Examples of application are also presented.
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2 Theoretical Considerations

The RSDM-S was developed in previous years [6, 7] and refers to structures made
of elastic-perfectly plastic von Mises type of material, subjected to cyclic thermo-
mechanical loadings varying inside a prescribed field. These loads may have a cyclic
variation between a specified maximum and a minimum value.

2.1 The Case of Imposed Displacements

In Fig. 1 one may see a structure of volume V and surface S, which is partially
rigidly supported (Su) and partially subjected to cyclically imposed displacements
(Spr ). The rest of its surface is free. There are no surface tractions or body forces
applied on the structure.

Let us suppose that the displacements are applied periodically with period T, i.e.
ū(t) = ū(t + T ). One and two-dimensional displacement domains are considered
herein.

Without loss of generality, we assume that the minimum values of the two
prescribed displacements are zero with the starred quantities representing their
maximum values. The corresponding cyclic program of the imposed displacements,
is (0 → ū∗

1 → (ū∗
1, ū

∗
2) → ū∗

2 → 0) (Fig. 2). These variations are shown [6] in either
the time domain (a), or the applied displacement domain, which, in the sequel, will
be called loading domain (b).

It has been proved in [1] that, for stable materials, if a structure shakes down
under a cyclic loading program containing the vertices of the loading domain then it
will shake down for any loading path contained in this domain. This domain may be
isotropically varied if multiplied with a load factor γ . Thus, the idea behind RSDM-S
is to find the largest loading domain for which shakedown occurs.

In response to the cyclic loading program, the stresses in the structure at a cycle
point τ = t/T are decomposed into an elastic part σ el

pr , in response to the applied
external cyclic displacement, assuming a completely elastic behavior, and a residual
stress part ρ. In the search for the shakedown factor γ , the elastic stresses are
themselves multiplied by this factor. Thus, the total stress vector can now be written:

Fig. 1 Body subjected to
time dependent imposed
displacement

( ) ( )=u uel
pr t t V

uel
pr = 0

Spr

uS

S
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Fig. 2 Independent cyclic imposed displacement variation over one time period a time domain,
b loading (applied displacement) domain

σ = γ σ el
pr + ρ (1)

The elastic problem is solved first. Using the principle of virtual displacements
(PVD), one may write:

∫

V

(
δεel

pr

)T
σ el

pr dV =
∫
Spr

(
δuel

pr

)T
fpr dS = 0 (2)

Since due to the fact that uel
pr = ū, δuel

pr = 0 on Spr .
We partition the nodes of the finite element (FE) mesh into those over the volume,

the free boundary, the rigid boundary and the nodes on the prescribed displace-
ment boundary. Denoting their corresponding displacements by relpr and r̄

el one may
connect them to the strains through two different FE compatibility matrices B and
B′:

εel
pr = Brelpr + B′r̄el (3)

Because of (3) the virtual strain increment is:

δεel
pr = B

(
δrelpr

)
(4)

The stresses are related to the elastic strains through the material matrix D

σel
pr = Dεel

pr (5)

Substituting Eqs. (3)–(5) to (2) and doing the algebraic manipulation one may
get:
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Krelpr = −
⎛
⎝

∫

V

BTDB′ dV

⎞
⎠r̄el (6)

where K = ∫
V BTDB dV is the stiffness matrix of the structure.

With the displacements r̄el known, the Eq. (6) may be solved to obtain relpr and
therefore εel

pr and σel
pr may be obtained.

The total strain rate may be decomposed into three terms:

ε̇ = ε̇el
pr+ε̇el

r +ε̇ pl (7)

Note that the terms ε̇ and ε̇el in (7) are kinematically admissible. Thus, the sum:

ε̇r = ε̇el
r + ε̇ pl (8)

is also kinematically admissible. Thismay be expressed as ε̇r = Bṙr , where rr are the
FE displacements of the sought solution of the boundary value problem to account
for the residual stresses.

The elastic term ε̇el
r is related to the residual stress via thematerial matrixD. Thus,

one may write:

ε̇r = D−1ρ̇ + ε̇ pl → ρ̇ = Dε̇r − Dε̇ pl (9)

Equilibrium of the residual stresses with zero loads may be manifested through
the PVD:

∫
(δε̇r )

Tρ̇dV = 0 →
(∫ (

BTDB
)
dV

)
ṙr =

∫
BTDε̇ pldV

→ Kṙr =
∫

BTDε̇ pldV (10)

The above formulation avoids the additional evaluation of the derivatives of the
elastic stresses in contrast to the original RSDM-S [6–8] and thus shortens the amount
of calculations.

The rhs of (10) is determined in a simple radial return type of algorithm as was
proposed in [6]. Solving (10) one may evaluate through (9) the residual stress rate ρ̇

at a cycle point τ .
The expected cyclic nature of the residual stresses at the asymptotic cycle

allows one to evaluate the residual stresses themselves. This may be done by their
decomposition into Fourier series [6]:

ρ(τ ) = 1

2
a0 +

∞∑
k=1

{cos(2kπτ) · ak + sin(2kπτ) · bk} (11)
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The Fourier coefficients are evaluated by numerical time integration of the
computed ρ̇ vectors at each cycle point τ [6].

Equations (9)–(11) together with Eq. (1) are continuously updated [6–8] through
an iterative sequence of lowering the load factor,which starts froma high initial value.
Iterations stop when the only remaining term in (11) is the constant term a0 which
is the condition that the structure has shaken down [12, 13]. Thus, the shakedown
factor γsh may be evaluated and the shakedown domain may be established.

Note: The RSDM-S was published in 2014. A method, called SCM, that does not
employ Fourier series, was published in 2019 [14]. However, it is virtually the same
with RSDM-S, as features and methodology are the same. The residual stresses’
derivatives are evaluated in the same way and integration is also carried out over
time points inside a period. SCM uses just the vertices of the loading domain, as
time points, and thus it is wrongly stated [14] that, because of the Fourier series, the
RSDM-S is slow, as it must utilize many time points inside the cycle to represent the
applied loading. Unfortunately, it is not realized that the number of the time points
used, is a direct consequence of a proper description of the cyclic loading program,
either in the time domain or in the loading domain ([6], Fig. 2) and has nothing to do
with the Fourier series. For example, if the loading domain (see Fig. 2b) is employed,
RSDM-S, uses also only the vertices, as time points. At the same time only three
coefficients of the Fourier series have proved sufficient, with the convergence being
continuously descending and smooth [6], something which does not appear with
SCM.

Moreover the criterion of convergence of the SCM is a direct result of the
convergence criterion of the RSDM-S.

2.2 Numerical Modifications on the RSDM-S

Except for the theoretical modification discussed above, some numerical interven-
tions to the original RSDM-S are presented herein. Although necessary to be intro-
duced for the applied displacement loading case, they are also applicable to the cases
of thermomechanical loading domains.

In the previous work [6], the “ω” factor has been introduced in order to prevent
overshooting of the shakedown load. However, in case of imposed displacement, the
use of “ω” could lead to a continuous halving of itself, being finally ineffective. To
account for such cases, the following calibration procedure is proposed. In order to
follow the path towards the shakedown factor γ sh, in each convergence step, the sum
of norms ϕ(γ) = ∑∞

k=1 ‖ak‖ + ∑∞
k=1 ‖bk‖ is used to contract the loading domain

[6–8]. The contraction factor should always be positive. However, this is not always
the case, as the magnitude of ϕ depends on the initial elastic stresses used to start the
iterations. It has been observed that a good ratio of the maximum initial elastic stress
over the yield stress should be lower than 10−4. So, a recalculation of the initial elastic
stress vector is proposed, bymultiplying it with this initial stressmultiplication factor
of the value of 10−4. If this ratio is greater than 10−4, for example 10−3, the method
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may not converge, because the shakedown factor could be overshot. On the other
hand, if the ratio was lower, namely 10−5, the convergence was slowing down. The
proposed remedy appears to be general as it works for all the considered examples,
either past or present.

The updates and modifications of the RSDM-S were programmed inside the
source code of FEAP. FEAP is a research oriented finite element analysis software
developed in Berkeley [10]. Thus RSDM-S is fully functional in FEAP for the case
of structures, modelled by brick elements and subjected to cyclic thermomechanical
loadings with or without imposed displacements.

3 Application Examples

Several examples of application have been tested using the updated RSDM-S. The
first example considers cyclic mechanical loading and the next two, of increasing
complexity, are examples with applied cyclic displacements.

3.1 The Simple Frame

The first example is the simple frame of Fig. 3a, considered also in [6, 15, 16]. Two
distributed loads (P1 and P2) act independently, varying from the value “0” to the
maximum values P∗

1 and P∗
2 , as shown in Fig. 3b. The ratio P∗

1 over P∗
2 is equal to

3. The mechanical properties were E = 20,000 kN/cm2, ν = 0.3, σy = 10 kN/cm2.

(a)                                                         (b) 

1P

2P
P1

P2

230cm

23
0c
m

10cm

40cm
10cm

40cm

A B

C

P1
*

P1
* P2

*

P2
*

,

Fig. 3 a Geometry and loads, b loading cycle
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The updated RSDM-S was run considering five time points of the loading cycle (that
coincide with the vertices of the loading domain) and three Fourier coefficients. 350
brick elements were used for the discretization (Fig. 4). The saving in the computing
time, as compared with the original RSDM-S is about 30%.

Three different cases were considered, accounting for different initial setups of
the method:

– Case A: Three Fourier coefficients were used and the initial stress multiplication
factorwas 10−6. Although starting from a very high initial loading factor, a smooth
convergence (Fig. 5) towards the shakedown factorwas observedwhichwas found

Fig. 4 2D view and 3D view of the frame using 350 brick elements
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Fig. 5 Convergence of the loading factor when the initial elastic stresses multiplication factor is
equal to 10−6
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Fig. 6 Convergence of the
loading factor considering 3
Fourier coefficients when the
initial elastic stress
multiplication factor is equal
to 10−2
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2.8; however, the rate was slow since it required almost 20,000 iterations. The
reason is the small initial stress multiplication factor. As a result, the rate of
decrease of ϕ is quite small.

– Case B: Three Fourier Coefficients were used and the initial stress multiplication
factor was 10−2. The shakedown factor is equal to 2.59 and the convergence is
smooth as presented in Fig. 6. It coincides with [6], whereas other results reported
in the literature, are 2.473 [15] and 2.487 [16], using different meshes of plane
triangular elements.
The method needed 1637 iterations to calculate the shakedown factor. Note that,
in case A, even if the starting loading factor was 32, as the one used in the present
case, still almost 15,000 iteration would be necessary to converge.

– Case C: Eighty Fourier Coefficients were used and the initial stress multiplication
factor was 10−2. The shakedown factor is equal to 2.58 and the convergence is
smooth as presented in Fig. 7.

The method needed 1875 iterations to calculate the shakedown factor.
If someone compares the cases B and C, it is obvious that the use of three Fourier

coefficients is enough to achieve a fast and accurate estimation of the shakedown
factor. The comparison of the two cases is presented in Fig. 8.

3.2 The Slab with the Hole

The benchmark problem of the square plate having a circular hole in its center, is
the next example considered. The plate is subjected to imposed displacements along
its edges. Due to symmetry, only one quarter of the plate is discretized (Fig. 9). Let
D be the diameter of the circle, L the length of the slab and d the thickness, then
D/L = 0.2, d/L = 0.05. In the present work, L is equal to 10 m. The boundary
conditions along the X-axis and the Y-axis are considered rolled. Results for one
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Fig. 7 Convergence of the loading factor considering 80 Fourier coefficients
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Fig. 8 Comparison of case B and case C

and two cyclic displacements ū1 and ū2 varying proportionally from 0 to ū∗
1 and ū∗

2
(Fig. 10) will be investigated. The material properties are E = 180 GPa, v = 0.3 and
σy = 200 MPa. The model consists of 220 brick elements. The shakedown limit was
estimated, using the RSDM-S for the following cases:

– Case A: Only the displacement ū1 is applied.
– Case B: Both displacements ū1 and ū2 are applied
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Fig. 9 Geometry, loading and discretization of the slab

Fig. 10 Proportionally
imposed displacements
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It is pointed out that the results of case A were validated performing step-by-step
analyses using the Abaqus software.

In case A the shakedown displacement is equal to 0.15 mm and the convergence
appears smooth (Fig. 11). It is pointed out that, the shakedown factor starts from a
high value, namely 6000, and quite fast converges to the shakedown limit.

In order to check the validity of the results, step-by-step analyses were performed.
The first simulation considered cyclic imposed displacements with magnitude
varying from 0 to 0.14 mm. The analysis ran over 100 cycles and the structure finally
shaked down and the plastic strain stabilized. Contour plotting of the equivalent
plastic strain at the last step is shown in Fig. 12.

The Fig. 13 depicts the evolution of the plastic strain at the critical point A of
Fig. 12.

In the second simulationwithAbaqus, themagnitude of the imposed displacement
varied from 0 to 0.20mm. The plastic strains developed inside the grey-zone (Fig. 14)
were continuously increasing, revealing a ratchet mechanism. Figure 15 depicts the
equivalent plastic strain at the critical point A.

In the case B, the displacements ū1 and ū2 act, proportionally, along the free sides
of the slab. Having performed shakedown analyses with the RSDM-S, for different
ratios of ū∗

1/ū
∗
2, the results are depicted in Fig. 16.



128 I. A. Kapogiannis and K. V. Spiliopoulos

Lo
ad

in
g 

fa
ct

or

Fig. 11 Convergence of the loading factor

Point A

Fig. 12 Contour plot of equivalent plastic strain at the end of the step by step analysis when the
magnitude of the imposed displacement is equal to 0.14 mm
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Fig. 13 Equivalent plastic strain of point A in case of 0.14 mm

Point A

Fig. 14 Contour plot of equivalent plastic strain in the end of step by step analysis when the
magnitude of the displacement is equal 0.2 mm

It is pointed out that, in the case of the two imposed displacements, the Abaqus
step-by-step analyses could not converge. Thus, the results could not be validated.
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Fig. 15 Equivalent plastic
strain of point A in case of
the maximum cyclic
displacement of 0.2 mm
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Fig. 16 Shakedown domain
in case of two imposed
displacements. The yield
displacement corresponds to
the yielding due to both
actions
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3.3 The Tee-Junction

This example discusses the shakedown domain for a common tee junction in the case
of cyclic imposed displacement. Tee-junctions are widely used for the connection
of different piping elements. Being parts of pipelines, these components usually
undergo severe repeated earthquake loading.

The junction of Fig. 17 consists of a main pipe, with 8-inch outer diameter,
connected to a secondary pipe with a smaller 6-inch diameter. The secondary pipe
is also called “branch”. In the present example, the main pipe is considered fixed at
the ends and the imposed displacements are applied to the free end of the branch.

The model consists of 9936 brick elements. The following load cases were
examined

• Case A: The displacement is applied along the X-axis
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Fig. 17 Mesh of the tee junction

• Case B: The displacement is applied along the Y-axis

In case A the yield displacement is equal to 1.43 mm and the shakedown displace-
ment was estimated, by the RSDM-S, as 2.6 mm. The convergence of the applied
displacement towards shakedown is smooth and is presented in the Fig. 18.

The result was validated with step-by-step inelastic analyses, using the Abaqus
software. Two different analyses were performed, one below and one above the
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Fig. 18 Convergence of the displacement towards its shakedown value
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estimated shakedown value. Thus, the first case run was of amaximum cyclic applied
displacement of 2.4 mm, and the second, of 3.2 mm. It turned out that, in the 2.4 mm
case the structure shakes down. Figure 19 depicts the spread of the equivalent plastic
strain at the last time-step of the analysis. Also, the equivalent plastic strain evolution,
in the most stressed point A, is presented in Fig. 20. After the first cycles, the plastic
strain does not increase, thus the structure responds elastically.

In the second analysis, the magnitude of the maximum applied displacement was
set equal to 3.2 mm. As a result, ratcheting appeared. The Fig. 21 shows the evolution
of the equivalent plastic strain for this case, at the same point A.

Point A

Fig. 19 Contour of the plastic strain in the shakedown state

No of cycles

Fig. 20 Equivalent plastic strain evolution for the critical Gauss point for maximum cyclic imposed
displacement equal to 2.4 mm
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Fig. 21 Equivalent plastic
strain evolution for the
critical Gauss point for
cyclic imposed displacement
equal to 3.2 mm

Ratcheting state

Similar results came up for the case B, where the displacement is applied along
the Y-axis. The yield displacement is equal to 1.89 mm and the shakedown displace-
ment evaluated by RSDM-S is equal to 3.2 mm. The convergence of the applied
displacement towards shakedown is smooth, as presented in Fig. 22.

Once again for the validation of the results, the problem was imported to Abaqus
and was solved twice, using step-by-step analyses. The maximum value of the cyclic
displacement was considered equal to 3 mm and 5 mm respectively.
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Fig. 22 Convergence of the loading factor in case B
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Figure 23 depicts the distribution of the equivalent plastic strain at the last step of
the analysis for the 3 mm.

As expected, the structure shakes down, and one may see that the corresponding
equivalent plastic strain, for the point A, after a few cycles, does stabilize (Fig. 24).

In the case of greater maximum imposed displacement (5 mm) the structure is
shown to have exceeded the shakedown limit and the point A lies on a ratcheting
area (Fig. 25).

Point A

Fig. 23 Distribution of equivalent plastic strain

0.0 2.5 5.0 7.5 10.0 12.5
0.000

0.002

0.004

0.006

0.008

eq
ui

va
le

nt
 p

la
st

ic
 s

tra
in

No of iterations

Shakedown state

Fig. 24 Equivalent plastic strain evolution for the critical Gauss point for cyclic imposed
displacement equal to 3.0 mm (Case B)
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Fig. 25 Plastic strain evolution for the critical Gauss point for cyclic imposed displacement equal
to 5.0 mm (Case B)

4 Concluding Remarks

The presentwork presents an evolution of theResidual StressDecompositionMethod
for Shakedown of elastoplastic structures (RSDM-S) towards better efficiency and
robustness. It has also beenmodified to account for cyclically imposeddisplacements.
A convergence factor, which in the previous versions has been used to overcome over-
shooting, appears not to be working properly for the case of applied displacements.
A different factor that was called initial stress multiplication factor was used instead.
This factor multiplies the elastic stresses, which for the case of applied displace-
ments could be quite high. It appears to be efficient in all the cases of loading either
mechanical or applied displacements. The updated method was used successfully to
evaluate the shakedown load and domains of a holed slab and a tee junction, which
were subjected to cyclic displacements. As in the previous version of the RSDM-S
the use of no more than three Fourier terms together with the least amount of time
points to describe the cyclic loading program proved to be enough for an approach
that is numerically stable and with a smooth and fast convergence.
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