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Abstract The limit analysis of dry-masonry block structures with non-associative
Coulomb friction is formulated as a Mixed Complementarity Problem. After high-
lighting some of its peculiar features, such as the lack of uniqueness of the collapse
multiplier, a fixed-point based algorithm is presented for constructing a solution,
obtained by iteratively solving straightforward associative limit analysis problems.
Supported by the comparison with benchmark problems, the resulting procedure is
proven to be able to predict the collapse multiplier of masonry block structures with
accuracy, robustness and effectiveness.

1 Introduction

The analysis of the mechanical behavior of historical masonry structures repre-
sents a significant research topic in computational mechanics, as related to the
preservation and the restoration of architectural heritage and of historical build-
ings. Many computational strategies have been developed to date, aiming at model-
ing masonry response at different scales and levels of complexity. Among them,
it is worth mentioning micromechanical approaches (e.g., see [13, 30]), multi-
scale/homogenization approaches (e.g., see [1, 6, 21, 35]) and macromechani-
cal/phenomenological approaches (e.g., see [14, 24, 27, 33, 34]), to be used in
conjunction with finite element formulations suitable for the analysis of inelastic
structures (e.g., see [7, 8, 23, 25, 26, 28]).
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Renouncing to a constitutive description ofmasonrymaterial, the collapse loading
of masonry structures can be rigorously determined by limit analysis theory, as first
shown by Kooharian and Heyman in their classical works (see [16, 18]). A funda-
mental contribution in translating limit analysis into a computational strategywas the
seminal work by Livesley (see [19]), who proposed to consider a typical masonry
structure as a system of rigid blocks, which interact through no-tension frictional
interfaces. The attractiveness of such idealization, only requiring the friction angle
of block interfaces as material parameter, was also motivated by the simple format of
Linear Programming (LP) problem taken by limit analysis theorems. Unfortunately,
limit analysis theorems intrinsically presuppose an associative flow law, and, corre-
spondingly to Coulomb friction, the collapse mechanism exhibits interface dilatancy
and the collapse multiplier is usually overestimated (as already shown in [10] and
[37]).

Abandoning standard limit analysis theorems to assume a non-associative friction
flow law, a non-associative limit analysis problem for the analysis of masonry block
structures has been progressively formalized in [3, 4, 11, 12, 20]. That is obtained by
explicitly considering equilibrium and compatibility equations pertaining to blocks,
along with admissibility constraints (including Coulomb friction), flow laws (includ-
ing non-associative Coulomb friction flow law) and Kuhn-Tucker complementarity
conditions pertaining to block interfaces.However, due to the non-convex structure of
the complementarity constraint, the resulting coupled static/kinematic Mixed Com-
plementarity Problem (MCP) carries an ill-posedness issue related to lack of unique-
ness of the collapse multiplier. Accordingly, by assuming the minimum collapse
multiplier as the actual target, a constrained minimization problem is formulated,
with constraints given by the MCP conditions. In particular, that can be interpreted
as a Mathematical Program with Equilibrium Constraints (MPEC). As nowadays
optimization tools for the solution of the MPEC are severely limited in the size of
problems they can handle, ad-hoc solution strategies have been explored in [11, 15,
31, 38].

In the present work, a fixed-point based algorithm is discussed for solving the
non-associative limit analysis MCP relevant to 2D masonry block structures (see
[29]). Basic observation is that a solution can be derived by considering a fixed-point
problem, with the fixed-point map involving the solution of a simple associative
limit analysis problem. Accordingly, the proposed procedure achieves to construct
a non-associative limit analysis solution by iteratively solving straightforward asso-
ciative limit analysis problems. Numerical results are presented for assessing accu-
racy, robustness and effectiveness of the proposed computational approach. Possible
extensions of the present approach deal with the limit analysis of non periodic block
masonry structures (e.g., see [5]) and of 3D block masonry structures, also undergo-
ing large displacements (e.g., see [17, 36]).

The present paper is organized as follows. In Sect. 2 the non-associative limit anal-
ysis MCP is formulated. In Sect. 3, a simple two-blocks model problem is presented
to highlight some features of the relevant MCP. In Sect. 4 the present fixed-point
based solution algorithm is discussed. Numerical simulations are reported in Sect. 5
and conclusions are outlined in Sect. 6.
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Fig. 1 Blocky model for dry-masonry structures. Block displacements u and block interface
forces x

2 Limit Analysis Problem for Block Structures

A system of 2D blocks is considered, as shown for example in Fig. 1, to model
a typical dry-masonry block structure. It is assumed that the blocks are rigid and
that they interact through Coulomb-frictional interfaces. Let b and c respectively
denote the number of blocks and of interfaces, and let {O; x, y} be a fixed Cartesian
reference frame.

In case an associative flow law is considered for the frictional behavior of the
interfaces, classical static and kinematic theorems of limit analysis hold. Specifically,
assuming that external loads f d + λ f l are applied at block centroids, with f d as dead
loads, f l as basic live loads and λ as multiplier of live loads, the static theorem reads:

max
λ, x

λ

s.t. Ex + f d + λ f l = 0

NT
u x ≤ 0, NT

f x ≤ 0,

(1)

where x is a 3c × 1 vector collecting interface shear forces, normal forces and bend-
ing moments, E is a 3b × 3c block equilibrium operator, NT

u is a 3c × 3c interface
unilateral constraint operator and NT

f is a 2c × 3c interface friction constraint oper-
ator (e.g., see [19]). Conversely, the kinematic theorem yields:

min
u, zu≥0, zf≥0

− f Td u

s.t. ET u + Nuzu + N fzf = 0

1 − f Tl u = 0,

(2)

where u is a 3b × 1 vector collecting x-displacements, y-displacements and rota-
tions (about block centroid) of blocks, zu is a 3c × 1 vector of interface unilateral
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flow multipliers, and zf is a 2c × 1 vector of interface friction flow multipliers (e.g.,
see [19]). In a mechanical perspective, the static and kinematic theorems of limit
analysis supply dual descriptions of collapse multipliers, respectively obtained by
maximizing the load multipliers for which statically admissible equilibrium is fea-
sible or by minimizing the (opposite of) resisting work related to kinematically
admissible mechanisms. That duality also holds from an optimization standpoint,
i.e. formulations (1) and (2) represent linear programming problems dual to each
other, thus guaranteeing the existence of a unique collapse multiplier, which is the
common optimal value of the two problems (e.g., see [11]).

Unfortunately, the duality of static and kinematic theorems is a consequence of
the friction associative flow law. That is, of the fact that (up to a transposition) the
same operator N f, involving the interface friction angle ϕ, is used for expressing
both the friction flow and the friction constraint. If a non-associative friction flow
law is instead postulated to avoid spurious dilatancy, a distinct interface friction flow
operator V f has to be considered in place of N f, obtained by replacing the friction
angle ϕ with the dilatancy angleψ . As a consequence, static and kinematic problems
are no longer uncoupled, and the limit analysis problem has to be formulated in the
following form (e.g., see [3]):

Ex + f d + λ f l = 0

ET u + Nuzu + V fzf = 0

1 − f Tl u = 0

NT
u x ≤ 0, zu ≥ 0, zTu N

T
u x = 0

NT
f x ≤ 0, zf ≥ 0, zTf N

T
f x = 0.

(3)

It is worth noticing that nonlinear (and nonconvex) complementarity constraints
(3)6,9 are here involved, thus turning the limit analysis into a Mixed Complementary
Problem (MCP) (e.g., see [32]). In particular, excluding the simple case of associative
frictionflow law, it is affected by a ill-posedness issue related to the lack of uniqueness
of the collapse multiplier. As several structural collapse states might exist, each
attained for a distinct intensity of the live loads, a conservative possibility is to assume
the minimum collapse multiplier as the actual target. Accordingly, the following
optimization problem is introduced (e.g., see [11]):

min
λ, x, u, zu, zf

λ,

s.t. {λ, x, u, zu, zf} is a solution of (3),
(4)

which is a special case of a Mathematical Program with Equilibrium Constraints
(MPEC) (e.g., see [32]).
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3 A Two-Blocks Model Problem

In this section a simple model problem is discussed to highlight some features of the
non-associative limit analysis problem discussed in Sect. 2. As depicted in Fig. 2, a
structure constituted by two blocks is considered, each block being characterized by
width b and height h. The two blocks are supported on a base where unilateral and
friction constraints, with friction coefficient μ = tan ϕ, hold. The same constraints
are also enforced at the interface between the two blocks. It is assumed that each
block is subjected to a dead load coinciding with its weight W , whereas a horizontal
force of the same intensity is assumed as basic live load. Accordingly, a parametric
analysis of the collapse multiplier λ of the basic live loads is conducted with respect
to block slenderness η = h/b and friction coefficient μ.

As a reference result, the associative limit analysis problem is initially considered.
In such a case, a kinematic approach formulated as in Eq. (2) yields four possible
collapse mechanisms, collected in Fig. 3:

– Panel (a) depicts a slidingmechanismwith dilatancy, labelled asA1, corresponding
to a collapse multiplier λ = μ;

– Panel (b) depicts a single rockingmechanismwith ‘up’ dilatancy, labelled as A2-1,
corresponding to a collapse multiplier λ = [

η
(
1 − μ2

) + μ
]−1

;
– Panel (c) depicts a single rocking mechanism with ‘down’ dilatancy, labelled as
A2-2, corresponding to a collapse multiplier λ = (

1 + 2μ2
)
/
[
η

(
1 + μ2

) − μ
]
;

W

λW

b b

h

Fig. 2 A two-blocks model problem: geometry and loading conditions

(a) (b) (c) (d)

Fig. 3 A two-blocks model problem: collapse mechanisms for associative friction. a Sliding with
dilatancy, labelled as A1, b single rocking with ‘up’ dilatancy, labelled as A2-1, c single rocking
with ‘down’ dilatancy, labelled as A2-2, d coupled rocking, labelled as A3
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(a) (b) (c)

Fig. 4 A two-blocks model problem: collapse mechanisms for non-associative friction. a Sliding,
labelled as NA1, b single rocking, labelled as NA2, c coupled rocking, labelled as NA3
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Fig. 5 A two-blocks model problem: partition of parameter space into regions corresponding
to different collapse mechanisms, for a associative friction, b non-associative friction, minimum
collapse multiplier, c non-associative friction, maximum collapse multiplier

– Panel (d) depicts a coupled rocking mechanism, labelled as A3, corresponding to
a collapse multiplier λ = 2/η.

In Fig. 5a the partition of the parameter space into regions corresponding to the
different collapse multipliers is shown, whereas in Fig. 6a the collapse multiplier is
plotted versus the parameter space.

As for the non-associative limit analysis problem, here addressed under the
assumption of vanishing dilatancy ψ = 0, the MCP (3) has to be solved. To such
an aim, two distinct optimization problems are considered, consisting in the mini-
mization formulation (4) and in the analogous maximization formulation obtained
by replacing min with max in equation (4).
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(a) (b) (c)

Fig. 6 A two-blocks model problem: collapse multiplier versus parameter space, for a associa-
tive friction, b non-associative friction, minimum collapse multiplier, c non-associative friction,
maximum collapse multiplier

In detail, the minimum collapse multiplier is attained for:

– a sliding mechanism when μ ≤ 1/η, with collapse multiplier λ = μ. That is
labelled as NA1 and depicted in Fig. 4a;

– a single rocking mechanism when μ ≥ 1/η, with collapse multiplier λ = 1/η.
That is labelled as NA2 and depicted in Fig. 4b.

Figures5b and 6b respectively show the partition of the parameter space correspond-
ing to the two mechanisms and the minimum collapse multiplier as a function of the
parameters.

Regarding the maximum collapse multiplier, a more intricate situation emerges.
In that case it is convenient to first discuss the plot of the collapse multiplier ver-
sus the parameter space, shown in Fig. 6c. Interestingly, the relevant results coin-
cide with those pertaining to the associative limit analysis problem. However, the
maximum collapse multiplier is attained by the collapse mechanisms illustrated in
Fig. 5c. Specifically, the sliding mechanism with dilatancy A1 switches into the slid-
ing mechanism NA1 and the two single rocking mechanism with ‘up’ and ‘down’
dilatancy, respectively A2-1 and A2-2, switch into the single rocking mechanism
NA2. Of course, the coupled rocking mechanism A3 coincides with NA3, Fig. 4c,
not implying any dilatancy.

For instance, let the point η = 3 and μ = 0.65 be considered. In that case, the
associative collapse multiplier corresponds to the mechanism A2-1 and results to be
λ = 0.41973. That coincides with the maximum non-associative collapse multiplier,
though the latter is attained by the mechanism NA2. Under different interface forces,
the same mechanism NA2 also provides the minimum non-associative collapse mul-
tiplier, λ = 1/3, with a reduction of 25%. Accordingly, the present model problem
exemplifies the following features of the non-associative limit analysis problem: (i)
the MCP (3) can suffer from lack of uniqueness of the solution also in terms of
collapse multipliers, and (ii) those collapse multipliers might be strictly (and signif-
icantly) lower than the associative one.
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4 Numerical Solution Algorithm

State-of-the-art optimization tools for the solution of the MPEC (4) are severely
limited in the size of problems they can handle, and their applicability to structures
of practical interest is precluded (see [11]). On the other hand, also renouncing to
global minimization and restricting to the solution of the MCP (3), a numerical
solution strategy suitable to the limit analysis of real structures is still missing. As
a matter of fact, it is nowadays possible to resort to numerical tools that make the
solution of LP problems, also of large size, a straightforward task to accomplish.
Accordingly, a novel solution strategy is here conceived to construct a solution of the
MCP (3), whose main motive is to exploit the iterated solution of suitable associative
limit analysis problems.

Basic idea of the algorithm is to assume the block interface normal forces n
as iteration variables. Hence, let the current iterate n∗ be given. Without loss of
generality, it is assumed that all interfaces have the same friction and dilatancy angles,
respectively ϕ and ψ . Then, an associative limit analysis problem is formulated,
comprising the following cohesive-frictional criterion:

|t| ≤ −n tanψ − n∗ (tan ϕ − tanψ) , (5)

where t collects the block interface shear forces. Accordingly, ψ is assumed as
friction angle, whereas a vector of interface cohesions −n∗ (tan ϕ − tanψ) is pre-
scribed. Interestingly, the solution of such LP problem fulfills the equilibrium con-
dition (3)1, the compatibility condition (3)2 (in fact an associative flow law with
friction angle ψ is assumed), the normalization condition (3)3, and the unilateral
constraint and complementarity conditions (3)4–6. Contrarily, friction constraint and
complementarity conditions (3)7–9 are in general not satisfied, as being affected by
the cohesive-frictional criterion under consideration. However, as shown in [29], the
original Coulomb friction and the cohesive-frictional criterion result to be equivalent
if the block interface normal forces n in solution of the LP problem coincide with
n∗.

The discussion above suggests to introduce the (continuous) functionF , mapping
a given vector of block interface normal forces n∗ into the block interface normal
forces n in solution of themodified associative limit analysis problem. Consequently,
a solution of the MCP (3) can be constructed by solving the following fixed-point
problem:

n := F(
n∗) = n∗. (6)

Two concluding remarks are in order. First, problem (6) can be addressed by stan-
dard fixed-point iterations, or by a general-purpose derivative-free algorithm (e.g.,
see [22]). Second, in [15] a heuristic algorithm is proposed to construct a solution
of the MPEC (4), by the iterated solution of associative limit analysis problems. As
a main difference with respect to the present algorithm, in that case convergence is
assumed when the collapse multiplier does not change in two successive iterations.
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Contrarily, no check is therein required on the difference of block interface nor-
mal force, which might produce a not-negligible error in the friction admissibility
condition (see [29]).

5 Numerical Simulations

In this section, numerical simulations are reported for assessing the performances
of the present fixed-point algorithm. For comparison, other computational strate-
gies available in the literature are also considered, specifically: the PATH solver
proposed in [9], implementing a stabilized Newton method for the solution of gen-
eral MCPs; the iterative relaxed nonlinear programming (NLP) algorithm proposed
in [11], addressing the MPEC (4) by relaxation of the complementary constraints
with a progressively reduced relaxation parameter; and the sequentially LP-based
(SLP) algorithm proposed in [15], solving a succession of associative limit analy-
sis sub-problems and controlling the difference of collapse multipliers in successive
iterations.

Four benchmark problems are analyzed, modeling a round arch structure (Fig. 7a),
an arch on buttresses structure (see [2]) (Fig. 8a), and two wall structures (see [3])
(Figs. 9a and 10a). Each structure is composed of equal-sized blocks (blocks having
aspect ratio of 1 : 2) and is supposed to be supported on a base, where unilateral and
friction constraints are enforced. Blocks are subjected to vertical dead loads f d and

(a) (b) (c)

Fig. 7 Numerical simulations: round arch problem. a Geometry, b collapse mechanism with asso-
ciative Coulomb friction and c collapse mechanism with non-associative Coulomb friction

(a) (b) (c)

Fig. 8 Numerical simulations: arch on buttresses problem (see [2]). a Geometry, b collapse mech-
anism with associative Coulomb friction and c collapse mechanism with non-associative Coulomb
friction



92 N. A. Nodargi et al.

(a) (b) (c)

Fig. 9 Numerical simulations: 2 × 1 wall problem (see [3]). a Geometry, b collapse mechanism
with associative Coulomb friction and c collapsemechanismwith non-associative Coulomb friction

(a) (b) (c)

Fig. 10 Numerical simulations: 2 × 2 wall problem (see [3]). a Geometry, b collapse mechanism
with associative Coulomb friction and c collapsemechanismwith non-associative Coulomb friction

horizontal basic live loads f l, which are both proportional to the block volumes to
mimic a pseudo-static earthquake loading. The material parameters are: the friction
angle ϕ = arctan (0.65) and the dilatancy angle ψ = 0.

Panel (b) of Figs. 7–10 depicts the collapsemechanisms of the structures assuming
associative frictionflow law,whereasPanel (c) of the samefigures depicts the collapse
mechanisms predicted by the present fixed-point algorithm assuming non-associative
friction flow law. The corresponding collapse multipliers are reported in Table1,
where also the results computed with the above competing algorithms are displayed.

Except for the round arch problem, whose collapse mechanism only involves uni-
lateral failures, a reduced collapse multiplier corresponds to the non-associative fric-
tion flow law with respect to the associative one. Concerning the different estimation
of non-associative collapse multipliers supplied by the algorithms under investiga-
tion, it can be noticed that the PATH solver converges to one of the (possibly many)
solutions of the MCP (3), without any further specification. Conversely, the NLP
algorithm explicitly seeks for a (local) minimum of the MPEC (4), thus justifying
a demanding computational cost which precludes its use for large-size block struc-
tures (see [29]). On the other hand, the SLP and the present algorithms intend to
construct a solution of the MCP (3) by iteratively addressing a static theorem for-
mulation of modified associative limit analysis problems. Hence, those are methods
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Table 1 Numerical simulations: collapse multiplier obtained by the present fixed-point algorithm.
Corresponding values relevant to a in-house implementation of PATH algorithm (see [9]), NLP
algorithm (see [11]) andSLPalgorithm (see [15]) are reported (with× denoting lack of convergence)

Problem Collapse multiplier

Associative Non-associative

PATH NLP SLP Present

Round arch 0.16034 0.16034 0.16034 0.16034 0.16034

Arch on
buttresses

0.09085 0.08466 × 0.08195 0.08690

2 × 1 wall 0.33194 0.26374 0.26374 0.26374 0.26374

2 × 2 wall 0.34782 0.29725 0.29577 0.29649 0.29611

Table 2 Numerical simulations: relative errors in compatibility and friction admissibility con-
ditions. For comparison, the corresponding values relevant to a in-house implementation of SLP
algorithm (see [15]) are reported

Problem Relative error in friction admissibility

SLP Present

Round arch 0 0

Arch on buttresses 8.43 × 10−2 1.84 × 10−4

2 × 1 wall 4.56 × 10−2 2.62 × 10−9

2 × 2 wall 7.04 × 10−2 1.97 × 10−4

characterized by a reduced computational cost, which in turn cannot aim to a mini-
mality property of the collapse multiplier. In order to highlight the main difference
between the SLP and the present algorithms, the relevant solution quality has to be
considered. Table2 shows the relative error in the friction admissibility condition,
defined as ‖(NT

f x)+‖/‖NT
f x‖ (here ‖·‖ denotes the Euclidean norm and (·)+ the

positive part operator), which results in the order of 10% for the SLP algorithm and
much smaller for the present one. As that error is proportional to the difference of
normal forces in successive iterations (see [29]), the improved solution quality of the
proposed algorithm relies in explicitly assuming a convergence criterion on block
interface normal forces, instead of collapse multipliers as in the SLP algorithm.

6 Conclusions

The limit analysis of dry-masonry block structures with non-associative Coulomb
friction has been considered. Its formulation has been obtained as a Mixed Com-
plementarity Problem, comprising equilibrium and compatibility equations pertain-
ing to blocks, along with admissibility constraints (including Coulomb friction),
flow laws (including non-associative Coulomb friction flow law) and Kuhn-Tucker



94 N. A. Nodargi et al.

complementarity conditions relevant to block interfaces. A simple two-blocks model
problem has been presented to remark well-known peculiar features of
non-associative limit analysis problem, such as the lack of uniqueness of the col-
lapsemultiplier and the fact that non-associative collapsemultipliers are smaller than
the associative one. A fixed-point based algorithm has been proposed for construct-
ing a solution of the non-associative limit analysis problem, obtained by iteratively
solving straightforward associative limit analysis formulations. Numerical simula-
tions have been presented to investigate the performances of the resulting procedure.
Compared to computational costly available methods, which explicitly seek for the
minimum collapse multiplier, the proposed algorithm gives reasonable estimation
of the collapse multiplier. Conversely, compared to similar procedures, which aim
at deriving a solution iteratively attacking associative limit analysis problems, the
present approach guarantees accuracy of the solution, also with respect to the friction
admissibility condition.
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