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Foreword

When Maximilian Tytus Huber published in 1904 his work entitled “Specific work
of strain as a measure of material effort” (in Polish), he probably did not realize
what effect this article would have on the development of the theory of plasticity.
His pioneering work opened the prospect of an extraordinary development of this
field of knowledge, both in the context of constitutive modeling of materials, and in
the context of direct methods in mechanics. The same approach, based on the
concept of shear energy as the driving force of inelastic deformation, has been
independently applied by von Mises (1913) and Hencky (1924). For this reason, the
most popular yield function ever is called Huber-von Mises-Hencky (HMH). This
shows that great discoveries have often a multinational dimension, and when all the
components are there, the breakthrough is shared by many enlightened minds,
working independently of each other.

The HMH yield function was at the origin of expansion of the constitutive
models, starting from the simplest one—the perfect rigid-plastic model. Even if the
model was preceded by the Nadai (1923), as well as the Hencky (1924) and
Ilyushin (1943) deformation theory, the real breakthrough came with the von Mises
(1913) flow theory (inspired by the work of Levy, 1870), that involved the HMH
yield function, and—finally—gave birth to the Prandtl (1924) and Reuss (1930)
theory of plastic flow for the elastic-perfectly plastic continuum. From this moment
on, a bifurcation has been observed, with the constitutive models of materials
(including highly dissipative phenomena) developing in one way, and the direct
methods in mechanics following their own way, involving the classical theorems of
limit loads and the problems of adaptation (shakedown) to cyclic loads. In partic-
ular, more and more advanced constitutive models involve such phenomena like the
evolution of microstructure, the phase transformations, the evolution of
micro-damage or non-standard modes of inelastic behavior, whereas the direct
methods address the variables and the limits set to determine the structural safety.
Thus, modern, physically based, multiscale constitutive models of materials are
usually built by using local approach, and are defined at the level of a point,
whereas, the direct methods apply to the structure as a whole.
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The first ideas related to the so-called load carrying capacity may be traced back
to the eighteenth century, however—historically—the first limit carrying capacity
(LCC) of structures was calculated by Kazinczy (1914), Kist (1917), and Ingerslev
(1923). A major contribution was brought by Hill (1951, 1952), Prager (1951,
1952), and Drucker (1954). The limit load was defined for a structure made of
rigid-plastic hardening material as the yield stress load. It is accompanied by an
infinitesimal deformation of the structure. Prager (1952, 1955) used another defi-
nition, based on the elastic-perfectly plastic material. The limit load was interpreted
as such a load that results in unconstrained plastic flow. Based on these approaches,
the so-called extremum theorems of limit analysis were established for the struc-
tures made of rigid-plastic material and subjected to quasistatic loads. The theorems
refer to the statically admissible stress fields or the kinematically admissible dis-
placement fields, accompanying the mechanism of plastic collapse of a rigid-plastic
body, and constituting the lower and the upper bounds of the limit load. The
extremum theorems corresponding to the HMH yield surface were proved by Hill
(1956, 1957), and extended to large strains in 1958. Another way of establishing the
limit loads based on the rigid-perfectly plastic model was the so-called method of
characteristics, formulated by Hencky (1923) and Prandtl (1923), and followed by
Geiringer (1930), Geiringer and Prager (1933), Sokolovsky (1950, 1958), Shield
(1953), Mróz (1967), Kachanov (1969), Dietrich (1970), Szczepiński (1974),
Martin (1975), and many others. Going even further, a more advanced concept
of the decohesive carrying capacity (DCC) was introduced by Życzkowski (1973),
based on the assumption of unbounded dissipation energy.

The limit analysis was extended to variable loads, in particular to cyclic loads,
that constitute an important part of the technical reality of structures. In the light
of the early achievements in limit analysis, Melan (1930) formulated a theorem,
also called the static shakedown theorem, that constitutes a natural generalization
of the lower bound theorem for quasistatic loads. A proof of the theorem for
three-dimensional continuum was provided by Melan (1938), and later on by
Symonds (1951) and Koiter (1955). Extrapolation of the Melan theorem to the
structures made of strain hardening material is due to Neal (1950), as well as
Symonds and Prager (1950). The Melan theorem has been widely recognized as the
most common and efficient tool for the shakedown analysis. Later on, Koiter (1956,
1960) formulated a theorem, often called the kinematic inadaptation theorem, that
forms a direct extrapolation of the upper bound theorem for quasistatic loads. The
theorem has been generalized to thermal cycles and non-associated flow rules by
Maier (1969), as well as to dynamic loads by Corradi and Maier (1973). The
theorems have been expressed in terms of the generalized stresses by König (1966,
1974).

Both theorems have become a turning point in the development of direct
methods in mechanics. In particular, the shakedown theorem provides a limit
against excessive deformation, and this approach is massively used in the design of
structures, for instance nuclear power plants. Thermal loads were included into the
shakedown analysis already by Prager (1956) and by Rozenblyum (1957, 1958,
1965), as well as by Gokhfeld (1961, 1965, 1970). Shakedown of rigid hardening
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structures was addressed by Prager (1974). As both theorems were derived under
the assumption of geometrically linear theory, an extension to geometrical non-
linearities was inevitable and is due to Weichert (1986). More recently, an exten-
sion of limit and shakedown analysis to general class of yield conditions was
proposed by Ponter (2000).

With the development of constitutive models, there were many attempts to
extrapolate the theorems to more complex mathematical descriptions. Fast progress
of numerical methods, in parallel with much faster processing of data, made it
possible to compute the nonlinear behavior of structures in more time-effective
way. The finite element method can accommodate mathematically complicated
constitutive models in order to solve any sophisticated problem of inelastic
behavior of the complex structures. However, the direct methods retain their
original, extremely important feature of solving this part of the problem, that is
necessary to assess the limit state. They take advantage of the modern computa-
tional methods in order to employ the variables required in the design context, to
find the bounds for energy dissipation, and to set the appropriate safety factors. This
is of primary importance for safe design of structures and efficient communication
with the engineers and industry.

In the present volume, novel and important achievements in the domain of direct
methods, presented at the 4. Polish Congress of Mechanics and 23. International
Conference on Computer Methods in Mechanics (PCM-CMM-2019) in
Cracow/Poland, during the session on “Direct Methods: Methodological Progress
and Engineering Applications”, are contained. The topics stretch from the limit
analysis and shakedown problems of different types of structures (including
bone-structures) to the limit analysis-based optimization and advanced engineering
applications. This book is the best proof that the direct methods in a modern form
are actively developing for the benefit of science, technology, and industrial
applications.

Cracow, Poland Błażej Skoczeń
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Preface

“Direct Methods”, embracing Limit- and Shakedown Analysis, allow to answer
without cumbersome step-by-step computation one of the oldest and most impor-
tant questions of design engineering, which is to determine the load carrying
capacity of structures and structural elements.

This book is the peer-reviewed collection of papers presented at the Workshop
on Direct Methods, held September 10–11, 2019 in Cracow, Poland, giving an
insight into the latest developments of this fast progressing field of research. It is in
line with similar books on the same subject which have been published as docu-
mentation of the previous workshops, held regularly since 2008 at Aachen, Lille,
Athens, Reggio Calabria, and Oxford.

Most of the contributions are related to new numerical developments rendering
the methods attractive for industrial design in a large panel of engineering appli-
cations. Extensions of the general methodology to new horizons of application are
presented as well as specific technological problems.

It might be worth noting that the success of the workshops and the growing
interest in Direct Methods in the scientific community were motivations to create
the association IADiMe (http://www.iadime.unirc.it/) as a platform for exchange of
ideas, advocating scientific achievements and not least, promotion of young sci-
entists working in this field. It is open for all interested researchers and engineers.

The editors warmly thank all the scientists who have contributed by their out-
standing papers to the quality of this edition.

Special thanks go to the organizers of the 4th Polish Congress of Mechanics &
23rd International Conference on Computer Methods in Mechanics,
PCM-CMM-2019, September 8–12, 2019, Cracow, who hosted our meeting in the
most comfortable and generous manner.

Reggio Calabria, Italy Aurora Angela Pisano
Athens, Greece Konstantinos Vassilios Spiliopoulos
Aachen, Germany Dieter Weichert
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Evaluation of Human Bones Load
Bearing Capacity with the Limit Analysis
Theory

Aurora Angela Pisano and Paolo Fuschi

Abstract The present study investigates on the possibility of applying the Limit
Analysis structural theory to predict a lower bound to the peak/collapse load of human
bones. Such a prediction can be useful to prevent skeletal diseases, osteoporosis
and bones fractures; a problem of great interest in biomechanics and of relevant
socio-economic impact in modern societies. A constitutive model of Tsai-Wu-type
in principal stress space is assumed for the human bone modelled in 3D and viewed,
at a macroscopic level, as a structural element made of a composite anisotropic
material. Simple numerical tests on in-silico idealized specimens of human femur
are performed, analyzed and critically discussed.

1 Premises, Motivations and Goals

Skeletal fractures, osteoporosis and bone-related diseases represent one of the major
public health problems that is rising rapidly as the population ages. This has seri-
ous consequences on national health budgets. The data reported in the Report EU6,
elaborated by the IOF (International Osteoporosis Foundation) at the end of 2018,
estimated for the National Health Service of Italy, just to take an example, an expen-
diture of 9.4 billion euros, related to the cure of bones of population, with an alarming
growth forecast, up to about 12 billion euros, by 2030.

The growing interest in research studies aimed at assessing the fracture risk of
humanbones reflects the increasing incidenceof this problem for themodern societies
ageing. The lengthening of life expectancy further increases the relevance of this
research topic, as a much wider part of the population is vulnerable to the risk of
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bone fracture. This problem, particularly felt in Italy, due to the ascertained aging of
its population, is actually a problem throughout Europe and in all Countries where
the economic well-being of the population increases its life expectancy. It has been
calculated that in the world a skeletal fracture (mainly generated by osteoporosis)
occurs every 3 seconds, and that, in the most serious cases, it can also lead to a partial
or total permanent disability. Consequently, the patients can lose their independence,
suffer from chronic pain and depression, so generating a significant socio-economic
burden, difficult to estimate because it goes far beyond the costs related only to bone
care. There is, therefore, an urgent need to recognize skeletal fractures, osteoporosis
and in general bone diseases as a priority for public health and to integrate prevention
and fracture management into healthy aging strategies.

In this context, the knowledge of bone strength is of paramount importance for
fracture risk prediction. The awareness of being exposed to a risk of fractures can
lead patients to change their level of attention on the problem by following medical
and behavioural protocols that lead to lifestyles more appropriate to their condition,
without compromising the general quality of their life. Moreover, the knowledge,
with a high degree of accuracy and reliability of this data for the patient would
lead to prompt intervention in terms of prevention, pharmacological medical care
and, alternatively, in terms of surgical interventions or implantation of prostheses.
Any of these actions, following anamnesis and deep knowledge of patient-case-
history, shouldbebasedon theknowledgeof the specific-patient bones real conditions
in terms of mechanical resistance that should be captured by numerical predictive
models in conjunction with non-invasive measurements such as medical imaging
describing the actual underlyingmicro andmacro-structure of the bone of the patient.

A great amount of research work has been developed to understand and describe,
from a mechanical point of view, the behaviour of human bones in order to develop
numerical models able to predict their response under different loading conditions
(see e.g. [1–4] and references therein just to have an idea of the impressive number
of contributions in this field). The numerical modelling of human bones dates back
to the early seventies (see e.g. [5–7] and references therein), however, the developed
numerical tools, the proposed constitutive models, are all oriented to the description
of the post-elastic behaviour of human bones and are often based on hypotheses on
the behaviour of the “bone material” true only for specific cases or for precise bone
elements of the human skeleton. The problem, in the authors’ opinion, is that, to
date, is not available a mechanical constitutive model for human bones, endowed
with incremental constitutive laws, capable of accurately managing the post-elastic
mechanical behaviour of a “structural element” made by “human bone material”.
Human bones are not properly engineering materials; the bone tissues are alive.
They are able to grow, to adapt themselves to operating loads, to regenerate, but,
also, to degrade due to aging or to pathologies well known in the field of medicine
and orthopaedic surgery. The engineering description of such kind of material and
the knowledge of the behaviour of the bone beyond the elastic phase is very difficult
and confined to specific bones and to specific patients.

From the above remarks come the motivations of the present study based funda-
mentally on a look at what happened in the past in the field of structural engineering.
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We refer in particular to the history and evolution of calculation techniques for (large)
steel structures. Steel, at the beginning of the twentieth century, constituted a building
material of great versatility and easy to use. However, if we consider the numerical
methods related to structural steel elements we cannot forget that the first reliable
constitutive models for this material are dated 1913 (von Mises) or 1868 (Tresca)
or, again, 1924 (Hencky) while the numerical procedures able to describe the post-
elastic behavior of steel structures based on such models developed many years later.
The theory of plasticity and the methods of step-by-step solution (in the static and
dynamic field) have become established and widespread, together with the develop-
ment of computers, only in the early 1980s. What were then the calculation tools
available at the beginning of the twentieth century with reference to steel structures?
Just look at the history! Almost everything was based on simple and reliable theories
and methods which, renouncing to the step-by-step description of the post-elastic
behavior (not available at that time), were limited to the prediction of the ultimate
load of the structure (the greater load the structure can bear before collapse) and/or
of the examined structural element. The Limit State Design, the Limit Analysis, later
followed by Shakedown Analysis and the so-called Direct Methods (see e.g. [8] and
references therein for an updated review of the modern techniques in this context),
allowed to predict, with a high degree of accuracy, the collapse load of the structure
thus providing a useful and fundamental indication for the design, verification and
determination of safe operating conditions.

In the context of “structures made up of human bone material” we are today in the
same conditions we were for steel constructions in the early twentieth century! In
the literature there are constitutive models able to define with sufficient accuracy the
field of admissible stresses for bones, also taking into account the microstructure of
the different bone tissues, but yet we do not have flow laws that can fully describe the
post-elastic behavior of human bones. What to do then? Apply the Limit Analysis.
The history suggests. A history known in the field of structural engineering, certainly
less known in that of biomechanics or medicine. The pursued goal is then simply
to aim at an accurate prediction of the peak/collapse load of the human bone. The
idea is therefore that of focusing on the ultimate conditions, i.e. investigating the
incipient collapse scenario of the examined bone, directly, to detect the load-bearing
capacity of bone and the pertinent collapse mechanism. To this aim the needed
information reduce themselves only to bone strengths, to be experimentally detected
for a specific patient, a goal more easily reached than the determination of all the
material parameters needed for defining the evolutive processes leading to bone crisis.
The framework of plasticity theory in conjunction with finite element techniques is
referred to and in line with other literature studies.

The peculiarity of the limit analysis approach here promoted is that linear finite
element (FE) analyses are involved within an iterative procedure in which the elastic
properties of “bone material” are systematically adjusted to simulate the limit state
solution. More precisely, the static approach of limit analysis is followed by the
Elastic Compensation Method [9, 10] in order to search for a lower bound to the
peak/collapse load value. Such numerical procedure has been successfully applied by
the authors to structures, or structural elements, made of a variety of materials, each
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characterized by a specific yield surface e.g. composites [11–13] complying with
a Tsai-Wu criterion or reinforced concrete structures obeying a generalized yield
surface in the 3D stress space [14–16]. In the above analyzed cases, effectiveness
and versatility of the limit analysis procedure have been broadly demonstrated via
direct comparison with experimental findings. It is worth noting that the linear elastic
FE analyses involved greatly simplifies the formulation and reduce the number of
material parameters required for themodel calibration.Actually, the only information
needed is a domain of admissibility for the stresses, something already available for
bones and not linked to the knowledge of constitutive laws of evolutive type. This
represents a competitive aspect of the present approach and makes the proposed
procedure of practical connotation for clinical purposes. Critical zones, that needs to
be cured or that need reinforcement, are directly highlighted and proper interventions
can be planned and carried out in such specific zones that are mostly prone to the
fracture risk.

The assumptions on the “bone material” mechanical behaviour are expounded
in the following Sect. 2. Limit analysis on human long bones is presented in Sect. 3
togetherwith somenumerical simulations. Section4 is devoted to concluding remarks
and future developments.

2 The Human Bone “Material”

Generally speaking, human bone behaves like a composite material whose con-
stituents are minerals, collagen and water. Bone tissue is generally classified, at
macroscopic level, into two different types: spongy bone tissue, also called trabec-
ular or cancellous bone and compact bone tissue, also known as cortical bone. The
cortical represents the external part of the bone and is strong, dense and tough, while
the inner spongy part is lighter and less dense than cortical one. The trabecular bone
tissue is usually found in cuboidal bones, flat bones and at long bones to which
we refer in this preliminary study. The properties of the compact and spongy bone
tissues are closely related to their conformation, characterized, like most biological
tissues, by a very complex and hierarchical structure that can be analyzed at different
dimensional scales [17–20].

Without goingmuch into details,mineral elements, collagen, and non-collagenous
organic proteins form the sub-nanostructure (below 100nm), with type-I-collagene
fibers permeated with carbonated apatite (hydroxyapatite) nanocrystals. These min-
eralized collagen fibers at the nanostructure (below 1µm) are further arranged at
a sub-microstructural length scale (1–10µm) into adjacent lamellae. The lamellar
structures are then organized into trabeculae and osteons, also known as Harvesian
system, at the microscale (10–500µm), forming large vascular channels surrounded
by circumferential lamellar rings. Finally, at the macroscopic scale, the union of
trabeculae give rise to the cancellous (porous) bone tissue and the union of osteons
gives rise to the cortical bone tissue. At this scale level, the differences in the density
and mechanical characteristics of the bone tissues become evident. The spongy bone
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has a honeycomb appearance and a structure characterized by a porosity between 50
and 90%. On the other hand, the compact bone appears to be a solid mass. Compared
to the spongy bone, cortical one is characterized by a higher density and therefore a
lower porosity, between 5 and 10%.

With few exceptions, the compact and spongy components are present in all bones,
with different quantities and distributions depending on the type of bone. There-
fore, the mechanical characterization and properties of the bone passes through the
characterization of these two macroscopic components as well as of their spatial
arrangement and structural organization. For example, the stiffness of a compact
bone specimen is a function of the architecture and mechanical properties evaluated
at the macroscale, i.e. of the spatial arrangement of the osteons, of the stiffness of the
single osteon, of the degree of mineralization of the osteons (spatial arrangement and
mechanical properties at microscale), etc. Similarly, the stiffness of a spongy bone
sample is a function of its internal organization that is of the spatial arrangement of
the trabeculae, of the mechanical properties of the single trabecula and of its inter-
nal composition. The mechanical characteristics of the bone “material” (Strengths,
Young, shear and Poissonmoduli) can be obtained experimentally bymaking specific
measurements with the same logic used for other engineering materials. The relevant
literature provides examples of classic tests such as traction, compression, torsion,
bending etc., see e.g. [21, 22]. Obviously, the main problem is represented by the
specimen that cannot be reproduced in series, as happens for the other engineering
materials, and this has focused the attention of the researchers towards other types
of investigations, such as those that use ultrasound, computed and micro-computed
tomography, magnetic resonance etc.

A close relationship exists nowadays between diagnostic imaging, interpretation
of observable parameters at the microscale and in-silico methods oriented to charac-
terize the mechanical properties of human bones and eventually of their behavior at
both micro- and macro-scale. These methods allow for the elimination of many of
the uncertainties involved with results coming out from mechanical tests and direct
fabric measurements, thus enabling to find the relationships between architectural
and mechanical parameters, see e.g. [23]. A plethora of research works were focused
on the determination of mechanical properties of bones depending on age, gender,
as well as patient-specific morphological, chemical and compositional properties
provided by computer aided diagnostics and techniques of medical imaging, see e.g.
[24, 25].

Another valuable existing research line in this field of bone mechanics is that
related to the so-called micro finite element (μFE) simulations performed to deter-
mine the apparent mechanical properties of bones. These μFE analyses are aimed
at simulate nanoindentation and microindentation tests for calibration purposes, see
e.g. [26] and references therein. Indeed, the nanoindentation technique avoids the
influences of the inherent defects and inhomogeneities in the microstructure, thus
facilitating measurements of the mechanical properties of the individual microstruc-
tural components. At present, μFE modeling has gained adequate validation against
experimental findings, although in most cases this validation has been limited to in
vitro experiments.
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Besides the simple pioneering elastic idealizations, several inelastic constitutive
models have been proposed in the literature to capture the main physical phenom-
ena associated with post-yielding of bone material, namely stiffness loss, permanent
deformation, and hysteretic response. Continuum damage mechanics in conjunc-
tion with plasticity has been used [27–30]. Bone fracture mechanics guided many
other models, see e.g. [31] and references therein. In the need to adopt a constitutive
model, which inevitably can hardly take into account the complexity of the human
bone behavior, the attention has been focused on some of the existing models specif-
ically referred to the two macroscopic bone components, precisely for trabecular
bone the ones proposed in [32–36] and for cortical bone those promoted in [37–
40]. The above quoted papers, whose list is far to be exhaustive, allows one to affirm
some peculiarities of bones mechanical behavior. Bones exhibit asymmetric yielding
with a higher yield strength in compression than in tension. Due to their composite
microstructure, brittle mechanisms occurs within the mineral, ductile mechanisms
within the organic matrix, interactions take place between the two phases. The bone
material is anisotropic, as the stress-strain relationship changes depending on the
direction of the load application (with higher strength in the longitudinal direction
than across the bone surface). The bone material is a rate-dependent or viscoelastic,
as it responds differently depending on the speed of the applied loads, and this is
particularly evident with increasing post-yield deformation, as damage accumulates
in the tissue. Moreover, a general remark on the existing constitutive models con-
cerns the circumstance that bone fracture is widely regarded as strain-controlled as
most theoretical descriptions of bone mechanical behavior assume that the onset of
fracture is triggered by strains. Therefore, strain-based fracture criteria are the more
commonly used in predicting the onset of fracture although experimental evidence
in this regard is still lacking.

Three more observations have to be made for completeness without claim of
exhaustiveness:

(i) almost all criteria are formulated both in stress and strain space but taking into
account what is known in the literature as the “fabric tensor concept” considered, by
who conceived this operator [41, 42], as the second measure of microstructure in a
porous material after porosity. The fabric tensor is a symmetric second rank tensor,
which characterizes the geometric arrangement of a porous material microstructure
or the local spatial distribution of one phase of a multiphase material relative to the
other phases. Many are the related papers oriented to quantify the fabric tensor, see
e.g. [22, 33, 43, 44];
(ii) there are criteria constituting a sort of “bridge” between the previous ones,
namely the generalized anisotropic quadric yield criterion conceived by Zysset and
Co-Workers (see e.g. [45] and references therein). This yield surface has a convex
quadric shape with a smooth transition from ellipsoidal (typical of porous composite
materials) to cylindrical or conical surfaces (representative of solidmatrixmaterials).
The peculiarity of such yield criterion lies in its generality, as it degenerates to several
well-known yield surfaces like von Mises, Drucker-Prager, Tsai-Wu, Liu and Hill
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criteria as special case under appropriate conditions. Moreover, the different quadric
shapes of this model are helpful for fitting yield envelopes at every hierarchical level,
from the extra-cellular matrix at the microscale up to the actual bone tissue at the
macroscale;
(iii) concepts related to nonlocal and gradient elasticity have been advanced to equip
the classical continuum plasticity-damage constitutive laws for bones with higher-
order contributions, see e.g. [46, 47]. Following these approaches, the multi-scale
nature of bones and the related microstructural phenomena description is achieved
via the introduction of internal length material scales into an enriched continuum
formulation. The length scale parameters are related to the size of material hetero-
geneities. These nonlocal or gradient-enhanced formulations for bones, in the context
of finite element numerical analysis, improve previous local models of bones in an
attempt to minimize the mesh sensitivity in presence of damage and strain softening.
It is worth noting that the practical and general applicability of the latter approaches,
that are indeed very promising, is however still difficult being related to the identifi-
cation of a number of material parameters that takes into account, at a macroscopic
level, phenomena arising at a nano-scale.

2.1 The Adopted Material Model

For the purposes of this study, oriented to apply Limit Analysis theory valid in the
realm of plasticity, a yield criterion with its related yield surface has to be assumed
to handle the bone material. It is then essential to define preliminarly “plasticity in
bones”.

As said bones are characterized by a highly complex and hierarchical structure,
[17, 48], in which a mineral phase is embedded in an organic matrix of collagen
protein. Elasticity is due to soft collagen which is also able to dissipate energy under
mechanical deformations. Plastic deformations in bones, as inmetals, imply opening,
deforming and rearrangement of bonds. In metals such processes are addressed and
explained by dislocations movements, in bones such processes occur at all hierar-
chical levels, see e.g. [49, 50] and references therein. Plasticity or permanent defor-
mations in bones, as it can be observed through multiscale modeling and techniques
able to operate at very small scale of observation, is due to breaking of bonds starting
at molecular scale. The breaking under increasing loads of hydrogen bonds within
the single collagen molecules is followed by intermolecular sliding and breaking of
bonds within collagen fibrils. The latter intermolecular sliding constitutes a mecha-
nism of energy dissipation and plastic deformation. Going to a larger submicrometer
scale, the fibrillar sliding is the source of permanent, plastic deformation, in bones.
The bone’s toughness is due intrinsically (at submicrometer scale) to fibrillar slid-
ing responsible of the formation of plastic zones in the vicinity (ahead) of a crack
within which dissipation can take place impeding fracture spreading. In particular,
plasticity at the crack tip dissipates energy, reduces stresses so blunting the crack tip.
The bone’s toughness is also due extrinsically (at larger osteon structural scales) to
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crack bridging/deflection. A mechanism like crack bridging, as known in composite
materials context, carries loads that would otherwise drive crack propagation. For
completeness it is worth noting that, although many other materials may be mechan-
ically superior, bone is the only one exhibiting the capacity of self-repairing and
adapting. Unfortunately, strength, toughness and plasticity of bones degrades with
age, [51]. Eventually, although the majority of studies do not use plasticity concepts
but rather damage models, bones are fracture resistant, show plastic deformations
and plasticity is a major factor reducing bone fragility. Indeed, bones exhibit enough
ductility which allows them to absorb impacts reducing the risk of fracture and
minimizing skeletal weight.

One of the most accredited criteria in the field of composite materials, namely the
quadratic Tsai-Wu failure criterion [52], is here adopted to define a Tsai-Wu-type
yield surface. It is expressed in the space of principal stresses in the following form,
after [31, 42]:

G11σ11 + G22σ22 + G33σ33 + F1111σ
2
11 + F2222σ

2
22 + F3333σ

2
33 +

2F1122σ11σ22 + 2F1133σ11σ33 + 2F2233σ22σ33 = 1 (1)

with the coefficients defined as:

Gii = 1

σ+
i

− 1

σ−
i

Fiiii = 1

σ+
i σ−

i

(2)

Fiijj = 1

2

(
1

σ+
i σ−

i

+ 1

σ+
j σ−

j

− 1

σ 2
ij

)
(3)

In Eq. (1), σ11, σ22, σ33 denote principal stresses; in Eqs. (2) and (3) repeated indices
are not summations while σ+

i , σ−
i , σij are the ultimate strengths (in modulus) in

tension, compression and in shear, respectively, along each direction and plane of
orthoropy (i, j = 1, 2, 3). Referring, as said, to long human bones: direction 1 is
the radial or medio-lateral; 2 is the anterior-posterior; 3 is the axial or superior-
inferior long bone’s axis. No fabric tensor dependence is assumed in the interaction
coefficients Fiijj as done in the above quoted papers. Such assumption has a twofold
reason: (i) it is not essential for verifying, at this stage, the validity of the procedure
here promoted; (ii) the fabric tensor should be defined for a specific patient bone
which will not be considered hereafter. Moreover the following inequality holds
true:

Fiiii Fjjjj − F2
iijj ≥ 0 (4)

The latter insures that the Tsai-Wu-type surface will intercept each stress axis, it
has an ellipsoidal shape (i.e. it is not open-ended), it contains the stress space origin.
The assumed values of strengths are summarized in Table1 along with the references
utilized to fix them and assuming for the apparent density the mean values: ρcortical =
1.75 g/cm3 and ρtrabecular = 0.4 g/cm3, see e.g. [53].
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In Fig. 1 the Tsai-Wu-type surface is plotted in the space of principal stresses for
cortical and trabecular bone and for the assumed strengths values listed in Table1.

It is worth noting that the axiomatic choice of a yield surface in the shape given
by Eq. (1), i.e. starting from the Tsai-Wu failure surface, grounds on the following
remarks: (i) The Tsai–Wu interactive failure criterion belongs to the five leading
theories selected within the World-Wide-Failure-Exercise conceived to establish the
current status of failure prediction theories for composites and as a composite is here
modelled the human bone; (ii) The Tsai–Wu-type yield criterion, in the quadratic
form adopted, is simple; it allows one to apply the standard rules of transformation,
invariance and symmetry; it also contemplates interactions among the stress or strain
components analogously to theVonMises criterion; (iii) The adoptedyield criterion is
used to locate stress states atwhich thematerial has exhausted its strength capabilities,
namely stress points lying on the domain boundary. The Tsai-Wu-type yield surface
it is easy to handle to this aim; (iv) The further hypothesis of perfect plasticity seems
reasonable looking at the stress-strain diagrams on bone tissues, see again [49] and

Fig. 1 Tsai-Wu-type surface in principal stress space: a Trabecular; b Cortical

Table 1 Strengths values for cortical and trabecular bone

Strength (MPa) Cortical Trabecular Reference

σ−
1 = σ−

2 86.137 6.099 [53–55]

σ−
3 207.324 7.220 [53–55]

σ+
1 = σ+

2 34.455 2.439 [20, 31] (σ+
1 = σ+

2 = 40%σ−
1 )

σ+
3 134.761 4.693 [20, 31] (σ+

3 = 65%σ−
3 )

σ13 = σ23 51.60∗ 2.888∗∗ [56]∗, [57]∗∗ (σ13 = σ23 = 0.4σ−
3 )

σ12 65.30∗ 2.439∗∗ [56]∗, [57]∗∗ (σ12 = 0.4σ−
1 )
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[51] for the experimental findings to this concern. Eventually, the hypothesis that the
Tsai-Wu-type yield surface plays also the rule of plastic potential, i.e. that the human
bone material obeys to an associated flow rule, or, briefly, is a standard material, is
hereafter assumed but could be removed following the so called non standard limit
analysis approach, see. e.g. [58].

3 Limit Analysis of Human Bones

The limit analysis numerical method here proposed tackles the human bone mechan-
ical problem at a (macro) structural level. The method is focused on the possibility
of predicting a peak load which produces the bone collapse. It might be from many
aspects inaccurate but, with all its limits and approximations discussed in the fol-
lowing, it appears simple, rather effective, of general applicability, being also able to
catch some important aspects of the overall bone behaviour at collapse. It is worth
noting that, as said in Sect. 1, numerical approaches based on finite element analyses
have been employed in the context of human bones since the early seventies. The FE
analyses proposed in the literature (refer again to [7] and references therein) even if
quite effective, just think that led to the design and construction of prostheses, are
all based on evolutive approaches linked to an accurate determination of the material
parameters and of the flow laws characterizing the post elastic behavior of the human
bone material. The latter being for many aspects still controversial and of not general
applicability.

The approach here promoted, oriented to the determination of the collapse load
in the spirit of the limit analysis theory, it does not need this information. Some
basic concepts to this concern are given in the follow. As known, [59], the value of
the plastic limit load of a structure, made of a standard material and subjected to
body forces and surface tractions, depends on the following factors: (a) structural
configuration (geometry, constraints, etc.); (b) plasticity function f (σ ) = 0, here
expressed by Eq. (1). The elastic constitutive law is irrelevant for the determination
of both the value of the collapse load as well as the collapse mechanism that the
plastic collapse load promotes. This irrelevance of elasticity law in the context of
plastic collapse analysis is a direct consequence of the concept of limit load itself.
In fact, this load is characterized by its ability to induce the existence of: (i) a stress
field σ statically admissible (SA), i.e. in equilibrium with the external forces, as well
plastically admissible (PA), i.e. satisfying the condition f (σ ) ≤ 0 everywhere in the
structure; (ii) a field of modes of kinematically admissible (KA) incipient plastic
strains ε̇

p, i.e. compatible with the incipient displacements u̇ (ε̇p = ∇su̇) with u̇ = 0
where the constraints are applied, as well plastically compatible (PC), i.e. ε̇p obeying
the normality rule ε̇p = λ̇∂f /∂σ with λ̇ > 0 where f (σ ) = 0 being λ̇ = 0 otherwise.
When the above ingredients exist, the structure acquires—under the action of the
limit load—the characteristics of a kinematic mechanism capable of performing a
motion (theoretically of unlimited amplitude) whose properties in their initial state
are defined by the pair of mutually compatible tensors ε̇

p, u̇. This incipient motion



Evaluation of Human Bones Load Bearing Capacity with the Limit Analysis Theory 11

is the plastic collapse mechanism. It is proven that for a given structure, subjected to
a given proportionally increasing load and for a given plasticity function, the plastic
limit of the above load is uniquely determined together with the relative collapse
mechanism.

The collapse mechanism is therefore the beginning of a deformation process of
exclusively plastic nature that overlaps the state of stress and strain already existing
under the action of the limit load, i.e. the SA and PA stresses σ , as well as the elastic
and plastic strains already accumulated at moment of the incipient collapse. These,
let’s say, pre-stresses and pre-strains do not change after the beginning of the col-
lapse mechanism, as if the structure was rigid in that state, but capable of producing
incipient plastic strains ε̇p. Since the mentioned pre-strains are infinitesimal, it turns
out that, by the principle of effects superposition, the mechanism of collapse can be
studied ignoring the state of pre-strains and therefore considering the structure as if
it were rigid-plastic. The rigid plastic model, often invoked by the plastic collapse
design, emphasizes the property of elastic strains, whatever the relative constitutive
law, to be ineffective for the determination of the collapse load and of the related
collapse mechanism. Moreover the incipient plastic strains are unique in all V (van-
ishing in those parts of V that do not participate in the collapse mechanism), while
the corresponding stresses are unique only in the part of V that participates to the
collapse mechanism. Finally the field of incipient displacements u̇ can be obtained
by integrating the compatibility equations ε̇p = ∇su̇; the solution is determined to
less than a rigid motion, which however must be zero for the presence of constraints.

For loading governed by a single parameter (i.e. the loading is defined by a fixed
reference loads distribution amplified by a scalar loadmultiplier, sayP) and following
the Limit Analysis Lower-Bound Theorem it can be stated that (borrowing from
[59]): the load multiplier, say PLB, that produces loads that are in equilibrium with a
stress field that nowhere violates the yield criterion do not exceed the collapse load
multiplier, say PU . The former gives then a Lower Bound (LB) whose maximum
defines the collapse load. The computational method here promoted searches for a
LB to the bone collapse load and is known as Elastic Compensation Method (ECM),
conceived in [9] and applied by the authors in different context (see e.g. [13, 16]).
The ECM is aimed to construct a SA and PA stress field, suitable for the evaluation
of a PLB. Such goal is pursued by an iterative procedure involving many sequences
of linear elastic FE analyses, in which highly loaded regions of the structure are
systematically weakened by reduction of the local moduli of elasticity. Indeed, by
applying the ECM it is not performed any evolutive analysis, it is not solved any
optimization problem, it is just simulated the process of stress redistribution arising
within the structure before attaining its limit strength threshold. Such process is
realized referring to an elastic behaviour for operative reasons, indeed, as reminded
above, any elastic law can be used the collapse load value does not depend from the
elastic behavior of the material.

Precisely, the ECM starts with a first FE analysis of the structure for a given
initial design load P(1)

D p̄i; where p̄i are given reference (or basic) loads, P(1)
D is the

first design load multiplier (it can be equal to 1 at the beginning). Moreover an initial
(arbitrary) distribution of the elastic parameters is assumed (the real ones can be
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assumed for simplicity) on the structure subjected to given constraints. The linear
elastic solution can then be obtained in terms of stresses measured at each Gauss
point (GP) within the elements. In the procedure hereafter employed the principal
stresses, averaged within the GPs of the #e-th element, are used to define a, let’s
say, element-solution. Moreover, for reasons that will be clear soon, the process is
iterative so, considering that at the beginning is k = 1, the computed element-solution
locates in the principal stress space, of origin O, a stress point, say P

e(k−1)
# e , while

P
Y (k−1)
# e denotes the corresponding stress point at yield (i.e. on the Tsai-Wu-type

surface), measured on the direction
−→
OP

e
# e/|

−→
OP

e
# e|. Two actions are put in place at

this point. Action #1: if the elastic element-solution of the #e-th element is such that

|−→OP
e
# e|(k−1) > |−→OP

Y
# e|(k−1) i.e. is “outside” the yield surface then the elastic moduli

of the #e-th element are reduced according to:

E(k)
#eij = E(k−1)

#eij

[
|−→OPY

# e|(k−1)

|−→OP e
# e|(k−1)

]2

G(k)
#eij = G(k−1)

#eij

[
|−→OPY

# e|(k−1)

|−→OP e
# e|(k−1)

]2

, (5)

where, by hypothesis, the Poisson ratios vij of the #e-th element remain constant. It
is worth to remark that the “moduli variation” realized by Eq. (5) on the elements
characterized by stresses greater than the yielding ones it is always a reduction
which would “bring” the element-solution on the yield surface. Moreover it has
been numerically experienced that the convergence rate increases if the square of
the updating ratio is used as given by Eq. (5). Action #2: among all the computed
element-solutions themaximum stress values are detected in thewhole FEmesh, that
is in the cortical elements as well as in the trabecular ones the stress points farthest
away from the respective Tsai-Wu-type yield surfaces are located, say P(k−1)

Max−Cort and

P
(k−1)
Max−Trab. If |−→OPMax−Cort |

(k−1)
is greater than |−→OPY

Max−Cort |
(k−1)

or |−→OPMax−Trab|
(k−1)

is greater than |−→OPY
Max−Trab|

(k−1)
a new FE analysis is performed keeping fixed the

applied load but with the updated moduli E(k)
#eij , G

(k)
#eij given by Eq. (5). Is this new

FE analysis that “realizes” the above mentioned stress redistribution process. The
iterations are carried on, for the fixed applied load P(1)

D p̄i, until all the stress points
just reach or are below their corresponding yield values, say at a last iteration (K),
which means that an admissible stress field (i.e. SA and PA) has been built and a LB
to the plastic collapse multiplier is given by:

P(1)
LB = min

⎧⎨
⎩|−→OPY

Max−Cort |
(K) P (1)

D

|−→OPMax−Cort |
(K)

; |−→OPY
Max−Trab|

(K) P (1)
D

|−→OPMax−Trab|
(K)

⎫⎬
⎭ . (6)

This closes a first sequence, say sequence s = 1, of elastic FEanalyses (performed for
k = 1, 2, ...,K) carried on for the loads P(s)

D p̄i (with s = 1). Obviously, the computed
P(1)
LB might be far from the collapse loadmultiplier and it has to bemaximized.This can

be simply achieved increasing the applied load and trying a new redistribution of the
related higher stresses. Increased values of loads are then considered in subsequent
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sequences of analyses, each one with an increased value of P(s)
D , till further load

increase does not allow the stress points PMax−Cort and PMax−Trab to be brought below
yield by the iterative redistribution procedure. A PLB load multiplier can eventually
be evaluated at last admissible stress field attained for a maximum acting load P(s)

D p̄i,
say at s = slast , and at last successful FE analysis, say at k = K , trough Eq. (6). A
graphic flow diagram of the ECM is shown at the end of section 4.

Twofinal general remarks areworthmaking on theECM: (i) to the authors’ knowl-
edge a theoretical convergence proof for the ECM is not available. Nevertheless the
ECM is considered reliable and computationally very efficient and used for indus-
trial applicationswithin the so-calledDesign byAnalysis (DBA) concept. Indeed, the
ECM is incorporated into the Japanese codes for Nuclear Implants, JSME—Design
& Construction Code, see e.g. the World Nuclear Association Report [60]. For what
concern theECMconvergenceproof, the papers [61–63] canbe also referred to.Even-
tually, the ECM theoretical validation is definitively an “open point” as asserted by
the above quoted valuable Report [60]; (ii) the elastic analysis performed within the
ECM can be carried out by any commercial FE code. In the following applications
the ADINA code [64] has been used while a Fortran main program has been created
to drive the FE analysis within the sequences.

As stated before, the adoption of real elastic parameters is not necessary, the limit
state solution does not depend on them. It is possible to start the ECM sequences from
any distribution of elastic material parameters. Such choice, possibly, would require
only a greater number of iterations to complete the stress redistribution process. To
avoid this, in the computations it has been preferred to start from real elastic param-
eters values assuming an orthotropic behavior for the trabecular bone, transversely
isotropic for the cortical one and fixing for the marrow (considered isotropic, homo-
geneous and incompressible) E = 20 MPa, ν = 0.499, [31]. Once again no fabric
tensor is used, it would not make sense in this case. The elastic constants utilized are
summarized in Table2 and deduced from [65] as a function of the apparent densities
ρcortical = 1.75 g/cm3 and ρtrabecular = 0.4 g/cm3. It is meant that: direction 1 is the
radial or medio-lateral; 2 is the anterior-posterior; 3 the axial or superior-inferior
long bone’s axis.

3.1 Numerical Tests on Human Bone In-Silico Specimens

For the purposes of this preliminary study four idealized cylindrical specimens of
human bone femur have been analyzed. Precisely, the four samples shown in Fig. 2
have been considered imagining they have been extracted from different anatomical
femur locations: proximal epiphysis, metaphysis, diaphysis and distal metaphysis,
represented by specimens #1, #2, #3 and #4, respectively. The outer cylinder is always
the cortical bone, the inner cylinder is assumed made of trabecular bone in specimen
#1, half trabecular and half marrow in specimen #2 and #4, marrow in specimen #3.
The geometrical dimensionswhich imply the separation between the cortical external
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Table 2 Elastic constants for cortical and trabecular bonea

Mat. Parameter Cortical Trabecular

E1 [MPa] 5484.11 137.95

E2 5484.11 229.29

E3 9621.24 327.63

G12 [MPa] 1924.25 68.37

G13 2790.16 125.02

G23 2790.16 81.31

ν12 0.425 0.293

ν13 0.370 0.162

ν23 0.370 0.149
aAfter [65] and references therein

Fig. 2 Anatomical locations and geometry of human femur in-silico specimens ideally extracted
from: #1 proximal epiphysis; #2 metaphysis; #3 diaphysis; #4 distal metaphysis

shaft and the internal trabecular and/or marrow matter have been fixed looking at
experimental data available in the literature, see e.g. [66].

The sketch of the adoptedmechanicalmodel, with the assumed cartesian reference
system, boundary and loading conditions is given in Fig. 3a, while the FE mesh
utilized for the computations is shown in Fig. 3b. With reference to the human femur,
it has been assumed that: axis x is the radial or medio-lateral; y is the anterior-
posterior; z the axial or superior-inferior long bone’s axis. The cylindrical specimen
is clamped at the lower base and subjected to three reference loads (all amplified
by the same load multiplier PD) acting along the directions of cartesians axes and
applied at the center of a rigid thin plate on the upper base to mimic the diffuse
transmission of the loads acting on the extracted portion of the femur. The intensity
of the reference loads, following the suggestions of [67] and for a body weight of
BW = 687N , are: Fz = −BW , Fy = 0.18BW , Fx = 0.43BW . A mesh of 672 3D-
Solid Elements, with 27 nodes and 27 Gauss Points per element, has been used for
all the numerical simulations.
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Fig. 3 Human femur in-silico specimen: a mechanical model, boundary and loading conditions; b
FE mesh of 672 3D-Solid Elements with 27 nodes and 27 Gauss Points per element

Fig. 4 Load multiplier
versus iterations number for
three sequences of elastic
analyses carried on the
human femur in-silico
specimens: results for
specimens #1 proximal
epiphysis and #4 distal
metaphysis



16 A. A. Pisano and P. Fuschi

Fig. 5 Load multiplier
versus iterations number for
three sequences of elastic
analyses carried on the
human femur in-silico
specimens: results for
specimens #2 metaphysis
and #3 diaphysis

Figures4 and 5 show the obtained results in terms of load multiplier of the refer-
ence loads of Fig. 3a versus iterations number. Precisely, on taking into account the
assumed loading and boundary conditions, which imply a stress concentration at the
lower clamped part of the specimens, the behavior of specimens #1 and #4, as well
as that of specimens #2 and #3, are equal to each other, as it has to be. The clamped
zones of the corresponding pairs of specimens exhibit the same material arrange-
ment. Figure4 is then referred to specimens #1 and #4 while Fig. 5 to specimens #2
and #3.

In each figure three different sequences of elastic analyses (among the ones carried
on) are depicted for three increasing values of the load multiplier PD. The flattening
of the curves attained for the value of the applied loads (PDFx, PDFy, PDFz) denotes
that a complete redistribution of the stresses has been accomplished, i.e. the acting
loads induce the existence of a statically and plastically admissible stress field, PD

being lower than the plastic collapse load multiplier. The maximum redistributable
loads, corresponding to the maximum value of PD, say PLB, is the searched lower
bound to the plastic collapse multiplier.

It is worth noting that the PLB is obtained, at maximum, at iteration #40, but one
iteration means one elastic FE analysis, so nothing computationally cumbersome.
Nomaximum number of iterations has been fixed, indeed the iterations stop when all
the “reduced” stress points (element-solutions where Eq. (5) have been applied) lay

on the yield surface, i.e. when the corresponding ratio |−→OP
Y
# e|/|

−→
OP

e
# e| is equal to 1 to

within a fixed numerical tolerance. It is also worth to note that the PLB predicted for
specimens #1 and #4 (PLB = 5) is lower than that (PLB = 6) pertaining to specimens
#2 and #3. This is a consequence of the presence of trabecular (weaker) bone tissue
in the clamped zone of specimens #1 and #4 which activates Eq. (6).

Eventually, considering the resultant of the applied loads, the computed approx-
imations (lower bounds) of the collapse/peak load value, say FU , are equal to 3790
N and 4548 N for the two pairs of specimens respectively. By inspection of data
reported in the relevant literature, see among others [68, 69], the collapse load val-
ues here obtained are of the same order of magnitude and definitively within the
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range of the experimentally detected ones. Precisely, Yang and Co-Workers [68], for
an average BW = 669 ± 175 N, report for all the tested in-vitro specimens (seven
pairs of femurs from donors of age between 59 and 90 years) an average ultimate
load equal to 3040 ± 720 N and an average fracture force of 4.5 BW. Dall’Ara and
Co-Workers [69], with reference to 36 tested in-vitro samples from proximal femur
of donors with age 76 ± 12 years, give a failure load (in the loading configuration
“both stance”, the one more similar to that here analysed) equal to 8.7 ± 2.9 kN.
This is, to the authors opinion, a very encouraging result if are taken into account
the large approximations in terms of geometry, loads and FE meshes of the exam-
ples addressed in this preliminary study. On the other hand, it is also true that there
is a great variability of the peak load values detected via experimental tests (see
again [69]) either for the impossibility of performing in-vivo experiments and for
the difficulty to compare, in-vitro test results on specimens coming from different
anatomical locations, species, ages, patients or possessing different geometries and
suffering not perfectly equivalent loading conditions.

4 Concluding Remarks and Future Steps

A crucial observation on which this preliminary study is based it is the awareness
that almost all the methods or numerical simulation techniques oriented to capture
the main features of the mechanical behavior of human bones are often confined to
specific cases. The problem, as said, is due to the objective difficulties in the descrip-
tion of the post-elastic behaviour of a structural element consisting of a material as
peculiar as human bone which is not inert like most engineering materials but it is
alive so it transforms, grows, degrades, adapts, and so on.

The main idea concerning the structural analysis via a numerical finite element
based Limit Analysis of the bone is to renounce in following the system mechanical
nonlinear response in the post-elastic regime up to collapse and to adopt a so-called
direct method. That is a method oriented to predict the ultimate conditions with
respect to the load bearing capacity, so investigating and predicting the incipient col-
lapse scenario of bone directly. The reason of such approach relies on the awareness
that when dealing with a structure made of a complex material for which the post
elastic behavior is not well defined or reliable, as it is the case of the human bone
material, the better choice is to focus the attention only on the elastic phase threshold
of the structure, i.e. on the limit load value discriminating between elastic and post
elastic phase.

The adopted Tsai-Wu-type stress-based criterion as well as the promoted elas-
tic compensation method, seem effective in predicting a lower bound to the plas-
tic collapse load characterizing the load bearing capacity of the addressed case of
human femur. Moreover, the presented formulation characterized by a geometry in
3D and a stress treatment in terms of principal stresses seems reliable for handling
the complexity of the problem. The run numerical simulations are definitively at an
embryonic stage but the obtained results, whose orders of magnitude are those of
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literature, make us confident on the validity of the whole approach and they bode
well for its ability to constitute a diagnostic tool useful to predict bone fracture risk
or, correlated to anamnesis, medical records and clinical patient specific pictures, to
help in the diagnosis of the severity of osteoporosis driving the choice of the most
appropriate intervention measures to adopt.

It is worth noting that such a tool, once settled, might be easily extended to all the
type of human bone tissues as well as to the analysis of a system bone-prosthesis.
All the information concerning the nonhuman synthetic materials, characterizing
prosthesis and implants, can in facts searched in the relevant literature looking at
the traditional metals, or metal-like materials as well as to bio-glasses, biopolymers,
nanocomposites, metal matrix nanocomposites, all materials for which the essen-
tial information of the promoted approach, i.e. a yield criterion, is already available.
Within this wider context the limit analysis design applied to human bonesmight then
become a powerful clinical computer-aided decision-making tool in orthopaedics
being able to prevent and predict fractures avoiding surgical complications and reduc-
ing the socio-economic impact of the problem.

There are still many points to be addressed, some of them are listed hereafter:

• The numerical analysis of in-silico human bone specimens having a realistic geom-
etry, with a refined definition of cortical thickness, cortical and trabecular distribu-
tion, and suffering realistic loading conditions in terms of intensities and directions
related, for example, to an external impact produced by a fall or to a muscular con-
tractionwithout trauma. A related step forward could then be to set up an input data
maker, a pre-processor segment of the limit analysis FE code, fully compatible
with the data coming out by the molecular imaging and able to perform a mesh
generation in an automated way based on pixel density fromMRI or CT scanning,
see e.g. [23–25].

• The Tsai-Wu-type yield criterion could be fixed/calibrated in terms of strength
values different point by point or different among zones/parts of the examined
bone so increasing the degree of detail, the correctness of the numerical modeling
and the predictive capabilities of the method. To this aim, molecular imaging
coupled with the fabric tensor concept, [31, 42, 43], could improve the definition
of bone strengths.

• The implementation of the upper bound formulation of limit analysis approach
following the authors’ previous experiences in different contexts, see e.g. [15, 70].
The so-called linear matching method could indeed be rephrased with reference
to human bones. The latter method, beyond an upper bound to the plastic collapse
load multiplier, is able to predict the mechanism of collapse/fracture of the bone
locating the zones prone to collapse.

The authors are aware that the present study represents, at this stage, a preliminary
investigation and that the obtained results, which indeed seem reliable and reasonable
from a mechanical point of view, have to be validated by analyzing case-studies,
documented patient-specific histories, available in the relevant literature. All this is
the object of an ongoing research programme.
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Fig. 6 ECM—graphic flow diagram
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The Linear Matching Method and Its
Software Tool for Creep Fatigue Damage
Assessment

Manu Puliyaneth, Graeme Jackson, Haofeng Chen, and Yinghua Liu

Abstract The Linear Matching Method (LMM) is a numerical procedure that has
undergone extensive research and development over a number of years to conduct
various structural integrity assessments, more recently, the creep-fatigue damage
assessment considering full creep-cyclic plasticity interaction using the extended
Direct Steady Cycle Analysis. In order to encourage the widespread implementation
of the LMMthroughout the industry, anAbaqusCAEplug-in has been developed that
enables its use by individuals with little or no understanding of the numerical theories
involved. This chapter discusses different creep-cyclic plasticity mechanisms and
provides a detailed review of the latest developments within the LMM framework
for its evaluation. Case studies are included to demonstrate the applicability of LMM
in the evaluation of creep-cyclic plasticity response for complicated loads, varying
dwell periods andmulti-material structures. Further, the flexibility of LMM to couple
withReversed PlasticityDomainMethod to design cyclic load levels, andwith design
codes for creep-fatigue damage evaluation is also presented. All the results from the
case studies demonstrate the level of accuracy, efficiency and robustness of the LMM.

1 Introduction

An important consideration when designing engineering components is to determine
whether the loading conditions will have a significant impact upon the length of
time that a structure can remain in safe operation. This is particularly true in cases
where structures are exposed to elevated temperature and cyclic loads since severe
complex failure mechanisms, such as creep and fatigue and their interaction if any,
must be carefully considered. Over the past few decades, efforts have been made
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to combine finite element analysis with continuum damage mechanics to assess the
creep-fatigue damage evaluation. But for acceptable results they require numerous
material parameters which are not easily available. Another limiting factor is the high
computational cost involved. Recently, several direct methods have been developed
which uses relatively simplermaterial models such as Elastic-Perfectly Plasticmodel
(EPP) or Ramberg Osgood (RO) model. They consider a load domain that accounts
for all the possible paths between the extremes. LMM is one such direct method that
has been developed to include the extended Direct Steady Cycle Analysis (eDSCA)
which directly calculates the stabilized response of a structure subjected to a cyclic
load at high temperature. The outputs from eDSCA can be coupled with appropriate
damage models to conduct creep-fatigue damage analysis.

2 Cyclically Loaded Structures

Theminimum load level that a structure is able towithstand undermonotonic loading
condition is known as the “limit load”, loading beyond this will lead to an instan-
taneous collapse. When subjected to cyclic loading conditions, failure is likely to
occur at lower loading levels due to the accumulation of residual stresses and plastic
strains throughout the multiple cycles. In the work carried out by Bree [1], in the
late 1960s, it was identified that a component subjected to a cyclic thermal load and
a constant mechanical load could exhibit one of the four potential cyclic responses,
namely purely elastic behaviour, elastic shakedown, reverse plasticity and ratcheting.
In order to represent how the cyclic and constant loads interact with one another he
proposed an interaction diagram, similar to the one presented in Fig. 1, for a thin
cylindrical vessel subject to an internal pressure and a linear temperature gradient
across its thickness.

The cyclic thermal load is normalisedwith respect to the yield stress of thematerial
and is shown on the vertical axis, while the constant mechanical load, which is also

Fig. 1 Classical Bree-like
diagram
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Fig. 2 Steady state structural responses to loads within a pure elastic region, b elastic shakedown
region, c reverse plasticity region, d ratcheting region [2]

normalised against the yield stress of the structure, is shown on the horizontal axis. It
can be observed that for relatively lower loading levels there is no plastic deformation
and the structure exhibits purely elastic behaviour. However, for loading cases where
this elastic response limit is exceeded, plastic strains begin to develop. As the cyclic
thermal load is increased, the response escalates to the elastic shakedown region and
then to reverse plasticity region. On increasing the mechanical load, the structure
exhibits a ratcheting behaviour. Typical hysteresis loops of structures exhibiting pure
elastic, elastic shakedown, reverse plastic and ratcheting mechanisms are presented
in Fig. 2.

Elastic shakedown Plastic strains accumulate during the initial cycles but the
response then becomes entirely elastic due to residual stresses,
Fig. 2b.

Reverse plasticity Plastic strains occur during all cycles but there is no net increase
and a closed loop is formed throughout the cycle, Fig. 2c.

Ratcheting Plastic strains accumulate during all cycles and this eventu-
ally leads to structural failure via incremental plastic collapse,
Fig. 2d.

2.1 Creep—Cyclic Plasticity Interaction

Creep is a time-dependent damage mechanism prevalent in materials when exposed
to high temperatures, generally over 30% of its melting point, for a pro-longed
period. A typical creep strain curve is retraced in Fig. 3. It consists of three stages;
(a) primary; (b) secondary; and (c) tertiary. During the primary phase the creep strain
rate decreases. During secondary stage, the creep strain rate remains constant, and
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Fig. 3 Schematic of the
standard creep curve
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generally, the secondary stage is the longest and most prominent phase during the
creep dwell. During the tertiary phase, an exponential increase in the creep strain is
observed.

Under cyclic loading conditions, the introduction of creep can have severe effects
on the cyclic plasticity response of the structure, such that it may introduce creep-
fatigue damage mechanism in an otherwise elastic loading condition or the much
more dangerous damage mechanism known as creep-ratcheting. Factors such as
operating temperature, strain range, frequency of loading and duration of loading are
critical and influence the creep-cyclic plasticity interaction. A typical steady state
hysteresis loop of a structure under creep-cyclic plasticity mechanism is shown in
Fig. 4a.

At steady state, if the reverse plasticity can compensate for the creep strain and the
loading strain, if any, a closed hysteresis loop is obtained.On the other hand, if an open
loop is obtained, the mechanism is termed as creep-ratcheting. Creep ratcheting may
be broadly distinguished as “cyclic enhanced creep” and “creep enhanced plasticity”.
Where the open hysteresis loop is a result of the large creep strain accumulated, it
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Fig. 4 Steady state hysteresis. a Creep-fatigue interaction, b cyclically enhanced creep; c creep
enhanced plasticity
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is referred to as cyclic enhanced creep (Fig. 4b). On the other hand, large reverse
plastic strain may be dominated in cases with small creep strains but significant
stress relaxation during the dwell, and the ratcheting mechanism in such a scenario
is referred to as creep enhanced plasticity (Fig. 4c).

3 Creep-Fatigue Damage Assessment

High temperature design codes such as R5 and ASME evaluate the total damage in
the following way

dc + d f ≤ ∅CF (1)

where dc and d f are the total creep damage and total fatigue damage; ∅CF is the
allowable total creep-fatigue damage factorwhich is depended on the type ofmaterial
and the standard considered. Essentially, both the creep and fatigue damages are
individually calculated and then combined to assess the acceptance based on the code
considered. The number of cycles to LCF damage is calculated using the strain-life
curve (E-N) curve, for which the total stain range should be known. The fatigue
damage per cycle may then be defined as:

d1c
f = 1

N (�εtot )
(2)

whered1c
f is the fatigue damage per cycle and N is the number of cycles to pure fatigue

failure corresponding to the total stain range (�εtot ). The two most common creep
damage assessmentmethodologies are the time fraction (TF) rule, in linewithASME
recommendation and ductility exhaustion (DE) method, which is recommended by
R5. The TF rule to calculate the creep damage can be expressed as:

d1c
c_T F = th∫

0

dt

t f (σ, T )
(3)

where t f is the creep rupture time, and it is a function of stress and temperature. dt is
the time increment and th is the hold time. Creep damage by DEmethod is calculated
using:

d1c
c_DE = th∫

0

˙̄εc
ε̄c

( ˙̄εc, T
)dt (4)

where ˙̄εc is the instantaneous creep strain rate and ε̄c is the material creep ductility.
In effect, parameters such as the total strain range, creep strain, start of dwell stress
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and the elastic follow up factor at steady state are critical in the assessment of creep-
fatigue damage assessment. The eDSCA within the LMM frame work is capable of
accurately calculating them.

4 The Linear Matching Method

The LMM is a direct method for structural assessment that has been a part of the R5
research program for many years, having initially been developed from the Elastic
Compensation Method (ECM). Over the years LMM has seen extensive theoret-
ical and numerical development and has become one of the most successful direct
methods currently available. It is based upon the premise that a non-linear material
response can be simulated using a series of linear analyses during which the modulus
is modified throughout the structure. Figure 5 demonstrates this concept pictorially.

The first stage of the LMM process is to perform a linear elastic analysis for each
of the loads applied to the structure, with the modulus at each point modified such
that the stress equals the yield stress (Fig. 5a). These modified values for modulus are
then used in the next elastic analysis and this leads to the stress being redistributed
throughout the structure (Fig. 5b). Following this the modulus is again modified and
the process is repeated multiple times, thereby allowing the stresses to redistribute
similarly to an elastic-plastic material (Fig. 5c). The LMM has been developed for

Fig. 5 a Initial stress distribution, b intermediate stress redistribution, c final stress redistribution
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limit analysis, shakedown analysis, ratchet analysis, and recently to include steady
state cyclic behavior with full creep-cyclic plasticity interaction.

4.1 Numerical Procedures for eDSCA

A flowchart of the eDSCA evaluation procedure is presented in Fig. 6. Detailed
discussions on the numerical procedure of the eDSCA has been previously presented
in [3]. Revisiting the same would be beyond the scope of this chapter hence a concise
discussion highlighting the major aspects of the procedure is presented here.

For a structure subjected to an arbitrary cyclic load, Chen et al. [3, 5] proposed

the minimization function I
(
ε̇ci j

)
= ∑L

l=1 I
l to calculate the steady state cyclic

response, where L refers to the total number of load instances, ε̇ci j indicates the
kinematic admissible strain rate and l refers to the load instance considered. Further
an incremental form is also suggested for the minimization function as:

I l
(
�εli j

) =
∫

V

{
σ l
i j�εli j −

[
�
σ
l

i j (tl) + ρl
i j (tl)

]
�εli j

}
dV (5)

where �εli j is the strain increment and ρl
i j (tl) is the residual stress. Using the mini-

mization function defined above, �εli j is calculated in an iterative manner. The
inelastic strain and the residual stress at each increment are computed using the
previously accumulated residual stress and the elastic stress. For the load instance tl
during the loading cycle, �εi j,k+1(tl) is calculated by:

�εi j,k+1(tl)
′ = 1

2μ(tl)

[
�
σ i j (tl) + ρi j,k+1(tl−1) + �ρi j,k+1(tl)

]′
(6)

where μ is the iterative shear modulus, �
σ i j is the associated elastic solution,

ρi j,k+1(tl−1) is the prior changing residual stress history, �ρi j,k+1(tl) is the current
changing residual stress associated with that inelastic strain increment and k refers to
the number of sub-cycles required to attain convergence. For cyclic load with creep
dwell, the accumulated creep strain can be computed by:

�ε̄c = B(n − 1)�tm+1(σ̄s − σ̄c)(
1

σ̄ n−1
c

− 1
σ̄ n−1
s

)
(m + 1)

(7)

σ̄c =
( ¯̇εF

B�tm

) 1
n

(8)

˙̄εF ′ = �ε̄c

�t

(m + 1)

(n − 1)

σ̄ n
c

(σ̄s − σ̄c)

(
1

σ̄ n−1
c

− 1

σ̄ n−1
s

)
(9)
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Fig. 6 Flow chart illustrating the eDSCA numerical procedure [4]

where B, m and n indicate the creep parameters, σ̄c refers to the creep flow stress
σ̄c is computed using Eq. (8), which is then used as an input in Eq. (9) to calculate
the creep strain rate ˙̄εF . The residual stress and an iterative shear modulus for the
increment is then computed as:

μ̄k+1(x, tl) = μ̄k(x, t l)
σ R
y (x, tl)k

σ̄
(

�
σ i j (x, tl) + ρr

i j (x, tl)k
) (10)
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where μ̄k(x, tl) is the iterative shear modulus at the sub-cycle k for lth load instance.
σ R
y (x, tl)k is either an iterative von-Mises yield stress for the material model consid-

ered at load instance tl or the creep flow stress σ̄c. ρr
i j (x, tl) is the sum of the constant

residual stress field and all previous changing residual stresses at load instance tl .
The procedure briefly detailed in this section helps in determining all the parameters
required for the estimation of the saturated hysteresis loop.

4.2 The LMM Software Tool

From its inception, LMM subroutines are coded using FORTRAN language so as
to facilitate its use in with Abaqus. This implies that users need to have sufficient
programming experience to run the analysis efficiently. But this is not the case espe-
cially in an industrial environment. In order to counter this issue, a Graphical User
Interface (GUI) and an autonomous Abaqus plug-in have been developed recently.
The plug-in provides the user with an interface to select the model, chose the analysis
type, define the material properties and define the load in a straight forward manner.

The LMMplug-in, on installationwill appear under the “plug-in”menu inAbaqus
CAE. A pictorial presentation of the sequence of the different dialog box the user
passes through is given in Fig. 7. The first dialog box provides the user the option to
select the type of LMM analysis, such as (a) strict shakedown analysis; (b) steady
state cycle analysis; (c) steady state cycle and ratchet limit analysis; (d) creep rupture
analysis; (e) eDSCA with creep dwell(s) analysis. The next dialog box deals with
the material parameter such as the Young’s modulus, yield stress, Poisson’s ratio, the
thermal expansion coefficient and creep constants for eachmaterial in themodel. This
enables the use of LMM in structural analysis of multi-material components such as
weldments and Metal Matrix Composites (MMC). In order to achieve a higher level
of accuracy, the user has the option of providing temperature dependent properties.
The option to choose between EPP or RO material model is also provided. The RO
material model option is coded to generate the yield stress from the RO parameters
entered by the user.

Once the above steps are complete, the plug-in then presents the load cycle dialog
within which a load table is provided to define the load cycle. Defining the load cycle
properly is critical in the generation of accurate results. The load at each of the time
point along with the corresponding temperature field can specified within the load
table. It is to be noted that the user can define any number of time instances. The final
dialog box helps in defining the convergence rule, name of the job and the maximum
increments. In order to run larger models swiftly, the LMM software is developed to
run multiple Computer Processing Units (CPUs).

On completion of the above steps, prior to running the analysis, the plug-in carries
a sequence of checks to assure the applicability of LMM analysis on the model. The
user is advised of the errors if any, which are to be rectified for the analysis to
commence. It should be noted that at each dialog box, the values provided by the
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Fig. 7 LMM eDSCA analysis tool procedure

user are also checked for probable errors. In case an error is found, the plug-in
produces a dialog box indicating the error and a possible solution for it.

5 LMM Cases Study

5.1 Fatigue Assessment Approach by Direct Steady Cycle
Analysis (DSCA)

Recently Zheng et al. [6, 7] combined the Reversed Plasticity Domain Method
(RPDM) and the DSCA within the LMM framework to design cyclic load levels
for LCF experiments with predefined fatigue life ranges. The example is discussed
here as it utilizes various facets within the LMM framework such as shakedown
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analysis, ratchet analysis, the use of temperature dependent properties and use of
EPP & RO material models.

For LCF experiments of components with a predefined fatigue life range, it is
critical to properly define the cyclic load levels, but this is not straight forward and
is quite difficult to obtain. The DSCA option within the LMM framework may be
used as an aiding tool to obtain the load levels for the experiments. The basic idea
is to estimate the total strain range under the considered loading condition using the
DSCA and then refine it further until the fatigue life corresponds to the LCF testing
requirement. The steps may be elaborated as below:

1. The ratchet and shakedown limits are calculated to obtain the Reversed Plasticity
Domain (RPD), and this utilizes the shakedown and ratchet plug-in.

2. The DSCA then calculates the total strain range of the selected load level.
3. The fatigue life is estimated based on the fatigue life curve and total strain range.
4. The above steps are repeated until the fatigue life obtained is in line with the

requirements of the LCF testing.

Zheng et al. [6, 7] presented the case study of a pressurized shell made of
X2CrNiMo17-12-2 steel used in nuclear power plants. The geometry and the compli-
cated loading condition opted are presented in Fig. 8a.As indicated in Sect. 4.2, LMM
has the capacity to work with both temperature dependent and temperature indepen-
dent properties, though the number of iterations required is higher, as reflected in
Fig. 8b.

The shakedown and ratchet limit boundaries (Fig. 9a) are generated using the
relevant tools within the LMM plug-in. Load levels below the elastic limit induce
HCF damage. Within the RPD, the load levels generally induce LCF damage. The
total strain range is computed using the eDSCA for the opted load level (indicated
as ⊗ in Fig. 9a) which is within the RPD. A comparison of the elastic strain range,
plastic strain range, ratchet strain and total strain range computed using both the RO
andEPPmodels are presented in Fig. 9b. The obtained total strain range,with the help
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Fig. 8 a Geometry and load applied to the pressurized shell; b comparison between the number of
iterations for temperature dependent and independent material properties [6, 7]
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of an E-N diagram is then used to compute the number of cycles (Fig. 9c). For this
particular case study, the number of cycles computed by ROmodel is larger than that
computed by EPP model, which is contrary to the normal knowledge which is that
the EPP model produces the most conservative results. This unusual result is due to
the lower elastic limit for the RO model compared to the EPP model. Nevertheless,
this points to the high level of accuracy and the computational excellence LMM
exhibits. In case the fatigue life requirements of the LCF testing are not satisfactorily
met by the chosen load cycle, other load levels are analysed for their corresponding
total strain ranges.

5.2 Creep Fatigue Assessment on Cruciform Weldment

Y. Gorash et al. studied and presented the creep-fatigue damage assessment of a
cruciform weldment (Fig. 10a) using LMM in [8–10], a brief overview of which is
provided in this section. The loads considered include a cyclic bending moment and
a uniform high temperature (Fig. 10b). A reverse pure bending moment is simulated
by imposing a cyclic linear distribution of normal pressure at the end of the model.
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Fig. 10 a Finite element model of the weldment; b loading condition of the cruciform weldment
[8–10]

Fig. 11 For dwell time of 5 h. a Total Strain Range; b creep Strain; c start of dwell stress; d end
of dwell stress [8–10]

The material properties are in line with SS316 N(L) with varying properties for the
PM, HAZ and WM.

Analyses were carried out for a pure fatigue case and creep-fatigue interactions
scenarios with creep dwells of 1 and 5 h. The variants of bending moments included
total strains of 0.25, 0.3, 0.4, 0.6 and 1% of the parent material. The contours for total
strain range, creep strain and stress from LMM analysis for a total strain of 1% and
dwell time of 5 h are presented in Fig. 11. The most critical zone has been identified
as the location at the weld toe near the heat affected zone. Further, Y. Gorash et al.
presented a comparison between the available experimental results and the LMM
simulation results, which showed a satisfactory comparison for 9 of the 11 results.

5.3 Creep Fatigue Interaction of a MMC

A brief overview of the study done on MMC by Barbera et al. in [4, 11, 12] is
discussed here. This case study is particularly interesting as it discusses the effect
of a creep dwell on loading conditions which would otherwise resonate an elastic
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Fig. 12 a Finite element model and the loads applied on the MMC; b shakedown limit interaction
curve [4, 11, 12]

behavior. The loads considered for the MMC consist of a constant mechanical load
and a uniform cyclic temperature load (Fig. 12a). The MMC consists of Al2O3 fibre
and Al 2024 T3 matrix. A shakedown limit interaction curve is obtained using the
LMM shakedown analysis initially to identify possible load levels that would exhibit
an elastic response in the absence of creep dwell. 6 load points such as A1, A2, B1,
B2, C1 and C2 as indicated in Fig. 12b were identified and studied for varying dwell
times. For the load levels A1 and A2, where the primary load is relatively lower
than B and C, a closed hysteresis loop is obtained for dwell holds of 1 to 100 hours,
suggesting the introduction of creep-fatigue interaction. Whereas for all the other
load levels considered an increment in the net strain per cycle is present suggesting
creep-ratcheting mechanism. The increase in the thermal load further increased the
plastic strain increment during loading and the creep strain. As an example, the
hysteresis loops for B1 and B2 for dwell times 1 and 100 hours are presented in
Fig. 13. It is inferred that the ratcheting mechanism is influenced by the dwell time
and the mechanical load. Hence the analysis was repeated considering only cyclic
thermal loads. The hysteresis loops so obtained were all closed loop though with
increasing the dwell hold, the creep strain and reverse plasticity increased. Using
inelastic Abaqus step-by step analysis the LMM results were verified. A comparison
of the values and contours of the creep strain increment εMMC

C , plastic strain incre-
ment during loading εMMC

L and unloading εMMC
UL are present in Table 1 and Fig. 14

respectively.

5.4 Creep Fatigue and Creep Ratcheting of Butt Welded Pipe

The case study discussed here gives an overview of how eDSCAmay be used with an
appropriate damage model (introduced in Sect. 3) to conduct creep-fatigue damage
analysis. Figure 15 presents the general evaluation procedure, which starts with
the estimation of the saturated hysteresis loop using eDSCA. Using the total strain
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Fig. 13 Response of the steady state stress-strain path at location the critical point for load points
B1 and B2 [4, 11, 12]

Table 1 Comparison between LMM and SBS analysis for different cyclic loads

Cyclic load point εMMC
L εMMC

C εMMC
UL

LMM Abaqus LMM Abaqus LMM Abaqus

A1 0 0 2.21 E−4 2.53 E−4 1.80 E−4 2.00 E−4

B1 2.26 E−3 2.01 E−3 1.76 E−3 1.74 E−3 3.70 E−3 3.51 E−3

A2 0 0 1.20 E−3 1.25 E−3 1.13 E−3 1.20 E−3

B2 5.726 E−3 5.15 E−3 3.22 E−3 3.14 E−3 8.57 E−3 8.15 E−3

obtained, the fatigue damage is calculated and using the creep stresses and strains, the
creep damage is calculated. The total damage is then assessed using the considered
standard’s interaction diagram.

The pipe geometry and loading conditions considered for the case study are
presented in Fig. 16. Welding residual stresses are assumed to be minimal due to
post weld heat treatment such that their effect on creep behaviour on the welded pipe
can be neglected. The most critical region in terms of creep-fatigue crack initiation
probability is at the interface between the WM and HAZ where the equivalent creep
strain and the total strain are found to be high.

The effect of creep dwell on the cyclic-creep plasticity mechanism of the pipe can
be understood from Fig. 17a. Compared to the pure fatigue case, the introduction
of a creep dwell increases the reverse plasticity. Increasing the dwell time further
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Fig. 14 Comparison
between LMM and SBS
analysis contours [4, 11, 12]

LMM Abaqus

Model the saturated hysteresis loop

From E-N curve, assess 
number of cycles to failure

Calculate fatigue damage per 
cycle= 1

Assess the creep damage 
using the considered 

standard’s recommendation

Calculate creep 
damage per cycle=

Estimate the total damage 
using the interaction diagram 

Fig. 15 Flow-chart for the general creep-fatigue evaluation procedure

enhances the creep strain and the subsequent stress relaxation,which further enhances
the plastic behaviour during the unloading phase. This results in larger total strain
range, indicating a reduction in the fatigue life. It should be noted that this decrease
in the fatigue life is in addition to the creep damage accumulated as a result of the
creep dwell. The most significant change with respect to the accumulation of creep
strain occurs from a dwell time of 10 hours to 100 hours after which it reduces as
reflected in Fig. 17b.
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Fig. 16 a Butt welded pipe geometry. b Boundary condition and load applied; c loading condition
of the pipe

Figure 17c presents an interaction diagram between the creep strain and the net
plastic strain, which is the difference between the plastic strain accumulated during
loading and loading. They can be used to understand the drive of the creep-ratcheting
phenomena if any. A closed hysteresis loop is obtained when the creep strain is equal
to the net plastic strain. The blue line in Fig. 17c represents a closed loop. The area
above this line indicates cyclically enhanced creep and the area below indicates creep
enhanced plasticity. At lower dwell times, the creep ratcheting mechanism for the
welded pipe is driven by creep enhanced plasticity. As the dwell time increases,
the creep strain tends to dominate, with a closed loop obtained for dwell time of
100 hours, and slowly shifting towards cyclically enhanced creep mechanism for
larger dwell times.

The creep-fatigue life and creep ratcheting life, calculated using the strain ductility
approach [13], against dwell time are shown in Fig. 17d. The creep fatigue life
decreases with increase in the dwell period, whereas an interesting trend is seen in
the case of creep-ratcheting life. For shorter dwell times, creep ratcheting is dominant
compared to creep-fatigue damage, which is a result of the creep enhanced plasticity
mechanism. As the dwell time increases, a slight increase is observed in the creep-
ratcheting life, which is because the creep strain is compensated by the net plastic
strain. On further increasing the dwell time, creep ratcheting again dominates, in this
case due to cyclically enhanced creep.

6 Conclusions

A complete overview of the high-temperature design and assessment capabilities
of the eDSCA within the LMMF is given. The introduction of a software tool
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as an Abaqus CAE plug-in with an intuitive GUI makes the LMM easily acces-
sible to a wide range of users, including those who have little theoretical under-
standing of the LMM and limited programming skills. Four case studies have been
presented to showcase the various facets and applications for the LMM. These
demonstrate the wide range of complex load interactions that the LMM is capable of
assessing. Furthermore, the LMM can also be used in conjunction with other rules
based methods in order to assess the component′s life in terms of creep-fatigue and
creep-ratcheting failures.
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Limit Analysis of Complex 3D Steel
Structures Using Second-Order Cone
Programming

Chadi El Boustani, Jeremy Bleyer, and Karam Sab

Abstract Themodelling of complex steel structures under static loading using rigid
perfectly plastic material is presented within the framework of second-order cone
programming (SOCP). The classic upper and lower bound principles of yield anal-
ysis, naturally written as optimization problems, are formulated as a pair of dual
second-order cone programs which are then solved using a state-of-the art primal-
dual interior point method (IPM). The IPM shows good robustness and efficiency
along with reduced computational times especially for limit analysis. The whole
process is illustrated first with basic steel structures checks of fillet welds or beams
under biaxial bending moment, and second with complex 3D steel assemblies. The
results show good agreement with the failures modes and resistance values presented
in the Eurocode and allows us to obtain a reliable estimate of the ultimate resistance
within a reasonable time.

1 Limit Analysis and Yield Design

1.1 Motivation

In various engineering application, one of the main concerns is to find the ultimate
supportable load of a structure under a given set of loading parameters and a local
material yield criterion.
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Fig. 1 General idea of limit analysis

Considering an elastoplastic material, determining the ultimate load can be
achieved through a series of incremental analyses where the loading parameters are
increased until divergence of the solving algorithm as can be seen in Fig. 1a. While
this approach is general and applicable in most cases, the process can be incredibly
time-consuming and difficult tomonitor. Full elastoplastic analyses generally require
a certain level of mastery of the mechanical theory involved in modelling non-elastic
behaviour and convergence problems are often faced when trying to push the system
to its maximum resisting load. This is mainly due to the solving algorithm, com-
monly the Newton-Raphson method, which requires the computation of a tangent
stiffness matrix at each internal iteration: this matrix tends to become singular when
plasticity occurs which in consequence causes the algorithm to diverge.

Aiming at computing this limit load in a direct fashion, i.e. without having to run
a full elasto-plastic incremental analysis, is the purpose of limit analysis theory (in
the case of perfectly plastic materials) [1] or yield design theory [2] in a more general
framework. In the following sections, the general approaches of the theory of yield
design will be presented. It consists of two main theorems or approaches:

1. a primal (static-based) approach which provides a lower bound estimate for the
limit load;

2. a dual (kinematic-based) approach which provides an upper bound estimate for
the limit load.

This contribution will aim at applying these concepts to the verification of complex
3D steel assemblies which can be encountered in civil engineering.
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Fig. 2 Reference model and definition of the domain of potentially safe loads

1.2 Static Lower Bound Approach of Yield Design

Let Ω be the total space occupied by the solid and let be Σσ an internal surface of
potential stress discontinuities (see Fig. 2). The external boundary will be split into
three distinct parts such as: Γ = Γu ∪ Γt and Γu ∩ Γt = ∅ where:

– displacements u are imposed to ud on Γu;
– surface tractions t = σ · n are imposed to td on Γt.

Let û be a kinematically admissible (KA) virtual velocity field with the imposed
displacements ud on Γu i.e. is piecewise continuous and continuously differentiable
and such that û = ud on Γu:

K A = {
u ∈ R

3
∣∣ u = ud on Γu

}
(1)

d̂ = ∇ Sû then denotes the linearized strain rate tensor.
Letσ be a statically admissible (SA) stress field i.e. it satisfies the local equilibrium

equations, traction continuity and traction boundary conditions:

SA =
⎧
⎨

⎩
σ ∈ S

∣∣∣∣∣∣

Div(σ ) + b = 0 in Ω

�σ.n� = 0 through Σσ

σ.n = td on Γt

⎫
⎬

⎭
(2)

Along with the geometrical and loading data, the third set of data needed for
yield design is the constitutive material strength properties. At any point M(x) ofΩ ,
a convex strength domain G (x) is defined in the 6-dimensional space of the stress
tensor σ(x). The boundary of the strength domain often noted f (σ(x)) ≤ 0 consists of
a level-set function commonly known as the yield function in the context of plasticity
or strength criterion in general.

The domain of potentially safe loads K therefore consists of the set of loads
Q such that there exist a stress field satisfying the equilibrium equations and the
material strength conditions [2]:
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Fig. 3 Schematic
representation of the interior
and exterior approximation
of the domain K

Q ∈ K ⇐⇒
{∃σ(x) S.A. with Q (Equilibrium condition)

σ(x) ∈ G(x) ∀x ∈ Ω (Strength condition)
(3)

The lower bound approach of yield design consists in approximating K by
determining a stress field verifying the equations given in (3) for a fixed loading
direction Q0. One then looks for the maximum value of a load factor λ such
that λQ0 ∈ K . The maximum load factor λ∗ and can then be obtained by
solving a maximization problem given by:

λ∗ = max λ such that ∃σ(x)

{
σ(x) S.A. with λQ0

σ(x) ∈ G(x) ∀x ∈ Ω
(4)

If restricting the above maximization to a subspace of the statically admissible
stress fields, e.g. one obtained from a stress-based finite-element discretiza-
tion, this approach will therefore provide a lower bound λstat ≤ λ∗ to the true
limit load factor λ∗. The set of these lower bound approximations for varying
loading directions provide an interior approximation Kstat ⊆ K to the safe
load domain K (see Fig. 3).
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1.3 Kinematic Upper Bound Approach of Yield Design

Deriving the dual approach of the theory of yield design starts by writing the the
virtual work principle, corresponding to the dualisation of the equilibrium equations
given in (2), as follows:

Pint (û) =
∫

Ω

σ : d̂dΩ +
∫

Σ

(σ.n)�û�dΓ

=
∫

Ω

bûdΩ +
∫

Γu

(σ.n)uddΓ +
∫

Γt

td ûdΓ = Pext (û)

(5)

Using the properties of convex sets, one can rewrite the convex setG using support
functions:

σ ∈ G ⇒
{

σ : d̂ ≤ sup{σ : d̂, σ ∈ G } =: Π(d̂)

(σ.n)�û� ≤ sup{(σ.n)�û�, σ ∈ G } =: Π(n, �û�)
(6)

The work of internal forces Pint (û) can then be bounded from above using these
support functions as follows:

⇒ Pint (û) =
∫

Ω

(σ : d̂)dΩ +
∫

Σ

(σ.n)�û�dΣ

≤
∫

Ω

Π(d̂)dΩ +
∫

Σ

Π(n, �û�)dΣ = Prm(û)

(7)

where the last term is corresponds to the maximum resisting work of the structure
for a given virtual field û.

One can then show that we have:

Q ∈ K ⇔ ∀û K.A. Pext (û) ≤ Prm(û) (8)

Note that for a fixed reference loadQ0,we can therefore characterize themaximum
load factor λ associated with Q0 by:

λ ≤ λ∗ ⇔ ∀û K.A. λPext,0(û) ≤ Prm(û) (9)

i.e.

λ∗ = min
û K.A.

Prm(û)

Pext,0(û)

(10)
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The equation Pext (û) ≤ Prm(û) defines a hyperplane subdividing the space into
two half-spaces, one of them containing the strength domain K and the origin as
shown in Fig. 2. Therefore the virtual velocity field approximate the limit load from
the exterior.

The upper bound approach of yield design consists in approximating the con-
vex domainK by minimizing the maximum resisting work for various virtual
velocity fields (which can be interpreted as the structure collapsemechanisms).
When adding a normalization conditionPext,0(û) = 1, the maximum load fac-
tor λ∗ can be obtained by solving the following minimization problem:

λupper = min
û

Prm(û)

s.t. û ∈ K.A.
Pext,0(û) = 1

(11)

Again, if restricting the above minimization to a subspace of the kinematically
admissible fields, e.g. one obtained from a displacement-based finite-element
discretization, this approach will therefore provide an upper bound λkin ≥ λ∗
to the true limit load factor λ∗. The set of these upper bound approximations
for varying loading directions provide an exterior approximation Kkin ⊇ K
to the safe load domain K (see Fig. 3).

1.4 The Von-Mises Strength Criterion

In the case of steel structures modelling, the most common strength criterion is the
Von-Mises criterion defined as follows:

f (σ ) = ‖dev(σ )‖ − fy ≤ 0 (12)

Π(d̂) =
√
2

3
fy‖d̂‖ if tr(d̂) = 0 (13)

Π(n, �û�) =
√
1

3
fy‖�û�‖ if �û�.n = 0 (14)

fy being the tensile yield strength.
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2 Upper and Lower Bounds Finite Elements Formulations

Displacement-type elements are used in the finite element discretization of upper
bound optimisation program. For the present case, 10-node quadratic tetrahedra will
be used [3]. The resulting displacement field will therefore verify kinematic compati-
bility at every point inΩ and the maximum resisting energyPrm(û) is approximated
in Ω and Σ using numerical integration. The minimisation problem (11) can be
written in the matrix format as follows:

min
u

N∑

i=1
wiΠ(di ) +

M∑

j=1
w′

jΠ(n,�ui�)

s.t. Bu = d
Au = ud

Cu = �u�
FT
0 u = 1

(15)

wherewi andw′
j are theweights associated to theGauss integration points,B = ∇ S is

the classical displacements-to-strains matrix operator,A andC are linear constraints
matrices used to impose boundary conditions and to express the discontinuity of the
displacement field over the potential internal interfaces Σσ and FT

0 is the exterior
forces vector or the vector of the loading parameters.

When introducing theVon-Mises criterion in the general kinematic finite-elements
problem (15), the trick to efficiently solve this mathematical problem is to cast it into
the form of a convex optimisation problem andmore specifically a second-order cone
program (SOCP) as discussed in Sect. 3. For that, a set of slack variables noted γ

and ξ are introduced in the objective function (16a) which allows to pass the norms
required for Von-Mises criterion as second order cone constraints as seen in Eq.
(16c) and (16d). The incompressibility conditions tr(d̂) = 0 and �û�.n = 0 are also
included using a matrix operator noted D as seen in Eq. (16b).

min
u

∑N
i=1 wi

√
2
3 fyγi + ∑M

j=1 w′
j

√
1
3 fyξ j (16a)

s.t. Bu = d

Au = ud on Γu

Cu = �u�

FT
0 u = 1

Du = 0 (incompressibility condition) (16b)

‖di‖ ≤ γi ∀i = 1, . . . , N (16c)

‖�u j�‖ ≤ ξ j ∀ j = 1, . . . , M (16d)
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Finite element discretization of the lower bound problem (4) can be done using
equilibrium tetrahedra. The simplest element can be obtained by considering a linear
interpolation of the stress tensor components σi j over each element [4]. 4-node linear
tetrahedra with discontinuous interpolation can be used for which continuity of the
stress vector over the element facets should be explicitly written (these faces will
be denoted as the set Σσ ) and included as linear constraints of the corresponding
optimization problem. The resulting field will therefore verify equilibrium equations
at every point in Ω and verify the strength condition in a certain number of point Nc

in Ω . The discretized minimisation problem can then be written as follows:

max
λ,σ

λ (17a)

s.t. Hσ = λb (17b)

Nσ = 0 on Σσ (17c)

Nσ = λtd on Γt (17d)

σ (xc) ∈ G(xc) ∀c = 1, . . . , Nc (17e)

Where H is the divergence matrix operator and N is the normal projection matrix
operator. The Von-Mises criterion can easily be introduced by replacing Eq. (17e)
by the corresponding yield function and by using the deviatoric matrix operator Pdev

as follows :
‖s‖ = ‖Pdevσ‖ ≤ fy ∀c = 1, . . . , Nc (18)

3 Convex Optimisation and the Interior Point Method

The upper and lower bound limit analysis theorems are naturally written as a set of
convex optimisation problems which nowadays can be efficiently solved using state-
of-the art optimisation algorithms such as the primal-dual interior point method.

The class of problems related to our case is called second-order cone programs
(SOCP) which consists of minimising a linear objective function under specific con-
vex constraints: linear equalities/inequalities and second-order conic constraints:

min
x

cT x

s.t. Ax = b
x ∈ K

(19)

where A is the linear constraints matrix and K is a Cartesian product of Ki self-dual
convex cones such as the Lorentz cone: Ki = {x = (x0, x̄) ∈ R × R

n−1|‖x̄‖ ≤ x0}.
The interior point method (IPM) has been shown to be well suited for solving

these specific types of convex programming problems with guaranteed convergence
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in a polynomial time complexity. This method provides a way to solving non-smooth
mechanical problems such as the ones encountered in limit analysis whereas classi-
cal Newton-Raphson procedures fail to provide an acceptable solution.

The idea of an IPM is to find a solution to the Karush-Kuhn-Tucker (KKT) con-
ditions of problem (19) by following the neighbourhood of a curve called the central
path given by (x(η),λ(η)) and parametrized by a barrier parameter η ≥ 0. This
central path is no other than the unique solution to the following perturbation of the
KKT system [5]:

Find (x(η),λ(η)) such that:

c + ATλ = 0

Ax − b = 0

xi ◦ si = ηei
xi ∈ Ki si ∈ K ∗

i

(20)

where K ∗
i the dual cone of Ki . In the case of Lorentz cones, K ∗ = K and x ◦ s =

(x0, x̄) ◦ (s0, s̄) = (x0s0 + x̄T s̄, x0s̄ + s0x̄) and e = (1, 0).
The main property of the central path is that it defines a continuous set of strictly

feasible pointswhich arewell-centred, i.e. far from theboundaryof the feasible region
except when reaching the optimum for η → 0. This will allow for large descent steps
to be taken when minimizing the objective function from points the neighbourhood
of the central path.

The only non-linearity found in the equation set (20) is the complementarity
condition which depends on the type of the conic constraint. From the perturbed
KKT conditions (20), different strategies can be chosen to compute the solutions.
More details on the different steps of the IPM method implemented in this work can
be found in [5–7].

4 Engineering Applications

In our considered application, steel structures often present surfaces in contact with
each other (plate, blots, etc.). Contact conditions should therefore be imposed on
these surfaces. In order to keep the framework of convex optimization, we will
assume an associated frictional contact law. Contact conditions can therefore be
written in terms of the normal and tangential tractions (σN , σ T ) and normal and
tangential displacement gap (gN , gT ) of the considered surface as follows:

⎧
⎨

⎩

if ‖σ T ‖ = −μσN then g = 0 (21a)

if ‖σ T ‖ = −μσN then gT = λ
σ T

σ T
with λ = gN

μ
(21b)
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which ensures that the normal components of the gap vector and surface traction
are complementary i.e. σN ≤ 0, gN ≥ 0 in the case of frictionless contact but also
couples the normal and tangential gaps using a friction coefficient μ. The previous
conditions can be reformulated using a pair of convex second-order cones which can
easily be included within the SOCP framework. The details of this formulation can
be found in [8].

4.1 Basic Steel Checks According to the Eurocodes

A typical steel design check according to the Eurocodes (EC) [9, 10] relies on a
series of basic components checks which are then assembled to derive an estimate
of the ultimate resistance of the structure or the joint. In order to show the validity of
the yield design SOCP framework, elementary examples such as basic weld checks
are presented in the following paragraphs along with a biaxial bending interaction
diagram.

4.1.1 Some Fillet Weld Checks

According to EC3-1-8 paragraph 4.5.3 [10], the ultimate resistance of fillet welds
can be determined using the directional method which makes some allowance for
the dependence of the weld strength on the direction of loading by assuming that
the normal stress parallel to the axis of the weld throat does not influence the design
resistance given by Eq. (4.1) of the EC3-1-8 [10]:

√
σ 2

⊥ + 3(τ 2
⊥ + τ 2

‖ ) ≤ fu
βwγM2

and σ⊥ ≤ 0.9 fu
γM2

(22)

Using these two inequalities, the ultimate resistance of basic fillet welds can be
determined. In the following examples, a fillet weld of throat thickness a ≥ 3mm,
of total length L and of effective length Lef f = L − 2a ≥ Lmin = max (30mm, 6a)

is presented in 3 different configurations:

• a frontal configuration as seen in Fig. 4;
• a lateral configuration as seen in Fig. 5;
• an inclined configuration parametrized with an angle α as seen in Fig. 6.

The assembled pieces are supposed to have the same steel grade where fu(MPa)
is used to denote the ultimate tensile strength. The ultimate resistance NRd =
min(NRd,1; NRd,2) can be calculated from the resistance NRd,i obtained from the two
conditions of (22). Results are summarized for the three configurations in Table1.

Considering L = 100mm,a = 10mm,α = 45◦ and a steel gradeS355N/NLsuch
as fu = 490MPa, βw = 0.9 and γM2 = 1.25, the ultimate strengths of the different
configurations are calculated using the EC equations and using the finite-element
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Fig. 4 Frontal fillet weld configuration

Fig. 5 Lateral fillet weld configuration

Fig. 6 Inclined fillet weld configuration
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Table 1 Ultimate resistance calculated using Eq. (4.1) of EC3-1-8

Configuration σ⊥ = τ⊥ τ‖ 1st criterion 2nd criterion

NEd ≤ NRd,1 NEd ≤ NRd,2

Frontal
configuration

NEd

2aLef f

√
2

2
0

0.9 fu
γM2

2
√
2aLef f

fu
βwγM2

√
2aLef f

Lateral
configuration

0
NEd

2aLef f
Verified

fu
βwγM2

2aLef f√
3

Inclined
configuration

NEd

aLef f
sin(α)

√
2

2

NEd

aLef f
cos(α)

0.9 fu
γM2

√
2aLef f
sin(α)

fu
βwγM2

aLef f√
3 − sin2 α

Table 2 Ultimate resistance calculated using Eq. (4.1) of EC3-1-8 and the dual SOCP method

Configuration NRd,EC (kN) NRd,upper (kN) NRd,lower (kN)

Frontal configuration 492.7 568.2 531.3

Lateral configuration 402.4 401.3 388.3

Inclined configuration 334.5 385.8 358.1

SOCP limit analysis method using both lower and upper bound approaches. Results
are summarized in Table2. The gap between the upper and lower bound can be
reduced when using a finer mesh, although it is already less than 5%. The difference
with the EC3-1-8 value is mainly due to the hypothesis taken to apply Eq. (4.1)
where the normal stress parallel to the axis of the weld does not influence the design
resistance of the weld whereas in finite-element limit analysis computations, a full
3D yield criterion is considered. However, despite these intrinsic differences, the
results differ by 7% at most for all cases when comparing the EC prediction with the
safe lower bound approximation.

4.1.2 Biaxial Bending of a Beam

The ultimate state check of a steel class 1 or 2 section under biaxial bending action,
excluding buckling instability, can be verified using two methods according to the
EC3-1-1 [9]:

• A conservative plastic check using Eq. (6.2) [9]:

NEd

NRd
+ My,Ed

My,Rd
+ Mz,Ed

Mz,Rd
≤ 1.0 (23)
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Table 3 HEB300 section characteristics

Section As = 14900mm2

Plastic section modulus along the y axis Wpl,y = 1,869,000 mm3

Plastic section modulus along the z axis Wpl,z = 870,100 mm3

Equation (6.41) coefficient α = 2

Equation (6.41) coefficient β = 1

• A more refined plastic check using Eq. (6.41) [9]:

[
My,Ed

MN ,y,Rd

]α

+
[
MN ,z,Ed

Mz,Rd

]β

≤ 1.0 (24)

The equations are most probably obtained via a stress-based formulation, where a
plastic or elastic normal stresses distribution is integrated to obtain the interaction
diagram.While the first equation is easy to understand as it is just a linear summation
of the utilization ratios, the second equation for the non-linear interaction cases are
more subtle as they include the coefficients α and β which depends on the section
and the normal effort. The different steps to calculate these equations can be found
in detail in paragraph 6.2 of the EC3-1-1.

This example is limited to the evaluation of the interaction diagram of HEB300 of
steel grade 355N/NL under biaxial bending with no normal force. For this section,
the mechanical characteristics are summarised in Table3.

Using the different equations of the Eurocode, the interaction diagram for this
section is determined and is shown in Fig. 7. The normalisation in Eqs. (23) and
(24) is done by calculating My,Rd and Mz,Rd using Eq. (6.13) of the EC3-1-1. The
interaction diagram is obtained from the numerical results by integration the stress
diagram for the lower bound approach as the one seen Fig. 8, and by retrieving the
correct Lagrange multipliers corresponding to the reaction moments in the case of
the upper bound approach. Eq. (23) is clearly conservative as the full plastic capacity
of the section is not mobilised while as Eq. (24) allows a more economical design
which coincides well enough with the upper and lower bound approach where a full
3D resistance criterion is used.

4.2 A Quick Summary for More Complex Assemblies

A typical steel-assembly check according to EC3 relies on the components method,
where different basic components are determined and different failure mechanisms
are verified. In the case of complex steel assemblies, determining the ultimate resis-
tance and the ruin mechanism can be a very hard and a time-consuming process. The
proposed upper and lower bound approaches can therefore be used to limit the engi-
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Fig. 7 Interaction diagram under biaxial bending action

neer computational effort and provides a valuable insight to designing more efficient
3D assemblies. It can also be used as design method in cases where the Eurocode
recommendations cannot be applied.

In this paragraph, we introduce a quick summary of some of the engineering
applications that were made using the software DS-Steel developed by Strains in
collaboration with Laboratoire Navier. These assemblies are part of a large set of
checks that were made for an structural engineering firm. The geometry details and
load cases are omitted in order to simplify the presentation.

Two complex assemblies are briefly presented:

• a 3D bracing assembly as shown in Fig. 9a in which the applied loads are mainly
tension or compression efforts in the converging bracing members obtained from
a global 3D model of the whole structure;

• a moment transmitting assembly as shown in Fig. 9b in which the applied load is
a combination of an uniaxial bending moment, along with a normal and a shear
effort.

In these two studies, the friction coefficient was considered equal to 0, therefore only
unilateral contact constraints were imposed.

Using the upper bound approach, one can determine the most probable failure
mechanism. In the case of the first assembly, failure occurs in one of the bracing
members where the web plate fails in bearing due to a critical bearing pressure as
shown in Fig. 10a. One can also see in Fig. 10b that the elastic limit, in this case
fy = 355MPa is reached in the same diagonal member. The upper bound provides
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Fig. 8 Normal stresses isovalues for different loading states

Fig. 9 Complex 3D assemblies
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(a) Equivalent Von-Mises plastic strain isovalues in the critical diagonal

(b) Equivalent Von-Mises plastic stress isovalues

Fig. 10 Equivalent Von-Mises plastic strain and stress isovalues for the wind bracing
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(a) Equivalent Von-Mises plastic strain isovalues (b) Failure mechanism

Fig. 11 Kinematic results for the continuity assembly

a load factor of 2.2 for the corresponding load case while the lower bound approach
yields a load factor of 1.9. The gap between the two results can be reduced by
reducing the mesh size in the failure area. For the second assembly, failure occurs
within the end-plate where clear yield lines can be seen when mapping the plastic
strains isovalues as shown in Fig. 11.

The mesh used for each of the two examples consisted of 200,000 quadratic
tetrahedrons for the upper bound problem and 800,000 linear tetrahedrons for the
lower bound problem, yielding into roughly 5.5 million degrees of freedom for each
study. The interior point method shows a very efficient behaviour with a number of
iteration remaining stable compared to smaller problems (22–24 iterations) and a
CPU time of almost 315 s per iteration an OpenMP parallelisation over 8 cores.

5 Conclusion

This contribution showed that computational techniques for limit analysis/yield
design problems have now reached an important level of maturity to tackle com-
plex 3D cases. The performance of these techniques mainly rely on the efficiency
of interior point solvers for conic optimization, a framework in which many limit
analysis problems can be formulated. In particular for the case of von Mises plas-
ticity and associated frictional model for contact interfaces, the resulting problems
fall into the class of Second-Order Cone Programming problems. Besides, lower and
upper bound approaches can be respectively computed using equilibrium-based and
displacement-based finite elements. Finally, such tools can now be used for industrial
applications for instance in the context of the verification of 3D steel assemblies in
complex situations which are not described in the corresponding design norms.
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Limit Fire Analysis of 3D Framed
Structures Based on Time-Dependent
Yield Surfaces

Domenico Magisano, Francesco Liguori, Leonardo Leonetti,
and Giovanni Garcea

Abstract The starting point of this work is the definition of an automatic procedure
for evaluating the axial force-biaxial bending yield surface of steel and reinforced
concrete sections in fire. It provides an accurate time-dependent expression of the
yield condition by a section analysis carried out once and for all, accounting for
the strength reduction of the materials, which is a function of the fire duration. The
equilibrium state of 3D frames with such yield conditions, once discretized using
beam finite elements, is then formulated as a nonlinear vectorial equation defining a
curve in the hyperspace of the discrete variables and the fire duration.An incremental-
iterative strategy is proposed for tracing this curve evaluating a sequence of safe states
at increasing fire durations up to the limit fire duration, that is the time of exposure
which leads to structural collapse. The procedure represents a global fire analysis
able to take account of the stress redistribution over the frame. Numerical examples
are given to illustrate the proposal.

1 Introduction

The evaluation of the carrying capacity of a structure has always been amajor concern
to any design engineer. This regards not only situations of normal service conditions
but also exceptional loadings. For 3D frames, an important aspect is to ensure the
overall structural integrity during fire events. Usually, frame structures exhibit a rel-
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evant overstrength, that is their ultimate capacity can be significantly higher than
the elastic limit, especially in the multi-story multi-span ones. For this reason, the
material nonlinear analysis is a necessary tool for designing new buildings as well
as for assessing existing structures. A widely employed approach formulates the
cross-section yield criterion in terms of generalized stresses, usually axial force and
bending moments [1, 2]. A small number of proposals are available to obtain the
strength domains of heated sections corresponding to an assigned fire duration or
temperature distribution [3–6]. For well-confined reinforced concrete (RC) sections
and steel sections, as proposed in many building standards, the strain limit is suf-
ficiently large to allow an approach based on the classical plasticity theory [1, 7,
8]. It consists in evaluating a point cloud of generalized yield stresses by assigning
the corresponding collapse mechanisms, that is the position and orientation of the
neutral axis at the collapse states. Then, the yield points have to be interpolated in
order to handle the yield criteria in structural analysis codes [9, 10]. The Minkowski
sum [11] of ellipsoids represents an interesting strategy for the approximation of
particular convex shapes known as zonoids, such as the cross-section yield surface,
as shown in some recent works [1, 8]. In this work, we use a new approach for
constructing the Minkowski sum. It consists in giving a mechanical interpretation
to each term of the sum, which corresponds to the contribute of a portion of the
cross section to the overall yield surface. As such, after subdividing the cross-section
in multiple sub-domains, we approximate the yield surface of each sub-domain as
a single ellipsoid. Their Minkowski sum represents the yield surface of the whole
cross-section. This strategy is simple, efficient and leads to a good approximation of
the yield surface with a low number of ellipsoids [12]. However, the most attractive
feature of this particular Minkowski sum is the possibility to account for the strength
decrease due to fire exposure. The approach, in fact, allows us to obtain the yield
surface at an assigned fire duration, by simply contracting the ambient temperature
ellipsoid of each cross-section region accounting for its strength reduction. This
makes it possible to define in a closed form the time-dependent yield condition of
the cross-section without the need to reconstruct it for different fire durations.

Starting from this cross-section model, we propose an optimization algorithm
for assessing the global safety of 3D RC frames in conditions of fire. It consists
in a particular strain-driven incremental strategy which evaluates a sequence of safe
states for an increasing fire duration. The time-dependent yield surface, together with
a finite element beam model allows us to formulate the equilibrium condition of the
structure as a nonlinear system of equations defining a curve in the hyperspace of
the discrete variables and the fire duration. The evaluation of this curve provides
a time history of the fire event taking account of the stress redistribution and, if it
exists, the fire duration limit, that is the time of exposure which leads to structural
collapse. This analysis can be framed as an optimization strategy which is similar to
that used in the static limit analysis [13]. Themain difference is that the loads are kept
constant and the fire duration, leading to a contraction of the yield surfaces, replaces
the load factor as objective function. At each time step of the analysis the nonlinear
internal forces are obtained by an elastic predictor-return mapping process based on
the closest point projection (CPP) scheme on the yield surfaces at the current fire
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duration. The properties of theMinkowski sum can be exploited to define an efficient
stress update strategy based on the parametrization of yield surface in terms of its
normal vector, representing the cross-section collapse mechanism [12].

2 Mechanics of Cross Sections in Fire

In this section, the mechanical model for RC and steel sections in fire is described.
In particular, we define the section yield surface in terms of axial force and bending
moments corresponding to an assigned fire duration, taking account of the tempera-
ture distribution within the section which reduces the strength of the materials.

2.1 Temperature Distribution

For a generic solid body with thermal boundary conditions, the heat transfer equa-
tions can be solved using the finite element method [5]. For the particular simple case
of fire exposed rectangular concrete sections,Wickstrom [14] proposed and validated
a set of handy formulas to calculate the 2D temperature distribution. Wickstrom’s
formulas can be applied for any type of concrete or fire scenario. However, they are
particularly easy for ISO 834 standard fire and normal weight concrete. The applica-
tion of Wickstrom’s formulas for evaluating the temperature distribution within this
section can be summarized as follows:

• The fire temperature (T f ) in Celsius is firstly calculated at a specific fire duration
t expressed in hours using an assumed fire temperature-time relationship.

• An equivalent ISO 834 fire duration t∗ = �t is then calculated, that is the corre-
sponding time of exposure to the standard ISO 834 fire to have a temperature of
T f , where � is the dimensionless compartment time factor. The ISO 834 standard
fire can be described by temperature-fire duration law

T f = 345 log10 (480t∗ + 1) (1)

• Choosing a reference system with origin at the centroid, the temperature rise at
any point (x2, x3), with x2 and x3 expressed in meters, within the section due to
heating can then be estimated as

T [x2, x3, t] = (nw(nx + ny − 2nxny) + nxny)T f (2)

where the dimensionless coefficients nw, nx , ny are evaluated by superimposing
the effects of the heated sides
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nw = 1 − 0.0616(
√

�t)−0.88 ≥ 0

nx =
[
0.18 log

t

(0.5b + x2)2
− 0.81

]
left

+
[
0.18 log

t

(0.5b − x2)2
− 0.81

]
right

≥ 0

ny =
[
0.18 log

t

(0.5h + x3)2
− 0.81

]
bottom

+
[
0.18 log

t

(0.5h − x3)2
− 0.81

]
top

≥ 0

with b and h in meters being the section width and height respectively.

For steel members, the small thickness of the walls allows us to assume for simplic-
ity a uniform average temperature distribution over the cross-section. The average
temperature of the member versus fire duration law depends, apart from the fire tem-
perature T f given by Eq. (1), on the section factor (ameasure of the ratio of the heated
perimeter to the area), the presence of protections and the insulation materials. It can
be predicted using the Eurocode Method summarized in [15].

2.2 Strength Reduction for Concrete and Steel

The concrete compressive strength experiences significant degradation at elevated
temperatures. The reduced compressive strength for concretes fcT can be estimated
from its ambient value fc [16] as

fcT = kc[T ] fc (3)

where the dimensionless reduction factor is

kc[T ] = 1.76 · 10−9T 3 − 3 · 10−6T 2 + 2.5 · 10−4T + 1

with T in Celsius. The concrete tensile strength, as usual, is assumed to be negligible.
Lie et al.’s model [17] is used to predict the reduced yield strength of reinforcing bars
fyT from its ambient value fy as fyT = kr [T ] fy , where the dimensionless reduction
factor is

kr [T ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + T

900
log(

T

1750
) 0 <T ≤ 600 ◦C

340 − 0.34T

T − 240
600 ◦C <T ≤ 1000 ◦C

0 T > 1000 ◦C

(4)

with T in Celsius. The reduction factors kc and kr in Eqs. (3) and (4) are functions of
the temperature, which depends on the fire duration and on the point (x2, x3) within
the section, that is we have kc[x2, x3, t] and kr [x2, x3, t]. On the contrary, for steel
members, the assumption of uniform temperature distribution leads to a uniform
strength reduction fyT = ks[T ] fy with, according to Eurocode 3,
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Fig. 1 Strength reduction
factor of some steel sections
versus fire duration
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k
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ks[T ] =
(
0.9674

(
1 + e

T−482
39.19

))− 1
3.833

. (5)

Introducing the temperature versus time law, a typical behavior for protectedHE300A
columns exposed on all four sides and protected IPEA300 beams carrying a concrete
floor slab and then exposed on three sides is reported in Fig. 1.

2.3 Section Kinematics and Statics

Let us consider a cylinder occupying a reference configuration B of length � con-
fined by the lateral boundary denoted by ∂B and two terminal bases Ω0 and Ω�.
The cylinder is referred to a Cartesian frame (O, x1 ≡ s, x2, x3) with unit vectors
{e1, e2, e3} and e1 aligned with the cylinder axis. In this system, we denote with
X = se1 + x the position of a point P , where s is an abscissa which identifies the
generic cross-section Ωs of the beam, while x = x2e2 + x3e3 is the position of P
inside Ωs .

The displacement field u[X] of the model is expressed, as usual, as a rigid motion
of the section

u[X] = u0[s] + ϕ[s] × x (6)

where u0[s] and ϕ[s] are the mean translation and rotation of the section and the
operator × denotes the cross product. The kinematics assumed in Eq. (6) allows us
to evaluate, using a linear Cauchy continuum, the stress-strain work W in terms of
the generalized strains and stresses on the section as

W :=
∫

�

(N[s]T ε[s] + M[s]Tχ [s])ds (7)

where thegeneralized strainsε[s] = [ε, γ2, γ3]T andχ [s] = [χ1, χ2, χ3]T are defined
as

ε[s] = u0,s [s] + e1 × ϕ[s], χ = ϕ[s],s , (8)

a comma stands for derivative andN[s] = [N , V2, V3]T andM[s] = [M1, M2, M3]T
are the resultant force and moment. Finally, the elastic constitutive law [18] is
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expressed as [
ε

χ

]
= F

[
N
M

]
, F =

[
FNN FNM

FT
NM FMM

]
. (9)

2.4 The Cross-Section Yield Surface

As usual in practical applications involving slender beams, we assume an elastic
behavior of shear and torsion. The material is assumed to be elastic-perfectly plastic
with the plastic admissibility condition expressed in terms of normal stressσ11 only as
− f −

iT ≤ σ11 ≤ f +
iT where f +

iT and f −
iT are the strengths of the i th material for a given

temperature T in tension and compression respectively. For concrete f −
iT = fcT and

f −
iT = 0 while for rebars and structural steel f −

iT = f +
iT = fyT . fyT and fcT depend

on the value of the temperature T and then, according to Eqs. (3), (4) from the point
coordinates over the section and fire duration t .

In the following the dependence on s is omitted for a clearer exposition. In accor-
dance with [1, 3, 7, 8], we introduce the plastic mechanism of the cross-section
as

n = [ε̇, χ̇2, χ̇3]T (10)

which defines the position and orientation of the neutral axis for the collapse state
from the condition

ε̇11 ≡ ε̇ + x3χ̇2 − x2χ̇3 = 0. (11)

where ε̇11 is the axial strain of the collapse mechanism.
Denoting with Ω the beam section domain, the yield stress vector τ y collecting

the generalized section resultants associated with n by the Drucker’s condition, at a
given fire duration t, is

τ y[n, t] =
⎡
⎣ Ny

My2

My3

⎤
⎦ with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ny =
∑
i

(∫
Ω+

i

f +
iT dΩi −

∫
Ω−

i

f −
iT dΩi

)

My2 =
∑
i

(∫
Ω+

i

x3 f
+
iT dΩi −

∫
Ω−

i

x3 f
−
iT dΩi

)

My3 =
∑
i

(∫
Ω+

i

x2 f
−
iT dΩi −

∫
Ω−

i

x2 f
+
iT dΩi

)

(12)
where Ω+

i and Ω−
i are the portion of the generic subdomain Ωi of the section in

traction and compression respectively. The integrals can be easily evaluated by the
numerical procedure described in [9]. For steel reinforcements the integral can be
substituted with a sum of contributions considering the area concentrated in a point.
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Equation (12) allows the evaluation, for an assigned fire duration t , of the set of
generalizedyield stressτ y[nk, t] associated to themechanismnk , simplyby assuming
uniaxial stress fields reaching their maximum strength capacity in each region, either
in tension or in compression.A suitable interpolation or approximation of these points
furnishes the cross-section yield surface. Note that vectors nk are normal to the yield
surface according to the Drucker condition.

3 Construction of the Time-Dependent Yield Surface

In this section a new approach for constructing the yield surface of cross-sections in
conditions of fire in terms of the Minkowski sum of ellipsoids [1, 7, 8] is given.

3.1 Construction of Yield Surface at Ambient Temperature

From now on, for a more clear notation, the dependence on the fire duration will be
omitted to denote the quantities at ambient temperature. The domain of the cross-
section is subdivided into a grid of sub-domains Ωs = ∪IΩI as shown in Fig. 2.
Rebars can be collected in groups, one for each edge. Exploiting the properties of the
integral in Eq. (12), the true yield stress τ y[nk] at ambient temperature (kc = kr =
ks = 1) can be obtained as

τ y[nk] =
∑
I

τ y I [nk] (13)

Equation (13) can be interpreted as a Minkowski sum.
The yield surface of each sub-domain I , that is the cloud points τ y I [nk] for all

the mechanisms nk , is approximated using a single ellipsoid as

Fig. 2 Geometric
construction of the
cross-section yield surface as
a Minkowski sum of
ellipsoids
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(τ I − cI )TC−1
I (τ I − cI ) − 1 = 0

with the stress on the ellipsoid surface which assumes the following expression in
terms of a generic normal vector n

τ I [n] = cI + CIn√
nTCIn

. (14)

The ellipsoidal center cI and shape matrix CI are obtained, as in [1, 8], by solving,
for each sub-domain I , the following least square problem

min(cI ,CI )

∑
k

r2k with rk = nT
k (τ I y[nk] − τ I [nk]). (15)

Finally, the stress points on the yield surface expressed as a Minkowski sum of
ellipsoids can be parametrized in a closed form in terms of the normal vector n (see
[7]), as

τ [n] =
∑
I

τ I [n]. (16)

Note that now, in contrast to [1, 7, 8], the least square approximation of the yield
surface in Eq. (15) is decoupled for each ellipsoid.

3.2 Account of the Time-Dependent Strength Reduction

The reduction factors kc and kr in Eqs. (3) and (4) depend on the fire duration and
on the point (x2, x3) within the section. It is possible to approximate them with a
mean value k̄ I [t] within each sub-domain I . This value is chosen as the one which
provides an exact axial force, but it furnishes accurate results also for the bending
moments when multiple sub-domains are used. For concrete sub-domains, letting
kI [x2, x3, t] = kc[x2, x3, t], this means

k̄ I [t] = 1

ΩI

∫
ΩI

kI [x2, x3, t]dΩI

where the integral can be evaluated analytically as in [19], or numerically using,
for instance, the Gauss quadrature. Since kI [x, y, t] is a quite complicated function
we prefer the numerical integration, which makes it possible to avoid the use of
complicated formula.Agrid of 3 × 3Gauss points provides a suitable approximation.
For sub-domains collecting steel rebars, the previous equation becomes an average of
the reduction factors of the rebarsweighted for the corresponding areas. For structural
steel, assuming a uniform temperature over the section, we have k̄ I [t] = ks, ∀I .
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fc = 20MPa

fy = 391MPa
12φ20mm

10φ16mm
2φ14mm

Fig. 3 RectangularRC sections: geometry,materials and subdivisions for the geometricMinkowski
sum

The points belonging to the time-dependent yield surface can then be easily
expressed in a closed parametric form, for any t , as

τ [n, t] =
∑
I

k̄ I [t]τ I [n]. (17)

This means we do not need to re-compute the yield surface at a given fire duration t ,
because it is automatically available by simply scaling the ellipsoidal contributions
of the yield surface at ambient temperature.

3.3 Some Examples of Yield Surface Evaluation

The proposed strategy for the evaluation of the time-dependent yield surface is now
tested for two RC cross-sections, called RS1 and RS2, with steel reinforcements
of diameter φ typical of columns and beams respectively and reported in Fig. 3.
The accuracy is tested varying the number of sub-domains of the concrete part,
while one sub-domain is used for each steel edge. The reference solution is obtained
by evaluating the yield points numerically according to Eq. (12) using a very fine
discretization of the concrete area and considering the contribution of each rebar
separately. The yield surfaces are illustrated in the space of the generalized stresses
τ = [N , M2, M3]T .

The RS1 section is analyzed considering afire exposure all along its perimeter. The
temperature distributions within the section is predicted by Wickstrom’s formulas.
Clearly, they are symmetric with respect to the principal axes of the section because
of the symmetry in the geometry and thermal boundary conditions. The evolution of
yield surface is better illustrated in Fig. 4 for the 4 × 4 approximation. We can note
the symmetry with respect to the M2 − M3 plane as well as the non-null position of
the center along the N axis, due to the zero concrete tensile strength, of the ambient
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(a) (b) 4x4 subdomains (c)

Fig. 4 RS1 section: evolution of the yield surface in terms of N (kN ), M2(kNm), M3(kNm) for
the 4 × 4 discretization (ambient temperature, 1 and 2 hours of fire exposure)

Fig. 5 RS2 section: temperature distribution (◦C)within the section at 1 and 2 hours of fire exposure

temperature domain. These features are preserved also for the section in fire because
of the bi-symmetric temperature distribution.

The RS2 section is analyzed considering a fire exposure along three edges: left,
bottom and right. Figure5 shows the temperature distributions within the section
predicted byWickstrom’s formulas for 1 and 2 hours of fire. They are not symmetric
with respect to the x3 axis of the section because of the asymmetric thermal boundary
conditions. In Fig. 6 we can observe the quality of the proposed Minkowski approx-
imation in fitting the yield points of the reference solution at various fire durations.
The 2 × 2 approximation of the concrete domain provides an excellent fit of the
true yield points at ambient temperature, but the solution gets worse increasing the
time of exposure to fire. A 4 × 4 approximation is able to capture the contraction of
the yield surfaces more correctly also for increasing fire durations. The evolution of
yield surface is better illustrated in Fig. 7 for the 4 × 4 approximation. We can note
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(a) t = 0, 2×2 subdomains (b) t = 1h, 2×2 subdomains (c) t = 2h, 2×2 subdomains

(d) t = 0, 4×4 subdomains (e) t = 1h, 4×4 subdomains (f) t = 2h, 4×4 subdomains

Fig. 6 RS2 section: approximation of the true yield points [N (kN ), M2(kNm), M3(kNm)] for
different fire durations

(a) (b) 4x4 subdomains (c)

Fig. 7 RS2 section: evolution of the yield surface in terms of N (kN ), M2(kNm), M3(kNm) for
the 4 × 4 discretization (ambient temperature, 1 and 2 hours of fire exposure)

that, in contrast to the section previously analyzed, the symmetry with respect to the
M2 − M3 plane of the ambient temperature domain is no longer preserved for the
section in fire as soon as the heating is non-symmetric.
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4 The Finite Element Model for 3D Beams Subjected to
Fire

4.1 The 3D Beam Finite Element

The beam finite element adopted (see [8]) uses an interpolation of the generalized
stresses [N,M]T = Dt [s]β, where the interpolation matrix Dt [s] is obtained satis-
fying the equilibrium equations on the element for zero body forces exactly. Body
load effects are then included exactly as a “particular solution”. The internal work
becomes

W ≡ NT (u0[�] − u0[0]) + M[�]Tϕ[�] − M[0]Tϕ[0] = dT
e Q

T
e β (18)

allowing us to directly obtain the discrete form ofW without any FEM interpolation
for the kinematic variables. The vectors collecting the kinematics de and static β

finite element generalized parameters and the compatibility operator Qe are defined
as

β =

⎡
⎢⎢⎢⎢⎢⎢⎣

N
M2[0]
M3[0]
M2[�]
M3[�]
M1

⎤
⎥⎥⎥⎥⎥⎥⎦

, de =

⎡
⎢⎢⎣
u0[0]
ϕ[0]
u0[�]
ϕ[�]

⎤
⎥⎥⎦ , Qe = 1

�

⎡
⎢⎢⎢⎢⎢⎢⎣

−� eT1 0 � eT1 0
eT3 −� eT2 −eT3 0

−eT2 −� e3 eT2 0
−eT3 0 eT3 � eT2
eT2 0 −eT2 � eT3
0 −� eT1 0 � eT1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

4.2 The Elastic Problem

The linear elastic problem can be formulated as the stationarity of the Hellinger-
Reissner functional HR that at the element level can be written as

HR = dT
e Q

T
e β − 1

2
βTFeβ − dT

e pe

where pe is the element contribution of the external loads and the elastic compliance
matrix of the element Fe is obtained from the equivalence

∫
�

([
N
M

]T [
FNN FNM

FT
NM FMM

] [
N
M

])
ds = βTFeβ, Fe =

∫
�

Dt [s]TFDt [s] ds. (20)

The stationarity of HR with respect to the stress variables furnishes the discrete
elastic constitutive law
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β[de] = EeQede with Ee = F−1
e (21)

which allows us to express the elastic problem in terms of displacement variables
only. The stationarity conditionwith respect tode furnishes the equilibrium equations
on the element as

se[de] − pe = 0 with se[de] = QT
e β[de] (22)

where se[de] and pe are the internal force vector and the external load vector of the
element respectively. Equation (22), in the elastic case, becomes

Kede − pe = 0 with Ke = QT
e EeQe.

4.3 Stress Update for Time-Dependent Yield Conditions

Denoting with a subscript s the quantities related to the cross-section at abscissa
s, the yield function fs[t, τ s] is defined in a 3D space involving axial force N and
bending moments M2[s] and M3[s] collected in vector τ s = [N , M2[s], M3[s]]T .
The plastic admissibility condition is

fs[t, τ s] ≤ 0. (23)

The update of the stress is obtained, in a strain-drivenway, bymeans of a closest point
projection (CPP) which corresponds to a backward Euler scheme for integrating the
constitutive law. Starting from a known state d0

e ,β
0 at time t0, the stress parameters

β at time t for an assigned displacement increment Δde = de − d0
e are obtained by

solving, for each element, the optimization problem

minimize
1

2
(β − β∗)TFe(β − β∗)

subject to f0[τ 0, t] ≤ 0

f�[τ �, t] ≤ 0 (24)

where β∗ = β0 + EeQeΔde is the elastic predictor. The admissibility condition is
checked only on the end nodes of the beam and the generalized normal stress vectors
of these sections are extracted directly from β as τ s = Psβ with s = 0, �. The extrac-
tion operators P0 and P� can easily be obtained from Eq. (19). Note that, the stresses
at both end sections are coupledwith each other by the equilibrated interpolation and,
then, the CPP has to be performed at the element level. Moreover Eq. (24) defines the
constitutive law with the stresses uniquely defined by their initial values, the time of
exposure and the displacement increment. In the following, to simplify the notation,
we write β = β[de, t] omitting the dependence from the known quantity β0.
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Exploiting Eq. (24), the element equilibrium equations (22) become

se[de, t] − pe = 0 with se[de, t] = QT
e β[de, t]. (25)

The problem described in Eq. (24) corresponds to an elastic predictor-returnmapping
scheme.

5 A Global Fire Analysis for 3D Frames

In this section, an strain driven optimization algorithm is described for the evaluation
of limit fire duration.

5.1 The Optimization Algorithm

Once the finite element assemblage has been carried out, the equilibrium condition
of a frame subjected to fire can be written as

r[d, t] = s[d, t] − p = 0 (26)

where p and s are the load vector and the internal force vector of the structure
respectively, obtained assembling the finite element contributions in Eq. (25), and
d is the vector collecting the overall kinematic degrees of freedom. This system of
nonlinear equations defines a curve in the hyperspace d-t . The curve can exhibit a
limit fire duration, that is the time of exposure which leads to structural collapse. For
this reason it is not convenient to use a time controlled scheme since Eq. (26) could
not have a solution, that is no equilibrium state, for a given fire duration. We propose
instead the use of a generalized arc-length method. The equilibrium equations are
completed with the additional constraint g[d, t] − ξ = 0, which defines a surface in
R

N+1. Assigning successive values to the control parameter ξ = ξ(k) the solution of
the nonlinear system

R[d, t] ≡
[

r[d, t]
g[d, t] − ξ

]
= 0 (27)

defines a sequence of safe equilibrium points (steps) z(k) ≡ {d(k), t(k)}. Starting from
a known equilibrium point z0 ≡ z(k), the new one z(k+1) is evaluated correcting a first
extrapolation z1 = {d1, t1} by a sequence of estimates z j by a Newton–Raphson
iteration

{
Jδz = −R j

z j+1 = z j + δz
(28)
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where R j ≡ R[z j ] and J is the Jacobian of the non-linear system (27) at z j or its
suitable estimate.Also if other choices are possible [20, 21], the simplest and effective
choice for g[d, t] is an adaptive linear constraint corresponding to the orthogonal
hyperplane, updated at the beginning of each time step, that is

vTd (d − d1) + vt (t − t1) = ξ − ξ(k) where

{
vd ≡ � (d1 − d(k))

vt ≡ μ (t1 − t(k))
(29)

� and μ being some suitable metric factors [22, 23] and

J ≡
[
∂R[z]

∂z

]
z j

=
[
Kt st
vTd vt

]
with Kt = ∂s[d, t]

∂d

∣∣∣∣
z j

, st = ∂s[d, t]
∂t

∣∣∣∣
z j

. (30)

The choice of an adaptive constraint makes the Jacobian matrix in Eq. (30) non
singular also whenKt is singular. The solution of Eq. (28) is conveniently performed
in a partitioned way as follows

⎧⎪⎨
⎪⎩

δt = vTd K
−1
t r j

vt − vTd K
−1
t st

Ktδd = δtst − r j

(31)

in order to exploit the symmetry and the band structure of the tangent stiffness
matrix Kt . The tangent operators Kt and st are obtained assembling the element
contributions.

The points z(n) evaluated by the scheme are, by definition, equilibrated and plasti-
cally admissible at time t(n). In other words, they satisfy the hypotheses of the lower
bound theoremof the limit analysis and, then, the structure is safe for this fire duration.
Furthermore, we have that z(n) is plastically admissible also for the yield conditions
at time tk < tn if we assume that the temperature, and then the strength reduction, is
a nondecreasing function of the fire duration as stated in Eq. (1). In this situation, it is
possible to demonstrate (see [24]) that the sequence of fire duration provided by the
proposed incremental-iterative analysis converges, if it exists, to a limit fire duration.
In other words, whenΔt ≡ t(n) − t(n−1) = 0, a kinematically admissible mechanism
develops and the structure is just at the point of failure because the hypotheses of the
upper and lower bound theorems of the limit analysis are satisfied simultaneously.

6 Numerical Tests

The time-dependent yield surfaces and the incremental strategy are employed for
assessing the safety of framed structures exposed to fire. A single finite element is
used for the columns, while two finite elements are used for the beams. An ISO 834
standard fire is considered. The maximum structural deflection, denoted as umax , is
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chosen as control variable and monitored in the numerical tests. The results provided
by our fire analysis in terms of limit fire duration are assessed bymeans of a compari-
son with a standard elasto-plastic analysis where the yield surfaces are kept constant
and the load is amplified by a factor λ. In particular, we show that the limit load
provided by the elasto-plastic analysis coincides with the applied one (λ = 1) when
the yield surface of the fire exposed sections is evaluated at the limit fire duration.

6.1 A Simple Steel Frame

This example regards the simple 3D frame reported in Fig. 8. The floor load is uni-
formly distributed over the four beams. The fire scenario is the one described in
Fig. 1.

In Fig. 9 the fire duration-displacement sequence of safe points for the assigned
distributed load is reported. The curve is characterized by a significant initial portion
with zero displacements. Thismeans that the load is largely inside the initial domain at
ambient temperature. 1.75 hours are required to observe the first plastic deformations
while the limit fire duration is equal to 2.23.Different cross-section discretizations are
employed. The results provided by our fire analysis in terms of limit fire duration are
assessed by means of a comparison with a standard elasto-plastic analysis where the
yield surfaces are kept constant and the load is amplified by a factor λ. In particular,
we show that the limit load provided by the elasto-plastic analysis coincides with the
applied one (λ = 1) when the yield surface of the fire exposed sections is evaluated
at the limit fire duration.

Fig. 8 Simple steel frame: geometry, loads and cross-sections
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Fig. 9 Simple steel frame: equilibrium paths

Fig. 10 Full-scale building: geometry (lengths in meters), loads and cross-sections

6.2 A Full-Scale Reinforced Concrete Building

The last test regards the full-scale building reported in Fig. 10. The cross section
labeled RS1 and RS2 in Fig. 3 are used for columns and beams respectively. The
vertical story load p of the one way ribbed slab as depicted in Fig. 10 is distributed on
the beams. For each floor area, 90% of weight is assigned to the beams orthogonal to
the ribs, while the other 10% is applied on the parallel ones. The fire event involves
the ground floor only.

In Fig. 11 the fire duration-displacement sequence of safe points for the assigned
distributed load is reported. The curve is characterized by an initial portion with zero
displacement. This means that the load is sufficiently safe at ambient temperature.
1.3 hours of fire exposure are required for the first plastic deformations, while the
limit fire duration is equal to 2.7 hours. We can note that in this case, due the high
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Fig. 11 Full-scale building: equilibrium paths

hyperstaticity of multi-storey multi-span frames, the commonly employed sectional
check underestimates the structural safety by about twice the one predicted by our
model, which accounts for the redistribution of the stresses and the consequent struc-
tural overstrength. Different cross-section discretizations are employed, all of them
providing similar results (3 × 3 practically coincides with the 4 × 4). Again, the
structure is analyzed using the standard elasto-plastic analysis and the correspond-
ing load-displacement paths are reported in Fig. 11 for different fire durations. It is
possible to observe how the collapse load factor is equal to one for the yield sur-
face corresponding to the fire duration limit evaluated with the proposed incremental
strategy.

7 Conclusions

In this work, we proposed a numerical framework for the global assessment of the
fire resistance of 3D frames. First of all, a simple, accurate and efficient numerical
procedure for constructing the axial force-biaxial bending yield surface of cross-
sections in firewas derived. This is based on a particularMinkowski sumof ellipsoids,
where each ellipsoid represents the contribution of a sub-domain of the cross-section
to the overall surface. The yield conditions are made time-dependent by assigning
a strength reduction factor at each sub-domain. Once the structure is discretized
using 3D beammixed finite elements which check the admissibility condition on the
end sections, the equilibrium condition of 3D frames is formulated as a nonlinear
system of equations defining a curve in the hyperspace of the discrete variables and
the fire duration. An optimization strategy based on a strain-driven formulation was
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proposed to evaluate the global fire resistance. It furnishes a sequence of safe states at
increasing fire durations up to the limit one. Numerical tests showed that the proposed
formulation is well-suited for full-scale buildings.
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Limit Analysis of Dry Masonry Block
Structures with Non-associative Coulomb
Friction: A Novel Computational
Approach

Nicola A. Nodargi, Claudio Intrigila, and Paolo Bisegna

Abstract The limit analysis of dry-masonry block structures with non-associative
Coulomb friction is formulated as a Mixed Complementarity Problem. After high-
lighting some of its peculiar features, such as the lack of uniqueness of the collapse
multiplier, a fixed-point based algorithm is presented for constructing a solution,
obtained by iteratively solving straightforward associative limit analysis problems.
Supported by the comparison with benchmark problems, the resulting procedure is
proven to be able to predict the collapse multiplier of masonry block structures with
accuracy, robustness and effectiveness.

1 Introduction

The analysis of the mechanical behavior of historical masonry structures repre-
sents a significant research topic in computational mechanics, as related to the
preservation and the restoration of architectural heritage and of historical build-
ings. Many computational strategies have been developed to date, aiming at model-
ing masonry response at different scales and levels of complexity. Among them,
it is worth mentioning micromechanical approaches (e.g., see [13, 30]), multi-
scale/homogenization approaches (e.g., see [1, 6, 21, 35]) and macromechani-
cal/phenomenological approaches (e.g., see [14, 24, 27, 33, 34]), to be used in
conjunction with finite element formulations suitable for the analysis of inelastic
structures (e.g., see [7, 8, 23, 25, 26, 28]).
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Renouncing to a constitutive description ofmasonrymaterial, the collapse loading
of masonry structures can be rigorously determined by limit analysis theory, as first
shown by Kooharian and Heyman in their classical works (see [16, 18]). A funda-
mental contribution in translating limit analysis into a computational strategywas the
seminal work by Livesley (see [19]), who proposed to consider a typical masonry
structure as a system of rigid blocks, which interact through no-tension frictional
interfaces. The attractiveness of such idealization, only requiring the friction angle
of block interfaces as material parameter, was also motivated by the simple format of
Linear Programming (LP) problem taken by limit analysis theorems. Unfortunately,
limit analysis theorems intrinsically presuppose an associative flow law, and, corre-
spondingly to Coulomb friction, the collapse mechanism exhibits interface dilatancy
and the collapse multiplier is usually overestimated (as already shown in [10] and
[37]).

Abandoning standard limit analysis theorems to assume a non-associative friction
flow law, a non-associative limit analysis problem for the analysis of masonry block
structures has been progressively formalized in [3, 4, 11, 12, 20]. That is obtained by
explicitly considering equilibrium and compatibility equations pertaining to blocks,
along with admissibility constraints (including Coulomb friction), flow laws (includ-
ing non-associative Coulomb friction flow law) and Kuhn-Tucker complementarity
conditions pertaining to block interfaces.However, due to the non-convex structure of
the complementarity constraint, the resulting coupled static/kinematic Mixed Com-
plementarity Problem (MCP) carries an ill-posedness issue related to lack of unique-
ness of the collapse multiplier. Accordingly, by assuming the minimum collapse
multiplier as the actual target, a constrained minimization problem is formulated,
with constraints given by the MCP conditions. In particular, that can be interpreted
as a Mathematical Program with Equilibrium Constraints (MPEC). As nowadays
optimization tools for the solution of the MPEC are severely limited in the size of
problems they can handle, ad-hoc solution strategies have been explored in [11, 15,
31, 38].

In the present work, a fixed-point based algorithm is discussed for solving the
non-associative limit analysis MCP relevant to 2D masonry block structures (see
[29]). Basic observation is that a solution can be derived by considering a fixed-point
problem, with the fixed-point map involving the solution of a simple associative
limit analysis problem. Accordingly, the proposed procedure achieves to construct
a non-associative limit analysis solution by iteratively solving straightforward asso-
ciative limit analysis problems. Numerical results are presented for assessing accu-
racy, robustness and effectiveness of the proposed computational approach. Possible
extensions of the present approach deal with the limit analysis of non periodic block
masonry structures (e.g., see [5]) and of 3D block masonry structures, also undergo-
ing large displacements (e.g., see [17, 36]).

The present paper is organized as follows. In Sect. 2 the non-associative limit anal-
ysis MCP is formulated. In Sect. 3, a simple two-blocks model problem is presented
to highlight some features of the relevant MCP. In Sect. 4 the present fixed-point
based solution algorithm is discussed. Numerical simulations are reported in Sect. 5
and conclusions are outlined in Sect. 6.
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x

u

Fig. 1 Blocky model for dry-masonry structures. Block displacements u and block interface
forces x

2 Limit Analysis Problem for Block Structures

A system of 2D blocks is considered, as shown for example in Fig. 1, to model
a typical dry-masonry block structure. It is assumed that the blocks are rigid and
that they interact through Coulomb-frictional interfaces. Let b and c respectively
denote the number of blocks and of interfaces, and let {O; x, y} be a fixed Cartesian
reference frame.

In case an associative flow law is considered for the frictional behavior of the
interfaces, classical static and kinematic theorems of limit analysis hold. Specifically,
assuming that external loads f d + λ f l are applied at block centroids, with f d as dead
loads, f l as basic live loads and λ as multiplier of live loads, the static theorem reads:

max
λ, x

λ

s.t. Ex + f d + λ f l = 0

NT
u x ≤ 0, NT

f x ≤ 0,

(1)

where x is a 3c × 1 vector collecting interface shear forces, normal forces and bend-
ing moments, E is a 3b × 3c block equilibrium operator, NT

u is a 3c × 3c interface
unilateral constraint operator and NT

f is a 2c × 3c interface friction constraint oper-
ator (e.g., see [19]). Conversely, the kinematic theorem yields:

min
u, zu≥0, zf≥0

− f Td u

s.t. ET u + Nuzu + N fzf = 0

1 − f Tl u = 0,

(2)

where u is a 3b × 1 vector collecting x-displacements, y-displacements and rota-
tions (about block centroid) of blocks, zu is a 3c × 1 vector of interface unilateral
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flow multipliers, and zf is a 2c × 1 vector of interface friction flow multipliers (e.g.,
see [19]). In a mechanical perspective, the static and kinematic theorems of limit
analysis supply dual descriptions of collapse multipliers, respectively obtained by
maximizing the load multipliers for which statically admissible equilibrium is fea-
sible or by minimizing the (opposite of) resisting work related to kinematically
admissible mechanisms. That duality also holds from an optimization standpoint,
i.e. formulations (1) and (2) represent linear programming problems dual to each
other, thus guaranteeing the existence of a unique collapse multiplier, which is the
common optimal value of the two problems (e.g., see [11]).

Unfortunately, the duality of static and kinematic theorems is a consequence of
the friction associative flow law. That is, of the fact that (up to a transposition) the
same operator N f, involving the interface friction angle ϕ, is used for expressing
both the friction flow and the friction constraint. If a non-associative friction flow
law is instead postulated to avoid spurious dilatancy, a distinct interface friction flow
operator V f has to be considered in place of N f, obtained by replacing the friction
angle ϕ with the dilatancy angleψ . As a consequence, static and kinematic problems
are no longer uncoupled, and the limit analysis problem has to be formulated in the
following form (e.g., see [3]):

Ex + f d + λ f l = 0

ET u + Nuzu + V fzf = 0

1 − f Tl u = 0

NT
u x ≤ 0, zu ≥ 0, zTu N

T
u x = 0

NT
f x ≤ 0, zf ≥ 0, zTf N

T
f x = 0.

(3)

It is worth noticing that nonlinear (and nonconvex) complementarity constraints
(3)6,9 are here involved, thus turning the limit analysis into a Mixed Complementary
Problem (MCP) (e.g., see [32]). In particular, excluding the simple case of associative
frictionflow law, it is affected by a ill-posedness issue related to the lack of uniqueness
of the collapse multiplier. As several structural collapse states might exist, each
attained for a distinct intensity of the live loads, a conservative possibility is to assume
the minimum collapse multiplier as the actual target. Accordingly, the following
optimization problem is introduced (e.g., see [11]):

min
λ, x, u, zu, zf

λ,

s.t. {λ, x, u, zu, zf} is a solution of (3),
(4)

which is a special case of a Mathematical Program with Equilibrium Constraints
(MPEC) (e.g., see [32]).
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3 A Two-Blocks Model Problem

In this section a simple model problem is discussed to highlight some features of the
non-associative limit analysis problem discussed in Sect. 2. As depicted in Fig. 2, a
structure constituted by two blocks is considered, each block being characterized by
width b and height h. The two blocks are supported on a base where unilateral and
friction constraints, with friction coefficient μ = tan ϕ, hold. The same constraints
are also enforced at the interface between the two blocks. It is assumed that each
block is subjected to a dead load coinciding with its weight W , whereas a horizontal
force of the same intensity is assumed as basic live load. Accordingly, a parametric
analysis of the collapse multiplier λ of the basic live loads is conducted with respect
to block slenderness η = h/b and friction coefficient μ.

As a reference result, the associative limit analysis problem is initially considered.
In such a case, a kinematic approach formulated as in Eq. (2) yields four possible
collapse mechanisms, collected in Fig. 3:

– Panel (a) depicts a slidingmechanismwith dilatancy, labelled asA1, corresponding
to a collapse multiplier λ = μ;

– Panel (b) depicts a single rockingmechanismwith ‘up’ dilatancy, labelled as A2-1,
corresponding to a collapse multiplier λ = [

η
(
1 − μ2

) + μ
]−1

;
– Panel (c) depicts a single rocking mechanism with ‘down’ dilatancy, labelled as
A2-2, corresponding to a collapse multiplier λ = (

1 + 2μ2
)
/
[
η

(
1 + μ2

) − μ
]
;

W

λW

b b

h

Fig. 2 A two-blocks model problem: geometry and loading conditions

(a) (b) (c) (d)

Fig. 3 A two-blocks model problem: collapse mechanisms for associative friction. a Sliding with
dilatancy, labelled as A1, b single rocking with ‘up’ dilatancy, labelled as A2-1, c single rocking
with ‘down’ dilatancy, labelled as A2-2, d coupled rocking, labelled as A3
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(a) (b) (c)

Fig. 4 A two-blocks model problem: collapse mechanisms for non-associative friction. a Sliding,
labelled as NA1, b single rocking, labelled as NA2, c coupled rocking, labelled as NA3
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Fig. 5 A two-blocks model problem: partition of parameter space into regions corresponding
to different collapse mechanisms, for a associative friction, b non-associative friction, minimum
collapse multiplier, c non-associative friction, maximum collapse multiplier

– Panel (d) depicts a coupled rocking mechanism, labelled as A3, corresponding to
a collapse multiplier λ = 2/η.

In Fig. 5a the partition of the parameter space into regions corresponding to the
different collapse multipliers is shown, whereas in Fig. 6a the collapse multiplier is
plotted versus the parameter space.

As for the non-associative limit analysis problem, here addressed under the
assumption of vanishing dilatancy ψ = 0, the MCP (3) has to be solved. To such
an aim, two distinct optimization problems are considered, consisting in the mini-
mization formulation (4) and in the analogous maximization formulation obtained
by replacing min with max in equation (4).
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(a) (b) (c)

Fig. 6 A two-blocks model problem: collapse multiplier versus parameter space, for a associa-
tive friction, b non-associative friction, minimum collapse multiplier, c non-associative friction,
maximum collapse multiplier

In detail, the minimum collapse multiplier is attained for:

– a sliding mechanism when μ ≤ 1/η, with collapse multiplier λ = μ. That is
labelled as NA1 and depicted in Fig. 4a;

– a single rocking mechanism when μ ≥ 1/η, with collapse multiplier λ = 1/η.
That is labelled as NA2 and depicted in Fig. 4b.

Figures5b and 6b respectively show the partition of the parameter space correspond-
ing to the two mechanisms and the minimum collapse multiplier as a function of the
parameters.

Regarding the maximum collapse multiplier, a more intricate situation emerges.
In that case it is convenient to first discuss the plot of the collapse multiplier ver-
sus the parameter space, shown in Fig. 6c. Interestingly, the relevant results coin-
cide with those pertaining to the associative limit analysis problem. However, the
maximum collapse multiplier is attained by the collapse mechanisms illustrated in
Fig. 5c. Specifically, the sliding mechanism with dilatancy A1 switches into the slid-
ing mechanism NA1 and the two single rocking mechanism with ‘up’ and ‘down’
dilatancy, respectively A2-1 and A2-2, switch into the single rocking mechanism
NA2. Of course, the coupled rocking mechanism A3 coincides with NA3, Fig. 4c,
not implying any dilatancy.

For instance, let the point η = 3 and μ = 0.65 be considered. In that case, the
associative collapse multiplier corresponds to the mechanism A2-1 and results to be
λ = 0.41973. That coincides with the maximum non-associative collapse multiplier,
though the latter is attained by the mechanism NA2. Under different interface forces,
the same mechanism NA2 also provides the minimum non-associative collapse mul-
tiplier, λ = 1/3, with a reduction of 25%. Accordingly, the present model problem
exemplifies the following features of the non-associative limit analysis problem: (i)
the MCP (3) can suffer from lack of uniqueness of the solution also in terms of
collapse multipliers, and (ii) those collapse multipliers might be strictly (and signif-
icantly) lower than the associative one.
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4 Numerical Solution Algorithm

State-of-the-art optimization tools for the solution of the MPEC (4) are severely
limited in the size of problems they can handle, and their applicability to structures
of practical interest is precluded (see [11]). On the other hand, also renouncing to
global minimization and restricting to the solution of the MCP (3), a numerical
solution strategy suitable to the limit analysis of real structures is still missing. As
a matter of fact, it is nowadays possible to resort to numerical tools that make the
solution of LP problems, also of large size, a straightforward task to accomplish.
Accordingly, a novel solution strategy is here conceived to construct a solution of the
MCP (3), whose main motive is to exploit the iterated solution of suitable associative
limit analysis problems.

Basic idea of the algorithm is to assume the block interface normal forces n
as iteration variables. Hence, let the current iterate n∗ be given. Without loss of
generality, it is assumed that all interfaces have the same friction and dilatancy angles,
respectively ϕ and ψ . Then, an associative limit analysis problem is formulated,
comprising the following cohesive-frictional criterion:

|t| ≤ −n tanψ − n∗ (tan ϕ − tanψ) , (5)

where t collects the block interface shear forces. Accordingly, ψ is assumed as
friction angle, whereas a vector of interface cohesions −n∗ (tan ϕ − tanψ) is pre-
scribed. Interestingly, the solution of such LP problem fulfills the equilibrium con-
dition (3)1, the compatibility condition (3)2 (in fact an associative flow law with
friction angle ψ is assumed), the normalization condition (3)3, and the unilateral
constraint and complementarity conditions (3)4–6. Contrarily, friction constraint and
complementarity conditions (3)7–9 are in general not satisfied, as being affected by
the cohesive-frictional criterion under consideration. However, as shown in [29], the
original Coulomb friction and the cohesive-frictional criterion result to be equivalent
if the block interface normal forces n in solution of the LP problem coincide with
n∗.

The discussion above suggests to introduce the (continuous) functionF , mapping
a given vector of block interface normal forces n∗ into the block interface normal
forces n in solution of themodified associative limit analysis problem. Consequently,
a solution of the MCP (3) can be constructed by solving the following fixed-point
problem:

n := F(
n∗) = n∗. (6)

Two concluding remarks are in order. First, problem (6) can be addressed by stan-
dard fixed-point iterations, or by a general-purpose derivative-free algorithm (e.g.,
see [22]). Second, in [15] a heuristic algorithm is proposed to construct a solution
of the MPEC (4), by the iterated solution of associative limit analysis problems. As
a main difference with respect to the present algorithm, in that case convergence is
assumed when the collapse multiplier does not change in two successive iterations.
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Contrarily, no check is therein required on the difference of block interface nor-
mal force, which might produce a not-negligible error in the friction admissibility
condition (see [29]).

5 Numerical Simulations

In this section, numerical simulations are reported for assessing the performances
of the present fixed-point algorithm. For comparison, other computational strate-
gies available in the literature are also considered, specifically: the PATH solver
proposed in [9], implementing a stabilized Newton method for the solution of gen-
eral MCPs; the iterative relaxed nonlinear programming (NLP) algorithm proposed
in [11], addressing the MPEC (4) by relaxation of the complementary constraints
with a progressively reduced relaxation parameter; and the sequentially LP-based
(SLP) algorithm proposed in [15], solving a succession of associative limit analy-
sis sub-problems and controlling the difference of collapse multipliers in successive
iterations.

Four benchmark problems are analyzed, modeling a round arch structure (Fig. 7a),
an arch on buttresses structure (see [2]) (Fig. 8a), and two wall structures (see [3])
(Figs. 9a and 10a). Each structure is composed of equal-sized blocks (blocks having
aspect ratio of 1 : 2) and is supposed to be supported on a base, where unilateral and
friction constraints are enforced. Blocks are subjected to vertical dead loads f d and

(a) (b) (c)

Fig. 7 Numerical simulations: round arch problem. a Geometry, b collapse mechanism with asso-
ciative Coulomb friction and c collapse mechanism with non-associative Coulomb friction

(a) (b) (c)

Fig. 8 Numerical simulations: arch on buttresses problem (see [2]). a Geometry, b collapse mech-
anism with associative Coulomb friction and c collapse mechanism with non-associative Coulomb
friction
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(a) (b) (c)

Fig. 9 Numerical simulations: 2 × 1 wall problem (see [3]). a Geometry, b collapse mechanism
with associative Coulomb friction and c collapsemechanismwith non-associative Coulomb friction

(a) (b) (c)

Fig. 10 Numerical simulations: 2 × 2 wall problem (see [3]). a Geometry, b collapse mechanism
with associative Coulomb friction and c collapsemechanismwith non-associative Coulomb friction

horizontal basic live loads f l, which are both proportional to the block volumes to
mimic a pseudo-static earthquake loading. The material parameters are: the friction
angle ϕ = arctan (0.65) and the dilatancy angle ψ = 0.

Panel (b) of Figs. 7–10 depicts the collapsemechanisms of the structures assuming
associative frictionflow law,whereasPanel (c) of the samefigures depicts the collapse
mechanisms predicted by the present fixed-point algorithm assuming non-associative
friction flow law. The corresponding collapse multipliers are reported in Table1,
where also the results computed with the above competing algorithms are displayed.

Except for the round arch problem, whose collapse mechanism only involves uni-
lateral failures, a reduced collapse multiplier corresponds to the non-associative fric-
tion flow law with respect to the associative one. Concerning the different estimation
of non-associative collapse multipliers supplied by the algorithms under investiga-
tion, it can be noticed that the PATH solver converges to one of the (possibly many)
solutions of the MCP (3), without any further specification. Conversely, the NLP
algorithm explicitly seeks for a (local) minimum of the MPEC (4), thus justifying
a demanding computational cost which precludes its use for large-size block struc-
tures (see [29]). On the other hand, the SLP and the present algorithms intend to
construct a solution of the MCP (3) by iteratively addressing a static theorem for-
mulation of modified associative limit analysis problems. Hence, those are methods
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Table 1 Numerical simulations: collapse multiplier obtained by the present fixed-point algorithm.
Corresponding values relevant to a in-house implementation of PATH algorithm (see [9]), NLP
algorithm (see [11]) andSLPalgorithm (see [15]) are reported (with× denoting lack of convergence)

Problem Collapse multiplier

Associative Non-associative

PATH NLP SLP Present

Round arch 0.16034 0.16034 0.16034 0.16034 0.16034

Arch on
buttresses

0.09085 0.08466 × 0.08195 0.08690

2 × 1 wall 0.33194 0.26374 0.26374 0.26374 0.26374

2 × 2 wall 0.34782 0.29725 0.29577 0.29649 0.29611

Table 2 Numerical simulations: relative errors in compatibility and friction admissibility con-
ditions. For comparison, the corresponding values relevant to a in-house implementation of SLP
algorithm (see [15]) are reported

Problem Relative error in friction admissibility

SLP Present

Round arch 0 0

Arch on buttresses 8.43 × 10−2 1.84 × 10−4

2 × 1 wall 4.56 × 10−2 2.62 × 10−9

2 × 2 wall 7.04 × 10−2 1.97 × 10−4

characterized by a reduced computational cost, which in turn cannot aim to a mini-
mality property of the collapse multiplier. In order to highlight the main difference
between the SLP and the present algorithms, the relevant solution quality has to be
considered. Table2 shows the relative error in the friction admissibility condition,
defined as ‖(NT

f x)+‖/‖NT
f x‖ (here ‖·‖ denotes the Euclidean norm and (·)+ the

positive part operator), which results in the order of 10% for the SLP algorithm and
much smaller for the present one. As that error is proportional to the difference of
normal forces in successive iterations (see [29]), the improved solution quality of the
proposed algorithm relies in explicitly assuming a convergence criterion on block
interface normal forces, instead of collapse multipliers as in the SLP algorithm.

6 Conclusions

The limit analysis of dry-masonry block structures with non-associative Coulomb
friction has been considered. Its formulation has been obtained as a Mixed Com-
plementarity Problem, comprising equilibrium and compatibility equations pertain-
ing to blocks, along with admissibility constraints (including Coulomb friction),
flow laws (including non-associative Coulomb friction flow law) and Kuhn-Tucker
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complementarity conditions relevant to block interfaces. A simple two-blocks model
problem has been presented to remark well-known peculiar features of
non-associative limit analysis problem, such as the lack of uniqueness of the col-
lapsemultiplier and the fact that non-associative collapsemultipliers are smaller than
the associative one. A fixed-point based algorithm has been proposed for construct-
ing a solution of the non-associative limit analysis problem, obtained by iteratively
solving straightforward associative limit analysis formulations. Numerical simula-
tions have been presented to investigate the performances of the resulting procedure.
Compared to computational costly available methods, which explicitly seek for the
minimum collapse multiplier, the proposed algorithm gives reasonable estimation
of the collapse multiplier. Conversely, compared to similar procedures, which aim
at deriving a solution iteratively attacking associative limit analysis problems, the
present approach guarantees accuracy of the solution, also with respect to the friction
admissibility condition.
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Homogenization of Ductile Porous
Materials by Limit and Shakedown
Analysis

Zhang Jin, Abdelbacet Oueslati, Wanqing Shen, and Géry de Saxcé

Abstract This paper is a survey of recent trends in the poroplasticity combined with
Direct methods. Using the hollow sphere model as Reference Elementary Volume
(REV) with a matrix obeying von Mises microscopic plastic yield criterion, a stress
variational model (SVM), dual of Gurson’s one, has been proposed to find by the
Limit Analysis a macroscopic criterion depending on the porosity. Remarkably, it
depends on the third invariant J3 but only through its sign. Applying the normality
law to the macroscopic criterion, the evolution of porosity with respect to the stress
triaxiality exhibit clear discrepancies with Gurson’s one which is known to overes-
timate the variation of the porosity. Some extensions has been proposed to obtain
a continuous dependence with respect to J3 through Lode’s angle, to improve the
strength value for the pure deviatoric loading. Thanks to the bipotential formulation,
a macroscopic yield criterion was also proposed for a non associated Drucker-Prager
matrix. Using the ShakedownAnalysis, themethod has been extended to the repeated
variable loadings to obtain a fatigue criterion for the porous materials. It depends on
the porosity but also strongly on Poisson’s coefficient. The general case involving
shear effects with any cyclic load fluctuations ranging from the pulsating load to
the alternating one is considered. The macroscopic criteria depend on the first and
second macroscopic stress invariants and the sign of the third one.
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1 Introduction

The direct methodsmay be applied to the structural mechanics but also to the homog-
enization of porous materials:

• Limit analysis: when the loading is proportional to find yield criteria depending
on the porosity,

• Shakedown analysis: when the loading is repeated variable to find fatigue criteria
for the porous materials [8, 13].

The methodology developped is based on the following key points:

• we modelize the Reference Elementary Volume (REV),
• we choose trial fields to capture the main physical effects,
• we apply the variational formulations to obtain approximations,
• we deduce the analytical form of the strength criterion of the homogenized
material.

Although the obtained expression is approximative, it may be useful for experimeters
as source of inspiration. They can introduce additional parameters ofwhich the values
are determined to fit better the experimental testing data [22, 23].

1.1 A Fragrance of Poroplasticity

Before getting to the heart of the matter, it is worth to recall the basic tools of
homogenization in poroplasticity. At Fig. 1, we consider a hollow sphere, of which
the Reference Elementary Volume V is enclosed by a surface ∂V , made up of a
spherical cavityV f embedded in a homothetic cellVM of a given rigid-plasticmaterial
for Limit analysis or an elasto-plastic material for Shakedown analysis. S f denotes
the void-matrix interface. The inner and outer radii are respectively denoted a and b,
giving the void volume fraction f = V f /V = (a/b)3 < 1. This simple modelling,
called hollow sphere model, turned out to be sufficiently accurate, the analytical
results being validated by numerical simulations with fine meshes.

The porosity and the constitutive law of the matrix being given in terms of micro-
scopic fields of stress σ and plastic strain rate d, our main issue is to deduce the
corresponding ones of the REV in terms of macroscopic fields Σ, D obtained as
averages:

Fig. 1 Hollow sphere model
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D = 1

V

∫

V

d dV, Σ = 1

V

∫
V

σ dV = 1

V

∫

∂V

(σ · n) ⊗ x dS (1)

For Σ , the last expression where n is the unit outward normal to ∂V and x is the
position vector, obtained for statically admissible fields, is useful to calculate more
simply the average by integration on a surface instead of a volume.

Considering the mean stress σm = 1
3 Tr(σ ), the deviatoric stress σ d , von Mises

comparison stress σe =
√

2
3σ d : σ d , the macroscopic counterparts and the third

invariant are:

Σm = 1

3
Tr(Σ), Σe =

√
2

3
Σd : Σd , J3 = det(Σd)

For the boundary conditions, we claim that S f is stress free and the velocity
v̄(x) = D x is imposed on ∂V . According to Hill’s lemma, we have for any statically
admissible stress field:

1

V

∫

∂V

(σ · n) · v̄dS = D : Σ

1.2 Motivations

The microscopic plastic yielding criterion for the matrix:

F(σ ) ≤ 0

being given and using the hollow spheremodel, our goal is to deduce themacroscopic
strength criterion (plastic yielding or fatigue):

F (Σ, f ) ≤ 0

representing the plastic behaviour of the homogenized material and depending on
the void volume fraction f . The choice of the hollow sphere as REV is motivated
by the fact that its geometry is simpler as the one of the classical parallelepiped
because of the central symmetry. Even so, the functional space where are living the
stress field being of infinite dimension, it would be illusory to find the exact solution.
Hence we use a variational method that gives the best solution, according to the
assumptions made to obtain simplifications making workable the calculus. However,
some calculations are very cumbersome then skipped. In this paper, emphasis is put
on ideas and assumptions rather than on technicalities.
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2 Limit Analysis

2.1 Stress Variational Model (SVM) for von Mises Porous
Medium

Starting from von Mises model for the matrix

F(σ ) = σe(σ ) − σ0 ≤ 0

and using Markov’s velocity principle, Gurson proposed in a pionnering work the
following macroscopic yield criterion:

(
Σe

σ0

)2

+ 2 f cosh

(
3Σm

2 σ0

)
− (1 + f 2) = 0 .

Recently, we developped the dual approach based on Hill’s stress principle particu-
larized to homogenization:

min
σ∈Sa

⎛
⎝ 1

V

∫

VM

ϕ∗(σ ) dV − D : Σ

⎞
⎠ = min

σ∈Sa and F(σ )≤0 in VM

(−D : Σ)

where ϕ∗ is the stress pseudopotential of plasticity (indicatory function of the elastic
domain) and the minimum value is taken on the set of statically admissible fields:

Sa = {
σ | div σ = 0 in VM , σ · n = 0 on S f

}

The functional and the equilibrium equations are linear. The main difficulty lies in
the yield criterion which is non linear and difficult to satisfy a priori. Our strategy is
to relax it, enforcing only the yield criterion “in the mean”:

F (Σ) = 1

V

∫

VM

F(σ ) dV ≤ 0 (2)

that leads to a saddle point problem:

max
Λ̇≥0

min
σ∈Sa

⎛
⎝L (σ , Λ̇) = Λ̇

1

V

∫

VM

F(σ ) dV − D : Σ

⎞
⎠

providing only a quasi-lower bound. The Lagrange multiplier Λ̇ is interpreted as the
plastic multiplier of the macroscopic yielding law.
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The next step consist in choosing a trial field to capture the main physical effects:

σ = σ (1) + σ (2)

where:

• The first part is the exact trial stress field for the pure hydrostatic loading (easy to
calculate thanks to the central symmetry), expressed here in spherical coordinates:

σ (1) = −A0

(
ln

(a
r

)
· 1 − 1

2
(eθ ⊗ eθ + eφ ⊗ eφ)

)
(3)

• completed by an additional part to capture the shear effects, expressed here in
cylindrical coordinates:

σ (2) = A1 (eρ ⊗ eρ + eφ ⊗ eφ) + A2 ez ⊗ ez (4)

The latter part, uniform on the REV, is a too poor approximation to satisfy the
equilibrium condition σn = 0 on the void boundary S f , then we relaxe it, satisfying
it also in the sense of a average weighted by the position:

Tr(
1

V

∫

S f

(σn) ⊗ xdS) = 0

Introducing the effective stresses:

Σ̃e = Σe

1 − f
= 3 | A1 |, Σ̃m = − 3Σm

2 ln f
= A0

2
, J̃3 = J3

(1 − f )3
= −2A3

1

that appear naturally in the calculation, we obtained a newmacroscopic criterion [4]:

F (Σ, f ) =
√

Σ̃2
e + Σ̃2

m J

(
27

J̃3

Σ̃3
e

Σ̃eΣ̃m

Σ̃2
e + Σ̃2

m

)
− σ0 ≤ 0

where the functionJ is smooth over [−1, 1] with extreme valuesJmax = J (0) =
1, Jmin = J (1) = 0.976 over [0, 1] and Jmin = J (−1) = 0.962 over [−1, 0].

In [2], Cazacu and coworkers success to obtain a kinematically based criterion
without Gurson approximation. This allowed them to point out and to address the role
of the third invariant J3 of the stress deviator. The present criterion can be viewed as
a statical counterpart of this result. In our approach, J3 appears naturally because it is
derived from a stress-based Limit Analysis. Due to the approximations introduced for
the analytical derivation, the new criterion SVM could be seen just as a quasi-lower
bound. However, it still preserves the exact solution of the hollow sphere subjected
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Fig. 2 Comparison between the obtained yield surfaces and Gurson’s model [11], porosité: 0.064

to a hydrostatic loading, Σm/σ0 = −2/3ln( f ), and leads to the same expression of
the limit pure shear load as that given by Gurson criterion, Σe/σ0 = 1 − f .

Due to the dependance of the SVM criterion on J3 through its sign, there are
two yield surfaces with the notations of SVM(+) and SVM(−) corresponding to
J3 > 0 and J3 < 0, respectively, plotted on Fig. 2 for the porosity value f = 0.064
and compared to Gurson model. It is noted that the SVM criterion presents some
slight differences with Gurson one, the surfaces predicted by SVM being strictly
“below” Gurson’s one, simultaneously coincident with them for hydrostatic loading
(exact result) and pure deviatoric one (as mentioned before).

Due to the role played by the sign of third invariant in the SVM criterion, it
is interesting to derive the macroscopic flow rule giving the plastic deformation
(through its volumetric and deviatoric parts) by means of the normality rule:

De = Λ̇
∂F

∂Σe
, Dm = 1

3
Λ̇

∂F

∂Σm

Figure3 illustrates the evolution of porosity given as function of stress triaxiality
T = Σm/Σe. It is noted that despite the few influence of the sign of third invariant on
the macroscopic criterion, a noticeable effect is noted for the porosity variation. The
results are also compared with that predicted by the Gurson model. Clear differences
are observed, particularly for high stress triaxialities for which the Gurson model is
known to overestimate the variation of the porosity. It is worth to observe that such
difference is obtained only using the exact analytical expression of the function J
occuring in the SVM criterion. Then, although its value is closed to 1, it would not
be a good idea to simplify the criterion by replacing it by the unity.
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Fig. 3 Evolution of porosity
as function of the stress
triaxiality for initial porosity
f = 0.064. Comparison
between SVM predictions
and the ones of Gurson’s
model

2.2 Various Extensions

It should be underlined that the SVM criterion depends on the third invariant J3
through its sign. This restriction can be removed by considering the general case of
non-axisymmetric loadings. Then we replace the homogeneous deviatoric part (4)
for capturing the shear effect by:

σ (2) = B1(ex ⊗ ex − ez ⊗ ez) + B2(ey ⊗ ey − ez ⊗ ez),

The new criterion proposed in [5]:

F (Σ, f ) =
√

Σ̃2
e + Σ̃2

m

(
1 − Σ̃2

mΣ̃2
e

10 (Σ̃2
mΣ̃2

e )
2

− Σ̃3
mΣ̃3

e

10 (Σ̃2
mΣ̃2

e )
3
cos(3θL)

)
− σ0 ≤ 0

depends continuously on J3 through the Lode angle θL and not only on the two
signs corresponding to the values 0◦ and 60◦. Five yield loci are studied on Fig. 4
with different values of Lode angle: θL = 0, 15◦, 30◦, 45◦ and 60◦, while the first
and the last ones are corresponding to the macroscopic model obtained from the
axisymmetric trial stress field. It can be observed that the yield surfaces obtained
from other values of the Lode angle are absolutely between the above two ones.

Another extension is based on the following remarks. The first part σ (1) given by
(3) verifies obviously the stress condition σ · n = 0 on the pore boundary S f , while
the second one σ (2) given by (4) is too poor to do it exactly and it was relaxed in [4].
We overcome this pitfall by enhancing the previous trial field with a new additional
term σ (3) in order to fulfill the stress condition exactly. We claim that the new trial
stress field σ = σ (1) + σ (2) + σ (3) satisfies the two conditions:
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• it is statically admissible,
• the deviatoric parts s(1), s(3) of σ (1), σ (3) are orthogonal:

s(1) : s(3) = 0

This last condition is required in order to eliminate coupling between the first and
third parts of σ in the equivalent stress and to do not have too difficulty in calculating
the integral in (2). We skip cumbersome calculations. Finally, the additional term
reads:

σ (3) = A2 (S(r) (1 + 3 cos(2θ)) 1 + K (r) sin(2θ)(er ⊗ eθ + eθ ⊗ er ))

where:

S(r) =
√
15

30

a3/2

r3/2

(
−9 sin

(√
15

2
ln(

a

r
)

)
+ √

15 cos

(√
15

2
ln(

a

r
)

))

K (r) =
√
15

10

a3/2

r3/2

(
−15 cos

(√
15

2
ln(

a

r
)

)
− 7

√
15 sin

(√
15

2
ln(

a

r
)

))

Finally, the macroscopic criterion reads [20]:

F (Σ, f ) =
√

P0( f )

(1 − f + P1)2
Σ2

e + 9

4 ln( f )2
Σ2

m ξ (ζ ) − σ0 ≤ 0
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Fig. 5 Comparison of the values of the equivalent stress proposed by new criteria and the ones
proposed by Gurson (1 − f ), Ponte-castañeda [18], Monchiet et al. [17] ((1 − f )/

√
1 + 2 f/3), as

function of the porosity f

where

ζ = sign(J3)

3ΣmΣe · √
P0( f )

(1 − f + P1) ln( f )
P0( f )

(1 − f + P1)2
Σ2

e + 9

4 ln( f )2
Σ2

m

and the parameter P0 which is depending on spherical coordinates is approximated
by:

P0(r, θ) 	 P0( f ) = 1 + 11
25 f − 64

75 f ln( f ) − 2
25

√
f N + 2

375 f M

1 − f
M = 105 cos

(√
15
3 ln( f )

)
+ 17

√
15 sin

(√
15
3 ln( f )

)

N = 25 cos
(√

15
6 ln( f )

)
+ √

15 sin
(√

15
6 ln( f )

)

The function ξ (ζ ) is given by:

ξ(ζ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
6(2

√
P0−ζ )

24
√

ζ P1/2
0

ln

(√
2ζ(ζ+P1/2

0 )+√
3ζ√

2ζ(ζ+P1/2
0 )−√

3ζ

)
+ 1

2

√
P1/2
0 +ζ

P1/4
0

, ζ ≥ 0

(2
√
P0−ζ ) arcsin

(
√−3ζ√
2
√

P0−ζ

)

2P1/4
0

√−6ζ
+ 1

2

√
P1/2
0 +ζ

P1/4
0

, ζ ≤ 0

This fully statically admissible model is expected to give a much more satisfactory
value of the strength for the pure deviatoric case. In Fig. 5, the new result with three
field is ploted and compared to previous models.

Finally, we extended the SVMmodel for a matrix with a non associated Drucker-
Prager model where the microscopic criterion is depending also on the first invariant.
The non associativity of the rule is represented thanks to the bipotential theory.Unlike
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the classical presentation of the non associated constitutive laws bymeans of the yield
function and the plastic potential, the bipotential formulation naturally opens into a
variational formulation, paving the way to an extension of the SVM method to non
associated laws. Combining with the Limit Analysis, we obtained in [6] a closed
form analytical criterion generalizing the criterion obtained by Guo and coworkers
for the associated case in [10].

3 Shakedown Analysis

3.1 State of the Art

Experimental observations on fatigue of porous materials. Although the bibliog-
raphy on the ductile failure of porous materials under monotonic loads is abundant
and renewed, there is a few papers dealing with themodeling of ductility under cyclic
loadings and most of them concern micromechanics-based numerical approaches.
Available experiments regarding structures made up with ductile metals [12, 19]
have revealed that fracture strains under cyclic loads are significantly lower than the
ones reached under monotonic load conditions.

Numerical simulations. Basing upon incremental finite element simulations of
the elastic plastic response of a hollow cylinder subjected to repeated loads, Gilles
al [9] have suggested that this strength reduction under cyclic conditions is due to a
gradual increase void growth during each cycle, an occurrence called ‘ratcheting of
porosity’. Later, this observation has been confirmed by Devaux et al. [7] through
numerical computations similar to those of Gilles et al., but with a better control
of the triaxiality. Also, the authors have demonstrated that classical Gurson’s model
is unable to predict this phenomenon. Besson et al. [1] have included isotropic and
linear kinematic hardening in a Gurson-like model, but, their model has been found
insufficient to predict correctly the ratcheting effect.Amore satisfactory reproduction
of numerical results, particularly the void ratcheting, has been derived by Lacroix et
al. [14] by the use of an improved variant of the so-called LPDmodel due to Leblond
et al. [15] with a more refined description of strain hardening.

Intriguingly, all theoretical studies cited above utilizeGurson-like approachwithin
the framework of limit analysis for the study of voided ductile media subjected to
cyclic loads. It is our belief that the natural and correct context for such studies
should be the shakedown analysis, as used in [3, 16, 25] for the fatigue of composite
materials.
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3.2 Statical Approach

For a given repeated variable loading Σ(t) in the domain S (Fig. 6), the REV
shakes down if the plastic strain is stabilized (Fig. 7) anywhere in the REV and
the total plastic dissipation is bounded. After a transient phase, the REV response
becomes linear elastic back (Fig. 8). The adaptation ensures that thematerial behavior
is safe.

This results from the development of residual stresses:

ρ(x, t) = σ (x, t) − σ E (x, t)

where σ (x, t) is the stress response in the elastoplastic REV and σ E (x, t) is the
stress response in the fictitious purely elastic REV. ρ belongs to the set of residual
stress fields:

Fig. 6 Load domain

Fig. 7 Accumulated equivalent plastic strain (PEEQ) under pulsating load on the internal boundary
at the equator θ = π/2 when shakedown occurs for the stress triaxiality T = 1.8333
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Fig. 8 σ11 versus ε11 under pulsating load when shakedown occurs for T = 1.8333

N = {
ρ | div ρ = 0 in VM , ρ · n = 0 on S f , ρ = 0 on S f

}
(5)

where the condition of vanishing ρ on S f is imposed for convenience, as explained
below. Although it is artificial, the experience showed that it does not deteriorate the
accuracy of the solutions.

For the loading domainS = αS 0, the key-idea is to define strictly admissible
residual stress fields (in Melan’s sense) ρ̄(x), such that:

• ρ̄ is time independent,
• ρ̄ is a residual stress field: ρ̄ ∈ N ,

• ρ̄ is strictly plastically admissible in the sense that:

F(σ E (x, t) + ρ̄(x)) < 0 dans Ω f or all t

Then Melan’s theorem claims that:

If a strictly plastically admissible residual stress field ρ̄ can be found, the REV
shakes down.

Otherwise, if the load factor α controlling the domain size reaches a threshold
αSD called shakedown limit, the REV collapses by formation of a mechanism (as in
limit analysis) or by plastic fatigue. Then it is a powerful tool to predict the collapse
of materials by fatigue. It is worth mentioning that, in the numerical simulations
outlined below, ratchet mechanisms have never been observed. Then they are not
considered in the theoretical developments.
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3.3 Macroscopic Fatigue Criterion

In the same spirit as for Limit Analysis solution, the trial stress field for Shakedown
Analysis: σ = σ (1) + σ (2) is the sum of two fields:

• the stress response under hydrostatic loadings: σ (1) = σ E(1) + ρ̄(1) decomposed
into:

– the elastic stress field (exact for pure hydrostatic loading)

σ E(1) = Σm

1 − f

(
1 + 1

2

(a
r

)3
(eθ ⊗ eθ + eφ ⊗ eφ − 2 er ⊗ er )

)

– and the residual stress field

ρ̄(1) = −A0

(
ln

(a
r

)
1 − 1

2
(eθ ⊗ eθ + eφ ⊗ eφ)

)

− Σm+
1 − f

(
1 + 1

2

(a
r

)3
(eθ ⊗ eθ + eφ ⊗ eφ − 2 er ⊗ er )

)

inspired from the exact solution for the pure hydrostatic loading (in this case,
the stress parameter A0 is equal to 2 σ0).

• an additional deviatoric part to capture the shear effects σ (2) = σ E(2) + ρ̄(2), of
which the rather complicated analytical expression depending on Poisson’s coef-
ficient ν can be found in [27]. It is decomposed into:

– the elastic stress field of a hollow sphere subjected to a deviatoric load σ E(2)

inspired form Boussinescq-Papkovich-Neuber solution [21] for the hollow
sphere under pure deviatoric load

– and the corresponding admissible residual stress field ρ̄(2):

Although it is not strictly imposed by the equilibrium conditions but to decrease
the amount of calculations, it is shrewd to build an admissible residual stress field
such that the stress vector on the REV boundary ∂V vanishes, as stated in (5). Indeed,
according to (1), the average residual stress:

Σr = 1

| Ω |
∫

∂Ω

(ρ̄ · n) ⊗ x dS

vanishes and the average stress is equal to the corresponding value in the fictitious
elastic body:

Σ = Σr + Σ E = Σ E

The microscopic plastic yielding criterion for the matrix:
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F(σ ) ≤ 0

being given, our goal is to deduce the macroscopic fatigue criterion:

F (Σ, f, ν) ≤ 0

depending on the void volume fraction f but also on Poisson’s coefficient ν.

3.4 Macroscopic Fatigue Criterion for von Mises Porous
Materials

The critical points where fatigue first occurs are situated on the interface void-matrix
(r = a). For an alternating load (Σe+ = Σe−, sign(J3+) = −sign(J3−)), we find
the condition:

(
3

4

ΔΣm

1 − f

)2

+ 3

2

ΔΣm

1 − f

−sign(J3+)Σe+
1 − f

P1(a, θ) + P3(a, θ)

(
Σe+
1 − f

)2

≤ σ 2
0

given in the spherical coordinates (r, θ, φ) andwhere the expressions of the functions
Pn are rather complicated, for instance:

P1(r, θ) = (−5ν( ar )
5 + 10ν( ar )

3 + 18( ar )
5 − 20( ar )

3 + 7)

7 − 5ν

(3 cos2(θ) − 1)

2

For a pulsating load (Σe− = 0), we find the condition:

(
3

4

ΔΣm

1 − f

)2

+ 3

2

ΔΣm

1 − f

−sign(J3+)Σe+
1 − f

P1(a, θ)

2
+ P5(a, θ)

(
P3(a, θ)

P4(a, θ)

)2 (
Σe+
1 − f

)2

≤ σ 2
0

Both conditions depend naturally on the sign of the third invariant J3 of the deviator.
The analysis of these conditions for the alternating load leads to the following results:

• When J3+ > 0, the REV shakes down if the condition is fulfilled at the equator
θ = π/2 where the left part of the previous condition takes its maximum value

• When J3+ < 0, the REV shakes down if the condition is fulfilled at the poles θ = 0
and θ = π

When J3+ > 0, the fatigue criterion is:

(
3

2

Σm

1 − f

)2

− 3C1
Σm

1 − f

sign(J3)Σe

1 − f
+ C2

(
sign(J3)Σe

1 − f

)2

≤ σ 2
0

where C1 = 5ν+5
2(5ν−7) C2 = 25(7ν2−13ν+7)

(5ν−7)2 . When J3+ < 0, one can find a similar
criterion [27].
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If we introduce the macroscopic stress ratio R = Σ−/Σ+, where Σ− and Σ+ are
the minimum and maximum load during the cyclic loading process, respectively, the
alternating load and pulsating load can be considered as two particular loading cases
forwhich R = −1 and R = 0, respectively. Besides, R = 1 represents themonotonic
loading condition where the collapse occurs by development of a mechanism. The
previous fatigue criteria for R = −1 and R = 0 were extended to the general loading
case with arbitrary values of R in [28] and to porous materials with pressure sensitive
matrix obeying Drucker-Prager model in [29].

3.5 Numerical Results: Cell Model and Implementations

An initially axisymmetric spherical model of radius b, containing an initially concen-
tric spherical void of radius a, is considered for the simulation. As shown on Fig. 9,
taking into account the central symmetry, only a quarter discretized by 60,601 nodes
and 20,000 symmetric elements is taken into consideration.

To fulfill the imposed conditions of homogeneous boundary strain rate v̄ = D · x
and loading with different macroscopic stress triaxiality T = Σm/Σe, we use a user
subroutine MPC (Multi-Points Constraints) of the finite element software Abaqus.
This procedure is implemented by applying a constant macroscopic stress ratio φ =
Σρ/Σz , where T = (1 + 2φ)/(3(1 − φ)) as in Cheng et al. [4]. We consider the
following data: σ0 = 480MPa, E = 210000MPa and ν = 0.3.

Fig. 9 Hollow sphere model and initial mesh
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3.6 Direct Numerical Simulations to Assess the Fatigue Limit

We can start simply by determining the fatigue limit, firstly calculating the elastic
solution for the two elementary loads Σ0

± defining the reference load domain S 0.
For each Gauss point xg , let σ E0± (xg) be the corresponding elastic stress response

and αg the solution of the local problem:

max
ρ̄,α

,
{
α | F(α σ E0

± (xg) + ρ̄) ≤ 0
}

For the alternating loading case, σ E0+ (xg) = −σ E0− (xg), and σ E0− (xg) = 0 for the
pulsating one. So the simulation has been reduced to the solution of a big number of
problems of optimization of small dimension.

The fatigue limit α is obtained as the minimum value of αg for all Gauss points
xg . Also we can obtain the corresponding residual stress and the location of the first
point of the model where the fatigue first occurs.

3.7 Step by Step Computations to Analyse the Transient
Phase Before Shakedown

We apply Σe+ = Σe− for the alternating loading case and Σe− = 0 for the pulsating
loading case respectively for various values of macroscopic stress triaxiality T . We
choose a value of loading factor α and we perform cycles withinS = αS 0 for the
pure hydrostatic loading and then coupling with the deviatoric loading. If the macro-
element shakes down, we increase the load factor and we repeat the procedure until
the fatigue or mechanism occurs.

For a certain triaxiality T , in order to determine numerically the shakedown load,
wefix amaximumdisplacement on the external boundary of the hollow sphere,which
gives ΔΣm = 2Σm+ for alternating loading case and ΔΣm = Σm+ for pulsating
loading case respectively and 100 cycles of loading.

For the pulsating loading case, if the maximum loadΔΣm+ is less than the shake-
down limit, the strain-stress curve tends to a linear response and the value of PEEQ
(Accumulated Equivalent Plastic Strain) does not increase any more (Fig. 7) after a
certain number of cycles, hence the body shakes down. In practice, the computation
is stopped when the variation of PEEQ reaches a given tolerance and, as expected,
the width of the cycle for strain tends to zero after certain cycles on the internal
boundary at θ = π/2 for J3+ > 0 and θ = 0 for J3+ < 0 as shown on Fig. 8.

On the contrary, for alternating loading case, when the maximum load Σm+
exceeds the fatigue limit, plastic shakedown (accommodation) occurs immediately
at the first cycle. The equivalent plastic strain continues to accumulate and the dissi-
pation remains increasing in each cycle.
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It is worth to note the results by step-by-step method match the computation by
the direct method.

3.8 Comparison Between Analytical Results and Numericals
Simulations

Direct numerical computations to determine the fatigue limit and step-by-step sim-
ulations to analyse the transient phase before shakedown or collapse are both per-
formed to validate the new analytical criterion for stress ratio R = −1,−1/5, 0 and
1/5 with the porosity f = 0.01 (Fig. 10). Poisson’s coefficient is equal to ν = 0.3.
In practice, ΔΣm and ΔΣe are expressed by Σm+ and Σe+. Note that the detailed
descriptions and implementation of the numerical computations and the analytical
results for R = 0 (pulsating) and R = −1 (alternating) were already provided in
[27].

The safety domain is defined by the new shakedown criterion and the yield surface
proposed by Shen et al. [20], corresponding to the collapse by development of a
mechanism at the first cycle. With the increase of the stress ratio R, the surface of
collapse by mechanism becomes larger and, until the extreme case R = 1, in which

Fig. 10 Interaction curve for porosity f = 0.01
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the cyclic load turns into monotonic one. Hence the shakedown criterion is identical
to the plastic limit derived from the limit analysis.

It is readily seen that the new criterion is strictly inside the numerical results, then
delivers a quasi-lower bound, because of the statical approach based on Melan’s
theorem. The first point where the fatigue occurs is located on the internal boundary
r = a at the equator θ = π/2 for J3+ > 0 and at the poles θ = 0 or π for J3+ < 0,
according to the analytical solution.

4 Conclusions and Perspectives

In this paper, we presented an unified approach to build macroscopic strength criteria
of ductile porous materials:

• For a vonMisesmatrix, a stress variationalmodel (SVM), dual ofGurson’s one, has
been proposed to find by the Limit Analysis a macroscopic plastic yield criterion
depending on the porosity. It naturally depends on the third invariant J3 but only
through its sign.

• For the evolution of porosity with respect to the stress triaxiality predicted by
SVM, clear discrepancies appear between our model and Gurson’s one which is
known to overestimate the variation of the porosity.

• Some extensions have been proposed to obtain a continuous dependence with
respect to J3 through Lode’s angle, to improve the strength value for the pure
deviatoric loading and to propose, thanks to the bipotential formulation, a yield
criterion for a non associated Drucker-Prager matrix.

• Using the Shakedown Analysis, the method has been extended to the repeated
variable loadings to obtain a fatigue criterion for the porous materials. It depends
on the porosity but also strongly on Poisson’s coefficient.

Among future investigations of which some of ones are in progress, the following
points can be highlighted:

• All the methods developed, whether for the macroscopic plastic yielding criteria
or the fatigue criteria of the porous materials, could be adapted to the study of
composite materials.

• Another interesting extension will concern the shakedown of ductile porous mate-
rials involving the kinematical hardening.

• In Dang Van’s theory of fatigue spirit [24, 26], we hope apply the shakedown anal-
ysis to themonocrystals and polycrystals to propose new fatigue criteria exhibiting
the dependence with respect to the porosity and Poisson’s coefficient.
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Recent Updates of the Residual Stress
Decomposition Method for Shakedown
Analysis

Ioannis A. Kapogiannis and Konstantinos V. Spiliopoulos

Abstract Almost every structure or mechanical component is exposed to repeated
loading conditions. As a result, materials exceed the elastic regime and plastic
strains develop. The outcome of these loadings may be estimated either using a
time-consuming step by step analysis or adopting modern Direct Methods which
are capable to predict final cyclic states, like the elastic shakedown (safe state), the
alternating plasticity, or the ratcheting (unsafe states). Towards this direction, the
Residual Stress Decomposition Method (RSDM) was developed. The RSDM esti-
mates the asymptotic cyclic state of a structure exposed to a given cyclic loading. The
RSDM-S is based on the same theoretical background as RSDM and was developed
in order to estimate the shakedown domain of a structure. Both methods have been
tested for cyclic thermal and mechanical loads. In the present work, the RSDM-S is
updated towards faster convergence by avoiding some unnecessary calculations and
extended to account also for cyclic imposed displacements. Computational imple-
mentation was performed in an open source research oriented finite element analysis
program. Three-dimensional brick elements are used to deal model complex geome-
tries. Thematerial adopted is elastic perfectly plastic vonMises type of law.Examples
of application are given, proving the versatility of the approach.

1 Introduction

Most structures and mechanical components are subjected to variable repeated loads
and applied displacements. Typical variable loadings, like traffic loads, are applied
to bridges, pavements, railway structures. Other structures, like buildings, bridges,
pipelines, during their lifetime, undergo different earthquake actions, which may be
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considered as variable imposed displacements to their base. Mechanical engineering
parts may also be subjected to variable mechanical and/or thermal loads. All these
structures are usually designed to operate in the elastic regime, even if this leads to
cost-ineffective solutions. However, the high level of variable loading or excessive
applied displacementsmay force structural ormechanicalmembers to develop plastic
strains that eventually will end up to an asymptotic limit state such as ratcheting, low
cycle fatigue or shakedown [1]. It may happen that, up to a specific limit of imposed
displacement or load, inside the plastic regime, the plastic strains are stabilized and
the structure responds elastically again. This safe state is known as shakedown,which
has an effect to extend the life cycle of a structure.

When the exact load history is known one may estimate whether a structure will
shakedown, using time-consuming step-by-step procedures. Thus, there is a need for
faster procedures. Direct methods offer this possibility, as they attempt to find the
stabilized state without tracing the whole load path. Also, when the exact loading
history is not known, but only its variation intervals, they offer the only way to
determine the shakedown limits. Most of these approaches are connected to the
extremum theorems of structural plasticity and use optimization algorithms. Recent
applications include railway structures [2] and pavements [3]. Direct methods, not
related to mathematical programming, have also been proposed like the Simplified
Theory of Plastic Zones (STPZ) method [4] or the Linear Matching Method (LMM)
which has been recently extended to include limited kinematic hardening [5].

Another direct method, that does not use optimization algorithms, called Residual
Stress Decomposition Method for Shakedown (RSDM-S) has been developed for
the evaluation of shakedown domains [6, 7]. Its roots are in RSDM [8, 9], a direct
method that may estimate the asymptotic cyclic state of a structure under a given
cyclic loading. The basic idea behind both approaches is the decomposition of the
expected in this state cyclic residual stresses in Fourier series, whose coefficients
are estimated in an iterative way. The two procedures may be easily attached to any
existing finite element program.

In the present work RSDM-S is slightly reformulated to avoid unnecessary calcu-
lations. Also, the initial parameters of the method are revisited towards the minimum
number of iterations needed for a smooth and robust convergence. In the previous
versions of theRSDM-S the loadingwas considered to bemechanical and/or thermal.
However, boundary displacements varying within prescribed limits, are also possible
[10]. The RSDM-S is herein extended to account for cyclic imposed displacements.
Additionally, the portability of the method is demonstrated, while it is embedded in
an open source finite element research-oriented computer code FEAP [11]. Brick
elements have been used so that difficult geometries may be handled in either two or
three dimensions. Examples of application are also presented.
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2 Theoretical Considerations

The RSDM-S was developed in previous years [6, 7] and refers to structures made
of elastic-perfectly plastic von Mises type of material, subjected to cyclic thermo-
mechanical loadings varying inside a prescribed field. These loads may have a cyclic
variation between a specified maximum and a minimum value.

2.1 The Case of Imposed Displacements

In Fig. 1 one may see a structure of volume V and surface S, which is partially
rigidly supported (Su) and partially subjected to cyclically imposed displacements
(Spr ). The rest of its surface is free. There are no surface tractions or body forces
applied on the structure.

Let us suppose that the displacements are applied periodically with period T, i.e.
ū(t) = ū(t + T ). One and two-dimensional displacement domains are considered
herein.

Without loss of generality, we assume that the minimum values of the two
prescribed displacements are zero with the starred quantities representing their
maximum values. The corresponding cyclic program of the imposed displacements,
is (0 → ū∗

1 → (ū∗
1, ū

∗
2) → ū∗

2 → 0) (Fig. 2). These variations are shown [6] in either
the time domain (a), or the applied displacement domain, which, in the sequel, will
be called loading domain (b).

It has been proved in [1] that, for stable materials, if a structure shakes down
under a cyclic loading program containing the vertices of the loading domain then it
will shake down for any loading path contained in this domain. This domain may be
isotropically varied if multiplied with a load factor γ . Thus, the idea behind RSDM-S
is to find the largest loading domain for which shakedown occurs.

In response to the cyclic loading program, the stresses in the structure at a cycle
point τ = t/T are decomposed into an elastic part σ el

pr , in response to the applied
external cyclic displacement, assuming a completely elastic behavior, and a residual
stress part ρ. In the search for the shakedown factor γ , the elastic stresses are
themselves multiplied by this factor. Thus, the total stress vector can now be written:

Fig. 1 Body subjected to
time dependent imposed
displacement

( ) ( )=u uel
pr t t V

uel
pr = 0

Spr

uS

S
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(a)                                                               (b) 

T t
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*
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u2
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,

Fig. 2 Independent cyclic imposed displacement variation over one time period a time domain,
b loading (applied displacement) domain

σ = γ σ el
pr + ρ (1)

The elastic problem is solved first. Using the principle of virtual displacements
(PVD), one may write:

∫

V

(
δεel

pr

)T
σ el

pr dV =
∫
Spr

(
δuel

pr

)T
fpr dS = 0 (2)

Since due to the fact that uel
pr = ū, δuel

pr = 0 on Spr .
We partition the nodes of the finite element (FE) mesh into those over the volume,

the free boundary, the rigid boundary and the nodes on the prescribed displace-
ment boundary. Denoting their corresponding displacements by relpr and r̄

el one may
connect them to the strains through two different FE compatibility matrices B and
B′:

εel
pr = Brelpr + B′r̄el (3)

Because of (3) the virtual strain increment is:

δεel
pr = B

(
δrelpr

)
(4)

The stresses are related to the elastic strains through the material matrix D

σel
pr = Dεel

pr (5)

Substituting Eqs. (3)–(5) to (2) and doing the algebraic manipulation one may
get:
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Krelpr = −
⎛
⎝

∫

V

BTDB′ dV

⎞
⎠r̄el (6)

where K = ∫
V BTDB dV is the stiffness matrix of the structure.

With the displacements r̄el known, the Eq. (6) may be solved to obtain relpr and
therefore εel

pr and σel
pr may be obtained.

The total strain rate may be decomposed into three terms:

ε̇ = ε̇el
pr+ε̇el

r +ε̇ pl (7)

Note that the terms ε̇ and ε̇el in (7) are kinematically admissible. Thus, the sum:

ε̇r = ε̇el
r + ε̇ pl (8)

is also kinematically admissible. Thismay be expressed as ε̇r = Bṙr , where rr are the
FE displacements of the sought solution of the boundary value problem to account
for the residual stresses.

The elastic term ε̇el
r is related to the residual stress via thematerial matrixD. Thus,

one may write:

ε̇r = D−1ρ̇ + ε̇ pl → ρ̇ = Dε̇r − Dε̇ pl (9)

Equilibrium of the residual stresses with zero loads may be manifested through
the PVD:

∫
(δε̇r )

Tρ̇dV = 0 →
(∫ (

BTDB
)
dV

)
ṙr =

∫
BTDε̇ pldV

→ Kṙr =
∫

BTDε̇ pldV (10)

The above formulation avoids the additional evaluation of the derivatives of the
elastic stresses in contrast to the original RSDM-S [6–8] and thus shortens the amount
of calculations.

The rhs of (10) is determined in a simple radial return type of algorithm as was
proposed in [6]. Solving (10) one may evaluate through (9) the residual stress rate ρ̇

at a cycle point τ .
The expected cyclic nature of the residual stresses at the asymptotic cycle

allows one to evaluate the residual stresses themselves. This may be done by their
decomposition into Fourier series [6]:

ρ(τ ) = 1

2
a0 +

∞∑
k=1

{cos(2kπτ) · ak + sin(2kπτ) · bk} (11)
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The Fourier coefficients are evaluated by numerical time integration of the
computed ρ̇ vectors at each cycle point τ [6].

Equations (9)–(11) together with Eq. (1) are continuously updated [6–8] through
an iterative sequence of lowering the load factor,which starts froma high initial value.
Iterations stop when the only remaining term in (11) is the constant term a0 which
is the condition that the structure has shaken down [12, 13]. Thus, the shakedown
factor γsh may be evaluated and the shakedown domain may be established.

Note: The RSDM-S was published in 2014. A method, called SCM, that does not
employ Fourier series, was published in 2019 [14]. However, it is virtually the same
with RSDM-S, as features and methodology are the same. The residual stresses’
derivatives are evaluated in the same way and integration is also carried out over
time points inside a period. SCM uses just the vertices of the loading domain, as
time points, and thus it is wrongly stated [14] that, because of the Fourier series, the
RSDM-S is slow, as it must utilize many time points inside the cycle to represent the
applied loading. Unfortunately, it is not realized that the number of the time points
used, is a direct consequence of a proper description of the cyclic loading program,
either in the time domain or in the loading domain ([6], Fig. 2) and has nothing to do
with the Fourier series. For example, if the loading domain (see Fig. 2b) is employed,
RSDM-S, uses also only the vertices, as time points. At the same time only three
coefficients of the Fourier series have proved sufficient, with the convergence being
continuously descending and smooth [6], something which does not appear with
SCM.

Moreover the criterion of convergence of the SCM is a direct result of the
convergence criterion of the RSDM-S.

2.2 Numerical Modifications on the RSDM-S

Except for the theoretical modification discussed above, some numerical interven-
tions to the original RSDM-S are presented herein. Although necessary to be intro-
duced for the applied displacement loading case, they are also applicable to the cases
of thermomechanical loading domains.

In the previous work [6], the “ω” factor has been introduced in order to prevent
overshooting of the shakedown load. However, in case of imposed displacement, the
use of “ω” could lead to a continuous halving of itself, being finally ineffective. To
account for such cases, the following calibration procedure is proposed. In order to
follow the path towards the shakedown factor γ sh, in each convergence step, the sum
of norms ϕ(γ) = ∑∞

k=1 ‖ak‖ + ∑∞
k=1 ‖bk‖ is used to contract the loading domain

[6–8]. The contraction factor should always be positive. However, this is not always
the case, as the magnitude of ϕ depends on the initial elastic stresses used to start the
iterations. It has been observed that a good ratio of the maximum initial elastic stress
over the yield stress should be lower than 10−4. So, a recalculation of the initial elastic
stress vector is proposed, bymultiplying it with this initial stressmultiplication factor
of the value of 10−4. If this ratio is greater than 10−4, for example 10−3, the method
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may not converge, because the shakedown factor could be overshot. On the other
hand, if the ratio was lower, namely 10−5, the convergence was slowing down. The
proposed remedy appears to be general as it works for all the considered examples,
either past or present.

The updates and modifications of the RSDM-S were programmed inside the
source code of FEAP. FEAP is a research oriented finite element analysis software
developed in Berkeley [10]. Thus RSDM-S is fully functional in FEAP for the case
of structures, modelled by brick elements and subjected to cyclic thermomechanical
loadings with or without imposed displacements.

3 Application Examples

Several examples of application have been tested using the updated RSDM-S. The
first example considers cyclic mechanical loading and the next two, of increasing
complexity, are examples with applied cyclic displacements.

3.1 The Simple Frame

The first example is the simple frame of Fig. 3a, considered also in [6, 15, 16]. Two
distributed loads (P1 and P2) act independently, varying from the value “0” to the
maximum values P∗

1 and P∗
2 , as shown in Fig. 3b. The ratio P∗

1 over P∗
2 is equal to

3. The mechanical properties were E = 20,000 kN/cm2, ν = 0.3, σy = 10 kN/cm2.

(a)                                                         (b) 
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Fig. 3 a Geometry and loads, b loading cycle



124 I. A. Kapogiannis and K. V. Spiliopoulos

The updated RSDM-S was run considering five time points of the loading cycle (that
coincide with the vertices of the loading domain) and three Fourier coefficients. 350
brick elements were used for the discretization (Fig. 4). The saving in the computing
time, as compared with the original RSDM-S is about 30%.

Three different cases were considered, accounting for different initial setups of
the method:

– Case A: Three Fourier coefficients were used and the initial stress multiplication
factorwas 10−6. Although starting from a very high initial loading factor, a smooth
convergence (Fig. 5) towards the shakedown factorwas observedwhichwas found

Fig. 4 2D view and 3D view of the frame using 350 brick elements
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Fig. 5 Convergence of the loading factor when the initial elastic stresses multiplication factor is
equal to 10−6
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Fig. 6 Convergence of the
loading factor considering 3
Fourier coefficients when the
initial elastic stress
multiplication factor is equal
to 10−2
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2.8; however, the rate was slow since it required almost 20,000 iterations. The
reason is the small initial stress multiplication factor. As a result, the rate of
decrease of ϕ is quite small.

– Case B: Three Fourier Coefficients were used and the initial stress multiplication
factor was 10−2. The shakedown factor is equal to 2.59 and the convergence is
smooth as presented in Fig. 6. It coincides with [6], whereas other results reported
in the literature, are 2.473 [15] and 2.487 [16], using different meshes of plane
triangular elements.
The method needed 1637 iterations to calculate the shakedown factor. Note that,
in case A, even if the starting loading factor was 32, as the one used in the present
case, still almost 15,000 iteration would be necessary to converge.

– Case C: Eighty Fourier Coefficients were used and the initial stress multiplication
factor was 10−2. The shakedown factor is equal to 2.58 and the convergence is
smooth as presented in Fig. 7.

The method needed 1875 iterations to calculate the shakedown factor.
If someone compares the cases B and C, it is obvious that the use of three Fourier

coefficients is enough to achieve a fast and accurate estimation of the shakedown
factor. The comparison of the two cases is presented in Fig. 8.

3.2 The Slab with the Hole

The benchmark problem of the square plate having a circular hole in its center, is
the next example considered. The plate is subjected to imposed displacements along
its edges. Due to symmetry, only one quarter of the plate is discretized (Fig. 9). Let
D be the diameter of the circle, L the length of the slab and d the thickness, then
D/L = 0.2, d/L = 0.05. In the present work, L is equal to 10 m. The boundary
conditions along the X-axis and the Y-axis are considered rolled. Results for one
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Fig. 7 Convergence of the loading factor considering 80 Fourier coefficients
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Fig. 8 Comparison of case B and case C

and two cyclic displacements ū1 and ū2 varying proportionally from 0 to ū∗
1 and ū∗

2
(Fig. 10) will be investigated. The material properties are E = 180 GPa, v = 0.3 and
σy = 200 MPa. The model consists of 220 brick elements. The shakedown limit was
estimated, using the RSDM-S for the following cases:

– Case A: Only the displacement ū1 is applied.
– Case B: Both displacements ū1 and ū2 are applied



Recent Updates of the Residual Stress Decomposition … 127

-
-

Y

D
L

u2

u1

Fig. 9 Geometry, loading and discretization of the slab

Fig. 10 Proportionally
imposed displacements
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It is pointed out that the results of case A were validated performing step-by-step
analyses using the Abaqus software.

In case A the shakedown displacement is equal to 0.15 mm and the convergence
appears smooth (Fig. 11). It is pointed out that, the shakedown factor starts from a
high value, namely 6000, and quite fast converges to the shakedown limit.

In order to check the validity of the results, step-by-step analyses were performed.
The first simulation considered cyclic imposed displacements with magnitude
varying from 0 to 0.14 mm. The analysis ran over 100 cycles and the structure finally
shaked down and the plastic strain stabilized. Contour plotting of the equivalent
plastic strain at the last step is shown in Fig. 12.

The Fig. 13 depicts the evolution of the plastic strain at the critical point A of
Fig. 12.

In the second simulationwithAbaqus, themagnitude of the imposed displacement
varied from 0 to 0.20mm. The plastic strains developed inside the grey-zone (Fig. 14)
were continuously increasing, revealing a ratchet mechanism. Figure 15 depicts the
equivalent plastic strain at the critical point A.

In the case B, the displacements ū1 and ū2 act, proportionally, along the free sides
of the slab. Having performed shakedown analyses with the RSDM-S, for different
ratios of ū∗

1/ū
∗
2, the results are depicted in Fig. 16.
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Fig. 11 Convergence of the loading factor

Point A

Fig. 12 Contour plot of equivalent plastic strain at the end of the step by step analysis when the
magnitude of the imposed displacement is equal to 0.14 mm
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Fig. 13 Equivalent plastic strain of point A in case of 0.14 mm

Point A

Fig. 14 Contour plot of equivalent plastic strain in the end of step by step analysis when the
magnitude of the displacement is equal 0.2 mm

It is pointed out that, in the case of the two imposed displacements, the Abaqus
step-by-step analyses could not converge. Thus, the results could not be validated.
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Fig. 15 Equivalent plastic
strain of point A in case of
the maximum cyclic
displacement of 0.2 mm

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Eq
ui

va
le

nt
 p

la
st

ic
 s

tra
in

Time

Fig. 16 Shakedown domain
in case of two imposed
displacements. The yield
displacement corresponds to
the yielding due to both
actions
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3.3 The Tee-Junction

This example discusses the shakedown domain for a common tee junction in the case
of cyclic imposed displacement. Tee-junctions are widely used for the connection
of different piping elements. Being parts of pipelines, these components usually
undergo severe repeated earthquake loading.

The junction of Fig. 17 consists of a main pipe, with 8-inch outer diameter,
connected to a secondary pipe with a smaller 6-inch diameter. The secondary pipe
is also called “branch”. In the present example, the main pipe is considered fixed at
the ends and the imposed displacements are applied to the free end of the branch.

The model consists of 9936 brick elements. The following load cases were
examined

• Case A: The displacement is applied along the X-axis
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Fig. 17 Mesh of the tee junction

• Case B: The displacement is applied along the Y-axis

In case A the yield displacement is equal to 1.43 mm and the shakedown displace-
ment was estimated, by the RSDM-S, as 2.6 mm. The convergence of the applied
displacement towards shakedown is smooth and is presented in the Fig. 18.

The result was validated with step-by-step inelastic analyses, using the Abaqus
software. Two different analyses were performed, one below and one above the
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Fig. 18 Convergence of the displacement towards its shakedown value
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estimated shakedown value. Thus, the first case run was of amaximum cyclic applied
displacement of 2.4 mm, and the second, of 3.2 mm. It turned out that, in the 2.4 mm
case the structure shakes down. Figure 19 depicts the spread of the equivalent plastic
strain at the last time-step of the analysis. Also, the equivalent plastic strain evolution,
in the most stressed point A, is presented in Fig. 20. After the first cycles, the plastic
strain does not increase, thus the structure responds elastically.

In the second analysis, the magnitude of the maximum applied displacement was
set equal to 3.2 mm. As a result, ratcheting appeared. The Fig. 21 shows the evolution
of the equivalent plastic strain for this case, at the same point A.

Point A

Fig. 19 Contour of the plastic strain in the shakedown state

No of cycles

Fig. 20 Equivalent plastic strain evolution for the critical Gauss point for maximum cyclic imposed
displacement equal to 2.4 mm
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Fig. 21 Equivalent plastic
strain evolution for the
critical Gauss point for
cyclic imposed displacement
equal to 3.2 mm

Ratcheting state

Similar results came up for the case B, where the displacement is applied along
the Y-axis. The yield displacement is equal to 1.89 mm and the shakedown displace-
ment evaluated by RSDM-S is equal to 3.2 mm. The convergence of the applied
displacement towards shakedown is smooth, as presented in Fig. 22.

Once again for the validation of the results, the problem was imported to Abaqus
and was solved twice, using step-by-step analyses. The maximum value of the cyclic
displacement was considered equal to 3 mm and 5 mm respectively.
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Fig. 22 Convergence of the loading factor in case B
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Figure 23 depicts the distribution of the equivalent plastic strain at the last step of
the analysis for the 3 mm.

As expected, the structure shakes down, and one may see that the corresponding
equivalent plastic strain, for the point A, after a few cycles, does stabilize (Fig. 24).

In the case of greater maximum imposed displacement (5 mm) the structure is
shown to have exceeded the shakedown limit and the point A lies on a ratcheting
area (Fig. 25).

Point A

Fig. 23 Distribution of equivalent plastic strain
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Fig. 24 Equivalent plastic strain evolution for the critical Gauss point for cyclic imposed
displacement equal to 3.0 mm (Case B)
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Fig. 25 Plastic strain evolution for the critical Gauss point for cyclic imposed displacement equal
to 5.0 mm (Case B)

4 Concluding Remarks

The presentwork presents an evolution of theResidual StressDecompositionMethod
for Shakedown of elastoplastic structures (RSDM-S) towards better efficiency and
robustness. It has also beenmodified to account for cyclically imposeddisplacements.
A convergence factor, which in the previous versions has been used to overcome over-
shooting, appears not to be working properly for the case of applied displacements.
A different factor that was called initial stress multiplication factor was used instead.
This factor multiplies the elastic stresses, which for the case of applied displace-
ments could be quite high. It appears to be efficient in all the cases of loading either
mechanical or applied displacements. The updated method was used successfully to
evaluate the shakedown load and domains of a holed slab and a tee junction, which
were subjected to cyclic displacements. As in the previous version of the RSDM-S
the use of no more than three Fourier terms together with the least amount of time
points to describe the cyclic loading program proved to be enough for an approach
that is numerically stable and with a smooth and fast convergence.
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Stress Compensation Method
for Shakedown Analysis and Its
Engineering Applications

Heng Peng, Yinghua Liu, and Haofeng Chen

Abstract This paper introduces a recently proposed direct method, the so-called
stress compensation method (SCM), for shakedown analysis of engineering struc-
tures under variable repeated mechanical and thermal loads. Instead of establishing
the mathematical programming formulation, the SCM performs a two-level iterative
procedure based on a series of linear finite element (FE) solutions. By adding an
extra stress (named the compensation stress) to the yield regions which may occur
at every load vertex of the given loading domain to adjust the total stress to the
yield surface and re-solving the equilibrium equations, the residual stress field for
static shakedown analysis is constructed. An effective and robust iteration control
scheme is presented to check the change of the compensation stress in the inner
loop and to update the shakedown load multiplier in the outer loop. The numerical
scheme of this method is successfully implemented into the Abaqus platform, which
makes it become a general utility tool for shakedown analysis of complex struc-
tures. Numerous examples related to pressure vessel and power plant engineering
are presented to illustrate the performance of the method for shakedown analysis of
large-scale engineering structures under multi-dimensional loading domain.
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1 Introduction

In the fields of petrochemical industry, nuclear energy, civil engineering and power
plant engineering, many structural components made of ductile metals operate under
cyclic loadings. Locally, these components may exhibit material plastic yielding
during operation. In this case, it is rather conservative to adopt the traditional elastic
analysis design. On the contrary, the limit and shakedown analysis makes use of
the plasticity of materials, and therefore reflects the nature of bearing capacity and
the actual safety margin of structures. Design methods considering the limit and
shakedown analysis are now becoming increasingly popular in practical engineering
applications [1].

The shakedown analysis aims to determine the load-bearing capacity of structural
components under the action of cyclic loadings, so that these components will not
fail due to the instantaneous collapse, incremental collapse or alternating plasticity.
As is known that, there are two methods of evaluating the shakedown limit [2]:
step-by-step (SBS) incremental procedures and direct method.

In the SBS method, a sequence of cyclic steady calculations at different loading
levels are performed, andmeanwhile, the loads are adjusted to approach to the shake-
down limit using the trial-and-error procedures [2]. However, these time stepping
calculation processes are often cumbersome and time-consuming, because every
load cycle may include many increments and it usually takes a number of load cycles
to compute the response of structure to be stable. Furthermore, the shakedown limit
calculated may be inaccurate because of the ambiguous stopping conditions and the
accumulative errors in numerical calculations.

In the direct method, the shakedown limit is calculated directly using the shake-
down theory, with no needing to perform these cumbersome time stepping calcu-
lations. In addition, only the bounding envelope rather than the detailed history of
applied loads is required. Most of the direct methods transform the shakedown anal-
ysis into a special mathematical programming problem, which contains many equal
and unequal restriction conditions. Many optimization methods, such as the second
order cone programming [3], the sequential quadratic programming, the complex
method [4], the interior point method (IPM) [5, 6], and the nonlinear Newton-type
iteration algorithms [7–9], are widely applied for solving the shakedown problems.
However, themesh discretization of finite element (FE) analysis produces a great deal
of degrees of freedom, which will generate a large-scale mathematical programming
problem, especially when a practical engineering structure is considered. Except
for the mathematical programming methods, some other numerical direct methods
have been developed which avoid the difficulties of direct optimization, including
the elastic compensation method [10, 11], the linear matching method [12–14], the
residual stress decomposition method [15, 16], and the stress compensation method
(SCM) [17, 18]. Up to now, it is still a challenge and important topic to develop effi-
cient and reliable computational methods so that the limit and shakedown theories
can displaywell their applications in engineering practice and solve broader practical
problems.
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Asoneof directmethods recently proposed, theSCMpresents good computational
advantages in solving the shakedownproblemof elastic-perfectly plastic (EPP)mate-
rial under multiple thermomechanical loadings, especially for large-scale complex
engineering structures. In this paper, the authors introduce the SCM from the funda-
mental theory, the numerical procedure, and its applications to practical engineering
structures in the fields of pressure vessel and power plant engineering.

2 SCM for Shakedown Analysis

2.1 Melan’s Static Shakedown Theorem

For a body of volume V , the stress σ(x, t) of a point x at the instant t can be
decomposed into a fictitious elastic stress σE (x, t) and a residual stress ρ(x, t), i.e.

σ(x, t) = σE (x, t) + ρ(x, t) (1)

where σE (x, t) is the stress solution of an elastic body with the same geometry and
load conditions as the body.

If a structure is subjected to multiple loads Pi (x, t), i = 1, 2, . . . , N , where each
load Pi (x, t) is decided by a time-dependent loading parameterμi (t) and a base load
P0
i (x). The loading history P(x, t) can be expressed as

P(x, t) =
N∑

i=1

Pi (x, t) =
N∑

i=1

μi (t)P0
i (x) (2)

Referring to Eq. (2), the fictitious elastic stress σE (x, t) is expressed as

σE (x, t)=
N∑

i=1

σi (x, t) =
N∑

i=1

μi (t)σ
0
i (x) (3)

where σ0
i (x) is the elastic stress for the base load P0

i (x).
The static shakedown theorem is stated as follows: a body will shake down, if

there exists a time-independent residual stress field ρ(x), such that its superposition
with the fictitious elastic stress field λ · σE (x, t), resulting in a stress state σ(x, t),
does not violate the yield condition at every material point [19].

σ(x, t) = λ · σE (x, t) + ρ(x) (4)

f = F(σ(x, t)) − σy(θ) ≤ 0 ∀x ∈ V,∀t
∇ · ρ(x) = 0 in V

ρ(x) · n = 0 on St (5)



140 H. Peng et al.

Fig. 1 A polyhedron of eight vertices in 3D loading space [21]

where λ is the load multiplier; f is the yield function; σy(θ) is the temperature-
dependent yield stress corresponding to temperature θ ;∇· is the divergence operator;
and n is the unit outward normal to the surface St . It is worth noting that the yield
function f is required to be convex in σ − θ space [20]. After each update of the
load multiplier, the yield stress is also calculated and updated.

It is noted that in most situations the loading parameters μi (t) are not known but
only their bounds. If the bounds of each loading parameter are as follows:

μ−
i ≤ μi (t) ≤ μ+

i (6)

the bounding envelope of applied loads is determined, which is a polyhedron of
NV = 2N vertices. Figure 1 displays a polyhedron of eight vertices (B1, B2, B3, B4,
B5, B6, B7 and B8) in three-dimensional (3D) loading space when three loads varying
independently within their own limits are considered [21].

The theorem proposed by König indicates that, if a body shakes down over a
specific load path traversing all vertices of a polyhedron, then it shakes down over
any load path contained within the bounding envelope [2]. Therefore, the shakedown
conditions are only tested on these load vertices.

2.2 Description of the SCM

The total strain rate ε̇(t) contains the elastic strain rate ε̇E (t), thermal strain rate
ε̇θ (t), plastic strain rate ε̇p(t), and residual elastic strain rate ε̇er (t), i.e.
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ε̇(t) = λ
[
ε̇E (t) + ε̇θ (t)

] + ε̇p(t) + ε̇er (t) (7)

Making use of the principle of virtual work, the FE global equilibrium equation
is established as
(∫

V
BT · D · BdV

)
· u̇(t) = λ

∫

V
BT · D · [

ε̇E (t) + ε̇θ (t)
]
dV +

∫

V
BT · D · ε̇p(t)dV

(8)

Here D · ε̇p(t) is replaced by the compensation stress σC(t), which is calculated
by

σC(t) = ξ(t) · σ(t), ξ(t) =
{

σ̄ (t)−σy(θ)

σ̄ (t)

(
σ̄ (t) > σy(θ)

)

0
(
σ̄ (t) ≤ σy(θ)

) (9)

where σ̄ (t) is the equivalent stress. Then Eq. (8) is written as

K · u̇(t) = λ

∫

V
BT · σ̇E (t)dV + λ

∫

V
BT · D · ε̇θ (t)dV +

∫

V
BT · σC(t)dV

where K=
∫

V
BT · D · BdV (10)

The residual stress field for static shakedown is obtained by

ρ̇(t) = D · B · u̇(t) − λσ̇E (t) − λD · ε̇θ (t) − σC(t) (11)

ρ(t + �t) = ρ(t) +
∫ t+�t

t
ρ̇(t)dt (12)

The SCM for shakedown analysis consists of two iteration loops. The numerical
implementation is as follows:

(1) Calculate the fictitious stress field for each base load, initialize the residual stress
field ρ = 0, and set an initial load multiplier λini . Enter the outer loop where
the number of iterations is marked as k.

(2) Enter the inner loop where the number of iterations is marked as m. For each
load vertex i, calculate the total stress at every Gauss point.

σ(ti ) = λ(k)σE (ti ) + ρ(ti ) (13)

(3) Calculate the compensation stress σC(ti ) and the dimensionless parameter ξ

using Eq. (9).
(4) After traversing all the load vertices, the residual stress ρ

(m+1)
0 is updated by

Eqs. (14)–(16).
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K · �u =
NV∑

i=1

{
λ(k)

∫

V
BT · [

�σE (ti ) + D · �εθ (ti )
]
dV +

∫

V
BT · σC(ti )dV

}

(14)

�ρ = D · B · �u − λ(k)
NV∑

i=1

�σE (ti ) − λ(k)D ·
NV∑

i=1

�εθ (ti ) −
NV∑

i=1

σC(ti ) (15)

ρ
(m+1)
0 = ρ

(m)
0 + �ρ

(m+1)
0 , where �ρ

(m+1)
0 = 1

NV
�ρ(m+1) (16)

(5) Check the convergence of the dimensionless parameter ξ for all Gauss points
using

∣∣ξ (m+1)(ti ) − ξ (m)(ti )
∣∣ ≤ tol1 (17)

where tol1 is tolerance limit parameter. If ξ is convergent the execution step
continues,whichmeans the completionof an inner loop, otherwise the procedure
returns to Step (2).

(6) Calculate the maximum value of the dimensionless parameter ξ (m + 1)(ti ), i.e.

ξ (k+1)
max = max

(
ξ (m+1)(ti )

)
(18)

(7) Examine the convergence rate

ξ (k+1)
max

ξ
(k)
max

≤ tol2, and ω > 0.1 (19)

where ω is a control parameter. If Condition (19) is satisfied, the load multiplier
λ(k) is modified by

λ(k+1) = λ(k)
(
1 − ω

2 · ξ (k+1)
max

)
(
1 − ω · ξ

(k+1)
max

) (20)

and ω is halved ω = ω
/
2. Otherwise, the load multiplier λ(k+1) is updated by

λ(k+1) = λ(k)
(
1 − ω · ξ (k+1)

max

)
(21)

(8) Check whether ξ (k+1)
max vanishes within a desired tolerance tol3.

ξ (k+1)
max ≤ tol3 (22)

(9) Repeat Steps 2–8 till Condition (22) holds. The shakedown limit multiplier λsh

is determined as
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λsh = λ(k+1) (23)

The flowchart of the SCM for shakedown analysis is shown in Fig. 2. The itera-
tion control scheme presented allows the numerical procedure to generate a series of
decreasing loadmultipliers, and if the tolerance parameters are appropriately adopted
the load multipliers will approach smoothly to the shakedown limit multiplier. The
value of tol1 inEq. (17) used to stop the inner loop can influence the accuracy and effi-
ciency of the method. Given that the accuracy of shakedown limit multiplier depends
on the final solution of the residual stress and has little relationship to the interme-
diate solutions, the dynamically changed values of tol1 are used here to balance the
accuracy and efficiency of the method. The update of load multiplier via Eq. (21)
cannot strictly prevent the load multipliers from overshooting below the target value
of shakedown limit multiplier. To address this problem, the numerical strategy via
(19)–(21) is followed. Although the overshooting might happen in extreme cases,
the value is small enough to be negligible. When Condition (19) is satisfied, the load
multiplier is adjusted to a value above the shakedown limit multiplier and the process
goes on. Thus, the presented method generates a series of decreasing load multiplier
approaching to the actual shakedown limit multiplier from above. Because Melan’s
static shakedown theorem is adopted and when the procedure ends all conditions of
this theorem are satisfied, the shakedown limit multiplier calculated is a lower bound
solution within the predefined tolerance tol3.

3 Numerical Examples and Engineering Applications

TheSCMhas the significant advantage that it can be incorporated into commercial FE
software so that users can establishFEmodels conveniently. The numerical procedure
is implemented into Abaqus platform via user subroutines in this work. The SCM
is applied to solve numerous numerical examples. In all examples presented, the
materials are assumed homogeneous, isotropic and elastic-perfectly plastic and obey
von Mises yield criterion. It is noted that the limit analysis is a special case of
shakedown analysis of only one load vertex. All calculations are performed on the
computer with 16 GB RAM and Intel Core i7 at 3.39 GHz.

3.1 Square Plate with a Central Circular Hole

The first example is a square plate with a central circular hole under a combination of
biaxialmechanical loads and thermal load [18]. Figure 3 displays the structural geom-
etry of d

/
L = 0.05, D

/
L = 0.2 and the quarter FEmodel. The mesh discretization

consists of 432 elements (Abaqus CPS8) with 3 × 3 Gauss points. The material
properties of the structure are listed in Table 1.
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Fig. 2 Flowchart of the SCM for shakedown analysis [21]
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Fig. 3 Geometry of the holed plate and its quarter FE model

Table 1 Material properties of the square plate with a central circular hole

Young’s modules E (GPa) Poisson’s ratio v Yield stress σy (MPa) Coefficient of thermal
expansion α (°C−1)

208 0.3 360 5 × 10−5

The holed plate is subjected to three loads, including twouniformnormal tractions,
P1 and P2, and a temperature difference, �θ(t),

θ = θ0 + �θ
ln

(
5D

/
2r

)

ln(5)
(24)

The base loads are selected as P∗
1 = P∗

2 = 360MPa, θ0 = 0, and �θ∗ = 90.2
°C. The maximum von Mises stress of the holed plate under the base thermal load
is σθ . Three loading cases are considered here.

(1) Case I

The three loads vary independently in their own ranges.

0 ≤ P1 ≤ μ1P
∗
1

0 ≤ P2 ≤ μ2P
∗
2

0 ≤ �θ ≤ μ3�θ∗ (25)

(2) Case II
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The normal traction,P2, and the thermal load,�θ , vary independently, but the normal
traction, P1, keeps constant.

P1 = μ1P
∗
1

0 ≤ P2 ≤ μ2P
∗
2

0 ≤ �θ ≤ μ3�θ∗ (26)

(3) Case III

The normal tractions, P1 and P2, keep constant, but the thermal load, �θ , varies.

P1 = μ1P
∗
1

P2 = μ2P
∗
2

0 ≤ �θ ≤ μ3�θ∗ (27)

The SCM is applied to calculate the shakedown domains of the plate for the three
loading cases. Figure 4a, b and c show the 3D shakedown domains of the plate for
cases I, II and III, respectively. In Fig. 4a, 111 computed points plot the shakedown
surface, consisting of the planes A-B-C and B-C-D. It is noted that all the shakedown
limit points are dominated by alternating plasticity. In Fig. 4b, the shakedown surface
consists of the plane B-C-D-E and surface A-B-E. It is noted that the points in the
plane B-C-D-E are dominated by alternating plasticity whilst the points in the surface
A-B-E are dominated by ratcheting. In Fig. 4c, the shakedown surface consists of
the surfaces A-B-E-D, B-C-F-E and the plane D-E-F-G. It is noted that the points
in the plane D-E-F-G are dominated by alternating plasticity whilst the points in the
surfaces A-B-E-D and B-C-F-E are dominated by ratcheting.

To verify the correctness of the calculated results, the SBS incremental elastic-
plastic calculations are performed for several specified load points that are depicted
as the red, black and blue markers with lettersM, N and P in Fig. 4b and c. It should
be noted that, in both Fig. 4b and c, the load pointsM, N, P are located in shakedown
region, alternating plasticity region and ratcheting region, respectively. As results,
for the load points M, N and P (Fig. 4b), the effective plastic strain histories of a
Gauss point over the first 15 load cycles are displayed in Fig. 5. And for the load
pointsM,N and P (Fig. 4c), the effective plastic strain histories of a Gauss point over
the first 30 load cycles are displayed in Fig. 6. It can be seen clearly from Fig. 5 and
Fig. 6 that the effective plastic strain histories for load pointsM, N and P exhibit the
shakedown, alternating plasticity and ratcheting behavior, respectively. These SBS
incremental elastic-plastic analyses reveal the different failure mechanisms expected
and verify the correctness the results calculated by the SCM.
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Fig. 4 Shakedown domains
of the holed plate in 3D
loading space
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Fig. 5 Effective plastic strains over the first 15 load cycles at a Gauss point of the holed plate from
load combinations M, N and P for case II

Fig. 6 Effective plastic strains over the first 30 load cycles at a Gauss point of the holed plate from
load combinations M, N and P for case III

3.2 Header Component

The second example is a header component from power plant engineering. As shown
in Fig. 7, the header component includes a main pipe and two vertical branch
pipes with same geometric dimensions. The mesh discretization consists of 27,540
elements (Abaqus C3D20R) and 139,251 nodes, as shown in Fig. 8. The material
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properties are listed in Table 2. In the cooling and reheating process, the header
component bears complicated load conditions because of the mutual effects with the
rest parts of piping system.

Two clusters of loads are applied to the header component, whose base loads are
listed in Table 3. For the first load cluster, the internal pressure, Pi , is applied to inner
surfaces, and additional tensions caused by the internal pressure are applied to the
ends of main and branch pipes. For the second load cluster, the bending moments,

Fig. 7 Geometry of the header component

Fig. 8 FE model of the header component
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Table 2 Material properties of the header component

Young’s modules E (GPa) Poisson’s ratio v Yield stress σy (MPa)

200 0.3 165

Mmx and Mmy , are applied to the outboard main pipe end, and the bending moment
Mbz is applied to the inboard branch pipe end. It is noted that three bending moments
vary simultaneously. Hence, the amplitudes of two clusters of loads are determined
by two dimensionless factors, P0, andM0. The loading cases of interest are displayed
in Fig. 9.

The SCM is applied to calculate the shakedown limits of the header component
for the four loading cases. As results, four corresponding shakedown boundaries are
presented in Fig. 10. For the loading cases a and b, the shakedown boundaries are all
dominatedby alternatingplasticitywhilst for the loading cases c andd, the shakedown
boundaries (curve 1 and curve 4 in Fig. 10) are dominated by alternating plasticity
and the shakedown boundaries (curve 2 and curve 3 in Fig. 10) are dominated by
ratcheting. It is noted that the loading case b is proportional loading. Thus, the

Table 3 Base loads applied to the header component

Load P0 M0

Internal pressure
Pi (MPa)

Main tension Pma
(MPa)

Branch tension Pbr
(MPa)

Mmx
(kNm)

Mmy

(kNm)

Mbz

(kNm)

Value 3.64 −24.60 −29.15 240 −160 −9.6

Fig. 9 Four loading cases of interest



Stress Compensation Method for Shakedown Analysis … 151

Fig. 10 Shakedown domains of the header component: P0 versus M0

shakedown limit will be the lower one between the plastic limit load and the twice
of elastic limit load. As a comparison, the elastic boundary is also plotted in Fig. 10.
The shakedown boundary curve for the loading case b coincides well with the curve
decided by the twice of elastic limit load.

To the authors’ knowledge from literature reported, it is the first to show the solu-
tion of the shakedown problem with comparable degrees of freedom of FE model
[17]. The SCM iterative procedure for shakedown analysis presents good conver-
gence. The CPU time required to complete a calculation does not exceed 40 min
using this personal computer. The equivalent residual stress field constructed for
static shakedown for the header component is shown in Fig. 11.

3.3 Pipe with an Oblique Nozzle

The third example is a pipe with an oblique nozzle considering the temperature-
dependent yield stress. Figure 12 displays the geometry of the structure. This compo-
nent is subjected to high temperature and internal pressure. When equipment starts
up or shuts down, the component bears large temperature variation, and the material
properties vary with temperature. Figure 13 displays the FE model that consists of
3,170 elements and 16,928 nodes.
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Fig. 11 The equivalent residual stress field constructed for static shakedown for the header
component

Fig. 12 Geometry of the pipe with oblique nozzle
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Fig. 13 FE model of the pipe with oblique nozzle

Outside air keeps constant temperature θ0 and the temperature of inside fluid
follows the curve in Fig. 14, which is expressed as θ(t) = θ0 + �θ(t). The initial
temperature of structure and the environment temperature are both θ0 = 20 °C. The
base pressure is P0 = 16.5 MPa. Some material parameters are listed in Table 4. The
temperature-dependent yield stress is as follow:

Fig. 14 Temperature history of the inside fluid
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Table 4 Material parameters
of the pipe with oblique
nozzle

Parameters Value

Thermal expansion coefficient α 2.0 × 10−5

Thermal conductivity k (W/(m °C)) 20

Specific heat capacity c (J/(kg·°C)) 440

Transfer coefficient pipe-air h1 (W/(m2·°C)) 300

Transfer coefficient pipe-fluid h2 (W/(m2·°C)) 800

Density ρ (kg/m3) 7800

Yield stress σ y (MPa) 240

Young’s modulus E (MPa) 2.1 × 105

Poisson’s ratio v 0.3

σy(θ) = σy0 + 3 MPa − 0.15 MPa
/ ◦C × θ (28)

First, the temperature history is calculated via a transient heat transfer analysis.
Then, the thermal elastic stress history is calculated based on the obtained temper-
ature via the structural stress analysis. Nodes 5,451 and 6,308 are selected to show
the temperature histories of inside and outside surfaces of the structure, as displayed
in Fig. 15. It is obvious from Fig. 15 that the structure bears the maximum temper-
ature gradient at t = 12,000 s, which leads to the maximum thermal elastic stress.
Figure 16a and b, display the von Mises stress fields of the pipe under single thermal
load and single base pressure, respectively. Figure 17 displays two typical loading
cases considered. For loading case I, temperature and internal pressure vary indepen-
dently. For loading case II, temperature is cyclic but internal pressure keeps constant.
The SCM is applied to calculate the shakedown limits of this pipe considering the
temperature-dependent yield stress.

Fig. 15 Temperature histories of node 5451 and node 6308
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a Thermal stress field at t=12000 s

b Mechanical stress field

Fig. 16 Von Mises stress fields of the pipe with oblique nozzle

The shakedown domains of the pipe considering the temperature-dependent and
temperature-independent yield stresses for two loading cases are shown in Fig. 18.
For loading case I, shakedown boundaries AD and A′D are dominated by alternating
plasticity. For loading case II, shakedown boundaries AB and A′B′ are dominated
by alternating plasticity but shakedown boundaries BC and B′C are dominated by
ratcheting. For both loading cases, shakedown boundaries are narrowedwhen consid-
ering the reduction of yield stress by temperature. It is noted that in regions AB and
A′B′, the thermal loading is dominant and the yield stress is largely reduced by high
temperature, thus the shakedown limit is significantly decreased.
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Fig. 17 Two typical loading cases

Fig. 18 Shakedown domains of the pipe with oblique nozzle considering temperature-dependent
and temperature-independent yield stresses under two loading cases

Figure 19 displays a typical iteration process of load multipliers for shakedown
analysis of the pipe with oblique nozzle considering the temperature-dependent yield
stress. The horizontal segment indicates the execution of inner loop whilst the leap
indicates an update of the load multipliers in the outer loop. The CPU time required
for each iteration is about one quarter of that for a complete elastic FE analysis.
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Fig. 19 Typical iteration process of loadmultipliers for shakedown analysis of the pipewith oblique
nozzle considering the temperature-dependent yield stress

3.4 Torispherical Head with a Piping Nozzle

The forth example is a torispherical head with a piping nozzle, whose geometric
parameters are shown in Fig. 20 [21–24]. The applied loads include uniform pressure
P , axial force F , in-plane bending moment Min, out-of-plane bending moment Mout,
twisting moment T , and thermal loading defined by a temperature difference �θ .
The basic material properties are listed in Table 5.

Fig. 20 Geometry of the torispherical head with a piping nozzle



158 H. Peng et al.

Table 5 Material properties
of the torispherical head with
a piping nozzle

Yield stress, σy0 (MPa) 340

Young’s modulus, E (MPa) 2.0 × 105

Poisson’s ratio, v 0.3

Coefficient of thermal expansion, α (/°C) 1.6 × 10−5

Specific heat capacity, c (J/(kg·°C)) 500

Thermal conductivity, k (W/(m·°C)) 15

Density, ρ (kg/m3) 7900

Figure 21 displays the FE model of the torispherical head with a piping nozzle
that includes 10,809 elements (Abaqus C3D20R) and 54,804 nodes. To eliminate
boundary effects, the lengths of nozzle and of cylindrical shell are about 3di and
Da , respectively. The cylindrical shell end is restrained in vertical direction but is
free in radial direction. It is noted that an additional equivalent axial tension induced
by internal pressure is applied to the nozzle end. All nozzle loads are applied to a
master node which is coupled to the nozzle end using the Beam-typeMPC constraint
technique.

The SCM is applied to calculate the plastic limit and shakedown limit loads of
the torispherical head with a piping nozzle under various loading conditions, whose
results are listed in Table 6. For comparison and verification, the results calculated
by the elastic-plastic incremental method within Abaqus are also listed in Table 6. It
is noted that the plastic limit load is determined by 15-times elastic slope criterion

Fig. 21 FE model of the torispherical head with a piping nozzle
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Table 6 Shakedown limit and plastic limit loads calculated with two methods

Loading case SCM Abaqus

Shakedown limit
load

Plastic limit load Double elastic
limit load

Plastic limit load

Pressure, P
(MPa)

3.004 3.511 3.004 3.523

Axial force, F
(kN)

833.8 1451.8 833.9 1463.2

Twisting
moment, T (kN
m)

364.5 546.4 364.5 551.9

Out-of-plane
moment,Mout
(kN m)

127.9 237.8 127.9 239.2

In-plane
moment,M in
(kN m)

107.6 248.7 107.7 252.1

Thermal
loading, �θ

(°C)

236.0 – 236.0 –

[23] is adopted and the shakedown limit load is determined as the lower one between
the plastic limit load and the twice of elastic limit load.

It is evident from Table 6 that the shakedown limit loads calculated with the SCM
are very close to the twice of elastic limit loads calculated with Abaqus and are lower
than the plastic limit loads. This indicates that these shakedown limit loads are all
dominated by alternating plasticity. Furthermore, the good agreement, a maximum
relative error of 1.36%, of the plastic limit loads calculatedwith the SCMandAbaqus
shows that the SCM is reliable. It is noted that the thermal loading, causing secondary
stress, will not lead to the plastic collapse of structures.

For further comparison, Table 7 gives the comparison of the present solutions [21]
with results from literature [22, 23] for different single loads. The present results are
approximately in agreement with these reported in [22, 23]. The small difference in
value is due to different methods used and different types and sizes of FE meshes
selected.

The 3D shakedown domains of the torispherical head with a piping nozzle are
investigated. The loading conditions of interest include three independently varying
loads, as listed in Table 8. The corresponding loading domain is similar to that
displayed in Fig. 1.

As results, four 3D shakedown domains obtained by the SCM are displayed in
Figs. 22, 23, 24 and 25. It is noted that the dimensionless loads, normalised by the
yield stress σy0 , are adopted, and more than 100 calculated points are used to depict
each of the shakedown boundary surface. In these figures, the red lines represent the
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Table 7 Comparison of the present solutions with results from literature

Type Loading case Present [21] Hsieh [23] Simon [22]

Elastic limit load Pressure (MPa) 1.502 1.370 1.524

Axial force (kN) 416.9 450.0 483.1

In-plane moment (kN m) 53.9 64.7 55.4

Out-of-plane moment (kN
m)

64.0 66.5 –

Twisting moment (kN m) 182.3 193.8 –

Shakedown limit load Pressure (MPa) 3.004 – 3.047

Axial force (kN) 833.8 – 965.9

In-plane moment (kN m) 107.6 – 110.7

Out-of-plane moment (kN
m)

127.9 – –

Twisting moment (kN m) 364.5 – –

Plastic limit load Pressure (MPa) 3.511 3.54 –

Axial force (kN) 1451.8 1630.0 –

In-plane moment (kN m) 248.7 282.6 –

Out-of-plane moment (kN
m)

237.8 265.8 –

Twisting moment (kN m) 546.4 625.0 –

Table 8 3D loading domains of interest

Loading condition Loading domain

P, F, and M in 0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ Min ≤ μ+
3 Min0

P, F, and Mout 0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ Mout ≤ μ+
3 Mout0

P, F, and T 0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ T ≤ μ+
3 T0

P, F, and �θ 0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ �θ ≤ μ+
3 �θ0

shakedown boundary curves of the structure under specific two-dimensional loading
domains.

In above examples, the material properties are independent to temperature (see
Table 5). Here a temperature-dependent yield stress σy(θ) is considered, which is a
linear function of θ , i.e.

σy(θ) = σy0 − 0.3 × (θ − 20 ◦C) (29)

Taking a loading condition as an example, i.e.

0 ≤ P ≤ μ+
1 P0, 0 ≤ F ≤ μ+

2 F0 and 0 ≤ �θ ≤ μ+
3 �θ0 (30)
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Fig. 22 3D shakedown domain: in-plane bending moment, internal pressure, and axial force

Fig. 23 3D shakedown domain: out-of-plane bending moment, internal pressure, and axial force
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Fig. 24 3D shakedown domain: twisting moment, internal pressure, and axial force

Fig. 25 3D shakedown domain: thermal loading, internal pressure, and axial force
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Fig. 26 3D shakedown domains with the temperature-dependent and temperature-independent
yield stresses: thermal loading, internal pressure, and axial force

the resulting 3D shakedown domain considering the temperature-dependent yield
stress σy(θ) is displayed as the green surface in Fig. 26. For comparison, the 3D
shakedown domain with a constant yield stress σy0 is displayed in Fig. 26 (the cyan
surface) additionally.

Although the same geometric parameters and similar loading conditions with
the paper by Simon et al. [22] are used, the completely different shakedown anal-
ysis method is employed to demonstrate the performance of the presented SCM in
solving large-scale shakedown problem. More complicated loading cases including
out-of-plane moment is considered in this paper so that the full geometric model is
establishedwhile only one-half of the geometricmodel is adopted in [22]. In addition,
this paper investigates the influence of temperature-dependent yield stress on shake-
down boundary. In general, when using the mathematical programming method,
such as the IPM, to solve shakedown problem, the computing time depends on the
number of loads [22, 25]. However, the computing time has little relationship to the
loading scenario using the SCM presented in this paper. For a FE model consisting
of 10,809 quadratic elements and 54,804 nodes in this numerical example, the CPU
time required by the SCM varies from 0.2 h to 0.4 h, while for a FE model consisting
of 6,376 linear elements and 9,645 nodes, the computing time by the IPM is less than
10 h [22]. It is evident that the SCM is capable of solving the shakedown problem
for large-scale practical engineering structures in reasonable time.
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4 Concluding Remarks

In this paper, a recently proposed direct method, SCM, has been introduced to solve
the shakedown problem for large-scale practical engineering structures considering
the complex loading conditions. In first, the theoretical and numerical aspects of
the SCM have been presented. The SCM includes the two-level iterative procedure
based on a series of linear FE solutions, instead of using amathematical programming
technique. The inner loop constructs the residual stress field for static shakedown
while the outer loop updates load multipliers using an effective and robust iteration
control scheme.Then the numerical procedure of theSCMhas been implemented into
the Abaqus platform, making it become a general utility tool for shakedown analysis
of complex structures. Next four numerical examples, including square plate with a
central circular hole, header component, pipe with an oblique nozzle, torispherical
head with a piping nozzle, have been presented to illustrate the performance of the
method. The 3D loading domain and the effect of temperature on yield stress have
also been considered. The calculated results have been validatedwith the SBS elastic-
plastic incremental method and results from literature. It has been proven that the
SCM is a powerful tool for performing shakedown analysis of large-scale structures
under complex multi-loading systems with huge computational advantage, and has
application prospects in the structural design and integrity assessment of practical
engineering structures. Although the present paper only introduces the application
of the method to the elastic-perfectly plastic material, the shakedown analysis with
consideration of material hardening has been accomplished and these works will be
reported in forthcoming paper.
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On Cyclic Steady States and Elastic
Shakedown in Diffusion-Induced
Plasticity

Michaël Peigney

Abstract This chapter is devoted to media in which plasticity and diffusion are
coupled, such as electrode materials in lithium ion batteries. We present some recent
results on the large time behavior of such media when they are submitted to cyclic
chemo-mechanical loadings. Under suitable technical assumptions, we notably show
that there is convergence towards a cyclic steady state in which the stress, the plastic
strain rate, the chemical potential and the concentration of guest atoms are all periodic
in time (with the same period as the applied loading). A special case of interest is
that of elastic shakedown, which corresponds to the situation where the medium
behaves elastically in the large time limit. We present general theorems that allow
one to construct both lower and upper bounds of the set of loadings for which elastic
shakedown occurs, in the spirit of Melan and Koiter theorems in classical plasticity.
An illustrative example—forwhich all the relevant calculations canbedone in closed-
form—is presented.

1 Introduction

This chapter is devoted to cyclically loadedmedia inwhichplasticity anddiffusion are
coupled. An example of such media is electrode materials in lithium-ion batteries:
in those batteries, the flow of electrons is the result of lithium ions diffusing in
electrode particles (and in an electrolyte). The absorption of lithium in electrode
particles produces some swelling, which in certain situations can be large enough to
trigger plastic flow. In the media considered—of which electrode materials are an
example—plastic flow and diffusion act as two concurrent dissipative processes. This
results in a complex evolution problem in which the interplay between plastic flow
and diffusion may lead to some unusual behavior. For instance, under a monotone
loading, a particlemay flowplastically for some time and later unloads elastically [1].
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The main objective in this chapter is to study the large-time behavior of solutions to
the evolution problem in the case of cyclic chemo-mechanical loadings. In classical
plasticity (without diffusion), some general results are available [2–4] and fostered
the development of direct methods aiming at determining the large-time response
without resorting to step-by-step incremental analysis [5–8]. A central question,
which we address in this chapter, is to investigate whether similar general results can
be established formedia coupling plasticitywith diffusion. The outline of this chapter
is as follows: In Sect. 2 are derived the governing equations of the evolution problem.
As an illustration, some finite element simulations on a model problem related to
lithium-ion batteries are presented. In Sect. 3 are presented the main results on cyclic
steady states in diffusion-induced plasticity. Under suitable technical assumptions,
we notably show that any solution to the evolution problem converges towards a
cyclic steady state in which the stress, the plastic strain rate, the chemical potential
and the concentration of guest atoms are all periodic in time (with the same period as
the applied loading). Section4 focuses on elastic shakedown, defined as the special
casewhere the plastic dissipation is bounded on the time interval [0,+∞) (or, inmore
intuitive terms, that themediumbehaves elastically in the large time limit). In classical
plasticity, Melan and Koiter theorems deliver bounds on the set of loadings for which
elastic shakedown occurs. Those theorems (Melan theorem especially) have been
extended to several types of nonlinear behaviors, see e.g. [9–14] for recent examples.
Building on the results of Sect. 3 we show that both a Melan-type theorem and a
Koiter-type theorem can be obtained for media coupling plasticity with diffusion.
An illustrative example—forwhich all the relevant calculations canbedone in closed-
form—is presented.

2 Diffusion-Induced Plasticity in a Cyclically Loaded
Continuum

2.1 Conservation Equations

Consider a deformable continuum occupying a domain Ω , in which guest atoms
diffuse. The continuum is submitted to a body force f . Tractions T are prescribed on
a part �T of the boundary and displacements U are prescribed on �u = ∂Ω − �T .
A normal flux J of guest atoms is prescribed on a part �J of the boundary. On
�μ = ∂Ω − �J , the chemical potential μ is prescribed to take a given value M .
The functions f , U, T, M , J define the chemo-mechanical loading history. Those
functions are assumed to be periodic in time, with the same period T . Functions that
are periodic in time with a period T as referred to as T -periodic in the following.

For the problem at hand, the two main conservation equations are the diffusion
equation (expressing the mass conservation of guest atoms)

ċ + divj = 0 in Ω, (1)
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and the equilibrium equation (assuming quasi-static evolutions)

divσ + f = 0 in Ω. (2)

In (1) and (2), c is the concentration of guest atoms, j is the flux and σ is the stress.
Equations (1) and (2) are complemented by the boundary conditions

μ = M on �μ, j · n = J on �J , σ · n = T on �T , u = U on �u . (3)

2.2 Constitutive Equations

The constitutive material is assumed to be elastic-plastic. Following the thermo-
dynamic framework of [15] in small perturbations, the local state of the material
is described by the total linearized strain ε, the (deviatoric) plastic strain ε p and
the concentration c of guest atoms. The free energy w of the material is taken as a
quadratic function of the form

w(ε, ε p, c) = 1

2
(ε − ε p) : L : (ε − ε p) + 1

2
kc2 + cA : (ε − ε p) + cμ0 (4)

where the fourth-order symmetric tensor L, the symmetric second-order tensors A,
the scalars k and μ0 are material parameters satisfying

L � 0, k > 0, k − A : L−1 : A > 0 (5)

where the notation� indicates that a tensor is positive definite. The requirements (5)
ensure that w is convex and guarantee the uniqueness of the evolution starting from
a given initial state, as will be later discussed. From (4) we obtain the constitutive
relations

σ = ∂w

∂ε
= L : (ε − ε p) + cA, μ = ∂w

∂c
= μ0 + kc + A : (ε − ε p). (6)

It can be observed that the tensor A in (6) induces a two-way coupling between
mechanics and diffusion. In particular, the concentration c has a linear influence on
the stress, in a way similar to thermal stress. Similarly, the chemical potential μ

depends linearly on the elastic strain.
The constitutive equations (6) are complemented by a law of diffusion and a

plasticity flow rule complying with the second law of thermodynamics. In more
detail, the flux j of guest atoms is assumed to obey the relation

j = −ψ ′(∇μ). (7)
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whereψ is a positive, differentiable and strictly convex function such thatψ(0) = 0.
The special case of Fick’s law (linear diffusion) corresponds to the situation ψ =
1
2 j · D · j for some symmetric second order tensor D � 0.

2.3 Illustrative Example

In order to illustrate the type of behavior that arises in the media considered, we
present some finite-element simulations performed on a plane strain problem related
to lithium-ion batteries. We consider a free-standing cylinder electrode particle with
radius R. Cyclic lithiation-delithiation is achieved by applying a T−periodic flux

J (t) = − Rω

4
H sinωt (8)

on the boundary. In (8), ω and H > 0 are given. The loading parameter H in (8)
is directly related to the maximum number of inserted lithium ions which is indeed
equal to−2πRL

∫ T/2
0 J (t)dt = πR2LH where L is the length of the cylinder in the

ez direction.
The free energy w is taken as an isotropic version of (4), i.e.

w(ε, ε p, c) = 1

2
K (trε)2 + G(εd − ε p) : (εd − ε p) + 1

2
kc2 + ac trε + cμ0 (9)

where εd is the deviatoric strain and c is the concentration of lithium. In (9), K , G,
a and μ0 are material parameters. The constitutive relations (6) specialize as

σm = K trε + ac , s = 2G(εd − ε p), μ = μ0 + kc + a trε, (10)

where σm = (trσ )/3 is the hydrostatic stress and s is the deviatoric stress. The scalar
material parameter a in (9) accounts for the chemo-mechanical coupling. In par-
ticular, the ratio −a/K can be interpreted as the volumetric expansion coefficient
associated with the insertion of lithium.

Fick’s law is adopted for diffusion, i.e.

j = −D

k
∇μ

where D is the diffusion coefficient. A Von Mises plasticity model is adopted. The
corresponding elasticity domain if defined by

1

2
s : s ≤ σ 2

Y (11)

where σY is the yield strength.
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The numerical results presented in the following have been obtained using the
parameters E = 80 GPa, ν = 0.3, σY = 50 MPa, a = −2.72 × 10−18 J, k = 0.5 ×
10−13 J.m3, D = 10−16 m2/s. The bulk modulus K and the shear modulus G are
related toYoung’smodulus E and Poisson’s ratio ν by the expressions K = E/3(1 −
−2ν) andG = E/2(1 + ν). In Figs. 1 and 2 is shown the time evolution of the plastic
strain field ε p for two different sets of loading parameters. For both simulations the
initial value ε p(0) is non zero and taken as

ε p(0) = 0.003 sin(πr/2R)(e1 ⊗ e2 + e2 ⊗ e1)

where (e1, e2) is a reference orthonormal frame. Figure1 corresponds to the loading
parameters H = 100 mol/m3, ω = 10/T0 where T0 is a time scale defined by

T0 = R2

D

(

1 − aã

k

)with ã = 3a

3K + 4G
. (12)

The map ‖ε p(t) − ε p(0)‖ is shown at several time instants during the first two
loading cycles. The plots in Fig. 1 suggest that the plastic strain stabilizes to a time-
independent field, i.e. that elastic shakedown occurs. Figure2 corresponds to the
loading parameters H = 100 mol/m3 and ω = 20/T0. The plots in Fig. 2 suggest
that the plastic strain reaches a cyclic steady state, i.e. that cyclic plasticity occurs.
Note that the same value of the parameter H has been used in Figs. 1 and 2, which
means that the same number of lithium is injected in the particle. The only difference
is the charging rate. The loading rate is thus found to have an influence on the plastic
response of the system, even though rate-independent plasticity is considered in
the constitutive equations. This is a result of the chemo-mechanical coupling: the

Fig. 1 Map of ‖ε p(t) − ε p(0)‖ at several times instants t/T for a cylinder particle under cyclic
lithiation. Case H = 100 mol/m3, ω = 10/T0. Reported values of ‖ε p(t) − ε p(0)‖ are normalized
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Fig. 2 Map of ‖ε p(t) − ε p(0)‖ at several times instants t/T for a cylinder particle under cyclic
lithiation. Case H = 100 mol/m3, ω = 20/T0. Reported values of ‖ε p(t) − ε p(0)‖ are normalized

combined facts that diffusion is a rate-dependent process and that the stress depends
on the local concentration entail that the mechanical response of the system is rate-
dependent.

In the electrochemical community, a quantity of interest is the charge–voltage
response, relating the total charge C of lithium ions in the electrode particle to the
voltage V on the surface of the particle. The charge C is obtained from the con-
centration field c by C = ∫

Ω
cdΩ . The voltage V is directly related to the chemical

potential μ by V = −(μ − μ0)/e where e is the elementary charge. Let C(t) and
V (t) be the charge and voltage at time t , as obtained in the finite element simula-
tions. The trajectories of (C(t), V (t)) in the C − V plane are shown in Fig. 3 for the
two loadings considered previously. It can be observed that (C(t), V (t)) converges
towards a cyclic steady state. Some hysteresis is displayed in the cyclic steady state,
even in the caseω = 10/T0 for which elastic shakedown occurs. Indeed, even if plas-
tic flow vanishes in the elastic shakedown regime, there remains the diffusion-related
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Fig. 3 Charge-Voltage response for ω = 10/T0 (blue curve) and ω = 20/T0 (red curve). The
parameter H is set to H = 100 mol/m3

dissipation corresponding to the cyclic insertion of lithium ions. By contrast, in the
case ω = 20/T0, the diffusion-related dissipation and the plastic dissipation (due to
cyclic plasticity) add up on the cyclic steady state. For designing lithium-ion batteries
with improved electrochemical efficiency, it is beneficial to reduce the hysteresis in
the C − V response. In that regard, the shakedown regime is likely to be beneficial
[1]. It can further be added that elastic shakedown is also beneficial for the mechan-
ical fatigue behavior since elastic shakedown is typically associated with high-cycle
fatigue—as opposed to cyclic plasticity which is associated with low-cycle fatigue
[16].

The results in Figs. 1, 2 and 3 have been obtained for specific geometry, loading
and material parameters. One can wonder to what extent those results are general.
Considering a continuum of arbitrary shape submitted to a cyclic chemo-mechanical
loading, the main questions to be addressed are

1. Is there always convergence to a steady state cycle?
2. How does the steady state cycle (if exists) depend on the initial state?
3. Is is possible to obtain a priori restrictions on the loading for ensuring that

elastic shakedown occurs?
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Regarding question 3 above, Melan theorem (also known as the static shakedown
theorem) and Koiter theorem (also known as the kinematic shakedown theorem)
come to mind [17–19]. In standard plasticity (without coupling with diffusion), those
theorems provide bounds on the set of loadings for which elastic shakedown occurs.
The classical reasoning used in the proof of those theorems consists in bounding the
total dissipation on the time interval [0,∞). For the media considered here, there
are two sources of dissipation, namely plasticity and diffusion. Bounding the total
dissipation thus essentially means that there is no plastic flow and no diffusion in the
large time limit. This is not really the situation of interest for applications such as
lithium-ion batteries: one is instead interested in situations where there is no plastic
flow in the large limit but diffusion still occurs as a result of cyclic lithiation, as in
Fig. 1. In such situations, the total plastic dissipation on the time interval [0,∞) is
bounded but the diffusion-related dissipation is not. There does not seem to be any
obvious way to modify Melan’s and Koiter’s reasoning so as to bound only a part of
the total dissipation (namely the plastic dissipation). As will shown in the following,
shakedown theorems as desired can still be obtained at the price of first addressing
the more general questions 1 and 2 listed above.

3 General Results on Steady State Cycles

In this section are presented some general results addressing questions 1–2 related
to cyclic steady states in diffusion-induced plasticity. We first derive an evolution
equation for the fields (σ , μ) and proceed to discuss some properties of that equation.
As a preliminary, observe that the free energy w(ε, ε p, c) in (4) can be put in the
form

w(ε, ε p, c) = 1

2
(ε − ε p, c):̇M:̇(ε − ε p, c) + cμ0 (13)

where M is the symmetric operator defined by the relations

M:̇(ε − ε p, c) = (
L : (ε − ε p) + cA, kc + A : (ε − ε p)

)
.

for any ε − ε p and c. Under the assumptions (5), M can be verified to be positive
definite. The operatorM is thus invertible and its inverseM−1 is symmetric positive
definite. For later reference, note that the constitutive relations (6) can be rewritten
as

(ε − ε p, c) = M
−1 :̇(σ , μ − μ0). (14)

Setting B = A : L−1 and k ′ = k − A : L−1 : A, it can be calculated that

(σ , μ):̇M−1 :̇(σ ′, μ′)〉 = σ : L−1 : σ ′ + 1

k′
(
(B : σ )(B : σ ′) + μμ′ − μ′B : σ − μB : σ ′)

(15)
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for any (σ , μ) and (σ ′, μ′). To simplify the presentation, we will consider the case of
viscoplasticity: the flow rule takes the form ε̇ p = φ′(σ )where φ is a positive, strictly
convex, differentiable function of the deviatoric stress and such that φ(0) = 0. The
elasticity domain of the material is denoted by C .

3.1 Evolution Equation for the Stress and the Chemical
Potential

The fields (σ , μ) are assumed to live in a closed subspace of H(div;Ω) × H 1(Ω).
Since M−1 � 0, H is a Hilbert space for the scalar product 〈·, ·〉 defined by

〈(σ , μ), (σ ′, μ′)〉 =
∫

Ω

(σ , μ):̇M−1 :̇(σ ′, μ′) dΩ

We denote K (f,T, M) the set of stress and chemical potential fields that are com-
patible with data (f,T, M), i.e

K (f,T, M) = {
(σ , μ) ∈ H : divσ + f = 0 in Ω, σ · n = T on �T , μ = M on �μ

}
.

Let (σ , μ) be the stress and chemical potential in a given evolution satisfying the
governing equations described in Sect. 2. We have (σ , μ) ∈ K (f,T, M) and it can
be verified that

〈(σ̇ , μ̇), (ρ, ν)〉 = −
∫

Ω
(φ′(σ ) : ρ + ψ ′(∇μ) · ∇ν) dΩ −

∫

�J

Jν dS ∀(ρ, ν) ∈ K0;
(16)

with K0 = {
(σ , μ) ∈ H : divσ = 0 in Ω, σ · n = 0 on �T , μ = 0 on �μ

}
. Equa-

tion (16) can be interpreted as an evolution equation for the stress and chemical
potential fields (σ , μ).

3.2 Contraction Properties

The norm inH is denoted by ‖ · ‖, i.e. ‖(σ , μ)‖2 = ∫
Ω

(σ , μ):̇M−1 :̇(σ , μ) dΩ . The
two following lemmas can be proved [20]:

Lemma 1 Let � = (σ , μ) and �′ = (σ ′, μ′) be two solutions of (16). Then

‖�(t2) − �′(t2)‖ ≤ ‖�(t1) − �′(t1)‖ for all t1 < t2.

Lemma 2 Let � = (σ , μ) and �′ = (σ ′, μ′) be two solutions of (16) such that
‖�(t) − �′(t)‖ = ‖�(t1) − �′(t1)‖ for all t1 ≤ t . Then
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φ′(σ (x, t)) = φ′(σ ′(x, t)) for t1 ≤ t.

Moreover, there exists a time-independent stress field ρ and a constant η such that
(ρ, η) ∈ K0 and

σ (x, t) − σ ′(x, t) = ρ(x), μ(x, t) − μ′(x, t) = η for t1 ≤ t.

Lemma 1 means that the distance between two solutions decreases with time. It
notably implies the uniqueness of the solution for a given initial state. Lemma 2
means that if the distance between two solutions is constant then the difference
between those solutions is constant (which is not obvious at first sight).

3.3 Main Results

We are now in a position to prove the main results regarding T−periodic solutions
to the evolution equation (16). Although such T−periodic solutions are not unique,
they are quite similar to one another. More precisely, we have the following

Theorem 1 Let � = (σ , μ) and �′ = (σ ′, μ′) be two T−periodic solutions
of (16). Then

φ′(σ (x, t)) = φ′(σ ′(x, t)) for t1 ≤ t.

Moreover, there exists a time-independent stress field ρ and a constant η such
that (ρ, η) ∈ K0 and

σ (x, t) − σ ′(x, t) = ρ(x), μ(x, t) − μ′(x, t) = η.

Proof The result follows from Lemmas 1 and 2. Let � = (σ , μ) and �′ = (σ ′, μ′)
be two T−periodic solutions of (16). By Lemma 1 we have

‖�(T ) − �′(T )‖ ≤ ‖�(t) − �′(t)‖ ≤ ‖�(0) − �(0)‖ (17)

for all t ∈ [0, T ]. Since � and �′ are T−periodic, we have ‖�(T ) − �′(T ) =
‖�(0) − �(0)‖. Hence (17) becomes ‖�(t) − �′(t)‖ = ‖�(0) − �(0)‖ for all
t ∈ [0, T ]. Applying Lemma 2 proves the claim. �

We now arrive at the main result on the large time convergence of solutions to
(16):
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Theorem 2 Assume that there exists a T−periodic solution to (16) and that
the dimension of H is finite. For any solution �(t) of (16) on [0,∞), there
exists a T−periodic solution �′ of (16) such that

�(t) → �′(t) as t → ∞.

Proof We will make use of Opial’s lemma [21], which is a general result in Hilbert
spaces that reads as follows:

Let F be a nonempty subset ofH and {un} a sequence inH such that:

(i) {‖un − f ‖} converges for all f ∈ F ,
(ii) the limit of every (weakly) convergent subsequence of {un} is in F .

Then the whole sequence {un} (weakly) converges to a point of F .
Here we only consider the simplified situationwhere the dimension ofH is finite,

so that weak and strong convergences coincide. Considering an arbitrary solution
�(t) of (16), we wish to apply Opial’s lemma to the sequence {un} = {�(nT )}
and to the set F formed by the initial values of T−periodic solutions to (16), i.e.
F = {

�̃(0) : t �→ �̃(t) is a T−periodic solution of (16)
}
. To that purpose, the main

effort consists in checking assumptions (i) and (i i) in Opial’s lemma.
Let us begin with assumption (i). Consider f ∈ F and let �′ be a T−periodic

solution of (16) such that f = �′(0). Lemma 1 gives

‖�((n + 1)T ) − �′((n + 1)T )‖ ≤ ‖�(nT ) − �′(nT )‖. (18)

Since�′ is T− periodic, we have�(nT ) = �(0) = f for all n. Hence (18) becomes
‖un+1 − f ‖ ≤ ‖un − f ‖. The positive sequence {‖un − f ‖} is decreasing. It follows
that {‖un − f ‖} converges to a limit as n → ∞, which shows that assumption (i) is
verified.

We now proceed with assumption (i i). Let {unk } be a converging subsequence of
{un} and denote its limit by g. Denoting by �∗(t) the solution of (16) for the initial
condition�∗(0) = g, wewish to show that�∗(t) is T−periodic.We consider a fixed
t in the interval [0, T ] in what follows. Lemma 1 gives

‖�(nkT + t) − �∗(t)‖ ≤ ‖�(nkT ) − �∗(0)‖ = ‖unk − g‖ −→
k→∞ 0.

Thus
�(nkT + t) −→

k→∞ �∗(t) (19)

Let �′ be a T−periodic solution to (16). Lemma 1 yields

‖�(nk+1T ) − �′(nk+1T )‖ ≤ ‖�(nkT + t) − �′(nkT + t)‖ ≤ ‖�(nkT ) − �′(nkT )‖
(20)
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Setting f = �′(0) ∈ F and noting that �′(nkT + t) = �′(t), (20) becomes

‖�(nk+1T ) − f ‖ ≤ ‖�(nkT + t) − �′(t)‖ ≤ ‖�(nkT ) − f ‖. (21)

By (i), both the left and the right terms in (21) converge to a limit A as k → ∞. It
follows that

‖�(nkT + t) − �′(t)‖ −→
k→∞ A. (22)

Combining (19) and (22) shows that ‖�∗(t) − �′(t)‖ = A for all t in [0, T ]. Lemma
2 implies that �∗(t) − �′(t) is time-independent. Hence �∗(t) is T−periodic, i.e.
�∗(0) = g ∈ F . Assumption (i i) is thus verified.

ApplyingOpial’s lemma shows that there exists a T−periodic solution�∗(t) such
that �(nT ) → �∗(0) as n → ∞. By Lemma 1, it follows that �(t) − �∗(t) → 0
as t → ∞. �

Theorems 1 and 2 allow one to provide some answers to questions 1–2 listed
in Sect. 2 regarding cyclic steady states in diffusion-induced plasticity. Theorem 2
indeed implies that the stress σ , the plastic strain rate ε̇ p and the chemical potential
μ converge towards a cyclic steady state as t → ∞. Using the constitutive relations
(7) and (14), it follows that the flux j and the concentration c also converge towards a
cyclic steady state. Since there is no uniqueness of T−periodic solutions to (16), the
cyclic steady state depends on the initial state. However, Theorem 1 shows that some
features of the cyclic steady state are unique, namely the stress rate, the plastic strain
rate and the chemical potential (up to a constant). Using again (7) and (14), the flux
and the concentration rate on the cyclic steady state are also unique, i.e. independent
of the initial state.

Let us denote by ε̇ p
∞ the plastic strain rate on the cyclic steady steady state.

The facts that ε̇ p
∞ is T−periodic and uniquely defined imply that there is either

elastic shakedown, cyclic plasticity or ratchetting—with the exclusion of any other
regime. Moreover, for a given structure, the type of asymptotic plastic behavior
(i.e elastic shakedown, cyclic plasticity or ratchetting) is only determined by the
loading, independently of the initial state. In a similar fashion, diffusion-related
quantities reach a cyclic steady statewhich is largely independent of the initial state. In
particular, for electrode particles in lithium-ion batteries, the charge-voltage response
reaches a cyclic steady state which is uniquely defined (possibly up to a translation
in the C − V plane, depending on the type of chemical boundary conditions).

In such conditions, it makes sense to establish Bree-like diagrams mapping the
space of load parameters to path-independent properties such as the type of asymp-
totic behavior, the plastic dissipation or the diffusion-related dissipation on the steady
state cycle.
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4 Shakedown Theorems in Diffusion-Induced Plasticity

Let us consider the fictitious purely elasto-diffusive problem obtained by discarding
plastic flow in the original problem. As a special case of (16), the stress and chemical
potential in the diffusive elasto-diffusive problem satisfy

〈(σ̇ , μ̇), (ρ, ν)〉 = −
∫

Ω

ψ ′(∇μ) · ∇ν dΩ −
∫

�J

Jν dS ∀(ρ, ν) ∈ K0. (23)

Periodic solutions to (23) play a central role in formulating shakedown conditions in
diffusion-induced plasticity, as will be later demonstrated. Periodic solutions to (23)
are not uniquely defined. As a particular case of Theorem 1, two periodic solutions of
(23) differ by a time independent stress field ρ and a constant η such that (ρ, η) ∈ K0.
Conversely, if (ρ, η) ∈ K0 and (σ E , μE ) is a particular T−periodic solution to (23)
then (σ E , μE ) + (ρ, η) can easily be verified to be a T−solution to (23). The whole
set of T−periodic solutions to (23) is thus an affine space than can be written as

{(σ E , μE ) + (ρ, η) : (ρ, η) ∈ K0} (24)

where (σ E , μE ) denotes any given T−periodic solution to (23).

4.1 Static Shakedown Theorem

Assume that elastic shakedown occurs in the original problem involving diffusion-
induced plasticity and denote by (σ∞, μ∞) the stress and the chemical potential in
the cyclic steady state. The fields (σ∞, μ∞) form a T−periodic solution to (16).
Elastic shakedown corresponds to the situation where ε̇ p

∞ = φ′(σ∞) = 0, hence we
have

〈(σ̇∞, μ̇∞), (ρ, ν)〉 = −
∫

Ω

ψ ′(∇μ∞) · ∇ν dΩ −
∫

�J

Jν dS ∀(ρ, ν) ∈ K0;
(25)

Comparing (25) with (23) shows that (σ∞, μ∞) is a T−periodic solution to the
elasto-diffusive problem (23). Conversely, assume there exists a T−periodic solution
(σ̃ , μ̃) to the elasto-diffusive (23) such that φ′(σ̃ ) = 0. It can be directly checked
that (σ̃ , μ̃) is also a T−periodic to the Eq. (16). Noting that the associated plastic
strain is zero and using Theorem 1, we obtain that the plastic strain rate vanishes
for any T−periodic solution to (16), i.e. in any cyclic steady state. Consequently,
elastic shakedown is characterized by the existence of a T−periodic solution (σ̃ , μ̃)

to (16) such that φ′(σ̃ ) = 0, i.e. such that σ̃ ∈ C . Using (24), we can formulate the
following result
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Theorem 3 If there exists a time-independent stress field ρ ∈ A0 such that
σ E (x, t) + ρ(x) ∈ C for all x ∈ Ω and t ∈ [0, T ], then elastic shakedown
occurs (whatever the initial state is).

In Theorem 3, A0 is the space of self-equilibrated stress fields, i.e.

A0 = {ρ : divρ = 0 in Ω, ρ.n = 0 on �T }.

Although the statement of Theorem 3 is similar to Melan theorem, we emphasize
that its proof largely differs from the standard proof used in Melan theorem for pure
plasticity. Theorem 3 motivates the introduction of a ’static security coefficient’ mS

as

mS = sup{m : there exists ρ ∈ A0 such that
ρ(x) + mσ E (x, t) ∈ C for all (x, t) ∈ Ω × [0, T ]}. (26)

The value ofmS indeed determines the shakedown behavior according to the follow-
ing rules {

mS > 1 =⇒ shakedown occurs
mS < 1 =⇒ shakedown does not occur

(27)

Lower bounds onmS can be obtained by using Theorem 3with particular stress fields
in A0.

4.2 Kinematic Shakedown Theorem

Upper bounds on mS can be obtained by convex duality, as used for instance by [22,
23]. Let A be the set of triplets (m, ρ∗, σ̃ ) such that ρ∗(x) is a time-independent
stress field in A0 and σ̃ (x, t) ∈ C for all (x, t). From (26) we have

mS = sup
(m, ρ∗, σ̃ ) ∈ A ,

ρ∗ + mσ E = σ̃

m

This is a constrained maximization problem over the convex set A . Denote by L
the corresponding lagrangian, i.e.

L (m, ρ∗, σ̃ ;d) = m +
∫

Ω

∫ T

0
d(x, t) : (σ̃ (x, t) − ρ∗(x) − mσ E (x, t))dΩdt.

(28)
We have
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mS = sup
(m,ρ∗,σ̃ )∈A

inf
d
L (m, ρ∗, σ̃ ;d).

From the min-max inequality

sup
(m,ρ∗,σ̃ )∈A

inf
d
L ≤ inf

d
sup

(m,ρ∗,σ̃ )∈A
L (29)

we get
mS ≤ mK (30)

where
mK = inf

d
sup

(m,ρ∗,σ̃ )∈A
L (m, ρ∗, σ̃ ;d).

Rewriting the coefficient mK in a more explicit form [24] leads to

mK = inf{
∫

Ω

∫ T

0
D(d(x, t))dΩdt :

∫ T

0

∫

Ω

d : σ EdΩdt = 1 and
∫ T

0
ddt ∈ B0}

(31)
with D(d) = supσ∈C σ : d and

B0 = {(∇u + ∇ tu)/2 : u = 0 on �u}.

IfmK < 1 then by (30) and (27) we can conclude that shakedown does not occur.
A necessary condition for shakedown is thus that mK ≥ 1. We can thus formulate
the following

Theorem 4 If shakedown occurs, then 1 ≤ ∫
Ω

∫ T
0 D(d(x, t))dΩdt for any

history d(x, t) such that
∫ T
0

∫
Ω
d : σ EdΩ dt = 1 and

∫ T
0 d ∈ B0.

In practice, an upper bound m+
K on mK (and therefore on mS) can be obtained by

constructing specific strain histories satisfying the requirements
∫ T
0

∫
Ω
d : σ EdΩ

dt = 1 and
∫ T
0 d ∈ B0.

4.3 Illustrative Example

As an illustration of the shakedown theorems, consider the example introduced in
Sect. 2.3. A T− periodic solution (σ E , μE ,uE , cE ) to the corresponding purely
elasto-diffusive problem has been calculated in closed-form in [20]. Denoting by
� (resp. �) the real (resp. imaginary) part of a complex valued quantity, we have in
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particular

σ E (x, t) = �
(

eiωt
GãH

2
(σ̂rer ⊗ er + σ̂θeθ ⊗ eθ + σ̂zez ⊗ ez)

)

where

σ̂r = 1 − R̂

r̂

J1(r̂)

J1(R̂)
, σ̂θ = 1 + R̂

r̂

J1(r̂)

J1(R̂)
− R̂ J0(r̂)

J1(R̂)
, σ̂z = 2ν − R̂ J0(r̂)

J1(R̂)
(32)

and

r̂ = λ̂r, R̂ = λ̂R, λ̂ = ei
3π
4

√
ω

D(1 − aã/k)
. (33)

In (32), J is the Bessel function of the first kind. The scalar ã in (33) is defined as in
(12).

Let us denote by sE the deviatoric part of σ E . Using Theorem 3 with ρ = 0, we
can see that if

sup
r,t

‖sE (r, t)‖ ≤ √
2σY (34)

then shakedown occurs. It can be verified that the supremum in (34) is reached at
r = R. Condition (34) can thus be rewritten as

‖sE (R, t0)‖ ≤ √
2σY (35)

where t0 ∈ [0, T ] is such that ‖sE (R, t0)‖ = supt ‖sE (R, t‖. By Theorem 3, condi-
tion (35) is a sufficient condition for shakedown. Theorem 4 shows that it is also
necessary. Consider indeed the history defined by

d(x, t) = 1

4πRL

sE (R, t0)

‖sE (R, t0)‖2 δ(r − R) (δ(t − t0) − δ(t − t1)) (36)

where L is the length of the particle in the ez direction and δ is the Dirac distribution.
The time instant t1 in (36) is defined by t1 = (t0 + T/2)mod T . Observe in particular
that sE (R, t1) = −sE (R, t0). We have

∫ T
0 d(x, t)dt = 0 hence

∫ T
0 d(x, t)dt ∈ B0.

Moreover we have
∫
Ω

∫ T
0 σ E : ddΩdt = 1. Using Theorem 4 with the history d in

(36) shows that a necessary condition for shakedown is

1 ≤
∫

Ω

∫ T

0
D(d(x, t))dΩdt (37)

For the Mises elasticity domain, the function D is given by D(d) = √
2σY‖d‖ pro-

vided that d is deviatoric. It follows that
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∫

Ω

∫ T

0
D(d(x, t))dΩdt =

√
2σY

‖sE (R, t0)‖ .

Condition (37) is thus the same as (35). This shows that Condition (35) is both a
necessary and a sufficient for shakedown to occur.

Condition (35) can be rewritten as [20]

H ≤ HSD(ω̃) (38)

where

HSD(ω̃) = 2

√
6σY

G|ã|
(

A(ω̃) +
√
A2(ω̃) − B(ω̃)

)− 1
2

(39)

and

A(ω̃) = 3(1 − ν)2 + (�z − 1 − ν)2 + (�z)2, B(ω̃) = 12(1 − ν)2(�z)2; (40)

with

ω̃ = ωT0, z = R̂ J0(R̂)

J1(R̂)
.

Using the values of the constitutive parameters reported in Sect. 2.3, we obtain
that

HSD(20) < 100 mol/m3 < HSD(10) (41)

For a loading parameter H = 100 mol/m3, (41) means that elastic shakedown occurs
forω = 10/T0 but not forω = 20/T0. Those predictions agreewith the finite element
simulations shown in Figs. 1 and 2. In the case ω = 10/T0 corresponding to elastic
shakedown, a result fromTheorems1 to 2 is that theC–V response in the cyclic steady
state coincide (up to a time-independent translation) with the cyclic C–V response
of the purely elasto-diffusive problem. The latter can be calculated in closed form
and is given by

CE (t) = 1

2
(1 + sinωt), μE (t) = 1

4
�(eiωt i z) (42)

The C–V response provided by (42) is shown in Fig. 4 (red line). The curve obtained
form the finite element simulations of the diffusion-induced plasticity problem is
shown as a blue curve in Fig. 4. It appears that the steady state in the C–V plane is
translated form the elasto-diffusive response as expected.
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Fig. 4 Charge-Voltage response for H = 100 mol/m3, ω = 10/T0. Diffusion-induced plasticity
(blue curve), pure elasto-diffusion (red curve)
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Numerical Method for Quasi-static
and Dynamic Elastoplastic Problems
by Symplectic Brezis-Ekeland-Nayroles
Non-incremental Principle

Xiaodan Cao, Abdelbacet Oueslati, An Danh Nguyen, Marcus Stoffel,
Bernd Market, and Géry de Saxcé

Abstract Most computer-aided engineering software provide a classical incremen-
tal computation procedure for nonlinear problems. Although little used in the lit-
erature, the Brezis-Ekeland-Nayroles (BEN) principle, an alternative step-by-step
algorithm, based on the time integration of the sum of the dissipation potential and
its Fenchel polar can have a global view of whole evolution. In short, the BEN princi-
ple converts a mechanical problem to a constrained optimization problem. Recently,
Buliga and de Saxcé have proposed a symplectic version of the BEN principle which
generalizes the Hamiltonian inclusion formalism for the dissipative systems. In the
present work, this formalism is specialized to the standard plasticity in small, finite
strains, in statics and dynamics. We apply it numerically to solve the classical prob-
lem of a tube problem in plane strain subjected to an internal pressure in statics
and dynamics. An excellent agreement is obtained between the numerical results
obtained by the BEN approach and the reference numerical solution.

1 Introduction

A lot of mechanical problems have non-linear behaviors because of dissipative phe-
nomena such as plasticity, damage, etc. Their analytical solutions cannot be deter-
mined easily. As it is unlikely to carry out all kinds of experiments for the similar
problems, the computer-aided engineering (CAE) software has been developed in
the last 30years. For a non-linear problem, most of the software uses the step-by-step
or incremental method [1–5] in computational solid mechanics.

In practice, by using the step-by-step method, some simulations cannot be com-
pletely performed because the convergence frequently fails before the end of the
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computation and it is difficult to restart. The only solution to overcome the difficulty
often lies in reducing the step size but increases the computational time. Another
difficulty arises because, in an iterative method, truncation error occur at each itera-
tion. So the computation error of the usual step-by-step method based in radial return
algorithm accumulates and grows as the number of step increases. This error cannot
be avoided and it may strongly affect the whole accuracy of complex simulations.

Using step-by-step methods, we are going, as it were, with the head down. This
is the breakthrough we want to get. To address this issue, there is few methods
in literature. We propose to start with Brezis-Ekeland-Nayroles principle (in short,
the BEN principle) [6, 7]. It is based on the dissipation potential and its Fenchel
transform over the time integration. In [8–10], the BEN principle is extended in
a pure mathematical manner a few to monotone operators and doubly nonlinear
equations, or reworked in order to have a discretized form. Recently, Buliga and de
Saxcé [11] generalized the BEN principle to the dynamics of dissipative systems by
linking two worlds together, the one of smooth functions in symplectic geometry
systems and the one of non-smooth functions for dissipative systems. They applied
this symplectic BEN principle to standard plasticity [12] in dynamics and deduce
from it the limit case of statics. The BEN principle is a tool perfectly designed to
solve complex problem of evolution of dissipative systems. In place of computing in
the step-by-step way and facing the convergence problem, the BEN principle allows
to work simultaneously over all steps, that allows to have a consistent view of the
whole evolution.

According to the authors’ knowledge, no one has ever numerically applied the
BEN principle to test its feasibility to work on all time steps simultaneously. The aim
of this paper is to implement numerically the powerful BEN principle by solving a
mechanical problem in statics and dynamics. When the analytical solution cannot be
provided, the BEN principle solution is compared with the numerical solution of a
standard finite element (FM) method solver.

The paper is divided in three parts. Firstly, we present directly the BEN principle
for elastoplasticity in statics and dynamics. Then, we apply the general principle
to the tube problem, using the mixed FE [13, 14] to avoid the drawbacks of the
standard or displacement FE, like inaccuracy of the stress field, simulation results for
elastic, elastoplastic regime in statics and dynamics. Simulation results are presented
separately with different plastic criteria and behavior laws.

2 BEN Principle for Elastoplasticity

To illustrate the general formalismand to showhow it allows to developpowerful vari-
ational principles for dissipative systems within the frame of continuum mechanics,
we consider the standard plasticity and viscoplasticity in small deformations based
on the additive decomposition of strains into elastic and plastic strains:

ε = εe + ε p = S σ + ε p
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where S is the elastic compliance tensor. Let Ω ⊂ R
n be a bounded, open set, with

piecewise smooth boundary ∂Ω . As usual, it is divided into disjoint parts, ∂Ω0 (called
support) where the displacements are imposed and ∂Ω1 where the surface forces are
imposed. U and E are suitable functional spaces of displacement and stress fields
on Ω . The standard duality between stress and strain fields is:

〈σ, ε〉 =
∫

Ω

σ : ε dΩ

Applied to the quasi-static plasticity, the BEN principle claims that the evolution
curves σ : [0, T ] → E and u : [0, T ] → U minimize:

Π̄(σ, u̇) =
∫ T

0

{
ϕ(σ) + ϕ∗(∇u̇ − Sσ̇ ) − 〈σ,∇u̇ − Sσ̇ 〉} dt (1)

among all curves satisfying:

• the equilibrium equations in statics:

∇ · σ + f = 0 in Ω, σ · n = f̄ on ∂Ω1 (2)

• the equilibrium equations in dynamics:

∇ · σ + f = ρü in Ω, σ · n = f̄ on ∂Ω1 (3)

• the kinematical conditions on supports:

u = ū on ∂Ω0 (4)

• and the initial conditions:

σ(0) = σ0, u(0) = u0 (5)

The following is detailed in statics. To show the pertinence of the principle, we
prove now that the stationarity condition of the variational principle restitues the
expected equations governing the elastoplastic evolution problem. First, we introduce
densities φ and φ∗ such that:

ϕ(σ) =
∫

Ω

φ(σ) dΩ, ϕ∗(ε p) =
∫

Ω

φ∗(ε p) dΩ,

If φ and φ∗ are differentiable, the yielding rule and the inverse law are:

ε̇ p = ∂φ

∂σ
, σ = ∂φ∗

∂ε̇ p
(6)
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Then Eq. (1) reads:

Π̄(σ, u̇) =
∫

Ω

{
∫ T

0

[
φ(σ) + φ∗(∇u̇ − Sσ̇ ) − σ : (∇u̇ − Sσ̇ )

]
dt (7)

The stationarity conditions is:

δΠ̄(σ, u̇)

=
∫
Ω

{
∫ T

0

(
∂φ

∂σ
: δσ + ∂φ∗

∂ε̇p
:
(
∇δu̇ − S

d

dt
(δσ )

)
− δσ : ∇u̇ − σ : ∇δu̇ + δσ : Sσ̇ + σ : S d

dt
(δσ )

)
dt

(8)

Taking into account that the stress fields satisfy a priori the initial conditions (5):

δσ (0) = 0, δu(0) = 0

and time integrating by part leads to:

δΠ̄(σ, u̇) =
∫

Ω

{
∫ T

0

[
δσ :

(
∂φ

∂σ
+ S

d

dt

(
∂φ∗

∂ε̇ p

)
− ∇u̇

)
+

(
∂φ∗

∂ε̇ p
− σ

)
: ∇δu̇

]
dt

(9)
Taking into account that the displacement fields satisfy a priori the kinematical con-
ditions (4):

δu = 0 on ∂Ω0

and space integrating by part the second term of the former line gives:

∫
Ω

∫ T

0

(
∂φ∗

∂ε̇ p
− σ

)
: ∇δu̇ dt dΩ =

∫ T

0
[
∫

∂Ω1

δu̇ ·
((

∂φ∗

∂ε̇ p
− σ

)
· n

)
dS

−
∫

Ω

δu̇ ·
(

∇ ·
(

∂φ∗

∂ε̇ p
− σ

))
dΩ] dt (10)

Taking into account that the stress fields satisfy a priori the equilibrium equations
(2), the expression (10) becomes:

∫
Ω

∫ T

0

(
∂φ∗

∂ε̇ p
− σ

)
: ∇δu̇ dt dΩ =

∫ T

0
[
∫

∂Ω1

δu̇ ·
((

∂φ∗

∂ε̇ p
· n − f̄

))
dS

−
∫

Ω

δu̇ ·
(

∇ · ∂φ∗

∂ε̇ p
+ f

)
dΩ] dt

Introducing this expression into Eq. (9) and considering arbitrary field variations, we
obtain for every time:

∇u̇ = ∂φ

∂σ
+ S

d

dt

(
∂φ∗

∂ε̇ p

)
in Ω (11)



Numerical Method for Quasi-static and Dynamic Elastoplastic Problems … 191

∇ · ∂φ∗

∂ε̇ p
+ f = 0 in Ω (12)

∂φ∗

∂ε̇ p
· n = f̄ on ∂Ω1 (13)

Condition (11) means that the stress and plastic strain given by Eq. (6) fulfill the
classical strain decomposition into plastic and elastic parts:

∇u̇ = ε̇ p + S σ̇ in Ω

Condition (12) and (13) mean that the stress field given by the inverse law (6) verifies
the equilibrium equations.

The previous framework is valid only under suitable assumptions of differentiabil-
ity of dissipation potentials in viscoplasticity, for instance for Norton-Odqvist model.
The case of classical plasticity is singular since the potentialφ is non-differentiable as
indicator function χK of the elastic domain K , equal to 0 on K and to+∞ otherwise.
This pitfall can be by-passed in practice by relaxing the plasticity criterion:

fvm/T (σ ) ≤ 0 (14)

thanks to a field of Lagrangemultiplier λ, with fvm vonMises criterion adn fT Tresca
one. Then BEN principle specialized to classical plasticity claims that the evolution
curves σ : [0, T ] → E and u : [0, T ] → U minimize:

Π̄(σ, u̇, λ) =
∫ T

0

{∫
Ω

λ f (σ ) + ϕ∗(∇u̇ − Sσ̇ )dΩ − 〈σ,∇u̇ − Sσ̇ 〉
}

dt (15)

among all curves satisfying the plasticity criterion (14), the equilibrium equations (2),
the kinematical conditions on supports (4) and the initial conditions (5). Formally,
the plasticity is a particular case of viscoplasticity, replacing the potential φ by λ f
and the yielding rule (6) provides the normality law:

ε̇ p = λ
∂ fvm/T

∂σ

3 The Tube Problem in Statics

The previous section provides some useful notions of the BEN principle. Thanks to
the Eqs. (1, 2, 4, 5), the mechanical problem could be solved as an optimization prob-
lem. To start up, we choose a classical academic example, the thick tube subjected
to an internal pressure.

To simplify, we take an axisymmetric problem. The internal and external radii of
the tube are a and b respectively. The imposed internal pressure is p. For material
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parameters, we have Young’s modulus E , Poisson coefficient ν and yield stress σY .
Supposing that the thick tube is in plane strain and the initial fields are null, if the
internal pressure increases in themonotoneway from zero to limit charge, the internal
wall of the tube will come to yield firstly, and successively the external wall.

Onematerial behavior laws and two yield criteria are discussed, isotropic perfectly
plastic behavior law, Tresca or von Mises criteria.

3.1 Application of the BEN Principle

Taking into account the is axisymmetry and the plane strain, the displacement u
depends only the radius and is radial:

u = ur (r) er (16)

The stress and strain tensors are given in small deformations hypothesis by:

σ =
(

σrr 0
0 σθθ

)
ε =

(
dur
dr 0
0 ur

r

)
(17)

The elastic domain is:
K = {σ such that f � 0}

The dissipation power by unit volume is:

D = σ : ε̇p

where σ and ε̇ p are associated by the normality law. The dissipation power is:

D = σYλ (18)

The dissipation potential for both criteria is:

ϕ(σ) =
∫

Ω

χK (σ )

with χK the indicator function of the elastic domain K . The Fenchel conjugate
function is:

ϕ∗(ε̇ p) =
∫

Ω

{D}

Applying the BEN principle, we minimize the functional (15) that reads:
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Π̄(σ, u) =
∫ t1

t0

{∫
Ω

D − 〈σ,∇u̇ − Sσ̇ 〉
}

dt (19)

among all the curves among all curves (σ, u) : [t0, t1] → U × E such that σ(0) = 0,
u(0) = 0, satisfying Tresca or von Mises yield condition, the normality rule and the
equilibrium equations.

3.2 Mixed Finite Element Method for Thick Tube Problem

The mixed finite element method (FEM) is proposed to discretize the functional
which allow to have different discretized fields at the same time like stress, displace-
ment, plastic multiplier etc. The mixed FEM has a better convergence in a stress
field which is statically admissible specially for beam, plate and shell element, also
a good accuracy of stress in plasticity. For the thick tube problem, there are three
unknown fields: radial and hoop stresses, radial displacement and plastic multiplier.

3.2.1 Stress Field

As the thick tube is modeled by an axisymmetric element (a � r � b), imposing
an axisymmetric element inside the thick tube with α � r � β, there are two stress
connectors (radial and hoop stresses) per end of the element gathered in the vector:

ge =

⎡
⎢⎢⎣
ge,1
ge,2
ge,3
ge,4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σrr |r=α

σθθ |r=α

σrr |r=β

σθθ |r=β

⎤
⎥⎥⎦ (20)

In order to satisfy a priori the internal equilibrium equations in the constrained
minimization problem, we choose a polynomial stress field σe which depends on the
stress parameters h of the element. The expression of the hoop stress is derived from
the equilibrium equation σθθ = d

dr (rσrr ), that gives in matrix form:

σe(r) = Re(r) h (21)

[
σrr
σθθ

]
=

[
1 r r2 r3

1 2 r 3 r2 4 r3

]
⎡
⎢⎢⎣
h1
h2
h3
h4

⎤
⎥⎥⎦ (22)

Owing to Eqs. (20) and (22), we have the stress connectors ge in terms of the stress
parameters h:

ge = Ceh (23)
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⎡
⎢⎢⎣
ge,1
ge,2
ge,3
ge,4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 α α2 α3

1 2 α 3α2 4α3

1 β β2 β3

1 2 β 3β2 4β3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
h1
h2
h3
h4

⎤
⎥⎥⎦

By eliminating the stress parameters between Eqs. (21) and (23), the stress field σe

is expressed in terms of stress connector ge of the element:

σe(r) = Re(r)C
−1
e ge = Te(r)ge (24)

3.2.2 Displacement Field

For the same element occupying α � r � β, there is one displacement connector qe
at each end:

qe,1 = ur |r=α qe,2 = ur |r=β

In order to provide a strain field which has the same number of parameters as the one
of the stress field, we add two intermediate equidistant nodes inside the element:

γ = 2α + β

3
δ = α + 2 β

3

and two extra connectors qe,3 = ur |r=γ , qe,4 = ur |r=δ . The four displacement con-
nectors are gathered in the vector:

qe =

⎡
⎢⎢⎣
qe,1
qe,2
qe,3
qe,4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ur |r=α

ur |r=β

ur |r=γ

ur |r=δ

⎤
⎥⎥⎦ (25)

A polynomial displacement field ur is proposed:

ur = u1 + u2r + u3r
2 + u4r

3

By defining a cubic Lagrange interpolation, we obtain the relation between the dis-
placement field ur and the displacement connectors qe:

ur (r) = Ne(r) qe (26)

with:

NT
e (r) = 1

16

⎡
⎢⎢⎣

−(1 − η) (1 − 9 η2)

−(1 + η) (1 − 9 η2)

9 (1 − η2) (1 − 3 η)

9 (1 − η2) (1 + 3 η)

⎤
⎥⎥⎦ η = 2 r − (β + α)

β − α
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The corresponding strain field εe can be expressed in terms of the displacement
connectors of the element thanks to Eq. (17):

εe(r) = Be(r) qe (27)

3.2.3 Plastic Multiplier Field

Introducing the plastic multipliers λ which are located at the four Gauss point for
each element α � r � β, the flow rule reads:

ε̇ p
e = λe

∂ fT
∂σ

= λe NY (28)

3.2.4 Discretization of the Functional

For the thick tube problem, we have three discretized fields for one element α �
r � β, stress σe, displacement ur and plastic strain rate ε̇

p
e which depend on each

connectors, stress connectors ge, displacement connectors qe and plastic multipliers
λe:

σe(r) = Te(r)ge ur (r) = Ne(r) qe ε̇ p
e = λe NY

We have now the BEN principle equation, the application of the mixed FEM. To
numerically solve the thick tube problem, it remains to obtain the discretization
form of Eq. (19).

1. Space integral discretization

For the space discretization, we would like to evaluated the stress and displacement
fields in four Gauss point for each element where the plastic multipliers are located.
So the space integral is approximated by the usual Gaussian quadrature numerical
integration method on every axisymmetric element:

∫ β

α

A(r) 2π r dr ∼=
4∑

g=1

2π wg A(rg) rg

Thanks to the localization matrices Me, Le, Pe for each unknown field, we could
carry out the assembling:

ge = Meg, qe = Leq, λe = Peλ

The discretized form of the functional Eq. (19) is:

Π̄(g, q, λ) =
∫ t1

t0

(
ΛTλ(t) − q̇T (t)G g(t) + ġT (t)F g(t)

)
dt (29)
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with:

Λ =
n∑

e=1

PT
e Λe,

G =
n∑

e=1

∫ β

α
LTe BT

e (r) Te(r) Me 2π r dr, F =
n∑

e=1

∫ β

α
MT
e T T

e (r) S Te(r) Me 2π r dr

under the constraints of:

• equilibrium (on the boundary, the internal equilibrium being satisfied a priori):

g1(t) = −p(t), g2 (n+1)(t) = 0 (30)

• plasticity (at every Gauss point g of every element e):

NT
Y,e(rg) g − σY ≤ 0, λg ≥ 0, NYλg = Be(rg) q̇e − S Te(rg) ġe (31)

• initial conditions:

g(t0) = 0, q(t0) = 0, λ(t0) = 0 (32)

with NY,e(rg) = MT
e T

T
e (rg)NY .

2. Time integral discretization

For any physical quantity a, we impose a j = a(t j ), Δa j = a j − a j−1. On each step,
we approximate the time rate by ȧ = Δa j

Δt j
. As the plasticity is independent of the time

parameterization in statics, we use for convenience sake:

Δt j = 1 (33)

Considering m time step from t0 to tm and enforcing the yield condition only at the
beginning and the end of the step, we have to minimize the objective function:

Π̄(g0, . . . , gm, q0, . . . , qm, λ0, . . . , λm) =
j=m∑
j=0

(ΛTλ j − ΔqT
j G g j + ΔgTj Fg j )

(34)
under the constraints of:

• equilibrium (on the boundary, at each time step):

g0, j = −p(t j ), g2 (n+1)−1, j = 0 (35)

• plasticity (at every Gauss point g of every element e and at every time step):
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NT
Y,e(rg)g j − σY ≤ 0, λg, j ≥ 0 NY (rg)λg, j = Be(rg) LeΔq j − S Te(rg) MeΔg j

(36)

• initial conditions:
g0 = 0, q0 = 0, λ0 = 0 (37)

3.3 Implementation and Simulation Results

Matlab and its solver fmincon can find the minimum of constrained nonlinear
multivariable function. The functional (34–37) is a quadrature non-linear function
under linear (Tresca criterion) or quadrature (von Mises criterion) constraints.

In the program, one needs to impose a small tolerance for the equality constraint
(Eq. 36) in the optimization problem because there always exists the computation
error which deduces that the equality can not be satisfied exactly. For all fields in all
temporal en points, their optimization depart points are 0.1.

For simulation work, the numerical values of the thick tube radius a, b, material
parameters Young’s modulus E , etc. need to be provided firstly. Then one needs to
specify the number of elements and number of temporal end points. And the imposed
pressure for each time step also the initial condition should be fixed. Finally,Matlab
solver will minimize the BEN principle functional.

Here are three examples, the elastic and elastoplastic casewithTresca or vonMises
criterion which are theoretically explained in the previous section. The numerical
values for the thick tube and material parameters are: a = 100 mm, b = 200 mm,
E = 210 GPa, ν = 0.3 and σY = 360MPa. For the elastic case, the internal pressure
is p = 100 MPa, and p = 200 MPa for the elastoplastic case.

3.3.1 Elastic Regime

In this regime, there are two fictive temporal end points, t = 0 and t = 1. When
t = 0, all unknown fields are equal to zero (initial conditions). When t = 1, the
internal pressure is imposed as p = 100MPa. Simulation results are shown in Figs. 1
and 2. With one element (ne = 1), the convergence of radial stress is better than the
one of the hoop stress (Fig. 1), because the radial stress is imposed as a constraint
in the beginning of simulation. For radial displacement, convergence appears with 3
elements (Fig. 2). As the plastic multipliers are equal to zero in the elastic regime, its
results are not represented here. By increasing the number of element to 3, the BEN
principle result already converges to the analytical solution.

To conclude for the elastic regime, the BEN principle solution converges soon to
the analytical solution while increasing the number of elements. Moreover, for one
element, the convergence of stress field is faster than the one of radial displacement.
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Fig. 1 Comparison between the BEN principle solution (symbols) and analytical solution (plain
line) for radial and hoop stresses with 1 & 3 & 6 elements (ne) when p = 100 MPa, t = 1
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Fig. 2 Comparison between the BEN principle solution (symbols) and analytical solution (plain
line) for radical displacement with 1 & 3 & 6 elements (ne) when p = 100 MPa, t = 1
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3.3.2 Elasto-Plastic Regime (Tresca Criterion)

For the elastoplastic regime, there are also two fictive temporal end points, t = 0 for
initial conditions and t = 1 directly for the imposed pressure p = 200 MPa which
makes the internal wall come to yield. The mid temporal end point for the elastic
regime is not necessary. As the BEN principle is based on dissipation potential,
its characteristic allows to have a better performance in plastic regime which is an
advantage comparing to usual computing code.

As the analytical solution in the plastic part is not easily to obtain, the numeri-
cal solution of software Cast3M is chosen as the reference solution. Cast3M is an
open-source software developed in French Alternative Energies and Atomic Energy
Commission (CEA).

Simulation results are shown in Figs. 3, 4 and 5. There is a better convergence for
the stress field even with one element (Fig. 3) comparing to the elastic regime. That
is a big advantage in mechanical simulation while the mechanism comes to yield.
For radial displacement, there is the convergence when 3 elements are modeled. The
extra Fig. 5 is the plastic multiplier. As these three unknown fields are linked by the
constraint of decomposition of strains, so the plastic multiplier field converges to
reference one also with 3 elements.

For the elastoplastic regime, the BEN principle solution converges to reference
solution while increasing the number of elements. It has a better convergence than
the elastic regime. The mid-step for elastic regime is not required.
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σθ Cast3M
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Fig. 3 Comparison between the BEN principle solution (symbols) and reference solution (plain
line) for radial and hoop stresses with 1 & 3 & 6 elements (ne) and Tresca criterion when p = 200
MPa, t = 1
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Fig. 6 Comparison between the BEN principle solution (symbols) and reference solution (plain
line) for radial and hoop stresses with 1 & 3 & 6 elements (ne) and von Mises criterion when
p = 200 MPa, t = 1

3.3.3 Elasto-Lastic Regime (von Mises Criterion)

The only difference between Tresca and von Mises criterion is the optimization
constraint because of the computing of the equivalent stress. Only the results of
stress field is represented here for the reason of page limit.

Simulation results are represented in Fig. 6. Comparing to the Tresca criterion,
interface between elastic and plastic part of von Mises case is smaller. The conver-
gence of displacement and plastic multiplier field with von Mises criterion is faster
than the ones of Tresca. Convergence of the BEN principle while increasing the
number of element is always satisfied as before.

4 The Tube Problem in Dynamics

In dynamics, we need to consider the inertia force, ρü �= 0. After some paper work,
the functional to minimize is same as the one in statics. Expression of displacement
field is always the same. The one of stress field is modified because of the change in
equilibrium equation.
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4.1 Stress Field

There are two different methods to discretize the stress field.

• Method A allows to satisfies the balance of momentum equation exactly.
• Method B considers the equation as an optimization constraint which is satisfied
in Gauss points.

4.1.1 Method A: Balance of Momentum Satisfied Exactly

The principle is same as in the case of statics. Here we use the method due to
Schaefer ([15, 16]) in order to find the solution of the equilibrium equation. The
general solution of:

∇ · σ = ṗ

is the sum of the general solution σh of the homogeneous equation and a particular
solution σd of the non homogeneous equation. Following a method due to Schaefer,
this last one is of the form:

σd = 2∇w − (∇ · w) I , (38)

where the vector potential w is solution of ∇2w = ṗ. For the displacement field, we
seek a radial vector potential. The previous equation reduces to:

d2wr

dr2
+ 1

r

dwr

dr
− wr

r2
= ρ (v̇1 + v̇2r + v̇3r

2 + v̇4r
3)

Clearly, a solution is given by a homogeneous polynomial in r of degree five. Intro-
ducing it in the previous equation, we obtain by identification:

wr = ρ

(
v̇1
3
r2 + v̇2

8
r3 + v̇3

15
r4 + v̇4

24
r5

)

condition (38) reads in polar coordinates:

σrr = 2
dwr

dr
− 1

r

d

dr
(r wr ), σθθ = 2

wr

r
− 1

r

d

dr
(r wr )

leads to the expression of σd :

σrr = −σθθ = ρ

(
v̇1
3
r + v̇2

4
r2 + v̇3

5
r3 + v̇4

6
r4

)
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Besides, the homogeneous stress field being defined by four connectors is same as
in statics. In matrix form, the total stress field in terms of stress and displacement
parameters reads: [

σrr
σθθ

]
= σe(r) = Re(r) he+Se(r) v̇e

stress connectors are linearly depending on the stress and displacement parameters:

ge = Cehe+Dev̇e

Hence, one has: he = C−1
e (ge − Dev̇e). Eliminating the stress parameters provides

the stress field in terms of stress and displacement connectors:

σe(r) = Te(r)ge+Ue(r)q̈e

where:
Te(r) = Re(r)C

−1
e , Ue(r) = (Se(r)−Re(r)C

−1
e De) Ae

4.1.2 Method B: Balance of Momentum Satisfied in Gauss Points

We choose the same position for the radial and hoop stress field as the one of dis-
placement.

σr = h1 + h2 r + h3 r
2 + h4 r

3 σθ = h5 + h6 r + h7 r
2 + h8 r

3

There are four degrees of freedom for each stress:

g1 = σr |r=α, g2 = σr |r=β, g3 = σr |r=γ , g4 = σr |r=δ (39)

s1 = σθ |r=α, s2 = σθ |r=β, s3 = σθ |r=γ , s4 = σθ |r=δ (40)

Thus:

σe(r) =
[

σrr
σθθ

]
=

[
Ne(r) 0
0 Ne(r)

] [
ge
se

]
= Te(r) te

4.2 Spatial and Temporal Discretization

The discretized form of the functional adapts with the corresponding discretization
of the stress field.
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4.2.1 Method A

Performing the same assembling, the discretized form of the functional is:

Π̄(g, q, λ) =
∫ t1

t0

[
ΛTλ(t) − q̇T (t) (G g(t) + G̃ q̈(t))

+ gT (t) F1 ġ(t) + q̈T (t) F2 ġ(t) + gT (t) F3
...
q (t) + q̈T (t) F4

...
q (t)

]
dt
(41)

with:

Λ =
n∑

e=1

PT
e Λe,

G =
n∑

e=1

∫ β

α
LTe BT

e (r) Te(r) Me 2π r dr, G̃ =
n∑

e=1

∫ β

α
LTe BT

e (r)Ue(r) Le 2π r dr,

F1 =
n∑

e=1

∫ β

α
MT
e T T

e (r) S Te(r) Me 2π r dr F2 =
n∑

e=1

∫ β

α
LTe U

T
e (r) S Te(r) Me 2π r dr

F3 =
n∑

e=1

∫ β

α
MT
e T T

e (r) S Ue(r) Le 2π r dr F4 =
n∑

e=1

∫ β

α
LTe U

T
e (r) S Ue(r) Le 2π r dr

The Brezis-Ekeland-Nayroles claims that we have to find the minimum of (41) with
respect to the path t → (g(t), q(t), λ(t)) under the constrains of equilibrium, plas-
ticity and initial conditions as in statics.

For the time discretization of any physical quantity a, we put:

a j = a(t j ), ȧ j = ȧ(t j ), · · ·

On each step, we approximate the time rates at t = t j by:

ȧ j = a j − a j−1

t j − t j−1
, ä j = ȧ j − ȧ j−1

t j − t j−1
,

...
a j = ä j − ä j−1

t j − t j−1

Considering m time step from t0 to tm and enforcing the yield condition only at the
beginning and the end of the step, we have to minimize the objective function:

Π̄(g0, . . . , gm ,q0, . . . , qm , λ0, . . . , λm) =
j=m∑
j=1

[
ΛT λ j − q̇Tj

(
G gj + G̃ q̈ j

)
+ g j

T (t) F1 ġ j (t)

+ q̈ j
T (t) F2 ġ j (t) + g j

T (t) F3
...
q j (t) + q̈ j

T (t) F4
...
q j (t)

](
t j − t j−1

)
(42)

under the constrains of:
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• equilibrium (on the boundary, at each time step):

gr=a, j (t j ) = −p(t), gr=b, j (t j ) = 0

• plasticity (at every integration point g of every element e and at every time step):

fg, j (g, q̈) − σY ≤ 0, λg, j ≥ 0,

NYλg, j = Be(rg) Leq̇
T
j − S

[
Te(rg) Meġ j +Ue(rg) Le

...
q j

]

• initial conditions:

g0 = 0, q0 = 0, λ0 = 0, ġ0 = 0, q̇0 = 0, q̈0 = 0,
...
q 0 = 0

4.2.2 Method B

Performing the assembling thanks to the localization matrices Le, Me, Pe such that:

te = Met, qe = Leq, λe = Peλ

the discretized form of the functional is:

Π̄(t, q, λ) =
∫ t1

t0

(ΛTλ(t) − q̇T (t)G t (t) + ṫ T (t)F t (t)) dt (43)

with:

Λ =
n∑

e=1

PT
e Λe,

G =
n∑

e=1

∫ β

α
LTe BT

e (r) Te(r) Me 2π r dr F =
n∑

e=1

∫ β

α
MT
e T T

e (r) S Te(r) Me 2π r dr

The Brezis-Ekeland-Nayroles claims that we have to find the minimum of (43) with
respect to the path t → (t (t), q(t), λ(t)) under the constrains of:

• equilibrium (on the boundary, the internal equilibrium being satisfies a priori):

gr=a(t) = −p(t), gr=b(t) = 0,
d

dr
σr (rg) + 1

rg

[
σr (rg) − σθ (rg)

] = ρür (rg)

• plasticity and initial conditions are same as in the method A

By applying the same time discretization of method A, consideringm time step from
t0 to tm and enforcing the yield condition only at the beginning and the end of the
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step, we have to minimize the objective function:

Π̄(t0, . . . , tm, q0, . . . , qm, λ0, . . . , λm) =
j=m∑
j=1

(ΛTλ j − q̇T
j G t j + ṫ Tj F t j ) (44)

under the constrains of:

• equilibrium (on the boundary, at each time step):

gr=a, j = −p(t j ), gr=b, j = 0,
d

dr
σr (rg, j ) + 1

rg, j

[
σr (rg, j ) − σθ (rg, j )

] = ρür (rg, j )

• plasticity and initial conditions are same as in the method A

4.3 Simulation Results

The program is coded in Matlab, the solver fmincon is applied to find the local
minimum of the constrained functional (42, 44). Material parameters are, E = 210
GPa, ν = 0.3, σY = 360 MPa, a = 100 mm, b = 101 mm, ρ = 7.8 e−9 Kg/mm3.
Internal pressure history is displayed in 7. The Simulation results are displayed in
Figs. 8 and 9 for elastic and plastic cases.

There is a good consistence between the BEN principle solution and the analytical
or numerical solution.TheBENprinciple requires sufficient time steps to have abetter
precision than the one of step-by-step (Fig. 8). The method A and B does not change
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the simulation results in elastic case (Fig. 8). As displayed in Fig. 9, the method A
is more accurate than the method B in plastic case as the momentum equation is
satisfied exactly.

5 Conclusions and Future Works

In this work, the BEN principle has numerically proven with success. It allows to
transform a mechanical problem into an optimization problem under constraints,
that is how the BEN principle has the ability to work simultaneously on all time
steps in place of using the step-by-step method and facing the convergence problem.
Comparing to an usual computing code, another advantage of theBENprinciple is the
convenience of implementation of special plastic criteria and material behavior laws,
but it is not always a good choice to impose a refined mesh to have a better solution.
Bymeans of the simulations, the BEN principle solution has a fast convergence to the
reference solution, especially for the stress field, that is a big advantage in a plastic
regime.

In the future, a more effective minimization solver is necessary to solve a large
optimization problem. Moreover, as this is a space-time coupling problem, the com-
puting time is expensive. We would like to apply the Proper Generalized Decom-
position (PGD) reduction method [17–19] to the problem in order to decrease the
computation time. The main idea of the PGD method is to separate space and time
and carry out the computation of each field separately. Moreover, this method allows
to modify the initial problem to a parametric model which is very useful for the
mechanical problem.
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Shakedown Limits of Slab Track
Substructures and Their Implications
for Design

Juan Wang, Hai-Sui Yu, and Shu Liu

Abstract This paper presents an approach to shakedown of slab track substructures
subjected to train loads. The train load is converted into a distributed moving load on
the substructure surface using a simplified track analysis. Based on the lower-bound
dynamic shakedown theorem, shakedown solutions for the slab track substructures
are obtained over a range of train speeds between zero and the critical speed of
the track. It is found the shakedown limit is largely influenced by the ratio of layer
elastic moduli and the ratio of train speed to critical speed rather than their absolute
values. An attenuation factor, as a function of the critical speed and the friction angle
of subsoil, is proposed to effectively obtain the shakedown limit of the slab track
substructure at any train speed. In light of the shakedown solutions, improvements
to the existing design and analysis approaches are also suggested.

Keywords Slab track · Shakedown · Design · Train loads · Trains speed

1 Introduction

Slab tracks have been widely used for high-speed railways. In China, around 70% of
the high-speed railways are ballastless slab tracks. Slab tracks require very limited
residual settlement/differential settlement as a result of long-term permanent defor-
mation of supporting substructures which comprise compacted granular layers and
subsoil.
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Nowadays, there is an increasing trendof using shakedown theory in the evaluation
of the long-term stability of geotechnical structures under cyclic or variable loads.
The shakedown theory has been proven to be very useful for solving design problems
in foundations and pavements (e.g. [1]; [4, 8, 15, 16, 17, 19, 22, 23, 26, 27, 25]; [11,
24]). Recently, some shakedown analyses have been performed for the problem of
railways subjected to train loads. For example, Zhuang and Wang [28] obtained the
shakedown limits for ballast railways considering the effect of layer thickness and
load distribution. Liu et al. [12] did shakedown analyses on ballastless slab tracks
and assessed the effect of the increasing stiffness modulus with depth. However, the
dynamic effect induced by the moving train was not taken into account in the above
two articles. Wang et al. [21] and Liu andWang [13] performed dynamic shakedown
analyses for the substructure of typical slab tracks based on lower-bound dynamic
shakedown theorem. Parametric studies were carried out and the results proved that
the ratio of train velocity to the critical velocity of track is a key factor that affects
the dynamic shakedown limits. Costa et al. [5] then included the effect of rest stress
fields and found that neglecting the rest stress may underestimate the shakedown
limit.

In this paper, both quasi-static and dynamic shakedown limits for a typical slab
track substructure will be presented. The influencing factors of the shakedown limits
and the relation between the dynamic shakedown solution and the quasi-static shake-
down solutionwill be analysed.Afitting equationwill then be proposed for predicting
the dynamic shakedown limits by modifying the quasi-static shakedown limit with
an attenuation factor. The implication of this approach for the slab track substructure
design will be discussed finally.

2 Simplified Model of Slab Track Substructures

Figure 1 shows a typical slab track system which includes a superstructure and a
supporting substructure. The superstructure is composed of two rails, a track slab, a
concrete base, sleepers, pads and fastening systems. Table 1 summarises the prop-
erties of the key components of the superstructure. The dimensions of the track slab
and the concrete base are taken from a typical Rheda 2000 single track system. The
rail is UIC60. The substructure consists of an anti-frozen layer, a prepared subgrade
layer and a subsoil layer of infinite depth. Four axle loads belonging to two adja-
cent bogies on two carriages move at a constant speed V along x-direction (Fig. 1).
Each axle load is denoted by λP where P is a unit axle load and λ is a scale factor.
No traction in the longitudinal or transverse direction is considered. Moreover, the
magnitude of the loads is constant, without considering the effect of rail unevenness
and vehicle suspension system.

This paper focuses on the shakedown analysis of the substructure. A simplified
track analysis is proposed to convert the train loads and the superstructure into a
distributed moving load on the substructure. It is considered that the superstructure
components act together as a single infinite Euler-Bernoulli beam with a total EbI
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Fig. 1 A typical slab track structure and axle loads

Table 1 Material properties and dimensions of the key components of a slab track superstructure

Layer Young’s
modulus Eb
(GPa)

Width (cm) Height (cm) Second moment
of area I (cm4)

Mass per unit
length (kg/m)

Rail 210 15 17.2 3055 60.03

Track slab 34 280 24 322560 1680

Concrete base 10 340 30 765000 2448

value (Eb is Young’s modulus of the beammaterials; I is second moment of inertia of
the beam), while the supporting substructure is simplified as aWinkler’s foundation.
The pads and sleepers are ignored in this study as they do not contribute to the
bending of the superstructure. In the assumption of Winkler’s foundation, a reaction
modulus k is used to describe the resilient response of the soil, which, however,
is not a fundamental soil property. Relations between the reaction modulus and the
material elasticmodulus have been proposed theoretically or empirically by a number
of authors for different situations (e.g. [2, 18, 20]. For the problem of an infinite slab
track resting on a three-dimensional homogeneous isotropic elastic soil continuum,
the relation between the reaction modulus k and the elastic modulus E of the soil has
been proposed [12]:

k = 0.583EbI

b1.267d3.733
(1)

with

d =
(

(1 − ν2)EbI

E

)1/3

(2)

where ν is Poisson’s ratio of the soil; b is the half width of the slab track. For
the problem of a layered soil, an equivalent reaction modulus keq or an equivalent
stiffness modulus Eeq can be used by equating the maximum deflection of the beam
with the maximum surface displacement of the elastic half-space [12]. In the current
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Fig. 2 Pressure distribution on the surface of track substructure

study, giving the material properties described in Table 1 and the soil Poisson’s ratio
of 0.3, Eq. 1 can be rewritten as:

k = 0.00314E1.2443 (3)

Then, the four axle loads can be converted into a distributed load on the top of
the substructure according to the following equation:

p = p0e
−μ|x|(cosμ(x) + sinμ|x|) (4)

where p0 = λPμ/4b; μ = (2kb/EbI)0.25.
Figure 2a exhibits the pressure distribution for different values of stiffness

modulus. Reaction force due to upward displacement of the beam is taken as zero.
As can be seen, the pressure is distributed more widely and uniformly when the
reaction modulus is lower. In the transverse direction, the pressure is assumed to be
distributed uniformly over the width of the concrete base (i.e. 3.4 m), as shown in
Fig. 2b.

3 Dynamic Shakedown Analysis

Yu andWang [25] proposed an approach to obtain the lower-bound shakedown limits
of cohesive-frictional materials under three-dimensional surface loads assuming a
quasi-static situation, based on Melan’s lower-bound shakedown theorem. However,
for the problem of high-speed railways, the dynamic shakedown analysis needs to
be performed.

The lower-bound dynamic shakedown theorem of Ceradini (1980) [3] states that
shakedown will occur in the real response if a fictitious response and a residual stress
field may be found so that
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f (λσ e
ij (t) + σ r

ij) ≤ 0 (5)

where the residual stress field itself σ r
ij must satisfy self-equilibrium and time-

independence conditions; λ is a dimensionless factor; t is time; the fictitious response
refers to the elastic response to the external actions (not real elastic-plastic response),
such as the unit load-induced elastic stresses σ e

ij (t) and displacements uei (t), which
should satisfy the following dynamic equilibrium conditions:

σ e
ij,j(t) + Xi(t) = ρüei (t) − χ u̇ei (t) (6)

σ e
ij (t) − fi(t) = 0 (7)

where is Xi body force field applied to the region V with an initial state; ρ is material
density; χ is damping coefficient and fi is surface force acting on the surface S.
Tension positive notation is applied throughout this paper.

For the problem considered here, assuming the soil behaviour obeys the Mohr-
Coulomb yield criterion, the lower-bound dynamic shakedown theorem requires
that the total stress state of any point must not lie outside the Mohr-Coulomb yield
surface at any time. On each x-z plane, since σ r

yy can be chosen such that σyy is
always an intermediate principle stress, the substitution of the total stresses into the
Mohr-Coulomb yield criterion leads to the following expression:

f = (σ r
xx + M )2 + N ≤ 0, (8)

with

M = λσ e
xx − λσ e

zz + 2 tan ϕ(c − λσ e
zz tan ϕ), (9)

N = 4(1 + tan2 ϕ)[(λσ e
xz)

2 − (c − λσ e
zz tan ϕ)2], (10)

where ϕ and c are soil dynamic friction angle and cohesion, respectively; σ e
ij is elastic

stress field induced by the unit axle loadsP, moving at a constant speedV. The elastic
stress field can be obtained by using analytical solutions of Easton (1965) [6] for the
case of a homogenous isotropic half-space or performing finite element simulations
for a layered structure. A typical finite element model of the track substructure is
shown in Fig. 3. The details of the model can be found in Wang et al. [21].

The residual stress σ r
xx must be time-independent and self-equilibrated. For prob-

lems where the travelling speed of the surface load is constant and smaller than
the wave propagation velocity, every points at the same depth experience an iden-
tical stress history. The elastic stress field over a period T at any given speed does
not change with position. Using the Mohr-Coulomb yield criterion and the self-
equilibrium condition of the residual stress field, it is found that the actual horizontal
residual stress must be fully bracketed by the two critical residual stress fields, when
the structure is at a shakedown status [21].
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O

Fig. 3 Finite element model of track substructure

σ r
xx−l = −∞≤x≤∞

max
z=j

(
−Mi −

√−Ni

)
(11)

σ r
xx−u = −∞≤x≤∞

min
z=j

(
−Mi +

√−Ni

)
(12)

in which i represents a general point at depth z = j. By substituting the load-induced
elastic stress fields and either of the critical residual stress fields into the Mohr-
Coulomb yield criterion f (σ) ≤ 0, the present shakedown problem can be rewritten
as a mathematical optimisation problem:

s.t.
max λ{

f (σ r
xx(λσ e), λσ e) ≤ 0 for all points

σ r
xx(λσ e) = σ r

xx−l or σ r
xx−u

(13)

If λ is larger than the shakedown limit, f will be larger than 0 at some points;
otherwise, f will always be equal or smaller than 0. The maximum admissible load
factor is the shakedown limitmultiplier of the substructure, denoted byλsd . The above
shakedown condition can be reduced to a quasi-static shakedown solution when the
train speed is very low. At any given speed, the above mathematical formulation then
can be solved by using a procedure in Yu and Wang [25] and will not be repeated
here.

For a layered structure, it is useful to know which layer is critical. The shake-
down limit multiplier λn

sd of each layer can be calculated and compared. Finally, the
shakedown limit of the whole structure is the lowest one among them:
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λsd = min(λ1
sd , λ

2
sd , . . . , λ

n
sd ) (14)

where the superscript n (= 1, 2, 3…) means the nth layer.

4 Shakedown Limits

A typical slab track substructure, composed of an anti-frozen layer, a prepared
subgrade, and a subsoil of a great depth, is considered in this study. According
to Eqs. 8–10, the shakedown limit of a slab track is dependent on the plastic prop-
erties of the soils (i.e. φ and c) and the elastic stress distributions in the soils. The
latter is controlled by the pressure distribution, the elastic parameters of the soils,
and the moving speed of the train loads V with respect to the critical speed of the
substructure V cr. It should be noted that the stiffness modulus of a soil also depends
on the frequency of loading. Therefore, in the stability analysis of high-speed rail-
ways, a dynamic stiffness modulus Ed , which is higher than the stiffness modules E,
is normally employed instead. In light of this, the current research will investigate
the quasi-static situation and the dynamic situation, respectively; and the effect of
the stiffness modulus will be discussed. Table 2 shows the material properties and
layer thicknesses of the three-layered substructure in this study.

4.1 Shakedown Limits in a Quasi-Static Situation

For the case of a stiff subsoil (i.e. E3 = 110 MPa), the influence of the thickness of
the prepared subgrade is first investigated. Figure 4 demonstrates that the increase
of the subgrade thickness (2nd layer) decreases the shakedown limit of that layer but
increases those of the other two layers. More significant changes occur in the subsoil
(3rd layer). According to Eq. 14, the lowest shakedown limit among all layers is
the overall shakedown limit of the substructure. Therefore, there exists an optimum
subgrade thickness in this case, at around 1.7 m, above which further increase of the
thickness barely changes the overall shakedown limit.

Table 2 Material properties and layer thicknesses of a three-layered substructure

Layer name hn (m) En (MPa) Ed
n (MPa) νn φn (°) cn (kPa) ρn (kg/m3)

Anti-frozen
layer

0.4 200 290 0.3 50 1 2000

Prepared
subgrade

1.3, 1.8, 2.3, 2.8 130 190 0.3 40 2 1850

Subsoil ∞ 110 or 55 160 0.3 30 2 1800
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Fig. 4 Effect of subgrade
thickness on the shakedown
limit of each layer when E1
= 200 MPa, E2 = 130 MPa,
E3 = 110 MPa

Fig. 5 Effect of subgrade
thickness on the shakedown
limit of each layer when Ed

1
= 290 MPa, Ed

2 = 190 MPa,
Ed
3 = 160 MPa

Figure 5 further examines the influence of the values of the stiffness moduli
on the shakedown limit by using the values of the dynamic stiffness moduli Ed

instead. The corresponding load distributions are applied. It should be noted that the
ratio of the dynamic stiffness moduli Ed

1 / E
d
2 / E

d
3 is set to be identical to E1/E2/E3.

Compared to Fig. 4, this case shows similar trends of the shakedown limits of each
layer; while the optimum layer thickness is moved to around 2.2 m. In Fig. 6, a
direct comparison of the overall shakedown limits shows that increasing the stiffness
moduli by 40% reduces the shakedown limit (by 7% at maximum) for the cases of
a low h2, but increases it (by 4% at maximum) for the cases of a high h2. Further
investigation reveals that the small differences are only attributed to the changed
pressure distribution, not the values of the stiffness modulus, because the elastic
stress fields under a specific distribution is only dependent on the ratio of layer
stiffness moduli. For the cases of a high stiffness modulus, the pressure is less evenly
distributed, leading to a lower shakedown limit of the first layer and higher shakedown
limits of the other two layers. The above finding implies that, though the stiffness
moduli of soils vary with the frequency of loading or the train speed, if the rates of
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Fig. 6 Effects of stiffness
modulus and subgrade
thickness on the shakedown
limit

the changes are similar for soils in different layers, it will barely have influence on
the shakedown limit. Additionally, when the thickness of the prepared subgrade is
relatively large, the subsoil layer becomes less critical, resulting in an increase of
the shakedown limit of the subsoil; otherwise, the other two layers are more likely
to fail.

Figure 4 also shows the shakedown limit of the substructure when the subsoil
is soft (i.e. E3 = 55 MPa). Compared to the case of a stiff subsoil, the shakedown
limit is dropped significantly. If the design axle load is 250 kN, the substructure will
definitely fail due to excessive permanent deformation. The shakedown limits of the
three layers are 220 kN, 290 kN and 572 kN, respectively. This implies that for the
case of a poor subsoil, more stresses are locked in the upper layers thus a higher
possibility of failure in the subgrade.

4.2 Shakedown Limits in a Dynamic Situation

When the dynamic situation is considered, the elastic stress fields, and thus the
shakedown limit, highly depend on V/Vcr , where V represents the moving speed
of the train loads V and Vcr represents the critical speed of the track. Figure 7a
demonstrates an accelerated decrease of the shakedown limit of each layer with
rising train speed, when the dynamic stiffness moduli in Table 2 are utilised. The
shakedown limit is the minimum when the train speed is close to the shear wave
velocity of the bottom layer V s-layer3, which can be recognised as the critical velocity
of the slab track. If the stiffness moduli are reduced by the same rate (say 44%)
while maintaining the pressure distribution, the shakedown limits of the three layers
will be decreased, as shown in Fig. 7a. If the shakedown limits are replotted against
a velocity factor α, defined as V /V cr, the two cases will coincide with each other
(Fig. 7b). As a result, the shakedown limit is controlled by the velocity factor rather
than the values of the train speed.
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Fig. 7 Effect of train speed on dynamic shakedown limit when h2 = 2.3 m

Indeed, a thicker prepared subgrade benefits to the long-term stability of the
substructure. Despite of that, as the train speed is raised, this benefit becomes very
limited, as shown in Fig. 8. For the case studied here, the slab track is able to sustain
axle loads of 250 kN when the train speed is smaller than 280 km/h. If more loads or
a higher train speed are to be applied, increasing the subgrade thickness alone will
not help with the situation, because it cannot prevent the accumulating permanent
deformation in the second layer. Instead, the material quality of this layer should
be improved. More detailed comparisons for the shakedown limits of each layer
considering different train speeds can be found in Wang et al. [21].

Figure 9 demonstrates that a decrease of the friction angle of the subsoil leads to
a drop of the shakedown limit of the substructure. However, it does not affect the
critical speed of the substructure. Therefore, the shakedown limit decreases more
significantly with an increasing train speed for the case of a larger friction angle.
This implies that though the high friction angle has a positive effect on the long-term
stability of the track substructure, one should be very careful when trying to increase
the train speed at those cases.

Fig. 8 Effect of subgrade
thickness on dynamic
shakedown limit
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Fig. 9 Effect of friction
angle on dynamic shakedown
limit when h2 = 2.3 m

4.3 Relationship Between Static and Dynamic Shakedown
Limits

The effect of the train speed on the shakedown limit can be quantified by introducing
an attenuation factor η, defined as the dynamic shakedown limit for the current speed
λd
sdP over that of the quasi-static case λs

sdP, so that the dynamic shakedown limit at
any given speed can be estimated according to:

λd
sdP = ηλs

sdP (20)

Figure 10a shows the variation of the attenuation factor against the velocity factor
for different values of subsoil friction angle. When the velocity factor is smaller
than 0.1, the attenuation factor is close to 1; otherwise, it decreases with the rising
velocity factor. Similar trends can be obtained in other cases (Fig. 11). And thus, a
fitting equation is proposed as below:

Fig. 10 Variation of attenuation factor when h2 = 2.3 m
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Fig. 11 Effect of subgrade
thickness on attenuation
factor

η =
{
1 when α ≤ 0.1

(1 − ηcr)
n

√
1 − (

α−0.1
0.9

)n + ηcr when 0.1 < α < 1
(21)

where n is a coefficient depending on the friction angle of the subsoil, the value
of which can be obtained from Fig. 10b; ηcr is the attenuation factor when V =
V cr, the value of which can be taken as 0 in common design situations (exception
occurs when the stiffness of subsoil is extremely low compared to the stiffness of
the upper layers). Figure 11 also reveals the attenuation factor was barely affected
by the thickness of the prepared subgrade.

5 Implications for Design

5.1 Safe Train Speed

In practice, a quick evaluation of the maximum admissible train speed is useful for
the design of high-speed railways. One rule-of-thumb approach is to use the 70% of
the critical speed of the track [9]. However, in the shakedown analysis of a typical
slab track substructure, Fig. 8 demonstrates that a safe train speed should be smaller
than 60% of the critical speed, considering axle loads of 250 kN. Therefore, the use
of 70% of the critical speed cannot guarantee the long-term stability of the slab track.

5.2 Amplification Factor

In the long-term stability analysis of slab track substructures, it is commonly required
to determine the dynamic stresses on soils. For a slab track of good condition, the
dynamic effect from rail unevenness or vehicle suspensions system is minor, and
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Fig. 12 Comparison with
literatures

therefore the dynamic stresses on soils can be obtained by applying an amplified
load Pd , which is the product of the static axle load Ps and an amplification factor β:

Pd = βPs (22)

where β is a function of train speed. A range of values for the amplification factor
can be found in literature, as shown in Fig. 12.

It should be noted that the reciprocal of the attenuation factor can be related with
the amplification factor, since Pd ≤ λd

sdP and Ps ≤ λs
sdP. If the applied load is the

shakedown limit of the slab track substructure (i.e. Pd = λd
sdP and Ps = λs

sdP), then

β = Pd

Ps
= λd

sdP

λs
sdP

= 1

η
(23)

In light of this, 1/η from the shakedown analysis of the typical slab track substruc-
ture is compared with β in literature. A range of subsoil friction angle between 0° and
45° is considered. As can be seen, when the friction angle is 45°, the values of 1/η
are close to the amplification factors of German design code (Gobel et al. 2007 [7]).
The amplification factors of Hu and Li [10] are close to the values of 1/η for the
cases of a relatively low friction angle. These results imply that the evaluation of the
dynamic effect on the long-term stability of a slab track should have also considered
the friction angle of subsoil.

6 Conclusions

Shakedown solutions of typical slab track substructures under moving train loads are
presented in this paper. Key findings are summarised below:

1. A quasi-static shakedown condition can be assumed if the moving train velocity
is no larger than 10% of the critical speed of the track.
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2. Using the dynamic stiffness moduli of soils instead of the stiffness moduli will
barely affect the shakedown limit of the substructure, as long as the ratio of layer
stiffness maintains.

3. The dynamic shakedown limit at any given train speed can be obtained by multi-
plying the shakedown limit in the quasi-static situation by an attenuation factor.
For typical slab track substructures, the attenuation factor is only dependent on
the friction angle of subsoil and velocity factor.

4. A train speed of 70%of the critical speed cannot guarantee the long-term stability
of slab tracks.

5. At a given train speed, the amplification factors of the axle load due to the dynamic
effect of the train speed can be distinct from each other for the cases of different
subsoil friction angle.
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Investigations of Shakedown
in the Presence of Ambient Creep Using
Direct Methods for High Strength Steel
Under Multiaxial Loadings

Daniele Barbera, Ali Charbal, I. Soner Cinoglu, and Natasha Vermaak

Abstract Life integrity assessment of industrial components often requires investi-
gations of the cyclic inelastic response at a range of operating temperatures. Some
high strength steels exhibit a well-known ambient temperature creep behaviour,
which can also impact the cyclic behaviour, especially under long-term operation. In
this study, a direct method known as the Linear Matching Method has been used to
predict the cyclic shakedown and ratchet limits of high-strength steel (AISI 1144).
The numerical predictions are compared with a recent testing campaign that was
completed at room temperature to characterise the multiaxial behaviour of AISI
1144. Due to creep of the material, inelastic strain accumulation is also observed for
loading conditions within the shakedown limit. The extended Direct Steady Cyclic
Analysis (eDSCA) approach has been used to predict the cyclic behaviour in the
presence of creep. In addition, for specific load cases of interest, a newly revised
creep-ratcheting limit has been derived and compared with the experimental tests.

Keywords Shakedown · Ratcheting · Room temperature creep · Linear matching
method

1 Introduction

The life integrity of engineering components is affected by several factors related
to the environmental and operational conditions, including repeated multiaxial load-
ings where creep strains may be simultaneously occurring. The interaction between
fatigue and creep, usually at high-temperature [1–7], has been widely investigated
experimentally and numerically. Also, effects on crack initiation [8–11], propaga-
tion [12–14] and also for creep-ratcheting limit calculations [15] have been explored.
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However, the effect of creep at low temperature in conjunction with fatigue has only
been marginally investigated. For example, different creep models based on simpli-
fied inelastic deformation responses [16, 17] or considering more refined models
accounting for stress and strain rate effects [18], or microstructural states [19] have
been applied in titanium alloys. For high-strength steels, the importance of creep at
room temperature has been well-established [16, 20–23]. For example, Oehlert and
Atrens [16], highlighted its impact on low temperature environmental assisted crack
growth.

Whenever a component is subjected to cyclic loads within the plastic regime
it can exhibit a series of responses. A simple way to graphically represents these
responses has been proposed by Bree [24], who introduced the interaction diagram.
In his work, the combination of a primary and secondary load can produce elastic
response, elastic shakedown, alternating plasticity (plastic shakedown), ratcheting
and plastic collapse. The shape of the bounding limits between these responses
can change drastically depending on the structural and material behaviour [25]. In
particular, creep at high temperature is known to introduce ratcheting due to the
accumulation of inelastic strain, even when the loading conditions are expected
to be in the elastic shakedown domain. This mechanism, which is also known as
cyclic-enhanced-creep, has been widely addressed [15, 26, 27]. Despite the different
mechanisms that drive room temperature creep, it is reasonable to expect a similar
interaction between cyclic plasticity and creep. The additional inelastic strain accu-
mulated may interact with the crack growth process making the creep-fatigue inter-
action more difficult to be assessed. In contrast to high-temperature creep, inelastic
deformation at low temperature is generally neglected or not considered in assess-
ment procedures. This is because the likelihood of having a major failure due to
the sole contribution of this mechanism is very low. However, when considering the
effect of cyclic loading and the potential interaction with more detrimental environ-
mental mechanisms, neglecting inelastic deformation at room temperature may lead
to inaccurate integrity assessments.

Typically structural assessment is done using coupled non-linear kinematic and
isotropic hardening models. However, these models require non-trivial parameter
calibration and are computationally expensive. This is particularly significant in
design caseswhere only the stabilised response is required. To overcome these issues,
a series of numerical procedures [28, 29] have been developed to efficiently deter-
mine cyclic plastic behaviours, including shakedown limit calculations. One of the
most successful numerical methods that have been developed is the Linear Matching
Method (LMM) [30, 31]. Besides, the LMM Framework (LMMF) [32] provides not
only an accurate and robust numerical procedure for shakedown limit calculations
but it has been extended to assess plastic limits, ratcheting, and also creep-rupture,
creep-fatigue, and creep-shakedown interactions. For the case of shakedown within
the creep regime, there is a dearth of creep-shakedown experiments available to
demonstrate the importance of these interactions.

In the present work, the focus will be on the use of the LMMF to gain insight
into the steady-state cycle and full creep-cyclic shakedown or plasticity interactions
for recent ambient experiments on high strength steels (AISI 1144) [33]. AISI 1144
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carbon steel cylindrical bars were subjected to ambient cyclic tension with nonzero
mean stress and constant torque. In particular, the LMMF is used to identify the
cyclic response, first without considering creep, to obtain shakedown and ratcheting
limits. For the predicted shakedown domain, the extended Direct Cycle Analysis
approach within LMMF is used to predict the creep behaviour. This analysis leads
to the identification of cyclic behaviour with creep and allows for the modification
of the shakedown limits. The numerical results are compared with experimentally
observed cyclic behaviours. Finally, a new creep-ratcheting limit is obtained and
compared with the AISI 1144 experiments.

2 High Strength Steel Material Response

Recently, ambient cyclic multiaxial tests were performed on high strength steel bars
to demonstrate macroscopic shakedown behaviour [33]. However, in Charbal et al.
[33], it was also found that cyclic creep was active in the loading regime explored.
This complicated the interpretation and analysis of shakedown determination. In the
following, numerical studies are presented to aid interpretation of the cyclic inelastic
responses observed and in additional loading scenarios not experimentally attempted.
Below, some of the experimental results from [33] are repeated and summarized for
comparison with the numerical analysis in the following sections.

2.1 Monotonic and Cyclic Multiaxial Tests

Charbal’s cyclic multiaxial experiments [33] were inspired by the shakedown experi-
ments fromHeitzer et al. [34] on hollow cylindrical ferritic steel tubes for the nuclear
industry. In [33], in contrast to Heitzer et al. [34], solid cylindrical rods of a common
high strengthAISI 1144mediumcarbon steel (ASTMA29,A311,A510)were tested.
This was done to illicit non-homogeneous stress-states and add a structural aspect to
the tests. In particular, the rods were subjected to cyclic tension with nonzero mean
stress and constant torque at room temperature. The AISI 1144 rods were machined
to the dimensions shown in Fig. 1 (ASTM E8, A370, E466) [35]. All tests were
performed on a servo-hydraulic MTS multiaxial rig (MTS 319.25) and controlled

Fig. 1 Solid AISI 1144 rods used for multiaxial testing. Dimensions are in mm [33]
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Table 1 Axial-torsional
shakedown test program for
AISI 1144 specimens

Load case FR (kN) TR (N-m) �F (kN)

Sample 1, Case #1 87 90 2

Sample 1, Case #2 90 90 2

Sample 1, Case #3 94 90 2

Sample 1, Case #4 98 90 2

viaMTS FlexTest 40 andMultipurpose Software.Monotonic tests were conducted at
an applied strain rate of 1 × 10−5 1/s and the Young’s Modulus was found to be E =
204 GPa and the elastic limit was 750 MPa. A stereo digital image correlation (DIC)
system was used to acquire 3D surface displacement and strain fields in the gage
section [33]. The acquisition frequency allowed for 10 images per loading cycle to
be recorded. The DIC images were analysed using the CAD-based stereo DIC soft-
ware and procedures described in references [36–38] across a region of interest at
the tube axis (approximately 510 pixels across 12.7 mm).

Cyclic axial-torsional tests consisted of three stages: (1) an initial ramp in force
(FR) at a rate of 350 N/s (2.75 MPa/s). (2) A ramp in torque, T, at a rate of 210 N-
mm/s (1.3 MPa/s) to achieve a target equivalent mean stress. After the ramp in
torque, the final level was held constant for the remainder of the tests. A short dwell
period at this stage with both force and torque held constant (for 1 min) was used
to check for instrumentation stability before the cyclic stage of the testing program
commenced. (3) The axial force was cycled around the target equivalent mean stress,
with a frequency (f ) that was the same rate as that applied in the initial ramp phase.
A total of 150 load cycles were performed for each cyclic test. Note that during the
cycling of force the torque remained constant. A list of the subset of experimental
results [33] that are the focus of this article is given in Table 1. The mean force (FR),
maximum torque (TR), and cyclic force amplitude ( �F) are provided. Note that the
cyclic testing method from Lemaitre and Chaboche (Chap. 5) was applied such that
each AISI 1144 sample was tested at several equivalent stress levels, increasing in
severity (Fig. 2).

3 Numerical Schemes for Shakedown and Ratcheting Limit
Analysis

To gain additional insight into the experimental responses due to cyclic loading
(Table 1), a numerical upper bound approach is applied to determine which regime
(shakedown, ratcheting, etc.) is expected under the loads applied.
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Fig. 2 Representation of the loading program for a single specimen with multiple load cases
(Table 1) [33, 38]

3.1 Shakedown and Ratchet Limit

The theory behind the calculation of the upper bound shakedown limit is based on the
well-knownKoiter theorem [39]. Here the numerical implementation is briefly intro-
duced and more details can be found in [30–32]. When calculating the shakedown
limit the material is considered elastic-perfect plastic, and the material is contained
in a generic domain. A crucial point resides in the definition of a loading history that
affects the generic domain and that can be defined as an elastic stress field σ̂ ij. This
elastic stress field is associated with the combined effect of different elastic stress
fields σ̂ θ

ij and σ̂ P
ij (secondary and primary, respectively). To construct a wide range of

loading histories, each field is multiplied by a load multiplier λ:

λσ̂ ij = λσ̂ θ
ij + λσ̂ P

ij (1)

The Linear Matching Method (LMM) uses the kinematic theorem developed by
[39], which can be expressed by the incompressible and kinematically admissible
strain rate history. The key feature resides in the integral definition of the compatible
strain increment �εcij, which is given by the integration of the strain rate ε̇cij. Based
on this, the shakedown limit can be determined by calculating the load multiplier
that makes the following equality valid:

λshakedown

∫

V

�t∫

0

(
σ̂ij ε̇

c
ij

)
dtdV =

∫

V

�t∫

0

σ c
ij ε̇

c
ijdtdV (2)

This definition incorporates the applied loading history by considering the linear
elastic stress field σ̂ij for λ = 1, the stress at yield σ c

ij associated with the strain rate
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history ε̇cij. Combining the associated flow rule, the shakedown limit multiplier λsh

can then be calculated by the following equation:

λsh =
∫
V

�t∫
0

σy(t) · ¯̇ε
(
ε̇cij

)
dtdV

∫
V

�t∫
0

(
σ̂ij · ε̇cij

)
dtdV

(3)

where σy(t) is the yield stress of the material depending on the temperature at each
integration point. The two integral formulations shown in the Eq. (3) are volume
integrals and can be easily estimated by using the plastic energy dissipation calculated
by a finite element software tool like Abaqus.

This type of problem involves interacting loads and a monotonic minimisation of
the shakedown multiplier. This is done by performing a series of subsequent linear
analyses, where the first plastic strain rate (that can be seen as an initial guess) is
used to generate a new strain history ε̇cij as it is shown in Eqs. (4–5),

ε̇c′ij = 1

μ

(
λi
shσ̂ij + ρ̄c

ij

)′

ε̇ckk = 0 (4)

μ = σy

¯̇εi (5)

where the notation (′) refers to the deviatoric component of stress and strain. The
new strain rate will be calculated by accounting for the scaled elastic stress history
and the associated constant residual stress field ρ̄c

ij. To match the behaviour between
the linear and nonlinear materials, a matching condition must be adopted, and it is
shown in the Eq. (5). The shear modulus μ is defined as the ratio between the yield
stress σy and the equivalent strain rate ¯̇εi. By integrating over the cycle time Eq. (4)
the strain increment over the cycle is obtained:

�εc′ij = 1

μ̄

(
ρ̄c
ij + σ in

ij

)′
(6)

σ in
ij = μ̄

⎛
⎝

�t∫

0

1

μ(t)
λi
shσ̂ij(t)dt

⎞
⎠

1

μ̄
=

�t∫

0

1

μn
dt (7)
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where �εcij is the plastic strain increment. Equation (7) includes the elastic stress
components scaled σ in

ij based on the previous shakedown multiplier and μ̄ is the

overall shear modulus over the cycle time�t. The loadmultiplier λf
sh can be obtained

using the strain rate history ε̇cij in the Eq. (3). As mentioned before, this is an iterative
process, and at each increment, the new shakedown limit must satisfy the inequality:
λ
f
sh ≤ λi

sh.
When the ratcheting limit needs to be calculated, a similar procedure to that

adopted for the shakedown limit can be used. However, the cyclic elastic stress
solution needs to also consider the changing residual stress field and not only a
constant one. The entire minimisation process aims to minimise the total changing
residual stress field by scaling the load multiplier that can be calculated as follows:

λrat =
∫
V

�t∫
0

σy(t) · ¯̇ε
(
ε̇cij

)
dtdV− ∫

V

�t∫
0

(
σ̂ij(t) + ρij(t)

)
· ε̇cijdtdV

∫
V

�t∫
0

(
σ̂ij · ε̇cij

)
dtdV

(8)

The second volume integrals added in Eq. (8) contain the response of the body
subjected to the cyclic load history for the associated change of residual stress during
the loading cycle. This process produces a reduction or an increase of the load
multiplier if the component is going or not going to exhibit ratcheting. As for the
shakedown limit multiplier, this process shows a monotonic reduction of the upper
bound limit multiplier.

3.2 Direct Cyclic Analysis with Creep

The calculation of the steady-state cycle of a structure under combined creep and
cyclic plasticity has been developed by [40, 41] and further tested by [42, 43]. The
key idea is to calculate with an iterative minimisation process the changing residual
stress and the constant one. This function is associated with a class of kinematically
admissible strain rates ε̇cij, defined for L total number of loading instances and takes

the form of I
(
ε̇cij

)
=

L∑
l=1

I l . Its incremental form is expressed:

I l
(
�εlij

)
=

∫

V

{
σ l
ij�εlij −

[
σ̂ l
ij(tl) + ρ l

ij(tl)
]
�εlij

}
dV (9)

where ρ l
ij(tl) is the residual stress for each load point considered and it is obtained

by the sum of the constant residual stress and the changing residual stress ρ̄ij (which
is calculated by the sum of all the previous changing residual stress field increments
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�ρij(tl)). This makes it possible to replace the strain rate history ε̇cij with a series of
increments of strain �εlij, which occur during the cycle at each time to. The inelastic
strain increment �εlij is then obtained by minimizing the function shown in the
Eq. (9). A total of K cycles are required to reach convergence and within each k
cycle, a total of L sub-cycles need to be performed. At each increment, the residual
stress and inelastic strain are calculated based on the elastic stress and the previous
accumulated residual stresses.When the load instance does not contain a creep dwell,
the plastic strain increment �εij,k+1(tl) can be calculated by:

�εij,k+1(tl)
′ = 1

2μ̄(tl)

[
σ̂ij(tl) + ρij,k+1(tl−1) + �ρij,k+1(tl)

]′
(10)

where the notation (′) again refers to the deviatoric component of stress and strain, μ̄
is the iterative shear modulus [40], σ̂ij is the associated elastic solution, ρij,k+1(tl−1)

is the prior changing residual stress history and �ρij,k+1(tl) is the current changing
residual stress associated with the inelastic strain increment. The plastic strain calcu-
lated is used to iteratively change the yield stress in the upcoming k + 1 sub-cycle,
considering a Ramberg-Osgood material response. In load cases where creep is
present, the equivalent creep strain increment �ε̄c is calculated by the following
equation for the associated dwell time �t using the Norton-Bailey relation:

�ε̄c = B(n − 1)�tm+1(σ̄s − σ̄c)

( 1
σ̄ n−1
c

− 1
σ̄ n−1
s

)(m + 1)
(11)

where B, m and n are the creep constants of the material. σ̄c represents the creep
flow stress, which is the sum of the start-of-dwell stress σ̄s and the residual stress
�ρij,k+1(tl) caused by the dwell period. The creep flow stress is determined by

accurately evaluating the creep strain rate ˙̄εF at the end of the dwell time:

σ̄c =
( ¯̇εF
B�tm

) 1
n

˙̄εF = �ε̄c

�t

(m + 1)

(n − 1)

σ̄ n
c

(σ̄s − σ̄c)

(
1

σ̄ n−1
c

− 1

σ̄ n−1
s

)
(12)

The residual stress at each increment is calculated via the solution of linear prob-
lems. The residual stress field and the iterative shear modulus obtained are updated
for the subsequent cycle k + 1 for each load instance tl using the following relation:

μ̄k+1(x, tl) = μ̄k(x, tl)
σ R
y (x, tl)k

σ̄
(
σ̂ij(x, tl) + ρr

ij(x, tl)k
) (13)
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where μ̄k(x, tl) is the iterative shear modulus at the sub-cycle k for the lth load
instance. σ R

y (x, tl)k is the iterative von-Mises yield stress associated with the flow
rule considered at load instance tl . When during a load instance creep occurs, the
von-Mises yield stress must be replaced by the creep flow stress, which has been
defined in Eq. (13). The last term ρr

ij(x, tl)k is the summation of the constant residual
stress field and the associated total changing residual stresses associated with the
different load instances.

4 Experimental Results

For each of the load cases outlined in Table 1, below are plots of the axial stress
versus axial strain used to determine the macroscopic safe shakedown or undesirable
cyclic inelastic responses. Sample 1 Case #1 with FR = 87 kN and TR = 90 kN-m
is presented in Fig. 3a, Sample 1 Case #2 with FR = 90 kN and TR = 90 kN-
m is in Fig. 3b, and Sample 1 Case #3 with FR = 94 kN and TR = 90 kN-m is
shown in Fig. 3c, It can be seen that in Fig. 3a,b and c the peak inelastic strains
all continue to gradually increase with cycles and time, indicating accumulation of
inelastic strain similar to ratcheting. However, for Sample 1 Case #4 (FR = 98 kN and
TR = 90 N-m, Fig. 3d), an abrupt increase of inelastic strain is observed after the first

a) b)

c) d)

Fig. 3 Cyclic axial response of the four samples subjected to different axial cyclic force. a 87,
b 90, c 94, d 98 kN and constant torque 90 kN mm (see Table 1)
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cycle is nearly completed, and there is an apparent “failure” at a peak axial stress.
This “failure” feature is an experimental artefact of the control software program that
aborted the test if more than 6% strain was reached (to protect the extensometer).
This cut-off limit in strain was set as a reasonable approximation to approaching
ultimate collapse.

4.1 Cyclic Creep

By further examining the equivalent stress-strain response, it was found that signif-
icant rounding of the response curves during unloading was present for all of the
loading cases in the test program (Table 1); this is a classic indicator for creep during
cyclic loading [20, 44, 45]. An example from [33] is repeated here for reference
(Fig. 3). The testing method proposed by Taleb and Cailletaud [20] (that is used to
distinguish contributions to inelastic strain from time-dependent cyclic creep and
from the time-independent accumulation of cyclic plastic strain) was used to further
confirm that creep was the source of the cyclic accumulation of inelastic strain exhib-
ited in the testing program (additional cyclic creep tests not shown) [33]. Indeed,
cyclic loading induced creep at room temperatures and general ambient creep are
well-established behaviours that have been reported elsewhere for different steels
including some carbon steels [16, 20–23] (Fig. 4).

5 Numerical Results and Discussion

5.1 Numerical Model

To reproduce the results obtained within the experimental tests, a 3D bar is used as a
finite element model, as shown in Fig. 5a. The mesh is composed of 16,848 quadratic
quadrilateral elements C3D20R, with a reduced integration scheme. The mesh size
has been biased to refine within the centre of the specimen. Two mechanical loads
are applied, a cyclic force and a constant moment on the top gripping section of
the specimen. Both the cyclic and constant mechanical loads are applied and their
loading histories are shown in Fig. 5b (when creep is considered, the force is kept
constant for a certain dwell time). A cyclic force�F = 2kN is applied and a constant
axial force and torque are used to define the loading history. The bar is not exposed
to any thermal gradient and the temperature is not changed. The elastic and inelastic
material properties for this high strength steel are presented in Table 2.

The load history is simplified and constructed considering only the vertices of the
load space diagram. This assumption is made considering that most of the plastic
behaviour occurs at these extremes; this is ensured by the use of the von Mises yield
condition for which plastic strain can accumulate only at these vertices. However,
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Fig. 4 A representative equivalent stress-strain response exhibited in all sample tests (Table 1; this
case corresponds to FR = 110 kN and TR = 20 N-m with �F = 8 kN [33]). The rounding of the
curves during unloading is highlighted as a signature of cyclic creep [20, 44, 45]

Fig. 5 a 3D numerical finite
element model with
associated mesh. b Loading
history in force (F), torque
(T or M), and cyclic force
( �F) over time (t) adopted
during the experiment [33]
and numerical tests
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Table 2 AISI 1144 material
properties

Young’s modulus
(MPa)

Poisson’s ratio 0.2% Proof stress
(MPa)

204,000 0.3 750

Ramberg-Osgood
Multiplier B [MPa]

1221.6

Ramberg-Osgood
Exponent α

0.0606

Norton-Bailey
multiplier A [MPa−1

s−1]

2.0e−21

Norton-Bailey stress
exponent n

5.26

Norton-Bailey time
exponent m

−0.743

within this work creep also occurs during the cycle, without the presence of a constant
load creep dwell. To simulate this, a numerical creep dwell is considered at the loading
peak stress for a time equal to the cycle period.

5.2 Shakedown and Ratchet Limits

The first investigation done has been the calculation of the plastic limit load using an
elastic-perfectly-plastic material model, which ensures an approximate but unique
solution to the plastic collapse limit for both the axial and torque loads. Two sepa-
rate analyses have been performed and each load has been applied for each load
condition. The limit load due to the axial force is FL = 107 kN and the one due to
the moment is ML = 261 kN mm. These two loads have been used to normalise
the interaction diagram derived subsequently and shown in Fig. 6. In the interaction
diagram depicted in Fig. 6, the upper bound and lower bound for the shakedown limit
are shown. The solid circles are associated with the different experiments performed
at an increasing level of axial force, as described in Table 1. It is interesting to see that
all the experimental tests except for the one at 98 kN, are well within the shakedown
limit. The 98 kN experiment is at the lower bound limit but still within the upper
bound.

To add further insight into the cyclic plastic response of the specimens, a ratchet
analysis has been performed. Due to the type of loading conditions and the load
combinations, ratcheting and plastic collapse limits nearly overlap. Moreover, due
to the type of loading conditions (two primary loads), the ratchet limit coincides
exactly with the shakedown upper bound. In the case of two primary loads, this
overlapping of ratcheting and upper bound shakedown limits has also been observed
in otherworks [46].Nevertheless, the calculated limits correspondwithwhat has been
experimentally observed: where the load case close to the upper bound (Sample 1
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Fig. 6 Shakedown and Ratchet limits for the specimens subjected to combined constant moment
and axial force and cyclic mean stress

Case #4, Table 1) suffers premature “failure” (reaching 6% cut-off strain approaching
ultimate collapse).

To further verify these numerical predictions, four step-by-step analyses have
been done using Abaqus. The results are shown in Fig. 7, where the plastic strain
history is depicted for load point 1 and 2. In both cases a strict elastic shakedown
behaviour is shown, confirming the shakedown limit determined via LMM.When the
step-by-step analysis is performed outside the LMMshakedown limit, the response is
a nearly instantaneous collapse. The analyses for the two load points outside the limit
show a critical plastic strain accumulation that culminated with plastic collapse and
more preciselywith the impossibility tomaintain equilibrium in themodel. This once
again is expected due to the nature of the loading conditions. However, as seen in the
experimental section, for all the experimental load points within the shakedown limit,
a ratcheting-like response has been observed (continued accumulation of inelastic
strain with cycling).
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Fig. 7 Plastic strain magnitude for load point 1 and 2 within the shakedown limit with no creep
considered

5.3 Limit Analysis Considering Creep

The analyses performed in the previous sections suggest that the inelastic strain accu-
mulation observed during the experiments must be associated with the room temper-
ature creep that occurs during the cyclic loading [33]. To predict this behaviour,
the extended Direct Steady Cyclic Analysis method (eDSCA) within the Linear
Matching Method Framework (LMMF) [32] has been used to calculate the cyclic
response of the specimen due to the interaction between room temperature creep
and fatigue. The creep dwell time has been set to the period of each cycle, which
is around 23 s and it is calculated as a single dwell occurring at the peak stress.
This assumption allows the use of the current formulation of the LMM and in the
worst-case scenario yields a conservative result.

The four load cases (Table 1) have a constant and equal torque applied but an
increasing axial force. The ratchet strain per cycle is calculated for the stabilised
response and results are shown in Fig. 8a. The mechanism, as expected, is concen-
trated in the specimen’s gauge and tends to localise as soon as the ratcheting strain
becomes more severe. The increase of axial load tends to exacerbate the creep
ratcheting mechanisms and any subsequent increase leads to a very large inelastic
strain accumulation. This numerical trend matches the experimental observations,
especially for Sample 1 Case #4.

To better compare the numerical solution with the experimental results, the
maximum ratchet strain per cycle predicted is reported along with the experimental
one in Fig. 9. In the eDSCA, creep strain is usually considered during a fixed time
during which the load is kept constant. However, creep during the experiment occurs
during the entire loading cycle, which has an overall length of 23 s. If the creep dwell
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Fig. 8 Contours of ratchet strain per cycle with combined creep and cyclic plasticity
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is considered starting at themaximum tensile stress, results could be too conservative.
For this reason, two numerical cases have been considered, one with the creep dwell
starting at the tensile peak and the second one with the creep dwell starting at the
half of the maximum tensile peak. This approach, despite it being an approximation,
gives confidence bounds in which experimental results should be located.

As it can be seen in Fig. 9, the two numerical cases do indeed bound the exper-
imental behaviour at lower axial loads. However, for an applied force of 98 kN
(Sample 1 Case #4) the predictions overestimate the ratcheting strain. This is due
to the increasing impact of plasticity over creep with the associated increasing axial
force. Also, these predictions are obtained using the elastic-perfectly-plastic material
(EPP)model, that does not consider hardening.Also, the increase of the primary axial
load causes the structure to approach its plastic limit (that for EPP models coincides
with the ratchet limit); this causes the exponential growth of the ratcheting strain rate.
When material hardening is considered via the use of the Ramberg Osgood model
(RO) the results are less conservative and closer to the experiments. In particular,
when the axial force increases the hardening limits, the plastic strain accumulated
and the ratcheting is due to the increasing effect of creep strain.

5.4 Discussion: Extended Creep-Ratcheting Limit

At the moment in the literature, there is not an efficient method to derive the creep
ratcheting limit of a structure subjected to a cyclic load and a creep dwell. It is impor-
tant to emphasize why this remains challenging. Unlike classical plastic-ratcheting,
creep-ratcheting is not only affected by the cyclic plastic behaviour, but also by
the creep response and creep dwell time. Time in plastic-ratcheting does not make
any difference since the response is time-independent. When creep is introduced, an
additional amount of inelastic strain is accumulated within a cycle. This affects the
response of cyclic load cases, even if these are chosen within the nominal shakedown
domain. Despite these challenges, it is possible to use a combination of the extended
Direct Steady Cycle Analysis (eDSCA) and python coding to estimate the creep
ratcheting limit of a structure.

In Fig. 10a, both plastic and estimated creep-ratcheting (eDSCA) limits are
reported. Calculating numerically the creep-ratcheting limit is very challenging. In
general, ratcheting is caused by the presence of a non zero changing residual stress
at the end of the cycle. An algorithm that allows the minimisation of the associated
residual stress field is used to calculate the load multiplier. However, this approach
is not feasible when creep is the cause of ratcheting. To estimate the creep ratcheting
limit, the numerical ratchet strain per cycle is compared to the ratcheting strain per
cycle observed experimentally at the lowest loading condition. The ratio between
the numerical and experimental ratchet strain per cycle was then used to assess the
cyclic behaviour and if required change the load multiplier for the elastic solution.
This process was repeated automatically via a Python code.
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By comparing the plastic and creep-ratcheting limits it is evident that creep tends
to promote the accumulation of inelastic strain even at low load levels. It is important
to clarify that when creep-ratcheting calculations have been used to identify the point
of interception with the x and y-axes, these are not limit loads but only creep-ratchet
limit points. This is due to the shift in the underlying inelasticmechanism fromplastic
to creep driven ratcheting. By comparing the limits calculated, a significant loss of
around 30–40% in terms of non-ratcheting area is estimated for an equivalent creep
dwell of 23 s. This trend was also observed in the experiments that show substantial
ratcheting-like behaviour (accumulation of inelastic strain) for load cases within the
nominal expected shakedown limit (not considering creep).

In an attempt to guide future experiments that could probe the creep-ratcheting
domain, a second creep-ratcheting limit is calculated for an equivalent dwell time
of 46 s. The results obtained show that for the low level of the applied moment
the ratchet limit is not affected. For this case the response is elastic and the creep
strain accumulated is very small due to the low level of stress present. This changes
drastically when increasing the applied constant moment. A split is visible between
the two curves after point 1 (Fig. 10a). Different mechanisms occur for point 1 and
point 2 as it is shown in Fig. 10b. When the axial force is dominant (point 1) the
entire cross-section tends to be uniformly affected, leading to a homogeneous strain
accumulation along the cross-section. By point 1 the moment starts to dominate,
leading to an inelastic strain peak in a circumferential area near the centre. The
interaction between these two types of themechanical load is the cause of asymmetry
between the two axes in the Bree-like load interaction diagram shown in Fig. 10a.
Figure 10a shows very well the impact of dwell time andmore specifically of loading
frequency on the inelastic strain accumulation. Due to the effect of time over the
creep-ratcheting limit, it is evident that a unique creep-ratcheting limit is not possible
as it is for plastic ratcheting. A three-dimension domain will be more representative
for creep-ratcheting, due to the impact of dwell time, which plays a crucial role in
the definition of the mechanism.

6 Conclusions

The Linear MatchingMethod Framework has been used to provide insight for recent
experiments on the cyclic inelastic response of high strength steel rods under room
temperature multiaxial loadings. A Bree-like load interaction diagram is constructed
and numerical limits for plastic collapse, elastic shakedown, plastic-ratcheting, and
creep-ratcheting are compared with the experimental loading cases and macroscopic
inelastic strain accumulation with cycling. The models also confirm that the experi-
mental load cases would exhibit shakedown if not for the presence of ambient creep.
Regardless, it is found that for design and assessment purposes, the extended Direct
SteadyCyclicAnalysismethod (eDSCA)within theLinearMatchingMethodFrame-
work (LMMF) can provide bounds or conservative estimates for the ratchet (inelastic)
strain per cycle observed experimentally. The effects of the loading conditions, which
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include axial force and applied moment, have been evaluated demonstrating their
impact over creep ratcheting. Applied moment and dwell times demonstrated to be
more detrimental for the creep-ratcheting.
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