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Abstract We develop analogs of the two classes of weighted empirical minimum
distance (m.d.) estimators of the underlying parameters in linear and nonlinear regres-
sion models when covariates are observed with Berkson measurement error. One
class is based on the integral of the square of symmetrized weighted empirical of
residuals while the other is based on a similar integral involving a weighted empirical
of residual ranks. The former class requires the regression and measurement errors
to be symmetric around zero while the latter class does not need any such assump-
tion. The first class of estimators includes the analogs of the least absolute deviation
and Hodges-Lehmann estimators while the second class includes an estimator that
is asymptotically more efficient than these two estimators at some error distributions
when there is no measurement error. In the case of linear model, no knowledge of
the measurement error distribution is needed. We also develop these estimators for
nonlinear models when the measurement error distribution is known and when it is
unknown but validation data is available.

Keywords Analog of Hodges-Lehmann estimator - Validation data

1 Introduction

Statistical literature is replete with the various minimum distance estimation methods
in the one and two sample location models. Beran [2, 3] and Donoho and Liu [7, 8]
argue that the minimum distance estimators based on L, distances involving either
density estimators or residual empirical distribution functions have some desirable
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finite sample properties, tend to be robust against some contaminated models and
are also asymptotically efficient at some error distributions.

In the classical regression models without measurement error in the covariates,
classes of minimum distance estimators of the underlying parameters based on
Cramér-von Mises type distances between certain weighted residual empirical pro-
cesses were developed in Koul [12—-15]. These classes include some estimators that
are robust against outliers in the regression errors and asymptotically efficient at
some error distributions.

In practice there are numerous situations when covariates are not observable.
Instead one observes their surrogate with some error. The regression models with
such covariates are known as the measurement error regression models. Fuller [9],
Cheng and Van Ness [6], Carroll et al.[5] and Yi [19] discuss numerous examples
of practical importance of these models.

Given the desirable properties of the above minimum distance (m.d.) estimators
and the importance of the measurement error regression models, it is desirable to
develop their analogs for these models. The next section describes the m.d. estimators
of interest and their asymptotic distributions in the classical linear regression model.
Their analogs for the linear regression Berkson measurement error (ME) model are
developed in Sect. 3. The two classes of m.d. estimators are developed. One assumes
the symmetry of the regression model error and ME error distributions and then
basis the m.d. estimators on the symmetrized weighted empirical of the residuals.
This class includes an analog of the Hodges-Lehmann estimator of the one sample
location parameter, see Hodges and Lehmann (1963), and the least absolute deviation
(LAD) estimator. The second class is based on a weighted empirical of residual ranks.
This class of estimators does not need the symmetry of the errors distributions. This
class includes an estimator that is asymptotically more efficient than the analog of
Hodges-Lehmann and LAD estimators at some error distributions. Neither classes
need the knowledge of the measurement error or regression error distributions.

Section4 discusses analogs of these estimators in the Berkson measurement error
nonlinear regression models, where the measurement error distribution is assumed
to be known. Section 5 develops their analogs when the ME distribution is unknown
but validation data is available. In this case the consistency rate of these estimators is
min(n, N)'/?, where n and N are the primary data and validation data sample sizes,
respectively. Section 6 provides an application of the proposed estimators to a real
data example. Several proofs are deferred to the last section.

2 Linear Regression Model

In this section we recall the definition of the m.d. estimators of interest here in the no
measurement error linear regression model and their known asymptotic normality
results.

Accordingly, consider the linear regression model where for some 6 € R?, the
response variable Y and the p dimensional observable predicting covariate vector X
obey the relation
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Y =X0+-e¢, 1

where ¢ is independent of X and symmetrically distributed around E(e) = 0.
For an x € R, x" and ||x|| denote its transpose and Euclidean norm, respectively.
Let (X;,Y;),1 <i < n be a random sample from this model. The two classes of
m.d. estimators of 6 based on weighted empirical processes of the residuals and
residual ranks were developed in Koul [12—-15]. To describe these estimators, let G
be a nondecreasing right continuous function from R to R having left limits and
define

Vix,9) :=n""? in{z(yi — X9 <x)—I(-Y; + X0 <x)},

i=1

M) ::/||V(x,19)||2dG(x), 0 := argmin,_g, M ().

This class of estimators, one for each G, includes some well celebrated estimators.
For example 0 corresponding to G (x) = x yields an analog of the one sample loca-
tion parameter Hodges-Lehmann estimator in the linear regression model. Similarly,
G (x) = do(x), the degenerate measure at zero, makes 0 equal to the least absolute
deviation (LAD) estimator.

A class of m.d. estimators when the error distribution is not symmetric and
unknown is obtained by using the weighted empirical of the residual ranks defined as
follows. Write X; = (X;1, Xi2, ..., X,*p)/, i=1,...,n. Let )_(j i=n""! Z?:l Xij?
X = ()_(1, e, )_(,,)’ and X;. := X; — X, 1 <i < n. Let R;y denote the rank of the
ithresidual ¥; — X9 among Y; — X;ﬁ, j=1,...,n. Let ¥ be adistribution func-
tion on [0, 1] and define

n 1
Vi, 9) :=n""2Y" Xiel (Rig < nu), K(¥) := / [V, D1dw w),
i=1 0

Og = argmingp, K ().

Yet another m.d. estimator, when error distribution is unknown and not symmetric,
is
n
Velx,9) =072 Xiel (Y = X[9 < x),

i=1

M. (V) = f H V.(x,9) ||2dx, éc = argming g, M. (V).

If one reduces the model (1) to the two sample location model, then éc is the median
of pairwise differences, the so called Hodges-Lehmann estimator of the two sample
location parameter. Thus in general éc is an analog of this estimator in the linear
regression model.
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The following asymptotic normality results can be deduced from Koul [15] and
[16, Sect.5.4].

Lemma 1 Suppose the model (1) holds and E || X||*> < oo.
(a). In addition, suppose Xx := E(XX') is positive definite and the error d.f. F is
symmetric around zero and has density f. Further, suppose the following hold.

G is a nondecreasing right continuous function on R to R, 2)
having left limits and dG(x) = —dG(—x),Vx € R.

O</ffdG<oo, lin(])/[f(x—l—z)—f(x)]fdG(x)=O,j=1,2, 3)

/(1—F)dG<oo.
0

Then .
Var(_{o f(x)dG(x))

(f £2dG)’

(b). In addition, suppose the error d.f. F has uniformly continuous bounded density
f, 2 = E{(X — EX)(X — EX)'} is positive definite and ¥ is a d.f. on [0, 1] such
1

n'/z(é —60)—>p N(O, JZGE;), Ué =

that [ f*(F~'(s))d¥ (s) > 0. Then
0

F(e)

Var( [ f(F7'(s))d¥ (s))
0

1

(] F2(F-1(s)d¥ (5))’
0

nl/z(éR — 0) —p NO, v 7Y, 7 =

(c). In addition, suppose S2 is positive definite, F has square integrable density f and
Ele| < oco. Then nl/z(éc —0)—p N(O, U%.Q’l), where 0% = 1/12(f fz(x)dx)z.

Before proceeding further we now describe some comparison of the above asymp-
totic variances. Let ai ap = 1/4f 2(0)) and cri sg := Var(e) denote the factors of
the asymptotic covariance matrices of the LAD and the least squares estimators,
respectively. Let 77 denote the 72, when ¥ (s) = s, i.e.,

2 _ JSIFGAy) = FOFO] @) f2(y)dxdy

1 1
([ fAedx)?
0

Table 1, obtained from Koul [16], gives the values of these factors for some distri-
butions F. From this table one sees that the estimator 6 corresponding to ¥ (s) = s
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Table 1 A comparison of asymptotic variances

35

F o o] 9Lap g %SE
Double Exp. 1.2 1.333 1 2
Logistic 3.0357 3 4 3.2899
Normal 1.0946 1.0472 1.5708 1
Cauchy 2.5739 3.2899 2.46 o0

is asymptotically more efficient than the LAD at logistic error distribution while
it is asymptotically more efficient than the Hodges-Lehmann type estimator at the
double exponential and Cauchy error distributions. For these reasons it is desirable
to develop analogs of O also for the ME models.

As argued in Koul (Chap. 5, [16]), the estimators {ég, G ad.f.} are robust against
heavy tails in the error distribution in the general linear regression model. The estima-
tor;, where G (x) = x,notad.f., isrobust against heavy tails and also asymptotically
efficient at the logistic errors.

3 Berkson ME Linear Regression Model

In this section we shall develop analogs of the above estimators in the Berkson ME
linear regression model, where the response variable Y obeys the relation (1) and
where, instead of observing X, one observes a surrogate Z obeying the relation

X=Z+n. (4)

In (4), Z, n, € are assumed to be mutually independent and E(n) = 0. Note that n is
p x 1 vector of errors and its distribution need not be known.

Analog of 6. We shall first develop and derive the asymptotic distribution of the
analogs of the estimators 6 in the Berkson ME linear regression model (1) and (4).
Rewrite the model as

Y=70+¢€, E:=n0+e, E¢ =0, 3F0eR. 5)
Because Z, 7, € are mutually independent, £ is independent of Z in (5).
Let H denote the distribution functions (d.f.) of 7. Assume that the d.f. F of € is

continuous and symmetric around zero and that H is also symmetric around zero,
i.e., —dH () = dH(—v), for all v € R”. Then the d.f. of £

L(x):=P¢<x)=Pno+e<x)= / F(x —v'0)dH (v)
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is also continuous and symmetric around zero. This symmetry in turn motivates the
following definition of the class of m.d. estimators of 6 in the model (5), which
mimics the definition of 8 by simply replacing X; by Z;. Define

V) =n""2>"Z{1(¥; — Zjt <x) — (=Y, + Zjt <x)},

i=1
M) = f |V, 0)|?dG(x), 8 := argmin, g, M (1)
Because L is continuous and symmetric around zero and ¢ is independent of Z,

EV(x,0) =0. B
The following assumptions are needed for the asymptotic normality of 6.

E|Z|I? <occand I" := EZZ'is positive definite. (6)
H satisfies dH (v) = —dH(—v), Yv € R”. @)
F has Lebesgue density f, symmetric around zero, and ®)

such that £(x) = / f(x —v'6)dH (v) of L satisfies the following:

0 < /ZjdG < 00, lirI(l)/ [E(y +2) —E(y)]fdG(y) =0, j=1,2.
7—>

A= /(1—L)dG<oo. ©)]
0

Under (6), n™' Y7 | Z;Z/ —, I' and n™"? maxi<;<, || Zi|| =, 0. Use these
facts and argue as in Koul [15] to deduce that (2) and (6)—(9) imply

_ Var([¢, dG)

n'2(0 —0) —p N, 720", 72
( ) D G G (fZZdG)Z

(10)

Remark 1 We shall discuss some examples and some sufficient conditions for the
above assumptions. The conditions (8) and (9) are satisfied by a large class of den-
sities f, ME distributions H and integrating measure G. If G is a d.f., then f being
uniformly continuous and bounded implies these conditions. In this case £ is also uni-
formly continuous, sup, £(x) < sup, f(x) < ocosothat [¢/dG < sup, f/(x) < 00
and/ [E(y +2) — E(y)]jdG(y) < SUpj_y)<; [£(y) — £(x)|! — 0,as z — 0. More-
over, here A < 1. Thus these two assumptions reduce to assuming | tdG >0,
j=1,2.

Given the importance of the two estimators corresponding to G(x) = x, G(x) =
do(x), it is of interest to provide some easy to verify sufficient conditions that imply
conditions (8) and (9) for these two estimators.
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Consider the case G(x) = x. Assume f to be continuous and f f 2(x)dx < oo.
Then because H is a d.f., £ is also continuous and symmetric around zero and
f L(x +2)dx = f £(x)dx = 1. Moreover, by the Cauchy-Schwartz (C-S) inequality
and Fubini’s Theorem,

2
0< / C(y)dy = / ( / fO = vOdHW) dy

S//fz(y—v/ﬂ)dde(v) Z/fz(x)dx < 00.

Finally, because £ € L,, by Theorem 9.5 in Rudin [18], it is shift continuous in L,
i.e., (8) holds. Hence all conditions of (8) are satisfied.

Next, consider (9). The assumptions E(¢) = Oand E(n) = 0imply that f [x] f(x)
dx < oo, [ |lv]ldH (v) < oo and hence

/IyIdL(y)=f|y|/f(y—v/9)dH(v)dy=//|x+v/9|f(x)dde(v) < oo.

This in turn implies (9) in the case G (x) = x.

To summarize, (6), (7), and F having continuous symmetric square integrable
density f implies all of the above conditions needed for the asymptotic normality
of the above analog of the Hodges-Lehmann estimator in the Berkson ME linear
regression model. This fact is similar to the observation made in Berkson (1950)
that the naive least square estimator, where one replace X;’s by Z;’s, continues to be
consistent and asymptotically normal under the same conditions as when there is no
ME. But, unlike in the no ME case, here the asymptotic variance

2. Var(L(f)) . 1

1= 2 2, \2
(Semdy)”  12(f([f(&y—v0)dH®)dy)
depends on 6. If H is degenerate at zero, i.e., if there is no ME, then 712 = 0%,
the factor that appears in the asymptotic covariance matrix of the Hodges-Lehmann
estimator in this case.

Next, consider the case G(x) = §y(x)—degenerate measure at 0. Assume f to
be continuous and bounded from the above and

£(0) ;=/f(z/9)dH(v) > 0. (11)

Then the continuity and symmetry of f implies that as z — 0,

/Z(y +2dG(y) =4L(z) = / f(z—v0)dH @) — /f(—v/e)dH(v) = £(0),
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2
[ 10 +2 - enTaco =[ [ {re-vo) - s-volinw)

< / [fz=v'0) — fF(—v®) dH @) — 0.

oo
Moreover, here f(l — L)dG =1— L(0) = 1/2 so that (9) is also satisfied.
0

To summarize, (6), (7), (11) and f being continuous, symmetric around zero and
bounded from the above imply all the needed conditions for the asymptotic normality
of the above analog of the LAD estimator in the Berkson ME linear regression model.
Moreover, here

S
f £(x)dG(x) = £(0)] (£ > 0), / 2 (x)dG(x) = £%(0),

13
Var( / E(x)dG(x)) — 2(0) /4.

Consequently, here the asymptotic covariance matrix also depends on 6 via
2
72 =1/402(0) = 1/4(/ fWOdH ).

In the case of no ME, I _'Tg equals the asymptotic covariance matrix of the LAD
estimator. Unlike in the case of the previous estimator, here the conditions needed
for f are a bit more stringent than those required for the asymptotic normality of the
LAD estimatorAwhen there is no ME. .

Analog of 0z. Here we shall describe the analogs of the class of estimators 6
based on the residual ranks obtained from the model g). These estimators do not need
the errors &;’s to be symmetrically distributed. Let R;y denote the rank of ¥; — Z¢
among ¥; — Z'9, j = lL...on,Z:=n"'>" Z;,Zic:=2;—Z,1 <i <nand
define

n 1
V. 9) :=n""?3"Z; I(Riy < nu), K():= / |V, 9)11Pdw @),
i=I 0

5R = argminl,ewf ).

Use the facts Z:'l=1 Zic =0, ¥ (max(a, b)) = max{¥ (a), ¥ (b)} and max(a, b)
=2""a+ b+ |a — b]], for any a, b € R, to obtain the computational formula
S () v )|

- n n

k=33 7.2
1

i=1 j=
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The following result can be deduced from Koul [15]. Suppose E|| Z||> < oo, I:=
E(Z — EZ)(Z — EZ) ispositive definite, density £ of the r.v. £ is uniformly contin-
1

uous and bounded and [ ¢2(L~'(s))d¥(s) > 0. Then n~"/?> max,<;<, [ Zi|| =, O,
0
n YI_(Zi = 2)(Zi = Z) —, I and

L© /7 -1
n2(Fx — 0) > p NO.F2T), 7 = Var(lfo (L (s))dllf(i)).
(fy CL($)dW (s))

Density f of F being uniformly continuous and bounded implies the same for
2(x) = [ f(x —v8)dH (v). It is also worth pointing out the assumptions on F, H
and L needed here are relatively less stringent than those needed for the asymptotic
normality of 6.

Of special interest is the case ¥ (s) = s. Let ?’IZ denote the corresponding ?3, Then
by the change of variable formula,

o Var( [ 0w (s)ds)  Var( [; (x)dx)
"= ewsnds () G@dx)?

S [L(x Ay) = L(x)L(y) ] (x)0*(y)dxdy
B (Jy € @dx)’ '

An analog of éc here is 9~C = argming g, A7IC(19), where
V.(x,9) :=n"'2 ZZ[CI(Y,- —-ZY<x), M) := / Ve, 9| dx.
i=1

Arguing as above one obtains that n'/?(6. — §) —p N (0, 771" ).

4 Nonlinear Regression with Berkson ME

In this section we shall investigate the analogs of the above m.d. estimators in non-
linear regression models with Berkson ME.

Let ¢ > 1, p > 1 be known positive integers, ® C R? be a subset of the g-
dimensional Euclidean space R? and consider the model where the unobservable
p-dimensional covariate X, its observable surrogate Z and the response variable Y
obey the relations

Y=mp(X)+e, X=Z+n, (12)
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for some 6 € @. Here my(x) is a known parametric function, nonlinear in x, from
O x R? to R with E|my(X)| < oo, for all ¥ € ®. The r.v.’s €, Z, nj are assumed to
be mutually independent, Ec = 0 and E7 = 0. Unlike in the linear case, here we
need to assume that the d.f. H of 7 is known. See Sect. 5 for the unknown H case.

Fix a @ for which (12) holds. Let vy(z) := E(my(X)|Z = z), ¥ € R?, 7 € R?.
Under (12), E(Y|Z = z) = vy(z). Moreover, because H is known,

vy(z) = /mﬁ(Z +s)dH(s)

is a known parametric regression function. Thus, under (12), we have the regression
model

Y=w(Z)+(, E(Z=2=0, zeR"
Unlike in the linear case, the error ( is no longer independent of Z in general.
To proceed further we assume there is a vector of p functions n1y(x) such that,
with y(z) := [ my(z + s)dH(s), forevery 0 < b < o0,
max 0! |vy(Z) = vp(Zi) — (9 = ) (Z)] = 0,(1),  (13)
1<i<n,n'/2||9—0|<b
E|lZ5(2)|I* < oo. (14)
Let
L.(x):=P((<x|Z=27), xeR,zeR’.
Assume the following. For every z € R?,

L.(-) is continuous and L,(x) =1 — L,(—x), Vx € R”. (15)

Let G be as before and define

U, 9) =023 " og(Zo{T (Y = v(Zi) < x) — I(=Y; +v9(Zi) < x)}

i=l1

D) :=/||U(x,19)|}2dG(x), 0 := argmin, D(¥).

In the case ¢ = p and my(x) = x'6, ﬁagrees with 6. Thus the class of estimators f,
one for each G, is an extension of the class of estimators ¢ from the linear case to
the above nonlinear case. .

Next, consider the extension of Az to the above nonlinear model (12). Let S;y
denote the rank of ¥; — vy(Z;) among Y; —vy(Z;), j =1, ..., n and define
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1 n
Z/{n(u’ 19) = 1)19(21') I(Si19 = nu) —Uuy,
7 ; { }
K@) = / Uy (e, ) 12 dW (u), §R = argming/C(9).

The estimator ’H\R gives an analog of O in the present set up.

Our goal here is to prove the asymptotic normality of /9\, ’G\R. This will be done by
following the general method of Sect. 5.4 of Koul [16]. This method requires the two
steps. In the first step we need to show that the defining dispersions D(¢) and IC(¢)
are AULQ (asymptotically uniformly locally quadratic) in ¢ — 6 for 9 € N, (b) :=
{0 € ©,n'?|0 — 0] < b}, forevery 0 < b < oo. The second step requires to show
that n'/2(|0 — 0] = 0,(1) = n'/?||0 — 0.

4.1 Asymptotic Distribution of ()

In this subsection we shall derive the asymptotic normality of 0. To state the needed
assumptions for achieving this goal we need some more notation. Let v,,(z) :=
V9+n*1/2t(z)s gir = Vm‘(zi) - I/g(Z,‘), 1 < i <n, l./nf(z) = 1./0+n*1/2t(z)’ and bntj (Z)
denote the jth coordinate of 2,;(z), 1 < j < ¢, t € R?. For any real number a, let
a* = max(0, +a) sothata = a™ — a~. Also, let 5; (x) := I ((; < x) — Lz (x) and
ai(x,t) =1(G <x+&) —1(G <x) — Lz (x + &)+ Lz (x).

Because dG(x) = —dG(—x) and U(x, ¥) = U(—x, 1), we have

D) = 2/ |Ux, 9| dG(x) =2D),  say. (16)

We are now ready to state our assumptions.

o

/E ||1/9(Z)|| 1—Lz(x))dG(x) < 0. (17)
0

o0

/E 12 (Z) — D9(Z)|IPL 7z (x)(1 — Lz(X))dG(x) — 0, Vr e R%.

0

e | (Zi) = 2o (Z0) | = ©. (18)
Density £, of L, exists for all z € R” such that (19)

0< /Ez(x)dG(x) <o00,VzeR?, 0< /E(Ezz(x))dG(x) < 00,
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/E(||09(Z)||2£é(x))dG(x) <00, j=1,2.

o0
lim f (C(x 4+ u) — Ez(x))jdG(x) =0, j=1,2,VzeR".
—00
16 (2)] )
E( / i (Z)]12 / e +u)dG(x)du) 0,V eRY,
~l& ()] —o0
where &(2) 1= v, (2) — v9(2).
With I(x) := E(4(Z)(Z)"€z(x)), the matrix
o0
29 = / Ty(x)Ip(x)'dG(x) is positive definite.
—0oQ

For every € > O thereisa d > 0 and N, < co such thatV |s|| < b,n > N,

sup (n—l/zfzpjjj(z,-) — 7 (Z) ] x, t)dG(x))2 > e) <e
i=1

lt—s|l<d

sup n”! f | S t0n@) — tznsieo [ a6 = ¢) < e
0 i=1

lt—s|l<d

For every € > 0, @ > 0 there exists N = N, . and b = b, . such that

P(HiﬁlfbD(e—i-n_l/zt) > a) >1—e Vn>N.
tl|>

From now onwards we shall write v and © for vy and ©, respectively.

where h = (hy, .

(20)

2L

(22)

(23)

(24)

(25)

Remark 2 'We shall now discuss the above assumptions when my(x) = ¥h(x),
.., hg)' is a vector of g function on R” with E|h(X)|?* < oo,

first for general G and then for some special cases of G. An example of this is
the polynomial regression model with Berkson ME, where p = 1, h;(x) = x/, j =
,q. Let 3(z) :== E(h(X)|Z = 7). Then vy(z) = 9'6(z) and ty(z) = ((z), a
constant in 9. Therefore (13), (14), (18), (23) and (24) are all vacuously satisfied.
The condition (25) also holds here, in a similar way as in the linear regression
model, cf., Koul [16, Proof of Lemma 5.5.4, pp. 183—185]. Direct calculations show
that (26)—(29) below imply the remaining assumptions (17), (19), (21) and (22),
respectively.

1,...
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o0

/E(Hﬁ(Z)Hz(l - Lz(x)>dG(x) < 0. (26)
0
Vz € R?, density £, of L, exists and satisfies 27

0 < /zg(x)dc(x) <00, j=1,2, 0< /E(Ezz(x))dG(x) < o0,

/E(”/G(Z)||2€é(x))dG(x) < oo, j=1,2, and (20) holds.

=26 B(2) 0

e( [ 1@ [ e+ ndGwdn) o o8)

n=12b|1B(2) | —00
forevery 0 < b < oo.
With B(x) := E(B(Z)B(Z)"t(x)), the matrix (29)

/ B(x)B(x)'dG(x) is positive definite.

—oQ
Consider further the case G(x) = x. Let 0 := (E£?)'/2. Assume

@) E|hX)|? <oo, E¢? <o0o. (b) C:= sup L.(x) <oo.  (30)

xeR,zeRP

Then E|B(Z)|V < E[lR(X)|) < o0, j =1,2,3. Let v(z) :=2[0]lI8)] + o.
Then

E(|C||Z=Z)ZE(|Y—9/ﬁ(Z)||Zzz) 31
= E(|0h(X) +c—0B(2)|Z =2) <~(z), VzeR”

Hence

/E(||5(2)||2(1 - Lz(x))dx
0

= E(IB@IPE(¢I|Z)) = E(I18@)IP12))
< 2101E(1BDIF) + sE(IB2)I?) < oo,
thereby showing that (26) is satisfied. The assumption (30)(b) and £,(x) being a

density in x for each z and Theorem 9.5 of Rudin [18] readily imply (27) here. The
left hand side of (28) equals 2n~'2bE(||3(Z)|1*) — 0, by (30)(a).
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Next, consider the case G (x) = Jp(x)- measure degenerate at zero. Assume
ii_r)r})@z(u) =4£,0 >0, VzeR?, 0< E€2Z(O) < 00, (32)
E(IB(D)I1PL5(0)) < 00, j=1,2.

Then the left hand side of (26) equals (1/2)E||3(2)||?> < E||h(X)|]*> < oco.Condition
(27) is trivially satisfied and the left hand side of (28) equals

E(IB@IP[L207 PIB@)) = La(=n~PbISEZ)D]) o,

by the DCT and the continuity of L_(-), for each z.

To summarize, in the case my(x) = 9'h(X) and G(x) = x, assumptions (30)(a),
(b) and f B(x)B(x)'dx being positive definite imply all of the above assumptions
(13), (14) and (17)—(25). Similarly, in the case my(x) = ¥h(X) and G(x) = o (x),
E|h(X)|*> < oo, (32) and B(0)B(0)’ being positive definite imply all these condi-
tions.

Remark 3 Because of the importance of the estimators 9 when G(x) = x, and
G (x) = do(x), it is of interest to give some simple sufficient conditions for a general
my that imply the given assumptions for these two estimators.

Suppose G satisfies dG (x) = g(x)dx, where g, := sup, g g(x) < o0o. Note that
G (x) = x corresponds to the case g(x) = 1. Consider the following assumptions.

. 4
@) E|mg(X)|" < oo, (33)
(b) E|ritgn-12(X) —rig(X)|> = 0, Vi € RY.
Density £, of L, exists for all z € R? and satisfies 34)

0< feﬁ(x)dx <o0,VzeR?, 0< fE(EZZ(x))dx < 00,

0< /E(||u(2)||2z22(x))dx < 0.
E(10u (D) P 1o (Z) — v(2)]) - 0, VteRY. (35)

Because || (2)||” < E(Iis()||2), E|0(@) | < E|moX)| < 00, j =1,
2, 3,4, by (33)(a). Similarly, for every t € R?,
E|in(Z) = (D) |* < E|ritn(X) —ring(X)|> = 0, by 34)b).  (36)

Next, similar to (31), E(I¢||Z) = E(|Y — v(2)||Z) < 2|v(Z)| + o implies that
the left hand side of (17) is bounded from the above by
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g E(I7IPE(C|2)) = g E (10D RINE2)] + 7))
< g[2E (I E*(m5(X)) + o ElliN(2) 7]

< 00,

by (33)(a), thereby verifying (17) here. Similarly, with C denoting the above upper
bound, for every ¢t € R?, the left hand side of (18) is bounded from the above
CE<||Dn,(Z) — 1'/9(Z)||2> — 0, by (36). The left hand side of (21) is bounded from
the above by 2o E (/[0 (2)|I*[vni (Z) — v(Z)]) — 0, by (35).

In other words, in the case G has bounded Lebesgue density, conditions (33)—(35)
imply assumptions (14), (17), (18), (19), (20), and (21). Not much simplification
occurs in the remaining assumptions (18) and (22)—(25). See Remark 2 for some
special cases.

Next consider the case when G(x) = dy(x) and the following assumptions.

supl.(x) < oo, 0 < lin})ZZ(u) =/¢,(0) <00, Vz € R, 37
xeR u—
I»(0) is positive definite. (38)

In this case (33), (35), (37) and (38) together imply the assumptions (14), (17)—(22).
Not much simplification occurs in the remaining three assumptions (23)—(25), except
in some special cases as in Remark 2. R

We now resume the discussion about the asymptotic normality of 6. First, we show
that E(D(#)) < oo, so that by the Markov inequality, D(#) is bounded in probability.
To see this, by (15), EU(x, §) = 0 and, for x > 0,

2
ENUG 01 = E([#@I1¢ =0 =1 > -})
= 26|/ (1 - Lzv)).

By the Fubini Theorem, (16) and (17),

o]

E(D(®)) = 2E(D(0)) = 4/ E(||z'/(Z)||2(1 - Lz(x))dG(x) <oo.  (39)
0

To state the AULQ result for D, we need some more notation. Let

W(x,0):=n""2 Y "0(Z){1(G < x) — Lz ()}, (40)

i=1

T, :=/Fg(x){W(x,O)+W(—x,0)}dG(x), T=-2,'T,/2,
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where [y(x) and £24 are as in (22). We are ready to state the following lemma.

Lemma 2 Suppose the above set up and assumptions (17)—(24) hold. Then for every
b < oo,

sup |D(0 + n~'?t) — D(0) — 4Tt — 4’ 2yt| — , 0. 41)

lzll<b

If in addition (25) holds, then, with Xy given at (45) below,

@ In'2@—6)—7 —,0. (42)
®) n'2@—-0) —p N(0,47'2,' Ze2,7).
Proof The proof of (41) appears in Sect.6. The proof of the claim (42)(a), which
uses (25), (39) and (41), is similar to that of Theorem 5.4.1 of Koul [16], where (25)

and (39) are used to show that n1/2||§— ol = 0p,(1).
Define, for y € R, u € R?,

y

Yu(y) = / L()dG ), pu(y) == Yu(=y) — Yu(y). (43)

—00

o0
By (19), 0 < ¢, (y) < ¥, (0c0) = f £,(x)dG(x) < oo, for all u € R?. Thus for
—o0

each u, v, (y) is an increasing continuous bounded function of y and ¢, (—y) =

%(OO) - T/Ju()’), and (Pu(y) = %(OO) - 21%()’), for all y € R.
By (15), E(p,({)|Z = z) =0, forall u, z € R”. Let

C.(u, v) := Cov[(¢u(Q), pu(Q)|Z = z] = 4Cov[(¥u(O). ¥s(())|Z = z],
K(u,v) := E((Z2)N(Z) Cz(u,v)), u,veR”.

Next let 1(z) := v(z)(z)’, Q denote the d.f. of Z and rewrite I(x) = E(l'/g(Z)
U9(Z)'l7(x)) = [ 1(2)€.(x)d Q(z). By the Fubini Theorem,

o0

T, = / L) {W(x,0) + W(—x,0)}dG(x) (44)

—00

oo

=//u(z){W(x,O)+W(—x,0)}ez(x)dc(x)dQ(z)

l n
- =2 [ mon@e o
i=1
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Clearly, ET,, = 0 and by the Fubini Theorem, the covariance matrix of 7, is
Xy := ET,T, (45)
= &|( [ n0i@1e:0d00)( [ noi@iaoiow) |
= / / w(K(z, v)p(v)'dQ(z2)d Q(v).

Thus 7, is a p x 1 vector of independent centered finite variance r.v.’s. By the
classical CLT, 7, —p N(0, Xy). Hence, the minimizer 7 of the approximating
quadratic form D(6) + 4T,t + 4t' 25t with respect to ¢ satisfies f = —.le T,/2 —p
N(0,47'82;" 2y$2;"). The claim (42)(b) now follows from this result and (42)(a). O

4.2 Asymptotic Distribution of 5R

In this subsection we shall establish the asymptotic normality of §R. For this we need
the following assumptions, where U (b) := {t € RY; ||t|| < b},and 0 < b < o0.

£, is uniformly continuous and bounded for every z € R”. (46)

n Y Elin(Zi) — H(Z) 1P > 0, Yt eUb). (47)
i=1

n2NY D (Z0) = 9(Z) ] = 0,(1), ¥t eUD). (48)

i=1

Ve > 0,36 > 0andn, < oo such that for each s € U(b),Vn > n,,

P swp Y i (Z) - @Dl S €) > T (49)
reU®): 1—s]1<5 P

Ve>0,0<a<oo0,IN =N, and b = b, , such that

P(HiﬁlfblC(H +n ) > a) >1—¢ VYn>N. (50)
t||>

Let

vi=n"! ZD(Z,-), U(Zy) = (Z) — D,
i=1
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1

ow) = E(## )5 (2) (L7 W), 20 = f Ty ) Fy(u)'d (u),
0

Uw) :=n""2Y 0 (Z{I (L7, (G) <w) —u}, 0<u<l,
i=1

1 1
7, ::/Fg(u)z?(u)dwu), K@) ;=/||L?(u)||2dt1/(u)+2i;t+r’f29z.
0 0

We need to have an alternate representation of the covariance matrix of ?n Let,
forz e R?, 0<v<l,

v 1

ko (V) 1= /ZZ(LZ'(M))d‘I’(M)» k() = k() _/kz(u)du~

0 0

By (46), k. is a uniformly continuous increasing and bounded function on [0, 1], for
all z € R?. Let U denote a uniform [0, 1] r.v. Conditionally, given Z, Lz({) ~p U.
Hence, E(k.(L7(())|Z) = Ek,(U) so that E(k‘(Lz(0)|Z) = EKS(U) =0, as.
Let p°(z) := v°(z)v°(z)'. Argue as for (44) and use the facts that ) _-_, 7:.(Z;) =0

1
and [ udk,(u) = k(1) — fol k,(u)du to obtain that
0

o~

T,=-n""2%" f 1@ (ZR(L2,(6))d Q).
i=1

Define

C.(5, 1) := E[KS(Lz(O)R(L2(O)|Z = z] = E[KEU)KE ()],
K(s,1) = E(0°(Z2)0°(Z) Cy(s, 1)).

Then argue as in (45) to obtain
Ty = ET,T, = / f @K (2. ) (0)dQ(2)d Q(v).

We are now ready to state the following asymptotic normality result for ﬁR.

Lemma 3 Suppose the nonlinear Berkson measurement error model (12) and the
assumptions (13), (14), (46)—(49) hold. Then the following holds.
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sup |0 +n~'21) — K(1)| = 0,(1). (51)

i<t

In a/c\lditl;(zn,/\if (50) holds and .69 is positive definite then nl/z(@\R —0) >4 N
(0,2, Z52,").

The proof of this lemma is similar to that of Theorem 1.2 of Kgul [15], hence no
details are given here. Assumption (50) is used to show that n'2||6g — 0| = 0,(1).

Remark 4 AsinRemark 1,letmy(x) = 0'h(x). Thenvy(z) = ¥ ((z), where 3(z) :=
E (h(X )NZ = z). Thus y(z) = [(z) and the assumptions (47)—(49) are vacuously
satisfied. The assumption (50) is shown to be satisfied by an argument similar to the
one used in the proof of Lemma 5.4.4 of Koul [16, pp. 183—185]. This proof uses the
monotonicity in ¢ for every unit vector e € R” of simple linear rank statistics based
on the ranks of ¥; — te’h(X;), 1 <i < n, see Hijek [10, Theorem IL.7E].

For the asymptotic normality of 513 here, one only needs (46) and ¥ to be a
d.f. such that £ is positive definite. Note that here u°(z) = 3°(z) := B(z) — B, =
n 13" B(Z:) and

K(s.1):= E(B(Z2)B°(Z) Cz(s5, 1)),

5= / / B ()8 (2) K (2, v)° ()5 (v)dQ(2)d Q(v),
1
P = E(F @5 @ty w). @ = [ FuPadw,
0

donotdepend on §. Clearly, these assumptions are far less stringent than those needed
for the asymptotic normality of & corresponding to G(x) = x.

5 M.D. Estimators with Validation Data

In this section we develop the m.d. estimators of Sect.4 when the d.f. H of the
Berkson ME 7 is unknown but a validation data set is available. Not knowing H
renders vy to be an unknown function. Validation data is used to estimate this function,
which in turn is used to define m.d. estimators.

Let N be a known positive integer. A set of r.v.’s {(f(k, Zk), k=1,..., N}is said
to be validation data if these r.v.’s are independent of the original sample and both
Z and X, are observable and obey the model (12). Besides having the primary
data set {(Y;, Z;), 1 <i < n}, we assume that a validation data set of the covariate
{()?k, Zk), 1 < k < N}isavailable. Then 7 := Xk — Zk, 1 <k < N are observable
and their empirical d.f. Hy(s) := N~! ng’:, I(x <s),s € R, provides an estimate
of H.

Under (13)—(15), we have the following estimates of vy and .
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N

N
D9 =N Y mp i), @ =N Y rig(z i)
k=1 k=1

An analog of @ in the current set up is defined as follows. Let

Ux,9) :=n""2Y " bg(Z)U (Vi = 09(Zi) < x) — I(=Yi + 05(Z;) < )},

i=1

D;(¥) = / ||l7(x, 19)||2dG(x), ’05\1 = argminy D; ().

To define the analog of éR here, let S;y be the rank of Y; — 0y(Z;) among Y; —
U9(Z;),1 < j < n and define

Uy (u, ) := % D (ZOU (S <nu) —u}, 0<u <1,

i=1

1
K@) :=/||L?n(u,z9)||2dwu), Or := argminyK(0).
0

The asymptotic distributions of @\1 and 0 as n A N — 0o are described in the
next two subsections. In their derivations, the lim(n/N) of the ratio n/N plays an
important role. Some of the proofs are similar to those of # and 8z. Some key steps
of the proof can be found in the Appendix.

5.1 Asymptotic Distribution of 51

In this subsection we derive the asymptotic distribution of @\1 In addition to (13)—(15)
and (17)—(25), the following assumptions are needed, where Ay(z) := Dy(z) — vy(2)
and 6 is as in (12).

E|E{rig(X)p(Z) — mg(ONZ}|)* < o0, (52)
E| E{mg(X)[vs(Z) — mgCONIn} | < oo.
The matrix (53)

5= COV(E[f [ 1) 0p(Z) e (x) 2 (x)[mg(Z + 1) — Ve(Z)]dde(Z)’U])
is positive definite.
A :=lim(n/N) > 0. (54)
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max (N (55
1<i<n =
E{100@)1P(mo(X) = v0(2))?} < o0 (56)
/ 120 (1 = Lz + 49(2))) )dG(x) < oo. (57)
0
/ E(18m(2) = (2L (x £ 40(2)) (58)
0

x(1 = Ly(x + Ag(Z)))dG(x) 0, Vi eRY.

We also assume that (18)—(24) and (25) hold with 2, 25 and D replaced by i,,,
and D, respectively. We denote these assumptions as (18)*—(25)*.

Here we discuss some sufficient conditions for the above assumptions. By
the C-S inequality, both the expressions of (52) are bounded from the above by
2E |ritg(X)||* E|mg(X)|*. Thus (52) is implied by (33)(a) and having E |my(X)|* <
0.

Next, under (33)(a), (57) is trivially satisfied when G(x) = dy(x). In the case
dG(x) = g(x)dx with g, := SUP e g(y) < oo, (57) is implied by (33)(a) and the
following conditions.

E([[rio 0117 Img(X)]) < oo. (59)

To see this, note that E(|A¢(Z)||Z) < 2E(|mp(X)||Z), and 120(Z))? < N~
S le(Z + m)|1? so that E||2yg(Z)|1> < E|lmg(X)||>. Now argue as in Remark
4.2 and use these facts to obtain that the left hand side of (57) is bounded from the
above by

E(10@IPE(IC1+ 14021 2))
< o[ CE g COI? + 2B (|ing (O IPma(3)]) | < o0

by (33)(a) and (59). Similarly, the left hand side of (58) is bounded from the above
by a constant multiple of

E|5u(Z) = 00(2D)||* < E||rirgin1a(X) — g (XO)||* = 0, by (34)(b).
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We now turn to proving the asymptotic normality of 6;. Similar to Sect.4.1, we
first prove that E(D;(f)) < oo. Recall Ay(z) := Dy(z) — vy(z) and rewrite

~ | A
0.0 = 7= 3|16 < 5+ A(Z) — (=G < x = Ao(Z)}.

i=1

By the independence of the primary and validation data and a conditioning argument,
for every x > 0,

~ A 2
ENT 0 = E(I3(DIIC < x + 9(2) — 1(=C < x = 24(2)))

= E(I0(2)IP(1 = Lz(x + 40(2) + 1 = Lz(x = 40(2))).

Hence by (56), ED(0) < oco.
Next we sketch the proof of the AULQ property of D, (¢). Define

W(x,0) :=n""2 Y " HZ)I(G < x+ Ag(Z) — Ly, (0},
i=1

T, := /Fg(x){W(x,0)+ W(=x,0)}dG (x).

In the Appendix, we show that T, is approximated by a U-statistic based on the two
independent samples. Theorem 6.1.4 in Lehmann [17] yields

(@ T,— N, Zy+41Z)), )< oo, (60)
() V/N/nT, - N(,4%)), \=o0.

Next, the assumptions (54)—(58) and (18)*—(24)* ensure that the analog of Lemma
5 holds here also. Hence (41) with T,, and D(¥) replaced by 7, and D; (%), respec-
tively, holds. Moreover, analog of (42) can be shown to hold in a similar manner
as in Sect.4 under (25)*. Consequently, the asymptotic distribution of 9] based on
datasets {(Y;, Z;),1 <i < n} and{(Xk, Zk) 1 < k < N}described in the following
lemma.

Lemma 4 Suppose model (12) with H unknown holds and an independent valida-
tion data {( Xy, Zy), 1 <k < N} obeying (12) is available. In addition assume that
(17)—(25) and (52)—(57) hold. Then

V(@ —60) = N©,47'2,1(Zy + 4222, for 0 <\ < o0;

VN@® —0) = N©,167'2;' 2,2;"), for A = cc.
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The above result shows that the estimation step of regression function vy(z) due to
the unknown distribution H introduces more variation in the asymptotic distribution
of the m.d. estimators. Moreover, the limiting ratio A of the sample sizes plays a
role in the additional variation. When A = limn/N = 0, the additional covariance
term vanishes, therefore it reduces to the case when the ME distribution is known.
In other words, when the validation sample size N is sufficiently large, compared
to the primary sample size n, both 0 and /9\1 achieve the same asymptotic efficiency.
On the other hand, when \ = oo, i.e., when the validation data size is very limited
compared to the primary data size, the estimation consistency rate is restricted to

VN instead of /n.

5.2 Asymptotic Distribution of Or

In this subsection we present the asymptotic distribution of the class of estimators Og.
First, we provide the additional assumptions. Let 2/,,,(z) = N~! Z,ivz 1| Vogn-112¢(2 +
7). Consider the following assumptions.

n ' ElDn(Zi) — H(Z)|* — 0. Yt eU(b). (61)
i=1
n 2 B (Z0) — D(Z)1 = 0,(1), ¥t eUb). (62)

i=1

VYe>0, 30 > 0andn. < oo such that for each s € U(b), Vn > n.,

P sup Y (2 - @Dl S €) = 1—e (63)
ENCIENEN P

For every € > 0, 0 < a < 00, there exist an N, and b = b, such that

P(Hiﬁlfblé(o +n 12y > a) >1—e¢ V¥n>N. (64)
t||>
The matrix (65)

5= Cov(E[ S [ 1€ @1(Z) — E@p(Z)}.(x)02(x)

x{my(Z + 1) = vy(2)}dxd () |n] )

is positive definite.

Next, define ©:=n""13"_| NZ),  (Z)=10(Z) — b,
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1

Topi= / T )l (u)d W (),
0

Kr(t) := / R W) 1PdW (u) + 2T, gt +1' 2ot

where 1/“\9 and §9 are defined in Sect. 4.2. Similar to Lemma 4. we have the following
lemma.

Lemma S Suppose model (12) with H unknown holds and an independent valida-
tion data {( Xy, Z;), 1 <k < N} obeying (12) is available. In addition assume that
(54), (55), (61)—(65) hold. Then, for 0 < \ < oo,

@ Top— NO, Zy+ A5, (66)
(b) n'2(@r —0) = N, 2, (Zg + AZ)2;).

Moreover, N1/2(§R —0) — N(O, ﬁe_lz‘zﬁe_l),for = 0.

See Appendix for some details of the proof.

6 Data Analysis

Example. We shall now compute the above estimators based on some real data. The
data pertains to the study of the relationship between the enzyme reaction speed (Y)
and the basal density (X) of the UDP-galactose, see Bates and Watts [1], p. 70. A
suitable model commonly used to analyze this data is the Michaelis-Menten model

ax

B+x’

In the primary data, consisting of n = 30 observations, the basal density vari-
able was measured using a simple chemical method. It was believed that this
method caused measurement error in the observation. Hence, in the validation
data, consisting of N = 10 observations, an expensive procedure with a preci-
sion machine tool was used to produce precise observations of the basal density.
Let Z denote the basal-density obtained by the chemical method parts per mil-
lions (ppm), Z denote the basal-density obtained by the exact measure (ppm) and
Y, the reaction speed (counts/min®). The primary and validation data are as fol-

lows. Table2 gives the m.d. estimators 91 with G(x) = x and HR with ¥ (u) = u,
based on the above primary and validation data, and the naive least squares esti-

mators Oy s obtained by ignoring measurement errors. The MSEs are calculated
by using the following formulas, where 7 = Xy — Zy, MSE(6;) = s, [Yi -

=(,0),a>0 >0 x>0.

my(x) =
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Table 2 M.D. and naive estimators and their MSE

Estimators 0 1 Or énLS

«@ 217.30 217.53 212.7
vy 0.069 0.063 0.064
MSE 48.96 57.85 49.87

Fig. 1 Fitted regressions ° o eoB
based on the three estimators & 7 TS =g
(55 &
00
&0
3 33 o
g - mg (%)
> O, Mge(x)
2 S mp(%)
s | ¢
- oy
)
ol
)
)
88
\ T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
4

2 ~ 2
LY my, Zi+ 70| MSE@R) = L0, [V — & S0 my, (Zi+ 770 and

N 2
MSEOys) = L Z:’zl [Yi — m@an(Zi)] . Figurel presents the fitted regression

n
curves using the three estimators.

Z 002 002 004 004 006 006 008 008 011 011 014 0.14 018 018 022
Y 76 47 82 95 97 107 118 127 123 139 146 149 157 151 159
Z 042 042 056 056 066 066 086 086 1.10 110 022 028 028 034 034
Y 185 189 191 192 193 196 198 202 207 204 152 173 180 179 182
Z 004 007 020 030 038 048 060 076 095 1110
X 0035 0076 0207 0295 0388 0486 0.601 0754 0952 1.112
Appendix

This section contains some details of the proofs of the various results.
Proof of (41). Let M(¢) = D(0 + n~'/?t), where D(¥9) is as in (16). Define
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Vnt(z) = V€+1r1/2t(z)7 fil = an(Zi) - Vg(Z,'),

Vi(x, 1) := % 12;: Uns(ZT(Y: — v (Z;) < x)

-~ gmznl(g <&,
Vx, 1) = % ; HZHI(G < x + &),
J(x,1) = %gﬂ(ziﬂzi (x + &),

Jo(x, 1) = % ;Dns(zi)LZ;(x + fit)a Wi(x, 1) := Vi(x,t) — Je(x, 1),
W(x,t):=V(x,t)—J(x, 1), s,t eR? x eR.

Note that EV(x,t) = EJs(x,t), EWs(x,t) =0.By (15),Vs e R?, x € R,

n~'2 Z l./ns(Zi){LZ[ (x) + LZi(_'x)} =n"'" Z Vns (Zi)-
i=1 i=1
Define
Yor () 1= 072N i (Z0) iz (), ga(x) =" YN Z)INZ) Uy, ().
i=1 i=1

Because of (15), v,; (x) = Y (—x), gn(x) = g,(—x) and we rewrite

#0) =/||v,<x,r)+v,(—x,n—n—‘/Zth(onsz(x)
0

i=1
= / H{Wl(x, t) - Wt(-x, O)} + {Wr(x’ 0) _ W(x’ O)}
0

HW,(—x, 1) = Wi(=x,0)} + {Wi(—x,0) — W(—x,0)}
{Jt(-xs 1) — Ji(x,0) — ’Ynt(x)}
{Ji(=x, 1) = Ji(=x,0) = Yur (=)} + 2{ 7 (x) — gu ()1}
{

_l’_
+
+{W(x,0) + W(=x,0) +2g,(x)r]) szG(x).
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Expand the quadratic of the six summands in the integrand to obtain
M(t) =M (t) + My(t) + - - - + Mg(t) + 28 cross product terms,

where

My (1) :=/||W,(x,t)—W,(x,0)||2dc(x),
0
Ms(1) ::/||W,(x,0)—W(x,O)”sz(x),
0
Ms(t) ::/||Wt(—x,t)—W,(—x,O)HZdG(x),
0
Ma(t) ::/||Wt(—x,0)—W(—x,O)”sz(x),
0
Ms(t) 1=/||Jz(x,t)—Jt(x,O)—Vnz(X)szG(X),
0
Mq(t) = / [ J:(=x, ) = J,(—x,0) —%z(—X)szG(X),
0
Mo(t) =4 [ |0 = g0t aG ),
0
Ms(t) ::/||W(x,0)+W(—x,0)+2gn(x)t||2dG(x).
0

Recall U (b) := {r € R?; ||t|| < b}, b > 0. We shall prove the following lemma
shortly.

Lemma 6 Under the assumptions (13) to (18), VO < b < oo,

sup M;(t) =, 0, j=12,..7, (67)
teld (b)
sup Mg(1) = 0,(1). (68)

teld(b)
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Unless mentioned otherwise, all the supremum below are taken over ¢ € U (b).
Lemma 6 together with the C-S inequality implies that the supremum over ¢ of all the
cross product terms tends to zero, in probability. For example, by the C-S inequality,

2
sup ‘ f {(Wix, 1) = W (x, OH{Ji (x, 1) — Ji(x,0) — %z(x)}dG(x)‘
0
< sup M (t) sup Ms(t) = 0,(1),

by (67) used with j = 1, 5. Similarly, by (67) with j = 1 and (68),

2
sup ’ / {Wl(x, t) — W (x, O)}{W(x, 0)+ W(—x,0) + Zgn(x)t}dG(x)‘
< sup M (t) sup Mg(t) = 0,(1) x O,(1) = 0,(1).

Consequently, we obtain

sup |M (1) — Ms(1)| = 0,(1). (69)

Expand the quadratic in Mg to write

My (1) ::/||W(x,0)+W(—x,0)||2dG(x)+ (70)
4t’/gn(x) W(x,0) + W(—x, 0)}dG(x)+4/ (t/gn(x))sz(x)
0 0

— F0) + 47T, + 4 / (F'8n(0))dG (x),
0
where T, := 7gn(x){W(x, 0) + W(—x,0)}dG(x). Let
0

/Fg(x) W(x,0) + W(—x, 0)}dG(x)
0

By the LLNs and an Extended Dominated Convergence Theorem



Weighted Empirical Minimum Distance Estimators in Berkson ... 59

sup ||7'(ga(x) — Iy(x))|| =, 0, VxeR;
sup/ | (80 (x) = Ty(x)) |dGx) -, 0.
0

Moreover, recall M 0) = 5(6), so that by (39), M (0) = 0, (1). These facts together
with the C-S inequality imply that

~ 7 2
o = H / {gn(x) = Ty} {W(x, 0) + W(—x, O)}dG(x)H
0

< F(0) / l6(0) — T30 dG(x) — 0.
0

These facts combined with (22), (69), (70) yield that

sup | M(t) — M(0) — 4Tt —4:’/r9(x)rg(x)dc(x)t( =0,(1).
0

~ ~ ~ o0
Now recall that D(J) = 2D (), M(t) = D(0 +n~"?1), 2y =2 [ I} I3dG and
0
T, = 2T, see (40). Hence the above expansion is equivalent to
sup | D(0 +n~'%t) — D(B) — 2Tt — 21 29t| = 0,(1),
1

sup |D(0 + n~'?t) — D(0) — 4T, t — 4t'29t| = 0,(1),
t

which is precisely the claim (41). ]
Proof of Lemma 6. Let §;; := &; —n~"?t'0(Z;). By (13) and (14),
max n'2[g, [ =o,(1).  max n”AZ)] = 0,(D). D

Hence,

Jmax || < max 1]+

< 0p(n™ %) + b max n”'2|(Z)]| = 0,(1),

f&i = i(um(z,») —u(Z)) =) 0,40 Y (WH(Z)),
i=1 i=1 i=1

i=1

Jmax a2 e)l)1(Z))] (72)
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. 2 _ . .
supY & <n max |5 | + 67 Y HZ)IP = 0,),  (73)
rizl

I<i<n, |itll<b pr
by (14). Moreover, by (14) and the Law of Large Numbers,
sup [ " 5p(Zi) i | (74)
! i=1

SR M U LA R DIACALICAY

i=1 i=1

= 0,(1) 4+ 0,(1) = 0,(1).

These facts will be use in the sequel.
Consider the term M;. Write

Var (X) — &n(X)2

=n"12 Z Ui (Z)Ei1 7, (x) — ™! Z P(ZDD(Zi) bz (01
i=1 i=l1

=07V Y [50(Z) = 206, (6) + 72 Y A2t ()

i=1 i=1

=23 [0 (Z) — (Z0))birlz, ()

i=l1

10 [ (Z0) = HZD|AZ) €7, )t + ™2 (208t ().
i=1 i=1
Hence

o0

M; = / e () = 80 )2 |Pd G (x) < MM (1) + M (t) + Ma3(0)},
0

where
M) =t [ [ 3 im0 - 2]tz 0] dGo)
0 i=1

VRO I D3 CHCAREER Zearaeen et
0 i=1
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M) =" 7 | S szt o a6,
0 i=1

But, by (18) and (71),

sup M7 (t)
t
0 n
<n sup 02 sup ||z'/n,(Zi)—1)(Z[)||2/n_' > (0)dG(x) = 0,(1).
t,1<i<n t,1<i<n .
SEIS SIS 0 i=l

Similarly, by the C-S inequality,

t,1<i<n

sup Mp(1) < b* sup i (Z0) — (Z) | ™! / D 1H(Z) 17, (0)dG (x)
d o i=l
= Op(l)op(l) = Op(l)v

by (18) and (19). Again, by (19) and (71),
[e ]

sup M73(1) < sup n|é;|*n”" / D I(Z) 175, (x)dG (x) = 0,(1).

t,1<i<n

n =l
These facts prove (67) for j = 7.
Next consider Ms. Let D;;(x) := Lz, (x +&;;) — Lz, (x) — &£z (x). Then

M) = /OO | szpueo e 75)
0 i=1

i (Z)|

IA

— D;, (x)dG(x).
By (14) and (18),

n

2 —1
<sup n E
t

" 2

—1
s1t1pn Z

i (Z0) = (20|

Uni(Zi)

2
=0,(1).

+supn”! HD(Zi
ip ; )
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By the C-S inequality, Fubini Theorem, (20) and (73),

/ Y D2 (x)dG(x)
0 i=1

0 4, &

5/2( / (ZZ[(x+u)—£zi(x))du)2dG(x)
0 =l gl
0, [€i |
< f > 16l f (€2,(x + 1) — £7,(x))*dud G (x)
o =l e
€] oo n
< max || / / (€20 1) = €2,(0)) dG)du Y 16l
T gl =
= 0,(1).

Upon combining these facts with (75) we obtain sup, M5(t) = 0, (1), thereby proving
(67) for j = 5. The proof for j = 6 is exactly similar.
Now consider M. Let &(Z) := v, (Z) — v(Z). Then

[ee]

EM\(t) :< / E|W,(x,1) = Wi(x,0)|*dG (x)

=< n! X:E(”l./m(zi)”2 f ‘LZ[(X + &) — in(x)‘dG(x)>
i=1 e
n o0 ‘51/'

< B @l [ [ ent+wduacen
i=l —00 —[&;]
l(2)| %

= E( f 12 (2) I f Kz(x+u)dG(x)du) — 0,

~1&(2)] ~o0
by (21). Thus
Mi(t) =o0,(1), VielUb). (76)

To prove that this holds uniformly in ¢ € U (), because of the compactness of the
ball U (b), it suffices to show that for every ¢ > O thereisa d > 0 and an N, such that
for every s € U(b),
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P( sup [M(t) —Mi(s)|>¢€) <€, Vn>N. (77)
llt=sll<d
Let 2, (z) denote the jth coordinate of 7/, (z), j =1, ..., q and let

oi(x,1) = =1(G <x+&)—1(G <x)— Lz (x +&) + Lz (x).

Then

o0

ML) = f W, 1) — Wy, 0)d G (x)

g n q
Z/ Y By (Zes (. ) G0 = Y0 My @), say
0 =

j=1 i=1

Thus it suffices to prove (77) with M, replaced by M,; foreach j =1,...,q.
Any real number a can be writtenasa = a* — a~, where a™ = max(0, a),a” =

max(O —a). Note that a* > 0. Fix a j =1,...,q, write 1,,;(Z;) = m](Z ) —
Vi (Z;) and define
WiE(x, 1) = n 1/22 D (ZD) o (x, 1),
i=1
[e ]
Dy (x,s5.1) =W (x,0) = Wi(x,5), Ri(s.0) :=[(Df(x,s,t))2dG(x).
0
Then
[ M1 (1) = Mi;(s5)| (78)

o]

- ‘/(W;r(x,t) — Wy (x,0) dG(x)

0
—/(Wj*(x,s> — W} (x,9)dG()|
0
f (D} (x.5,0)°dG(x) + /(Dj_(x,s,t))sz(x)
0 0

+2{f(0j(x,s,z)) dG(x)/(Dj (x.5,0)’dG ()]
0 0
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+2[] /oo(Dj(x, s, t))sz(x)}l/z
0

+{]O(D;(x,s,z))2d6(x)]l/] 2()
0

= RI(s,0) + Ry (s.1) + 2(R} (s, DR (5,1))""?
HRF (5.2 + Ry (5.0) M) (5).

Write

Df(x,s.t)=n ‘/22 U (Z o, t)—n—l/zzuw(z Yai (x, 5)

i=1 i=1

—n*“zz U (Zi) = o (Z0) ] (. 1)

+n l/ZZij(Z) ;i (x, 1) — ai(x, S)]

—Dll(x s, t)+D H(x, s, t) say.

Hence
RY(s.1) < 2/(D;rl(x,s,t))2dG(x)+2/ (Dh(x.5,0)’dG(x).  (79)
0 0

By (23), the first term here satisfies (77). We proceed to verify it for the second term.
Fixans € Uy, e > 0and § > 0. Let

Ani =72 (BIN(Z)] +26), By & — €| < A}

=l
teN, llt—sll<d

By (18), there exists an N, such that P(B,) > 1 — ¢, forall n > N.. On B, &5 —
Api < &y < &5 + Ay and, by the nondecreasing property of the indicator function
and d.f., we obtain

I(G < x+&s — Awi) —1(G < x) — Lz, (x — &+ Api) + Lz, (x)
—Lz,(x + & + Api) + Lz, (x + &5 — Ani)
<o, ) =1 <x+&)— 1§ <x)—Lz(x +&) + Lz (x)
ST(GSx+&+An) —1(G <x)— Lz (x + &5+ Api) + Lz (x)
+Lz (x + &5 + Ani) — Lz,(x + &§is — Api).
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Let

Dh(x,s,a)i=n"2Y p;;_y{l(g <x+& +ady) —1G<x)

i=1
—L7,(x &+ adn) + Lz, ().

The above inequalities and ¢ V -(Z;) being nonnegative yield that on B,,,
oo
2
/ (Dﬁ(x, s, t)) dG(x)
0

(D5, 1) = Dh(x,5,0)’dG (x)

+ (D}Lz(x, s, —1) — D;g(x, s, 0))2dG(x)

+ (”71/2 Z l'/;}s(zi){LZ; (x + &is + Ai)

i=1

0\8 0\8

2
~L7,(r + &5 — An)}dG )

Note that max<;<,(|&is| + Ani) = 0,(1). Argue as for (76) to see that the first two

terms in the above bound are 0,(1), while the last term is bounded from the above
by

o0 fiA+Ani
/(n—l/zZyW(Z) / Zzi(x—i—u)dudG(x))z (80)
0 =l Sis—Ani
ist+Ani 00
‘Z(u,m(z )? ZAm / / [€2 (x +u) — €% ()] dG(x) du
i=1 Eio— A

4 Y 2 Y A / 2,(0dG().
i=1 i=1 0
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The first summand in the above bound is bounded above by

SisTAni 00
2 max 24,)”" / [ [63, (x +u) — €5 (x)]dud G (x)
Sis—Ani 0

xn”t Y W5 (Z0) Y AL = 0,(D),
i=1 i=1

because the first factor tends to zero in probability by (20) and the second factor
satisfies

nT Y @EZO Y Ay < a7 Y P (2016 ) 1(Z0|17 A+ 4€).
i=1 i=1

i=1 i=1

The second term in the upper bound of (80) is bounded from the above by

a3 i Z0I2n Y (BUHZ) P + 4€) / & ()G )
i=1 i=1 0

] o0

—, El(2)|I°[6? / E(12(2)|1€5(x))dG (x) + 4€* / E(£5(x)dG(x)].
0 0

Since the factor multiplying 6 is positive, the above term can be made smaller
than € by the choice of §. Hence (77) is satisfied by the second term in the upper
bound of (79). This then completes the proof of R;r satisfying (77). The details of
the proof for verifying (77) for R} are exactly similar. These facts together with the
upper bound of (78) show that (77) is satisfied by M,; foreach j =1, ..., g. This
also completes the proof of sup, M/ (¢) = 0,(1), thereby proving (67) for j = 1. The
proof for j = 3 is similar.

Next, consider M,. Recall §; (x) := I({; < x) — Lz (x). Then

My(t) = n"! f | >t (Z) = Z0)) i) | *d G ).
0 i=1

Because E(5;(x)|Z;) =0, a.s., we have

[e¢]

EM;(1) = / E(|on(2) = #DIPLz0 (1 = L2())dG ) — 0,
0
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by (18). Thus
M;y(t) = o0p,(1), vVt eRe 81)

To prove this holds uniformly in ¢ € U (D), we shall verify (77) for M,. Accordingly,
let 6 > 0, s € U(b) be fixed. Then forall ¢ € U/ (b) such that ||t — 5| < J,

|M> (1) — Ma(s)|

oo

- / || Z{VnI(Zz) - Vns(Zl)}ﬁ,(x)szG(_x)
0 i=1
[ - 1/2
#2007 [ 13020~ 2wl aGw) ats)
0 i=1

This bound, (24) and (81) now readily verifies (77) for M, which also completes
the proof of (67) for j = 2. The proof of (67) for j = 4 is precisely similar. This in
turn completes the proof of Lemma 6. ]
Proof of (60). Recall (43). Let D(z, x) := mg(z + x) — vy(z). Use the fact l7(x, 0) =
W(x,0) + W(—x, 0), to rewrite

T, = — Z Z f p@ig(Zi + i {p:(G) — 266 D(Zi, 7)) O (2)
N \/_ i=1 jk=1
+ higher order terms,
where ¢ (x) is defined as in Sect.4.1.
For further analysis of T,,, with the two independent samples {(Z;, (;), | <i < n}

and {7, 1 <k < N}, define the symmetric kernel function ¢ and its projections as
follows.

(b(zl’ Ch ﬁls f/2)

= /M(Z)Vhe(z1 + 7{p:(C1) — 2€:(C)D(Zy,172)}d Q(2)
+ /M(Z)me(zl + - (C1) — 2£.(C1)D(Zy1, 1)}d 0 (2)
E($lZ1,C1) = 2/M(Z)ﬂo(z1)@z(41)dQ(Z), EQ(Z1, Gy, 1) =0,

E(olm) = —2/u(Z)E{I'/(Z)Ez(C)D(Z,ﬁl)lﬁl}dQ(Z)~

Let Tnl denote the first term in the right hand side of f‘n. Then
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T, = szz Z ¢(Zl7§l’ Njs le)

i=1 1<J<k<N

- IZZ [ i@ + i) - 266 DZ a0

i=1 j=1

=: Toi1 + Tona-

Note that that 7}, is a U-statistic with permutation degree 1 in the primary sample
{(Z;, (), 1 <i < n}and permutation degree 2 in the validation sample {7, | <k <
N}. Theorem 6.1.4 in Lehmann [17] and (52) yield that, for 0 < A < oo,

NN-1 1

2N Z'X:M%waw

2 i=1 1<j<k<N

Toi = /n x

1
—~p 5 N(0. Var(E@1Z1. 1) +4)\Var(E(¢|771))) = N, Ty +4A5)).

Moreover, for A = oo, Theorem 6.1.4 in Lehmann [17] also yields that /N /n T,,H
—D N(O, 421).

Similarly, T,1» is a U-statistic with permutation degree 1 for both samples. Since
(52) implies that E{||ng(X)[mg(X) — v9(Z)]]|} < o0, therefore Efnlz =0n?).
Moreover, Theorem 6.1.3 of U-statistics in Lehmann [17] implies that Var(fnlz) =
O(n~") and hence Tnlg = 0,(1). Hence the claim (60).

Proof of (66). Let D,]k =mg(Z; + 1) — me(Z; + 7). Based on the definitions of
Fg(u) and k;(v), T, g can be rewritten as

1
Fop = / / 1 (U (@) (LT ()% ()d O (2)
0

=—n"'" Z / 1@V (Zi) k= (L7, (G — AMZ:))d Q(2)

—-12 n
= Z Z Z/ (Z)Dljk“z(LZ NdO(z)
i=1 j=I1,j#i k=1
—1/2 n
> Z Z/u @)Dyl (()A(Z)d Q(2)
nN
i=1 j=I1,j#i k=1

+ higher order := T, g + T, r2 + higher order.

First, we study the asymptotic distribution of 7,, g;. Definefor1 <i, j <n,i # j,
and1 <k <N,
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200G 23 G = [ B @D R L2 @) + Lz, G ]d 0.

Then 7, g1 can be rewritten as

_1 N
Tn,R1=—n(n ) \/?v Z Zwl(zivCist’Cj’ﬁk)-

X
2}’12 (;)(1) I<i<j<n k=1

By the definition of U-statistics in Lehmann [17], T}, g; is a two sample U-statistic
based on function v, with permutation degree of 2 on the sample {(Z;, (;), | <i < n}
and permutation degree of 1 on the sample {7, 1 < k < N}. Because condition-
ally, Lz (¢;), given Z;, is a uniformly distributed r.v., we have E(Lz ((;)|Z;) =
1

f k;(u)du := K(z). Then the conditional expectations of ) can be calculated as
0

follows.
E@i|Zy, Q) = /MC(Z)[DH(Zl) — E(Wy(Z2))]k;(Lz,(¢1))d 0(z),

E@W1|Zy, Zo,m) = /MC(Z){Dm + Dy 1 }K (2)d Q(2) =0,
E(|m) = 0.

It can be seen that Cov(E (Y|Z1, (1)) = fg as defined in Sect.4.2. Then Theorem
6.1.4 in Lehmann [17] yields that

1 ~
T, r1 =D EN(O, 4Cov(E (| Z1, 1)) = N (0, Xy).
Next, in order to study 7, g», define

Wa(Zi, Gy Zj, Gy e, )

= /MC(Z)[rhe(Zi + 1) — mo(Zj + n) - (G) D(Z;, )d Q(2)
+ / 1 @lmg(Zj + 1) — mo(Zi + i) (C)D(Z;, 1)d Q(z)
+ / 1 @lmg(Zi + 1) — mo(Zj + )1l (G) D(Z;, 7i)d Q(z)
+ / 1 @Uig(Zj + M) — mo(Zi + 1)1 (C)D(Z;, i)d Q(2).

Then T, g» can be rewritten as a two sample U-statistic with permutation degree 2
for both primary sample and validation sample.
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T, r2

nn—1) NN —1) Jn o
-T2 N () Z Z V2(Zis Gis Zij, G Thes 1)

2/\2/) 1<i<j<n 1<k<I<N

The conditional expectations of v, are calculated as

E(p|n) = 2/MC(Z)E{[1'/0(Z) — E(@g(Z2)]€.(Q)D(Z, 71)d Q(z)
E@lZ, () =0.

Then Theorem 6.1.4 in Lehmann [17] shows that, for 0 < A < oo,
1 -
T, r2 =D ZN(O, AMCov(E (Y2|71))) = N(0, AX»).

The two terms 7, g; and T, g» are asymptotically independent becuase of the inde-
pendence between the primary sample and validation sample. In fact, 7, g; isbased on
E(11Zy, ¢1) and T, g, is based on E (12]7;). Therefore, (66)(a) holds. An argument
similar to one used for (51) yields that sup, < KO +n12t) — Kr(0)| = o,(1),

which in turn yields the claim (66)(b) about Or.

When A\ = oo, by Theorem 6.1.4 in Lehmann [17], \/N_/nT,hm —p N0, X,).
Then /N/n T, =/N/nTyri +N/nT, ro —p N, X,). Therefore, we
obtain that /N (0 — 0) —p N(0, 2, 2,2;") for A = o0. O
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