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Abstract Artificial neural networks represent an important class of methods for
fitting nonlinear regression to data with an unknown regression function. However,
usual ways of training of the most common types of neural networks applied to non-
linear regression tasks suffer from the presence of outlying measurements (outliers)
in the data. So far, only a few robust alternatives for training common forms of neural
networks have been proposed. In this work, we robustify two common types of neural
networks by considering robust versions of their loss functions, which have turned
out to be successful in linear regression. Particularly, we extend the idea of using
the loss of the least trimmed squares estimator to radial basis function networks.
We also propose multilayer perceptrons and radial basis function networks based
on the loss of the least weighted squares estimator. The performance of these novel
methods is compared with that of standard neural networks on 4 datasets. The results
bring arguments in favor of the novel robust approach based on the least weighted
squares estimatorwith trimmed linearweights in terms of yielding the smallest robust
prediction error in a variety of situations. Robust neural networks are even able to
outperform the prediction ability of support vector regression.

Keywords Nonlinear regression · Neural networks · Robustness

1 Introduction

Nonlinear regression modeling, i.e. estimating (smoothing, fitting) a continuous
response variable based on a set of regressors (features, independent variables) plays
a crucial role in the analysis of real data in a tremendous variety of applications. An
important task of regression modeling is also to predict a future development of the
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response [6]. In practical applications, the nonlinear regression function is not known
and is not assumed to be of any specific form. Recently, there is an increasing trend in
applying machine learning methods to nonlinear regression modeling. In this paper,
multilayer perceptrons (MLPs) and radial basis function (RBF) networks, i.e. two
very important classes of feedforward artificial neural networks [10], are considered
for the nonlinear regression task.

Real data across various disciplines, e.g. in numerous regression tasks of
biomedicine, economics, engineering etc., are typically contaminated by the presence
of outlying measurements (outliers). In some applications (e.g. in measurements of
molecular genetic and metabolomic biomarkers [14]), outliers appear unavoidably,
because severe measurement errors are immanent to the measurement technology.
So far, most available applications of MLPs and RBF networks to regression tasks
have not paid sufficient attention to the presence and influence of outliers; both these
networks however implicitly assume the observed data not to be contaminated by out-
liers [2, 26]. Therefore, it is highly desirable to consider alternative robust approaches
to training of MLPs and RBF networks. One direction of the robustification is based
on an intrinsically performed detection of outliers [1]. Another direction for a pos-
sible robustification is inspired by the very rich experience of robust statistics with
data contamination by outliers or anomalies (see [12]); this approach represents the
interest of the current paper.

While there are some robust approaches to training neural networks available,
they are mostly tailor-made the classification task; see ([17], p. 54) for discussion.
Let us mention at least a few available robust approaches for the regression task.
Compositions of sigmoidal activation functions were considered to robustify the
performance for a rather specific task in [18] to estimate a response which is almost
constant over relatively large intervals. If subtractive clustering (SC) is used for an
automatic recommendation of the center vectors, a robustified loss function may be
subsequently used [26]; still, the popular SC approach remains vulnerable to outliers
and consecutive steps of the training cannot improve this. A recent approach to outlier
detection for regression RBF networks was developed in [17], which is denoted
as generalized edited nearest neighbor (ENN) algorithm; this was also combined
with robust versions of the activation function. Robust loss functions based on least
trimmed squares or least trimmed absolute values estimatorswere investigated in [24,
25],where they outperformed standard training approaches on contaminated data.We
do not agree with the formulas for partial derivatives of the loss function published in
[24], but this may not influence the results presented there, as practical computations
typically exploit numerical approximations of derivatives (not relying on theoretical
expressions). Nevertheless, even the extensive numerical computations in [25] do
not compare robust neural networks with the (sophisticated and powerful) support
vector regression.

The idea to apply a robust loss function in neural networks will be extended in
the current paper by means of the least weighted squares estimator, which represents
a natural generalization of the least trimmed squares and turns out to be a perspec-
tive and (possibly) highly robust tool for estimating parameters in linear regression.
Section2 recalls the least trimmed squares and least weighted squares estimators
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of parameters in linear regression and in the location model. Section3 uses these
estimators to propose novel robust versions of MLPs and RBF networks. Numerical
examples presented in Sect. 4 illustrate the performance of the novel robust neural
networks. Finally, Sect. 5 concludes the paper.

2 Highly Robust Estimation in Linear Models

This section recalls two (possibly highly) robust implicitly weighted estimators of
parameters of the linear regression model (including the location model as a spe-
cial case), namely the least trimmed squares and least weighted squares estimators.
Highly robust estimators are defined as those, which attain a high value of the break-
down point; this measure of robustness of a statistical estimator of an unknown
parameter represents a fundamental concept of robust statistics [12]. Formally, the
finite-sample breakdown point evaluates the minimal fraction of data that can drive
an estimator beyond all bounds when set to arbitrary values.

The standard linear regression model has the form

Yi = β0 + β1Xi1 + · · · + βp Xip + ei , i = 1, . . . , n, (1)

with a continuous response Y1, . . . ,Yn explained by the total number of p regressors,
and independent and identically distributed (not necessarily Gaussian) random errors
e1, . . . , en .

The least trimmed squares (LTS) estimator [22, 23] of β represents a popular
robust regression estimator with a high breakdown point. Consistency of the LTS and
other properties were derived in [27]. The user must select the value of a trimming
constant h (n/2 ≤ h < n). We will denote residuals corresponding to a particular
b = (b0, . . . , bp)

T ∈ Rp+1 as

ui (b) = Yi − b0 − b1Xi1 − · · · − bpXip (2)

and order statistics of their squares as

u2(1)(b) ≤ · · · ≤ u2(n)(b). (3)

The LTS estimator, formally obtained as

argmin
b∈Rp+1

1

n

h∑

i=1

u2(i)(b), (4)

may attain a high robustness but cannot achieve a high efficiency. We may consider
the LTS as an implicitly weighted estimator, namely as a special case of the least
weighted squares with weights equal only to 0 or 1.
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The least weighted squares (LWS) estimator (see e.g. [28]) for the model (1) rep-
resents a flexible natural extension of the LTS. The LWS estimator motivated by the
idea to down-weight potential outliers based on ranks of residuals however remains
much less known compared to the LTS. The LWS estimator may achieve a high
breakdown point (with properly selected weights) and is robust to heteroscedasticity
[28]. Its primary attention is focused on estimating β and not on outlier detection.
The LWS estimator with given magnitudes of weights w1, . . . , wn is defined as

bLW S = (bLWS
0 , . . . , bLWS

p )T = argmin
b∈Rp+1

n∑

k=1

wku
2
(k)(b). (5)

The efficiency of the LWS is able to exceed the low efficiency of the LTS; if data-
dependent adaptive weights of [4] are used, the estimator asymptotically attains the
full efficiency of the least squares. The LWS estimator was successful in a variety
of recent applications including denoising gene expression measurements acquired
by the microarray technology [14] or image analysis based on landmarks measured
within facial images [13]. There has been a good experience with implicit weighting
also for multivariate robust estimation; the multivariate analogy of the LWS is the
minimum weighted covariance determinant (MWCD) estimator proposed in [21].

The location model represent an important special case of (1) in the form

Yi = μ + ei for i = 1, . . . , n, (6)

where μ ∈ R represents a parameter of location (shift). In (6), the LWS estimator
inherits the appealing properties of the LWS from (1). The performance of the LWS
on real data in (6) was revealed as successful e.g. in the image analysis applications
of [13],where theLWSestimator in (6)was also proven to correspond to the estimator
with the smallest weighted variance. This allows a very efficient computation of the
LWS in (6).

3 Robust Neural Networks with Implicitly Weighted Loss
Functions

We consider the regression model

Yi = f (Xi ) + ei , i = 1, . . . , n, (7)

with an unknown nonlinear function f , where Y1, . . . ,Yn are values of the response
and Xi ∈ Rp (with p ≥ 1) is a vector of regressors corresponding to the i-th obser-
vation. This is a nonlinear regression setup with a univariate continuous response
Y1, . . . ,Yn , which is explained by means of p regressors. A novel robust tool for
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neural networks is proposed in this section, namely an MLP or an RBF network
based on the loss function of the LWS estimator.

MLPs, which represent a very popular type of artificial neural networks, contain
an input layer, one or more hidden layers with a fixed number of neurons, and an
output layer. As we use the most standard form of multilayer perceptrons, we will not
present their detailed model, as it can be found in numerous monographs (see e.g. [7,
9]). For a particular multilayer perceptron (with a selected architecture), let the fitted
value of the response for the i-th measurement (i.e. estimate of Yi ) be denoted by Ŷi
for each i = 1, . . . , n.

Let us start by describing the training of a standardMLP in a symbolic (general but
very simplified)way inAlgorithm1.There,wedenote thewhole (saym-dimensional)
vector of all parameters of a given MLP with a specified architecture as θ ∈ Rm .
Denoting the estimated version of f obtained by the MLP as f̂ , we may denote the
vector of fitted values of Y by Ŷ = f̂ (θ̂) and the vector of residuals, which depend
on f̂ , as u = Y − Ŷ . Concerning the stopping rule in Algorithm 1, our computations
use a default version implemented in [3]. Algorithm 1 is formulated in such a way
that it remains valid also for a robust version of an MLP, as it considers a general
loss function.

Algorithm 1 MLP in the nonlinear regression model (1) with a selected (standard
or robust) loss function �

Input: X1, . . . , Xn, where Xi ∈ Rp for each i = 1, . . . , n
Input: Y1, . . . , Yn , where Yi ∈ R for each i = 1, . . . , n
Input: A chosen loss function �

Output: A fitted MLP based on minimizing a given loss �

Choose θ̂0 ∈ Rm as an initial estimate of θ

i := 0
repeat
ui = (ui1, . . . , u

i
n) := Y − f (θ̂i )

i := i + 1
θ̂i := argmin �(ui−1

1 , . . . , ui−1
n ) (where the optimization over estimates of θ is solved by a

stochastic gradient method)
until a certain stopping rule is fulfilled

The most common way of training MLPs minimizes the sum of prediction errors
in the form

� = �(u1, . . . , un) := min
n∑

i=1

u2i . (8)

It corresponds to the least squares estimation in a location model. It is now natural
to replace this quadratic loss function by one of available robust alternatives (again
for the location model). We consider a method of [24] denoted here as LTS-MLP;
for a fixed h, it is defined by replacing (8) in the form
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� :=
h∑

i=1

u2(i). (9)

We define a new version of MLP dentoted as LWS-MLP by choosing � in the form

� :=
n∑

i=1

wi u
2
(i) (10)

for selected magnitudes of weights w1, . . . , wn . We always consider the natural
standardization to

∑n
i=1 wi = 1. We consider three particular choices, namely the

LWSa-MLP with linear weights

wi = 2(n + 1 − i)

n(n + 1)
, i = 1, . . . , n, (11)

LWSb-MLP with trimmed linear weights

wi = h − i + 1

h
1[i ≤ h], i = 1, . . . , n, (12)

where we consider h = �3n/4� and �x� = min{n ∈ N; n ≥ x}, and finally LWSc-
MLP with weights generated by the (strictly decreasing) logistic function

wi =
(
1 + exp

{
i − n − 1

n

})−1

, i = 1, . . . , n. (13)

While LTS-MLP loss detects outliers and trims them away, LWS-MLP estimator
does not do this but intrinsically arranges observations according to outlyingness.

Another alternative version denoted here as LTA-MLP was defined in [24], where
a robust loss function corresponding to the least trimmed absolute value (LTA) esti-
mator was used. LTA-MLP is defined for a fixed h (n/2 ≤ h < n) by means of

� :=
h∑

i=1

|u(i)| (14)

and according to [24] yields very similar results to those of LTS-MLP.We can say that
the LTA estimator is practically unknown in the community of robust statistics; at the
same time, it is not sufficiently discussed in the majority of monographs on robust
estimation [12]. It is worth noting that, although we are not aware of systematic
numerical comparison of the LTA estimator with other robust estimates in linear
regression, it has been claimed that the performance of the LTA is very similar to
that of the LTS in linear regression. Possible improvements of the LTA compared to
the LTS are known not to be more than only marginal (see p. 429 of [29]). Still, the
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LWS estimator seems to be much more promising in terms of both robustness and
efficiency, as repeatedly discussed [5, 28].

Radial basis function (RBF) networks represent another important class of neural
networks. They contain an input layer with p inputs, a single hidden layer with N
RBF units (neurons), and a linear output layer. The user chooses N together with a
radially symmetric function denoted here as ρ. The RBF network is based also on
minimizing (8); using the Gaussian density as ρ, the residuals can be expressed as

ui = Yi −
N∑

j=1

a jρ(||Xi − c j ||), i = 1, . . . , n, (15)

with parameters c1, . . . , cN ∈ Rp and a1, . . . , aN ∈ R, and possibly with other
parameters corresponding to ρ. We refer to [10, 16] for a detailed description of
RBF networks. RBF networks can be expressed in an analogous way as MLPs in
Algorithm 1 by means of minimizing the sum of squared residuals.

Robust versions ofRBFnetworks,whichwill be denoted here asLTS-RBF,LWSa-
RBF, LWSb-RBF, or LWSc-RBF networks, will be defined by means of the loss
functions above. In other words, the are obtained by replacing the quadratic loss in
(15) by the loss functions of the LTS or LWS estimators.

We implemented all the robust neural networks in Keras [3]. The implementa-
tion exploits a back-propagation algorithm, namely a stochastic gradient descent
method, i.e. the same approach as in [24, 25], for optimization of all parameters for
both standard and robust MLPs as well as RBF networks. As our experiments have
demonstrated, also the loss function of LWS-MLP and LWS-RBF networks is in
practice smooth enough for our gradient-based approach.

4 Numerical Experiments

The aim of the computations over 1 simulated and 3 real datasets is to illustrate the
performance of the novel robust neural networks and compare it with other nonlinear
regression tools.

4.1 Data Description

(A) The so-called Eckerle4 dataset publicly available in the package NISTnls of
R software [20] has p = 1 regressor and n = 35 observations, including one
apparent outlier. In Fig. 1, this real dataset is presented together with fitted trend,
estimated by a standard MLP as well as LTS-MLP.

(B) A simulated dataset obtained by means of a sine function with a (rather arti-
ficial) contamination by a linearly decreasing trend with p = 1 and n = 101.
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Fig. 1 Dataset Eckerle4. Horizontal axis: the regressor. Vertical axis: the response. The curve
corresponds to the standard MLP (left) and LTS-MLP with h = �3n/4� (right)

Fig. 2 The simulated dataset. Horizontal axis: the regressor. Vertical axis: the response. The curve
corresponds to the standard RBF network (left) and LTS-RBF network with h = �3n/4� (right)

The dataset is presented in Fig. 2, together with estimated trend, obtained by a
standard RBF as well as LTS-RBF network.

(C) The Auto MPG dataset [8] with p = 4 continuous regressors and n = 392
observations after omitting all missing values (i.e. observations with index 33,
127, 331, 337, 355, and 375) from the original dataset. The consumption of
each car in miles per gallon (MPG) is considered here as a response explained
by engine displacement, horsepower, weight, and acceleration.

(D) The Boston Housing dataset [8] with p = 11 continuous regressors (omitting
features 4, 7, and 9 from the original dataset) and n = 506 observations. The
per capita crime rate by town (i.e. in each individual location) is considered as
the response variable here.
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4.2 Methods

The following methods will be used in the computations. For the description of
standard machine learning methods, the reader may refer to monographs [9, 10].

• RBF network. The number N of RBF units used in particular examples is specified
in Table1.

• LTS-RBF network with the same architecture as the plain RBF network and h =
�3n/4�.

• LWS-RBF (i.e. LWAa-RBF, LWSb-RBF, LWSc-RBF) networks with the same
architecture as the plain RBF network.

• MLP with 1 or 2 hidden layers as specified in Table1 for particular examples,
together with the number of neurons in these layers. In every example, a sigmoid
activation function is considered in every hidden layer. A linear output layer is
always used.

• LTS-MLP with the same architecture as the plain MLP and h = �3n/4�.
• LWS-MLP with the same architecture as the plain ML.

Three different measures of prediction errors are evaluated for each situation
within a ten-fold cross validation study, performed in a standard way. Because the
standard MSE suffers from the presence of outliers in the data, we also consider the
trimmed MSE (TMSE) and weighted MSE (WMSE) defined formally as

MSE = 1

n

n∑

i=1

r2i , TMSE(α) = 1

h

h∑

i=1

r2(i), WMSE =
n∑

i=1

wi r
2
(i), (16)

where ri = Yi − Ŷi are prediction errors and Ŷi denotes the fitted value of the i-th
observation for i = 1, . . . , n. For TMSE, we choose h as the is integer part of 3n/4,
and squared prediction errors are arranged as r2(1) ≤ · · · ≤ r2(n). WMSE requires to
use some fixed non-increasingmagnitudes of weights andwe use here trimmed linear
weights (12) with

∑n
i=1 wi = 1.

4.3 Results

The results for standard as well as robust neural networks with the selected archi-
tectures and parameters are presented in Table1. The number N of RBF units for
all versions of RBF networks was selected as the most suitable one for plain RBF
networks. The number of neurons in the hidden layers for all versions of MLPs was
selected as the most suitable for plain MLPs.

The dataset Eckerle4, the simplest from the 4 datasets under considerations, is
very simple with very much variability (except for an apparent outlier). Results over
the two datasets with p = 1 are illustrated in Figs. 1 and 2. In these datasets with
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Table 1 Results of numerical experiments. Three errormeasures (MSE,TMSEandWMSE)defined
in (16) evaluated for various nonlinear regression methods for 4 datasets. The architectures (number
of RBF units and neurons in hidden layers) are specified here for various versions of RBF networks
and MLPs, respectively

Neural
network

MSE TMSE WMSE MSE TMSE WMSE

Dataset Eckerle4 Simulated dataset (Fig. 2)

p = 1, n = 35 p = 1, n = 101

3 RBF units 10 RBF units

RBF 0.03 <0.01 <0.01 0.18 0.055 0.050

LTS-RBF 0.04 <0.01 <0.01 0.29 0.035 0.033

LWSa-RBF 0.04 <0.01 <0.01 0.28 0.037 0.033

LWSb-RBF 0.04 <0.01 <0.01 0.31 0.032 0.029

LWSc-RBF 0.04 <0.01 <0.01 0.32 0.038 0.031

1 hidden layer 1 hidden layer

with 4 neurons with 8 neurons

MLP 0.04 <0.01 <0.01 0.24 0.067 0.061

LTS-MLP 0.05 <0.01 <0.01 0.30 0.038 0.034

LWSa-MLP 0.05 <0.01 <0.01 0.32 0.038 0.033

LWSb-MLP 0.05 <0.01 <0.01 0.33 0.035 0.030

LWSc-MLP 0.05 <0.01 <0.01 0.35 0.037 0.032

Auto MPG dataset Boston housing dataset

p = 4, n = 392 p = 11, n = 506

40 RBF units 50 RBF units

RBF 46.9 17.2 19.3 52.7 4.4 5.6

LTS-RBF 52.7 12.9 14.1 60.3 4.1 5.2

LWSa-RBF 54.1 14.4 13.8 62.1 4.1 5.0

LWSb-RBF 50.6 11.8 12.5 61.6 4.0 4.7

LWSc-RBF 53.7 14.0 13.4 62.4 4.3 4.9

2 hidden layers 2 hidden layers

with 16 and 8 neurons with 16 and 8 neurons

MLP 60.8 28.9 31.0 57.9 5.3 6.3

LTS-MLP 69.4 14.3 17.6 67.2 4.3 5.9

LWSa-MLP 70.3 14.5 16.2 70.8 4.2 5.7

LWSb-MLP 71.6 13.9 15.8 68.8 4.1 5.5

LWSc-MLP 72.5 14.3 16.7 70.6 4.2 5.7
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p = 1, TMSE is able to ignore the true outliers for robust but also for plain neural
networks. This is because the regression task is not so difficult for these datasets
and the outliers are exactly those points, which have large absolute values of the
residuals. The situation becomes much more complex for the other datasets.

In all examples, robust versions of neural networks approaches are able to yield
smaller values of robust prediction errors (TMSE and WMSE); this is true in spite
of the fact that the architecture of the neural networks was optimized for the plain
networks. On the other hand, standard versions of neural networks are superior in
terms of conventional MSE. This does not mean that the robust methods are less
suitable, because the MSE itself is vulnerable to the presence of outliers. Thus, only
robust versions of MSE should be considered for data contaminated with outliers.

Comparing RBF networks with MLPs, RBF networks turn out to yield smaller
values of the prediction errors for all 4 datasets. It is especially interesting for the
two datasets with p > 1 from real applications that the superiority of robust neural
networks compared to standard (non-robust) ones is revealed. Basically we can say
that using (any) robust neural network brings benefits, while the results of LWSb-
RBF networks are not overcome by any other method in the 4 datasets.

5 Conclusions

Robust alternatives to training neural networks are highly desirable because of the
vulnerability of common types of neural networks to the presence of outliers in the
data. We use highly robust estimators corresponding to the LTS and LWS estimators
to formulate robust loss function of MLPs and RBF networks. Thus, we extend the
idea of [24], who used the loss function of the LTS (only) within MLPs. To the best
of our knowledge, our approach is the first application of the LWS estimator within
neural networks. The novel methods assign implicit weights to individual observa-
tions and correspond to their outlyingness, which offers a possible interpretation of
individual observations and their influence to the resulting estimated trend. Robust
fitting of neural networks based on the loss function of the least weighted squares esti-
mator is able to minimize robust measures of prediction error. The methods denoted
as LWSb-MLPs and LWSb-RBF networks, i.e. those with trimmed linear weights,
turn out to yield better results in terms of prediction accuracy compared to other
choices of weights for the LWS loss.

The superior results of the neural networks based on the LWS estimator are in
correspondence with recent findings of [15]. There, the LWS turned out to outper-
form other estimators in linear regression, including S-estimators and mainly MM-
estimators, where the latter allow to tune paramters so that a high robustness and a
high efficiency are reached simultaneously.

The robust neural networks considered in the paper appear suitable for all the
4 datasets considered in this paper and thus are recommendable for real datasets,
where robustness to data contamination by outliers is desirable. All datasets ana-
lyzed here do contain outliers. If a new dataset should be analyzed, which does not
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seem to contain apparent outliers, the strategy common in linear regression may be
adopted for neural networks as well; namely, the novel robust neural networks may
serve as a diagnostic tool. In such a situation, the user may check if the results of a
standard neural network are similar with results of robust ones. In case of remarkable
discrepancies, the robust approach may be more suitable. As a limitation, however,
it is necessary to state that the robust neural networks of this paper (just like any
robust statistical method [12]) may not be suitable for certain datasets, e.g. when we
are interested in every individual observation and ignoring specific observations (or
their clusters) is not desirable.

Several possible directions recommendable for future research include adapting
robust neural networks for heteroscedastic data, proposing an adaptive selection of h
for the LTS-based loss function, considering robust and regularized neural networks,
or proposing adaptive (data-dependent) selection of weights for the LWS-based loss.
In addition, it would be desirable to perform a systematic comparison of robust
approaches to training neural networks over a larger number of datasets, accompanied
by a detailed statistical analysis of the data and by a thorough interpretation of the
results on the level of individual observations.
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technical help.

References

1. Alnafessah, A., Casale, G.: Artificial neural networks based techniques for anomaly detection
in Apache Spark. Cluster Computing (2020) (online first)
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