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Preface

This proceeding volume follows the third workshop on Analytical Methods in
Statistics (AMISTAT 2019) which took place in Liberec (Czech Republic) in
September 16–19, 2019. The workshop was organized after two successful work-
shops AMISTAT 2015 and AMISTAT 2011 by the Department of Applied
Mathematics at the Faculty of Science, Humanities and Education at the Technical
University of Liberec and the Department of Probability and Mathematical
Statistics at the Faculty of Mathematics and Physics at the Charles University.

The workshop brought together several scientists, researchers, and young
scholars from around the World (Austria, Belgium, Canada, Finland, France, India,
Russia, Serbia, Slovakia, Sweden, Turkey, UK, USA, and the Czech Republic) and
it offered a great opportunity for a series of interesting and highly appreciated talks,
many formal and informal discussions, and also some valuable time spent together
among colleagues and friends. Many interesting topics and ideas arising from
everyday problems were covered in various contributions focusing especially at the
analytical methods in statistics, asymptotics, estimation and Fisher information,
robustness, stochastic models and inequalities, and many others. A small part of the
contributions, by those authors who considered their work being partially complete,
is contained in the present book.

The joint motto of this proceeding, the workshop itself, and the talks is the
“analytical statistics” with the main emphasizes on the fact that the statistics always
provides mathematicians with new, challenging, and also exciting problems as they
are usually all based in some real life situations. For such problems one can rarely
determine any axioms or deterministic approaches, but rather analytical methods are
needed to asses the problems properly. The statisticians, in general, utilize a
knowledge from all areas of mathematics including abstract calculations, numerical
and algorithmic computation, or formal interpretation of the results. Statisticians
are, therefore, expected to find a solution to real problems and the answer that the
solution does not exist is not plausible. At least a solution optimal under some
acceptable constraints is used as a counterpart. The AMISTAT 2019 workshop was
again full of such fresh ideas, proposals, and approaches. We are grateful for this
opportunity and also for the contributions included in this proceeding book.
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Last, but not least, we would like to express our great thanks to Dr. Veronika
Rosteck, Springer Editor of Statistics, for her effort, encouragement, and help
needed when preparing this book. We thank all the authors of the chapters and all
referees for their work, consideration, and appreciation.

Prague, Czech Republic Matúš Maciak
Michal PeštaApril 2020

Martin Schindler
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Averaged Autoregression Quantiles
in Autoregressive Model

Yeşim Güney, Jana Jurečková, and Olcay Arslan

Abstract This paper considers the averaged autoregression quantile in autoregres-
sive models. Our primary interest is its structure, qualities, and its applications.
Moreover, under the local heteroscedasticity we investigate the properties of aver-
aged autoregression quantile. For an illustration, a simulation study is provided.

Keywords Autoregressive model · Local heteroscedasticity · Quantile
autoregression

1 Introduction

Quantile regression (QR) introduced by [1] has been increasingly used in many
applied areas (for more details see [2–5]). The application of QR has subsequently
moved into the areas of time-series as well as other subjects. In the time series
context, there is also a rich literature including works [6–16] and the references
therein. In addition to these studies, many authors also consider the time series that
exhibit conditional heteroscedasticity. See [17] and [18] for related studies in lin-
ear autoregressive conditional heteroskedasticity (ARCH) models. Also, see [19] for
quantile regression estimation of the linear generalized autoregressive conditional
heteroskedasticity (GARCH) model and [20] for quantile regression for autoregres-
sive moving average (ARMA)models with asymmetric GARCH (AGARCH) errors.
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Ignoring the heteroscedasticity in time series analysis may result in inefficient
estimation of unconditional mean function and unreliable inferences. One approach
to deal with the heteroscedasticity is to consider the conditional heteroscedasticity
and to assume that the innovations follow ARCH or GARCH models as proposed
by Engle [21] and Bollerslev [22]. Although the GARCH-type model is successful,
it has a disadvantage of nonrobustness to the stationarity assumption [23]. An alter-
native way to handle the heteroscedasticity in time series models is to consider the
unconditional heteroscedasticity. Comparing the conditional heteroscedastic mod-
els, the unconditional heteroscedasticity is easier to handle. Therefore, in this paper
we consider the unconditional heteroscedastic autoregressive model.

Testing the heteroscedasticity in regressionmodel has been considered in [24, 25].
It has been shown in [26] that the rank tests for regression are asymptotically insen-
sitive to the local heteroscedasticity, provided the error distribution is symmetric.
However, little attention has been paid to the issue of testing the heteroscedasticity in
quantile autoregression models. Therefore, we consider testing the homoscedasticity
against the local (Pitman) heteroscedasticity in the autoregressive model. Moreover,
this study also focuses on the analogs of the averaged regression quantile in the
autoregressive model.

The paper is organized as follows. Section2 includes the definitions of α-
autoregression quantile and autoregression rank scores for the autoregressive model.
In Sect. 3, we introduce the averaged autoregression α-quantile (AAQ(α)) and give
some of its properties. In Sect. 4, we consider the local heteroscedasticity in the
autoregressive model. We give some numerical results to highlight the potential of
the AAQ(α) in Sect. 5.

2 Autoregression Quantile and Autoregression Rank Scores
for AR(p) Model

Consider the p-order autoregressive model (AR(p))

Xt = φ0 + φ1Xt−1 + · · · + φp Xt−p + εt , t ∈ Z (1)

where φ = (
φ0,φ1, . . . ,φp

)
is the unknown parameter vector. The order of the

autoregressivemodel p is assumed to befinite and known.The following assumptions
are imposed throughout this paper.

The innovations εt are assumed to be independently and identically distributed
(iid) according to a continuous distribution function F with

(A1) E (εt ) = 0, Var (εt ) = σ2 < ∞.

(A2) To gurantee the stationarity of the process, we assume that φ j are such that all
roots of the equation

z p − φ1z
p−1 − φ2z

p−2 − · · · − φp = 0 (2)
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are inside the unit circle.

Under the assumptions given in (A1)–(A2), the process {Xt } is casual and invert-
ible [27]. The set of all parameter values satisfying (2) is denoted by P.

The distribution function F of εt is unknown, but we assume that it is increas-
ing on the set {ε : 0 < F(ε) < 1}. For any fixed α ∈ (0, 1), denote εtα = εt −
F−1(α), t = 1, . . . , n. Then ε1α, . . . , εnα are iid with distribution function Fα(ε) =
F(ε + F−1(α)), ε ∈ R and F−1

α (ε) = F−1(ε) − F−1(α), 0 < ε < 1 so that F−1
α (α)

= 0. The model given in Eq. (2) can be rewritten as

Xt = φ0(α) + φ1Xt−1 + · · · + φp Xt−p + εtα (3)

where φ0(α) = φ0 + F−1(α).
Before we proceed to the AAQ(α), we first illustrate the autoregression quantile

estimation for the AR(p) model. The α-autoregression quantile was first considered
by [9], and later studied by [28] and by [29]. For the sake of simplicity, we also use
the notation Y∗

t−1 = (
Xt−1, . . . , Xt−p

)T
and Yt−1 = (

1, Xt−1, . . . , Xt−p
)T
. Define

Z∗
n and Zn matrices whose t-th rows are Y∗T

t−1 and YT
t−1 for 1 ≤ t ≤ n, respectively.

Let
(
X−p+1, . . . , X0, X1, . . . , Xn

)
be the observed series from model (1). For

the identifiability, assume that the first p observations
(
X−p+1, . . . , X0

)
are known.

We work with the rest of the observations (X1, . . . , Xn) . The α-th autoregression

quantile estimator φ̂(α) =
(
φ̂0(α), φ̂

∗
(α)T

)T
is defined by [9] as follows

arg min
b∈Rp+1

n∑

t=1

hα

(
Xt − YT

t−1b
)

(4)

where hα (u) = |u| {αI (u > 0) + (1 − α) I (u < 0)}, u ∈ R, α ∈ [0, 1] and I (·) is
the indicator function. This minimization problem can also be written

arg min
b∈Rp+1

{
n∑

t=1

(
α

[
Xt − YT

t−1b
]+ + (1 − α)

[
Xt − YT

t−1b
]−)

}

, (5)

where z+ = max{z, 0}, and z− = max{−z, 0} for z ∈ R. Here φ̂(α) =(
φ̂0(α), φ̂

∗
(α)T

)T
coincides with b̂ part of the optimal solution

(̂
b, μ̂+, μ̂−)

of

the parametric programming problem
⎧
⎨

⎩

α1T
n−pμ

+ + (1 − α) 1T
n μ− := min

Xn−Znb = μ+ − μ−
b ∈ R

p+1,μ± ∈ R
n+, 0 < α < 1

(6)

where 1n = (1, 1, . . . , 1)T ∈ R
n and Xn = (

X p+1, . . . , Xn
)T

([9]).
The idea of [30] is adapted to the autoregressive context and the autoregression

rank scores
â (α) = (

ân;1 (α) , . . . , ân;n (α)
)T

, 0 ≤ α ≤ 1 (7)
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are defined by [9] as the solution of the following dual program
⎧
⎨

⎩

XT
n a := max

ZT
n a = (1 − α) ZT

n 1n
a ∈ [0, 1]n , 0 < α < 1.

(8)

Since φ̂ (α) and â (α) are dual to each other, the components of the dual solutions
â (α) can be expressed by

ân;t (α) =
{
1, Xt > YT

t−1φ̂ (α) ,

0, Xt < YT
t−1φ̂ (α) , t = 1, . . . , n

(9)

and if Xt = YT
t−1φ̂ (α) for some t then 0 < ân;t (α) < 1. It is clear that â (α) are

continuous, piecewise linear, and such that ân;t (0) = 1 and ân;t (1) = 0.
Throughout the rest of the paper, we still impose the following conditions

(A3) Suppose that the distribution function F has a continuous density f that is
positive on the support of F.

(A4) 0 <
∫
x4dF < ∞

(A5) Define�n and�∗
n matrices by�n = n−1ZT

n Zn = n−1
n∑

t=1
Yt−1YT

t−1 and�∗
n =

n−1Z∗T
n Z∗

n = n−1
n∑

t=1
Y∗

t−1Y∗T
t−1. Assume that there exist positively definite

matrices � and �∗ such that, as n → ∞,

�n
P→ � and �∗

n
P→ �∗.

Under the Assumptions (A1)–(A5), the following Bahadur type representation of
the α-th autoregression quantile has been obtained in [9].

Theorem 1 Under above assumptions, the α-autoregression quantile admits the
following asymptotic representation:

φ̂ (α) − (
φ0 + F−1 (α) ,φ1, . . . ,φp

)T
(10)

= n−1�−1
n

(
f
(
F−1 (α)

))−1
n∑

t=1

Yt−1
(
α − I

[
εt ≤ F−1(α)

]) + Op
(
n−1/2

)

as n → ∞, and the convergence is uniform over each subinterval [α∗, 1 − α∗] ⊂
(0, 1) .



Averaged Autoregression Quantiles in Autoregressive Model 5

3 Averaged Autoregression Quantile

The averaged regression quantile was first considered in [31] and defined in [32]. Its
properties and the asymptotic equivalence to the α-quantile of the location model
was considered in [32]. The averaged regression quantile was used in hypothesis
testing and extreme events. For example, some tests based on weighted averaged
regression quantile for testing of the Gumbel domain of attraction against Fréchet
or Weibull domains are proposed in [33]. Jurečková [34] considered the averaged
regression quantile in the context of extreme events and defined averaged extreme
regression quantile.

An alternative to the averaged regression quantile is the averaged version of the
two-step regression α-quantile, defined in [35]. There is also shown that the average
regression quantile process is asymptotically equivalent to the location quantile pro-
cess and that it converges to a Gaussian process in the Skorokhod topology. Further
[36] investigated some properties of the averaged two-step regression quantile and
considered the probabilistic risk assessment in the situation when the return depends
on some exogenous variables.

Similar applies to the averaged autoregression quantile [the AAQ(α)], which is
defined as follows.

Bn (α) = φ̂0 (α) + 1

n

n∑

t=1

Y∗T
t−1φ̂

∗
(α)

= Z
T
n φ̂(α). (11)

The averaged AR quantile Bn (α) has the following useful properties, analogous
to those of the α-AR quantiles, proven in [12].

Lemma 1 (i) If α ∈ (0, 1) is a continuity point of Bn (α), then

Bn (α) = −1

n

n∑

t=1

Xt−1
d

dα
ât (α) . (12)

(ii) Bn (α) is nondecreasing step-function of α ∈ (0, 1).

Proof The duality between Bn (α) and â (α) given in (8) implies that

n∑

t=1

hα

(
Xt − YT

t−1φ̂ (α)
) =

n∑

t=1

Xt (̂at (α) − (1 − α)) .

For 0 < α1 < α2 < 1, we obtain
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n∑

t=1

hα2

(
Xt − YT

t−1φ̂ (α1)
) − hα1

(
Xt − YT

t−1φ̂ (α1)
)

= (α2 − α1)

n∑

t=1

(
Xt − YT

t−1φ̂ (α1)
)

≥
n∑

t=1

Xt (̂at (α2) − ât (α1) + (α2 − α1)) .

Then we can write

(α2 − α1)

n∑

t=1

YT
t−1φ̂ (α1) ≤ −

n∑

t=1

(Xt (̂at (α2) − ât (α1))) . (13)

Similarly, we get

(α2 − α1)

n∑

t=1

YT
t−1φ̂ (α2) ≥ −

n∑

t=1

(Xt (̂at (α2) − ât (α1))) . (14)

Using (13) and (14), we obtain

Bn (α1) ≤ −1

n

n∑

t=1

Xt
ât (α2) − ât (α1)

α2 − α1
≤ Bn (α2) (15)

As α2 → α1, we obtain the result. 	

Next we will study the asymptotic property of Bn (α) .

Theorem 2 Under the conditions of Theorem 1, for fixed α ∈ (0, 1)

n1/2
(

Bn (α) − 1

n

n∑

t=1

YT
t−1 φ− εn:[nα]

)

= Op
(
n−1/4

)
(16)

as n → ∞, where εn:1 ≤ εn:2 ≤ · · · ≤ εn:n are the order statistics corresponding to
ε1, ε2, . . . , εn.

Proof Let φ̃ (α) = (
φ0 + F−1 (α) ,φ1, . . . ,φp

)T
. Using Eq. (10), we can write

n1/2Z
T
n

(
φ̂n(α) − φ̃(α)

)
(17)

= n−1/2
(
f
(
F−1(α)

))−1
ZT
n

(
ZT
n Zn

)−1
n∑

t=1

Yt−1
(
α − I

[
εt ≤ F−1(α)

])

+ Op
(
n−1/4

)
, and
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n1/2Z
T
n

(
φ̂n(α) − φ̃(α)

)

= 1

n1/2 f
(
F−1(α)

)
n∑

t,k=1

[
YT

t−1

(
Z
T
n Zn

)−1
Yk−1

(
α − I

[
εt ≤ F−1(α)

])
]

+ Op
(
n−1/4

)

= 1

n1/2
(
f
(
F−1(α)

))1T
n Ĥncn(α) + Op

(
n−1/4

)

= 1

n1/2
(
f
(
F−1(α)

))1T
n cn(α) + Op

(
n−1/4

)

= 1

n1/2
(
f
(
F−1 (α)

))
n∑

t=1

(
α − I

[
εt ≤ F−1 (α)

]) + Op
(
n−1/4

)

= √
n

(
εn:[nα] − F−1(α)

) + Op
(
n−1/4

)

where cn (α) = (
α − I

[
ε1 ≤ F−1 (α)

]
, . . . ,α − I

[
εn ≤ F−1 (α)

])T
and Ĥn is the

projection matrix defined by Ĥn = Zn
(
ZT
n Zn

)−1
ZT
n . Consequently, we obtain

n1/2
(

Bn (α) − 1

n

n∑

t=1

Y T
t−1 φ− εn:[nα]

)

= Op
(
n−1/4

)
. (18)

	


4 Local Heteroscedasticity in Autoregressive Model

We explore the local heteroscedasticity defined as

Xt = φ0 + φ1Xt−1 + · · · + φp Xt−p + σtεt , t ∈ Z (19)

where φ = (
φ0,φ1, . . . ,φp

) ∈ R
p+1 and (σ1,σ2, . . . ,σn) ∈ R

n are the unknown
parameters and εt are iid with Var (εt ) = 1 and unknown distribution function F .
The σt are scaling constants which express the possible heteroscedasticity.

One usual way for modeling the time-varying volatility is to use a log linear form

σt = exp
{
dT
t γ

}
or logσt = dT

t γ t = 1, 2, . . . , n (20)

where dt ∈ R
q , t = 1, 2, . . . , n is the covariate vector and γ ∈ R

q is the unknown
parameter vector. If γ = 0, the model given in (19) will be homoscedastic. We
assume that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n∑

t=1
dt j , j = 1, 2, . . . , q

max1≤t≤n ‖dt‖ = o
(
n1/2

)
as n → ∞

limn→∞ Dn = limn→∞ 1
n

n∑

t=1
dtdT

t = D

max1≤t≤n

{
dT
t

(∑n
k=1 dkdT

k

)−1
dt

}
→ 0 as n → ∞.

(21)

We consider the following local heteroscedasticity

γ = γn = n−1/2δ, δ ∈ R
q , δ �= 0, ‖δ‖ ≤ C < ∞. (22)

In the following theorem,we show that under the local heteroscedasticity the averaged
autoregressionα-quantile is also asymptotically equivalent to the locationα-quantile.

Theorem 3 Consider the model given in equation (19) under the assumptions given
in (20–22). Then the Eq. (16) is true for any fixed α ∈ (0, 1) and

√
nY

T
t−1

(
φ̂n (α) − φ − e0F

−1 (α)
)

(23)

= 1√
n f

(
F−1 (α)

)
n∑

t=1

(
α − I

[
εt < F−1 (α)

]) + Op
(
n−1/4)

with e0 = (1, 0, . . . , 0)T ∈ R
p+1; moreover

√
n

(
εn:[nα] − F−1 (α)

)
(24)

= 1√
n f

(
F−1 (α)

)
n∑

t=1

(
α − I

[
εt < F−1 (α)

]) + Op
(
n−1/4

)
.

In addition, under the local heteroscedasticity, both√
nY

T
t−1

(
φ̂n(α) − φ − e0F

−1(α)
)
and

√
n

(
εn:[nα] − F−1(α)

)
are asymptotically

normally distributed N
(
0, α(1−α)

f 2(F−1(α))

)
.

Proof Under the Assumptions (20)–(22) and assuming that the first p observations
(initial values)

(
x1, x2, . . . , xp

)
are completely known, the joint density of the data

X = (X1, . . . , Xn)
T is given by the following expression

qnγ ∝
n∏

t=p+1

exp
{
dT
t γ

}
f
(
xt exp

{
dT
t γ

}∣∣ xt−1, . . . , xt−p,φ,σ2
)
. (25)

Under the local heteroscedasticity given in (22), the sequence of the densities qnγ is
contiguous to qn0. Thus the Eq. (16) is true. 	




Averaged Autoregression Quantiles in Autoregressive Model 9

5 Simulation Study

In this section we provide a simulation study, to illustrate the performance of the
AAQ(α). The simulation study is carried out using statistical software R. We con-
sidered the following scenarios.

Scenario 1: In this scenario, our autoregressive model is

Xt = φ0 + φ1Xt−1 + φ2Xt−2 + εt , t ∈ Z, (26)

with the true parameter values (φ0,φ1,φ2)
T = (2, 0.8,−0.2). We generated the

errors from the following distributions: (i) εt ∼ N (0, 1), (ii) εt ∼ Cauchy(0, 1),
(iii) εt ∼ t3(0, 1), and (iv) εt ∼ 0.15N (0, 1) + 0.85N (0, 9).

Scenario 2: In our second scenario, we generated the data from the following het-
eroscedastic autoregressive model with the same φ values as in Scenario 1

Xt = φ0 + φ1Xt−1 + φ2Xt−2 + σtεt , t ∈ Z (27)

whereσt = exp
{
dT
t γ

}
,γ = n−1/2δ and‖δ‖ ≤ c < ∞ anddt is generated fromstan-

dard normal distribution independently. Here δ and c are taken as: (i) δ = (0.5, 0, 0)T

and c = 0.5, (ii) δ = (1, 1, 1)T and c = 2 and (iii) δ = (5, 5, 5)T and c = 10. The
errors were generated from the standard normal distribution.

We set the sample sizes as n = 20, 100 and 500. We repeat the simulation for
1000 times. The data from mixtures of the normal distribution is generated by using
the R package “KScorrect” [37] and the autoregression α-quantiles are calculated
by using the R package “quantreg” [38] (e.g., see [39]).

The AAQ(α) and the location α-quantile are computed. For the sake of compar-
ison, the difference Bn (α) − 1

n

∑n
t=1 YT

t−1 φ− εn:[nα] are calculated and sorted for
each replication. The empirical quantiles of these differences are plotted. Figures1,
2, 3 and 4 show the median, 5%, 10%, 90% and 95%-quantiles in the sample differ-
ences with the error term has a normal and contaminated normal for n = 20, Cauchy
and student-t distributions for n = 500, respectively.

Figures1 and 2 are provided to compare the behavior of the difference between
the AAQ(α) and location α-quantile for the normal and contaminated normal dis-
tributions in the small sample case. These figures display that this difference is not
seriously affected by the contamination of data even for a small sample. Figures3
and 4 show howmuch the difference between the AAQ(α) and location α-quantile is
effected under the Student-t and Cauchy distribution assumptions in the large sample
case. From these figures, it can be easily seen that this difference is not also severely
affected by these distributional assumptions for large samples.

Mean, standard deviation and quantiles of difference
Bn(α) − 1

n

∑n
t=1 YT

t−1 φ− εn:[nα] are calculated for Scenarios 1 and 2 for α = 0.05
and 0.55. The simulation results for Scenarios 1 and 2 are given in Tables1 and 2 and
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Fig. 1 5, 10, 50, 90 and 95%—quantiles in the sample of 1000 differences for normal distributed
errors; n = 20

Fig. 2 5, 10, 50, 90 and 95%—quantiles in the sample of 1000 differences for contaminated normal
distributed errors; n = 20

Tables3 and 4, respectively. In Tables1 and 2, N, C, t, and CN represent the normal,
Cauchy, student-t and contaminated normal distributions.

The results given in Table1 support the conclusion that, except for the Cauchy
case, the AAQ(α) and location α-quantile are asymptotically equivalent. This can
be easily seen from Table1. Further, for the large case, similar results are obtained
even for Cauchy distribution. Results obtained for α = 0.55 are given in Table2
which clearly confirm the asymptotic equivalency between the AAQ(α) and location
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Fig. 3 5, 10, 50, 90 and 95%—quantiles in the sample of 1000 differences for Cauchy distributed
errors; n = 500

Fig. 4 5, 10, 50, 90 and 95%—quantiles in the sample of 1000 differences for student-t distributed
errors; n = 500
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Table 1 Mean, standard dev. and quantiles of differences for Scenario 1 and α = 0.05
n Dist. Mean Std. dev. Quantiles

0 0.25 0.50 0.75 1

20 N 0.239 0.433 −1.449 −0.037 0.277 0.542 1.548

100 N 0.010 0.217 −0.741 −0.127 0.010 0.164 0.632

500 N 0.001 0.095 −0.309 −0.062 0.007 0.068 0.359

20 C −16.629 89.434 −2193.43 −7.726 0.381 3.266 5.869

100 C −1.145 4.296 −45.359 −2.265 −0.113 1.4733 4.547

500 C −0.238 1.340 −6.461 −0.950 −0.068 0.700 2.724

20 t −0.098 1.984 −27.365 −0.508 0.432 0.915 2.204

100 t −0.023 0.527 −2.291 −0.325 0.058 0.341 1.284

500 t −0.010 0.217 −0.847 −0.152 0.000 0.139 0.539

20 CN 0.512 0.891 −2.909 −0.023 0.591 1.133 3.114

100 CN 0.117 0.666 −1.881 −0.326 0.143 0.588 1.817

500 CN 0.010 0.293 −0.918 −0.174 0.020 0.219 0.832

Table 2 Mean, standard dev. and quantiles of differences for scenario 1 and α = 0.55

n Dist. Mean Std. dev. Quantiles

0 0.25 0.50 0.75 1

20 N 0.001 0.294 −1.048 −0.195 −0.001 0.195 0.912

100 N 0.000 0.129 −0.412 −0.089 0.003 0.086 0.389

500 N −0.000 0.055 −0.207 −0.038 −0.000 0.038 0.178

20 C 0.064 0.567 −1.678 −0.261 0.025 0.321 6.733

100 C 0.009 0.178 −0.941 −0.103 0.003 0.122 1.062

500 C −0.003 0.073 −0.858 −0.047 −0.004 0.041 0.239

20 t 0.004 0.342 −0.983 −0.223 −0.001 0.221 1.079

100 t 0.006 0.134 −0.429 −0.082 0.011 0.098 0.535

500 t 0.000 0.060 −0.207 −0.039 0.002 0.042 0.190

20 CN −0.002 0.522 −1.589 −0.348 −0.005 0.352 1.612

100 CN 0.014 0.310 −0.842 −0.200 0.005 0.213 1.120

500 CN 0.003 0.130 −0.460 −0.089 0.004 0.086 0.396

α-quantile for all the distributions and sample sizes that considered in our simulation
study.

The results given in Tables3 and 4 show that under the presence of low het-
eroscedasticity (c = 0.5), the AAQ(α) and the location α-quantile are very close to
each other. Further, the results are the similar for the high heteroscedasticity case
(c = 2 and 10).
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Table 3 Mean, standard dev. and quantiles of differences for scenario 2 and α = 0.05

c n Mean Std. dev. Quantiles

0 0.25 0.50 0.75 1

0.5 20 0.236 0.451 −1.863 −0.048 0.291 0.531 1.318

100 0.020 0.208 −0.635 −0.107 0.023 0.160 0.676

500 0.004 0.096 −0.335 −0.060 0.010 0.068 0.254

2 20 0.179 0.482 −1.717 −0.091 0.227 0.506 1.374

100 −0.006 0.220 −0.763 −0.151 −0.008 0.142 0.588

500 0.006 0.094 −0.306 −0.057 0.005 0.072 0.308

10 20 −0.416 1.090 −7.153 −0.907 −0.154 0.324 1.267

100 −0.352 0.349 −2.071 −0.561 −0.320 −0.102 0.623

500 −0.040 0.105 −0.406 −0.109 −0.036 0.032 0.281

Table 4 Mean, standard dev. and quantiles of differences for scenario 2 and α = 0.55

c n Mean Std. dev. Quantiles

0 0.25 0.50 0.75 1

0.5 20 −0.021 0.283 −0.948 −0.207 −0.030 0.174 0.790

100 0.001 0.128 −0.485 −0.081 −0.001 0.085 0.393

500 −0.002 0.059 −0.181 −0.044 −0.001 0.039 0.151

2 20 0.001 0.289 −0.839 −0.194 −0.004 0.199 0.811

100 0.001 0.120 −0.422 −0.080 −0.002 0.090 0.332

500 0.001 0.057 −0.196 −0.039 −0.002 0.038 0.186

10 20 −0.040 0.208 −0.723 −0.176 −0.049 0.075 0.829

100 −0.014 0.123 −0.407 −0.102 −0.017 0.076 0.411

500 −0.006 0.055 −0.210 −0.044 −0.006 0.030 0.167

6 Conclusions

In this paper, we have proposed the scalar statistics AAQ(α) based on the autoregres-
sion quantiles. Some properties of the AAQ(α) have been discussed for the stationary
autoregressive model and its asymptotic properties have been explored. All of these
properties have shown that the AAQ(α) is closely related to the averaged regression
quantile. Further, we have also considered the heteroscedastic autoregressive models
and have investigated the behavior of the AAQ(α) for this model. We have provided
a simulation study to illustrate the performance of the AAQ(α) and observed that the
simulation study also confirms our findings.
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Regression Neural Networks with
a Highly Robust Loss Function

Jan Kalina and Petra Vidnerová

Abstract Artificial neural networks represent an important class of methods for
fitting nonlinear regression to data with an unknown regression function. However,
usual ways of training of the most common types of neural networks applied to non-
linear regression tasks suffer from the presence of outlying measurements (outliers)
in the data. So far, only a few robust alternatives for training common forms of neural
networks have been proposed. In this work, we robustify two common types of neural
networks by considering robust versions of their loss functions, which have turned
out to be successful in linear regression. Particularly, we extend the idea of using
the loss of the least trimmed squares estimator to radial basis function networks.
We also propose multilayer perceptrons and radial basis function networks based
on the loss of the least weighted squares estimator. The performance of these novel
methods is compared with that of standard neural networks on 4 datasets. The results
bring arguments in favor of the novel robust approach based on the least weighted
squares estimatorwith trimmed linearweights in terms of yielding the smallest robust
prediction error in a variety of situations. Robust neural networks are even able to
outperform the prediction ability of support vector regression.

Keywords Nonlinear regression · Neural networks · Robustness

1 Introduction

Nonlinear regression modeling, i.e. estimating (smoothing, fitting) a continuous
response variable based on a set of regressors (features, independent variables) plays
a crucial role in the analysis of real data in a tremendous variety of applications. An
important task of regression modeling is also to predict a future development of the
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response [6]. In practical applications, the nonlinear regression function is not known
and is not assumed to be of any specific form. Recently, there is an increasing trend in
applying machine learning methods to nonlinear regression modeling. In this paper,
multilayer perceptrons (MLPs) and radial basis function (RBF) networks, i.e. two
very important classes of feedforward artificial neural networks [10], are considered
for the nonlinear regression task.

Real data across various disciplines, e.g. in numerous regression tasks of
biomedicine, economics, engineering etc., are typically contaminated by the presence
of outlying measurements (outliers). In some applications (e.g. in measurements of
molecular genetic and metabolomic biomarkers [14]), outliers appear unavoidably,
because severe measurement errors are immanent to the measurement technology.
So far, most available applications of MLPs and RBF networks to regression tasks
have not paid sufficient attention to the presence and influence of outliers; both these
networks however implicitly assume the observed data not to be contaminated by out-
liers [2, 26]. Therefore, it is highly desirable to consider alternative robust approaches
to training of MLPs and RBF networks. One direction of the robustification is based
on an intrinsically performed detection of outliers [1]. Another direction for a pos-
sible robustification is inspired by the very rich experience of robust statistics with
data contamination by outliers or anomalies (see [12]); this approach represents the
interest of the current paper.

While there are some robust approaches to training neural networks available,
they are mostly tailor-made the classification task; see ([17], p. 54) for discussion.
Let us mention at least a few available robust approaches for the regression task.
Compositions of sigmoidal activation functions were considered to robustify the
performance for a rather specific task in [18] to estimate a response which is almost
constant over relatively large intervals. If subtractive clustering (SC) is used for an
automatic recommendation of the center vectors, a robustified loss function may be
subsequently used [26]; still, the popular SC approach remains vulnerable to outliers
and consecutive steps of the training cannot improve this. A recent approach to outlier
detection for regression RBF networks was developed in [17], which is denoted
as generalized edited nearest neighbor (ENN) algorithm; this was also combined
with robust versions of the activation function. Robust loss functions based on least
trimmed squares or least trimmed absolute values estimatorswere investigated in [24,
25],where they outperformed standard training approaches on contaminated data.We
do not agree with the formulas for partial derivatives of the loss function published in
[24], but this may not influence the results presented there, as practical computations
typically exploit numerical approximations of derivatives (not relying on theoretical
expressions). Nevertheless, even the extensive numerical computations in [25] do
not compare robust neural networks with the (sophisticated and powerful) support
vector regression.

The idea to apply a robust loss function in neural networks will be extended in
the current paper by means of the least weighted squares estimator, which represents
a natural generalization of the least trimmed squares and turns out to be a perspec-
tive and (possibly) highly robust tool for estimating parameters in linear regression.
Section2 recalls the least trimmed squares and least weighted squares estimators
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of parameters in linear regression and in the location model. Section3 uses these
estimators to propose novel robust versions of MLPs and RBF networks. Numerical
examples presented in Sect. 4 illustrate the performance of the novel robust neural
networks. Finally, Sect. 5 concludes the paper.

2 Highly Robust Estimation in Linear Models

This section recalls two (possibly highly) robust implicitly weighted estimators of
parameters of the linear regression model (including the location model as a spe-
cial case), namely the least trimmed squares and least weighted squares estimators.
Highly robust estimators are defined as those, which attain a high value of the break-
down point; this measure of robustness of a statistical estimator of an unknown
parameter represents a fundamental concept of robust statistics [12]. Formally, the
finite-sample breakdown point evaluates the minimal fraction of data that can drive
an estimator beyond all bounds when set to arbitrary values.

The standard linear regression model has the form

Yi = β0 + β1Xi1 + · · · + βp Xip + ei , i = 1, . . . , n, (1)

with a continuous response Y1, . . . ,Yn explained by the total number of p regressors,
and independent and identically distributed (not necessarily Gaussian) random errors
e1, . . . , en .

The least trimmed squares (LTS) estimator [22, 23] of β represents a popular
robust regression estimator with a high breakdown point. Consistency of the LTS and
other properties were derived in [27]. The user must select the value of a trimming
constant h (n/2 ≤ h < n). We will denote residuals corresponding to a particular
b = (b0, . . . , bp)

T ∈ Rp+1 as

ui (b) = Yi − b0 − b1Xi1 − · · · − bpXip (2)

and order statistics of their squares as

u2(1)(b) ≤ · · · ≤ u2(n)(b). (3)

The LTS estimator, formally obtained as

argmin
b∈Rp+1

1

n

h∑

i=1

u2(i)(b), (4)

may attain a high robustness but cannot achieve a high efficiency. We may consider
the LTS as an implicitly weighted estimator, namely as a special case of the least
weighted squares with weights equal only to 0 or 1.
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The least weighted squares (LWS) estimator (see e.g. [28]) for the model (1) rep-
resents a flexible natural extension of the LTS. The LWS estimator motivated by the
idea to down-weight potential outliers based on ranks of residuals however remains
much less known compared to the LTS. The LWS estimator may achieve a high
breakdown point (with properly selected weights) and is robust to heteroscedasticity
[28]. Its primary attention is focused on estimating β and not on outlier detection.
The LWS estimator with given magnitudes of weights w1, . . . , wn is defined as

bLW S = (bLWS
0 , . . . , bLWS

p )T = argmin
b∈Rp+1

n∑

k=1

wku
2
(k)(b). (5)

The efficiency of the LWS is able to exceed the low efficiency of the LTS; if data-
dependent adaptive weights of [4] are used, the estimator asymptotically attains the
full efficiency of the least squares. The LWS estimator was successful in a variety
of recent applications including denoising gene expression measurements acquired
by the microarray technology [14] or image analysis based on landmarks measured
within facial images [13]. There has been a good experience with implicit weighting
also for multivariate robust estimation; the multivariate analogy of the LWS is the
minimum weighted covariance determinant (MWCD) estimator proposed in [21].

The location model represent an important special case of (1) in the form

Yi = μ + ei for i = 1, . . . , n, (6)

where μ ∈ R represents a parameter of location (shift). In (6), the LWS estimator
inherits the appealing properties of the LWS from (1). The performance of the LWS
on real data in (6) was revealed as successful e.g. in the image analysis applications
of [13],where theLWSestimator in (6)was also proven to correspond to the estimator
with the smallest weighted variance. This allows a very efficient computation of the
LWS in (6).

3 Robust Neural Networks with Implicitly Weighted Loss
Functions

We consider the regression model

Yi = f (Xi ) + ei , i = 1, . . . , n, (7)

with an unknown nonlinear function f , where Y1, . . . ,Yn are values of the response
and Xi ∈ Rp (with p ≥ 1) is a vector of regressors corresponding to the i-th obser-
vation. This is a nonlinear regression setup with a univariate continuous response
Y1, . . . ,Yn , which is explained by means of p regressors. A novel robust tool for
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neural networks is proposed in this section, namely an MLP or an RBF network
based on the loss function of the LWS estimator.

MLPs, which represent a very popular type of artificial neural networks, contain
an input layer, one or more hidden layers with a fixed number of neurons, and an
output layer. As we use the most standard form of multilayer perceptrons, we will not
present their detailed model, as it can be found in numerous monographs (see e.g. [7,
9]). For a particular multilayer perceptron (with a selected architecture), let the fitted
value of the response for the i-th measurement (i.e. estimate of Yi ) be denoted by Ŷi
for each i = 1, . . . , n.

Let us start by describing the training of a standardMLP in a symbolic (general but
very simplified)way inAlgorithm1.There,wedenote thewhole (saym-dimensional)
vector of all parameters of a given MLP with a specified architecture as θ ∈ Rm .
Denoting the estimated version of f obtained by the MLP as f̂ , we may denote the
vector of fitted values of Y by Ŷ = f̂ (θ̂) and the vector of residuals, which depend
on f̂ , as u = Y − Ŷ . Concerning the stopping rule in Algorithm 1, our computations
use a default version implemented in [3]. Algorithm 1 is formulated in such a way
that it remains valid also for a robust version of an MLP, as it considers a general
loss function.

Algorithm 1 MLP in the nonlinear regression model (1) with a selected (standard
or robust) loss function �

Input: X1, . . . , Xn, where Xi ∈ Rp for each i = 1, . . . , n
Input: Y1, . . . , Yn , where Yi ∈ R for each i = 1, . . . , n
Input: A chosen loss function �

Output: A fitted MLP based on minimizing a given loss �

Choose θ̂0 ∈ Rm as an initial estimate of θ

i := 0
repeat
ui = (ui1, . . . , u

i
n) := Y − f (θ̂i )

i := i + 1
θ̂i := argmin �(ui−1

1 , . . . , ui−1
n ) (where the optimization over estimates of θ is solved by a

stochastic gradient method)
until a certain stopping rule is fulfilled

The most common way of training MLPs minimizes the sum of prediction errors
in the form

� = �(u1, . . . , un) := min
n∑

i=1

u2i . (8)

It corresponds to the least squares estimation in a location model. It is now natural
to replace this quadratic loss function by one of available robust alternatives (again
for the location model). We consider a method of [24] denoted here as LTS-MLP;
for a fixed h, it is defined by replacing (8) in the form
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� :=
h∑

i=1

u2(i). (9)

We define a new version of MLP dentoted as LWS-MLP by choosing � in the form

� :=
n∑

i=1

wi u
2
(i) (10)

for selected magnitudes of weights w1, . . . , wn . We always consider the natural
standardization to

∑n
i=1 wi = 1. We consider three particular choices, namely the

LWSa-MLP with linear weights

wi = 2(n + 1 − i)

n(n + 1)
, i = 1, . . . , n, (11)

LWSb-MLP with trimmed linear weights

wi = h − i + 1

h
1[i ≤ h], i = 1, . . . , n, (12)

where we consider h = �3n/4� and �x� = min{n ∈ N; n ≥ x}, and finally LWSc-
MLP with weights generated by the (strictly decreasing) logistic function

wi =
(
1 + exp

{
i − n − 1

n

})−1

, i = 1, . . . , n. (13)

While LTS-MLP loss detects outliers and trims them away, LWS-MLP estimator
does not do this but intrinsically arranges observations according to outlyingness.

Another alternative version denoted here as LTA-MLP was defined in [24], where
a robust loss function corresponding to the least trimmed absolute value (LTA) esti-
mator was used. LTA-MLP is defined for a fixed h (n/2 ≤ h < n) by means of

� :=
h∑

i=1

|u(i)| (14)

and according to [24] yields very similar results to those of LTS-MLP.We can say that
the LTA estimator is practically unknown in the community of robust statistics; at the
same time, it is not sufficiently discussed in the majority of monographs on robust
estimation [12]. It is worth noting that, although we are not aware of systematic
numerical comparison of the LTA estimator with other robust estimates in linear
regression, it has been claimed that the performance of the LTA is very similar to
that of the LTS in linear regression. Possible improvements of the LTA compared to
the LTS are known not to be more than only marginal (see p. 429 of [29]). Still, the
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LWS estimator seems to be much more promising in terms of both robustness and
efficiency, as repeatedly discussed [5, 28].

Radial basis function (RBF) networks represent another important class of neural
networks. They contain an input layer with p inputs, a single hidden layer with N
RBF units (neurons), and a linear output layer. The user chooses N together with a
radially symmetric function denoted here as ρ. The RBF network is based also on
minimizing (8); using the Gaussian density as ρ, the residuals can be expressed as

ui = Yi −
N∑

j=1

a jρ(||Xi − c j ||), i = 1, . . . , n, (15)

with parameters c1, . . . , cN ∈ Rp and a1, . . . , aN ∈ R, and possibly with other
parameters corresponding to ρ. We refer to [10, 16] for a detailed description of
RBF networks. RBF networks can be expressed in an analogous way as MLPs in
Algorithm 1 by means of minimizing the sum of squared residuals.

Robust versions ofRBFnetworks,whichwill be denoted here asLTS-RBF,LWSa-
RBF, LWSb-RBF, or LWSc-RBF networks, will be defined by means of the loss
functions above. In other words, the are obtained by replacing the quadratic loss in
(15) by the loss functions of the LTS or LWS estimators.

We implemented all the robust neural networks in Keras [3]. The implementa-
tion exploits a back-propagation algorithm, namely a stochastic gradient descent
method, i.e. the same approach as in [24, 25], for optimization of all parameters for
both standard and robust MLPs as well as RBF networks. As our experiments have
demonstrated, also the loss function of LWS-MLP and LWS-RBF networks is in
practice smooth enough for our gradient-based approach.

4 Numerical Experiments

The aim of the computations over 1 simulated and 3 real datasets is to illustrate the
performance of the novel robust neural networks and compare it with other nonlinear
regression tools.

4.1 Data Description

(A) The so-called Eckerle4 dataset publicly available in the package NISTnls of
R software [20] has p = 1 regressor and n = 35 observations, including one
apparent outlier. In Fig. 1, this real dataset is presented together with fitted trend,
estimated by a standard MLP as well as LTS-MLP.

(B) A simulated dataset obtained by means of a sine function with a (rather arti-
ficial) contamination by a linearly decreasing trend with p = 1 and n = 101.
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Fig. 1 Dataset Eckerle4. Horizontal axis: the regressor. Vertical axis: the response. The curve
corresponds to the standard MLP (left) and LTS-MLP with h = �3n/4� (right)

Fig. 2 The simulated dataset. Horizontal axis: the regressor. Vertical axis: the response. The curve
corresponds to the standard RBF network (left) and LTS-RBF network with h = �3n/4� (right)

The dataset is presented in Fig. 2, together with estimated trend, obtained by a
standard RBF as well as LTS-RBF network.

(C) The Auto MPG dataset [8] with p = 4 continuous regressors and n = 392
observations after omitting all missing values (i.e. observations with index 33,
127, 331, 337, 355, and 375) from the original dataset. The consumption of
each car in miles per gallon (MPG) is considered here as a response explained
by engine displacement, horsepower, weight, and acceleration.

(D) The Boston Housing dataset [8] with p = 11 continuous regressors (omitting
features 4, 7, and 9 from the original dataset) and n = 506 observations. The
per capita crime rate by town (i.e. in each individual location) is considered as
the response variable here.



Regression Neural Networks with a Highly Robust Loss Function 25

4.2 Methods

The following methods will be used in the computations. For the description of
standard machine learning methods, the reader may refer to monographs [9, 10].

• RBF network. The number N of RBF units used in particular examples is specified
in Table1.

• LTS-RBF network with the same architecture as the plain RBF network and h =
�3n/4�.

• LWS-RBF (i.e. LWAa-RBF, LWSb-RBF, LWSc-RBF) networks with the same
architecture as the plain RBF network.

• MLP with 1 or 2 hidden layers as specified in Table1 for particular examples,
together with the number of neurons in these layers. In every example, a sigmoid
activation function is considered in every hidden layer. A linear output layer is
always used.

• LTS-MLP with the same architecture as the plain MLP and h = �3n/4�.
• LWS-MLP with the same architecture as the plain ML.

Three different measures of prediction errors are evaluated for each situation
within a ten-fold cross validation study, performed in a standard way. Because the
standard MSE suffers from the presence of outliers in the data, we also consider the
trimmed MSE (TMSE) and weighted MSE (WMSE) defined formally as

MSE = 1

n

n∑

i=1

r2i , TMSE(α) = 1

h

h∑

i=1

r2(i), WMSE =
n∑

i=1

wi r
2
(i), (16)

where ri = Yi − Ŷi are prediction errors and Ŷi denotes the fitted value of the i-th
observation for i = 1, . . . , n. For TMSE, we choose h as the is integer part of 3n/4,
and squared prediction errors are arranged as r2(1) ≤ · · · ≤ r2(n). WMSE requires to
use some fixed non-increasingmagnitudes of weights andwe use here trimmed linear
weights (12) with

∑n
i=1 wi = 1.

4.3 Results

The results for standard as well as robust neural networks with the selected archi-
tectures and parameters are presented in Table1. The number N of RBF units for
all versions of RBF networks was selected as the most suitable one for plain RBF
networks. The number of neurons in the hidden layers for all versions of MLPs was
selected as the most suitable for plain MLPs.

The dataset Eckerle4, the simplest from the 4 datasets under considerations, is
very simple with very much variability (except for an apparent outlier). Results over
the two datasets with p = 1 are illustrated in Figs. 1 and 2. In these datasets with
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Table 1 Results of numerical experiments. Three errormeasures (MSE,TMSEandWMSE)defined
in (16) evaluated for various nonlinear regression methods for 4 datasets. The architectures (number
of RBF units and neurons in hidden layers) are specified here for various versions of RBF networks
and MLPs, respectively

Neural
network

MSE TMSE WMSE MSE TMSE WMSE

Dataset Eckerle4 Simulated dataset (Fig. 2)

p = 1, n = 35 p = 1, n = 101

3 RBF units 10 RBF units

RBF 0.03 <0.01 <0.01 0.18 0.055 0.050

LTS-RBF 0.04 <0.01 <0.01 0.29 0.035 0.033

LWSa-RBF 0.04 <0.01 <0.01 0.28 0.037 0.033

LWSb-RBF 0.04 <0.01 <0.01 0.31 0.032 0.029

LWSc-RBF 0.04 <0.01 <0.01 0.32 0.038 0.031

1 hidden layer 1 hidden layer

with 4 neurons with 8 neurons

MLP 0.04 <0.01 <0.01 0.24 0.067 0.061

LTS-MLP 0.05 <0.01 <0.01 0.30 0.038 0.034

LWSa-MLP 0.05 <0.01 <0.01 0.32 0.038 0.033

LWSb-MLP 0.05 <0.01 <0.01 0.33 0.035 0.030

LWSc-MLP 0.05 <0.01 <0.01 0.35 0.037 0.032

Auto MPG dataset Boston housing dataset

p = 4, n = 392 p = 11, n = 506

40 RBF units 50 RBF units

RBF 46.9 17.2 19.3 52.7 4.4 5.6

LTS-RBF 52.7 12.9 14.1 60.3 4.1 5.2

LWSa-RBF 54.1 14.4 13.8 62.1 4.1 5.0

LWSb-RBF 50.6 11.8 12.5 61.6 4.0 4.7

LWSc-RBF 53.7 14.0 13.4 62.4 4.3 4.9

2 hidden layers 2 hidden layers

with 16 and 8 neurons with 16 and 8 neurons

MLP 60.8 28.9 31.0 57.9 5.3 6.3

LTS-MLP 69.4 14.3 17.6 67.2 4.3 5.9

LWSa-MLP 70.3 14.5 16.2 70.8 4.2 5.7

LWSb-MLP 71.6 13.9 15.8 68.8 4.1 5.5

LWSc-MLP 72.5 14.3 16.7 70.6 4.2 5.7
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p = 1, TMSE is able to ignore the true outliers for robust but also for plain neural
networks. This is because the regression task is not so difficult for these datasets
and the outliers are exactly those points, which have large absolute values of the
residuals. The situation becomes much more complex for the other datasets.

In all examples, robust versions of neural networks approaches are able to yield
smaller values of robust prediction errors (TMSE and WMSE); this is true in spite
of the fact that the architecture of the neural networks was optimized for the plain
networks. On the other hand, standard versions of neural networks are superior in
terms of conventional MSE. This does not mean that the robust methods are less
suitable, because the MSE itself is vulnerable to the presence of outliers. Thus, only
robust versions of MSE should be considered for data contaminated with outliers.

Comparing RBF networks with MLPs, RBF networks turn out to yield smaller
values of the prediction errors for all 4 datasets. It is especially interesting for the
two datasets with p > 1 from real applications that the superiority of robust neural
networks compared to standard (non-robust) ones is revealed. Basically we can say
that using (any) robust neural network brings benefits, while the results of LWSb-
RBF networks are not overcome by any other method in the 4 datasets.

5 Conclusions

Robust alternatives to training neural networks are highly desirable because of the
vulnerability of common types of neural networks to the presence of outliers in the
data. We use highly robust estimators corresponding to the LTS and LWS estimators
to formulate robust loss function of MLPs and RBF networks. Thus, we extend the
idea of [24], who used the loss function of the LTS (only) within MLPs. To the best
of our knowledge, our approach is the first application of the LWS estimator within
neural networks. The novel methods assign implicit weights to individual observa-
tions and correspond to their outlyingness, which offers a possible interpretation of
individual observations and their influence to the resulting estimated trend. Robust
fitting of neural networks based on the loss function of the least weighted squares esti-
mator is able to minimize robust measures of prediction error. The methods denoted
as LWSb-MLPs and LWSb-RBF networks, i.e. those with trimmed linear weights,
turn out to yield better results in terms of prediction accuracy compared to other
choices of weights for the LWS loss.

The superior results of the neural networks based on the LWS estimator are in
correspondence with recent findings of [15]. There, the LWS turned out to outper-
form other estimators in linear regression, including S-estimators and mainly MM-
estimators, where the latter allow to tune paramters so that a high robustness and a
high efficiency are reached simultaneously.

The robust neural networks considered in the paper appear suitable for all the
4 datasets considered in this paper and thus are recommendable for real datasets,
where robustness to data contamination by outliers is desirable. All datasets ana-
lyzed here do contain outliers. If a new dataset should be analyzed, which does not
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seem to contain apparent outliers, the strategy common in linear regression may be
adopted for neural networks as well; namely, the novel robust neural networks may
serve as a diagnostic tool. In such a situation, the user may check if the results of a
standard neural network are similar with results of robust ones. In case of remarkable
discrepancies, the robust approach may be more suitable. As a limitation, however,
it is necessary to state that the robust neural networks of this paper (just like any
robust statistical method [12]) may not be suitable for certain datasets, e.g. when we
are interested in every individual observation and ignoring specific observations (or
their clusters) is not desirable.

Several possible directions recommendable for future research include adapting
robust neural networks for heteroscedastic data, proposing an adaptive selection of h
for the LTS-based loss function, considering robust and regularized neural networks,
or proposing adaptive (data-dependent) selection of weights for the LWS-based loss.
In addition, it would be desirable to perform a systematic comparison of robust
approaches to training neural networks over a larger number of datasets, accompanied
by a detailed statistical analysis of the data and by a thorough interpretation of the
results on the level of individual observations.
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Weighted Empirical Minimum Distance
Estimators in Berkson Measurement
Error Regression Models

Hira L. Koul and Pei Geng

Abstract We develop analogs of the two classes of weighted empirical minimum
distance (m.d.) estimators of the underlying parameters in linear and nonlinear regres-
sion models when covariates are observed with Berkson measurement error. One
class is based on the integral of the square of symmetrized weighted empirical of
residuals while the other is based on a similar integral involving a weighted empirical
of residual ranks. The former class requires the regression and measurement errors
to be symmetric around zero while the latter class does not need any such assump-
tion. The first class of estimators includes the analogs of the least absolute deviation
and Hodges-Lehmann estimators while the second class includes an estimator that
is asymptotically more efficient than these two estimators at some error distributions
when there is no measurement error. In the case of linear model, no knowledge of
the measurement error distribution is needed. We also develop these estimators for
nonlinear models when the measurement error distribution is known and when it is
unknown but validation data is available.

Keywords Analog of Hodges-Lehmann estimator · Validation data

1 Introduction

Statistical literature is replete with the variousminimumdistance estimationmethods
in the one and two sample location models. Beran [2, 3] and Donoho and Liu [7, 8]
argue that the minimum distance estimators based on L2 distances involving either
density estimators or residual empirical distribution functions have some desirable
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finite sample properties, tend to be robust against some contaminated models and
are also asymptotically efficient at some error distributions.

In the classical regression models without measurement error in the covariates,
classes of minimum distance estimators of the underlying parameters based on
Cramér-von Mises type distances between certain weighted residual empirical pro-
cesses were developed in Koul [12–15]. These classes include some estimators that
are robust against outliers in the regression errors and asymptotically efficient at
some error distributions.

In practice there are numerous situations when covariates are not observable.
Instead one observes their surrogate with some error. The regression models with
such covariates are known as the measurement error regression models. Fuller [9],
Cheng and Van Ness [6], Carroll et al. [5] and Yi [19] discuss numerous examples
of practical importance of these models.

Given the desirable properties of the above minimum distance (m.d.) estimators
and the importance of the measurement error regression models, it is desirable to
develop their analogs for thesemodels. The next section describes them.d. estimators
of interest and their asymptotic distributions in the classical linear regression model.
Their analogs for the linear regression Berkson measurement error (ME) model are
developed in Sect. 3. The two classes of m.d. estimators are developed. One assumes
the symmetry of the regression model error and ME error distributions and then
basis the m.d. estimators on the symmetrized weighted empirical of the residuals.
This class includes an analog of the Hodges-Lehmann estimator of the one sample
location parameter, seeHodges and Lehmann (1963), and the least absolute deviation
(LAD) estimator. The second class is based on aweighted empirical of residual ranks.
This class of estimators does not need the symmetry of the errors distributions. This
class includes an estimator that is asymptotically more efficient than the analog of
Hodges-Lehmann and LAD estimators at some error distributions. Neither classes
need the knowledge of the measurement error or regression error distributions.

Section4 discusses analogs of these estimators in the Berkson measurement error
nonlinear regression models, where the measurement error distribution is assumed
to be known. Section5 develops their analogs when the ME distribution is unknown
but validation data is available. In this case the consistency rate of these estimators is
min(n, N )1/2, where n and N are the primary data and validation data sample sizes,
respectively. Section6 provides an application of the proposed estimators to a real
data example. Several proofs are deferred to the last section.

2 Linear Regression Model

In this section we recall the definition of the m.d. estimators of interest here in the no
measurement error linear regression model and their known asymptotic normality
results.

Accordingly, consider the linear regression model where for some θ ∈ R
p, the

response variable Y and the p dimensional observable predicting covariate vector X
obey the relation
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Y = X ′θ + ε, (1)

where ε is independent of X and symmetrically distributed around E(ε) = 0.
For an x ∈ R, x ′ and ‖x‖ denote its transpose and Euclidean norm, respectively.
Let (Xi ,Yi ), 1 ≤ i ≤ n be a random sample from this model. The two classes of
m.d. estimators of θ based on weighted empirical processes of the residuals and
residual ranks were developed in Koul [12–15]. To describe these estimators, let G
be a nondecreasing right continuous function from R to R having left limits and
define

V (x,ϑ) := n−1/2
n∑

i=1

Xi
{
I (Yi − X ′

iϑ ≤ x) − I (−Yi + X ′
iϑ < x)

}
,

M(ϑ) :=
∫ ∥∥V (x,ϑ)

∥∥2
dG(x), θ̂ := argminϑ∈Rp M(ϑ).

This class of estimators, one for each G, includes some well celebrated estimators.
For example θ̂ corresponding to G(x) ≡ x yields an analog of the one sample loca-
tion parameter Hodges-Lehmann estimator in the linear regression model. Similarly,
G(x) ≡ δ0(x), the degenerate measure at zero, makes θ̂ equal to the least absolute
deviation (LAD) estimator.

A class of m.d. estimators when the error distribution is not symmetric and
unknown is obtained by using the weighted empirical of the residual ranks defined as
follows. Write Xi = (Xi1, Xi2, . . . , Xip)

′, i = 1, . . . , n. Let X̄ j := n−1 ∑n
i=1 Xi j ,

X̄ := (X̄1, . . . , X̄ p)
′ and Xic := Xi − X̄ , 1 ≤ i ≤ n. Let Riϑ denote the rank of the

i th residual Yi − X ′
iϑ among Y j − X ′

jϑ, j = 1, . . . , n. Let Ψ be a distribution func-
tion on [0, 1] and define

V (u,ϑ) := n−1/2
n∑

i=1

Xic I (Riϑ ≤ nu), K (ϑ) :=
1∫

0

∥∥V(u,ϑ)‖2dΨ (u),

θ̂R := argminϑ∈Rp K (ϑ).

Yet anotherm.d. estimator, when error distribution is unknown and not symmetric,
is

Vc(x,ϑ) := n−1/2
n∑

i=1

Xic I (Yi − X ′
iϑ ≤ x),

Mc(ϑ) :=
∫ ∥∥Vc(x,ϑ)

∥∥2
dx, θ̂c := argminϑ∈Rp Mc(ϑ).

If one reduces the model (1) to the two sample location model, then θ̂c is the median
of pairwise differences, the so called Hodges-Lehmann estimator of the two sample
location parameter. Thus in general θ̂c is an analog of this estimator in the linear
regression model.



34 H. L. Koul and P. Geng

The following asymptotic normality results can be deduced from Koul [15] and
[16, Sect. 5.4].

Lemma 1 Suppose the model (1) holds and E‖X‖2 < ∞.
(a). In addition, suppose ΣX := E(XX ′) is positive definite and the error d.f. F is
symmetric around zero and has density f . Further, suppose the following hold.

G is a nondecreasing right continuous function on R to R, (2)

having left limits and dG(x) = −dG(−x),∀ x ∈ R.

0 <

∫
f j dG < ∞, lim

z→0

∫ [
f (x + z) − f (x)

] j
dG(x) = 0, j = 1, 2, (3)

∞∫

0

(1 − F)dG < ∞.

Then

n1/2(θ̂ − θ) →D N
(
0,σ2

GΣ−1
X

)
, σ2

G :=
Var

( ε∫
−∞

f (x)dG(x)
)

( ∫
f 2dG

)2 .

(b). In addition, suppose the error d.f. F has uniformly continuous bounded density
f , Ω := E{(X − EX)(X − EX)′} is positive definite and Ψ is a d.f. on [0, 1] such
that

1∫

0
f 2(F−1(s))dΨ (s) > 0. Then

n1/2
(
θ̂R − θ

) →D N (0, γ2
Ψ Ω−1), γ2

Ψ :=
Var

( F(ε)∫

0
f (F−1(s))dΨ (s)

)

( 1∫

0
f 2(F−1(s))dΨ (s)

)2
.

(c). In addition, supposeΩ is positive definite, F has square integrable density f and
E |ε| < ∞. Then n1/2(θ̂c − θ) →D N

(
0,σ2

IΩ
−1

)
, where σ2

I := 1/12
( ∫

f 2(x)dx
)2

.

Before proceeding further we now describe some comparison of the above asymp-
totic variances. Let σ2

L AD := 1/(4 f 2(0)) and σ2
LSE := Var(ε) denote the factors of

the asymptotic covariance matrices of the LAD and the least squares estimators,
respectively. Let γ2

I denote the γ2
Ψ when Ψ (s) ≡ s, i.e.,

γ2
I =

∫ ∫ [
F(x ∧ y) − F(x)F(y)

]
f 2(x) f 2(y)dxdy

( 1∫

0
f 3(x)dx

)2
.

Table1, obtained from Koul [16], gives the values of these factors for some distri-
butions F . From this table one sees that the estimator θ̂R corresponding to Ψ (s) ≡ s
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Table 1 A comparison of asymptotic variances

F γ2
I σ2

I σ2
L AD σ2

LSE

Double Exp. 1.2 1.333 1 2

Logistic 3.0357 3 4 3.2899

Normal 1.0946 1.0472 1.5708 1

Cauchy 2.5739 3.2899 2.46 ∞

is asymptotically more efficient than the LAD at logistic error distribution while
it is asymptotically more efficient than the Hodges-Lehmann type estimator at the
double exponential and Cauchy error distributions. For these reasons it is desirable
to develop analogs of θ̂R also for the ME models.

As argued in Koul (Chap. 5, [16]), the estimators {θ̂G, G a d.f.} are robust against
heavy tails in the error distribution in the general linear regressionmodel. The estima-
tor θ̂I , whereG(x) ≡ x , not a d.f., is robust against heavy tails and also asymptotically
efficient at the logistic errors.

3 Berkson ME Linear Regression Model

In this section we shall develop analogs of the above estimators in the Berkson ME
linear regression model, where the response variable Y obeys the relation (1) and
where, instead of observing X , one observes a surrogate Z obeying the relation

X = Z + η. (4)

In (4), Z , η, ε are assumed to be mutually independent and E(η) = 0. Note that η is
p × 1 vector of errors and its distribution need not be known.

Analog of θ̂. We shall first develop and derive the asymptotic distribution of the
analogs of the estimators θ̂ in the Berkson ME linear regression model (1) and (4).
Rewrite the model as

Y = Z ′θ + ξ, ξ := η′θ + ε, E(ξ) = 0, ∃ θ ∈ R. (5)

Because Z , η, ε are mutually independent, ξ is independent of Z in (5).
Let H denote the distribution functions (d.f.) of η. Assume that the d.f. F of ε is

continuous and symmetric around zero and that H is also symmetric around zero,
i.e., −dH(v) = dH(−v), for all v ∈ R

p. Then the d.f. of ξ

L(x) := P(ξ ≤ x) = P(η′θ + ε ≤ x) =
∫

F(x − v′θ)dH(v)
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is also continuous and symmetric around zero. This symmetry in turn motivates the
following definition of the class of m.d. estimators of θ in the model (5), which
mimics the definition of θ̂ by simply replacing Xi by Zi . Define

Ṽ (x, t) := n−1/2
n∑

i=1

Zi
{
I (Yi − Z ′

i t ≤ x) − I (−Yi + Z ′
i t < x)

}
,

M̃(t) :=
∫ ∥∥Ṽ (x, t)

∥∥2
dG(x), θ̃ := argmint∈Rp M̃(t).

Because L is continuous and symmetric around zero and ξ is independent of Z ,
EṼ (x, θ) ≡ 0.

The following assumptions are needed for the asymptotic normality of θ̃.

E‖Z‖2 < ∞ and Γ := EZ Z ′ is positive definite. (6)

H satisfies dH(v) = −dH(−v), ∀ v ∈ R
p. (7)

F has Lebesgue density f , symmetric around zero, and (8)

such that �(x) =
∫

f (x − v′θ)dH(v) of L satisfies the following:

0 <

∫
� j dG < ∞, lim

z→0

∫ [
�(y + z) − �(y)

] j
dG(y) = 0, j = 1, 2.

A :=
∞∫

0

(1 − L)dG < ∞. (9)

Under (6), n−1 ∑n
i=1 Zi Z ′

i →p Γ and n−1/2 max1≤i≤n ‖Zi‖ →p 0. Use these
facts and argue as in Koul [15] to deduce that (2) and (6)–(9) imply

n1/2
(
θ̃ − θ

) →D N (0, τ 2
GΓ −1), τ 2

G := Var
( ∫ ξ

−∞ �dG
)

( ∫
�2dG

)2 . (10)

Remark 1 We shall discuss some examples and some sufficient conditions for the
above assumptions. The conditions (8) and (9) are satisfied by a large class of den-
sities f , ME distributions H and integrating measure G. If G is a d.f., then f being
uniformly continuous and bounded implies these conditions. In this case � is also uni-
formly continuous, supx �(x) ≤ supx f (x) < ∞ so that

∫
� j dG ≤ supx f j (x) < ∞

and
∫ [

�(y + z) − �(y)
] j
dG(y) ≤ sup|x−y|≤z |�(y) − �(x)| j → 0, as z → 0. More-

over, here A ≤ 1. Thus these two assumptions reduce to assuming
∫

� j dG > 0,
j = 1, 2.

Given the importance of the two estimators corresponding to G(x) ≡ x, G(x) ≡
δ0(x), it is of interest to provide some easy to verify sufficient conditions that imply
conditions (8) and (9) for these two estimators.
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Consider the case G(x) ≡ x . Assume f to be continuous and
∫

f 2(x)dx < ∞.

Then because H is a d.f., � is also continuous and symmetric around zero and∫
�(x + z)dx = ∫

�(x)dx = 1.Moreover, by the Cauchy-Schwartz (C-S) inequality
and Fubini’s Theorem,

0 <

∫
�2(y)dy =

∫ ( ∫
f (y − v′θ)dH(v)

)2
dy

≤
∫ ∫

f 2(y − v′θ)dydH(v) =
∫

f 2(x)dx < ∞.

Finally, because � ∈ L2, by Theorem 9.5 in Rudin [18], it is shift continuous in L2,
i.e., (8) holds. Hence all conditions of (8) are satisfied.

Next, consider (9). The assumptions E(ε) = 0 and E(η) = 0 imply that
∫ |x | f (x)

dx < ∞,
∫ ‖v‖dH(v) < ∞ and hence

∫
|y|dL(y) =

∫
|y|

∫
f (y − v′θ)dH(v)dy =

∫ ∫
|x + v′θ| f (x)dxdH(v) < ∞.

This in turn implies (9) in the case G(x) ≡ x .
To summarize, (6), (7), and F having continuous symmetric square integrable

density f implies all of the above conditions needed for the asymptotic normality
of the above analog of the Hodges-Lehmann estimator in the Berkson ME linear
regression model. This fact is similar to the observation made in Berkson (1950)
that the naive least square estimator, where one replace Xi ’s by Zi ’s, continues to be
consistent and asymptotically normal under the same conditions as when there is no
ME. But, unlike in the no ME case, here the asymptotic variance

τ 2
I := Var

(
L(ξ)

)
( ∫

�2(y)dy
)2 = 1

12
( ∫ ( ∫

f (y − v′θ)dH(v)
)2
dy

)2

depends on θ. If H is degenerate at zero, i.e., if there is no ME, then τ 2
I = σ2

I ,
the factor that appears in the asymptotic covariance matrix of the Hodges-Lehmann
estimator in this case.

Next, consider the case G(x) ≡ δ0(x)—degenerate measure at 0. Assume f to
be continuous and bounded from the above and

�(0) :=
∫

f (v′θ)dH(v) > 0. (11)

Then the continuity and symmetry of f implies that as z → 0,

∫
�(y + z)dG(y) = �(z) =

∫
f (z − v′θ)dH(v) →

∫
f (−v′θ)dH(v) = �(0),
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∫ [
�(y + z) − �(y)

]2
dG(y) =

[ ∫ {
f (z − v′θ) − f (−v′θ)

}
dH(v)

]2

≤
∫ {

f (z − v′θ) − f (−v′θ)
}2
dH(v) → 0.

Moreover, here
∞∫

0
(1 − L)dG = 1 − L(0) = 1/2 so that (9) is also satisfied.

To summarize, (6), (7), (11) and f being continuous, symmetric around zero and
bounded from the above imply all the needed conditions for the asymptotic normality
of the above analog of the LAD estimator in the BerksonME linear regressionmodel.
Moreover, here

ξ∫

−∞
�(x)dG(x) = �(0)I (ξ ≥ 0),

∫
�2(x)dG(x) = �2(0),

Var
( ξ∫

−∞
�(x)dG(x)

)
= �2(0)/4.

Consequently, here the asymptotic covariance matrix also depends on θ via

τ 2
0 = 1

/
4�2(0) = 1

/
4
( ∫

f (v′θ)dH(v)
)2

.

In the case of no ME, Γ −1τ 2
0 equals the asymptotic covariance matrix of the LAD

estimator. Unlike in the case of the previous estimator, here the conditions needed
for f are a bit more stringent than those required for the asymptotic normality of the
LAD estimator when there is no ME.

Analog of θ̂R . Here we shall describe the analogs of the class of estimators θ̂R

based on the residual ranks obtained from themodel (5). These estimators do not need
the errors ξi ’s to be symmetrically distributed. Let R̃iϑ denote the rank of Yi − Z ′

iϑ
among Y j − Z ′

jϑ, j = 1, . . . , n, Z̄ := n−1 ∑n
i=1 Zi , Zic := Zi − Z̄ , 1 ≤ i ≤ n and

define

Ṽ(u,ϑ) := n−1/2
n∑

i=1

Zic I (R̃iϑ ≤ nu), K̃ (ϑ) :=
∫ 1

0

∥∥Ṽ(u,ϑ)‖2dΨ (u),

θ̃R := argminϑ∈Rp K̃ (ϑ).

Use the facts
∑n

i=1 Zic = 0, Ψ (max(a, b)) = max{Ψ (a), Ψ (b)} and max(a, b)
= 2−1[a + b + |a − b|], for any a, b ∈ R, to obtain the computational formula

K̃ (t) = −1

2

n∑

i=1

n∑

j=1

Z ′
ic Z jc

∣∣∣Ψ
( Rit

n
−

)
− Ψ

( R jt

n
−

)∣∣∣.
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The following result can be deduced fromKoul [15]. Suppose E‖Z‖2 < ∞, Γ̃ :=
E(Z − EZ)(Z − EZ)′ is positive definite, density � of the r.v. ξ is uniformly contin-

uous and bounded and
1∫

0
�2(L−1(s))dΨ (s) > 0. Then n−1/2 max1≤i≤n ‖Zi‖ →p 0,

n−1 ∑n
i=1(Zi − Z̄)(Zi − Z̄)′ →p Γ̃ and

n1/2
(
θ̃R − θ) →D N

(
0, τ̃ 2

Ψ Γ̃ −1
)
, τ̃ 2

Ψ := Var
( ∫ L(ξ)

0 �(L−1(s))dΨ (s)
)

( ∫ 1
0 �2(L−1(s))dΨ (s)

)2 .

Density f of F being uniformly continuous and bounded implies the same for
�(x) = ∫

f (x − v′θ)dH(v). It is also worth pointing out the assumptions on F, H
and L needed here are relatively less stringent than those needed for the asymptotic
normality of θ̃.

Of special interest is the caseΨ (s) ≡ s. Let τ̃ 2
I denote the corresponding τ̃ 2

Ψ . Then
by the change of variable formula,

τ̃ 2
I = Var

( ∫ L(ξ)

0 �(L−1(s))ds
)

∫ 1
0 �2(L−1(s))ds

= Var
( ∫ ξ

0 �2(x)dx
)

( ∫ 1
0 �3(x)dx)2

=
∫ ∫ [

L(x ∧ y) − L(x)L(y)
]
�2(x)�2(y)dxdy

( ∫ 1
0 �3(x)dx

)2 .

An analog of θ̂c here is θ̃c := argminϑ∈Rp M̃c(ϑ), where

Ṽc(x,ϑ) := n−1/2
n∑

i=1

Zic I (Yi − Z ′
iϑ ≤ x), M̃c(ϑ) :=

∫ ∥∥Ṽc(x,ϑ)
∥∥2
dx .

Arguing as above one obtains that n1/2
(
θ̃c − θ

) →D N
(
0, τ 2

I Γ̃
−1

)
.

4 Nonlinear Regression with Berkson ME

In this section we shall investigate the analogs of the above m.d. estimators in non-
linear regression models with Berkson ME.

Let q ≥ 1, p ≥ 1 be known positive integers, Θ ⊆ R
q be a subset of the q-

dimensional Euclidean space R
q and consider the model where the unobservable

p-dimensional covariate X , its observable surrogate Z and the response variable Y
obey the relations

Y = mθ(X) + ε, X = Z + η, (12)
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for some θ ∈ Θ . Here mϑ(x) is a known parametric function, nonlinear in x , from
Θ × R

p to R with E |mϑ(X)| < ∞, for all ϑ ∈ Θ . The r.v.’s ε, Z , η are assumed to
be mutually independent, Eε = 0 and Eη = 0. Unlike in the linear case, here we
need to assume that the d.f. H of η is known. See Sect. 5 for the unknown H case.

Fix a θ for which (12) holds. Let νϑ(z) := E(mϑ(X)|Z = z), ϑ ∈ R
q , z ∈ R

p.
Under (12), E(Y |Z = z) ≡ νθ(z). Moreover, because H is known,

νϑ(z) =
∫

mϑ(z + s)dH(s)

is a known parametric regression function. Thus, under (12), we have the regression
model

Y = νθ(Z) + ζ, E(ζ|Z = z) = 0, z ∈ R
p.

Unlike in the linear case, the error ζ is no longer independent of Z in general.
To proceed further we assume there is a vector of p functions ṁϑ(x) such that,

with ν̇ϑ(z) := ∫
ṁϑ(z + s)dH(s), for every 0 < b < ∞,

max
1≤i≤n,n1/2‖ϑ−θ‖≤b

n1/2
∣∣νϑ(Zi ) − νθ(Zi ) − (ϑ − θ)′ν̇θ(Zi )

∣∣ = op(1), (13)

E‖ν̇θ(Z)‖2 < ∞. (14)

Let

Lz(x) := P(ζ ≤ x |Z = z), x ∈ R, z ∈ R
p.

Assume the following. For every z ∈ R
p,

Lz(·) is continuous and Lz(x) = 1 − Lz(−x), ∀ x ∈ R
p. (15)

Let G be as before and define

U (x,ϑ) := n−1/2
n∑

i=1

ν̇ϑ(Zi )
{
I (Yi − νϑ(Zi ) ≤ x) − I (−Yi + νϑ(Zi ) < x)

}

D(ϑ) :=
∫ ∥∥U (x,ϑ)

∥∥2
dG(x), θ̂ := argminϑD(ϑ).

In the case q = p and mθ(x) = x ′θ, θ̂ agrees with θ̃. Thus the class of estimators θ̂,
one for each G, is an extension of the class of estimators θ̃ from the linear case to
the above nonlinear case.

Next, consider the extension of θ̂R to the above nonlinear model (12). Let Siϑ
denote the rank of Yi − νϑ(Zi ) among Y j − νϑ(Z j ), j = 1, . . . , n and define
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Un(u,ϑ) := 1√
n

n∑

i=1

ν̇ϑ(Zi )
{
I (Siϑ ≤ nu) − u

}
,

K(ϑ) :=
∫

‖Un(u,ϑ)‖2dΨ (u), θ̂R := argminϑK(ϑ).

The estimator θ̂R gives an analog of θ̂R in the present set up.
Our goal here is to prove the asymptotic normality of θ̂, θ̂R . This will be done by

following the general method of Sect. 5.4 of Koul [16]. This method requires the two
steps. In the first step we need to show that the defining dispersions D(ϑ) and K(ϑ)

are AULQ (asymptotically uniformly locally quadratic) in ϑ − θ for ϑ ∈ Nn(b) :=
{ϑ ∈ Θ, n1/2‖ϑ − θ‖ ≤ b}, for every 0 < b < ∞. The second step requires to show
that n1/2‖θ̂ − θ‖ = Op(1) = n1/2‖θ̂R − θ‖.

4.1 Asymptotic Distribution of̂θ

In this subsection we shall derive the asymptotic normality of θ̂. To state the needed
assumptions for achieving this goal we need some more notation. Let νnt (z) :=
νθ+n−1/2t (z), ξi t := νnt (Zi ) − νθ(Zi ), 1 ≤ i ≤ n, ν̇nt (z) := ν̇θ+n−1/2t (z), and ν̇nt j (z)
denote the j th coordinate of ν̇nt (z), 1 ≤ j ≤ q, t ∈ R

q . For any real number a, let
a± = max(0,±a) so that a = a+ − a−. Also, let βi (x) := I (ζi ≤ x) − LZi (x) and
αi (x, t) := I (ζi ≤ x + ξi t ) − I (ζi ≤ x) − LZi (x + ξi t ) + LZi (x).

Because dG(x) ≡ −dG(−x) and U (x,ϑ) ≡ U (−x,ϑ), we have

D(ϑ) ≡ 2

∞∫

0

∥∥U (x,ϑ)
∥∥2
dG(x) ≡ 2D̃(ϑ), say. (16)

We are now ready to state our assumptions.

∞∫

0

E
(∥∥ν̇θ(Z)‖2(1 − LZ (x

))
dG(x) < ∞. (17)

∞∫

0

E
(
‖ν̇nt (Z) − ν̇θ(Z)‖2LZ (x)(1 − LZ (x)

)
dG(x) → 0, ∀ t ∈ R

q .

sup
‖t‖≤b,1≤i≤n

∥∥ν̇nt (Zi ) − ν̇θ(Zi )
∥∥ →p 0. (18)

Density �z of Lz exists for all z ∈ R
p such that (19)

0 <

∫
�z(x)dG(x) < ∞, ∀ z ∈ R

p, 0 <

∫
E(�2Z (x))dG(x) < ∞,
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∫
E

(‖ν̇θ(Z)‖2� j
Z (x)

)
dG(x) < ∞, j = 1, 2.

lim
u→0

∞∫

−∞

(
�z(x + u) − �z(x)

) j
dG(x) = 0, j = 1, 2,∀ z ∈ R

p. (20)

E
( |ξt (Z)|∫

−|ξt (Z)|
‖ν̇nt (Z)‖2

∞∫

−∞
�Z (x + u)dG(x)du

)
→ 0, ∀ t ∈ R

q , (21)

where ξt (z) := νnt (z) − νθ(z).

With Γθ(x) := E
(
ν̇θ(Z)ν̇θ(Z)′�Z (x)

)
, the matrix (22)

Ωθ :=
∞∫

−∞
Γθ(x)Γθ(x)

′dG(x) is positive definite.

For every ε > 0 there is a δ > 0 and Nε < ∞ such that ∀ ‖s‖ ≤ b, n > Nε,

P
(

sup
‖t−s‖<δ

(
n−1/2

∫ n∑

i=1

[
ν̇±
nt j (Zi ) − ν̇±

ns j (Zi )
]
αi (x, t)dG(x)

)2
> ε

)
< ε, (23)

P
(

sup
‖t−s‖<δ

n−1

∞∫

0

∥∥∥
n∑

i=1

{ν̇nt (Zi ) − ν̇ns(Zi )}βi (x)
∥∥∥
2
dG(x) > ε

)
< ε. (24)

For every ε > 0,α > 0 there exists N ≡ Nα,ε and b ≡ bα,ε such that

P
(

inf‖t‖>b
D(θ + n−1/2t) ≥ α

)
≥ 1 − ε, ∀ n > N . (25)

From now onwards we shall write ν and ν̇ for νθ and ν̇θ, respectively.

Remark 2 We shall now discuss the above assumptions when mϑ(x) = ϑ′h(x),
where h = (h1, . . . , hq)′ is a vector of q function on R

p with E‖h(X)‖2 < ∞,
first for general G and then for some special cases of G. An example of this is
the polynomial regression model with Berkson ME, where p = 1, h j (x) = x j , j =
1, . . . , q. Let β(z) := E(h(X)|Z = z). Then νϑ(z) = ϑ′β(z) and ν̇ϑ(z) ≡ β(z), a
constant in ϑ. Therefore (13), (14), (18), (23) and (24) are all vacuously satisfied.
The condition (25) also holds here, in a similar way as in the linear regression
model, cf., Koul [16, Proof of Lemma 5.5.4, pp. 183–185]. Direct calculations show
that (26)–(29) below imply the remaining assumptions (17), (19), (21) and (22),
respectively.



Weighted Empirical Minimum Distance Estimators in Berkson … 43

∞∫

0

E
(∥∥β(Z)‖2(1 − LZ (x

))
dG(x) < ∞. (26)

∀ z ∈ R
p, density �z of Lz exists and satisfies (27)

0 <

∫
� j
z (x)dG(x) < ∞, j = 1, 2, 0 <

∫
E(�2Z (x))dG(x) < ∞,

∫
E

(‖β(Z)‖2� j
Z (x)

)
dG(x) < ∞, j = 1, 2, and (20) holds.

E
( |n−1/2b‖β(Z)‖∫

n−1/2b‖β(Z)‖
‖β(Z)‖2

∞∫

−∞
�Z (x + u)dG(x)du

)
→ 0, (28)

for every 0 < b < ∞.

With B(x) := E
(
β(Z)β(Z)′�Z (x)

)
, the matrix (29)

∞∫

−∞
B(x)B(x)′dG(x) is positive definite.

Consider further the case G(x) ≡ x . Let σ := (Eε2)1/2. Assume

(a) E‖h(X)‖3 < ∞, Eζ2 < ∞. (b) C := sup
x∈R,z∈Rp

�z(x) < ∞. (30)

Then E‖β(Z)‖ j ≤ E‖h(X)‖ j < ∞, j = 1, 2, 3. Let γ(z) := 2‖θ‖‖β(z)‖ + σ.
Then

E
(|ζ|∣∣Z = z

) = E
(|Y − θ′β(Z)|∣∣Z = z

)
(31)

= E
(|θ′h(X) + ε − θ′β(Z)|∣∣Z = z

) ≤ γ(z), ∀ z ∈ R
p.

Hence

∞∫

0

E
(∥∥β(Z)‖2(1 − LZ (x

))
dx

≤ E
(
‖β(Z)‖2E(|ζ|∣∣Z)) ≤ E

(
‖β(Z)‖2γ(Z)

)

≤ 2‖θ‖E(‖β(Z)‖3) + σE
(‖β(Z)‖2) < ∞,

thereby showing that (26) is satisfied. The assumption (30)(b) and �z(x) being a
density in x for each z and Theorem 9.5 of Rudin [18] readily imply (27) here. The
left hand side of (28) equals 2n−1/2bE

(‖β(Z)‖3) → 0, by (30)(a).
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Next, consider the case G(x) = δ0(x)- measure degenerate at zero. Assume

lim
u→0

�z(u) = �z(0) > 0, ∀ z ∈ R
p, 0 < E�2Z (0) < ∞, (32)

E
(‖β(Z)‖2� j

Z (0)
)

< ∞, j = 1, 2.

Then the left hand side of (26) equals (1/2)E‖β(Z)‖2 < E‖h(X)‖2 < ∞. Condition
(27) is trivially satisfied and the left hand side of (28) equals

E
(
‖β(Z)‖2[LZ (n−1/2b‖β(Z)‖) − LZ (−n−1/2b‖β(Z)‖)]

)
→ 0,

by the DCT and the continuity of Lz(·), for each z.
To summarize, in the case mϑ(x) = ϑ′h(X) and G(x) ≡ x , assumptions (30)(a),

(b) and
∫ B(x)B(x)′dx being positive definite imply all of the above assumptions

(13), (14) and (17)–(25). Similarly, in the case mϑ(x) = ϑ′h(X) and G(x) ≡ δ0(x),
E‖h(X)‖2 < ∞, (32) and B(0)B(0)′ being positive definite imply all these condi-
tions.

Remark 3 Because of the importance of the estimators θ̂ when G(x) = x , and
G(x) = δ0(x), it is of interest to give some simple sufficient conditions for a general
mϑ that imply the given assumptions for these two estimators.

SupposeG satisfies dG(x) ≡ g(x)dx , where g∞ := supx∈R g(x) < ∞. Note that
G(x) ≡ x corresponds to the case g(x) ≡ 1. Consider the following assumptions.

(a) E
∥∥ṁθ(X)

∥∥4
< ∞, (33)

(b) E
∥∥ṁθ+n−1/2t (X) − ṁθ(X)

∥∥2 → 0, ∀ t ∈ R
q .

Density �z of Lz exists for all z ∈ R
p and satisfies (34)

0 <

∫
�2z (x)dx < ∞, ∀ z ∈ R

p, 0 <

∫
E(�2Z (x))dx < ∞,

0 <

∫
E

(‖ν̇(Z)‖2�2Z (x)
)
dx < ∞.

E
(‖ν̇nt (Z)‖2|νnt (Z) − ν(Z)|) → 0, ∀ t ∈ R

q . (35)

Because
∥∥ν̇(Z)

∥∥ j ≤ E
(‖ṁθ(X)

∥∥ j ∣∣Z
)
, E

∥∥ν̇(Z)
∥∥ j ≤ E

∥∥ṁθ(X)
∥∥ j

< ∞, j = 1,
2, 3, 4, by (33)(a). Similarly, for every t ∈ R

q ,

E
∥∥ν̇nt (Z) − ν̇(Z)

∥∥2 ≤ E
∥∥ṁnt (X) − ṁθ(X)

∥∥2 → 0, by (34)(b). (36)

Next, similar to (31), E
(|ζ|∣∣Z) = E

(|Y − ν(Z)|∣∣Z) ≤ 2|ν(Z)| + σ implies that
the left hand side of (17) is bounded from the above by
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g∞E
(
‖ν̇(Z)‖2E(|ζ|∣∣Z)) ≤ g∞E

(
‖ν̇(Z)‖2(2|ν(Z)| + σ

))

≤ g∞
[
2E1/2(‖ν̇(Z)‖4)E1/2(m2

θ(X)) + σE‖ν̇(Z)‖2]
< ∞,

by (33)(a), thereby verifying (17) here. Similarly, with C denoting the above upper
bound, for every t ∈ R

q , the left hand side of (18) is bounded from the above

CE
(
‖ν̇nt (Z) − ν̇θ(Z)‖2

)
→ 0, by (36). The left hand side of (21) is bounded from

the above by 2g∞E
(‖ν̇nt (Z)‖2|νnt (Z) − ν(Z)|) → 0, by (35).

In other words, in the caseG has bounded Lebesgue density, conditions (33)–(35)
imply assumptions (14), (17), (18), (19), (20), and (21). Not much simplification
occurs in the remaining assumptions (18) and (22)–(25). See Remark 2 for some
special cases.

Next consider the case when G(x) = δ0(x) and the following assumptions.

sup
x∈R

�z(x) < ∞, 0 < lim
u→0

�z(u) = �z(0) < ∞, ∀ z ∈ R
p. (37)

Γθ(0) is positive definite. (38)

In this case (33), (35), (37) and (38) together imply the assumptions (14), (17)–(22).
Not much simplification occurs in the remaining three assumptions (23)–(25), except
in some special cases as in Remark 2.

We now resume the discussion about the asymptotic normality of θ̂. First, we show
that E(D(θ)) < ∞, so that by theMarkov inequality, D(θ) is bounded in probability.
To see this, by (15), EU (x, θ) ≡ 0 and, for x ≥ 0,

E‖U (x, θ)‖2 = E
(∥∥ν̇(Z)‖{I (ζ ≤ x) − I (ζ > −x)

})2

= 2E
(∥∥ν̇(Z)‖2(1 − LZ (x

))
.

By the Fubini Theorem, (16) and (17),

E(D(θ)) = 2E(D̃(θ)) = 4

∞∫

0

E
(∥∥ν̇(Z)‖2(1 − LZ (x

))
dG(x) < ∞. (39)

To state the AULQ result for D, we need some more notation. Let

W (x, 0) := n−1/2
n∑

i=1

ν̇(Zi )
{
I
(
ζi ≤ x) − LZi (x)

}
, (40)

Tn :=
∞∫

−∞
Γθ(x)

{
W (x, 0) + W (−x, 0)

}
dG(x), t̂ = −Ω−1

θ Tn/2,
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where Γθ(x) and Ωθ are as in (22). We are ready to state the following lemma.

Lemma 2 Suppose the above set up and assumptions (17)– (24) hold. Then for every
b < ∞,

sup
‖t‖≤b

∣∣D(θ + n−1/2t) − D(θ) − 4T ′
nt − 4t ′Ωθt

∣∣ →p 0. (41)

If in addition (25) holds, then, with Σθ given at (45) below,

(a) ‖n1/2(θ̂ − θ) − t̂ ‖ →p 0. (42)

(b) n1/2
(
θ̂ − θ) →D N

(
0, 4−1Ω−1

θ ΣθΩ
−1
θ

)
.

Proof The proof of (41) appears in Sect. 6. The proof of the claim (42)(a), which
uses (25), (39) and (41), is similar to that of Theorem 5.4.1 of Koul [16], where (25)
and (39) are used to show that n1/2‖θ̂ − θ‖ = Op(1).

Define, for y ∈ R, u ∈ R
p,

ψu(y) :=
y∫

−∞
�u(x)dG(x), ϕu(y) := ψu(−y) − ψu(y). (43)

By (19), 0 < ψu(y) ≤ ψu(∞) =
∞∫

−∞
�u(x)dG(x) < ∞, for all u ∈ R

p. Thus for

each u, ψu(y) is an increasing continuous bounded function of y and ψu(−y) ≡
ψu(∞) − ψu(y), and ϕu(y) = ψu(∞) − 2ψu(y), for all y ∈ R.

By (15), E(ϕu(ζ)|Z = z) = 0, for all u, z ∈ R
p. Let

Cz(u, v) := Cov
[(

ϕu(ζ),ϕv(ζ)
)∣∣Z = z

] = 4Cov
[(

ψu(ζ),ψv(ζ)
)∣∣Z = z

]
,

K(u, v) := E
(
ν̇(Z)ν̇(Z)′CZ (u, v)

)
, u, v ∈ R

p.

Next let μ(z) := ν̇(z)ν̇(z)′, Q denote the d.f. of Z and rewrite Γθ(x) = E
(
ν̇θ(Z)

ν̇θ(Z)′�Z (x)
) = ∫

μ(z)�z(x)dQ(z). By the Fubini Theorem,

Tn :=
∞∫

−∞
Γθ(x)

{
W (x, 0) + W (−x, 0)

}
dG(x) (44)

=
∫ ∞∫

−∞
μ(z)

{
W (x, 0) + W (−x, 0)

}
�z(x)dG(x)dQ(z)

= 1√
n

n∑

i=1

∫
μ(z)ν̇(Zi )ϕz(ζi )dQ(z).
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Clearly, ETn = 0 and by the Fubini Theorem, the covariance matrix of Tn is

Σθ := ETnT
′
n (45)

= E
{( ∫

μ(z)ν̇(Z)ϕz(ζ)dQ(z)
)( ∫

μ(v)ν̇(Z)ϕv(ζ)dQ(v)
)′}

=
∫ ∫

μ(z)K(z, v)μ(v)′dQ(z)dQ(v).

Thus Tn is a p × 1 vector of independent centered finite variance r.v.’s. By the
classical CLT, Tn →D N (0,Σθ). Hence, the minimizer t̃ of the approximating
quadratic form D(θ) + 4Tnt + 4t ′Ωθt with respect to t satisfies t̃ = −Ω−1

θ Tn/2 →D

N
(
0, 4−1Ω−1

θ ΣθΩ
−1
θ

)
.The claim (42)(b) now follows from this result and (42)(a). �

4.2 Asymptotic Distribution of̂θR

In this subsection we shall establish the asymptotic normality of θ̂R . For this we need
the following assumptions, where U(b) := {t ∈ R

q; ‖t‖ ≤ b}, and 0 < b < ∞.

�z is uniformly continuous and bounded for every z ∈ R
p. (46)

n−1
n∑

i=1

E‖ν̇nt (Zi ) − ν̇(Zi )‖2 → 0, ∀ t ∈ U(b). (47)

n−1/2
n∑

i=1

‖ν̇nt (Zi ) − ν̇(Zi )‖ = Op(1), ∀ t ∈ U(b). (48)

∀ ε > 0, ∃ δ > 0 and nε < ∞ such that for each s ∈ U(b), ∀ n > nε,

P
(

sup
t∈U(b);‖t−s‖≤δ

n−1/2
n∑

i=1

‖ν̇nt (Zi ) − ν̇ns(Zi )‖ ≤ ε
)

> 1 − ε. (49)

∀ ε > 0, 0 < α < ∞, ∃ N ≡ Nα,ε and b ≡ bε,α such that

P
(

inf‖t‖>b
K(θ + n−1/2t) ≥ α

)
≥ 1 − ε, ∀ n > N . (50)

Let

¯̇ν := n−1
n∑

i=1

ν̇(Zi ), ν̇c(Zi ) := ν̇(Zi ) − ¯̇ν,
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Γ̂θ(u) := E
(
ν̇c(Z)ν̇c(Z)′�Z (L−1

Z (u))
)
, Ω̂θ :=

1∫

0

Γ̂θ(u)Γ̂θ(u)′dΨ (u),

Û(u) := n−1/2
n∑

i=1

ν̇c(Zi )
{
I (LZi (ζi ) ≤ u) − u

}
, 0 ≤ u ≤ 1,

T̂n :=
1∫

0

Γ̂θ(u)Û(u)dΨ (u), K̂(t) :=
1∫

0

∥∥Û(u)
∥∥2
dΨ (u) + 2T̃ ′

nt + t ′Ω̃θt.

We need to have an alternate representation of the covariance matrix of T̂n . Let,
for z ∈ R

p, 0 ≤ v ≤ 1,

κz(v) :=
v∫

0

�z(L
−1
z (u))dΨ (u), kcz (v) = kz(v) −

1∫

0

kz(u)du.

By (46), κz is a uniformly continuous increasing and bounded function on [0, 1], for
all z ∈ R

p. Let U denote a uniform [0, 1] r.v. Conditionally, given Z , LZ (ζ) ∼D U .
Hence, E

(
kz

(
LZ (ζ)

)∣∣Z
) = Ekz(U ) so that E

(
kcz (LZ (ζ))

∣∣Z
) = Ekcz (U ) = 0, a.s.

Let μc(z) := ν̇c(z)ν̇c(z)′. Argue as for (44) and use the facts that
∑n

i=1 ν̇c(Zi ) ≡ 0

and
1∫

0
udkz(u) = kz(1) − ∫ 1

0 kz(u)du to obtain that

T̂n = −n−1/2
n∑

i=1

∫
μc(z)ν̇c(Zi )κ

c
z

(
LZi (ζi )

)
dQ(z).

Define

Ĉz(s, t) := E
[
κc
s(LZ (ζ))κc

t (LZ (ζ))
∣∣Z = z

] = E
[
κc
s(U )κc

t (U )
]
,

K̂ (s, t) := E
(
ν̇c(Z)ν̇c(Z)′ĈZ (s, t)

)
.

Then argue as in (45) to obtain

Σ̂θ := ET̂n T̂
′
n =

∫ ∫
μc(z)K̂ (z, v)μc(v)′dQ(z)dQ(v).

We are now ready to state the following asymptotic normality result for θ̂R .

Lemma 3 Suppose the nonlinear Berkson measurement error model (12) and the
assumptions (13), (14), (46)–(49) hold. Then the following holds.
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sup
‖t‖≤b

∣∣K(θ + n−1/2t) − K̂ (t)
∣∣ = op(1). (51)

In addition, if (50) holds and Ω̂θ is positive definite then n1/2(θ̂R − θ) →d N(
0, Ω̂−1

θ Σ̂θΩ̂
−1
θ

)
.

The proof of this lemma is similar to that of Theorem 1.2 of Koul [15], hence no
details are given here. Assumption (50) is used to show that n1/2‖θ̂R − θ‖ = Op(1).

Remark 4 As inRemark1, letmθ(x) = θ′h(x). Thenνϑ(z) = ϑ′β(z),whereβ(z) :=
E

(
h(X)|Z = z

)
. Thus ν̇ϑ(z) ≡ β(z) and the assumptions (47)–(49) are vacuously

satisfied. The assumption (50) is shown to be satisfied by an argument similar to the
one used in the proof of Lemma 5.4.4 of Koul [16, pp. 183–185]. This proof uses the
monotonicity in t for every unit vector e ∈ R

p of simple linear rank statistics based
on the ranks of Yi − te′h(Xi ), 1 ≤ i ≤ n, see Hájek [10, Theorem II.7E].

For the asymptotic normality of θ̂R here, one only needs (46) and Ψ to be a
d.f. such that Ω̂ is positive definite. Note that here μc(z) = βc(z) := β(z) − β̄, β̄ :=
n−1 ∑n

i=1 β(Zi ) and

K̂ (s, t) := E
(
βc(Z)βc(Z)′ĈZ (s, t)

)
,

Σ̂ =
∫ ∫

βc(z)βc(z)′ K̂ (z, v)βc(v)βc(v)′dQ(z)dQ(v),

Γ̂ (u) := E
(
βc(Z)βc(Z)′�Z (L−1

Z (u))
)
, Ω̂ =

1∫

0

Γ̂ (u)Γ̂ (u)′dΨ (u),

do not depend on θ. Clearly, these assumptions are far less stringent than those needed
for the asymptotic normality of θ̂ corresponding to G(x) ≡ x .

5 M.D.Estimators with Validation Data

In this section we develop the m.d. estimators of Sect. 4 when the d.f. H of the
Berkson ME η is unknown but a validation data set is available. Not knowing H
renders νθ to be an unknown function.Validation data is used to estimate this function,
which in turn is used to define m.d. estimators.

Let N be a known positive integer. A set of r.v.’s {(X̃k, Z̃k), k = 1, ..., N } is said
to be validation data if these r.v.’s are independent of the original sample and both
Z̃k and X̃k are observable and obey the model (12). Besides having the primary
data set {(Yi , Zi ), 1 ≤ i ≤ n}, we assume that a validation data set of the covariate
{(X̃k, Z̃k), 1 ≤ k ≤ N } is available. Then η̃k := X̃k − Z̃k, 1 ≤ k ≤ N are observable
and their empirical d.f. HN (s) := N−1 ∑N

k=1 I (η̃k ≤ s), s ∈ R, provides an estimate
of H .

Under (13)–(15), we have the following estimates of νθ and ν̇θ.
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ν̂ϑ(z) := N−1
N∑

k=1

mϑ(z + η̃k), ˆ̇νϑ(z) := N−1
N∑

k=1

ṁϑ(z + η̃k).

An analog of θ̂ in the current set up is defined as follows. Let

Û (x,ϑ) := n−1/2
n∑

i=1

ˆ̇νϑ(Zi ){I (Yi − ν̂ϑ(Zi ) ≤ x) − I (−Yi + ν̂ϑ(Zi ) < x)},

D1(ϑ) :=
∫

‖Û (x,ϑ)‖2dG(x), θ̂1 = argminϑD1(ϑ).

To define the analog of θ̂R here, let S̃iϑ be the rank of Yi − ν̂ϑ(Zi ) among Y j −
ν̂ϑ(Z j ), 1 ≤ j ≤ n and define

Ũn(u,ϑ) := 1√
n

n∑

i=1

ˆ̇νϑ(Zi ){I (S̃iϑ ≤ nu) − u}, 0 ≤ u ≤ 1,

K̃(ϑ) :=
1∫

0

‖Ũn(u,ϑ)‖2dΨ (u), θ̃R := argminϑK̃(ϑ).

The asymptotic distributions of θ̂1 and θ̃R as n ∧ N → ∞ are described in the
next two subsections. In their derivations, the lim(n/N ) of the ratio n/N plays an
important role. Some of the proofs are similar to those of θ̂ and θ̂R . Some key steps
of the proof can be found in the Appendix.

5.1 Asymptotic Distribution of̂θ1

In this subsection we derive the asymptotic distribution of θ̂1. In addition to (13)–(15)
and (17)–(25), the following assumptions are needed, whereΔϑ(z) := ν̂ϑ(z) − νϑ(z)
and θ is as in (12).

E
∥∥E

{
ṁθ(X)[νθ(Z) − mθ(X)]|Z}∥∥2

< ∞, (52)

E
∥∥E

{
ṁθ(X)[νθ(Z) − mθ(X)]|η}∥∥2

< ∞.

The matrix (53)

Σ1 := Cov
(
E

[ ∫ ∫
μ(z)ν̇θ(Z)�z(x)�Z (x)[mθ(Z + η) − νθ(Z)]dxdQ(z)

∣∣η
])

is positive definite.

λ := lim(n/N ) ≥ 0. (54)
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max
1≤i≤n

∣∣∣N−1
N∑

k=1

mθ(Zi + η̃k) − νθ(Zi )

∣∣∣ = op(1). (55)

E
{
‖ν̇θ(Z)‖2(mθ(X) − νθ(Z)

)2}
< ∞. (56)

∞∫

0

E
(
‖ ˆ̇νθ(Z)‖2(1 − LZ (x ± Δθ(Z))

))
dG(x) < ∞. (57)

∞∫

0

E
(
‖ ˆ̇νnt (Z) − ˆ̇νθ(Z)‖2LZ (x ± Δθ(Z)) (58)

×(1 − LZ (x ± Δθ(Z))
)
dG(x) → 0, ∀ t ∈ R

q .

We also assume that (18)–(24) and (25) hold with ν̇nt , ν̇θ and D replaced by ˆ̇νnt , ˆ̇ν
and D1, respectively. We denote these assumptions as (18)∗–(25)∗.

Here we discuss some sufficient conditions for the above assumptions. By
the C-S inequality, both the expressions of (52) are bounded from the above by
2E

∥∥ṁθ(X)
∥∥2

E
∣∣mθ(X)

∣∣2. Thus (52) is implied by (33)(a) and having E
∣∣mθ(X)

∣∣2 <

∞.
Next, under (33)(a), (57) is trivially satisfied when G(x) ≡ δ0(x). In the case

dG(x) = g(x)dx with g∞ := supy∈R g(y) < ∞, (57) is implied by (33)(a) and the
following conditions.

E
(∥∥ṁθ(X)‖2|mθ(X)|) < ∞. (59)

To see this, note that E
(|Δθ(Z)|∣∣Z) ≤ 2E

(|mθ(X)|∣∣Z)
, and ‖ ˆ̇νθ(Z)‖2 ≤ N−1

∑N
k=1 ‖ṁθ(Z + ηk)‖2 so that E‖ ˆ̇νθ(Z)‖2 ≤ E‖ṁθ(X)‖2. Now argue as in Remark

4.2 and use these facts to obtain that the left hand side of (57) is bounded from the
above by

g∞E
(
‖ ˆ̇νθ(Z)‖2E

(
|ζ| + |Δθ(Z)|∣∣Z

))

≤ g∞
[
CE

∥∥ṁθ(X)‖2 + 2E
(∥∥ṁθ(X)‖2|mθ(X)|)

]
< ∞,

by (33)(a) and (59). Similarly, the left hand side of (58) is bounded from the above
by a constant multiple of

E
∥∥ ˆ̇νnt (Z) − ˆ̇νθ(Z)

∥∥2 ≤ E
∥∥ṁθ+n−1/2t (X) − ṁθ(X)

∥∥2 → 0, by (34)(b).
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We now turn to proving the asymptotic normality of θ̂1. Similar to Sect. 4.1, we
first prove that E(D1(θ)) < ∞. Recall Δϑ(z) := ν̂ϑ(z) − νϑ(z) and rewrite

Û (x, θ) = 1√
n

n∑

i=1

ˆ̇νθ(Zi )
{
I (ζi ≤ x + Δθ(Zi )) − I (−ζi < x − Δθ(Zi ))

}
.

By the independence of the primary and validation data and a conditioning argument,
for every x > 0,

E‖Û (x, θ)‖2 = E
(
‖ ˆ̇νθ(Z)‖{I (ζ ≤ x + Δθ(Z)) − I (−ζ < x − Δθ(Z))}

)2

= E
(
‖ ˆ̇νθ(Z)‖2{1 − LZ (x + Δθ(Z)) + 1 − LZ (x − Δθ(Z))}

)
.

Hence by (56), ED1(θ) < ∞.
Next we sketch the proof of the AULQ property of D1(ϑ). Define

W̃ (x, 0) := n−1/2
n∑

i=1

ˆ̇ν(Zi ){I (ζi ≤ x + Δθ(Zi )) − LZi (x)},

T̃n :=
∫

Γθ(x){W̃ (x, 0) + W̃ (−x, 0)}dG(x).

In the Appendix, we show that T̃n is approximated by a U-statistic based on the two
independent samples. Theorem 6.1.4 in Lehmann [17] yields

(a) T̃n → N (0,Σθ + 4λΣ1), λ < ∞, (60)

(b)
√
N/n T̃n → N (0, 4Σ1), λ = ∞.

Next, the assumptions (54)–(58) and (18)∗–(24)∗ ensure that the analog of Lemma
5 holds here also. Hence (41) with Tn and D(ϑ) replaced by T̃n and D1(ϑ), respec-
tively, holds. Moreover, analog of (42) can be shown to hold in a similar manner
as in Sect. 4 under (25)∗. Consequently, the asymptotic distribution of θ̂1 based on
data sets {(Yi , Zi ), 1 ≤ i ≤ n} and {(X̃k, Z̃k), 1 ≤ k ≤ N } described in the following
lemma.

Lemma 4 Suppose model (12) with H unknown holds and an independent valida-
tion data {(X̃k, Z̃k), 1 ≤ k ≤ N } obeying (12) is available. In addition assume that
(17)–(25) and (52)–(57) hold. Then

√
n(θ̂1 − θ) → N (0, 4−1Ω−1

θ (Σθ + 4λΣ1)Ω
−1
θ ), for 0 ≤ λ < ∞;

√
N (θ̂1 − θ) → N (0, 16−1Ω−1

θ Σ1Ω
−1
θ ), for λ = ∞.
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The above result shows that the estimation step of regression function νθ(z) due to
the unknown distribution H introduces more variation in the asymptotic distribution
of the m.d. estimators. Moreover, the limiting ratio λ of the sample sizes plays a
role in the additional variation. When λ = lim n/N = 0, the additional covariance
term vanishes, therefore it reduces to the case when the ME distribution is known.
In other words, when the validation sample size N is sufficiently large, compared
to the primary sample size n, both θ̂ and θ̂1 achieve the same asymptotic efficiency.
On the other hand, when λ = ∞, i.e., when the validation data size is very limited
compared to the primary data size, the estimation consistency rate is restricted to√
N instead of

√
n.

5.2 Asymptotic Distribution of θ̃R

In this subsection we present the asymptotic distribution of the class of estimators θ̃R .
First, we provide the additional assumptions. Let ˆ̇νnt (z) = N−1 ∑N

k=1 ν̇θ+n−1/2t (z +
η̃k). Consider the following assumptions.

n−1
n∑

i=1

E‖ ˆ̇νnt (Zi ) − ˆ̇ν(Zi )‖2 → 0, ∀ t ∈ U(b). (61)

n−1/2
n∑

i=1

‖ ˆ̇νnt (Zi ) − ˆ̇ν(Zi )‖ = Op(1), ∀ t ∈ U(b). (62)

∀ ε > 0, ∃ δ > 0 and nε < ∞ such that for each s ∈ U(b), ∀ n > nε,

P
(

sup
t∈U(b);‖t−s‖≤δ

n−1/2
n∑

i=1

‖ ˆ̇νnt (Zi ) − ˆ̇νns(Zi )‖ ≤ ε
)

> 1 − ε. (63)

For every ε > 0, 0 < α < ∞, there exist an Nε and b ≡ bε,α such that

P
(

inf‖t‖>b
K̃(θ + n−1/2t) ≥ α

)
≥ 1 − ε, ∀ n > Nε. (64)

The matrix (65)

Σ2 := Cov
(
E

[ ∫ ∫
μc(z){ν̇θ(Z) − E(ν̇θ(Z))}�z(x)�Z (x)

×{mθ(Z + η) − νθ(Z)}dxdQ(z)
∣∣η

])

is positive definite.

Next, define ˜̇ν := n−1 ∑n
i=1

ˆ̇ν(Zi ), ˜̇νc(Zi ) := ˆ̇ν(Zi ) − ˜̇ν,
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T̃n,R :=
1∫

0

Γ̂θ(u)ŨR(u)dΨ (u),

K̃R(t) :=
1∫

0

‖ŨR(u)‖2dΨ (u) + 2T̃ ′
n,Rt + t ′Ω̂θt,

where Γ̂θ and Ω̂θ are defined in Sect. 4.2. Similar to Lemma 4. we have the following
lemma.

Lemma 5 Suppose model (12) with H unknown holds and an independent valida-
tion data {(X̃k, Z̃k), 1 ≤ k ≤ N } obeying (12) is available. In addition assume that
(54), (55), (61)–(65) hold. Then, for 0 ≤ λ < ∞,

(a) T̃n,R → N (0, Σ̂θ + λΣ2), (66)

(b) n1/2(θ̃R − θ) → N (0, Ω̂−1
θ (Σ̂θ + λΣ2)Ω̂

−1
θ ).

Moreover, N 1/2(θ̃R − θ) → N (0, Ω̂−1
θ Σ2Ω̂

−1
θ ), for λ = ∞.

See Appendix for some details of the proof.

6 Data Analysis

Example.We shall now compute the above estimators based on some real data. The
data pertains to the study of the relationship between the enzyme reaction speed (Y )
and the basal density (X ) of the UDP-galactose, see Bates and Watts [1], p. 70. A
suitable model commonly used to analyze this data is the Michaelis-Menten model

mθ(x) = αx

β + x
, θ := (α,β)′, α > 0, β > 0, x > 0.

In the primary data, consisting of n = 30 observations, the basal density vari-
able was measured using a simple chemical method. It was believed that this
method caused measurement error in the observation. Hence, in the validation
data, consisting of N = 10 observations, an expensive procedure with a preci-
sion machine tool was used to produce precise observations of the basal density.
Let Z denote the basal-density obtained by the chemical method parts per mil-
lions (ppm), Z̃ denote the basal-density obtained by the exact measure (ppm) and
Y , the reaction speed (counts/min2). The primary and validation data are as fol-
lows. Table2 gives the m.d. estimators θ̂1 with G(x) = x and θ̃R with Ψ (u) = u,
based on the above primary and validation data, and the naive least squares esti-
mators θ̂nLS obtained by ignoring measurement errors. The MSEs are calculated

by using the following formulas, where η̃k = X̃k − Z̃k , MSE(θ̂1) = 1
n

∑n
i=1

[
Yi −
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Table 2 M.D. and naive estimators and their MSE

Estimators θ̂1 θ̃R θ̂nLS

α 217.30 217.53 212.7

γ 0.069 0.063 0.064

MSE 48.96 57.85 49.87

Fig. 1 Fitted regressions
based on the three estimators

0.0 0.2 0.4 0.6 0.8 1.0

50
10

0
15

0
20

0

mθ̂1(x)
mθ~R(x)
mθ̂naive(x)

Y

Z

1
N

∑N
k=1 m θ̂1

(Zi + η̃k)
]2

, MSE(θ̃R) = 1
n

∑n
i=1

[
Yi − 1

N

∑N
k=1 m θ̃R

(Zi + η̃k)
]2

and

MSE(θ̂nLS) = 1
n

∑n
i=1

[
Yi − m θ̂nLS

(Zi )
]2

. Figure1 presents the fitted regression

curves using the three estimators.

Z 0.02 0.02 0.04 0.04 0.06 0.06 0.08 0.08 0.11 0.11 0.14 0.14 0.18 0.18 0.22
Y 76 47 82 95 97 107 118 127 123 139 146 149 157 151 159
Z 0.42 0.42 0.56 0.56 0.66 0.66 0.86 0.86 1.10 1.10 0.22 0.28 0.28 0.34 0.34
Y 185 189 191 192 193 196 198 202 207 2.04 152 173 180 179 182

Z̃ 0.04 0.07 0.20 0.30 0.38 0.48 0.60 0.76 0.95 1.110
X̃ 0.035 0.076 0.207 0.295 0.388 0.486 0.601 0.754 0.952 1.112

Appendix

This section contains some details of the proofs of the various results.
Proof of (41). Let M̃(t) = D̃(θ + n−1/2t), where D̃(ϑ) is as in (16). Define
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νnt (z) := νθ+n−1/2t (z), ξi t := νnt (Zi ) − νθ(Zi ),

Vs(x, t) := 1√
n

n∑

i=1

ν̇ns(Zi )I (Yi − νnt (Zi ) ≤ x)

= 1√
n

n∑

i=1

ν̇ns(Zi )I
(
ζi ≤ x + ξi t

)
,

V (x, t) := 1√
n

n∑

i=1

ν̇(Zi )I
(
ζi ≤ x + ξi t

)
,

J (x, t) := 1√
n

n∑

i=1

ν̇(Zi )LZi (x + ξi t ),

Js(x, t) := 1√
n

n∑

i=1

ν̇ns(Zi )LZi (x + ξi t ), Ws(x, t) := Vs(x, t) − Js(x, t),

W (x, t) := V (x, t) − J (x, t), s, t ∈ R
q , x ∈ R.

Note that EVs(x, t) ≡ E Js(x, t), EWs(x, t) ≡ 0. By (15), ∀ s ∈ R
q , x ∈ R,

n−1/2
n∑

i=1

ν̇ns(Zi )
{
LZi (x) + LZi (−x)

} = n−1/2
n∑

i=1

ν̇ns(Zi ).

Define

γnt (x) := n−1/2
n∑

i=1

ν̇nt (Zi )ξi t�Zi (x), gn(x) := n−1
n∑

i=1

ν̇(Zi )ν̇(Zi )
′�Zi (x).

Because of (15), γnt (x) ≡ γnt (−x), gn(x) ≡ gn(−x) and we rewrite

M̃(t) =
∞∫

0

∥∥Vt (x, t) + Vt (−x, t) − n−1/2
n∑

i=1

ν̇nt (Zi )
∥∥2
dG(x)

=
∞∫

0

∥∥∥
{
Wt (x, t) − Wt (x, 0)

} + {
Wt (x, 0) − W (x, 0)

}

+{
Wt (−x, t) − Wt (−x, 0)

} + {
Wt (−x, 0) − W (−x, 0)

}

+ {
Jt (x, t) − Jt (x, 0) − γnt (x)

}

+ {
Jt (−x, t) − Jt (−x, 0) − γnt (−x)

} + 2
{
γnt (x) − gn(x)t

}

+ {
W (x, 0) + W (−x, 0) + 2gn(x)t

}∥∥∥
2
dG(x).
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Expand the quadratic of the six summands in the integrand to obtain

M̃(t) = M1(t) + M2(t) + · · · + M8(t) + 28 cross product terms,

where

M1(t) :=
∞∫

0

∥∥Wt (x, t) − Wt (x, 0)
∥∥2
dG(x),

M2(t) :=
∞∫

0

∥∥Wt (x, 0) − W (x, 0)
∥∥2
dG(x),

M3(t) :=
∞∫

0

∥∥Wt (−x, t) − Wt (−x, 0)
∥∥2
dG(x),

M4(t) :=
∞∫

0

∥∥Wt (−x, 0) − W (−x, 0)
∥∥2
dG(x),

M5(t) :=
∞∫

0

∥∥Jt (x, t) − Jt (x, 0) − γnt (x)
∥∥2
dG(x),

M6(t) :=
∞∫

0

∥∥Jt (−x, t) − Jt (−x, 0) − γnt (−x)
∥∥2
dG(x),

M7(t) := 4

∞∫

0

∥∥γnt (x) − gn(x)t
∥∥2
dG(x),

M8(t) :=
∞∫

0

∥∥W (x, 0) + W (−x, 0) + 2gn(x)t
∥∥2
dG(x).

Recall U(b) := {t ∈ R
q; ‖t‖ ≤ b}, b > 0. We shall prove the following lemma

shortly.

Lemma 6 Under the assumptions (13) to (18), ∀ 0 < b < ∞,

sup
t∈U(b)

Mj (t) →p 0, j = 1, 2, . . . , 7, (67)

sup
t∈U(b)

M8(t) = Op(1). (68)
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Unless mentioned otherwise, all the supremum below are taken over t ∈ U(b).
Lemma 6 together with the C-S inequality implies that the supremum over t of all the
cross product terms tends to zero, in probability. For example, by the C-S inequality,

sup
t

∣∣∣
∞∫

0

{
Wt (x, t) − Wt (x, 0)

}{
Jt (x, t) − Jt (x, 0) − γnt (x)

}
dG(x)

∣∣∣
2

≤ sup
t

M1(t) sup
t

M5(t) = op(1),

by (67) used with j = 1, 5. Similarly, by (67) with j = 1 and (68),

sup
t

∣∣∣
∞∫

0

{
Wt (x, t) − Wt (x, 0)

}{
W (x, 0) + W (−x, 0) + 2gn(x)t

}
dG(x)

∣∣∣
2

≤ sup
t

M1(t) sup
t

M8(t) = op(1) × Op(1) = op(1).

Consequently, we obtain

sup
t

∣∣M̃(t) − M8(t)
∣∣ = op(1). (69)

Expand the quadratic in M8 to write

M8(t) :=
∞∫

0

∥∥W (x, 0) + W (−x, 0)
∥∥2
dG(x) + (70)

4t ′
∞∫

0

gn(x)
{
W (x, 0) + W (−x, 0)

}
dG(x) + 4

∞∫

0

(
t ′gn(x)

)2
dG(x)

= M̃(0) + 4t ′T̃n + 4

∞∫

0

(
t ′gn(x)

)2
dG(x),

where T̃n :=
∞∫

0
gn(x)

{
W (x, 0) + W (−x, 0)

}
dG(x). Let

T ∗
n :=

∞∫

0

Γθ(x)
{
W (x, 0) + W (−x, 0)

}
dG(x).

By the LLNs and an Extended Dominated Convergence Theorem
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sup
t

∥∥t ′(gn(x) − Γθ(x))
∥∥ →p 0, ∀ x ∈ R;

sup
t

∞∫

0

∥∥t ′(gn(x) − Γθ(x))
∥∥2
dG(x) →p 0.

Moreover, recall M̃(0) = D̃(θ), so that by (39), M̃(0) = Op(1). These facts together
with the C-S inequality imply that

∥∥T̃n − T ∗
n

∥∥2 =
∥∥∥

∞∫

0

{
gn(x) − Γθ(x)

}{
W (x, 0) + W (−x, 0)

}
dG(x)

∥∥∥
2

≤ M̃(0)

∞∫

0

∥∥gn(x) − Γθ(x)
∥∥2
dG(x) →p 0.

These facts combined with (22), (69), (70) yield that

sup
t

∣∣∣M̃(t) − M̃(0) − 4T ∗
n t − 4t ′

∞∫

0

Γθ(x)Γθ(x)dG(x) t
∣∣∣ = op(1).

Now recall that D(ϑ) = 2D̃(ϑ), M̃(t) = D̃(θ + n−1/2t), Ωθ = 2
∞∫

0
ΓθΓθdG and

Tn = 2T ∗
n , see (40). Hence the above expansion is equivalent to

sup
t

∣∣D̃(θ + n−1/2t) − D̃(θ) − 2Tnt − 2t ′Ωθt
∣∣ = op(1),

sup
t

∣∣D(θ + n−1/2t) − D(θ) − 4Tnt − 4t ′Ωθt
∣∣ = op(1),

which is precisely the claim (41). �
Proof of Lemma 6. Let δi t := ξi t − n−1/2t ′ν̇(Zi ). By (13) and (14),

max
1≤i≤n, t

n1/2
∣∣δi t

∣∣ = op(1), max
1≤i≤n

n−1/2‖ν̇(Zi )‖ = op(1). (71)

Hence,

max
1≤i≤n, t

∣∣ξi t
∣∣ ≤ max

1≤i≤n, ‖t‖≤b

∣∣δi t
∣∣ + max

1≤i≤n, t
n−1/2

∥∥t‖‖ν̇(Zi )‖ (72)

≤ op(n
−1/2) + b max

1≤i≤n
n−1/2‖ν̇(Zi )‖ = op(1),

n∑

i=1

ξ2i t =
n∑

i=1

(νnt (Zi ) − ν(Zi ))
2 =

n∑

i=1

δ2i t + n−1
n∑

i=1

(t ′ν̇(Zi ))
2,
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sup
t

n∑

i=1

ξ2i t ≤ n max
1≤i≤n, ‖t‖≤b

∣∣δi t
∣∣2 + b2n−1

n∑

i=1

‖ν̇(Zi )‖2 = Op(1), (73)

by (14). Moreover, by (14) and the Law of Large Numbers,

sup
t

∥∥n−1/2
n∑

i=1

ν̇θ(Zi )ξi t
∥∥ (74)

≤ max
1≤i≤n, ‖t‖≤b

n1/2|δi t |n−1
n∑

i=1

‖ν̇θ(Zi )
∥∥ + bn−1

∥∥
n∑

i=1

ν̇θ(Zi )ν̇θ(Zi )
′∥∥

= op(1) + Op(1) = Op(1).

These facts will be use in the sequel.
Consider the term M7. Write

γnt (x) − gn(x)t

= n−1/2
n∑

i=1

ν̇nt (Zi )ξi t�Zi (x) − n−1
n∑

i=1

ν̇(Zi )ν̇(Zi )
′�Zi (x)t

= n−1/2
n∑

i=1

[
ν̇nt (Zi ) − ν̇(Zi )

]
ξi t�Zi (x) + n−1/2

n∑

i=1

ν̇(Zi )δi t�Zi (x)

= n−1/2
n∑

i=1

[
ν̇nt (Zi ) − ν̇(Zi )

]
δi t�Zi (x)

+n−1
n∑

i=1

[
ν̇nt (Zi ) − ν̇(Zi )

]
ν̇(Zi )

′�Zi (x)t + n−1/2
n∑

i=1

ν̇(Zi )δi t�Zi (x).

Hence

M7 =
∞∫

0

∥∥γnt (x) − gn(x)t
∥∥2
dG(x) ≤ 4{M71(t) + M72(t) + M73(t)},

where

M71(t) = n−1

∞∫

0

∥∥∥
n∑

i=1

[
ν̇nt (Zi ) − ν̇(Zi )

]
δi t�Zi (x)

∥∥∥
2
dG(x),

M72(t) = n−2

∞∫

0

∥∥∥
n∑

i=1

[
ν̇nt (Zi ) − ν̇(Zi )

]
ν̇(Zi )

′�Zi (x)t
∥∥∥
2
dG(x),



Weighted Empirical Minimum Distance Estimators in Berkson … 61

M73(t) = n−1

∞∫

0

∥∥∥
n∑

i=1

ν̇(Zi )δi t�Zi (x)
∥∥∥
2
dG(x).

But, by (18) and (71),

sup
t

M71(t)

≤ n sup
t,1≤i≤n

δ2i t sup
t,1≤i≤n

∥∥ν̇nt (Zi ) − ν̇(Zi )
∥∥2

∞∫

0

n−1
n∑

i=1

�2Zi
(x)dG(x) = op(1).

Similarly, by the C-S inequality,

sup
t

M72(t) ≤ b2 sup
t,1≤i≤n

∥∥ν̇nt (Zi ) − ν̇(Zi )
∥∥2
n−1

∞∫

0

n∑

i=1

‖ν̇(Zi )‖2�2Zi
(x)dG(x)

= op(1)Op(1) = op(1),

by (18) and (19). Again, by (19) and (71),

sup
t

M73(t) ≤ sup
t,1≤i≤n

n|δi t |2n−1

∞∫

0

n∑

i=1

‖ν̇(Zi )‖2�2Zi
(x)dG(x) = op(1).

These facts prove (67) for j = 7.
Next consider M5. Let Dit (x) := LZi (x + ξi t ) − LZi (x) − ξi t�Zi (x). Then

M5(t) := 1

n

∞∫

0

∥∥∥
n∑

i=1

ν̇nt (Zi )Dit (x)
∥∥∥
2
dG(x) (75)

≤ 1

n

n∑

i=1

∥∥∥ν̇nt (Zi )

∥∥∥
2

∞∫

0

n∑

i=1

D2
i t (x)dG(x).

By (14) and (18),

sup
t
n−1

n∑

i=1

∥∥∥ν̇nt (Zi )

∥∥∥
2 ≤ sup

t
n−1

n∑

i=1

∥∥∥ν̇nt (Zi ) − ν̇(Zi )

∥∥∥
2

+ sup
t
n−1

n∑

i=1

∥∥∥ν̇(Zi )

∥∥∥
2 = op(1).
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By the C-S inequality, Fubini Theorem, (20) and (73),

∞∫

0

n∑

i=1

D2
i t (x)dG(x)

≤
∞∫

0

n∑

i=1

( |ξi t |∫

−|ξi t |

(
�Zi (x + u) − �Zi (x)

)
du

)2
dG(x)

≤
∞∫

0

n∑

i=1

|ξi t |
|ξi t |∫

−|ξi t |

(
�Zi (x + u) − �Zi (x)

)2
dudG(x)

≤ max
1≤i≤n,t

|ξi t |−1

|ξi t |∫

−|ξi t |

∞∫

0

(
�Zi (x + u) − �Zi (x)

)2
dG(x)du

n∑

i=1

|ξi t |2

= op(1).

Upon combining these factswith (75)we obtain supt M5(t) = op(1), thereby proving
(67) for j = 5. The proof for j = 6 is exactly similar.

Now consider M1. Let ξt (Z) := νnt (Z) − ν(Z). Then

EM1(t) :≤
∞∫

−∞
E

∥∥Wt (x, t) − Wt (x, 0)
∥∥2
dG(x)

≤ n−1
n∑

i=1

E
(
‖ν̇nt (Zi )‖2

∞∫

−∞

∣∣∣LZi (x + ξi t ) − LZi (x)
∣∣∣dG(x)

)

≤ n−1
n∑

i=1

E
(
‖ν̇nt (Zi )‖2

∞∫

−∞

|ξi t |∫

−|ξi t |
�Zi (x + u)dudG(x)

= E
( |ξt (Z)|∫

−|ξt (Z)|
‖ν̇nt (Z)‖2

∞∫

−∞
�Z (x + u)dG(x) du

)
→ 0,

by (21). Thus

M1(t) = op(1), ∀ t ∈ U(b). (76)

To prove that this holds uniformly in t ∈ U(b), because of the compactness of the
ball U(b), it suffices to show that for every ε > 0 there is a δ > 0 and an Nε such that
for every s ∈ U(b),
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P
(

sup
‖t−s‖<δ

‖M1(t) − M1(s)| ≥ ε
) ≤ ε, ∀ n > Nε. (77)

Let ν̇nt j (z) denote the j th coordinate of ν̇nt (z), j = 1, . . . , q and let

αi (x, t) := I (ζi ≤ x + ξi t ) − I (ζi ≤ x) − LZi (x + ξi t ) + LZi (x).

Then

M1(t) =
∞∫

0

∥∥Wt (x, t) − Wt (x, 0)
∥∥2
dG(x)

=
q∑

j=1

∞∫

0

(
n−1/2

n∑

i=1

ν̇nt j (Zi )αi (x, t)
)2
dG(x) =

q∑

j=1

M1 j (t), say.

Thus it suffices to prove (77) with M1 replaced by M1 j for each j = 1, . . . , q.
Any real number a can be written as a = a+ − a−, where a+ = max(0, a), a− =

max(0,−a). Note that a± ≥ 0. Fix a j = 1, . . . , q, write ν̇nt j (Zi ) = ν̇+
nt j (Zi ) −

ν̇−
nt j (Zi ) and define

W±
j (x, t) := n−1/2

n∑

i=1

ν̇±
nt j (Zi )αi (x, t),

D±
j (x, s, t) := W±

j (x, t) − W±
j (x, s), R±

j (s, t) :=
∞∫

0

(
D±

j (x, s, t)
)2
dG(x).

Then

∣∣M1 j (t) − M1 j (s)
∣∣ (78)

=
∣∣∣

∞∫

0

(
W+

j (x, t) − W−
j (x, t)

)2
dG(x)

−
∞∫

0

(
W+

j (x, s) − W−
j (x, s)

)2
dG(x)

∣∣∣

≤
∞∫

0

(
D+

j (x, s, t)
)2
dG(x) +

∞∫

0

(
D−

j (x, s, t)
)2
dG(x)

+ 2
{ ∞∫

0

(
D+

j (x, s, t)
)2
dG(x)

∞∫

0

(
D−

j (x, s, t)
)2
dG(x)

}1/2
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+ 2
[{ ∞∫

0

(
D+

j (x, s, t)
)2
dG(x)

}1/2

+
{ ∞∫

0

(
D−

j (x, s, t)
)2
dG(x)

}1/2]
M1/2

1 j (s)

= R+
j (s, t) + R−

j (s, t) + 2
(
R+

j (s, t)R−
j (s, t)

)1/2

+{
(R+

j (s, t))1/2 + (R−
j (s, t)

)1/2}
M1/2

1 j (s).

Write

D+
j (x, s, t) = n−1/2

n∑

i=1

ν̇+
nt j (Zi )αi (x, t) − n−1/2

n∑

i=1

ν̇+
ns j (Zi )αi (x, s)

= n−1/2
n∑

i=1

[
ν̇+
nt j (Zi ) − ν̇+

ns j (Zi )
]
αi (x, t)

+ n−1/2
n∑

i=1

ν̇+
ns j (Zi )

[
αi (x, t) − αi (x, s)

]

= D+
j1(x, s, t) + D+

j2(x, s, t), say.

Hence

R+
j (s, t) ≤ 2

∞∫

0

(
D+

j1(x, s, t)
)2
dG(x) + 2

∞∫

0

(
D+

j2(x, s, t)
)2
dG(x). (79)

By (23), the first term here satisfies (77). We proceed to verify it for the second term.
Fix an s ∈ Ub, ε > 0 and δ > 0. Let

Δni := n−1/2(δ‖ν̇(Zi )‖ + 2ε), Bn :=
{

sup
t∈Nb,‖t−s‖≤δ

∣∣ξi t − ξis
∣∣ ≤ Δni

}
.

By (18), there exists an Nε such that P(Bn) > 1 − ε, for all n > Nε. On Bn , ξis −
Δni ≤ ξi t ≤ ξis + Δni and, by the nondecreasing property of the indicator function
and d.f., we obtain

I (ζi ≤ x + ξis − Δni ) − I (ζi ≤ x) − LZi (x − ξis + Δni ) + LZi (x)

−LZi (x + ξis + Δni ) + LZi (x + ξis − Δni )

≤ αi (x, t) = I (ζi ≤ x + ξi t ) − I (ζi ≤ x) − LZi (x + ξi t ) + LZi (x)

≤ I (ζi ≤ x + ξis + Δni ) − I (ζi ≤ x) − LZi (x + ξis + Δni ) + LZi (x)

+LZi (x + ξis + Δni ) − LZi (x + ξis − Δni ).
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Let

D±
j2(x, s, a) := n−1/2

n∑

i=1

ν̇±
njs

{
I (ζi ≤ x + ξis + aΔni ) − I (ζi ≤ x)

−LZi (x + ξis + aΔni ) + LZi (x)
}
.

The above inequalities and ν̇+
njs(Zi ) being nonnegative yield that on Bn ,

∞∫

0

(
D+

j2(x, s, t)
)2
dG(x)

≤
∞∫

0

(D+
j2(x, s, 1) − D+

j2(x, s, 0)
)2
dG(x)

+
∞∫

0

(D+
j2(x, s,−1) − D+

j2(x, s, 0)
)2
dG(x)

+
∞∫

0

(
n−1/2

n∑

i=1

ν̇+
njs(Zi )

{
LZi (x + ξis + Δni )

−LZi (x + ξis − Δni )
}
dG(x)

)2
.

Note that max1≤i≤n(|ξis | + Δni ) = op(1). Argue as for (76) to see that the first two
terms in the above bound are op(1), while the last term is bounded from the above
by

∞∫

0

(
n−1/2

n∑

i=1

ν̇+
njs(Zi )

ξis+Δni∫

ξis−Δni

�Zi (x + u)du dG(x)
)2

(80)

≤ 2n−1
n∑

i=1

(ν̇+
njs(Zi ))

2
n∑

i=1

Δni

ξis+Δni∫

ξis−Δni

∞∫

0

[
�2Zi

(x + u) − �2Zi
(x)

]
dG(x) du

+ 4n−1
n∑

i=1

(ν̇+
njs(Zi ))

2
n∑

i=1

Δ2
ni

∞∫

0

�2Zi
(x)dG(x).
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The first summand in the above bound is bounded above by

2 max
1≤i≤n

(2Δni )
−1

ξis+Δni∫

ξis−Δni

∞∫

0

[
�2Zi

(x + u) − �2Zi
(x)

]
dudG(x)

×n−1
n∑

i=1

(ν̇+
njs(Zi ))

2
n∑

i=1

Δ2
ni = op(1),

because the first factor tends to zero in probability by (20) and the second factor
satisfies

n−1
n∑

i=1

(ν̇+
njs(Zi ))

2
n∑

i=1

Δ2
ni ≤ n−1

n∑

i=1

‖ν̇ns‖2
(
2n−1δ2

n∑

i=1

‖ν̇(Zi )‖2 + 4ε2).

The second term in the upper bound of (80) is bounded from the above by

4n−1
n∑

i=1

‖ν̇ns(Zi )‖2 n−1
n∑

i=1

(
δ2‖ν̇(Zi )‖2 + 4ε2)

∞∫

0

�2Zi
(x)dG(x)

→p E‖ν̇(Z)‖2[δ2
∞∫

0

E(‖ν̇(Z)‖2�2Z (x))dG(x) + 4ε2
∞∫

0

E(�2Z (x))dG(x)
]
.

Since the factor multiplying δ2 is positive, the above term can be made smaller
than ε by the choice of δ. Hence (77) is satisfied by the second term in the upper
bound of (79). This then completes the proof of R+

j satisfying (77). The details of
the proof for verifying (77) for R−

j are exactly similar. These facts together with the
upper bound of (78) show that (77) is satisfied by M1 j for each j = 1, . . . , q. This
also completes the proof of supt M1(t) = op(1), thereby proving (67) for j = 1. The
proof for j = 3 is similar.

Next, consider M2. Recall βi (x) := I (ζi ≤ x) − LZi (x). Then

M2(t) := n−1

∞∫

0

∥∥
n∑

i=1

{ν̇nt (Zi ) − ν̇(Zi )}βi (x)
∥∥2
dG(x).

Because E(βi (x)|Zi ) ≡ 0, a.s., we have

EM2(t) =
∞∫

0

E
(∥∥ν̇nt (Z) − ν̇(Z)‖2LZ (x)(1 − LZ (x)

)
dG(x) → 0,
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by (18). Thus

M2(t) = op(1), ∀ t ∈ R
q . (81)

To prove this holds uniformly in t ∈ U(b), we shall verify (77) for M2. Accordingly,
let δ > 0, s ∈ U(b) be fixed. Then forall t ∈ U(b) such that ‖t − s‖ < δ,

∣∣M2(t) − M2(s)
∣∣

≤ n−1

∞∫

0

∥∥
n∑

i=1

{ν̇nt (Zi ) − ν̇ns(Zi )}βi (x)
∥∥2
dG(x)

+ 2
(
n−1

∞∫

0

∥∥
n∑

i=1

{ν̇nt (Zi ) − ν̇ns(Zi )}βi (x)
∥∥2
dG(x)

)1/2
M2(s)

1/2

This bound, (24) and (81) now readily verifies (77) for M2, which also completes
the proof of (67) for j = 2. The proof of (67) for j = 4 is precisely similar. This in
turn completes the proof of Lemma 6. �
Proof of (60). Recall (43). Let D(z, x) := mθ(z + x) − νθ(z). Use the fact Û (x, θ) =
W̃ (x, 0) + W̃ (−x, 0), to rewrite

T̃n = 1

N 2
√
n

n∑

i=1

N∑

j,k=1

∫
μ(z)ṁθ(Zi + η̃ j ){ϕz(ζi ) − 2�z(ζi )D(Zi , η̃k)}dQ(z)

+ higher order terms,

where ϕz(x) is defined as in Sect. 4.1.
For further analysis of T̃n , with the two independent samples {(Zi , ζi ), 1 ≤ i ≤ n}

and {η̃k, 1 ≤ k ≤ N }, define the symmetric kernel function φ and its projections as
follows.

φ(Z1, ζ1, η̃1, η̃2)

:=
∫

μ(z)ṁθ(Z1 + η̃1){ϕz(ζ1) − 2�z(ζ1)D(Z1, η̃2)}dQ(z)

+
∫

μ(z)ṁθ(Z1 + η̃2){ϕz(ζ1) − 2�z(ζ1)D(Z1, η̃1)}dQ(z)

E(φ|Z1, ζ1) = 2
∫

μ(z)ν̇θ(Z1)ϕz(ζ1)dQ(z), Eφ(Z1, ζ1, η̃1, η̃2) = 0,

E(φ|η̃1) = −2
∫

μ(z)E{ν̇(Z)�z(ζ)D(Z , η̃1)|η̃1}dQ(z).

Let T̃n1 denote the first term in the right hand side of T̃n . Then
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T̃n1 = 1

N 2
√
n

n∑

i=1

∑

1≤ j<k≤N

φ(Zi , ζi , η̃ j , η̃k)

+ 1

N 2
√
n

n∑

i=1

N∑

j=1

∫
μ(z)ṁθ(Zi + η̃ j ){ϕz(ζi ) − 2�z(ζi )D(Zi , η̃ j )}dQ(z)

=: T̃n11 + T̃n12.

Note that that T̃n11 is a U-statistic with permutation degree 1 in the primary sample
{(Zi , ζi ), 1 ≤ i ≤ n} and permutation degree 2 in the validation sample {η̃k, 1 ≤ k ≤
N }. Theorem 6.1.4 in Lehmann [17] and (52) yield that, for 0 ≤ λ < ∞,

T̃n11 = √
n × N (N − 1)

2N 2
× 1

(n
1

)(N
2

)
n∑

i=1

∑

1≤ j<k≤N

φ(Zi , ζi , η̃ j , η̃k)

→D
1

2
N

(
0,Var(E(φ|Z1, ζ1)) + 4λVar(E(φ|η̃1))

)
= N (0,Σθ + 4λΣ1).

Moreover, for λ = ∞, Theorem 6.1.4 in Lehmann [17] also yields that
√
N/n T̃n11

→D N (0, 4Σ1).

Similarly, T̃n12 is a U-statistic with permutation degree 1 for both samples. Since
(52) implies that E{‖ṁθ(X)[mθ(X) − νθ(Z)]‖} < ∞, therefore ET̃n12 = O(n−1/2).
Moreover, Theorem 6.1.3 of U-statistics in Lehmann [17] implies that Var(T̃n12) =
O(n−1) and hence T̃n12 = op(1). Hence the claim (60).
Proof of (66). Let Ḋi jk := ṁθ(Zi + η̃k) − ṁθ(Z j + η̃k). Based on the definitions of
Γ̂θ(u) and κz(v), Tn,R can be rewritten as

T̃n,R =
∫ 1∫

0

μc(z)ŨR(u)�z(L
−1
z (u))dΨ (u)dQ(z)

= − n−1/2
n∑

i=1

∫
μc(z) ˆ̇νc(Zi )κz(LZi (ζi − Δ(Zi )))dQ(z)

= − n−1/2

nN

n∑

i=1

n∑

j=1, j �=i

N∑

k=1

∫
μc(z)Ḋi jkκz(LZi (ζi ))dQ(z)

− n−1/2

nN

n∑

i=1

n∑

j=1, j �=i

N∑

k=1

∫
μc(z)Ḋi jk�z(ζi )Δ(Zi )dQ(z)

+ higher order := Tn,R1 + Tn,R2 + higher order.

First,we study the asymptotic distribution of Tn,R1.Define for 1 ≤ i, j ≤ n, i �= j ,
and 1 ≤ k ≤ N ,
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ψ1(Zi , ζi , Z j , ζ j , η̃k) :=
∫

μc(z)Ḋi jk

{
κz(LZi (ζi )) + κz(LZ j (ζ j ))

}
dQ(z).

Then Tn,R1 can be rewritten as

Tn,R1 = −n(n − 1)

2n2
×

√
n

(n
2

)(N
1

)
∑

1≤i< j≤n

N∑

k=1

ψ1(Zi , ζi , Z j , ζ j , η̃k).

By the definition of U-statistics in Lehmann [17], Tn,R1 is a two sample U-statistic
basedon functionψ1 with permutation degree of 2 on the sample {(Zi , ζi ), 1 ≤ i ≤ n}
and permutation degree of 1 on the sample {η̃k, 1 ≤ k ≤ N }. Because condition-
ally, LZi (ζi ), given Zi , is a uniformly distributed r.v., we have E(LZi (ζi )|Zi ) =
1∫

0
κz(u)du := K (z). Then the conditional expectations of ψ can be calculated as

follows.

E(ψ1|Z1, ζ1) =
∫

μc(z)[ν̇θ(Z1) − E(ν̇θ(Z))]κc
z(LZ1(ζ1))dQ(z),

E(ψ1|Z1, Z2, η̃1) =
∫

μc(z)
{
Ḋ121 + Ḋ211

}
K (z)dQ(z) = 0,

E(ψ1|η̃1) = 0.

It can be seen that Cov(E(ψ1|Z1, ζ1)) = Σ̂θ as defined in Sect. 4.2. Then Theorem
6.1.4 in Lehmann [17] yields that

Tn,R1 →D
1

2
N (0, 4Cov(E(ψ|Z1, ζ1))) = N (0, Σ̂θ).

Next, in order to study Tn,R2, define

ψ2(Zi , ζi , Z j , ζ j , η̃k, η̃l)

=
∫

μc(z)[ṁθ(Zi + η̃k) − ṁθ(Z j + ηk)]�z(ζi )D(Zi , η̃l)dQ(z)

+
∫

μc(z)[ṁθ(Z j + η̃k) − ṁθ(Zi + ηk)]�z(ζ j )D(Z j , η̃l)dQ(z)

+
∫

μc(z)[ṁθ(Zi + η̃l) − ṁθ(Z j + ηl)]�z(ζi )D(Zi , η̃k)dQ(z)

+
∫

μc(z)[ṁθ(Z j + η̃l) − ṁθ(Zi + ηl)]�z(ζ j )D(Z j , η̃k)dQ(z).

Then Tn,R2 can be rewritten as a two sample U-statistic with permutation degree 2
for both primary sample and validation sample.
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Tn,R2

= −n(n − 1)

2n2
N (N − 1)

2N 2

√
n

(n
2

)(N
2

)
∑

1≤i< j≤n

∑

1≤k<l≤N

ψ2(Zi , ζi , Z j , ζ j , η̃k, η̃l).

The conditional expectations of ψ2 are calculated as

E(ψ2|η̃1) = 2
∫

μc(z)E
{[ν̇θ(Z) − E(ν̇θ(Z))]�z(ζ)D(Z , η̃1)dQ(z)

E(ψ2|Z1, ζ1) = 0.

Then Theorem 6.1.4 in Lehmann [17] shows that, for 0 ≤ λ < ∞,

Tn,R2 →D
1

4
N (0, 4λCov(E(ψ2|η̃1))) = N (0,λΣ2).

The two terms Tn,R1 and Tn,R2 are asymptotically independent becuase of the inde-
pendence between the primary sample andvalidation sample. In fact, Tn,R1 is basedon
E(ψ1|Z1, ζ1) and Tn,R2 is based on E(ψ2|η̃1). Therefore, (66)(a) holds. An argument
similar to one used for (51) yields that sup‖t‖≤b |K̃(θ + n−1/2t) − K̃R(t)| = op(1),

which in turn yields the claim (66)(b) about θ̃R .
When λ = ∞, by Theorem 6.1.4 in Lehmann [17],

√
N/n Tn,R2 →D N (0,Σ2).

Then
√
N/n T̃n,R = √

N/n T̃n,R1 + √
N/n T̃n,R2 →D N (0,Σ2). Therefore, we

obtain that
√
N (θ̃R − θ) →D N (0, Ω̂−1

θ Σ2Ω̂
−1
θ ) for λ = ∞. �
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Implied Volatility Surface Estimation via
Quantile Regularization

Matúš Maciak, Michal Pešta, and Sebastiano Vitali

Abstract The implied volatility function and the implied volatility surface are both
key tools for analyzing financial and derivative markets and various approaches were
proposed to estimate theses quantities. On the other hand, theoretical, practical, and
also computational pitfalls occur in most of them. An innovative estimation method
based on an idea of a sparse estimation and an atomic pursuit approach is introduced
to overcome some of these limits: the quantile LASSO estimation implies robust-
ness with respect to common market anomalies; the panel data structure allows for
a time dependent modeling; changepoints introduce some additional flexibility in
order to capture some sudden changes in the market and linear constraints ensure
the arbitrage-free validity; last but not least, the interpolated implied volatility con-
cept overcomes the problem of consecutive maturities when observing the implied
volatility over time. Some theoretical backgrounds for the quantile LASSO estima-
tion method are presented, the idea of the interpolated volatilities is introduced, and
the proposed estimation approach is applied to estimate the implied volatility of the
Erste Group Bank AG call options quoted in EUREX Deutschland Market.
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1 Introduction

The empirical econometrics and financial experts rely on many different analytical
tools. For instance, considering option tradings and various derivative markets, the
most fundamental tools are the option pricing strategies and the implied volatility
estimation (see [3]). The most common approaches are usually based on the well-
known Black-Scholes model introduced in [2] even despite the fact that this model
is considered by practitioners to be unrealistic from the theoretical point of view.
Many alternative approaches were, therefore, proposed in order to overcome some
obvious drawbacks of the Black-Scholes model.

Semiparametric or nonparametric option pricing approaches are commonly con-
sidered instead (see, for instance, [1, 6], or [10]) while the arbitrage-free market
validity is guaranteed by using some additional pre-defined shape constraints. On
the other hand, the corresponding implied volatility function (or the implied volatility
surface respectively) is usually obtained either similarly, in terms of some constrained
optimization problem (for instance, [11, 19]), or alternatively, it can be interpolated
directly from the estimated option pricing model (see [6] or [9]).

In this paper we focus on the implied volatility surface estimation (the implied
volatility function which evolves in time over some fixed observational period) and
we advocate and combine various ideas to construct the overall model: sparse esti-
mation with LASSO regularization and changepoints, quantile regression with panel
data structure, or interpolated implied volatility valueswith a constantmaturity. From
the theoretical point of view, the presented method is motivated by the concept of
a regularized changepoint detection proposed in [7] and further elaborated for the
conditional quantile estimation in [4, 5]. A similar idea of the sparse estimation was
also recently presented in [18] to estimate the option price function using a standard
squared loss objective function while the conditional quantile estimation approach
was proposed in [12]. The quantile estimation is, in general, considered to be robust
and it also offers amore complex insight into the underlying data as it can estimate any
arbitrary conditional quantile rather than just the conditional mean. The robustness
property is also useful as the final model is not too sensitive with respect to various
market anomalies (such as bid-ask spreads, discrete ticks in price, non-synchronous
trading, etc.). The panel data structure allows for a time dependent modeling and
changepoints introduce some additional flexibility which is convenient for reflecting
some occasional sudden changes in the market (caused by various financial, eco-
nomical, political, or natural causes). Finally, the natural evolution of the implied
volatility over time, from the issuing date of the option until its maturity, shows some
increase in convexity of the implied volatility smile. In order to avoid this issue and
to focus on the changes that are due to some exogenous effects the implied volatility
of an artificial option with a constant maturity of 30 days is introduced. Such implied
volatility is computed by interpolating the implied volatility of options at consec-
utive maturities. The artificial options with the constant maturity are later used to
estimated the corresponding implied volatility surface.
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The rest of the paper is organized as follows: the quantile LASSO model is
described in Sect. 2 and two important model modifications for estimating a sin-
gle implied volatility function or the overall time-dependent two-dimension surface
are presented in Sect. 3. Both situations are considered: a model without arbitrage-
free restrictions and also a model which complies with the financial theory on the
arbitrage-free market scenarios. Finally, in Sect. 4, the model is applied to estimate
the time dependent profile of the implied volatility function for the Erste Group Bank
AG call options quoted in the EUREXDeutschland market and some inference tools
are used to decide whether there is some significant sudden change over the given
profile or not.

2 Quantile LASSO Model for Implied Volatilities

Let us firstly briefly summarize the idea of using the quantile estimation and the
LASSO type regularization for the regression estimation in general. A standard linear
regressionmodel where, in addition, the unknown vector parameter can change along
the available observations i ∈ {1, . . . , n}, which are somehow naturally ordered, can
be expressed as

Yi = x�
i β i + εi , i = 1, . . . , n, (1)

where β i ∈ R
p is a p-dimensional parameter (the dimension does not depend on

n ∈ N) and xi = (xi1, xi2, . . . , xip)
� is the subject’s specific vector of covariates.

The random error terms {εi }n
i=1 are usually independent, centered, and identically

distributed with some unknown distribution function F . It is also assumed that there
is some form of sparsity in the unknown parameters β i ’s, such that β i = β i−1, for
most of the indexes i ∈ {2, . . . , n}, but some few exceptions—changepoints. The
model in (1) can be seen as a straightforward generalization of a simpler piece-wise
constantmodel from [7] or, from the econometrics perspective, amore common trend
model in [13]. The samemodel as in (1), however, for the dependent time series data,
is also considered in [17].

The model in (1) is assumed to have K ∗ ∈ N changepoints in total, located at
some unknown indexes t∗

1 < · · · < t∗
K ∗ ∈ {1, . . . , n}, such that

β i = β t∗
k
, ∀i = t∗

k , t∗
k + 1, . . . , t∗

k+1 − 1, k = 0, 1, . . . , K ∗, (2)

with t∗
0 = 1, t∗

K ∗+1 = n, and βn = β t∗
K∗+1

. In general, the number of true changepoints
K ∗ ∈ N and their locations t∗

1 , . . . , t∗
K ∗ are all unknown. The true values of β i are

denoted by β∗
i and K ∗ ≡ Card{i ∈ {2, . . . , n}; β∗

i �= β∗
i−1}. The idea of the esti-

mation method is to recover the unknown changepoint locations and to estimate the
underlying model phases—the vector parameters which are associated with the con-
ditional quantiles of interest. For this purpose, the following optimization problem
is formulated
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̂βn = Argmin
βi ∈ R

p

i = 1, …, n

n
∑

i=1

ρτ (Yi − x�
i β i ) + nλn

n
∑

i=2

‖β i − β i−1‖2, (3)

where, for simplicity, ̂βn = (̂β
�
1 , . . . ,̂β

�
n )� ∈ R

np, ρτ (u) = u(τ − I{u<0}), for τ ∈
(0, 1), is the standard check function used for the quantile regression, ‖ · ‖2 stands
for the classical L2 norm, and λn > 0 is the tuning parameter which controls for
the overall number of changepoints (the sparsity level) occurring in the final model:
for λn → 0 there will be ̂β i �= ̂β i−1 for each i ∈ {2, . . . , n}, while for λn → ∞ no
changepoints are expected to occur in the final model and, thus, ̂β i = ̂β i−1 for all
i ∈ {2, . . . , n}. The corresponding estimators for the changepoint locations are the
observations i ∈ {2, . . . , n}, wherêβ i �= ̂β i−1. Let us, therefore, define the set

̂An ≡ {i ∈ {2, . . . , n}; ̂β i �= ̂β i−1} = {t̂1 < · · · < t̂|̂An |}, (4)

and let |̂An| be the cardinality of ̂An . For each k = 0, . . . , |̂An| we can also define
the (k + 1)-st model phase (observations indexed by the set {t̂k, . . . , t̂k+1 − 1}, where
t̂0 = 1 and t̂

̂An+1 = n), with the corresponding vector of estimated parameters ̂β t̂k .
The minimization problem formulated in (1) is convex and it can be effectively
solved by using some standard optimization toolboxes (see, for instance, [8]). The
theoretical properties are studied in detail in [5].Under some reasonable assumptions,
the method is consistent in terms of the changepoint detection and, also, in terms of
the parameter estimation. Nevertheless, the regularization parameter in the LASSO
problems should be chosen, in general, differently when aiming at the changepoint
recovery or the underlying model estimation: for the former one, larger values are
preferred to avoid the overestimation issue and false changepoint detection while
for the estimation purposes, slightly smaller values of λn > 0 are needed in order
to limit the shrinkage effect and to improve the estimation bias performance. The
value of λn > 0 which satisfies the set of assumptions used in [5] is, for instance,
λn = (1/n) · (log n)5/2.

The role of the regularization parameter is crucial and various approaches can
be used to determine a proper value for a given data. However, its importance can
be suppressed by using some alternative regularization source. This is, for instance,
also the case for the option pricing problem where the final model must satisfy
some pre-defined shape restrictions in order to comply with the financial theory on
the arbitrage-free market scenarios. In the next sections we present two important
modifications of the quantile LASSO model which can be directly used to estimate
the implied volatility function and the implied volatility surface respectively. Both
these quantities serve as key tools for analyzing financial markets and derivative
tradings in general.
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3 Quantile LASSO and Implied Volatility Estimation

Firstly, we consider a situation where the implied volatility values are only observed
for some specific day from the observational period. The data can be represented as a
sample {(Yi , xi ); i = 1, . . . , n}, where Yi stands for the observed implied volatility
at the given strike xi . Thus, there are n ∈ N observations in total for n unique strikes.
The aim is to use the observed volatility values and to estimate the implied volatility
function. The quantile fused LASSO presented in Sect. 2 is used, however, some
modifications are needed in order to obtain the model which complies with the
arbitrage free market conditions. Theses conditions imply that the estimated implied
volatility function must be convex with respect to the strikes.

The quantile LASSO method provides a robust estimate which is not sensitive
to various derivative market anomalies (such as bid-ask spreads, discrete ticks in
price, or non-synchronous trading, or heavy tailed error distributions). The value
of τ = 0.5 is used to construct the conditional median in (3), which is, from the
theoretical point of view, for a symmetric density of the error terms, the same quantity
as the conditional mean. Nevertheless, the convexity of the final estimate is not
automatically guaranteed in (3) and some additional linear constraints can be used
to enforce the volatility smile in the final model.

3.1 Arbitrage-Free Market Restrictions

Let the available strikes {xi }n
i=1 be all from some compact domainDwith some func-

tional basis {ϕ j (x); j = 1, . . . , p} defined on D. Let xi = (ϕ1(xi ), . . . , ϕp(xi ))
�

(for instance, let xi = (1, xi , x2
i )�, for i = 1, . . . , n, where p = 3, which gives a

standard quadratic fit). For each strike the quantile fused LASSO in (3) assumes
the corresponding vector of unknown parameters β i = (βi1, βi2, βi3)

� ∈ R
3. This

brings a huge amount of flexibility and the final model would be too much haphaz-
ard if no additional restrictions on the parameter vectors were imposed. Therefore,
the regularization penalty in (3) is adopted. Another form of regularization can be
applied if, for instance, some specific properties for the final fit are assumed (e.g.,
the convexity or the volatility smile respectively).

For 0 ∈ R
p being a zero vector of the length p ∈ N, we can easily define the

model matrix

X =

⎡

⎢

⎢

⎢

⎣

x�
1 0� · · · 0�

0� x�
2 · · · 0�

...
...

. . .
...

0� 0� . . . x�
n

⎤

⎥

⎥

⎥

⎦

and the model from (1) can be equivalently expressed as

Y = Xβn + ε, (5)
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where Y = (Y1, . . . , Yn)
�, ε = (ε1, . . . , εn)

�, and βn = (β�
1 , . . . ,β�

n )� ∈ R
np.

For the model in (5) we can directly use the minimization formulation in (3)
but the solution is, in general, not smooth and the volatility smile required for the
arbitrage-free market scenario is also not automatically guaranteed. The implied
volatility function is assumed to be smooth and convex which can be both enforced
by minimizing (3) with respect to some specific linear constraints defined for the
functional basis {ϕ j (x); j = 1, . . . , p}. The overall smoothness property can be
achieved by the right choice of the functional basis (e.g., polynomials, or splines of
some specific degree, which is large enough). Moreover, it is easy to see, that the
solution in (3) will be also convex if, in addition, the estimated vector of parameters
̂βn ∈ R

np obeys
Ĉβn ≥ 0, (6)

which holds element-wise for

C =

⎡

⎢

⎢

⎢

⎣

x̃�
1 0� · · · 0�

0� x̃�
2 · · · 0�

...
...

. . .
...

0� 0� . . . x̃�
n

⎤

⎥

⎥

⎥

⎦

,

where x̃i = (ϕ′′
1 (xi ), . . . , ϕp′′(xi ))

� denotes the vector of the second derivatives of
the functional basis functionsϕ j (x) for j = 1, . . . , p which are evaluated again at the
given strike xi ∈ D, for i = 1, . . . , n. The minimization (3) together with the linear
constraints given in (6) is again convex and an effective solution can be obtained by
adopting some standard optimization toolboxes.

For illustration, the quantile fused LASSO is applied for the Erste Group Bank
AG call options quoted in EUREX Deutschland Market and the implied volatil-
ity function is estimated for two specific trading days—September 21st, 2018 and
October 18th, 2018 (see Fig. 1 for illustration). It is clear fromFig. 1 that the arbitrage-
free conditions are not automatically guaranteed by the data themselves and, indeed,
the convexity property (volatility smile) must be enforced by the linear constraints
in (6).

In practical applications, the estimated implied volatility function can change over
time reflecting various trends or anomalies on the derivative market. Therefore, in
the next section, we introduce another modification of the quantile LASSO model
described above in order to estimate the implied volatility function for a set of con-
secutive days from some fixed period. We assume n ∈ N independent panels (one
panel for each strike) and the strike specific implied volatilities are observed over
some trading interval [0, T ], for some fixed T > 0.
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Fig. 1 The illustration of the Quantile LASSO performance when applied for the estimation of the
implied volatility function. Two situations are considered: the first day of the observational period
on the left panel, and t = 20 (volatility peak) on the right panel. The estimation is considered
without any linear restrictions (dashed blue lines) and with the linear constraints—which enforce
the volatility smile (solid red lines) and, thus, arbitrage-free validity

3.2 Time Dependent Implied Volatility Surface

The implied volatility values are now represented as a sample {(Yti , xit ); t =
1, . . . , T ; i = 1, . . . , n}, where Yit stands for the implied volatility at some specific
time t ∈ {1, . . . , T } and the given strike xit ∈ D, for i ∈ {1, . . . , n}. For simplic-
ity, the quoted strikes are common over time, therefore, we have that xit ≡ xi , for
i = 1, . . . , n. For each quoted strike xi ∈ D there is a strike specific panel of the
implied volatilities observed over time t ∈ {1, . . . , T }. The value of T ∈ N repre-
sents, for instance, the number of trading days available in the data. The underlying
panel data model takes the form

Yti = x�
i β t + εti , for t = 1, . . . , T and i = 1, . . . , n, (7)

where again xi = (ϕ1(xi ), . . . , ϕp(xi ))
� is the given functional basis on D, and

β t = (βt1, . . . , βtp)
� ∈ R

p is the vector of unknown parameters which can now also
change over time t ∈ {1, . . . , T }. The error vectors εi = [ε1i , . . . , εT i ] are assumed
to be independently distributed across panels i ∈ {1, . . . , n}.

The time dependent implied volatility surface can be now estimated simultane-
ously, such that the final model will obey the shape restrictions required for the
arbitrage-free market. The corresponding minimization problem takes the form

Minimize
βt ∈ R

p

t = 1, …, T

T
∑

t=1

n
∑

i=1

ρτ

(

Yti − x�
i β t

)

+ nλn

T
∑

t=2

‖β t − β t−1‖2 (8)

with respect to
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Cβ t ≥ 0, t = 1, . . . , T ; (convexity in the strike over time) (9)

where C is defined analogously as in (6). The overall vector of the estimated param-

eters ̂βn = (̂β
�
1 , . . . ,̂β

�
T )� ∈ R

T ×p represents the set of all panels while ̂β t ∈ R
p

is only associated with the estimated volatility function for some specific time
t ∈ {1, . . . , T }. The implied volatility function is obviously allowed to evolve over
time to reflect possible changes on the market with no specific restrictions what so
ever. Moreover, there is again a specific sparsity structure assumed: for situations
wherêβ t �= ̂β t−1 the estimated implied volatility function changes from time (t − 1)
to time t to adapt for the situation at the market and, otherwise, the estimated implied
volatility remains the same. The regularization parameter in (8) controls the amount
of such changes and the shape constraints in (9) are responsible for the additional
source of regularization by enforcing convexity of the estimated volatility function
for each time point t ∈ {1, . . . , T }. The minimization problem in (8) together with
the linear constraints in (9) is again convex and the optimal solution can be obtained
by the standard optimization software. The Karush-Kuhn-Tucker (KKT) optimality
conditions can be easily derived and they are formulated by the following lemma.

Lemma 1 (a) For any l ∈ {1, . . . , |̂An|}, n ∈ N, and λn > 0 the following holds
with probability one:

τ(T − t̂l + 1)
n

∑

i=1

xi −
n

∑

i=1

T
∑

k=t̂l

xi11{Yik≤x�
i
̂βk } = nλn

̂θ t̂l

‖̂θ t̂l ‖2
,

for a reparametrization ̂θt = ∑t
ι=1

̂βι for any t ∈ {1, . . . , T };
(b) For any t = {1, . . . T }, n ∈ N, and λn > 0, the following holds with probability

one:
∥

∥

∥

∥

∥

τ(T − t + 1)
n

∑

i=1

xi −
n

∑

i=1

T
∑

k=t

xi11{Yik≤x�
i
̂βk }

∥

∥

∥

∥

∥

2

≤ nλn.

The proof of Lemma 1 is straightforward and it is omitted. More details can be
found in [12]. Let us, however, briefly state some technical assumptions which are
needed to prove the the estimation consistency of the proposed method.

Assumptions:

(A1) The errors εi = [ε1i , . . . , εT i ] are independent copies of some strictly sta-
tionary sequence ε = [ε1, . . . , εT ]with the continuousmarginal distribution func-
tions Fεt (x) and F(εt ,εt+k )(x, y), for x, y ∈ R, t,∈ {1, . . . , T }, and k ≥ 1. More-
over, Fεt (0) = P[εt < 0] = τ , for τ ∈ (0, 1). The correspondingdensity functions
f (·) and f (·, ·) are bounded and strictly positive in the neighborhood of zero;

(A2) There exist two constants c, C ∈ R such that

0 < c ≤ μmin(E[Xn]) ≤ μmax (E[Xn]) ≤ C < ∞,
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where μmin and μmax stand for the minimum and maximum eigenvalue of the
matrix in the argument and Xn = 1

n

∑n
i=1 xi x�

i . Moreover, max1≤i≤n ‖xi‖∞ <

∞.
(A3) There are two deterministic positive sequences (λn) and (δn), such that

λn → 0, δn → 0, n1/2δn → ∞, and λn/δn → 0 as n → ∞.

Let us recall that in similar models (see, for instance, [5], [4], or [18]) there
is an additional assumption which requires that the span between two consecutive
changepoints increases. Analogously, the overall number of changes in the model
is usually considered to be fixed. However, as far as T ∈ N is assumed to be fixed
these two assumptions are irrelevant for our specific situation. Given the assumptions
above, the consistency can be formulated by the next theorem.

Theorem 1 Let the assumptions in (A1)–(A3) be all satisfied. Then, for any t =
1, . . . , T , it holds that

‖̂β t − β∗
t ‖1 = OP

(
√

log n

n

)

,

where ̂β t ∈ R
p denotes the vector of the estimated parameters obtained by minimiz-

ing (8) and β∗
t is the corresponding vector of the true values.

The theorem above specifies a proper converge rate for the estimates obtained by
minimizing (8). An example of sequences {λn} and {δn}, which satisfy Assumption
(A3) are λn = n−1 · (log n)1/2 and δn = (n−1 log n)1/2. For the proof of the theorem
we only refer to [12].

In the next section we discuss an application of the proposed modified quantile
fused LASSO method to simultaneously estimate a set of implied volatility panels
where each panel represents implied volatilities observed over time for a given quoted
strike. The observed implied volatilities are, however, firstly interpolated over con-
secutive maturities in order to obtain artificial call options with a fixed expiry date
(30 days). Such smoothing suppresses the natural dynamics of the market (such as
increasing convexity of the volatility smile when progressing towards expiry dates)
and it gives an opportunity to focus on exogenous effects (changepoints) only.

4 Application: Implied Volatility with Constant Maturity

The proposed quantile fused LASSO approach is applied to estimate the implied
volatility surface and to detect possible changes over time for the call options written
onErsteGroupBankAGand quoted in theEUREXDeutschlandmarket. The implied
volatilities zi,t,k , where i represents the strike of the option, k its maturity, and t is the
observing day, are downloaded from Thomson Reuters Datastream. The available
call option strikes range from 30 Euro to 43.50 Euro with an equidistant step of
0.50 Euro,which gives 28 strikes all together (n = 28). There are three considered
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maturities, for October 19th, 2018, November 16th, 2018, and December 21st, 2018.
There are 37 trading days within the analyzed period from September 21st, 2018
till November 12th, 2018, thus T = 37. Such period is long enough to capture the
dynamics of the volatility smile and to investigate possible changes in its shape.
However, similar analysis could be also conducted on some other time periods using
the corresponding data.

The first aim is to construct panels that report, for each strike i ∈ {1, . . . , n} and
each observing day t ∈ {1, . . . , T }, the implied volatility Yi,t of an artificial option
having always a constant maturity of K days. Therefore, for each day from the
considered period, the observed implied volatilities zi,t,k of the two options that have
their maturities immediately before and immediately after are interpolated using the
linear combination defined as

Yit =
1

(t + K ) − kb
· zi,t,kb + 1

ka − (t + K )
· zi,t,ka

1

(t + K ) − kb
+ 1

ka − (t + K )

, (10)

where kb is the maturity of the first option expiring before the time t + K , respec-
tively, ka is the maturity of the first option expiring after the time point t + K . For the
Erste Group Bank AG call options quoted in EUREXDeutschland the fixed maturity
of K = 30 days is considered.

For example, for the first observing day (t = 1), which is September 21st, 2018,
the artificial option expires in t + 30 days, i.e. October 21st, 2018. The two options
used for the artificial volatility interpolation are those with the expiry dates Octo-
ber 19th, 2018 (which is denoted as kb) and November 16th, 2018 (denoted as ka).
In this case, the distance between the artificial maturity (October 21st, 2018) and the
maturity of the first option is (t + 30) − kb = 2 trading days and the distance between
the artificial maturity and the maturity of the second option is ka − (t + 30) = 19
trading days.

Therefore, the equation from (10) takes the form

Yit =
1

2
· xi,t,kb + 1

19
· xi,t,ka

1

2
+ 1

19

. (11)

The whole procedure is repeated for all strike panels i ∈ {1, . . . , n} and all trad-
ing days from the observational period t ∈ {1, . . . , T }. The resulting panels of the
artificial implied volatilities {Yit }n,T

i,t=1 are presented in Fig. 2. All together, there are
28 strike panels which are observed for T = 37 consecutive trading days.

In the second step, the proposed quantile fused LASSO estimation approach is
used to estimate the overall time dependent implied volatility surface while the linear
constraints from (9) are again employed to obtain the arbitrage-free valid model
at the end. The linear constraints enforce the convexity of the estimated implied
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Fig. 2 The time development of the artificial implied volatility for the Erste Group Bank AG call
options with a constant 30 days maturity. The analyzed period is from September 21st, 2018 till
November 12th, 2018. All together, there are 28 strike panels ranging from 30.0 Euro up to 43.5
Euro observed for 37 consecutive trading days

volatility surface—the convexity (i.e., the volatility smile) with respect to the strikes
simultaneously for every day from the analyzed period. The volatility smiles for
consecutive days are assumed to bemostly the samewith only a few exceptionswhere
the implied volatility function from the time t changes at the time t + 1 to adapt for
some existing underlying changes on the market. The estimated implied volatility
panels are presented in Fig. 3. It is clear that the estimated implied volatility functions
are, indeed, all convex for any time point t ∈ {1, . . . , 37}. The overall surface is quite
stable but there are also some obvious changes in the estimated volatility surface:
some of them occur over time and others are present within the convexity of the
volatility smile for some fixed trading days.

From the practical point of view, there are two different explanations for these
changes: the changes occurring over time are most likely caused by some exogenous
effects (such as the recent COVID-19 outbreaks or the President Trump tweets on
additional 10 % tariff to be placed on Chinese imports) while the changes in the
volatility smile (increasing convexity when approaching the expiry dates) are still
due to some natural dynamics of the market (i.e., high spikes for high strikes in
Fig. 3). From the theoretical point of view, these two cases can not be distinguished
automatically therefore, we used the artificial options with the constant maturity
of 30 days in order to suppress the changes caused by the natural dynamics of the
market and, on the other hand, to highlight and detect the changes caused by the
external causes. The natural market dynamics is still present in the estimated surface
in term of a few high spikes, however, the rest of the surface can be effectively used
to analyze the market with respect to external causes effecting the market.

Peripherally, one could be interested whether or not a change in the artificial
implied volatilities occurred for some common trading day (cf. Fig. 3), assuming
that the volatilities are approximately constant before and after the possible change
for every strike. The ratio-type changepoint test statistics proposed in [14] as well
as the bootstrap self-normalized changepoint test statistics form [15] both suggest
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Fig. 3 The estimated panels of the implied volatilities: for each time point t ∈ {1, . . . , 37} the
estimated implied volatility function is clearly convex in strikes and the overall surface is stable
over time with just some few spikes for rather high strikes—detected changes in the volatility

to reject the null hypothesis of no change in the panel means. Furthermore, the
changepoint estimator developed in [16] reveals a change on the 20th trading day
(see Fig. 4).

Alternatively, one could be also interested in some individual tests whether there
is a change in some specific strike panel when the panels are considered separately.
From Fig. 3 it is obvious that a sudden change (a spike or a wave respectively) occur-
ring on the 20th trading day is only observed for high strikes (roughly the strike val-
ues above 38 Euro) while no such behavior is observed for lower strikes. Such panel
specific tests are, however, all significant as the overall variability of the observed
implied volatility values is relatively high and, more importantly, the raw volatility
values do not reflect the arbitrage free market scenario which is implicitly accounted
for in our model. In addtion, the multiple testing problem should be considered taken
care of properly. Therefore, more precise and more appropriate conclusions can be
indeed drawn from the model presented in Fig. 3 rather than performing individual
tests and considering individual strike panels separately.
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Fig. 4 Detection and estimation of the implied volatility change: In the top three panels, there is
the implied volatility smile estimated for the day before the change (a), the day when the change
is detected—the 20th trading day (b), and the day after the change (c). The left side of the smile
seems to be stable while the convexity of the right part of the smile significantly increases for the
20rm trading day. The overall time profiles for the lowest strike (in blue) and the highest strike (in
red) are given in the lower panel. Indeed, the change in the implied volatility is due to the implied
volatility recorded for rather higher strikes

5 Conclusion

The implied volatility function and the implied volatility surface are both fundamen-
tal tools for the empirical econometrics, the financial derivative markets in particular.
A new method, based on the panel data structure, conditional quantile estimation,
LASSO regularization, and artificial volatility interpolation is proposed to automat-
ically estimate the time development of the implied volatility function over some
specific (fixed) trading period.

This presented approach avoids some popular multistage techniques and nonpara-
metric kernels which usually perform slowly. The sparsity principle and the LASSO
fused-type penalty are used to firstly inflate the overall flexibility of the model but,
later, the estimate is regularized in order to obtain the final model which fully com-
plies with the financial theory developed for the arbitrage-free market scenarios.
The model also implicitly incorporates a prior knowledge that the implied volatility
function should not change too roughly and it should be, more or less, stable over
time.

The main advantage of the proposed method is that it does not apriori assume the
arbitrage-free input data. The estimated implied volatility function, which satisfies
the arbitrage-free conditions (so called volatility smile) is obtained automatically
in a straightforward and data-driven manner by minimizing the objective function
together with some appropriate linear constraints which enforce the convex property.
This is crucial for the implied volatility estimation because the volatilities violating
the natural market conditions would have serious consequences.
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The proposed quantile LASSO method for the panel data structures serves as an
innovative and pioneering approach for the option pricing problem and the implied
volatility estimation in particular. In addition, the interpolated implied volatilities
with the fixed maturity over time offer a much more stable insight into the true
market conditions. The proposed estimation approach can easily serve for both, the
estimation under the arbitrage-free restrictions or the situation without such restric-
tions and the presented application shows a straightforward all-in-once implemen-
tation for real data cases.
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A Remark on the Grenander Estimator

Ivan Mizera

Abstract We show rigorously that unlike in the case of s-concave densities, where
different Rényi entropies yield different estimates, in the analogous estimation prob-
lem when the estimated density is assumed monotone, all Rényi entropies yield the
same: the Grenander estimate, obtained as a special case, the maximum likelihood
estimate of a monotone density.

Keywords Density estimation · Shape constraints · Convex optimization
Duality · Grenander estimator

1 Introduction

In this note, we study the behavior of a class of estimators of probability densities
proposed by Koenker and Mizera [5–8], in a very specific situation, estimation of a
monotone probability density.

1.1 Probability Density Estimators via Rényi Entropies

Probability density estimators considered in this note can be obtained as solutions
of various optimization problems. Let x1, x2, . . . , xn be the collection of datapoints
that are believed to behave as outcomes of independent random variables, all with
probability density h. We will be predominantly concerned with the case when xi ∈
R; nonetheless, we indulge in an introduction proceeding, even if a bit ambiguously,
with xi ∈ R
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Suppose that X is a convex set containg all xi . One possible way to obtain the
estimate of h is to consider the objective function

�(g) = 1

n

n∑

i=1

g(xi ) +
∫

X
ψ(g(x)) dx, (1)

and find ĝ minimizing it—either under a constraint J (g) ≤ � for some suitable
roughness/complexity penalty J , using a common equivalent formulation that adds
the penalty term λJ (g) to the objective�; or under a “hit-or-miss” penalty, a penalty
attaining only two values, 0 and +∞, and in this way expressing a shape constraint,
a constraint on a qualitative form of the estimated density, typically translating into a
constraint on g. As a rule, the minimizing ĝ is not directly equal to the sought density
estimate ĥ, but the latter can be obtained from ĝ via certain transformation related
to ψ . The form of this relationship, the possible repertory of the ψ’s, as well as the
domain of definition of and mathematical requirements on the putative g, and further
potential details regarding the domain of integration X are to be discussed later.

Koenker and Mizera [5–7] call the just described way of obtaining the estimate
of the density primal, to distinguish it from a different, dual way. While they orig-
inally pursued the penalized approach [5, 6], the possibility of shape-constrained
alternatives was already mentioned in [6], and later fully developed, for the shape
constraint expressed by the convexity of g, in [7]. This particular context turned
out to be fortunate: its mathematical tractability enabled Koenker and Mizera [7] to
obtain rigorous duality theory in the functional setting, and show that the repertory
of functions ψα induced by the Rényi system of entropies nicely corresponds with
the classes of so-called s-concave functions [4, 7].

The general duality theory for density estimation via Rényi entropies was for a
broad class of density estimation problems, either penalized or under shape con-
straints, already developed by Koenker and Mizera [6]—but there only in the dis-
cretized setting. To understand the difference between the two, note first that as soon
as ψ is convex, then � is a convex function; its minimization, either under a con-
straint on a convex penalty, or enforcing g to lie in a convex set is thus a convex
optimization problem. A potent duality theory of such problems is very well devel-
oped for finite-dimensional problems, problems that operate over Rn . As soon as g
is defined over an infinite set—for instance, an interval (possibly bounded) in R or
a convex set with nonempty interior in R

p—then the ensuing convex optimization
problem is infinite-dimensional. The duality theory for such problems is far from
being that straightforward.

In the numerical context, however, gmay need to be replaced by a function defined
only on a finite set—the discrete set that “approximates” the original domain. For
instance, if g is defined on an interval [a, b], then such an approximation may define
it instead merely on a grid y1 = a < y2 < · · · < yN−1 < yN = b. Intuitively, the
approximation will be satisfactory if the distances between adjacent yi and yi+1 are
small—which entails that N is large; butmodern optimization software and hardware
is frequently able to handle such a situation.
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Technically, the original datapoints xi are either included in the grid, or g(xi ) in (1)
are replaced by interpolations from adjacent yi ; the integral term in (1) is represented
by a suitable sum. The discretized problem typically remains convex; not only can
it be then solved by the available software, but being finite-dimensional, its duality
theory is typically much easier to develop.

The duality theory elucidated in this discretized setting can be interpreted in the
functional setting—but this step is only heuristic: sums are replaced by integrals,
differences by derivatives... The rigorous justification for the functional setting has
yet to be given. For the penalized instances considered in [6] and revived in [8],
such a justification is still an open problem. Although the result of such an exercise
is entirely predictable, the functional forms of primals and duals are obvious from
the discretized setting, the rigorous justification of strong duality—the fact strongly
supported by numeric evidence—is still missing. (It is a question whether such
rigorous justifications are necessary at all: that may be a viewpoint of authors coming
from a computer science background, who typically do not bother, and in exclusively
discretized setting concentrate on the more substantial, and also rewarding aspects,
rather than arcane mathematical details. Such a viewpoint, however, may not be
shared by the readers with more classical background in mathematical statistics, and
possibly neither by the present author.)

1.2 The Repertory of ψ

The first instance of ψ in �, ψ1(x) = e−x , came from the maximum likelihood
formulation. Maximizing the likelihood of the estimated density h is equivalent to
minimizing

�(h) = 1

n

n∑

i=1

− log h(xi ) +
∫

X
h(x) dx . (2)

The summation term is a standard negative log-likelihood for independent observa-
tions, the integral term replaces the constraint that h should integrate to 1;minimizing
the objectivewith integral termautomatically ensures that. Putting g = − log h yields
ψ1 for ψ in (1), as well as the relationship h = e−g to the sought density estimate
(which also ensures the nonnegativity of h).

The other instances of ψ were inspired by the duality theory. It was observed
that the objective functions of the dual formulations of primal optimization problems
involving (2) featured in one or anotherwayShannon entropy of the estimated density
h, typically maximized under certain constraints. Replacing the Shannon entropy by
the general repertory of Rényi entropies (which contain Shannon as a special case)
broadens the repertory of estimation methods; after reverting back to the original
primal formulation, we end up with a one-parameter family, ψα , of putative ψ .
For the detailed functional forms of those, see [6–8]; here we only remark that
they are all based on power functions, like ψ1/2(x) = 1/x , with the only exception
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being ψ1(x) = e−x and ψ0(x) = − log x . In this note, we work only with certain
mathematical properties elucidated in [7] and satisfied by all of relevant ψα .

For the formalism of convex analysis, see [9] or [2]. We allow infinities in the
definitions of convex functions; all our convex functions are proper, never resulting
in −∞; hence their effective domains are the sets where their values are finite. From
now on, every ψ satisfies

(A) ψ is nonincreasing and proper convex, with the open effective domain
containing (0,+∞); on this domain, ψ is differentiable.

For every such ψ, we will have either

(A0) ψ satisfies all of (A), and ψ(x0) = 0 for some x0

or

(A1) ψ satisfies all of (A), ψ(x) ≥ 0 for all x , and ψ(x) → 0 for x → +∞.

The very last property is interpreted as ψ(+∞) = 0. The only function in the Rényi
system that has property (A0) and not (A1) is ψ0(x) = − log x ; every other ψα

satisfies (A1).

2 Estimation Under Monotonicity

In the implementation of the primal prescription minimizing (1) under the constraint
that g is convex, we enforced convexity by requiring that

Dg(x) ≥ 0 for all x, (3)

with D standing for the operator of the second derivative/difference (and ≥ in the
multi-dimensional case with p > 1 understood in the sense of nonnegative defi-
nitess). In the functional setting, it is more prudent to work directly with the convex-
ity of g (invoking D as the operator of second derivative may raise possible concerns
about the differentiability of pertinent g, and indeed these would then need to be
mitigated by employing derivatives in the generalized sense of distributions). In the
discretized setting, however, (3) works well, and even lends the resulting algorithm
certain flexibility: a possibility arises to replace D by some other difference operator.
In particular, in the one-dimensional case (when p = 1 and ≥ is understood in the
most straightforward way), replacing D by the operator of first difference enforces
g via (3) to be nondecreasing. As we will see later, this eventually results in the
nonincreasing estimate of the density h.

Estimation of a monotone density is a classical topic: the celebrated Grenander
[3] estimator, maximum likelihood estimator under the assumption of noincreasing
density, is nothing but our estimator under ψ equal to ψ1, with nondecreasing g. To
observe that, just note that if g is nondecreasing, then h = e−g is noincreasing, and
(2) is indeed the objective function arising from maximizing the likelihood.
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As reiterated by [6–8], enforcing the convexity assumption on g yields for each
ψα a different estimator, in a different class of probability densities. An intriguing
question arose: in the monotonicity contex, do different ψα also lead to different
estimators? The answer to this question obtained by numerical experimentation with
various α seemed to be negative: all resulting estimates looked the same. Given,
however, the limits of numerical experimentation, which inevitably depends on the
particular data input andother factors—for instance, the coincidencemaybeobserved
just for those α for which the numerical algorithm is reasonably stable, and for some
others the coincidence of the estimates may not appear that convincing (which was
indeed the case, probably due to numerical woes)—it was of some interest whether
the observed coincidence is a general rule, valid for all data inputs and allφ, a rule that
can be established theoretically. This note gives an affirmative answer to this question.

2.1 Relevant Estimators and Duality

Thus, our datapoints x1, x2, . . . , xn emerge now in a domain that is not whole
R = (−∞,∞), but it is bounded from below—which can be without loss of gen-
erality viewed as an interval with its left endpoint at 0. In view of the fact that one-
dimensional density estimation admits a reduction to order statistics via sufficiency,
we consider the xi ’s already ordered: x1 ≤ x2 ≤ · · · ≤ xn . The objective � is still
defined by (1); the integration domain X has left endpoint zero, and has to contain all
xi , but otherwise its exact specification for any ψ satisfying (A2) is irrelevant, and X
maywell be set to be thewhole [0,+∞) interval—an exception being, however, func-
tions satisfying only (A1), for which the integration domain has to be set to [0, xn].

The details of this nature are somewhat relevant to the preliminary characterization
of estimates—which is in turn necessary to facilitate the subsequent mathematical
treatment: wewould like to know that the original general formulation can be reduced
to one acting on bounded domain and employing specific classess of functions. These
deliberations are not that essential in practice: after all, we know that in numerical
algorithms the integration domain has always to be bounded, and in discretized
setting every function can be considered to be piecewise constant or piecewise lin-
ear. Nonetheless, in theoretical setting they exemplify the natural character of these
reductions.

So, the objective� is nowminimized under the constraint that g is nondecreasing.
To observe that this yields nonincreasing density estimates h, we have to invoke the
relationship between the solution ĝ of the optimization problem, and the desired
estimate ĥ, which is

ĥ = −ψ ′(ĝ). (4)

As allψ satisfying (A) are convex, the derivative (−ψ ′(x))′ = −ψ ′′(x) is nonpositive
for all x ; therefore−ψ ′ is nonincreasing, andnondecreasing ĝ yields nonincreasing ĥ.

The relationship (4) is the outcome of the duality theory established for the shape-
constrained density estimation via minimization of (1). For g enforced convex, the
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strong duality and subsequently (4) was established by Theorem 3.1 of [7]. The
closer examination of its proof reveals that a cone K(X) of convex functions on X
can be replaced by any convex cone containing constant functions. For convenience,
we rephrase the generalized formulation here.

We suppose that all functions g relevant for objective � from (1) belong to a
topological vector space G such that its topological dual G∗, the set of continuous
linear functionals on G, contains evaluation functionals δx for all x ∈ X , continuous
linear functionals such that δx (g) = g(x). Given the dataset x1, x2, . . . , xn , let Pn be
the element of G∗ defined as

Pn = 1

n

n∑

i=1

δxi

—we customarily call Pn the empirical probability supported by the xi ’s. Let K be
a convex cone of functions from G, a convex subset G closed under multiplication
by positive constants. Its polar cone K− is then the set of all G ∈ G∗, such that
G(g) ≤ 0 for all g ∈ G.
Proposition 1 Suppose that ψ satisfies (A), and let K be a convex cone of func-
tions defined on X containing all constant functions. The strong (Fenchel) dual of a
primal formulation minimizing (1) under the constraint that g ∈ K is the problem
maximizing

−
∫

X
ψ∗(−h(y))dy subject to h = d(Pn − G)

dy
(5)

in the sense that the value, �(g), of the primal objective for any g ∈ K dominates
the value, for any f satisfying the constraints of (5), of the objective function in
(5); the minimal value of � and maximal value of the objective in (5) coincide.
Moreover, there exists ĥ attaining the maximal value of the problem defined by (5).
Any dual feasible function h , that is, any h satisfying the constraints of (5) and
yielding finite objective function in (5) is a probability density with respect to the
Lebesgue measure: h ≥ 0 and

∫
X h dx = 1. The dual and primal optimal solutions

satisfy (4).

Proof The proof is completely analogous to that of Theorem3.1 in [7] and is omitted.
We only remark that constant functions are first used to establish the constraint
qualification for the strong dual, and then also to establish that every feasible h is a
probability density.

To use this proposition in our case, we have now to establish the preliminary
characterization of the estimates.
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2.2 Preliminary Characterization of the Estimates

Thepreliminary characterization of the estimates amounts to finding a suitable collec-
tion G̃ of admissible g, characterized by the property that for every initially relevant
g we can find some g̃ ∈ G̃ such that �(g̃) ≤ �(g). Out of several possibilities, we
are interested in G̃ exhibiting favorable properties that may facilitate the analysis of
solutions.

In the situation when g is assumed convex, such an admissible G is given in
Sect. 2.4 of [7], and consists of g that are+∞ outside the convex hull of the xi ’s, and
are polyhedral (that is, piecewise linear) on this convex hull, with the subdomains of
linearity spanned by the xi ’s; in one-dimensional case it means that the breakpoints
can occur only at the xi ’s.

This is quite a step beyond likelihood considerationswhich only require something
like well-defined functional values g(xi ). This, in fact, follows immediately from
the convexity constraint which entails continuity (and thus well-defined functional
values) on the relative interior of the effective domain. For ψ satisfying (A0), there
is x such that ψ(x) = 0; any g identically equal to x yields an example of convex g
such that �(g) < +∞. For ψ satisfying (A1), such g is any that is constant on the
convex hull of the xi ’s and equal to +∞ elsewhere.

The existence of g with �(g) < +∞ entails that any g(xi ) has to be finite. Once
all the values g(xi ), and thus also the summation term in (1) are fixed, then the integral
term is minimized by those g that are maximal in the gaps between the xi ’s, but still
remain convex: that makes admissible g piecewise linear. Property (A1) drives the
admissible g outside the convex hull of the xi ’s to +∞ rendering the exact boundary
integration domain irrelevant, as ψ(+∞) = 0. However, for ψ satisfying only (A0),
such a reduction of the domain does not come automatically and has to be explicitly
postulated.

Let us return to monotone g now. Monotonicity entails the existence of one-sided
limits; the latter coincide in the points of continuity, and make g(xi ) defined unam-
bigously at these points. In the points of discontinuity, the g(xi )’s could be anything
between the two one-sided limits; the objective function �, however, pushes them
eventually equal to the smaller of the two. The analogous argument with constant g
as in the convex case entails that all values g(xi )must be finite; monotonicity implies
that in the gaps between xi any admissible g must be constant. Therefore, all admis-
sible g are thus left- or right-continuous, depending on the sense of monotonicity.
For nondecreasing g, which are the ones we will consider here, it is left continu-
ity. Again, for ψ satisfying (A1), the admissible g are equal to +∞ for all x > xn ,
with the analogous consequences for the domain of integration X . And again, for ψ

satisfying merely (A0), X needs to be set to [0, xn]. We summarize all this in the
following

Proposition 2 Suppose that the domain of all g is X = [0, xn]. For all ψ satisfying
(A), the admissible nondecreasing g are left-continuous and piecewise constant, with
nonzero jumps allowed only at the xi ’s.
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With the help of the proposition, we can overcome the only remaining mathemat-
ical obstacle: applying Proposition 1 to our situation. The difficulty is of functional-
analytic nature. The topological vector space G in Theorem 3.1 of [7] was C(X),
the space of continuous functions on a compact X ; its topological dual G∗ is the
well-understood set of Radon measures on X . In our situation we deal with mono-
tone functions that may not be continuous, hence not belong to C(X). We have to
take G instead to be the collection of all bounded (in view of Proposition 2 there
are at most n jumps), left-continuous, nondecreasing functions on a compact interval
X = [0, xn]. The topology may be that of Skorokhod convergence—see [1]—but the
usual sup topology of C(X) works also here, in the possibly discontinuous case.

There are continuous functions on X that are alsomonotone, hence the intersection
of our G with C(X) is nonempty. It contains nondecreasing continuous functions on
X , which are dense in G. They are obviously not dense in C(X); but the collection
of all finite linear combinations of them is. To see that, consider all piecewise linear
continuous functions on X , with finitely many pieces of linearity: each of them is a
difference of two functions continuous and nondecreasing on X , and they constitute
a dense subset in C(X)—this can be seen either directly, using uniform continuity,
or via the Stone-Weierstrass theorem.

All this means that a continuous linear functional on C(X) defines a continuous
linear functional on its subset, its intersection with G. As this subset is dense in
G, the functional can be unambiguously extended to a continuous functional on G.
Conversely, a continuous linear functional onG defines a continuous linear functional
on its intersection with C(X); as the finite linear combinations of the elements of this
intersection are dense in C(X), this functional can be unabiguously extended to that
on C(X).

In other words, there is a one-one correspondence between continuous linear
functionals on G and those on C(X), which means that their duals coincide: the
elements of G∗ are Radon measures, and we can proceed with the whole analysis
along the same lines as in [7], where � was minimized under the constraint that g is
convex.

2.3 The Main Result

As was noted above, numerical experiments with estimators using various Rényi
entropies suggested that they all yield the same result—which is then the Grenander
estimator, as (2) is a special case of (1). This is indeed the case, and can be proved
formally.

Theorem All φ satisfying (A) yield the same minimizer of the objective function
(1) subject to g nondecreasing—and thus the same noincreasing estimate of the
probability density.

Proof In view of the characterization given by Proposition 2, we consider the new
objective function
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	(g1, g2, . . . , gn) = 1

n

n∑

i=1

gi +
n∑

i=1

wiψ(gi ) (6)

The variables gi now represent g(xi ); in view of the piecewise constancy we set
wi = xi − xi−1, with x0 interpreted as x0 = 0. We minimize (6) under the condition

g1 ≤ g2 ≤ · · · ≤ gn (7)

In view of Proposition 2, the minimizer of this finite-dimensional problem charac-
terizes the minimizer of the original problem, of minimizing (1) on X = [0, xn],
subject to g nondecreasing: it is a left-continuous, piecewise constant function ĝ
with ĝ(xi ) = gi . We will show that the minimizer of the finite-dimensional problem
is the same for all ψ satisfying (A).

We introduce new variables q1, q2, . . . , qn, qn+1 such that

gn = qn+1 − qn qn+1 ≥ 0, qn ≥ 0,
gn−1 = qn+1 − qn − qn−1 qn−1 ≥ 0,

...
...

g3 = qn+1 − qn − qn−1 − · · · − q3 q3 ≥ 0,
g2 = qn+1 − qn − qn−1 − · · · − q3 − q2 q2 ≥ 0,
g1 = qn+1 − qn − qn−1 − · · · − q3 − q2 − q1 q1 ≥ 0.

Note that the nonnegativity of q1, q2, . . . , qn−1 follows from (7); for gn , which in
principle may be negative, we have to introduce two new variables, so that all qk
are nonnegative and we can use the conditions from page 142 of [2] characterizing
optimum of our finite-dimensional problem. These conditions say that the partial
derivatives of 	 with respect to all qk have to be nonnegative; for k = 1, 2, . . . , n,
this yields

0 ≤ ∂	

∂qk
= (−1)

(
k

n
+

k∑

i=1

wiψ
′(gi )

)
= (−1)

(
k

n
−

k∑

i=1

wihi

)
,

putting hi = −ψ ′(gi ) in accord with (4), and subsequently

k

n
≤

k∑

i=1

wihi for all k = 1, 2, . . . , n. (8)

For k = n + 1, we have

0 ≤ ∂	

∂qn+1
= 1 +

n∑

i=1

wiψ
′(gi ) = 1 −

n∑

i=1

wihi
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yielding

1 ≤
n∑

i=1

wihi ,

which together with (8) for k = 1 gives that

1 =
n∑

i=1

wihi , (9)

Indeed: as the partial sum
∑k

i=1 wihi is the cumulative distribution function of the
putative density estimate characterized by hi , the equation (9) asserts that eventually
such a distribution function ought to be equal to 1. More importantly, inequality (8)
says that this distribution functions majorizes the empirical distribution function,
equal to k/n at each xk .

In view of the piecewise constancy of the density estimate, its cumulative dis-
tribution function is piecewise linear; we would like to know where it changes its
slope. This is given by the complementarity condition on page 142 of [2]: it says that
whenever qk > 0, that is, whenever the putative density estimate has a jump at xk ,
the the partial derivative of 	 has to be zero:

0 = ∂	

∂qk
= k

n
−

k∑

i=1

wihi .

This says that whenever the cumulative distribution function of a putative estimate
changes its slope, it is equal to the empirical distribution function, given by k/n—
which it majorizes, so it is its least concavemajorant. But this is the well-known char-
acterization of the cumulative distribution function of the Grenander [3] estimate—
which comes from the minimization of (2) subject to g nondecreasing.

But, as we obtained this characterization for every ψ under consideration, then
obviously the result of minimization of (6) under (7), and thus also that of (1) under
g nondecreasing is the same for all ψ satisfying (A): we have proved the theorem.

3 Conclusion

As Czech urban folkore has it, techno party is over—time is to move on. The fact
that alternative Rényi entropies do not yield anything different in the monotonicity
context other than tried-and-true maximum likelihoodmay be reassuring for many—
for them, the world is now in harmony again, and they may well opine that it would
be even without this note.

Instead, however, we hope this fact will be at least of some interest for those few
intrigued by the alternative estimation possibilities offered by the Rényi entropies,
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if only in certain other situations; and if those do not find it minimally somewhat
surprising, we hope they will at least appreciate the mathematical technology used
to rigorously confirm otherwise clumsy numerical impressions.
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Non-Gaussian Component Analysis:
Testing the Dimension of the Signal
Subspace

Una Radojičić and Klaus Nordhausen

Abstract Dimension reduction is a common strategy in multivariate data analy-
sis which seeks a subspace which contains all interesting features needed for the
subsequent analysis. Non-Gaussian component analysis attempts for this purpose to
divide the data into a non-Gaussian part, the signal, and a Gaussian part, the noise.
We will show that the simultaneous use of two scatter functionals can be used for
this purpose and suggest a bootstrap test to test the dimension of the non-Gaussian
subspace. Sequential application of the test can then for example be used to estimate
the signal dimension.

Keywords Independent component analysis · Scatter matrix · Bootstrap · Order
determination

1 Introduction

Modern data sets contain often many variables making visualization and many other
tasks concerning the data set very difficult. Therefore, dimension reduction methods
gain popularity as they try to find a subspace of the data which is smaller and contains
all interesting features. Three main issues are then here, (i) how to define what makes
the data interesting, (ii) how large is the interesting subspace and (iii) how to find
the subspace?

There are meanwhile many suggestions about how to define what is interesting
and maybe the most used method is principal component analysis (PCA) [13] which
defines as interesting subspace the one which accounts for as much of the variability
in the data as possible. Another well-established approach is projection pursuit (PP)
[11, 14] where usually univariate projections of the data, which maximize some
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criterion of non-Gaussianity specified by an projection index, are considered inter-
esting. PCA is probably so popular as it is quite easy to compute and has many
different guidelines on how to choose the dimension of the subspace of interest. PP
on the other hand is, depending on the projection index used, often computationally
expensive. Moreover, guidelines about how to choose the dimension of the inter-
esting subspace are sparse. However, PP has been proven useful as a preprocessing
step for, for example, clustering or outlier detection [9]. In general, it seems that the
non-Gaussian subspace of the data is nowadays considered the subspace of interest
and [4] suggested a general framework for this, denoted by non-Gaussian compo-
nent analysis (NGCA). It divides the data into a non-Gaussian subspace and into a
Gaussian subspace. While there are meanwhile many suggestions, like in [2, 3, 15,
33, 37, 41] to name a few, on how to perform NGCA there is not much research yet
on how to estimate the dimensions of the two subspaces.

In this paper we will introduce a bootstrap test to test the dimension of the non-
Gaussian subspace using two scatter matrices. For this purpose we will in the fol-
lowing first introduce scatter matrices and some of their relevant properties. Then,
in Sect. 3 we will introduce the independent component (IC) model which is closely
related to the NGCAmodel, which we will also define then there in detail. The boot-
strap test is then introduced in Sect. 4 and evaluated in a simulation study in Sect. 5.
Natural estimates of the signal dimension are found by successive conduction of the
bootstrap test and two estimation strategies are discussed and evaluated in Sect. 6.
Proofs of selected results are given in the Appendix.

2 Scatter Functionals

Scatter functionals are the main tools in our method and defined as follows:

Definition 1 Let x be a p-variate random vector with distribution function Fx. Then
a p × p matrix-valued functional S(Fx) = S(x) is called a scatter functional if it is
symmetric, positive semi-definite and affine equivariant in the sense that

S(Ax + b) = AS(x)A�,

for all full rank p × p matrices A and all p-variate vectors b.

Scatter functionals often come along with a location functional which is defined
as:

Definition 2 Let x be a p-variate random vector with distribution function Fx. Then
a p-vector-valued functional T(Fx) = T(x) is called a location functional if it is
affine equivariant in the sense that

T(Ax + b) = AT(x) + b,

for all full rank p × p matrices A and all p-variate vectors b.
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Thus, location and scatter functionals are a way to describe centrality and spread
of the data and are then estimated by replacing Fx with the empirical distribution.
Probably themostwidely usedpair of location and scatter functionals are the expected
value E(x) and the covariance matrix COV(x).

The literature is however full of many alternatives which have different desir-
able properties, like robustness or efficiency, at specific models. A large family of
functionals which we will use in the following are the M-estimators of location and
scatter and are for example reviewed in [8].

Definition 3 M-functionals of location and scatter are defined by the two following
implicit equations:

T(x) = E(w1(r))
−1E(w1(r)x)

and
S(x) = E

(
w2(r) (x − T(x)) (x − T(x))�

)
,

where w1(r) and w2(r) are nonnegative continuous functions of the Mahalanobis
distance r = ||S(x)−1/2(x − T(x))||.

Thus, M-functionals of location and scatter are weighted variants of the mean
and the covariance matrix yielding them as special cases when choosing w1(r) =
w2(r) = 1. Usually the weight functions are chosen to be non-increasing to obtain
estimators that may be robust. Some popular members of the family of M-estimators
have the following weight functions

• Huber’s M-estimators [10]

w1(r) =
{

1 r ≤ c
c/r r > c

and w2(r) =
{

1/σ 2 r ≤ c
c/(r2σ 2) r > c

,

where σ 2 is a scaling factor chosen so that E(Qw2(
√
Q)) = p and c is a tuning

constant chosen to satisfy q = Pr(Q ≤ c2), where Q ∼ χ2
p.

• M-estimators based on the likelihood of a t-distribution having ν ≥ 1 degrees of
freedom [16]

w1(r) = w2(r) = p + ν

r2 + ν
.

Traditionally, M-estimators of location and scatter are computed via fixed point
algorithms which are iterated from an initial starting point until the difference in
successive functional values is less than some predetermined threshold. Depend-
ing on the weight functions there are however also other algorithms available, see
e.g. [7].

A compromise here in the iterative process are the so called one-stepM-estimators
of location and scatter which start with a pair of location and scatter functionals
and then use just one updating step to obtain weighted new functionals. A scatter
functional from this family which wewill consider later is the scatter matrix of fourth
moments which starts with the pair (T1, S1)=(E,COV) and yields eventually
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COV4(x) = 1

p + 2
E

(
r2 (x − T1(x)) (x − T1(x))�

)
,

thus having the weight function w2(r) = r2/(p + 2), where r = ||S1(x)−1/2(x −
T1(x))||.

Scatter functionals are mainly investigated in the context of elliptical distributions
where it is a well-known fact that they are all proportional to each other given they
exist [28]. However, as the Gaussian distribution is the only elliptical distribution
with independent components, other properties of scatter functionals are of interest
in NGCA. For example the properties of full and block independence for scatter
functionals are defined in [28].

Definition 4 A scatter functional S(x) is said to have the full independence property
if

S(x) = D(x)

for all x having independent components where D(x) denotes a diagonal matrix.
If the p-variate vector x = (x1, . . . , xk)� has k independent blocks with corre-

sponding block dimensions p1, . . . , pk , then a scatter functional S(x) is said to have
the block independence property if

S(x) = B(x),

where B(x) is the block diagonal matrix with block dimensions p1, . . . , pk .

Most scatter functionals do not posses the full or block independence property,
howeverCOV andCOV4 do. All scatter functionals are however diagonal and block
diagonal in case when all but one of the independent parts are symmetric [28].
Exploiting the concept of symmetry, symmetrized scatter functionals can be defined.

Definition 5 Let S denote any scatter functional, then its symmetrized version is
defined as

Ssym(x) := S(x1 − x2),

where x1 and x2 are independent copies of x.

For example [28] show that every symmetrized scatter functional possess the full
and block independence property. Note also that COV and COV4 can actually be
expressed as functions of pairwise differences and that symmetrized scatter function-
als do not require a location functional. Actually, they are usually computed using
all pairwise differences and computing the original scatter with respect to the origin.
Symmetrized M-estimators of scatter are investigated in [35], while the computa-
tional issues are especially discussed in [7, 18].
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3 NGCA and ICA

The non-Gaussian component analysis (NGCA) model we will consider in the fol-
lowing is defined as follows.

Definition 6 A (centered) p-variate vector x follows the NGCA model if it can be
decomposed as

x = Az = A1s + A2n,

where z = (s�n�)� is a latent p-variate vector consisting of the q-variate non-
Gaussian signal vector s and the (p − q)-variate Gaussian noise vector n. The signal
and noise vectors are independent and locations and scales are fixed using a pair of
location and scatter functionals as T(z) = 0 and S(z) = Ip, where S. The full-rank
p × pmatrixA is called themixingmatrix andA1 andA2 are p × q and p × (p − q)

matrices with ranks q and p − q respectively and specify the signal and noise parts
of x.

The signal dimension q is the largest value separating between the signal and
noise values. That is, there exists no q-variate vector a such that a�s has a normal
distribution, and also, q is the largest such number ensuring that n is a Gaussian
noise vector. Still, the two matrices A1 and A2 are not identifiable as both can be
post-multiplied by q × q and (p − q) × (p − q) dimensional orthogonal matrices
respectively and consequentially A is not identifiable either.

The goal of non-Gaussian component analysis is thus to find a p × p full rank
unmixing block matrix

W = (W�
1 W

�
2 )� =

(
W1

W2

)
,

with submatricesW1 andW2, such thatW1x recovers the non-Gaussian signal sub-
space and W2x the Gaussian noise subspace.

There are also several closely related models which we would like to introduce.
The independent component analysis (ICA) model can be seen as an extreme

case of the NGCA model where all components of s are independent and q is either
p − 1 or p. In that caseA is identifiable up to the order and the signs of its rows, and
therefore, in this case, one can think of W as its inverse, keeping in mind that it is
well defined up to the order and the signs of its rows. ICA is for example widely used
in the analysis of biomedical signals and has many other applications; for details see
for example [6, 21].

A compromise between NGCA and ICA is the non-Gaussian independent com-
ponent model (NGICA) which is an NGCA model where all components of s are
independent and the ICA model is thus a special case. The NGICA model has
the advantage over the general NGCA model that the signal components of s are
identifiable up to their order and signs. NGICA was for example considered in
[12, 25, 32].
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NGCA on the other hand can be seen as a special case of independent subspace
analysis (ISA), where it is assumed that the latent vector z consists of k independent
blocks and these subspaces need to be identified. For details about ISA see for
example [20, 36].

As mentioned above, there are many methods to estimate the unmixing matrix
in NGCA where many of them are based on projection pursuit ideas. The approach
of interest in this paper is based however on the simultaneous use of two scatter
functionals S1 and S2.

In the beginning we choose S1 = COV and S2 = COV4 and define the fourth-
order-blind-identification (FOBI) functional as:

Definition 7 Let x be a p-variate random vector with finite fourth moments and
set S1 = COV and S2 = COV4. Then the FOBI functional is defined as the p ×
p matrix-valued functional W which simultaneously diagonalizes S1 and S2. That
means

W(x)S1(x)W(x)� = Ip and W(x)S2(x)W(x)� = D(x),

where D(x) is a diagonal matrix with decreasing diagonal elements.

For convenience and when the context is clear the dependence on x of S1, S2,W
and D will be omitted. The FOBI functional W is usually obtained by first whiten-
ing x �→ xst = S1(x)−1/2(x − E(x)) and then performing an eigenvalue-eigenvector
decomposition of S2(xst ) = UDU�. It can then be shown that W = US−1/2

1 , and
that D in the eigenvalue-eigenvector decomposition of S2(xst ) is the same D from
the Definition 7 of the FOBI functional. The latent components z1, . . . , z p are then
obtained as z = Wx. The intuition behind W = US−1/2

1 is that W = US−1/2
1 gives

latent components z = Wx obtained by first whitening x with respect to S1 and then
choosing z to be the principal components, with respect to S2 of the whitened x.

In [19] it is shown that in the ICA model the diagonal elements of D, d1, . . . , dp

correspond to kurtosis measures of latent variables z yielding di = 1 if and only if
E(z4i ) = 3. Thus, in ICA, the FOBI functional is well-defined (up to signs) if all
independent components have distinct kurtoses and in that case z corresponds to the
original independent components up to signs and order.

FOBI was originally suggested as an ICA method in [5] and considered in an
exploratory data analysis context in [22], and for NGCA and NGICA for example in
[25], while recently reviewed in [29].

Recently it was discovered that not only the combination COV and COV4 is
useful but that in general

W(x)S1(x)W(x)� = Ip and W(x)S2(x)W(x)� = D(x),

is of interest outside of an elliptical model where S1 and S2 can be arbitrary scatter
functionals or are sometimes required to satisfy certain properties. The reason why
the combination S1 − S2 is considered especially outside an elliptical model is that
if x has an elliptical distribution all scatters calculated at x, provided that they exist,
are proportional to each other.
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In [23, 30] it is shown that any two scatter functionals which have the full inde-
pendence property can be used to as an ICA method. The approach as a general
exploratory method was introduced as invariant coordinate selection (ICS) [38]
and useful for example for finding groups or outliers and as a transformation-
retransformation method in multivariate nonparametrics [1, 24, 38]. For the
exploratory use, there are also some guidelines provided in [38] on how to choose
the two scatters while arguing that there is no general best combination.

For two squared dispersion measures S1 and S2, one can define a generalized
kurtosis measure with respect to S1–S2 as Ku(x) = S2(x)/S1(x). Furthermore, for
scatter functional S and random vector z = (z1, . . . , z p), S(zi ) := e�

i S(z)ei = S(z)i i
is a squared dispersion measure for every i = 1, . . . , p, where ei is the i-th vector
of canonical bases of Rp. In that manner, for two scatters S1 and S2, and a latent
vector z = (z1, . . . , z p), S2(z)i i/S1(z)i i can be interpreted as generalized kurtosis
measures for the corresponding latent component zi , with respect to S1–S2, for every
i = 1, . . . , p. Relevant for our purpose is that for any combination, S1 and S2, of
scatter functionals and for any vector u ∈ R

p, the diagonal elements d1, . . . , dp of
D satisfy,

u�S2(z)u
u�S1(z)u

=
p∑

i=1

u2i di .

Therefore, for each i , di = S2(z)i i/S1(z)i i , gives the marginal kurtosis of zi with
respect to S1–S2. In that manner, standard kurtosis can be considered a kurtosis
measure with respect to COV–COV4.

In the followingwewill give results on how to use other scatter functionals besides
the FOBI combination for NGCA and NGICA. Prior to stating any formal results we
will introduce the following ordering. Let (d1, . . . , dp) be the vector in Rp such that
p − q of its components are all equal and the rest, q of them, mutually distinct and
distinct from the p − q equal ones. We say that it is ordered in decreasing-to-equal
order if d1 > d2 > · · · > dq and dq+1 = · · · = dp.

As the basic NGCA model has two independent blocks where at least the noise
block is symmetric, basically any two scatter functionals can be used for this purpose.

Result 1 Let x follow an NGCA model formulated using location functional T and
scatter functional S1 and let S2 be a scatter functional different from S1. WriteW =
U�S1(x)−1/2, where U is the matrix of unit eigenvectors of S2

(
S−1/2
1 (x − T(x))

)

(with corresponding eigenvalues in decreasing-to-equal order). If there exists no
such q-variate vector u with u�u = 1 such that u�s has the same kurtosis in the
S1–S2 sense as a Gaussian component and if all non-Gaussian components s have
mutually distinct kurtoses in S1–S2 sense, then

Wx = ((O1s)� (O2n)�)�,

where O1, O2 are orthogonal matrices.
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There should be p − q equal elements in D which give the directions for the
Gaussian subspace, however the specific value which corresponds to a Gaussian
component might depend on S1, S2 and s and might therefore be difficult to identify
in a finite data setting. Also as in general in NGCA, only the subspaces can be
identified. Making the stronger assumption of an NGICA model helps in this case,
but the chosen scatters are then required to have the block independence property.

Result 2 Let x follow an NGICA model formulated using location functional T and
scatter functional S1 and let S2 be a scatter functional different from S1, where
S1 and S2 have the block-independence property. Write W = U�S1(x)−1/2, where

U is the matrix of unit eigenvectors of S2
(
S−1/2
1 (x − T(x))

)
(with corresponding

eigenvalues in decreasing-to-equal order). If there exists no such q-variate vector u
with u�u = 1 such that u�s has the same kurtosis in the S1–S2 sense as a Gaussian
component and if all non-Gaussian components s have mutually distinct kurtoses in
S1–S2 sense, then

Wx = ((Js)� (On)�)�,

where J is a diagonal matrix with diagonal elements 1, −1 and O is an orthogonal
matrix.

The requirement of block independence property can be relaxed under certain
circumstances.

Result 3 Let x follow an NGICA model formulated using location functional T
and scatter functional S1 such that all but one component of s are symmetric and
let S2 be a scatter functional different from S1. Write W = U�S1(x)−1/2, where U
is the matrix of unit eigenvectors of S2 (S1(x)) (with corresponding eigenvalues in
decreasing-to-equal order). If there exists no such q-variate vector u with u�u = 1
such that u�s has the same kurtosis in the S1–S2 sense as a Gaussian component
and if all non-Gaussian components s have mutually distinct kurtoses in S1–S2 sense,
then

Wx = ((Js)� (On)�)�,

where J is a diagonal matrix with diagonal elements 1, −1 and O is an orthogonal
matrix.

To conclude this section we would, however, like to point out that in NGCA and
NGICA theGaussian subspace can still be separated from the non-Gaussian subspace
if the kurtoses in S1–S2 sense of the signals are not distinct as long as they differ
from the corresponding Gaussian value.

4 Testing the Signal Dimension in NGCA and NGICA

FOBI is such a popular functional since it is solely moment based and therefore ana-
lytical considerations are fairly easy. However, it requires strong moment assump-
tions and suffers from a lack of robustness. In the NGCA and NGICA context the



Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace 109

FOBI functional has the advantage that the values in D of Gaussian components are
known to be one. Therefore, in these models, in [25, 27] is suggested the testing
procedure to test the hypothesis

H0k : There are exactly k non-Gaussian components

by testing that there are p − k eigenvalues in D equal to 1.
The criterion used in [25, 27], to identify the eigenvalues which are closest to

1, is (di − 1)2, thus the variance of the p − k elements of D closest to 1 is used as
the test statistic. Denote d(i), i = 1, . . . , p the ascending ordered eigenvalues in the
sense above, then the test statistic from [25, 27] for a sample x1, . . . , xn is

Tk = n
p−k∑

i=1

(
d(i) − 1

)2
.

In [25, 27] it is then shown that assuming E(z4i ) exist for i = 1, . . . , p and that
there is no q-variate vector u with u�u = 1 such that E((u�s)4) = 3, where s is the
signal component, one can use FOBI for estimating the signal and noise subspaces
in NGCA and NGICA models as well as making inference about their dimensions.

Before stating the result that gives the limiting distribution of the test statistic Tk
and enables for testing of H0k , k ∈ {1, . . . , p}, we defineUk to be the p × k matrix of
eigenvectors of S2 that correspond to the aforementioned p − k eigenvalues inD that
are closest to 1, and the statistic T ∗

k = n tr(((0, Ip−k)Uk(S2 − Ip)U�
k (0, Ip−k)

�)2).
The statistic T ∗

k then corresponds to the test statistic for testing H0k in case where
the noise part is known.

Result 4 Under the previously stated assumptions and under H0q

1. for k < q, (p + 2)2Tk →P c for some c > 0 as n → ∞,
2. for k = q, (p + 2)2Tk →d Ck as n → ∞ and
3. for k > q, (p + 2)2Tk ≤ (p + 2)2T ∗

k →d Ck, as n → ∞,

where
Ck ∼ 2σ1Q1 + (2σ1 + σ2(p − k))Q2,

where Q1, Q2 are independent, chi-squared distributed, random variables with (p −
k − 1)(p − k + 2)/2 and 1 degrees of freedom respectively, and σ 2

1 = Var(||z||2) +
8, σ2 = 4.

The proof of the Result 4 can be found in [25]. In this setting, the null hypothesis
is rejected if Tk ≥ ck,α , where ck,α is chosen so that P(Ck ≥ ck,α) = α. Note that,
in order to find ck,α one must consistently estimate σ1. If we write ẑi = Ŵ(xi − x̄)

i = 1, . . . , n, then in the NGICA model we have σ1 =
∑p

k=1
E(z4k) − p + 8, with

a consistent estimate

σ̂1 = 1

n

n∑

i=1

p∑

k=1

(ẑi )
4
k − p + 8.
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In the wider NGCA model σ1 can be consistently estimated by

σ̂1 = 1
n

n∑

i=1

||ẑi ||4 − p2 + 8.

Besides Tk [25] proposes also alternative for this problem such as

(p + 2)2Tk,1
2σ̂ 2

1

and
(p + 2)2Tk,2

2σ̂ 2
1 + 4(p − k)

,

where Tk,1 = n

(
∑p−k

i=1 d2
(i) −

(∑p−k
i=1 d(i)

)2
)

and Tk,2 = n
(∑p−k

i=1 (d(i) − 1)
)2
.

Under the true H0k , proposed test statistics have chi-squared distributions with
(p − k − 1)(p + 2 − k)/2 and 1 degrees of freedom respectively. One can show
that Tk,1 + Tk,2 ∼ χ2

(p−k−1)(p+2−k)/2+1, and argue that Tk,1 provides a test statistic for
testing the equality of p − k eigenvalues closest to 1, while Tk,2 measures the devia-
tion of the mean of those eigenvalues from the theoretical value of one. In [25] it is
also argued that those two statistics use less information than Tk , and are therefore in
most cases less powerful and that the limiting behaviour of their sum is quite similar
to the one of Tk .

Result 4 gives the limiting distribution of Tk , and therefore when using it in
practice, due to the involvement of higher order moments, one might need very
large sample sizes for the result to hold. For the case of small sample sizes, in
[25] is proposed to estimate the distribution of the test statistic under the null by
bootstrapping samples from distribution for which the null hypothesis H0k is true
and which is as close as possible to the empirical distribution of observed sample.

Let X = (x1, . . . , xn) be a data sample, and let x̄ denote the sample mean vector.
Further, let Ŵ = (Ŵ�

1 Ŵ�
2 )� be the sample estimates of the FOBI unmixingmatrices

where the partition (Ŵ�
1 Ŵ�

2 )� was done according to the descending order of the
eigenvalues in D̂ in sense as described in Sect. 3. Furthermore, let Ŝ = (ŝ1, . . . , ŝn) =
Ŵ1(X − x̄1�

n ) ∈ R
k×n and N̂ = (n̂1, . . . , n̂n) = Ŵ2(X − x̄1�

n ) ∈ R
(p−k)×n be the

matrices of the estimated signal and noise vectors, ŝi and n̂i , i ∈ 1, . . . , n respec-
tively. 1n denotes here an n-vector full of ones. The proposed strategy in the
NGICA model is using non-parametric bootstrap to create matrices S∗ ∈ R

k×n

by componentwise(row-wise)-independently sampling with replacement from Ŝ,
and using parametric bootstrap to create N∗ ∈ R

(p−k)×n as a random sample from
N (0, Ip−k). Resulting bootstrap sample is then X∗ = Ŵ−1(S∗� N∗�)�.

A similar approach for NGCA model was introduced in [27]. The strategy is to
initially sample with replacement an n-dimensional sample X̃ ∈ R

p×n from X and
then estimate its signal matrix S∗ = Ŵ1X̃. In order for the noise space to be Gaussian
transform X̃ into X∗ = Ŵ−1(S∗� N∗�)�, where N∗ ∈ R

(p−k)×n is an n-dimensional
random sample from N (0, Ip−k).

We showed earlier that using the general two scatter functionals approach is
possible forNGCAandNGICAgiven the scatter functionals fulfill certain properties.
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However it is already not in general possible to say which eigenvalues correspond to
directions indicating the Gaussian subspace. Thus deriving a general asymptotic test
for any scatter combination does not sound feasible. However the bootstrap strategy
described above for FOBI can be adapted.

One of the alternative test statistics mentioned earlier which considers only the
variance of the eigenvalues can be used here, when adding the additional assumption
that the Gaussian subspace is larger than any set of the signal subspaces which would
share the same eigenvalue, which is for example in NGICA anyway required.
where d(1), . . . d(p−k) are those p − k eigenvalues of Ŝ2 that have the smallest vari-
ance of all p − k subsets of the set of eigenvalues of Ŝ2. t̂k is then the estimator
of the variance of those p − k eigenvalues of S2 that correspond to the Gaussian
components.

Hence, for k ∈ {0, . . . , p − 2} one can test H0k by examining the variance of
the p − k eigenvalues closest together in that sense. In that manner we propose a
bootstrap procedure that uses two scatter matrices S1, S2 and a location functional
T and starts with a sample X = (x1, . . . , xn) ∈ R

p×n . Using sample estimators T̂
and Ŝ1 of T and S1 respectively, scatter estimator S2 as its sample estimate based
on standardized sample Ŝ−1/2

1 (X − T̂1�
n ), and calculates corresponding unmixing

matrix Ŵ as discussed in Sect. 3. The test statistic used for testing H0k is then

t̂k = n
p−k∑

i=1

⎛

⎝d(i) − 1

p − k

p−k∑

j=1

d( j)

⎞

⎠

2

,

where d(1), . . . , d(p−k) are those p − k eigenvalues of Ŝ contained in D̂ that have the
smallest variance of all p − k - subsets of the set of eigenvalues in D̂. Thus, t̂k is
the estimator of the variance of those p − k eigenvalues of Ŝ2 that correspond to the
Gaussian components.

Once the eigenvalues corresponding to the signal and noise space have been
identified one can order the diagonal elements of D̂ in a way that the last p − k
eigenvalues form a p − k - subset of set of all eigenvalues of Ŝ2 with the minimal
variance, and obtain the corresponding partitioning of Ŵ = (Ŵ�

1 Ŵ�
2 )�. Finally, the

signal and the noise parts of the latent sample Z are estimated as ŝi = Ŵ1(xi − T̂)

and n̂i = Ŵ2(xi − T̂) respectively yielding thematrices Ŝ ∈ R
k×n and N̂ ∈ R

(p−k)×n

which collect the estimated signal and noise vectors.
Since the bootstrapping strategy for the signal part is dependent on the model, in

the NGCA model we use the non-parametric bootstrap to create the signal sample
S∗ by sampling with replacement from Ŝ.

In the NGICAmodel, where signal components are mutually independent, we use
non-parametric bootstrap to create matrix S∗ ∈ R

k×n by componentwise(row-wise)-
independently sampling with replacement from Ŝ.
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We also propose two strategies for sampling the noise component. Parametric
bootstrap creates noise sample N∗ ∈ R

(p−k)×n as a random sample from N (0,COV
(N)), while the nonparametric bootstrap creates noise sample N∗ = (n∗

1, . . . ,n
∗
n) ∈

R
(p−k)×n , such that n∗

i ← Oi n̂i , i = 1, . . . , n, where Oi is a random orthogonal
p − k × p − k matrix. The nonparametric strategy does not directly target a normal
noise but assumes spherical noise as a proxy.

For the latent component sample Z∗ = (S∗� N∗�)� obtained by bootstrapping
procedure explained above, set X∗ = W−1Z∗. Finally, assuming that X∗

1, . . . ,X
∗
M

are M independent bootstrap samples obtained as described above and t̂∗i,k = t̂k(X∗
i )

are the corresponding test statistics, the bootstrap p-value is given by

p̂ = #(t̂∗i,k ≥ t̂k) + 1

M + 1
.

The bootstrapping procedure for the combination of any two scatters is given in
a schematic view in Algorithm 1.

Algorithm 1 Algorithm for testing H0k : q = k.
Set the proposed dimension k; Set the number of bootstrap samples M ; Choose two scat-
ter functionals S1 and S2 and location functional T; Starting with the observed sample X =
(x1, . . . , xn), xi ∈ R

p estimate T̂ = T(X), Ŝ1 = S1(X); Calculate centered and standardized sam-
pleXc = (xc1, . . . , x

c
n) andX

st = (xst1 , . . . , xstn ) respectively, where xci = xi − T̂, xsti = Ŝ−1/2
1 (xi −

T̂), i = 1, . . . , n; Estimate Ŝ2 = S2(Xst ) and calculate its eigenvalue-eigenvector decomposition
Ŝ2 = ÛD̂Û�; Calculate two-scatter functional Ŵ = ÛŜ−1/2

1 ; Order eigenvalues in D̂ so that

the variance of the last p − k eigenvalues in D̂ is minimal and derive the corresponding par-

titioning of Ŵ = (Ŵ�
1 Ŵ�

2 )�; Compute the test statistic t̂k = n
p−k∑

i=1

⎛

⎝di − 1

p − k

p−k∑

j=1

d j

⎞

⎠

2

as

the estimate of the variance of the last p − k eigenvalues in D̂; Calculate the signal estimate
Ŝ = (ŝ1, . . . , ŝn) = Ŵ1Xc and the noise estimate N̂ = (n̂1, . . . , n̂n) = Ŵ2Xc; Choose a bootstrap-
ping strategy for the noise; Choose the model suitable for the signal; for j ∈ {1, . . . , M} do

if Strategy = parametric bootstrap then
n∗
i ← Np−k(0,COV(N̂)), i = 1, . . . , n;

if Strategy = nonparametric bootstrap then
n∗
i ← Oi n̂i , i = 1, . . . , n, where Oi is a random orthogonal p − k × p − k matrix;

if Model = NGCA then
Sample S∗ with replacement from Ŝ;

if Model = NGICA then
For each j = 1, . . . , k sample with replacement j-th signal component (s∗

j,1, . . . , s
∗
j,n) ←

(ŝ j,1, . . . , ŝ j,n), and set S∗ = [s∗
i, j ]

Compute X∗ = Ŵ−1(S∗� N∗�)�; Compute t̂∗j,k based on X∗;

Return bootstrap p-value: p̂k = [#(t̂∗j,k ≥ t̂k) + 1]/(M + 1);
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5 Performance Evaluation of the Test

The following simulation study is performed using R 3.6.1 [31] with the packages
SpatialNP [34], ICtest [26], JADE [17], ICS [24], png [39], RcppRoll [40] and
extraDistr [42], and it was conducted to compare the bootstrap FOBI test from [25]
to four different testing procedures based on Algorithm 1 with the expectation as the
location functional and the following pairs of scatter matrices:

1. Cov-Cov4: S1 = COV, S2 = COV4.

Note that there is a difference between the “FOBI” and the Cov-Cov4 testing
procedures. In the “FOBI” denoted case the information that the noise eigenvalues
should be one is used while in the Cov-Cov4 denoted case Algorithm 1 is used
ignoring this information.

2. Cau-Hub: S1 is M-estimator based on the likelihood of the t-distribution with
one degree of freedom (ν = 1), also known as the Cauchy distribution. S2 is an
M-estimator based on Huber’s weight function.

3. sCau-sHub: is the symmetrized version of the previous setting, thus a sym-
metrized M-scatter based on the Cauchy distribution and a symmetrized M-
scatter based on Huber’s weight function.

As estimation of both scatters in sCau-sHub is computationally very expensive
and not feasible in the large data sets we follow a suggestion from [18] to base the
symmetrized scatters not on all pairwise differences but only on an “incomplete” set
which makes it much easier to compute. For details see [18].

4. sCauI-sHubI: is the incomplete combination of symmetrized scatters. We com-
pute both scatters so that all observations are contained in 100 differences.

For more details on the computation of all the scatters see also the documention of
the R-packages SpatialNP [34] and ICS [24].

Due to the computational costs and as it seems more natural to us, in all four
settings always parametric bootstrap is used for the noise part.

To compare the bootstrap tests, we consider two different settings which both are
6-variate and have each 3 signal and 3 noise components. Model M1 follows an
NGCA model and model M2 an NGICA model. In all cases the 6 × 6 matrix A was
simulated in each iteration independently by filling it with random N (0, 1) elements.
The two models used are:

M1: An NGCA model with two non-Gaussian univariate components s1 and s2,
representing x and y axis of the Greek letter � respectively, a non-Gaussian
univariate component s3 with χ2

1 distribution and three independent Gaussian
components N (0, 1). Hence, p = 6, q = 3. Figure1 visualizes the three non-
Gaussian components of this setting.
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Fig. 1 Scatter plots of signal components in M1 based on a sample of 500
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Fig. 2 Scatter plots of signal components in M2 based on a sample of 500

M2: An NGICA model with three independent components which all follow
a Gaussian mixture model (GMM) with different parameter settings: s1 ∼
(3 + √

3)−1φ−5,1 + (1 − (3 + √
3)−1)φ5,1, s2 ∼ 0.7φ10,2 + 0.3φ15,5 and s3 ∼

0.4φ−4,1 + 0.6φ2,15, whereφμ,σ denotes the pdf of the normal distributionwith
meanμ and variance σ 2. The three noise components are independent N (0, 1).
Therefore, p = 6, q = 3. For more insight into the shape of the non-Gaussian
components see Fig. 2.

Note that if a random variable x comes from the two-component GMM, with
equal variances for the components and the mixing probability is (3 + √

3)−1, then
its kurtosis is equal to 3 for all choices of means of two components. Therefore, in
the model M2, the kurtosis of the component s1 equals 3. Hence, the requirements
of Result 2 are violated when the scatter combination S1 = COV and S2 = COV4

is used. Thus it is to be expected that neither Cov-Cov4 nor FOBI will be able to
separate s1 form the Gaussian components, which should result in very low rejection
rates in testing for H02.

In order to gain insight into the robustness of the proposed testing procedures we
consider also the case when in the two settings small contamination is added. The
perturbed models are denoted M1x and M2x respectively and are obtained by adding
an additional perturbation (equal to 10 16) to 0.5% of the mixed observations.
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Table 1 M1 assuming NGCAmodel: rejection rates in 1000 repetitions for bootstrap tests of H02,
H03 (true) and H04, with α = 0.05
n FOBI (boot) Cov-Cov4 Cau-Hub sCau-sHub sCauI-sHubI

k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4

500 0.363 0.035 0.016 0.360 0.088 0.031 0.954 0.061 0.017 0.788 0.055 0.027 0.233 0.091 0.083

1000 0.553 0.057 0.016 0.553 0.074 0.031 1.000 0.050 0.011 1.000 0.053 0.018 0.717 0.072 0.059

2000 0.839 0.049 0.015 0.801 0.065 0.024 1.000 0.051 0.012 1.000 0.044 0.016 0.994 0.055 0.045

4000 0.986 0.057 0.012 0.977 0.051 0.012 1.000 0.055 0.013 0.045 0.035

Table 2 M1 assuming NGICAmodel: rejection rates in 1000 repetitions for bootstrap tests of H02,
H03 (true) and H04, with α = 0.05
n FOBI (boot) Cov-Cov4 Cau-Hub sCau-sHub sCauI-sHubI

k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4

500 0.384 0.047 0.033 0.402 0.128 0.061 0.967 0.190 0.119 0.813 0.148 0.078 0.302 0.168 0.149

1000 0.539 0.043 0.030 0.555 0.084 0.043 1.000 0.114 0.067 1.000 0.079 0.049 0.734 0.161 0.135

2000 0.831 0.035 0.029 0.804 0.054 0.040 1.000 0.077 0.057 1.000 0.046 0.035 0.996 0.096 0.072

4000 0.985 0.049 0.030 0.976 0.039 0.028 1.000 0.068 0.049 0.050 0.052

For all samples X ∈ R
n×p from models M1, M2, M1x and M2x , with sample

sizes n = 500, 1000, 2000, 4000, the bootstrap p-values based on M = 200 boot-
strap samples were computed using the five tests described above where we use only
parametric bootstrapping for the noise part. This is due to the computational complex-
ity of the simulation and as it seems to be a more natural suggestion. We performed
all the bootstrap tests once assuming an NGCAmodel and once assuming an NGICA
model. 1000 repetitions where performed at the level α = 0.05 and Tables1, 2, 3,
4, 5, 6, 7 and 8 report the rejection rates for H02, H03(true) and H04 in all discussed
settings. In the case n = 4000 also due to computational complexity the tests sCau-
sHub have not been performed. In our settings the non-FOBI combinations should all
be able to separate the signal and noise subspaces but only the symmetrised scatters
would actually be able to recover the individual signal components in model M2.

Table 3 M1x assuming NGCA model: rejection rates in 1000 repetitions for bootstrap tests of
H02, H03 (true) and H04, with α = 0.05
n FOBI (boot) Cov-Cov4 Cau-Hub sCau-sHub sCauI-sHubI

k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4

500 0.299 0.132 0.034 0.189 0.109 0.087 0.952 0.063 0.019 0.713 0.095 0.035 0.262 0.097 0.086

1000 0.183 0.092 0.006 0.149 0.103 0.072 1.000 0.054 0.012 0.963 0.188 0.045 0.674 0.129 0.096

2000 0.366 0.102 0.008 0.273 0.089 0.058 1.000 0.047 0.013 0.996 0.274 0.045 0.943 0.173 0.054

4000 0.705 0.159 0.019 0.568 0.147 0.049 1.000 0.062 0.021 0.996 0.306 0.074
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Table 4 M1x assuming NGICA model: rejection rates in 1000 repetitions for bootstrap tests of
H02, H03 (true) and H04, with α = 0.05
n FOBI (boot) Cov-Cov4 Cau-Hub sCau-sHub sCauI-sHubI

k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4

500 0.320 0.160 0.099 0.202 0.231 0.159 0.966 0.216 0.129 0.743 0.229 0.087 0.271 0.153 0.116

1000 0.191 0.131 0.042 0.145 0.206 0.150 1.000 0.133 0.061 0.961 0.343 0.110 0.677 0.244 0.116

2000 0.369 0.135 0.056 0.279 0.178 0.120 1.000 0.079 0.045 0.997 0.429 0.116 0.931 0.358 0.151

4000 0.708 0.194 0.049 0.581 0.213 0.120 1.000 0.083 0.039 0.998 0.472 0.115

Table 5 M2 assuming NGCAmodel: rejection rates in 1000 repetitions for bootstrap tests of H02,
H03 (true) and H04, with α = 0.05
n FOBI (boot) Cov-Cov4 Cau-Hub sCau-sHub sCauI-sHubI

k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4

500 0.076 0.014 0.007 0.088 0.047 0.040 0.938 0.107 0.095 0.995 0.081 0.051 0.817 0.220 0.112

1000 0.076 0.025 0.009 0.075 0.021 0.015 0.999 0.067 0.055 1.000 0.076 0.064 0.993 0.113 0.091

2000 0.064 0.007 0.007 0.050 0.014 0.007 1.000 0.029 0.043 1.000 0.029 0.043 1.000 0.050 0.107

4000 0.064 0.016 0.003 0.052 0.017 0.010 1.000 0.052 0.021 1.000 0.048 0.055

Table 6 M2 assuming NGICAmodel: rejection rates in 1000 repetitions for bootstrap tests of H02,
H03 (true) and H04, with α = 0.05
n FOBI (boot) Cov-Cov4 Cau-Hub sCau-sHub sCauI-sHubI

k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4

500 0.122 0.052 0.035 0.142 0.099 0.098 0.960 0.369 0.264 0.997 0.227 0.144 0.858 0.371 0.252

1000 0.112 0.051 0.028 0.095 0.064 0.039 0.999 0.247 0.195 1.000 0.115 0.100 0.995 0.196 0.159

2000 0.086 0.021 0.014 0.064 0.029 0.021 1.000 0.121 0.107 1.000 0.050 0.036 1.000 0.086 0.114

4000 0.072 0.036 0.028 0.052 0.031 0.029 1.000 0.117 0.095 1.000 0.060 0.058

Table 7 M2x assuming NGCA model: rejection rates in 1000 repetitions for bootstrap tests of
H02, H03 (true) and H04, with α = 0.05.
n FOBI (boot) Cov-Cov4 Cau-Hub sCau-sHub sCauI-sHubI

k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4

500 0.264 0.069 0.033 0.403 0.200 0.095 0.923 0.110 0.083 0.993 0.263 0.105 0.763 0.237 0.130

1000 0.436 0.076 0.028 0.477 0.180 0.083 0.999 0.080 0.065 1.000 0.572 0.169 0.981 0.304 0.160

2000 0.700 0.107 0.036 0.686 0.221 0.093 1.000 0.064 0.050 1.000 0.900 0.143 1.000 0.579 0.171

4000 0.934 0.066 0.009 0.919 0.071 0.047 1.000 0.060 0.038 1.000 0.871 0.131

First we note in Tables1-8 that the differences between FOBI and Cov-Cov4 are
rather small and probably mainly due to having different bootstrap samples. At least
it is not obvious from these results that the knowledge of the value the eigenvalue of
interest is of much relevance. It is however obvious that this combination of scatters
does not work well in Model M2 as expected due to s1.
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Table 8 M2x assuming NGICA model: rejection rates in 1000 repetitions for bootstrap tests of
H02, H03 (true) and H04, with α = 0.05
n FOBI (boot) Cov-Cov4 Cau-Hub sCau-sHub sCauI-sHubI

k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4 k2 k3 k4

500 0.307 0.131 0.106 0.472 0.272 0.160 0.945 0.369 0.262 0.994 0.399 0.180 0.800 0.410 0.208

1000 0.489 0.164 0.116 0.555 0.271 0.135 0.999 0.244 0.193 1.000 0.653 0.205 0.992 0.436 0.208

2000 0.757 0.200 0.129 0.736 0.286 0.136 1.000 0.157 0.107 1.000 0.929 0.143 1.000 0.671 0.157

4000 0.940 0.083 0.060 0.917 0.128 0.112 1.000 0.183 0.119 1.000 0.876 0.157

Also from the robustness point of view the behaviour is as expected for this scatter
combination and it performs poorly in the contaminated settings. In general, it seems
that the combination Cau-Hub performs best. It works well in uncontaminated and
contaminated cases while beingmore robust than the symmetrized counterparts. This
is not a surprise as outliers have larger effects when symmetrizing and especially
in the incomplete case. Comparing the symmetrized and incomplete symmetrized
results it can be seen that the incomplete case starts to work in the uncontaminated
settings when the sample sizes are sufficiently large, which is acceptable as it would
anyway only be used when the usage of all pairwise differences would become too
costly.

The knowledge whether the data actually follows an NGCA model or an NGICA
model during bootstrap seems also only of minor relevance while the results in the
NGICA model seem to be slightly worse than in the broader NGCA model, which
can be simply due to difference in bootstrap samples. However, it is also possible
that the difference in performance of bootstrap tests wrongly assuming NGICA and
assuming NGCA would be larger in data sets where more dependence is introduced
into signal components.

In Sect. 4 we suggested a strategy for testing the dimension of the signal space in
NGCA and NGICA using any pair of scatter matrices. The simulation results show
that under the null hypothesis of exactly k = q non-Gaussian components, the alpha
level is kept while the rejection frequencies are low if k is larger than q and high if
k is smaller than q. This is in accordance with Result 4 which was derived however
for FOBI only.

6 Estimation of the Signal Space Dimension

Usually the dimension q in NGCA or NGICA is unknown and therefore needs
to be estimated from the data. The results from Sect. 5 encourage us to apply for
this purpose the hypothesis tests successively. Different strategies for the successive
testing are possible and while the test statistic is monotone in the dimension, its
distribution is changing as can be seen from the FOBI results. Therefore different
strategies might not yield the same dimension estimate.
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In the following we will introduce two different strategies and compare them in a
simulation study. The first strategy is denoted as the incremental strategy. This strat-
egy assumes initially at least one Gaussian component and then tests successively,
at level α, H0k, k = p − 2, . . . , 0. The estimated q̂ is the smallest k for which H0k

is not being rejected at level α, i.e.

q̂ = min{k ∈ {0, . . . , p − 2} : H0k is not being rejected}.

An algorithmic scheme is presented for this strategy in Algorithm 2.

Algorithm 2 Estimating dimension q of the signal subspace using an incremental
approach
Set the proposed dimension k = p − 2; Set the significance level α; Initiate the parameters of the
Algorithm 1; repeat

Test for H0k and compute bootstrap p-value p̂k using Algorithm 1; if p̂k > α then
k = k − 1

until p̂k ≤ α or k = 0;
Return the estimate q̂ = k + 1 of the signal dimension

For the incremental strategy the number ofGaussian components should be prefer-
ably small. If one suspects that this would not be the case, for example a divide and
conquer strategy could be applied to find a point where acceptance switches to rejec-
tion at a specific level α. A possible variant for a divide and conquer strategy is
presented in Algorithm 3.

Algorithm3Estimating dimension q of the signal subspace using divide and conquer
strategy

Set the proposed dimension k = 
 p
2 �; Set the significance levelα; Set q0min = 1 and q0max = p − 1;

Initiate the parameters of the Algorithm 1;
repeat

Test H0k and H0(k−1) using Algorithm 1; if H0k is not rejected and H0(k−1) is rejected then
Return q̂ = k;

if H0k is not rejected and H0(k−1) is not rejected then

q1min ← q0min , q
1
max ← k − 1, k = 
 q1max+q1min

2 �

if H0k is rejected then

q1min ← k + 1, q1max ← q0max , k = 
 q1max+q1min
2 �

Update: q0min ← q1min , q
0
max ← q1max

until q0min = q0max ;
Return the estimate q̂ = k of the signal dimension
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Naturally in both algorithms prior knowledge could be incorporated by adjusting
the starting points of the procedures and also many other strategies are possible.
As suggested in [27], a sequence of bootstrap test sizes αk for testing H0k can be
determined so that the consistency of the procedure is preserved, but due to simplicity
we will use fixed test sizes αk = α = 0.05, ∀k.

We restrict ourselves to compare only these two strategies by adjustingmodelsM1
and M2 slightly. In the adjusted models M1∗ and M2∗ the same signal components
are used as in M1 and M2 respectively, but the number of Gaussian components
is doubled to 6. As there was little difference in performance when bootstrapping
an underlying NGCA or NGICA model, we restrict ourselves to assume an NGCA
model. Moreover, encouraged by results presented in Tables1-8 we compare only
the scatter combinations Cov-Cov4 and Cau-Hub, where all tests are executed at
level α = 0.05.

Based on 500 repetitions Fig. 3 shows the estimated signal dimensions.
Figure3 shows that especially with increasing sample size correct dimensions

are estimated in both models when using Cau-Hub, whereas as expected, Cov-Cov4
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Fig. 3 Frequencies of estimated dimension of the non-Gaussian subspace for incremental strategy
(Inc) and divide and conquer (D&C) strategy in models M1* andM2* based on 500 iterations when
using different scatter combinations and different sample sizes
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fails to recognize one signal in M2∗. It needs however also larger sample sizes
compared toCau-Hub inmodelM1∗. It also shows that there are differences between
the strategies and at least here incremental strategy looks a bit better, which could
possibly be justified by argumentation presented before in this section.

7 Conclusion

Dimension reduction is of increasing importance and quite often it is considered that
the interesting subspace of the data is non-Gaussian. NGCA and NGICA are two
dimension reduction approaches which follow these ideas and try to separate the
Gaussian subspace from the non-Gaussian one. There are many methods suggested
in the literature for NGCA and NGICA but usually they assume that the dimensions
of the subspaces are known, which is rather unrealistic. In this paper we show under
which conditions two different scattermatrices can be used to estimate the subspaces.
Based on this approach we suggest also bootstrap tests to test for a specific subspace
dimension and show how successive applications of the presented tests can be used
to obtain an estimate of the dimensions of interest. A disadvantage of our suggestion
is the computational complexity which also depends on the scatter matrices selected.
Especially when using symmetrized scatters this becomes quite demanding, but if
the sample sizes are large it seems that incomplete symmetrized scatters can be
successfully used too. However, as we pointed out—usage of symmetrized scatters
is actually not required if the goal is just to separate the two subspaces, since also
non-symmetrized scatters can be rightfully used for the separation. It is just in the
NGICA model that these combinations might not be able to recover the signals.
Therefore, one strategy here could be to use computationally faster and often more
robust regular scatter functionals in order to find the non-Gaussian subspace, and
then to apply, on the estimated subspace, a regular ICA method, for example one
based on two symmetrized scatter matrices, to estimate the independent components.
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supported by the Austrian Science Fund (FWF) Grant number P31881-N32.

8 Appendix

Proof of the Result 1 Assume x follows an NGCAmodel formulated using location
functional T and scatter functional S1, x = Az = A1s + A2n, and let S2 be scatter
functional different from S1.
Let S2(xst ) = ŨDŨ� be eigen decomposition of S2, where xst = S1(x)−1/2x and
the eigenvalues in D are ordered so that d1 > · · · > dq and dq+1 = · · · = dp. Let
W = Ũ�S1(x)−1/2 and A = ULV be an SVD decomposition of mixing matrix A.
Since x = Az,
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S1(x)−1/2x = UV�z, S2(xst ) = UV�S2(z)(UV�)�.

S2(z) and S2(xst ) are similar and thus have the same eigenvalues. Hence

S2(z) = UBDU�
B =⇒ S2(xst ) = UV�UBDU�

B (UV�)�,

where UB is orthogonal matrix. Since S2(xst ) = ŨDŨ� then Ũ = UV�UBPBJ,
where J is a sign-changing matrix and PB = diag(Iq ,Pp−q) is block-diagonal matrix
with the first block being an identity and the second block being a permutationmatrix.
Therefore

W = (UV�UBPBJ)�S1(x)−1/2.

S2(z) is a block-diagonalmatrix implying thatUB is also block-diagonal,with orthog-
onal blocks UB1 ∈ R

q×q and UB2 ∈ R
(p−q)×(p−q). Hence,

Wx = J�((U�
B1s)

� (P�
p−qU

�
B2n)�)�.

Proof of the Result 2 Assume x follows an NGICAmodel formulated using location
functional T and scatter functional S1 with block-independence property, x = Az =
A1s + A2n, and let S2 be scatter functional different from S1 also having block-
independence property.
Let S2(xst ) = ŨDŨ� be eigen-decomposition of S2(xst ), where xst = S1(x)−1/2x
and the eigenvalues inD are ordered so that d1 > · · · > dq and dq+1 = · · · = dp. Let
W = Ũ�S1(x)−1/2 and A = ULV be an SVD decomposition of mixing matrix A.
Since x = Az,

S1(x)−1/2x = UV�z, S2(xst ) = UV�S2(z)(UV�)�.

S2(z) and S2(xst ) are similar and thus have the same eigenvalues. Hence

S2(z) = UBDU�
B =⇒ S2(xst ) = UV�UBDU�

B (UV�)�,

where UB is orthogonal matrix. Since S2(xst ) = ŨDŨ� then Ũ = UV�UBPBJ,
where J is a sign-changing matrix and PB = diag(Iq ,Pp−q) is block-diagonal matrix
with the first block being an identity and the second block being a permutationmatrix.
Therefore

W = (UV�UBPBJ)�S1(x)−1/2.

S2(z) is a block-diagonalmatrix implying thatUB is also block-diagonal,with orthog-
onal blocks Iq ∈ R

q×q and UB2 ∈ R
(p−q)×(p−q). Hence,

Wx = J�(s� (P�
p−qU

�
B2n)�)�.



122 U. Radojičić and K. Nordhausen

Proof of the Result 3 Assume x follows an NGICA model, x = Az = A1s + A2n,
and assume that all but oneof one component of s are symmetric. Sincen hasGaussian
distribution, all but one of the independent blocks in z are symmetric implying that
any scatter matrix S(z), provided that it exists at z, has the block-independence
property. Now, the Result 3 follows directly from Result 2.
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A Comparison of Robust Model Choice
Criteria Within a Metalearning Study

Petra Vidnerová, Jan Kalina, and Yeşim Güney

Abstract The methodology of automatic method selection (metalearning) allows
to recommend the most suitable method (e.g. algorithm or statistical estimator) from
several alternatives for a given dataset, based on information learned over a training
database of datasets. Practitioners have become accustomed to using metalearning
in the context of regression modeling, which is useful in a variety of applications in
different fields. Still, none of previous metalearning studies on regression targeted at
regression complexity issues and the majority of available metalearning studies for
regression considered the standardmean square error as the prediction errormeasure.
In this paper, a metalearning study focused on comparing different method selection
criteria for the regression task is presented. A prediction rule, recommending the best
regression estimator (possibly robust), is constructed over 31 training datasets. These
are publicly available datasets, inwhich the linearmodelwas carefully examined to be
suitable. The results with the highest classification accuracy are obtained if the choice
of the best estimator is based on robust versions of Akaike information criterion,
particularly the version derived from MM-estimators. The work also advocates an
implicitly weighted robust prediction mean square error.
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1 Introduction

In the standard linear regression model, the ordinary least squares estimator is noto-
riously known to be vulnerable to the presence of outliyng measurements (outliers)
in the data. Because real data are typically (or perhaps always) contaminated by
noise and/or outliers, a number of robust statistical estimators has been proposed
and investigated as reliable resistant alternatives to the least squares [27]. Clearly,
no robust method is able to be the most suitable for all possible datasets and the
question of selecting the most suitable robust regression estimator for a particular
datasets remains open.We believe that it is insolvable bymeans of analyticalmethods
in statistics to acquire theoretical recommendations for choosing a particular robust
estimator for a particular dataset. Still, MM-estimators are currently considered to
be the most promising robust regression estimator, mainly because of their ability
to combine high efficiency with high robustness [14]. The situation is however not
unambiguous. Wilcox [43] namely admitted that no study of performance of MM-
estimators under heteroscedasticity has been available. In addition, both efficiency
and robustness of MM-estimators, which are theoretically obtained under stringent
assumptions, become deteriorated even if the number of variables in the model is
moderate (larger than small) [35].

Computer scientists invested a lot of effort into general approaches for developing
tools for finding the best model (method) from a certain (given) class for a particular
dataset. This so-calledAlgorithmSelection Problem (ASP) is one of crucial problems
for solving intelligent systems for automatic data analysis in the rapidly developing
field of Automatic Machine Learning (AutoML), completely removing the necessity
tomanually select a suitablemethod for a given dataset [9, 19]. Particular approaches
for ASP have already been investigated together with their algorithms, properties,
and effectiveness [19, 38].

Automatic method selection (also known as metalearning, automatic model
choice,model selection, optimal algorithm selection, learning to learn etc.) represents
one of the most important approaches to ASP. It can be described as a computational
approach allowing to recommend the most suitable method or algorithm for a given
dataset, based on information learned over a training database of real datasets. The
information in the training database plays the role of prior knowledge, which can
be exploited for a new independent dataset. Metalearning has become popular in
recent works in classification, optimization, and also (but less frequently) regression
tasks, including the analysis of big biomedical data [25]; in these tasks, metalearning
contributes to making the analysis of real data more accessible to laymen without
statistical expertise [25]. For these reasons, metalearning has established its position
among practitioners, especially in specific situations when e.g. the user does not want
to directly use methods too slow to be computed exactly [29].

Only within the last decade, metalearning was able to establish attractive appli-
cations [4]. The review [38] recalled 190 recent references on metalearning applica-
tions. Particularly, metalearning was successfully used to recommend the best opti-
mization procedure [28] or the best variable selection method prior to a subsequent
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classification analysis [42]. Metalearning was used in [29] to answer the question
whether optimization of parameters of a given classifier will improve its classifi-
cation accuracy. Metalearning was also performed to compare various optimization
tools (mainly hybrid algorithms) for business, economics and finance [39], or to rec-
ommend parameters for support vector regression based on regression complexity
measures [24]. Metalearning has also been applied in the task of recommending the
best robust estimator in the linear regression model in [18], where metalearning in its
habitual form was revealed to be vulnerable to data contamination by noise or out-
lying values (outliers), and a robustified approach was proposed; still, the automatic
character of metalearning does not allow a detailed (manual) analysis of outliers or
other diagnostics.

Advantages of metalearning were summarized in the review [4]; still, we hold the
opinion that a conscientiously critical evaluation ofmetalearning remainsmissing. In
regression, standard mean square error was used in the seminal metalearning studies
[6, 24], while alternative robust prediction errors (cf. [2]) have not been compared.
Using the (non-robust) mean square error is however not suitable, if the data are
contaminated by outliers [14]. Moreover, it was claimed in ([24], p. 238) that none
of previous metalearning studies on regression explicitly addressed regression com-
plexity, which remains (together with an application of robust information criteria
[37]) a topic for future research. A mistake on p. 43 of [3], where a large number of
features in metalearning is claimed to lead to overfitting, indicates that even experts
on metalearning do not understand its statistical aspects.

Automatic method selection by means of metalearning is performed in this paper
in the context of recommending a suitable robust regression estimator for a given
dataset. We recall robust regression estimates and robust prediction errors or robust
information criteria in Sect. 2 using these (standard or robust) criteria for the method
selection task. The particular metalearning study is described in Sect. 3. Its results
are presented in Sect. 4 and the discussion follows in Sect. 5.

2 Robust Regression

The metalearning study of this paper considers 31 datasets. For one (any) particular
dataset with n observations, we have values of a continuous response denoted as
Y1, . . . ,Yn . We consider the standard linear model

Yi = β1Xi1 + · · · + βp Xip + ei i = 1, . . . , n. (1)

with parameters β = (β1, . . . , βp)
T ∈ Rp, where we assume the vector of regres-

sors (covariates, independent variables) for the i-th observation, denoted as Xi =
(Xi1, . . . , Xip)

T , to always have Xi1 = 1 for i = 1, . . . , n. Thus, the linear model
always contains an intercept. We assume homoscedastic random errors e1, . . . , en
with the common variance var ei = σ 2 for each i = 1, . . . , n, where σ 2 > 0 is
an unknown nuisance parameter. We use the notationX for the matrix with elements
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Xi j , where i = 1, . . . , n and j = 1, . . . , p. Various available robust regression esti-
mators of β will be described in Sect. 2.1. Evaluating the prediction error of a given
estimator by means of robust Akaike information criteria is described in Sect. 2.2
and by means of robust mean square errors in Sect. 2.3.

2.1 Robust Estimation in the Linear Regression Model

We recall several important robust estimators of β in (1) in this section. While M-
estimators and S-estimators are not used in the metalearning study, we will exploit
robust information criteria (defined below in Sect. 2.2) based on their estimation
principles. We will use the notation u1(b), . . . , un(b) for residuals corresponding to
a fixed vector b = (b1, . . . , bp)

T ∈ Rp. In other words,

ui (b) = Yi − b1Xi1 − · · · − bpXip = Yi − XT
i b, i = 1, . . . , n, (2)

M-estimators of β require to compute a scale statistic σ̂M , i.e. estimate of σ ,
which is regression invariant and scale equivariant, and to choose an absolutely
continuous functionρM : R → R, commonly assumed to be convexwith a derivative
ψM(x) = dρ(x)/dx . Formally, M-estimators are defined by

arg min
b∈Rp

n∑

i=1

ρM

(
ui (b)

σ̂M

)
, (3)

where
σ̂M = C · med|ui − med(ui )| (4)

with med denoting the median. It is common to take C = 1.4826 under the assump-
tion of normality (see p. 313 of [32]). In particular, when ρM(t) = t2/2, the solution
is equal to the least squares estimate.

It is not common to compute M-estimators by means of (3). If ψM is assumed to
be continuous, M-estimators can be alternatively defined as one of solutions of

arg min
b∈Rp

n∑

i=1

Xiψ

(
ui (b)

Sn

)
= 0 ∈ Rp, (5)

i.e. of the set of p equations in the form

arg min
b∈Rp

n∑

i=1

Xi jψ

(
ui (b)

Sn

)
= 0, j = 1, . . . , p. (6)
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At least one solution is a
√
n-consistent estimate of β; see Sect. 5.5 of [15] for the

discussion of asymptotic properties of M-estimators in (1). M-estimators have also
been investigated under the assumption that ψ is a nondecreasing step function;
see Sect. 4.3 of [14]. At any case, because M-estimators in (1) do not have a high
breakdown point, i.e. are not highly resistant against severe outliers in the data, we
do not use them in our metalearning study.

MM-estimators of β in (1) were proposed in [44] as tools allowing to tune robust-
ness and efficiency simultaneously, which makes them so popular in current sta-
tistical applications [14, 27, 44]. The user must select another smooth function ρ0

for the initial estimate and a smooth function ρMM ; the function ψMM is defined as
the derivative of ρMM , i.e. ψMM(x) = dρMM(x)/dx . MM-estimators are computed
within a three-stage procedure:

(a) Initial estimator T̂ = (T̂1, . . . , T̂n)T ∈ Rp with a high breakdown point is com-
puted;

(b) Using residuals
ui (T̂) = Yi − XT

i T̂, i = 1, . . . , n, (7)

an M-scale (i.e. M-estimator of σ ) σ̂MM = σ̂MM(ui (T̂)) with a high breakdown
point is computed;

(c) The MM-estimator is obtained as one of solutions of the set of equations (with
variable b ∈ Rp)

1

n

n∑

i=1

XiψMM

(
ui (b)

σ̂MM

)
= 0 ∈ Rp. (8)

We can see that the final expression (8) has the form of (5), but it is computed with
a specific scale estimate σ̂MM obtained in the first two stages. The consistency of
MM-estimators under specific technical assumptions was derived in [44].

The LTS estimator [33] is defined as

arg min
b∈Rp

h∑

i=1

u2(i)(b), (9)

where
u2(1)(b) ≤ u2(2)(b) ≤ · · · u2(n)(b) (10)

are values arranged in ascending order. We put h to be equal to �3n/4�, where �x�
denotes the integer part of x ∈ R. This seems to be the most common choice in the
literature (cf. [14]). An approximate algorithm for the LTS was proposed in [33].

The least weighted squares (LWS) estimator (see e.g. [41]) for the model (1)
generalizes the LTS based on implicit weighting of individual measurements. It per-
forms down-weighting of individual measurements through the idea to assign small
(or zero) weights to potential outliers. The LWS estimator, which has acquired only
much smaller attention compared to the popular LTS, may attain a high breakdown



130 P. Vidnerová et al.

point, if a suitable weight function is chosen. The LWS estimator is at the same time
robust to heteroscedasticity [41], but it its primary attention is focused on estimat-
ing β and not on outlier detection.

The definition of theLWSexploits the concept ofweight function,which is defined
as a function ξ : [0, 1] → [0, 1]; it must be continuous on [0, 1] with ξ(0) = 1 and
ξ(1) = 0.Theweight function is assumed to have both one-sided derivatives existing
in all points of (0, 1), where the one-sided derivatives are bounded by a common
constant; also, the existence of a finite left derivative in 0 and finite right derivative
in point 1 is assumed [40, 41].

The LWS estimator with a given ξ is defined as

bLWS = arg min
b∈Rp

n∑

i=1

ξ

(
i − 1/2

n

)
u2(i)(b). (11)

We may understand the quantities

wi = ξ

(
i − 1/2

n

)
, i = 1, . . . , n, (12)

as weights; we may express w1, . . . , wn as

ξ

(
1

2n

)
, . . . , ξ

(
2i − 1

2n

)
, . . . , ξ

(
2n − 1

2n

)
. (13)

Alternatively, we may start with choosing a fixed non-increasing sequence of non-
negative weights w1, . . . , wn and formulate an equivalent definition of the LWS
estimator of β in the form

bLW S = arg min
b∈Rp

n∑

i=1

wi u
2
(i)(b). (14)

In this way, the observation with the smallest absolute residual obtains the largest
weight w1 etc. and the most outlying observation with the largest absolute residual
obtains the smallest weight wn . Note that we do not need to require the weights to
be standardized to the condition

∑n
i=1 wi = 1.

If we denote the ranks of (2) by R1(b), . . . , Rn(b), i.e. with Ri (b) denoting the
rank of u2i (b) among u21(b), . . . , u2n(b), we may express the LWS estimator as

bLW S = arg min
b∈Rp

n∑

k=1

ξ

(
Ri (b) − 1/2

n

)
u2(i)(b). (15)
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It is meaningful to consider only weight functions which are non-increasing; only
then, less reliable measurements obtain smaller weights. We use here the trimmed
linear weights generated for a fixed τ ∈ [1/2, 1) by

ξ(t) =
(
1 − t

τ

)
· 1[t < τ ], t ∈ [0, 1], (16)

where 1[.] denotes an indicator function. Here, τ is in relationship with the trim-
ming, i.e. there are �τn� measurements retained and the remaining measurements
are ignored; this is analogous to α for the LTS. We use τ = 3/4 in the computations.

For the computation of the LWS estimator, an analogy of the FAST-LTS algorithm
of [33] exploiting the form (15), which is appealing from a computational perspec-
tive, can be formulated in a straightforward way. This approximate algorithm was
characterized as reliable based on empirical evidence [18].

2.2 Robust Akaike Information Criterion

We recall Akaike information criterion (AIC) and its several robust versions here.
AIC represents a general information–theoretical measure of quality of a regression
fit, originally designed for model selection, which has also been recommended as
a measure of prediction error, i.e. as a model (method) selection criterion. It was
proposed in [1] as

AIC = −2 log L(yi ; θ̂) + 2p (17)

for a very general situation. Here, we consider the linear model (1). The value
log L(yi ; θ̂) is the maximized log-likelihood function computed for the given model
and θ̂ = (β̂1, . . . , β̂p, σ̂ )T is the considered estimate of θ = (β1, . . . , βp, σ )T . In lin-
ear regression, the log-likelihood is typically (and also in our case) evaluated under
the assumption of normally distributed errors. To select the most suitable model
out of several possible choices, practitioners typically decide for the model with the
smallest value of AIC.

Robust versions of AIC, denoted as M-AIC, S-AIC and MM-AIC, are based on
M-estimators, S-estimators andMM-estimators, respectively. Theywere proposed in
[37] and further investigated also in [13] or [14]. Robust versions of AIC, extending
the pioneering ideas of [31], were successful also in models with autoregressive
errors in the paper [11]. The definitions of the robust AIC criteria are formulated
for a given model and given estimate θ̂ of θ . Residuals corresponding to the M-
estimatorβM ,whichhas alreadybeen computed and is thus knownat thismoment, are
denoted as uM = (uM

1 , . . . , uM
n )T . Residuals of the MM-estimator βMM are denoted

as uMM = (uMM
1 , . . . , uMM

n )T . Scale estimates obtained by the M-estimation, S-
estimation, and MM-estimation are denoted as σ̂M , σ̂S , and σ̂MM , respectively. The
formal definitions proposed by [37] are
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M-AIC = 2
n∑

i=1

ρM

(
uM
i

σ̂M

)
+ 2tr(J−1

n Kn), (18)

S-AIC = 2n log(σ̂S) + 2tr(J−1
n Kn), (19)

and

MM-AIC = 2
n∑

i=1

ρMM

(
uMM
i

σ̂MM

)
+ 2tr(J−1

n Kn); (20)

here, tr denotes the matrix trace and the (rather technical) definitions of the empirical
information matrices Jn and Kn can be found in [37]. It is worth noting that Jn and
Kn are defined in the same manner for all robust versions of AIC. The loss functions
ρM and ρMM corresponding to M- or MM-estimation were defined in Sect. 2.1.

In our computations, we use Huber’s function for M-AIC and Tukey’s biweight
function for S-AIC. MM-AIC is used here with an initial S-estimator with Tukey’s
biweight function and with Huber’s function playing the role of ρMM . Let us also
recall that Huber’s ρ function is defined as

ρH (t) =
⎧
⎨

⎩

1
2 t

2, if |t | ≤ c1,

c1|t | − c21
2 , if |t | > c1,

(21)

where c1 > 0 is a tuning constant; to obtain the 95 % asymptotic efficiency on the
standard normal distribution one can take c = 1.345 [13]. Tukey’s biweight function
is defined as

ρT (t) =

⎧
⎪⎨

⎪⎩

t2

2 − t4

2c22
+ t6

6c42
, if |t | ≤ c2,

c22
6 , if |t | > c2,

(22)

where c2 > 0 is a tuning constantwhich controls the breakdownpoint of the estimator.
We use the usual choice c2 = 1.547, which allows to reach the maximal breakdown
point. The loss functions ρH and ρT are implemented in package robustbase of R
software [22].

2.3 Robust Mean Square Error

Themost standard choice of the prediction measure in (1) is the mean square (predic-
tion) error (MSE). After computing a particular estimate for given data, let r1, . . . , rn
be its prediction errors and let us consider them arranged (in squares) in ascending
order as

r2(1) ≤ · · · ≤ r2(n). (23)
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We also consider two robust versions of MSE.
The trimmed mean square error (TMSE) is defined for α ∈ [1/2, 1) as

TMSE(α) = 1

h

h∑

i=1

r2(i), (24)

where h = �αn�. We now define the weighted mean square error (WMSE) as

WMSE =
n∑

i=1

ξ

(
Ri − 1/2

n

)
r2(i), (25)

where Ri denotes the rank of r2(i) among r21 , . . . , r
2
n . Equivalently, using the same idea

as in the definition of the LWS estimator, we may perceive values (12) as magnitudes
of (non-increasing) weights and denote WMSE as

WMSE =
n∑

i=1

wi r
2
(i). (26)

In the computations, we use the weight function ξ (16) corresponding to the trimmed
linear weights. This allows to obtain a robust value of MSE trimming away about
one quarter of the observations, which should hopefully be sufficient for real datasets
to ignore true (but always unknown) outliers.

3 Description of the Metalearning Study

As characterized in Sect. 1, metalearning is a computational approach allowing to
exploit information frompreviously observed datasets and to extend it to newdatasets
[3]. The aim of the metalearning study presented here is to recommend the most
suitable regression estimator for a new dataset, exploiting the information from 31
datasets described in Sect. 3.1.

Wewill now describe the metalearning study with all its steps and chosen parame-
ters. First, four linear regression estimators are fitted for each of the given datasets and
the best estimator is found using various characteristics of Sects. 2.2 and 2.3. This
constitutes the primary learning part of the study, which is described in Sect. 3.2.
Then, a set of 9 selected features (Sect. 3.3) is retained for each of the individual
datasets together with the result of the primary learning, which typically has the
form of the index of the best method for each of the training datasets. The secondary
learning part (Sect. 3.4) performed over these data (i.e. features and results of the
primary learning) learns a classification rule by one of 7 different classifiers, allow-
ing to predict the best regression method for a new dataset not present in the training
database.
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3.1 Data Acquisition and Pre-processing

We work with 31 publicly available datasets, presented in Table1 together with
some their basic characteristics. Only datasets with trustworthy documentation are
considered, which are explicitly claimed to have been subjected to standard pre-
processing (cleaning, suitable transforms of variables). Some of the datasets are well
known as benchmarking datasets for the linear regression task. It is important that
linear regression modeling has been presented in the literature for each of the 31
datasets (i.e. with the same response as is considered in our study) and the linear
model has been found appropriate there. This study extends a preliminary study
[18], which did not however consider any information criteria.

All observations (measurements) with anymissing value are deleted here; this was
however performed only for one dataset, while the others do not contain any missing
values. Further, we performed an automatically detection of categorical variables.
Categorical variables such with 3 or more categories were omitted for the purpose
of computational complexity. Binary variables were replaced by a single dummy
variables, interpreted as indicators of the first group. We use the intercept in (1) for
each of the datasets. We do not perform any special treatment of multicollinearity,
which does not seem to represent a major issue here due to small values of p.
Actually, the computation of none of the estimators reported any warning, which
would be however common in multicollinear data.

The response Y1, . . . ,Yn was transformed to contain values between 0 and 1 by
the commonly used transform

Yi �−→ Yi − mini Yi
maxi Yi − mini Yi

, i = 1, . . . , n. (27)

In the same way, all continuous regressors were transformed. Such transforms do not
influence the prediction ability of the regression estimators, because all regression
methods of this study are scale- and regression-equivariant, but do influence the
features computed from each dataset. This is beneficial, as the original measurements
differ greatly amongdatasets, as they also come fromdifferent fields and applications.

3.2 Primary Learning

In the first step of the metalearning, we consider the standard linear regression model
(1) for each of the datasets. There are the following 4 regression estimators, described
already in Sect. 2.1, fitted for each of the given datasets. Here we also specify the
computational tools in R software used in our study.

• Least squares (LS), implemented in function lm.
• MM-estimator, implemented in function lmrob of the package robustbase. We use
the default version, i.e. with breakdown point 0.5 and efficiency 0.95.
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Table 1 The 31 datasets together with their basic characteristics. If missing values are present in
a dataset, we omitted all observations for which the value of any of the variables is missing
Index Dataset Response variable n p Source Missing

values

1 Aircraft Cost 23 5 [26] None

2 Ammonia Unprocessed percentage 21 4 [36] None

3 Auto MPG Miles per gallon 392 5 [8] Omitted

4 Boston
housing

Crime rate 506 6 [8] None

5 Building Electricity consumption 4208 7 [34] None

6 California
housing

Median house price 20,640 9 [5] None

7 Cirrhosis Death rate 46 5 [36] None

8 Coleman Test score 20 6 [26] None

9 Concrete
compression
strength

Concrete compression
strength

1030 7 [8] None

10 Delivery Delivery time 25 3 [26] None

11 Education Education expenditures 50 4 [26] None

12 Electricity Output 16 4 [36] None

13 Employment # of employed people 16 7 [36] None

14 Engel Food expenditures 235 2 [21] None

15 Furniture Log relative wage 11 2 [20] None

16 Houseprices Selling price 28 6 [36] None

17 Imports Level of imports 18 4 [36] None

18 Investment Investment 22 2 [17] None

19 Istanbul
stock
exchange

Istanbul index 536 8 [8] None

20 Kootenay Newgate 13 2 [26] None

21 Livestock Expenses 19 5 [36] None

22 Machine PRP 209 7 [8] None

23 Murders # of murders 20 4 [36] None

24 NOx
emissions

LNOx 8088 4 [26] None

25 Octane Octane rating 82 5 [36] None

26 Pasture Pasture rental price 67 4 [36] None

27 Pension Reserves 18 2 [26] None

28 Petrol Consumption 48 5 [36] None

29 Stars CYG Log temperature 47 2 [26] None

30 Travel and
tourism

TSI 141 13 [7] None

31 Wood Wood gravity 20 6 [26] None
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• Least trimmed squares (LTS), implemented in function ltsReg of the package
robustbase, using h = �3n/4�.

• Least weighted squares (LWS) with trimmed linear weights (16), using our own
implementation.

The best estimator is found using each of the information criteria of Sect. 2.2
and each of the prediction error measures of Sect. 2.3. The best estimators, i.e. the
estimator (out of the 4 ones), which has the smallest value of the particular error
measure or information criterion, is found always within a (standard) leave-one-out
cross validation. The results are presented in Sect. 4.

3.3 Features

In the secondary learning described in Sect. 3.4 below, we compute the following set
of 9 features for each dataset.

(A) The number of observations n;
(B) The value of p as denoted at the beginning of Sect. 2, i.e. the set of regressors

contains a vector of ones and p − 1 additional regressors.
(C) The ratio n/(p − 1);
(D) p-value of the (approximate) Shapiro-Wilk test for the least squares, evaluated

by means of the function shapiro.test of R software. The test of Shapiro-Wilk
is a well known test of normality of the errors e1, . . . , en in (1);

(E) Skewness of residuals of the least squares in (1);
(F) Kurtosis of residuals of the least squares in (1);
(G) Coefficient of determination R2 for the least squares in (1), which is known as

the most commonly used goodness-of-fit characteristic of the linear model;
(H) Estimated percentage of outliers in (1) evaluated by 1

n

∑n
i=1 I [ui/σ̂ > 2.5],

where u1, . . . , un are residuals obtained by the LTS with h = 0.5 and σ̂ is the
estimate of σ obtained by the LTS with h = 0.5. This rule suggested by [32]
was repeatedly advocated in the literature on outlier detection (cf. [14]);

(I) p-value of the Breusch-Pagan test applied to the least squares residuals in (1),
evaluated by means of the function bptest of the package lmtest of R software.
This is a standard heteroscedasticity test of the random errors e1, . . . , en . While
the test is based on assessing variability in an auxiliary model, we use its default
form, i.e. exactly all regressors from (1) appear in the auxiliary model in the
form

var ei = α1Xi1 + · · · + αp Xip + γi , i = 1, . . . , n, (28)

with parameters (α1, . . . , αp)
T and random errors γ1, . . . , γn .
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3.4 Secondary Learning: The Classification Task

In the primary learning, we learn whichmethod is the best for each particular dataset.
To be specific, the LWS estimator turns out to be best for the first dataset, the MM-
estimator for the second dataset etc. Only this information from the primary learning,
together with the features of Sect. 3.3, are used in the secondary learning. In other
words, the full datasets are not used now any more. We can say that we consider
a nominal categorical variable with 4 possible values; this has 31 values for the 31
datasets and the value for a given dataset states, which of the 4 estimators was the
best for the given dataset in the primary learning (with a given method selection
criterion). This variable plays now the role of a response in a classification task to
4 groups, where the features are the explanatory variables now. Such classification
task does not suffer from multiple testing (i.e. no hypothesis testing is performed
here in the task to recommend the best estimator for a particular dataset).

We use the following available classification methods for the metalearning task.
The computation of most of them is performed exploiting available packages of R
software, which are presented in Table2.

• Support vector machine (SVM) classifier with Gaussian kernel,
• k-nearest neighbor classifier with k = 5,
• Multilayer perceptron (MLP) [12] with 2 hidden layers, which contain 6 and 3
neurons, with a sigmoid activation function in each hidden layer, and a linear
output,

• Radial basis function (RBF) network [12, 23] with N = 15 RBF units,
• Linear discriminant analysis (LDA),

Table 2 Results of the secondary learning within the metalearning study performed over 31
datasets. The results are evaluated as classification accuracies in a leave-one-out cross validation

Model
choice
criterion

RBF
network

MWCD–
LDA

SVM k-NN MLP LDA SCRDA

R package e1017 class ANN2 RSNNS MASS rda –

MSE 0.58 0.48 0.52 0.55 0.55 0.55 0.55

TMSE
(0.75)

0.65 0.52 0.58 0.58 0.58 0.58 0.58

TMSE
(0.85)

0.65 0.52 0.58 0.58 0.58 0.58 0.58

WMSE 0.65 0.48 0.58 0.58 0.58 0.58 0.61

AIC 0.58 0.45 0.55 0.55 0.55 0.55 0.55

M-AIC 0.58 0.48 0.58 0.58 0.58 0.58 0.58

S-AIC 0.58 0.48 0.48 0.52 0.55 0.58 0.58

MM-AIC 0.65 0.52 0.58 0.61 0.58 0.61 0.61
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• Shrunken centroid regularized discriminant analysis (SCRDA) of [10],
• MWCD-LDA,which is obtained as a robust version of LDAbased on theminimum
weighted covariance determinant estimator (MWCD) of [30], with the weight
function (16). This is the only classifier, for whichwe use our own implementation.

Hyperparameters for regularized classifiers (SVM, SCRDA, MWCD-LDA) were
optimized in a standard 10-fold cross validation.

4 Results

We used the R software for the whole metalearning study. The results of the met-
alearning study,which solves a classification task to 4 groups, are presented in Table2
evaluated in the form the classification accuracy, i.e. ratio of correctly classified cases
(datasets). Among the 7 different classifiers, the SVM classifier turns out to yield the
best performance. The best result is obtained for the approach exploiting MM-AIC,
if the SVM classifier is used; in this situation, the best regression method is found
correctly in 64 % of datasets.

We can see that approaches based on robust versions of MSE outperform those
using the plainMSE; amongdifferent versions of robustMSE,WMSEseems superior
to others. Robust versions of AIC yield superior results compared to those of plain
AIC, while robust AIC based on MM-estimation turns out to be actually the very
best tool in this study.

Comparing the relevance of individual features, those denoted as (D), (H) and (I)
seem to be the most useful within the secondary learning. This (subjective) conclu-
sion was made by comparing the performance of various classifiers over all possible
subsets of features (of various sizes). The classification accuracies were, jointly for
all 7 classifiers, the largest for situations when the features (D), (H) and (I) were all
considered. This correspond to our intuition, because these features are connected
to assumptions of the least squares (normality of errors, i.i.d. errors without contam-
ination, and homoscedasticity) and their severe violation requires to use a (highly)
robust approach instead.

5 Discussion

While various robust estimators are available for the linear regression model, there
are no theoretical justifications for using a particular robust estimator for a given
dataset. Actually, we believe that it remains impossible to analytically derive rules
recommending to use a particular robust estimator for particular data. Therefore, this
work is devoted to an automaticmethod selection study bymeans of themetalearning
methodology, recommending the best (robust or non-robust) regression estimator
for the linear regression model. The classification rule of the automatic method
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selection is learned over a training database of 31 carefully selected publicly available
datasets. We can consider the performance of the constructed rule to be successful
in recommending the most suitable nonlinear regression estimator, even in spite of
the difficulty of the secondary learning into 4 groups.

While choosing a proper measure of prediction error in linear regression is known
as a difficult task as such [2], the presented results bring novel arguments in favor
of robust versions of AIC, especially MM-AIC. We can perceive AIC as well as
its robust versions as conceptually simple, yet powerful tools reliable also under
multicollinearity (in contrary to model choice based on hypothesis testing).

Reliable (resistant) metalearning should, based on our experience, desire to use
the following.

• Homogeneous datasets.
• A small number of methods (estimators, algorithms). At the same time, these
should be very distinct (i.e. well distinguishable, not just slightly modified version
of the same approach).

• A suitable robust prediction error, particularly a robust version of AIC.
• A suitable classification method, preferably an SVM classifier with a Gaussian
kernel.

As future research, we intend to work on the robustification and automation of the
whole metalearning process, which would allow to perform metalearning in realistic
scenarios over very large databases of datasets; this however requires to select the
particular model (1) carefully for each dataset to avoid misspecification. Other open
topics include the performance of robustAICversions in nonlinear (robust) regression
[16] or performance of robust estimators for high-dimensional data; especially MM-
estimators are known to lose their robustness and efficiency for data with n < p [35].
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On Parameter Estimation for High
Dimensional Errors-in-Variables Models

Silvelyn Zwanzig and Rauf Ahmad

Abstract Estimation of parameter vector for a linear model with errors-in-variables
is consideredwhen the number of regressorsmay exceed the sample size. As the clas-
sical approaches fail in this high-dimensional setting, new approaches are assessed.
In particular, we address the problem from two perspectives. Assuming the usual
functional model setting, the first solution concerns a generalization of the classi-
cal total least squares estimator. The second option assumes structural model and
is based on estimating the unknown covariance matrix of large dimension. In both
cases, only the exact solutions are considered so that no asymptotics are required.
We assume normality, along with a few other mild assumptions, but do not assume
any sparsity or related conditions.

Keywords Errors-in-variables models · Covariance estimation · Shrinkage

1 Introduction and Objectives

Consider the general linear model with error-in-variables (EIV). Let

Y = Xβ + ε with W = X + Δ, (1)

where X ∈ R
n×p is the design matrix, Y ∈ R

n×1 is the response vector, β ∈ R
p×1 is

the parameter vector, and ε ∈ R
n×1 is the error vector. The second part of Model (1)

implies that X could not be observed for the model due to errors Δ ∈ R
n×p, so that

(W,Y) are the actual observed data. For i = 1, . . . , n, we can equivalently write
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Yi = XT
i β + εi ,

as n independent observations of the model, where Wi = Xi + Δi . Here Xi =
(Xi1, . . . , Xip)

′ are the rows of X. We allow X to be rank deficient, i.e.

r(X) ≤ r(W) = n � p, (2)

and set the following assumptions on Model (1) to proceed further. We will dis-
tinguish between a functional model where the design matrix X consists of fixed
unknown nuisance parameters and the structural model where X1, . . . ,Xn are unob-
served (latent) iid random variables. The functional model is a more general and
complicated model, so that estimators derived for the functional model also hold
under structural model assumptions. For both cases we assume

(A1) E(ε) = 0, Cov(ε) = σ 2
ε I.

(A2) E(Δ) = O, Cov(Δ) = σ 2
w(In ⊗ Ip).

(A3) Δ ⊥⊥ ε, where ⊥⊥ denotes independence.

Note that, under A2, we are essentially assuming that the elements ofΔ, denoted δi j ,
i = 1, . . . , n, j, . . . , p, are all iid with Var(δi j ) = σ 2

w. A3 implies that δi j and εi are
independent, and so are Wi and Yi for fixed X. Finally, A1-A3 suffice for most of
our objectives. However, as we shall partly be dealing with likelihood estimation, a
normality assumption need to be added for δi j , i.e. δi j ∼ N (0, σ 2

w), so that A2 takes
the form

Δ ∼ Nn,p
(
O, σ 2

w(In ⊗ Ip)
)

and ε ∼ Np(0, σ 2
ε I).

Additionally, denoting X = (XT
1 , . . . ,XT

n ), with Xi , i = 1, . . . , n iid vectors, we
assume the following for the structural model.

(A2s) E(X) = O, Cov(X) = In ⊗ Σ X .
(A3s) X ⊥⊥ Δ, where ⊥⊥ denotes independence.

Adding again the normality assumption for likelihood estimation, A3s extends to

X ∼ Nn,p (O, (In ⊗ Σ X )) .

Our main objective is to estimate β under the aforementioned set up, including
particularly (2). As part of the theory rests on the modification of classical solutions
to the EIV problem, we begin, in the next section, with a brief summary of these
solutions. Two approaches, extending the theory to the high-dimensional case, are
discussed in Sect. 3.
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2 Classical Estimation Approaches

Tomotivate the classical approaches, wemay begin with a naive approach, following
the usual least-squares theory, so that

β̃Naive ∈ arg min
β∈Rp

‖Y − Wβ‖2 . (3)

Writing the complete set of naive solutions,

{
(WTW)−WTY + Qz : z ∈ R

p
}

with Q = Ip − (WTW)−(WTW), the favorite estimate in this set is

β̂Naive = (WTW)−WTY.

It can be shown that β̂Naive is inconsistent for p fixed and n → ∞, but becomes
consistent as σ 2

w → 0. It, however, follows that E(β̂|X,Δ) = (WTW)−WTXβ �= β.
Assuming Cov(Δi ) known, and in particular having a simple structure such as σ 2

wI,
a correction to β̂Naive can be proposed such that the corrected estimator,

β̂Corr = arg min
β∈Rp

(‖Y − Wβ‖2 − σ 2
w‖β‖2)

is consistent for p fixed and n → ∞ or for σ 2
w → 0. The impracticality of this

approach stems, among other things, from the fact that the true error variance needs
to be known. Adding other classical solutions, namely Ridge and total least squares
(TLS) estimators, the family of estimators can be compactly represented as

β̂NAME = (W′W + λI)−1W′Y with NAME =

⎧
⎪⎪⎨

⎪⎪⎩

Naive if λ = 0
Corr if λ = −σ 2

w

Ridge if λ = λ

TLS if λ = −λp+1(M)

(4)

where λp+1(M) = λmin is the minimum eigenvalue of the partitioned matrix

M =
(
W′W W′Y
Y′W Y′Y

)
. (5)

The corresponding estimators for Ridge and TLS follow from

β̂Ridge = arg min
β∈Rp

(‖Y − Wβ‖2 + λ ‖β‖2)
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and, given σ 2
ε = σ 2

w = σ 2,

β̂TLS ∈ arg min
β∈Rp,X

(‖Y − Xβ‖2 + ‖X − W‖2) ,

respectively. The TLS approach is by far the most commonly used in the literature.
In fact, the TLS estimator is also MLE under normality assumption in the functional
model. The minimum of TLS problem over X can be shown to be

min
X

(‖Y − Xβ‖2 + ‖X − W‖2) = ‖M1/2η‖2
‖η‖2 where η =

(
β

−1

)
∈ R

p+1 (6)

withM defined above.Now, for n > p, theminimumeigenvalueλmin > 0, a.s., under
the assumptions, so that

β̂TLS = (
WTW − λminIp

)−1
WTY.

3 Proposed Estimation Approaches for p � n

There have been a few recent attempts in the literature to address the question of
estimation of parameter vector for high-dimensional EIV models. Most of these
approaches offer a parallel line of action to the theory for linear models without EIV
problem, e.g. using regularization or shrinkage. Almost all these approaches address
the problem fromoptimization perspective. For example, [2] consider aminimization
problem using a robust matrix uncertainty estimator of the error component in the
EIVmodel, where the ideawas originally introduced in [10]. The solution is obtained
under certain sparsity conditions.

Loh and Wainright [8] propose a regularized corrected LASSO estimator, using
a non-convex objective function leading to a local minimum. A modification of
[8], using convex objective function, is given in [4], which they name as convex
conditional LASSO or CoCoLASSO; for details, see [4].

We note that, the aforementioned approaches impose a penalty term on the param-
eter vector to restrict the estimation space and then find a solution under certain
strong constraints, usually in addition to the other conditions needed to deal with
high-dimensional linear models. In fact, the treatment of EIV model in the literature
has an additional issue, namely that the EIV model estimation is often put forth
purely as an optimization problem, frequently non-convex, without earnestly taking
care of the underlying statistical nature of the question. Consequently, the resulting
estimators may usually have some large sample numerical properties, particularly
consistency, but only at the cost of loosing the statistical spirit of the problem. This
in turn results into its twin problem of non-interpretability of the obtained results.

We consider two alternative approaches to the EIV problem for high-dimensional
case. The first of these attempts, assuming a functional model, generalizes the clas-



On Parameter Estimation for High Dimensional … 147

sical TLS solution introduced above. The second option assumes a structural model
and is mainly based on a well-conditioned estimator of the true covariance matrix.
We address these approaches in the next two subsections.

3.1 Generalized TLS Estimator for Functional Model

Recall the optimal TLS solution in the classical case discussed above, where β̂TLS is
a solution of the minimization problem

min
X

(‖Y − Xβ‖2 + ‖X − W‖2) = 1

1 + ‖β‖2 ‖Y − Wβ‖2 (7)

or, equivalently

β̂TLS ∈ argminβ∈Rp,ηT =(βT ,−1)
‖M1/2η‖2

‖η‖2 , (8)

withM ∈ R
(p+1)×(p+1) defined above.Whereas the unique solution in the n > p case

follows by using λmin(M), the same does not hold for p > n case whence r(M) =
n, a.s., so that m = p + 1 − n of the eigenvalues are zero, i.e. 0, . . . , 0 < λn ≤
λn−1 ≤ . . . ≤ λ1, where r(·) denotes the rank of a matrix. Let e j denote eigenvector
corresponding to the eigenvalue λ j , j = 1, . . . , p + 1. If we let en+1, . . . , ep+1 to be
(p + 1)-dimensional eigenvectors corresponding to them zero eigenvalues, we have

R
p+1 = L {e1, . . . , en} ⊕ L {en+1, . . . , ep+1},

where
L0 = L {en+1, . . . , ep+1} = L ⊥{e1, . . . , en}

is the space corresponding to the zero eigenvalues. For each e = (e1, . . . , ep+1)
T ∈

L0 with ep+1 �= 0, we obtain a TLS estimator by

β̂TLS = −
(

e1
ep+1

, . . . ,
ep
ep+1

)T

∈ argminβ∈Rp,ηT =(βT ,−1)
‖M1/2η‖2

‖η‖2 .

This implies that the minimum of the ratio in (8) is zero. Hence

1

1 + ‖β̂TLS‖2
∥
∥Y − Wβ̂TLS

∥
∥2 = 0 ⇔ ∥

∥Y − Wβ̂TLS

∥
∥2 = 0

so that
{β̂TLS} = {β̃Naive}. (9)
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Now, using the bounds on the ratios of quadratic forms (see e.g. [5, Chap. 2]), we
can write

min
e ∈ L ⊥

0

‖M1/2e‖2
‖e‖2 = λn, (10)

where λn is the minimum positive eigenvalue of M. We therefore propose, as a
possible solution, to use −λn in (4), call it generalized TLS (GTLS), and assess its
feasibility as an optimal solution. Hence, we define

β̂GTLS = argmin
ηT =(βT ,−1),η∈L ⊥

0

‖M1/2η‖2
‖η‖2 .

It then holds that

β̂GTLS =
(

en,1

en,p+1
, . . . ,

en,p

en,p+1

)T

,

where en is the eigenvector corresponding to λn . The GTLS solution now follows,
using M in (5), from the eigenvalue equation

M
(

β̂GTLS
−1

)
= λn

(
β̂GTLS
−1

)

so that
β̂GTLS = (

WTW − λnIp
)−1

WTY.

Note that, due to the use of the eigenvector en corresponding to λn , the GTLS solution
above does not lead to any overfit, since

min
X

(‖Y − Xβ̂GTLS‖2 + ‖X − W‖2) = λn > 0.

3.2 Estimators for Structural Model

Recall the i th observation of the model

Yi = XT
i β + εi , Wi = Xi + Δi , i = 1, . . . , n.

LetXi be iidwithE(Xi ) = 0, Cov(Xi ) = Σ X . Then, forZi = (Wi , Yi )T ∈ R
p+1, we

have, under the assumptions A1, A2s and A3s, an iid sample of Zwith the structured
covariance matrix
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Cov(Z) = Σ(β) = LβΣ XLT
β + σ 2Ip+1

=
(

Σ X + σ 2I Σ Xβ

βTΣ X βTΣ Xβ + σ 2

)
,

using σ 2
ε = σ 2

w = σ 2, where

Lβ = (
βT Ip

)T
, L⊥

β = (
βT , − 1

)T ⇒ LβL⊥
β = 0.

In particular, if we let Σ X = I, then

Σ(β) = LβLT
β + σ 2Ip+1 =

(
(1 + σ 2)IP β

βT ‖β‖2 + σ 2

)
(11)

with the eigenvalues σ 2 + λ(LβLT
β ), where λ(LβLT

β ) denotes the eigenvalues of
LβLT

β , namely
0, 1, . . . , 1, 1 + ‖β‖2.

Note also that, L⊥
β is the eigenvector corresponding to the smallest eigenvalue of

Σ(β). It now follows that the solution under this alternative depends on an efficient,
stable, estimator of Σ(β), say Σ̂ , which is validly applicable for p � n case. To
proceed further, we begin with the following definition of β̂ that holds for such a
well-defined estimator Σ̂ of Σ(β).

Definition 1 Given an estimator Σ̂ , β̂ is defined such that

Σ̂

(
β̂

−1

)
= λ̂min

(
β̂

−1

)
,

where (β̂,−1)T is an eigenvector corresponding to the minimum eigenvalue of Σ̂ ,
i.e. λ̂min.

Obviously, Definition 1 leaves us a set of possible estimators corresponding to a
variety of options of Σ̂ . For example, consider Σ̂ = 1

nMwith n > p. Then β̂ = β̂TLS.
In fact, analogous to the functional case, we can allow Σ̂ to be partitioned, according
to Zi = (Wi , Yi )T , as

Σ̂ =
(

Σ̂WW Σ̂WY

Σ̂YW Σ̂YY

)
, (12)

so that a general solution can be stated as following.

(A4) Assume λmin(Σ̂) > 0 and λmin{Σ̂WW } > λmin(Σ̂).

Note that, the second part of Assumption A4 is the requirement of a sharp interlacing
inequality (see e.g. [11]).
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Theorem 1 Given Σ̂ partitioned as in (12), with λmin(Σ̂) = λ̂min, let A4 hold. Then

β̂ = (
Σ̂WW − λ̂minI

)−1
Σ̂WY . (13)

Proof The proof of Theorem 1 follows by considering the eigenvalue equation,
Σ̂η = λ̂minη̂, with η̂ = (

β̂ − 1
)T
, so that

Σ̂WW β̂ − Σ̂WY = λ̂minβ̂ ⇒ (
Σ̂WW − λ̂minI

)
β̂ = Σ̂WY .

Under Assumption A4, the matrix Σ̂WW − λ̂minI can be inverted which leads to
β̂ = (

Σ̂WW − λ̂minI
)−1

Σ̂WY .

3.3 Estimators of Covariance Matrix

In the sequel, we primarily focus on the problem of estimating Σ(β). Estimation
of large covariance, and also precision, matrices have attracted huge attention of
researchers, particularly due to application of such estimators in the multivariate
theory, typically testing and classification. We specifically discuss a few approaches
in the following which, for our perspective, are worth more attention than the others,
and also because of their simplicity.

3.3.1 Shrinkage Covariance Estimators

Several attempts in the literature on the estimation of large covariance matrix use
James-Stein shrinkage theory, so that formost of them the origin can be traced back to
the idea Stein introduced in [13]. Further, in the context of shrinkage estimation, the
idea most commonly followed is to define an objective function, either the likelihood
function or as a linear, preferably convex, combination of the empirical covariance
matrix and the target matrix the shrinkage is aimed at. Then the only difference
in various proposals of different estimators mainly pertains to how the shrinkage
intensity, in the form of constraint on the objective function, is set.

Stein’s estimator
Stein [13] introduced his idea by re-writing the spectral decomposition of the empir-
ical covariance estimator such that the eigenvalues are modified whereas the eigen-
vectors are left as usual, and then using a specially defined loss function. Precisely,
for iid vectors Zi ∼ Np+1(0,Σ), i = 1, . . . , n, it is well known that

M =
n∑

i=1

ZiZT
i ∼ Wp+1(n,Σ), n ≥ p + 1.
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It is further known that the joint distribution of the eigenvalues λ1 ≥ . . . ≥ λp+1 of
M has a density proportional to (see e.g. [1])

�i< j (λi − λ j )�
n
i=1 exp

(
−λ2i

4

)
for λ1 ≥ . . . ≥ λp+1.

The maximum likelihood estimator of Σ is S = 1
nM and the eigenvalues of Σ , i.e.

γ1 ≥ . . . ≥ γp+1 are estimated by γ̂ j = 1
nλ j . These estimated eigenvalues have the

property that they underestimate the largest, γ1, and overestimate the smallest, γp+1.
WriteM = ELET , where L = diag(λ1, . . . , λp+1), λ1 ≥ . . . ≥ λp+1, so that, the

Stein estimator is
Σ̂ Stein = EΦ(λ)ET ,

withλ = (λ1, . . . , λp+1)
T ,Φ(λ) = diag(φ1(λ), . . . , φp+1(λ)), whereφ1(λ) ≥ . . . ≥

φp+1(λ) are defined as φ j (λ) = λ j/α j (λ), j = 1, . . . , p + 1, and

α j (λ) = n − p − 1 − 2 j + 1 + 2
∑

i> j

λi

λ j − λi
− 2

∑

i< j

λ j

λi − λ j
. (14)

Stein used the aforementioned idea to provide estimators that outperform, for exam-
ple the maximum likelihood estimator, subject to the following convex loss function
which is invariant under a non-singular linear transformation.

L
(
Σ̂,Σ

) = tr
(
Σ−1Σ̂

) − ln
∣∣Σ−1Σ̂

∣∣ − (p − 1). (15)

The key point here is to modify the eigenvalues but not the eigenvectors. Stein also
provided an alternative version of φ j (λ)which keeps the ordering of the eigenvalues;
for details and proofs, see [13].

Condition-number regularized estimator
Won et al. [15] use the usual log-likelihood function

L(Σ) ∝ −1

2
tr(Σ−1M) − n

2
ln |Σ |

as an objective function subject to the constraint composed of condition number

Mκmax =
{
Σ : γmax

γmin
≤ κmax

}

with γmax and γmin as the maximum and minimum eigenvalues of Σ , respectively,
and κmax ≥ 1 is the tuning parameter (shrinkage intensity) such that κmax = 1 leads
to the spherical matrix σ̂ I as (unique) estimator of Σ . In general, it leads to the
estimator, named condition number regularized (CNR) estimator,
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Σ̂CNR = EΛ̃ET ,

where Λ̃ = diag(̃λ1, . . . , λ̃p+1) with

λ̃i = min

{
max

(
τ ∗,

1

n
λi

)
, κmaxτ

∗
}

=
⎧
⎨

⎩

τ ∗ if 1
nλi ≤ τ ∗

1
nλi if τ ∗ < 1

nλi < κmaxτ
∗

κmaxτ
∗ if 1

nλi > κmaxτ
∗

(16)

for some τ ∗ which is data-adaptively determined.

Ledoit-Wolf shrinkage estimator
Ledoit and Wolf [7] is a very recent proposal, whereas the authors have a history of
related work on the estimation of high-dimensional covariance estimators, particu-
larly their pioneering work in [6], where they introduced the objective function as a
convex linear combination of the empirical estimator S = 1

n

∑n
i=1 ZiZT

i and target
estimator T, i.e.

Σ̂LW = (1 − ω)S + ωT.

Taking T = σ̂ 2I, with σ̂ 2 = tr(S)/p, the shrinkage intensity follows as

ω = b2

d2
,

with
b2 = min(b

2
, d2), d2 = ‖S − σ̂ 2I‖2

where

b
2 = 1

n2

n∑

i=1

‖ZiZT
i − S‖2.

Bodnar et al. shrinkage estimator
Following [6], [3] use a similar approach to estimate covariance matrix which they
call generalized linear shrinkage estimator (GLSE). They propose an oracle estima-
tor depending on the true covariance matrix Σ

Σ̂GLSE = α̂S + β̂Σ0

with Σ0 such that tr(Σ0) ≤ M and α̂, β̂ measure the shrinkage intensity, computed
as

α̂ = tr(SΣ)‖Σ0‖2 − tr(SΣ0)tr(ΣΣ0)

‖S‖2‖Σ0‖2 − {tr(SΣ0)}2

β̂ = tr(ΣΣ0)‖S‖2 − tr(SΣ)tr(SΣ0)

‖S‖2‖Σ0‖2 − {tr(SΣ0)}2 .
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Further they suppose a bona fide version of this estimator, where α̂, β̂ are fitted by
the data. Note that, depending on the structure of Σ0, the estimator may or may not
be of Stein type.

3.3.2 MLE under Restrictions

Recall Zi = (WT
i ,Yi ) ∈ R

p+1 and define M = ∑n
i=1 ZiZT

i ∈ R
(p+1)×(p+1). Using

Zi ∼ Np+1(0,Σ(β)), we consider the likelihood function

L(Σ) ∝ |Σ |−n/2 exp

{
−1

2
tr

(
MΣ−1

)}
. (17)

Further, denote the eigenvalues of Σ as γ1 ≥ γ2 ≥ . . . ≥ γp+1 and those of M as

λ1 ≥ λ2 ≥ . . . ≥ λn > 0 and λn+1 = . . . = λp+1 = 0.

We prove the following lemma.

Lemma 1 Given L(Σ) in (17), we have

L(Σ) ≤
(

p+1∏

i=n+1

γi

)− n
2
(

n∏

i=1

λi

)− n
2

nn
2
exp

(
−n2

2

)
. (18)

Proof First, it follows from von Neumann’s inequality for eigenvalues [11, p. 120]
that

tr
(
MΣ−1

) ≥
p∑

i=1

λi · 1
γ i

=
n∑

i=1

λi · 1
γ i

=
n∑

i=1

ηi ,

for the eigenvalues of M and Σ given above, where ηi = λi/γi . This implies that

exp

{
−1

2
tr

(
MΣ−1

)} ≤ exp

{

−1

2

n∑

i=1

ηi

}

=
n∏

i=1

exp

{
−1

2
ηi

}
.

Further, using the properties of determinant, we can write

|Σ |n/2 =
(

p+1∏

i=1

γi

)n/2

=
(

n∏

i=1

γi

)n/2 (
p+1∏

i=n+1

γi

)n/2

.

Hence, from (17), we have
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L(Σ) ≤
(

p+1∏

i=n+1

γi

)− n
2
(

n∏

i=1

λi

)− n
2
(

n∏

i=1

ηi

) n
2

exp

{

−1

2

n∑

i=1

ηi

}

≤
(

p+1∏

i=n+1

γi

)− n
2
(

n∏

i=1

λi

)− n
2 n∏

i=1

{
η
n/2
i exp

(
−1

2
ηi

)}
. (19)

Now, using the fact that the function

f (x) = x
n
2 exp

(
−1

2
x

)

attains its maximum at x = n, we obtain for the last part of (19), that ηmax = n so that
the bound also holds for every ηi = n, which in turn implies γ̂i = λi/n, i = 1, . . . , n.
Finally, the last product in (19) can be bounded above at nn/2 exp(−n/2) such that

L(Σ) ≤
(

p+1∏

i=n+1

γi

)− n
2
(

n∏

i=1

λi

)− n
2

n
n
2 exp

(
−n

2

)
. (20)

Corollary 1 Given Σ with γn+1 ≤ 1
nλn and γ j = 1

nλ j for j = 1, . . . , n. Then Σ

attains the bound in (18).

We know that the true underlying covariance matrix is positive definite and has the
eigenvalues γ1 ≥ γ2 ≥ . . . ≥ γp+1 > 0. Nevertheless

sup
Σ,γp+1>0

L(Σ) = ∞.

We define a constrained space, using some constants cn+1 ≥ . . . ≥ cp+1, by

Mc = {Σ : γ j ≥ c j , j = n + 1, . . . , p + 1}.

Then under γn+1 ≤ 1
nλn it holds that

max
Σ∈M c

L(Σ) = L(Σ̂c)

with
Σ̂c = S + E�ET , � = diag(0, . . . , 0, cn+1, cn+2, . . . , cp+1).

This is a Stein-type estimator because

Σ̂c = EΦcET
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with Φc = diag( 1nλ1, . . . ,
1
nλn, cn+1, cn+2, . . . , cp+1). Further, Σ̂0 = E�ET is the

orthogonal complement toSmainly depending on the constraints. It holds that Σ̂0S =
0.

Theorem 2 Given a Stein-type covariance estimator Σ̃ = EΦ̃ET , where

Φ̃ = diag(φ1, . . . , φp+1)

with φ1 ≥ φ2, . . . ,≥ φp ≥ φp+1 > 0. Then the estimator β̂ given in Definition 1
coincides with the naive estimator β̂Naive.

Proof As theStein estimator has the sameeigenvectors asS, therefore, β̂ is definedby
en , the eigenvector corresponding to the smallest eigenvalue. This means β̂ = β̂TLS.
The statement then follows from (3).

In fact, the result holds for all naive estimators since the order of the last m eigen-
vectors of S is arbitrary.

Note also that the estimator Σ̂GLSE is not of Stein-type, but the eigenvector corre-
sponding to the minimal eigenvalue depends essentially on Σ0, which is chosen in
advance.

One way out may be to take the set of covariance matrices

Mmin = {Σ : γ j = 1

n
λn, j = n + 1, . . . , p + 1}.

Then the eigenvectors related to the smallest eigenvalue are en, . . . , ep+1. The only
non-naive solution is then β̂GTLS.
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