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Abstract. Common types of artificial neural networks have been well
known to suffer from the presence of outlying measurements (outliers) in
the data. However, there are only a few available robust alternatives for
training common form of neural networks. In this work, we investigate
robust fitting of multilayer perceptrons, i.e. alternative approaches to
the most common type of feedforward neural networks. Particularly, we
consider robust neural networks based on the robust loss function of
the least trimmed squares, for which we express formulas for derivatives
of the loss functions. Some formulas, which are however incorrect, have
been already available. Further, we consider a very recently proposed
multilayer perceptron based on the loss function of the least weighted
squares, which appears a promising highly robust approach. We also
derive the derivatives of the loss functions, which are to the best of
our knowledge a novel contribution of this paper. The derivatives may
find applications in implementations of the robust neural networks, if
a (gradient-based) backpropagation algorithm is used.
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1 Introduction

Neural networks represent a wide class of habitually used tools for the task of non-
linear regression. Numerous applications of estimation in nonlinear regression in
various fields are nowadays solved by neural networks. Thus, they represent impor-
tant exploratory tools of modern data analysis [15], particularly of exploratory
data analysis (see e.g. [7]). However, the most commonly used methods for training
regression neural networks based on the least squares criterion are biased under
contaminated data [18] as well as vulnerable to adversarial examples.

Under the presence of outlying measurements (outliers) in the data, train-
ing multilayer perceptrons is known to be unreliable (biased). Such their non-
robustness, caused by their minimization of the sum of squared residuals (see [11]
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for discussion), becomes even more severe for data with a very large number of
regressors [3]. Therefore, researchers have recently become increasingly interested
in proposing alternative robust (resistant) methods for training of multilayer per-
ceptrons [2]. So far, only a few robust approaches for training for MLPs have
been introduced and even smaller attention has been paid to a robustification of
radial basis function (RBF) networks. Approaches replacing the common sum
of squared residuals by a robust loss considered the loss functions corresponding
to the median [1], least trimmed absolute value (LTA) estimator [17], or least
trimmed squares (LTS) estimator [2,18]. The last two estimators were proposed
for the model of the so-called contaminated normal distribution, assuming the
residuals to come from a mixture of normally distributed errors with outliers,
typically assumed to be normally distributed as well but with a (possibly much)
larger variance than the majority of the data points. Other robust loss functions
within multilayer perceptrons were examined in [13]. A different robust approach
to neural networks based on finding the least outlying subset of observations but
exploiting the standard loss minimizing the sum of least squares of residuals was
proposed in [11], where also some other previous attempts for robustification of
neural networks are cited. All these robust approaches were also verified to be
meaningful in numerical experiments. Robust approaches to fitting neural net-
works were investigated also in the context of clustering (unsupervised learning),
based on replacing means of clusters by other centroids (e.g. medoids [4]).

Here, we use the idea to replace the common loss function of multilayer per-
ceptron by a robust version. On the whole, we consider here three particular loss
functions for multilayer perceptrons, corresponding to

– Least squares (i.e. the most common form of the loss for multilayer percep-
trons),

– Least trimmed squares (see Sect. 2),
– Least weighted squares (see Sect. 2).

As the main contribution, partial derivatives of the loss function with respect
to each of the parameters are evaluated here for robust multilayer perceptrons.
These are very useful, because the backpropagation algorithm for computing
the robust neural networks requires them. We derive the derivatives for a par-
ticular architecture of the multilayer perceptron, while they can be extended
in a straightforward way to more complex multilayer perceptrons. Neverthe-
less, we point out that the derivatives are difficult to find in the literature even
for a standard multilayer perceptron with a loss based on minimizing the least
squares criterion. Available robust estimators for linear regression and for the
location model are recalled in Sect. 2 of this paper. Section 3 presents derivatives
of standard as well as robust loss functions for a multilayer perceptron with one
hidden layer. Section 4 concludes the paper.

2 Linear Model and Robust Estimation

This section recalls robust estimates in linear regression model (and the location
model, which is its special case), which will serve as inspiration for the robust
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versions of neural networks studied later in Sect. 3. The standard linear regression
model

Yi = β0 + β1Xi1 + · · · + βpXip + ei, i = 1, . . . , n, (1)

considers n observations, for which a continuous response is explained by p
regressors (independent variables, features) under the presence of random errors
e1, . . . , en. The presence of the intercept β0 in the model can be interpreted as
the presence of a vector of ones in the design matrix X containing the elements
Xij . As the most common least squares estimator of β = (β0, β1, . . . , βp)T in (1)
is vulnerable to the presence of outliers in the data, various robust alternatives
have been proposed [8].

Robust statisticians have proposed a variety of estimation tools, which are
resistant to the presence of outliers in the data. Such estimators are considered
highly robust with respect to outliers, which have a high value of the breakdown
point. We can say that the breakdown point, which represents a fundamental
concept of robust statistics [8], is a measure of robustness of a statistical esti-
mator of an unknown parameter. Formally, the finite-sample breakdown point
evaluates the minimal fraction of data that can drive an estimator beyond all
bounds when set to arbitrary values. Keeping in mind the high robustness, we
decide for replacing the sum of squared residuals by loss functions of the least
trimmed squares and least weighted squares estimators, which are known to yield
reliable and resistant results over real data [10].

The least trimmed squares (LTS) estimator [16] represents a very popular
regression estimator with a high breakdown point (cf. [8]). Consistency of the
LTS and other properties were derived in [19]. Formally, the LTS estimate of β
is obtained as

arg min
b∈IRp+1

1
h

h∑

i=1

u2
(i)(b), (2)

where the user must choose a fixed h fulfilling n/2 ≤ h < n; here, ui(b) is a residual
corresponding to the i-th observation for a given b, and we consider squared values
arranged in ascending order denoted as u2

(1)(b) ≤ · · · ≤ u2
(n)(b). The LTS estimator

may attain a high robustness but cannot achieve a high efficiency [19].
The least weighted squares (LWS) estimator [20] for the model (1), moti-

vated by the idea to down-weight potential outliers, remains much less known
compared to the LTS, although it has more appealing statistical properties. The
definition of the LWS exploits the concept of weight function, which is defined
as a function ψ : [0, 1] → [0, 1] under technical assumptions. The LWS estimator
with a given ψ, which is able to much exceed the LTS in terms of efficiency, is
defined as

arg min
b∈IRp+1

n∑

k=1

ψ

(
k − 1/2

n

)
u2
(i)(b). (3)

We may refer to [20] and references cited therein for properties of the LWS; it
may achieve a high breakdown point (with properly selected weights), robustness
to heteroscedasticity, and efficiency for non-contaminated samples. The perfor-
mance of the LWS on real data (see [9] and references cited therein) can be
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described as excellent. We also need to consider the location model, which is
a special case of (1), in the form

Yi = μ + ei, i = 1, . . . , n (4)

with a location parameter μ ∈ IR. The LTS and LWS estimators are meaningful
(and successful [9]) also under (4), while the LWS estimator in (4) inherits the
appealing properties from (1).

3 Theoretical Results

This section presents partial derivatives of three loss functions for a particular
architecture of a multilayer perceptron, i.e. assuming a single hidden layer. Their
usefulness is discussed in Sect. 4.

3.1 Model and Notation

We assume that a continuous response variable Yi ∈ IR and a vector of regressors
(independent variables) Xi = (Xi1, . . . , Xip)T ∈ IRp are available for the total
number of n observations. The regression modeling in the nonlinear model

Yi = ϕ(Xi) + ei, i = 1, . . . , n, (5)

with an unknown function ϕ and random errors e1, . . . , en will be performed
using a multilayer perceptron (MLP) with a single hidden layer, which contains
N hidden neurons.

The MLP estimates the response Yi of the i-th observation by

Ŷi = Ŷi(c, γ, ω) = g

⎛

⎝
N∑

k=1

γkf

⎛

⎝
p∑

j=1

ωkjXij + ωk0

⎞

⎠ + γ0

⎞

⎠ + c, i = 1, . . . , n,

(6)
where f and g must be specified (possibly nonlinear) functions. The formula (6)
for computing the fitted values of the response considers two layers only however
can be generalized for more layers easily. We use here a notation following [6],
although other more or less different versions of notation may be used in this
context as well. If g is an identity function, then of course γ0 + c represents
a single parameter (intercept).

We estimate parameters c, γ = (γ0, γ1, . . . , γN )T , and

ω = (ω10, . . . , ωN0, ω11, . . . , ωN1, . . . , ω1p, . . . , ωNp)T (7)

of (6) exploiting a (rather complicated) nonlinear optimization of a certain
(selected) loss function. To simplify the notation, we further denote

τi =
N∑

k=1

γkf

⎛

⎝
p∑

j=1

ωkjXij + ωk0

⎞

⎠ + γ0, i = 1, . . . , n. (8)
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In the rest of the paper, we require that the derivatives of f and g exist.
Under such (rather common) assumption, these derivatives will be denoted as f ′

and g′, respectively. Although it is common in regression tasks to choose g in (6)
as an identity function, which simplifies the computational efforts, we retain the
general notation g here. Independently on the choice of the loss function we
will use the notation ui = Yi − Ŷi for residuals of the multilayer perceptron for
i = 1, . . . , n.

3.2 Derivatives of Fitted Values

As a preparatory result for further computations, we now derive independently
on the choice of the loss function

∂Ŷi

∂c
(c, γ, ω) = 1, i = 1, . . . , n, (9)

∂Ŷi

∂γ0
(c, γ, ω) = g′(τi), i = 1, . . . , n, (10)

∂Ŷi

∂γa
(c, γ, ω) = g′(τi)f

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , i = 1, . . . , n, a = 1, . . . , N,

(11)

∂Ŷi

∂ωa0
(c, γ, ω) = γag′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , i = 1, . . . , n, a = 1, . . . , N,

(12)
and

∂Ŷi

∂ωab
(c, γ, ω) = γaXibg

′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (13)

where i = 1, . . . , n, a = 1, . . . , N, and b = 1, . . . , p.
These partial derivatives of (6) were derived by a repeatedly used chain rule

for computing derivatives of a composite function. They are expressed as func-
tions, i.e. depending on their parameters c, γ, and ω. Of course, computations
with real data (e.g. within the neural network training) require to use estimated
versions of these derivatives, which can be easily obtained by replacing c, γ, and ω
by their estimates. We would like to point out that such estimates are always
available within the backpropagation algorithm, because its user is required to
specify initial estimates of these parameters. These partial derivatives appear in
derivatives of the loss function, which will be now expressed for three different
versions of the loss function, namely for the standard one based on least squares
and for two robust alternatives.
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3.3 Multilayer Perceptron with a Standard Loss

The most commonly used loss for multilayer perceptrons will be denoted as

ξ1 = ξ1(c, γ, ω) =
1
n

n∑

i=1

u2
i , (14)

which is known as the mean square error (MSE), corresponding to the least
squares estimator in a location model. To estimate all parameters of (6), the
common optimization criterion has the form

arg min
c,γ,ω

ξ1(c, γ, ω), (15)

which is commonly solved by backpropagation. To derive the explicit expressions
for partial derivatives, which are formulated below as a lemma, we will exploit
the facts that e.g. it holds for a = 1, . . . , N that

∂ξ1
∂γa

=
∂

∂γa

n∑

i=1

(
Yi − Ŷi

)2

=
n∑

i=1

∂

∂γa

(
Yi − Ŷi

)2

= −2
n∑

i=1

(
Yi − Ŷi

) ∂Ŷi

∂γa
.

(16)

Lemma 1. Under the notation of Sect. 3.1, it holds that

(a)
∂ξ1
∂c

(c, γ, ω) = − 2
n

n∑

i=1

ui, (17)

(b)
∂ξ1
∂γ0

(c, γ, ω) = − 2
n

n∑

i=1

uig
′(τi), (18)

(c)

∂ξ1
∂γa

(c, γ, ω) = − 2
n

n∑

i=1

uig
′(τi)f

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (19)

where a = 1, . . . , N,
(d)

∂ξ1
∂ωa0

(c, γ, ω) = − 2
n

n∑

i=1

uiγag′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (20)

where a = 1, . . . , N,
(e)

∂ξ1
∂ωab

(c, γ, ω) = − 2
n

n∑

i=1

uiγaXibg
′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (21)

where a = 1, . . . , N and b = 1, . . . , p.
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It is rather surprising that we are not aware of the results of Lemma 1 being
available anywhere in the literature. The formulas do not appear in standard
textbooks (e.g. [6]), and texts on this topic available on the internet usually con-
tain serious mistakes. Concerning the computations of the derivatives, Lemma 1
formulates them as depending on c, γ and ω, while the derivatives for numerical
data can be estimated by using estimates of c, γ and ω, respectively.

3.4 LTS-loss in Linear Regression

The loss function of the LTS estimator in (1) is defined as

ξ2 = ξ2(β) =
1
h

h∑

i=1

u2
(i). (22)

To express its derivatives, we may recall the following result given on p. 7 of [19]
stating that

∂ξ2
∂β

(β) = − 2
n

n∑

i=1

[
ui(β)Xi1[u2

i (β) ≤ u2
(h)(β)]

]
(23)

almost everywhere, where ui(β) = Yi−XT
i β for each i are residuals and 1 denotes

an indicator function. The expression (23) contains p + 1 particular derivatives
for individual elements of β. In (23), the i-th squared residual is compared with
the h-th largest squared residual. To conclude, the LTS estimator bLTS in (1)
can be computed (using now our notation) as the solution of the set of equations

n∑

i=1

ui(b)Xi1[u2
i (b) ≤ u2

(h)(b)] = 0, (24)

where b is the p + 1-dimensional variable.

3.5 Multilayer Perceptron with an LTS-loss

An MLP with the loss function corresponding to the LTS estimator was consid-
ered already in [17], where however the derivatives of the loss function are in our
opinion incorrect. The same formulas were repeated in [18]. However, we must
be much more careful in deriving the derivatives, which turn out to be have more
complex formulas. Let us first consider the loss

ξ2 = ξ2(c, γ, ω) =
1
h

h∑

i=1

u2
(i), (25)

where h is a specified constant fulfilling n/2 ≤ h < n. The loss corresponds to
the LTS estimator and thus we introduce the notation LTS-MLP for the (robust)
multilayer perceptron with parameters estimated by the criterion

arg min
c,γ,ω

ξ2(c, γ, ω). (26)
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The derivatives of ξ2 will be derived in an analogous way to the approach of
Sect. 3.4.

Lemma 2. We use the notation of Sect. 3.1. To avoid confusion, let us denote
the residuals of the LTS-MLP as ũ = ũi(c, γ, ω) for i = 1, . . . , n, to stress that
they are functions of c, γ and ω. Let us further denote ũ2

(1) ≤ · · · ≤ ũ2
(n). It holds

that

(a)
∂ξ2
∂c

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h)], (27)

(b)
∂ξ2
∂γ0

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h)]g
′(τi), (28)

(c)

∂ξ2
∂γa

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h))]g
′(τi)f

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (29)

where a = 1, . . . , N,
(d)

∂ξ2
∂ωa0

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h)]γag′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (30)

where a = 1, . . . , N,
(e)

∂ξ2
∂ωab

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h)]γaXibg
′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ ,

(31)
where a = 1, . . . , N and b = 1, . . . , p.

3.6 LWS-Loss in Linear Regression

Let us now consider the model (1) with the loss corresponding to an LWS esti-
mator. The loss

ξ3(β) =
n∑

i=1

ψ

(
i − 1/2

n

)
u2
(i) (32)

exploits a specified weight function ψ. Equivalently, we may express

ξ3(β) =
n∑

i=1

wiu
2
(i), (33)
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where the weights are generated by ψ under a natural requirement
∑n

i=1 wi = 1.
The LWS estimator is defined by

arg min
β

ξ3(β). (34)

The set of derivatives of the loss function in (1) has the form

∂ξ3
∂β

= −2
n∑

i=1

Xiuiψ
(
F̂ (n) (|ui(β)|)

)
, (35)

where F̂ (n) denotes the empirical distribution function

F̂ (n)(r) =
1
n

n∑

j=1

1[|uj(β)| < r], r ∈ IR; (36)

a detailed proof was given on p. 183 of [20]. The special case for (4) again
considers Xi ≡ 1 for each i. Let us consider the empirical distribution function

F̂ (r, b) =
1
n

n∑

j=1

1[|uj(b)| < r], r ∈ IR. (37)

The LWS estimator bLWS in (1) can be obtained as the solution of
n∑

i=1

ui(b)Xiψ
(
F̂ (|ui(b)|, b)

)
= 0, (38)

which is a set of normal equations with the variable b ∈ IRp+1. Here, |ui(b)| for
each i plays the role of the threshold r from (37).

3.7 Multilayer Perceptron with An-LWS Loss

We introduce the notation LWS-MLP for the (robust) multilayer perceptron
based on the robust loss function corresponding to the LWS estimator. Let us
consider the loss

ξ3(c, γ, ω) =
n∑

i=1

ψ

(
i − 1/2

n

)
u2
(i), (39)

formulated using a specified weight function ψ. The loss can be equivalently
expressed as

ξ3 = ξ3(c, γ, ω) =
n∑

i=1

wiu
2
(i), (40)

if the weights are generated by ψ and again fulfil
∑n

i=1 wi = 1. The loss corre-
sponds to an LWS estimator and therefore we introduce the notation LWS-MLP
for the (robust) multilayer perceptron with parameters given by

arg min
c,γ,ω

ξ3(c, γ, ω). (41)

Our deriving the derivatives of ξ3 is analogous to the reasoning of Sect. 3.6.
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Lemma 3. We use the notation of Sect. 3.1. Residuals of the multilayer percep-
tron will be denoted as ũi = ũi(c, γ, ω) and the corresponding empirical distribu-
tion function as

F̂ (r) =
1
n

n∑

i=1

1[|ũi| < r], r ∈ IR. (42)

It holds that

(a)
∂ξ3
∂c

(c, γ, ω) = −2
n∑

i=1

ũiψ
(
F̂ (n)(|ũi|)

)
, (43)

(b)
∂ξ3
∂γ0

(c, γ, ω) = −2
n∑

i=1

ũiψ
(
F̂ (n)(|ũi|)

)
g′(τi), (44)

(c)

∂ξ3
∂γa

(c, γ, ω) = −2
n∑

i=1

ũiψ
(
F̂ (n)(|ũi|)

)
g′(τi)f

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (45)

where a = 1, . . . , N,
(d)

∂ξ3
∂ωa0

(c, γ, ω) = −2
n∑

i=1

ũiγaψ
(
F̂ (n)(|ũi|)

)
g′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ ,

(46)
where a = 1, . . . , N,

(e)

∂ξ3
∂ωab

(c, γ, ω) = −2
n∑

i=1

ũiγaXibψ
(
F̂ (n)(|ũi|)

)
g′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ ,

(47)
where a = 1, . . . , N, b = 1, . . . , p.

3.8 Applications

Several datasets were analyzed by the presented robust neural networks (LTS-
MLP and LWS-MLP) in [12]. In all datasets, which are contaminated by outliers,
a robust mean square error was better (i.e. smaller) for all the robust MLPs than
that of a plain MLP. This is true especially for simple artificial data and also
the Boston housing dataset [5] and the Auto MPG dataset [5]. For the Boston
housing dataset, some real estates in the very center of Boston are outlying, as
they are small but extremely overpriced compared to those in the suburbs of the
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city. For the Auto MPG, we found those cars to be outlying for the model, which
have a high weight and a high consumption. Other outliers can be identified as
cars with a low weight, as there appears only a small percentage of them; such
findings are in accordance with those of [14].

4 Conclusions

Standard training of neural networks, including their most common types, is vul-
nerable to the presence of outliers in the data and thus it is important to consider
robustified versions instead. Due to a lack of reliable approaches, robustness in
neural networks with respect to outliers remains a perspective topic in machine
learning with a high potential to provide interesting applications in the analysis
of contaminated data. In this paper, we focus on robust versions of multilayer
perceptrons, i.e. alternative training techniques for the most common type of
artificial neural networks. We propose an original robust multilayer perceptron
based on the LWS loss.

We derive here derivatives of the loss functions based on the LTS and LWS esti-
mates for a particular (rather simple) architecture of a multilayer perceptron. Our
presenting this compact overview of derivatives needed for any available gradient-
based optimization technique is motivated by an apparent mistake in the deriva-
tives for a similar (although different) robust multilayer perceptron based on the
LTA estimator in [18]. The main motivation for our deriving the derivatives is how-
ever their usefulness within the backpropagation algorithm, allowing to compute
the robust neural networks. This paper does not however investigate any conver-
gence issues of the proposed robust multilayer perceptron; to the best of our knowl-
edge, convergence is not available for any other type of versions of neural networks,
which are proposed as robust to the presence of outliers in the data. Implement-
ing the LTS-MLP and LWS-MLP using the presented results is straightforward.
Derivatives for more complex multilayer perceptrons, i.e. for networks with a larger
number of hidden layers, can be obtained in an analogous way only with additional
using the chain rule for computing derivatives.

While the presented results represent a theoretical foundation for our future
research, there seems at the same time a gap of systematic comparisons of various
different robust versions of neural networks over both real and simulated data.
Such comparisons are intended to be a topic for our future work, because a statis-
tical interpretation of the results of robust neural networks remains crucial.

Acknowledgments. The authors would like to thank David Coufal and Jǐŕı Tumpach
for discussion.
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