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Abstract. Seismically generated landslides represent one of the most damaging
hazards associated with earthquakes in countries with high seismicity. The
delineation of prone to coseismic landsliding areas is crucial in order to predict
the occurrence of earthquake-induced landslides and consequently reduce the
relevant risk. The goal of this study is to investigate the correlation of the pattern
of coseismic landslides with geological and topographical variables i.e. lithol-
ogy, slope angle and slope aspect with the volume of landslides based on fuzzy
logic and machine learning techniques. For this task, a real dataset of 421 and
767 instances for years 2003 and 2015 respectively from the island of Lefkada
was used. A new approach based on Fuzzy C-Means Algorithm and Ensemble
Subspace k-Nearest-Neighbors (Ensemble Subspace k-NN) is proposed. Land-
slides were classified according to their severity with a success rate of 99.5%
and 98.7% for 2003 and 2015 respectively. The performance of the proposed
approach was evaluated using “One Versus All” Strategy, calculating Accuracy,
Sensitivity, Specificity, Precision and F-1 Score for each cluster.

Keywords: Landslides � Lefkada � Fuzzy C-Means � S-Nome � k-Nearest-
Neighbors � Ensemble Subspace k-NN � Clustering � Classification

1 Introduction

It is well known that landslide can be triggered by rainfall, earthquakes, volcanic
eruption and man-made activities. Experience has shown that seismically induced
landslides represent one of the most damaging hazards associated with earthquakes in
countries with high seismicity [1]. According to Jibson et al. [18], the effect of
seismically-induced landslides on human lives and facilities may exceed in some cases
the damage directly connected to the shaking. The correlation of coseismic landslides
with the seismic and morphological parameters has been investigated by several
researchers, mainly after the devastating 2008 Wenchuan, China earthquake. The out-
come arisen by this correlation is that both the volume and number of landsliding
phenomena are relevant to earthquake magnitude. In particular, it was shown that
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landslide frequencies are higher in areas of highest peak ground acceleration (PGA) and
that landslide density decays with the epicentral or fault distance [2, 20, 25, 31].

The delineation of prone to coseismic landsliding areas is crucial in order to predict
the occurrence of earthquake-induced landslides and consequently reduce the relevant
risk. Nowadays, satellite imagery and GIS technology are considered as basic tools that
are used by earth scientist for evaluating the hazard and the risk within an area, initially
by the introduction and statistical analyses of geo-environmental and seismologic
factors into GIS software [29]. In particular, the characteristics of the landsliding area is
statistically related to control factors such as topographic, geologic and seismic
parameters e.g. slope angle, slope aspect, curvature, lithology, Peak Ground Acceler-
ation (PGA) and seismic intensity distribution, and distance from the seismic fault or
epicenter [27, 39]. These correlations can provide crucial information that can be used
for seismic landslide hazard analysis and planning mitigation measures for prone
earthquake-induced landslides regions [6, 7, 18, 30].

Frequently, the statistical analysis is based on bivariate and multivariate approa-
ches. The goal of this study is to investigate the correlation of the pattern of coseismic
landslides with geological and topographical variables i.e. lithology, slope angle and
slope aspect with the volume of landslides based on fuzzy logic and machine learning
techniques. In particular, Fuzzy C-Means Algorithm [3, 12] was used for data clustering
and Ensemble Subspace k-Nearest-Neighbors (Ensemble Subspace k-NN) was used for
the classification [10, 15, 37]. Existing bibliography like [23] and [33] does not exploit
the combination of the above algorithms.

The motivation for the development of this research was the need for a more
flexible model. More specifically, the existing approaches (e.g. the bivariate analysis)
are using crisp values for the determination of slope angle or slope aspect classes. Thus,
borderline values can be easily misclassified.

2 Area of Research

The geology of the Lefkada island, comprises: (1) a carbonate sequence of the Ionian
zone, (2) limestone of Paxos (Apulia) zone restricted in the SW peninsula of the island,
(3) few outcrops of ionian flysch (turbidites) and Miocene marls-sandstones mainly in
the northern part of the island [9, 34]. The boundary between the two different geo-
logical zones – Ionian and Paxos, runs in an approximate NW- SE direction through
this region and outcrops onshore south-central Lefkada Island near Hortata village, in
the form of a buried thrust fault by scree and late Quaternary deposits [28]. Pleistocene
and especially Holocene coastal deposits are extended in the northern edge of Lefkada,
where the homonym capital town is founded, in the valley of Vassiliki and in the coast
Nydri.

Regarding the seismicity, it is pointed out that the island of Lefkada is considered
as one of the most tectonically active areas in Europe being part of the high seismicity
Ionian Sea area, and particularly due to the complex crustal deformation resulting from
the subduction of the African plate towards NE and the Apulian platform continental
collision further to the northwest [14, 16]. The main active tectonic structure, is the
140 km long dextral strike-slip Cephalonia-Lefkada Transform fault (Fig. 1) (CTF;
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[24, 36, 38]), which has a GPS slip-rate bracketed between 10 and 25 mm/yr. The steep
morphology on the western part of the island, where most of slope failure cases are
reported is due to this offshore CTF and its onshore sub-parallel fault; the Athani-
Dragano fault [9, 35]. The latter one is a NNE-SSW striking fault forming a narrow
elongated continental basin, very well expressed in the region’s morphology and
marked on satellite images and aerial photos.

There is reliable detailed information for at least 23 events, since 1612 which
induced ground failures at the island of Lefkada [26]. A first conclusion arising from
the list of historical events is that earthquakes appear in couples (twin or cluster events)
with time period of occurrence ranging between 2 months and 5 years e.g. 1612–1613
(16 months); 1625–1630 (5 years); 1722–1723 (10 months); 1767–1769 (2 years);
1783–1783 (2 months, possible aftershock); 1867–1869 (2 years); 1914–1915 (2
months); 1948–1948 (2 months). Thus, it is crucial to determine the location of
coseismic landslides since it will be beneficial for reducing the risk and increasing the
resilience at the island.

2.1 Coseismic Landslides at the Island of Lefkada

The most recently occurred and well-studied earthquakes are the ones of 2003 and
2015. The penultimate event triggered extensive slope failures at the western part of the
island. The volume of the debris material that moved downwards was larger than the
one of the 2015 earthquake. Rock falls were widespread on the whole island and
especially in the northwestern and central area, on both natural and cut slopes, as well
as, on downstream road embankment slopes. The most characteristic rock falls, with
diameters up to 4 m, were observed along the 6 km long road of Tsoukalades-Agios
Nikitas, which is within the epicentral area, and are accompanied by gravel, small rock
and soil slides [26]. The massive occurrence of these failures is the reason for the
closure of the road network at this area of the island for more than 2 years. The reported

Fig. 1. Map of the island of Lefkada showing the Cephalonia-Lefkada Transform Fault CTF
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rock falls followed the trace of a 300 m high morphological scarp, and especially a 10–
40 m high artificial slope [26].

Regarding the 2015 earthquake, the dominant geological effects were related to
slope failures i.e. rock falls and slides, and shallow and deep-seated landslides on both
natural and cut slopes [28]. These failures were documented on the western part of the
island, while the most densely concentration of these phenomena was reported on the
coastal zone from Porto Katsiki to Egremnoi-Gialos beach and along the 6 km long
coastal road of Tsoukalades - Agios Nikitas [28]. Shallow landslides and rock slides
were mainly generated in areas where the clastic material covered the bedrock, and
particularly in places where the rock mass was heavily jointed. Deep-seated landslides
were mainly documented at the area of Egremnoi [29]. At this area, deep-seated
landslides were reported, and large amount of debris material moved downslope
inducing severe damages to the road network and to residential houses. The debris
consists of coarse-grained size material with significant amount of large-diameter
gravels and few boulders.

In order to investigate the earthquake-induced landslide density, event-based
inventories were developed by taking into account aerial and satellite imagery in
Google Earth in order to enrich and update existing landslide datasets, previously
compiled for the two earthquakes [27]. In particular, Google Earth imagery of June 12,
2003 and December 19, 2005 was used for mapping 2003 earthquake landslides, and
November 15, 2013 and April 15, 2016 for 2015 earthquake, respectively. Landslide
activity along the western part of Lefkada is considered as minimal between major
earthquakes, as observed on multi-date satellite imagery and confirmed by local resi-
dents. Considering this, the short period between each satellite imagery pair (2–3 years)
is believed to include only the coseismic landslides, with very few if any at all land-
slides triggered by other factors. In total, 301 and 596 coseismic landslides were
mapped for the 2003 and 2015 earthquakes, respectively. For the extraction of mor-
phological and terrain parameters of the compiled landslide datasets, a detailed digital
elevation model (DEM) with spatial resolution of 5 m was used. The 5 m DEM was
obtained from Hellenic Cadastre and it was extracted from aerial imagery stereo-pairs,
having a vertical accuracy of 4 m [29].

Having completed the polygon-based inventories, a statistical analysis of landslide
distribution took place. In total, 596 and 301 landslides were identified covering (planar
area) 1.29 km2 and 1.6 km2 for the 2015 and 2003 events, respectively. It is pointed
out that these planar-oriented areas are obtained as projected measurements. The
minimum and maximum landslide area were evaluated as 40.4 m2 and 42940 m2 for
the 2015 earthquake, while for the penultimate event the relevant values are 129.8 m2

and 98300 m2, respectively [29]. The relevant values of minimum and maximum
landslide area for the 2015 event, which were evaluated by taking into account the
digital elevation model for the delineation of the landslide area, are 1.78 km2 total area,
51.30 m2 minimum and 58330 m2 maximum area, while for the 2003 earthquake the
total landsliding area covered 2.28 km2 with minimum area of 140.9 m2 and maximum
148469 m2 [29].
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3 Description of Dataset Pre-processing

The initial datasets (*.xlsx files) consist of 6 columns, 4 of which are numeric
(Perimeter, Average Slope, Surface, Id) and 2 are nominal (Average Aspect and
Geological Form). The 5th column is used only for data processing to determine the
distinct incidents. Each vector represents a landslide with a specific Geological Form
on the island of Lefkada. As it is already mentioned, 301 and 596 landslides were
identified for years 2003 and 2015 respectively. However, numerous landslides are
related to more than one types of geological forms. Taking into account this fact, the
landsliding areas have been reassigned based on the geological form upon which they
were delineated, resulting in 421 and 767 observations for years 2003 and 2015,
respectively. The same data pre-processing approach was used for both datasets.
However, data handling for each year was applied independently from the other, given
that 2003 observations have been mapped on two additional geological forms com-
pared to the case of 2015. Therefore, evaluation of the proposed approach per year has
proven its efficiency and consistency. Data processing was performed in three steps. In
particular, the first step was applied manually using both *.xlsx files, while second and
third steps was achieved by developing code in Matlab R2019a.

3.1 Labeling of Nominal Values

Initially, Average Aspect was transformed from nominal to numeric in a scale from one
to eight. Geological Form was similarly transformed to a scale from one to twenty for
year 2003 and from one to eighteen for year 2015. The transformations can be seen in
Tables 1 and 2.

Table 1. Average aspect with the corresponding label for 2003 and 2015.

Average
aspect

North North-East East South-East South South-West West North-West

Average
aspect label

1 2 3 4 5 6 7 8

Table 2. Geological form type with the corresponding label for 2003.

Geological form al C Ci Cs Csd E J1 J1d Jar Jc

Geological form label 1 2 3 4 5 6 7 8 9 10
Geological form Jm Js M Mb Pc Qc Qp Qt Tc Tg
Geological form label 11 12 13 14 15 16 17 18 19 20

Table 3. Geological form type with the corresponding label for 2015.

Geological form al C Ci Cs E J1 J1d Jar Jc

Geological form label 1 2 3 4 5 6 7 8 9
Geological form Jm Js M Mb Pc Qc Qp Qt Tg
Geological form label 10 11 12 13 14 15 16 17 18
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where al: alluvial; C, Jm, Jc, Jar, J1: limestones of Ionian; Ci, Cs: limestones of Paxos;
Csd limestones; E: limestones Eocene; Js: limestone of Paxos; J1d: dolomites; M, Mb:
Miocene sandstones; Pc: Pliocene conglomerate; Qc, Qp, Qt: Quaternary sediments;
Tc: limestones and dolomites of Triassic; Tg: evaporites.

3.2 Landslides Fuzzy C-Means Clustering

After a statistical pre-processing of data, authors noticed that there were few high
values causing a high standard deviation. Therefore, clustering of landslides is deterrent
with conventional methods. To overcome this hardship, Fuzzy C-Means Clustering
was employed to classify landslides according to their severity. Fuzzy C-Means was
used because it offers a very flexible methodology, as each data point can be assigned
to more than one clusters with different degrees of membership. This task was per-
formed in order to develop the labeled dataset required for the deployment of the
machine-learning model. A subset of available data, perimeter and surface, was used in
order to apply the Clustering.

Fuzzy clustering (a well-known soft computing method [4]) is an approach in
which each data point can belong to more than one cluster. One of the most widely
used fuzzy clustering algorithms is the Fuzzy C-means clustering (FCM) Algorithm.
This method, developed by Dunn in 1973 [12] and improved by Bezdek [3], is fre-
quently used in pattern recognition. It is based on minimization of the following
objective function:

Jm ¼
XN
i¼1

XC
j¼1

umij xi � cj
�� ��2; 1�m\1 ð1Þ

Where m is the fuzzifier (the fuzzifier m determines the level of cluster fuzziness),
uij is the degree of membership of xi in the cluster j, xi is the ith of d-dimensional
measured data, cj is the d-dimension center of the cluster, and ||*|| is any norm
expressing the similarity between any measured data and the center. Fuzzy partitioning
is carried out through an iterative optimization of the objective function shown above,
with the update of membership uij and the cluster centers cj by:

uij ¼ 1PC
k¼1

xi�cjk k
xi�ckk k

� � 2
m�1

; cj ¼
PN
i¼1

umij � xiPN
i¼1

umij

ð2Þ

This iteration will stop when maxij uðkþ 1Þ
ij � ukij

��� ���n o
\e, where e is a termination

criterion between 0 and 1, whereas k are the iteration steps. This procedure converges
to a local minimum or a saddle point of Jm.
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Parameters used for the FCM algorithm are presented in Table 4 while columns
Perimeter and Surface, from source data set, were chosen as input parameters. Expo-
nent (m fuzzier) controls the degree of fuzzy overlap between clusters. A large m results
in smaller membership values, uij, and hence, fuzzier clusters. In the limit m = 1, the
memberships, uij, converge to 0 or 1, which implies a crisp partitioning. maxIterations
is the maximum number of optimization iterations and minImprovement is the mini-
mum improvement in the objective function between successive iterations When the
objective function improves by a value below this threshold, the optimization stops.
A smaller value produces more accurate clustering results, but the clustering can take
longer to converge. For parameters’ values, the ones most used in the relevant literature
were selected [21, 22].

A script FCM.m was developed in Matlab, aiming the transformation of *.xlsx file
in Matlab tables. It has already been mentioned that the goal of this step is to create
clusters for the severity of lansdlides. The chosen number of clusters is 6 (calculated as
the existing combinations of 2 parameters with 3 states each). Clusters with their labels
and their names are presented in Table 5. The first part of the name corresponds to
Perimeter and the Second to Surface

The FCM.m Script is presented in the form of natural language, in Algorithm 1.

Table 4. Options for FCM algorithm

Exponent (m fuzzier) 2

maxIterations 100
minImprovement 0.00001

Table 5. Cluster with the corresponding labels and names

Cluster Name of cluster

1 Low Low
2 Low Medium
3 Medium Medium
4 Medium High
5 High High
6 Extreme Extreme
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Algorithm 1. The FCM.m Matlab Script
Script 1: FCM.m
Inputs: 421 incidents of 2003 and 767 incidents of 2015 exported from *.xlsx files.

 Part 1: 

  Step 1: Read and convert each *.xlsx file to a Matlab table.

Step 2: For each Table the column Id Numbers was used to retrieve distinct

Landslides. 2 new Matlab tables are constructed with the unique values

  Step 3: For each new table Perimeter and Surface column is chosen

 Part 2: 

Step 1: FCM algorithm was applied with options described in Table 4 and

clusters described in Table 5. Centers of clusters and membership
degrees of each observation were calculated.

  Step 2: Each instance was classified in the cluster on which the membership
degree was the highest.

 Part 3: 

  Step 1: Clusters pass to the original data 

  Step 2: Original data with theirs clusters are plotted in Figures 1a and 1b for

2003 and 2015 respectively.

Total landslides for each cluster for the years 2003 and 2015 are presented in
Table 6.

Fig. 2. Clusters for original data for 2003 (1a) and 2015 (1b) respectively.
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3.3 Fuzzy Clustering with FCM Algorithm and S-Norm

After creating the clusters it was observed that some instances do not belong exclu-
sively to a cluster (e.g. point (1981, 4.2�104) presented in Fig. 2a or point (2744,
3.3678�104) presented in Fig. 2b), as well as some instances in between 2 clusters with
similar membership values for both. Considering the above observation, the re-creation
of clusters for all instances is essential. Consequently, we decided that landslides,
which have degree of membership, for their dominant class, below a certain threshold
will be re-sorted. In order to perform this, it is necessary to use weights on each factor
[5, 41].

Equation (3) implements a fuzzy coupling between many fuzzy sets, using a
function f ðli;wiÞ which assigns the weight wi to the membership degree li.

leSðxiÞ ¼ Agg f leAðxiÞ;w1

� �
; f leAðxiÞ;w2

� �
; . . .; f leAðxiÞ;wn

� �� �
ð3Þ

Where i = 1, 2,…, k and k the number of instances examined and n factors’ number
[13]. The function f used in the coupling function (Eq. (3)) can be defined as:

f ða;wÞ ¼ a
1
w ð4Þ

where a is the membership degree and w is the corresponding weight.
For the Aggregation function was used Hamacher aggregation as S-Norm operator

[40].

eA \ eB ¼
leAðxÞþ leBðxÞ � 2leAðxÞleBðxÞ

½1� leAðxÞþ leBðxÞ� ð5Þ

Another script S-Norm_Clustering.m was developed in Matlab. The second script is
presented in the form of natural language, in Algorithm 2.

Table 6. Total landslides of each cluster for 2003 and 2015

Clusters 1 2 3 4 5 6 Total instances

2015 448 183 74 35 22 5 767
2003 238 100 44 27 7 5 421
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Algorithm 2. The S-Norm_Clustering.m Matlab Script
Script 2: S-Norm_Clustering.m
Inputs: All membership degrees of each observation for 2003 and 2015.

Part 1: 
Step 1: Threshold is defined at 0.7

Step 2: Weights are defined. The highest membership’s degree weight is 4, the
second highest is 2, and for the others 0.

Part 2: 
Step 1: If a membership degree for a cluster is higher than 0.7 the incident 

belong to this cluster.
Step 2: Else if the membership degree is under 0.7 the incident belongs to 

a new cluster, for with the membership degree is calculated through
Eq. (3),(4) and (5).

After applied S-Norm_Clustering.m, 4 more clusters were created for landslides of
2003 and 5 more for 2015. New clusters were created between the already existing
clusters. Therefore, they took their label depending the clusters that are between. For
example, cluster between cluster 1 and 2 is labeled as cluster 1.5. Clusters are presented
in Fig. 3a, b, and incidents for each cluster in Table 7. It is obvious that new clustering
classifies observations more effectively according to severity.

Fig. 3. Clusters for original data for 2003 (2a) and 2015 (2b) respectively after S-Norm

Table 7. Total landslides of each cluster for 2003 and 2015 after S-Norm

Clusters 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Total instances

2015 417 52 145 27 56 25 18 7 15 2 3 767
2003 222 27 84 9 37 5 22 4 6 0 5 421
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4 Classification Methodology

After having clustering done, we used classification algorithms to ascertain coseismic
landslides’ proper classification. The independent variables used for the classification
are Perimeter, Average Slope, Surface, Average Aspect and Geological Form of
landslides. Average Slope and Average Aspect were labeled as indicated in Tables 1, 2
and 3. The dependable value is the cluster derived from clustering with S-Norm.

A total of 23 classification algorithms have been employed namely: Fine Tree,
Medium Tree, Coarse Tree, Linear Discriminant, Quadratic Discriminant, Lin-
ear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM,
Coarse Gaussian SVM, Cosine KNN, Cubic KNN, Weighted KNN, Fine KNN,
Medium KNN, Gaussian Naive Bayes, Kernel Naïve Bayes, Boosted Trees, Bagged
Trees, Subspace Discriminant, Subspace KNN, RUSBoost Trees.

However, only the one with the highest values of performance indices will be
described herein.

4.1 Ensemble Subspace k-Nearest-Neighbors (Ensemble Subspace
k-NN)

Classifying query points based on their distance to specific points (or neighbors) can be
a simple but yet effective process. The k-nearest neighbors (k-NN) is a lazy and non-
parametric Learning algorithm [8]. It is widely used as a predictive performance
benchmark, when we are trying to develop more sophisticated models. Given a set X of
n points and a distance function, k-NN search finds the k closest points to a query point
or set of them [17]. Dunami [11] first introduced a weighted voting method, called the
distance-weighted (DW) k-nearest neighbor rule (Wk-NN). According to this
approach, the closer neighbors are weighted more heavily than the farther ones, using
the DW function. The weight wi for the i-th nearest neighbor of the query x′ is defined
following function 1:

w0
i ¼

dðx0xNNk Þ�dðx0xNNi Þ
dðx0xNNk Þ�dðx0xNN1 Þ

1

(
;
;

if
if

dðx0xNNk Þ 6¼ dðx0xNN1 Þ
dðx0xNNk Þ ¼ dðx0xNN1 Þ ð6Þ

Finally, the classification result of the query is determined by the majority weighted
voting as in function 2:

y0 ¼ argmax
y

X
ðxNNi ;yNNi Þ2T 0

w0
i � dðy ¼ yNNi Þ: ð7Þ

Based on Eq. (7), a neighbor with smaller distance is weighted more heavily than
one with greater distance: the nearest neighbor is assigned a weight equal to 1, whereas
the furthest one a weight of 0 and the weights of the others are scaled linearly to the
interval in between.

Despite its simplicity, k-NN gives competitive results and in some cases even
outperforms other complex learning algorithms. However, k-NN is affected by
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non-informative features in the data, which is something rather common with high
dimensional data. Several attempts have been made to improve the performance of
nearest neighbors’ classifiers by ensemble techniques. Some related work on ensemble
of k-NN classifiers can be found in [10, 15, 17].

Subspace ensembles have the advantage of using less memory than ensembles with
all predictors, and can handle missing values (NaNs).

The basic random subspace algorithm uses these parameters.

– m is the number of dimensions (variables) to sample in each learner.
– d is the number of dimensions in the data, which is the number of columns (pre-

dictors) in the data matrix X.
– n is the number of learners in the ensemble. Set n using the NLearn input.

The basic random subspace algorithm performs the following steps:

1. Choose without replacement a random set of m predictors from the d possible
values.

2. Train a weak learner using just the m chosen predictors.
3. Repeat steps 1 and 2 until there are n weak learners.
4. Predict by taking an average of the score prediction of the weak learners, and

classify the category with the highest average score.

4.2 Evaluation of the Activity Model Classifiers

Accuracy is the overall index that has been used in evaluation of the developed
Machine Learning models. However, additional indices have been used to estimate the
efficiency of the algorithms. Given the fact that we are dealing with a multi-class
classification problem, the “One Versus All” Strategy [19, 32] was used. The calculated
validation indices that have been considered are presented in the following Table 8.

Precision (PREC) is the measure of the correctly identified positive cases from all
the predicted positive cases. Thus, it is useful when the cost of False Positives is high.

Table 8. Calculated indices for the evaluation of the multi-class classification approach

Index Abbreviation Calculation

Sensitivity
(also known as True Positive Rate or
Recall)

SNS SNS = TP/(TP + FN)

Specificity,
(also known as True Negative Rate)

SPC SPC = TN/(TN + FP)

Accuracy ACC ACC = (TP + TN)/
(TP + FP + FN + TN)

F1 Score F1 F1 = 2*TP/(2*TP + FP + FN)
Precision
(also known as Positive predictive
value

PREC PREC = TP/(TP + FP)
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On the other hand, Sensitivity (also known as Recall) is the measure of the correctly
identified positive cases from all the actual positive cases. It is important when the cost
of False Negatives is high. Specificity (SPC) is the true negative rate or the proportion
of negatives that are correctly identified. Accuracy (ACC) is the measure of all cor-
rectly identified from the predicted cases. It represents the closeness of the measure-
ments to a specific value. The F1 score can be interpreted as the harmonic mean
(weighted average) of the Precision and Recall. As it is known from the literature,
Accuracy can be seriously considered when the class distribution is balanced while F1
score is a better metric when there are imbalanced classes as in the above case. Using it
as a metric, we are sure that if its value is high, both precision and recall of the classifier
indicate good results. In our case the F1 score is the final overall criterion of good
performance evaluation.

5 Experimental Results

The experiments were performed with the use of Matlab R2019a software. The options
and hyperparameters set for Ensemble Subspace k-NN are presented in Table 9 below:

The Ensemble Subspace k-NN achieved an accuracy equal to 99.5% and 98.7% for
2003 and 2015 respectively. The Confusion Matrix for each year is presented in the
following Figs. 4 and 5.

Table 9. Tuning algorithm’s hyperparameters

Algorithm Hyperparameters Optimal values-functions

Ensemble subspace k-NN Maximum number of splits 20
Number of learners 30
Learning rate 0.1
Subspace dimension 3

Fig. 4. Confusion matrix of the ensemble subspace k-NN algorithm for 2003
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The following two Tables (10, 11), present the values of the performance indices
for the above optimal algorithm.

From Tables (10, 11) it is obvious that the values of all indices clearly show a very
good performance in both 2003 and 2015’s instances.

Fig. 5. Confusion matrix of the ensemble subspace k-NN algorithm for 2015

Table 10. Cluster (Cl) classification performance indices for the Ensemble Subspace k-NN
Algorithm (2003)

Index Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl6
SNS 1 1 1 0.88 0.97 1 1 1 1 0.98
SPC 1 1 0.99 0.99 1 1 1 1 1 0.99
ACC 1 1 0.99 0.99 0.99 1 1 1 1 0.99
PREC 1 1 0.98 0.88 1 1 1 1 1 0.98
F1 1 1 0.99 0.88 0.98 1 1 1 1 0.98

Table 11. Cluster (Cl) classification performance indices for the Ensemble Subspace k-NN
Algorithm (2015)

Index Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl5.5 Cl6
SNS 1 0.96 1 0.93 0.95 0.88 1 1 1 0.97 1
SPC 1 1 0.99 0.99 0.99 0.99 1 1 1 0.99 1
ACC 1 0.99 0.99 0.99 0.98 0.99 1 1 1 0.99 1
PREC 1 1 0.98 0.92 0.91 0.95 1 1 1 0.97 1
F1 1 0.98 0.99 0.92 0.92 0.91 1 1 1 0.97 1
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6 Discussion and Conclusion

Classification of coseismic landslides according to their severity is a really interesting,
important and challenging task. In this paper an approach based on Fuzzy C-Means
Algorithm and Ensemble Subspace k-Nearest-Neighbors (Ensemble Subspace k-NN)
Algorithm is proposed and tested. The combination of Fuzzy C-Means and Hamacher
aggregation as S-Norm operator, sorted the data to 10 clusters for year 2003 and 11
clusters for 2015. Thereafter, Ensemble Subspace k-NN, using Average Aspect,
Average Slope, Geological Form, Perimeter and Surface as independent input vari-
ables, managed to achieve high success rates. The overall accuracy is 99.5% and 98.7%
for 2003 and 2015 respectively.

The efficiency of the model is also perceivable from Tables 10 and 11, where
indices Accuracy, Sensitivity, Specificity, Perception and F1-score range at high levels.
However, some ostensibly inaccurate classifications like in Cl2.5 of 2003 or Cl3.5 of
2015 do not affect the overall performance of the model as all indicators range from
0.88 to 1.

Concluding, the research described herein managed to correctly classify coseismic
landslides according to their severity to the island of Lefkada. Future work will focus
on the development of hybrid and ensembles’ approaches for the forecasting of
landslides’ severity or even for forecasting the exact area of a landslide.
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