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EANN 2020 Preface

Artificial neural networks (ANN) are a typical case of machine learning, which
mimics the physical learning process of the human brain. More than 60 years have
passed from the introduction of the first perceptron. Since then, numerous types of
ANN architectures have been developed. Among them are recurrent ANN, whose
nodes’ connections are forming a directed graph along a temporal sequence. More
recently, generative adversarial neural networks are trying to fuse “imagination” to
artificial intelligence (AI) and convolutional neural networks (CNN) are signifi-
cantly contributing to the enhancement of pattern recognition, machine translation,
anomaly detection, and machine vision. Neural networks have a significant con-
tribution in natural language, and they are widely employed for text classification
by search engines in the web. In this domain, CNN are successfully applied by the
word2vec method, in recommendation systems–sentiment analysis for movies,
customer reviews, and so on. Also, they are used in text-to-speech conversion and
semantic parsing plus question answering systems.

The engineering applications of neural networks conference aim to bring toge-
ther scientists from all AI domains and to give them the chance to exchange ideas
and to announce their achievements. Since the first conference in 1995, EANN has
provided a great discussion forum on engineering applications of all artificial
intelligence technologies, focusing on artificial neural networks. More specifically,
EANN promotes the use of modeling techniques from all subdomains of AI in
diverse application areas, where significant benefits can be derived. The conference
is also reporting advances in theoretical AI aspects. Thus, both innovative appli-
cations and methods are particularly appreciated. EANN is a mature and
well-established international scientific conference held in Europe. Its history is
long and very successful, following and spreading the evolution of intelligent
systems.

The 21st EANN 2020 was collocated with the 16th EANN 2020 conference.
The first EANN event was organized in Otaniemi, Finland, in 1995. Since then,

it has a continuous and dynamic presence as a major global, but mainly European
scientific event. More specifically, it has been organized in Finland, UK (England),
Sweden, Gibraltar, Poland, Italy, Spain, France, Bulgaria, UK (Scotland), UK
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(Bristol), and Greece. It has been technically supported by the International Neural
Networks Society (INNS) and more specifically by the EANN Special Interest
Group.

This proceedings volume belongs to International Neural Networks (INNS)
Springer Series, and it contains the papers that were accepted to be presented orally
at the 21st EANN 2020 conference. The diverse nature of papers presented
demonstrates the vitality of artificial intelligence algorithms and approaches. It is
not only related to neural networks, but it certainly provides a very wide forum for
AI applications as well.

The event was held from June 5 to 7, 2020, and it was broadcasted live through
web, to all conference participants. There was no potential for physical attendance
due to the global problem with CONVI-19 virus.

Regardless of the extremely difficult pandemic conditions, the response of the
international scientific community to the EANN 2020 call for papers was more than
satisfactory, with 89 papers initially submitted. All papers were peer reviewed by at
least two independent academic referees. When needed, a third referee was con-
sulted to resolve any potential conflicts. A total of 47% of the submitted manu-
scripts (42 papers) have been accepted to be published as full papers (12 pages
long) in the Springer proceedings. Due to the high quality of the submissions, the
Program Committee has decided that it should accept additionally six more papers
to be published as short ones (ten pages long).

Four Keynote speakers gave state-of-the-art lectures (after invitation) in the
timely aspects applications of artificial intelligence.

Dr. Pierre Philippe Mathieu
European Space Agency (ESA) Head of the Philab (U Lab) Explore Office at the

European Space Agency in ESRIN (Frascati, Italy).
Pierre-Philippe is passionate about innovation and our planet: its beauty, fragility

and complex dynamics as part of an integrated Earth System. His current role at
ESA is to help scientists, innovators and citizens to use high-tech (such as satellite
data) to better monitor, understand and preserve our home planet, by making
sustainable use of its limited natural resources.

PP’s background is in Earth Sciences. He has a degree in engineering and M.Sc
from the University of Liege (Belgium), a Ph.D. in climate science from the
University of Louvain (Belgium), and a Management degree from the University of
Reading Business School (Uk). Over the last 20 years, he has been working in
environmental monitoring and modelling, across disciplines from remote sensing,
modelling up to weather risk management.

Currently, PP is trying to connect the global picture we get from space with
world challenges in daily life, fostering the use of our Earth Observation
(EO) missions to support science, innovation and development in partnership with
user communities, industry and businesses.

Professor Leontios Hadjileontiadis, Department of Electrical and Computer
Engineering, Aristotle University of Thessaloniki, Greece, and Coordinator of
i-PROGNOSIS, gave a speech on the subject of “Smartphone, Parkinson’s and
Depression: A new AI-based prognostic perspective”.
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Professor Hadjileontiadis has been awarded among other awards, as innovative
researcher and champion faculty from Microsoft, USA (2012), the Silver Award in
Teaching Delivery at the Reimagine Education Awards (2017–2018) and the
Healthcare Research Award by the Dubai Healthcare City Authority Excellence
Awards (2019). He is a senior member of IEEE.

Professor Nikola Kasabov, FIEEE, FRSNZ, Fellow INNS College of Fellows,
DVF RAE, UK, Director, Knowledge Engineering and Discovery Research
Institute, Auckland University of Technology, Auckland, New Zealand,
Advisory/Visiting Professor SJTU and CASIA China, RGU, UK, gave a speech on
the subject of “Deep Learning, Knowledge Representation and Transfer with
Brain-Inspired Spiking Neural Network Architectures”.

Professor Kasabov has received a number of awards, among them: Doctor
Honoris Causa from Obuda University, Budapest; INNS Ada Lovelace Meritorious
Service Award; NN Best Paper Award for 2016; APNNA “Outstanding
Achievements Award”; INNS Gabor Award for “Outstanding contributions to
engineering applications of neural networks”; EU Marie Curie Fellowship; Bayer
Science Innovation Award; APNNA Excellent Service Award; RSNZ Science and
Technology Medal; 2015 AUT Medal; Honorable Member of the Bulgarian and the
Greek Societies for Computer Science.

Professor Xiao-Jun Wu Department of Computer Science and Technology,
Jiangnan University, China, gave a speech on the subject of “Image Fusion Based
on Deep Learning”.

Professor Xiao-Jun Wu has won the most outstanding postgraduate award by
Nanjing University of Science and Technology. He has won different national and
international awards, for his research achievements. He was a visiting postdoctoral
researcher in the Center for Vision, Speech, and Signal Processing (CVSSP),
University of Surrey, UK, from 2003 to 2004.

Tutorials

Prof. John Macintyre

Dean of the Faculty of Applied Sciences, Pro Vice Chancellor at the University of
Sunderland,UK.During the 1990s, he established theCenter forAdaptiveSystems—at
the University, which became recognized by the UK government as a center of
excellence for applied research in adaptive computing and artificial intelligence. The
center undertook many projects working with and for external organizations in
industry, science, and academia, and for three years ran the Smart Software forDecision
Makers program on behalf of the Department of Trade and Industry.

Professor Macintyre will give a plenary talk on the following subject: “AI
Applications during the COVID-19 Pandemic - A Double Edged Sword?”

Dr. Kostas Karpouzis

Associate Researcher, Institute of Communication and Computer Systems (ICCS)
of the National Technical University of Athens, Greece. Tutorial Subject: “AI/ML
for games for AI/ML”.
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Digital games have recently emerged as a very powerful research instrument for
a number of reasons: They involve a wide variety of computing disciplines, from
databases and networking to hardware and devices, and they are very attractive to
users regardless of age or cultural background, making them popular and easy to
evaluate with actual players. In the fields of artificial intelligence and machine
learning, games are used in a twofold manner: to collect information about the
players’ individual characteristics (player modeling), expressivity (affective com-
puting), and playing style (adaptivity) and also to develop AI-based player bots to
assist and face the human players and as a test bed for contemporary AI algorithms.

This tutorial discusses both approaches that relate AI/ML to games: Starting
from a theoretical review of user/player modeling concepts, it discusses how we can
collect data from the users during gameplay and use them to adapt the player
experience or model the players themselves. Following that, it presents AI/ML
algorithms used to train computer-based players and how these can be used in
contexts outside gaming. Finally, it introduces player modeling in contexts related
to serious gaming, such as health and education.

Intended audience: researchers in the fields of machine learning and
human–computer interaction, game developers and designers, health and education
practitioners.

The accepted papers of the 21st EANN conference are related to the following
thematic topics:

• Classification Machine Learning
• Convolutional Neural Networks in Robotics/Machine Vision
• Deep Learning Applications in Engineering
• Deep Learning LSTM in Environmental Cases
• Deep Learning in Engineering
• Deep Learning/Image Processing
• Deep Learning and Medical Systems
• Fuzzy Logic Modeling
• Unsupervised Machine Learning/Clustering
• Fuzzy Modeling
• Machine Learning and Neuro/Biological Modeling
• Meta-Learning/Nonlinear Modeling
• Algorithmic Foundations of Neural Networks
• Neural Networks in Engineering
• Optimization and Machine Learning
• Hybrid Machine Learning Systems

The authors of submitted papers came from 18 different countries from all over
the globe, namely Bulgaria, Czech Republic, Germany, Greece, France, Hong
Kong, Hungary, India, Italy, Japan, Norway, Poland, Romania, Russia, Spain,
Turkey, UK, and Vietnam.

June 2020 EANN 2020 Chairs
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The Rise of Artificial Intelligence for Earth
Observation (AI4EO)

Pierre Philippe Mathieu

European Space Agency (ESA) Head of the Philab (U Lab) Explore Office at the
European Space Agency in ESRIN (Frascati, Italy)
Pierre.Philippe.Mathieu@esa.int

Abstract. The world of Earth Observation (EO) is rapidly changing as a result of
exponential advances in sensor and digital technologies. The speed of change has
no historical precedent. Recent decades have witnessed extraordinary developments
in ICT, including the Internet, cloud computing and storage, which have all led to
radically new ways to collect, distribute and analyse data about our planet. This
digital revolution is also accompanied by a sensing revolution that provides an
unprecedented amount of data on the state of our planet and its changes.

Europe leads this sensing revolution in space through the Copernicus initiative
and the corresponding development of a family of Sentinel missions. This has
enabled the global monitoring of our planet across the whole electromagnetic
spectrum on an operational and sustained basis. In addition, a new trend, referred to
as “New Space”, is now rapidly emerging through the increasing commoditization
and commercialization of space.

These new global data sets from space lead to a far more comprehensive picture
of our planet. This picture is now even more refined via data from billions of smart
and inter-connected sensors referred to as the Internet of Things. Such streams of
dynamic data on our planet offer new possibilities for scientists to advance our
understanding of how the ocean, atmosphere, land and cryosphere operate and
interact as part on an integrated Earth System. It also represents new opportunities
for entrepreneurs to turn big data into new types of information services.

However, the emergence of big data creates new opportunities but also new
challenges for scientists, business, data and software providers to make sense of the
vast and diverse amount of data by capitalizing on powerful techniques such as
Artificial Intelligence (AI). Until recently AI was mainly a restricted field occupied
by experts and scientists, but today it is routinely used in everyday life without us
even noticing it, in applications ranging from recommendation engines, language
services, face recognition and autonomous vehicles.

The application of AI to EO data is just at its infancy, remaining mainly concen-
trated on computer vision applications with Very High-Resolution satellite imagery,
while there are certainly many areas of Earth Science and big data mining / fusion,
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which could increasingly benefit from AI, leading to entire new types of value chain,
scientific knowledge and innovative EO services.

This talk will present some of the ESA research / application activities and
partnerships in the AI4EO field, inviting you to stimulate new ideas and collabo-
ration to make the most of the big data and AI revolutions.

xvi P. P. Mathieu



Smartphone, Parkinson’s, and Depression:
A New AI-Based Prognostic Perspective

Leontios Hadjileontiadis1,2

1 Department of Electrical and Computer Engineering, Khalifa University
of Science and Technology, Technology and Research, Abu Dhabi,
United Arab Emirates

2 Department of Electrical and Computer Engineering,
Aristotle University of Thessaloniki, Thessaloniki, Greece
leontios@auth.gr

Abstract. Machine learning (ML) is a branch of artificial intelligence (AI) based on
the idea that systems can learn from data, identify patterns, and make decisions with
minimal human intervention. While many ML algorithms have been around for a
long time, the ability to automatically apply complex mathematical calculations to
big data—over and over, faster and faster, deeper and deeper—is a recent devel-
opment, leading to the realization of the so-called deep learning (DL). The latter has
an intuitive capability that is similar to biological brains. It is able to handle the
inherent unpredictability and fuzziness of the natural world. In this keynote, the
main aspects of ML and DL will be presented, and the focus will be placed in the
way they are used to shed light upon the human behavioral modeling. In this vein,
AI-based approaches will be presented for identifying fine motor skills deterioration
due to early Parkinson’s and depression symptoms reflected in the keystroke
dynamics, while interacting with a smartphone. These approaches provide a new
and unobtrusive way for gathering and analyzing dense sampled big data, con-
tributing to further understanding disease symptoms at a very early stage, guiding
personalized and targeted interventions that sustain the patient’s quality of life.
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Deep Learning, Knowledge Representation,
and Transfer with Brain-Inspired Spiking
Neural Network Architectures

Nikola Kasabov

Auckland University of Technology, Knowledge Engineering
and Discovery Research Institute, Auckland, New Zealand
nkasabov@aut.ac.nz

Abstract. The talk argues and demonstrates that the third generation of artificial
neural networks, the spiking neural networks (SNN), can be used to design
brain-inspired architectures that are not only capable of deep learning of temporal or
spatiotemporal data, but also enabling the extraction of deep knowledge repre-
sentation from the learned data. Similarly to how the brain learns time space data,
these SNN models do not need to be restricted in number of layers, neurons in each
layer, etc. When a SNN model is designed to follow a brain template, knowledge
transfer between humans and machines in both directions becomes possible through
the creation of brain-inspired brain–computer interfaces (BCI). The presented
approach is illustrated on an exemplar SNN architecture NeuCube (free software
and open source available from www.kedri.aut.ac.nz/neucube) and case studies of
brain and environmental data modeling and knowledge representation using
incremental and transfer learning algorithms. These include predictive modeling of
EEG and fMRI data measuring cognitive processes and response to treatment, AD
prediction, BCI for neuro-rehabilitation, human–human and human-VR commu-
nication, hyper-scanning, and other.
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Image Fusion Based on Deep Learning

Xiao-Jun Wu

Department of Computer Science and Technology, School of IoT Engineering,
Jiangnan University, China
wu_xiaojun@jiangnan.edu.cn

Abstract. Deep learning (DL) has found very successful applications in numerous
different domains with impressive results. Image fusion (IMF) algorithms based on
DL and their applications will be presented thoroughly in this keynote lecture.
Initially, a brief introductory overview of both concepts will be given. Then, IMF
employing DL will be presented in terms of pixel, feature, and decision level,
respectively. Furthermore, a DL-inspired approach called MDLatLRR which is a
general approach to image decomposition will be introduced for IMF.
A comprehensive analysis of DL models will be offered, and their typical appli-
cations will be discussed, including Image Quality Enhancement, Facial Landmark
Detection, Object Tracking, Multi-Modal Image Fusion, Video Style
Transformation, and Deep Fake of Facial Images, respectively.
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Abstract. Human activity recognition and analysis has always been one
of the most active areas of pattern recognition and machine intelligence,
with applications in various fields, including but not limited to exer-
tion games, surveillance, sports analytics and healthcare. Especially in
Human-Robot Interaction, human activity understanding plays a crucial
role as household robotic assistants are a trend of the near future. How-
ever, state-of-the-art infrastructures that can support complex machine
intelligence tasks are not always available, and may not be for the aver-
age consumer, as robotic hardware is expensive. In this paper we pro-
pose a novel action sequence encoding scheme which efficiently trans-
forms spatio-temporal action sequences into compact representations,
using Mahalanobis distance-based shape features and the Radon trans-
form. This representation can be used as input for a lightweight convo-
lutional neural network. Experiments show that the proposed pipeline,
when based on state-of-the-art human pose estimation techniques, can
provide a robust end-to-end online action recognition scheme, deployable
on hardware lacking extreme computing capabilities.

Keywords: Action recognition · Deep neural networks ·
Human-Robot Interaction · Radon transform

1 Introduction

Human activity recognition is a very important field of study inside the broad
domain of pattern recognition, with many everyday life applications. High level
human actions are an important information modality for social interaction
and they play a critical role in Human-Robot Interaction (HRI) [12]. Human
poses, hand gestures and overall body motion are also important for human-
focused HRI, especially in applications with robots interacting with humans daily
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(e.g. [1,18,20]). Robotic assistants are required to understand and analyse human
activity at all levels of interpretation, as well as have the ability to predict inten-
tions and to imitate human actions when forming responses. Social robots and
applications aimed at such environments will need to be employed in human-
centric contexts, build trust and effectively assist humans beings [6]. In this
paper, we focus on online human activity recognition pipelines with the aim to
provide solutions on the inherent problems of such endeavours.

1.1 Related Work

Various works on activity analysis and understanding deal with real application
scenarios. In the field of preventing unintentional falls in elderly care and assistive
environments, the work presented in [29] is one of the most typical attempts
for applying convolutional neural networks in a fall detection application. A
dataset of daily activities recorded from many people is used as classification is
performed on single frames containing human postures. This method performs
well on posture classification and can detect falls with a low false alarm rate. In an
earlier work [16], an efficient algorithm is proposed to identify temporal patterns
in actions. It further utilizes these patterns to construct activity representations
for automated recognition.

There is an extensive literature of studies focused on HRI, a comprehen-
sive presentation of which can be found in [12]. In a typical example of such
works, authors in [22] propose that state-of-the-art approaches from automatic
speech and visual action recognition, fused with multiple modalities, can con-
struct multimodal recognition pipelines focused on assistive robots for elderly
environments. An end-to-end approach shown in [3] deals with dynamic ges-
tures using a Dynamic Time Warping approach, based on features extracted
from depth data, in a complete HRI scenario.

1.2 Real World Challenges

As stated in [25], applied human activity recognition pipelines are demanding in
terms of hardware and general infrastructure. Most action recognition systems,
especially smart-home or assistive living applications, depend on network infras-
tructures for easy data fusion and integration of different sensing modalities.
HRI environments are no different, in the sense that they may need computing
capabilities similar to common workstations, as well as networking. Especially
when dealing with deep learning-based pipelines, we are used to having hard-
ware acceleration (i.e. massive parallel computing, GPU acceleration etc.) at our
disposal. This study aims to provide a lightweight pipeline with limited need for
high-end infrastructures.

2 Theoretical Primer

In the following section, we attempt a brief documentation of the theoretical
background on which the proposed scheme is built upon. This primer emphasizes
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on the statistical nature of spatio-temporal data, the use of the Radon Transform
for feature encoding, as well as the necessary tools to encode the necessary
information into a compact pipeline.

2.1 Variance-Based Features

As mentioned in [24], high level human pose and activity descriptors, such as
spatio-temporal interest points [14] or human joints, can be treated as prob-
abilistic distributions. Joints detected in a video frame or still image, e.g.
using pipelines such as OpenPose [4], can be considered distributed in space,
whereas spatio-temporal interest points are distributed both in space and time.
Action recognition techniques benefit from accurately modeling these relation-
ships between the salient features describing an action sequence.

Particularly in [24], a method to distinguish between experienced tennis play-
ers and amateurs is shown, which employees feature vectors constructed by cal-
culating the per frame variance of interest points. Variance, as the second central
moment, is an effective shape descriptor [17]. Interest points and joint locations
form a 3D volumes in space and time. In that context, we extend the idea
demonstrated in [24], by incorporating the use of Mahalanobis distances.

Mahalanobis Distance. Given a sample vector x from a distribution D with
mean µ and covariance matrix S, the Mahalanobis distance between x and D
is given by Eq. 1.

mahal(x,µ, S) =
√

(x − µ)TS−1(x − µ) (1)

In this work, we are focusing on detected human joints in 3D space, like the
ones extracted using depth sensors (e.g. Intel RealSense1 or Microsoft Azure
Kinect2) and by pipelines such as the one presented in [19], which extends com-
mon 2D heatmap-based pose detection techniques such as [4] without utilizing
costly volumetric operations. There is a good indication that skeletal joints can
be considered valid spatio-temporal interest points when it comes to human
action analysis and, with them being a more refined and targeted source of
human posture information, can lead to better results [27].

As the relative position of a joint and the human body is crucial in the
definition of human motion, we believe that a compact and robust way to model
these individual relations should be central to any action recognition pipeline.
The Mahalanobis distance, as an established metric for point-to-distribution
distances, is more suitable in this task, instead of more intuitive metrics, such
the Euclidean distance between a point and the distribution centroid. Its place
in this pipeline will be explained in detail in Subsect. 3.1.

1 https://www.intelrealsense.com/.
2 https://azure.microsoft.com/en-us/services/kinect-dk/.

https://www.intelrealsense.com/
https://azure.microsoft.com/en-us/services/kinect-dk/
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2.2 Use of the Radon Transform

The Radon transform is effectively used as a reconstruction and feature extrac-
tion tool for several decades [2]. It has found applications in earlier human activ-
ity recognition pipelines based on hand-crafted features [7] and in novel tech-
niques, alongside its generalization, the Trace transform [13], in offline pipelines
[9,10]. Another application of the Radon transform in this field leverages the
transform’s ability to create translation and scale invariant features to use as
input for a Recurrent Neural Network (RNN) [26]. However, for reasons which
will be demonstrated in the next section, this paper avoids the use of RNN and
draws inspiration from such studies as the one in [11], where source images and
their Conic Radon transforms are fed into a deep convolutional neural network
for fingerprint classification.

Given a 2D function f(x, y) with x, y ∈ R, its Radon transform Rf is equal
to the integral of all values of f under all lines L, defined by parameters ρ, θ ∈ R,
where ρ is each line’s distance from the origin and θ is the angle formed between
the line and the horizontal axis:

Rf (ρ, θ) =
∫

L

f(x, y)dL (2)

If we substitute the parametrical ρ, θ line equation in Eq. 2, we have the following:

Rf (ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − ρ)dxdy (3)

where δ the Dirac delta function, ensuring that only the values of f under line
ρ, θ will be integrated over.

3 The Proposed Pipeline

At this point, we have documented the theoretical tools to give spatio-temporal
prominence to raw joint information using variance-based shape features and,
particularly, the Mahalanobis distance. We have also seen how the Radon trans-
form and other relevant transforms can create robust features out of otherwise
non-salient 2D and 3D functions. This section will clarify how the aforemen-
tioned theoretical tools will be used in a unified and compact pipeline action
encoding pipeline.

3.1 Spatio-Temporal Radon Footprints

As we have established, the relationship between the position of one joint and the
rest of the body parts of a subject, at a particular point in time, can be encoded
by treating the set of joints as a distribution and calculating the Mahalanobis
distance (given by Eq. 1) between it and that particular joint. In our context, a
point in time is a frame in an action sequence or video. So, if we extend the above
claim to all the joints of a subject and across all frames of an action sequence,
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we can formulate a Mahalanobis matrix M , whose values for joint j and frame
f can be calculated using the following equation:

M(j, f) = mahal(xj
f ,µf , Sf ) (4)

where xj
f is the coordinate vector of joint j in frame f , defined in R

2 or R
3, µf

is the mean of all joint coordinate vectors in frame f (essentially the centroid)
and Sf is the covariance matrix of the joint distribution at frame f .

In essence, the Mahalanobis matrix formulated in Eq. 4 is a complete 2D
representation of the action sequence in space and time. With J × t resolution,
where J is the total number of joints and t is the point in time (number of
frames passed) since the beginning of the sequence, each line of the matrix has
the Mahalanobis distances of every joint at the corresponding frame.

What this representation lacks, however, is a way to correlate the individual
frame information into a compact robust feature which will describe the action
sequence from its start up to point t. For this reason, we calculate the Radon
transform of the 2D function M by substituting the representation M(j, f) into
Eq. 3. This gives as a 2D spatio-temporal feature describing the action sequence
up to point t in time. This feature will, for the rest of this paper, be called the
Spatio-temporal Radon Footprint of the action up to point t, will be denoted as
SRFt and is calculated as follows:

SRFt(ρ, θ) =
∫ t−1

0

∫ J−1

0

M(j, f)δ(j cos θ + f sin θ − ρ)djdf (5)

In the above equation, it must hold that t � 2, both for M to be a 2D function of
j and f and for the representation to encode a minimum of temporal information.
In practice, depending on the action itself, more frames may need to pass before
starting to calculate SRF s. Naturally, it should also hold that F > 2, which is
obvious, both for the aforementioned reason as well as because it is impossible
to ascertain the nature of an activity with insufficient joint information.

The process of calculating a SRF at a point in time, from a sequence of
frames containing joint information, is depicted in Fig. 1. The frames shown

Fig. 1. Calculating SRFt: the Mahalanobis matrix is calculated from the action
sequence at point t and the Radon transform of the matrix gives the final result.
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Fig. 2. SRF samples from various action sequences of the UTD-MHAD dataset, at
varying points in time.

are samples from the UTD-MHAD dataset [5], which will be documented in
Subsect. 4.1. Figure 2 shows sample SRF s taken from this dataset, from different
sequences and at different timestamps.

3.2 A VGG CNN-Based Pipeline

In previous works such as the ones in [10] and [9], the Radon transform and its
derivatives were intermediate features, used to produce the final feature vector
describing the action sequence, which in turn was used as input for established
machine learning techniques, such as SVMs. In this work, however, much like in
[11], instead of hand-crafting features based on the transform’s result, a convolu-
tional neural network will learn those features directly from the SRF s. Particu-
larly, we opted for a VGG-based architecture [23], because of the simplicity, the
ease to train and deploy and the ability to adapt to complex pattern recognition
problems that this family of convolutional neural networks demonstrates. The
network used in our pipeline is shown in Fig. 3.

Preference over RNN-LSTM Architectures. It is customary to use Recur-
rent Neural Network (RNN, LSTM) architectures for online pattern recognition
tasks involving temporal sequences [15], due to their ability to learn and encode
temporal information. However, known issues come with the use of such net-
works, including the need for large training datasets in most cases, the vanish-
ing and exploding gradient problems, as well their high demands in computa-
tional resources [8]. By encoding online spatio-temporal information in SRF s
and using robust object detection architectures, we aim to eliminate the need
for such networks and provide an online and compact action recognition pipeline
which would not depend on extremely sophisticated hardware.

Per-Frame and Cumulative Classification. Human activity recognition is
a temporally sensitive task. Offline techniques need to observe the complete
action sequence before performing classification. In an online pipeline aiming
towards real-time action recognition, per-frame classification is central. Previous
studies, such as the one in [29], perform classification between unintentional falls
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Fig. 3. The VGG-based architecture used in our experiments.

and other activities on single postures/frames, rather than complete sequences.
The methodology presented in this paper performs online action analysis, while
taking into account the history of every previous per-frame classification task.

In a specific frame f of the sequence, the SRFf is calculated and fed in the
aforementioned network. The network then determines the class of the action
at that frame. However, the final decision is made by counting the number each
action class was deemed the correct class of the sequence, divided by the number
of frames which have passed up until the moment of classification. In a sense, for
each action class and in every frame, we calculate a confidence that this action
belongs to that class. This confidence is updated per-frame, with the ultimate
goal of determining the correct class as early in the sequence as possible. This
way, we eliminate the possibility of outliers (frames being classified in the wrong
class) among a number of correct classifications.

4 Experimental Evaluation

In this section, we will discuss the experimental setup and the data used in
the evaluation of the aforementioned methodology. The choice of the validation
protocol will also become apparent, as well as the efficiency of the proposed
technique.

4.1 Dataset

In our experiments, we used the UTD-MHAD dataset [5]. In particular, we used a
more recent subset of this dataset, which contains data captured using the Kinect
v2 depth sensor. It includes 10 actions, namely “Right hand high wave”, “Right
hand catch”, “Right hand high throw”, “Right hand draw X”, “Right hand
draw tick”, “Right hand draw circle”, “Right hand horizontal wave”, “Right
hand forward punch”, “Right hand hammer” and “Hand clap (two hands)”.
These actions were performed by 6 subjects (3 female and 3 male), each one of
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whom performed each action 5 times, resulting in a total of 300 action sequences.
Figure 4 shows sample data from the dataset.

We opted for this new subset of the UTD-MHAD dataset for two reasons,
both of which are sensor related. The Kinect V2 is a relatively state of the art
device which can detect joint information for 25 body joints without inducing
much noise (Base of the spine, Middle of the spine, Neck, Head, Left shoulder,
Left elbow, Left wrist, Left hand, Right shoulder, Right elbow, Right wrist,
Right hand, Left hip, Left knee, Left ankle, Left foot, Right hip, Right knee,
Right ankle, Right foot, Spine at the shoulder, Tip of the left hand, Left thumb,
Tip of the right hand, Right thumb).

Fig. 4. Samples from the UTD-MHAD dataset.

4.2 Leave-One-Person-Out Cross-Validation

Validating a human activity recognition pipeline entails an inherent complexity
which is not found in other classification tasks. In a typical scenario, we would
have partitioned the dataset into a training and a testing set. Our dataset, as
many other action datasets, is already partitioned by the subjects executing the
actions. Simply leaving a person out for validation and training with the rest
would not, however, produce reliable results.

Every person performs an action in a unique to every other person’s way.
For that matter, we perform the Leave-one-person-out cross-validation protocol
(LOPO or LOO) across all individuals in our dataset. Essentially, we are training



A Compact Sequence Encoding Scheme 11

with the actions performed by 5 subjects and test with the actions performed by
the one we left out. We repeat this process for all subjects in the dataset. The
final reported accuracy would be the mean of the individual accuracies of each
training-testing scenario.

4.3 Results

One of the first findings that we should report is that our pipeline achieved high
training accuracy across all individual subject training tasks, with the mean
training accuracy reaching 99.15%. The highest achieved training accuracy was
as high as 99.25%, when training with all subjects except for subject #3, which
was used for testing.

An expected discrepancy was noticed across the validation tasks. Notably,
when testing with subject #6, the pipeline achieved validation accuracy equal to
90.08%, whereas the worst performance was reported when testing with subject
#3 (66.02%), on the same task that achieved the highest training accuracy.
This hints towards possible issues of overfitting which may need to be dealt
with in future works. The mean validation accuracy achieved after performing
the complete LOPO protocol across all subjects was equal to 81.06%. Table 1
shows the confusion matrix of the proposed pipeline after the validation process.

Figure 5 shows a characteristic sample of the evolution of class confidences
according to our proposed pipeline. In this figure we observe how action class 4
(“Right hand draw X”) emerges as the most possible to be the correct one with
the passage of time. More extensive experimentation may lead to more robust
findings concerning the similarity and relationship between classes.

Table 1. Confusion matrix of the proposed pipeline.

Truth

Predicted a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 Total

a1 20 0 0 0 0 0 2 0 1 0 23

a2 0 10 1 0 0 0 0 0 0 0 11

a3 0 12 26 0 0 0 0 1 0 0 39

a4 0 0 3 23 0 6 1 0 0 0 33

a5 0 0 0 5 30 0 0 1 0 0 36

a6 4 0 0 2 0 24 2 0 0 0 32

a7 0 0 0 0 0 0 14 1 0 0 15

a8 0 7 0 0 0 0 6 27 0 0 40

a9 6 1 0 0 0 0 5 0 29 0 41

a10 0 0 0 0 0 0 0 0 0 30 30
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Fig. 5. Evolution of class confidences for action #4, performed by subject #6. After
a certain point in time, the correct class (4, Right hand draw X) emerges as the most
prevalent class.

5 Conclusion

This paper presented a compact online action recognition methodology, based
on a novel sequence encoding scheme and a lightweight convolutional neural
network. It is suitable for deployment on hardware with limited capabilities,
which can be found even in household robotic systems. Experimentation and
cross validation showed this pipeline can be used with state-of-the-art human
pose estimation techniques to form efficient end-to-end activity recognition
techniques.

Discrepancies in the testing data pointed out that there may be room for
improvement, as more novel convolutional neural network architectures emerge.
Furthermore, there may be hints of overfitting, as stated in the previous section,
which may need to be dealt with.

In our future work, we will include attention models [21,28] in the CNN archi-
tecture to further improve the performance of the presented approach. Another
direction could also be to focus on decrypting the inherent relationships and sim-
ilarities between actions as encoded by SRF s, in order to evaluate the proposed
scheme’s performance as an action analysis and assessment tool.
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Abstract. Seismically generated landslides represent one of the most damaging
hazards associated with earthquakes in countries with high seismicity. The
delineation of prone to coseismic landsliding areas is crucial in order to predict
the occurrence of earthquake-induced landslides and consequently reduce the
relevant risk. The goal of this study is to investigate the correlation of the pattern
of coseismic landslides with geological and topographical variables i.e. lithol-
ogy, slope angle and slope aspect with the volume of landslides based on fuzzy
logic and machine learning techniques. For this task, a real dataset of 421 and
767 instances for years 2003 and 2015 respectively from the island of Lefkada
was used. A new approach based on Fuzzy C-Means Algorithm and Ensemble
Subspace k-Nearest-Neighbors (Ensemble Subspace k-NN) is proposed. Land-
slides were classified according to their severity with a success rate of 99.5%
and 98.7% for 2003 and 2015 respectively. The performance of the proposed
approach was evaluated using “One Versus All” Strategy, calculating Accuracy,
Sensitivity, Specificity, Precision and F-1 Score for each cluster.

Keywords: Landslides � Lefkada � Fuzzy C-Means � S-Nome � k-Nearest-
Neighbors � Ensemble Subspace k-NN � Clustering � Classification

1 Introduction

It is well known that landslide can be triggered by rainfall, earthquakes, volcanic
eruption and man-made activities. Experience has shown that seismically induced
landslides represent one of the most damaging hazards associated with earthquakes in
countries with high seismicity [1]. According to Jibson et al. [18], the effect of
seismically-induced landslides on human lives and facilities may exceed in some cases
the damage directly connected to the shaking. The correlation of coseismic landslides
with the seismic and morphological parameters has been investigated by several
researchers, mainly after the devastating 2008 Wenchuan, China earthquake. The out-
come arisen by this correlation is that both the volume and number of landsliding
phenomena are relevant to earthquake magnitude. In particular, it was shown that
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landslide frequencies are higher in areas of highest peak ground acceleration (PGA) and
that landslide density decays with the epicentral or fault distance [2, 20, 25, 31].

The delineation of prone to coseismic landsliding areas is crucial in order to predict
the occurrence of earthquake-induced landslides and consequently reduce the relevant
risk. Nowadays, satellite imagery and GIS technology are considered as basic tools that
are used by earth scientist for evaluating the hazard and the risk within an area, initially
by the introduction and statistical analyses of geo-environmental and seismologic
factors into GIS software [29]. In particular, the characteristics of the landsliding area is
statistically related to control factors such as topographic, geologic and seismic
parameters e.g. slope angle, slope aspect, curvature, lithology, Peak Ground Acceler-
ation (PGA) and seismic intensity distribution, and distance from the seismic fault or
epicenter [27, 39]. These correlations can provide crucial information that can be used
for seismic landslide hazard analysis and planning mitigation measures for prone
earthquake-induced landslides regions [6, 7, 18, 30].

Frequently, the statistical analysis is based on bivariate and multivariate approa-
ches. The goal of this study is to investigate the correlation of the pattern of coseismic
landslides with geological and topographical variables i.e. lithology, slope angle and
slope aspect with the volume of landslides based on fuzzy logic and machine learning
techniques. In particular, Fuzzy C-Means Algorithm [3, 12] was used for data clustering
and Ensemble Subspace k-Nearest-Neighbors (Ensemble Subspace k-NN) was used for
the classification [10, 15, 37]. Existing bibliography like [23] and [33] does not exploit
the combination of the above algorithms.

The motivation for the development of this research was the need for a more
flexible model. More specifically, the existing approaches (e.g. the bivariate analysis)
are using crisp values for the determination of slope angle or slope aspect classes. Thus,
borderline values can be easily misclassified.

2 Area of Research

The geology of the Lefkada island, comprises: (1) a carbonate sequence of the Ionian
zone, (2) limestone of Paxos (Apulia) zone restricted in the SW peninsula of the island,
(3) few outcrops of ionian flysch (turbidites) and Miocene marls-sandstones mainly in
the northern part of the island [9, 34]. The boundary between the two different geo-
logical zones – Ionian and Paxos, runs in an approximate NW- SE direction through
this region and outcrops onshore south-central Lefkada Island near Hortata village, in
the form of a buried thrust fault by scree and late Quaternary deposits [28]. Pleistocene
and especially Holocene coastal deposits are extended in the northern edge of Lefkada,
where the homonym capital town is founded, in the valley of Vassiliki and in the coast
Nydri.

Regarding the seismicity, it is pointed out that the island of Lefkada is considered
as one of the most tectonically active areas in Europe being part of the high seismicity
Ionian Sea area, and particularly due to the complex crustal deformation resulting from
the subduction of the African plate towards NE and the Apulian platform continental
collision further to the northwest [14, 16]. The main active tectonic structure, is the
140 km long dextral strike-slip Cephalonia-Lefkada Transform fault (Fig. 1) (CTF;
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[24, 36, 38]), which has a GPS slip-rate bracketed between 10 and 25 mm/yr. The steep
morphology on the western part of the island, where most of slope failure cases are
reported is due to this offshore CTF and its onshore sub-parallel fault; the Athani-
Dragano fault [9, 35]. The latter one is a NNE-SSW striking fault forming a narrow
elongated continental basin, very well expressed in the region’s morphology and
marked on satellite images and aerial photos.

There is reliable detailed information for at least 23 events, since 1612 which
induced ground failures at the island of Lefkada [26]. A first conclusion arising from
the list of historical events is that earthquakes appear in couples (twin or cluster events)
with time period of occurrence ranging between 2 months and 5 years e.g. 1612–1613
(16 months); 1625–1630 (5 years); 1722–1723 (10 months); 1767–1769 (2 years);
1783–1783 (2 months, possible aftershock); 1867–1869 (2 years); 1914–1915 (2
months); 1948–1948 (2 months). Thus, it is crucial to determine the location of
coseismic landslides since it will be beneficial for reducing the risk and increasing the
resilience at the island.

2.1 Coseismic Landslides at the Island of Lefkada

The most recently occurred and well-studied earthquakes are the ones of 2003 and
2015. The penultimate event triggered extensive slope failures at the western part of the
island. The volume of the debris material that moved downwards was larger than the
one of the 2015 earthquake. Rock falls were widespread on the whole island and
especially in the northwestern and central area, on both natural and cut slopes, as well
as, on downstream road embankment slopes. The most characteristic rock falls, with
diameters up to 4 m, were observed along the 6 km long road of Tsoukalades-Agios
Nikitas, which is within the epicentral area, and are accompanied by gravel, small rock
and soil slides [26]. The massive occurrence of these failures is the reason for the
closure of the road network at this area of the island for more than 2 years. The reported

Fig. 1. Map of the island of Lefkada showing the Cephalonia-Lefkada Transform Fault CTF
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rock falls followed the trace of a 300 m high morphological scarp, and especially a 10–
40 m high artificial slope [26].

Regarding the 2015 earthquake, the dominant geological effects were related to
slope failures i.e. rock falls and slides, and shallow and deep-seated landslides on both
natural and cut slopes [28]. These failures were documented on the western part of the
island, while the most densely concentration of these phenomena was reported on the
coastal zone from Porto Katsiki to Egremnoi-Gialos beach and along the 6 km long
coastal road of Tsoukalades - Agios Nikitas [28]. Shallow landslides and rock slides
were mainly generated in areas where the clastic material covered the bedrock, and
particularly in places where the rock mass was heavily jointed. Deep-seated landslides
were mainly documented at the area of Egremnoi [29]. At this area, deep-seated
landslides were reported, and large amount of debris material moved downslope
inducing severe damages to the road network and to residential houses. The debris
consists of coarse-grained size material with significant amount of large-diameter
gravels and few boulders.

In order to investigate the earthquake-induced landslide density, event-based
inventories were developed by taking into account aerial and satellite imagery in
Google Earth in order to enrich and update existing landslide datasets, previously
compiled for the two earthquakes [27]. In particular, Google Earth imagery of June 12,
2003 and December 19, 2005 was used for mapping 2003 earthquake landslides, and
November 15, 2013 and April 15, 2016 for 2015 earthquake, respectively. Landslide
activity along the western part of Lefkada is considered as minimal between major
earthquakes, as observed on multi-date satellite imagery and confirmed by local resi-
dents. Considering this, the short period between each satellite imagery pair (2–3 years)
is believed to include only the coseismic landslides, with very few if any at all land-
slides triggered by other factors. In total, 301 and 596 coseismic landslides were
mapped for the 2003 and 2015 earthquakes, respectively. For the extraction of mor-
phological and terrain parameters of the compiled landslide datasets, a detailed digital
elevation model (DEM) with spatial resolution of 5 m was used. The 5 m DEM was
obtained from Hellenic Cadastre and it was extracted from aerial imagery stereo-pairs,
having a vertical accuracy of 4 m [29].

Having completed the polygon-based inventories, a statistical analysis of landslide
distribution took place. In total, 596 and 301 landslides were identified covering (planar
area) 1.29 km2 and 1.6 km2 for the 2015 and 2003 events, respectively. It is pointed
out that these planar-oriented areas are obtained as projected measurements. The
minimum and maximum landslide area were evaluated as 40.4 m2 and 42940 m2 for
the 2015 earthquake, while for the penultimate event the relevant values are 129.8 m2

and 98300 m2, respectively [29]. The relevant values of minimum and maximum
landslide area for the 2015 event, which were evaluated by taking into account the
digital elevation model for the delineation of the landslide area, are 1.78 km2 total area,
51.30 m2 minimum and 58330 m2 maximum area, while for the 2003 earthquake the
total landsliding area covered 2.28 km2 with minimum area of 140.9 m2 and maximum
148469 m2 [29].
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3 Description of Dataset Pre-processing

The initial datasets (*.xlsx files) consist of 6 columns, 4 of which are numeric
(Perimeter, Average Slope, Surface, Id) and 2 are nominal (Average Aspect and
Geological Form). The 5th column is used only for data processing to determine the
distinct incidents. Each vector represents a landslide with a specific Geological Form
on the island of Lefkada. As it is already mentioned, 301 and 596 landslides were
identified for years 2003 and 2015 respectively. However, numerous landslides are
related to more than one types of geological forms. Taking into account this fact, the
landsliding areas have been reassigned based on the geological form upon which they
were delineated, resulting in 421 and 767 observations for years 2003 and 2015,
respectively. The same data pre-processing approach was used for both datasets.
However, data handling for each year was applied independently from the other, given
that 2003 observations have been mapped on two additional geological forms com-
pared to the case of 2015. Therefore, evaluation of the proposed approach per year has
proven its efficiency and consistency. Data processing was performed in three steps. In
particular, the first step was applied manually using both *.xlsx files, while second and
third steps was achieved by developing code in Matlab R2019a.

3.1 Labeling of Nominal Values

Initially, Average Aspect was transformed from nominal to numeric in a scale from one
to eight. Geological Form was similarly transformed to a scale from one to twenty for
year 2003 and from one to eighteen for year 2015. The transformations can be seen in
Tables 1 and 2.

Table 1. Average aspect with the corresponding label for 2003 and 2015.

Average
aspect

North North-East East South-East South South-West West North-West

Average
aspect label

1 2 3 4 5 6 7 8

Table 2. Geological form type with the corresponding label for 2003.

Geological form al C Ci Cs Csd E J1 J1d Jar Jc

Geological form label 1 2 3 4 5 6 7 8 9 10
Geological form Jm Js M Mb Pc Qc Qp Qt Tc Tg
Geological form label 11 12 13 14 15 16 17 18 19 20

Table 3. Geological form type with the corresponding label for 2015.

Geological form al C Ci Cs E J1 J1d Jar Jc

Geological form label 1 2 3 4 5 6 7 8 9
Geological form Jm Js M Mb Pc Qc Qp Qt Tg
Geological form label 10 11 12 13 14 15 16 17 18
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where al: alluvial; C, Jm, Jc, Jar, J1: limestones of Ionian; Ci, Cs: limestones of Paxos;
Csd limestones; E: limestones Eocene; Js: limestone of Paxos; J1d: dolomites; M, Mb:
Miocene sandstones; Pc: Pliocene conglomerate; Qc, Qp, Qt: Quaternary sediments;
Tc: limestones and dolomites of Triassic; Tg: evaporites.

3.2 Landslides Fuzzy C-Means Clustering

After a statistical pre-processing of data, authors noticed that there were few high
values causing a high standard deviation. Therefore, clustering of landslides is deterrent
with conventional methods. To overcome this hardship, Fuzzy C-Means Clustering
was employed to classify landslides according to their severity. Fuzzy C-Means was
used because it offers a very flexible methodology, as each data point can be assigned
to more than one clusters with different degrees of membership. This task was per-
formed in order to develop the labeled dataset required for the deployment of the
machine-learning model. A subset of available data, perimeter and surface, was used in
order to apply the Clustering.

Fuzzy clustering (a well-known soft computing method [4]) is an approach in
which each data point can belong to more than one cluster. One of the most widely
used fuzzy clustering algorithms is the Fuzzy C-means clustering (FCM) Algorithm.
This method, developed by Dunn in 1973 [12] and improved by Bezdek [3], is fre-
quently used in pattern recognition. It is based on minimization of the following
objective function:

Jm ¼
XN
i¼1

XC
j¼1

umij xi � cj
�� ��2; 1�m\1 ð1Þ

Where m is the fuzzifier (the fuzzifier m determines the level of cluster fuzziness),
uij is the degree of membership of xi in the cluster j, xi is the ith of d-dimensional
measured data, cj is the d-dimension center of the cluster, and ||*|| is any norm
expressing the similarity between any measured data and the center. Fuzzy partitioning
is carried out through an iterative optimization of the objective function shown above,
with the update of membership uij and the cluster centers cj by:

uij ¼ 1PC
k¼1

xi�cjk k
xi�ckk k

� � 2
m�1

; cj ¼
PN
i¼1

umij � xiPN
i¼1

umij

ð2Þ

This iteration will stop when maxij uðkþ 1Þ
ij � ukij

��� ���n o
\e, where e is a termination

criterion between 0 and 1, whereas k are the iteration steps. This procedure converges
to a local minimum or a saddle point of Jm.
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Parameters used for the FCM algorithm are presented in Table 4 while columns
Perimeter and Surface, from source data set, were chosen as input parameters. Expo-
nent (m fuzzier) controls the degree of fuzzy overlap between clusters. A large m results
in smaller membership values, uij, and hence, fuzzier clusters. In the limit m = 1, the
memberships, uij, converge to 0 or 1, which implies a crisp partitioning. maxIterations
is the maximum number of optimization iterations and minImprovement is the mini-
mum improvement in the objective function between successive iterations When the
objective function improves by a value below this threshold, the optimization stops.
A smaller value produces more accurate clustering results, but the clustering can take
longer to converge. For parameters’ values, the ones most used in the relevant literature
were selected [21, 22].

A script FCM.m was developed in Matlab, aiming the transformation of *.xlsx file
in Matlab tables. It has already been mentioned that the goal of this step is to create
clusters for the severity of lansdlides. The chosen number of clusters is 6 (calculated as
the existing combinations of 2 parameters with 3 states each). Clusters with their labels
and their names are presented in Table 5. The first part of the name corresponds to
Perimeter and the Second to Surface

The FCM.m Script is presented in the form of natural language, in Algorithm 1.

Table 4. Options for FCM algorithm

Exponent (m fuzzier) 2

maxIterations 100
minImprovement 0.00001

Table 5. Cluster with the corresponding labels and names

Cluster Name of cluster

1 Low Low
2 Low Medium
3 Medium Medium
4 Medium High
5 High High
6 Extreme Extreme
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Algorithm 1. The FCM.m Matlab Script
Script 1: FCM.m
Inputs: 421 incidents of 2003 and 767 incidents of 2015 exported from *.xlsx files.

 Part 1: 

  Step 1: Read and convert each *.xlsx file to a Matlab table.

Step 2: For each Table the column Id Numbers was used to retrieve distinct

Landslides. 2 new Matlab tables are constructed with the unique values

  Step 3: For each new table Perimeter and Surface column is chosen

 Part 2: 

Step 1: FCM algorithm was applied with options described in Table 4 and

clusters described in Table 5. Centers of clusters and membership
degrees of each observation were calculated.

  Step 2: Each instance was classified in the cluster on which the membership
degree was the highest.

 Part 3: 

  Step 1: Clusters pass to the original data 

  Step 2: Original data with theirs clusters are plotted in Figures 1a and 1b for

2003 and 2015 respectively.

Total landslides for each cluster for the years 2003 and 2015 are presented in
Table 6.

Fig. 2. Clusters for original data for 2003 (1a) and 2015 (1b) respectively.
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3.3 Fuzzy Clustering with FCM Algorithm and S-Norm

After creating the clusters it was observed that some instances do not belong exclu-
sively to a cluster (e.g. point (1981, 4.2�104) presented in Fig. 2a or point (2744,
3.3678�104) presented in Fig. 2b), as well as some instances in between 2 clusters with
similar membership values for both. Considering the above observation, the re-creation
of clusters for all instances is essential. Consequently, we decided that landslides,
which have degree of membership, for their dominant class, below a certain threshold
will be re-sorted. In order to perform this, it is necessary to use weights on each factor
[5, 41].

Equation (3) implements a fuzzy coupling between many fuzzy sets, using a
function f ðli;wiÞ which assigns the weight wi to the membership degree li.

leSðxiÞ ¼ Agg f leAðxiÞ;w1

� �
; f leAðxiÞ;w2

� �
; . . .; f leAðxiÞ;wn

� �� �
ð3Þ

Where i = 1, 2,…, k and k the number of instances examined and n factors’ number
[13]. The function f used in the coupling function (Eq. (3)) can be defined as:

f ða;wÞ ¼ a
1
w ð4Þ

where a is the membership degree and w is the corresponding weight.
For the Aggregation function was used Hamacher aggregation as S-Norm operator

[40].

eA \ eB ¼
leAðxÞþ leBðxÞ � 2leAðxÞleBðxÞ

½1� leAðxÞþ leBðxÞ� ð5Þ

Another script S-Norm_Clustering.m was developed in Matlab. The second script is
presented in the form of natural language, in Algorithm 2.

Table 6. Total landslides of each cluster for 2003 and 2015

Clusters 1 2 3 4 5 6 Total instances

2015 448 183 74 35 22 5 767
2003 238 100 44 27 7 5 421
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Algorithm 2. The S-Norm_Clustering.m Matlab Script
Script 2: S-Norm_Clustering.m
Inputs: All membership degrees of each observation for 2003 and 2015.

Part 1: 
Step 1: Threshold is defined at 0.7

Step 2: Weights are defined. The highest membership’s degree weight is 4, the
second highest is 2, and for the others 0.

Part 2: 
Step 1: If a membership degree for a cluster is higher than 0.7 the incident 

belong to this cluster.
Step 2: Else if the membership degree is under 0.7 the incident belongs to 

a new cluster, for with the membership degree is calculated through
Eq. (3),(4) and (5).

After applied S-Norm_Clustering.m, 4 more clusters were created for landslides of
2003 and 5 more for 2015. New clusters were created between the already existing
clusters. Therefore, they took their label depending the clusters that are between. For
example, cluster between cluster 1 and 2 is labeled as cluster 1.5. Clusters are presented
in Fig. 3a, b, and incidents for each cluster in Table 7. It is obvious that new clustering
classifies observations more effectively according to severity.

Fig. 3. Clusters for original data for 2003 (2a) and 2015 (2b) respectively after S-Norm

Table 7. Total landslides of each cluster for 2003 and 2015 after S-Norm

Clusters 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Total instances

2015 417 52 145 27 56 25 18 7 15 2 3 767
2003 222 27 84 9 37 5 22 4 6 0 5 421
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4 Classification Methodology

After having clustering done, we used classification algorithms to ascertain coseismic
landslides’ proper classification. The independent variables used for the classification
are Perimeter, Average Slope, Surface, Average Aspect and Geological Form of
landslides. Average Slope and Average Aspect were labeled as indicated in Tables 1, 2
and 3. The dependable value is the cluster derived from clustering with S-Norm.

A total of 23 classification algorithms have been employed namely: Fine Tree,
Medium Tree, Coarse Tree, Linear Discriminant, Quadratic Discriminant, Lin-
ear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM,
Coarse Gaussian SVM, Cosine KNN, Cubic KNN, Weighted KNN, Fine KNN,
Medium KNN, Gaussian Naive Bayes, Kernel Naïve Bayes, Boosted Trees, Bagged
Trees, Subspace Discriminant, Subspace KNN, RUSBoost Trees.

However, only the one with the highest values of performance indices will be
described herein.

4.1 Ensemble Subspace k-Nearest-Neighbors (Ensemble Subspace
k-NN)

Classifying query points based on their distance to specific points (or neighbors) can be
a simple but yet effective process. The k-nearest neighbors (k-NN) is a lazy and non-
parametric Learning algorithm [8]. It is widely used as a predictive performance
benchmark, when we are trying to develop more sophisticated models. Given a set X of
n points and a distance function, k-NN search finds the k closest points to a query point
or set of them [17]. Dunami [11] first introduced a weighted voting method, called the
distance-weighted (DW) k-nearest neighbor rule (Wk-NN). According to this
approach, the closer neighbors are weighted more heavily than the farther ones, using
the DW function. The weight wi for the i-th nearest neighbor of the query x′ is defined
following function 1:

w0
i ¼

dðx0xNNk Þ�dðx0xNNi Þ
dðx0xNNk Þ�dðx0xNN1 Þ

1

(
;
;

if
if

dðx0xNNk Þ 6¼ dðx0xNN1 Þ
dðx0xNNk Þ ¼ dðx0xNN1 Þ ð6Þ

Finally, the classification result of the query is determined by the majority weighted
voting as in function 2:

y0 ¼ argmax
y

X
ðxNNi ;yNNi Þ2T 0

w0
i � dðy ¼ yNNi Þ: ð7Þ

Based on Eq. (7), a neighbor with smaller distance is weighted more heavily than
one with greater distance: the nearest neighbor is assigned a weight equal to 1, whereas
the furthest one a weight of 0 and the weights of the others are scaled linearly to the
interval in between.

Despite its simplicity, k-NN gives competitive results and in some cases even
outperforms other complex learning algorithms. However, k-NN is affected by
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non-informative features in the data, which is something rather common with high
dimensional data. Several attempts have been made to improve the performance of
nearest neighbors’ classifiers by ensemble techniques. Some related work on ensemble
of k-NN classifiers can be found in [10, 15, 17].

Subspace ensembles have the advantage of using less memory than ensembles with
all predictors, and can handle missing values (NaNs).

The basic random subspace algorithm uses these parameters.

– m is the number of dimensions (variables) to sample in each learner.
– d is the number of dimensions in the data, which is the number of columns (pre-

dictors) in the data matrix X.
– n is the number of learners in the ensemble. Set n using the NLearn input.

The basic random subspace algorithm performs the following steps:

1. Choose without replacement a random set of m predictors from the d possible
values.

2. Train a weak learner using just the m chosen predictors.
3. Repeat steps 1 and 2 until there are n weak learners.
4. Predict by taking an average of the score prediction of the weak learners, and

classify the category with the highest average score.

4.2 Evaluation of the Activity Model Classifiers

Accuracy is the overall index that has been used in evaluation of the developed
Machine Learning models. However, additional indices have been used to estimate the
efficiency of the algorithms. Given the fact that we are dealing with a multi-class
classification problem, the “One Versus All” Strategy [19, 32] was used. The calculated
validation indices that have been considered are presented in the following Table 8.

Precision (PREC) is the measure of the correctly identified positive cases from all
the predicted positive cases. Thus, it is useful when the cost of False Positives is high.

Table 8. Calculated indices for the evaluation of the multi-class classification approach

Index Abbreviation Calculation

Sensitivity
(also known as True Positive Rate or
Recall)

SNS SNS = TP/(TP + FN)

Specificity,
(also known as True Negative Rate)

SPC SPC = TN/(TN + FP)

Accuracy ACC ACC = (TP + TN)/
(TP + FP + FN + TN)

F1 Score F1 F1 = 2*TP/(2*TP + FP + FN)
Precision
(also known as Positive predictive
value

PREC PREC = TP/(TP + FP)
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On the other hand, Sensitivity (also known as Recall) is the measure of the correctly
identified positive cases from all the actual positive cases. It is important when the cost
of False Negatives is high. Specificity (SPC) is the true negative rate or the proportion
of negatives that are correctly identified. Accuracy (ACC) is the measure of all cor-
rectly identified from the predicted cases. It represents the closeness of the measure-
ments to a specific value. The F1 score can be interpreted as the harmonic mean
(weighted average) of the Precision and Recall. As it is known from the literature,
Accuracy can be seriously considered when the class distribution is balanced while F1
score is a better metric when there are imbalanced classes as in the above case. Using it
as a metric, we are sure that if its value is high, both precision and recall of the classifier
indicate good results. In our case the F1 score is the final overall criterion of good
performance evaluation.

5 Experimental Results

The experiments were performed with the use of Matlab R2019a software. The options
and hyperparameters set for Ensemble Subspace k-NN are presented in Table 9 below:

The Ensemble Subspace k-NN achieved an accuracy equal to 99.5% and 98.7% for
2003 and 2015 respectively. The Confusion Matrix for each year is presented in the
following Figs. 4 and 5.

Table 9. Tuning algorithm’s hyperparameters

Algorithm Hyperparameters Optimal values-functions

Ensemble subspace k-NN Maximum number of splits 20
Number of learners 30
Learning rate 0.1
Subspace dimension 3

Fig. 4. Confusion matrix of the ensemble subspace k-NN algorithm for 2003

Classification of Coseismic Landslides 27



The following two Tables (10, 11), present the values of the performance indices
for the above optimal algorithm.

From Tables (10, 11) it is obvious that the values of all indices clearly show a very
good performance in both 2003 and 2015’s instances.

Fig. 5. Confusion matrix of the ensemble subspace k-NN algorithm for 2015

Table 10. Cluster (Cl) classification performance indices for the Ensemble Subspace k-NN
Algorithm (2003)

Index Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl6
SNS 1 1 1 0.88 0.97 1 1 1 1 0.98
SPC 1 1 0.99 0.99 1 1 1 1 1 0.99
ACC 1 1 0.99 0.99 0.99 1 1 1 1 0.99
PREC 1 1 0.98 0.88 1 1 1 1 1 0.98
F1 1 1 0.99 0.88 0.98 1 1 1 1 0.98

Table 11. Cluster (Cl) classification performance indices for the Ensemble Subspace k-NN
Algorithm (2015)

Index Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl5.5 Cl6
SNS 1 0.96 1 0.93 0.95 0.88 1 1 1 0.97 1
SPC 1 1 0.99 0.99 0.99 0.99 1 1 1 0.99 1
ACC 1 0.99 0.99 0.99 0.98 0.99 1 1 1 0.99 1
PREC 1 1 0.98 0.92 0.91 0.95 1 1 1 0.97 1
F1 1 0.98 0.99 0.92 0.92 0.91 1 1 1 0.97 1
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6 Discussion and Conclusion

Classification of coseismic landslides according to their severity is a really interesting,
important and challenging task. In this paper an approach based on Fuzzy C-Means
Algorithm and Ensemble Subspace k-Nearest-Neighbors (Ensemble Subspace k-NN)
Algorithm is proposed and tested. The combination of Fuzzy C-Means and Hamacher
aggregation as S-Norm operator, sorted the data to 10 clusters for year 2003 and 11
clusters for 2015. Thereafter, Ensemble Subspace k-NN, using Average Aspect,
Average Slope, Geological Form, Perimeter and Surface as independent input vari-
ables, managed to achieve high success rates. The overall accuracy is 99.5% and 98.7%
for 2003 and 2015 respectively.

The efficiency of the model is also perceivable from Tables 10 and 11, where
indices Accuracy, Sensitivity, Specificity, Perception and F1-score range at high levels.
However, some ostensibly inaccurate classifications like in Cl2.5 of 2003 or Cl3.5 of
2015 do not affect the overall performance of the model as all indicators range from
0.88 to 1.

Concluding, the research described herein managed to correctly classify coseismic
landslides according to their severity to the island of Lefkada. Future work will focus
on the development of hybrid and ensembles’ approaches for the forecasting of
landslides’ severity or even for forecasting the exact area of a landslide.
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Abstract. Exercise Recognition (ExR) is relevant in many high impact
domains, from healthcare to recreational activities to sports sciences.
Like Human Activity Recognition (HAR), ExR faces many challenges
when deployed in the real-world. For instance, typical lab performances
of Machine Learning (ML) models, are hard to replicate, due to differ-
ences in personal nuances, traits and ambulatory rhythms. Thus effective
transferability of a trained ExR model, depends on its ability to adapt
and personalise to a new user or a user group. This calls for new exper-
imental design strategies that are person-aware, and able to organise
train and test data differently from standard ML practice. Specifically,
we look at person-agnostic and person-aware methods of train-test data
creation, and compare them to identify best practices on a comparative
study of personalised ExR model transfer. Our findings show that ExR
when compared to results with other HAR tasks, to be a far more chal-
lenging personalisation problem and also confirms the utility of metric
learning algorithms for personalised model transfer.

Keywords: Exercise Recognition · Transferability · Personalisation ·
Performance evaluation

1 Introduction

Exercise Recognition (ExR) is an ongoing Machine Learning (ML) research chal-
lenge with many practical applications such as self-management of musculoskele-
tal pain, weight training, orthopaedic rehabilitation and strength and balance
improvement of pre-frail adults. Research in ExR falls under Human Activity
Recognition (HAR) research, which has broader applications in gait recognition,
fall detection and activity recognition for fitness applications, to name a few.

Fitness applications that adopt ExR as an integral component, face many
challenges at deployment, compared with other conventional ML or Deep Learn-
ing (DL) applications such as image recognition or text classification. For instance
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lack of transferability of learned ML models is one of the main challenges that is
present in many forms such as; the transferability to new sensor modalities, to new
activities or to new user groups. With new sensor modalities, both heterogeneity
of sensor data and differences in sensor configurations must be addressed. Trans-
ferability to new activity classes is generally addressed as open-ended HAR, where
either a knowledge-intensive method is used with a corpus to learn heuristics that
can cover all possible activities classes to be expected in the future [5] or; in con-
trast a knowledge-light method learns a feature space that is expected to adapt
to new activity classes [13]. Lastly, when deploying a generic fitness application,
developers are unaware of the target user group. Here transferability to a new user
group, must also consider common factors applicable to the group needs.

In this paper, we focus on ExR applications; their transferability to differ-
ent user groups and importantly how to design comparative studies that are
informed by the ownership of data (i.e. data that is generated by a specific
person). Naturally, people incorporate many personal nuances when performing
exercises and in practice, these personal traits are captured by the sensors. If
the ExR algorithm is unaware of the specific person it may find it challenging to
map sensor readings to a specific exercise. In this paper we show that adopting
the correct evaluation method is crucial to understanding the capabilities of an
ExR algorithm amongst a diverse group of users.

We explore person-aware evaluation methods using the HAR personalisation
algorithm MNp [13] that was inspired by Metric-Learning and Meta-Learning
ideas in the HAR (physical activity) domain. MNp achieves personalisation
without requiring test user data and learns a feature space that is transferable to
a wider range of users. We expect ExR to be a harder personalisation challenge,
compared personalisation of HAR models. Lets consider a typical ambulatory
physical activity such as walking, where personal gait rhythm easily influences
walking cycles but is consistent; contrast that to an exercise, such as a pelvic
tilt or a knee roll (see Fig. 4a) where its harder to isolate and capture personal
nuances and may vary over the time-period. Our evaluation shows that MNp

can be applied to ExR and is transferable to new users not seen during training.
Rest of the paper is organised as follows. In Sect. 2 we explore related lit-

erature in HAR and ExR domains. Next in Sect. 3, we present methods that
are explored in this paper; followed by an analysis of results with alternative
evaluation strategies in Sect. 4. Finally conclusions and future directions appear
in Sect. 5.

2 Related Work

Research in ExR covers a wide variety of application areas such as weight train-
ing [6,10], rehabilitation [2] and callisthenics and gym exercises [8,15]. ExR like
HAR, is a multi-class classification problem where classes are unique exercises that
are captured by a stream of sensor data. Many algorithms have been explored
in literature such as k-NN [8,14], Decision Trees and Random Forest [10,15] and
CNN and LSTM [2,12].
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Personalising such algorithms is intuitively desirable for ExR as personal
nuances such as gait, posture and rhythm are known factors that are used by
human experts when analysing exercise performance and adherence in the real-
world. Although this remains largely unexplored for ExR; there is useful work in
HAR, where early research has looked at user-dependent modelling with access
to large quantities of labelled end-user data [1,7,9]. Follow on work attempts to
reduce this human burden, by adopting semi-supervised learning methods [3,4]
that require some model re-training after deployment.

Recent advances in few-shot learning and meta-learning with Matching Net-
works (MN) [11] and Personalised MN (MNp) for HAR [13] has addressed the
short comings of previous methods by only using few data instances from end-
user as well as learning embeddings that are largely transferable to new activities
without needing model re-training after deployment. It has also outperformed
its non-personalised counterpart in the tasks of pose detection and HAR [13].
Importantly in this paper we investigate, if MNp is transferable to ExR, which
is arguably a more challenging personalised learning problem.

3 Methods

Given sensor data streams recorded while performing exercises, for supervised
ExR, data instances are extracted using the sliding window method applied to
each of the streams. Typical sensors include inertial sensors, depth cameras and
pressure mats. More formally, given a set of data instances, X , ExR involves
learning a feature space where the mapping from each instance, x, to an exercise
class, y, where y is from the set of exercise classes, L. Accordingly, each sensor-
based data instance is a data and class label pair, (x, y), where y ∈ L.

X = {(x, y) | y ∈ L} (1)

In comparison to computer vision or text datasets, each data instance in X
belongs to a person, p. Given the set of data instances obtained from person p is
X p, relationship of X p and X formalised as in Eq. 2. As before all data instances
in X p will belong to a class in L except special instances like open-ended HAR
where the class set is not fully specified at training time.

X = {X p | p ∈ P} where X p = {(x, y) | y ∈ L} (2)

Training and testing methodologies can adopt one of two approaches; person-
agnostic where an algorithm is trained and tested with the same user group; and
person-aware, where an algorithm is trained and tested on different user groups.
Both maintain disjointed sets of data instances in train and test; but the lat-
ter also preserves disjoint persons by preserving the person-to-data relationship
during model training and testing.
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3.1 Person-Agnostic Evaluation

Person agnostic evaluations can be applied as a repeated hold-out (R-HO) or a
cross-fold (CF) validation methodologies. In either case, the person parameter of
each data instance is discarded when creating hold-out sets, or folds. This means
that a person’s data can be split between train and test sets. A percentage, λ,
of all data instance in X , is used as the set of test data instances, Xtest, and the
rest as the set of train data instances Xtrain.

X = {Xtrain,Xtest}
|Xtrain| ≈ (1 − λ) × |X | and |Xtest| ≈ λ × |X | (3)

Fig. 1. Person-agnostic train/test split

With R-HO, a λ percentage of the data instances are randomly selected
(without replacement) to form the test set and the remainder forming the train
set. This is repeated for multiple iterations. With CF, first, the dataset is divided
into a number of folds where each fold contains λ percentage of data, and at
each iteration, one fold is selected as the test set and the rest of the folds as
the training set. Both methods create train and test sets that share the same
population P (see Fig. 1). Unlike with R-HO method, CF guarantees that each
data instance appears once in the test set.

A person-agnostic methodology for evaluation, trains and tests on the same
population. Accordingly, these methodologies are not designed to evaluate the
robustness of an algorithm on a different population following typical deploy-
ment. However they provide an “upper-bound” performance of a ML algorithm.

3.2 Person-Aware Evaluation

A Person-aware evaluation can be performed as a repeated Persons-Hold-Out
(R-PHO) or a Leave-One-Person-Out (LOPO) methodology. With R-PHO, a
percentage, μ, of the user population is selected as the test user set, rest forming
the train user set; and this is repeated for multiple iterations. With LOPO
methodology, instances from a single user is put aside, to form a singleton test
user group, and the rest of the users form the training user group. The train
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and test set formation with the test user group, Ptest, and the train user group,
Ptrain can be formalised as follows:

X = {Xtrain,Xtest}
Xtest = {X p | p ∈ Ptest} and Xtrain = {X p | p ∈ Ptrain}

P = {Ptrain,Ptest}
(4)

Fig. 2. Person-aware train/test split

LOPO ensures that each user in the population P is included in the test set
in one of the trials (similar to the person-agnostic CF method), but LOPO also
ensures disjointedness in selected persons (see Fig. 2). We propose that perfor-
mance measures obtained with a person-aware methodology should be used as
the “lower-bound”, likely performance of a ML algorithm after deployment.

3.3 Personalised Matching Networks

The goal of personalisation is to learn a feature space that can dynamically adapt
to different test user groups. With reference to Sects. 3.1 and 3.2, the aim here is
to find algorithms that outperform the “lower-bound” set by a non-personalised
algorithm when evaluated by a person-aware methodology. For this purpose we
explore the Personalised Matching Networks (MNp), which has been successfully
used for personalising HAR algorithms.

MNp is inspired by Metric Learning and Meta-Learning paradigms where the
classification task is learning to match a test instance, x, to one instance from a
set of representatives. The set of representative instances, S is chosen from the
same user (i.e. from. X p) ensuring all classes are represented. An instance in, S,
is a data instance, (x, y), and for each class up to, k, representatives are selected
from, X p, as in Eq. 5.

S = {(x, y)|x ∈ X p, y ∈ L} where |S| = k × |L| (5)

We denote the training data set obtained for person, p’s data as X p
tr. An

instance in, X p
tr, consists of a query and support set pairs, (qi, Si), where, qi, is

a sensor data and class label pair, (xi, yi), (similar to a conventional supervised
learning training data instance). The complete training data set, Xtr, is the
collection of all, X p

tr, for the train user group Ptr.
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X p
tr = {(q, S) | x ∈ X p, y ∈ L} where q = (x, y), y ∈ L

Xtr = {X p
tr | p ∈ Ptr}

(6)

During MNp training, a parametric model learns a feature space where data
instances from different users are successfully transformed and mapped to class
labels. Here training can be viewed as a parameterised (Θ) end-to-end learning of
a distance/similarity function, using a non-parametric attention-based kernel to
compute the objective matching function (see architecture in Fig. 3). At testing,
the MNp algorithm predicts the label ŷ for a query instance x̂ with respect to
its support set Ŝ from the same user.

Fig. 3. Training MNp for HAR; adapted from [13]

4 Evaluation and Results

Aim of the evaluation is two fold; firstly we analyse lower and upper bound
performances of ExR algorithms using the 2 alternative methods of evaluation:
person-agnostic versus person-aware, secondly we explore the transferability of
personalised models for ExR from HAR. All experimental results calculate the
mean F1-score and any significance is reported at the 95% level.

4.1 MEx Dataset

MEx is a sensor-rich dataset collected for 7 exercises with four sensors, pub-
licly available at the UCI Machine Learning Repository1. Seven exercise classes
are included in this data collection; 1-Knee Rolling, 2-Bridging, 3-Pelvic Tilt,
4-Bilateral Clam, 5-Repeated Extension in Lying, 6-Prone Punch and 7-Superman
(Fig. 4a). These exercises are frequently used for prevention or self-management of
LBP.

There are four sensor modalities; two accelerometers placed on the wrist and
the thigh of the person; a pressure mat was where the person lays on to perform
1 https://archive.ics.uci.edu/ml/datasets/MEx.

https://archive.ics.uci.edu/ml/datasets/MEx
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[Exercises] [Raw sensor data]

Fig. 4. MEx dataset

the exercises and a depth camera was placed above the person facing down-
words. The tri-axial accelerometers record data at 100 Hz frequency within the
range of ±8g. The pressure mat and the depth camera record gray scale frames at
15 Hz frequency and frame sizes are 32×16 and 240×320 respectively. Figure 4b
shows a visualisation of each sensor data type.

In this study we focus on ExR with a single modality. Accordingly we create
four datasets with the four modalities available on MEx; the thigh accelerometer,
the wrist accelerometer, the pressure mat and the depth camera respectively
referred to as ACT, ACW, PM and DC in the rest of this paper.

4.2 Pre-processing

The sliding window method is applied on each individual sensor data stream to
create data instances; where the window size is 5 s with 3 s overlap. Each result-
ing window forms a data instance and is labelled with the exercise class. This
process yields datasets of 6240 instances (|X | = 6240), with 208 data instance
per user in average (|Xp| ≈ 208). We apply a set of pre-processing steps for
each sensor modality as recommended by the authors of [12]. A reduced frame
rate of 1 frame/second is applied for DC and PM data and the DC data frames
are compressed from 240 × 320 to 12 × 16. The inertial sensor data from ACW
and ACT are pre-processed using the Discrete Cosine Transformation (DCT)
according to [12].

4.3 Comparison of Person-Agnostic and Person-Aware Settings

In order to demonstrate the effect of different evaluation methods on ExR, we
evaluate ExR algorithms using the two person-agnostic evaluation methodolo-
gies; R-HO and CF (Sect. 3.1) and the person-aware methodology LOPO. We
choose the best performing algorithms for each sensor dataset from [12] for our
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comparative study. We discard the user parameter on the data instances to
obtain the person-agnostic datasets, and use 1/30 as the λ parameter to split
a dataset for training and testing or to create folds. Accordingly we repeat the
R-HO experiments for 30 iterations and perform 30 CF experiments. These are
compared with results from person-aware LOPO from [12].

Table 1. Mean F1-score results: person-agnostic vs. person-aware settings

Methodology Algorithm ACT ACW DC PM

Person-agnostic R-HO From [12] 0.9807 0.9163 0.9953 0.9905

CF 0.9798 0.9260 0.9960 0.9880

Person-aware LOPO From [12] 0.9015 0.6335 0.8720 0.7408

In Table 1, there is a significant difference between the performance measures
obtained with person-agnostic and person-aware methods. Inevitably when there
is no person-wise disjoint train and test splits, algorithms have the opportunity
to configure its parameters to better fit the expected user population at test
time, resulting in significantly improved performance. It is noteworthy that both
person-agnostic methods achieve similar mean F1-scores consistently with all
four datasets. We highlight that person-aware LOPO performance measures set
the “lower-bound” and person-agnostic performance measures set the “upper-
bound” for the ExR task with each sensor modality.

4.4 Comparative Study of Non-personalised vs. Personalised
Algorithms for ExR

Performance of non-personalised algorithms (from [12]) is compared with the
personalised algorithm MNp (from Sect. 3.3) for ExR. We evaluate with two
person-aware evaluation methodologies; R-PHO and LOPO from Sect. 3.2. With
R-PHO experiments a test set is formed with randomly selected instances from
1/3 of persons forming the set of test users (μ), and the train instances selected
from the other 2/3 of train users. This is repeated for 10 test-train trials. In
LOPO experiments, we select the set of data instances from one user as the test
set and the rest forming the train set, and this is repeated 30 times but each
time with a different test user. While R-PHO helps to evaluate transferability of
the algorithms with multiple users at a time, LOPO evaluates the transfer to a
single user at a time, both are valid scenarios for ExR and HAR in general. For
comparative purposes, we also included results obtained by authors of [13] for
general HAR tasks, pose detection tasks and Activities of Daily Living (ADL)
classification task.

In Table 2 results are grouped under each task and the difference between
the personalised algorithm and the best non-personalised algorithm is presented
in the last column. Here the best non-personalised algorithm for the first three
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tasks is the non-personalised Matching Networks introduced in [11] and for the
MEx exercises domain they are the best performing algorithms found by the
authors of [12] for each sensor modality. Person-aware evaluation methodologies
require a non-parametric statistical significance test as they produce results that
are not normally distributed. We use the Wilcoxon signed-rank test for paired
samples to evaluate the statistical significance at 95% confidence and highlight
the significantly improved performances in bold.

Table 2. Mean F1-score results for the comparison of non-personalised algorithm vs.
personalised algorithm for ExR

Problem
domain

Evaluation
methodology

Dataset Algorithm Difference

Non-personalised MNp

Pose R-PHO HDPoseDS17 0.7678 0.9837 +21.68%

Detection HDPoseDS6 0.4292 0.9186 +48.94%

General R-PHO selfBACKW,T 0.7340 0.9169 +18.29%

HAR selfBACKW 0.6320 0.8563 +22.44%

ADL R-PHO PAMAP2 0.8715 0.8690 −0.25%

MEx R-PHO ACT 0.9064 0.9424 +3.60%

ACW 0.6352 0.6845 +4.93%

DC 0.8741 0.9186 +4.45%

PM 0.6977 0.8538 +15.61%

MEx LOPO ACT 0.9015 0.9155 +1.40%

ACW 0.6335 0.6663 +3.28%

DC 0.8720 0.9342 +6.22%

PM 0.7408 0.8205 +7.97%

The personalised algorithm, MNp, has significantly outperformed the best
non-personalised algorithm on both evaluation methodologies. Overall similar
performance measures are observed across both methodologies, with the excep-
tion of the PM dataset, where there is a ∼+5% difference when using LOPO
compared to R-PHO with the non-personalised algorithm.

We observe that personalisation has the greatest benefit for Pose detection,
followed by general HAR tasks which feature both ambulatory and stationary
activities; and thereafter on the ExR task. The exception here was ADL tasks,
where personalisation neither improved nor degraded performance. Close exami-
nation of the activity duration of each domain suggests that pose and ambulatory
activities are highly repetitive, or are performed in short repetitive time spans,
which minimises the capturing of personal rhythmic nuances. In comparison,
a single repetition of an exercise takes a longer time and consists of multiple
sub steps making it harder to model due to potential variation opportunities
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(a) ACT

(b) ACW

(c) DC

(d) PM

Fig. 5. Distribution of F1-score over the folds
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between persons. Essentially MNp is capable of finding some commonalities
between exercise classes, but there is less opportunities than compared with
pose or ambulatory movements. In contrast, ADL activities tend to have less
clear start and stop demarcations and have even longer spans. They also have
the highest possibility of featuring personal traits and nuances. For example,
an ADL classes such as ironing or cleaning can be completely different from
one user to another. Accordingly, personalised algorithms struggle to find such
commonalities between ADL classes; explaining results we had observed here.

4.5 Distribution of Performance Measures

We visualise the distribution of performance measures with different method-
ologies for datasets ACT, ACW, DC and PM in Figs. 5a to 5d. Each figure
shows the distribution of results obtained from three experiments; CF method
with the non-personalised algorithm using red triangles, LOPO method with the
non-personalised algorithm using blue circles and LOPO method with the MNp

personalised algorithm using green stars.
The CF results on every dataset highlight the upper-bound performance of

the ExR task when evaluated under the assumption that the algorithm is trained
and tested on the same user distribution. The LOPO results obtained for the
non-personalised algorithm sets the lower-bound for the ExR task and highlights
how non-personalised algorithms struggle when tested on a person that was not
part of the training user group. Personalised algorithm such as MNp, minimise
the gap between the upper-bound and the lower-bound with a majority of users
by improving upon the lower-bound. As shown in Table 2, MNp, is a good
choice for personalising across all tasks with significant advantages shown with
pose detection and fewest gains with the ExR task.

5 Conclusion

This paper presents a comprehensive study of Exercise Recognition (ExR) model
evaluation of adaptability to diverse user groups after deployment. Mainly two
approaches are explored; evaluation methods that share the same user set dur-
ing training and testing (i.e. person-agnostic) and methods that keep disjoint
user sets for training and testing (i.e. person-aware). Our evaluation highlight
that the prior method sets the upper-bound and the latter sets the lower-bound
for the model performance in ExR. We highlight how person-agnostic evalua-
tion results are normally distributed, but person-aware evaluation results are
not, thus calling for non-parametric statistical significance testing methods. The
paper presents the adaptation of the personalised algorithm, MNp for ExR, that
is capable of learning a feature space that is transferable to unseen users and
user groups and show how it outperforms the lower-bound while using the evalu-
ation criteria suitable for model deployment (i.e. person-aware ExR). Improving
performance with personalised algorithms in the person-aware setting is a sig-
nificant step towards deploying user-friendly, unobtrusive ExR algorithms with
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fitness applications. Finally, we highlight the need to further improve person-
alised algorithms to better suit the ExR domain.
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Abstract. This paper presents a Data Science-oriented application for image
classification tasks that is able to automatically: a) gather images needed for
training Deep Learning (DL) models with a built-in search engine crawler; b)
remove duplicate images; c) sort images using built-in pre-trained DL models or
user’s own trained DL model; d) apply data augmentation; e) train a DL clas-
sification model; f) evaluate the performance of a DL model and system by
using an accuracy calculator as well as the Accuracy Per Consumption (APC),
Accuracy Per Energy Cost (APEC), Time to closest APC (TTCAPC) and Time
to closest APEC (TTCAPEC) metrics calculators. Experimental results show
that the proposed Computer Vision application has several unique features and
advantages, proving to be efficient regarding execution time and much easier to
use when compared to similar applications.

Keywords: Deep learning � Computer vision � Data collection

1 Introduction

Data is at the core of every DL application. Because the Machine Learning lifecycle
consists of four stages such as data management, model learning, model verification
and model deployment [1], in order to collect, analyze, interpret and make use of this
data, e.g. training accurate models for real-life scenarios, in recent years, new spe-
cializations were introduced in Universities around the world such as Machine
Learning and Data Science, to name only a few. Additionally, also new career positions
were created recently such as Machine Learning Engineer and Data Scientist, being
some of the top paid positions in the industry [2].

Regarding Computer Vision applications for image classification tasks, a major
bottleneck before training the necessary DL models is considered to be the data col-
lection which consists mainly of data acquisition, data labeling and improvement of the
existing data in order to train very accurate DL models [3]. Another bottleneck is that,
because the amount of data needed to train a DL model is usually required to be very
large in size and because most of this important data is not released to the general
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public but is instead proprietary, the need of an original dataset for a particular DL
project can be very crucial. In general, data can be acquired either by a) buying it from
marketplaces or companies such as Quandl [4] and URSA [5]; b) searching it for free
on platforms like Kaggle [6]; c) crawling it from internet resources with the help of
search engine crawlers [7]; d) paying to a 24 � 7 workforce on Amazon Mechanical
Turk [8] like the creators of the ImageNet dataset did to have all of their images labeled
[9]; e) creating it manually for free (e.g. when the user takes all the photos and labels
them himself), which can be impossible most of the time because of a low-budget, a
low-quality camera or time constraints. The importance of image deduplication can be
seen in the fields of Computer Vision and DL where a high number of duplicates can
create biases in the evaluation of a DL model, such as in the case of CIFAR-10 and
CIFAR-100 datasets [10]. It is recommended that before training a DL classification
model, one should always check and make sure that there are no duplicate images
found in the dataset. Finding duplicate images manually can be very hard for a human
user and a time-consuming process, this being the reason why a software solution to
execute such a task is crucial. Some of the drawbacks of existent solutions are that they
usually require the user to buy the image deduplication software or pay monthly for a
cloud solution, they are big in size or are hard to install and use.

Despite all of these options, especially in the case of scraping the images from the
internet, once stored they can still be unorganized or of a lower quality than expected,
with images needed to be sorted out each in their respective class folder in order for the
user (e.g. data scientist) to be able later to analyze and use this data for training a
performant DL model. This kind of sorting task can take a tremendous amount of time
even for a team, from several days or weeks to even months [11]. Another difficult task
is that once the data is cleaned, organized and ready to be trained from scratch or using
transfer learning, because of the variety of DL architectures, each with different sizes
and training time needed until reaching convergence [12], it can be very difficult to
know from the beginning which DL architecture fits the best a given dataset and will, at
the end of the training, result in a DL model that has high accuracy. Because energy
consumption in DL started to become a very debated aspect in recent months, espe-
cially regarding climate change [13–17], the necessity of evaluating the performance of
DL models also by their energy consumption and cost is very crucial.

Considering these aspects, our work introduces a DL-based Computer Vision
application that has multiple unique built-in Data Science-oriented capabilities which
give the user the ability to train a DL image classification model without any pro-
gramming skills. It also automatically searches for images on the internet, sort these
images each in their individual class folder and is able to remove duplicate images as
well as to apply data augmentation in a very intuitive and user-friendly way. Addi-
tionally, it gives the user an option to evaluate the performance of a DL model and
hardware platform not only by considering its accuracy but also its power consumption
and cost by using the environmentally-friendly metrics APC, APEC, TTCAPC and
TTCAPEC [16].

The paper is organized as follows. In Sect. 2 we present the related work. Section 3
describes the proposed DL-based Computer Vision application. Section 4 presents the
experimental setup and results. Finally, Sect. 5 concludes this paper.
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2 Related Work

Considering the advancements of DL in recent years, there is a growing interest in
computer vision applications in the literature, such as regarding the automatic sorting of
images, as shown by the authors in [18]. The authors propose a solution called ImageX
for sorting large amounts of unorganized images found in one or multiple folders with
the help of a dynamic image graph and which successfully groups together these
images based on their visual similarity. They also created many similar applications,
e.g. ImageSorter [19], which besides sorting images based on their color similarity, is
also able to search, download and sort images from the internet with a built-in Google
Image Search option. A drawback of their applications is that the user is able to only
visualize similar images, without also having these images automatically cleaned and
sorted in their respective class folder with high accuracy. Also, the authors in [20]
created an application called Sharkzor that combines user interaction with DL in order
to sort large amounts of images that are similar. By comparison, regarding sorting, their
solutions only sort images by grouping them based on how similar they are to each
other after a human interacted and sorted these images initially, whereas our application
sorts them automatically by using in-built pre-trained DL models or gives the user an
option to use his own trained DL models. An on-device option that uses DL capabilities
and helps users find similar photos (e.g. finding photos that contain certain objects such
as flowers, trees, food, to name only a few) is presented also by Apple in their newest
version of Photos app [21].

Regarding the detection of duplicate images, this technique has practical applica-
tions in many domains such as social media analysis, web-scale retrieval as well as
digital image forensics [22, 23], with several works in the literature applying it for the
detection of copyright infringements [24] and fraud detection [25]. Recently, a python
package that makes use of hashing algorithms and Convolution Neural Networks
(CNNs) that finds exact or near-duplicates in an image collection called Image
Deduplicator (Imagededup) was released in [26]. In our Computer Vision application,
we make use of this package in order to offer a user the option to remove duplicate
images from the images dataset (e.g. right before training a DL model).

When training DL models from scratch or by using transfer learning, usually
frameworks such as Tensorflow and PyTorch are used [27], either locally (e.g. on a
personal laptop or Desktop PC that contains a powerful GPU) or in cloud services such
as Cloud AutoML [28, 29], Amazon AWS [30] or Microsoft Azure [31], with the work
in [32] even assessing the feasibility and usefulness of automated DL in medical
imaging classification, where physicians with no programming experience can still
complete such tasks successfully. The problem when training locally is that the user
still has to research on his own which size the images should have for a given DL
architecture, which DL architecture to choose for his dataset and if it is necessary to
apply fine-tuning and image augmentation. Regarding using the cloud services for
training a DL model, even though these may solve most of the problems mentioned
above, they still have some drawbacks such as that they can be affected by latency, can
be difficult to manage (not user-friendly) and most importantly, they can be very
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expensive when training for several hours (e.g. Cloud AutoML from Google costs
around $20 per hour when used for Computer Vision tasks [27]).

Similar work to ours is presented by the authors in [33] where they created the
Image ATM (Automated Tagging Machine) tool that automatizes the pipeline of
training an image classification model (preprocessing, training with model tweaking,
evaluation, and deployment). Regarding preprocessing, the Image ATM tool just
resizes the images to fit the model input shape. For training, it uses transfer learning
with pre-trained CNNs from Keras by firstly training the last Dense layer followed by
the whole network. For evaluation, it calculates the confusion matrix and other metrics.
A few disadvantages of Image ATM: the tool is aimed at people with programming
knowledge (developers) and is focused mainly on the training function. Also, in order
to use the Image ATM tool, the user must take the work of preparing the data in a
specific folder structure, e.g. the user must create a .yml file with some of the
parameters desired, path to images and destination path. The user must also create a .
json file containing the classification of each image. Some advantages of the
Image ATM are that the tool offers the possibility for cloud training, has access to more
models (although all are trained with the same dataset) and that the evaluation errors
can be visualized. When compared to Image ATM, our Computer Vision application
has several advantages such as that it is accessible to more kinds of people and offers
more functionalities such as image web scraping and sorting, deduplication, calculators
for accuracy as well as for the APC, APEC, TTCAPC and TTCAPEC metrics, all in a
user-friendly Graphical User Interface (GUI).

3 The Proposed Deep Learning-Based Computer Vision
Application

The proposed DL-based Computer Vision application is summarized in Fig. 1 and is
built using the Python programming language. It is composed of the most common
features needed in the Computer Vision field and facilitate them in the form of a GUI,
without requiring the user to have any knowledge about coding or DL in order to be
able to fully use it.

Fig. 1. Summarized view of the proposed Computer Vision application that incorporates
features such as an automatic Image Crawler and Image Sorter assisted by inference
classification, an Image Deduplicator, a DL Model Trainer with Data Augmentation capabilities
as well as calculators regarding Accuracy, APC, APEC, TTCAPC, and TTCAPEC.
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Regarding the system, the compilation dependencies and installation requirements
of the proposed application are Python 3, Windows 10 (or later version) or Linux
(Ubuntu 12 or later version). Regarding the Python libraries, we use PyQt5 for creating
the GUI, HDF5 for loading DL model files, Tensorflow for training and inference,
OpenCV for image processing, Numpy for data processing, Shutil for copying images
in the system, TQDM for showing the terminal progress bar, Imagededup [26] for
deduplication of images, Icrawler for crawling the images and fman build system
(fbs) for creating installers.

There are certain conventions that are common in all the features of the proposed
application:

1. Model files: These are .h5 files that contain the architecture of a Keras model and
the weights of its parameters. These are used to load (and save) a previously trained
model in order to be able to use it.

2. Model class files: These are extensionless files that contain the labels of each of the
classes of a DL model. It contains n lines, where n is the number of classes in the
model, and the line i contains the label corresponding to the ith element of the
output of the DL model.

3. Preprocessing function: In this convention, a preprocessing function is a function
that takes as input the path to an image and a shape, loads the image from the input
path, converts the image to an array and fits it to the input of the model.

Images folders structures: We use two different folders structures: unclassified
structures and classified structures. The unclassified images folders structure is the
simplest one, consisting of just one folder containing images, presumably to be clas-
sified or deduplicated. The classified images folders structure consists of a folder which
in turn contains subfolders. Each subfolder represents a class of images, is named the
same as the label for that class, and contains images tagged or classified belonging to
that class.

Following, we will present all the built-in features: Automatic web crawler assisted
by inference classification, Images deduplication, Images Sorter assisted by inference
classification, DL Model Trainer with Data Augmentation capabilities, Accuracy cal-
culator as well as the APC and APEC [16] calculators.

3.1 Image Crawler Assisted by Inference Classification

The purpose of this feature is to collect images related to a keyword (representing a
class) from the web and by using a classification algorithm, to make sure that the
images are indeed belonging to this class. During the inference process needed for
cleaning the images, a preprocessing is happening in the background, which,
depending on the pretrained or custom DL model that is chosen, will resize the images,
making them have the correct input shape (e.g. 28 � 28 � 1 for MNIST and
224 � 224 � 3 for ImageNet) for the DL model.

A summarized view of the implemented Image Crawler feature can be seen in Fig. 2
and is composed of the following elements: ‘Model’ - a combo box containing all the
existent pretrained in-built DL models such as “mnist” or “resnet50” as well as the
‘Custom’ option which gives the user the possibility to load his own previously trained
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DL model; Confidence Slider (‘Confidence required’) - a slider to select the minimum
accuracy value to be used when classifying the images and which ranges from 0 to 99;
Image Class Selector (‘Select a class of images’) - a combo box containing the labels of
all the classes from the pretrained built-in selected DL model (e.g. 10 classes for when
the “mnist” model is selected and 1000 classes when the “resnet50” model is selected).
Additionally, the box contains an autocomplete search function as well; Images Amount
(‘Max amount to get’) - a slider to select the number of images that should be crawled
from the internet and which ranges from 1 to 999 and ‘Destination Folder’ - a browser to
select the path for the final location of the obtained images.

The options under ‘Custom Model Configuration’ only apply when the DL model
selected is “Custom” and is not built-in in the proposed Computer Vision application,
e.g. when it was trained by the user itself. These options are: ‘Model File’ - a browser
to select the .h5 file the user wishes to use for inference and Model Classes - a browser
to select the extensionless file containing the name of each output class on which the
selected DL model (.h5 file) was trained on. Finally, this feature’s GUI interface has a
button (‘Add Images!’) that begins the web crawling process.

With the help of this feature, images are automatically crawled by the crawler and
downloaded to a temporal folder location. After that, each image is classified with the
selected DL model, and if the classification coincides with the selected class and the
confidence is higher than the selected threshold, the image is moved to the ‘Destination
folder’, where each image will be saved in its own class folder.

This feature automatizes the population of image classification datasets by pro-
viding a reliable way of confirming that the downloaded images are clean and correctly
organized.

Fig. 2. Summarized view of the proposed Image Crawler feature assisted by inference
classification.
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3.2 Images Deduplication

The purpose of this feature is to remove duplicate images found in a certain folder. For
this, we incorporated the Imagededup techniques found in [26]. A summarized view of
the implemented Images Deduplication feature can be seen in Fig. 3 and is composed
of the following elements: ‘Images folder’ - a browser to select the location of the
folder containing the images that need to be analyzed for duplicate images; ‘Destina-
tion folder’ - a browser to select the location of the folder where the deduplicated
images will be stored; ‘Duplicates Folder’ - a browser to select the location of the
folder where the found duplicate images will be stored.

Each duplicate image found will be stored in a subfolder. Regarding advanced
settings, it is composed of: Hashing method selector (‘Select a hashing method’) - a
combo box containing 4 hashing methods that can be used for deduplication (Per-
ceptual Hashing (default), Difference Hashing, Wavelet Hashing, and Average Hash-
ing) as well as a ‘Max Distance Threshold’ - the maximum distance by which two
images will be considered to be the same (default value is 10). Finally, this interface
has a button (‘Deduplicate!’) that begins the deduplication process according to the
selected parameters.

Following, we will shortly describe the types of hashes we are using in the images
deduplication feature: a) Average Hash: the Average Hash algorithm first converts the
input image to grayscale and then scales it down. In our case, as we want to generate a
64-bit hash, the image is scaled down. Next, the average of all gray values of the image
is calculated and then the pixels are examined one by one from left to right. If the gray
value is larger than the average, a 1 value is added to the hash, otherwise a 0 value; b)
Difference Hash: Similar to the Average Hash algorithm, the Difference Hash algo-
rithm initially generates a grayscale image from the input image. Here, from each row,
the pixels are examined serially from left to right and compared to their neighbor to the
right, resulting in a hash; c) Perceptual Hash: After gray scaling, it applies the discrete
cosine transform to rows and as well as to columns. Next, we calculate the median of

Fig. 3. Summarized view of the proposed Image Deduplication feature.
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the gray values in this image and generate, analogous to the Median Hash algorithm, a
hash value from the image; d) Wavelet Hash: Analogous to the Average Hash
algorithm, the Wavelet Hash algorithm also generates a gray value image. Next, a two-
dimensional wavelet transform is applied to the image. In our case, we use the default
wavelet function called the Haar Wavelet. Next, each pixel is compared to the median
and the hash is calculated.

Regarding this deduplication feature, first, the hasher generates hashes for each of
the images found in the images folder. With these hashes, the distances between hashes
(images) are then calculated and if they are lower than the maximum distance threshold
(e.g. 10), then they are considered duplicates. Secondly, for each group of duplicates,
the first image is selected as “original” and a folder is created in the duplicates folder
with the name of the “original” folder. Then all duplicates of this image are stored on
that folder.

This feature successfully integrates the image deduplication technique [26] and
provides a simple and quick way to utilize it.

3.3 Images Sorter Assisted by Inference Classification

This feature helps a user to sort an unsorted array of images by making use of DL
models. A summarized view of the implemented Images Sorter feature assisted by
inference classification can be seen in Fig. 4 and is composed of elements similar to the
ones presented earlier for the Image Crawler feature, but in this case with the function
of selecting the path to the folders from which and where images should be sorted.

In the destination folder, a new folder is created for each possible class, with the
name extracted from the extensionless file that contains all the names of the classes,
plus a folder named ‘Undetermined’. Then, each image from the ‘Images Folder’ is
automatically preprocessed, feed as input to the selected DL model and saved in the
corresponding class folder. The highest value from the output determines the predicted

Fig. 4. Summarized view of the proposed Image Sorter feature assisted by inference
classification.
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class of the image: if this value is less than the minimum ‘Confidence required’, value,
then the image will be copied and placed in the ‘Undetermined’ folder, otherwise, the
image will be copied to the folder corresponding to the class of the highest value from
the output. We took the decision of copying the files instead of moving them, for data
security and backup reasons.

This feature heavily reduces the amount of time required to sort through an
unclassified dataset of images by not only doing it automatically but also removing the
need to set up coding environments or even write a single line of code.

3.4 Model Trainer with Data Augmentation Capabilities

This feature gives the user a simple GUI to select different parameters in order to train
and save a DL image classifier model. A summarized view of the implemented DL
Model Trainer feature assisted by inference classification can be seen in Fig. 5 and is
composed of the following elements: ‘Model’ – as described earlier for the Image
Crawler feature; ‘Sorted images folder’ - a browser to select the folder that contains the
classified folder structure with the images to be trained on; ‘Number of training bat-
ches’ - an integer input, to specify the number of batches to train and ‘Size of batches’ -
an integer input, to specify the number of images per batch. Regarding the custom
options, they are the same as mentioned earlier regarding the Image Crawler feature.

Next, this interface has a button (‘Train model’) that, when clicked on, prompts a
new window for the user to be able to visualize in a very user-friendly way all the
image transformations that can be applied to the training dataset in a random way
during training. More exactly, as can be seen in Fig. 6, the user can input the following
parameters for data augmentation: Horizontal Flip - if checked the augmentation will
randomly flip or not images horizontally; Vertical Flip - if checked the augmentation
will randomly flip or not images horizontally; Max Width Shift - Slider (%), maximum
percentage (value between 0 and 100) of the image width that it can be shifted left or

Fig. 5. Summarized view of the proposed DL Model Trainer feature.
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right; Max Height Shift - Slider (%), maximum percentage (value between 0 and 100)
of the image height that it can be shifted up or down; Max Angle Shift - Slider (degrees
°), the maximum amount of degrees (value between 0 and 90) that an image might be
rotated and Max Shear Shift - Slider (%), maximum shear value (value between 0 and
100) for image shearing. The data augmentation feature allows the user to visualize the
maximum possible changes that can be made to an image in real-time, without the need
of guessing the right parameters.

Following, a training generator is defined with the selected parameters; The gen-
erator randomly takes images from the folder structure and fills batches of the selected
size, for the number of batches that are selected. These batches are yielded as they are
being generated.

Regarding the training, first, the selected DL model is loaded, its output layer is
removed, the previous layers are frozen and a new output layer with the size of the
number of classes in the folder structure is added. The model is then compiled with the
Adam optimizer and the categorical cross-entropy as the loss function. Finally, the
generator is fed to the model to be fitted. Once the training is done, the total training
time is shown to the user and a model file (.h5) is created on a prompted input location.

This feature achieves the possibility of training a custom DL model on custom
classes just by separating images in different folders. There is no knowledge needed
about DL and this feature can later also be easily used by the Image Sorting feature
described earlier in order to sort future new unsorted images.

Fig. 6. Summarized view of the proposed Data Augmentation feature.
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3.5 Accuracy Calculator

This section of the application GUI gives a user the option to compute the accuracy of a
DL model on the given dataset in the classified images folder structure. A summarized
view of the implemented Accuracy Calculator feature can be seen in Fig. 7 and is
composed of the following elements: ‘Model’ - as described earlier for the Image Crawler
feature; ‘Test images folder’ - a browser to select the folder that contains the classified
folder structure to measure the accuracy of a DL classification model; ‘Size of batches’ -
an integer input, to specify the number of images per batch. The custom options are the
same as mentioned earlier regarding the Image Crawler feature. Finally, this interface has
a button (‘Calculate Accuracy’) that starts the accuracy evaluation process.

After loading the DL model and the list of classes, it searches for the classes as
subfolders names in the classified images folder structure. Then, for each class (or
subfolder) it creates batches of the selected batch size, feeds them to the DL model and
counts the number of accurate results as well as the number of images. With these
results, it calculates the total accuracy of the DL model and shows it to the user directly
in the application GUI. This feature provides a simple and intuitive GUI to measure the
accuracy of any DL image classification model.

3.6 Accuracy Per Consumption (APC) Calculator

This GUI feature makes use of our APC metric [16] and which is a function that takes
into account not only the accuracy of a system (acc) but also the energy consumption of
the system (c). The APC metric can be seen in Eq. (1) below:

APCa;b c; accð Þ ¼ acc
b:WCa c; accð Þþ 1

ð1Þ

where c stands from energy consumption of the system and it’s measured in Watt/hour
(Wh) and acc stands for accuracy; a is the parameter for the WCa function, the default

Fig. 7. Summarized view of the proposed Accuracy Calculator feature.
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value is 0.1; b is a parameter (ranges from 0 to infinity) that controls the influence of
the consumption in the final result: higher values will lower more heavily the value of
the metric regarding the consumption. The default value is 1.

The application GUI gives a user the option to define the values for a and b as well
as to specify and calculate the accuracy and energy consumption of a DL model using
the above APC metric equation.

A summarized view of the implemented APC Calculator feature can be seen in
Fig. 8 and is composed of the following elements: ‘Model test accuracy (%)’ - this
widget gives a user the option to input the accuracy or use the previously described
Accuracy Calculator feature to measure the accuracy of a DL model and ‘Energy
Consumption (Wh)’ - float input to specify the power consumption of a user’s DL
model.

Regarding the advanced options, it has: Alpha (a) - float input to specify the desired
value of a (default 0.2) and Beta ðb) - float input to specify the desired value of b
(default 1). For simplicity, a table is shown with the following columns: Accuracy,
Energy Consumption, Alpha, Beta, and APC. Whenever a value is changed, the table is
automatically updated as well. Finally, the application GUI has a button (‘Calculate
APC’) to begin the calculation of the APC metric. The function itself is a Numpy
implementation of our previously defined APC metric [16] seen in Eq. (1) and takes as
input parameters the values defined in the application GUI.

The implemented feature brings this new APC metric to any user by allowing them
to easily calculate the accuracy per consumption and know the performance of their DL
model with regards to not only the accuracy but also to the impact it has on the
environment (higher energy consumption = higher negative impact on nature). How-
ever, the drawback of the current version of this APC calculator feature in the proposed
application GUI is that the user has to measure the energy consumption of the system
manually. We plan to implement automatic readings of the power consumption in
future updates (e.g. by using the Standard Performance Evaluation Corporation (SPEC)

Fig. 8. Summarized view of the proposed APC Calculator feature.
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PTDaemon tool [34, 35], which is also planned to be used for power measurements by
the MLPerf Benchmark in their upcoming mid-2020 update).

3.7 Accuracy Per Energy Cost (APEC) Calculator

This metric is a function that takes into account not only the accuracy of a system (acc)
but also the energy cost of the system (c). The APECmetric can be seen in Eq. (2) below:

APECa;b c; accð Þ ¼ acc
b:WCa c; accð Þþ 1

ð2Þ

where c stands for the energy cost of the system and it’s measured in EUR cents per
inference and acc stands for accuracy.

a is the parameter for the WCa function, the default value is 0.1; b is a parameter
(ranges from 0 to infinity) that controls the influence of the cost in the final result:
higher values will lower more heavily the value of the metric regarding the cost. The
default value is 1.

The APEC feature is presented in Fig. 9 and lets a user define the values for a and b,
specify or calculate the accuracy of a DL model, specify the energy consumption and the
cost of Wh of the DL as well as calculate the APEC using the formula seen earlier in (2).

The APEC feature of the proposed Computer Vision application is composed of the
following elements: ‘Model test accuracy (%)’ – works similar to the APC widget
described earlier; ‘Energy Consumption (Wh)’ - works also similar to the APC widget
described earlier and Watt-Hour Cost - float input to specify the cost in EUR cents of a
Wh. Regarding the advanced options, we have: Alpha (a) - float input to specify the
desired value of a(default 0.2) and Beta b - float input to specify the desired value of
b(default 1). A similar table like the one for APC Calculator is shown also here, with
the following columns: Accuracy, Energy Cost, Alpha, Beta, and APEC. Whenever a
value is changed, the table is automatically updated here as well.

Fig. 9. Summarized view of the proposed APEC Calculator feature.
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Finally, the application GUI has a button (‘Calculate APEC’) to begin the calcu-
lation of the APEC metric.

The function itself is an implementation on Numpy of our previously defined
APEC metric [16] seen in Eq. (2) and takes as input parameters the values defined in
the application GUI. The implemented feature brings this new APEC metric to any user
by allowing them to easily calculate the accuracy per energy cost and evaluate the
performance of their DL model with regards to the impact it has on the environment
(higher energy consumption = higher cost = negative impact on nature). However, the
drawback of the current version of this APEC calculator feature is that the user has to
measure the energy consumption of the system and calculate its Wh cost manually.

3.8 Time to Closest APC (TTCAPC) Calculator

The objective of the TTAPC metric [16] is to combine training time and the APC
inference metric in an intuitive way. The TTCAPC feature is presented in Fig. 10 and
is composed of the following elements: ‘Model test accuracy (%)’ and ‘Energy Con-
sumption (Wh)’, both working similar to the APEC widget described earlier; ‘Accuracy
Delta’ – float input to specify the granularity of the accuracy axis; ‘Energy Delta’ –
float to specify the granularity of the energy axis. Regarding the advanced options, they
are the same as the ones presented earlier regarding the APEC feature.

A similar table like the one for APEC Calculator is shown also here, with the
following columns: Accuracy, Energy Consumption, Alpha, Beta, Accuracy Delta,
Energy Delta, Rounded Accuracy, Rounded Energy, Training Time and Closest APC.
Whenever a value is changed, the table is automatically updated here as well.

Finally, the application GUI has a button (‘Calculate TTCAPC’) to begin the
calculation of the TTCAPC metric.

Fig. 10. Summarized view of the proposed TTCAPC Calculator feature.
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3.9 Time to Closest APEC (TTCAPEC) Calculator

The objective of the TTCAPEC metric [16] is to combine training time and the APEC
inference metric. The TTCAPEC feature is presented in Fig. 11 and is composed of the
same elements like the TTCAPC feature presented earlier and one additional element
called ‘Energy Cost (EUR cents per Wh)’ which is similar to the one presented earlier
regarding the APEC metric calculator and where the user can specify the cost in EUR
cents of a Wh.

A similar table like the one for TTCAPC Calculator is shown also here, with the
following columns: Accuracy, Energy Cost, Alpha, Beta, Accuracy Delta, Energy
Delta, Rounded Accuracy, Rounded Energy, Training Time and Closest APEC.
Finally, the application GUI has a button (‘Calculate TTCAPEC’) to begin the cal-
culation of the TTCAPEC metric.

4 Experimental Setup and Results

Following, we will show the experimental results regarding all the implemented fea-
tures in comparison with existing alternatives found in the literature and industry.

We run our experiments on a Desktop PC with the following configuration: on the
hardware side we use an Intel(R) Core(TM) i7-7800X CPU @ 3.50 GHz, 6 Core(s), 12
Logical Processor(s) with 32 GB RAM and an Nvidia GTX 1080 Ti as the GPU; on the
software side we use Microsoft Windows 10 Pro as the operating system with CUDA
9.0, CuDNN 7.6.0 and Tensorflow 1.10.0 using the Keras 2.2.4 framework.

4.1 Image Crawler

As can be seen in Table 1, our proposed Image Crawler feature outperforms existent
solutions and improves upon them. Even though the crawling took the same amount of

Fig. 11. Summarized view of the proposed TTCAPEC Calculator feature.
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time, this is not the case regarding the cleaning part, where, because this feature is not
available in any of the existent solutions, this needed to be done manually and took
47 s for a folder containing 97 images as compared to only 10 s for our proposed
solution which executed the task automatically.

A comparison between “dirty” images and clean images can be seen in Fig. 12
where, for simplicity, we searched for 97 pictures of “cucumber”, which is one class
from the total of 1000 classes found in the ImageNet dataset [9].

Table 1. Comparison between existent and the proposed Image Crawling solution.

Features Existent solutions [7] Proposed solution

Image crawler Yes Yes
Built-in DL models No Yes
Custom DL models No Yes
Cleans dataset automatically? No Yes
Speed Test (sec)
Crawling 97 images 23 23
Cleaning 97 images 47 10

Fig. 12. Summarized view of existent and the proposed image crawling solution. The pictures
marked with a red rectangle are examples of “dirty” images found when crawling with existent
solutions. By comparison, the proposed image crawling feature assisted by DL inference contains
only clean images.
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It can be easily observed how the existent solutions provide images that don’t
represent an actual cucumber, but products (e.g. shampoos) that are made of it. After
automatically cleaning these images with a confidence rate of 50% with the proposed
feature, only 64 clean images remained in the folder.

4.2 Deduplication

For the experiments seen in Table 2, we tested the speed time of the proposed built-in
image deduplication feature that uses the Imagededup python package [26]. We run
these experiments on finding only exact duplicates on the same number of images with
a maximum distance threshold of 10 for all four hashing methods.

As can be seen, the average speed is about 16 s for finding duplicates in a folder
containing 1.226 images, with Difference Hashing being the fastest hashing method
from all four.

4.3 Images Sorter

For our experiments regarding the sorting of images with the proposed images sorter
feature, we used both the MNIST as well as the ImageNet pre-trained models with a
confidence rate of 50% and presented the results in Table 3.

Regarding MNIST experiments, we converted the MNIST dataset consisting of
70.000 images of 28 � 28 pixels to PNG format by using the script in [36] and mixed
all these images in a folder. After that, we run our image sorter feature on them and
succeeded to have only 0.09% of undetermined images, with a total speed time of
around 6 min. Regarding ImageNet, we used the ImageNet Large Scale Visual
Recognition Challenge 2013 (ILSVRC2013) dataset containing 456.567 images
belonging to 1000 classes with a confidence rate of 50%. Here we successfully sorted

Table 2. Speed Results for the 4 hashing methods of the proposed Image Deduplication feature.

Nr. of images Hashing method Speed time (sec)

1.226 Perceptual Hashing 16
Difference Hashing 15
Wavelet Hashing 17
Average Hashing 16

Table 3. Speed Time for the proposed Images Sorting feature.

DL model Nr. of classes Nr. of images Undetermined images Speed time (sec)

MNIST 10 70.000 69 307
ImageNet [9] 1000 456.567 135.789 40.817
Custom [37] 34 2.380 34 223
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all images in around 11 h and 20 min, more exactly in 40.817 s, with 29.74%
(135.789) undetermined images.

Regarding the custom model, we used one of our previously trained DL models
(ResNet-50) that can classify 34 animal classes [37] on a number of 2.380 images of
256 � Ratio pixels (70 images for each of the 34 animal classes) with a confidence rate
of 50%. Here we succeeded to have 1.42% undetermined images, with a total speed
time of almost 4 min. The percentage of the undetermined images for all cases can be
improved by modifying the confidence rate, but it is out of this paper’s scope to
experiment with different confidence values.

The time that a DL prediction task takes depends on a few variables, mainly the
processing power of the machine used to run the model, the framework used to call the
inference of the model and the model itself. Since processing power keeps changing
and varies greatly over different machines, and all the frameworks are optimized
complexity wise and keep evolving, we find that among these three the most important
to measure is, therefore, the model itself used in the prediction. Models vary greatly in
their architecture, but all DL models can be mostly decomposed as a series of floating
points operations (FLOPs). Because, generally, more FLOPs equal more processing
needed and therefore more time spent in the whole operation, we measured the time
complexity of the built-in ImageNet and MNIST models in FLOPS and presented the
results in Table 4.

4.4 Model Trainer

For the experiments regarding the DL model training feature, because we want to
evaluate the application on a real-world problem, we will attempt to show that this
feature could be very useful for doctors or medical professionals in the aid of detecting
diseases from imaging data (e.g. respiratory diseases detection with x-ray images). In
order to prove this, we will attempt to automatically sort between the images of sick
patients versus healthy patients regarding, firstly, pneumonia [38], and secondly,
COVID-19 [39], all within our application and doing it only with the training feature
that the application provides.

For this, first, in order to classify between x-ray images of patients with pneumonia
versus x-ray images of healthy patients, we made use of transfer learning and trained a
‘resnet50’ architecture for around 2 h without data augmentation on pneumonia [38]
dataset containing 6.200 train images by selecting 10 as the value for the number of
training batches and 10 as the value for the size of batches (amount of images per
batch) and achieved 98.54% train accuracy after 10 epochs. Secondly, in order to
classify between x-ray images of patients with COVID-19 versus x-ray images of
negative patients, we again made use of transfer learning and trained a ‘resnet50’

Table 4. The time complexity of the built-in DL models measured in the number of FLOPS.

DL model Dataset MFLOPS GFLOPS

ResNet-50 ImageNet 3.800 3.8
MNIST MNIST 9 0.009
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architecture for around 1 h without data augmentation on the COVID-19 [39] dataset
containing 107 train images by selecting the same values for the number and size of
training batches as the pneumonia model mentioned above and achieved 100% train
accuracy after 100 epochs.

4.5 Accuracy Calculator

For the experiments regarding the accuracy calculator feature, we used the two custom
DL models trained earlier to classify x-ray images of patients with pneumonia versus
x-ray images of healthy patients and between x-ray images of patients with COVID-19
versus x-ray images of negative patients, with 20 as the size of batches (20 images per
batch).

The evaluation took in both cases around 50 s with a test accuracy of 93.75%
regarding the pneumonia model on 620 test images and 91% regarding the COVID-19
model on 11 test images, proving that the proposed Computer Vision application can
easily be used by any medical personal with very basic computer knowledge in order to
train and test a DL classification model for medical work purposes.

4.6 APC and APEC Calculators

Regarding the experiments with the proposed APC [16] calculator feature, we pre-
sented the simulated results for different model test accuracy (%) and energy con-
sumption (Wh) values in Table 5. We run all the experiments with 0.2 as the alpha
value and with 1.0 as the beta value.

It is important to mention that our recommendation for a correct comparison
between two DL models, is that it is always necessary that they are both tested with the
same alpha and beta values. As can be seen in Table 5 where we experimented with

Table 5. Summarized Results of the proposed APC Calculator feature.

Energy consumption [Wh] DL model test accuracy [%] APC [%]

10 99.0 32.14
2 99.0 69.91
1 99.7 82.91
10 99.7 32.96
50 99.7 8.96
10 94.5 27.47
50 50.0 1.61
1 50.0 31.25
10 50.0 7.14
10 40.0 5.12
1 40.0 23.8
1 100 83.33
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random energy consumption and test accuracy values, our APC Calculator feature is
evaluating the performance of a DL model by considering not only the accuracy but
also the power consumption. Therefore, DL models that consume around 50 Wh (e.g.
when running inference on a laptop) instead of 10 Wh (e.g. when running inference on
a low-cost embedded platform such as the Nvidia Jetson TX2) [15], are penalized more
severely by the APC metric.

Regarding the experiments with the proposed APEC [16] calculator feature, we
presented the simulated results for different model test accuracy (%) and energy cost in
Table 6. We run all the experiments with 0.2 as the alpha value and with 1.0 as the beta
value.

For simplicity, regarding electricity costs, we took Germany as an example.
According to “Strom Report” (based on Eurostat data) [40], German retail consumers
paid 0.00305 Euro cents for a Wh of electricity in 2017. We used this value to calculate
the cost of energy by plugging it in the equation presented in (2)”, where “c” in this
case stands for the energy cost. As can be seen, the APEC metric favors lower power
consumption and cost, favoring the use of green energy (free and clean energy).

4.7 TTCAPC and TTCAPEC Calculators

Regarding the experiments with the proposed TTCAPC [16] calculator feature, we
simulated a custom DL model on two platforms and presented the results in Table 7.

Table 6. Summarized Results of the proposed APEC Calculator feature.

Energy
consumption
[Wh]

Power cost
[cents EUR]

DL model test
accuracy [%]

APEC
[%]

APEC green
energy [%]

10 0.03050 99.0 98.37 99.0
2 0.0061 99.0 98.87 99.0
1 0.00305 99.7 99.63 99.7
10 0.03050 99.7 99.08 99.7
50 0.1525 99.7 96.71 99.7
10 0.03050 94.5 93.8 94.5
50 0.1525 50.0 45.8 50.0
1 0.00305 50.0 49.9 50.0
10 0.03050 50.0 49.1 50.0
10 0.03050 40.0 39.18 40.0
1 0.00305 40.0 39.91 40.0
1 0.00305 100 99.93 100

66 S. L. Jurj et al.



As can be seen, even though the accuracy and training time is the same for both
platforms, the TTCAPC feature favors the platform which has less power consumption.

Regarding the experiments with the proposed TTCAPEC [16] calculator feature,
we simulated with the same DL model values used also in the experiments regarding
the TTCAPC calculator earlier and presented the results in Table 8.

As can be also seen in this case, the TTCAPEC feature favors the lower power
consumption of a system because it results in a lower cost. Additionally and more
importantly, it favors DL-based systems that are powered by green energy, because
they have 0 electricity costs and no negative impact on our environment.

5 Conclusions

In this paper, we present a Computer Vision application that succeeds in bringing
common DL features needed by a user (e.g. data scientist) when performing image
classification related tasks into one easy to use and user-friendly GUI.

From automatically gathering images and classifying them each in their respective
class folder in a matter of minutes, to removing duplicates, sorting images, training and
evaluating a DL model in a matter of minutes, all these features are integrated in a
sensible and intuitive manner that requires no knowledge of programming and DL.
Experimental results show that the proposed application has many unique advantages
and also outperforms similar existent solutions. Additionally, this is the first Computer

Table 7. TTCAPC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1.

Desktop PC Nvidia Jetson TX2

Accuracy [%] 97.92
Energy Consumption [Wh] 50 10
Rounded Accuracy [%] 97.95
Rounded Energy Consumption [Wh] 50.5 10.5
Closest APC [%] 61.28 87.11
Train seconds 60

Table 8. TTCAPEC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1.

Desktop PC Nvidia Jetson TX2

Accuracy [%] 97.92
Energy Cost (cents) 0.1525 0.0305
Rounded Energy Cost (cents) 0.1525 0.0305
Rounded Accuracy [%] 97.95
Closest APEC [%] 51.46 82.96
Closest APEC Green (Solar) Powered [%] 97.95
Train seconds 60
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Vision application that incorporates the APC, APEC, TTCAPC and TTCAPEC metrics
[16], which can be easily used to calculate and evaluate the performance of DL models
and systems based not only on their accuracy but also on their energy consumption and
cost, encouraging new generations of researchers to make use only of green energy
when powering their DL-based systems [15].
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Abstract. Robotic grasping of unknown objects in cluttered scenes is
already well established, mainly based on advances in Deep Learning
methods. A major drawback is the need for a big amount of real-world
training data. Furthermore these networks are not interpretable in a
sense that it is not clear why certain grasp attempts fail. To make the
process of robotic grasping traceable and simplify the overall model we
suggest to divide the complex task of robotic grasping into three simpler
tasks to find stable grasp points. The first task is to find all grasp points
where the gripper can be lowered onto the table without colliding with
the object. The second task is to determine for the grasp points and
gripper parameters from the first step how the object moves while the
gripper is closed. Finally in the third step for all grasp points from the
second step it is predicted whether the object slips out of the gripper
during lifting. By this simplification it is possible to understand for each
grasp point why it is stable and - just as important - why others are
unstable or not feasible. In this study we focus on the second task, the
prediction of the physical interaction between gripper and object while
the gripper is closed. We investigate different Convolutional Neural Net-
work (CNN) architectures and identify the architecture(s) that predict
the physical interactions in image space best. We perform the experi-
ments for training data generation in the robot and physics simulator
V-REP.

Keywords: Robotic grasping · Convolutional Neural Network ·
Simulation · Physical interaction

1 Introduction

Grasping and manipulating objects are tasks humans carry out effortlessly on
an everyday basis. Due to the high object variety and variability of the envi-
ronment, the same tasks are hard to learn for robots. Two main approaches
are distinguished in robot grasping [1]: The first approach determines from the
sensory image(s) the optimal grasp pose of the robot arm. A grasp planner deter-
mines subsequently the motor commands to drive the robot arm into the optimal
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grasp configuration. The optimal grasp configuration is determined either ana-
lytically with force- and form-closure objectives [9] or is data-driven. In the
second approach, the visuomotor controller is directly learned from the sensory
image(s). State-of-the-art grasping methods involve deep learning [2–4,6] and
focus on training a visuomotor controller. These aforementioned methods have
in common that they learn a mapping from image pixels or regions and robot
(joint-)parameters to a grasp success probability. An optimization algorithm aids
to find the robot parameters that maximize the grasp probability. However it is
not possible to evaluate these models such that it is traceable why a certain grasp
candidate succeeded or failed. Especially in industrial applications this lack of
interpretability prevents the algorithms from being applied. In this study the
idea is that vision-based robotic grasping is achieved by finding robot parame-
ters that lead to a collision free path of the robot arm to the object (selected
on the image), where closing and lifting the manipulator leads to a stable grasp.
We make two contributions: Our first contribution is to divide the complex task
of robotic grasping into three simpler tasks that can effectively be learned by
simple CNNs. In a first step all grasp points are determined where the gripper
can be lowered on the table, while enclosing an object part (Lowering Model). In
the second step a Convolutional Neural Network (CNN) is trained that predicts
the physical interaction between the gripper and the object visually (Closing
Model). Finally a model is learned that predicts the grasp points where the
object is liftable (Lifting Model). This model is a simple CNN that classifies the
images predicted from the Closing Model into liftable when the object remains
between the gripper and not liftable when the object slips out of the gripper dur-
ing lifting. Our second contribution and focus of this study is the construction
of a CNN for learning the Closing Model that predicts the physical interaction
between object and gripper in the image domain when the gripper is closed. To
the best of our knowledge there are no grasping models where the object move-
ment due to the closing movement of the gripper is directly predicted. There is
research on predicting object movements in pushing tasks [5,7] but not in the
realm of grasping. In [12,13] the effect of an force acting on an object in an image
is predicted in terms of a vector field but without the prediction in the image
domain. Oh et al. [10] trained CNNs to predict from an action and frames of
an Atari game the next frames driven by the action. We adapt one architecture
from [10] and make a thorough parameter analysis to identify the architecture
that best suits our data for the Closing Model. To understand the context of the
presented Closing Model, the concept of all three models is briefly described as
well as the object database and the physics simulation V-REP which is used to
generate the training data for each step.

2 Grasp Definition and Object Database

In our study, we use prismatic object shapes which are generated from binary
(household) item images, by triangulating the boundaries of the edge filtered
images and extruding the resulting faces in 3D. By this simplification the objects
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Fig. 1. Left: V-REP simulation of the gripper in pre-grasp position. Right: Image from
the orthographic camera between the gripper tips in the pre-grasp position.

considered here all have the same height at each location. To increase the vari-
ability of the object shapes, 10 000 objects were created from bitmap images
of household items and artificial random polygon shapes in three different sizes.
On the left image of Fig. 1 a hammer that was build this way is positioned on
a table. The gripper is a parallel-jaw gripper with a maximal opening width of
5 cm. In Fig. 1 the design of the simulation in V-REP [15] is shown. The pris-
matic objects are placed on a table, one object at a time. Since the objects by
design have the same height, we use only four parameters to describe the gripper
posture: (x, y, α, s), where x and y are the planar coordinates measured in the
world coordinate system, α is the rotation of the gripper around the positive z-
axis of the world coordinate system, and s the gripper opening width measured
between the inner side of the tips. As input for the Lowering Model, a greyscale
snapshot from an orthographic camera that is centred above the table is taken,
with a resolution of 512× 512 pixels. On this image, pixels are randomly chosen
on the object shapes; these pixels are called grasp candidates from now on. The
gripper with the maximal opening width of 5 cm spans 51 pixels on this image.
The right image of Fig. 1 shows an example of the image obtained by a second
orthographic camera which is placed between the gripper tips.

3 Three-Step Model for Stable Grasp Point Detection

The first step of grasp point detection is to determine from all randomly chosen
grasp candidates on an orthographic image from the camera centred above the
table those where the gripper can be lowered on the table without colliding with
the object. For this purpose a two-phase model is applied. In phase I, a forward
model (FM) is trained which predicts for an arbitrary gripper configuration
tuple (αi, si) the image of the gripper tip projections. In phase II Differential
Evolution [8] is used as optimization algorithm to predict the gripper tuple (αi,
si) that minimizes the intersection between the gripper tip projections and the
image patch for a given grasp candidate. The left column of Fig. 2 shows the
randomly chosen grasp candidates (red dots) on pliers and a cup shape. The
second column of Fig. 2 shows the grasp candidates (green dots) where a gripper
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Fig. 2. Examples of the grasp candidates for the orthographic projection of pliers and
a cup. Left column: randomly chosen grasp candidates (red dots). Center column: true
positive grasp candidates (green dots) where a gripper tuple was found. Right column:
false negative grasp candidates (yellow dots) where Differential Evolution was not able
to find an existing solution, true negative grasp candidates (blue and pink dots).

tuple (αi, si) was found such that the intersection between the object and the
gripper tip projections is zero, i.e. the gripper can be lowered without collision.
The third column of Fig. 2 shows the grasp candidates where no gripper tuple
was found.

The second step (Closing Model) is the prediction of the physical interac-
tion between gripper and object for the true positive grasp candidates from the
Lowering Model while closing the gripper. The third step is to predict for the
grasp candidates where the object remained between the gripper tips after clos-
ing if the object remains between the gripper tips when the manipulator is lifted
(Lifting Model). Therefore there are three possible causes why a chosen grasp
candidate does not lead to a stable grasp. The first reason is that there is no
gripper parameter configuration where the gripper can be lowered onto the table
without colliding with the object. This possibly means that the object is too big
for the used gripper. The second reason is that for the given grasp candidate the
object was pushed out of the gripper during closing due to the local shape of the
object. Finally, the last reason for a failed grasp is that the object falls out of
the gripper during lifting, because of the distance between the grasp point and
the centre of mass of the object. The evaluation of these three steps increases
the interpretability of the whole grasping procedure. In the following the Closing
Model is presented in-depth together with a thorough analysis of different CNN
architectures.

4 The Closing Model

Goal of the Closing Model is to predict the physical interaction between object
and gripper in the image domain. More precisely: given the image of the object
and gripper before closing, the Closing Model should predict the resulting image
after closing the gripper and determine the gripper opening width s. If the result-
ing s is greater than 0, the object remained between the gripper tips, otherwise
the object was pushed out. In the following a thorough analysis of different
CNN architectures for the Closing Model is presented. To determine the quality
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Fig. 3. a) Example of a grasp sequence in V-REP for a negative grasp candidate. b)
Example of a grasp sequence in V-REP for a positive grasp candidate. c) Example of
an image sequence obtained in simulation.

of the CNNs two measures are evaluated. The Intersection over Union (IOU)
measure quantifies the quality of the predicted object and gripper movement.
The IOU between two shapes is defined as the fraction of “intersection of the
two shapes”/“union of the two shapes”. When two shapes are identical in form,
position and orientation in an image the IOU value is 1. The confusion matrix
for the predicted gripper opening width (classes: “gripper closed” vs. “gripper
not closed”) is the second measure that is applied for evaluating the networks.

4.1 Training Data Generation for the Closing Model

The resulting true-positive grasp candidates from the Lowering Model are used
to create the training data for the Closing Model and Lifting Model. Therefore
a grasp trial is initiated for every true-positive grasp candidate and an image
sequence recorded during the closing movement of the gripper in the V-REP-
simulation. The grasp candidate is transformed to the world coordinate system.
The orthographic camera used in this simulation is fixed to the gripper. Therefore
the gripper has the 0-orientation in all image sequences. The resolution of the
camera is 1024× 1024. To reduce the image size, we crop a region of 250× 250
pixels and rescale the images to 64× 64. When the object is pushed out and the
gripper opening width is 0 after the closing movement, the grasp candidate is
said to be negative otherwise positive. An example for a negative and positive
grasp trial is shown in Fig. 3a) and b). Figure 3c) shows an example of an image
sequence obtained by this method. The images are inverted and normalized,
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Fig. 4. CNN architecture for 1-channel and 2-channel prediction, adapted from [10].
Net2Vis was used for visualization [11].

such that the pixels of the image that represent the gripper have a value of 0.7,
the pixels that represent the object have a value of 1.0 and the background is
0. The different pixel intensities are also used for separating the images into
two channels one for the object and one for the gripper as is explained in the
following section. All models described in this study are trained with 15 000
positive and 15 000 negative image pairs and evaluated on 2500 positive and
2500 negative image pairs.

4.2 1-Channel Vs. 2-Channel Prediction

The initial design of the CNN architecture presented here is adapted from [10].
In [10] the goal was to predict from an rgb Atari game frame and an action the
next frames. The authors no-action feedforward architecture from [10] consisted
of four convolutional layers, two dense layers and four deconvolutional layers.
In this study this architecture is modified to incorporate only on dense layer
as shown in Fig. 4. Since the gripper is closed in an uniform motion and the
gripper orientation is the same for each image sequence the gripper parameters
are not added as an additional input to the network structure. The kernel-
sizes are chosen as (8× 8), (6× 6), (6× 6), (4× 4) and in reverse order for the
deconvolutional part with a stride of 2 as in [10]. Each convolutional layer is
followed by a RELU-layer. Training is done with the Adam-optimizer with the
standard values. Goal of this section is to find the optimal architecture for the
Closing Model through variation of the number of input and output channels.
In the following the 1-channel and 2-channel predictions are compared.

The input of the CNN for the 1-channel prediction is the image of the object
and gripper together in 1 channel, the output is a 1-channel image. The training
data for the 1-channel network consists of the normalized first and last image of
the image sequences obtained from the grasp trials in VREP, where the back-
ground is 0, the pixels of gripper tip projection are set to 0.7 and the object
pixels to 1.0. The same network is also trained and evaluated with 2-channel
images, where the first channel contains the object and the second channel the
gripper. Both channels are again greyscale with 0 for the background, 0.7 for
the gripper and 1.0 for the object pixels. For computing the IOU value for the
1-channel and 2-channel prediction, the predicted image channels of the network
are thresholded such that the background is 0 and the object and gripper pixels 1.
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Fig. 5. IOU of the 1-channel prediction and 2-channel prediction on 2500 test data.

The training data are thresholded the same way. Figure 5 shows the improvement
of the IOU over 100 epochs for both the 1-channel prediction and 2 channel-
prediction. The deviation of both accuracy curves is minimal. Figure 6 shows an
example for the 1-channel and 2-channel prediction on unknown objects. The
first and second row show the 2-channel and 1-channel prediction respectively.
Both models predict that the object is pushed downwards out of the gripper
due to the closing movement of the tips. Also the gripper opening width of 0 is
predicted correctly by both of the models. The third and fourth row of Fig. 6
illustrate the problem that occurs when using only one channel in contrast to two
channels. Separating gripper and object pixels unambiguously is not possible for
the 1-channel prediction. In the predicted 2-channel result, the gripper opening
width can easily be evaluated by checking for black pixels in the centre region of
the gripper channel image. The evaluation with respect to the gripper opening
width after closing proves to be difficult for the 1-channel prediction. Since this
is a big issue for the evaluation of the model and also for the prediction of the
Lifting Model, from now on the 2-channel presentation is chosen.

4.3 CNN-Architectures

Goal of this section is to determine the optimal network architecture through
a thorough parameter analysis. The results are compared with respect to two
measures. The first measure is the IOU value for determining how well the object
and gripper movements are learned. The second measure is the predicted gripper
opening width in terms of a confusion matrix: if the gripper was not closed in
prediction and physics simulation the result is true positive, if the gripper was
closed in prediction and physics simulation the result is true negative. False
positive and false negative are analogously defined. This measure determines
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Fig. 6. Examples for 1-/ 2-channel prediction. First column: pre-close image. Sec-
ond/Third column: prediction results. Fourth column: post-close image (ground truth).
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Fig. 7. CNN architectures for evaluating the influence of kernel size and stride. Net2Vis
was used for visualization [11].

how good the grasp candidates are classified. However, since the resulting image
of the Closing Model is a necessary input for the Lifting Model the IOU values
are more important in this analysis. In order to find the optimal architecture,
the effect of the kernel size in the convolutional and deconvolutional layers,
the stride and the number of filters on the prediction quality for 2 channels is
evaluated. Furthermore the number of dense layers that is needed is investigated.
The architecture used for the comparisons is the same as in the previous section
but without the fully connected layer to additionally investigate if the dense
layer is really necessary for successful learning of the Closing Model (see Fig. 7).
The kernel sizes for the 4 convolutional layers are varied as I:[(8× 8), (6× 6),
(6× 6), (4× 4)], II:[(7× 7), (5× 5), (5× 5), (3× 3)], III:[(5× 5), (4× 4), (4× 4),
(3× 3)] and IV:[(3× 3), (3× 3), (3× 3), (3× 3)], for the deconvolutional layers
in reversed order. The stride is varied in [1,2] and the number of filters is set to
I:[64,128,128,128] and II:[32,64,64,64]. Figure 8 shows the IOU-curves obtained
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model 2

model 3

model 1

Fig. 8. Left: Model accuracy of 2500 test data for number of filters [32,64,64,64]. Right:
Model accuracy of 2500 test data for number of filters [64,128,128,128].

from varying the parameters. The left image shows the model accuracy for the
number of filters [32,64,64,64], the right image the model accuracy for the number
of filters [64,128,128,128]. As can be seen a bigger number of filters leads to better
IOU-values. Increasing the stride from 1 to 2 also increases the IOU-values.
Furthermore changing the kernel sizes from bigger (I) to smaller (IV) sizes impair
the results. The best IOU-curve is obtained for kernel sizes I:[(8× 8), (6× 6),
(6× 6), (4× 4)] with stride 2 and filter I:[64,128,128,128]. Table 1 shows the
confusion matrix and Matthews correlation coefficient for three selected models
for 2500 positive and 2500 negative examples from the test set. Model 1 is the
network with filter sizes I, filter I and a stride of 1, model 2 is the network with the
filter sizes IV, filter I, stride 1 and model 3 the network with filter sizes I, filter I
and stride 2. Matthews correlation coefficient (MCC) suggests that model 2 with
the filter sizes 3× 3 and stride 1 is the best model. Figure 9 shows an example
for the prediction results of the three models line by line. The first column shows
the pre-close image, column two and three show the prediction results for the
object and gripper channel. The fourth column is the post-close ground truth.
The result for model 1 (first row) reproduces a fuzzy image of the object but does
not predict any object movement. The predicted gripper image is also not sharp.
The predicted gripper opening width is too big compared to the ground truth.
Model 2, the second row, produces visually the best result for the object shape.
But like model 1 it does not predict the rotation. The gripper tips cannot be
clearly seen. Model 3, the last row of Fig. 9, yields a less detailed prediction of the
object but it captures the rotation correctly. Furthermore the resulting gripper
tip projections and the gripper opening width are well reproduced. The reason
for the smaller IOU values of the architectures with smaller filters is that they
are not able to capture the movements of the objects when they remain between
the gripper tips. But they are able to predict if an object is pushed out or not as
the confusion matrix shows. For comparison the confusion matrix and MCC is
also determined for the architecture with the fully connected layer (see Table 1
column FC). Even though the MCC is smaller than for the models without a
fully connected layer the performance with respect to the IOU-curves is the same



Visual Movement Prediction for Stable Grasp Point Detection 79

Fig. 9. Example of the influence of kernel size and stride. First column: pre-close image,
second column: object channel prediction, third column: gripper channel prediction,
fourth column: post-close, ground truth image. First row: result of model 1 (kernel
sizes I, filters I, stride 1), second row: result of model 2 (kernel sizes IV, filters I, stride
1), third row: result of model 3 (kernel sizes I, filters I, stride 2).

Table 1. Confusion matrix, Matthews correlation coefficient and IOU after 100 epochs
on test data of the described models. For details see text.

Confusion matrix

Model 1 Model 2 Model 3 FC

True positive 2394 2435 2375 2334

True negative 2464 2438 2475 2474

False positive 34 60 23 24

False negative 105 64 124 165

MCC 0.9447 0.9504 0.9419 0.9258

IOU 0.979 0.975 0.982 0.982

as for model 3. In summary the optimal architecture in terms of performance
and network size is model 3 with kernel sizes [(8× 8), (6× 6), (6× 6), (4× 4)]
and stride 2. This corresponds also to the model which has the largest receptive
field size in the innermost layer. This large receptive fields seems to be necessary
to predict the object movement.

4.4 Classification

In order to check if the classification performance of the Closing Model is at a
competitive level with classical CNNs used for classification the Closing Model is
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Fig. 10. CNN architecture for classification of pre-grasp images. Net2Vis was used for
visualization [11].

also trained as a classification problem. For classification 26 000 pre-close images
are separated into two classes. One class contains all images where the gripper
can be closed, the other where the gripper cannot be closed. A standard CNN
(Fig. 10) is used for classification in order to predict if the object is pushed out of
the gripper during closing. The resulting confusion matrix values are true positive
= 2428, true negative = 2474, false positive = 72 and false negative = 26. The
MCC for the classification network is with a value of 0.9610 only slightly better
in the classification task than the previously compared architectures. Therefore
it can be concluded that also in this respect the optimal architecture that is
chosen for the Closing Model is well appropriate.

5 Conclusion and Future Work

We have proposed to divide the task of robotic grasping into three simpler tasks
that allow the interpretation of failed grasp attempts. The models that have to
be learned to accomplish these three tasks are the Lowering Model, the Closing
Model and the Lifting Model. In this study we have focused on the Closing
Model. The task of this model is to predict from a pre-grasp image the object
and gripper movement. Therefore image sequences of grasp trials on artificially
generated prismatic objects were executed in a simulation. The first and last
image of the recorded image sequences were used to train a variety of CNNs
to find an optimal architecture. The results show that the movement of the
object and gripper can be predicted successfully with high IOU values with
a CNN consisting of 4 convolutional and 4 deconvolutional layer with kernel
sizes [(8× 8), (6× 6), (6× 6), (4× 4)], filter sizes [64,128,128,128] and stride 2.
Inserting a dense layer between the convolution and deconvolution part does
not increase the model accuracy. The computational complexity of the proposed
Closing Model is basically determined by the complexity of the used CNNs. A
thorough analysis of the complexity of convolutional layers can be found in [14].

We plan to adapt the three steps and especially the Closing Model to depth
images on a real-world setup to extend the physical movement prediction into
3D. Using depth images instead of binary orthographic object images allows
the model to be applied to different view angles on an object and loosens
the restriction on prismatic objects with a fixed object height. Furthermore we
will implement our Closing Model on a real-world robot setup to evaluate the
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qualitative results of the predicted object movement in the real-world physics
for approximately prismatic objects like boxes, pens, pliers and other tools.
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Abstract. This research aims to determine the optimal Multi-Layer Feed-
Forward Artificial Neural Network (MLFF) capable of accurately estimating the
level of seismic damage on buildings, by considering a set of Seismic Intensity
Parameters (SIP). Twenty SIP (well established and highly correlated to the
structural damage) were utilized. Their corresponding values were calculated for
a set of seismic signals. Various combinations of at least five seismic features
were performed for the development of the input dataset. A vast number of
Artificial Neural Networks (ANNs) were developed and tested. Their output was
the level of earthquake Damage on a Reinforced Concrete Frame construction
(DRCF) as it is expressed by the Park and Ang overall damage index. The
potential contribution of nine distinct Machine Learning functions towards the
development of the most robust ANN was also investigated. The results confirm
that MLFF networks can provide an accurate estimation of the structural damage
caused by an earthquake excitation. Hence, they can be considered as a reliable
Computational Intelligence approach for the determination of structures’ seismic
vulnerability.

Keywords: Seismic intensity parameters � Multiple feedforward perceptron
artificial neural network � ANN � Park and Ang damage index

1 Introduction

Earthquake structural damage detection is considered one of the core subjects of civil
engineering. Numerous methods have been developed and employed for the determi-
nation of structures’ post-seismic damage status. Several of them are connected with
the Seismic Intensity (SIN), which is utilized as a metric of the power and the effect of
seismic damage potential. Therefore, in earthquake engineering and engineering seis-
mology, a large number of SIN parameters are considered and interrelated with the
structural damage, as it is described by various indices [1–3, 7, 9–12, 24, 34].

In this research, the problem of structural damage state prediction is confronted by
the use of Artificial Neural Networks. ANNs have an inherent ability to deploy pre-
diction results for problems where the input data is known. Twenty, well established,
seismic intensity parameters are utilized as input to the ANNs, aiming to predict the
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DRCF after the application of ninety-two seismic signals. ANNs have the ability to
consider any number and combination of seismic parameters for the determination of
the optimal correlation between them and the damage state, as it is expressed by the
global Park and Ang damage index DIPA,global.

This research aims to prove that the accurate estimation of the DIPA,global index, can
be accomplished with a high degree of conformity to the actual damage state, by the
employment of ANNs that consider related SIP. A large number of ANNs employing
various architectures and seven different Transfer functions were developed. Regarding
the development of the training set, we have tried all potential combinations of the
available input parameters. Thus, the complexity of the experiments was immense.

It has finally been revealed that a large number of ANNs can be considered as
reliable models capable of perfectly serving towards the assessment of the seismic
vulnerability of constructions. Consequently, we have developed a very promising
approach in the area of seismic earthquake engineering.

2 Literature Review - Introduction of the Novel Contribution

Artificial Neural Networks have been utilized in the field of civil engineering, and
many researchers [1, 2, 31, 35, 36] have investigated the advantages of using them in
the field of structural engineering. They are related to complex algorithms capable of
imitating behaviors of biological neural systems. Like human brains, they have the
capability to learn applied knowledge from experience in solving new problems under
new environments. This task is accomplished through a Supervised Learning process,
where a volume of data vectors is used as input in order to obtain the optimal com-
bination of neurons’ connection weights. The ultimate target if the estimation of a set of
predefined target outputs. Once the network has fit the data, it forms a generalization of
the input-output relationship, and it can be used to generate output for input it was not
trained on.

There are past publications in the literature that discuss the development of ANN
capable of modeling the ability of certain SIP, towards the estimation of the structures’
damage potential after an earthquake [1, 2, 19, 23, 31, 35, 36]. In each of them, a
limited number of neural networks has been deployed. They have considered all
available SIP together, and they were trained with one or two algorithms at a time.
Then they were retrained following a specific number of repetitions of the whole
process. In the end, the best-retrained network was selected to export the final results.
The employment of retrained models has a high probability to cause over-training. This
fact means that such models are prone to memorization, and they have extremely
limited Generalization ability. Generalization is the ultimate target in the development
of reliable computational intelligence models. Moreover, the consideration of all fea-
tures for the development of the training set does not lead to optimal models. The
solution to this problem is Feature Extraction. However, this process requires a big
dataset with numerous values if the dependent variable. In this case, this is quite
difficult since one has to travel all over the globe where earthquakes incidents occur,
and he/she has to be given access to the respective local records. Thus, we have decided
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to follow the trial and error approach since the availability of modern computational
resources makes this process feasible.

3 Established Seismic Intensity Parameters

As aforementioned, many intensity seismic parameters in earthquake engineering lit-
erature play a significant role in the assessment of structural damage potential. Twenty
of the most recognized seismic parameters in earthquake engineering, which already
have been connected with the structural damage [9–11], are selected to be evaluated for
a set of examined seismic excitations. These seismic parameters are presented below, in
Table 1.

4 Park and Ang Structural Damage Index

The damage index (DI) is a quantity that lumps the structural damage status in a single
numerical value and can be easily handled. In earthquake engineering, damage indices
can quantify the induced damage locally or globally.

Park and Ang damage index (DIPA,global) [25, 26] is an index defined as the ratio
between the initial and the reduced resistance capacity of a structure during a seismic

Table 1. Employed seismic intensity parameters

Symbol Description Reference

PGA Peak ground acceleration [22]
PGV Peak ground velocity [22]
PGD Peak ground displacement [22]
PGA/PGV The ratio PGA/PGV [21]
CP Central period [33]
IArias Arias intensity [5]
SMDTB Strong motion duration of Trifunac-Brady [30]
P0.90 Seismic power [17]
RMSa Root mean square acceleration [22]
IFVF Seismic intensity of Fajfar-Vidic-Fischinger [15]
CAV Cumulative absolute velocity [7]
DPAS Seismic destructiveness potential of Araya-Saragoni [4]
SD Spectral displacement [8]
SV Spectral velocity [8]
SA Spectral acceleration [8]
Einp Seismic absolute input energy [32]
SIK Kappos spectrum intensity [18]
SIMR Spectrum intensity of Martinez-Rueda [20]
EPA Effective peak acceleration [6]
EPAmax Maximum effective peak acceleration [6]
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excitation evaluated by nonlinear dynamic analysis. The classification of the structural
damage status, according to DIPA,global values are presented in the table below.

The value of DIPA,global is equal to zero under elastic response, the structural
damage located in the “Great” level is non-repairable while DIPA,global > 0.80 signifies
complete collapse or total damage of the structure.

5 Calculation of Seismic Intensity Parameters and DIPA,Global

A total number of ninety accelerograms have been applied to a reinforced concrete
(RC) frame structure with a total height of 22 m. The examined structure is designed in
agreement with the rules of the recent Eurocodes EC2 [13] and EC8 [14], for structural
concrete and aseismic structures and shown in Fig. 1. The cross-section of the beams
are T-shapes with 30 cm width, 20 cm plate thickness, 60 cm total beam height. The
effective plate width is 1.15 m at the end-bays and 1.80 m at the middle-bay. The
distance between frames in the three-dimensional structure has been chosen to be 6 m.
The building has been considered as an “importance class II”, “ductility class Med-
ium”, and “subsoil of type B”.

Table 2. Structural damage classification, according to DIPA,global.

Structural damage Structural damage degree

Low Medium Great Total

DIPA,global DIPA,global � 0.3 0.3 < DIPA,global � 0.6 0.6 < DIPA,global � 0.8 DIPA,global > 0.80

Fig. 1. Reinforced concrete frame.
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Additionally, to the dead weight and the seismic loading, snow, wind, and live
loads have been taken into account. The fundamental period of the frame is 0.95 s.
After the design procedure of the RC frame structure, a nonlinear dynamic analysis has
occurred for the evaluation of the structural seismic response for every seismic exci-
tation utilized in the present study. For this purpose, the computer program IDARC
version 7 [27] has been used. The hysteretic behavior of beams and columns has been
specified at both ends of each member using a three-parameter Park model. This
hysteretic model incorporates stiffness degradation, strength deterioration, non-
symmetric response, slip-lock, and a trilinear monotonic envelope. The parameter
values, which specify the above degrading parameters, have been chosen from
experimental results of cyclic force-deformation characteristics of typical components
of the studied structure. Thus, the nominal parameter for stiffness degradation and
strength deterioration has been chosen. On the other hand, no pinching has been taken
into account. Among the several response parameters, the focus is on the overall
structural damage index of Park and Ang. From the nonlinear dynamic analysis, the
overall damage indices of Park and Ang are derived, as presented in Table 3.

The utilized accelerograms generate a broad spectrum of damage (low, medium,
large, and total) for statistical reasons. After the selection of the ninety-two earthquake
excitations, all the employed seismic intensity parameters are evaluated for every
accelerogram, and their statistical values are presented in Table 4.

Table 3. The number of excitations employed per DIPA,global range.

DIPA,global Number of accelerograms

0.01–0.1 15
0.1–0.2 18
0.2–0.3 9
0.3–0.4 11
0.4–0.5 2
0.5–0.6 8
0.6–0.7 10
0.7–0.8 6
0.8–0.9 3
>0.9 8
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6 Configuration of ANNs and Datasets

The development of the ANNs based on the universal approximation of MLFF net-
works requires the determination of the input and the output datasets, the choice of the
optimal Learning algorithm, and the determination of the number of hidden
layers/neurons. In this research, several Learning Algorithms were employed in order
to choose the one that produces the best convergence. Back Propagation (Trainlm) has
been proven to be optimal as the optimization algorithm. The obtained data set had
been preprocessed in a previous research effort, so no such action was required [9–11].

The available data vectors comprise of twenty seismic intensity parameters that
have already been discussed. As mentioned in Chap. 2, due to the nature of the case, it
is difficult to obtain a number of DIPA,global data vectors, in order to perform a reliable
Principal Component Analysis between those twenty seismic intensity parameters and
the overall damage indices DIPA,global.

Thus, we have followed a trial and error approach by testing a huge number of
potential Input Datasets (IDS) that have emerged by combinations of the available
features. Each combination comprised of at least 5 parameters. The maximum number
of features was twenty. At the same time, nine different transfer functions were applied
for each one of the emerged potential IDS. Every single developed dataset was utilized

Table 4. Statistical values of the seismic intensity parameters.

Seismic parameter Statistics
Min value Max value Average Standard deviation

PGA (m/s2) 0.304 13.615 4.804 3.343
PGV (m/s) 0.030 1.212 0.386 0.263
PGD (m) 0.003 0.950 0.149 0.146
PGA/PGV(g � s/m) 0.314 3.248 1.375 0.643
CP (s) 0.052 0.802 0.218 0.110
IARIAS (m/s) 0.015 28.274 3.728 5.081
SMDTB (s) 2.080 89.100 18.250 18.949
P0.90 (m

2/s4) 0.005 7.442 1.823 2.033
RMSa (m/s2) 0.038 1.636 0.569 0.399
IFVF (m � s3/4) 0.041 2.428 0.724 0.504
CAV (g � s) 0.058 8.469 1.557 1.525
DPAS (m � s) 0.000 0.258 0.038 0.050
SD (m) 0.006 0.369 0.092 0.074
SV (m/s) 0.051 2.408 0.660 0.503
SA (m/s2) 0.058 1.975 0.700 0.469
Einp(m

2/s2) 0.001 6.175 0.823 1.185
SIK (m) 0.016 1.024 0.294 0.226
SIMR (m/s) 0.042 1.391 0.493 0.339
EPA (g) 0.018 1.001 0.382 0.247
EPAmax (g) 0.030 1.035 0.413 0.264
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as Input to a different ANN in order to model the degree of the seismic parameters’
influence on the value of the structural damage index. Thus, a total number of the
1,042,380 distinct input tables have been developed and used as input to the ANNs
before the determination of the winner (the optimal one).

As the target output parameter of the examined ANNs for the function fitting
problem in this study, we used the overall damage indices DIPA,global that derived from
nonlinear dynamic analysis after the application of the seismic accelerograms on the
structure in study. Therefore, all developed ANNs have one neuron that represents the
DIPA,global.

All networks that have been developed in this research for the prediction of the
DIPA,global had one hidden layer in an effort to keep their architecture as simple as
possible. This choice was based on the fact that the single-layered feedforward per-
ceptron networks are able to precisely approach functions f(x): Rm ! R1 [19], as well
as on the fact that their efficiency has already been proved in numerous relevant
investigations [19, 23]. The number of neurons in the hidden layer was also investi-
gated. Several models with 7 to 10 hidden neurons were tried. This range was chosen
after several trial and error tests and based on the small number of available vectors
(92) in the source training dataset. As a result of that, four additional networks were
developed for every produced ANN by the combination of the seismic parameters.

Totally, nine different training algorithms were utilized for every potential dataset,
namely [16, 28]: Trainlm (Levenberg-Marquardt BP), Trainbfg (BFGS quasi-Newton
BP), Trainrp (Resilient backpropagation), Trainscg (Scaled conjugate gradient BP),
Traincgb (Powell-Beale conjugate gradient BP), Traincgf (Fletcher-Powell conjugate
gradient BP), Traincgp (Polak-Ribiere conjugate gradient BP), Trainoss (One step
secant BP) and Traingdx (Gradient descent with momentum and adaptive linear BP).

Moreover, the Sigmoid, TanH (Tangent Hyperbolic) Transfer function was
employed.

7 Experiments - Evaluation and Results

Totally, 37,525,680 ANNs were developed and tested. This procedure was the result of
the combination of 5 to 20 seismic parameters and the employment of 7 to 10 hidden
neurons and nine training algorithms (one for each network).

For the development of the developed ANNs, MATLAB 2019 a [29] was used.
Due to the vast number of different networks and the fact that most of the specific
training algorithms are not GPU capable, a private distributed – parallelized environ-
ment of 10 virtual instances of Matlab was employed. Each instance had access to eight
i9-9900k threads and 12 GB of memory. It was also equipped with two Matlab
workers, which means that a total amount of 20 workers were available.

A proper Matlab script was developed, which was able to: a) to develop all ANNs
b) to manage the fastest possible training of the total amount of networks based on the
distribution and use of the available resources. From the total ninety-two employed
seismic excitations, a percentage of 70% comprised the training set. From the rest of
the vectors, a percentage of 15% was used as a testing set and 15% as the validation set.
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For the comparison of the obtained ANNs, the “R” statistics, the “R2”, and the
“Mean Squared Error (MSE)” were employed.

In statistics, R is the “correlation coefficient” between two variables, which reflects
the strength and direction of a linear relationship and has a value between –1 (total
negative linear correlation and +1 (total positive linear correlation). As R2 is denoted
the “coefficient of determination” with a value that ranges from zero to one and
represents the proportion of variance in the dependent variable DIPA,global, which may
be predicted from the seismic intensity parameters for every investigated ANN. An R2

value above 0.80 indicates a strong effect of the independent variables on the expla-
nation of DIPA,global.

The MSE is an average of the absolute difference between the true values of
DIPA,global, which considered the calculated ones by nonlinear dynamic analysis and the
corresponding ones evaluated by the constructed ANNs.

In Tables (5 and 6), the basic statistics of the R and MSE calculated values are
presented respectively for every training algorithm and every investigated number of
neurons in the hidden layer of ANNs.

Table 5. Statistics of “R coefficient” values.

R Statistics

Training
algorithm

7 Neurons-hidden layer 8 Neurons-hidden layer
Min Max Mean St.dev. Min Max Mean St.dev.

trainlm −0.6646 0.9859 0.9271 0.0317 −0.7224 0.9872 0.9268 0.0327
trainbfg −0.7377 0.9686 0.9073 0.0424 −0.6849 0.9686 0.9072 0.0414
trainrp −0.6006 0.9647 0.8974 0.0481 −0.7622 0.9731 0.8959 0.0500
trainscg −0.7175 0.9673 0.9060 0.0458 −0.8070 0.9681 0.9052 0.0451
traincgb −0.7500 0.9691 0.9115 0.0401 −0.8231 0.9735 0.9110 0.0396
traincgf −0.6974 0.9677 0.9084 0.0440 −0.6713 0.9690 0.9083 0.0434
traincgp −0.7708 0.9671 0.9070 0.0437 −0.7407 0.9675 0.9062 0.0431
trainoss −0.7502 0.9626 0.9025 0.0454 −0.7274 0.9596 0.9022 0.0439
traingdx −0.9015 0.9569 0.7467 0.3111 −0.9133 0.9563 0.7412 0.3142

9 Neurons-hidden layer 10 Neurons-hidden layer
Min Max Mean St.dev. Min Max Mean St.dev.

trainlm −0.6030 0.9883 0.9266 0.0332 −0.6084 0.9866 0.9262 0.0345
trainbfg −0.6751 0.9669 0.9072 0.0404 −0.5839 0.9665 0.9071 0.0402
trainrp −0.7957 0.9680 0.8945 0.0519 −0.6713 0.9722 0.8930 0.0539
trainscg −0.8060 0.9667 0.9044 0.0451 −0.7004 0.9681 0.9036 0.0454
traincgb −0.6972 0.9702 0.9104 0.0399 −0.6432 0.9746 0.9098 0.0401
traincgf −0.6994 0.9696 0.9078 0.0429 −0.7446 0.9689 0.9074 0.0434
traincgp −0.7269 0.9708 0.9053 0.0434 −0.7446 0.9709 0.9045 0.0436
trainoss −0.7408 0.9633 0.9017 0.0431 −0.7446 0.9636 0.9011 0.0430
traingdx −0.8928 0.9591 0.7325 0.3211 −0.9106 0.9599 0.7222 0.3287

92 M. Tyrtaiou et al.



The best results for every performance coefficient in study are described in Table 7
and Table 8. Table 7 presents the quantities (qty.), as a percentage of the results, in
regard to the R2 coefficient with values that range from 0.80 to 1, considering the
number of neurons in the hidden layer and the training algorithm. These results are also
distributed in three classes.

Table 6. Statistics of MSE values.

MSE Statistics

Training
algorithm

7 Neurons-hidden layer 8 Neurons-hidden layer
Min Max Mean St.dev. Min Max Mean St.dev.

trainlm 0.0026 0.3825 0.0143 0.0073 0.0024 0.2789 0.0144 0.0076
trainbfg 0.0058 0.4192 0.0167 0.0074 0.0057 0.4137 0.0167 0.0074
trainrp 0.0065 0.3490 0.0187 0.0090 0.0049 0.3871 0.0190 0.0096
trainscg 0.0059 0.2861 0.0167 0.0074 0.0057 0.3347 0.0169 0.0076
traincgb 0.0056 0.3650 0.0158 0.0066 0.0049 0.3575 0.0159 0.0068
traincgf 0.0059 0.2805 0.0163 0.0072 0.0056 0.4478 0.0163 0.0073
traincgp 0.0060 0.3707 0.0166 0.0072 0.0059 0.6212 0.0167 0.0073
trainoss 0.0067 0.9041 0.0176 0.0078 0.0073 0.4138 0.0177 0.0078
traingdx 0.0077 0.9163 0.0397 0.0440 0.0079 1.2957 0.0418 0.0476

9 Neurons-hidden layer 10 Neurons-hidden layer
Min Max Mean St.dev. Min Max Mean St.dev.

trainlm 0.0023 0.4237 0.0145 0.0079 0.0024 0.2804 0.0147 0.0081
trainbfg 0.0060 0.3058 0.0167 0.0073 0.0061 0.4611 0.0168 0.0075
trainrp 0.0058 0.3779 0.0193 0.0102 0.0050 0.5197 0.0197 0.0108
trainscg 0.0061 0.3406 0.0171 0.0077 0.0058 0.3619 0.0172 0.0080
traincgb 0.0054 0.3423 0.0160 0.0069 0.0046 0.4284 0.0161 0.0071
traincgf 0.0056 0.4743 0.0164 0.0074 0.0056 0.6029 0.0165 0.0076
traincgp 0.0053 0.5510 0.0169 0.0075 0.0053 0.6029 0.0171 0.0077
trainoss 0.0066 0.4743 0.0178 0.0078 0.0066 0.4259 0.0179 0.0079
traingdx 0.0075 1.0538 0.0445 0.0520 0.0072 1.1863 0.0478 0.0567
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In a correspondent way, the best results for the MSE, which range from 0.05 to
0.02, considering the number of neurons in the hidden layer and the training algorithm,
are presented in Table 8.

Investigating the above Tables, the maximum R2 coefficient, which is 0.9767, and
the minimum MSE, which is 0.0023 have been obtained by the ANN, which was
trained by the “Trainlm” (Back Propagation) algorithm, with nine neurons in the
hidden layer, using the TanH transfer function. It is also obvious that the “Trainlm”
algorithm presents the most significant percentage of the highest R2 values and the
lowest MSE values derived from all utilized algorithms.

Table 7. Percentage of ANNs with R2 values over 0.80.

Classification of R2 values

Classes of R2 Qty. of
ANNs

Trainlm Trainbfg Trainrp Trainscg Traincgb Traincgf Traincgp Trainoss Traingdx

7 Neurons-hidden layer

R2 > 0.90 (%) 11.86 0.14 0.17 0.12 0.30 0.23 0.16 0.03 0.01

0.85 < R2 � 0.90 (%) 63.48 46.95 33.18 45.78 54.19 50.36 47.46 38.49 29.21

0.80 < R2 � 0.85 (%) 16.90 35.06 39.09 35.50 31.05 32.50 34.32 40.06 21.12

8 Neurons-hidden layer

R2 > 0.90 (%) 12.53 0.17 0.22 0.14 0.36 0.29 0.19 0.04 0.02

0.85 < R2 � 0.90 (%) 62.35 46.50 32.57 44.29 53.05 49.67 45.95 37.47 28.62

0.80 < R2 � 0.85 (%) 16.86 35.08 38.21 35.94 31.42 32.59 34.78 40.29 20.88

9 Neurons-hidden layer

R2 > 0.90 (%) 13.14 0.21 0.26 0.16 0.43 0.34 0.22 0.05 0.02

0.85 < R2 � 0.90 (%) 61.26 46.01 31.79 42.91 51.88 48.66 44.47 36.50 27.83

0.80 < R2 � 0.85 (%) 16.82 35.19 37.57 36.31 31.85 32.91 35.20 40.48 20.50

10 Neurons-hidden layer

R2 > 0.90 (%) 13.64 0.26 0.33 0.20 0.50 0.42 0.24 0.07 0.03

0.85 < R2 � 0.90 (%) 60.34 45.58 31.20 41.62 50.69 47.83 43.09 35.55 26.87

0.80 < R2 � 0.85 (%) 16.75 35.27 36.77 36.69 32.22 33.10 35.66 40.61 20.20
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For the “Trainlm” function the percent of ANN cases with R2 > 0.80 depending on
the number of neurons in the hidden layer, ranges from 90.73% to 92.24% while the
percentage of ANNs that achieved values of MSE < 0.05, ranges from 99.19% to
99.40% of the total number of ANN models that estimate the seismic damage that is
expressed by the DIPA.global index (see Table 9). It means that at least 90.73% of the
developed ANNs have shown excellent predictive accuracy with R2 > 0.80 jai
MSE < 0.05 simultaneously. At least 85.40% of the ANNs had a performance with
R2 > 0.80 and MSE < 0.02 simultaneously.

8 Conclusions and Further Work

This research designates the grade of the ability of Artificial Neural Networks to predict
seismic damage from twenty well-established seismic parameters, taking into consid-
eration the already proven in earthquake engineering strong interrelation between the
structural damage and the seismic intensity parameters.

Table 8. Percentage of ANNs regard to MSE values.

Classification of MSE

Classes of MSE Qty. of
ANNs

Trainlm Trainbfg Trainrp Trainscg Traincgb Traincgf Traincgp Trainoss Traingdx

7 Neurons-hidden layer

MSE < 0.02 (%) 87.56 82.31 72.55 82.19 86.31 83.89 82.76 78.70 51.90

0.02 � MSE < 0.05 (%) 11.84 16.96 26.11 17.06 13.16 15.46 16.57 20.42 23.02

MSE � 0.05 (%) 0.59 0.73 1.33 0.76 0.53 0.65 0.67 0.89 25.08

8 Neurons-hidden layer

MSE < 0.02 (%) 86.79 81.88 71.18 81.25 85.61 83.45 81.78 77.94 50.99

0.02 � MSE < 0.05 (%) 12.55 17.42 27.23 18.00 13.85 15.90 17.54 21.20 22.70

MSE � 0.05 (%) 0.66 0.70 1.58 0.75 0.54 0.66 0.68 0.87 26.31

9 Neurons-hidden layer

MSE < 0.02 (%) 86.06 81.54 69.82 80.35 84.98 82.85 80.77 77.20 49.76

0.02 � MSE < 0.05 (%) 13.21 17.77 28.34 18.85 14.44 16.47 18.51 21.92 22.30

MSE � 0.05 (%) 0.72 0.69 1.83 0.80 0.58 0.68 0.72 0.88 27.95

10 Neurons-hidden layer

MSE < 0.02 (%) 85.40 81.18 68.54 79.51 84.25 82.30 79.83 76.35 48.38

0.02 � MSE < 0.05 (%) 13.79 18.12 29.34 19.62 15.14 16.97 19.38 22.75 21.76

MSE � 0.05 (%) 0.81 0.70 2.12 0.87 0.61 0.73 0.78 0.90 29.86

Table 9. Results of ANNs with “Trainlm” algorithm

Number of neurons
in the hidden layer

Percentage of evaluated MFPs
R2 > 0.80 (%) MSE < 0.05 (%) MSE < 0.02 (%)

7 92.24 99.40 87.56
8 91.74 99.34 86.79
9 91.22 99.27 86.06
10 90.73 99.19 85.40
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The overall damage index of Park and Ang is used to describe the damage of a
reinforced concrete frame structure under a number of ninety-two seismic excitations,
and the evaluated by nonlinear dynamic analyses indices are utilized as the target
values of the examined ANNs. The architecture of the constructed ANNs is the
Multiple Feedforward Perceptron (MFP) network with five to twenty seismic param-
eters as inputs, one hidden layer of seven to ten neurons, trained with nine different
backpropagation algorithms. Hence, a number of 37,525,680 ANNs are calculated, and
two of their statistical parameters, the “R coefficient” and the “Mean Squared Error
(MSE)” of the total data, are investigated.

All the utilized training algorithms led to a significant percentage of ANNs with a
high coefficient of determination (R2 > 0.80) and low MSE (MSE < 0.05). The most
efficient of them turned out to be the “Trainlm” algorithm. In particular, a number of
1,024,380 ANNs configured with the “Trainlm” algorithm conducted to a percentage of
over 90.73% of a high explanation of variance of DIPA,global (with R2 > 0.80) with very
low MSE (MSE < 0.05) simultaneously. It is also observed that the best performance
of all the investigated statistical coefficients is displayed among the ANNs with the nine
neurons in the hidden layer, which use the “Trainlm” algorithm. In particular, from
Table 5, the highest obtained R2 coefficient presented to be equal to 0.9767
(R = 0.9883), while in Table 6, the lowest displayed MSE is equal to 0.0023. Fur-
thermore, according to Table 2, it is obvious that the values of MSE under the value of
0.05 cause no substantial changes to the estimated level of DIPA,global, and, thus, to the
decisions for the repair interventions.

All the above results confirm that the use of ANNs can be considered a very reliable
method for a high accuracy prediction of the post-seismic damage in existing or future
structures and a powerful tool for the scientific community in order crucial decisions to
be made before and after an earthquake.

In future work, this research could be extended, investigating more seismic
intensity parameters with a larger sample of seismic excitations. Following this process,
the most efficient parameters and the best combination of them could be obtained and
utilized directly for the determination of earthquake vulnerability of the structures.
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Abstract. This paper presents a self-sufficient solar-powered real-time Deep
Learning (DL) based system that runs inference 100% on solar energy and
which is composed of an Nvidia Jetson TX2 board and a dual-axis solar tracker
based on the cast-shadow principle. In order to have a higher energy being
generated by the solar tracker as well as a lower energy consumption by the real-
time DL-based system, we have: a) updated our solar tracker’s panel with a
higher number of polycrystalline photovoltaic (PV) cells and connected it to a
chain of two inverters, one accumulator and one solar charge controller; b)
implemented a motion detection method that triggers the inference process only
when there is substantial movement in webcam frame. Experimental results
show that our solar tracker generates sufficient and constant solar energy for all
the 4 DL models (VGG-19, InceptionV3, ResNet-50 and MobileNetV2) that are
running in real-time on the Nvidia Jetson TX2 platform and which requires more
than 5 times less energy when compared to a laptop having a Nvidia GTX 1060
GPU, proving that real-time DL-based systems can be powered by solar trackers
without the need of traditional power plugs or need to pay for electricity bills.

Keywords: Deep learning � Real-Time � Solar energy

1 Introduction

Recent advancements in the field of Artificial Intelligence (AI), especially DL, are
happening especially thanks to the availability of huge amounts of data and powerful
hardware. During training and inference of a Deep Neural Network (DNN), usually
expensive and power-hungry GPUs are used, resulting in a proportional growth of
computational and environmental costs, with some Natural Language Processing
(NLP) models even increasing the carbon footprint nearly five times the lifetime
emissions of a car [1].

Because climate change is a very relevant problem in our society [2] and consid-
ering goal number 7 (affordable and clean energy) and goal number 13 (climate action)
of UN’s Sustainable Development Goals [3], efforts to develop and use low-power
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embedded devices are made by many companies, an example, in this case, being
Nvidia’s Jetson TX2 embedded platform [4]. Consequently, in order to reduce the
carbon footprint and the electricity bills, efforts towards renewable energy are made [5],
with many researchers building solar tracking systems [6, 7] in order to capture sun’s
energy with maximum efficiency.

Considering that the two domains of AI and renewable energy are of major
importance for the development of our society, our work introduces a self-sufficient
solar-powered real-time DL-based system that makes use of solar energy from the sun
with the help of an updated version of our solar tracker based on the cast-shadow
principle [6] and an Nvidia Jetson TX2 board that runs our real-time animal class
identification model [8] on videos or using a webcam and also generates additional
datasets containing images and textual information about the animals present in front of
the frame, in real-time. In order to justify our decision for choosing an embedded
platform instead of a laptop, in our experimental results, we present a comparison
between the two platforms, mainly in terms of power consumption. Additionally, we
also improve the energy efficiency of the proposed real-time DL-based system by
implementing a motion detection method based on background subtraction with the
help of Python and OpenCV [9].

Concerning the structure of the paper, in Sect. 2, we present an overview of the
related work. Section 3 describes the proposed efficient real-time DL-based system.
Section 4 presents the experimental setup and results. Finally, Sect. 5 concludes this
paper.

2 Related Work

To the best of our knowledge, there is no work in the literature that makes use of a solar
tracking device in order to generate solar energy for a real-time DL-based system.

Nevertheless, similar work that evaluates the power efficiency of DL inference for
image recognition on embedded GPU systems is presented in [10] where the authors
compare different platforms like Nvidia Jetson TX1 and TX2 as well as a Tesla P40
and show that the Nvidia Jetson TX2 board is able to achieve the highest accuracy with
the lowest power consumption. The authors in [11] make use of an Nvidia Jetson TX2
to test a fully Convolutional Neural Network (CNN) for detecting traffic lights and
employ a power supply unit (12 V) with stabilizer in order to increase the stability of
the system, mentioning that the Nvidia Jetson TX2 has a low power consumption of
around 10 Watts, which is also confirmed by our experimental results using different
CNN architectures. The authors in [12] train and test two CNNs for classifying skin
cancer images as Benign or Malignant on the Nvidia Jetson TX2, proving that this
embedded platform is capable of handling DL computations even for training CNN
models, not only for inference. The authors in [13] propose an object detection
implementation using MobileNet as the backbone network on an Nvidia Jetson TX2
board, showing a higher frames-per-second (fps) and reduced model size when com-
pared to other networks. Nvidia Jetson TX2 is used also in [14] where the authors
propose a CNN based application that can run onboard a satellite in order to detect and
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classify boats on the open ocean from satellite imagery. Experimental results show that
the Nvidia Jetson TX2 has almost half the power consumption when compared with
standard systems designed for a satellite onboard processing. The authors in [15] use
Nvidia Jetson TX2 for their proposed methodology regarding a faster and more
accurate object detection in unmanned aerial vehicle (UAV) imagery. The work in [16]
proposes a vehicle and pedestrian detection system that uses CNNs in order to evaluate
traffic violations and which is implemented on an Nvidia Jetson TX2 board. Other
related works that use Nvidia Jetson TX2 are regarding real-time ear detection [17],
when developing embedded online fish detection and tracking system for ocean
observatory network [18], real-time multiple face recognition [19], a streaming cloud
platform for real-time video processing [20] and detecting diabetic foot ulcer in real-
time [21]. A comparison between different computing platforms is made also by the
authors in [22] which show that the Nvidia Jetson TX2 is a reliable and efficient
embedded platform for the underwater robotics domain.

Regarding motion detection, the authors in [23] present a comparative analysis of
motion-based and feature-based algorithms for object detection and tracking and show
that Adaptive Gaussian Mixture Model (AGMM) [24] is faster and more robust to
illumination (shadows) than Grimson Gaussian Mixture Models (GGMM) [25] when
performing on real-time videos. Also, the authors in [26] present a study on prepro-
cessing methods for tracking objects in soccer videos, showing that background sub-
traction and edge detection are advantageous for detecting moving objects. OpenCV
[9] is also using AGMM together with other several algorithms for background sub-
traction such as BackgroundSubtractorGMG, BackgroundSubstractorMOG, and
BackgroundSubstractor MOG2, which are presented in the works of [27] and [28] but,
in comparison with OpenCV [9], the algorithms in OpenCV are more modern, accurate
and faster (a reason for this is because they are continuously developed by the OpenCV
community).

In this work, we make use of OpenCV in order to implement a motion-based
Gaussian algorithm that makes use of pixel’s intensity values over a period of time. We
decided to implement it in order to trigger the inference process only when there is
movement in the frame, thus lowering the energy consumption of the entire real-time
DL-based system, as seen in our experimental results presented in Sect. 4.

3 Proposed Solar-Powered Real-Time Deep Learning-Based
System

A summarized view of the proposed solar-powered DL-based system can be seen in
Fig. 1. It consists of our dual-axis solar tracker based on the cast-shadow principle [6],
a solar charge controller, an Ultra Cell accumulator with 12 V 9 Ah acid plumb battery,
two DC-to-DC inverters (first DC-to-DC inverter converts 12 V to around 5 V nec-
essary for the solar tracker to become autonomous regarding energy needs and the
second DC-to-DC inverter converts 12 V to around 19 V necessary for the Nvidia
Jetson TX2 to run only on solar energy) and an Nvidia Jetson TX2 embedded platform
that uses and powers an external Logitech C920 HD Pro webcam in order to identify
animal classes in real-time [8].
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3.1 Dual-Axis Solar Tracker Using the Cast-Shadow Principle

Our old dual-axis solar tracker based on the cast-shadow principle [6] used a solar
panel with 40 PV monocrystalline cells instead of Light Diode Resistors (LDRs) which
are usually found in the literature. Twelve of these PV cells are used to control 4 low-
cost circuits, namely 1 � Optocoupler LTV 847, 1 � Arduino328 Microcontroller,
2 � L298N Dual-H Bridge circuits and 2 � stepper motors which are used for the
dual-axis positioning of the solar tracker. Our solar panel makes use of 3 PV cells from
each corner to analyze light distribution, 2 bypass diodes (D2) to protect PV cells in
case of a sudden increase or decrease in voltage that may occur due to variable light
and 2 blocking diodes (D1) to protect solar panel’s PV cells from reverse current (i.e.
voltage from the load such as the Optocoupler or Arduino UNO).

In order for the real-time DL-based system to run inference completely on solar
energy, we considered using an updated version of our earlier proposed dual-axis solar
tracker that uses the cast-shadow principle [6] in order to optimize its position for a
more efficient solar energy gain, without the need of sensors. The important changes
that we made to update our solar tracker in order to use it for the experimental results in
this paper are:

1) The effective surface area of the panel used in the above described solar tracker was
increased from L1 � l1 = 36 � 35 = 1260 cm2 to an area of L2 � l2 = 43 � 36 =
1548 cm2 to accommodate 60 polycrystalline PV cells.

Fig. 1. Summarized view of the proposed solar-powered real-time DL-based system.
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2) The method used to produce silicon polycrystalline solar cells is easier to implement
and less expensive as compared to monocrystalline counterparts, resulting in a more
cost-effective investment. Additionally, polycrystalline solar panels tend to be
somewhat less tolerant of heat than monocrystalline solar panels [29]. Due to their
higher temperature coefficient, the overall heat output will be less significant com-
pared to monocrystalline solar modules. As a consequence, our old monocrystalline
PV solar cells were replaced by PV polycrystalline cells that generate a maximum
voltage of 0.55 V and a maximum current of 0.60 A per unit, resulting in a total
voltage of 17 V and 1.5 A generated by the improved solar panel.

3.2 Deep Learning Models Used for Inference

In order to prove the efficiency of our solar-powered real-time DL-based system, we
decided to use our earlier proposed implementation regarding real-time identification of
animals found in domestic areas of Europe [8] which can also generate 2 new datasets
in real-time, one dataset containing textual information (i.e. animal class name, date
and time interval when animal was present in the frame) and one dataset containing
images of the animal classes present and identified in videos or in front of a webcam.
These newly generated datasets are very useful, as they can provide in-sights about
what animal classes are present at a given date and time in a certain area and how they
look like.

Our original DL models presented in [8] were trained and tested on a home-made
datasetwith a total size of 4.06 GBconsisting of 90.249 animal images (72.469 images for
training, 8.994 images for validation and 8.786 images for testing) belonging to 34 classes
on 4 state-of-the-art modified CNN architectures (VGG-19 [30], InceptionV3 [31],
ResNet-50 [32] andMobileNetV2 [33]) usingKeraswith Tensorflow backend, achieving
high overall test accuracy (90.56% for the proposed VGG-19 model, 93.41% for the
proposed InceptionV3model, 93.49% for the proposed ResNet-50model and 94.54% for
the proposed MobileNetV2 model).

In order to successfully implement and test our Python implementation on the
Nvidia Jetson TX2 board, we needed to make some adjustments and improvements in
our initial code from [8] as follows:

1) First, because Keras saves its weights in a hierarchical data format (.hdf5) file
which slows the loading of the model on the Nvidia Jetson TX2, we have created
an optimized (converted it to a frozen graph base model; here the value of all
variables are embedded in the graph itself thus the protocol buffers (.pb) file cannot
be retrained) frozen file of our Keras model based on Tensorflow. Keras does not
include by itself any means to export a TensorFlow graph as a .pb file, but we
could do it using regular Tensorflow utilities.

2) Second, because by default Tensorflow pre-allocates the whole GPU memory [34]
(which can cause “out of memory” errors) and because the Nvidia Jetson TX2 GPU
doesn’t have dedicated RAM and cannot use its full 8 GB processing RAM (the
reason for this is because Linux and other processes are using most of the available
RAM), we implemented a code to control the GPU memory allocation and to
define (choose a GPU memory ratio allocation from 0 to 1) the processing memory
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percentage usage of the GPU at running time. By doing this, we can now control
how much data we want to transfer to the GPU that processes it and avoid any
possible “out of memory” kind of problems which otherwise would appear on the
Nvidia Jetson TX2 due to its lack of dedicated GPU memory. We can now choose
a ratio from 0 to 1 to decide the GPU usage from low to high by passing the
arguments in the command line.

3) Third, we implemented a code for testing a certain number of batch frames in one
shot. For this, we make use of a Numpy array. Numpy array is a fast method for
data manipulation that saves a matrix of numbers in stacks (e.g. we can observe
that when we read a frame in OpenCV it becomes numbers in the Numpy array,
meaning that if we have 900 frames, Numpy array size will be 900, 224, 224).
Then, we transferred that batch of frames to our model for prediction by changing
the number of frames (e.g. we can send 30 frames one time like this: 30, 224, 224,
so we have a remaining 870, 224, 224 arrays). We have tested it on the frozen
graph. The frames are passed from 1 to 60. Fps batch testing is very useful in our
tests because it helps us find the optimal number of fps our model can efficiently
run inference on, e.g. when all 900 frames from a 31 s video are predicted in 31 s
or less than that, it means that we can run it in real-time (when the identified class
name is predicted and shown on the webcam frame without being affected by
latency).

4) Forth, because we wanted to increase the security of animals and humans in
domestic areas, we also implemented an automated SMS alert system based on
Twilio API [35]. This is very helpful, especially in the cases when a wild animal is
detected on a private property such as a house or a farming area (e.g. when,
because of hunger, a bear is coming near a flock of sheep or a fox is coming near a
chicken coop) because it generates and sends an SMS alert to the phone number of
the owner, informing him what animal class is detected in real-time trough the
webcam and thus helping him to take the necessary actions to maintain security. In
order to save the SMS costs and not send an SMS alert every time (e.g. every
second) a wild animal is detected in the webcam frame, we wrote a function that
sends the SMS only if the wild animal is present in front of the frame for at least
3 s (to make sure that there are no SMS alerts sent by mistake due to some 1 s short
animal class misdetections in the webcam frame). Additionally, in case the same
wild animal class was detected multiple times in the last 5 min, this SMS alert is
sent only one time every 5 min (e.g. if a Bear is detected continuously in the front
of the webcam for 10 min, the SMS alert will be sent to owner’s phone only two
times).

3.3 Motion Detection

Because we wanted to lower the power consumption on both platforms when running
the DL models as much as possible, instead of buying a costly motion detection sensor,
we implemented a software motion detection method based on the difference between
pixel intensity of the frames.
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For our motion detection method seen in Fig. 2, in order to speed-up the inference
processing time of a video or webcam frame, we reduced its size to 224 � 244 pixels
and used several computer vision techniques using OpenCV as follows:

1) We converted the frame color image to grayscale so that we can avoid some effects
of illumines. This also results in faster processing.

2) We applied the Gaussian Blur filter to remove any possible noise in the frame
image.

3) We computed the absolute difference (subtraction) between the current frame
(foreground) and the first frame (modeled background) in order to calculate if their
pixel values were close to zero, meaning that motion was not detected, otherwise
when pixel values are higher, motion is detected.

Fig. 2. Summarized view of the proposed motion detection.
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4) We applied a frame delta threshold (i.e. with a value of 25), resulting in a black and
white image (no other gray light color and mid-value in the image; just black and
white).

5) We applied dilation (morphological transformation) to the threshold frame in order
to join the broken parts of an object in the image.

6) After that, we applied contour detection on the image and measured the available
contour size. If the contour size is smaller then the given threshold, then the pixels
in the frame are very similar (as seen on the left side of Fig. 2) and frame image
will not be passed to the inference process. If the contour size is higher than the
threshold, then it means that the current frame is quite different from the previous
frame (as seen on the right side of Fig. 2) and the image will be passed to our
model for prediction.

There are some advantages of this vision-based motion approach over motion
sensors, e.g. regular motion sensors are having some drawback regarding range and
time and require extra acquisition costs whereas this vision-based motion approach
checks the difference between previous and present frame in software and if something
changed in the image, then it takes it as motion and sends the frame to the inference
process. Another advantage is that, even though the program will run all the time
having the GPU at running state, the GPU memory transfer will be zero because GPU
is not computing anything when there is no significant change in the present frame
compared with the previous one; in this way we protect the GPU to heat-up as well.

4 Experimental Setup and Results

We considered implementing the 4 DL model architectures both on an Acer Predator
Helios 300 PH317-51-78SZ laptop with an Intel Core i7-7700HQ, 16 GB DDR4 RAM
memory and the Nvidia GTX 1060 GPU with 6 GB GDDR5/X frame buffer, 8 Gbps
memory speed and 1708 boost clock (MHz) as well as on a Nvidia Jetson TX2 board
[4] having the following configuration on the hardware side: CPU: ARM Cortex-A57
(quad-core) @ 2 GHz + Nvidia Denver2 (dual-core) @ 2 GHz, GPU: 256-core Pascal
@ 1300 MHz, Memory: 8 GB 128-bit LPDDR4 @ 1866 MHz | 59.7 GB/s, and
Storage: 32 GB eMMC 5.1. On the software side, on the Nvidia Jetson TX2 board, we
used Nvidia JetPack SDK [36] with Linux Ubuntu18.04 LTS and Tensorflow 1.14.0
(Keras is used from within the tensorflow.keras) for both platforms. For the experi-
mental results using webcam and motion detection, in the case of the laptop, we use its
internal webcam, whereas, in the case of the Nvidia Jetson TX2 board, we used an
external Logitech C920 HD Pro webcam. It is important to mention that with the help
of the command line interface nvpmodel tool, we run all our Nvidia Jetson TX2 tests
on the Max-P Core-All mode.
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4.1 Nvidia GTX 1060 GPU and Nvidia Jetson TX2 Inference
Comparison Regarding Speed Test and Power Consumption

Following, we will show a comparison between the laptop containing the Nvidia GTX
1060 GPU and Nvidia Jetson TX2 regarding inference speed testing and also explain
why frames batch testing is important when trying to run a DL model in real-time on
both platforms. Finally, we will present a power usage comparison with and without
the proposed motion detection on both platforms and motivate our decision for why the
Nvidia Jetson TX2 is our platform of choice when designing the solar-powered real-
time DL-based system.

The inference speed testing results for the Nvidia GTX 1060 GPU and Nvidia
Jetson TX2 are presented in Table 1 where different number of frames were tested on
both platforms in order to evaluate the time it takes for each of the 4 DL models to
classify a certain number of frames in under a second, both on a video as well as using a
webcam.

Because the results were similar, we presented their average values only once. As
can be noticed in Table 1, the inference time of the Nvidia GTX 1060 GPU is always
under 1 s for all 4 DL model architectures, even with 24 fps (we also tested the GTX
1060 GPU on up to 60 fps, but it is out of scope to present these results). In com-
parison, when running the VGG-19 and MobileNetV2 DL models on the Nvidia Jetson
TX2 platform with 24 fps, we discovered that the inference time takes more than 1 s,
so we decided to run all of our Nvidia Jetson TX2 experiments presented in this paper
with 16 fps for all DL architectures.

Regarding frames batch testing, we tested the effect of batch size on computing
time by forwarding not just one frame but an n number of frame batches to our model
for prediction. The frames batch testing is very important because it helps us choose the
fps parameter that finishes the task in the shortest amount of time with the highest
number of frames (the higher the number of frames, the better the prediction) and
lowest energy consumption without worries of service interruption when deploying

Table 1. Inference Speed Testing between Nvidia GTX 1060 GPU and Nvidia Jetson TX2 on a
video as well as using a webcam for VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and
MobileNetV2 (M) model architectures.

Number of frames Nvidia GTX 1060 GPU
inference time (Seconds)

Nvidia Jetson TX2
inference time (Seconds)

V I R M V I R M

1 0.020 0.033 0.027 0.021 0.135 0.114 0.083 0.047
2 0.029 0.030 0.066 0.021 0.223 0.145 0.115 0.062
4 0.054 0.043 0.056 0.044 0.368 0.190 0.187 0.305
8 0.106 0.065 0.080 0.056 0.503 0.289 0.332 0.385
16 0.190 0.106 0.142 0.109 0.682 0.478 0.599 0.525
24 0.304 0.158 0.227 0.177 1.107 0.682 0.898 1.059
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later in a real-life scenario. Because of its 6 GB dedicated RAM, we found out that the
Nvidia GTX 1060 GPU can make use of 100% GPU memory utilization when running
the InceptionV3 and ResNet-50 model architectures but only of 80% GPU memory
utilization (a higher value than this resulted in “out of memory” errors) when running
the VGG-19 and MobileNetV2 model architectures in real-time. Nevertheless, the
laptop containing the Nvidia GTX 1060 GPU can help all DL model architectures run
the fastest prediction (when there is no latency between present frame and predicted
animal class name on the frame) at different (higher) fps and faster time values (less
seconds) as compared with the Nvidia Jetson TX2 which uses more than half of its
memory for running the Linux framework, and which is able to run the fps batch
testing at only maximum 30% of its memory utilization. The reason for this limitation
is because with other ratio values it resulted in “out of memory” related errors.

In order to show the power usage comparison between the two platforms by
maintaining a high inference accuracy (more fps = better accuracy), we decided to run
all the experimental results presented in this paper with 30 fps and GPU memory ratio
= 1 (for the InceptionV3 and ResNet-50) and 0.8 (for the VGG-19 and MobileNetV2)
on the laptop containing the Nvidia GTX 1060 GPU and with 16 fps and GPU memory
ratio = 0.3 for all 4 DL model architectures on the Nvidia Jetson TX2. Because the final
goal is to run the inference in real-time on real-life scenarios, we decided to run the
experiments regarding power usage only using the webcam and not also on a video like
in the previously described experiments.

We calculated the power consumption for the Nvidia GTX 1060 GPU on our Linux
laptop by running the command “sudo powerstat” and for the Nvidia Jetson TX2 board
by using a convenient power measurement script [37] and also by using the command
e.g. “sudo./tegrastats”. We run the experimental results for 5 h (30 samples/values
taken every 10 min) for each of the 4 DL models, both with and without motion
detection for both platforms and presented the results in Table 2 and Table 3.

Table 2. Power usage comparison on the laptop (GTX 1060 GPU) running the proposed real-
time animal class identification implementation during a 5 h test using the webcam without and
with motion detection method for VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and
MobileNetV2 (M) model architectures. The y-axis represents the Watts value and the x-axis
represents the total number of sample values taken every 10 min.

GTX 1060
GPU Idle
(Watts)

GTX 1060 GPU without motion
detection (Watts)

GTX 1060 GPU with motion
detection (Watts)

V, I, R, M V I R M V I R M

15.13 53.04 50.92 53.96 49.77 49.85 50.03 53.9 50.07
15.08 52.78 50.25 54.31 50.83 49.1 52.16 54.35 50.51
15.07 53.79 51.91 54.42 54.15 49.5 52.91 52.1 47.16
14.98 52.68 50.18 53.67 52.61 51.49 53.4 53.24 49.11
14.98 53.07 50.56 54.16 51.43 50.73 53.62 50.04 49.6
14.98 51.95 51.93 55.36 49.48 49.56 52.32 49.44 49.12
14.98 52.64 52.95 54.32 48.19 50.51 54.65 49.6 49.15

(continued)
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Without using the proposed motion detection method, the maximum power con-
sumption of the laptop (Nvidia GTX 1060 GPU) was 24.79 W when in idle state,
53.79 W when running the VGG-19 model, 55.88 W when running the InceptionV3
model, 55.36 W when running the ResNet-50 model and 54.15 W when running the
MobileNetV2 model. With the proposed motion detection method, the power con-
sumption is lower for both platforms, justifying our decision to implement it. More
exactly, the maximum power consumption of the laptop (Nvidia GTX 1060 GPU)
when using the proposed motion detection method was 52.58 W when running the
VGG-19 model, 55.06 W when running the InceptionV3 model, 54.35 W when run-
ning the ResNet-50 model and 50.51 W when running the MobileNetV2 model.

Table 2. (continued)

GTX 1060
GPU Idle
(Watts)

GTX 1060 GPU without motion
detection (Watts)

GTX 1060 GPU with motion
detection (Watts)

V, I, R, M V I R M V I R M

14.91 52.3 54.74 53.54 49.57 49.8 55.06 48.89 48.51
14.9 52.76 54.67 53.51 50.21 52.28 54.47 48.18 47.9
14.79 51.98 54.24 53.62 50.52 50.38 53.38 48.58 47.03
14.89 51.89 52.43 53.63 50.03 50.07 53.39 48.41 48.15
15.43 51.76 54.67 53.91 48.75 46.16 52.49 48.14 46.01
15.16 51.53 54.99 53.99 49.34 47.56 51.8 48.56 47.54
15.09 51.98 55.17 53.37 50.31 48.39 52.59 48.12 48.23
14.91 51.91 54.67 53.28 49.53 48.84 51.59 48.61 47.35
14.77 52.04 54.48 54.26 47.62 49.52 54.31 48.2 48.19
14.8 51.87 55.17 53.84 46.91 45.83 54.95 48.26 46.24
14.83 52.09 54.6 52.6 46.77 47.53 54.5 47.32 46.97
15.07 52.02 54.95 52.28 46.46 48.33 54.31 47.01 45.28
21.87 52.18 54.9 53.22 45.72 48.91 53.98 46.92 45.89
18.49 52.19 54.31 51.23 45.23 49.51 54.38 45.07 45.02
22.44 52.31 55.59 53.26 47.62 46.95 53.84 44.75 44.47
23.74 51.97 54.45 53.99 49.43 48.24 52.23 43.26 43.19
24.79 52.5 55.81 53.35 50.23 48.97 53.46 43.47 43.25
21.46 52.36 54.72 53.51 50.32 49.43 53.03 48.91 45.87
21.83 52.48 54.24 52.01 48.26 49.43 52.72 49.14 46.83
17.77 52.4 55.88 52.12 49.52 46.91 53.91 48.64 45.34
15.15 52.21 55.72 51.69 49.77 48.62 54.3 53.9 44.53
14.22 52.22 54.96 51.42 50.83 49.2 53.57 54.35 45.23
14.01 52.05 55.85 51.44 54.15 49.52 53.51 52.1 46.91
Avg.
16.67

Avg.
52.29

Avg.
53.99

Avg.
53.30

Avg.
49.21

Avg.
49.03

Avg.
53.36

Avg.
48.55

Avg.
46.95

Max.
24.79

Max.
53.79

Max.
55.88

Max.
55.36

Max.
54.15

Max.
52.28

Max.
55.06

Max.
54.35

Max.
50.51
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The maximum power consumption of the Nvidia Jetson TX2 without using the
proposed motion detection method was 4.11 W when in idle state, 14.77 W when run-
ning the VGG-19 model, 12.87 Wwhen running the InceptionV3 model, 11.74 Wwhen
running the ResNet-50 model and 10.47 W when running the MobileNetV2 model.

Table 3. Power usage comparison on the Nvidia Jetson TX2 board running the proposed real-
time animal class identification implementation during a 5 h test using the webcam without and
with motion detection method for VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and
MobileNetV2 (M) model architectures. The y-axis represents the Watts value and the x-axis
represents the total number of sample values taken every 10 min.

Nvidia
Jetson
TX2 Idle
(Watts)

Nvidia Jetson TX2 without motion
detection (Watts)

Nvidia Jetson TX2 with motion
detection (Watts)

V, I, R, M V I R M V I R M

2.51 9.99 8.7 9.62 9.61 9.91 8.86 8.9 8.85
2.5 10.87 8.6 9.92 9.33 10.82 9.31 8.93 9.01
2.5 10.14 9.47 10.68 9.61 8.16 10 9.19 9.01
2.49 9.92 8.69 10.49 9.06 7.4 9.2 9.27 9.07
2.48 12.48 9.29 10.36 8.63 12.69 9.71 9.34 6.94
2.47 13.03 10.05 10.07 9.66 12.57 10.35 9.37 8.96
2.48 12.41 10.04 9.9 9.94 12.46 10.07 9.69 9.19
2.47 11.8 11.69 10.88 10.29 12.01 11.53 10.66 9.11
2.47 12.82 11.21 10.52 9.78 12.88 10.7 10.34 9.23
2.45 13.75 10.84 10.99 9.47 13.22 9.82 10.62 9.05
2.47 13.01 11.19 10.98 9.89 13.11 11.11 10.6 9.15
2.56 14.77 12.75 11.28 10.29 12.84 12.03 11.43 9.3
2.52 12.94 12.63 11.51 9.81 12.91 11.65 11.39 8.92
2.5 10.74 11.82 11.74 9.3 9.34 10.3 11.38 9.26
2.47 10.83 12.55 11.56 9.86 10.45 11.66 11.34 9.15
2.45 11.4 11.69 11.1 9.52 12.99 10.88 11.12 9.19
2.46 13.3 12.53 10.94 9.34 12.76 12.16 11.26 9.15
2.46 12.47 12.04 10.91 9.86 11.24 11.27 11.18 9.19
2.5 12.56 11.93 10.84 9.68 12.99 10.81 11.24 9.49
3.63 12.96 12.27 10.66 9.97 12.8 11.27 11.28 9.01
3.07 13.17 12.31 10.55 10.18 12.08 11.2 11.37 9.19
3.72 12.34 12.82 11.11 9.94 10.14 11.56 11.15 9.15
3.94 12.46 12.87 11.54 9.89 12.72 11.3 11.27 9.27
4.11 13.2 12.8 11.72 9.64 12.95 11.86 11.01 9.07
3.56 12.35 11.63 11.73 10.01 12.65 10.78 10.89 9.49
3.62 12.37 11.71 11.26 9.98 12.57 10.62 11.43 9.07
2.95 13.75 12.02 11.55 10.47 12.65 10.99 11.07 9.19
2.51 12.95 12.18 9.62 9.21 12.69 11.1 8.9 9.23

(continued)
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The maximum power consumption of the Nvidia Jetson TX2 when using the
proposed motion detection method was 13.22 W when running the VGG-19 model,
12.16 W when running the InceptionV3 model, 11.43 W when running the ResNet-50
model and 9.49 W when running the MobileNetV2 model. It is important to mention
that in the case of the laptop we used the existent internal webcam, whereas for the
Nvidia Jetson TX2 we used the Logitech C920 HD Pro webcam having an input
voltage range from +9 V to +15 V DC and which was powered directly from the
embedded board itself. Also, it can be observed that for both platforms, the motion
detection method reduces the energy consumption by around 5%.

Considering the experimental results from Table 2 and Table 3, which show that
the laptop containing the Nvidia GTX 1060 GPU consumes around 5 times more
energy than the Nvidia Jetson TX2 and because we wanted to minimize the investment
in the improvement of our solar tracker (which otherwise, in the case of laptop would
have required a 5� increase in the number of solar cells and solar panel size, as well as
updating the entire circuitry), we decided to make the Nvidia Jetson TX2 as the
platform of choice for our solar-powered real-time DL-based system.

One of the main reasons for implementing an efficient solar-powered real-time DL-
based system is the consideration of recent efforts regarding climate change [1, 3, 38]
as well to bring awareness to future researchers about the possibility and necessity to
use alternative sources of renewable and green energy such as that from the sun when
designing real-time DL-based systems.

4.2 Self-sufficient Solar-Powered Real-Time Deep Learning-Based
System

As seen previously in Table 2 and Table 3, the maximum power consumed by the
Nvidia Jetson TX2 was that of 14.77 W without using motion detection and 13.22 W
when using motion detection for the VGG-19 model architecture during a 5 h test. The
architecture that had the lowest power consumption during the 5-h test was the
MobileNetV2 model architecture, with 9.69 W when not using motion detection and
9.03 W when using motion detection.

Table 3. (continued)

Nvidia
Jetson
TX2 Idle
(Watts)

Nvidia Jetson TX2 without motion
detection (Watts)

Nvidia Jetson TX2 with motion
detection (Watts)

V, I, R, M V I R M V I R M

2.36 13.68 12.46 9.92 9.45 13.07 11.68 8.93 9.19
2.33 12.87 11.92 10.68 9.08 12.84 10.52 9.19 7.89
Avg. 2.76 Avg.

12.37
Avg.
11.42

Avg.
10.90

Avg.
9.69

Avg.
11.93

Avg.
10.81

Avg.
10.61

Avg.
9.03

Max. 4.11 Max.
14.77

Max.
12.87

Max.
11.74

Max.
10.47

Max.
13.22

Max.
12.16

Max.
11.43

Max.
9.49
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In order to make our Nvidia Jetson TX2 board also autonomous from the energy
needs point of view when running inference using the 4 DL model architectures [8] in
real-time, instead of using a traditional power plug, we decided to connect it to our
previous proposed solar tracking device that uses the cast-shadow principle [6] which
we updated and described in Sect. 3.1 of this paper. A diagram block of the summa-
rized solar-powered real-time DL-based system can be seen in Fig. 3. Our improved
solar panel comes equipped with 60 polycrystalline cells that are able to provide a
maximum output voltage of around 17 V as can be seen in Table 4. The increase from
40 to 60 in the number of PV solar cells is justified by the fact that it reduces the risk of
voltage drops below 12 V in order to keep the battery charged continuously even under
extreme weather conditions (e.g. cloudy days).

Fig. 3. Connection diagram of the proposed autonomous solar-powered real-time DL-based
system.

Table 4. Experimental results regarding the energy generated by our solar tracker, the energy
stored by the accumulator and the energy requirements of the Nvidia Jetson TX2 when running
the VGG-19 (V), InceptionV3 (I), ResNet-50 (R) and MobileNetV2 (M) model architectures in
real-time using the external webcam with motion detection during a 5 h test time.

Energy generation of our solar tracker Energy storage of our solar
tracker

Test time (Hour) V I R M V I R M

Voltage gain [V] Voltage [V]

9:00 17.3 16.98 16.67 16.35 12.8 12.74 12.7 12.66
10:00 16.03 16.3 16.59 17.06 12.6 12.66 12.71 12.75
11:00 17.14 17.06 16.99 16.91 12.8 12.8 12.79 12.78

12:00 16.83 16.64 16.46 16.29 12.78 12.76 12.75 12.74
13:00 16.1 16.08 16.07 16.05 12.73 12.76 12.8 12.87

Avg. value 16.68 16.61 16.55 16.53 12.74 12.74 12.75 12.76

(continued)
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Table 4. (continued)

Current gain [A] Charging current [A]
9:00 1.34 1.36 1.37 1.39 0.84 0.87 0.89 0.92
10:00 1.4 1.22 1.04 0.86 0.94 0.86 0.78 0.65

11:00 0.67 0.67 0.66 0.66 0.9 0.87 0.84 0.82
12:00 0.66 0.64 0.64 0.75 0.92 0.85 0.8 0.79

13:00 0.66 0.65 0.65 0.69 0.88 0.83 0.81 0.8
Avg. value 0.94 0.90 0.87 0.87 0.89 0.85 0.82 0.79

Power gain [W] Power [W]

9:00 23.18 23.09 22.83 22.72 10.75 11.08 11.30 11.64
10:00 22.44 19.88 17.25 14.67 11.84 10.88 9.91 8.28

11:00 11.48 11.43 11.21 11.16 11.52 11.13 10.74 10.47
12:00 11.10 10.64 10.53 12.21 11.75 10.84 10.2 10.06
13:00 10.62 10.45 10.44 11.07 11.20 10.59 10.36 10.29

Avg. value 15.76 15.09 14.45 14.36 11.41 10.90 10.50 10.14

Voltage readings for DC-to-DC Inverter (12 V to 19 V)

Voltage output [V]

9:00 19.20 19.15 19.16 19.18
10:00 19.17 19.14 19.12 19.10

11:00 19.09 19.10 19.11 19.05
12:00 19.02 19.04 19.05 19.06

13:00 19.03 19.02 19.07 19.00
Avg. value 19.10 19.09 19.10 19.07

Energy requirement of the Nvidia Jetson TX2 with external webcam
and using motion detection

Voltage draw [V]

9:00 19.1 19.1 19.1 19.09
10:00 19.08 19.08 19.08 19.07

11:00 19.07 19.07 19.07 19.06
12:00 19.07 19.08 19.07 19.08
13:00 19.07 19.07 19.06 19.05

Avg. value 19.07 19.07 19.07 19.07

Current draw [A]

9:00 0.58 0.55 0.51 0.46
10:00 0.52 0.51 0.49 0.46
11:00 0.56 0.62 0.52 0.47

12:00 0.42 0.56 0.53 0.47
13:00 0.66 0.54 0.52 0.47

Avg. value 0.54 0.55 0.51 0.46

Power consumption [W]

9:00 11.07 10.50 9.74 8.78

10:00 9.92 9.73 9.34 8.77
11:00 10.67 11.82 9.91 8.95

12:00 8 10.68 10.1 8.96
13:00 12.58 10.29 9.91 8.95
Avg. value 10.44 10.60 9.8 8.88
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The solar charge controller is a robust all-in-one control system that provides three
input-output ports: one dedicated to solar modules, one dedicated to feeding the battery
from the PV panel with collected voltage, and one output module for connecting a
current load. Since our main objective is to store solar energy in the accumulator, we
only use two of the available ports.

A few notable features of the solar charge controller are microcontroller unit
control, built-in timer, settable voltage and full protection from overvoltage and
overcurrent. The Ultra Cell accumulator is a 12 V, 9 Ah acid-plumb battery that is
generally used nowadays in UPS systems to provide energy for desktop systems in case
of local power outages. Due to its chemical composition and charging current of around
1 A, the charging and discharging time can be analyzed both theoretically as well as in
real-time scenarios. The main formula that is generally used in charging time calculus
is given by the following equation:

T ¼ Ah=A ð1Þ

where T represents the charging time, Ah depicts the Ampere hour rating of the battery
and A denotes the charging current in Amperes. In our experimental results, first, we
calculated the charging current for the 9 Ah battery in theory as well as in practice:

1) As we know, in theory, the charging current should be 10% of the battery’s Ah
rating. Therefore, charging current for a 9 Ah Battery = 9 Ah � (10/100) = 0.9 A.
However, due to some possible current losses that can appear on the battery,
instead of exactly 0.9 A, we consider only a value between 0.9 and 1.1 A for the
charging purpose. Supposing we take 1 A for charging purposes, so charging
current for 9 Ah Battery = 9/1 = 9 h (Hrs), a situation that usually occurs only in
theory.

2) As we know, in practice, it has been noted that 40% of losses occur in the case of
battery charging. Consequently, the formula will be: 9 � (40/100) = 3.6 resulting
in 9 Ah � 40% of losses. Therefore, 9 + 3.6 = 12.6 Ah resulting in 9 Ah + Losses.
According to formula (1), we will now substitute the new values and obtain:

12:6=1 ¼ 12:6 h ð2Þ

Therefore, because the accumulator requires 1 A charging current, its 9 Ah
capacity takes almost 13 h to fully charge with solar energy from the solar tracker.
However, because our solar-powered real-time DL-based system does not drain any
solar energy during the night time, this does not influence our experimental outcomes.
Consequently, the total discharging time of the accumulator can be determined by
applying the following formula:

9Ah=0:6 ¼ 15 h ð3Þ
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Since our accumulator is limited to a 12 V storage capacity, as can be seen in
Fig. 3, we used two voltage inverters. The first DC-to-DC inverter was interconnected
in parallel so that the battery’s output voltage would be increased to around 19 V as can
be seen in Table 4, in order to satisfy the Nvidia Jetson TX2 board’s (consumer) supply
voltage requirements in a real-life scenario. The second DC-to-DC inverter was con-
nected between the energy storage element and the back of our solar panel in order to
power the automation equipment (1 � Arduino UNO, 1 � Optocoupler, 2 � L298N,
2 � stepper motors) directly from the accumulator. Due to the implemented
mechanical blocking elements, when in idle state, our solar tracking device consumes
less energy (0.32 W) with the Arduino UNO and L298N integrated circuits and reaches
2 W power consumption [6] when it updates its position to optimize sun ray exposure
(a process which usually takes up to 5 s).

This 2 W power consumption can be successfully covered by the accumulator’s
solar energy provision, proving that our entire solar-powered real-time DL-based
system can run 100% using renewable and green energy from the sun. Finally, we
linked the output of the first DC-to-DC inverter to the input of the Nvidia Jetson TX2
board with the help of a dedicated DC adapter, as seen in Fig. 3 as well.

The experimental cases were carried out with our previously described setup over a
5 h time span for each of our previously trained architectures (VGG-19, InceptionV3,
ResNet-50, and MobileNetV2) [8] during 4 days test time. Our results show that the
output voltage and current values of our solar panel are always maintained at an
optimum level despite changing weather conditions (e.g. partial clouds in the
afternoon).

Also, regarding the energy requirement of the Nvidia Jetson TX2 with the external
webcam using the implemented motion detection method during a 5 h test, we present
the results in Table 4. These results prove that a real-time DL-based system can easily
take advantage of renewable and green energy sources such as solar energy from a
solar tracking device in order to become self-sustaining from the energy needs point of
view. More exactly, we can observe that the improved solar tracker generates in
average around 15 Wh, the accumulator stores around 11 Wh and the Nvidia Jetson
TX2 board consumes not more than around 10 Wh when running all 4 DL models with
the motion detection method in real-time.

The experimental cases were considered relevant for our work due to the fact that
the DL-based system can run autonomously using free energy from the portable solar
tracker, thus eliminating the need of connecting it to an AC network. In order to check
the working conditions and take full control of the Nvidia Jetson TX2 board when
connected to our solar tracker, we made use of a 7 inch portable monitor that was
connected with the help of a HDMI as well as a micro-to-USB cable to the Nvidia
Jetson TX2 board, as can be seen on the right side of Fig. 1.

5 Conclusions and Future Work

This paper presents, to the best of our knowledge, the first solar-powered real-time DL-
based system in the literature that is self-sustaining from the energy point of view, can
run inference using 100% solar energy and which is composed of a dual-axis solar
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tracking device based on cast-shadow principle [6] and a low-power embedded plat-
form called Nvidia Jetson TX2. In order to justify the choice of this platform, exper-
imental results, especially regarding the energy consumption while running 4 DL
model architectures (VGG-19, InceptionV3, ResNet-50 and MobileNetV2) in real-time
[8] are made also on a laptop containing the Nvidia GTX 1060 (6 GB) GPU. Addi-
tionally, in order to reduce the power consumption of the entire solar-powered real-time
DL-based system, we also implemented a motion detection method that triggers the
inference process only when there is movement in the frame. Details about the con-
struction of the entire solar-powered real-time DL-based system as well as calculations
regarding the time needed for the accumulator to be charged with solar energy as well
as discharged by the Nvidia Jetson TX2 when running the 4 DL models are also taken
into consideration. Experimental results show that the Nvidia Jetson TX2 platform is a
very good choice when designing an efficient solar-powered real-time DL-based sys-
tem, consuming only around 10 Wh of power as compared to around 50 Wh consumed
by a laptop.

As future work, we plan to run similar experiments also on other low-power plat-
forms such as the Nvidia Jetson Nano Developer Kit, Google Coral, Raspberry Pi 4
Model B (4 GB) and also on FPGAs, in order to show that real-time DL-based systems
can run inference 100% on solar energy using even less energy than we demonstrated,
to the best of our knowledge, for the first time in literature, in this paper. Additionally
to inference, we also want to train a few other state-of-the-art DL model architectures
using 100% solar energy from our solar tracker on the above-mentioned platforms,
with the intent to encourage new researchers to investigate the combination of green
energy and AI, eventually proposing new green energy-based DL metrics. We believe
that a “green” approach can lead researchers to a better understanding of how to
evaluate the performance of DL-based systems and will also result in a more friendly
and respectful attitude towards nature and life on this planet.
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Abstract. Radar sensors, unlike lidars or cameras, can measure objects’
instantaneous velocity and composition. However, the ability to process
and retrieve spatial information from radar point clouds has not yet been
fully established. In this work, we propose a key technique for improv-
ing the performance of standard machine learning point-wise processing
methods on radar point clouds. We show that a network can learn to
extract object-related signatures for every point using automotive radar
measurements. In addition, we propose RadarPCNN, a novel architec-
ture for performing semantic segmentation, specifically designed for radar
point clouds. RadarPCNN uses PointNet++, aided with mean shift as
feature extractor module and an attention mechanism to fuse information
from different neighborhood levels. We show that our model outperforms
state-of-the-art solutions on our dataset.

Keywords: Radar point clouds · Neural network · Segmentation

1 Introduction

During the last years, vehicles have been equipped with sensors such as camera,
radar and lidar to achieve autonomous driving capabilities [3]. While cameras
produce data in the form of images – that are efficiently consumed by Convolu-
tional Neural Networks (CNNs) [17,18] –, radars and lidars data are often pro-
cessed as point clouds (PCs): 3D points representing reflections of the surround-
ing objects. However, CNNs do not scale well to such unstructured data-format
[21], therefore new Machine Learning (ML) techniques have been devised.

The most simple method consists of structuring the data – by voxel/pixel
encoding of the input PC –, thus enabling the application of 3D CNNs [4,22].
Similarly, multi-view representation techniques take several snapshots of the
input and process each image with a different CNN: the features computed for
every view are then fused to perform 3D shape recognition or semantic segmen-
tation [7,20]. Despite such approaches have achieved dominating performance
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on a variety of tasks, they either significantly increase the input size, thus rais-
ing the computational demands, or exhibit loss of input information. In order
to overcome these limitations, other approaches use order-invariant networks to
consume raw PCs. Although this constraint hardens the task of extracting infor-
mation of spatial correlation between points, several researchers have succeeded
in the design of architectures capable to achieve state-of-the-art performance
[11,14,15]. These approaches possess the advantage of maintaining low compu-
tational/memory demands while retaining all the input information.

Over the last decades, radar has been extensively used in the automotive
industry [1,5], yet object recognition/classification in urban scenes remains an
open challenge. Unfortunately, though extremely low-cost, automotive radars
are different than other sensors. For instance, radar PCs are the result of a
thresholding process and come with much lower density than lidar PCs. Hence
any grid-based approach would result in either sparse cells and/or resolution
degradation [8]. On the other hand, radars can capture intrinsic object-related
properties. Therefore, we think that the ability of point-wise processing methods
to exploit all the information present in the input plays a major role when
consuming radar PCs.

We believe that addressing/exploiting intrinsic characteristics of this specific
sensor is of paramount importance to efficiently process radar data. In this work,
we propose to build informative point signatures by leveraging radar object fea-
tures. We use a shared fully connected (FC) network to design a pre-processing
module that can compute new per-point features, facilitating the final segmen-
tation task. The output of this module can then be used as an input to any
existent point-wise approach. We show that the proposed pre-processing mod-
ule improves the semantic segmentation performance of PointNet++ [16] on our
radar dataset. In addition, we develop RadarPCNN, a novel architecture for
performing semantic segmentation on raw PCs, specifically designed for radar.
We use the pre-processing module proposed in this work and the mean shift
clustering algorithm [9] to improve usage of spatial relationship in such sparse
data. We also use an attention mechanism to let the network learn the features
of major interest. Our scheme uses PointNet++ [14] as a feature extractor mod-
ule to directly consume point clouds. Finally, we show that RadarPCNN is able
to achieve state-of-the-art semantic segmentation performance on radar data,
outperforming PointNet++.

2 Related Works

Recently, point clouds have played a paramount role in a broad variety of appli-
cations by enabling detailed understanding of complex 3D structures/objects.
Formally, a point cloud is defined as an unordered collection of N ∈ N indi-
vidual points xi ∈ R

m, i = 1, . . . , N whose elements are the 2D/3D spatial
coordinates. In addition, each point could possess supplementary features like
color (RGBD sensor) or reflection intensity (lidar). The semantic segmentation
task on such inputs consists in the estimation of a function f : RN×m → R

N×d
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such that every point gets a score of the probability to belong to every one of d
semantic classes. In this work we focus on point-wise processing – rather than
grid-based – methods, because of their ability to exploit all the information in
the input.

2.1 Deep Learning on Point Clouds

Despite DL has proven to be an effective tool for extracting information from
low level data, the unordered nature of PCs precludes the direct application of
standard techniques like CNNs, Recurrent Neural Networks (RNNs) or FC nets.

PointNet [15] represents a milestone for point-wise processing approaches.
The authors focused on the development of a network which is invariant to
point-order. They achieved this by the joint deployment of two elements: shared
FC networks – to compute point-related features – and max-pooling – for global
features aggregation. Furthermore, they devised T-Net – a transformation net-
work resembling PointNet – to achieve invariance under different viewpoints. In
spite of the network’s good performance on a broad variety of tasks, it fails to
capture the local structure induced by the input space geometry.

The authors of PointNet observed that a key factor for the success of CNNs
has been their ability to hierarchically abstract local low-level structures into
high-level descriptive patterns. Based on this observation, Qi et al. devised
PointNet++ [14], a hierarchical architecture capable of extracting geometric
information from overlapping sub-regions of the input. The network follows an
encoder-decoder structure: set-abstraction (SA) layers abstract groups of points
into local region descriptors, while feature-propagation (FP) layers serve to prop-
agate high-level features back into low-level points. Skip connections are used to
enrich single-point signatures and PointNet is selected as the local feature extrac-
tor module in SA layers. PointNet++ is currently considered the benchmark for
point-wise processing architectures.

Further, Li et al. noticed that, provided some ordering, classical convolution
could be directly applied to point clouds. Therefore, they proposed to weight and
permute the input by means of a learned X matrix to achieve order equivariance.
The resulting X -Conv layer performs a X -transformation on local neighborhood
of points and then applies standard convolution. Finally, the authors developed
PointCNN [11], a hierarchical encoder-decoder network using X -Conv as feature
extractor module. The work shows that the architecture achieves state-of-the-
art results on a broad variety of tasks, thus proving the effectiveness of the
X -transformation.

2.2 Deep Learning on Radar Point Clouds

Radar has the advantage of being more reliable under various weather condi-
tions, e.g. rain/fog. This aspect, along with the ability to measure instantaneous
velocity, makes them particularly well-suited for automotive applications.

The lack of pubic radar datasets hardens the development of new ML tech-
niques, therefore, during the last years, researchers resorted to conventional
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methods (described in the previous section) to process private radar data.
Schumann et al. addressed the classification problem of radar reflections between
6 classes: car, pedestrian, pedestrian group, bike, truck and static targets [16].
They equipped two vehicles with several sensors and collected training and test
data. Then, they trained a PointNet++ [14] to perform semantic segmentation.
The authors proved that point-wise techniques designed to process dense PCs
can effectively process radar data. In addition, they showed how the network
can benefit from the introduction of radar-specific features (such as Doppler
and RCS) as supplementary dimensions. Feng et al. wanted to classify radar
reflections as vehicle or guardrail [8]. They resorted again to the PointNet++
architecture, with few minor tweaks: hand-crafted statistics of the area around
the representative points (such as density, points number and covariance) were
collected and appended to the neighborhood tensors. The authors showed how
these features contribute to enhance the network performance.

A different approach consists of clustering together points and then deploy
a ML technique to classify the whole cluster. In this direction, Wöhler et al.
used DBSCAN [6] to group together reflections belonging to the same object
[19]. Lately, they calculated clusters statistics from radar measurements – i.e.
x, y, Doppler and RCS – and performed multi-class classification using a long-
short term memory (LSTM) network [10]. The authors proved that the LSTM
classifier outperforms the random forest algorithm [2]. Moreover, they ranked
the cluster features according to their importance for the classification task and
showed that spatial and Doppler-related features dominate the ranking.

3 Our Method

Unlike lidar, radar reflections contain valuable information about the object
generating them. Classical radar processing methods generally exploit this prop-
erty in a two-stage process: first, reflections from the same object are clustered
together, then, they manually extract statistics from radar measurements to
build cluster signatures [13]. Unfortunately, these approaches strongly rely on
clustering algorithms to group measurements of the same instance. However,
each single reflection contains object-related information.

Considering a ML framework, we believe that a network can learn to encode
radar features into point-signatures useful for further point-wise processing. In this
way we overcome the limitations of clustering algorithms. Herein, we propose to
use a data-learned pre-processingmodule for generating newPC features, uniquely
based on single-reflection measurements. Specifically, we deploy a shared FC net-
work to produce a deeper version of the input: for each point, our module derives
new features by combining together x, y, Doppler and RCS. Therefore, the new
input will have the same spatial point locations, but features abstracting the radar
perception of the object. In this way, we assume that the network would learn
to cast the input into a representation that facilitates the classification task, by
providing better separations between reflections from objects with different radar
properties. Finally, due to the simplicity of the process, we think that our approach
can be easily extended to any other architecture consuming raw PCs.
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Fig. 1. RadarPCNN architecture. Our pre-processing module computes (32) new fea-
tures for each reflection. Two single-layer PointNet++ extract per-point neighborhood-
dependent features. FPS is substituted by mean shift to select the representative points
(red stars). Per-point features are finally fused using an attention mechanism and pro-
cessed with two shared fully-connected layers to produce the class scores.

PointNet++ [14] is a benchmarking architecture in the point-wise processing
field. It is notoriously good at fusing information of point proximity to build
useful object-part signatures. However, radar is extremely poor at providing
this information. Therefore, despite this architecture has proven to perform well
on radar PCs [8,16], we think that it does not represent the optimal solution for
consuming such particular data. We believe that tailoring the network to operate
at object level and improving the usage of spatial relationship would result in
a more efficient processing. To this end, we develop RadarPCNN, a point-wise
processing technique for performing semantic segmentation on radar PCs.

Figure 1 shows the architecture. Our network uses the proposed pre-
processing module to build a deeper input for the remaining part. Here, mean-
ingful classification features must be computed for every point. We decide to
use PointNet++ as feature extractor module because of its ability to abstract
information from local neighborhoods. However, we alter the architecture by
replacing the farthest point sampling (FPS) method with mean shift (MS), to
enhance usage of the scarce spatial proximity information. Specifically, we sum
up Gaussian kernels (with given bandwidth) centered at each point location and
use local maxima of the resulting distribution as representative points in the
SA layer. Notice how we do not rely on mean shift at the grouping stage, but
only to sample more meaningful representative points. In this way, MS helps the
network to optimize the sampling process, obeying to the high-level input shape.
Furthermore, we decide to discard the hierarchical PointNet++ structure in favor
of several independent object-focused ones. More precisely, in this work we use
two single-layer PointNet++. One seeking for small objects such as pedestrians,
using dense representative points (MS with bandwidth 2.0) and neighborhood
areas below 2 m. The other focuses on larger targets like cars/trucks, using rep-
resentative points with bandwidth 8.0 and neighborhood areas from 4 to 8 m.

The two mini-PointNet++ output the input point locations, with different
neighborhoods-dependent features. Since every point has two feature vectors,
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Fig. 2. Attention mechanism. For each point, the features produced by the top and
bottom branches (see Fig. 1) are used as input of a FC regression network. The output
of the network is used to perform a weighted combination of the input features.

similarly to [20], we let the network decide the best way to combine them. In
particular, we design the attention mechanism showed in Fig. 2. Given a point
location, the features computed from top (green point) and bottom (red point)
PointNet++ are used as input to a shared FC network which regresses two
scalars (w1 and w2). These scalars are then used to perform a weighted com-
bination of the two vectors and build the classification features (orange point).
In this way the network would learn to weight the features vectors based on
its importance to the final task. Finally, the classification features are processed
with a shared FC network to produce the output semantic segmentation score.

As every layer entails a differentiable operation, the whole network can be
trained in an end-to-end fashion, using the output segmentation loss.

4 Experiments

In this section, we provide the results achieved on a 2-semantic-classes segmen-
tation task: moving pedestrian and moving vehicle. We report precision, recall
and F1 score on the two positive classes along with the macro-average version
of them (where each class contributes equally). We also show confusion matrices
of the three total classes (pedestrian, vehicle, other).

4.1 Dataset

We conduct experiments on our dataset, composed of real-world radar reflections
in urban scenes under different weather conditions. The data were collected by a
fleet of vehicles equipped with six 77 GHz radars (sides, front and back corners),
recording targets up to ±90 m, with a field-of-view of ±75◦. In total, our dataset
counts 84 video sequences and more than 40 million points annotated accordingly
to two classes: pedestrian and vehicle. Any other point is labeled as other/clutter.
In this work, we focus on moving objects because automotive radars provide low
information about stationary ones: indeed, they share the same Doppler of other
still instances (e.g. buildings), therefore only RCS can be used for classification
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purposes. A crucial decision in our evaluation is the definition of a moving object.
We consider a pedestrian/vehicle to be moving if its ground-truth velocity is
above 0.5/2.5 m/s. It is worth noting that high threshold values would make the
problem trivial, while low ones might confuse the network. However, we find out
that these parameters mostly impact the numerical results: the network would
still be able to classify points slightly below the thresholds as moving. Therefore,
we force reflections below these values to be transparent during training and
evaluation. Yet, points from parked vehicles (which do not move at all) are
present in the other/clutter class. Table 1 contains the points distribution in
the dataset configuration described. We create the train/test sets to contain the
same distribution of rainy/cloudy/clear scenes.

4.2 Settings

Each video sequence in our dataset is divided into frames containing a few hun-
dreds of points. Similarly to [16], we aggregate reflections from adjacent frames
(200 ms) and compensate the point locations to the ego-vehicle position at the
last frame. Moreover, we fix the input size to 1200 points and use the ego-
compensated Doppler feature to sample with importance. In more detail, if the
input has more than 1200 points, we give higher sampling probability to reflec-
tions with large absolute Doppler value. If it has less than 1200 points, we dupli-
cate reflections in the same fashion. Bearing in mind that Doppler is only a
radial velocity measure, in this way we decrease the probability of discarding
moving objects reflections or duplicating static ones, thus increasing the posi-
tive class populations. Furthermore, since our radar sensors have a low elevation
resolution, we decide to discard this information and use the Doppler value as
z-coordinate. RCS is used as points feature. Regarding the representative points,
we set a fixed number of 500/150 positions for the top/bottom branch of Fig. 1.
Therefore, if MS outputs more than the necessary number of points, we perform
FPS among them. If less, we fill the gaps by FPS from the input locations.

During training, we use focal loss [12] to deal with the extreme class imbal-
ance. Moreover, we decide to address two binary tasks (pedestrian vs non-
pedestrian, vehicle vs non-vehicle) and exclude the negative class to avoid biasing
the network too much. Sigmoid is used as the output activation function. The
final prediction would be the class achieving the highest score. If none of the
positive classes scores exceed the threshold of 0.5 the negative class is predicted.
Finally, we split the train-set into sub-sets and perform five-fold cross validation
to tune the hyper-parameters. The pedestrian/vehicle loss weighting factor (α in
[12]) is set to 0.9/0.85 for all the networks to enable fair comparison. For evalu-
ation, we train the models for 20 epochs on the whole train-set. Then, we select
the best performing configuration and test it 10 times to average random effects.
Mean values are reported, while standard deviations (<0.1%) are omitted.
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Table 1. Data distribution. Percentages and total number of points are reported.

Set Moving pedestrian Moving vehicle Other & clutter

Train 2.26% (721 865) 6.12% (1 955 937) 91.62% (29 282 877)

Test 1.40% (142 647) 5.63% (574 321) 92.98% (9 493 667)

4.3 Results

One could think that detecting moving objects with radar is a trivial task.
To prove that it is not the case, we train a random forest model [2] to per-
form semantic segmentation on our dataset. Random forests use an ensemble
of decision-trees to infer the classification output. Decision-trees, in turn, make
predictions by comparing the input’s features with a set of learned thresholds.
Table 2 shows that this advanced thresholding algorithm achieves much poorer
performance than our model, hence proving the non-triviality of the problem.

We decide to conduct experiments with PointNet++ as, to the best of our
knowledge, it represents the best architecture tested on radar PCs. In particular,
we slightly modify the implementation of [16] to account for the lower number
of input-points/output-classes of our framework: both the number of samples in
each SA layer and the number of nodes in the output FC network have been
halved. However, we notice that the model have a much higher capacity than
ours. We therefore design a shallow version of PointNet++ to enable fair com-
parison: the number of SA/FP layers has been reduced to two and set similarly to
our architecture. Finally, we equip this shallow version of PointNet++ with the
proposed pre-processing module to investigate its impact on the performance.

Table 2 contains the results. Despite the higher number of parame-
ters/FLOPs, PointNet++ exhibits considerably poorer performance than
RadarPCNN. As expected, the shallow PointNet++ experiences slight per-
formance degradation. Interestingly, however, when equipped with our pre-
processing module, it can achieve comparable results with RadarPCNN. This
shows that our module can be successfully used on other point-wise process-
ing architecture, helping the network to craft meaningful features for radar
reflections. Moreover, it suggests that the proposed layer plays a major role

Table 2. Semantic segmentation results on our dataset (%).

Method Moving pedestrian Moving vehicle Average Param. FLOPs

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Random forest 16.92 70.43 27.29 54.49 84.09 66.13 35.71 77.26 46.71 – –

PointNet++ [16] 46.10 75.77 57.33 72.77 82.89 77.50 59.44 79.33 67.41 418.6K 1.55G

PointNet++

(shallow)

43.82 75.31 55.40 71.18 84.01 77.06 57.50 79.66 66.23 191.2K 0.95G

PointNet++ (sh. +

our mod.)

47.70 76.77 58.84 73.16 93.24 81.99 60.43 85.01 70.42 198.8K 1.02G

RadarPCNN (ours) 48.64 75.82 59.27 75.78 91.44 82.88 62.21 83.63 71.07 175.3K 1.02G
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Fig. 3. Confusion matrices of RadarPCNN (left) and PointNet++ [16] (right). The
color-map shows the points count: the darker the color, the higher the points number.

in the enhanced performance of our method w.r.t. PointNet++ [16]. Finally,
it is worth noting that the improved shallow Pointnet++ still cannot outper-
form RadarPCNN, despite having nearly 15% more parameters. This suggests
that our architecture has a better number-of-parameters/performance trade-off,
resulting in a more efficient processing.

Figure 3 shows the confusion matrices of RadarPCNN (left) and PointNet++
[16] (right). It confirms the observation drawn from Table 2. Moreover, it is inter-
esting to see how most of the errors come from negative predictions of positive
class samples: only less than 2% of them are, indeed, mistakenly predicted as
the wrong positive class. This effect is strongly due to the class imbalance in our
dataset, which unfortunately makes the network marginally biased towards the
negative class, despite all the precautions taken during training.

Fig. 4. RadarPCNN predictions. Yellow/red points are moving vehicle/pedestrian pre-
dictions. Ground truth BBs follow the same color-map. Gray BBs belong to stationary
vehicles, while orange BBs marks vehicles with absolute speed between 1 and 2.5 m/s.
Left. Front/rear camera view. Right. 3D visualization. Best viewed in color.
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Figure 4 shows RadarPCNN predictions on a test frame. It can correctly
classify moving vehicle/pedestrian as well as distinguish between moving and
stationary vehicles. Moreover, it is worth noting how the network learns to pre-
dict moving objects independently from the threshold set during training. The
orange bounding-box (BB) marks a slowly moving vehicle (see Fig. 4 caption):
RadarPCNN can classify reflections from this object as belonging to a mov-
ing vehicle, even though during training these points were not assigned to that
specific class. Finally, we find that sometimes the network mistakenly classi-
fies reflections from bushes as pedestrian: we attribute this effect to the strong
similarity between these two instances from the radar perspective.

4.4 Ablation Studies

Fusion Method. In this section we compare our attention mechanism with two
fusion techniques: addition and concatenation. Table 3 shows that our attention
mechanism represents the best solution, achieving the best F1 scores with a rea-
sonable number of parameters. The concatenation approach achieves comparable
performance with ours, but involves ∼30K more parameters. Finally, notice how
all the tested methods are well-suited for fusing multiple vectors.

Mean Shift vs FPS. Herein, we assess the impact of mean shift compared with
the traditional farthest point sampling method. Figure 5 plots RadarPCNN F1

scores while changing the number of representative points in the top/bottom
branches of Fig. 1. We compute MS with different bandwidth values to account
for the different number of representative points. Regarding FPS, we sample the
necessary number of points directly from the input. We notice that, in the best
configuration (leftmost), MS brings minor improvements over FPS. This is not a
surprise: indeed, as the number of representative points increases, MS and FPS
will tend to be similar, achieving the very same output when we sample all the
input points (MS with infinitesimal bandwidth). Interestingly, however, as the
number of representative points decreases, the impact of MS increases. This sug-
gests that, focusing on high density locations, MS optimizes the usage of spatial
relationship in such sparse data. Conversely, as the number of sampled points
decreases, FPS cannot significantly cover the whole input space, thus failing to
generate representative points for object of interest. The different behavior of the
vehicle and pedestrian classes further confirms our observations. Since pedestri-
ans have smaller sizes than vehicles, they produce lesser radar reflections. There-
fore, a decrement in the number of representative points, dramatically decreases
their likelihood of being sampled by FPS. Finally, it is worth stressing that the
number of representative points strongly affects the amount of FLOPs demanded
by the network. Since MS proved much more robust than FPS, it represents a
promising solution for trading-off performance with computation, a very crucial
resource in embedded, real-time systems.



Leveraging Radar Features to Improve PC Segmentation with NN 129

Table 3. RadarPCNN performance using different fusion methods (%).

Method Moving pedestrian Moving vehicle Average Param.

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Conc 48.27 76.50 59.19 74.98 91.78 82.54 61.63 84.14 70.87 206.9K

Add 47.11 75.87 58.88 74.07 92.13 82.12 61.09 84.00 70.50 174.1K

Att (ours) 48.64 75.82 59.27 75.78 91.44 82.88 62.21 83.63 71.07 175.3K

Fig. 5. MS vs FPS under various configuration of the number of representative points.

5 Conclusions

Despite PointNet++ being a milestone in raw PCs processing, radar data
requires further tweaks in order to be efficiently processed. In this work, we
show that the performance of PointNet++ – and presumably other methods –
on radar PCs can be drastically improved by using radar information to learn
new point features. In addition, we show that it is possible to further improve
semantic segmentation performance by taking into account the intrinsic proper-
ties of radar while designing the architecture. Indeed, RadarPCNN is capable to
achieve state-of-the-art results, using less memory than previous ML approaches.

About promising future directions, it would be interesting to see how the pre-
processing module proposed in this work would suit other point-wise processing
architectures. Finally, we notice from visualization analyses that most of the
errors performed by our architecture are present only for few frames, therefore
we believe that the network performance can be further improved by the use of
temporal information. To this end, we strongly believe that MS could represent
a key element for the deployment of RNNs in point-wise techniques for radar.
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Abstract. In the future power system called Smart Grid, power generators
using renewable energies will be widely introduced to the power grid and
required to balance supply and demand on the grid quickly. Therefore, fast
automated demand response (FastADR) that contributes to balance the power
grid from demand side through electrical facilities like building air conditioner
are focused recently. When electric grid operator will pay incentive to aggre-
gators of the demand side, it is important to estimate accurate baseline load.
However, the FastADR must returns quick response by unit of seconds or
minute (fine-granularity), therefore it is difficult to estimate baseline load
accurately using conventional method. In this research, the baseline load esti-
mation model for air-con time-series data is constructed using long short-term
memory (LSTM) neural network, and compared with multilayer perceptron
(MLP) neural network model for baseline load estimation. The training and
evaluating time-series data is generated by air-con simulator (AE) carried out on
the virtual building. In the estimation results using data that were simulated for a
month, the average estimation error of the LSTM model is 2.7% and of the MLP
model is 5.3%. Therefore, the LSTM model is more effective for baseline
estimation than the MLP model. However, data in various situations are
required.

Keywords: Smart Grid � FastADR � Baseline estimation � Neural networks �
LSTM

1 Introduction

In the future power system, called Smart Grid, photovoltaics and other power gener-
ators using renewable energies will be widely introduced to the power grid. These
generators may face difficult supply and demand balancing on the grid because these
renewable supplies are depending on the environmental condition such as weather [1].
To solve this problem, it is effective to control electrical load quickly from demand
side, that is, so-called demand response (DR). The quick and automatic responses of
the demand side, discharge from storage batteries or power limitation of electrical
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facilities for example, help the grid effectively. The system for it is called fast auto-
mated demand response (FastADR) [2].

As regards target electrical facilities for FastADR, building air-conditioners
(ACs) are to be promising. The power consumption of ACs accounts for about 40% of
the building power consumption, and more, it can be controlled flexible [3]. These
large capacity and control flexibility are advantages for the target of the FastADR.
When the electrical demand is high, an aggregator receives an order of power sup-
pression from the electric grid operator. The aggregator sends power consumption
limitation commands to the ACs, and ACs suppress the power consumptions. The
suppressed powers will be aggregated from many ACs in many buildings. The electric
grid operator will pay incentive to the aggregator.

Here, the price of the incentive depends on the amount of the power suppressed
during the DR period. Therefore, estimating the power consumption when the DR is
not occurred is required. This amount of the power consumption is called baseline load.
Conventional DR is a slow demand response that responds through over 30 min, and is
kept for a long period of time. Therefore, a baseline load estimation method that
averages past data, such as the XofY method [4], has been applied.

However, the FastADR is required to response quickly through unit of seconds or
minute [5]. Therefore it is not appropriate to estimate baseline load using conventional
method. The AC operation data acquired during FastADR has 2 features, 1) the data
highly depends on short-term (fine-granularity) time-series, 2) only a few valuable data
can be acquired from ACs on actual building. Considering these features, the regression
method [4, 6] is the most appropriate for AC’s baseline estimation in FastADR between
some method studied previously [7].

In previous studies, the multilayer perceptron (MLP) model is adopted to estimate
electrical load of many facilities [8]. Time-series data is required to input into the model
parallelly. On the other hand, the long short-term memory (LSTM) neural networks [9,
10] is used as models represented AC protecting operation [11, 12]. However, the
baseline estimation research work using LSTM is not very targeted.

In this research, baseline estimation model using LSTM neural networks is con-
structed. The model is trained and evaluated with AE [13], an air-con simulation
model. In comparison, a MLP model is constructed, trained and evaluated
simultaneously.

2 Simulation Environments

2.1 Baseline Load of AC Operation on FastADR

In this research, the FastADR occurs in 4 time periods, from 9:00 to 10:00, from 11:00
to 12:00, from 14:00 to 15:00 and from 16:00 to 17:00. Power limitation command is
send to AC for every 10 min. The limitation command is determined by Real-Time
Pricing (RTP) optimizing algorithm [12, 15].

Figure 1 shows the concept of the FastADR operation. Bold black line indicates the
power limitation command and circle marker indicates the power consumption P [kW]
in a minute. The baseline load [kWh] is indicated by gray area, it is integral value
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between dotted line (Ps when the FastADR does not occurred) and x axis line
ðP ¼ 0:0Þ. The dotted line does not be estimated in this research because the baseline
load is estimated directly. Since the power limitation command determines the upper
limit of the power consumption, power consumption does not always follow the power
limitation command.

2.2 Construction of Virtual Building

The construction of a virtual building using in this research is shown in Fig. 2. The
building has 10 floors, and all floors are separated into 2 areas, called blocks. Each
block is installed 6 numbers of indoor units, and these indoor units are controlled by 20
outdoor units. Total cooling area is 6000 ½m2�, separated into 20 blocks, installed 120
indoor units. This building does not exist, but assumed general office building.

The outdoor units in blocks are grouped in 3 types of rated power. The rated power
of type 1 is 45 [kWh], and type 2 is 32 [kWh]. These are determined from actual units
installed in office room on actual building. And the rated power of type 3 is 68 [kWh],
this unit is installed in rooms that is required high air-con load like server room or
ceiling floor. The AE is simulated these units by changing its parameter, therefore the
power consumption and room temperature are follow to common dynamic
characteristics.

Power Consumption
(circle marker)

10min. Power Limitation 
Command

1 period, 60min.

Baseline Load
(gray area)

Fig. 1. Concept diagram of the power limitation command and baseline load
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2.3 Construction of Air-Con Simulation Model

In AE, the power consumption and room temperature is simulated according to the
following formula based on the recurrence formula developed in the previous study
[13]:

p tþDtð Þ ¼ p tð ÞþD tð ÞDt ð1Þ

TAi tþDtð Þ ¼ TAi tð Þþ 1
CHi

QLi tð Þ � QACi tð Þð ÞDt ð2Þ

Here, P tð Þ indicates power consumption [kW] for each discrete time t [sec], and
D tð Þ indicates power change rate [kW/s]. Dt indicates a time step and 10 [sec] is
assigned to it in this research. TAi indicates room temperature measured by inner unit i,
CHi is heat capacity of inner unit i, QLi tð Þ and QACi tð Þ are inner heat load and air-con
cooling capacity of inner unit i, respectively. D tð Þ is described as following formula:

D tð Þ = SPLOVDDWN þ 1� SPLOV
� �

SP
�

OVDDWN þ 1� SP
�

OV

� �
SPLFRS

P�
FRDUP

� � ð3Þ

DUP is the power rise rate [kW/s], and DDWN is the power fall rate [kW/s]. SPLOV and SPLFR
represent the current power consumption tracking state (0 or 1) with respect to the
power limitation command value PL [kW], and SP

�
OV and SP

�
FR are the target power

indicates the tracking state (0 or 1) for P� tð Þ [kW]. P� tð Þ is determined from multiple
linear regression model [7] with outdoor temperature and thermo-on capacity (total
cooling capacity of operating indoor unit) as input variables. Since it is difficult to
construct the fine vibration of P model analytically, a stochastic model is constructed
from the acquired data.

Figure 3 indicates power consumption acquired from actual building on a day in
August, 2018 (Fig. 3 top) and simulated power consumption on same day (Fig. 3
bottom). Some parameters like inner head load cannot acquire accurately, therefore it is
impossible simulate actual consumption completely from the outset. However, AE
simulates power consumption and room temperature sequentially, then the time
dependency of the simulated data is plausible.

Fig. 3. Acquired power consumption (top) and simulated power consumption (bottom). The
data were acquired from 7:00 to 19:00. Data is plotted on 1 min interval.
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3 Long Short-Term Memory Model for Baseline Estimation

The LSTM neural network [9, 10] is a kind of recurrent neural network (RNN) used in
computational neuroscience and machine learning applications widely. In LSTM,
nodes in the hidden layer are replaced with complicated units called memory units, so it
is possible to overcome the vanishing gradient problem and hold long time-series input
data information compared with the normal RNN.

The memory unit has input/forget/output gates and a memory cell in addition to a
normal input receiving node. By forgetting unnecessary information with a forget gate
while recursively referring to the memory cell holding its own state, it can be expected
to keep long-term characteristics of time-series into the unit. The three gates and the
input receiving node are represented following formula:

g xð Þ ¼ f
X

i
uinxi tð Þþ urezi t � 1ð Þ

� �
ð4Þ

Here, uin is the weight of an input variable xi, and ure is the weight of output value
from the memory cell zi. f indicates an activation function.

The LSTM model constructed in this research is shown in Fig. 4. The minimum
unit of time is 5 min, called frame m. The representation value of a frame is an average
value during 5 min. Moreover, q indicates the 10 min separation. A time point when
estimate baseline is represented as q;mð Þ, it means the last minute of the last frame m of
the separation q. Dimension of input vector x q;mð Þ is 10, and dimension of output
vector y qþ 1ð Þ is 2.

x10

Memory Unit 10

Memory Unit 1

I=10
J=10

K=2

x1
x2

Input
Input Gate

Forget Gate
Output Gate

Memory
Cell

Input
Input Gate

Forget Gate
Output Gate

Memory
Cell

Fig. 4. LSTM model for baseline estimation
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In this research, a input time-series is consisted from 6 frames data. The length of
the time-series is determined from covariance of the input variables. The covariance
between power consumption at time t [min.] and room temperature is maximized at
t ¼ �15 and others are t ¼ 0, then we determined the time-series length to 30 min, in
other words, 6 frames. Then a time-series contains x q� 2;m� 5ð Þ to x q;mð Þ.

The following variables were used for x q;mð Þ; PL q;mð Þ is the “acquired” power
limitation command [kW], W5 q;mð Þ is the “acquired” amount of power consumption
for frame m [kWh]. TO q;mð Þ is the outdoor temperature �C½ �, and RS q;mð Þ is the solar
radiation kWh½ �. TO and RS are acquired at Nagoya, Japan by Japan Meteorological
Agency. TSA q;mð Þ is the average difference between set temperature TSi and room
temperature TAi of indoor unit i. P0

L qþ 1;mþ 1ð Þ and P0
L qþ 1;mþ 2ð Þ are power

limitation command [kW] of “next” 10 min. While baseline estimation, these variables
will be assigned a “limitation released” value. TSA qþ 1;mþ 1ð Þ and TSA qþ 1;mþ 2ð Þ
are the “acquired” temperature difference of next 10 min. These variables have highly
relation to power consumption [7].

The model outputs the power consumption and average difference between set
room temperature and observed room temperature for next 2 frames.

The size of the hidden layer is 10. In our previous studies, this size effects to
learning time but not accuracy, then it was determined empirically considering learning
rate and learning epoch. Activation function of the hidden layer is sigmoid, and
optimization algorithm is Adam [14].

4 Examination and Results

4.1 Data Processing and Model Training

The LSTM models are trained for each block. To train the LSTM models, it is nec-
essary to observe the data simultaneously that FastADR was occurred data and was not
occurred. However, these data can be acquired in an either-or situation. Therefore, in
this research, the LSTM models were trained using the data simulated by the AE. The
data simulated by the AE is slightly different for each block of the same type because
the AE operates stochastically.

The AE simulated 5 patterns of the FastADR occurrence, 1) not occurred, 2)
occurred in period 1, 3) occurred in period 1 and 2, 4) occurred in period 1-3 and 5)
occurred in all periods. 17 days in August were assumed as the simulation situation.
Training data was constructed based on the pattern 5. The training answer of the power
consumption during 10 min W10 for each period was merged from each pattern data.
For example, aW10 q;mð Þ during a period was calculated from pattern 1 data, and it was
used as one element of the y qþ 1ð Þ in pattern 5. This preprocess is possible because of
simulation.

After that, these frame data were scaled by max/min constant value respectively.
The data per a day were acquired every minute for 10 h, therefore frame data
x 1; 1ð Þ; . . .:; x q;mð Þ; . . .:; x 59; 119ð Þf g were acquired per a day in a block.
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Training time-series is constructed from them. The n-th training time-series Xn is
represented as below:

Xn ¼ fxð n
10

j k
; n� mþ 6Þ jm ¼ 0; . . .; 6g ð5Þ

The Xn is a time-series obtained by shifting Xn�1 forward by a frame.
All weights of the LSTM models were initialized randomly by uniform distribution

between 0.0 and 0.001. The gradients of the weights were calculated by Back Prop-
agation Through Time (BPTT) method [16] and new weights were calculated from
these gradients. The training data batch size is 1 (same as online learning). The learning
rate was optimized by the Adam algorithm. In this research, the training was repeated
for 100 epochs.

For comparing, the MLP models were trained simultaneously. The structure of the
MLP model was same as the LSTM model without inputting time-series parallelly into
MLP model.

4.2 Evaluation on Performance of the Model

The models were evaluated using 2 days in August, 2018 that were not used to train.
One day is the hottest day in the month, and another is the generally day in the month.

The estimation errors were defined as relative rate of difference between total
estimated baseline load and total actual baseline load during FastADR periods. Rep-
resent the k-th estimated baseline load for Xk at period Pr on block b as gW10

Pr;b
k . The

index k is assigned from 1 to 12, it means the frame number during a period. The total
estimated baseline load at period Pr is represented as follows:

gW60
Pr ¼

X20

b

X12

k
gW10

Pr;b
k ð6Þ

The total actual baseline load W60
Pr is calculated in the same way. The estimation

error at period Pr is represented as:

ePr ¼
gW60

Pr �W60
Pr

� �
W60

Pr � 100 %½ � ð7Þ

ePr indicates the errors in a period on the entire building. The aggregator will
estimate the baseline load for each entire building, therefore evaluating ePr is consid-
ered appropriate in practice.

Estimation results are shown in Fig. 5. Black bar indicates the W60
Pr, gray bar

indicates the gW60
Pr estimated by the LSTM model, dotted bar indicates the gW60

Pr

estimated by the MLP model. Bar with horizontal line indicates the observed power
consumption, W60

Pr0 . ePr is shown as difference between the black bar and the gray bar
compared to the black bars and dotted bars.
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Calculated errors of the LSTM model are, e1 ¼ �3:0 %½ �; e2 ¼ �1:7 %½ �; e3 ¼
�2:8 %½ � and e4 ¼ 3:1 %½ �. Calculated errors of the MLP model are,
e1 ¼ �0:5 %½ �; e2 ¼ �10:0 %½ �; e3 ¼ �2:9 %½ � and e4 ¼ 7:8 %½ �. The estimation results
of the LSTM model are better than the MLP model except for period 1. In particular,
the error is smaller than 8.3% in period 2.

Comparing the average eavg ¼ 1
4

P4
Pr¼1 ePrj j between the LSTM and the MLP

model, the eavg of LSTM model is 2:7 %½ �, and the eavg of the MLP model is 5:3 %½ �.
Therefore, it can be said the LSTM model is more effective than the MLP model for the
baseline load estimation.

4.3 Study on a Few Training Data

To train the LSTM model, large amount of data (over 1000 time-series) is used in
general [9]. In this research, the models were trained using data acquired in a month
similarly. However, in application, there may be cases where only a small number of
data can be acquired in a few days. It is necessary to examine how many and various
data are required to train the LSTM model effectively.

In this study, three kinds of data sets are used. First is a data set acquired in one day,
120 time-series, from august, 2018 (set A). Second is a data set acquired in one week (5
days), 600 time-series, from august, 2018 (set B). Third, sampled 10% from data
acquired in a month, 273 time-series (set C). The set A and B reproduce the situation
where the number of obtainable data is small. The set C reproduces the situation where
the wide variety of the few data can be acquired. The estimation results are evaluated
using data that were not used to train. Kullback–Leibler divergence (KLD) [17]
between the all-time actual baseline load and the all-time estimated baseline load is
calculated.
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Figure 6 shows the results. Sparse dotted bar indicates the KLD of the MLP model,
and dense dotted bar indicates the KLD of the LSTM model. Vertical axis indicates the
KLD, the lower value is similar (good) and upper value is dissimilar (poor). In this
result, the MLP model is less affected by data set, but the LSTM model is affected.
The MLP model is better than the LSTM model on the set A, but in the set C, that result
has been reversed. It is considered that the LSTM model learns data trends through a
variety of training data rather than the number of data.

5 Conclusion

It is required to estimate baseline load in short-term (fine-granularity) time-series for
FastADR in the future Smart Grid. In this research, a LSTM model was constructed to
estimate baseline load under the assumed FastADR situation. The FastADR was
assumed to last 1 h and send a power limitation command every 10 min.

The LSTM model was trained using time-series generated by an air-con simulator,
AE. The virtual building for the AE simulation is constructed from 20 blocks on 10
floors and set upped 6 air-con inner units controlled by 1 outdoor unit for each block.
AE simulated each outdoor unit on different situation. The power limitation commands
were sent 4 times for a day, and the simulator generates data for a month. The esti-
mation errors were calculated for each power limitation.

Comparison with the MLP model inputted time-series data parallelly, the average
estimation error of the LSTM model is 2.7% and of the MLP model is 5.3%. Therefore,
the LSTM model is more effective for baseline estimation than the MLP model.
However, when trained the models using few data, the estimation error of the LSTM
model was increased compared with the MLP models. On the other hand, when trained
using the data set that contains various but small amounts of data, the result has been
reversed. Therefore, it is more important for the LSTM model to training using various
data than the amount of the data.
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Abstract. Knowledge of permeability, a measure of the ability of rocks
to allow fluids to flow through them, is essential for building accurate
models of oil and gas reservoirs. Permeability is best measured in the
laboratory using special core analysis (SCAL), but this is expensive and
time-consuming. This is the first major work on predicting permeabil-
ity in the in the UK Continental Shelf (UKCS) based only on routine
core analysis (RCA) data and a machine-learning approach. We present a
comparative analysis of the various machine learning algorithms and val-
idate the results, using permeability measured on 273 core samples from
104 wells. Results suggest that machine learning can predict permeabil-
ity with relatively high accuracy. This opens new research directions in
particular in the oil and gas sector.

Keywords: Machine learning · Support vector regression · Core
analysis · Permeability prediction

1 Introduction

A range of different data is generated during the life-cycle of oil and gas fields,
from exploration to abandonment. This data include regional geology, seismic
reports, sedimentological models, drilling data, fluid and rock properties [16].
Geologists, reservoir engineers and other scientists combine this data and use
their expertise to construct models of the reservoir, evaluate the volume of avail-
able hydrocarbons and engineer the most efficient and profitable way to extract
them from the reservoir [18]. The most direct type of geological data about
the formation come from core analysis, the laboratory examination of well core
samples extracted during the drilling. It is the only time scientists can see and
physically examine material from within the reservoir.
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Core analysis is usually divided into two stages. The first stage is called Rou-
tine Core Analysis (RCA) and the second stage is called Special Core Analysis
(SCAL) [16]. RCA usually includes tests such as fluid saturations, porosity and
permeability measurements. Those measurements are taken on plugs or core
samples. A SCAL programme might include the measurement of relative per-
meabilities, capillary pressures and wettability among others. Furthermore, the
effect of coring and other fluids on the SCAL parameters could be used to eval-
uate the damage they cause to the formation [23].

Core analysis data are usually expensive and time consuming (several weeks)
to obtain [27]. However, they are deemed to be the most accurate source of
information for reservoir characterisation and a thoroughly designed core anal-
ysis programme can result in a more productive reservoir later in their lifetime
[18].

2 Related Work

Machine learning techniques have been used in the past in the context of core
analysis mainly to extrapolate rarely available core analysis data to other more
available types of data such as well log data [27]. Examples include prediction
of permeability of gas reservoirs using well logs and core data [9,22], identify-
ing drilling sweet-spots for gas hydrate reservoirs without pre-existing well logs
[10,15], rock texture image classification using support vector machines [21],
predicting permeability during acidizing [11] and predicting the optimal rate of
penetration during drilling [12]. The work closest to ours is the study by Erofeev
et al. [5] on the Chayandinskoye oil and gas condensate field in Russia. However,
that study was limited to a single field and used desalination instead of drilling
mud application during core analysis.

In contrast, this work relies on high quality data of actual permeability mea-
surements obtained in the laboratory from a substantial number of core samples
across a large number of wells across multiple fields of the UKCS and the north
sea. Oil and Gas operators value the core analysis derived data as indispens-
able. However, budget constraints often limit the number of tests included in
core analysis projects. A reliable and effective predictive method could be used
alongside traditional routine core analysis techniques to fill the gap. The aim is
to be able to provide the next best estimate when there is not enough funding
for extensive laboratory measurements. As a proof of concept, the permeability
is predicted after drilling mud application has been performed to the samples.

3 Methods

3.1 Dataset

The private dataset used here is part of the historical archive of Corex UK Ltd. It
covers a significant part of the offshore area of the UK Continental Shelf (UKCS)
and the north sea.
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Table 1. Table showing the variables used, their corresponded type in R and their
units

Feature Type Units

Top depth Numeric m

Pore volume Numeric cc

Porosity Numeric rate

Grain density Numeric gcc

Gas permeability Numeric mD

Initial permeability Numeric mD

Final permeability Numeric mD

Brine concentration Numeric ppm

Mud weight Numeric ppg

Mud type Character NA

Reservoir temperature Numeric C

Pore pressure Numeric atm

Overburden pressure Numeric psi

After data cleaning and preparation, the final dataset contained 273 obser-
vations and 13 features (Table 1). The number of samples might look small but
core analysis is a laborious process with relatively small pace of generating data.
The features include the pore volume, porosity, grain density, the top depth
of the core, gas permeability, initial permeability, final permeability (output),
brine concentration, mud weight, mud type, reservoir temperature, pore pres-
sure, overburden pressure. Mud type is a categorical feature and it is encoded
into three dummy variables, with LTOBM (Low Toxicity OBM) the reference
level.

Initial permeability is the permeability measurement before drilling mud
application while final permeability is the permeability measured after drilling
mud application. Drilling mud application for the context of this research means
the laboratory simulation of the drilling procedure in the field using a specific
drilling mud system. Drilling mud systems are expected to interact with the
rock formation and potentially reduce its permeability (Fig. 1). When centering
or scaling of the input data is performed it is explicitly mentioned at the relevant
model subsection otherwise the original values were used.

3.2 Prediction Models

A range of well established machine and statistical learning algorithms were
applied to the given dataset. The main research question was whether the final
permeability, after drilling mud application, can be predicted using the results
of routine core analysis (RCA) tests as input. Therefore, the final permeability
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Fig. 1. The distribution of permeabilities before (dark grey) and after drilling mud
application (light grey).

was selected as the output of the models. All the variables in Table 1 were used
as input parameters.

Least Squares Linear Regression. The starting point of this research was
to try and fit a linear model, represented by the formula:

Y = β0 + β1X1 + ... + βpXp + ε (1)

Least squares estimates the coefficients that minimise the following:

RSS =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

(2)

The linear model was fitted using the lm() function from the R stats pack-
age [19]. The QR decomposition of the input matrix is used to estimate the
coefficients [6].

Ridge Regression. Ridge regression adds a penalty to the loss function of
least squares (Eq. 2). The penalty has the form λ

∑p
j=1 β2

j [13]. The penalty is
controlled by the hyper-parameter λ, which is usually selected with grid search
and cross validation. Ridge was fitted using the glmnet package in R [7].

Lasso Regression. This model is similar to Ridge except it applies an �1
penalty to minimise the RSS subject to the constraint λ

∑p
j=1 |βj| [24]. Lasso

tries to address some of the problems arising in Ridge regression. The �2 penalty
used in Ridge minimises the coefficients towards zero but it does not turn any of
them to exactly zero. Lasso instead can set a coefficient to zero and effectively
perform feature selection. Lasso was fitted using the glmnet package in R [7].
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Partial Least Squares (PLS). PLS identifies a set of components Z1, ...ZM

that are a linear combination of the original features [25]. The new components
are fitted so they explain most of the variance in the predictors [14]. The idea
behind this approach is that there are latent variables affecting the output that
are not necessarily measured or captured in the dataset [26].

Support Vector Regression (SVR). Support Vector Regression estimates
the weights of a hyperplane such that the RSS of the support vectors is minimised
[4]. The support vectors are the only part of the dataset that participate in the
estimation of the hyperplane equation and the minimization of the loss function.
The input space was transformed into a higher dimension feature space using the
radial basis function [3]. The SVR model was fitted using the e1071 R package
[17]. The variables were scaled for zero mean and unit variance. The cost and
gamma hyper-parameters were estimated by 10-fold cross validation, using the
tune.svm() function.

Artificial Neural Networks (ANNs). A multi-layer perceptron [20] was
used consisting of a feed-forward neural network with 13 neurons at the input
layer, two hidden layers with five and three neurons respectively and an output
layer with a single neuron for the final permeability. The model was trained
using resilient back-propagation (RPROP) with weight backtracking [20] and the
neuralnet R package [8]. The input was scaled with mean 0 and unit variance.
The learning rate was set to 100 and the maximum number of allowed steps to
1e+05. The sum of square errors was the loss function.

Decision Trees and Random Forests. Regression Trees [1] predict the value
of a continuous variable by dividing the input space into j distinct and not
overlapping areas. For every new observation that falls into this area the average
of the values of the training observations is returned. The regression tree was
fitted with the tree package in R [2]. Random Forests build a number of trees in a
bootstrapped version of the training samples. In each split step it only considers
a random sample of m predictors from the total available ones. This number is
typically

√
p, where p is the total number of features [14]. It then uses averaging

across the trained trees to produce a final prediction.

4 Results and Discussion

A summary of the results for predicting the final permeability, after drilling mud
application, using the various algorithms is presented in (Table 2). The dataset
was divided into a training set (67%) and a test set (33%). The R2, given by
1 − RSS

TSS with TSS =
∑n

i (yi − ȳ), on the training set and the MSE, given by
1
n

∑n
i (ŷi − ȳ), on the test set will be used to evaluate the models on the training

and test set respectively.
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Table 2. Table showing the R2 on the training set and the MSE on the test set.

Algorithm name R2 MSE

Least Squares 0.916 50,020.24

Linear Lasso 0.725 50,927.96

Linear Ridge 0.881 51,251.47

PLS 0.894 50,150.91

SVR 0.900 44,135

ANN 0.997 323,477.3

Decision Tree 0.937 108,424.7

Random Forest 0.925 57,202.81

Fig. 2. Compare the models using R2 on the training set (orange) and MSE on the
test set (blue).

R2 scores show that many algorithms fit the training data well. SVR, Least
Squares and PLS having the lowest MSE (Fig. 2) on the test set. PLS and Lasso
can give us great insight on the predictors affecting the response variable. Accord-
ing to the Least Squares model initial permeability, gas permeability and pore
volume are the most significant features. (Fig. 3).

Lasso produced a sparse model only assigning the pore volume, initial perme-
ability and mud type (WBM) non zero coefficients. PLS also produced a sparse
model. The first six components are linear combinations of the top depth, gas
permeability, initial permeability, brine concentration, pore pressure and over-
burden pressure.



Predicting Permeability Based on Core Analysis 149

Fig. 3. The t value and the associated p value of the features for the least squares
model.

Linear Regression Least Squares. The linear regression model has a R2 on
the training set of 0.916 and test set MSE 50020.24 (Fig. 4). R2 suggests that
the model fits the data relatively well but the MSE on the test set indicates that
the predictive power requires further improvement.

Linear Lasso. The best lambda for the Lasso model was estimated by 10-
fold cross validation at 12.429. The non zero coefficients for the best λ are pore
volume, gas permeability, initial permeability, and mud type (WBM). Lasso has
a test MSE of 50927.96 (Fig. 5). The model does not fit the training data as
well as the Least Squares but it still manages to generalise well on the test set
according to the MSE figure.

Linear Ridge. Ridge regression λ parameter was estimated similarly to Lasso
using 10-fold cross validation. The value that resulted in the lowest cross valida-
tion error was 89.749. Ridge regression performance on the training dataset was
estimated by means of R2 at 0.881 (Fig. 5).

Partial Least Squares. PLS fit the data on par with the regularised linear
models and SVR. R2 is estimated at 0.894 (Fig. 6) on the training set and the
MSE at 50150.91 on the test set. The number of components of the final model
was estimated by 10-fold cross validation. The number of components with the
lowest CV error was 5 components and it was the one used to generate the model
PLS R2 and MSE values.
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Fig. 4. The real against the predicted permeability values on the training set by Least
Squares Regression.

Fig. 5. The real against the predicted permeability values on the training set for the
Lasso (left) and the Ridge model (right).

Support Vector Regression. SVR gave the most promising results so far.
The SVR hyper-parameters were estimated by grid search at γ = 0.01 and cost
= 10. The model fit the training data with a R2 value of 0.9. Its MSE on the
test set was estimated at 44135 (Fig. 6). SVR performs much better than Least
Squares in the test set.

Artificial Neural Network. The Artificial Neural Network was the model
that followed the closest the training data with an R2 value of 0.997. However,
it performed very poorly on the test set with an MSE of 323477.3 (Fig. 7). The
high R2 indicates that the model over-fits the training data while the very high
test set MSE suggests that it fails to predict the permeability on unseen core
samples.
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Fig. 6. The real against the predicted permeability values on the training set for the
PLS (left) and the SVR model (right).

Decision Tree. The Decision tree model appeared to slightly over-fit the train-
ing data. Its R2 was estimated at 0.937 and generalised poorly with MSE on test
set at 57202.81. The decision tree model performs better on the test set than
the neural network but not as good as the SVR model.

Fig. 7. The real against the predicted permeability values on the training set for the
ANN (left) and the Random Forest model (right).

Random Forest. The mtry hyperparameter, that controls the number of vari-
ables randomly sampled as candidates at each split, was estimated at 11 using
10-fold cross validation, repeated three times. The R2 value on the training set
was 0.925. The Random Forest model was an improvement compare to the deci-
sion tree model and generalised relatively well on the test set with an MSE of
57202.81 (Fig. 7), albeit not as good as SVR.
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5 Conclusion

This work showed that machine learning can be used alongside routine core
analysis to predict final permeability, with SVR, Least Squares and PLS being
the best models. Traditionally oil and gas companies only contract a small num-
ber of representative samples to be tested in the laboratory, due to financial
constraints. Learning models based on historical data together with laboratory
measurements of the limited number of financially approved measurements can
alternatively provide a prediction for the rest of the available samples. This could
be a new source of revenue for core analysis laboratories and a new service that
can provide valuable information to operators to better manage their reservoirs.
Future work might include more input features e.g. stratigraphic data that will
improve the algorithm’s performance in unseen cases or predict different types
of output that can be of value for the oil and gas sector.
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Abstract. Water is a critical resource for life on the earth but it is becom-
ing increasingly scarce. Therefore, water use should be sustainable and
properly managed. The problem of water scarcity is still more stressed in
cities, where buildings consume more and more water, especially commer-
cial and institutional ones. In those buildings, HVAC (Heating, Ventilat-
ing and Air Conditioning) systems make an intensive use of water, espe-
cially the water-based cooling systems such as cooling towers, where a large
amount of water is evaporated. In this paper, a method is proposed in order
to estimate the evaporated water in cooling towers, considering the varia-
tions of environmental and operating conditions. We propose the use of a
generative model which is able to generalize the estimation of the evapo-
rated water, even in situations not included in the training data. A genera-
tive adversarial network (GAN) is used for training a deep learning-based
generative model. The proposed method is tested using real data from a
cooling tower located at the Hospital of León. Results show the probability
distribution within which the estimation of evaporated water can be found,
given the environmental and operating conditions.

Keywords: HVAC systems · Cooling tower · Evaporated water ·
Probabilistic estimation · Generative adversarial network

1 Introduction

Water is an increasingly scarce resource on the earth due to population growth,
water contamination and droughts provoked by climate changes [18]. All of the
above entails the depletion of aquifers and changes of groundwater recharge [14].
Water is a critical resource for life, so it should not be wasted and water supplies
should attract sufficient attention. However, groundwater is unmonitored and
mismanaged in many places in the world [5]. Due to its global importance, the
use of water should be sustainable and properly managed.
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In cities, proliferation of urbanization areas, deficient maintenance of water
infrastructures and poor waste management stress the problem of water scarcity
[13]. The public water supply represents 21% in European Union [1], includ-
ing buildings which account for the major use, in particular commercial and
institutional ones [19,21]. One of the facilities which make an intensive use of
water (around 48%) in those buildings are HVAC (Heating, Ventilating and Air
Conditioning) systems [3,21], specially the water-based cooling systems such as
cooling towers [9]. These systems can benefit from water efficiency measures,
saving water and energy [4,9]. Some reports state that up to 30% of the volume
of water consumed in buildings could be saved [1]. Therefore, sustainable water
management should be adopted in order to reduce water use in buildings and
protect the global water resources [19].

In large buildings, water for cooling towers accounts for almost all of the
HVAC system’s water consumption [21]. Moreover, the performance of the cool-
ing towers depends mainly on ambient conditions, given a fixed quantity of heat
to reject. Thus, the use of water for cooling towers should be analyzed in detail,
previously to establish management strategies and plan its operation.

In the literature, authors focus on the use of differential equations solved
with numerical methods for predicting the water loss in cooling towers [17]. In
this case, many simulations with different data are required in order to cover
all scenarios. However, artificial intelligence techniques are rarely applied for
that purpose. On the other hand, artificial neural networks are used for predict-
ing the performance of cooling towers, under a range of operating and ambient
conditions [6,10]. However, traditional neural networks are not able to generate
a trustworthy output if the surrounding conditions are not considered in the
training data. The operating and environmental conditions in a cooling tower
could vary, so the method should be able to generate a likely output, given
the new conditions. Generative Adversarial Networks (GAN) [7] can engender
a likely output, just from noise. In the literature, GANs have been mainly used
for image processing and computer vision [15,20]. Apart from that, GANs have
been applied recently for time series prediction, for instance, forecasting sensory
data [12], predicting stock market [23] and generating melodies from lyrics [22].
Other applications of GANs include natural language, speech, voice and data
augmentation [8].

In this paper, a method is proposed in order to estimate the evaporated
water in cooling towers, considering the variations of environmental and oper-
ating conditions. Our method is able to provide a probabilistic distribution of
the evaporated water, considering new and varying conditions. It relies on a
generative model based on real past data. On the contrary, the state-of-the-art
methods predict the water loss, given known conditions. These models are based
on mathematical equations or artificial neural networks. The main contributions
of this paper are:

– The development of a methodology to implement a virtual sensor able to
estimate the evaporated water in cooling towers in different scenarios.
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Fig. 1. Cooling tower scheme.

– The application of a generative model in a different research field, far away
from well-known image generation.

– The test of the method using real data from a cooling tower located in a
hospital building.

This paper is organized as follows: Sect. 2 defines the problem. In Sect. 3,
the proposed methodology is presented. Here, the generative model is explained
in detail. Section 4 describes the real cooling tower and the dataset used in the
experiment. In Sect. 5, the experiment and results are presented and discussed.
Finally, conclusions and future work are drawn in Sect. 6.

2 Problem Definition

A cooling tower is a system used to cool water by exchanging heat with the
atmosphere, i.e. a water-air heat exchanger (see Fig. 1). The hot water (input)
is passed through some nozzles located on the top which spray the water to
increase contact surface with the air in order to improve the evaporation. Small
droplets of water fall down on the fill in the tower. A fan usually induces an
air draft in the opposite direction to falling droplets [11]. The water changes
its phase from liquid to vapor, transferring the latent heat to the air. The air
carries the heat from evaporating water in the cooling tower to the atmosphere.
Therefore, atmospheric conditions influence directly on the evaporation process.

Cooling towers are commonly used by equipment in industries and buildings
in order to dissipate heat. For example, water-cooled chillers make use of cooling
towers to condense the refrigeration gas [10].
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Their great water consumption is mainly due to the loss of water which is
evaporated [10]. Moreover, some droplets of water are carried out through the
air draft (drift), despite of using a maze of baffles. Furthermore, the water is
drained regularly (blow-down) in order to adjust the concentration of the total
dissolved solids (TDS) in the water. Summarizing, the water loss in a cooling
tower is mainly due to the evaporation (E), drift (D) and blow-down (B), i.e.,
Loss = E + D + B. Lost water must be replaced with water from supply what
has an important environmental impact and economic cost. Lost water due to
drift (D) and blow-down (B) processes is usually insignificant with regard to
the evaporation (E), so water loss could be calculated as Loss = E, assuming
that the total loss is due to the water loss through evaporation. The evaporated
water flow ṁv could be calculated from measuring water flow ṁw, water input
temperature (warm) Tin and water output temperature (cold) Tout in the cooling
tower, according to the Eq. 1.

ṁv =
ṁw ∗ cw ∗ (Tin − Tout)

Hv
(1)

cw is the specific heat of water and Hv is the latent heat of vaporization necessary
for water changes from liquid to vapor. Thus, a flow meter connected in the input
of the cooling tower could provide the lost water.

On the other hand, several factors influence on the evaporation process and
define the performance of the cooling tower, so they should be considered. For
example, the air flow (natural or forced by the fan), the input and output
water temperatures and the environmental conditions (outdoor temperature and
humidity) determine the operation of the cooling tower. Moreover, these factors
could vary slightly, modifying the surrounding conditions which affect the evap-
oration and consequently, the operation and performance of the cooling tower.

Therefore, the estimation of the evaporated water in a cooling tower, consid-
ering the environmental and operating conditions, could be useful to plan the
operation of a cooling tower and save water and improve its performance. Note
that, that estimation is affected by the environmental and operating conditions
and therefore the quantity of evaporated water may be estimated with a certain
confidence interval since those conditions could change. For that task, a method
to implement a virtual sensor could be developed so that it is able to estimate
the probability distribution of the evaporated water in a cooling tower, given the
surrounding conditions.

3 Methodology

In this paper, we propose the development of a methodology to implement a vir-
tual sensor able to estimate the probability distribution of the evaporated water
in a cooling tower, given any potential environmental and operating conditions.
Once the virtual sensor is built, it should be able to estimate the evaporated
water even under abnormal conditions (not only normal ones). For example, the
outdoor temperature could increase above normal values during a heat wave or
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Fig. 2. Proposed methodology based on cGAN.

the relative humidity could increase because of fog banks, affecting the evapora-
tion process in a cooling tower. These abnormal situations should be considered
by the method in order to estimate a range within which the evaporated water
value is very likely to be found.

In order to tackle that problem, we propose the use of a generative model
which is able to generalize the estimation of the evaporated water, even in sit-
uations not included in training data. A generative adversarial network (GAN)
is used for training a deep learning-based generative model. GAN is a frame-
work for building generative models via an adversarial process, which uses two
models simultaneously: a generator model that captures the data distribution
and a discriminator model that estimates the probability that a sample is from
the training data rather than the generator [7]. The generator is in charge of
providing new plausible data that are similar to real data. The function of the
discriminator is to classify data as either real (from the input dataset) or fake
(from the generator). To sump up, the generator tries to fool the discriminator
by generating real-looking data.

In our case, the evaporated water (estimation) is influenced by the environ-
mental and operating conditions, so the generative model is conditioned on some
auxiliary variables (outdoor temperature, humidity and air flow). Thus, an exten-
sion of GAN, called conditioned generative adversarial network (cGAN) [16], is
required. A model based on cGAN is able to consider contextual information
with slight variations.
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Therefore, the evaporated water ŷ could be estimated using a cGAN, from
environmental and operating variables x and the potential fluctuations z (see
Eq. 2)

ŷ = f(x, z), (2)

where the environmental and operating variables are x = [x1, x2, . . . , xm] and
the noise representing the potential fluctuations are z = [z1, z2, . . . , zn].

Figure 2 summarizes the proposed methodology. It is based on a cGAN which
comprises a generator and a discriminator models. The generator model is fed
with the environmental and operating variables x and the noise z, which are
concatenated. The generator is a deep model with several hidden layers, being
its output the estimation. The discriminator uses as input the environmental
and operating variables x and they are concatenated with either the real y or
the estimated ŷ values of the evaporation. The discriminator is also a deep model
with several hidden layers, being its output the class (real of fake) which they
belong to.

First of all, the discriminator is trained with the conditional variables x and
the real data of evaporated water y assuming that the output class is always
real, updating the discriminator model. Then, the combined model, i.e. both the
generator and the discriminator are trained with the conditional variables x, the
noise z and the estimated data of evaporated water ŷ assuming that the output
class is always fake, updating only the generator model.

4 Real System and Dataset

Data from a mechanical draft cooling tower located at the Hospital of León
are used in the experiment. That cooling tower by Baltimore Aircoil, model
S-3654-NM (see Fig. 3), cools water from a chiller by Trane, model CVGF650
(cooling capacity of 650 tons). An axial fan, driven by a three-phase induction
motor (18.5 KW) and managed by a variable speed drive (Moeller DF6-340-22K),
forces the air through the cooling tower. Two pumps NK 150-315/307/BAQE
by Grundfos driven by three-phase induction motors (30 KW) are used, one
to propel water to the cooling tower and the other to maintain a water flow
through the condenser. Moreover, the temperatures of input and output water
are measured using sensors by Johnson Controls, model TS-9101-8224. It also
incorporates three resistors of 5 KW to avoid water freezing.

BMS (Building Management System) acquires and stores data from the oper-
ation of the cooling tower (input and output water temperatures and fan speed)
and also from the ambient (dry-bulb temperature and relative humidity). The
water flow through the condenser (ṁw) has been measured by an ultrasonic
portable meter (Fluxus F601 by Flexim), due to the lack of permanent flow
meter in the chiller. Note that, the water flow is required to calculate the evapo-
rated water ṁv using Eq. 1. Table 1 lists the variables involved in the experiment.

According to Eq. 2, the estimation of evaporated water ˆ̇mv is

ˆ̇mv = f
(
[Ta,Hr,Dt, Fs], z

)
(3)
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Fig. 3. Photo of cooling tower at the Hospital of León.

Table 1. Variables used in the experiment.

Symbol Variable name Unit

Ta Dry-bulb temperature ◦C

Hr Relative humidity %

Dt Input-Output water temperature difference (Tin − Tout)
◦C

Fs Fan speed %

ṁv Evaporated water flow m3/h

where the conditional variables are x = [Ta,Hr,Dt, Fs], and noisy variables
introduced to the model are z. The noisy variables are generated using a normal
distribution centered at 0 and within 1 standard deviation.

Data from these variables are collected for 40 days. The sampling rate is
1 min, but then data are resampled, averaging values each hour. Therefore, the
total number of samples is 960. The evaporated water flow ṁv is computed from
measured water flow ṁw, specific heat cw, difference of input and output water
temperatures (Tin − Tout) and latent heat of vaporization Hv.

Data are scaled in range [−1, 1] and split into training and test datasets. 75%
of total samples are used for training (30 days) and the remaining for testing
(10 days).

5 Experiment and Results

Figure 4 shows the architecture of the cGAN developed to estimate the evapo-
rated water. Several configurations were tested but a simple network with only
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Fig. 4. Architecture of cGAN model implemented.

dense layers for both generator and discriminator is used since it gave the most
accurate results. The dense layers are trained using a LeakyRelu activation since
this function introduces non-linearity in the model without the Dying ReLU
problem where some neurons remain inactive. The last layer of each network,
since they are composed of only one neuron, uses a sigmoid function since the
output of the generator is a regressor, and the output of the discriminator is a
classification.

The input of the model are two concatenated vectors since we are working
with a conditional GAN. One vector is composed of the variables related to the
cooling tower which define the working state x and a noise vector z that is used
to create the generative model. The size of the noise vector is tunable and is
another parameter of the model. In our case, the size of the noise is set to 4
(equal to variables) since it provides the best results.

The MAPE index (see Eq. 4) is used as metrics to evaluate the model since
the values are easily understood by any engineer providing a direct measurement
of the accuracy of the evaporated water and delimits the error in the cooling
production estimation [2].

MAPE =
100%
n

n∑

i=1

∣
∣
∣
∣
yi − ŷi

yi

∣
∣
∣
∣ (4)
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Fig. 5. Loss and accuracy for both generator and discriminator.

Since the cGAN provides a probabilistic estimation of the calculated variable, to
test the performance of the algorithm, once the model is trained, several values
of the evaporated water are calculated for the same timestep. The mean value is
calculated for this probability distribution and this mean is used as value in the
MAPE index. So the model is tuned to minimize the error of the mean value of
the calculated variable, the accuracy of the distribution is not taken into account.

The model is trained using the training dataset (75% of total). Cross vali-
dation is applied for selecting the parameters which provide the lowest MAPE
value. Figure 5 shows the loss results for both the generator and the discrimina-
tor and the accuracy of the model. The accuracy variability denotes that there
is no convergence error so the model is not always generating false data. Since
the accuracy fluctuates, the filtered value is shown. The maximum accuracy is
achieved around 5000 epochs. Also, since the loss of both networks are not zero
and the values are stable through the epochs, the model does not collapse.

Once the model is trained, the evaporated water of the test dataset (remain-
ing 25% of total) is calculated. Since we want to obtain a distribution, each
sample is calculated several times changing the noise values which are generated
randomly. In order to obtain a detailed distribution, 5000 values are calculated
for each sample. Figure 6 shows the results of applying the resulting cGAN model
to the test dataset. The MAPE error for this dataset is 1.54%. Figure 6a shows
the results of the mean estimated value of water evaporation (blue points) and
the real one (cyan stars) and the areas are the results of the confidence interval
for the distribution of each sample.

Figure 6b shows in detail the probability distribution for three different work-
ing points of the cooling tower that are considered as representative. The left
one corresponds to a high cooling demand. This distribution has a high vari-
ance so the results are less accurate, also it shows a bit of asymmetry. The right
one corresponds to a low cooling demand where the tower is more stable so the
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(a) Estimation of evaporated water and the confidence interval for the test dataset.

(b) Histograms of evaporated water in different working points of the cooling tower.

Fig. 6. Estimation of evaporated water.
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variance is less and the forecasting is more accurate. Lastly, the central one is a
transient point between two states and it also has a low variance.

6 Conclusions

This paper proposes the use of a Generative Adversarial Network (GAN) to
estimate a variable that is not measured directly so it can be seen as a virtual
sensor. Since the evaporated water is highly dependable of varying environmental
variables, it is difficult to estimate the real value so the use of this kind of neural
networks let us estimate a probabilistic distribution of the real value.

GAN, which has been widely use in image generation so far, has proven
to estimate analog values taking into account external variables that provide
a working condition and noise that alter the working point introducing several
disturbances. The output of the model provides a probabilistic estimation of the
value of the evaporated water so instead of using a unique value we can use
the confidence interval to estimate the extreme values that the evaporation can
have.

Although the cGAN model provides good results, only the static information
has been considered, the actual sample of evaporated water is estimated using
only the actual values of the conditional variables. As future work, it should be
used past information of the variables with temporal layers such as LSTM to
improve the results. Moreover, the proposed methodology should be compared
with other probabilistic methods.
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Abstract. Real-world time series often present missing values due to sensor
malfunctions or human errors. Traditionally, missing values are simply omitted
or reconstructed through imputation or interpolation methods. Omitting missing
values may cause temporal discontinuity. Reconstruction methods, on the other
hand, alter in some way the original time series. In this paper, we consider an
application in the field of meteorological variables that exploits end-to-end
machine learning. The idea is to entrust the task of dealing with missing values
to a suitably trained recurrent neural network that completely by-passes the
phase of reconstruction of missing values. A difficult case of reproduction of a
rainfall field from five rain gauges in Northern Italy is used as an example, and
the results are compared to those computed by more traditional methods. The
proposed methodology is general-purpose and can be easily applied to every
kind of spatial time series prediction problem, quite common in many envi-
ronmental studies.

Keywords: Time series � Rainfall field � Data augmentation � Artificial neural
networks � LSTM cell

1 Introduction

A frequent issue encountered while working on environmental problems, such as
weather forecasting or air pollution, that exploit data recorded with ground sensors, is
the presence of missing values. This may be due to human errors, but more frequently
depends on the failure of the sensors or the transmission network, particularly in severe
weather conditions. The most common methods to deal with missing values are
imputation or interpolation [1–3]. Since both operations present critical aspects, the
approach investigated in this work aims at training a Long Short-Term Memory
(LSTM) Neural Network (NN) bypassing this step.

The presence of missing data can be tackled with a variety of methods, depending
on the dimension of the dataset, the choice of the prediction task, and the nature of data
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themselves. A classical approach is to fill the gaps with the mean of the data (mean
imputation) or with the closest known value (i.e., nearest-neighbour substitution). More
sophisticated techniques fit a function to the known data and then evaluate it in the
unknown spots to fill the gaps. The fitted function is usually a polynomial or, in case of
spline interpolation, a combination of polynomials. Other techniques to perform this
task investigate the statistical behavior of the dataset: one of them is the kriging
method, which relies on the computation of the empirical variogram of the considered
data [4, 5].

When the problem deals with both spatial and temporal distribution of different
variables, the number of interpolation possibilities increases, as spatial cross-
correlations and temporal autocorrelation can be taken into account. Another
approach that considers both time and space relations is using an (often very complex)
physically-based model which assimilates the current available data [6–9]. However,
real-time assimilation is mostly computationally prohibitive and requires data about
other variables that may also be missing.

Regardless of the algorithm being used to obtain the cleansed input data, this
procedure introduces a reconstruction error that will propagate in the subsequent phases
necessary to compute the desired output.

In this paper, we propose an end-to-end machine learning approach [10, 11] able to
autonomously deal with missing input values, completely bypassing the phase of
reconstruction. Our idea consists of training a Recurrent Neural Network (RNN),
specifically an LSTM net, using the raw dataset with missing data, letting the RNN
itself compensate for the lack of information by exploiting the spatial and temporal
correlations in the dataset.

The dataset considered in this contribution consists of five time-series of rain rate,
collected by a network of gauges located in Northern Italy. Artificial failures are
introduced in the data series to test the capacity of an LSTM architecture to overcome
the problem of missing input values. The ability to compute a nonlinear analytical
function of the measurement values is used as a performance indicator.

2 Materials and Methods

2.1 The Measurement Network

The study area (Fig. 1) is located in the North of Italy and is delimited by the
watersheds of the Olona, Lambro, and Seveso rivers, covering a surface of about
1400 km2. This is an almost completely flat area, except for the northern boundary
where the Alpine mountain chain begins. The region is well known to be subject to
very intense and localized convective storms [12–15] that lead to severe damages,
especially in Milan municipality.

The input dataset consists of 4 complete years (2015 to 2018) of rainfall values
collected by five rain gauges, namely s1, s2, s3, s4, and s5, with a temporal resolution of
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5 min (Fig. 2). These rain gauges belong to the network managed by ARPA Lom-
bardia, the environmental protection agency of the Lombardy region.

Pearson’s and Spearman’s correlation coefficients have been computed to quantify
the spatial correlation and the results are reported in Table 1 and Table 2. These values
have been calculated for every couple of rain gauges only when they were recording at

Fig. 1. Panel (a) shows a geographical overview of the study area. Panel (b) shows the position
of the considered rain gauge network in the Seveso, Olona and Lambro hydrological basins
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Fig. 2. Temporal series of the five inputs (light grey), i.e., the rainfall rate measured by s1, s2, s3,
s4, s5 rain gauges, and the corresponding output y (dark grey), computed as a non linear function
of the inputs.
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the same time an amount of rain different from zero. In this way, we investigate the
correlation only during rain periods.

The spatial correlation between the measurement stations is not high, despite the
relatively small dimension of the basin. This makes the reconstruction of the rainfall
field particularly difficult.

For each time step, the five values recorded by the rain gauges are combined into a
nonlinear analytical function to obtain the correspondent output:

stot tð Þ ¼ p1 � s1 tð Þþ p2 � s2 tð Þþ p3 � s3 tð Þþ p4 � s4 tð Þþ p5 � s5 tð Þð Þ=
X

i
pi ð1Þ

y tð Þ ¼ f stot tð Þð Þ � stot tð Þ ¼ 1� e�stot tð Þ
� �

� stot tð Þ ð2Þ

where stot(t) is a normalized weighted linear combination of the inputs; s1(t), s2(t), s3(t),
s4(t), s5(t) are the rainfall rates at each rain gauge measured at each time step (5 min);
y(t) is the output of the nonlinear function considered (bottom panel of Fig. 2). The
weights and the function have been chosen in order to simulate the computation of the
effective runoff in the catchment. This is usually computed using, as weights pi, the
areas of the Thiessen polygons represented by each sensor, or some spatial interpo-
lation method. The exponential factor f stot tð Þð Þ represents the effect of soil saturation
for which runoff is small when the total precipitation is limited and becomes almost
equal to the total rainfall when it is abundant. The full dynamic of the soil water content
is not taken into account by this formulation.

Note that the definition of a known analytical function, instead of using the actual
runoff of the river system, is necessary to detect the NN performances in solving the
missing value issue alone. When using real runoff data, the overall performance of the

Table 1. Pearson’s correlation coefficients.

Stations s1 s2 s3 s4 s5
s1 – 0.25 0.14 0.21 0.36
s2 0.25 – 0.25 0.31 0.24
s3 0.14 0.25 – 0.13 0.12
s4 0.21 0.31 0.13 – 0.23
s5 0.36 0.24 0.12 0.23 –

Table 2. Spearman’s correlation coefficients.

Stations s1 s2 s3 s4 s5
s1 – 0.30 0.20 0.30 0.37
s2 0.30 – 0.26 0.34 0.30
s3 0.20 0.26 – 0.23 0.20
s4 0.30 0.34 0.23 – 0.34
s5 0.37 0.30 0.20 0.34 –
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NN would be due both to the ability to interpret missing data and to replicate the actual
rainfall-runoff process. For the same reason, using other, more complex, analytical
formulations of the target set y, does not change the general conclusions we reach.

The characteristic of this dataset is the absence of missing data along the considered
time horizon: this allows the computation of the output at each time step.

2.2 Machine Learning Training Dataset

Since rain gauges require careful maintenance, it is not always possible to avoid the
onset of technical problems, external damages, or failures that compromise the conti-
nuity of the collected temporal series. The characterization of the missing data is
performed investigating the time to failure (TTF) and the time to restore (TTR) of the
entire regional rain gauge dataset managed by ARPA Lombardia, consisting of the data
collected by 19 sensors for about 20 years (they were activated at different dates).
The TTF is defined as the length of the time interval between two consecutive failures,
i.e., the period of correct functioning of the sensor. On the other hand, the TTR is
defined as the length of the time interval required to fix a malfunctioning sensor, i.e.,
the period in which the instrument collects no data. For both TTF and TTR histograms,
an exponential distribution [16] has been fitted with meanTTF = 442.00 and
meanTTR = 10.79 time steps, respectively. These two values also represent the expo-
nential rate of the distributions. Thus their values strongly affect the shape of such
distributions: the lower the mean value, the more the probability density function is
stretched to the left. This is due to the presence of many short duration values and fewer
long duration values. By sampling these two estimated distributions iteratively, it is
possible to generate any number of synthetic time series of missing data within the
complete input dataset of the five rain gauges. Missing values of these synthetic time
series are filled with a marker constituted by an out-of-range value: in this case, −1.
The obtained input sequences with out-of-range values are used to train an LSTM
model together with the known output of the complete time series.

It must be noted that, despite the training set being constituted by more than a
million values for each sensor, the number of rainfall episodes is much more limited:
recorded values differ from zero only 3% of the time. Failures are distributed on the
time series according to actual statistics, and thus cases, when a simulated failure
occurs during a rainfall event, are also rare.

2.3 The Training Procedure

The proposed procedure, hereafter called end-to-end machine learning, differs from the
traditional pipeline: the data filling step, with its related critical aspects, is avoided, and
the LSTM model directly manages missing values (Fig. 3). Note that Fig. 3 describes
the use of the model in inference mode, i.e., it shows the forward pass only, without
representing the backward pass.

Starting from the four years without missing values, we generated an arbitrary
number (5 in this case) of repetitions of the entire dataset with missing values extracted
from the distribution of TTF and TTR. All the repetitions of 2015 (a year with low
precipitation) and 2018 (with high rainfall) composed the training set. The validation
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set, used to determine the NN architecture and hyperparameters, is made by the five
synthetic repetitions of the year 2016. Finally, the repetitions of the year 2017 have not
been involved in the NN identification and are used to evaluate the network perfor-
mances fairly. Performance metrics are thus computed as averages of five synthetic
repetitions.

The neural structure adopted in this work is an LSTM net. Each LSTM cell has
three gates (input, output, and forget gate), a cell state, and a hidden state [17, 18]. The
hidden and cell states are responsible for keeping track of the relevant information
provided by the input. The input and forget gates define how much a new input and the
current state respectively affect the new state of the cell. The output gate determines
how much the current state affects the output. The best combination of the hyperpa-
rameters has been selected using a traditional grid search approach. We evaluated the
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Fig. 3. Comparison between the Traditional Pipeline for managing missing data and the End-to-
End Machine Learning used in this work.
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following values: 1 or 2 hidden layers; 5 or 10 neurons; learning rates of 10−1, 10−2,
10−3; decay rates of 10−3, 10−4; batch sizes of 256, 512, or 1024 samples. We repeated
the training three times for each combination of the hyperparameters to avoid partic-
ularly unfortunate cases. After the tuning process, the number of LSTM neurons was
set to 10 (organized in a single hidden layer), the learning rate to 10−2, the decay rate to
10−3, and the batch size to 512.

3 Results

Several indicators have been computed to evaluate the performances of the proposed
approach. First, as shown in Table 3, the Mean Squared Error (MSE) and coefficient of
determination (R2) have been computed over the training, validation, and test datasets.
These values are compared in Table 3 with those obtained by an analytical benchmark:
when a rain gauge is not working, its weight is set to zero, and the weights of the
working sensors are increased accordingly. Once stot has been obtained, we apply the
real nonlinear function to compute the output. Note that the proposed analytical
benchmark is somehow unfair because we assume to know exactly the shape of the
nonlinearity, which is generally unknown. Despite that, the NN clearly dominates this
benchmark, with a 22% improvement of R2 in the test set.

Figure 4 presents the traditional scatterplots showing the NN performance in
reconstructing the output when the dataset is complete, i.e., no missing values, and
incomplete, as in one of the synthetic sequences generated. Besides the generally good
agreement between the actual output and the computed one, it is interesting to note that

the NN misses some episodes for which it definitely underestimated the output values.
There are points in training, validation, and test datasets where the modeled output is
very low, while the correct value should have been much higher. They represent the
cases when the missing values were exactly related to the rain gauge where the peak
precipitation was taking place.

One such episode is illustrated in column (a) of Fig. 5 (note that the input hyeto-
graphs go to −1 when the value is missing). The values recorded at s4 are high and
missing for the whole episode. Since the blackout started when it was not raining,
nothing can be gained from the time profile. The rainfall episode partly interested also

Table 3. Performance comparison between the end-to-end approach and the analytical
benchmark. The metrics are computed on the samples with at least one missing input and an
actual output greater than 0.

Set Metric End-to-end machine learning Analytical benchmark

Training MSE 0.83 � 10−3 1.52 � 10−3
Training R2 0.94 0.89
Validation MSE 1.14 � 10−3 2.10 � 10−3
Validation R2 0.91 0.84
Test MSE 1.86 � 10−3 4.81 � 10−3
Test R2 0.86 0.64
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station 5, which however has a limited area and thus the output, particularly the second
peak, is substantially missed. Things are different for the second episode in column (b).
Again, station 4 is out-of-service, but the rainfall episode is more relevant on the other
stations, and thus, peak values are almost perfectly fitted.

The NN performance in Fig. 5 (b), demonstrates that the information provided by
the out-of-service station is not necessary to predict the output in the considered

Fig. 4. Scatterplots showing the LSTM performances in the output reconstruction with a
complete input dataset (left column) and with a dataset with missing values (right column).
Performances are computed over train, validation, and test sets.
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episode correctly. Despite that, the analytical benchmark strongly overestimates the
peaks.

Fig. 5. Two rain episodes, (a) and (b), showing the 5 input hyetographs and the actual output
compared with the LSTM model and the analytical model output.
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4 Conclusion

The problem of missing data in a spatial time series set of environmental variables is
addressed in this study using an LSTM neural network that directly operates between
input (the time series with missing values) and output (the computed environmental
variable). This means the NN operates end-to-end. The proposed approach completely
by-pass the traditional phase of replacing the missing values with some external
operation (some statistics, replacement with other sensor’s values, omission) that, in
one way or the other, alters the original information content. The NN must be suitably
trained to learn how to deal with missing values, and, to do so, it is necessary to start
from a complete dataset on which “artificial” failures are produced with the same
statistical distribution of the real downtimes. Once this is accomplished, the NN is
ready to enter operation and can immediately compute a real-time output, that inher-
ently considers both time (on the same sensor) and space (between sensors) relations.
This makes the approach much quicker than other methods, such as model assimilation
that requires much more runtime power, and more precise than classical interpolation
or imputation methods that simplify the time and/or space dependencies.

The proposed approach has been tested on a quite difficult case study of rainfall
field reconstruction in Northern Italy, where episodes are rare, intense, and concen-
trated. This means that both temporal and spatial correlations are low, and when some
critical sensors are not working, an accurate reconstruction of the rain field is definitely
impossible. Nevertheless, even in this challenging case, the end-to-end neural approach
outperforms the analytical benchmark competitor.

In this work, the gauge malfunctioning refers to a complete breakdown of a sensor,
as in the actual dataset. In general, other situations may occur, leading to corrupted
values (e.g., outliers). The proposed end-to-end approach can be specifically trained to
compensate also for these faulty values.

When dealing with a more complex task, such as the forecasting of the actual runoff
in the example considered here, the NN architecture may need to be enriched, but the
results shown above suggest that the traditional “art” of filling field data gaps may
progressively become obsolete.
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Abstract. In this paper, a method to access the location of a steel strip
in the rolling process was developed. The method consists of a hybrid
system composed of a CNN-based semantic segmentation followed by
morphological operation and outlier removal. The proposed method was
capable of estimating the position of the strip with high precision and
low computational burden, making it suitable for the application. The
implementation of automatic estimation for the steel strip positioning,
replacing the current human operation, can yield substantial costs saving.
Future work will be carried out for the and integration of automatic
control in the process.

Keywords: Steckell mill · Semantic segmentation · Convolution
neural network · Hot strips

1 Introduction

Steel strips are manufactured from slabs, which undergo several times between
a pair of work rolls until the obtention of the intended thickness reduction [15,
16,31,32]. During the rolling process in Steckell mill lines, the strips are moved
in the rolling direction by the roller table. However, the strips could also be
driven perpendicularly to this direction by the rolling procedure, which causes a
misalignment of the strip. Consequently, the unaligned strips are prone to collide
with the mill structure. As the 20 ton strips are rolled at 10 m/s, the collisions
are an impairment for the production lines, causing material losses and severe
damage to the mill structure and equipment. Annually, the material loss due to
collisions and equipment failure expenses are about one million euros [9].

Most of the Steckell lines apply a semi-manual procedure to correct the afore-
mentioned strips unalignment. In this procedure, a human operator has access
to real-time process images acquired from analog cameras settled over the mill
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structure. From the content of the images, the operator evaluates the strip posi-
tion and judges whether it displays misalignment. Based on this information the
operator will attempt to manually correct the strip position through an encoder,
which creates a gap difference between the extremities of the work rolls pair and
steers the strip on the direction of the major gap. The alignment correction pro-
cedure is susceptible to failure due to the high longitudinal speed of the strips,
which requires a reaction time that might exceed the human capability. Besides,
a manual encoder is not a precise tool and can lead to inadequate control [7,9].

Automate the alignment of the strips in a Steckell mill line could reduce the
damage to the plant, maintenance costs, and prevent material losses [9]. The
start point through the automated process is to determine the strip position,
which could be accessed by detecting the strip portion on process images. Nowa-
days, semantic segmentation based on the convolution neural network is largely
used in object detection and classification. However, from the best of the authors’
knowledge, there is no work on the available literature that employes such an
approach to strip detection in a rolling mill process. On the other hand, there
are a considerable number of studies that apply convolution neural networks
in metalworking. Some examples are the detection of defects in metal casting
[3,8], recognition of slab identification numbers [17], mechanical properties pre-
dicting [30], bearing fault diagnosis [12,14,24,28,33], steel defect identification
[20,26], and crystallographic defects in structural alloys [23]. This work presents
a method that employs the process images to estimate the strip position. The
system extracts the strip portion of the image via semantic segmentation based
on convolution neural network (CNN) and infers the strip position in relation to
the image bottom edge.

2 Methodology

This work presents a method that employs supervised learning to estimate the
position of steel strips in a Steckell Mill line. The method consists of a system
that applies semantic segmentation based on a convolution neural network to
extract the strip portion from process digital images and estimate its position in
relation to the image bottom edge. The flowchart presented in Fig. 1 illustrates
a summary of the system steps for obtaining the position of the strips.

The dataset is composed of 704 × 480 px RGB images, which were acquired
by an analog camera installed over the mill structure with a frame rate of 30 fps.
The acquired images are selected by the algorithm according to the activation
command signal of the descaler and the strip tracking signal. During the descaler
period, the images will present excessive noise content, due to the dense steam on
the region between strip and camera. Also, the images acquired in the instants
that the strip is not positioned under the camera are not relevant to the analysis.
Therefore, in both circumstances, the acquired images will not be processed for
position estimation.
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Fig. 1. System flow chart.

2.1 Regions of Interest and Labeling

The images contain a portion of the strip, horizontally aligned to the image
bottom edge, and parts of the mill structure, which are irrelevant to the task
in hand. Thus, a selection of a region of interest that lowers the number of mill
components present on the image reduced its complexity. The elected region of
interest (ROI) is highlighted in Fig. 2 over an example of the process images used
as the system input.

ROI

Fig. 2. Elected region of interest (ROI) over an example of the process images used as
the system input.
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The ground truth labeling of the strips was created by manual annotation,
in which pixels belonging to the strip portion were assigned with intensity 1 and
to the background with intensity 2. The selected dataset comprises 1390 images,
which were split into training and test datasets on the proportion of 1112 to 278
images, respectively.

The images were acquired in a complex environment. The strip incandes-
cence, resulting from the strip high temperature, reflects over the mill structures
present in the surroundings of the strip. These structures mirror the strip color
and could be easily mistaken as a strip portion. Examples of these reflections are
indicated in Figs. 3-1b, -2a, -2b, and -2c by white arrows. Another complication
is the presence of remaining elements from the descaler process. These elements
are usually water over the strip and steam content on the strip location and
surroundings. The water creates unpredictable patterns over the strip, as can
be perceived in Figs. 3-1b, -1c, -2b, and -2c. On the other hand, the steam con-
tent blurry the acquired images. Figures 3-1a, -1c, and -2a show some of these
blurring particularities. Considering these occasions, the labeling process was
handled carefully to avoid misclassifications. In cases that portions of the strip
were covered by steam, the labeling considers that the strip location is parallel
to the image bottom.

ba c

1

2

Fig. 3. Example of images acquired in a complex environment. The white arrows indi-
cate the reflection of the strip incandescence over the mill structure. Images 1a, 1c, and
2a are blurred due to the steam content. Remaining water from the descaler process
creates unpredictable patterns over the strip, which can be perceived in images 1b, 1c,
2b, and 2c.

2.2 Semantic Segmentation CNN Architecture

Semantic segmentation is a pixel-wise classification, which gathers pixels belong-
ing to the same category [19,23,25]. This kind of network is widely used in
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autonomous driving [4,6,10,27], medical applications [1,21,22,34], object detec-
tion [11,29], automatic localization of defects in steel [8,23] to name a few. The
architecture of a semantic segmentation network usually consists of an encoder-
decoder task [2,13,18]. In the present work, the first part is composed of one or
more convolution and max pooling operations, that extract high-level features
by mapping the input to a lower dimension representation [18]. In contrast, the
decoder architecture, commonly composed of transposed convolutions and up-
pooling layers, expands the high-level features to recover the feature map size
compatible with the input layer size [23], followed by another convolution layer
and a softmax layer, enabling pixel-level classification.

In this study, 3 architecture configurations were investigated. They differ
among each other by the number of encoder/decoder, varying between 1, 2, or
3 pairs. Figure 4 illustrates the largest network in terms of the number of layers
(three encoders and three decoders). The influence of the number of filters in
each operation was also ascertained, the number of filters could hold values
from the set {2, 4, 8, 16, 32, 64}. Hence, eighteen architectures were explored
altogether. Moreover, the Rectified Linear Unit (ReLU) activation function was
applied after the convolution layers. As optimization parameters were selected
Adam optimizer with a learning rate of 0.001.

Input Layer

Convolution Layer

Max Pooling Layer

Transpose Convolution Layer

Softmax Layer

Fig. 4. Schematic illustration of one of the semantic segmentation architectures
designed for strip detection.

2.3 Position Estimation

Morphological operations and outliers exclusion were employed to refine the
semantic segmentation predictions. The strip portions predicted by CNN were
extracted into a binary image, from which the largest connected component
was kept and the smaller components were deleted. Afterward, a flood-fill was
applied to fill possible holes in the strip area. Out of the resulting binary image,
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the strip position was estimated from the pixel locations of the top edge. As
some of the predictions could present an irregular edge, an outlier removal with
a threshold between 40 and 60% was applied and the position was calculated
from the average of the remaining values.

2.4 Representation of the Strip Position in Physical Units

The frame size for the sampled pictures is 704 × 480 px. When the strip is not
located under the camera it is possible to identify the presence of two rolls of the
roller table arranged vertically in the image. The diameter of the rollers is equal
to 400 mm and they comprehend 140 px of the image. Therefore, the images
resolution is equal to 2.9 mm/px and the total area of the sampled images is
2011 × 1371 mm. From this information, the strip position could be estimated
in millimeters.

2.5 Performance Evaluation

The proposed method is evaluated by comparing the estimated strip position to
the expected values, calculated from the ground truth, by the Mean Absolute
Error (MAE) and the Standard Deviation (STD). The execution time was also
analyzed in order to access if the solution is fit for a real-time application. Addi-
tionally, the evaluation of each architecture was performed on the test set by com-
mon metrics used to evaluate the convolution neural network, which are pixel
accuracy (Eq. 1), precision (Eq. 2), recall (Eq. 3), Jaccard index (Eq. 4), F1 score
(Eq. 5), and specificity (Eq. 6) determined from the values of true positive (TP),
true negative (TN), false positive (FP) and false negative (FN) results [5,19,23].

• Pixel accuracy

Pixel accuracy =
TP + TN

TP + FP + TN + FN
(1)

• Precision
Precision =

TP

TP + FP
(2)

• Recall
Recall =

TP

TP + FN
(3)

• Jaccard index or Intersection-over-Union (IoU)

IoU =
TP

TP + FP + FN
(4)

• F1 score (F1)

F1 =
2 × (Recall × Precision)

Recall + Precision
(5)

• Specificity or true negative rate (TNR)

Specificity =
TN

TN + FP
(6)
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3 Results and Discussion

The present work aims to effectively localize steel strips in a Steckell mill line.
This section presents the results achieved by the proposed methodology. All
results and discussion are referring to the test set and were obtained with an
Intel Core i7-8750H CPU, 2.20 GHz, processor and installed memory (RAM)
of 16.0 Gb. The results of the semantic segmentation step from each network
can be observed in Table 1. Concerning pixel accuracy, precision, recall, IoU,
F1 score, and specificity, the models present similar performance with a maxi-
mum divergence between the best and worse results of [0.2, 0.3, 0.2, 0.4, 0.2, 0.5],
respectively. Considering the execution time, the results confirm the intuition
that the lesser the numbers of layers and filters, the higher the processing frame
rate.

Table 1. Semantic segmentation performance evaluation and position estimation
metrics.

Model

ID

Architecture Number

of filters

Pixel

accuracy

[%]

Precision

[%]

Recall

[%]

IoU

[%]

F1

[%]

TNR

[%]

Frame

rate

[fps]

MAE

[mm]

STD

[mm]

1 1 2 99.5 99.4 99.7 99.1 99.6 99.0 53.7 5.0 5.2

2 4 99.5 99.4 99.8 99.2 99.6 99.0 51.1 4.3 4.8

3 8 99.6 99.6 99.8 99.4 99.7 99.3 40.8 3.4 4.0

4 16 99.6 99.5 99.9 99.3 99.7 99.1 26.1 3.7 4.3

5 32 99.6 99.6 99.8 99.4 99.7 99.3 7.8 3.7 4.1

6 64 99.6 99.5 99.8 99.3 99.7 99.2 1.6 3.6 4.2

7 2 2 99.4 99.3 99.8 99.1 99.6 98.8 42.5 4.8 4.9

8 4 99.6 99.5 99.8 99.3 99.7 99.1 52.5 3.8 4.7

9 8 99.6 99.5 99.8 99.4 99.7 99.2 40.0 3.7 3.8

10 16 99.5 99.4 99.9 99.3 99.6 98.9 24.5 4.3 4.4

11 32 99.6 99.5 99.9 99.3 99.7 99.1 6.1 3.7 3.9

12 64 99.6 99.5 99.9 99.4 99.7 99.1 1.6 3.4 3.9

13 3 2 99.5 99.4 99.8 99.2 99.6 99.0 41.2 5.2 4.6

14 4 99.6 99.6 99.8 99.4 99.7 99.3 47.1 3.7 4.2

15 8 99.6 99.5 99.9 99.4 99.7 99.1 38.5 3.9 3.6

16 16 99.6 99.4 99.9 99.4 99.7 99.0 23.9 4.2 3.4

17 32 99.6 99.5 99.9 99.4 99.7 99.2 5.4 3.8 3.3

18 64 99.7 99.6 99.9 99.5 99.7 99.3 1.6 3.4 3.3

However, the segmentation process is only an intermediate step of the process.
The actual output of the system is the strip position estimation and the system
performance regarding this value is evaluated from the Mean Absolute Error
and the Standard Deviation metrics, which are also presented in Table 1. Even
though all the models presented satisfactory results, under 5.2 mm, a sensible
differentiation can be drawn among the results.

The model configuration with architecture 1 (one encoder and one decoder
set) and 8 convolution filters in each layer (Model ID 3) was elected the best
model by the authors. This model achieved the best combination of Mean Abso-
lute Error and frame rate, 3.4(±4.0) mm, and 40.8 fps, respectively. Even though
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another two models (Model ID 12 and 18) achieved a comparable degree of pre-
cision, their frame rate is lesser than 30 fps (frame rate of the video-camera),
which is non-desirable for a real-time application.

Moreover, Fig. 5 shows the evolution of the estimated and expected position
through time for model 3. The graphical representation reiterates the numerical
results showing that the proposed methodology can estimate successfully the
strip position.

Fig. 5. Estimated strip position in relation to the expected values of model ID 3.

Lastly, Fig. 6 exemplifies the whole process, showing six samples. For each
pair, it can be observed the input on the left and the output on the right. The
output image consists of the image overlaid by the segmentation classification in
pink and a black line showing the estimated position given by the morphological
operations and outliers exclusion. It is worth mentioning the robustness of the
system, correctly placing the black line even when the segmentation step provides
insufficient results. The proposed methodology can estimate the strip position
even in a complex environment, such as the steam presence (pairs 1c and 2b),
mill structures reflecting the strip incandescence (pairs 1b and 2a) and water
presence over the strip (pairs 1a, 1b and 2c).
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a b c

1

2

Fig. 6. Pairs of regions of interest containing the acquired image, on the left, and the
semantic segmentation prediction, on the right. The black line over the labeled image
indicates the position of the strip estimated by the system.

4 Conclusion

In this paper, a method to access the location of a steel strip in the rolling
process was developed. The method consists of a hybrid system composed of
a CNN-based semantic segmentation followed by morphological operation and
outlier removal. The proposed method was capable of estimating the position of
the strip with high precision and low computational burden, making it suitable
for the application. The implementation of automatic estimation and control
for the steel strip positioning, replacing the current human operation, can yield
substantial costs saving. Future work will be carried out for the and integration
of automatic control in the process.
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Abstract. Transition towards Industry 4.0 relies heavily on manufac-
turing digitalisation. Digital twin plays a significant role among the pool
of relevant technologies as a powerful tool that is expected provide digi-
tal access to detailed real-time monitoring of the physical processes and
enable significant optimisation due to utilisation of big data acquired
from them. Over the past years a significant number of works produced
conceptual frameworks of digital twins and discussed their requirements
and benefits. The research literature demonstrates application examples
and proofs of concepts, although the content is less rich. This paper
presents a generative model based on generative adversarial networks
(GAN) for machining vibration data, discusses its performance and anal-
yses the drawbacks. The proposed model includes process parameter
inputs used to condition the features of generated signals. The con-
trol over the generator and a neural network architecture utilising tech-
niques from style-transfer research provide the means to analyse the
signal building blocks learned by the model and explore their relation-
ship. The quality of the learned process representation is demonstrated
using a dataset obtained from a machining time-domain simulation. The
novel results constitute a critical component of a machining digital twin
and open new research directions towards development of comprehensive
manufacturing digital twins.

Keywords: Generative adversarial network · Digital twin · Machining

1 Introduction

The 4th industrial revolution, i.e. the strategic vision of transition to Industry
4.0, draws a path to a totally customisable production with viable single-item
batch production, just-in-time execution and high resource-efficiency. Advances
along this path are believed to be feasible as a result of pervasive digitalisation
throughout the industry, spanning from the shop-floor to the whole supply chain
and to the users of the end-products [7]. Total factory digitalisation is being
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made possible by the technologies emerging from the research fields of big data,
cyber-physical systems (CPS) and industrial internet of things (IIoT). Digital
twin is a precise representation of a physical object or process in the digital
realm. Development of digital twins is an important step of the digitalisation
process, as the unification of digital and physical data within a single virtual
object enables significant efficiency improvements across multiple stages of the
object’s life cycle [17].

Expert-based analytics models tend to achieve high accuracy rates, but have
several drawbacks that can become blocking factors for implementation of a
digital twin. On one hand, in an interconnected CPS environment interactions
between the components introduce very high complexity of the modelled phe-
nomena. On the other hand, the incremental character of module development
and the fluid module composition cause an almost constant stream of changes in
the system [12]. Data-driven modelling addresses these issues by making use of
big data produced by the various manufacturer’s CPS and automating the mod-
elling process, thus aligning the digital twin state with the evolutionary changes
in the modelled systems.

Development of efficient and flexible generative data-driven models of phys-
ical manufacturing processes is an important step towards CPS digitalisation
in general, and particularly to wide adoption of digital twins throughout the
industry. Artificial neural networks (ANN) have shown increasingly impressive
state-of-art results on many data-driven problems during the past decades. Gen-
erative adversarial network (GAN) is a type of ANN architecture based on a
minimax game between two ANN: the generator that learns to produce artificial
data samples and the discriminator that learns to identify fake data samples
[5]. Recently GANs found various uses, most notable in generation of realistic
images of human faces [10].

GAN is a suitable candidate for digital twin development due to its efficiency
at inference time and the generative nature of the model, in addition to the
flexibility of a data-driven method. This paper proposes a GAN-based digital
twin model that captures the conditional distribution of a signal, conditioned
on the controlled parameters of the underlying process. Vibration is selected as
the analysed signal type based on the low expected cost of its acquisition and
potential usefulness in analysis of the process.

2 Methodology

2.1 Dataset: Machining Tool Vibration

The proposed model is tested on a simulated dataset representing the displace-
ment (vibration) of a cutting tool along the x direction originating from the
interactions between the tool and a workpiece. The operation considered is a
linear non-slotting milling cut performed with a straight-teeth cutting tool on
a metal workpiece. The dataset is produced using a physics-based time domain
simulation model described in [15]. The model tracks the position of each cut-
ting tooth and the workpiece geometry produced by previous cuts and derives
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the tool displacement from the forces produced by the interaction of the cutting
teeth and the workpiece at each simulation time step. The simulation parameters
used are detailed in Table 1. The parameter values are constant throughout each
cutting operation, and the parameters varied across the samples in the produced
dataset are chip width and spindle speed in ranges from 4e-3 to 5e-3 and 3000
to 4000 respectively. The generated signals represent the displacement of the
cutting tool during the third revolution of the cutting tool, sampled at a rate
proportional to the spindle speed so that all signals are of the same length.

Table 1. Milling time domain simulation parameters

Parameter Value

Feed rate f 10.2

Spindle speed ω 3000 to 4000

Number of teeth Nt 3

Chip width b 4e-3 to 5e-3

Steps per revolution 256

Start angle of cut φs 126.9

Exit angle of cut φe 180

Process dependent coefficient Ks 2250e6

Force angle β 75

x Direction dynamics parameter kx 9e6

x Direction dynamics parameter ζx 0.02

y Direction dynamics parameter ky 1e7

y Direction dynamics parameter ζy 0.01

Number of revolutions (data recorded for third revolution only) 3

2.2 Model Architecture

The proposed digital twin is based on the generative adversarial network (GAN)
model conceived in 2014 [5]. The authors combined two neural networks within
a zero-sum game. One network, the discriminator is rewarded for high accu-
racy of classification of data samples as either real or fake. The other network,
the generator, is rewarded for generation of fake samples that are classified by
the discriminator as real. Therefore, the generator approximates the true data
distribution through the training process. The approach was extended in multi-
ple directions, including but not limited to research on various neural network
architectures for the generator and the discriminator (e.g., Deep Convolutional
GAN [13], BigGAN [2], StackGAN [19], WaveGAN [4], SeqGAN [18], Bayesian
GAN [14]) reviews of the GAN training approaches and the networks’ loss func-
tions (notably, the application of Earth Mover distance as the loss metric in
Wasserstein GAN [1], its extension with gradient penalty in WGAN-GP [6] and
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progressive GAN growing [9]),experiments with conditioning the GAN by addi-
tional inputs or outputs, as proposed in Conditional GAN [11], InfoGAN [3] and
ss-InfoGAN [16].

The developed neural network architecture is inspired by StyleGAN [10], an
image generation model based on two-dimensional deep convolutional discrimi-
nator and generator networks. Elements of the StyleGAN are repurposed for the
1D case of a time domain signal, excluding the noise inputs, as the variation of
outputs of the target model is deterministic with respect to the input process
parameters. The architecture is enhanced with the substitution of the random
input latent vector for continuous labels C: the machining process parameters,
chip width and spindle speed. The process parameters are used as inputs to the
generator and as outputs of the discriminator, i.e. the discriminator learns to not
only identify synthetic data samples, but also to estimate the labels associated
with a given time-series. The architecture includes a non-linear mapping network
M that projects latent inputs into disentangled latent space, approximated by
a multi-layer feedforward neural network. The styles S = M(C) produced from
the input labels C by the mapping network subsequently control the modula-
tion of outputs of the convolutional layers within the synthesis network F of the
generator (see Fig. 1).

The GAN loss function is based on Wasserstein GAN with gradient penalty
(WGAN-GP) [6]. WGAN-GP losses for the generator and the discriminator are

Lwgan-gp
G = − E

x̃∼Pg

[D(x̃)],

Lwgan-gp
D = E

x̃∼Pg

[D(x̃)] − E
x∼Pr

[D(x)] + λgpL
gp

(1)

respectively, where
Lgp = E

x̃∼Px̃

[(||∇x̃D(x̃)||2 − 1)2] (2)

is the gradient penalty and λgp is its scaling hyperparameter. The loss functions
are adjusted to accommodate the inclusion of machining process parameters in
the networks architecture by addition of terms that penalise inaccurate label
predictions. This is similar to the approach followed by the authors of InfoGAN
[3], with the following difference. The accuracy of label predictions for training
data Linfo

D impacts only the discriminator, while the accuracy of the predictions
for fake data samples Linfo

G is taken into account only by the generator. The loss
terms are

Linfo
G =

√∑n
j=1(cf,j − ct,j)2

n
,

Linfo
D =

√∑n
j=1(cr,j − ct,j)2

n
,

(3)

where cf,j is a value of parameter j predicted by the discriminator based on
a fake signal, cr,j is a value predicted from a real signal, and ct,j are the true
parameter values. On one hand, the generator is thus incentivised to encode the
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Fig. 1. Architecture of the generator F . “A” denotes learned affine transformations of
style components si; “AdaIN” - adaptive instance normalisation [8], outputs of which
are modulated by the transformed style components.

label information in an identifiable way within the synthesised samples. On the
other hand, the discriminator learns the relationship between labels and samples
only on the real data, thus preserving the non-cooperative nature of the minimax
game between the generator and the discriminator. The total loss functions for
the generator LG and the discriminator LD are therefore:

LG = Lwgan-gp
G + λinfoL

info
G ,

LD = Lwgan-gp
D + λinfoL

info
D ,

(4)

where λinfo is the scaling factor for the label prediction accuracy error loss.
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Fig. 2. Comparison of generated time-series samples (blue) and validation data samples
(yellow). X axis represents time steps, Y axis - displacement magnitude in log scale.

3 Experimental Results

The paper shows that the generator successfully learns to capture the relation-
ship between the process parameters and the time domain signal and performs
well both on training and validation data. Figure 2 depicts several samples of
generated time-series against the signals from training data produced using the
same process parameters.

3.1 Visualisation of Generator Performance

The generative performance of the neural network is investigated via analysis
of metrics mapped across machining process parameter values, chip width and
spindle speed. This is visualised by calculating the inspected metric for a range
of process parameter pairs and plotting the values on a two-dimensional figure
with spindle speed varied across the X axis and chip width across the Y axis.
The training data exhibits high variability, especially across the spindle speed
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parameter values, visible on the plot of standard deviations of the training data
signals (Fig. 3). Figure 4 depicts the root mean square error (RMSE) of the gen-
erated time-series (i.e. the error between synthetics signals and dataset signals)
on training and on validation data. RMSE distributions are nearly identical, i.e.
the generator performs equivalently during both training and validation.

Fig. 3. Standard deviation of training data samples (log scale).

Fig. 4. RMSE values in log scale for generated time-series across various process param-
eter values for training data (left) and validation data (right). Equivalence of accuracy
on both indicates low over-fitting.

In contrast to the high accuracy of the generator in the areas of the parameter
space characterised by low dispersion in the training data, the generative per-
formance is suboptimal in some regions of high training data variance. Closer
inspection of a region between 3500 and 3600 spindle speed reveals that the
generator experiences local mode collapse (for an example refer to Fig. 5). The
troughs visible on the RMSE map in this region represent a parameter space
where the generator successfully learnt the modes of the target signal, while
the three peaks between and to the sides along the X axis from these narrow
bands of high accuracy are indicative of the dropped modes. An inspection of the
dynamics of change of the training data signals compared to the change of the
synthesised signals reveals that whereas the training data signals change shape
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Fig. 5. Example of a path in labels space where the transition between the signal modes
is smooth in the training data, but abrupt in the signals produced by the generator. The
blue dot on the RMSE maps (left) indicates the parameter values used to compare the
two signals (right), real signal in yellow and generated signal in blue. The differences
between the fake signals along the labels transition paths shown on the two top figures
and the two bottom figures are much lower than for the real signal. The opposite is
true for the transition captured by the two middle figures.

linearly with the change in spindle speed, the generated signals remain constant
for most of the inspected parameter space and sharply switch to the next mode
near the peak on the RMSE map.
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Fig. 6. Interpolated signal x̃3 comparison with a source signals x̃1 (top two figures)
and x̃2 (bottom two figures). The blue dashed line on the first figure represents the
initial signal x̃1. Red line, an interpolated signal based on s1..5 from signal 2 style set
S2 and s6..16 from S1, is significantly different from x̃1 in its phase and modes. Green
line, an interpolated signal for w1..5 = 0, w6..16 = 1, differs from the source in its local
high-frequency features.

3.2 Interpolation Analysis

The style-based neural network architecture enables inspection of the influence
of the disentangled input parameter vectors si at the different layers i of the
synthesis network G(S) within GAN, where S = {si} = M(C) is a set of style
vectors produced by the mapping network of the generator M() from the input
label vectors C. This is performed by analysing the changes in the generated
signals arising from alteration of the disentangled inputs. For two different sets
of styles S1 = {s1,i} and S2 = {s2,i} and the respective generated signals x̃1 =
G(S1) and x̃2 = G(S2), an interpolated styles set S3 is produced as a set of affine
combinations of elements of S1 and S2: S3 = {s3,i} = {s1,i ∗wi + s2,i ∗ (1−wi)}.
Thus, at each style level i the style component of S3 is the weighted sum of
the components of S1 and S2 at this level, with the weight wi = 0 indicating
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that only the component of the first style set is used and wi = 1 implying that
only the second style is applied at this level. The interpolated signal is acquired
from the interpolated style set by feeding the styles into the synthesis network,
x̃3 = G(S3).

The variation of the generated signals produced as a result of gradual changes
to one or several style components reveals the features that the style components
at the respective levels control. By performing a linear interpolation between s1,i
and s2,i for each i = k while keeping s3,i = s1,i for each i �= k, we observe that
the generator model style layers can be classified into two groups: low-level styles
s1 to s5 and high-level styles s6 to s16. The low-level styles significantly affect
the low-frequency features of the output signal like its phase and general shape.
The high-level styles impact the high-frequency detail of the generated output.
Figure 6 visualises the end points of this interpolation: an initial signal x̃1, its
interpolation towards x̃2 in low-level styles only and in high-level styles only.

4 Conclusion

To the best of authors’ knowledge this work is the first attempt to develop
a generative model of a machining process using GANs. The neural network
architecture at the base of the proposed model is computationally cheap at
inference time. This and the generative nature of GAN enable the development
of a machining digital twin component that digitally recreates the underlying
physical process in real-time. The architecture described in the paper allows a
significant degree of control over the generator via input process parameters, thus
enhancing the flexibility of the model and opening the potential for exploratory
analysis of the modelled process. The shown success of GAN in recreating the
machining vibration is an important step towards widespread implementation
of data-driven simulation models in Industry 4.0, which could find important
applications in monitoring and predictive analytics within manufacturing.

The analysis of the interaction between the inputs and the per-layer style
components within the trained GAN model shows the distinct parts of the model
that separately control the high- and the low-level features of the generated sig-
nal. The accuracy of developed model is analysed, revealing certain conditions
under which the generator fails to learn the correct signal mode distribution.
Investigation of the conditions under which the proposed model performance is
suboptimal would be the likely next research steps. The conditions of suboptimal
model behaviour can be investigated via analysis of the activations output by
the convolutional layers of the generator. Furthermore, the convolutional kernels
learned by the neural network could be analysed to identify possible similarities
with filter models used in expert-based signal processing. Both the activations
and the kernels could be analysed relationship with the style modulation com-
ponents could be additionally explored via the interpolation analysis described
in the paper.

As a real world implementation would likely be limited in terms of available
data, an investigation of the model’s capability with sparse data or unobservable
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factors is an important step in its verification. Categorisation of the continuous
labels used to condition the model could make the dataset more closely represent
data likely to be encountered on a shop-floor. Other next steps in this research
direction would include evaluation of alternative neural network architectures
and validation of the proposed model on real manufacturing data, as well as
broadening the scope of the digital twin with inclusion of multiple data sources
and modelled processes.
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Abstract. A fully-connected Deep Neural Network (DNN) architecture,
to be referred to as λ-DNN, used to predict 2D/3D scalar fields is pre-
sented. In aerodynamics, the λ-DNN is firstly trained on fields computed
using a Computational Fluid Dynamics (CFD) software. Then, it can be
incorporated into engineering processes in various ways. One possibility
is to use them in optimization problems solved by stochastic population-
based methods, in which the λ-DNN may act as the surrogate evaluation
model, replacing calls to the CFD tool. Another possibility is in multi-
disciplinary problems, to replicate the numerical solver for any of the dis-
ciplines. This small list of possible usages is not exhaustive and, of course,
different usages can be combined. The input to each DNN contains infor-
mation to identify the geometrical shape and case-related data, nodal
coordinates and, in multi-disciplinary problems, interfacing data connect-
ing solvers for different disciplines on adjacent domains. In this paper,
the λ-DNN is firstly used in the aerodynamic shape optimization of a
wing using evolutionary algorithms, in which it replicates the CFD solver.
Then, it is used in a conjugate heat transfer problem dealing with a solid
domain in contact with a flow within a duct. In this problem, the λ-DNN
acts as a surrogate to the solver of the heat conduction equation on the
solid domain, by interfacing with a CFD solver of the fluid domain.

Keywords: Deep Neural Networks · Flow prediction · Computational
Fluid Dynamics · Conjugate heat transfer · Evolutionary optimization
of aerodynamic shapes · Multi-disciplinary optimization

1 Introduction

In shape optimization, in one or more disciplines, a number of different designs
must be evaluated in order to reach optimal solutions. This number increases
when a stochastic optimization method is used so as to avoid being trapped
into a local minimum. In multi-disciplinary optimization, such as a Conjugate
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Heat Transfer (CHT) one, the analysis of any configuration requires the iterative
solution of the flow equations over the fluid domain and the heat conduction PDE
over the adjacent solid domain; during the iterative solution, the two domain
solvers communicate at their interface by exchanging heat flux and temperature
distributions. The repetitive calls to the two solvers make the cost of a CHT
analysis high enough. As industrial requirements become more demanding, not
only the number of evaluations needed to reach the optimal solution but, also,
the cost per evaluation must be kept as low as possible. This is the main purpose
of this paper and the main reason for developing the proposed λ-DNN.

Deep Neural Networks (DNNs) [6] are known to effectively replicate complex
tasks by recognizing their core features. As such, in view of the previous discus-
sion, DNNs should learn how to predict the outcome of simulation codes solving
PDEs modeling physical phenomena or only the integral quantities needed to
evaluate the quality of a configuration, as it may suffice in most optimization
problems. In a CHT or any other multi-disciplinary problem, a good idea is to
make them replicate the solver corresponding, for instance, to one of the involved
disciplines. This might be good enough to shorten the wall clock time of such a
simulation. For instance, in an optimization loop, the expected gain from such
an algorithm must be evaluated by considering the cost for performing runs to
collect the necessary training patterns and that for training the DNN together
with the expected reduction in the cost of the optimization loop involving DNNs.
This paper demonstrates the efficiency of the proposed optimization techniques
based on the newly developed DNNs.

The proposed DNN, which will be referred to as the λ-DNN, Fig. 1, is a
Fully-Connected Neural Network (FCNN), compact and with a relatively small
number of trainable parameters. This is described in detail in Sect. 2.1.

It is not the first time DNNs are used for predicting flow fields. Convolutional
Neural Networks (CNNs), which consist of convolutional layers with local con-
nections between neurons of successive layers, have been used to predict aerody-
namic flow fields in unseen flow conditions and geometries, [4]. U-Networks have
been used for the prediction of incompressible laminar flows, [5]. They consist
of an encoder which compresses the information with successive convolutional
layers and a decoder which decompresses it with deconvolution layers and yields
the output. In [9], a hybrid DNN, formed by CNN, convolutional Long Short
Term Memory network (ConvLSTM) and decoding-CNN (D-CNN), is used for
the prediction of unsteady flows.

In this paper, the λ-DNN architecture is applied in the aerodynamic shape
optimization of a wing and that of a fluid and a solid domain in a CHT problem,
using evolutionary algorithms occasionally assisted by on-line trained metamod-
els (Radial Basis Function, RBF) networks. The λ-DNN is capable of predicting
physical quantities (flow fields in CFD, temperature distributions in CHT) on
any type of computational grids (structured or unstructured), since grid connec-
tivity is not required. The λ-DNN requires a small number of training fields and
has a low computational cost (compared to [4,5]), ensuring acceptable accuracy.
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2 Methods and Tools

2.1 The Proposed λ-DNN

A DNN consists of many layers of neurons, with weights and biases being the net-
work parameters to be computed during the training phase. During this phase,
a cost function expressed as the root-mean-squared (RMS) of the differences
between the network outputs and the known/archived responses is minimized.
To this end, the back-propagation algorithm, [15], using closed-form expressions
for the derivatives of the cost function with respect to the network parameters,
is used.

The λ-DNN is exclusively formed by fully-connected layers. For better data
handling, its architecture consists of two separated branches (Fig. 1), one for
each type of input. Each branch first passes through fully-connected layers and
then connects to the main branch which further processes signals through its
own fully-connected layers and concludes to the network output(s). In the cases
presented below, there are two different kinds of inputs, one refers to the mesh
(nodal coordinates) and the other to parameterization or physical quantities. The
different branches allow separate processing of input data of different nature.
This leads to extraction of different features for each branch, before merging
them to produce the final output.

The Rectified Linear Unit (ReLU) activation function [8] is used in all but
the last layer which uses the sigmoid function, for the one-discipline case, and
the Hyberbolic Tangent function (tanh) for the two-discipline one. The pre- and
post-processing of the set of training patterns and all DNN phases (construction,
training and testing) have been implemented in Python 3.6 [14] linked with
TensorFlow [1] and run on both GPUs and CPUs.

The λ-DNN is applied according to two different modes. The first is based
on a node-to-node logic, meaning that the network predicts only one output,
namely the flow variable at each grid node, while the second processes the whole
grid at once and the output of a λ-DNN run is a whole field. The difference
between the two modes lies on whether grid connectivity is taken into account;
the former is independent of the grid connectivity while the latter is not.

2.2 Computational Tools for Aerodynamic and CHT Analyses

For the numerical solution of CHT problems, [2,12], coupled and decoupled solu-
tion schemes are in use. In the coupled approach, PDEs on different domains
are simultaneously solved while, in the decoupled approach, each discipline is
solved separately and provides boundary conditions for the others by exchanging
information along their interface. In either approach, proper solvers’ interfacing
guarantees heat flux conservation and equal temperatures over the fluid-solid
interface. Herein, the decoupled approach is used. The procedure is computa-
tionally expensive as it requires many iterative cycles (CHT cycles), with calls
to the CFD solver (for the fluid domain) and the Heat Conduction one (for
the solid domain). Each domain is solved separately and the interaction of the
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Fig. 1. The proposed λ-DNN architecture. The DNN is named after its shape that
looks like the Greek letter λ. For visualization reasons, each circle/layer comprises a
number of neurons/layers. The number of inputs/outputs and that of fully-connected
layers vary among the cases.

solvers is taking place at their interface, so a DNN trained on the contribution of
the one solver to the interface can be very helpful. By doing so, the cost of one
solver will be significantly reduced, together with the overall cost of the CHT
evaluation. More details about this implementation and the offered gains will be
provided in Sect. 4, where the corresponding case is described.

Regarding the analysis of fluid flows, an in-house Reynolds-Averaged Navier-
Stokes equations’ solver, [3,10], coupled with a Heat Conduction equations’
solver is used. The governing equations are discretized using the finite volume
technique. The CFD code solves incompressible and compressible flows; herein,
all cases are studied with the compressible variant. Fluid and solid domain solvers
fully exploit the CUDA programming environment and run on a GPU cluster.
CFD/CHT evaluations and DNN training were performed on NVIDIA K20 or
K40 GPUs.

2.3 EA-Based Optimization, Without or with Metamodels

For the EA-based optimizations presented in Sects. 3 and 4, the optimization
platform EASY, [7], developed by the Parallel CFD & Optimization Unit of the
National Technical University of Athens is used. Real encoding of the design
variables, with 5% mutation probability and simulated binary crossover with
90% probability are used. To reduce the cost of the EA-based optimization,
EASY optionally employs on-line trained metamodels (RBF networks) and this
is performed in a rather unique way compared to other similar tools. The role
of the metamodel(s) is to replace calls to the problem-specific method (PSM;
herein, either a CFD or a CHT solver) by approximating the objective function(s)
value(s) at negligible cost, after training them on data collected for individuals
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already evaluated on the PSM. The distinguishing feature of the Metamodel-
Assisted EA (MAEA) implemented in EASY is that the RBF networks’ training
occurs during the evolution (this is what “on-line” stands for). The use of meta-
models starts after the first TMM individuals have been evaluated on the PSM
and recorded in the MAEA database (DB). In all subsequent generations, a dif-
ferent RBF network per individual is trained on a few selected neighboring DB
entries. Using these RBF networks, all population members are pre-evaluated
and only the most promising among them (λe; a small user-defined value per
generation) are re-evaluated on the PSM, [11] and recorded in the DB.

This is contrasted to the most widely used EAs supported by off-line trained
metamodels, which usually rely on a single metamodel, valid over the whole
search space. This metamodel is trained with evaluated individuals resulting
from a Design of Experiments (DoE) technique, [13]. In such an algorithm, the
EA–based search relies exclusively upon the previously (off-line) trained meta-
model. The “optimal” solution(s) is/are re-evaluated on the PSM and the process
goes on by re-training the metamodel on the updated DB and performing a new
EA-based search until a termination criterion be met.

In this paper, in the sake of pluralism, both on- and off-line metamodels are
used within EASY. The λ-DNN is used as off-line metamodel, replacing the CFD
tool. The λ-DNN is updated if, upon convergence of the EA-based search using
the same λ-DNN, the re-evaluation of the “optimal” solution (quotes denote the
outcome of an optimization in which the evaluation tool is a surrogate model)
on the CFD asks for better accuracy. In the CHT problem, the evaluation s/w
combines an accurate tool (CFD solver) for the fluid domain and the λ-DNN
for the solid domain. This optimization also uses on-line trained metamodels (a
MAEA with RBF networks, implemented as described above).

3 Case I: Aerodynamic Shape Optimization

The first application is concerned with the use of the λ-DNN in the prediction
and the aerodynamic shape optimization of a transonic wing. The geometry of
[16] is the reference wing. The flow is inviscid with free-stream Mach number
and flow angles equal to M∞ = 0.8395, a∞,pitch = 3.06o and a∞,yaw = 0o. The
wing shape is encapsulated within a 6 × 3 × 3 volumetric NURBS (trivariate
Non-Uniform Rational B-Splines) control grid. A knot vector and a degree per
parametric direction are needed to complete the parameterization. The morph-
ing used in this case is graphically presented (as a 2D example, though) in Case
II. 12, out of the 54 control points (CPS), are allowed to move in the chordwise
and the normal-to-the-planform directions within ±20% of their reference coor-
dinate values, resulting to 12 × 2 = 24 design variables in total. In this case,
the parameterization is used not only for generating training patterns but, also,
as an input to the DNN to identify different wing shapes. An unstructured 3D
CFD grid of ∼1.33 ×106 nodes generated around the reference geometry and
adapted to all changed shapes is used. A single run of the CFD software takes
∼2min on a K20 GPU.
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Both a λ-DNN and an FCNN are used. The first branch of the λ-DNN
consists of four fully-connected layers with 128, 256, 256, 128 neurons each; the
second branch consists of three fully-connected layers with 128, 256, 128 neurons
each. After their merging, another three fully-connected layers with 128, 256, 128
neurons each lead to the final output. For comparison reasons the number of
neurons and layers in the λ-DNN and the FCNN are kept the same. The FCNN
consists of seven layers with 256, 512, 512, 256, 256, 512, 256 neurons, respectively.
The 200 wings are used for training the λ-DNN and the FCNN by randomly
changing the position of the pre-defined CPs of the morphing box. In this case,
a node-to-node procedure is followed.

The networks are trained on the M �27000 surface nodes of each CFD grid,
thus the total number of training patterns is 200× 27000. The input data to the
networks are the 24 coordinates of the free-to-move control points along with the
(x, y, z) coordinates of any surface node, i.e. 27 inputs in total, and the output
is a single pressure value at this surface node. The first branch of the λ-DNN
processes the coordinates of the control points, while the second one the (x, y, z)
coordinates.

In this case, the training cost is ∼1.2 h for both networks. Before proceed-
ing with the shape optimization, the prediction quality of the DNNs on two
new wings generated by displacing the control points within the aforementioned
bounds, and not seen by the DNNs before, is checked. Predictions of pressure
(pDNN ) using the trained DNNs are compared with CFD evaluations (pCFD)
using the Mean Absolute Percentage Error (MAPEp) indicator per wing, given
by:

MAPEp =
1
M

M∑

i=1

∣∣∣∣
pi,CFD − pi,DNN

pi,CFD

∣∣∣∣ (1)

The average MAPEp computed on the two new wings is equal to 0.81% for the
λ-DNN and 3.83% for the FCNN; and this demonstrates the superiority of the
proposed network type.

Then, two EA-based shape optimizations, for maximum wing lift (L), are
performed. During the first one, the λ-DNN assists the EAs to reduce the total
number of calls to the expensive CFD s/w, by acting as an off-line trained
surrogate (Run1). The λ-DNN predicts the pressure field on the surface of each
new wing presented to it which, through integration, computes the lift force. A
CFD run on the “optimal” solution is performed only at the end of the EA-
based cycle. The second one is a MAEA (with on-line trained RBF networks,
TMM = 40 and λe = 3) optimization relying upon the CFD code instead of
the λ-DNN (Run2). A comparison between Run1 and Run2 is made. Both are
configured with 10 parents and 20 offspring, i.e. they are (10,20) EAs or MAEAs.
This is a well performing set-up of the optimization method in this case which
was kept the same in both cases, in the sake of fair comparison.

For either run, a total budget of 250 CFD evaluations (“time-units”) is a
priori defined. For Run1, this budget corresponds to: 200 time-units to form the
DB, 33 to train the network and only 17 for running the optimization, spent,
in particular, for the necessary CFD re-evaluations. Run1 resulted to a wing
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geometry having a lift that is by 2.9% higher than the solution of Run2. We
conclude that the usage of the λ-DNN improves the efficiency of the EA-based
search even more than the (already very fast) MAEA. In Fig. 2, the convergence
histories of the two optimizations are illustrated. To quantify the gain with
respect to the original shape, L is always dimensionalized by the reference wing
L value.

In Fig. 3, the pressure field for the optimal geometry is shown for the solu-
tions of Run1 and Run2. For the former, two pressure fields are presented, that
evaluated by the CFD and that predicted by the λ-DNN. The pressure fields
differ between Run1 and Run2, since the two optimizations resulted in different
wing shapes. For the optimized wing of Run1, the pressure prediction of the
λ-DNN (Fig. 3, right) is so close to the CFD solution (Fig. 3, middle), and this
demonstrates the reliability of the proposed network.
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Fig. 2. Case I: Convergence History of the EA relying on the λ-DNN (Run1) and the
MAEA (based on on-line trained RBF networks) (Run2). The blue line corresponds
to the 200 training patterns plotted in ascending order, the pink line represents the
training cost, while the black line represents the EA relying on the λ-DNN; all three
of them stand for Run1.

4 Case II: CHT Shape Optimization

Here, the λ-DNN is used in the CHT optimization of a fluid duct adjacent to a
solid domain, to replace the heat conduction equation solver on the solid domain.
The same CFD code for the fluid domain (this time solving the Reynolds-Averaged
Navier-Stokes equationswith the Spalart-Allmaras turbulencemodel, [17]) is used.
In the absence of the λ-DNN, the CFD code interacts with a solver for the conduc-
tion equation over the solid domain. The same morphing technique (adapted to
2D cases) is used. The high temperature solid domain is cooled by fluid of lower
temperature (T ) flowing within the S-bend duct. The two domains are solved in a
decoupled manner, by interchanging the computed heat flux (from the fluid to the
solid) and temperature (in the opposite direction) distributions over the fluid-solid
interface (FSI).
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Fig. 3. Case I: Pressure Fields on the surface of the transonic wing. Left: Optimized
solution of Run2. Middle: Optimized solution of Run1, evaluated by CFD. Right:
Optimized solution of Run1, re-evaluated by the λ-DNN.

For the fluid domain, the flow has inlet total pressure pt,inlet =105 kPa, inlet
total temperature Tt,inlet = 300 K, outlet static pressure poutlet = 100 kPa. For
the solid domain, a constant temperature of T = 500 K is imposed along its
bottom boundary, while the rest non-FSI nodes are considered adiabatic. The
geometry is parameterized using a 8 × 6 volumetric NURBS control grid, Fig. 4.
24 CPs are allowed to move within ±10% of their reference coordinate values in
either direction, resulting to 24 × 2 = 48 design variables in the optimization
problem. In this 2D case, the parameterization is common for both the fluid
and the solid domain but it is not used as input (information) to the DNN. A
mono-block structured grid of ∼330000 nodes is used to discretize both domains,
where M = 240000 of them correspond to the solid domain. A single run of the
CHT solver takes ∼20min on a K40 GPU.

The database for training the λ-DNN is built by evaluating 180 geometries by
randomly moving the CPs. As in the previous case, a λ-DNN and an FCNN are
used. The two branches of the λ-DNN consist of one layer each with 512 neurons.
The two branches merge to a single layer of 20 neurons that leads to the final
output. The network architecture is selected after a trial-and-error procedure.
The FCNN consists of two layers with 1024 and 512 neurons each.

The input data are the (x, y) coordinates and the heat fluxes at the 600 FSI
nodes, i.e. 1800 inputs in total. At the λ-DNN, the first branch processes the
(x, y) coordinates, while the other the heat fluxes. The output is the temperature
(T ) field on the entire solid domain; grid connectivity and number of nodes
remain the same for all the geometries. It is important to notice that, in contrast
to the previous case where a node-to-node procedure was followed, here, the
nodal T values over the entire solid domain are simultaneously predicted. Two
new geometries, not seen by the DNNs before, are used to validate the λ-DNN
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and the FCNN. In this case the average values MAPET 0.3% for the λ-DNN and
0.8% for the FCNN are computed. The λ-DNN has better prediction accuracy
and, thus, this is used during the optimization.

Fig. 4. Case II: Control Points of the volumetric NURBS, morphing box, parameteriz-
ing the S-bend duct (upper) and a small part of the solid domain (lower). Black points
are kept fixed, whereas red ones are allowed to vary in either direction, morphing the
enclosed parts of the fluid and solid domains.

Three MAEA-based optimizations are performed with 10 parents and 20
offspring, supported by on-line trained RBF networks with TMM =40 and λe =3.

The first two optimizations aim at minimizing the mass-averaged total pres-
sure losses between the inlet (I) and the outlet (O) of the S-bend duct, i.e. they
are dealing with an objective defined only in the fluid domain,

F1 =

∫
SI

ptρvndS +
∫

SO
ptρvndS

∫
SI

ρvndS
(2)

ρ, vn stand for the density and the normal (directed outwards) to the boundary
velocity component.

The first optimization (Run1) uses the λ-DNN as surrogate to the solid
domain solver, while the second one (Run2) is based exclusively on the solution
of the governing PDEs. A total budget of 250 CHT evaluations (“time-units”;
one time-unit is the cost per evaluation in Run2) is decided for both of them.
For Run1, this budget corresponds to 30 time-units to form the database, 24 for
training the network and 196 for the optimization, since an evaluation on the
(CFD and λ-DNN) tool costs about 0.76 time-units. Then, Run2 is performed.
Figure 5 presents the convergence histories of the MAEAs and the resulting
optimal geometry; a reduction in F1 ∼ 8.6%, compared to the initial/reference
geometry, is obtained in both Run1 and Run2. F1 is normalized by the value
of the same quantity in the reference geometry. The optimal solution of Run1

is re-evaluated on the exact CHT solver; the λ-DNN error is less than 0.008%
verifying the network accuracy.

Then, a two-objective optimization, by adding a second target defined over
the solid domain, is performed. The second objective function is the percentage
of the area of the solid domain over which T exceeds a threshold value, scaled
by the excess temperature, namely

F2 =
1

Ωs

∫

ΩS

(T − Tthres)dΩ (3)
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F2 should be minimized. The T = 500 K value along the bottom boundary of
the solid domain is the highest temperature over the domain. The value of the
Tthres = 450 K is defined in order to minimize the area of the domain which
exceeds this threshold value. In whatever follows, F1 and F2 are presented in a
non-dimensional form; they are both divided by the corresponding values of the
reference solution (the one presented in Fig. 4).

Fig. 5. Case II: Left: Convergence histories of the MAEA-based optimizations for Run1

(Fluid-(λ-DNN)) and Run2 (Fluid-Solid). Right: The initial (black) and the optimal
(red) geometries (x and y axes not in scale).

The new optimization (Run3) uses the λ-DNN as the surrogate to the solid
domain solver. The total budget is still 250 CHT evaluations distributed as
for Run1. In Fig. 6, the front of non-dominated solutions resulted from Run3

is presented. The members of the front are re-evaluated with the exact CHT
solver to verify the network accuracy. The re-evaluated members remain non-
dominated and the errors in F1 and F2 are ∼0.008% and ∼0.09%, respectively.
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 1
 1.002
 1.004
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F
2

F1
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Re-Eval
Baseline

Fig. 6. Case II: Front of non-dominated solutions computed from Run3 (red squares),
plotted along with the baseline geometry (black square). The front members are
re-evaluated on the exact CHT solver resulting to a new non-dominated front
(blue circles). The computed “optimal” members on the front remain non-dominated
after the re-evaluation using the computational mechanics s/w.
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The T field from Run3 and its re-evaluation as well as the prediction error are
shown for the member of the front with F1 = 0.975 and F2 = 0.997 in Figs. 7
and 8, respectively. As shown in Figs. 6, 7 and 8, the accuracy of the λ-DNN is
high enough to sufficiently replicate the heat conduction equation solver on the
solid domain during an optimization and reduce its overall cost.

Fig. 7. Case II: Temperature field as resulted from Run3 (left) and re-evaluated with
the exact CHT solver (right) for the member of the front with F1 = 0.975 and F2 =
0.997 (x and y axes not in scale).

Fig. 8. Case II: Prediction error of the solid domain temperature field for the member
of the front with F1 = 0.975 and F2 = 0.997.

5 Conclusions

This paper presented a new DNN architecture, called λ-DNN, which can be
used in single- and multi-disciplinary optimization. The λ-DNN is used to
predict CFD and CHT results in the form of entire flow fields or temper-
ature distributions, so as to replace expensive runs of CFD/CHT solvers in
design/optimization processes. The proposed method has been demonstrated in
a 3D one-discipline and a 2D two-discipline case. The DNN yields very good pre-
dictions of fields. Inputs are presented to two different branches for better and
separate processing of the given input data and, then, these two branches meet
at a single one that gives the required output. The λ-DNN manages to reduce
the training cost and number of patterns required. The high prediction accuracy
of the proposed λ-DNN was demonstrated in a wing flow problem and a solid
domain adjacent to a S-bend duct as a surrogate to the heat conduction solver.
Regarding the one-discipline case optimization, the trained λ-DNN is used as
metamodel during an EA-based optimization and improves the search perfor-
mance with results comparable with those provided by the MAEA. Regarding
the two-discipline case, the λ-DNN is used instead of the Heat Conduction solver
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during a MAEA optimization. Therefore, the proposed λ-DNN is shown to be
capable of replacing the CFD and CHT solvers in expensive (analysis and opti-
mization) processes. Future work includes the use of the λ-DNN in 3D real-world
one- and two- discipline applications, such as aeroelastic shape optimization.
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Abstract. Engineering drawings are common across different domains
such as Oil & Gas, construction, mechanical and other domains. Auto-
matic processing and analysis of these drawings is a challenging task.
This is partly due to the complexity of these documents and also due
to the lack of dataset availability in the public domain that can help
push the research in this area. In this paper, we present a multiclass
imbalanced dataset for the research community made of 2432 instances
of engineering symbols. These symbols were extracted from a collection
of complex engineering drawings known as Piping and Instrumentation
Diagram (P&ID). By providing such dataset to the research community,
we anticipate that this will help attract more attention to an important,
yet overlooked industrial problem, and will also advance the research in
such important and timely topics. We discuss the datasets characteristics
in details, and we also show how Convolutional Neural Networks (CNNs)
perform on such extremely imbalanced datasets. Finally, conclusions and
future directions are discussed.

Keywords: CNN · Multiclass · Classification · Imbalanced dataset ·
Engineering drawings · P&ID

1 Introduction

Engineering drawings are known to be one of the most complex types of docu-
ments to process and analyse. They are widely used in different industries such
as construction and city planning (i.e. floor plan diagrams [2]), Oil & Gas (i.e.
P&IDs [9]), Mechanical Engineering [33], AutoCAD Drawing Exchange Format
(DXF) [13] and others. Interpreting these drawings requires highly skilled people,
and in some cases long hours of work. Processing and analysing these drawings
is becoming increasingly important. This is partly due to the urgent need to
improve business practices such as inventory, asset management, risk analysis,
safety checks and other types of applications, and also due to the recent advance-
ments in the domain of machine vision and image understanding. Deep Learning
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(DL) [15], in particular, had significantly improved the performance by orders of
magnitude in many domains such as the Gaming and AI [17], Natural Language
Processing [36], Health [12], Cyber Security [28], and others.

The concept of Convolutional Neural Networks (CNNs) [16] has made sig-
nificant progress in recent years in many image-related tasks. It has been suc-
cessfully applied to several fields such as hand-written digit recognition [22],
image classification [20,30], face recognition & biometrics [27], amongst others.
Before CNNs, improvements in image classification, segmentation, and object
detection were marginal and incremental. CNNs revolutionised this field. For
example, Deep Face [31], which is a face recognition system that was first pro-
posed by Facebook in 2014, achieved an accuracy of 97.35%, beating the then
state-of-the-art, by 27%.

Despite extensive progress in the field of image processing and analysis, very
little progress has been made in the area of analysing complex engineering draw-
ings, and extracting information from these diagrams is still considered a chal-
lenging problem [5]. Consider for example the case of the Piping and Instrumen-
tation Diagram (P&ID), which is a schematic engineering drawing, commonly
used in the Oil and Gas industry [9,24]. This type of diagram, as can be seen in
Fig. 1, is made of symbols, connectivity information (lines, dashed lines, combi-
nations of lines), text, and other graphical elements.

Fig. 1. A typical example of elements within a P&ID diagram

Identification of the symbols within this kind of diagram would appear to
be an ideal problem which could be easily solved by convolutional neural net-
works. However, a recent review on the subject [7] showed that publicly available
datasets are not common in this area, with research commonly applied to small,
proprietary datasets. To take full advantage of the recent advances in machine
vision, and to facilitate reproducible experiments, a sizeable, labelled dataset in
the public domain is required.
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Several factors make processing and analysing engineering drawings a chal-
lenging tasks. First, the quality of the images/scanned documents is sometimes of
a standard which requires the application of various image-enhancements meth-
ods. Second, the nature of these diagrams, where various types of elements might
be overlapping (i.e. a text overlaid on a symbol), in addition to possible data
annotations and other graphic elements makes accurate localisation of individual
elements more challenging. It is difficult to isolate one particular symbol from its
neighbours. Another inherent problem is the imbalanced distribution of various
symbols within these drawings. Handling all related challenges is beyond the
scope of this paper. The reader is referred to [24] for more detailed description
about the inherent characteristics and challenges of these types of drawings.

In this paper, we present a new multiclass dataset of symbols extracted
from engineering drawings to the research community. Realistically reflecting the
problem, this dataset is subject to some class-imbalance. The remaining parts of
this paper are organised as follows: In Sect. 2 we discuss relevant literature to the
digitisation of engineering drawings and class imbalance. In Sect. 3 we present
our methods which includes detailed discussion of the dataset, and our approach
for classifying engineering symbols. Benchmarking experiments and results are
presented in Sect. 4, and finally, conclusions and future directions are discussed
in Sect. 5.

2 Related Work

Attempts to process and analyse symbolic drawings date back to at least the
early 90’s. These include: analysis of musical notes [6]; processing mechani-
cal drawings [19]; and optical character recognition (OCR)[21,23,26]. In recent
years, digitising engineering drawings has become increasingly important as they
are widely used in different domains [2,9,13,33], however, literature is still lim-
ited. To the best of our knowledge, there is no large, publicly available dataset
to facilitate the advantages of modern, data-hungry CNNs. A recent review [7]
detailed the whole process of digitisation and contextualisation of the three main
shapes contained in engineering drawings (i.e. text, lines and symbols). The
authors identified that, typically, symbols are located within the drawing either
in a specific or a holistic way. In specific localisation, the system has a prede-
fined symbol description/template, and an algorithm recursively looks for such
symbol. In contrast, holistic methods require differentiation of the three shapes
to then be able to split the drawing into layers. One of the most widely-used
frameworks in this regard is text-graphics separation [32], which is a family of
algorithms which distinguish text from lines and symbols based on properties
such as height-to-width radio, stroke, amongst others. CNNs could be applied
to both of these, given sufficient labelled data.

One type of engineering drawings, namely P&IDs, has attracted more
research attention in recent years. Typical examples, presented in [9,18,25],
aimed at detecting and recognising symbols within these diagrams. It can be
argued however, that most of the existing literature followed a traditional image
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processing approach [14], which requires feature extraction [8], feature repre-
sentation [37], and classification to determine the class of objects (i.e. symbols,
digits, ...) [1].

Most recently in [9], authors presented a first step towards creating a sym-
bol repository for engineering drawings. A total of 1187 symbols split into 37
different classes was compiled. The repository was then processed by means of
class decomposition [10,11], resulting in a total of 57 sub-classes. Classification
accuracy was calculated using three different classification frameworks: Random
Forests (RF), Support Vector Machine (SVM) and a CNN. Class decomposition
demonstrated a slight improvement in classification results for SVM and CNN,
with a more considerable improvement in RF.

Overall, there is a growing interest in the research community in digitising
and analysing engineering drawings. Yet, the lack of public domain datasets is
considered as one of the main challenges to push the research boundaries in
this area. In addition to this, the class-imbalance problem could also be con-
sidered as another challenge, in particular when certain types of symbols either
dominate, or rarely appear in the dataset. Class-imbalance is common across dif-
ferent domains, and not only limited to engineering drawings [34,35]. Handling
this problem is often done by means of data resampling, where majority classes
are undersampled to reduce their dominance, or minority classes are oversam-
pled [35]. In addition to this, Generative Adversarial Neural Networks [15] were
successfully applied recently to augment an imbalanced dataset and improve
learning algorithm performance [3,4].

3 Methodology

This section presents our novel dataset of Symbols in Engineering Drawings
(SiED). First we give a brief description of how this dataset was constructed. This
is followed by a detailed description of dataset and class distribution. Finally,
a brief discussion related to the classification method used to benchmark this
dataset is presented.

3.1 Data Extraction

A collection of P&ID sheets was provided by an industrial partner. Following
the work in [25], a thresholding method was first applied to reduce noise. Areas
of interest were then identified interactively to discard boundaries, text and
annotation outside the border of each drawing. A traditional machine-vision
approach was then used to extract a set of symbols. A set of heuristic-based
methods were developed and applied sequentially to localise symbols within each
P&ID drawing. Figure 2 shows a random selection of typical symbols that appear
in P&IDs.

The methods proved to be stable enough to provide a list of extracted and
well-defined symbols. However, a key limitation of such heuristic-based methods
is that they require extensive feature engineering and require fine-tuning and
customisation to generalise to unseen symbols or different types of diagrams [7].
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Fig. 2. A random selection of typical symbols that appear in P&IDs

3.2 Dataset

Using the method presented above, a series of P&IDs have been processed and
analysed. This resulted in a collection of symbols that represent different types of
equipment within the drawings. In total, a dataset of 2432 instances representing
39 different type of symbols were compiled. All symbols have been scaled to a
standard size of 100×100 pixels. The dataset provides rich source of information
to evaluate various supervised machine learning algorithms. However, and as
can be seen in Fig. 3, the dataset is hugely imbalanced. Some symbols, such
as sensors, dominate the dataset, while others appear only once or are vastly
underrepresented.

The imbalance between symbols is huge in some cases. For example symbols
of type sensor appears 392 times in the dataset, while symbols such as Barred
Tee and Ultrasonic Flow Meter appear only once. Similarly, Reducer appears in
the dataset 285 times, while Control Valve Angle Choke only once.

Interestingly, eight types of symbols populate more than 64% of the dataset.
These are: Sensor, Reducer, Arrowhead, Valve Ball, DB&BBV, Valve Check,
Continuity Label and DB&BPV. At the same time, 18 symbols populate together
less than 6% of the whole dataset. These are: Valve Slab Gate, Control Valve
Globe, Flange + Triangle, Control, Exit to Atmosphere, Rupture Disc, ESDV
Valve Slab Gate, Box, ESDV Valve Butterfly, Temporary Strainer, Control
Valve, Valve Gate Through Conduit, Deluge, Vessel, Line Blindspacer, Con-
trol Valve Angle Choke, Barred Tee and Ultrasonic Flow Meter. In other words,
the dataset is hugely imbalanced.
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Fig. 3. Class distribution in the dataset

3.3 Classification Method

To provide base-line results on this imbalanced dataset of symbols, we use CNNs.
CNNs [16] have made significant progress in recent years in many image-related
tasks and in particular in image classification [20,30].

The network architecture used in this paper consists of an input layer of
100 × 100 of the raw pixel values of the symbol and 32 filters (3 × 3). Then
a 2 × 2 max pooling layer. Then, two convolutional layers followed by a 2 × 2
max pooling layer. This structure is then repeated twice with two convolutional
layers, with 64 filters of size (3 × 3) followed by a max pooling layer. Finally,
a fully-connected layer composed of two hidden layers and an output layer of
39 (number of classes) units with softmax activation function. All convolutional
layers in the network used ReLU activations. Dropout [29] was used in the in
the fully connected layer with rates 0.1.

4 Experiments and Results

A series of experiments were carried out to establish the validity and stability
of the proposed CNN architecture.
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Table 1. Performance across different symbols in the dataset

Symbol Precision Recall F1-score Symbol Precision Recall F1-score

Control
Valve

0.00 0.00 0.00 Control 1.00 1.00 1.00

Flange +
Triangle

0.00 0.00 0.00 DB& BBV 1.00 1.00 1.00

Line
Blindspacer

0.00 0.00 0.00 DB& BBV
+ Valve
Check

1.00 0.90 0.95

Valve Gate
Through
Conduit

0.00 0.00 0.00 DB& BPV 1.00 0.95 0.98

Rupture
Disc

0.33 1.00 0.50 Deluge 1.00 1.00 1.00

Valve Angle 0.33 1.00 0.50 ESDV Valve
Ball

1.00 0.92 0.96

Valve Slab
Gate

0.50 1.00 0.67 ESDV Valve
Slab Gate

1.00 0.50 0.67

Valve Globe 0.57 1.00 0.73 Exit to
Atmosphere

1.00 1.00 1.00

ESDV Valve
Butterfly

0.67 1.00 0.80 Flange
Single
T-Shape

1.00 0.93 0.96

Control
Valve Globe

0.80 0.57 0.67 Injector
Point

1.00 0.62 0.77

Valve 0.80 1.00 0.89 Reducer 1.00 1.00 1.00

Flange Joint 0.85 1.00 0.92 Sensor 1.00 0.98 0.99

Arrowhead
+ Triangle

0.90 1.00 0.95 Spectacle
Blind

1.00 1.00 1.00

Triangle 0.94 0.84 0.89 Valve Ball 1.00 0.97 0.99

Arrowhead 1.00 0.96 0.98 Valve
Butterfly

1.00 1.00 1.00

Box 1.00 1.00 1.00 Valve Check 1.00 0.93 0.96

Continuity
Label

1.00 1.00 1.00 Valve Plug 1.00 0.89 0.94

4.1 Set up

The dataset was split into disjoint training, validation and testing sets. First, the
dataset was split into training and testing sets where 80% of the data was used
for training and the remaining 20% for testing. The training set was then split
into training and validation sets with ratios of 90% and 10% of the remaining
training set respectively. The CNN model was trained with a batch size of 64 for
25 epochs. These parameters were set empirically.
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4.2 Results and Discussion

On the training set, an accuracy of 99.8%, with only 2 symbols incorrectly clas-
sified was recorded. On the test set, results were slightly lower, with accuracy of
95.3%. In other words 23 symbols were incorrectly identified. Table 1 provides
more details about performance across the different symbols and using three
different metrics: Precision, Recall, and F1-Score.

A closer look at the results, shows as expected that some of the minority
class instances went completely undetected. For example, for the control valve
symbols which has only five instances in the whole dataset, the corresponding
F1-score is zero. Such score can also be seen in Table 1 for the symbols the
‘Flange + Triangle’ (17 instances in the whole dataset), the ‘Line Blindspacer’
(4 instances only), ‘Valve Gate Through Conduit’ with only 4 instances in the
whole dataset. Conversely, well represented symbols in the dataset were correctly
classified with relatively high precision and recall. For example, the ‘Reducer’ F1-
score is 1. Notice that 285 instances of reducers are present in the dataset. A
similar performance can be observed for other majority class instances such as
‘Sensor’ (392 instances), ‘Valve Ball’ (173 instances in the dataset), and others.

These results are consistent with the literature and showed clearly that the
learning algorithm tend to be biased toward majority class-instances. Despite
this, it can be said that CNN performed extremely well on the testing set with
an overall accuracy reaching 95.3%, and an average precision, recall, and F1-score
of 0.785, 0.822, and 0.784 respectively across all symbols in the dataset.

5 Conclusions

In this paper, we presented a new multiclass imbalanced dataset for the
research community. The dataset represents a collection of symbols extracted
from P&IDs. Despite the importance of processing and analysing engineering
drawings, no such dataset exists in the public domain. We anticipate that
donating this dataset to the research community will help researchers in the
domain of machine learning and in particular imbalanced-class classification,
and also research in the machine vision domain who are interested in process-
ing and analysing engineering drawings. Future work will focus on handling this
multi-class imbalanced problem, where advanced methods such as GANs and
other data augmentation techniques might be utilised to improve the learning
performance.
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Abstract. Hyperspectral satellite imagery is now widely being used for
accurate disaster prediction and terrain feature classification. However,
in such classification tasks, most of the present approaches use only the
spectral information contained in the images. Therefore, in this paper, we
present a novel framework that takes into account both the spectral and
spatial information contained in the data for land cover classification.
For this purpose, we use the Gaussian Maximum Likelihood (GML) and
Convolutional Neural Network (CNN) methods for the pixel-wise spec-
tral classification and then, using segmentation maps generated by the
Watershed algorithm, we incorporate the spatial contextual information
into our model with a modified majority vote technique. The experimen-
tal analyses on two benchmark datasets demonstrate that our proposed
methodology performs better than the earlier approaches by achieving
an accuracy of 99.52% and 98.31% on the Pavia University and the
Indian Pines datasets respectively. Additionally, our GML based app-
roach, a non-deep learning algorithm, shows comparable performance to
the state-of-the-art deep learning techniques, which indicates the impor-
tance of the proposed approach for performing a computationally efficient
classification of hyperspectral imagery.

Keywords: Neural networks · Hyperspectral imaging · Machine
learning · Land cover classification · Spatial segmentation

1 Introduction

Hyperspectral satellite imaging collects high resolution images within contiguous
spectral bands across a wide range of the electromagnetic spectrum. Its primary
aim is to obtain the spectrum of each pixel in the image of a scene, with the goal
of identifying materials or discovering objects. In general, hyperspectral satellite
images are captured through an imaging spectrometer in narrow bands of 10–
20 nm with up to thousands of bands. On the contrary, multispectral images have
3–10 bands and are captured using a remote sensing radiometer. Such remotely
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sensed satellite images, either air-borne or space-borne, cover large areas of the
earth’s surface with rich spectral information and hence can be used for the
robust classification of land cover with a good accuracy.

Recently, machine learning and deep learning techniques have shown promis-
ing results for various classification problems in the fields of natural language
processing, computer vision, speech recognition, etc. [1]. Thus, we investigate
both, GML, a machine learning technique as well as CNN, a popular deep learn-
ing approach. In conventional pixel-wise classification techniques, the algorithms
independently process each and every pixel without using the neighboring spa-
tial information. However, to minimize the uncertainty in the data, one can
exploit the spatially adjacent pixels, which have more or less similar spectral
features. Therefore, in this paper, we develop a novel spatial-spectral algorithm
for the robust classification of land cover. Experimental results show that our
model is suitable for the classification of images with large spatial structures
especially when the spectral responses of different classes are dissimilar. Hence,
our proposed approach works well for the task of hyperspectral image classifi-
cation and it can also be adapted to other domains that are similar to terrain
feature classification.

The rest of this paper is organized as follows: Sect. 2 covers the related work
and in Sect. 3, we give a brief outline of the classification and segmentation
methods. Section 4 describes the datasets used and the detail of our approach is
given in Sect. 5. In Sect. 6, we discuss our experimental results and finally, Sect. 7
contains the conclusion and future directions.

2 Related Work

Spectral imaging techniques are now widely being used for solving land cover
classification problems. In this context, Ahmad et al. [2] have shown that if
there exists a distinct separation between the classes in the decision space, as
seen in the case of land cover classification tasks, the use of a GML classifier
provides a good accuracy. Further, Ablin et al. [3] reported that classifying an
unknown pixel can be done efficiently by the maximum likelihood classifier, as
it quantitatively evaluates both the variance and co-variance of the spectral
response pattern for each class.

In 2018, Khan et al. [4] discussed in detail the recent research in classifi-
cation techniques used for hyperspectral satellite imagery. In their paper, they
state that most of the current research efforts and studies follow the standard
pattern recognition paradigm, which is based on the construction of complex
handcrafted features. In contrast to the approaches discussed by Khan et al. [4],
LeCun et al. [5] proposed the deep learning based classification methods which
use hierarchically constructed high-level features in an automated way. In the
context of deep learning based satellite image classification, Makantasis et al.
[6] used a combination of CNN for feature extraction along with a multi layer
perceptron for classification and achieved an accuracy of up to 98.88% on the
Indian Pines dataset. Similarly, Audebert et al. [7] used 3D CNNs for the classi-
fication of Indian Pines and Pavia University datasets, and obtained accuracies
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of 96.87% and 96.71% respectively. An alternate approach of using Recurrent
Neural Networks (RNN) was proposed by Ma et al. [8]. Their RNN based model
achieved an accuracy of 96.20% on the Pavia University dataset which indicates
the superiority of CNNs over RNNs for image classification tasks.

Later, many authors combined the aforementioned pixel-wise classification
algorithms with different segmentation approaches to enhance the efficiency of
the spectral classification. For instance, Tarabalka et al. [9] studied the use
of Watershed segmentation methodologies for spatial-spectral classification of
hyperspectral images. They also described the various plausible approaches to
combine it with a pixel-wise classifier, viz. they used a SVM classifier with Water-
shed segmentation and reported an accuracy of 90.64% on the Indian Pines image
and 95.21% on the University of Pavia dataset. Furthermore, some authors have
explored the use of Markov Random Fields (MRF) to incorporate the spatial
information contained in the data. For example, Qing et al. [10] used an MRF-
based loopy belief propagation technique and obtained an accuracy of 98.5% on
the Indian Pines dataset.

Hence, we consider these approaches as the baselines for our work and in our
proposed model, we further improve the classification accuracy as well as the
computational efficiency using both, GML, a machine learning technique as well
as CNN, a deep learning approach for pixel wise classification. To the best of our
knowledge, land cover classification has rarely been done by using the watershed
segmentation algorithm with the above-mentioned spectral classifiers.

3 Preliminaries

In this section, we briefly explain the GML and CNN models used for the pixel-
wise classification as well as the Watershed algorithm used to generate the seg-
mentation maps.

3.1 Gaussian Maximum Likelihood

The Gaussian Maximum Likelihood classifier is a supervised classification
method derived from the Naive-Bayes theorem. It classifies each unidentified
pixel θ by using the probability density functions to compute the likelihood of a
given pixel belonging to a particular category C. The GML algorithm evaluates
the probability values for each class as follows:

P (C|θ) = P (C)
P (θ|C)
P (θ)

(1)

Here, the pixel is assigned to the most likely class based on the highest prob-
ability value or it is labelled as ‘unknown’ if the probability values are below
an analytically defined threshold. As the GML is a pixel by pixel classification
method, it does not take into account the contextual information about neigh-
boring classes while labeling a pixel. Also, it is assumed that the distribution of
the cloud of points forming a particular class is Gaussian. Here, the mean vector
and the co-variance matrix can be used to entirely describe the distribution of
the response pattern for each category.
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3.2 Convolutional Neural Network

A Convolutional Neural Network is comparatively more accurate than a tra-
ditional machine learning algorithm mainly because a CNN learns the filters
automatically while the features of a traditional algorithm are hand-engineered.
Here, we briefly describe the working of a CNN with hyperspectral image data
as the input and the detailed description of its usage in our model is presented in
Sect. 5. Since a hyperspectral image is composed of L spectral layers, the input
image can be represented as X = [x1, x2, ..., xL] where xi is a matrix of pixels
corresponding to the layer i. The first convolutional layer consists of n1 filters of
kernel size f1 × f1 and it is employed to extract the features of the input image
as follows:

F1(X) = θ1(u1) (2)

where θ1 denotes the activation function of the entire layer. Here u1 =
∑L

l=1 xl ∗
wl + b1, where wl represents the weights of the filter acting on the input hyper-
spectral data, ∗ represents the convolution operation, and b1 is an n1-dimensional
vector which represents the bias of the entire layer. Also, each element of this
vector is associated with every filter and the output is composed of n1 feature
maps corresponding to the n1 filters.

3.3 Watershed Transformation

The Watershed transformation is a powerful mathematical technique for geo-
morphological image segmentation. It considers a 2D one-band image as a topo-
graphic structure wherein the value of a pixel stands for its elevation. In order
to associate each basin with a minima, the Watershed lines divide the entire
image into catchment basins. This segmentation method requires the user to
define seeds, which are pixels belonging unambiguously to a region. The Water-
shed transformation is usually applied to the gradient function of the image.
The gradient defines the transitions between regions, so that it has high val-
ues on the borders between objects and minima in the homogeneous regions. If
the crest lines in the gradient image correspond to the edges of image objects,
then the Watershed transformation successfully partitions the entire image into
meaningful regions. Hence, it is very well suited for hyperspectral satellite image
segmentation where the main aim is to segment the imagery into distinct geo-
graphical regions.

4 Datasets and Pre-processing

In this section we describe the two publicly available benchmark datasets (Indian
Pines [11] and Pavia University [12]) and the preprocessing that has been used
for our experimental analysis.
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4.1 Indian Pines

The Indian Pines dataset consists of 145×145 pixels and 224 spectral reflectance
bands and was gathered by the 220-band Airborne Visible / Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indian Pines test site in North-western
Indiana. The ground truth corresponding to this dataset is designated into six-
teen classes which is not entirely mutually exclusive and consists of two-thirds
agriculture and one-third forest or other natural perennial vegetation. Along
with this, there are two dual lane highways, a rail line, low density housing, and
some smaller roads.

4.2 Pavia University

The Pavia University dataset was acquired by the 103-band Reflective Optics
System Imaging Spectrometer (ROSIS) sensor during a flight campaign over
Pavia, northern Italy with dimensions of 610×610 pixels and 103 spectral bands.
However, some of the samples contain no information. Hence, they are discarded
in our experimental analysis and are depicted using broad black strips. The
geometric resolution of this image is 1.3 m and the corresponding ground truth
differentiates among all the nine classes.

4.3 Pre-processing

For the empirical analysis, the preprocessing steps of the Indian Pines and the
Pavia dataset are same for both the approaches (GML and CNN). First, we
over sample the weak classes in order to make the hyperspectral images more
balanced. The pixel values are then standardized by subtracting the mean and
scaling them to unit variance. Next, we apply Principal Component Analysis
(PCA) to the input data in order to transform the original high-dimensional data
into a low-dimensional space by extracting the key features and then padding it
with zeros. Then, we save the preprocessed data for the experimental analysis.

5 Methodology

This section describes our approach in detail which includes the pixel-wise clas-
sification techniques, the segmentation method, and the modified majority vote
algorithm.

5.1 Spatial-Spectral Classifier

An overall architecture of the CNN used in our work is shown in Fig. 1. It
comprises of two 2D convolutional layers with the first layer having C1 filters
of size f1 = 3, second layer having C2 = 3 × C1 filters of size f2 = 3, and
followed by a flatten layer. Here, the parameter C1 corresponds to the number
of principle components that preserve at least 99.9% of the initial information
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Fig. 1. An overall architecture of the CNN

contained in the original datasets after applying PCA. The size of the filter is
determined empirically which dictates the number of neighbors of each pixel that
has been taken into consideration during the classification. The convolution layer
is composed of a set of separate filters and each filter is independently convolved
with the image to obtain the corresponding feature maps as described in Sect. 3.2.
In contrast to the conventional CNNs, we do not use a max pooling layer after
the convolution layer, since there is no need to account for the translation and
scale invariance. Next, we use two regular densely connected neural network
layers in our model. The first dense layer has 120 units with a dropout of 0.5
and the second layer is the last layer of the network. It has as many units as the
number of classes and in this layer, we use a softmax algorithm to produce the
final outputs.

The second pixel-wise classification scheme that we used is the GML algo-
rithm as outlined in Sect. 3.1, and in our analysis, the GML classification tech-
nique differs significantly from the CNN method. The GML algorithm performs
the classification in a pixel by pixel fashion which preserves their individual val-
ues. On the contrary, the convolution operation in the CNN technique averages
out individual values using adjacent pixels that lie within the dimensions of an
applied filter.

Fig. 2. (a) Overlaps (b) Distances and the (c) Separated objects for Indian Pines data

Next, we generate a segmentation map of the image using the Watershed
algorithm as detailed in Sect. 3.3. In our model, local maxima of the distance
map to the background are used as seeds. These maxima are chosen as markers
in order to segment the entire image into regions and the flooding of catchment
basins from such markers separates the areas along a Watershed line. The seg-
mentation maps obtained using the Watershed algorithm are shown in Fig. 2
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Fig. 3. (a) Overlaps (b) Distances and the (c) Separated objects for the Pavia dataset

and Fig. 3 for the Indian Pines and the Pavia University datasets respectively.
For images where the pixels are not uniformly distributed across the classes,
the Watershed algorithm typically produces over segmented maps, and so in our
case, the image is over segmented. However, the problem is alleviated when we
combine the segmentation map with the pixel-wise classification results.

Algorithm 1: Our majority vote approach.
1: uni labels = unique values (labels in segmentation map)
2: final map = 0
3: for i in uni labels do
4: arr ← []
5: height ← height of segmentation map
6: width ← width of segmentation map
7: for j = 0 to j = height do
8: for k = 0 to k = width do
9: find all pixels in the segmentation map having label i

10: append their pixel-wise classification labels to arr
11: end for
12: end for
13: max freq label ← most frequent label in arr
14: for j = 0 to j = height do
15: for k = 0 to k = width do
16: find all pixels in the segmentation map having label i
17: assign max freq label as the label for these pixels in the final map
18: end for
19: end for
20: end for
21: return final map

Finally, we combined the outputs of the pixel-wise classification algorithms
with the segmentation maps using a modified majority vote technique (Algo-
rithm 1), wherein for each region of the segmentation map, all the pixels are
assigned to the most frequent class. However, in our proposed approach, the
majority vote is performed with an adaptive neighborhood instead of a fixed
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neighborhood and for every pixel, the region it belongs to is defined by the seg-
mentation map. Then, we use this region as its neighborhood for the vote on the
spectral classification.

6 Experimental Results

First, we test our proposed models, GML with Watershed (GML-W) and
CNN with Watershed (CNN-W), on the Indian Pines and the Pavia Univer-
sity datasets. Then, we compare the performance of our hybrid models with the
traditional GML and CNN algorithms on the same datasets. For this purpose, we
split the datasets in the ratio of 3:1 for the training and testing data respectively.

Fig. 4. Results of (a) GML (b) GML-W (c) CNN and (d) CNN-W on Indian Pines
data

The results obtained by the traditional GML and the proposed GML-W
algorithms are shown in Fig. 4(a) and Fig. 4(b) respectively. For the Indian Pines
dataset, the GML gives an accuracy of 97.46% and the GML-W provides an accu-
racy of 98.31%. Next, we experimented with the CNN classifier and the obtained
results are shown in Fig. 4(c) and Fig. 4(d). In terms of accuracies, the CNN and
CNN-W models give results of 87.08% and 97.7% respectively. As is evident from
the results, the use of the spatial-spectral classifier led to a significant improve-
ment with an increase of 10.6% in the overall accuracy. Additionally, from a
visual observation, the classification maps obtained by the spatial-spectral clas-
sification are seen to be much less noisy than the ones obtained by the pixel-wise
classification.

The detailed results obtained for each category, viz. GML, CNN, GML-W,
and CNN-W on the Indian Pines dataset is shown in Table 1. From the results, it
is evident that incorporating the spatial information with the traditional pixel-
wise classification algorithm improves the accuracies considerably. This is due to
the fact that most of the classes in the image represent large crop fields, and the
segmentation step makes these regions of fields homogeneous, thereby improv-
ing the classification results. The accuracies of almost all classes are significantly
improved, except for some small classes like Oats and Stone-Steel Towers which
are incorrectly assimilated into neighboring regions. However, the GML algo-
rithm fails to correctly identify the regions of Corn-notill, Hay-windrowed, and
Soybean-notill as the number of pixels in the training set is almost a hundred
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Table 1. Accuracies (%) for Indian Pines dataset

Category GML GML-W CNN CNN-W

Alfalfa 100.0 100.0 100.0 100.0

Corn-notill 0.00 100.0 80.11 0.00

Corn-mintill 94.74 82.35 89.90 100.0

Corn 97.83 88.19 96.61 93.37

Grass-pasture 100 100.0 95.04 100.0

Grass-trees 99.79 96.89 98.90 96.89

Grass-pasture-mowed 99.72 100.0 100.0 100.0

Hay-windrowed 0.00 100.0 100.0 0.00

Oats 100.0 100.0 100.0 100.0

Soybean-notill 0.00 100.0 88.06 0.00

Soybean-mintill 99.48 99.48 72.14 99.48

Soybean-clean 90.59 98.20 87.83 98.28

Wheat 99.32 100.0 100.0 100.0

Woods 100.0 100.0 98.41 100.0

Buildings-Grass-Trees 99.60 99.20 93.81 99.84

Stone-Steel-Towers 98.96 87.56 100.0 87.04

Average accuracy 93.80 96.99 80.10 91.76

Overall accuracy 97.46 98.31 87.08 97.7

times lesser than other regions, which leads to the misclassification of the pixels
into neighboring categories.

A similar analysis of the Pavia University dataset has been done by splitting
the data in the ratio of 3:1 for training and testing. First, using the GML classi-
fier, we were able to obtain an accuracy of 99.03% which was later on improved
to 99.52% using our proposed hybrid classifier and the results are shown in
Fig. 5(a) and Fig. 5(b), respectively. Next, we carried out the pixel-wise clas-
sification using a deep learning based CNN model and obtained an accuracy
of 97.39%. We further improved the performance by ∼ 2% using our proposed
approach which led to an overall accuracy of 99.44%. Figure 5(c) and Fig. 5(d)

Fig. 5. Results of (a) GML (b) GML-W (c) CNN and (d) CNN-W on the Pavia dataset
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represent the results obtained before and after combining with the Watershed
transformation respectively.

Table 2. Accuracies (%) for the Pavia university dataset

Category GML GML-W CNN CNN-W

Asphalt 100.0 100.0 98.13 100.0

Meadows 95.02 98.02 98.62 97.49

Gravel 94.98 96.02 89.33 96.02

Trees 92.42 96.56 99.73 91.47

Painted metal sheets 99.18 99.18 100.0 99.18

Bare soil 100.0 100.0 98.96 100.0

Bitumen 94.96 100.0 99.39 100.0

Self-blocking bricks 96.76 100.0 93.81 100.0

Shadows 92.85 99.10 100.0 98.66

Average accuracy 96.24 98.76 97.55 98.09

Overall accuracy 99.03 99.52 97.39 99.44

Furthermore, we did a detailed analysis of our models for the Pavia University
dataset and the category wise results for the nine classes are summarized in
Table 2. From the analysis, we observed that the spatial-spectral algorithm using
GML gives the best overall accuracy (99.52%). The variations in the accuracies
for different regions depends largely on the area of that particular region. For
instance, a comparatively bigger structure belonging to the painted metal sheets
class in the center of the image is mostly represented by one region, which leads
to a significant improvement on combining it with the segmentation map. On the
contrary, regions like the asphalt and bitumen are spread across a large number
of regions.

Table 3. Comparison of the overall accuracies of our methods

Classifiers Indian Pines Pavia Scene

GML 97.46% 99.03%

GML-W 98.31% 99.52%

CNN 87.08% 97.39%

CNN-W 97.7% 99.44%

A summary of the overall results obtained on the two datasets are given
in Table 3. Our experimental results show that the GML based approach out-
performs the CNN based approach for both the datasets. This is because the
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GML performs the classification on a pixel by pixel basis and hence it precisely
assigns most of the pixels to their correct classes. However, the CNN technique
averages out individual pixel values during the convolution step and so it classi-
fies many of the pixels into neighboring regions which leads to lower accuracies.
Our technique also proved to be better than the traditional classifiers of GML
and CNN, which gave accuracies of 99.03% and 97.39% respectively. As for the
Indian Pines dataset, our proposed approach led to a significant improvement
of 10.6% over the traditional CNN based classification approach. In addition
to this, our method performed considerably better than the conventional GML
classifier with an overall accuracy of 98.31% on the Indian Pines dataset.

Table 4. Comparison with existing deep learning based methods

Classifiers Indian Pines Pavia Scene

3D CNN [13] 99.07% 99.39%

CNN-MRF [14] 99.27% 99.55%

Ours (GML-W) 98.31% 99.52%

In order to have a more detailed analysis, we compare our approach to the
existing deep learning based methods in Table 4. As seen from the empirical
results on the Pavia university scene, our GML based spatial-spectral method-
ology, without any kind of deep learning aspects has an accuracy of 99.52%,
which is better than the performance of 99.39% achieved by the 3D CNN based
spectral classification technique proposed by Li et al. [13]. Our method’s perfor-
mance is also comparable to the state-of-the-art deep learning based technique
of CNN-MRF given by Cao et al. [14] that has an accuracy of 99.55%, even
though our approach does not require any sort of expensive training or learning
procedures. However, our method achieves an accuracy of 98.31% on the Indian
Pines dataset which is lesser than the accuracy of 99.27% given by the existing
deep learning method because our approach is more suitable for images where
the distribution of pixels amongst the different classes is comparatively uniform.

7 Conclusion

In this paper, we present a novel spatial-spectral methodology for the classi-
fication of land cover using hyperspectral satellite image data. The proposed
approach combines the results of a pixel-wise spectral classification and segmen-
tation maps of the Watershed algorithm, by performing a majority vote on the
initial classification output using adaptive neighborhoods defined by the seg-
mentation map. We investigated GML, a machine learning technique as well as
CNN, a popular deep learning approach for the pixel-wise image classification,
and found that by incorporating the spatial information with the spectral data,
the overall classification map contains more homogeneous regions, as compared
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to only pixel-wise classification of the hyperspectral images. The empirical anal-
yses indicate that our approach performs better than the results discussed in
Sect. 2 for the spatial-spectral classification of hyperspectral images, with an
overall accuracy of 99.52% on the Pavia University dataset and up to 98.31% on
the Indian Pines dataset. Experimental results also demonstrate that our pro-
posed GML based framework - without any kind of expensive training or learning
procedures, achieves comparable performance to the state-of-the-art deep learn-
ing based methods and is hence a computationally efficient alternative for the
classification of hyperspectral image data.

In order to further improve the overall classification, different feature extrac-
tion methods need to be investigated so as to find the most effective features for
segmentation. Also, our proposed approaches should be verified on multispectral
satellite image data to analyze their robustness and in this direction, work is in
progress.
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Abstract. Not safe for work content automatic detection is a serious challenge
for social media due to overwhelming growth of uploaded images, gifs and
videos. This paper focuses on shocking images automatic detection by convo-
lutional neural networks. It was considered that the correct recognition of the
shocking class is more important than the non-shocking one. Binary classifi-
cation by a convolutional network that training during operation has been used
as a baseline solution. However, this solution has two drawbacks: the network
highlights incorrect features of non-shocking images (infinite class) and tends to
forget rare subclasses of shocking images, which is unacceptable. To eliminate
the first drawback, we approach this problem as a one-class classification with
having in mind that a “non-shocking” image can be defined only via contra-
diction with a shocking one. This method is based on using sparse autoencoders
build on top of a pretrained convolutional neural network and is not trained
during operation. To eliminate the second drawback, we memorized vectors of
images that were incorrectly classified during operation. A trained siamese
network during the prediction is used to search for similar images in the data-
base. In the case of an incorrect prediction by the combined model, vectors of
images are added to the database and the siamese network is trained on them.
This method allows you to minimize the number of errors in rare subclasses
identified only during the operation phase of the model.

Keywords: Image recognition � One-class classification � Siamese network

1 Introduction

The amount of information uploaded by users to social media instantly grows, and this
information flow becomes more and more difficult to control in terms of preventing
uploading of socially unacceptable content, which may be not safe for work (NSFW) or
even not safe for life (NSFL).

NSFW content contains nudity, intense sexuality, profanity, violence/gore or other
disturbing subject matter, which usually are seen inappropriate if accesses in a public or
formal environment including a workplace or school.
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Not safe for life content is a subclass of NSFW-content refers to subject matter that
might not be in the interest of a person to view regardless of location and potential
coviewers for being horrifying, disgusting, offensive, or even mentally disturbing to the
viewer.

Many works are devoted to detecting possible negative effect of NSFW content
present and availability for a wide audience [1, 3, 4, 9].

Existing works on the shock image detection, which will be discussed in detail in
Sect. 3, has two main drawbacks. The first problem encountered by the developers of
the shock image recognition system is the lack of a specific definition of shock-content.
To overcome this drawback, we decided to narrow the concept of shock content to
images of real cruelty over people, blood, mutilations, etc.

The second problem is related to solving shocking content detection as a binary
classification task. These days, social networks and search engines prefer to block
shock-content on user complaints and train a binary classification model using these
complaints, which is later used for blocking similar images. This approach has the
following weaknesses:

A model needs many diverse non-shocking content and a large number of com-
plaints to learn, requiring thus a large number of users getting acquainted with shocking
materials before reporting.

A model shows unpredictable behavior for objects that are different from those in
the training sample. It can support its decision based on features of non-shocking
content, which is incorrect, because 1) the number of classes of non-shocking images is
infinite, and 2) the presence of features of a non-shocking image should not reduce the
significance of the features of the shocking image (for example, the presence of a nice
cat in an image should not prevent the system from detecting a severely torn mouse in
the same photo).

The network quickly forgets or does not learn at all rare subclasses of shocking
images, such as, for instance, brain worms.

To overcome these limitations, we will reduce the problem to the one-class clas-
sification task. A one-class classification, unlike a binary one, occurs in the conditions
of impossibility to collect a sufficiently large number of objects of one of the classes, or
the impossibility of unambiguous representation of one of the classes [6].

In this task, shocking images are contrasted with all other existing images, because
it is impossible to correctly define the class of “non-shocking images”.

This helps to eliminate the listed weakness of binary classification:

1. There is no need for many non-shocking images.
2. A model learns only features of shocking content. If an image is dissimilar to any of

the shocking images in the training sample, it is classified as non-shocking.
3. The amount of data for training is smaller, therefore the relative number of repre-

sentatives of rare subclasses is larger, hence the model is easier to learn from them.

When developing a one-class classifier of shock images, we took into account the
heterogeneity and a large number of subclasses of this class of images.
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The rest of the paper has the following structure. In Sect. 2, we review and discuss
related papers. We present the methods and technique we use in Sect. 3. Empirical
study of their performance is presented in Sect. 4 and discussed in Sect. 5. Section 6
concludes.

2 Related Work

In one of the first papers on the recognition of cruelty in images [13], the images used
as training data were collected by sending relevant queries to Google. Despite the good
results presented in the article (90:1� 1:5% accuracy), such inaccurate data collecting
led to the results presented in Fig. 1. In addition, the approach used by the authors (bag
of words using various selected features) did not consider the relationship of different
parts of an image, which is critically important in cruelty recognition.

In another paper [8], the authors recognized images from horror movies using the
concept of image context, which was an important innovation. However, the context
and the “awfulness”‘ of an image were determined solely using color features, which
was inefficient for recognizing shock images.

Finally, in the work using pretrained convolutional networks [14], the problem of
accounting for the interaction of different image segments was solved, but it had
drawbacks: the use of binary classification and careless (semi-automatic) data collec-
tion. Binary classification leads to the uncertainty of the network, as already discussed
in the introduction.

3 Learning Methods

3.1 One-Class Classification

Convolutional Autoencoders. Autoencoders perform a data-specific lossy coding
learned automatically from training data [2]. One-class classification is performed by a
convolutional autoencoder (CAE) learned using images of a given class (shock-
content), which would receive a smaller error for recovering images of this class in
comparison with error of restoring any other random images submitted to the input.
Setting the boundary of the recovery error will result into a classifier, which will detect
shocking image in case of a smaller recovery error and a non-shocking image
otherwise.

Fig. 1. Images classified by the system [13] as cruel.
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Ordinary and Sparse Autoencoders. We trained both types of autoencoders [2, 10]
to encode the values of the last layer of a pretrained convolutional neural network
(CNN). In this case, the last layer was trained from scratch and was added on top of the
layers of pretrained networks. First, we used an idea similar to the one from the CAE
approach: the recovery error for the learning class is significantly less than the recovery
error for the remaining values.

However, using only recovery error is just a single feature, so we decided to add
values of autoencoder internal representation vector as new features, increasing thus
their number from 1 to 2001.

One-class support vector machine (OCSVM). OCSVM is another approach we can
use on top of a CNN. We use a one-class support vector machine [11] on the values of
the last layer vectors of the CNNs pretrained on ImageNet images. There was no
significant difference in the quality of the CNNs performance.

We found out when learning these networks that replacement of a loss function
softmax to hinge loss function gives a significant increase in quality for OCSVM. This
can be explained by the fact that the estimates given by the softmax function are non-
normalized logarithmic probabilities of the class, which can easily be transformed into
class probabilities. When training a network, changing the evaluation of one class
affects the ratings of all other classes. In this work, we try to isolate the characteristics
of a certain class, estimating random images should not affect the estimates of shocking
images. To do this, we replace the used loss function: from binary cross-entropy to
hinge and change the activation function of last layer from softmax to tanh (because
binary hinge loss function should be used with labels in interval �1; þ 1f g).

3.2 Siamese Network

Siamese network is a class of neural network architectures that contain two or more
subnetworks (CNN) that share all their parameters and weights [7]. They are used in
tasks that involve finding similarity or a relationship between two comparable objects.
A set of pairs of such objects labelled with values of their proximity are used as training
data. The architecture of Siamese networks used in this work is shown in the Fig. 2.

It consists of three components:

1. Feature extraction is pretrained CNNs that do not update their parameters during
training. In this paper, we use Inception3 [12] (Inc3), ResNet50 [5] (RN50) and
ResNet50 + fused [15] (RN50f) CNNs as feature extraction components.

2. Distance is a measure of vectors dissimilarity. In this paper, we use the cosine
distance, the Manhattan distance and the Euclidean distance.

3. Classifier is a classifier that determines the similarity 0; 1ð Þ of input objects on an
integrated vector. In this paper, this role is performed by SVM, Random Forest,
XGBoost and Feedforward Neural Network (FNN).
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In this work, siamese network learns to determine how similar the pairs of images
are to each other and helps to consider the presence of very rare subclasses of shocking
images. During the exploitation of the system, after the classification by the one-class
classifier, an image is checked for similarity to a limited number of images poorly
recognized by the network and the one-class classifier. If the image is similar to one of
the representatives of the rare subclasses, then the final answer is the class to which the
subclass belongs, otherwise—the prediction of the one-class classifier. In case of
detection of incorrect classification by a one-class classifier and the absence of similar
images in the base of rare subclasses, a new subclass is created and additional training
of the siamese network starts: similar images are generated by data augmentation
methods, and not similar images are taken randomly from opposite class; new image
proximity pairs and sampled old pairs become a learning sample. Since the siamese
network is designed to solve one-shot learning problems, two images of the same
subclass are enough for it to remember a new subclass.

4 Empirical Study

4.1 Dataset

The problem of the methods described in the Introduction is an inaccurate semiauto-
matic data collection. Often on pages with materials about accidents, as well as in the
search for relevant requests, in addition to images of the deaths and injuries themselves,
there are photos of rescuers, landscape, etc. which is not a shock-content. These images
were selected manually.

The collection of data took into account the presence of contextual shock (for
example, worms inside a human body or python, which completely swallowed a
person). We manually collected:

1. 2500 shocking images;
2. 5150 non-shocking images (random pictures from the Internet);
3. 115 “border”‘ shocking images divided into 14 subclasses that were incorrectly

classified by the model [14];

Fig. 2. General architecture for all siamese networks used in this work.
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4. 50 “border”‘ non-shocking images divided into 5 subclasses that were incorrectly
classified by the model [14].

The breakdown into the training, validation and test sets was stratified: the image of
each class and each boundary subclass was represented proportionally in three sets. For
the validation set, 20% of all images were used. For test, 20% of the remaining sample
was used. Thus, the ratio of classes was used: 64%:16%:20% (train:test:validation). For
the training of a pre-trained convolutional network and siamese networks, images of all
classes are used. To train auto-encoders and a one class SVM, only shocking and
“border”‘ shocking images are used. To test all models, both shocking and non-
shocking images are used.

We compare the models with respect to their accuracy, precision and recall in
classifying shocking and non-shocking images. Additionally, we compare recall and
precision measures for “border” shock and non-shock images separately.

4.2 Baseline Model

As a baseline solution, we used the binary classification with modern convolutional
networks ImageNet v3, ResNet50 and the implementation of ResNet50 with Fused-
layers. We used threshold movement to increase the recall of recognizing shock images
and see how other metrics change. The probabilities of the classes were weighed in
accordance with the cost matrix of the classes. The cost of misclassification of shocking
images as non-shocking consistently increased until the overall quality of the model did
not start to fall precipitously, or metrics ceased to change. The results of the work are
presented in Table 1.

Table 1. Results of the basic models.

CNN Accuracy Shock
Precision

Shock
Recall

Border
Precision

Border
Recall

Precision Recall

Inception3 0.936 0.882 0.906 0.792 0.790 0.942 0.937
ResNet50 0.949 0.927 0.915 0.792 0.801 0.949 0.949
ResNet50
Fused

0.957 0.946 0.918 0.807 0.813 0.956 0.956

Inception3
with
moving
threshold

0.861 0.709 0.962 0.740 0.433 0.891 0.861

ResNet50
with
moving
threshold

0.883 0.736 0.993 0.788 0.432 0.912 0.883

ResNet50
Fused with
moving
threshold

0.898 0.763 0.988 0.802 0.504 0.919 0.897

Detection of Shocking Images as One-Class Classification 245



4.3 Results of One-Class Classification

Convolutional Autoencoders. Several CAEs with different sizes and activation
functions were built and trained:

1. Six-layer CAE with ReLu at the inner layers and at the output.
2. Six-layer CAE with tanh at the inner layers and at the output.
3. Six-layer CAE with tanh at the inner layers and ReLu at the output.
4. Eight-layer CAE with tanh at the inner layers and ReLu at the output.
5. A thirty-two-layer CAE using VGG-16 as an encoder.
6. A thirty-two-layer CAE using pre-engineered VGG-16 as an encoder.

The best recovery error was shown by the eight-layer autoencoder, but the recovery
threshold could not be found: recovery errors for both classes are uniformly distributed
across the sample. As a result, the model gives 0.528 accuracy on the validation set,
with precision equals to 0.598 and recall equals to 0.525, which is which is very close
to random selection. There are some factors that should be taken into consideration in
the analysis of reasons for failure, including short network training time and too broad
definition of a class of shocking images for such small sample. This conclusion is
because when CAE work with the subclass “cut hands” (a small sample of 150 images
containing cut hands), the six-layer CAE showed a 0.86 accuracy on validation after
the threshold was selected with F1-score. Photos of the cut hands are very similar to
each other and can clearly be combined into one subclass of images. An example of the
work is shown in Fig. 3, the recovery errors of different classes differ by an order of
magnitude.

OCSVM. The models were trained only on shocking images without considering the
boundary shock, because this increases the efficiency of the model. The model is
primitive enough and cannot handle with boundary images well enough.

Fig. 3. Original image and image recovered by an eight-layer convolutional autoencoder.
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The main parameters for tuning were the type of kernel (linear, rbf, polynomial)
and m that sets an upper bound on the fraction of outliers (training examples regarded
out-of-class) and sets a lower bound on the number of training examples used as
support vectors. Results are shown in Table 2.

Autoencoders. Stacked autoencoder can store a large amount of information in its
internal representation and improve the basic solution with respect to all metrics, as it
presented in Table 3.

As it can be seen, SAE using internal representation showed the best performance.

4.4 Siamese Networks

Siamese Network Training. As a result of all experiments, feed-forward network
proved to be the best classifier, so the Table shows only the results of the work of the
best models using other classifiers (for comparison). As it can be seen from Table 4,
siamese network that has Resnet50Fused as the feature extractor, the Euclidean dis-
tance, and feedforward neural network as classifier was the best.

Table 2. OCSVM-model classification results.

Pretrained
CNN/loss

Accuracy Shock
Precision

Shock
Recall

Border
Precision

Border
Recall

Precision Recall

Inceptionv3 cross-
entropy

0.846 0.683 0.944 0.632 0.365 0.880 0.846

Inceptionv3 hinge 0.908 0.787 0.979 0.732 0.614 0.923 0.908
ResNet50 cross-
entropy

0.852 0.696 0.945 0.637 0.370 0.883 0.885

ResNet50 hinge 0.917 0.825 0.941 0.745 0.628 0.923 0.917
ResNet50 Fused
cross-entropy

0.862 0.715 0.956 0.645 0.377 0.891 0.861

ResNet50 Fused
hinge

0.924 0.843 0.953 0.744 0.625 0.932 0.921

Table 3. Autoencoder-model classification results.

Autoencoder Accuracy Shock
Precision

Shock
Recall

Border
Precision

Border
Recall

Precision Recall

SAE 0.920 0.821 0.962 0.826 0.650 0.929 0.920
SAE + internal
representation

0.973 0.973 0.942 0.885 0.887 0.974 0.973

AE 0.896 0.772 0.962 0.797 0.521 0.912 0.896
AE + internal
representation

0.927 0.968 0.8 0.661 0.702 0.930 0.927
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After finding the best siamese network, we combined it with the best one-class
classifier. Results are presented in Table 5.

As it can be seen, the proposed solution significantly outperforms the baseline, and
usage of siamese networks help to achieve the highest result.

5 Discussion

The empirical study presented in Sect. 5 reveals that the best result is a model that uses
a CNN resnet50 fused as feature extractor for autoencoder and siamese network, SVM
trained on stacked autoencoder internal representation and recovery error as one-class
classifier and siamese network with the Euclidean distance and feed-forward neural
network as classifier. It is quite obvious that simpler models such as the normal
autoencoder or one-class SVM showed the worst results, because they could not
allocate sufficient information for good classification. The reason for the unsuccessful

Table 4. Comparison of siamese networks.

Feature extractor Distance Classifier Accuracy Precision Recall

ResNet50 Euclidean SVM 0.801 0.807 0.807
ResNet50 Euclidean RF 0.792 0.794 0.793
ResNet50 Manhattan XGBoost 0.898 0.902 0.908
Inception v3 Manhattan FNN 0.900 0.904 0.906
ResNet50 Manhattan FNN 0.905 0.909 0.909
ResNet50 Fused Manhattan FNN 0.909 0.911 0.912
Inception v3 Euclidean FNN 0.912 0.919 0.920
ResNet50 Euclidean FNN 0.918 0.923 0.924
ResNet50 Fused Euclidean FNN 0.924 0.929 0.931
Inception v3 Cosine FNN 0.878 0.881 0.885
ResNet50 Cosine FNN 0.881 0.884 0.897
ResNet50 Fused Cosine FNN 0.885 0.892 0.895

Table 5. The results of the best reviewed models.

Model Accuracy Shock
Precision

Shock
Recall

Border
Precision

Border
Recall

Precision Recall

Baseline 0.957 0.946 0.918 0.807 0.813 0.956 0.956
SAE + internal
representation

0.973 0.973 0.942 0.885 0.887 0.974 0.973

SAE + internal
representation + siamese
neural network

0.985 0.979 0.977 0.940 0.939 0.986 0.986
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application of the convolutional auto-encoder is most likely that it was not pretrained
but was trained from scratch on a small diverse set of data. The resulting pipeline is
presented on Fig. 4.

6 Conclusion

In this paper, we suggest a new method for shocking image detection. It includes using
one-class classifiers for learning representation solely of shocking images, and siamese
network for handling with different and rare subclasses of shocking images.

For method evaluation, we use manually collected dataset that contains 2500
shocking images, 5150 random non-shocking images, as well as 115 “border” shocking
images divided into 14 subclasses and 50 “border” non-shocking images divided into
5 subclasses, which were tricky for the best-known model.

We used several methods of one-class classification, namely CAE, AE and SAE
with pretrained CNN, OCSVM with pretrained CNN. Due to the class of shock images
contains a lot of very dissimilar subclasses, it was necessary to get the maximum
amount of information about the data during the training, which was performed with
the help of information stored in the internal representation of the sparse autoencoder.

As a result, SAE recovery error combined with vector of inner representation of
images showed the best result.

The achieved results are improved by using siamese networks, which remember
images-representatives of especially rare subclasses. We tested several siamese net-
work architectures resulting in the best model being the siamese network with
ResNet50 + Fused network for extracting image feature vectors, Euclidean distance for
combining feature vectors and FNN as a classifier.

In the future, we are going to more intently consider the possibilities of using the
siamese network as an assistant to the main classifier. We plan to investigate whether
the use of the Siamese network will reduce the number of errors of the classifier
training in the process of operation (algorithm of online machine learning).

Acknowledgments. This work was financially supported by the Government of the Russian
Federation (Grant 08-08). The authors would like to thank Aleksey Artamonov for his con-
structive comments and suggestions.

Fig. 4. Architecture of the best solution.
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Abstract. In this paper, performance evaluation of image data-set using
2-layer Convolutional Neural Network Architecture and transfer learning
method, is studied on Fashion MNIST dataset. Fashion MNIST is a
dataset of images consisting 70000 28× 28 gray-scale images, associated
with label of 10 classes. The area of research of this paper in transfer
learning is limited to pre-trained neural network VGG-16. The accuracy
and respective losses are evaluated using the two mentioned methods.
The work under this paper is inspired by widely famous Image-net Large
Scale Visual Recognition Challenge, although due to constraint on time,
resources, a smaller data set i.e. Fashion MNIST is taken for the study.
The work is dependent on Keras Functional API and Tensor Flow. With
the accuracy 88.24% and loss 29.02 as per CNN model, the model can
be utilised by online clothing stores to classify their articles under right
category.

Keywords: Deep learning · ConvNet · Learning rate · Image
classification · VGGNet · Dense layer · Neural Networks · Machine
Learning · Algorithm Optimisaton · Transfer learning

1 Introduction

Image classification is one of the core task in Computer Vision which has always
enjoyed limelight. We have taken into account 70000 Grayscale images of size
28× 28. Images are treated as a 2-D matrix by Convolutional Neural Net-
work(CNN). Depending on pixel i.e. intensity of color at a particular point,
a numeric integer on the scale of 0–255 is assigned. The numeric values in pixel
are uniformly changed from zero (black pixels) to 255 (white pixels). The grid
of matrix changes with factors like light, occlusion, viewpoint, deformation etc.
but somehow overall grid represents the same picture. Hence, a model should
be robust enough to overcome such limitations. A CNN uses multiple linear
classifiers within it to classify images on their respective class labels. Class
label is assigned to the image on the basis of maximum probability attained.

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
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The approach used in Neural Networks is called parametric approach as it is
driven by the parameters obtained on different layers during the course of train-
ing. In real time, almost all small and big firms are extensively using Image
Classifiers, made up of different learning algorithms.

As training of a CNN with large datasets can exhaust a significant amount
of time, concept of transfer learning can be used as a saviour. It is defined as
a situation where what has been learned in one setting is exploited to improve
generalization in another setting [18]. It enables CNN to utilise its learning
(features, weights) and generalize it on another similar problems. The smaller
datasets give a better result on a pre-trained neural network. VGG-16 is a CNN
proposed by Simonyan and Zisserman from the University of Oxford in the
paper “Very Deep Convolutional Networks for Large Scale Image Recognition”.
The model was fed on ImageNet, which is a dataset of over 14 million images
belonging to 1000 classes. It achieved an accuracy of 92.7%, which was among
top-5 test accuracy. VGG-16 was trained on NVIDA Titan Black GPU’s for
couple of weeks.

Fig. 1. MNIST dataset

2 Problem Description

Image Classification is a well known supervised learning problem, which defines
a set of target classes and train a model to recognize them using training data.
Training data comprises of images and labels associated with them. A model is
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required to learn features of training images and provides a good accuracy on
test data. In a parametric approach, a test image (28× 28 here) is converted
into 28× 28× 1 (1 as the images are gray-scale, in case of coloured images 3
is used to represent each of RGB channel) matrix, which is a representation of
array consisting 784 elements. The array is convoluted with predefined weights
generating scores i.e. probabilities for each class label. Class label with highest
probability is assigned as the “correct” label of image. The more accuracy we
get, better is the model. Figure 2 shows an image from data set, the label of the
image is Sneaker in parenthesis. After passing the image from a classifier model
the prediction should also be maximum for ‘Sneaker class’. In the figure, 100%
shows the probability obtained by the ‘Class Sneaker’ which is represented by
a full length green bar. The aim of Image Classification problem is to classify
images to their ‘correct classes’. One of the approach to solve such problems is
neural networks, where model gains features and information from training data
and based on its knowledge, classifies the new data.

Fig. 2. Graphic representation of the problem

A neural network is made of neurons arranged in layers. Input (Image matri-
ces: X) are fed to each and every neuron and convoluted with weights (w) of the
next layer results in activation functions (a). Mathematically,
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ai
(j) = activation unit i in layer j

Θ(j) = matrix of weights controlling function mapping from layer j to j+1
g(Θ) = Sigmoid function
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Fig. 3. Neural network

3 Related Research

Deep learning techniques are famous among the fashion related business on their
e-commerce websites such as apparel search, apparel recognition, apparel clas-
sification and automatic product recommendation. Apparel classification is a
complex task due to various apparel properties, and categorisation in the depth
of categorisation. CNNs are a popular choice of researchers in this area. There are
various models based on neural network are published with trustworthy results
[11].

3.1 ALEXNet(2012)

The paper, titled “ImageNet Classification with Deep Convolutional Networks”,
has been referenced a total of 6,184 times and is widely regarded as one of the
most core source of publications in the field. It contains eight learned layers—
five convolutional and three fully-connected. It used Relu non Linear function,
as deep convolutional network with ReLu function trains several times faster
than their tanh units. The model was trained on two GTX 580 GPU connected
in parallel. The two-GPU net takes slightly less time to train than the one-GPU
net. The output of the last fully-connected layer is fed to a 1000-way softmax
which produces a distribution over the 1000 class labels. The first convolutional
layer filters the 224× 224× 3 input image with 96 kernels of size 11× 11× 3 with
a stride of 4 pixels. It achieves top-1 and top-5test set error rates of 37.5% and
17.0%. In 2012, the improvised version attained top-1 and top-5 error rates on
this dataset are 67.4% and 40.9%, with an additional, sixth convolutional layer
over the last pooling layer [8].
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3.2 ZF Net(2013)

In the paper titled “Visualizing and Understanding Convolutional Neural Net-
works”, Zeiler and Fergus begin by discussing the idea due to the accessibility of
large training sets and increased computational power with the usage of GPUs,
the topic came into limelight. It requires a careful initialization and does not give
any information about the unit’s in-variances. A large set of N labeled images
x,y, where label yi is a discrete variable indicating the true class. A cross-entropy
loss function, suitable for image classification, is used to compare ŷ and yi. The
parameters of the network (filters in the convolutional layers, weight matrices
in the fully connected layers and biases) are trained by back-propagating the
derivative of the loss with respect to the parameters throughout the network,
and updating the parameters via stochastic gradient descent. The visualization
technique used was a multi-layered De-convolutional Network (de-convnet), as
proposed by (Zeiler et al. [9]), to project the feature activations back to the input
pixel space. It used an architecture of 8 layer convnet model.

3.3 VGGNet(2014)

The use of only 3× 3 sized filters is quite different from AlexNet’s 11× 11 filters
in the first layer and ZF Net’s 7× 7 filters. The combination of two 3× 3 con-
volution layers has an effective receptive field of 5× 5. This in turn simulates a
larger filter while keeping the benefits of smaller filter sizes. One of the benefits
is a decrease in the number of parameters. Also we can use two ReLU layers
instead of one with the combination of two 3× 3. 3 convolutional layers back to
back have an effective receptive field of 7× 7. As input volumes at each layer
decreases in terms of spatial (result of the convolution and pool layers), the depth
of the volumes increase due to the increased number of filters as network goes to
interiors. However, the number of filters doubles after each maxpool layer. This
adds up the idea of shrinking spatial dimensions, but growing depth.

4 Implementation Details

We evaluate the performance of Fashion MNIST on a 2 layer CNN trained from
scratch and on a model which uses pre-trained weights of VGG-16.

Figure 4 depicts handling of data during the course of work.

– Understand dataset
– Pre-process Data
– Visualize Data
– Build a Model
– Train and Test Data
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Fig. 4. Data processing flow

4.1 Understand and Pre-process Data

Fashion MNIST consists of 70000 28*28 grayscale images. Out of which 60000
images are in training set along with their class labels. Rest of 10000 images
are in test data set. Data set is directly accessed from Keras library of python.
There are ten class labels: Tshirt/top, Trouser, Pullover, Dress, Coat, Sandal,
Shirt, Sneaker, Bag, Ankle Boot. Data has been shuffled 5 times to include
randomness in the values. The large scale image has been pre-processed first
before undergoing through convolution. The images are flattened to 1- D array
and the pixel values ranging from 0–255 are normalised between 0,1.

4.2 Model Building

A model is the sequence of the layers, which generates predictions by finding
patterns in the data. The model used here comprises of input layer, that converts
2D array of 28*28 into 1D array to get computed in further layers, dense layer
which is a fully connected node (i.e. each input neuron is connected to each
output neuron) and output layer that has 10 outputs as data set has 10 class
labels. The non linear function used is ReLu in the hidden layer and softmax
in the output layer. Softmax function will predict the labels in the form of
probabilities. ADAM optimiser is used to combat with loss function of data-sets
and optimisation of the model. This 2-layer neural network model uses back-
propagation technique to find the best suitable weights for the datasets.

The model provides the accuracy of 87.8% with loss of 0.27. Predictions can
be viewed in the Fig. 5, where green bar shows the right predictions and red bar
shows the wrong predictions. In the pictures with multiple bars, the bar with
highest probability is considered as the right label. The other bars with less
probabilities show that the test image might be similar to the templates of those
other probabilities. The graphs shown in Fig. 6 and Fig. 7 shows that accuracy
is increasing from 82% to 87% on test images as epochs are increasing and in
the same way losses occurred are decreasing from 0.50 to 0.24 with number of
epochs.
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Fig. 5. Prediction on test images

Fig. 6. Accuracy graph Fig. 7. Loss graph

4.3 Transfer Learning Using VGG-16

The Neural Information Processing Systems (NIPS) 1995 workshop Learning to
Learn: Knowledge Consolidation and Transfer in Inductive Systems is believed to
have provided the initial motivation for research in this field. Transfer Learning is
different from traditional learning as traditional learning is isolated and occurs
purely based on specific tasks, datasets and training separate isolated models
on them, on the contrary, transfer learning can leverage (features, weights etc.)
from previously trained models for training newer models. As mentioned there
are various transfer learning models available. VGG-16, is considered as it has
92.7% accuracy top-5 test accuracy in ImageNet, which is a dataset of over 14
million images belonging to 1000 classes [7].
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_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
_________________________________________________________________
dense_1 (Dense) (None, 10) 40970
=================================================================
Total params: 134,301,514
Trainable params: 40,970
Non-trainable params: 134,260,544
_________________________________________________________________

Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

VGG-16 has 16 layers comprised of Convolutional layers, Max Pooling layers,
Activation layers, Fully connected layers. There are 13 convolutional layers, 5
Max Pooling layers and 3 Dense layers which sums up to 21 layers but only 16
weight layers. Convolution layer 1 has number of filters as 64 while Convolution
layer 2 has 128 filters, Convolution layer 3 has 256 filters while Convolution layer
4 and Convolution layer 5 has 512 filters.

Input layer works on 224*224 size of images hence our dataset images of 28*28
needs to be reshaped. In order to avoid over-fitting of data and optimize results
without any biasing training data is split between test data and validation set
i.e. 2000 images in validation set and 80000 images in testing set along with their
labels. The data is distributed randomly in order to preserve the randomness of
dataset. For cross validation, data is further split in batches within training,
testing and validation data randomly. For training data and testing data batch
size is chosen to be 10, for validation data, batch size is chosen to be 4. VGG-16’s
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output layer has 1000 labels originally (as it was trained on ImageNet dataset
which has 1000 class labels), it is modified to 10 output class labels. To compare
the results on same grounds, Adam optimizer and categorical crossentropy is
used for optimization and evaluation of loss (as used in 3 layer CNN). The
model provides an accuracy of 94% with 0.19 loss, which is significantly better
than training a convolutional neural network from scratch.

5 Results and Discussion

The better results are obtained, retraining an already trained data, however
chances of over-fitting are fairly high in retraining the same model. An accuracy
of 90% is achieved after re-training 2 layer CNN model on the same time, how-
ever it violates the concept of Machine Learning, as the basic idea in Machine
Learning is to have better predictions on new data than on old data.

Model Accuracy Loss

2 Layer CNN 87% 0.27

VGG-16 94% 0.19

Better results can be achieved by increasing number of hidden layers of neural
network as here we have used only 1 hidden layer. Learning rate used in VGG-16
model is 0.0001. We evaluated accuracy and loss values on different learning rates
ranges from 0.001 to 0.0001. There was not a significant difference among values
which can used by online stores. A very low learning rate progresses the training
slowly as convergence is slow. On the other hand, if learning rate (generally
represented by α), cost function may not decrease on every iteration and may
not converge. Learning rate is one of the hyper parameters for this model.

6 Conclusion

We have evaluated performance of a 2 layer neural network and predefined VGG-
16 on an imgeset comprised of 70000 gray-scale images having 10 output labels.
The scope of future work can be focused on different factors like:

– Increasing number of layers in CNN model.
– Evaluation of performances can be played around on different sizes of epochs,

batch sizes, filter kernels of hidden layers, activation functions used.
– Tweaking more than one layer(not just output layer).
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Abstract. This paper introduces a semantic-segmentation guided image recol-
oring approach of digitized art paintings to enhance the color perception of
color- blind people that suffer from protanopia and deuteranopia. Semantic
segmentation using transfer learning between natural images and art paintings is
applied to extract annotated color information. By using a standard technique,
the annotated colors are transformed to simulate the effects of protanopia and
deuteranopia. Then, a specialized objective function is minimized to recolor only
the colors that are significantly different from the respective simulated ones,
because these colors are perceived as confusing by the color blind. The effec-
tiveness of the proposed method is demonstrated through its comparison with
other algorithms in several experimental cases.

Keywords: Color vision deficiency � Digitized art paintings � Image
recoloring � Semantic segmentation � Deep network

1 Introduction

The human color vision system generates the color perception by using three types of
photoreceptor cells, called cones, to perform photon absorption: the L-cones, the M-
cones, and the S-cones. The L-cones correspond to the red color, the M-cones to the
green color, and the S-cones to the blue color. Malfunction of one or more photore-
ceptors results in color vision deficiency (CVD), also called color blindness, which
consists of three types: the monochromacy, the dichromacy, and the anomalous
trichromacy [16, 17, 20]. The most challenging CVD is the dichromacy, which
embraces three categories [5, 16, 20]: (a) protanopia caused by the absence of L-cones,
(b) deuteranopia caused by the absence of M-cones, and (c) tritanopia caused by the
absence of S-cones. The protanopes and deuteranopes cannot distinguish between red
and green, while the tritanopes between blue and yellow.

People with strong CVDs face difficulties in daily life, where problematic color
perception becomes annoying or even critical (e.g. road signs), making their accessi-
bility in colored content a challenge. Regarding this issue, the accessibility of
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color-blind people in cultural content, such as art paintings, has been acknowledged as
an important demand by worldwide organizations dealing with the CVDs and cultural
organizations such as museums, as well [7, 10, 12]. Many color-blind people are at a
disadvantage when choosing to study or enjoy art paintings because they can only
discern a confusing set of objects and colors.

So far, a wide variety of image recoloring methods has been proposed to enhance
the color perception of the color-blind [16]. Hassan and Paramersan [5] set up the
image recoloring in the XYZ color space utilizing three steps namely, color normal-
ization, angular color rotation, and color un-normalization. Huang et al. [8] performed
the color enhancement by extracting key colors and determining an optimal mapping to
maintain the contrast between pairs of those colors. In [9], special requirements were
quantified by minimizing an objective function in the CIE Lab space. Rani and Rajeev
[14] assisted deuteranopic viewers by enhancing the contrast between adjacent shades.

Although too much effort has been put on the recoloring of natural images, there are
relatively few works that consider the case study of digitized art painting images. Due
to the complexity of such kind of images, maintaining a color natural appearance of the
recolored image is a very challenging problem [1, 18]. The requirement of color
naturalness focuses on minimizing the perceptual difference between the colors in the
original image and the respective modified colors in the recolored image [16].

In this paper, we introduce a novel approach that attempts to meet the requirement
of naturalness, regarding the protanopia and deuteranopia CVDs. A transfer learning
based semantic image segmentation algorithm is implemented to extract annotated
color information of the original image. The semantic segmentation is implemented by
introducing a framework for transferring learning from a Mask RCNN network [3, 15],
trained on available large collections of labeled natural images, to the context of art
paintings. Then, the colors identified above are transformed to simulate the corre-
sponding color blind perception [20]. The above information is further processed by a
specialized objective function, which is minimized to obtain the recolored art painting.

The material is organized as follows. Section 2 describes the proposed algorithm in
detail. Section 3 illustrates the simulation results and the respective analysis. Finally,
the paper concludes in Sect. 4.

2 The Proposed Recoloring Method

The flowsheet of the algorithm is illustrated in Fig. 1. Given an RGB color
C ¼ ðCR CG CBÞT , with CR; CG; CB 2 0; 255½ �, its simulation to protanopia or
deuteranopia is denoted as CD ¼ ðCR;D CG;D CB;DÞT , where subscript D describes the
protanopia or deuteranopia.
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The vector CD is calculated by matrix transformations that involve the XYZ and
LMS color spaces, where the transformations are functionally represented CD ¼ fD Cð Þ.
For a detailed description of the color simulation procedure, the interested reader is
referred to [20].

2.1 Semantic Segmentation Using Transfer Learning Between Natural
and Art Digitized Paintings

R-CNN [3] is one of the first deep learning networks inspired by AlexNet [11] and it
uses segments of that network with minor changes. Network’s functionality is
improved using the Selective Search [19] technique to perform object recognition in the
image instead of classifying the whole image as one object. After identifying the
regions of interest (RoIs) with bounding boxes, a processed version of AlexNet is used
to classify the object. At the last level of the network, a support vector machine
(SVM) categorizes the object into a class. However, after executing the network’s
training process, one more step takes place to optimize the rectangular boundaries,
which is considered a simple regression problem. In a nutshell, it gets as input the
bounding boxes of the objects and improves them. The main drawback of the R-CNN
is the utilization of many feed-forward iterations (*2 K) of AlexNet for each RoI, and
separately trains the three subsequent models: (a) CNN for extracting image features,
(b) SVM, and (c) a simple regression model to improve the bounding boxes.

Fast R-CNN [2] was implemented to solve these problems and accelerate the R-
CNN. It performs only one feed-forward pass of the CNN throughout the image and
then pools on every bounding box (named Region of Interest Pooling - RoIPool). Then,
it integrates all the aforementioned three models on a common network, where the
regression takes place in parallel with the classification which is carried out by Softmax
classifier instead of the SVM, taking as an input the result of the RoIPool layer. The
next improved network is the Faster R-CNN which uses a Region Proposal Network
(RPN) to accomplish the tasks of the Selective Search algorithm. The latest suggestion
based on R-CNN is the Mask R-CNN which is the Faster R-CNN [15] with the
exception that instead of bounding boxes it detects the real contours (i.e. masks) of the
objects in the image. To achieve this, a parallel branch of the network is responsible for
classifying the pixels into objects. Each mask is classified into two classes using binary
regression rather than Softmax.

The above-mentioned deep learning algorithms were able to achieve very good
results on classification problems after trained on large datasets. The lack of available
training data in many domains such as medical images and art images is a well-known

Input
Image

Recoloring 
Process

Transfer Learning 
between Natural
and Art Images 

Output 
Image

Fig. 1. The basic algorithmic steps of the recoloring process.
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problem in the scientific community. That problem is addressed by the transfer learning
mechanism [4, 21]. The main idea behind that approach is to train a machine learning
framework on a new task while exploiting the knowledge acquired by the framework in
a previously related task.

The flowsheet of the network used in this paper is depicted in Fig. 2. We use
Matterport’s1 implementation of Mask-RCNN for training nine classes of art paintings
images with seventy-five annotated images in each class. Firstly, data preprocessing is
carried out in terms of image augmentation. The key point is to follow a set process of
taking in existing images from our training dataset and apply some image transfor-
mation operations to them. Specifically, regarding each image, a horizontal flip is
performed, the image is randomly cropped to a scale between 0.9 and 1 times the
original dimension, a Gaussian blur with random standard deviation is applied, the
contrast is adjusted, the brightness is adjusted, and a series of random affine trans-
formations are also applied so each image has dimensions 500� 500: The nine trained
classes are: person, boat, bird, horse, bowl, chair, table, vase and fruit.

The ResNet101 architecture [6] is used as a backbone model to extract relevant
features from the input image. Instead of using the pre-trained weights for MS COCO2,
we initialize the weights of our backbone model using weights pre-trained on Ima-
genet3. The backbone model serves as a feature extractor, where the early layers detect
low-level features (edges and corners), and later layers successively detect higher-level
features (person, boat, etc.). To fine-tune the model pre-trained on Imagenet, we train
only the model heads and the layers from ResNet101 level 4 and up for the remaining
epochs, because we reuse the weights of the model learned to extract features from
natural images. The image is converted from a tensor of shape (500, 500, 3) to a feature
map of shape (32, 32, 2048). The extracted feature map is then fed into a Region

Fig. 2. The basic structure of the transfer learning based semantic segmentation scheme.

1 https://github.com/matterport/Mask_RCNN.
2 http://cocodataset.org/.
3 http://www.image-net.org/.
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Proposal Network (RPN) [15]. The RPN scans regions of the feature map with sliding
bounding boxes, trying to determine regions that contain objects. For each box, called
anchor, the RPN assigns an anchor class (i.e. possible object, not an object or neutral).
A proposal layer then picks the anchors most likely to contain an object and refine the
anchor box to fit the object more closely, obtaining the RoIs. For each region that
contains an object selected by the RoI classifier, the model generates 28 � 28 masks.

2.2 Image Recoloring

The chosen color space is the RGB space. Let us denote the input image as I ¼
½pij� ð1� i�N; 1� j�KÞwhere pij symbolizes the RGB color vector of the (i, j) image
pixel, and N � K is the image size. The pixels of the input image are divided into two
disjoint sets namely, TV and TU . The set TV includes all pixels that belong to the objects
identified by the semantic segmentation algorithm, while the set TU includes the rest of
the pixels. Next, we form the set SV ¼ CV ;1; CV ;2; . . .; CV ; SVj j

� �
that includes the

distinct colors of TV , and the set SU ¼ CU;1; CU;2; . . .; CU; SUj j
� �

that includes the
distinct colors of TU , where �j j stands for the set cardinality. Colors in SV are trans-
formed to simulate the dichromacy effect, Ck;D ¼ fDðCkÞ ðk ¼ 1; 2; . . .; SVj jÞ. By
appropriately choosing /[ 1 (trial and error), if for some k it holds Ck � Ck;D

�� ��\/
the colors Ck and Ck;D are similar, meaning that dichromats do not confuse the color Ck.
Therefore, this color must remain intact. All colors of SV satisfying the above condition
are transferred to the set SU . This updating mechanism reads as

8Ck 2 SV : Ck � Ck;D

�� ��\/ ! SV ¼ SV � Ckf g ^ SU ¼ SU [ Ckf g: ð1Þ

After the end of the updating process, colors belonging to the set SU will remain
intact, whereas the colors belonging to the set SV will be appropriately modified to
enhance their perception by the color blind.

Next, the fuzzy c-means is used to divide the elements of SV in n1 clusters with
centers V ¼ v1; v2; . . .; vn1f g, and the elements of SU in n2 clusters with centers
U ¼ t1; t2; . . .; tn2f g. The cluster centers are called key colors. The target is to obtain
a recoloring set Vrec ¼ vrec;1; vrec;2 . . .; vrec;n1

� �
of the set V.

The error vector between the key color vi and its simulation fDðviÞ is:
eri ¼ vi � fDðviÞ ði ¼ 1; 2; . . .; n1Þ. Then, the recoloring process of vi is [1, 18].

vrec;i ¼ vi þMD;i eri ð2Þ

with MD;i ¼
a lD;i;3 0

lD;i;1 b 0
lD;i;2 lD;i;4 1

2
4

3
5 ð3Þ

In the case of protanopia, a 2 ½�1; 0�, b ¼ 1, and lD;i;3 ¼ lD;i;4 ¼ 0 are prefixed,
while lD;i;1 and lD;i;2 are adjustable positive parameters. In the case of deuteranopia,
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a ¼ 1, b 2 ½�1; 0� and lD;i;1 ¼ lD;i;2 ¼ 0 are prefixed, while lD;i;3; lD;i;4 are adjustable
positive parameters. Considering protanopia, the implementation of (2) along with the
respective matrix in (3) leads to a reduction of the Red in favor of G and B, obtaining
less saturated red/oranges and more saturated greens, increasing the contrast and
therefore, decreasing color confusion of a protanope viewer. In the case of deutera-
nopia, the above process leads to the reduction of green in favor of red and blue colors
obtaining similar results. In both cases, the color confusion is alleviated.

Given two key colors vi 2 V and ti 2 U, their distance is vi � tj
�� ��. After trans-

forming the key color vi into vrec;i, the distance between vrec;i and ti as seen by a
dichromat is fD vrec;i

� �� fD tj
� ��� ��. The objective is to keep the above distances as

similar as possible so that the dichromat will be able to perceive the differences
between colors in a similar way as the normal color vision viewer. Thus, summing over
all pairs.

E1 ¼ 1
n1 n2

Xn1

i¼1

Xn2

j¼1

vi � tj
�� ��� f vrec;i

� �� f tj
� ��� ���� �� ð4Þ

Following the same approach for all color pairs in the set V we arrive at

E2 ¼ 1
n21

Xn1

i¼1

Xn1

j¼1

vi � vj
�� ��� f vrec;i

� �� f vrec;j
� ��� ���� ��: ð5Þ

It can be easily seen that minimizing E1 and E2 enhances the contrast between the
objects identified by the semantic segmentation when compared each other and when
compared with the rest of the image regions. To further preserve the naturalness the
vrec;i must be as close to vi as possible. To do so, we use the next error function.

E3 ¼ 1
n1

Xn1

i¼1

vi � vrec;i
�� �� ð6Þ

The overall objective function reads as

E ¼ E1 þE2 þ cE3 ð7Þ

where c is a regularization factor that takes positive values and is used to obtain a
counterbalance between the distinct parts of the function E.

The function E is optimized with respect to the parameters lD;i;1, lD;i;2 for prota-
nopia, and lD;i;3, lD;i;4 for deuteranopia. In each case, the total number of adjusted
parameters is 2 n1. To perform the minimization, we employ the well-known differ-
ential evolution (DE) algorithm [13]. The DE comprises three evolving learning pha-
ses: the mutation, crossover and selection. There are two parameters that must be
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defined namely, the FFR 2 0; 1ð � that controls the rate at which the population evolves,
and the CFR 2 0; 1½ � that controls the fraction of the parameter values copied from one
generation to the next. A detailed description of DE is provided in [13].

The above procedure obtains the matrices MD;i ði ¼ 1; 2; . . .; n1Þ that minimize the
function E. Each matrix corresponds to one key color of the set V. The recoloring
process of the image pixels pij ð1� i�N; 1� j�KÞ is described next. If pij 2 SV then
this pixel must be modified. The methodology of Vienot et al. [20] is applied to obtain
the simulated color fDðpijÞ and calculate the corresponding error vector using Eq. (1):
erij ¼ pij � fDðpijÞ. The closest key color to pij is denoted as v‘0 and defined as:
pij � v‘0

�� �� ¼ min
1� ‘� n1

pij � v‘
�� ��� �

, with v‘0 2 V. Then, the recoloring of pij is carried

out in terms of Eq. (2).

prec;ij ¼ pij þMD;‘0 erij ð8Þ

Finally, all pixels of the input image with colors belonging to the set SV are
appropriately recolored, while the rest are kept intact. The impact of this effect is that
the number of elaborated pixels reduces and therefore, the naturalness of the recolored
image increases because the number of modified pixels is kept to a minimum.

3 Simulation Experiments

In this section, six art paintings are used to perform several experiments for protanopia
and deuteranopia. The paintings are presented in Fig. 3. The proposed method is
compared to two recoloring algorithms. The first was developed by Huang et al. in [8]
and concerns both protanopia and deuteranopia. The second was developed by Rani
and Rajeev in [14] and concerns only the deuteranopia. The performance index to
conduct the comparison is the naturalness index [9].

J ¼ 1
N K

XN

i¼1

XK

j¼1

pij � prec;ij
�� �� ð9Þ

For our experiments we set / ¼ 11, meaning that all color combinations belonging
to sphere with radius 11 are consider similar to the color located at the center of that
sphere. An odd number is selected to achieve uniformity in R, G, and B axis. The
numbers of key colors for the sets V and U are n1 ¼ n2 ¼ 12. Thus, in total there are 24
key color. Based on trial and error approach, in the case of protanopia we select
a ¼ �0:5, and in the case of deuteranopia b ¼ �0:5. The domain of values for the
adjustable parameters lD;i;1, lD;i;2, lD;i;3, and lD;i;4 is the interval [0, 1].
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For the differential evolution the parameters are: FFR ¼ 0:8, CFR ¼ 0:9, the pop-
ulation size is equal to 50, and the maximum number of iterations tmax ¼ 100. As far as
the parameter setting of the other two methods is concerned, it is the same as reported
in the respective references.

The results of the transfer learning-based semantic segmentation for the first three
paintings are illustrated in Fig. 4. It can be easily seen that the obtained object
recognition is sufficiently accurate.

Fig. 3. (a) Painting 1 (by Terence Clarke), (b) painting 2 (by Stratis Axiotis), (c) painting 3 (by
Ektor Doukas), (d) painting 4 (by Raphael), (e) painting 5 (by William Redmore Bigg), and
(f) painting 6 (by Angeliki Leousi-Karatza).

Fig. 4. Semantic segmentation results for the first three paintings of Fig. 3.
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Fig. 5. Results on painting 3 (protanopia): (a) recolored (proposed method), (b) recolored as
seen by a protanope (proposed method), (c) recolored (method of Huang et al. [8]), (d) recolored
as seen by a protanope (method of Huang et al. [8]).

Fig. 6. Results on painting 4 (protanopia): (a) recolored (proposed method), (b) recolored as
seen by a protanope (proposed method), (c) recolored (method of Huang et al. [8]), (d) recolored
as seen by a protanope (method of Huang et al. [8]).
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Figures 5 and 6 visualize the recolored and the corresponding protanope simula-
tions for paintings 3 and 4, as they are obtained by the proposed algorithm and the
method in [8]. Note that the recolored paintings obtained by our approach use colors
that are more similar to the respective colors of the original paintings reported in Fig. 3.

Fig. 7. Results on paintings 1 and 5 (deuteranopia): (a) and (b) recolored (proposed method),
(c) and (d) recolored as seen by a deuteranope (proposed method), (e) and (f) recolored (method
of Rani and Rajeev [14]), (g) and (h) recolored as seen by a deuteranope (method of Rani and
Rajeev [14]).
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Fig. 8. Dynamic behavior of the objective function E during the application of the DE algorithm
for the paintings 2 and 6 in the cases of protanopia (left figure) and deuteranopia (right figure).
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The same visual characteristics are observed in Fig. 7, where the proposed method
is compared with the recoloring algorithm developed in [14], regarding the case of
deuteranopia for the paintings 1 and 5.

Figure 8 depicts the minimization of E as a function of the iteration during the DE
implementation for the paintings 2 and 6.

Quantitative comparative results in terms of the naturalness index given in Eq. (9)
are reported in Table 1. The results of this table are quite convincing since, apart from
two experimental cases in deuteranopia (paintings 3 and 4), the proposed algorithm
significantly outperforms the other two algorithms. The main conclusion extracted from
this table is that the naturalness index is sufficiently minimized by the proposed
recoloring approach, yielding colors that are not curious for a normal color vision
viewer, while maintaining an aesthetic result for the dichromat viewers, also. This fact
is supported by both the visual and quantitative results.

4 Conclusions

The problem investigated in this paper was the recoloring of digitized art paintings in
order to improve the color perception of dichromat viewers that suffer from protanopia
or deuteranopia. Initially, a transfer learning based semantic segmentation mechanism
was applied to extract meaningful color information. The colors of the objects rec-
ognized by the deep network were simulated to match the way a dichromat perceives
them. Based on the above information, the pixels of the input image were divided into
two sets. The first set included colors that must be recolored, whereas the second one
included colors that remained intact. This process reduces the number of modified
pixels yielding a recolored image that retains its natural appearance. Then, a specially
designed objective function was minimized using differential evolution. The opti-
mization parameters are elements of a matrix transformation involved in the recoloring
process. The structure of the objective function favored the selection of colors that keep
similar the color differences in the original and the dichromat simulation of the
recolored image. The method was tested in several experimental cases. The simulation

Table 1. Values of the naturalness index (J) obtained by the three algorithms for the six images
regarding the cases of protanopia and deuteranopia (best values for each case are in bold fonts).

Paintings Protanopia Deuteranopia
Proposed Huang et al. [8] Proposed Huang et al. [8] Rani and Rajeev [14]

1 3.7168 12.3482 8.7589 13.8699 87.8429
2 9.0473 9.8727 5.0898 5.1581 25.8787
3 7.4945 20.0707 5.8445 2.1712 77.3267
4 5.5553 23.8336 9.3129 3.3042 83.9168
5 3.9349 14.6587 18.5893 63.8226 90.4925
6 1.9294 22.8655 8.0602 9.3072 89.9749
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results indicated that the proposed methodology can naturally modify the original
colors enhancing the perception of color blind viewers.

Future efforts could extend the present algorithm by developing more sophisticated
learning approaches and effective color transformations in order to enhance the pro-
tanopia, deuteranopia, and tritanopia effects and the color adaptation procedures, as
well.
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Social Fund-ESF) through the Operational Programme “Human Resources Development, Edu-
cation and Lifelong Learning 2014–2020” in the context of the project “Color perception
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Abstract. Recent advances in optical sensor technologies and Geoinformatics,
can support very large scale high definition, used for multispectral and
panchromatic images. This capability allows the use of remote sensing for the
observation of complex earth ecosystems. Application areas include, sustain-
ability of biodiversity, precision agriculture, land, crops and parasites manage-
ment. Moreover, it supports advanced quantitative studies of biophysical and
biogeochemical cycles, in costal or inland waters. The requirement for precise
and effective scene classification, can significantly contribute towards the
development of new types of decision support systems. This offers considerable
advantages to business, science and engineering. This research paper proposes a
novel and effective approach based on geographic object-based scene classifi-
cation in remote sensing images. More specifically, it introduces an important
upgrade of the well-known Residual Neural Network (ResNet) architecture. The
omission of some layers in the early stages of training, achieves an effective
simplification of the network, by eliminating the “Vanishing Gradient Problem”
(VGP) which causes efficiency limitations in other “Deep Learning” (DEL) ar-
chitectures. The use of the Softmax activation function instead of the Sigmoid in
the last layer, is the most important innovation of the proposed system. The
ResNet has been trained using the novel AdaBound algorithm that employs
dynamic bounds on the employed learning rates. The result is the employment
of a smooth transition of the stochastic gradient descent, tackling the noise
dispersed points of misclassification with great precision. This is something that
other spectral classification methods cannot handle. The proposed algorithm was
successfully tested, in scene identification from remote sensing images. This
confirms that it could be further used in advanced level processes for Large-
Scale Geospatial Data Analysis, such as cross-border classification, recognition
and monitoring of certain patterns and multi-sensor data fusion.
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1 Introduction

1.1 Scene Classification and Machine Learning

The rapid advances of digital and communication technologies combined with recent
developments in optical sensor technologies have resulted in major changes in the way
that we monitor land. This is due to the availability of many different systems that offer
high spectral image analysis of the earth’s surface (e.g. Multispectral, Hyperspectral
[1], Panchromatic and Synthetic Aperture Radar) [2]. Despite such advances, the
effective comprehension of the semantic content of such images is still a major chal-
lenge and a significant research topic. More specifically, scene classification, aims to
achieve automatic semantic tagging of each remote sensing object. This process is
content-based and it is one of the most critical problems in Geoinformatics. It is very
important in a wide range of applications such as, the design and the management of
land resources, the applications of precision agriculture, the monitoring of complex
ecosystems, the sustainable management of biodiversity and the recording of nature
destruction and traffic control.

The past few decades have seen the development of various methods of Scene
Classification (SCC) based on remote sensing. The early SCC methods were primarily
based on low level features or heuristics, which focused on colour, texture, and shape.
It is worth mentioning Color Histogram (CH), Histogram of Oriented Gradients
(HOG), Local Binary Pattern (LBP), Scale Invariant Feature Transform (SIFT) and
Gabor filters Grey Level Co-occurrence Matrix (GLCM) [3]. These methods perform
well with images of uniform texture, but their ability to identify more complex scenes
is poor. The design of features by humans, affects the effectiveness of the above models
considerably. On the other hand, methods based on middle level features, can produce
a holistic representation of a scene, which is developed through local visual features
such as SIFT, CH, or LBP of local image patches. The deployment of a system capable
to develop middle level features, starts with the extraction of the local features of the
image, and continues with the codification that can lead to an intermediate represen-
tation. The most well-known and widely used model for classifying images of middle
level is the Bag of Visual Words (BoVW) due to its simplicity and effectiveness [5].
Despite having evolved through considerable improvements in the effectiveness of
classification, the techniques based on BoVW have not seen further development and
utilisation due to their limitations in representing scenes of high resolution.

Deep Learning (DL) is a branch of computational intelligence that utilises a series
of algorithms in attempting to model data of high levels of abstraction. This is achieved
by using a multilevel processing architecture, based on consecutive linear and non-
linear transformations. It is part of the group of learning techniques that exploit data
representations to explain and extract optimal results. In the case of image classification
they can produce spatial information such as, edges, shapes and relevant chromatic
regions.

Deep Learning Architectures use distributed representation whose main hypothesis
is that the observed data are extracted from the interaction of factors grouped in levels.
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DL adds the assumption that these levels of factors are either the result of abstraction or
synthesis of various scales, depending on their volume and size. Such architectures
explore the idea of a hierarchical decomposition of the factors from a high to a low
level, with the more abstract concepts drawn from the lowest levels. Thus, they are
hierarchically distributed according to levels of abstraction, creating the conditions for
selecting the most suitable features of the learning process.

Using the above processes, DL architectures and more specifically Deep Neural
Networks (DNN), have achieved impressive performance in many remote sensing
applications such as, the accurate representation of features in image classification, the
identification of objects and their semantic segmentation. DNN, simulate processes of
human vision. Multiple operational levels and intermediate representations are created
from image capture in the human eye’s retina caused by the reaction of muscles. Such
process relies in the transformation of every intermediary unit of input representation
into a representation at a higher level. The features at higher level are more generic and
less changeable, while those of lower level support the classification of inputs. Their
effectiveness can be interpreted based on the Universal Approximation Theorem which
refers to the potential of a neural structure to approximate continuous functions and the
Probabilistic Inference which assumes the activation of non-linearity as a cumulative
distribution function [5].

In DNN, every hidden layer trains a discreet group of features resulting from the
output of the previous layer. The functioning of such a network allows for the analysis
of the most complex features as they recompose and decompose from layer to layer.
Such a feature is called a hierarchy. As the decomposition of information increases the
complexity of the system hierarchically, it offers the ability to process high level data
through non-linear functions. Such networks are suitable for the discovery of non-
structured data, for revealing latent structures in unlabelled data and the handling of
other problematic structures. Even miniscule similarities or anomalies that these might
entail can be identified.

Despite all their important functionality and their advantages, the gradients of the
loss function approximate zero, when layers that use activation functions are added
neural network architectures. This may cause considerable difficulties in the training of
the network, almost to the point of not being capable of training at all, depending on the
number of hidden layers that are added. The above is a major vulnerability of deep
learning neural networks, called Vanishing Gradient Problem (VGP) [6].

2 Theoretical Background

2.1 Facing the Vanishing Gradient Problem

In Machine Learning the VGP problem pauses a problem in the constriction of neural
networks with gradient-based learning methods and backpropagation. In such methods,
each of the weights receives, at each iteration, an analogue update with the partial
derivative of the error function in relation to the weight it currently uses. In some cases
though, the gradient is insignificantly low effectively preventing the weight to change
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its value. In the worst case, this could prevent the neural network in completing its
training [7]. The following Eq. 1, corresponds to a sigmoid activation function (SGA).

S að Þ ¼ 1
1þ e�a

ð1Þ

It compresses and projects a large range of inputs to a relative small vector space
e.g. [0, 1]. Thus, a large change of the input to the sigmoid activation function,
corresponds to a small change in its output. Thus the partial derivative becomes
extremely small. It is worth noting that when the inputs to the SGA increase, i.e. when |
x| increases or decreases, the partial derivative moves towards zero. The above prop-
erties of the sigmoid activation function are ideal for the representation of probabilities
and classification procedures. However, both the Sigmoid and the Tangent Hyperbolic
(TanH) activation functions, have decreased in popularity recently due to the VGP
problem [7].

Let us assume a neural network (NN) with 4 hidden layers with a single neuron at
each layer. In the above NN the activity of each neuron depends on the activity of that
in the previous layer. More specifically the activity of each neuron depends on that of
the previous, multiplied by a given weight. This value is propagated via an activation
function (the input is a case of special exemption from the above rule). The margin of
error J at the end of the network shows the total error of the system. The backprop-
agation process is executed to modify the weights via Gradient Descent in such a way
as to minimise the value of J. To calculate the first weight derivative, the chain rule to
backpropagate is used as follows:

@error
@w1

¼ @error
@output

� @output
@hidden2

� @hidden2
@hidden1

� @hidden1
@w1

ð2Þ

Subsequently the derivatives are used repetitively until the lowest point has been
reached using gradient descent following a specific Learning Rate. The first derivative
is used for the activation of the second hidden layer as it is given below. This is
performed using the sigmoid activation function (from the output to hidden2) based on
the equations below:

z1 ¼ hidden2 � w3 ð3Þ

@output
@hidden2

¼ @Sigmoid z1ð Þ
@z1

w3 ð4Þ

Similarly the second derivative is used for the propagation from the hidden2 to the
hidden1 layer:

z2 ¼ hidden1 � w2 ð5Þ

@hidden2
@hidden1

¼ @Sigmoid z2ð Þ
@z2

w2 ð6Þ
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In both cases the propagated values contain the derivatives of the sigmoid acti-
vation function. This can collectively be expressed as follows:

@output
@hidden2

@hidden2
@hidden1

¼ @Sigmoid z1ð Þ
@z1

w3 � @Sigmoid z2ð Þ
@z2

w2 ð7Þ

Both the values of the Sigmoid (z1) and Sigmoid (z2), are less than 0.25. The
weights w1, w2, w3, are initialised by the Gauss method so that they can have a mean
value equal to 0 and standard deviation equal to 1. Therefore every ||wi|| is smaller than
1. Thus for the calculation of the derivatives we multiply numbers that are less than 1
and 0.25. Given that two numbers in the range [0, 1] are multiplied, the result will
always be a smaller value, e.g. 1/3*1/3 = 1/9. Thus, multiplying such small numbers
many times, results in a gradient that is so small that will force the network to stop the
learning process. The various terms used in such a multiplication is shown in (8) below:

@output
@hidden2

@hidden2
@hidden1

¼ \1=4
@Sigmoid z1ð Þ

@z1

\1
w3

� \1=4
@Sigmoid z2ð Þ

@z2

\1
w2

ð8Þ

In networks with a small number of layers, employing Sigmoid activation functions
is not considered a major problem, whereas in multi-layered architectures it could cause
major disruption to the normal and effective training of the network.

Totally, four types of solutions for the VGP problem have been proposed in the
literature [8]:

a) Methods that do not use gradients such as Simulated Annealing, Multi-Grid
Random Search and Random Weight Guessing. Generally the Global Search
Methods (GSM) work well in the case of simple problems with long term
dependencies. Simple problems can be resolved with networks that use only a few
parameters and do not require complex calculations. Such solutions are charac-
terized as Flat Minima situations where the network is attempting to solve the
problem using a simple architecture. The weights’ interconnection levels, are
included in a very specific vector space with the error being almost constant. This
can only cover a small range of problems, therefore the use of Flat Minima is not
recommended as a general solution.

b) Methods that enforce higher gradients. Higher gradients can be reinforced by using
optimization methods. These are considered time consuming and computationally
costly. Furthermore, they appear to have problems in learning to store accurate
information, related to the real value of classification.

c) Methods that operate on higher levels. They employ the Rectified Linear Unit
(ReLU) activation functions that do not yield small derivatives:

ReLU xð Þ ¼ max 0; xð Þ or ReLU xð Þ ¼ 0 if x\ 0
x if x � 0

�
ð9Þ

In some cases though, the ReLU neurons can be forced to situations in which they
become inactive for all inputs. In such cases, none of the gradients backpropagate via
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the neuron, resulting in the neuron being stuck in an interminable inactive condition
and effectively dies. This category also includes methods that attempt to solve the
problem by following an intuitive process, via the use of high level parameters, such as
metadata. These cases also fail in yielding solid and generalizing solutions.

d) Methods that use special architectures. The most important solutions for the VGP
problem have been proposed via the use of ResNets [9]. This addresses the stag-
nation of multiple layer levels even when the size of the network exceeds the 150
layers.

3 The Employed Residual Neural Networks

ResNets, are brain inspired. They are utilizing “skip connections-shortcuts”, in order to
jump over some layers. They operate similarly to the Convolutional Neural Networks
(CNN), however in ResNets the input is provided sequentially at the exit of the hidden
layers, if they are in a certain distance from each other.

In the majority of neural networks, one layer feeds the very next one. In a ResNet
that consists of several blocks, every single layer feeds the successive one, but at the
same time it provides input to a layer which is located 2 maybe 3 positions far (it skips
the order as in Fig. 1). Many linearly interconnected Residual Blocks (REB) constitute
a Residual Neural Network. The values of REB parameters are determined based on the
network’s structure. They aim at modelling a high level of abstraction of the incoming
samples, using multiple stacked non-linear transformations. Their architecture assumes
the following characteristics, namely: Local Receptive Fields (LRF), Weight Sharing
(WS), Spatial Subsampling (SpaSu), Feature Combination (FC) [10].

Essentially, ResNet architecture consists of a set of levels that are characterized by
different functionality. They can be configured through their parameters and hyper-
parameters. The purpose is to convert an input volume into an output one, through a
differential function. Interconnection based on the Residual Block parameter,

Fig. 1. Image of a Residual Block. Several of them are forming a Residual Neural Net
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determines the overall architecture of the network. The levels of neurons commonly
used fall into the following basic categories, namely: Convolutional Layers (CL), Fully
Connected Layer (FCL), Pooling Layers (PL), Dropout Layer (DRL), Feed-Forward
Layer (FFL). After any level architecture and sequence, all of the top-level neurons are
input to an FFL array or any similar forward-current array [10]. The Loss Function
(LF) aims to attribute the classification error, which is the difference between the
prediction output and the known desired output during the training process.

As noted above, the substantial difference between CNNs and ResNets is the
sequential addition of the input to the output of the hidden layers, provided that the
hidden layers are at certain distance apart. The Residual Block consists of a set of CLs
defined by architectural standardization (usually 2). The input vector x of the Block is
stored in a local buffer and after passing all levels of the Block, it is added to the output
of F(x) + x. The increased output is presented as input to the next Residual Block and
so on [10]. In the case of single skips we can use the notation l-2 to l. More specifically,
let Wl�1;l be the weight vector for connection weights from layer l-1 to l and let Wl�2;l

be the weight vector for weights from layer l-2 to l. Thus, the forward propagation
through the use of the activation function would be the following [9]:

al ¼ g Wl�1;l � al�1 þ bl þWl�2;l � al�2� � ¼ g Zl þWl�2;l � al�2� � ð10Þ

Where, al is the output of neurons in layer l, g is the activation function for layer l,
Wl�1;l is the weight matrix for neurons between layer l-1 and l. Also, Wl�2;l is the
weight matrix for neurons between layer l-2 to l and

Zl ¼ Wl�1;l � al�1 þ bl: ð11Þ

ResNets, are inspired by the function of pyramidal cells in the cerebral cortex of the
brain, where forward skips take place in many layers. This forward propagation process
is expressed by the following equation:

al ¼ g Zl þ
XK

k¼2
Wl�k;l � al�k

� �
ð12Þ

where k-1 is the number of skips.
In backward propagation through the activation function, the Normal Path is

described by Eq. 13 and the Skip Paths by Eq. 14:

Dwl�1;l ¼ �g
@El

@wl�1;l ¼ �gal�1 � dl ð13Þ

Dwl�2;l ¼ �g
@El

@wl�2;l ¼ �gal�2 � dl ð14Þ
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Where g is the learning rate, dl is the error signal of neurons at layer l and al is the
activation of neurons at layer l. For the case of a ResNet using forward propagation, the
above equations are transformed as follows:

Dwl�k;l ¼ �g
@El

@wl�k;l
¼ �gal�k � dl ð15Þ

This residual connection does not go through activation functions that “squash” the
derivatives, resulting in a higher overall derivative of the block.

4 Literature Review

Inspired by the success of deep learning in the field of computer vision, several related
studies have been conducted suggesting various DL architectures for the analysis of
ultrasonic data, which have admittedly provided new impetus to this field. The authors
of [11] use a hybrid method which combines stacked Autoencoder, Principle Com-
ponent Analysis (PCA), and Logistic Regression to perform hyperspectral data clas-
sification. Tao et al. [12] use a sparse stacked Autoencoder to efficiently represent
features from unmarked spatial data, and then learned features are fed into a linear
SVM for hyperspectral data classification. Various 1D [13] and 2D [14] CNN archi-
tectures have been proposed from time to time to encode spectral and spatial infor-
mation. The latest and most sophisticated proposal concerns 3D CNN [15] in which the
third dimension refers to the time axis resulting in a spatio-temporal architecture in the
spectral classification. In 3D CNNs, the convolution functions are spatial-spectral,
whereas in 2D CNNs, they are spatial only. Compared to 1D and 2D CNNs, 3D CNNs
can better spectral information thanks to 3D convolution functions.

Trying to exploit the particularities and advantages of unsupervised learning, the
authors [16] propose an unsupervised CNN architecture to perform learning of spectral-
spatial features. This is performed by using sparse learning to estimate the network’s
weights in a greedy layer-wise fashion instead of an end-to-end approach. The algo-
rithm is rooted on sparse representations and enforces both population and lifetime
sparsity of the extracted features, simultaneously. They successfully illustrate the
expressive power of the extracted representations in several scenarios: classification of
aerial scenes, as well as land-use classification in very high resolution or land-cover
classification from multi- and hyperspectral images [4].

The proposed algorithm clearly outperforms PCA. The results have shown that
single-layer CNNs can extract powerful discriminative features only when the receptive
field accounts for neighboring pixels. They are preferred when the classification
requires high resolution and detailed results. However, Deep architectures significantly
outperform single-layer variants, capturing increasing levels of abstraction and com-
plexity throughout the feature hierarchy.

In [17] authors propose a Deep Recurrent Neural Network model with a new
activation function (parametric rectified Tanh – PRetanh). The proposed activation
function makes it possible to use fairly high learning rates without the risk of diver-
gence during the training procedure. Moreover, a modified gated recurrent unit, which
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uses PRetanh for hidden representation, is adopted to construct the recurrent layer in
the network to efficiently process hyperspectral data and reduce the total number of
parameters.

All of the above architectures have major malfunctions and are hampered by the
VGP problem, which generally disrupts deep approaches. He et al. [9] tried to over-
come this problem by employing the idea of very deep networks by proposing the 152-
layers ResNet, which allowed CNNs to grow much deeper without suffering the
problem of vanishing/exploding gradients. The authors provide an in-depth analysis
about the degradation problem, i.e., simply increasing the number of layers in plain
networks results in higher training and test errors.

It is suggested that it is easier to optimize the residual mapping in the ResNet than
to optimize the original, unreferenced mapping in the conventional CNNs. In essence,
instead of learning a direct map from low-quality inputs to high-quality outputs, the
CNN is tasked with learning the residual, i.e., the difference between the low and high-
quality signals, which typically represents missing high-frequency information, at least
for the case of super-resolution. To allow networks to capture and extract features from
multiple scale, skip connections between different layers have also been considered and
are now part of state-of-the-art approaches.

The authors of [18], are proposing a novel network architecture, which is a fully
Convolutional/Deconvolutional network, for unsupervised spectral–spatial feature
learning of hyperspectral images, which is able to be trained in an end-to-end manner.
Specifically, the proposed architecture, is based on the so-called encoder–decoder
paradigm. The input 3-D hyperspectral patch is first transformed into a typically lower
dimensional space via a convolutional sub-network (encoder). Then it is expanded to
reproduce the initial data by a de-convolutional sub-network (decoder).

However, during the experiments, we have found out, that such a network is not
easy to be optimized. Although the proposed network has not been explicitly designed
for the task of object detection, we have observed that the target object can be localized
by the activated or suppressed pixels in some specific learned feature maps of the first
residual block. This makes it possible to achieve the unsupervised object detection in
hyperspectral images. Experimental results also demonstrate that the features learned
by the proposed unsupervised network can be used for the hyperspectral image clas-
sification task, and the obtained classification results are competitive compared with the
other supervised approaches.

5 The Introduced Methodology

The methodology that is introduced by this research paper, is based on the
Convolutional/Deconvolutional (CN/DC) Network architecture that has been used by
Mou et al. [18]. The above authors have proposed a fully CN/DC network approach, in
which the desired output is the input data itself. Specifically, the introduced model,
consists of two parts as its name typically states, namely the Convolutional and
Deconvolutional subsystem. The first subsystem corresponds to an encoder that
transforms the input characteristics xi into an abstract representation of intermediate
features hi.
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The corresponding Deconvolutional subset, plays the role of the decoder that
reproduces in the original xi input data, the encrypted, intermediate hi features.
Essentially the CN/DC network with Residual Learning is a modular network archi-
tecture that stacks residual blocks. Similar to Convolutional blocks, a Residual block
consists of several Convolutional layers that have the same feature map size and the
same number of filters. Their function performs the following calculation.

/n ¼ g unð ÞþF un;Hnð Þ ð16Þ

unþ 1 ¼ f /nð Þ ð17Þ

Where un refers to feature maps, Hn to a collection of weights associated with
residual block, F is a residual function and f is the activation function. The corre-
sponding function g, is fixed to an identity mapping:

g unð Þ ¼ un ð18Þ

If f is a linear activation function and u(n + 1) = un, the output for the nth residual
block is calculated by Eqs. (16) and (17) so that:

unþ 1 ¼ un þ F un;Hnð Þ ð19Þ

The following Eq. 20 is recursively produced:

unþ 2 ¼ unþ 1 þF unþ 1;Hnþ 1
� � ¼ un þF un;Hnð ÞþF unþ 1;Hnþ 1

� � ð20Þ

The recurrence formula below, is obtained for any shallower block n and any
deeper block L.

uL ¼ un þ
XL�1

i�n
F ui;Hið Þ ð21Þ

The way residual learning helps in the effective training of the deep network in
question, is found in the rules of backpropagation, where E stands for the loss function:

@E
@un

¼ @E
@uL

@uL

@un
¼ @E

@uL
1þ @

@un

XL�1

i¼1
F ui;Hið Þ

� �
ð22Þ

In this way, the classification information of a layer in the network does not
disappear even when the trainable weights are arbitrarily small, which is the key to
make the training in the deep network possible. Also, in order to be able to successfully
complete the processes performed by the Convolutional/Deconvolutional subsystems,
the need for a pooling layer is imperative. However, the pooling layer leads to a
reduced resolution of feature maps. This recreates the original input data to Decon-
volutional, through an Unpooling process, in order to separate the feature maps, that is,
to increase their spatial range, as opposed to the concentration applied by the Con-
volutional web.
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It should be noted that using Max-Pooling indices the system is able to record the
position of the maximum value in each local concentration area while concentrating in
the Convolutional sub-net. Recently, an advanced version of the max and argmax
functions was presented [19]. It can receive not only the maximum value in the field of
indicators of a maximum concentration layer, but the corresponding index of this value
as well [19]. Specifically, these two functions can be calculated as follows:

l ¼
X

m
z i; jð Þ exp az i; jð Þð ÞP

m exp az i; jð Þð Þ � maxvz i; jð Þ ð23Þ

l ¼
X

m
i; j½ �T exp az i; jð Þð ÞP

m exp az i; jð Þð Þ � argmaxvz i; jð Þ ð24Þ

It is a fact, that with the use of the max and argmax functions, the max-poling
indices can be obtained in any pooling layer. Then, by performing interpolation in the
Unpooling layers of the Deconvolutional sub-network, the interconnected values which
are transferred by the max-pooling indices can be successfully handled. The use of
max-pooling indices allows for a more accurate display of location information and
allows feature maps to record detailed information about input features.

6 The Geographic Object-Based Scene Classification
Algorithm

This research paper suggests an important modification that upgrades the ResNet
architecture discussed above, which employs the Softmax activation function, instead
of the Sigmoid at its last level. According to the introduced novel approach, the fully
Residual Network is trained using the novel AdaBound algorithm that employs
dynamic bounds on their learning rates. It achieves a smooth transition to the stochastic
Gradient Descent, which accurately addresses the noisy scattered misspellings that
other spectral classification methods cannot handle. As it has already been said, the
following Softmax activation function which maps the non-normalized output of a
neural network to a probability distribution over predicted output classes, was used
instead of the Sigmoid, in the last CL [10]:

r zð Þi¼
eziPk
j¼1 e

zj
; i ¼ 1; . . .; k z ¼ z1; . . .; zkð Þ 2 Rk ð25Þ

Where, zj is every element of the input vector z, r zð Þ is the output vector and the
sum of its components r zð Þi is equal to 1.

The choice of the Softmax was based on the fact that it performs better on multi-
classification problems, like the one under consideration. On the other hand, the Sigmoid
is suitable on binary classification tasks. In the case of Softmax, the sum of probabilities
is equal to 1 whereas in Sigmoid it does not have to be equal to 1. Finally for the
Softmax, the highest value has the highest probability, whereas in the Sigmoid, the
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highest value has a high probability but not the highest. The fully residual network was
trained using the novel AdaBound algorithm [20] that employs dynamic bounds on their
learning rates. It achieves a smooth transition to stochastic gradient descent. The fol-
lowing algorithm 1, (in the form of pseudocode) presents the AdaBound function [20]:

Compared with other approaches, the AdaBound method has two advantages. First,
there exists a fixed turning point to distinguish, in the simple ADAM algorithm and the
SGD is uncertain. So the Adabound addresses this problem with a continuous trans-
forming procedure rather than a “hard” switch. Second, the AdaBound introduces an
extra hyperparameter to decide the switching time, which is not very easy to fine-tune.
In general, the use of the AdaBound algorithm has a high convergence speed compared
to stochastic gradient descent models and it exceeds the poor generalization ability of
adaptive approaches. Moreover, it has dynamic limits on the learning rate, in order to
achieve the highest accuracy for the dataset under consideration [20].

7 The Data Experiments and Results

The dataset used in this research, includes images taken from the Reflective Optics
System Imaging Spectrometer (ROSIS) covering the Engineering School at the
University of Pavia [21]. The available training samples belong to nine categories that
are mainly related to land cover items. Each image is 610 � 340 pixels with a reso-
lution of 1.3 m per pixel. Ultrasound imaging consists of 115 spectral channels ranging
from 430 to 860 nm of which only 103 were used in the work as 12 were removed due
to noise.

For the network configuration, we leverage convolutional filters with a very small
receptive field of 3 � 3. In addition, the convolutional stride is fixed to 1 pixel; the
spatial padding is also 1 pixel. Max-pooling is performed over 3 � 3 pixel windows
with stride 3. All the convolutional layers are using ReLU as an activation function
except for the last layer that uses Softmax. The fully residual network was trained using
the novel AdaBound algorithm [9] and all the suggested default parameters were used
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for all the following experiments. Once the training of the residual network is complete,
we can start to fine-tune the network for hyperspectral data classification. We have
made use of stochastic gradient descent with a fairly low learning rate equal to 0.0001.

The following criteria were used to evaluate the performance of the geographic
object-based scene classification algorithms in remote sensing images [22]:

a) Overall Accuracy (OA): This metric represents the number of samples that are
classified correctly, divided by the number of test samples. b) Average Accuracy (AA):
This index shows the average accuracy of the classifications of all categories. c) Kappa
coefficient: This is a statistical measurement that provides information on the level of
agreement between the truth map and the final classification map. It takes into account
the percentage of agreement which could be expected only chance. In general, it is
considered to be a more robust index than a simple percent agreement calculation, since
k takes into account the agreement occurring by chance.

In addition, in order to evaluate the importance of the classification accuracy
derived from different approaches, a McNemar statistical test is performed [23]:

z12 ¼ f12 � f21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f12 þ f21

p ð26Þ

Where fij is the number of correctly classified samples in the ith classification and of
the incorrectly classified in the jth classification. The McNemar’s test is based on the
standardized normal test statistic and therefore, the null hypothesis, which is “no
significant difference,” is rejected at the widely used p ¼ 0:05ð zj j[ 1:96Þ level of
significance. This assessment test, determines the significance of the differences
between the classification accuracy values obtained by the proposed model, versus the
accuracy values obtained by other examined approaches.

To validate the effectiveness of the proposed architecture, the method is compared
with the most widely used supervised deep learning models which are summarized as
follows:

a. 1-D CNN: The 1-D CNN network architecture was designed as in [24] and includes
an input layer, a convolutional layer, a max-pooling layer, a fully connected layer,
and an output layer. The number of convolutional filters is 20, the length of each
filter is 11 and the pooling size 3. Finally, 100 hidden units are contained in the fully
connected layer.

b. 2-D CNN: The 2-D CNN architecture was designed as in [15]. It contains three
convolutional layers equipped with 4 � 4, 5 � 5 and 4 � 4 convolutional filters,
respectively. The 2-D CNN architecture was designed as in [15]. It contains three
convolutional layers equipped with 4 � 4, 5 � 5 and 4 � 4 convolutional filters,
respectively.

c. The Convolutional layers - except for the latter - are followed by max-pooling
layers. In addition, the numbers of convolutional filters for CL are 32, 64 and 128,
respectively.

d. Simple Convolutional/Deconvolutional network: The simple Convolutional/
Deconvolutional network with simple convolutional blocks and the Unpooling
function are applied in the cases of [25,26].
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e. Residual Convolutional/Deconvolutional network: It is an architecture using
residual blocks and a more precise Unpooling function, as presented in [18].

Optimized Residual Convolutional/Deconvolutional (ORCD) network
It is the improved version of the above architecture which was presented in this
research paper. It differs in the fact that it uses the Softmax activation function in the
last convolutional layer and that its fully residual network is trained using the novel
AdaBound algorithm. This is achieved by employing dynamic bounds on the learning
rates, which results in a smooth transition to stochastic gradient descent. This method
shows great efficacy while maintaining advantageous properties of adaptive learning,
such as rapid initial progress and hyperparameter insensitivity. Note that, we have used
the standard types of training and testing samples in order make the proposed approach
fully comparable with other classifiers in the literature.

The ORCD network was trained using the AdaBound algorithm, and all the sug-
gested default parameters were used for all the following experiments. The number of
Convolutional filters (CF), increases towards deeper layers of the convolutional sub-
networks: There were 64 CF in the first residual block, 128 in the following block, and
256 in the last one. This rule is turned over for the Deconvolutional sub-network. All of
the convolutional layers are with ReLU as activation function except the last layer that
uses the Softmax.

All weight matrices in the network and the bias vectors are initialized with a
uniform distribution, and their values are initialized in the range [−0.1, 0.1]. The
number of the unlabeled data samples of the Pavia University that were used for
training the network is 10000. These unlabeled samples are randomly selected from the
whole set of images.

In the Optimized Residual Convolutional/Deconvolutional network, the hyper-
spectral data are normalized in the closed interval [0, 1]. Then, all of the weights are
updated during the training procedure. Once the training of the network is completed,
the fine-tuning process for hyperspectral data classification follows. The stochastic
gradient descent with a fairly low learning rate of 0.0001 has been employed, for the
fine tuning of the network. During this process, a percentage equal to 10% of both
hyperspectral data sets, has been randomly selected as the validation set.

That is, during fine-tuning, 90% of the dataset has been used for learning and the
remaining 10% of the available data samples served as the validation set, to perform
tuning of the hyper-parameters, such as the numbers of convolutional filters in the
convolutional layers. All of the test samples were used to evaluate the final perfor-
mance of the learned spectral–spatial feature representations and the fine-tuned net-
work was used to perform the classification.

The following Table 1 shows the classification maps using the Pavia University
data set and the comparison of the accuracies between the classifiers 1-D CNN, 2-D
CNN, Simple Convolutional/Deconvolutional Network (Simple C/D N), Residual C/D
N and the proposed Optimized R C/D N.

Trying to evaluate the above algorithms based on the obtained results, it is easy to
conclude that the proposed ORCD Network outperforms the competing Deep Learning
approaches for the OA, AA, and Kappa evaluation indices.
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The proposed method produces extremely accurate results without repeated prob-
lems of undetermined cause, because all of the features in the considered dataset are
handled very efficiently. In addition, one of the key advantages gained from the results
is the high reliability, resulting from the high kappa values (maximum reliability if
k � 0.81). This can be considered as the result of data processing that allows the most
reliable relevant data for the forthcoming forecasts. The above Table 1, also provides
information on the results of the McNemar test to assess the significance of the dif-
ference between the classification accuracy of the proposed network and the other
approaches considered. The results of the McNemar test, have proven that there exist
statistically significant differences among the results obtained by the employed meth-
ods. More specifically, the differences between the 1D and 2D CNN with the rest of
them are quite high, whereas there are minor but significant differences between the
Optimized R C/D N (our proposed approach) and the Residual.

8 Discussion - Conclusions

This research proposes an innovative and highly effective geographic object-based
scene classification system in remote sensing images, using an innovative Residual
Neural Network (ResNet) architecture. This approach eliminates VGP as it is using
Softmax activation function instead of Sigmoid on the last layer of the network. The
fully residual network was trained using the novel AdaBound algorithm that employs
dynamic bounds on their learning rates. It achieves a smooth transition to stochastic
gradient descent, and it precisely addresses the noisy scattering points of misclassifi-
cation that other spectral classification methods cannot handle properly.

Table 1. Comparison of the accuracies between the classifiers

Class No Class Name 1D
CNN

2D
CNN

Simple
C/D N

Residual
C/D N

Optimized R
C/D N*

1 Asphalt 83.73 69.25 82.81 78.99 86.59
2 Meadows 65.70 93.39 97.11 97.16 97.01
3 Gravel 67.03 63.13 60.31 61.46 69.97
4 Trees 94.03 94.39 95.59 95.76 94.91
5 Metal Sheets 99.41 100 97.55 97.77 98.83
6 Bare Soil 96.30 49.06 59.38 59.46 69.87
7 Bitumen 93.83 72.26 78.42 79.50 86.49
8 Bricks 93.56 94.32 96.50 96.82 96.85
9 Shadows 99.79 93.77 92.29 92.40 97.71
OA – 79.28 82.66 87.82 87.39 90.51
AA – 88.15 81.06 84.44 84.37 88.69
Kappa – 0.7423 0.7688 0.8363 0.8308 0.8482
Significance – 31.362 31.464 23.178 22.232 21.871
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Its implementation is based on the optimal use and combination for the first time in
the literature, of two highly efficient and fast learning processes (Softmax activation
function and AdaBound algorithm), which create an integrated intelligent system.

This network also remarkably implements a Large-Scale Geospatial Data Analysis
approach that attempts to balance latency, throughput, and fault-tolerance using ResNet
while simultaneously exploiting learning processes optimally and as efficiently as
possible. The reliability of the proposed network has been successfully tested in the
recognition of scenes from remote sensing photographs, which suggests that it can be
used in higher level Geospatial Data Analysis processes. Such cases are the classifi-
cation, the recognition and monitoring of specific standards, and the fusion of multi-
sensor data.

Suggestions for the evolution and future improvements of this network should
focus on further optimizing the parameters of the algorithms used in ResNet archi-
tecture. This will be done in order to achieve an even more efficient, more accurate and
faster categorization process using a heuristic approach [27] or customization of the
algorithm with the use of Spiking Neural Networks [28]. It would also be important to
study the extension of this system by implementing the Lamda architecture [29] in an
environment of parallel and distributed big data analysis systems (Hadoop). Finally, an
additional target that could be considered in the direction of future expansion concerns
the operation of the network by methods of self-improvement [30] and redefinition of
its parameters in meta-learning. This can fully automate the geographic object-based
scene classification process in remote sensing images.
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Abstract. This paper aims to study the segmentation demands of vineyard
images using Convolutional Neural Networks (CNNs). To this end, eleven CNN
models able to provide semantic segmented images are examined as part of the
sensing subsystem of an autonomous agricultural robot. The task is challenging
due to the similar color between grapes, leaves and image’s background.
Moreover, the lack of controlled lighting conditions results in varying color
representation of grapes and leaves. The studied CNN model architectures
combine three different feature learning sub-networks, with five meta-
architectures for segmentation purposes. Investigation on three different data-
sets consisting of vineyard images of grape clusters and leaves, provided seg-
mentation results, by mean pixel intersection over union (IU) performance
index, of up to 87.89% for grape clusters and 83.45% for leaves, for the case of
ResNet50_FRRN and MobileNetV2_PSPNet model, respectively. Comparative
results reveal the efficacy of CNNs to separate grape clusters and leaves from
image’s background. Thus, the proposed models can be used for in-field
applications for real-time localization of grapes and leaves, towards automation
of harvest, green harvest and defoliation agricultural activities by an autono-
mous robot.

Keywords: Semantic segmentation � Convolutional neural network �
Computer vision � Deep learning � Precision agriculture � Harvesting robot

1 Introduction

Robotics are entering the agricultural fields in slow but persistent way [1]. Most
researches are testing agricultural robotics, namely Agrobots, in controlled environ-
ments such as greenhouses, while little has been done in real-field applications [2, 3].
This work investigates the segmentation task of grapes clusters and leaves, based on
CNNs, to be integrated into an agrobot for in-field grape harvesting tasks. Convolu-
tional neural networks (CNNs) are a class of deep neural networks for visual imagery
analysis, mainly for object recognition and classification [4, 5]. Over many benchmark
datasets, CNNs have demonstrated their capability to advance the state-of-the-art
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accuracies of object recognition [6, 7]. The capacity of a CNN can be controlled by
varying their depth and breadth, estimating the stationary characteristics of images and
the locality of pixel dependencies [8]. Visual object recognition is a basic task in
remote sensing that finds among others, application in agriculture [3, 9], with our
special interest focused on viniculture.

Convolutional neural networks have been applied to viticulture [10–16]. In [11] a
benchmark hyperspectral dataset of grape images is employed to test a five-layer CNN
for object identification. Hyperspectral images of grapes are used in [13], with a deep
CNN, which extracts spectral-spatial information of hyperspectral images using a
limited number of samples. Also in [16], hyperspectral images of grapes are tested with
a CNN architecture to predict class-related results. In [10], an automated image-based
workflow is developed quantifying inflorescences and single flowers images of
grapevines. Image regions depicting inflorescences are identified and localized by
segmenting the images into classes using a Fully Convolutional Network (FCN).
Morphological and color features of grapes are used in [12] for ripeness estimation with
a CNN. In a recent work [14] satellite image data is used to identify a vineyard,
integrating the Continuous Wavelet Transform (CWT) and a CNN. A CNN is used to
estimate vineyard grape yield in [15], by measuring the weight of grapes on a vine from
an image with relatively good accuracy.

In this work, the recent advances in handling uncertainties during a segmentation
task in vineyard images, using CNNs are investigated. More specifically, eleven CNN
deep pixel-to-pixel architectures are applied in three sets of RGB images of red grapes,
white grapes and a mixture of both kinds of grapes. The proposed architectures are
derived from combining three different types of feature learning sub-networks with five
different types of classification sub-networks.

This work examines and adopts existing methods on plant phenotyping using visual
imaging and furthers the capabilities of in-field image classification. The modular
design of the proposed models points out new combinations of segmentation archi-
tectures that fit the problem under study, i.e. grape and leaves segmentation. Thus, it
paves the way forward for an autonomous robot to discriminate grapes and leaves on
the spot, towards automating agricultural tasks such as harvest, green harvest and
defoliation.

The rest of the paper is structured as follows. In Sect. 2 the image datasets and the
examined CNN models are presented. Results are discussed in Sect. 3. Section 4
concludes by summarizing the contribution of this work and future research directions.

2 Materials and Methods

This section summarizes the main materials used to execute the proposed study as well
as briefly describes the applied methods.

2.1 Image Datasets

Three datasets are used to evaluate the CNN models under investigation; dataset 1
consists of 274 images of white grapes and leaves, dataset 2 consists of 259 images of
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red grapes and leaves and dataset 3 is derived by combining dataset 1 and 2. Images of
dataset 1 are captured by an RGB high resolution Samsung Mirrorless camera
(NX500), while images of dataset 2 are captured by a USB 3.0 high resolution Thorlabs
camera (DCC3240C) with lens C-MOUNT 12 mm (MVL12M23). All images are
taken from three vineyards of well-known North Greek wine producers as part of a
national research program [17] and are available to the public upon request. Two
different types of cameras are used to test the performance of the models for the
different equipment of the research program, since two RGB cameras will be mounted
on the harvesting robot; one on the vehicle and one on the robotic arm that will
approach the grape clusters to complete the agricultural tasks. Moreover, images of
different quality comprise each dataset. The different quality of datasets is intentional,
in order to test the performance of the networks under varying conditions and point out
the most robust among them. In-field applications are characterized by unstable and
varying conditions resulting in a lack of consistency in capturing the images to be used.
In our case, for example, one of the cameras will be mounted on the moving, i.e. non-
stable, robotic arm of the ground harvesting vehicle. This will lead to images of
different characteristics i.e. varying illuminations, different viewing angles etc. These
characteristics are the difficulties and challenges that the Agrobot will encounter in the
real-field application, and therefore need to be explored. The original datasets are
augmented in order to generate sufficient number of images for training the CNN
models, as described in the next section. All the captured images have been annotated
(ground truth) in order the pixels to belong to one of 3 classes, namely grapes, leaves
and background. Ground truth images are constructed using the LabelMe annotation
tool [18]. The details of each dataset are summarized below.

Dataset 1. Dataset 1 consists of 274 images of white grapes, augmented to 1370. The
initial dataset contains 1064 white grape clusters and 1192 leaves. Dataset 1 consists of
images of single isolated grape clusters, without any overlapping.

Dataset 2. Dataset 2 consists of 259 images of red grapes, augmented to 1295. The
initial dataset contains 1282 red grape clusters and 1264 leaves. Dataset 2 consists of
images of many and overlapping grape clusters or with dense leave coverage.

Dataset 3. Dataset 3 is the merge of datasets 1 and 2 (2665 augmented images).

2.2 Data Augmentation

The most common method to reduce overfitting on image data is to artificially augment
the dataset using label-preserving transformations [19, 20]. Traditional transformations
consist of using a combination of affine transformations to manipulate the training data.
We employ four distinct forms of data augmentation that allow transformed images to
be produced from the original images with minimum computations; flip, rotate, shift
and shearing. For each input image, four duplicated images, 60% transformed com-
pared to the original, are generated. Original image and duplicates are fed into the CNN
models. Thus, for a dataset of N images size, the final size of the augmented dataset is
5N (N + 4N).
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2.3 Examined Models

Convolutional neural networks are trainable multistage architectures [21]. The input
and output of each stage are sets of arrays. At the output, each array represents a feature
extended at all locations on the input. Typically, each stage is composed of three layers;
a filter-bank layer, a non-linearity layer and a feature pooling layer [4]. The 3-layer
stages that form the feature learning network, are followed by a classification module,
as shown in Fig. 1. In this work, three feature learning networks are combined with five
classification convents, where it is possible, by forming eleven models that are eval-
uated for the problem under study; optimal in-field localization of grape clusters and
leaves by a harvesting robot.

Feature Learning Networks. In a typical CNN architecture, initial layers deal with
feature learning (Fig. 1). First layer includes a set of independent filters that are ran-
domly initialized. At this point, the network learns from the data and detects low-level
features such as edges are curves. An activation function is also applied to the feature
maps to increase non-linearity in the network. The pooling layer reduces the spatial size
of input representation, the number of parameters and thus, the overall required
computations. Herein, three CNN architectures are examined, the VGG16, the
ResNet50 and MobilNetV2.

• VGG16 is a very deep convolutional neural network with 16 layers for large-scale
image classification [22].

• ResNet50 is a very deep 50-layer convolutional neural network. ResNets can handle
more layers by having lower complexity than VGG networks [23].

• MobileNetV2 introduces a new CNN layer, the inverted residual and linear bot-
tleneck layer, enabling high accuracies in mobile and embedded vision applications
[24], with lower complexity.

Classification Convents. The last layer of the typical CNN architecture comprised a
fully connected classification scheme, namely a meta-architecture (Fig. 1). Artificial
Neural Networks (ANN) are added to combine the image features into attributes.

Fig. 1. Typical structure of a CNN.
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Backpropagation minimizes the errors and weights are adjusted to optimize the models’
performance. In this workfivemeta-architectures able to provide class label for each input
image’s pixel and thus performing semantic segmentation of the vineyard images, are
examined, as listed below.

– FPN. The Feature Pyramid Network [25] creates a feature pyramid that has strong
semantics at all scales. The main idea relies on an architecture that combines low-
resolution, semantically strong features with high-resolution, semantically weak
features via a top-down pathway and lateral connections.

– FCN8. In a Fully Connected Network [5] the fully connected layers for the image
classification are replaced by multiple convolutional layers and decoder layers,
forming two phases; the feature extraction phase and the decoder phase, resulting
into a classification model that assigns a class label in each pixel of the image.

– U-Net. The U-Net architecture represents a method of decoding, that up-samples
features by using transposed convolution for each down-sampling stage. The main
idea is to increase the network with successive layers where pooling operations are
replaced by up-sampling operations. U-Net is a modified and extended version of
FCN such that it works with very few training images and yields more precise
segmentations [26].

– PSPNet. Pyramid Scene Parsing Network extends the pixel-level-feature to the
specially designed global pyramid pooling one. The local and global clues together
make the final prediction more reliable [27].

– FRRN. Full-Resolution Residual Network exhibits strong localization and recog-
nition performance. A multi-scale context is combined with pixel-level accuracy by
using two processing streams within FRRN; one that carries information at the full
image resolution and one that undergoes a sequence of pooling operation. The two
streams are coupled at the full image resolution using residuals [28].

3 Results and Discussion

Eleven CNN based semantic segmentation models, derived by combining the above-
mentioned feature learning sub-networks and classification met-architectures, were
evaluated with dataset 1, 2 and 3. The experimental results of the conducted study,
along with the experimental setup are summarized in this section.

3.1 Experimental Setup

To evaluate the examined models, the labeled datasets are divided into training and
testing sets. For all datasets, the testing set consists of 20 images while the rest of the
images are used for training. For all experiments, categorical weighted cross entropy
Loss is used [29]. ADADELTA optimizer learning rate [30] is set to 1.0. ADADELTA
is selected due to its capability to dynamically adapt the learning rate during the
training process. Batch size is 12 for all models. All models are trained for 200 epochs.
All methods were implemented in Python 3.7 using TensorFlow and Keras, on a
computer equipped with Nvidia RTX 2070 GPU.
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3.2 Results

Results are reported for the three datasets under study. The performance of each model is
evaluated by themean intersection over union (IU) on the testing set for the three classes of
each dataset (Tables 1, 2 and 3) and their average. Moreover, Loss, F1-score and average
IU for all models during training in each dataset (Tables 4, 5 and 6), are also presented.

The experimental results regarding the testing set are summarized in Tables 1, 2
and 3. The best performance network for dataset 1 is MobileNetV2_PSPNet, which
achieves IU of 87.79% and 83.45%, for grapes and leaves, respectively. The best
average performance for all classes is achieved by the same network, which reaches a
state-of-the art average IU 88.21%.

Table 1. IU (%) on the testing set for dataset 1.

CNN models IU grapes IU leaves IU background Average IU

VGG16_FPN 83.09 72.90 89.60 81.86
VGG16_FCN8 81.47 63.58 87.90 77.65
VGG16_U-Net 81.96 65.47 88.26 78.56
VGG16_PSPNet 86.00 78.83 91.98 85.60
ResNet50_FPN 78.90 66.94 87.26 77.70
ResNet50_U-Net 80.57 67.29 87.73 78.53
ResNet50_PSPNet 82.01 71.36 89.35 80.90
ResNet50_FRRN 79.10 70.07 85.80 78.32
MobileNetV2_FPN 87.07 78.62 92.29 85.99
MobileNetV2_U-Net 86.76 78.63 92.22 85.87
MobileNetV2_PSPNet 87.79 83.45 93.4 88.21

Table 2. IU (%) on the testing set for dataset 2.

CNN models IU grapes IU leaves IU background Average IU

VGG16_FPN 67.15 56.99 77.33 67.15
VGG16_FCN8 65.42 52.04 73.80 63.73
VGG16_U-Net 66.08 57.17 77.13 66.79
VGG16_PSPNet 68.35 57.40 76.62 67.45
ResNet50_FPN 64.56 53.28 75.92 64.58
ResNet50_U-Net 66.84 56.34 76.12 66.43
ResNet50_PSPNet 57.42 44.17 73.43 58.34
ResNet50_FRRN 79.51 59.04 72.69 70.41
MobileNetV2_FPN 65.85 59.27 76.52 67.21
MobileNetV2_U-Net 68.91 58.11 77.44 68.15
MobileNetV2_PSPNet 64.10 54.74 74.79 64.54
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For dataset 2, the best performance is achieved by combinations ResNet50_FRRN
(IU 79.51%), MobileNetV2_FPN (IU 59.27%) for grapes and leaves segmentation
respectively, while for all classes an IU 77.44% is reached by MobileNetV2_U-Net.
For dataset 3, the models ResNet50_FRRN (IU 87.89%), MobileNetV2_FPN (IU
64.12%) shown the best accuracy for grapes and leaves segmentation, respectively,
with the former being the best performed model on average (IU 79.95%).

Table 4, 5 and 6 summarize the models’ performance in terms of Loss, F1-score
and IU on the training set for each dataset. For dataset 1, best scores are achieved by
MobileNetV2_U-Net, providing 0.039 Loss, 97.47% F1-score and 95.09% IU. For
dataset 2, VGG16_FPN model (0.065 Loss, 96.15% F1-score and 92.69% IU) shown
the best performance.

Table 3. IU (%) on the testing set for dataset 3.

CNN models IU grapes IU leaves IU background Average IU

VGG16_FPN 71.32 61.09 79.41 70.60
VGG16_FCN8 71.08 58.89 78.35 69.44
VGG16_U-Net 68.40 55.83 78.46 67.56
VGG16_PSPNet 68.07 61.24 80.51 69.94
ResNet50_FPN 68.07 54.41 77.89 66.79
ResNet50_U-Net 69.14 54.34 78.04 67.17
ResNet50_PSPNet 70.07 58.45 80.04 69.52
ResNet50_FRRN 87.89 62.19 89.77 79.95
MobileNetV2_FPN 75.76 64.12 82.83 74.23
MobileNetV2_U-Net 75.88 64.10 83.75 74.57
MobileNetV2_PSPNet 74.04 64.37 83.07 73.82

Table 4. Loss, F1-score and IU on the training set for dataset 1.

CNN models Loss F1-score (%) Average IU (%)

VGG16_FPN 0.087 95 90.66
VGG16_FCN8 0.125 92.13 91.13
VGG16_U-Net 0.088 95.02 90.60
VGG16_PSPNet 0.114 93.60 88.09
ResNet50_FPN 0.117 92.14 84.12
ResNet50_U-Net 0.095 93.18 89.57
ResNet50_PSPNet 0.189 90.64 83.08
ResNet50_FRRN 0.176 80.56 89.63
MobileNetV2_FPN 0.039 97.59 95.33
MobileNetV2_U-Net 0.039 97.47 95.09
MobileNetV2_PSPNet 0.079 95.35 91.20
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For dataset 3, lower Loss (0.100) was achieved by MobileNetV2_FPN, while the
best F1-score (96.73%) and IU 92.56% reached by ResNet50_FRRN model. From the
Table 1, 2, 3, 4, 5 and 6, it is obvious that the performance of the models is higher for
dataset 1, then dataset 2. This is attributed to the different quality of the images between
datasets 1 and 2.

From the overall experimental results, it seems that in most cases models based on
MobileNetV2 network reach comparatively high or higher performances. More specific
U-Net, PSPNet and FRRNmeta-architectureswithMobileNetV2 andResNet50 achieved
the biggest scores in general, for both grapes and leaves classes. However, the highest
performance (average IU) is achieved withMobileNetV2_PSPNet (88.21%). This can be
attributed to the fact that PSPNet needs image resolution divisible by 48, e.g. 192 � 192,
240 � 240, 288 � 288 etc. In our case, all networks were trained with image size of
224 � 224, while the nearest permissible resolution to that, that is 240 � 240, was used

Table 5. Loss, F1-score and IU on the training set for dataset 2.

CNN models Loss F1-score (%) Average IU (%)

VGG16_FPN 0.065 96.15 92.69
VGG16_FCN8 0.270 92.11 89.41
VGG16_U-Net 0.069 95.80 92.06
VGG16_PSPNet 0.114 93.31 87.96
ResNet50_FPN 0.071 95.80 92.04
ResNet50_U-Net 0.077 95.39 91.33
ResNet50_PSPNet 0.150 91.80 85.15
ResNet50_FRRN 0.089 95.40 86.17
MobileNetV2_FPN 0.102 94.14 89.12
MobileNetV2_U-Net 0.103 93.88 88.70
MobileNetV2_PSPNet 0.199 89.80 81.82

Table 6. Loss, F1-score and IU on the training set for dataset 3.

CNN models Loss F1-score (%) Average IU (%)

VGG16_FPN 0.143 93.44 91.61
VGG16_FCN8 0.291 88.67 87.30
VGG16_U-Net 0.141 92.91 86.89
VGG16_PSPNet 0.189 90.64 83.08
ResNet50_FPN 0.168 91.53 84.59
ResNet50_U-Net 0.153 92.27 85.80
ResNet50_PSPNet 0.103 94.48 89.64
ResNet50_FRRN 0.379 96.73 92.56
MobileNetV2_FPN 0.100 94.16 89.11
MobileNetV2_U-Net 0.079 95.20 90.96
MobileNetV2_PSPNet 0.151 91.95 85.31
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for the PSPNet.As it comes to the restriction of the 224 � 224 resolution for the rest of the
models, this is due to the fact that our datasets consist of an insufficient number of photos
to train the models from the beginning, so pretrained models, that required image size of
224 � 224, where used. When comparing the examined networks in terms of

Fig. 2. Qualitative results from the testing (a) dataset 1 with MobilNetV2_PSPNet model,
(b) dataset 2 with ResNet50_FRRN model and (c), (d) dataset 3 with ResNet50_FRRN model.
From left to right: input RGB image, ground truth image and segmented image.
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computational time, all models need 26–32 s average time per epoch, while the three
combinations with MobileNetV2 need less time; 14–21 s average time per epoch. This is
due to the light weighted architecture of MobileNetV2. Time is crucial when it comes to
real-time applications, especially in our case, where the optimal model is intended to run
on a Jetson TX2 for in-field segmentation by a harvesting robot. Figure 2 displays the
image of each dataset from the testing dataset with the best segmented performance in
terms of average IU, as reported in Tables 1, 2 and 3, alongside the corresponding ground
truth image and the segmented final image.

4 Conclusions

In this paper, the task of semantic segmentation of vineyard images using convolutional
neural networks was studied. For this purpose, a modular design framework that enables
the creative combination of three different feature learning sub-networks and five meta-
architectures was applied. In total, eleven different models were evaluated to three
datasets with vineyard images and they compared to each other in terms of segmentation
accuracy. The applied benchmarking framework provides researchers and practitioners
with a means to evaluate design choices for their task in the frame of viniculture, and
more particularly for grape and leaves segmentation. The latter segmentation task is the
first step for the development of an autonomous robot able to discriminate grapes and
leaves on the spot, towards automating agricultural tasks such as harvest, green harvest
and defoliation. Future work includes training and testing the networks using more in-
field images captured from the mounted cameras of the Agrobot.
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Abstract. Face Recognition (FR) is an important area in computer
vision with many applications such as security and automated border
controls. The recent advancements in this domain have pushed the per-
formance of models to human-level accuracy. However, the varying condi-
tions in the real-world expose more challenges for their adoption. In this
paper, we investigate the performance of these models. We analyze the
performance of a cross-section of face detection and recognition models.
Experiments were carried out without any preprocessing on three state-
of-the-art face detection methods namely HOG, YOLO and MTCNN,
and three recognition models namely, VGGface2, FaceNet and Arcface.
Our results indicated that there is a significant reliance by these methods
on preprocessing for optimum performance.

Keywords: Face detection · Face recognition · Deep learning · YOLO

1 Introduction

Face detection and recognition have numerous real-world applications such
as person identification and tracking. The real-world environment is typically
unconstrained and has been the attention of the computer vision community
for some time now. Despite exceeding human performances on test data, FR
models hardly meet the requirements in the real-world [28]. Thus, preprocessing
steps such as pose augmentation and illumination normalization continue to be
crucial especially in mismatched conditions [16]. However, extra preprocessing
steps could add delays to real-time recognition.

Majority of the established deep learning face recognition systems consist
of three modules namely, a detector module, a pre-processing module and a
recognition module [17,19,23]. Established detections model such as Viola and
Jones [25], Bob [3] and fiducial detectors [23] are employed to localize the

Supported by InnovateUK, Mintra Group and Robert Gordon University.

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
L. Iliadis et al. (Eds.): EANN 2020, INNS 2, pp. 304–316, 2020.
https://doi.org/10.1007/978-3-030-48791-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48791-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-48791-1_23


Towards a Reliable Face Recognition System 305

required face area before a recognition model is used. This makes the process
reliant on the accuracy of the detection model. The stand-out face recognition
models that reported close to or better than human performances are Deep-
face [17], DeepID [21], VGGFace [5], SpereFace [15], ArcFace [7], CosFace [26]
and FaceNet [23].

Although some of the results reported are close to perfect, it was discovered
when testing is done at scale, these models’ performances degrade consider-
ably [11]. Moreover, these tests were carried out in controlled environments and
most of these datasets were carefully curated. Furthermore, the bias in data col-
lection such as ethnicity and race creates skewed model performances [1,2,30].
Again, recognition across wide age gaps is still challenging even for state-of-
the-art models with near-perfect results. Other challenges include disguise or
individual appearance and variations such as beard, facial expression, and oth-
ers. Pictorial conditions such as illumination, pose, occlusion due to dressing
(wearing a cap or eyeglasses), image quality, etc. [16] and Face spoofing [4] are
all considered challenging problems to state-of-the-art FR systems.

In this paper, we perform face detection and recognition using state-of-art
models and demonstrate that despite the great successes, challenges still exist
in deploying these models in the real-world. Our experiments highlight these
challenges and we show that without preprocessing and post-processing such as
alignment, illumination normalization and frontalization, models under-performs
below the reported results.

The rest of the paper is organised as follows. In Sect. 2, related literature
is reviewed and discussed. Section 3 presents the methods used in this work.
Section 4 discusses in details experimental set-up and the datasets used. Findings
are discussed in Sect. 5. Finally, we conclude and suggest future directions in
Sect. 6.

2 Related Works

2.1 Face Detection

While face detection can be achieved using a general detection framework such
as Histogram of Oriented Gradients (HOG) [6], You Look Only Once (YOLO)
[18], Single Shot Detector (SSD) [14], Region Convolution Neural Network (R-
CNN) [9], Max Margin Object Detection (MMOD) [12]; there are specialized
face detection frameworks like Multi-Task Cascade CNN (MTCNN) [31], retina
face [8] and Face Attention Networks (FAN) [27] built specifically for this pur-
pose. Both categories have merits and the choice of a detector will depend on the
application or nature of the data available. That said, specialized detectors ben-
efit from the inclusion of ad-hoc detection pipelines with little to no overhead
such as facial landmark detection that could be beneficial in post-processing.
Face detection techniques such as HOG, Haar cascade are considered tradi-
tional machine learning approaches. Recent face detection techniques such as
YOLO, use deep learning model or a Convolutional Neural Network (CNN) as
the backbone model. The shift in trend is that fact that traditional approaches
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require features to be extracted before a machine learning classifier such as an
SVM could be trained. Thus, features engineering reduces the generalization of
these approaches. Whereas deep learning approaches learn features directly from
pixel values over many training iterations thereby, generalizing better to unseen
samples.

Haar cascades method [25] is one of the early successes in face detection
systems and remains a popular choice. This method introduces the concept of
integral images which is calculated based on region neighborhood. Similarly,
HOG divides the image into cells with discrete angular bins of gradient orien-
tations. Both are effective and fast but are affected by pose and occlusion or
partial face view. These techniques are best suited for frontal faces with fewer
pose effects.

Cascade CNN [13] are quite efficient in detecting faces with high visual vari-
ation such as pose and facial expressions. This approach performs detection in
three different stages at different scales. A combined six CNN are used with three
CNNs to determine face candidates and the other three CNNs are for bounding
box calibration. Multi-Task Cascade CNN (MTCNN) is an extension of cascade
CNN. While both use a cascade of CNNs, MTCNN is much faster and more
accurate than the former. RetinaFace [8] added a self-supervised signal using 3D
dense face regression alongside identity classification, face and facial landmark
regression. According to the authors, the intuition is that since mask prediction
in Mask-RCNN improved localization, then additional supervisory signal will
be just as important in face localization. RetinaFace is a one-stage detector i.e
faces are detected in a single go with no branches or sub-networks. Face Atten-
tion Network (FAN) [27] adds attention mechanism using a RetinaNet structure
with a novel anchor assignment strategy.

Apart from generalizing better, deep learning methods enhance performances
through preprocesses such as augmentation, random cropping, hard mining of
samples, negative detection and others. Günther et al. [10] observed that on
open-set detection challenge using UCCS dataset, both TinyFaces, Cascade
CNN, YOLO, LBF and LgfNet performed well on face detection. The mod-
els were able to detect at least 33000 of the 36153 labeled test faces. However,
the authors observed this was at the expense of high false detections. Gener-
ally, there is a trade-off between speed and accuracy when choosing a detector.
Deep learning-based detectors are more accurate but are slower than traditional
approaches such as HOG, but traditional approaches are less accurate. The differ-
ence in prediction time could be negligible when experimenting with few images
or locally but when providing services at scale or remotely, this may be a factor
to consider.

2.2 Face Recognition

Face recognition is achieved using a machine learning model by training on
either engineered features or raw pixel values. A face recognition model learns an
embedding function that brings together similar identities closer in the embed-
ding space irrespective of the image conditions. Deep models in FR share a lot of
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commonalities and mostly use standards CNNs (such as ResNet, VGG, SENet)
as their backbone. Regardless of the model used, deep learning approaches use
a classifier [5] on identification task or a distance metric when verification is the
task [19].

DeepFace recognition [23] presented an improved recognition approach using
3D face alignment and frontalization technique. The facial alignment was guided
by 6 fiducial points and refined by a Support Vector Regressor (SVR). DeepFace
achieved identification task using a softmax and the learned model was used as
a Siamese network with a chi-squared (χ2) distance metric as the objective in
a verification task. An extension of DeepFace was presented in DeepFace2 [24]
which extend the process with bootstrapping (semantic bootstrapping). simi-
larly, VGGface [5] and VGGface2 [17] were trained using softmax.

Deep IDentity features (DeepID) [21] learned identity-related features in a
multi-class identification task using multiple CNNs (60). DeepID features are
160-D each and were combined with features from other networks (160 × 2 ×
60). Faces were detected using fiducial detectors and the CNNs were trained
on multiple face region crops. DeepID features were found to generalize well to
face verification even to unseen faces. This was extended to DeepID2 [20] and
DeepID2+ [22] with better network architecture, bigger hidden representations
and supervision in convolution layers.

FaceNet [19] used triplet loss with Euclidean distance to train an inception
model in image recognition. The approach implemented a triplet batch of two
matching pairs and a non-matching sample. To choose the right pairs, FaceNet
developed a novel negative exemplar mining of the most difficult triplets during
training. In the Euclidean space, identical faces were held at smaller margins
while different faces were pushed apart. FaceNet turned out to be highly invariant
to illumination and pose on test images.

Arcface [7] utilizes an additive angular margin in obtaining highly discrimina-
tive features in face recognition. Essentially, this approaches uses centers which
are determined by employing the weights of the last fully connected layer and the
embedding after normalization. Extensive experiments were performed on many
public datasets and the results obtained showed better performances than other
existing approaches. Closely related to this are Sphereface [15] and Cosface [26].

The recent deep models use similar backbones and what differentiates them
most is the training protocol. Some employ a different training function such
as a softmax or additive angular margin loss or even a distance measure. All
these approaches present compelling evidence on the choices made. These choices
in some literature show some dependency on the task, for instance, FaceNet
employed a triplet loss on their verification task which is quite logical. However,
VGGface2 was trained using softmax but the model also showed comparable
results on verification when the model was used as a face features and a face
similarity is evaluated.
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3 Methods

Three detector models considered in this paper, these are; YOLO, MTCNN and
HOG. The choice of these is to compare the performance of a general-purpose
detector, a specialized detector, and a mix of deep learning model and traditional
machine learning models. Three face recognition models were considered namely:
VGG2faces, Arcface and Facenet, All of which are deep models. Thus, this gives
us a cross-section of loss flavors that is; a VGG2face trained using softmax, an
Arcface model trained using additive angular margin and a Facenet trained on
triplet loss.

The first detector considered is HOG. HOG is a general detector and relies
on image structure to perform detection. HOG first divides the images into
local regions/grids and evaluate the gradient and orientation of pixels within
these regions. Then a histogram is generated from each region. Gradients are
changes in intensities along the x and y directions both of which are evaluated
to be the magnitude at that pixel. The orientation is the gradients angle. An
image histogram is then generated from each region/grid using these two values.
Gradient normalization is usually applied to minimize the effect of illumination
in the process. Equations 1, 2, 3, 4 shows how the total gradient and orientation
angle is calculated.

gxi
= x(i+1) − x(i−1) (1)

gyi
= y(i+1) − y(i−1) (2)

G =
√

g2xi
+ g2yi

(3)

φ = arctan(gyi
/gxi

) (4)

The second detector is YOLO which uses a CNN backbone and detect/
classify objects in a single pass. This feature improves the speed of detection
in real-time application. YOLO performs detection by subdividing an image
into grid cells. Each grid cell outputs a bounding box, a confidence score and a
class. The confidence is a measure of how accurate the model thinks an object
exists within the cell. The bounding box is center of the object with width and
height relative to the entire image. The cumulative loss is calculated as shown
in Eq. 5.
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L = λcoord

s2∑
i=0

B∑
j=0

lobj
ij [(xi − x̂i)2 + (yi − ŷi)2]

+λcoord

s2∑
i=0

B∑
j=0

lobj
ij [(

√
wi −

√
ŵi)2 + (

√
hi −

√
ĥi)2]

+
s2∑

i=0

B∑
j=0

lobj
ij (Ci − Ĉi)2

+λnoobj

s2∑
i=0

B∑
j=0

lnoobj
ij (Ci − Ĉi)2

+
s2∑

i=0

lobj
i

∑
c∈classes

(pi(c) − p̂i(c))2

(5)

Where lobj
i denotes the presence of object in cell i, lobj

ij the jth bounding box
in cell i, C is a set of classes with p(c) probability, B is the set of bounding boxes,
S2 is the grids and x, y, w, h are coordinates.

Our final detector is MTCNN. This method employs online hard mining of
samples to improve detection. These samples are positive face samples, negative
face samples and partial faces. Detection is achieved in three-stages with three
different CNNs from a coarse to fine-grained detection (P-Net, R-Net and O-
Net). The first stage, P-Net, proposes candidate faces which are graded using
bounding box regression and Non-Maxima Suppression (NMS) to get the high
likely face candidates. The second stage is used to isolate false candidates through
NMS and bounding box regression. The final stage applies supervision in learning
the correct face regions. The supervision signal is a face classification and the
overall loss is the sum of the Eqs. 6 and 7.

Ldet
i = −(ydet

i log(pi) + 1 − ydet
i (1 − log(pi))) (6)

lbox
i = ||ŷbox

i − ybox
i ||22 (7)

where yi are ground truths and pi, ŷ are the network outputs.

3.1 Face Recognition

Different loss functions are employed in this domain that captures the similari-
ties between image pairs or sometimes the popular probabilistic based softmax
functions. The basic idea in these losses is somewhat similar but newer losses
provide better parameter handling and samples combination [28]. Losses may
be task-dependent, that is whether the target is an open-set or a closed-set
recognition.

VGGface2 relies on a simple softmax classifier to train a ResNet for face
identification task. Because of the size of the network and dataset, VGGFace
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learns to separate samples of different identities and brings closet samples from
the same identity in the embedding space.

FaceNet uses a triplet loss to achieve face verification. The triplet loss func-
tion makes use of an anchor image xa, positive image xp and a negative image
xn. The loss maximizes the distance between the anchor and a negative image
while minimizing the distance between the anchor and the positive sample. How-
ever, the models require the right anchor, positive, negative batch combinations
for best performance. Equation 8 shows how the triplet loss is evaluated.

L = ||f(xa
i ) − f(xp

i )||22 + α < ||f(xa
i ) − f(xn

i )||22 (8)

Where α is a margin hyper-parameter.
Arcface uses an additive angular margin to penalizes the loss based on a

geodesic distance between samples in a hyper-sphere using an arc-cosine func-
tion. This is an extension of angular softmax. Angular softmax (A-softmax) [26]
adds a constraint in the hypersphere to learn better discriminative features in
face recognition. A-softmax is more efficient than traditional softmax because it
adopts a different decision boundary for each class. Equation 9 shows how the
additive angular margin is calculated.

Larcface = − 1
N

N∑
i=1

log
es(cos(θyi

+m))

es(cos(θyi
+m)) +

∑n
i=i,j �=yi

es cos θj
(9)

Where s is the scale of the embedding and m is the margin (kept at 0.5).

4 Experiment

4.1 Datasets

Experiments were carried on two datasets namely, Wider face [29] & VGG2 [5].
Wider face is a popular benchmark for face detection in an uncontrolled envi-
ronment. It contains faces with high variations in scale, pose, occlusion and
illumination. The choice of the dataset is because it captures all the ideal sce-
narios for a face detection task in the wild. Wider face contains 32,203 images
with 393,703 labeled faces. The dataset is split into a train, validation and a test
set (40-10-50 split). The train set was used to train detectors and the validation
set was kept as a hold out for evaluation. Results were reported on the validation
set because we do not have access to the test set ground truth.

VGG2 Dataset is a large scale face recognition dataset with about 3.3 m
images. Images are taken in a more controlled environment but some pictures
contain multiple faces, occlusion and varying light conditions. VGG2 has many
samples per identity. The dataset is split across 8631 identities in the training
set and 500 identities in the test set. Both of these sets are disjoint, making the
dataset ideal for facial verification task. For our recognition task, the test set is
kept as a hold-out for evaluation.
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4.2 Experimental Set-Up

The detector models (HOG, MTCNN, YOLO) were trained using wider face
dataset. Our HOG detector is based on the implementation in Dlib library,
details can be found here1. Wider Face annotations were converted to XML using
a python script. For MTCNN, we used a pre-trained model available at2 which
was also trained on wider face. YOLO version 3 model was trained on Wider Face
following the protocol specified in3. Annotations were first converted to YOLO
standards then, new filters and anchor boxes were evaluated before training. We
used a batch size of 64 and subdivision of 16, and training was stopped when the
loss remained unchanged for many iterations. In all experiments, no further pre-
processing was applied to data apart from augmentation and sampling/mining
techniques peculiar to the models. The models were evaluated on the test set on
the number of correctly detected faces and a positive detection is considered if
the IOU is over 0.4.

The recognition models (Arcface, VGGFace and FaceNet) were trained on
VGG2 dataset. Prior to training, the face area was cropped out from the images
using the bounding box information provided. All models were trained using a
ResNet-50 backbone. The Arcface model was obtained from the authors official
GitHub repository4. No age prediction or LFW dataset verification was employed
during training. We only used a validation set for verification after 2000 batches.
The training was terminated when the error rate was less than zero when the
validation and training accuracies are almost the same. We trained FaceNet
model using the Arcface repository but changed the loss function to a triplet loss
and all other settings remain thesame. We used a pre-trained VGGface model
from5 which was trained on thesame dataset and ResNet-50 model. These models
were evaluated on face crops from the test data with no further facial alignment
or augmentation done. This is to give us a better understanding of the actual
performance or effect of the approaches used in training the models.

Testing was carried out by generating image pairs from the test set. Using ten
folds, a total of 100k pairs were generated with 50% negative matches in the pairs.
The models were evaluated by measuring the True Accept Rate (TAR), False
Accept Rate (FAR) and False Reject Rate (FRR). These metrics were calculated
using Eqs. 10, 11 and 12. At test time, the models were used to extract facial
embeddings from pairs. A correct match is measured using cosine similarity
between these facial embeddings. A threshold of 0.5 was chosen and all faces
with similarity less than or equal to the threshold are considered a match. The
threshold value was chosen from repeated experimentation.

TAR =
matches

samplesize
(10)

1 https://github.com/davisking/dlib.
2 https://pypi.org/project/mtcnn/.
3 https://github.com/pjreddie/darknet.
4 https://github.com/deepinsight/insightface.
5 https://github.com/WeidiXie/Keras-VGGFace2-ResNet50.

https://github.com/davisking/dlib
https://pypi.org/project/mtcnn/
https://github.com/pjreddie/darknet
https://github.com/deepinsight/insightface
https://github.com/WeidiXie/Keras-VGGFace2-ResNet50
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FAR =
falseacceptance

samplesize
(11)

FRR =
falserejections

samplesize
(12)

5 Discussion

Table 1 shows the detection performances from each model. HOG detection had
the lowest false detection rate of 1.32% with YOLO and MTCNN at 8.95% and
5.04% respectively. This is not surprising given the number of detected samples.
HOG detector struggled to detect face because of the varying image conditions
in the dataset. As seen in Fig. 1, HOG detector is affected significantly by scale,
pose and occlusion.

YOLO is a general detector but shows robustness in this challenging domain.
YOLO performed significantly better than HOG. From the sample detection
in Fig. 1, we can see that Partial face view or partial occlusion do not affect
YOLO. However, it struggles with considerable occlusion. Also, it had the worst
false detection rate among the models. This may indicate that it sometimes
finds it difficult to distinguish the background from faces. YOLO re-scale images
in training and this is meant to improve detection of smaller objects. But we
discovered that some small and blurry faces were also missed.

MTCNN detected more faces than the other detectors in this experiment. It
also had a low false detection rate which demonstrates the benefits of training
on negative samples. The model is also not affected by scale or partial occlusion.
However, we observed that there were instances when partial faces were missed.

Generally, all the models show good IOU on the detected faces. The high
average IOU returned by these models suggest reliability in these challenging
circumstances. That said, none of the detectors achieved over 50% detection
with IOU threshold of over 0.4.

Table 1. Face detection performances

Model Ground truth Detected faces False detections Average IOU

HOG 39708 5774 76 0.69

YOLO 39708 14846 1328 0.62

MTCNN 39708 17047 860 0.73

Table 2. Face recognition performances

Model TAR FAR FRR

VGGface2 86.27 0.15 13.58

FaceNet 84.97 0.13 14.90

Arcface 88.13 1.25 10.62
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(a) HOG

(b) YOLO

(c) MTCNN

Fig. 1. Sample face detection output from the three detection models



314 A. Ali-Gombe et al.

Tables 2 shows the performances of the face recognition models. All models
had a very low false acceptance rate. This points to the facts that there was a
clear separation of dissimilar samples by the models in the embedding space.
However, the number of false rejections is significantly high. This is could be
associated with the varying image conditions in the dataset used. We observed
that some of the false rejection were due to pose angle and partial faces.

In this experiment, both VGGface2 and Arcface generated better embeddings
than FaceNet. This shows that the two models trained using variants of softmax
produced better facial features that the model trained on triplets. But this was at
the expense of a slightly higher false acceptance rate. That said, the performances
were generally below expectations and demonstrate the reliance of these model
of preprocessing to achieve optimum performances.

Furthermore, one may argue that the metric or threshold value chosen could
have played a part. However, when face alignment was introduced as a prepro-
cessing step in a different experiment, the TAR increased by almost 9% across
board. Thus, there is little connection between the threshold or metric and the
performance. And this indicates that preprocessing continue to be significant in
face recognition models.

6 Conclusion

In this paper, we analyze the performances of established face detection and
recognition models. Experiments were conducted to compare models trained on
a common dataset and the same recognition task. The performances of these
models were evaluated using different metrics and the results indicated that
optimum performance can be obtained only when extra preprocessing steps are
carried out. These techniques are domain-specific and may create an overhead
on the overall system and this may hinder their uses in real-time applications.
This work opens a new research direction on the need for methods that rely less
on preprocessing for optimum performances.
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Abstract. Critical Care Units (CCU) in a hospital treat the severely
sick patients that need constant monitoring and close medical attention.
Feeding patients, enteral feeding in particular, is a critical and continu-
ous process. Monitoring patients, managing their feeding and referring
to a dietician is a key factor in CCUs. Screening patients for referral to
a dietician in a CCU is an error-prone and complicated task. One of the
main challenges in this regard is that the data needed to screen patients
is scattered among many different variables and textual forms. The num-
ber of patients being treated in the CCU is also a significant problem
since it becomes difficult for the staff to keep track of the needs of all
patients. Therefore, an automated screening tool can support effectively
the feeding process and contribute considerably towards improving the
quality and consistency of patient care. In this paper we present early
stages of a project that aims at using machine learning techniques to help
CCU consultants to automatically screen patients for dietician referral.

Keywords: Automated patient screening · CCU screening · Dietician
referral · Patient data processing

1 Introduction

This paper presents the early stages of a project that aims at using Artificial
Intelligence to analyse data collected in the critical care units (or intensive care
units) of a National Health Service (NHS) hospital in the UK. Critical Care Units
(CCUs) are where the sickest patients are admitted and where large amounts
of detailed clinical data are collected (usually hourly) for the duration of the
patient’s stay. Most CCUs, have moved from paper to clinical information sys-
tems to capture data from the patients’ monitor, ventilator and other equipment
into an extensive database. Currently, CCUs are not using these systems and
data to their advantage, with much of the captured data left unanalysed. In an
era of limited NHS resources, these digital resources have the potential to both
optimise patient outcomes and make systems more efficient and effective.
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Data analysis and machine learning systems have been used widely in CCUs,
primarily to automate processes where problems are well known and fully
defined, and there the deliverables to efficiency and accuracy achieved are well
within the expected levels [1,7].

CCUs aim to optimise the patients’ survival, clinical outcomes and to reduce
harm caused by therapies. All CCUs have recognised targets to improve out-
comes, such as maintaining an optimal sedation level, maintaining lung volumes
delivered by the ventilator within a specific range and delivering a minimum
amount of nutrition to patients whilst they are critically ill. Yet, these targets
are often not achieved. This study aims to use these common targets to assess the
feasibility of using this clinical data routinely collected can be used to improve
the achievement of these targets.

The aim of this project is to determine how routine clinical data collected in
CCUs can be used to optimise patient outcomes by augmenting clinician decision
making and altering clinician behaviour to optimise patient clinical outcomes.

This study will focus on optimising three common clinical targets: sedation
level, mechanical ventilation and enteral nutrition in patients of all ages requir-
ing intensive care. These interventions have been selected because they can be
defined regardless of age; and are known to be poorly met in practice [8,9].
Data produced by the clinical information system at the CCUs has been studied
to determine its quality and suitability for exposure to advanced analysis tech-
niques. Data has been filtered and cleaned to develop a suitable experimental
repository that is compatible with further analysis techniques. The data will be
mined to reveal potential associations that will enhance the detail, quality and
significance of the information that could be passed on to the clinicians at the
CCUs.

1.1 Aims and Project Plan

The collected data has been formatted in a way that allows for it to be uniform,
easily stored and accessed in an efficient way. The formatting and cleaning of
the data will allow for the results of processing to return outputs that are con-
sistent in the nature and format of the output, can be interpreted consistently
over the same organisational criteria, guaranteeing that outcomes are compatible
throughout time. This phase will determine which of the data elements produced
by the clinical information system will be useful for further processing and suit-
able for delivering coherent outcomes. All patient data has been anonymised in
accordance to the ethics of the NHS in the UK and in accordance to the UK
Data Protection Act which encompasses the GDPR.

Data will be stored in repositories that are only accessible to the members
of the team of this project. The processing at this initial stage will involve data
mining techniques that will aim to reveal hidden associations within the data.
These will be explored as to being consistent over time, i.e. the same types of
associations confirmed over different data batches. The analysis will also explore
the logic of the associations revealed as to whether these are relevant to the aims
of the clinicians, i.e. whether the extracted context in the data associations is
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suitable to support decision making in the target areas that have been identified
for this project. These conclusions will allow, the members of the project team
working on the analysis of the data, to carefully select among the data produced
those elements that will support meaningful further processing. Thus, the volume
of data that will be utilised for the next stage of the research will be those reduced
to those data that will contribute directly to meeting the aims of this project,
by processing via advanced Artificial Intelligence techniques.

For the next phase of the work, different machine learning techniques and
algorithms will be utilised. The aim here will be to process the data items selected
in the previous phase of the analysis to allow the work team and the participating
clinicians to assess the efficiency and effectiveness of these techniques and algo-
rithms. The data that has been cleaned, prepared and formatted at the initial
phase will be split into training and test sections, with the formal used to train
the machine learning algorithms and the latter to attempt to reproduce known
results. The accuracy and efficiency, of the algorithms that will be exposed to
this experimental data, will be assessed by the project team. Decisions as to the
usefulness of each of the techniques explored will be made; if deemed necessary,
the clinicians will provide additional patient case data to assist resolving the
suitability of these techniques. On completion of this phase of processing and
testing, results and conclusions will be reviewed by the project team to assess
their usefulness and the potential of expanding this research further to a full
scale system. Such a system will be engaged to process data in real time and
aim to support decisions made by the clinicians, by drawing away the complexity
of processing rich and voluminous data and providing the benefits of data asso-
ciations that will support faster and more accurate decision making the CCU
clinicians.

One of the most urgent needs in any CCU is that of screening and managing
a patient’s enteral feeding [4]. There could be complications in a patient’s health
that could lead to a reaction to feeding at any time during the day. These would
in turn lead to decisions in changing the patient’s feeding patterns, stopping
feeding temporarily, or referring the patient to a dietician for further assessment.
Screening is complicated due to the sources and types of data that have to be
considered at very frequent intervals, the number of nursing staff available to do
so and the impact it could have on the overall treatment of the patient. This has
been identified as a first priority in this project.

2 The Problem

After consultation with CCU consultants, one of the problems identified to be
targeted within this project is the screening of patients for referral to dieticians.
The main problem in this regard is that there are numerous factors to consider.
These include:

1) Patient Body Mass Index less than 18.5 kg/m2.
2) Patient received little or no nutrition for 5 days or more.
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3) Patient has been admitted in critical care ≥3 days and receiving enteral tube
feeding as per protocol.

4) Patient received Jejunal tube feeding.
5) Patient received renal replacement therapy (intermittent or continuous)

3 days or more.
6) Patient has liver disease.
7) Patient has Pancreatitis.
8) Patient has Chyle leak.
9) Patient has significant short bowel resections and/or high output ileostomy.

10) Pressure has ulcer category 2 or above.
11) Health professionals have concerns regarding nutrition.

Determining whether a patient needs referral to a dietician requires subjec-
tive assessment by the clinicians based on these factors. The issue is further
complicated by the fact that this information is not directly recorded. It either
needs to be inferred from various attributes recorded in the patient history or
from the text-based patient history. For example, whether a patient has liver
disease or not is not directly recorded anywhere. A consultant can look at an
attribute such as the patient’s Albumin or Bilirubin levels and determine that the
patient has liver problems, though this would still not indicate if the problems
are chronic or acute [3]. That aspect is only recorded in the patient history.

The aforementioned complications present significant challenges in the
automation of the nutritional screening process. Therefore, the first challenge
in developing such a system is to synthesise the variables that can be fed into
an appropriate learning algorithm. Different approaches could be adopted for
this purpose. For example, for determining the presence of liver disease, one
approach could be to perform a fuzzy word match to search the patient history
for text related to liver disease. This text could then be analysing using natural
language processing to determine if the patient has acute or chronic liver disease.
Another approach could be to analyse the patient’s Albumin and Bilirubin levels
within the algorithm and determine if there are indications of liver disease. How-
ever, this approach has the potential pitfall that it analysing such measurements
usually requires expert knowledge.

3 The Data

The CCU data is recorded in a Microsoft SQL Server database using a meta-
model specifically developed to store the information. Each patient is afforded
a PatientID upon first encounter with the NHS. Thereafter, each patient visit
is recorded as a separate encounter with a unique EncounterID. This helps to
keep track of each unique visit by the patient to the NHS, which may be spread
out over time and for different healthcare issues. The NHS database contains
a predefined list of interventions that may be applied to patients, identified
by a unique InterventionID. Each intervention further has different attributes
that can be recorded, each with its own AttributeIDs. For example, two sample
interventions along with their attributes are shown in Fig. 1.
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Patient

Encounter 1

Form

IV Fluids Assessment

Mixture Solution Mixture Volume

Encounter 2

Form

Enteral tube feedAssessment

Nutried Solution Nutrient Volume

Fig. 1. Simplified NHS data model.

In total the database comprises about 250 GB consisting of data of approxi-
mately 5,000 patients. Each encounter also has a free-form text field associated
with it that contains the CCU consultant’s notes about the patient. Furthermore,
various patient measurements are also recorded such as weight, height, age, initial
diagnosis etc. Some patient attributes such as height and weight are recorded only
upon admission and/or discharge and additionally as needed. Other attributes,
such as blood pressure, heart rate etc are automatically recorded more frequently
by the monitoring equipment on the beds. The exact frequency can be set by
the CCU consultants such as half hourly, hourly, daily etc. For the purposes of
this project, the complexity arises from the fact that much of the information is
recorded in the free-form text fields and is not directly recorded anywhere. For
example, to determine whether a patient has received little or no nutrition over
the past 5 days, we face the same challenge as with determining if the patient
has liver disease. We could either aggregate the nutritional intake information
recorded in the database, or use natural language processing techniques to extract
the same information from the free-form text field. For the former, there are addi-
tional issues such as classifying the nutrition as too little or sufficient. Another
issue is that the nutritional intake information is not recorded as a single interven-
tion, but in many different interventions. Careful study and foresight is required
to accurately extract the necessary information.
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4 Future Work

Going forward we need to carefully consider the aforementioned challenges, and
devise appropriate strategies and solutions to address them. Various researchers
have attempted to solve these problems in various ways. Some researchers have
chosen to adopt a statistical approach [2,6,11]. Others have attempted to use
natural language processing to perform real-time screening of patients based
on their history [5,10]. However, there appears to be a lack of utilisation of
other machine-learning techniques for patient screening. We propose that other
techniques such as neural networks can also be used to effectively screen patients
for dietician referral. A significant challenge in this regard would be synthesis of
the required data for input into the learning algorithm. These aspects will be
explored further in the coming months.
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Abstract. The combinatorial pharmacological effects of drugs are influ-
enced by the complex interactions among them. When the patient is
allergic to some drugs, the combination of drugs have to be changed.
Based on that, we put forward a linear-algebra-equation query task.
In this paper, we propose a model called Drug2vec that approximates
the relationship among drugs and can solve the linear-algebra-equation
query task. For example, we can find drugs with the following relation-
ship: drug A + drug B = drug C. Drug2vec applies a three-layer neural
network, which firstly projects a drug into an embedded space and then
retrieves another drug that interacts with it. Experimental results show
that Drug2vec can approximate the relationship among drugs to linear
equations, and the drugs that fit a linear equation have connections with
respect to their structures. We also propose a metric called AUE (area
under the enrichment curve) to evaluate the performance of our model.
Drug2vec can predict drug-drug interactions with high accuracy, and the
AUE can be 0.96 in the normal test. The AUE score of Drug2vec can be
greatly increased with linear modification in the blind test.

Keywords: Deep learning · Drug-drug interaction · Drug discovery

1 Introduction

Drug combinatorial therapy plays an important role in modern medical health-
care as it can provide more comprehensive treatment for patients. In many cases,
patients are treated with multiple medicines at the same time. Some patients may
be allergic to some drugs and the drug combination should be replaced. Hence,
it is important to search for new drug combinatorial treatment and provide sug-
gestions for physician. Analyzing drug-drug interaction (DDI) via in vivo and in
vitro methods are accurate and reliable, however, they are also relatively expen-
sive, time consuming and even involves moral considerations [14]. On the other
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hand, estimating drug-drug interaction in silico is much more convenient, expe-
ditious and economical. Therefore, we come up with a task called linear-algebra-
equation query in drug-drug interaction analysis via computational method.

In this paper, we proposed a model called Drug2vec that can estimate the
drug-drug interaction. It can be applied to do linear-algebra-equation query and
to predict drug-drug interaction. Linear-algebra-equation query is a task that
finds a set of drugs that have relationship described by a linear algebra equation.
For example, we want to find drug A, B, C that meet the requirement represent
by an equation: drug A + drug B = drug D. The query relation among drugs
is presented as a linear algebra equation. That is why we call it linear-algebra-
equation query.

Our model is inspired by the Word2vec model in natural language processing
(NLP)[5]. Word2vec is a three-layer neural network with only one hidden layer.
It breaks long sentences into word pairs within local contexts. Then a one-hot
representation of the word pairs is projected to a lower-dimensional vector in a
smaller embedded space. This vector is called embedded vector. Word2vec model
is of critical importance in NLP as it simplifies the relationship among words.

Drug2vec has the same structure as word2vec, in which there is only one
hidden layer and no activation or pooling function is applied. The context for
Drug2vec is defined as the DDI network. Similar to what word2vec achieves in
NLP, Drug2vec can represent drugs as vectors and approximate the relationships
among drugs to simple linear algebra equations. The new representative vectors
can also be applied to predict DDI with high accuracy. However, when dealing
with a new drug that has never met before, the model does not perform well. In
that case, we apply linear repair method in our model to make the whole model
more robust.

In this paper, Drug2vec is implemented using Pytorch (version 1.00) which
is a widely used package in deep learning. All the codes and data are available
online: https://github.com/Lowpassfilter/Drug2vec.

The rest of this paper is arranged as follows: the related works in DDI anal-
ysis are given in Sect. 2, and the linear-algebra-equation task and the details
of Drug2vec model are discussed in Sect. 3. Section 4 is about the evaluation
method for Drug2vec, and the experimental results and discussion are given in
Sect. 5. In the end, we draw a conclusion of this work in Sect. 6.

2 Related Works

The field of computer-aided drug-drug interaction (DDI) analysis has been
explored for a few years. The most effective methods developed in the recent
year can be classified as matrix factorization (MF) approach or neural net-
work approach. For example, in [12] the authors applied a semi-non-negative
matrix factorization for DDI prediction. The values in the low-ranked decom-
posed matrix are restricted to be non-negative to provide better understandabil-
ity. Deep learning is known for its ability to comprehend relationship among high
dimensional data. It is quite suitable for understanding the complex interaction

https://github.com/Lowpassfilter/Drug2vec
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among drugs. [7] built an 8 layers fully connected neural network for DDI and
drug-food interactions. The authors also conducted experiments on Drugbank
and gave detailed statistics for this database. [15] designed a position aware
multi-task deep neural network and outperformed the state of the art in DDI
Extraction Challenge 2013.

The word2vec technique in natural language processing (NLP) gradually
shows its power in cheminformatics and bioinformatics in the recent years. [1]
proposed ProtVec to represent the amino-acid sequences and applied it to do
protein family classification. [10] and [8] applied word2vec to find the adverse
drug reactions from Twitter data or medical records. Later on Mol2vec was
introduced in [2] to learn vector representations of the molecular substructures.
The compounds encoded vectors were then combined with supervised machine
learning methods to predict compound properties. In [3] FP2VEC was proposed
to obtain the embedding vector of compounds for their quantitative structure-
activity relationship (QSAR) model in order to predict properties of chemical
compounds. [13] introduced IVS2vec and dense fully connected neural network
(DFCNN) to predict whether a molecule can bind the potential targets or not.

Despite the success of applying word2vec, there are still works that have not
done yet. Firstly, the word2vec focuses on representing the complex relationships
among words, but till now, the applications in bioinformatics are only focus on
classification tasks. We believe that the word2vec can do more. We came up with
an idea to represent the complex relationship among drugs and furthermore to
deal with the linear-algebra-equation query task. Secondly, the word2vec has
not been applied for DDI analysis. Therefore, in this paper, we define a linear-
algebra-equation query task and then propose the Drug2vec model, a derivative
of word2vec for this task and DDI analysis.

3 Drug2vec

The idea behind Drug2vec is inspired by the word2vec technique in natural lan-
guage processing (NLP) area. In this section, the linear-algebra-equation query
is firstly defined and then the word2vec is briefly introduced. After that, the
Drug2vec is explained in details including how it works and how to solve the
linear-algebra-equation query task. However, there is limitation of the neural
network in the model. Therefore, we include the matrix factorization (MF) in
our Drug2vec model for the so-called blind test.

3.1 Linear-Algebra-Equation Query

In drug therapy, some patients may be allergic to some drugs. In that situation,
the doctor have to find other drugs that have the similar pharmacological effect.
If combinatorial therapy is applied, the situation may become more complicated,
because the doctor may have to use another combination of different drugs.
For example, omeprazole, clarithromycin and amoxicillin are used to treat the
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helicobacter pylori. Sometimes the patient may be allergic to amoxicillin and
then this drug combination have to be changed.

For replacing one drug, if we describe it in a linear algebra equation, it would
be:

DrugA = DrugB (1)

If it is a combination of drugs, it can also be described in linear algebra
equation. For example,

DrugA+DrugB = DrugC (2)

Generally speaking, we can describe the relationships among drugs via linear
algebra equation. As mentioned above, in some real-world situations, we may
want to find out which drugs have that kind of relationship described as specific
linear algebra equations. Therefore, we come up with a task that is finding drugs
interaction or combination given the relationship described in linear algebra
equations. It is like searching for records that meet the relationship requirements.
Therefore, we name it linear-algebra-equation query.

3.2 Drug2vec Architecture

Although word2vec is initially invented to handle sequential data, it can be
modified and applied in approximating the DDI. The definition of context is
the key in word2vec. It chops the long word sequences into short overlapped
segments and extracts the local relationship among words in each segment. A
similar concept of context can be defined for DDI and an example is showed in
Fig. 1 (a).

Fig. 1. (a) an example context for the drug-drug interaction network (b) network
architecture for Drug2vec method

In DDI networks, the context for each drug within a radius of n can be
defined as drugs that can be reached with no more than n steps from it. For
example, in Fig. 1 (a), the context for D2 with radius 2 is D1, D3, D4, D7. For
every drug in the context, it composes a drug pair with the central drug. All
those drug pairs are used to train the model Drug2vec.

The goal of Drug2vec is to approximate the relationships among drugs and to
represent them using linear algebra equations so that we can use it to trace the
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drugs with relationships described in linear algebra equations. We apply a three-
layer neural network to capture the linear relationship. The network structure
of Drug2vec is showed in Fig. 1 (b). The first layer is the input layer, where the
number of neurons equals the total number of drugs. A drug is represented as a
one-hot vector in the input layer. The length of the vector equals to the number
of drugs. For each drug, only the value that refer to the drug is 1 while all the
other values equal to 0. In Fig. 1 (a), D2 is represented as [0, 1, 0, 0, 0, 0, 0,
0, 0]. The middle layer, also called the hidden layer, is the embedding vector
space. A drug’s one-hot vector is projected to this space, the dimension of which
is number of neurons in the hidden layer. The vector obtained in this layer is
called the embedded vector or encoded vector. The output layer is of the same
size as the input layer. Each neuron in the output layer corresponds to a drug.
The output is a one-hot vector in which different indexes representing different
drugs. The value corresponding to the drug that have interactions with the input
drug is expected to be 1. All the other values equal to 0.

In order to ensure strict linear property of the model, non-linear operations
are not used in the network, such as pooling, normalization, or activation func-
tion like sigmoid and ReLU [6]. It is important to ensure the network has strict
linear relations. Otherwise, it cannot fit the linear algebra relationship very well.

3.3 Drug2vec for Linear-Algebra-Equation Query

The procedures to tackle the linear-algebra-equation query via Drug2vec are
described as follows.

– Drug2vec is trained using all the drug pairs to learn to encode a drug into a
vector while preserving the relationship between different drugs. The three-
layer neural network is obtained that fits the training data most.

– Encode each drug into the corresponding vector in the hidden layer of
Drug2vec.

– Fit encoded vectors into the linear algebra equation and look for the drugs
that suit the equation best. Because of the limited computational power, we
test Drug2vec with the following 3 linear algebra equations:

linear relationships =

⎧
⎨

⎩

A = B
A+B = C
A+B = C +D

(3)

We choose the drugs combination with the least L2 loss as the best fitting
drugs. As for (3), the L2 loss functions are:

L2 Loss1 = (f(A) − f(B))2

L2 Loss2 = (f(A) + f(B) − f(C))2

L2 Loss3 = (f(A) + f(B) − f(C) − f(D))2
(4)

where f(.) represent the encoding of the drug.
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3.4 Drug2vec for Predicting Drug-Drug Interaction

Drug2vec can also be applied to predict the interactions between drugs. For
each drug, the output of the three-layer neural network is a vector that has the
same length as the number of drugs. The values in the vector are expected to be
approximately 1 at the positions of the interactive drugs, and close to 0 at the
positions representing the non-interactive drugs.

In new drug discovery, researchers may produce drugs that have never been
seen before. In that case, the neural network may not work well, because the
neuron of the drug has never been active during the training process. The three
layer neural network can be explained in a more mathematical way as shown in
Fig. 2 (a). Suppose the one-hot vector for drug is d = {s1, s2, ..., sn} ⊂ Rn, where
si ∈ 0, 1 and n is the number of drugs. For a drug interaction pair (di, dj), the
neural network is actually looking for two matrix U ⊂ Rn×m and V ⊂ Rm×n,
so that diUV = dj , where m is the size of the embedded space. The input di
is a one-shot vector that represents a drug. The linear transformation between
the input layer and the hidden layer can be regard as a matrix U . The ith
row in the trained matrix U should actually be the embedded vector for drug
i. The matrix V represents the transformation between encoded vector of the
drug and the output dj . If the drugs never appear in the training stage, the
corresponding rows in U never get trained and keep the initial random values.
Then the outputs for the unseen drugs is meaningless. In that situation, the
neural network architecture does not work well. Hence, Drug2vec model includes
the linear repair method to approximate the untrained rows in U .

Fig. 2. Drug2vec can be interpreted in a matrix operation view, so that a linear repair
method can be defined for the blind test. (a) a matrix perspective to understand
Drug2vec (b) an illustration of linear repair method for the blind test

The idea of linear repair method is shown in Fig. 2 (b). Suppose the rows
corresponding to the training drugs in U compose a new matrix U+, and the
rows corresponding to the new drugs compose another new matrix U−. We
introduce the feature matrix for training drugs denoted as P+, and the feature
matrix for new drugs denoted as P−. Using linear regression, a matrix H can
be obtained to transfer P+ to U+ with the minimal loss shown below:

∥
∥U+ − HP+

∥
∥
2

(5)
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H can also be applied to transfer P− into a new matrix U∗ which is an
approximation to U−:

U∗ = HP− (6)

When facing a new drug, Drug2vec applies the approximate matrix U∗ to
repair U of the neural network model. More specifically, the U− in U is replaced
by U∗.

4 Evaluation

There are two objectives of the Drug2vec model. One is to solve the linear-
algebra-equation query task, the other is to predict a drug-drug interaction.
Therefore, two groups of experiments are conducted to test the performance of
Drug2vec.

For the linear-algebra-equation query, Drug2vec is applied to retrieve drugs
among the dataset that have the relationship shown as 3 linear-algebra-equation
in 3. Then the structure of the drugs is displayed to see whether the drugs
retrieved by Drug2vec meet the requirement.

To predict drug-drug interaction, the output of Drug2vec is not a number
indicating the probability of the interaction between two drugs. It is a vector
whose nearest neighbors indicate interactive drugs. Because there are still inter-
actions among drugs unknown, we cannot decide whether it has interaction if
we find the nearest neighboring drug not marked as interactive in the dataset.
In that case, we had better evaluate the ability of the model to find existing
interaction regardless of the false positive. Moreover, having interaction or not
depends on the Euclidean distance from the output vector to the one-hot vector
representing a drug. If the output vector is close to a drug, then the drug will
be regard as having interaction with the input drug in Drug2vec model. If we
choose the closest 20% drugs as interactive drugs, the result will be different
from choosing the top 5%. Therefore, it is not applicable to use the metrics in
classification to measure the prediction ability in Drug2vec, such as AUROC or
AUPR.

To evaluate Drug2vec quantitatively, we define a new metric called area under
the enrichment curve (AUE), which is similar to AUROC. The horizontal axis
in the enrichment curve is the percentage of the nearest drugs that are predicted
as interactive with the input drug. The vertical axis represents the percentage of
the testing drugs whose interactive drugs are found. The area under the enrich-
ment curve (AUE) measures how well Drug2vec can find the interactive drugs
in a given searching range. The enrichment curve looks similar to the receiver
operating curve which starts from the bottom left corner to top right corner.
However, the meaning is different. The AUE focuses more on the ability of find-
ing the interaction within the nearest neighborhood of the output vector.

When testing the prediction accuracy of Drug2vec, there are two different
settings, which are the normal test and the blind test. In the normal test, drugs
can exist in the training and testing set at the same time, and the AUE score
can be directly used to measure the performance of Drug2vec. In the blind test,
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drugs are divided into a big set and a small set. The interactions within the big
set are used as training set, and the interactions across the two sets are used as
testing set. In the blind test, a drug cannot exist in training and testing set at
the same time. The blind test is to simulate the ability of predicting interactions
for a new drug. In that situation, the linear repair method is included to enhance
the prediction ability of Drug2vec.

5 Experimental Result

5.1 Dataset and Prepossessing

Drugs and their interaction information are downloaded from Drugbank [11],
and are prepossessed based on the method reported in [12]. Initially, 2329 drugs
are downloaded from Drugbank. 603 of them are selected and the drugs with
incomplete information are abandoned. After that, those drugs without the off-
label side effects in OFF-SIDES [9], or without chemical structures are further
removed. The final drug interaction network contains 568 drugs and 21, 351 inter-
actions among them. Among these interactions, 16, 757 of them are enhancive
DDIs and are regarded as the enhancive network in this paper. On the other
hand, 4594 of them are degressive DDIs and are regarded as the degressive net-
work in this paper. If the type of DDIs is not considered, the 21, 351 DDIs are
regarded as the binary network. Then the context of each drug can be obtained
and moreover the pair drugs can be used for training the Drug2vec. From the
view of graphics, the enhancive network consists of 2 disconnected components
and the degressive network consists of 27 disconnected components which is more
fragmental.

The canonical SMILES, drug structure images of the 568 drugs are down-
loaded from PubChem [4], a comprehensive public online database for molecules.
Drugbank provides drug names and drug CIDs that can be retrieved from Pub-
Chem. While the names and CIDs of some drugs provided in Drugbank are not
consistent in PubChem. On that occasion, CIDs are used with a higher prior-
ity. Besides, each drug has an 881-dimensional structural feature vector and a
9149-dimensional OFFSIDES feature vector.

5.2 Result of Linear-Algebra Equation Query

Drug2vec is tested to show its capacity to retrieve drugs for linear-algebra-
equation query. Drug2vec is trained on the complete set of the drug pairs for
100 epochs. Then, the one-hot representations of the 568 drugs are put into
Drug2vec and their embedded vectors in the hidden layers are saved. After that,
these 568 embedded vectors of drugs are fed into three linear-algebra-equation
queries in 3 respectively. The most suitable combinations of drugs that meet the
linear-algebra-equation requirement are retrieved using L2 loss shown in 4. The
structures of the best drug combinations are shown in Fig. 3.

Figure 3 (a) is the result for equation A = B. It can be seen that when
structures of the retrieved drugs are extremely similar to each other with only
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Fig. 3. Samples of the best drug combinations retrieved by Drug2vec for three linear-
algebra-equation queries: (a) A = B, (b) A+B = C, (c) A+B = C+D. The structure
of the drugs are downloaded from Pubchem, and the number at the bottom of each
drug is their corresponding drug IDs in DrugBank.

one atom different. For example, the carbon "C" in drug with ID DB00310
is replaced by nitrogen "N" in DB00524. The drug with ID DB00999 is with
one more hydrogen "H" than DB00880. The drugs DB00497 and DB01192 are
exactly similar.

Figure 3 (b) shows the result for equation A + B = C. It can be seen
that relationship among these drug can be interpreted as “transferring the alde-
hyde (-CHO) from one drug to another”. In Fig. 3 (b), drug DB01440 (gamma-
Hydroxybutyric acid) appear in the top two drug combinations for this linear-
algebra-equation query. Its aldehyde is transferred to an existing drug and form
another drugs. Same thing happens in the third example, where the aldehyde
from drug DB00906 is added to DB00842 to form drug DB00628.

Figure 3 (c) is the result for equation A + B = C +D. This equation quite
resembles the combination of the first equation A = C and B = D. In the third
combination in Fig. 3 (c), drug DB00178 is similar to DB00519, while drug DB0
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0521 is akin to DB00960. Thus, drug DB00178 plus drug DB00521 is similar to
drug DB00960 plus drug DB00519.

5.3 Performance of Predicting Drug-Drug Interaction

(a) Normal test (b) Blind test (c) Cross test

Fig. 4. Enrichment curves of Drug2vec in (a) Normal test, (b) Blind test and (c) Cross
test. The horizontal line is the percentage of drugs that predicted to be connected with
the input drug, and the vertical line is the percentage of input drugs whose neighboring
drugs are found.

For drug-drug interaction (DDI) prediction, the normal test and the blind test
are conducted for three DDI networks, binary network, enhancive network and
depressive network. Besides, the cross test is proposed here to see whether the
knowledge learnt by Drug2vec can be transferred. In the cross test, Drug2vec is
trained on the enhancive network and testing on the depressive network, and vice
versa. The cross test is designed to check whether the knowledge that Drug2vec
learned from one network can transfer to another network.

In the normal test, 90% of the DDIs are randomly chosen as the training set
and 10% are left as the testing set. Drug2vec is trained on the training set for
several rounds and tested on the testing set. The performance on the testing set
is used to evaluate the model. The number of rounds is chosen manually and is
less than 10 for most experiments. The performance in the normal test for the
three networks is showed in Fig. 4 (a), in which the AUE score is 0.968 for the
binary network, 0.961 for the enhancive network, and 0.963 for the depressive
network. This result shows that Drug2vec performs consistently well in DDI
prediction in the normal test.

In the blind test, 90% of drugs are randomly selected and the DDIs within
these drugs are used as the training set. The DDI pairs between those drugs and
the remaining 10% drugs are used for testing. In the blind test, linear repair are
included. From Fig. 4 (b) we can see that Drug2vec can achieve relatively high
performance in the blind test for the binary network and the enhancive network.
But for the depressive network, the AUE score is 0.824, which is less than in the
normal test. Moreover, experiments are also conducted to test the performance
of Drug2vec with linear repair and without linear repair. The result is shown in
Table 1. As we expect, without linear repair the AUE score is just around 0.5.
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The reason is discussed before that the parameters associated with testing drugs
in the neural network have never been trained. Using linear repair will fix the
problem.

In the cross test, the training set and the testing set are chosen based on
the type of DDIs. Firstly, Drug2vec is trained on the enhancive network and
tested on the degressive network. Then, Drug2vec is trained and tested in the
other way round. The result of the cross test is shown in Fig. 4 (c). The AUE
score of learning depressive to predict enhancive is 0.889, and the AUE score of
learning enhancive to predict depressive is 0.753. The knowledge of one network
can partially transfer to another. The score is not so high as in the normal test or
the blind test. It is probably because the enhancive network and the depressive
network have different properties. So estimating from one to the other is a really
difficult task.

Table 1. Linear repair AUE for the blind test.

Blind type Without linear repair With linear repair

Binary 0.51 ± 0.02 0.971 ± 0.03
Positive 0.51 ± 0.02 0.969 ± 0.04
Negative 0.51 ± 0.02 0.824 ± 0.03

6 Conclusions

In this paper, we put forward a linear-algebra-equation query task and then
propose a model Drug2vec to solve it. Drug2vec can simplify the relationship
among drugs using drug-drug interaction as the context. Drug2vec embeds the
one-hot representation of a drug into a low-dimensional vector. The embedded
vector of drug can approximate the linear-algebra relationship of drug. After
that, the embedded vector is restored to the interactive drug. Hence, Drug2vec
can also be applied for predicting drug-drug interaction.

The experimental results show that Drug2vec can retrieve drugs with rela-
tionship described by linear-algebra equations. Furthermore, Drug2vec is able to
find the interactive drugs for a given drug with high accuracy. The AUE score
can be around 0.96.
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Abstract. Parkinson’s is a brain disease that affects the quality of
human life significantly with very slow progresses. It is known that early
diagnosis is of great importance to arrange relevant and efficient treat-
ments. Data analytics and particularly predictive approaches such as
machine learning techniques can be efficiently used for earlier diagono-
sis. As a typical big data problem, the number of features in the collected
data of Parkinson’s symptoms per case matters crucially. It is known that
the higher the number of features considered the more complexities incur
in the handling algorithms. This leads to the dimensionality problem of
datasets, which requires optimisation to overcome the trade-off between
complexity and accuracy. In this study, artificial bee colony-based feature
selection methods are employed in order to select the most prominent fea-
tures for successful Parkinson’s Disease classification over the datasets.
The optimised set of features were used in training and testing k nearest
neigbourhood algorithm, and then verifed with support vector machine
algorithm over the public dataset. This study demonstrates that binary
versions of artificial bee colony algorithms can be significanlty successful
in feature selection in comparison to the relevant literature.

Keywords: Parkinson’s disease classification · Speech analysis ·
Feature selection · Artificial bee colony

1 Introduction

According to a report published in 2015, 6.2 million people globally suffer from
Parkinson’s Disease (PD), and about 177 thousand of these cases have resulted
in death [1]. Although the main reasons leading to the emergence of PD are not
fully known and there is no known cure, it is possible to apply some treatments
to improve the symptoms observed in the patient [2]. In this way, it is aimed
that the patient lives its remaining life with a relatively higher standard. From
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this point of view, early diagnosis of the disease is very important. The fact that
the disease has a neurodegenerative structure, that is, targets motor reflexes,
negatively affecting the patient’s movement and mental activities, makes it pos-
sible to diagnose the disease through the tests carried out [3]. One of these tests
is “speech analysis”. Findings such as phonetic and speech disorders observed
in PD patients, even, the onset of some deformations before the PD clinically
diagnosed, reveal that this test is highly effective for early diagnosis [4]. Besides,
this test is very simple and cheap. So, it provides that PD can be diagnosed by
medical personnel as soon as possible [5].

In the first of the studies that developed a Computer-aided Diagnosis (CAD)
model with the results obtained from these tests, Little et al. [5] tried to detect
the dysphonia that occurred in Parkinson’s patients through the phonations
obtained from 31 patients. The authors who trained Support Vector Machine
(SVM) using the uncorrelated features in the dataset, stated that they achieved
91.4% classification success. As of this date, many researchers have carried out
studies to select the most suitable features in the related dataset and to increase
the classification success by using different machine learning algorithms [6]. For
example, Das [7] used Artificial Neural Networks (ANN) and raise the classifi-
cation success rate to 92.9%. Li et al. [9] used SVM and fuzzy-based non-linear
method and reported their classification success as 93.47%. In their studies,
Chen et al. [10] performed feature selection and achieved 96.47% classification
accuracy with the hybrid extreme learning machine. On the other hand, Zuo
et al. [11] achieved 97.47% success rate using fuzzy k-Nearest Neighbor (k-NN)
method improved with Particle Swarm Optimization (PSO). Finally, Gük [12]
was able to increase the classification score to 98.46% by using rotation-forest
ensemble k-NN.

Since speech analysis has an important place in the classification of PD,
Sakar et al. [13] have brought a new dataset to the literature. The authors who
examined 40 subjects (20 Parkinson’s patients, 20 normal) in their study, took
samples of words and sentences as well as the vowel letter ‘a’. At the end of the
study, they reported that vowel samples had more distinctive features than word
and sentence samples. They trained a SVM using the features extracted from
the samples and achieved 77.5% classification success as a result. In the other
studies performed on this dataset; while Zhang et al. [14] employed ensemble
learning with the multi-edit-nearest-neighbor algorithm, Abrol et al. [15] used
the kernel sparse greedy algorithm. Abrol et al. was able to increase classification
success up to 99.4%.

As seen in the literature, the studies mostly propose hybrid feature selection
and machine learning approaches for higher success in classifications in expense
of various aspects. It is observed that the high success rates achieved by the
researchers seem proportional to the cross-validation methods used (e.g. Leave-
one-out CV or 10-fold CV), which imples that different samples from the same
cases are used for both training and validation purposes. Obviously, this is a
tricky approach that has potiantial to undermine the real success level with
respect to generalisation of the learning approaches [16]. In addition, the datasets
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used in the studies underconsideration contain samples from a small number
of cases and need wider range os samples from larger dataset highly accurate
early diagnosis of PD. Sakar et al. [17] have created a dataset consisting of 252
cases for this purpose. The dataset covers a wide range of features including the
basic features, many additional discriminative features extracted from the audio
signals using various techniques. The corresponding study reports a wideer use
of feature selection and machine learning techniques to hit the performance of
86% by SVM over 50 efficiently selected features.

The motivation of this study is to enhance the efficency and performance
of classifiers, particularly k nearest heighbourhood (k-NN) via efficent feature
selection using the varients of one of the prominent and recent swarm intelligence
approaches; artificial bee colony (ABC) algorithms. This is due to the attractive
performance of binary versions of ABC in the recent publications. At the end of
the study, the classification success was observed with competetive results and
verified with SVM, too.

The rest of the paper is organised as follows: Sect. 2 reviews and introduces
feature selection while Sect. 3 overviews the original and binary versions of ABC
algorithm. The experimental results are provided and discussed with relevant
works in Sect. 4 and 5, respectfully, while the study is concluded in Sect. 6.

2 Feature Selection

Feature selection is one very prominant areas of data analysis and machine learn-
ing, which plays crutial role in the success of the approches with respect ot algo-
rithmic complexity and the accuracy of the results. Big data studies emerge to
particularly take care this very issue in data analysis due to the fact that the size
of data tables, particularly the number of columns/attributes, hugely matters
in processing. However, each attribute in a dataset may not promise significant
contribution to classification success. It is a fact that excessive number of fea-
tures enlarges the problem size and, subsequently, causes higher complexity on
machine learning algorithms that tackle the provided classification problems. On
the contrary, reduced number of features ends up with underfitting and lower
accuracy in results. Hence, feature selection turns in a crutial optimisation prob-
lem in which the complexity is minimised without compromising accuracy once
the most relevant and impactful features are optimally selected. This helps chose
a sub-set of all features, which provide a stable classification on the test data [18].

One of the methods used in feature selection is to develop a search strategy
in the features in the dataset. In this way, it is aimed to raise the classification
success to the highest possible point by selecting sub-sets from the features
pool. Since brute-force searching will result in serious time and computational
complexity, researchers develop strategies continuously to speed up this process
through heuristic methods [19,20]. In this study, ABC-based search strategy was
implemented in 756 features of the dataset. The fitness value of each solution
was calculated by the k-NN algorithm. The validation of the training phase was
provided by the LOSOCV method as seen in Fig. 1.
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Fig. 1. Flowchart of the feature selection and classification process

3 Artificial Bee Colony (ABC) Algorithms for Feature
Selection

The artificial bee colony (ABC) algorithm is one of recently developed swarm
intelligence approaches inspired of food search behaviors of the honey bee
swarms. The original algorithm has been developed by Karaboğa [21], which
imitates the collective behaviour of honey bees within their hives. The algorithm
implies use of two types of bees within the hive; employed and onlooker bees.
These social insects fulfil collective behaviour in three different phases as mod-
eled into this approach, where first phase imposes each employed bee to improve
its own food source, while the second phase involves each onlooker bee to look for
improving the quality of its own food source. In the final phase, an exploration is
initiated for new food sources by onlooker bees, subsequently transorfmed into
scout bees, if non-adequate improvement is achieved. Further investigations and
enhamncements for functional optimisation problems are reported in [8].

The conceptualisation of the ABC algorithm translates the natural processes
and activities into algorithmic components and functionalities, where “food
source” is translated into a “feasible solution” denoted with xi, while “nectar
amount” is recognised as the fitness of a solution denoted by F (xi) as given in
Eq. 1.

F (xi) =

{
1

1+f(xi)
f(xi) ≥ 0

1 + |f(xi)| otherwise
(1)

The probability of a particular food source to be selected through the process
of ABC algorithm is calculated with Eq. 2, while a neighbouring solution such
as xn = xi + vi generated using Eq. 3

p(xi) =
F (xi)∑N
j=1 F (xj)

(2)

vi = xi + φi(xi − xn) (3)

where xi,xn,vi in the equations refer to the current solution, neighbor solution
and candidate solution, respectively. φi is a randomly generated number in the
scale of [−1, 1]. i = 1, 2 . . . , N indicates the index of the food source, where N
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indicates the number of food sources. On the other hand, the scout bees can be
genereted using Eq. 4 when no improvement is realised by onlooker bees.

xi,j = LBj + rand(0, 1) × (UBj − LBj) (4)

where, xi,j is the jth decision variable as the member of xi solution vector;
j = 1, 2, ..,D is the index, D is the total number of decision variables, LB and
UB are the upper and lower boundary values defined for the decision variable.

Feature selection is a binary optimization problem, but, the ordinary ABC
algorithm is developed for the continuous domains. The ABC version for solving
binary problems is suggested in [22], where Eq. 3 and Eq. 4 are replaced with
Eq. 5, based on Bernoulli process, as given below.

xi,j =

{
0 rand < 0.5
1 otherwise

(5)

The following four methods are different variants of developed ABC for binary
optimization problems and used for feature selection purposes as reported below.

A. BinABC (ABCv1) Algorithm has been proposed by Kiran et al. [23]
imposing Eq. 6 to replace Eq. 3 in which XOR logical operator is used to produce
neighbour solutions noting that the variables provided in Eq. 3 as in vector form
while are in Eq. 6 as scalar form. The parameter of ϑ is used as the logical
NOT operator with which neighbour generation is applied alongside a pre-set
threshold value (e.g. 0.5), if the resulted vaule is to be taken or its complement
as the output value.

vi,j = xi,j ⊕ ϑ(xi,j ⊕ xn,j) (6)

Table 1. XOR based neighborhood operation.

Current solution Neighbor solution XOR operation State 1 State 2 State 1 State 2

(xi,j) (xn,j) (xi,j ⊕ xn,j) (ϑ < 0.5) (ϑ ≥ 0.5) (vi,j) (vi,j)

0 0 0 1 0 1 0

0 1 1 0 1 0 1

1 0 1 0 1 1 0

1 1 0 1 0 0 1

As the procedure can be seen in Table 1, XOR operator is applied to current,xi,j ,
and neighbor, xi,j , solutions, then the output value is negated if ϑ < 0.5, kept
as is, otherwise. Afterwards, XOR is re-applied to the current solution, xi,j and
the output value filtered with ϑ for the final output value, vi,j .
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B. DisABC (ABCv2) Algorithm is proposed by Kashan et al. [24] which
uses a similarity measure calculated by Eq. 7 in which the similarity of the bits
in two compared solutions plays the key role. A dissimilarity measure, which
names the algorithm, is subsequently calculated for this version of the algorithm
in order to be used for neighbour solution generation. As the approach imposes,
a new solution, was generated by Eq. 4 previously for non-binary problems, is
now replaced with Eq. 7, which calculates Jaccard’s similarity constant together
with Eq. 8.

sim(xi, xj) =
M11

M01 + M10 + M11
(7)

dissim(xi, xj) = 1 − sim(xi, xj) (8)

where M11 is the number of 1 bits in both xi and xn at the same positions, while
M01 and M10 are determined, accordingly. Eq. 9 declares that the dissimilarity
of the current solution with the neighbour-to-be is an approximate of the dis-
similarity of two existing solutions, xi and xj , normalised with φ while Eq. 10
presents a minimisation model with a number of constraints, which imples that
the new solution to-be, vi, is expected to satisfy the constraints and let the
objective function be minimum.

dissim(vi, xi) ≈ φ × dissim(xi, xj) (9)
min |dissim(vi, xi) − φ × dissim(xi, xj)| (10)

Subject to:

M11 + M01 = n1

M10 ≤ n0

{M10,M11,M01} ≥ 0 and ∈ Z

where φ is a random positive value, n1 and n0 represent the number of bits with
a value of 1 and 0 in the current solution, xi. The aim in here is to determine the
closest possible minimum value according to the difference between the candidate
solution and the current solution. Detailed information and examples can be
found in [24].

C. Improved BinABC (ABCv3) ABC algorithm updates the value of only
one decision variable among D number of decision variables per iteration, while
various other swarm intelligence algorithms propose updating multiple variables
within the complete vector of decision variables. Obviously, there is a trade-
off between exploration and exploitation balance to handle while attemting the
updates.

This binary version of the ABC, as discussed in [26], attempts to balance
exploration and exploitation with an exponantially calculated rate, dt as in
Eq. 11.
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dt = rand(0, α) + e−( t
tmax

)×0.1×D + 1 (11)

where, the α is randomly determined perturbation number, D is the problem
dimension, number of decison variables, and t and tmax indicate the current and
maximum number of iterations, respectively. It is worthwhile to note that dt will
decrease with growing t, which means that the exploration is higher in earlier
iterations while exploitation gets stronger in later iterations. That is believed to
help keep the balance explained above.

The neighbourhood operator in Eq. 6 proposed by Kıran et al. [23] is revised
to be used in this version due to the fact that ϑ is originally setup with 0.5 in Eq. 6
as the exploitation factor. This pre-set fixed threshold weakens the exploitation
as it involves a more random process. Eq. 12 proposes a new way to determine
ϑ. This rule allocates 0 to ϑ if the new solution is worse, otherwise, it is updated
depending on the iteration.

ϑ =

{
Qmax − (Qmax−Qmin

tmax
) × t F (xn) < F (xi)

0 otherwise
(12)

where Qmax and Qmin represent the upper and lower limits of the defined range,
respectively [25].

D. NBABC (ABCv4) In this binary ABC (NBABC) version that proposed by
Santana et al. [26], it is ensured the influencing of the specified number of decision
variables during the implementation of the neighborhood operator. Trough the
max dim parameter in the algorithm, the maximum number of dimension values
is determined in each iteration. The pseudo code of the neighborhood operator
is as follows:

Algorithm 1: NBABC Algorithm
Input: xi

1 Select xj where i �= j /* A new Food Source */

2 Set The number of selected dimensions (max dim × D)
3 Select random dimensions for the food source (Dims)
4 Foreach d ∈ Dims do
5 if xi,d = xj,d then
6 vi,d = xi,d

7 end
8 else
9 vi,d = xj,d

10 end

11 Return vi
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4 Experimental Results

The following experimental study has been fulfilled to test the algorithms
underconsideration for feature selection purposes. The dataset created by Sakar
et al. [17] has been widely used. This dataset contains samples from 188 Parkin-
son’s patients and 64 healthy cases. While constructing the dataset, the voice of
patients for the vowel ‘a’ was recorded 3 times from each case, hence, 252×3 = 756
audio signals were obtained. In addition to the baseline features of audio signals,
feature extraction was made through many techniques (e.g. Time Frequency Mea-
sures, Mel Frequency Cepstral Coefficients, Wavelet Transform Based Features,
Vocal Fold Features, Tunable Q-Factor Wavelet Transform Based Features). Thus,
they were able to create a dataset including a total of 754 feature vectors.

The algorithmic hyper parameters considered through out of these experi-
mentations have been tabulated in Table 2 per algorithm.

Table 2. Control parameters of algorithms

ABCv1 ABCv2 ABCv3 ABCv4

Population Size 20 20 20 20

Max number of Function Evaluation 1000 1000 1000 1000

max dim - - - 0.1

φmax/Qmax - 0.9 0.3 -

φmin/Qmin - 0.1 0.1 -

Limit 100 100 100 100

Table 3 shows the success metrics on each feature category. Since the Band-
width features in the dataset are few, all methods achieved the best results. When
the algorithms run using the TQWT features that have the highest number of
features, ABCv2, ABCv3 and ABCv4 showed the best performance according to
calculated mean and maximum success values. Although ABCv2 performed the
best on the Wavelet Transform features according to the mean results, ABCv3
and ABCv4 achieved the maximum success value. For MFCC features, ABCv4
algorithm achieved the highest scores for both mean and maximum results.
Finally, ABCv2 performed better than other methods for Baseline and Vocal
Fold features.

From this part of the study, it can be concluded that the MFCC features
contain the most qualified features to distinguish between classes. Therefore, all
four algorithms showed the best performance on these features. Another impor-
tant point is that although the number of these features is 84, the algorithms
have achieved the highest results with an average of 40.

In the second stage of the study, classification was performed with SVM using
the features selected for k-NN algorithm. That was to verify how robust was
ABC-based feature selection. As can be seen from Table 4, the features selected
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by ABCv3 algorithm gave the best results according to the maximum success
criteria. However, according to the mean success criteria, ABCv2 and ABCv4
were able to compete with ABCv3.

The fact that SVM algorithm, which is trained with 35 features selected
by ABCv3 algorithm, produces higher results compared to k-NN, shows that
SVM algorithm is a more successful classification algorithm than k-NN. On the
other hand, it can be concluded that the features selected by the binary ABC
algorithms create a reasonable and fair benchmark environment for classification
algorithms. Moreover, it is possible to achieve higher successes by using SVM
instead of k-NN while calculating fitness values in the feature selection stage of
ABC algorithms.

5 Related Works and Discussions

Since the dataset used in this study has been made public, several studies have
been carried out to improve the classification successes. For example, Altay
and Atlas [27] used two different evolutionary algorithms in their work. Badem
et al. [28] employed ABC algorithm for feature selection. Tuncer and Dogan [29]
performed feature extraction with Singular Value Decomposition (SVD) and fea-
ture selection with Neighborhood Component Analysis (NCA). In the classifica-
tion phase, they used SVM. Castro et al. [30] provided classification with ANN.
Finally, Tuncer et al. [31] extracted features from the dataset using minimum
average maximum tree and SVD, and then performed classification with k-NN.
It was observed that some of their results remian better in accuracy than our
score. However, with closer look into the details, it was seen that the 10-fold CV
method was used during the training and validation phase. But, as mentioned in
the work by Sakar et al. [17], using this kind of cross-validation cannot provide
generalization for all subjects and causes in biased results. Therefore, it is found
unfair to make a comparison between the results in [31] and our study’s. For this
reason, our results are evaluated with the results obtained in the original study,
namely the study using LOSOCV (Leave-One-Subject-Out Cross Validation).
The relevant comparison is as in Table 5 below.

Table 5. Comparison of the results with the original study

Feature selection
algorithm

# of features Classification
algorithm

Acc. (mean) Acc. (max)

Sakar et al mRMR 50 SVM - 0.84

This study ABCv$ 39 k-NN 0.86 0.87

ABCv5 35 SVM 0.83 0.88

In general, it is observed that the MFCC features in the Parkinson dataset are
the best definitive and the most discriminative features for classification. In this
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respect, it can be concluded that the MFCC features will provide more stable
and successful results in more comprehensive Parkinson datasets to be created in
the future. However, as seen in the original study, the classification success rate
achieved using only MFCC features remained at the level of 0.84. This leads to
the question of whether or not more successful results can be obtained through
feature selection algorithms.

In their study, Sakar et al. [17] stated that the highest score was obtained
with an SVM trained with 50 features selected from all features (756). However,
as can be seen in Table 5, when evaluated on the basis of mean values, it can
be observed that the NBABC (ABCv4) algorithm can achieve more successful
results with less features (0.86). When the algorithms were evaluated in terms
of the maximum success rate, all algorithms except disABC (ABCv2) produced
the highest accuracy value (0.87). Moreover, if SVM is trained with the selected
features, it has been observed that the success rates can be increased a little
more. Accordingly, improved binABC (ABCv3) algorithm obtained the highest
success value (0.88). As a result, it can be said that thanks to the feature selection
to be applied in Parkinson datasets, higher successes can be achieved and binary
ABC methods are highly capable in this task.

6 Conclusions

The datasets of Parkinson’s sympthoms collated provide great support to study
data-driven computational approaches if they are helpful in diagnosis of the
disease. The dimensionality problem of such datasets has to be eased before
devicing automatic methods to help medical staff. One of the collated datasets
are of sound samples they receive from patients through signal processing tech-
niques to apply speech analysis, which help understand any anomlies detected.
Machine learning techniques are prominantly used in predictive analysis of the
data for diagnosis purposes. However, the dimansionality problem matters and
the number of features has to be studied and optimsed accordingly.

In this study, the variants of binary ABC algorithms have been studied for
feature selection and dimensionality problem of the datasets underconsideration,
which includes 756 features. In the first stage of the study, feature selection was
made using four different binary ABC algorithms, and the success values of the
selected features were evaluated with the k-NN algorithm. In the second stage
of the study, SVMs were trained with the selected features and it was seen that
the selected features could increase the classification success compared to the
original study. Thus, it has been shown that effective results can be achieved in
PD classification by the methods used in the study.
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Abstract. There has been increasing popularity in medical text mining
due to its vast applications in the field of disease prediction and clin-
ical Recommendation systems. Radiology reports possess rich informa-
tion depicting radiologists investigations on the health conditions of the
patients in associated radiology images. However, radiology reports exist
in a free-text unstructured format consisting of valuable information for
disease prediction. This information cannot be easily retrieved and uti-
lized for prediction without suitable text mining techniques. The medical
dataset available in the current procedure is small, domain-specific and
restricted to the institution. However, data is one of the critical factors
to power Machine Learning (ML) and Deep Learning (DL) models. To
overcome the above challenge of predicting disease in the low data con-
dition, we present a practical Deep Learning framework that combines a
Knowledge Base (KB) with the Deep Learning for accurate text mining
and predicting the lung diseases from the unstructured radiology free-
text reports. We adopt Glove word embeddings with the KB trained on
large corpus for effective text modelling. Further, we incorporate Convo-
lutional Neural Network-based Discriminative Dimensionality Reduction
(CNN-DDR) to obtain the most discriminative feature vector. Finally, a
fully connected Deep Neural Network (DNN) is leveraged as the predic-
tion model to detect the diseases. We applied the proposed framework to
predict the lung diseases on radiology reports from both publicly avail-
able Indiana University (IU) dataset [6] and data collected from the
private hospital. We benchmark the performance of the proposed frame-
work, which outperforms against the standard ML Techniques.

Keywords: Clinical recommendation systems · Deep learning ·
Disease prediction · Knowledge base · Unstructured text mining
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1 Introduction

Radiology is an essential medical discipline and central to modern healthcare,
that provides comprehensive insights for disease detection, staging and treatment
planning through medical imaging such as Chest X-Ray (CXR) and Computed
Tomography (CT). Medical radiology reports are the processed data prepared
by the radiologist from the raw images comprising of valuable prognostic infor-
mations that are yet to be investigated for predictive analytics applications like
disease predictions. The radiologist or critical care physicians classify and pre-
dict the diseases from the report manually. Automating the process when there
is more number of patients with higher risk will assist the clinicians with lesser
experience to input their observations and obtain the predicted outcome. How-
ever, the diagnostic report exists in the unstructured free-text format making it
inaccessible and challenging for automatic analysis. Radiology report comprises
of finding section outlining the detailed medical examination containing both
regular and irregular features, an impression section signifying the concluding
remarks containing key observations and other sections like details of patients
and indications. Out of these sections, the finding section is considered as an
essential module, due to the coverage of major details of the organs, detection
of any abnormalities and possible diseases. Other than the common NLP chal-
lenges, some of the significant challenges faced in radiology text report mining
are: detection or identification of findings (normal or abnormal) and lack of
publicly available medical datasets.

The unstructured radiology free-text report classification can be divided into
two categories: Rule-based methods [7,10] and conventional ML-based methods
[4,15]. The Rule-based approaches typically rely on traditional pattern match-
ing with the pre-defined medical terms determined by radiologists or general
medical terminologies extracted from the standard healthcare ontologies such as
SNOMED CT1. The main disadvantage of rule-based approaches is the effective-
ness of the system rely on the accuracy of the pre-defined patterns or the medical
keywords. The ML-based techniques classify reports based on the medical fea-
tures learned from the labelled reports [4,15]. Currently, the DL techniques have
given promising results in the general text classification tasks such as sentimen-
tal analysis and relation extractions from the free-text [9,12]. The success of DL
techniques in various applications has inspired us to apply it on clinical decision
making by predicting diseases from radiology reports.

Word Embedding technique such as Global Vector (GloVe) [14] map every
word to the dense and real-valued vector space that captures its meaning and
syntactic properties of the words in raw corpus. Generally, the bigger the size of
the corpora, superior is the quality of the learned word embeddings. But, there
is a need for more time and considerable resources to train the larger corpora
[13]. Thus, various groups and labs have released their learned word embeddings
trained on the massive corpora [14]. Traditionally, word embeddings are deter-
mined at the word level from the medical corpus of unlabelled unstructured text

1 http://www.snomed.org/.

http://www.snomed.org/


354 S. Shetty et al.

considering only the implicit semantics of the words, neglecting the valuable
information accessible in domain-specific medical resources [4]. Recently, few
studies have implied that incorporating domain knowledge, or KB with the text
corpus can benefit the improvement of word embeddings quality [3]. We use the
embeddings trained on massive medical corpora as a medical Knowledge-base to
enrich the effectiveness of word embeddings learnt from the radiology medical
corpus. By leveraging Knowledge-base, the rare medical words can be acquired,
projecting the word embeddings in more discriminative direction, strengthening
the salient information and decreasing the noise. Due to the insufficient bench-
mark studies on publicly accessible data [4,7,10,15], there is a need to establish
a best prediction techniques on radiology reports. Hence, we have leveraged the
publicly available corpus: IU dataset as well as real-time data and benchmarked
the results against the standard ML Techniques. In this research, we address the
challenge of low data situation in the medical radiology report dataset by adapt-
ing the medical KB at the text feature extraction stage. We present an intelligent
medical knowledge-based framework for disease classification and prediction on
Unstructured Radiology Reports under Low data Conditions.

1.1 Motivations and Contributions

Most of the existing Clinical Decision Support or recommendation Systems
utilizes only numerical or structured data. However, there is limited work on
unstructured data like radiology free-text reports that as a good source of infor-
mation for the prediction of diseases. Medical cohorts available in current prac-
tice is small, domain-specific and are limited to the medical institutes causing
“low data situation” effecting the performance of DL models. Henceforth, moti-
vation of this research work is to handle the unstructured radiology report in
the low data situation and predict the disease outcomes. The main contribution
of this research work is summarized as follows:

– We point out the significance of incorporating Knowledge-based Medical Text
modelling with CNN-DDR and DNN for classifying and predicting diseases
in Radiology Reports in low data environment.

– We carry out comprehensive analysis on two medical datasets (i.e., publicly
available IU dataset and real-time corpus collected from the private medical
institute) to illustrate the competency and rationality of the proposed DL
Framework and benchmarked against the standard ML Techniques. To the
best of our knowledge, this is the first work leveraging radiology data collected
from Indian Private Hospital.

– We examine the effectiveness of incorporating Knowledge-base in enhancing
the performance of the overall framework.

2 Proposed Methodology

The proposed Knowledge-based Deep Learning framework for Disease prediction
from the unstructured radiology reports is shown in Fig. 1. As an overview,
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Fig. 1. Medical Knowledge-based Deep Learning Framework

the radiology findings are pre-processed to obtain the essential latent medical
concepts. The word embeddings are learnt from the medical words by applying
customized knowledge-based Medical Text modelling. Dense word embeddings
obtained are mapped to the medical words from the findings in the Embedding
Layer. Most Discriminative features are extracted by reducing the dimension
using the CNN-DDR. Finally, the flattened discriminative features are fed to
the DNN for predicting the disease outcome.

2.1 Basic Pre-processing

The radiology findings are extracted from the medical corpus and these find-
ings are passed through a series of NLP tasks such as removing punctuation’s;
stop words to retain only essential medical words and filter insignificant words
and symbols. Stemming helps in clearing away the suffixes and retains only the
root word. During the Tokenization phase, the medical findings are divided into
smaller units called tokens. Next, the tokens are processed through Knowledge-
based Medical Text modelling phase to obtain the latent medical information.

2.2 Knowledge-Based Medical Text Modelling (KB-MTM)

In the proposed model, the word embeddings are jointly learnt from both the
medical corpus and the KB. Firstly, we will revisit the GloVe that creates the
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base for the medical corpus-based objective function, and in the next section,
we will derive the improved objective function from the KB.

i. Global Vectors (GloVe) for Vectorization: GloVe [14] word embed-
ding model uses statistical information generated from the global word-word
co-occurrence matrix to obtain the word vectors from the text corpus. In par-
ticular, given a medical radiology Corpus MC, GloVe initializes by building the
Word-word co-occurrence matrix X, where the target word is depicted by the
row and the context word is depicted by the column. Given a medical corpus
with n words, the co-occurence matrix will be nxn. The Xij denotes the tabular
entries, that is the total occurrences of the context medical word m̃wj appears
in the target medical word mwi in the medical corpus MC. Let V represent the
Vocabulary, the collection of all the words in the medical corpora. For a given
medical word mwi, GloVe model instigates by learning word embeddings or word
vectors mvi, m̃vi ∈ R

d considering it as a target word mwi or the context word
m̃wi respectively and the dimensionality d is the user defined hyper-parameter.

The probability of context medical word m̃wj given the target medical word

mwi is given by P (j|i) = Xij

/
Xi. Where, Xi is the total occurrence of target

word mwi in the MC. For instance, mvT
i · m̃vi gives the similarity between the

two medical words mwi and m̃wj . We have to learn the medical word vectors
that are true to the global word-word co-occurrence matrix given by,

mvT
i · m̃vj = logP (j|i) = log(Xij) − log(Xi) (1)

Similarly Xij = Xji,

mvT
j · m̃vi = logP (i|j) = log(Xij) − log(Xj) (2)

Adding Eq. (1) and Eq. (2). Since, mvT
i · m̃vj = mvT

j · m̃vi, we get

2mvT
i · m̃vj = 2log(Xij) − log(Xi) − log(Xj) (3)

In the Eq. (3), the left hand side are the learnable parameters and the right
hand side are the counts learnt from the medical corpus. Since log(Xi) and
log(Xj) rely only on the medical words mwi and m̃wj , we consider them as the
biases particular to the medical word that will be learned.

mvT
i · m̃vj = log(Xij) − bi − bj (4)

mvT
i · m̃vj + bi + bj = log(Xij) (5)

Where, bi and bj are the scalar biased real-valued terms associated with mwi

and m̃wj respectively. The objective function of the GloVe Embedding method
minimizes the weighed least square errors with weighting function f :

JMC =
V∑

i,j=1

f(Xij)(RMC + bi + b̃j − log(Xij))2 (6)
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Here, RMC = mvT
i · m̃vj , is the scalar vaiue obtained by the inner dot product

between the transpose of target word vector mvi and the context word vector
m̃vj from MC. The f (Xij) is the weighting function that allocates lower weights
for frequent co-occurrences to prevent from skewing of objective function due to
over-emphasizing of most common word pairs and is given by:

f(m) =

{
( m

mmax
)α if m < mmax

1 otherwise
(7)

As per [14], the effectiveness of the model relies on the cutoff. So, mmax is set
to 100 and α to 3

/
4. The objective function defined from the medical corpus in

Eq. (6) aim to learn the co-occurrence between the two medical words mwi and
˜mwj by minimizing the squared difference between the inner dot product and

the logarithm of the co-occurences between the medical words in the matrix X.

ii. Integrating Medical Knowledge Base to GloVe: GloVe is the word
embeddings technique that learns only from the corpus and does not use any
existing KB’s. Henceforth, failing to learn embeddings from the rare words and
faces a significant challenge in capturing the semantics, which is essential in
medical text mining. Likewise, the medical dataset available will be domain-
specific restricted to private medical institute and small in number, causing a
considerable challenge to learn word embeddings due to the smaller vocabulary
size. To deal with this issue, we incorporate learnt word embeddings as a KB
during the text modelling of the medical corpus. Given a Medical Knowledge
Base MKB, we derive the objective function JMKB that considers the semantic
relation R(mwi, ˜mwj) between the corresponding target and context medical
words mwi and ˜mwj respectively. We use learnt word embeddings trained on
4.5 million Stanford reports [17] as a concrete case for KB in this experiment.
There are no rigid rules to use any specific KB. However we can utilize any KB
that derives meaningful connection between the medical words.

Let RMKB = kvT
i · ˜kvj be the scalar vaiue obtained by the inner dot product

between the transpose of target word knowledge vector kvi and the context word
knowledge vector ˜kvj from MKB corresponding to the words mwi and ˜mwj in
the MC. The Medical Knowledge-based objective function can be described as
follows:

JMKB =
V∑

i,j=1

f(Xij)(RMKB + bi + b̃j − log(Xij))2 (8)

Where, bi and bj are the scalar biased real-valued terms associated with mwi

and m̃wi respectively. The Medical Knowledge-based objective function defined
by Eq. (8) learns the co-occurrence between the two medical words mwi and ˜mwj

by minimizing the squared difference between the inner dot product of knowldege
vectors derived from the MKB and the logarithm of the co-occurences between
the words mwi and ˜mwj in the matrix X.

iii. Embedding Layer: The Embedding layer is loaded with the pre-trained
word embedding weights obtained from the huge corpus and the word embed-
dings for each medical words in the training medical corpus is learned.
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The medical findings are of different length and are padded to have the same
length. Matrix Multiplication of one hot vector of each word in a vocabulary
and Embedding Weight Matrix returns the corresponding matrix of the medical
words in a given corpus as the output of Embedding Layer (i.e., hidden layer).
Here, Embedding weight Matrix is treated as a look-up table, where the hidden
layer output can be obtained by look-up operation with the encoded integer of
the medical word. The complete pre-trained medical KB is loaded as a dictio-
nary of 260 padded words to produce the embedding matrix of word vectors
with output dimension 100. The algorithm for proposed KB-MTM is mentioned
in the Sect. A.

2.3 Convolutional Neural Network Based Discriminative
Dimentionality Reduction (CNN-DDR)

We have proposed CNN-DDR technique with the objective of reducing the stor-
age and computational costs, by learning from the high dimensional embeddings
into low dimensional representation, such that the most discriminative features
are retained. The architecture employed for CNN-DDR is a modified version of
CNN architecture [5]. Let mxi ∈ R

d denote i -th medical word in the sentence
(i.e., findings) of d -dimensional word vector. Here, we consider 100 dimension
word vectors for each medical word (i.e., d = 100 ). The medical sentence (i.e.,
findings from the radiology report) of length k (i.e., k = 260 ) with padding
when required is represented as: mx1:k = mx1 ⊕ mx2 ⊕ ... ⊕ mxk. Here, ⊕ rep-
resent the concatenation operator. Let the concatenation of the medical words
mxi,mxi+1, ...,mxi+j be represented as mxi:i+j . Let W ∈ R

pd be the filter
involved in convolution operation applied to the window of p medical words
to generate the Discriminative features. We leverage 32 filters of window size
5 (i.e., p = 5 ). For instance, from the window of medical words mxi:i+p−1,
the new discriminative medical feature mci is produced and is represented by
mci = f(W · mxi:i+p−1 + b)., where b is a bias term, b ∈ R.

Rectified Linear Unit (ReLU) [1] activation function, f with filter W is
employed on each available window of medical words {mx1:p,mx2:p+1, ...,
mxk−p+1:k} to generate the feature map, mc = [mc1,mc2, ...,mck−p+1], here
mc ∈ R

k−p+1. Later, we apply dropout mechanism [9] after the first layer
of convolution operation for regularization and addressing overfitting problem.
Dropout mechanism is utilized to avoid co-adaptation at the Hidden layer by
randomly dropping out a few units at the time of the training process. Let
z = [m̃c1, m̃c2, ...., m̃cn] be the penultimate layer and n be the number of fil-
ters. Let y be the output of forward propagation in the CNN and is represented
by y = W · z + b. When the dropout operation is applied at the penultimate
layer, y = W · (z ⊗ δi) + b, where δi ∈ R

n is the Bernoulli random variables
that drops the ith neuron with the probability (pi) of being 1 and ⊗ denote the
element-wise multiplication operator. Regularizing the convolution layer with
the dropout probability gives the maximum robustness to the overfitting. For
our experiment, based on a grid search approach [2], dropout probability of 0.4
is applied after the first hidden layer to restrain the model from overfitting.
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Let ỹ = [ỹ1, ỹ2, ...., ỹL], where L = k−p+1 be the feature map generated from
the Dropout Layer. Max-pooling [5] is used to down sample the input features
by reducing the dimensionality of the feature map. The main aim is to learn the
most discriminative features with the maximum value for every feature map.
Max-pooling produces the discriminative feature map y

′
by applying the strides

s and pooling window size pw on the feature map ỹ. Let
∣∣∣∣ be the customized

concatenation operation and Max-pooling operation is applied to every possible
windows on the feature map ỹ to produce, y

′
=

∣∣∣∣L−pw+1

i=1,i=i+s
max{ỹi:i+pw−1},

where y
′ ∈ R

n. For instance in our case, we have applied pool window size,
pw=2 and strides, s=2 on feature map of length, L=256. Initially, i will be
equal to 1 and incremented with the number of strides till it reaches L-pw+1.
The discriminative feature map obtained is y

′
1:128 = max{ỹ1:2}⊕max{ỹ3:4}⊕...⊕

max{ỹ255:256}. The feature maps obtained from the max-pooling layer containing
discriminative features is flattened into channel dimension and is given as the
input to the prediction model.

2.4 DNN Based Prediction Model

DNN [9] is applied in the proposed framework for predicting the disease exists or
not in the Radiology report. DNN is typically a multi-layer neural network, influ-
enced by a biological neural network consisting of a collection of connected mod-
ules named neurons. DNN’s comprises of multiple such connected units between
the input and output layers. The flattened discriminative features y

′ ∈ R
n

obtained from the CNN-DDR module is given as the input to fully connected
four layered DNN for predicting whether disease exists or not in the radiology
reports. The basic operation performed by DNN on the flattened discriminative
features are forward propagation or inference represented as,

y
′
i+1 = h(Wi · y′

i + bi), (9)

where Wi=0,1,2 are the weight arrays and bi=0,1,2 are the bias of the DNN
Layers. Here, h() is the non-linear function applied on every element of the
feature vector. Non-linear function, ReLU is applied at the penultimate layers
and the Sigmoid operation for the binary classification at the output layers. For
our experiment, based on a grid search approach [2], dropout probability of 0.2
is applied after the first hidden layer to restrain the model from overfitting.

3 Experimental Results and Evaluation

3.1 Datasets and Cohort Selection

Thorough investigation was conducted on two medical datasets: medical expert
labelled publicly accessible radiology cohort of IU Dataset [6] and real-time data
collected from KMC Hospital (Mangalore, India) (Ethics approval was granted
by the Institutional Ethics Committee (IEC), Kasturba Medical College (KMC),
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Mangalore to leverage the de-identified data for the research purpose). The radi-
ology reports collected are de-identified and categorized as either “normal” (i.e.,
cases with no acute abnormality or any active diseases) or “abnormal” (i.e., cases
with acute pulmonary abnormalities such as Cardiomegaly, Pulmonary atelec-
tasis, Pleural effusion, Opacity/lung base, Calcified granuloma, etc.). IU dataset
[6] is the manually labelled publicly available dataset consisting of de-identified
clinical radiology images paired up with the diagnostic reports. Most of the
existing works on IU dataset are cross-modal retrieval (i.e., report generation)
from images [11,16]. The dataset is unseen in terms of radiology report classifi-
cation and disease prediction. We selected 3638 radiology reports comprising of
Findings and reports with missing findings are removed. The Medical Subject
Heading (MeSH) indexing is leveraged to find the ground truth annotation and
based on the MeSH terms, the reports are categorized into two classes “normal”
and “abnormal”. The final annotated data is manually validated by an experi-
enced radiologist to verify the correctness of the annotations. Table 1 depicts the
summary statistics of both the datasets.

Table 1. Cohort statistics: Radiology reports from two Institutions

Characteristic IU dataset KMC dataset

Total # of Radiology Reports 3996 502

Total # of Final Cohort selected 3638 502

Total # of Sentences 11541 3649

Total # of Words 91171 17198

Total # of Vocabulary 1568 393

Total # of Training set 3274 452

Total # of test set 364 50

% of Normal cases 38% 52%

% of Abnormal cases 62% 48%

3.2 Benchmarking the Proposed Prediction Model Against
the State-of-the-Art Machine Learning Techniques

In order to comprehensively validate the proposed Medical knowledge-based
Deep Learning framework, we leverage various traditional ML techniques such as
Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest
(RF), Logistic Regression (LR) and AdaBoost classifier (AB) [8]. For our experi-
ment, we have used the NVIDIA Tesla M40 server with 24 GB GPU, 3 TB Hard
disk, 128 GB RAM and Ubuntu server Operating System. The radiology cor-
pora are divided into training and test set. The Medical Knowledge-based Deep
Learning model was trained for 100 epochs and 10-fold stratified cross-validation
is applied to examine the proposed model. The findings extracted from the report
are preprocessed and padded with the input size of 260. The proposed KB-MTM
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is applied to the free-text to obtain the word vectors of size 260 × 100 = 26000.
The CNN-DDR is utilized to produce the most discriminative medical features
of size 4096. Further, the DNN based prediction model is employed on the low
dimensional features extracted from CNN-DDR to detect the pathology present
on the reports. Also, these KB features were tested on traditional ML tech-
niques for validation. The grid search technique [2] is used to choose the optimal
hyperparameters for fine-tuning of the model parameter setting. Empirically,
the classical ANN with one hidden layer was tested, and it did not perform
well compared to the DNN with two hidden layers. We implemented the pro-
posed model using a well-known deep learning framework, Tensorflow [9]. The
following are the hyperparameters set for CNN-DDR and DNN model: Kernel
Size:5, filter size:32, strides:1, dropout probability: 0.4, pool size:2 and learning
rate: 0.001. We have also utilized Adam optimizer and binary cross-entropy as
the loss function. The benchmark results are presented in Table 2 for IU and
KMC Hospital dataset. The performance and the quality of the disease predic-
tion were examined with the following five metrics: accuracy, precision, recall, F1
score and Matthews correlation coefficient (MCC) [8]. The proposed model with
KB achieves high precision signifies that most cases belonging to the “abnormal”
class are detected, which is the main objective of our disease prediction model.
We have measured the F1-Score and MCC, which are also an essential evaluation
metrics in our experiment, as our data exhibit class imbalance problem (i.e., In
IU dataset, the pathology or abnormal class are in more significant number com-
pared to the normal class; refer Table 1). The proposed model with KB has the
staggering improvement in F1-Score and MCC for IU dataset. The higher value
of F1-Score and MCC of the proposed Knowledge-based Deep Learning model
on both dataset signifies that even if there was a class imbalance, the model was
able to accurately classify. It is observed that RF with KB has produced good
results after the proposed model for KMC dataset. It is due to the ensemble of
decision trees generated by RF on the feature vectors obtained from KB-MTM is
more discriminative for predicting disease compared to DNN without KB. How-
ever, the proposed DNN with KB features outperforms RF with KB features
and other traditional ML models in terms of performance for both the dataset.

3.3 Effect of Knowledge-Based Medical Text Modelling

We have also examined the effect of customized KB-MTM compared with the
Glove word embedding, as shown in Fig. 2a and Fig. 2b respectively. There is a
significant increase of 3% and 2% in terms of accuracy, precision, recall, F1 score
and around 7% and 3% improvement in MCC for IU dataset and KMC dataset
respectively. The results depict that incorporating KB with the word-embedding
models significantly increases the performance of the disease prediction due to
the knowledge gained from the word embeddings trained on the large corpora.
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Table 2. Benchmarking the proposed DNN model with and without KB against the
State-of-the-Art ML Model for IU and KMC Hospital Dataset

Models Indiana University Dataset KMC Hospital Dataset

Acc. Pre. Recall F-Sc. MCC Acc. Pre. Recall F-Sc. MCC

SVM 73.75% 0.732 0.737 0.597 0.415 76.16% 0.786 0.762 0.797 0.529

KNN 77.16% 0.780 0.772 0.705 0.521 88.88% 0.892 0.889 0.895 0.777

RF 86.36% 0.873 0.864 0.787 0.708 93.53% 0.942 0.935 0.937 0.873

LR 79.74% 0.795 0.797 0.704 0.555 88.88% 0.892 0.889 0.896 0.777

GB 76.55% 0.779 0.766 0.591 0.482 88.28% 0.889 0.883 0.891 0.765

DNN-KB

(Proposed)

87.27% 0.874 0.873 0.813 0.723 92.53% 0.927 0.925 0.929 0.850

DNN+KB

(Proposed)

90.40% 0.908 0.904 0.858 0.794 94.13% 0.947 0.941 0.944 0.883

Note: Acc.=Accuracy, Pre.=Precision, F-Sc.=F1-Score, DNN-KB=DNN without KB,

DNN+KB=DNN with KB

(a) Indiana university dataset (b) KMC Hospital dataset

Fig. 2. Effectiveness of proposed KB-MTM compared to the GloVe Embeddings

4 Conclusion and Future Work

As an outline, we have proposed the Medical Knowledge-based Deep Learning
framework for predicting the lung diseases from the radiology reports at low
data condition. We have found that there is no adequate literature for compar-
ing the prediction techniques on radiology reports. Hence, we have benchmarked
our results in comparison with the Standard ML Techniques on publicly avail-
able IU dataset and real-time collected dataset from the KMC Hospital. To the
best of our knowledge, this is the first work on the disease prediction from the
radiology reports collected from Indian private Hospital. To overcome the issue
of handling the scarce data situation in the prediction models, the KB-MTM
is proposed to incorporate the trained word embeddings from the large medical
corpora. It is observed that integrating knowledge-base trained on a large corpus
of radiology reports has increased the performance of the proposed prediction
model. When we benchmark against the standard ML techniques, our proposed
Medical Knowledge-based Deep Learning framework outperforms by 4–17% and
1–18% in terms of accuracy on IU and KMC Hospital dataset, respectively.
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In future work, we would like to explore the DL architecture for enhancing the
disease prediction accuracy. We would further like to analyze the multi-class
classification of abnormal classes to group of pathologies.
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A Appendix

Algorithm 1: Knowledge-based Medical Text Modelling
Input: Medical-Knowledge-Base: Pre-Trained Word embeddings on 4.5 million Stanford

Radiology Report, Medical-Corpus: Unstructured Radiology Reports
Output: A Text Model trained on Unstructured Radiology Report Corpus with Word

Embedding Representation
initialization;
Function Clean(S):

Remove the Punctuation from S.
Remove Stopwords from S.
Stemming operation is applied on S to remove suffix.
return S;

End Function
Function Tokenize(Medical-Corpus):

for each findings fi ε Medical-Corpus do
Cleaned-Findings←− Clean(fi);
tokens ←− Cleaned-Findings are split into tokens;

end
return tokens;

End Function
Function Convert-Word-to-Embeddings(Medical-Corpus):

- Tokenized-Docs ←− Tokenize(Medical-Corpus)
- Let v1, v2, ... , vn be the Unique medical words (i.e., Vocabulary) obtained from the
Tokenized − Docs.
- Generate one hot vector hvi:n for each word in a Vocabulary vi:n.
- Let k be the input length of each Tokenized − Docs (Pad the documents if necessary.
- Generate the knowledge-based word embeddings.

• The co-occurrence between the two medical words are learnt by the objective
function defined in the Eq. (8) using Stochastic Gradient Descent by minimizing

the kvi, ˜kvj , bi and b̃j from the large corpus (refer Eq. (8) for term details).
• Load the Medical-Knowledge-Base as the Embedding Weight Matrix with

d-dimension word knowledge vectors kv1
i:d, kv2

i:d, ... , kvk
i:d = kvj:k

i:d ,
(where, i = 1, 2, ..., d) for all the medical words k.

- The corresponding matrix is obtained by matrix multiplication (denoted by ×)
between one hot vector of each word in a vocabulary and Embedding Weight Matrix
through Embedding Layer with input size k and the output dimension d is,

k̃v
j:k
i:d ←− hvi:n × kvj:k

i:d

return Word Vectors k̃v
j:k
i:d of size k × d

End Function
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Abstract. When convolutional neural networks are applied to image
segmentation results depend greatly on the data sets used to train the
networks. Cloud providers support multi GPU and TPU virtual machines
making the idea of cloud-based segmentation as service attractive. In this
paper we study the problem of building a segmentation service, where
images would come from different acquisition instruments, by training a
generalized U-Net with images from a single or several datasets. We also
study the possibility of training with a single instrument and perform
quick retrains when more data is available. As our example we perform
segmentation of Optic Disc in fundus images which is useful for glau-
coma diagnosis. We use two publicly available data sets (RIM-One V3,
DRISHTI) for individual, mixed or incremental training. We show that
multidataset or incremental training can produce results that are simi-
lar to those published by researchers who use the same dataset for both
training and validation.

Keywords: Deep learning · Eye fundus image segmentation · Multiple
dataset training · Incremental training · Glaucoma

1 Introduction

Glaucoma is a disabling decease that can lead to blindness in about 2 to 5%
of the cases and sight impairment in 10% of the cases [19]. Although Loss of
vision can occur even with the best treatment, correct therapy and follow-up
will stabilize the majority of patients with glaucoma.

The key to detection and management of glaucoma is understanding how to
examine the optic disc (OD) [4]. The OD is an oval ‘plughole’ down which the
retinal nerve fibres descend through a sheet known as the lamina cribrosa. The
retinal nerve fibres are then bundled together to form the optic nerve. The optic
cup (OC) is the white, cup-like area in the center of the optic disc. The tissue
between the border of the cup and the disc is the neuroretinal rim. This tissue

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
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consists mainly of nerve fibers with some glial cells and is usually pink. Most
normal discs are more vertically oval and their cup more horizontally oval. A
typical retina fundus image is shown in Fig. 1.

Fig. 1. Optic disc and cup

Several indicators are used to aid the diagnosis of glaucoma from fundus
eye images. The cup to disc ratio (CDR) [18] which is the rate between the
diameters of the optic disc and cup is the most widely used. In the mean CDRs
of the glaucoma and normal eyes were 0.65 ± 0.13 and 0.39 ± 0.15, respectively
allowing CDR to be used as a diagnostic aid. Another diagnostic approach is
based on the rule based on the shape of the neuroretinal RIM. According to
this rule in normal eyes, the thickness of the neuroretinal rim along the cardinal
meridians of the OD decreases in the order inferior (I) > superior (S) > nasal
(N) > temporal (T) [9]. In any case accurate OC/OD segmentation is required
to be able to apply these techniques. This segmentation is an error prone process
even for expert ophthalmologists specially in typical work overloaded scenarios.

Thus machine learning (ML) approaches are attractive for fundus image seg-
mentation. Segmentation methodologies are based in three possible approaches
[24]: Form matching based on random forests, support vector machines or K-
means [14]; techniques based on transformations and active contours [3] oe Deep
learning-based methods [1,21,22,26].

There are two scenarios for using image segmentation tools in a clinical set
up. In the first one the tool is marketed by the provider of the image acquisition
instrument. In this case we can train using images captured with the instrument
linked to the tool. In a second scenario the segmentation is implemented as a
service and has to be able to segment images from different clinics acquired
with different instruments. Some approaches have been proposed for combined
dataset training e.g. [5], however, they have not been applied, to medical image
segmentation. Some previous works [1,21] have used different data sets but they
train and test with each set independently. In [8] authors use several datasets
but training is always performed with a combined dataset and, thus, it does not
show the influence of performing single or multidataset training.
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The objective of this paper is to study the problems that we would face to
implement fundus segmentation as a service. For this purpose we will first find
a suitable architecture for fundus image segmentation. Then we will train the
system using a single data set and use it to predict over images from that set and
images acquired with other instruments. After this we will use a mixed training
dataset combining images from the different datasets, train our net with it and
use it to make predictions on the different testing datasets. Finally we will study
the realistic approach for clinical practice, i.e., to train with what is available
and later do retraining when more data becomes available.

2 Materials and Methods

Implementation. Selection of Architectures for Segmentation. U-Net
is a widely used fully convolutional neural network introduced in [20]. It has
been widely used in image segmentation applications including several works
related to ophthalmologic images including OD segmentation [21], retinal ves-
sel segmentation [16] and diabetic retinopathy diagnosis [2]. In this work tools
were developed to generalize U-Net models to allow rapid implementation in
cloud-based GPU and TPU [10] architectures. We use a Keras [7] Tensorflow 2.1
implementation on the Google Collaboratory Python notebook environment.

In this section we will establish a methodology to select a generalized U-Net
that correctly segments the OD. For this purpose we will train using combined
datasets leaving the comparison of this approach with other alternatives for later
sections.

Our networks are optimized versions of the U-Net proposed in [21]. Among
the modifications are the use of a different image generator that produces the
larger image batches for TPU training by means of static and dynamic data aug-
mentation [27]. Also, to be able to modify our U-Net structure without recoding,
we use a highly parameterizable U-Net recursive model. With this model we can
change the depth and width of the net, the possibility of batch normalization,
the use of upsampling or transpose convolution and the width ratio between
successive layers known as increment ratio (IR). IR [13] is widely used as an
effective pruning method.

We select network with the smallest IR and, thus, the one with less trainable
parameters when two networks produce similar results. Although we train and
make predictions in the web pruning improves time and reduces operating costs.
The reduction of the initial network width and its depth are alternatives that
we also explore.

We use 96 image batches for both training and testing, and train for 15 epoch
using 100 training steps and 30 test steps per time. We use an Adam optimization
algorithm with a learning rate of 0.0008. These values have proven suitable for
TPU and GPU based training and provide good results with training times of
less than 30 min for the TPU implementation.

Regarding the data sets, we use the publicly available RIM-ONE v3 and
DRISHTI fundus image data sets. RIM ONE-v3 [12], form the MIAG group at
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the University of La Laguna (Spain), consists of 159 images labeled by expert
ophthalmologists for OD/OC. DRISHTI-GS [23], from Aravind Eye Hospital,
Madurai (India), consists of 101 images also labeled for OC/OD. In Fig. 2 we
can see that the images that come from both data sets have very different char-
acteristics.

Fig. 2. Images RIM ONE (left) and DRISHTI (right) datasets

Figure 3 shows the used segmentation methodology. We start by trimming
and resizing the images in the data sets by removing a 10% border on all edges of
the image to reduce the black borders. After this, we resize the images to 128×128
pixels and perform a limited clip contrast histogram equalization. After, we split
the data sets. For each set, we use 75% of the images for training and 25%
for validation. Next, we perform, for each data set, static data augmentation
by creating images with modified brightness and different contrast parameters.
Later, we merge the data from the different sets. In the merging process, we
perform data replication and random combustion to provide longer vectors as
input for our dynamic image generators. Image generators [6] increase the data
by performing random rotations, moving, zooming and flipping over the images
of the extended merged data set.

Dice coefficient [11] is used to estimate the similarity between the correct and
predicted disc. This figure of merit, also known as F1 score, is widely used and
allows us to compare our results with those from other works. Dice coefficient is
defined as:

DC =
2TP

2TP + FP + FN
(1)

In this equation TP indicates true positives, FP false positives, and FN false
negatives.

2.1 Instrument Based Versus Cloud-Based Segmentation

To show the results obtained when training with data from a single instrument
or when training as a service, we will first train the system using a single data set
and use it to predict images from other sets. After this we will use last section’s



Multidataset Incremental Training for Optic Disc Segmentation 369

mixed data set to train our network and use it to make the same predictions.
In this section we use a generalized 6-layer U-Net which had good results in the
previous section. It has only 40 channels in the first layer and the layer IR is
1.1. Given that we also resize the images in the sets to 128× 128, the number of
trainable parameters is less than 1 million.

Fig. 3. Segmentation methodology

2.2 Study of the Viability of Incremental Learning

An interesting alternative, essential to implement cloud services, is to train ini-
tially with the available data and later modify the weights incrementally as we
have data from new instruments. In this section, we will first train the system
using a single data set and make predictions as stated above. Subsequently we
will perform a short retraining (3 epochs) using images from the other data
set and study the influence on the results. Thus, we test the feasibility of an
incremental training using the resources and networks that we would deploy to
implement a web service for segmentation of fundus images. This methodology
is different from that used in other papers (e.g., [1,21,22,26]), where data from
a single source are used for both training and testing.

We compare our work with those works that use deep learning for OD seg-
mentation and use the DRISHTI or RIM-ONE data set. Zilly et al. [26] use a
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light three-layer CNN including sophisticated pre and postprocessing and apply
it independently to both data sets. Sevastopolsky [21] uses a very light U-Net
and provides results for RIM ONE. Al-Bander [1] uses a heavily modified, dense
U-Net and provides results for both data sets. Shankaranarayana [22] uses a
residual U-Net and provides results for RIM ONE.

3 Results

3.1 Network Selection

Regarding disk segmentation (Table 1), for our experiments we initially used a
network that is very similar to the original U-Net: 5 stages and default drop-
out rates (0.3). We use transpose convolution since direct subsampling is not
currently compatible with TPUs.

Table 1. Disk segmentation results for different network architectures.

D/W/IR Train/Test Best/Worst/Std. RRP MTP

5/32/1.5 0.94/0.91 0.99/0.69/0.07 95 3.5

5/40/1.2 0.90/0.79 0.98/0.64/0.09 95 1.1

6/40/1.3 0.95/0.91 0.98/0.64/0.09 96 3.3

6/40/1.1 0.95/0.91 0.97/0.59/0.09 95 .9

7/40/1.2 0.95/0.92 0.98/0.61/0.11 97 2.6

7/64/1.3 0.96/0.94 0.99/0.62/0.08 97 14

Table 1 shows Dice coefficients for train and for test sets for various evaluated
U-Net alternatives. The first row of the table defines the main parameters of the
architecture, that is, the network depth (D), the number of filters in the first
layer (W), and the IR. As an example, 6/40/1.1 means that we use a generalized
6-layer U-Net with 40 channels in the first layer and an IR of 1.1. This network
is shown in Fig. 4.

In addition to this base case we provide data for pruned networks where
we try to obtain the same or greater performance with a smaller number of
parameters. To achieve this goal, we decrease the IR while increasing the number
of filters in the first layer, the depth of the network or both. The MTP column
in Table 1 shows the millions of trainable parameters in the network. For each
network architecture, we provide the mean Dice coefficient for the training and
test sets, the Dice coefficient for the best and worst predicted images in the test
set and the Dice standard deviation over the test set.
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Fig. 4. Generalized 6 layer 6/40/1.1 U-Net architecture

Real disk shapes are not circular, but are approximately elliptical. In general,
the ratio of the horizontal cup and disc diameters is larger than that of the
diameters in the horizontal direction [17], however, in most of the works on the
subject including all those mentioned in Table 2 the CDR is calculated using
the mean diameters of the OC and OD. Although there are several possible
interpretations of the average diameter, they have small differences with the real
fundus images. In this paper we consider that the average radius of the OD is
the square root of its area divided by π. We define a new parameter (Radio
Ratio-RRP parameter) that is very useful for estimating the accuracy of the
CDR. This parameter is defined as the percentage of test images for which the
predicted disk radius has less than 10% error compared to the average radius of
the ground truth. As an example, for the deepest network in the table, for 97%
of the images our estimate of the radius has an error below 10% (RRP = 97).

We can see that deep networks with few parameters such as 6/40/1.1, which
has less than 1M trainable parameters, achieve good results for disk segmenta-
tion. In this specific case, it achieves a RRP of 95. We will use this architecture
for all the experiments in the rest of this paper. As a reference, we include in
the Table 1 a very wide and deep network (7/64/1.3) with more than 14 mil-
lion parameters. Although the performance of this network is better than in any
other case, the small improvement does not justify the additional complexity of
the network.
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3.2 Disk Segmentation with Multiple Datasets

We want to discover how our system behaves when training with the combined
data set and compare these results with those obtained when a single data set
(i.e. RIM ONE or DRISHTI) is used to train the system. We will also compare
the results with those obtained by other researchers. Table 2 shows Disk seg-
mentation results for the three scenarios in this section. In the first two we train
using a single data set and validate using the part of that data set that is not
used for training and the other data set, while in the last scenario we train and
validate with a mixed data set. Our scenarios are as follows:

– 75% of the DRISHTI data set is used for training and validation is done first
with the rest of DRISHTI and then with the RIM ONE data set.

– 75% of the RIM ONE data set is used for training and validation is carried
out with the rest of the RIM ONE data set and the DRISHTI data set.

– 75% of a mixed data set is used to train the networks and then we validate
with the rest of the mixed data set.

We can see in Table 2 that, with our 6-layer network in the scenarios in
which we train with a single data set the results when testing with images of
that data set are good with Dice coefficients greater than 0.98 (DRISHTI) and
0.96 (RIM1). However, when we validate these networks with the other set, the
results are below 0.66 or even 0.50 in some cases. In the third scenario in which
we train with a mixed data set, we get results that are more similar when we
test with images that come from both data sets. In this case, we obtain a Dice
of 0.96 for the DRISHTI test subset and 0.87 for the RIM ONE subset.

Table 2. Multiple/single set dice coefficients.

Author DRI RIM

Zilly et al. [26] 0.97 -

Al-Bander [1] 0.95 0.90

Sevastopolsky [21] - 0.94

Shankaranarayana et al. [22] - 0.98

Drishti trained 0.98 0.50

RIM trained 0.66 0.97

Multi-dataset 0.96 0.87

In Table 2 we also results of previously referenced works which have trained
and tested with each data set independently. Thus, they are related to our first
two scenarios but they never test a network trained with one data set with images
from another. Although we use networks with a small number of parameters,
when we train with a single set we obtain results similar to those obtained by
other papers. When training with DRISHTI, we obtained a Dice value of 0.98.
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This value is slightly higher than 0.97 [26]. In the RIM ONE trained case, we
get a dice value of 0.97 which compares well with 0.98 [1].

The most significant results in the Table 2 come from what can’t be obtained
in other studies, i.e., when we train with a dataset and predict using data from
another source. In this case, we always get poor prediction results. This demon-
strates that it is not feasible to create a service using training data captured
with a single acquisition device. We also see in Table 2 that when you train
with a combined data set, the network produces good results for both data sets,
although not as good as when the training and prediction sets are part of the
same set of data.

Regarding the clinically significant RRP parameter (Table 3), in the first two
scenarios almost all radios for the test data are predicted with less than 10%
error when compared to the segmentation done by ophthalmologists. However,
the prediction for the other data set is much worse and, in some cases, we never
get errors below 10%. This situation improves significantly when we train with
a mixed data set.

Table 3. Radio ratio parameter.

DRI RIM

Drishti trained 100 38

RIM ONE trained 62 100

Multi-dataset 100 82

3.3 Incremental Training Results

We want to find out how our system behaves, when training with one set and
then retraining lightly with some data from the other, and see if the results
similar to those obtained when a single set of data is used (i.e. RIM ONE or
DRISHTI) to train the system. Table 4 shows the results of disk segmentation
for our two cases. On the first train, we use only DRISHTI data and validate
using remaining of that data set and RIM ONE. In the second scenario, we make
a brief retrain (3 epochs) using RIM ONE and the data set. Our scenarios are
defined as follows:

– 75% of DRISHTI is used for training and validation is carried out first with
the rest DRISHTI and then with the complete RIM ONE.

– 75% of RIM ONE is used to retrain the network and then we validate with
the test part of both sets.

We can see in Table 4 that when we train with DRISHTI the tests with
images from that same data set obtain very good Dice values. Specifically, we
obtain an average Dice of 0.98 (DRISHTI) but only 0.64 (RIM1). The situation
is worse than it seems as in the worst case for some RIM images the segmentation
does not produce any pixels.
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Table 4. Segmentation dice with retraining

Author DRI RIM

Zilly et al. [26] 0.97 -

Al-Bander [1] 0.95 0.90

Sevastopolsky [21] - 0.94

Shankaranarayana et al. [22] - 0.98

Drishti trained 0.98 0.64

RIM retrained 0.89 0.80

When we retrain the network with the other data set, the Dice values are
0.89 (DRISHTI) and 0.80 (RIM). For the worst case, we get a Dice of 0.69.
Therefore, we can see that with a light retraining, the network can quickly learn
the specific characteristics of the second data set. In Table 4 we include results
of the other papers analyzed before. When we train with a single set of data,
we obtain results for that set that are similar to those obtained by other papers.
When training with the DRISHTI data set, we obtained a dice value of 0.98
for OD segmentation. This value is slightly above 0.97 [26]. As in the previous
section the most significant results in Table 4 come from what is not available
from other studies. The results obtained when we do a quick retraining show
that, in this case, we get good prediction results for all test images.

4 Conclusions

We have been able to demonstrate that through the use of data from differ-
ent data sets, adequate image preprocessing and significant data augmentation,
we have been able to perform disk segmentation obtaining results with a per-
formance similar to those obtained by other authors who use a single set for
training and testing.

The use of a generalized configurable U-net recursive model allows us to easily
train and test any U-Net configuration without having to make any changes to
the code. This allows great flexibility for testing different architectures. We have
tested networks with 4 to 7 layers, from 32 to 92 input channels, and with IR
from 1.1 to 2.0. The number of parameters has varied from 0.9 to 44 million.
Several U-Net architectures have been proven suitable for disk segmentation.

We have shown that by performing a rapid retraining with data from a new
data set, and by preprocessing images and performing data augmentation, we
can implement disk segmentation with performance equivalent to that reported
by researchers using a single set for both training and testing.

4.1 Future Work

There are many possibilities to expand this work in the future. Among other
possible topics, it would be interesting to implement modifications to always
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produce disc shapes that are acceptable to ophthalmologists. The automation of
architecture configuration parameters and the use of other CNN architectures
in parallel for the direct detection of glaucoma.

This work shows the importance of retraining by adding new sources to the
segmentation system. In a real clinical service scenario, we would have to start
training the network with the initially available data and retrain it when new
images become available. The possibility of improving the network architecture
by including residual blocks [25] or the combination of these blocks and a conven-
tional U-Net [15] has proven effective in several segmentation applications and
could potentially improve the performance of our process. The robustness of
these networks when analyzing images from many different instruments remains
an open problem for the future.
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Abstract. Skin cancer is one of the most diagnosed cancers accord-
ing to the World Health Organization and one of the most malignant.
Unfortunately, still the available annotated data are in most cases not
enough to successfully train deep learning algorithms that would allow
highly accurate predictions. In this paper, we propose the utilization of
transfer learning to fine-tune the parameters at the very last layers of
a pre-trained a deep learning neural network. We expect that a limited
number of skin lesion images is enough to affect significantly the later
data-specific layers. Furthermore, we propose a pre-process step for skin
lesion images that segments and crops the lesion, whereas smooths the
effect of image masking, thus enhancing the network’s classification capa-
bilities. The reported results are very promising, since the overall accu-
racy, as well as the accuracy of individual class classification improved
in 7 out of the 8 classes, suggesting future developments in medical diag-
nosis through pre-trained deep learning models and specialized image
prefiltering.

Keywords: Convolutional Neural Networks (CNN) · Skin Lesion
Classification · Cancer detection · Image pre-processing

1 Introduction and Related Work

Skin cancer is one of the most frequently diagnosed cancers according to the
World Health Organization [1] and one of the most malignant. There are many
types of skin carcinomas, with “melanoma” having the highest rate of mortal-
ity [16], while “basal cell carcinoma” being the most common skin cancer with
lower mortality. Trained machine learning computational tools capable of dis-
criminating between normal skin images and images of skin cancer is crucial.
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The task of further discriminating types of cancer can be much more challeng-
ing but still of great importance, since different types of cancer are characterized
by significantly different mortality rates.

In the literature, there have also been unsupervised methods able to provide
such discrimination in their pattern findings [19], [2] indicating class separability
to some degree. His prior knowledge justifies the use of supervised methods
that are able to achieve much higher accuracy in similar complexity tasks [13].
The most recent advances in supervised approaches use Convolutional Neural
Networks variants for both segmentation and classification of skin images.

The utilization of filtertering is widely adopted by supervised methods aiming
to extract appropriate features for training a classifier [14]. Even in the case of
state-of-the-art supervised methods such as the Convolutional Neural Networks
(CNNs) that are able to construct the most relevant features for each problem,
the use of global image filters significantly improves CNN performance in some
cases [7]. A common use of filters on CNN is when artifacts occur within an
image [8]. In particular, pre-processing of dermoscopy images for lesion classi-
fication is very common. In [15] the authors proposed a method for detecting
the lesion type, where a pre-process stage for removing the hairs from the skin
and the lesion is performed. Next the deep transfer learning approach is used
to fine-tune the pre-trained model Alexnet [9] using dermoscopy images. Deep
transfer learning is a recent popular approach used in medical imaging where
knowledge is transferred from pre-trained models using large-scale data into new
models [18].

However, recent findings [7] show that CNN models trained to classify gen-
eral purpose images can achieve higher classification performance when com-
pared with pre-trained models on medical domain problems. In [10] the authors
examined the transfer learning approach for skin cancer classification employing
several state-of-the-art architectures (VGG-16, ResNet50, ResNet101, Inception-
v3) trained on the popular ImageNet dataset. It was shown that the fine-tuned
VGG-16 model outperformed the rest of the CNNs under comparison.

In this work, we deal with the problem of classifying dermoscopy images into
different skin cancer types. Our aim is to investigate the effect of prior lesion
segmentation on the classification performance of a CNN and to derive an opti-
mal way of incorporating the segmentation information into the image dataset
without inducing artifacts that may affect the features learn by the CNN. More
specifically, it is expected that, since the segmentation is a masking operation,
it produces strong edges at the lesion border, which represent irrelevant infor-
mation that may deteriorate the performance of the CNN classifier. However, if
the mask-generated edges are filtered-out from the image dataset, the clipping
and segmentation process should preclude irrelevant image information and con-
sequently increase the achieved classification accuracy. To this end, we propose
a pre-process filtering method that minimizes the artificial edges after lesion
segmentation. Then, we use the deep transfer learning methodology where a
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deep learning model is fine-tuned by the aforementioned images. Comparative
results confirm the superiority of including image segmentation and clipping in
conjunction with the image filtering to suppress the segmentation-related edges.

2 Methodology

Motivated by [7], the proposed methodology is based on fine-tuning a pre-trained
CNN model. More precisely, we evaluate a model, is trained using the well-
established ImageNet dataset that consists of real world images, and subsequently
fine tune it with dermoscopy images, which have been segmented and prepossessed
using the proposed approach, to remove the background of the lesion.

The preprocessing step consists of two main parts. In the first part the seg-
mentation of the lesion from the background skin takes place, while in the sec-
ond part we proceed to the filtering of the edges induced by the aforemen-
tioned lesionsegmentation. In Fig. 1 the workflow of the proposed methodology
is presented. More precisely, the original input dermoscopy image is segmented
through a trained CNN [12] producing a binary mask. The resulting segmenta-
tion mask is applied on the original dermoscopy image, filtering-out the back-
ground, while retaining the lesion. However the lesion boundary edges intro-
duced through this procedure are expected to prevent the efficient training of
the CNN. To avoid this side effect, we filter the images by filling the zero-valued
pixels of segmented image appropriate image values of the lesion edges. In the
final step, the pre-processed images are used to fine-tune the pre-trained CNN
model towards real-world object classification.

Fig. 1. An overview of the proposed approach
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2.1 Image Preprocessing

Lesion Segmentation
Lesion segmentation in a dermosopy image involves the separation of the skin
lesion from the surrounding skin and the creation of the corresponding binary
masks. Several methodologies are reported in the literature concerning lesion
segmentation [11].

The preprocessing phase of the proposed workflow creates such binary skin
lesion masks. In this study the methodology based on adaptive thresholding pub-
lished in [12] was utilized. Nevertheless, the proposed methodology can exploit
any other similar algorithm.

Image Cropping, Masking and Filtering
After lesion segmentation, cropping is performed to extract the image patch that
will be input to the CNN. Since the CNN requires input of standard dimensions,
the original image patch is cropped as a square, masked using the segmentation
result and rescaled to the desired dimensions, using the standard bicubic inter-
polation. It is however reasonable to assume that the strong edge introduced
by binary masking can induce irrelevant features during the deep learning pro-
cess, thus deteriorate the performance of the CNN (Fig. 2). In order to test this
assumption and improve the classification accuracy, we propose a special pre-
processing of the input image mask that retains the image information, whereas
minimizing the artificial edges due to cropping and masking.

Fig. 2. A typical example of cropped image, Ic (left) and the corresponding segmented
image, Bc (right)

Let I be the original RGB dermoscopy image that is decomposed into its
three color channels and Bc the square binary segmented image, cropped round
the detected lesion. The following steps are applied to each masked and cropped
color channel Ic. Let us also denote by gσ the 2-dimensional Gaussian kernel
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with standard deviation equal to σ. The proposed pre-processing algorithm is
described in the following steps.

Jl = J ∗ gσ

A typical example of J and Jl is shown in Fig. 3

Fig. 3. Typical examples of the images of step 3 of the preprocessing algorithm. The
J image in the left, the blurred image Jl in the right.

Step 1. The masked and cropped image is convolved with gσ to produce a
smoother version: Ig = Ic ∗ gσ

Step 2. The Distance Transform is applied to Bc, yielding for each zero-valued
pixel in Bc the distance from the nearest non-zero (boundary) pixel, as well as
the coordinates of the nearest pixel (pi,j , qi,j).

Step 3. An intermediate image is generated as following,

J(i, j) =

{
Ic(i, j) Bc(i, j) > 0
Ig(pi,j , qi,j) Bc(i, j) = 0

According to its definition, this image is identical to Ic at the non-zero pixels
of the Bc, whereas the rest of its pixels hold the value of the nearest boundary
pixel of the smoothed, cropped image Ig. As it can be visually observed, this
image (J) is prone to radial edges, thus the preceding convolution with the
Gaussian is employed to smoothing of the boundary values and smear the radial
edges. Please note that this smoothing is applied to the boundary values that
are replicated in the zero-valued pixels of the Bc image and does not affect the
pixels inside the lesion (where Bc > 0). Furthermore, the aforementioned image
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J is also convolved with a Gaussian kernel to blur the radial edges. In this case
also, the blurring is applied on the zero valued pixels of the Bc without affecting
the useful image part. The following equation it is utilized:

Step 4. The final image is composed by the pixels of Ic that have non-zero values
in Bc and the blurred pixels of J1 that have zero values in Bc. In order to avoid
a sharp image value change at the border, an image mask M is constructed as
following:

M = max(dmax − DT (Bc), 0)
1

dmax

It can be confirmed that by its definition, mask M has a value of 1 at the non-
zero pixels of Bc, zero value at the zero-valued pixels of Bc that lie at a distance
equal to or greater than dmax pixels from the border of Bc and linearly varying
values at the rest of the pixels (the zero pixels of Bc that lie closer than dmax

to the border of Bc). Then the final cropped and masked image, which will be
used as input to the CNN, is defined as:

Ip = (1 − M)J + Ic

A typical example of mask M and the resulting image Ip is shown in Fig. 4. It
becomes obvious that the finally cropped image contains unaltered the pixels
of the lesion, whereas the masked-out pixels are smoothed, without noticeable
transition at the lesion contour that may interfere with the image features that
are automatically generated by the CNN. The above steps are repeated for all
three color channels and the RGB smoothed cropped image is finally constructed.

Fig. 4. A typical example of the image mask M (left) and the final cropped and masked
image, after the application of filtering (right).
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2.2 Convolutional Neural Networks Fine-Tuning

The processed dermoscopy images can be fed to a CNN for training. However,
most medical image datasets are highly unbalanced with some classes, being
dominant with respect to the number of samples they contain. Even the use
of dataset augmentation techniques do not allow for proper CNN-training from
scratch.

We deal with this problem leveraging knowledge from an already trained
network in order to fine-tune the model and achieve highly accurate results. This
technique usually referred to as transfer learning, is based on the assumption
that the knowledge of a model which is capable of solving a problem in a specific
domain can be used as a baseline for a model to solve an image classification
problem in another domain. Adopting this strategy we select the well-established
architecture VGG-16 [17] trained on the ImageNet dataset [6] as baseline to our
model. The VGG-16 consisted of 13 convolutional layers, two fully-connected
layers and one output layer with 1000 neurons equal to the number of classes
of the ImageNet dataset. For the task at hand, the number of the classes is
significantly lower, therefore the output layer is replaced by 9 neurons, according
to the number of lesion types found in our dataset.

Next, we fine-tune the aforementioned pre-trained VGG-16 model by adapt-
ing its baseline knowledge to the medical domain of interest and finally classify
the lesions. Since the CNN have internal structures which tend to learn generic
features on their first layers such as color blobs, Gabor filters etc [21]; we choose
to keep all the kernel weights of the convolutional layers that contain generic
purpose information. As such, fine-tuning is performed only for the weights of
the fully-connected layers and the output layer. We use a small learning rate
parameter value equal to 0.001 for fine-tuning, since the pre-trained weights are
expected to be more relevant than the randomly initialized weights and thus
they need to adapt smoothly. Finally, we use the Stochastic Gradient Descent
algorithm for the training [3] for 100 epochs with input batch size equal to 64
images. The dermoscopy images are resized to 224 × 224 as required by the
VGG-16 architecture.

3 Experimental Results

We begin our experimental analysis by describing the specification of the dataset
used for evaluation. Then we proceed by examining the various aspects of the
proposed methodology. For this purpose we employ the original fine-tuned VGG-
16 model along with both the original dermoscopy images and the images that
have been preprocessed removing the background skin from the lesion.

3.1 Dataset Description and Image Classification Experiments

The dataset evaluated in this work is the train dataset, obtained from the Inter-
national Skin Imaging Collaboration (ISIC) [20], [5] 2019 dataset, which contains
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25.331 clinical dermoscopy images of skin lesions, of eight (8) different malig-
nant and benign classes, along with their labels. The image classes labeled in
this dataset and their population is given in Table 1.

Table 1. The number of samples per class (lesion type) of ISIC dataset.

Lesion Number of samples

Melanoma 4522

Melanocytic nevus 12875

Basal cell carcinoma 3323

Actinic keratosis 867

Benign keratosis 2624

Dermatofibroma 239

Vascular lesion 253

Squamous cell carcinoma 628

As described above, the VGG deep learning model, pre-trained on the Ima-
genet dataset is subjected to transfer learning, under three experiments that are
performed and compared in terms of classification accuracy, using the available
dermoscopy image dataset, processed as following:

1. The original images of the dataset are used for training and testing.
2. The original images of the dataset are masked and clipped.
3. The original images are masked, clipped and finally processed using the filter

described in Sect. 2.

3.2 Evaluation and Results

This section is devoted to the evaluation of the effectiveness of the preprocessing
methodology on dermoscopy images for training a CNN through transfer learning
against using the original images or the images for which the background skin has
been simply masked-out. For this purpose, the described CNN model, VGG-16,
has been fine-tuned separately using all three variations of input images through
the process described in the previous Subsect. 3.1.

The evaluation of image classification is performed by 10-fold cross valida-
tion, applied to each class separately, due to increased class asymmetry. For the
same reason, the performance of the different CNN models is evaluated using
the accuracy measure along with the balanced accuracy [4], which is the mean
accuracy of the model for each individual category of lesion.

In a baseline examination, the training of a CNN from scratch using augmen-
tation techniques achieves mean accuracy below 60%. In contrast, as shown in
Table 2 all aforementioned versions that utilize transfer learning as it is described
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Table 2. The accuracy and the balance accuracy of the examined methods using cross
validation 10-fold.

Proposed method (masked,
clipped and filtered images)

Original
images

Segmented
and Clipped
images

Accuracy 85.3% 82% 76.1%

Ballanced
accuracy

73.6% 70.8% 61.6%

Table 3. The classification accuracy of the different image processing methods for each
lesion using the VGG-16 with transfer learning.

Proposed method
(masked, clipped
and filtered
images)

Original images Segmented and
Clipped images

Melanoma 77% 70% 63%

Melanocytic nevus 94% 91% 89%

Basal cell carcinoma 87% 83% 73%

Actinic keratosis 62% 59% 48%

Benign keratosis 68% 66% 53%

Dermatofibroma 59% 56% 38%

Vascular lesion 78% 77% 73%

Squamous cell carcinoma 59% 61% 50

Table 4. The Recall and Precision measures of 10-fold cross validation of the proposed
method.

Proposed method
(masked, clipped and filtered images)

Precision Recall

Melanoma 87% 82%

Melanocytic nevus 90% 94%

Basal cell carcinoma 82% 86%

Actinic keratosis 64% 68%

Benign keratosis 76% 70%

Dermatofibroma 74% 61%

Vascular lesion 96% 80%

Squamous cell carcinoma 78% 59%
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in Sect. 2, perform significantly better. In more detail, Table 3 reports the accu-
racy and balanced accuracy of the three described techniques. As shown, the
proposed method achieves the most accurate classification with respect to both
metrics. Interestingly, we observe that the usage of the segmented images for
training the CNN model provide lower classification accuracy than using the
original images. This behavior indicates that the strong edges resulting from the
lesion segmentation have an adverse effect on the performance of the CNN. It
may be assumed that the CNN model tends to learn the shape of the lesion,
instead of extracting the useful image features, which are related to the discrim-
ination of the lesions. Furthermore, we conclude that the skin beyond the lesion
does not contribute to classification, probably due to the irrelevant information
it contains such as hairs etc. The proposed image pocessing approach seems to
bypass this drawback by managing to remove the original human skin, while
adding a blurring effect to minimize side effects of this procedure. In Table 4
is presented the recall and precision measures of the proposed methodology for
each lesion.

4 Conclusion

This study utilized an extensive, multi-class image dermoscopy dataset to eval-
uate the effect of transfer learning and special image preprocessing on the classi-
fication accuracy achieved by a well-established deep learning model (VGG-16).
Results show that transfer learning is essential for increasing the accuracy to
acceptable levels, even in this case of a dataset with relatively high population
of images (more than 25.000). The inclusion of lesion segmentation alone is not
beneficial for the classification task, since the resulting accuracy deteriorated,
probably due to the artificial boundary edges that are introduced during the
masking process. Finally, the design of an elaborate image pre-processing filter
that leaves intact the lesion pixel values and fills the rest of the mask pixels with
appropriate values that smooth the boundary effect, proved beneficial, since it
increased the overall 10-fold classification accuracy from 70.8% to 73.6%. Fur-
thermore, it increased the accuracy of 7 out of the 8 lesion classes. The remaining
class “squamous cell carcinoma” showed a marginal reduction of classification
accuracy from 61% to 59%. More importantly, the accuracy for the classification
of melanoma (the class of the highest malignancy) showed significant increase
from 70% to 77%.
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Abstract. First results of the classification of the eyelid Basal Cell Carcinoma
using Artificial Neural Networks are presented. Full, or half-face photographs of
healthy subjects and patients suffering from eyelid Basal Cell Carcinoma were
used to train and validate Artificial Neural Networks for the purpose of pattern
recognition, identification and classification. The efficiency of the algorithm was
tested using various training methods and it was evaluated using the accuracy
score, that is, the ration of the number of the correctly classified cases over the
total number of cases under examination. With respect to the accuracy, the
proposed algorithm reached up to 100% performance. The algorithm is
accompanied by a specifically designed and developed user friendly Graphical
User Interface.

Keywords: Eyelid Basal Cell Carcinoma � Pattern recognition � Artificial
Neural Networks

1 Introduction

Basal Cell Carcinoma (BCC) is defined as a slowly growing, locally expanding,
malignant epidermal tumor [1–3]. It is the most common type of skin cancer as over
70% of cases are related to it. In fact, 90% of BCC concern the head and neck area,
while 10% of cases occur in the eyelid, which confirms the relationship between BCC
and sun exposure [4–7]. Effective treatment of BCC in the ophthalmic region is
achieved by a variety of methods and depends on both the characteristics of the BCC
and the patient himself. Depending on the size, the topographic location of the tumor,
the age and the general health condition of the patient, there is a wide variety of
approaches aimed at correcting the eyelid deficit [8–13]. Of course, to understand the
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functional anatomy of the peripheral region, it is essential to understand the principles
of repairing the eyelids. Appropriate treatment may consists of either surgical resection
of the tumor or repair of the lesion through nonsurgical procedures, using state-of-the-
art technologies such as subtractive cryotherapy and photodynamic therapy. In addi-
tion, it is possible to use modern pharmaceutical preparations such as imikumimod 5%
cream, as well as the use of multiple interventions to repair eyelid defects [14–16].

In order to select the most appropriate therapeutic technique, it is necessary to
classify the tumors into specific categories according to their characteristics and
through clinical control of the patient. Balancing tumor removal techniques, combined
with functionality of the surgical site and cosmetic repair of the lesion, make the
therapeutic approach applied successful. While there are a variety of invasive and non-
invasive techniques to repair BCC in the eyelid, the choice of a more appropriate
method that will lead to treatment is a complicated process. Due to the fact that there
are so many types of BCC, identification and classification are difficult tasks and
depend on many factors. For this reason, as in many areas of medicine for diagnostic
support [17–21], in the present work it was developed an Artificial Intelligence
(AI) system that can distinguish cases of BCC in order to support physicians in
decision making and to confirm or assist timely and valid diagnosis. The proposed AI
system is based on Artificial Neural Networks (ANN), a method that, along with fuzzy
systems, as well as, evolutionary optimization algorithms can be utilized for face
identification, detection and recognition [22–28].

The purpose of this work is to develop an intelligent pattern recognition system for
identifying eyelid BCC from a patient’s full or half-face photograph. To accomplish
this task, ANN were constructed and trained to identify and classify face photographs
of normal subjects and photographs of eyelid BCC patients. To gain user-friendliness
the developed algorithms are executed under a specially designed Graphical User
Interface (GUI). The performance of the developed ANN were evaluated with respect
to their classification accuracy score. The obtained results indicated that AI systems
based on ANN can favorably be utilized for eyelid BCC identification and
classification.

2 Material and Methods

The material used for the present work consisted of full or half-face photographs of
normal subjects and eyelid BCC patients. Image files were saved in raw, jpeg and tiff
format. The preprocessing procedure consisted of two steps. At the first step a special
function script was developed and utilized in order to convert all photographs to the
same size varying in the range of 200 � 200 pixels up to 1000 � 1000 pixels. At the
second step images were turned from RGB format to grayscale for purpose of the faster
execution of the learning algorithm, without missing any vital information. Repre-
sentative examples of images of a normal and two pathological cases are shown in
Fig. 1.
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The overall purpose of this study was to develop a pattern recognition algorithm
that would detect, identify and classify the presence of eyelid BCC in a patient’s face
photograph with the use of ANN. For purpose of convenience a suitable GUI was
developed which allows the user either to train ANN by selecting a large set of images
from the patients’ database, or, to pick and upload a specific image and request from
the system to identify and classify it, by providing an answer to the question of whether
it corresponds to an eyelid BCC case or not. The ANN algorithms and the GUI were
developed using the Matlab programming environment [29].

During the ANN training procedure, three options were provided: (i) right-eye
training, (ii) left-eye training, and (iii) both-eye training. In the first two cases the
algorithm uploads the corresponding images (right-eye or left-eye respectively) from
the patients’ database. In the last case the image was splitted in a right and a left part,
each one containing the corresponding eye and then the right-eye training algorithm or
the left-eye training algorithm was invoked, depending on the eye of interest.
Screenshots of the GUI training procedure representation and the image selection of the
specific case under consideration are shown in Scr. 1. Parameters that define the
architecture of the ANN, namely, number of neural layers, number of neurons per

Fig. 1. Photograph of a normal subject eyelid (left) and two eyelid BCC cases (middle and
right).

Scr. 1. Screenshots of GUI at the ANN training procedure (left) and at the specific case image
selection procedure (right).
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layers, as well as the functional parameters of the ANN like percentage of training,
testing and validation subsets over the total set of samples, training methods, number of
training epochs and termination conditions, were user defined, through selections
provided by the GUI.

As it was mentioned in the previous section, the performance of the ANN was
evaluated in terms of the accuracy of classification. By denoting as TP, FP, TN and FN
the number of cases that were classified by the algorithms as true positive, false
positive, true negative and false negative respectively, the accuracy (ACC) of the
classification method is given by the expression:

ACC ¼ TPþ TN
TPþ TN þFPþFN

ð1Þ

i.e., ACC is the ratio of the number of correctly classified cases over the total number of
cases. Accuracy-Loss diagrams were generated during the training procedure of the
ANN.

Scr. 2. Accuracy diagram and Loss diagram using the SGDM training method for the training
(solid lines) and the validation procedure (dotted lined).
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3 Results

Numerous computer experiments were conducted using the proposed algorithms in
order to evaluate their performance and efficiency. Screenshot of the obtained Accuracy-
Loss diagrams obtained by training the ANN using the Stochastic Gradient Descent with
Momentum optimizer (SGDM) in the training method [30, 31] are shown in Scr. 2,
where the ANN managed to reach accuracy up to 100% and to zero classification error.
The corresponding results that were obtained using the Root Mean Square Propagation
optimizer (RMSProp) in the training method [32] are shown in Scr. 3, where again the
ANN succeeded to achieve accuracy up to 100% and zero error.

In Scr. 4, the representative results are presented with respect to the classification of
a specific case by a trained ANN. These classification results refer to a full-face
photograph of a normal subject and the right eye of a eyelid BCC patient that were
selected to be identified and classified by the algorithm using SGDM. The algorithm at
a first step splitted the full-face photograph of the normal subject to a right and a left
part and subsequently examined if either the right or the left eyelid is pathological,
concluding to a true negative answer for both eyelids. On the other hand, the case of the
right eye of the eyelid BCC patient was classified as true positive by the algorithm.

Scr. 3. Accuracy diagram and Loss diagram using the RMSProp training method for the
training (solid lines) and the validation procedure (dotted lined).
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4 Discussion

In this work, the first results of an intelligent pattern recognition algorithm for the
identification and classification of eyelid BCC were presented. AI classification algo-
rithms were developed based on ANN and were applied on face photographs of normal
subjects and eyelid BCC patients. The algorithms were executed under a specially
designed user-friendly GUI. To our knowledge it is the first time that such a task is
accomplished. A large number of computer experiments indicated that ANN can
account for the identification and classification of eyelid BCC, reaching performance
efficiency that topped up to 100%. In future work, the proposed algorithms will be used
on a larger patients’ database that is constructed with the collaboration of the Clinic of
Ophthalmology of the University of Crete and Deep Learning Neural Network algo-
rithms will be used. Deep Learning algorithms has been proven very efficient in the
recent past to accomplish tasks referring to pattern recognition in general, and
specifically to image classification and face identification and recognition [33–35]. In
addition to the present work, a wider variety of ANN training and learning algorithms
and Deep Learning algorithms based on Convolution Neural Networks (CNN) will be
utilized for purpose of comparison among these methods.
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Abstract. In this paper we present a new Fuzzy Implication Generator
via Fuzzy Negations which was generated via conical sections, in combi-
nation with the well-known Fuzzy Conjunction T-norm = min. Among
these implications we choose the most appropriate one, after comparing
them with the empiristic implication, which was created with the help
of real temperature and humidity data from the Hellenic Meteorologi-
cal Service. The use of the empiristic implication is based on real data
and also it reduces the volume of the data but without cancelling them.
Finally, the pseudo-code, which was used in the programming part of
the paper, uses the new Fuzzy Implication Generator and approaches
the empiristic implication satisfactorily which is our final goal.

Keywords: Fuzzy implication · Empiristic implication · Fuzzy
negation via conical sections

1 Introduction

The Theory of Fuzzy Implications and Fuzzy Negations plays an important
role in many applications of fuzzy logic, such as approximate reasoning, formal
methods of proof, inference systems, decision support systems (cf [2] and [5]).
Recognizing the above important role of Fuzzy Implications and Fuzzy Nega-
tions, we tried to construct Fuzzy implications from Fuzzy negations, so that
we could change the implication with one parameter, thus giving an algorith-
mic procedure of the “if . . . . . . then . . . . . .” rule. The tools for this construction,
namely a fuzzy implication generator, were mainly the conclusions of (cf [11])
and in particular the following formula 1

N(x) =
√

(a2 − 1)x2 + 1 + ax, x ∈ [0, 1], a ≤ 0. (1)

producing fuzzy negations via conical sections and Corollary 2.5.31. (see [1]).
The combination of these two through the fuzzy conjunction T-norm = min
gave us an algorithmic procedure for the evaluation of the best implication with
respect to the problem data. For the evaluation of the best implication we used
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the empiristic implication (see [8]) as a comparison measurement. The empiristic
implication does not satisfy any of the properties of the fuzzy implications and
has no specific formula, meaning it is not a function. However, the choice of
this particular implication was not random as it was based on its ability to be
directly calculated by the empirical data without being affected by the amount
of the data.

The paper follows the following structure: The section Preliminaries presents
the theoretical background of the paper, such as the definitions of the Fuzzy
Implications, Fuzzy Negations and Triangular norms. The section Main Results
shows the implication which is constructed by a strong fuzzy negation and a
t-norm with TM (x, y) = min{x, y}. Next, the empiristic implication and the
algorithm for its calculation are presented. The data used are real, such as the
average monthly temperature and the average monthly relative humidity, two of
the most important climatic variables in meteorology (see [4]). Furthermore, the
algorithmic process for finding the best fuzzy implication among the empiristic
implication, the three known implications from the literature (Kleen-Dienes,
Lukasiewicz, Reichenbach) (see [1]) and the constructed parametric implication
is analysed. The calculation of the implications with the use of data was done
in the Matlab programming environment. We present the documentation of the
Matlab code which was used to calculate the implications.

2 Preliminaries

The following short theoretical background is important in order to understand
this paper.

2.1 Fuzzy Implication

In the literature we can find several different definitions of fuzzy implications.
In this paper we will use the following one, which is equivalent to the definition
proposed by Kitainik [6], (see also [3] and [1]).

Definition 1. A function I : [0, 1]x[0, 1] → [0, 1] is called a fuzzy implication if
for all x, x1, x2, y, y1, y2 ∈ [0, 1] the following conditions are satisfied:
(I1) x1 ≤ x2 then I(x1, y) ≥ I(x2, y), i.e, I(·, y) is decreasing,
(I2) y1 ≤ y2 then I(x, y1) ≤ I(x, y2), i.e., I(x, ·) is increasing,
(I3) I(0, 0) = 1
(I4) I(1, 1) = 1
(I5) I(1, 0) = 0

Example 1. Some examples of Fuzzy Implications are given below:
Kleene-Dienes: IKD(x, y) = max{1 − x, y}
Lukasiewicz: ILK(x, y) = min{1, 1 − x + y}
Reichenbach: IRC(x, y) = 1 − x + x · y
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2.2 Fuzzy Negations

The following definitions and examples can be found [1,3,9], and [10].

Definition 2. A function N : (0, 1) → [0, 1] is called a Fuzzy negation if
(N1) N(0) = 1, N(1) = 0
(N2) N is decreasing

Definition 3. A fuzzy negation N is called strict if, in addition,
(N3) N is strictly decreasing,
(N4) N is continuous,
A fuzzy negation N is called strong if the following property is met,
(N5) N(N(x)) = x, x ∈ [0, 1]

Example 2. Examples of Fuzzy Negations are given below.
NK(x) = 1 − x2, strict
NR(x) = 1 − √

x, strict
Nλ(x) = 1−x

1+λx , λ ∈ (−1,+∞) strong Sugeno class

NW (x) = (1 − xw)
1
w , w ∈ (0,+∞) strong Y ager class

Remark 1. The paper [11] proves a new family of strong fuzzy negations, which
is produced by conical sections and is given from the Eq. (1), which will play a
key role in building the algorithmic procedure we propose in the section Main
Results.

2.3 Triangular Norms (Conjunctions)

The Triangular norms were introduced by Menger [9] and were later recon-
structed by Schweizer and Sklar [10] in the form they have today. In essence,
they are a generalization of the classical binary conjunction (∧) into a fuzzy
intersection. The following definition can be found in the monograph by Klement
et. al [7], (see also [1]).

Definition 4. A function T : [0, 1]2 → [0, 1] is called triangular norms shortly
t- norm, if it satisfies, for all x, y ∈ [0, 1], the following conditions:
(T1) T (x, y) = T (y, x) (commutativity)
(T2) T (x, T (y, z)) = T (T (x, y), z)
(T3) if y ≤ z, then T (x, y) ≤ T (x, z) (monotonicity)
(T4) T (x, 1) = x (boundary condition)

Table 1 lists a few of the common t-norms.
In the paper we will use the most basic of all t-norms, which is the minimum

TM (x, y) = min{x, y} (2)
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Table 1. Table basic t-norms

Minimum TM (x, y) = min{x, y}
Algebraic product Tp(x, y) = x · y

Lukasiewicz TLK(x, y) = max(x + y − 1, 0)

Active product TD(x, y) =

{
0 x, y ∈ [0, 1)

min(x, y) otherwise

Nilpotent minimum TnM (x, y) =

{
0 x + y ≤ 1

min(x, y) otherwise

3 Main Results

3.1 Construction of Fuzzy Implications via Strong Negations

The main purpose of this work is to create a two plays function that satisfies
Definition 1, utilizing the temperature and humidity data given by the Hellenic
National Meteorological Service. That is, the construction of an implication that
gives the degree of truth of the two variables, the temperature and the humidity.
To achieve this, the two variables are normalized with the help of fuzzy sets.
In this way the temperature gets values of [0, 1] and the humidity gets values
of [0, 1], which is the degree of truth of the two variables. For example, if the
temperature between [21◦, 31◦] degrees is considered high, then it has a degree
of truth 1. And similarly if the humidity between [40%, 50%] is considered low,
then it has a degree of truth of 0.7. Our goal is to construct an implication that
gives the degree of truth, as does the statement below:

“If the temperature is high, then the humidity is low.”
To what degree of truth can we respond to this statement?
This is our intention, that is, to find an implication that is close enough to

the correlation of the two variables, the temperature and the humidity, as are
shown in our data. But to find such an implication there must be a comparison
measure, that is, we want from our data to ensure the degree of truth of the
temperature and the humidity pair as they are given. The comparison measure
in the present work is the empiristic implication that uses all the data in order
to produce a table in which in the first row and the first column there will be the
data grouped into classes and in each cell there will be the corresponding degree
of truth of the data. Then, we compare each of the Kleen-Dienes, Lukasiewicz,
Reichenbach (see [1]) and the parametric implications which will be generated,
with the empiristic one, using the square error of the difference of the aforemen-
tioned implication tables from the empiristic implication table.

The smallest square error will give the best implication.
In book [1], and in particular in Corollary (2.5.31), the implication generated

by a strong fuzzy negation and a t-norm is examined and the formula

I(x, y) = N(T (x,N(y)), x, y ∈ [0, 1] (3)
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is proposed. Using the above implication (3) (see 3) with t-norm (2) (see 2) and
the formula (1) (see 1) with parameter α and after the appropriate calculations,
the following equation occurs.

I(x, y) =

√

(a2 − 1) .
(
min

(
x,

√
(a2 − 1) y2 + 1 + ay

))2

+ 1

+ a.min
(
x,

√
(a2 − 1) y2 + 1 + ay

)
, y ∈ [0, 1], a ≤ 0

(equation a)

The above implication of (equation a), which is a new generator fuzzy implica-
tions, is important because it has the parameter α which helps us to use the
implication on our data and at the same time examine for which value of α
we have the best approach. Hence, an algorithmic process of finding a better
implication is created which will play an important role in the course of the
paper.

3.2 Empiristic Implication

In order to be able to estimate which of the proposed implications approaches the
pairs (Temperature, humidity) of the Hellenic Meteorological Service, we need to
have a comparison measurement. In this paper we use the empiristic implication
as a measure see [8]. The empiristic implication will be presented while explaining
the steps of the algorithm, based on our data, which derive from the Hellenic
Meteorological Service and are the average monthly temperature and the average
monthly humidity of the last five years from the 13 regions of Greece (see Fig. 1,
Fig. 2).
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Fig. 2. The humidity variable

Our goal is to find which implication approaches best our data dependence
(temperature and humidity), giving us as a result the degree of the true coex-
istence of the two corresponding values. For example, we would like to see the
degree of truth of the statement:

if the temperature is 20 ◦C then the humidity is 60%

First, we find the table representing the empiristic implication. For the construc-
tion of the empiristic implication, we divide the 780 temperature and relative
humidity data into 11 classes with the use of the Sturges type

c = 1 + log2n
n=780⇔ c = 1 + log2(780) ⇔ c = 1 +

log(780)
log(2)

⇔ c = 10.6 (4)

after first placing them in ascending order. Each class has its median as a rep-
resentative. This is how we create the empiristic implication table, which has
the medians of the humidity classes in the first row while the medians of the
temperature classes are in the first column. Each cell of the table is divided by
the sum of the column in which it belongs. In this way, we have in each cell the
degree of the truth of the coexistence of the values of the corresponding column
and row of the cell (see Table 2). Then we normalize the temperature and the
humidity medians. Next, we check first whether the three known implications
(Kleen-Dienes, Lukasiewicz, Reichenbach) (see [1]) approach the table above.
Then, we examine the norm of each of the above implications with the empirical
implication. The results are as follows.
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Table 2. Table of the empiristic implication

0.0282 0 0.0141 0.0423 0.0282 0.0563 0.1127 0.1127 0.1831 0.1972 0.2286

0.0141 0 0.0141 0.0704 0.0563 0.0845 0.1972 0.0704 0.1268 0.2113 0.1571

0 0 0 0.0563 0.0423 0.1127 0.0986 0.1408 0.1127 0.1408 0.3000

0 0.0141 0.0423 0.0563 0.0704 0.1408 0.0986 0.1408 0.1831 0.1690 0.0857

0.0141 0.0423 0.0845 0.0423 0.1268 0.0986 0.0845 0.1549 0.1268 0.1127 0.1143

0.0423 0.0282 0.1408 0.0845 0.1972 0.0563 0.0423 0.1690 0.0563 0.1127 0.0714

0.0563 0.0563 0.1268 0.1268 0.1268 0.1690 0.1127 0.0845 0.0704 0.0423 0.0286

0.0845 0.1268 0.1831 0.1972 0.0845 0.0986 0.0845 0.0423 0.0704 0.0141 0.0143

0.1127 0.2254 0.1408 0.1127 0.1127 0.1268 0.0845 0.0282 0.0563 0 0

0.2676 0.1690 0.1549 0.1549 0.0704 0.0423 0.0704 0.0563 0.0141 0 0

0.3803 0.3380 0.0986 0.0563 0.0845 0.0141 0.0141 0 0 0 0

The Results of the Norms. The squared error of the two implications
(empiristic and Kleen-Dienes) gives the result is 6.2465.

The squared error of the two implications (empiristic and Kleen-Dienes) gives
the result is 8.7386.

The squared error of the two implications (empiristic and Kleen-Dienes) gives
the result is 7.4448.
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Fig. 3. Relation parameter α and square error.
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After the examination of the three implications is completed, we proceed to
find the best parameter a ≤ 0 that we have from the (equation a). We have the
best approach for the value α = −3 and with a very good approach the squared
error of the two implications (empiristic and Kleen-Dienes) gives the result is
3.8425 (see Fig. 3).

Remark 2. To achieve our goal, that is, to approach the empiristic implication
table, we used 3 linguistic variables (low, medium and high) for temperature and
humidity respectively.
[a, b, c, d] = [−1.33 − 1.33 7 12] is low temperature
[a, b, c, d] = [10 13 15 18] is medium temperature
[a, b, c, d] = [16 21 30.21 30.21] is high temperature
[a, b, c, d] = [31.01 31.01 40 45] is low humidity
[a, b, c, d] = [43 50 60 65] is medium humidity
[a, b, c, d] = [64 75 87.39 87.39] is high humidity
(see Fig. 4, Fig. 5). Also, to avoid the property of the implication I (0,1) = 1,
which reinforces the falsehood, we tried to obtain the values of x 
= 0.
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Fig. 4. Membership function of the temperature.
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3.3 The Documentation of the Matlab Code

The data are in the file Data.xlsx. Our application includes a case study, which
uses real climatic data (average monthly temperature and average monthly rela-
tive humidity) of the last five years 2015–2019 from the 13 regions of Greece for
the 12 months of each year and evaluates the empiristic implication, with fuzzy
implications we created. The application was implemented in Matlab R2018b
and includes the steps:

1. We load the data onto the program, which creates two 780 × 1 tables. The
lines in the tables are the 780 observations and the columns in the tables are
the temperature and relative humidity variables. Temperature, Humidity.

2. We find the minimum and maximum values of the columns that make up
the range of the variables.

3. We have the original table with the first column is X and the second is Y.
4. We add to this table a column which is the increment number in order not

to miss the original pairs (xi, yi). The column we add is the third one.
5. Later, we create a different table for X together with its increment number

and a different one for Y. Then, we have the initial position for each X and
Y so we sort in ascending order according to the values. We notice that in
the first column we have X and Y in ascending order and in the second
column their position in the original data.

6. We normalize using trapezoidal membership functions
7. We apply the Sturges rule: (see 4) in order to divide the sorted data columns

in classes.
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8. Next, we create 11 classes for each sorted table.
9. We add the classes to the third column in the sorted tables. The format of

the sorted tables is: the first column has X in ascending order, the second
column has the initial position and the third column has the class.

10. Then, we sort the above two tables by increment number to get the data
back to their original position along with their classes.

11. We put the above tables in a table where the first column is X, the second
is the class of X, the third is Y and the fourth is the class of Y.

12. We create a Zero Table. The table will be a column larger and a column
smaller to place the medians.

13. Finally, we create the table we want without adding values to the first row
and column.

14. We create medians for the classes of X and place them in the Final Table.
15. We create medians for the classes of Y and place them in the Final Table.
16. The Final Table has the medians of the classes of Y as its first row and the

medians of the classes of X as its first column.
17. We create a new table who has the first row and the first column with

medians.
18. We form the rest of the table by calling the function of parametric implica-

tion.
19. The table imp1 is the table of the empiristic implication.
20. We will check three well-known implications with the data we have.
21. The first is Kleen-Dienes (see Examples1.)
22. Table A is an 11 × 1 column table containing the temperature medians.
23. Table B is a 1 × 11 row table containing the humidity medians.
24. Table A1 is an 11×1 column table containing the nondimensionalized values

of the temperature medians.
25. Table B1 is a 1 × 11 row table containing the nondimensionalized values of

humidity medians.
26. The final table of Kleen-Dienes implication is imp2 and the control of the

norm of the two implications (empiristic and Kleen-Dienes) is nor1 = norm
(imp1-imp2).

27. The second implication is Lukasiewicz (see Examples1.)
28. The final table of the Lukasiewicz implication is imp3 and the control of the

norm of the two implications (empiristic and Lukasiewicz) is nor2 = norm
(imp1-imp3).

29. The third implication is Reichenbach (see Examples1.)
30. The final table of Reichenbach’s implication is imp4 and the control of the

norm of the two implications (empiristic and Reichenbach) is nor3 = norm
(imp1-imp4).

31. The final table of Parametric’s implication is OtherTable and the control
of the norm of the two implications (empiristic and Parametric) is nor4 =
norm (imp1-OtherTable).
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4 Conclusions

It is now evident that the type of the strong fuzzy negations that are generated
via conical sections, combined with the fuzzy conjunction (T-norm = min), give
us a robust algorithmic process of finding the more appropriate fuzzy implication.
So we see that a purely mathematical process and even a geometric one is a
powerful tool when it is well supported to achieve approximate reasoning. In
addition, a thorough and careful study of the data in the correct order will greatly
reduce the computational complexity. Our future research on the applications of
fuzzy implications will continue with the aim of achieving better results of the
convergence of the empiristic implication and the implications the strong fuzzy
negations that are generated via conical sections.

Acknowledgements. We would like to thank the Hellenic National Meteorological
Service for the quick reply to our request for the concession of the climatic data of the
last five years, in order to be used in the present paper (see [4]).

References

1. Baczynski, M., Jayaram, B.: Fuzzy Implications. Springer-Verlag, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69082-5 1

2. Fodor, J.C.: Contrapositive symmetry of fuzzy implications. Fuzzy Sets Syst. 69,
141–156 (1995)

3. Fodor, J.C., Roubens, M.: Fuzzy preference Modelling and Multicriteria Decision
Support. Kluwer, Dordrecht (1994)

4. Hellenic National Meteorological Service. http://www.hnms.gr/emy/el/
climatology/climatology month

5. Jenei, S.: A new approach for interpolation and extrapolation of compact fuzzy
quantities. The one dimensional case. In: Klement, E.P., Stout, L.N. (eds.) Pro-
ceedings of the 21th Linz Seminar on Fuzzy Set Theory, Linz, Austria, pp. 13–18
(2000)

6. Kitainik, L.: Fuzzy Decision Procedures with Binary Relations. Kluwer, Dordrecht
(1993)

7. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)
8. Mattas, K., Papadopoulos, B.: Fuzzy empiristic implication, a new approach. In:

Mattas, K., Papadopoulos, B. (eds.) Modern Discrete Mathematics and Analysis,
SOIA. Springer Optimization and Its Applications, vol. 131, pp. 317–331 (2018)

9. Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28, 535–537 (1942)
10. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York

(1983)
11. Souliotis, G., Papadopoulos, B.: An algorithm for producing fuzzy negations via

conical sections. Algorithms 12(5), 89 (2019). https://doi.org/10.3390/a12050089

https://doi.org/10.1007/978-3-540-69082-5_1
http://www.hnms.gr/emy/el/climatology/climatology_month
http://www.hnms.gr/emy/el/climatology/climatology_month
https://doi.org/10.3390/a12050089


Fuzzy Logic Application to Searchable
Cryptography

Hassan B. Kazemian1(B) and Yang Ma2

1 School of Computing and Digital Media, London Metropolitan University,
London, UK

h.kazemian@londonmet.ac.uk
2 Underwriters Laboratories, UK Security Lab, Basingstoke, UK

Yang.Ma@ul.com

Abstract. Public Key Encryption with Keyword Search (PEKS) allows
users to search encrypted files by a specific keyword without compromis-
ing the original data security. Almost all current PEKS schemes enable
users to search exact keyword only instead of imprecise keyword (such as
“latest”, “biggest”, etc.). Therefore, if the keyword is fuzzy, these PEKS
schemes will be terminated and then report errors. Besides, some PEKS
schemes are not secure mainly because they are vulnerable to Off-line
Keyword Guessing Attack (OKGA). This research paper incorporates
with Mamdani Fuzzy Inference System to PEKS for supporting Fuzzy
Keyword Search. Secondly, the proposed scheme is proved to be semantic
secure under the random oracle models so that it is able to resist OKGA.
In addition, the new scheme allows users to search multiple keywords and
therefore, it could be applied to the general public networks.

Keywords: Public Key Encryption with Keyword Search (PEKS) ·
Off-line Keyword Guessing Attack (OKGA) · Mamdani Fuzzy Inference
System

1 Introduction

The rising popularity of cloud computing attracts companies and individuals to
upload their data into the online trusted servers (i.e. cloud servers). It brings
about substantial merits, such as saving local memory and reducing maintenance
fee, etc. How to keep data security becomes an intractable problem. Interestingly,
Public Key Encryption with Keyword Search (PEKS) protects information secu-
rity and data transmission security.

Boneh et al. [1] defined the first PEKS scheme in 2004 which requires a
secure channel (i.e. Secure Sockets Layer) between the server and the receiver.
But building a secure channel is much expensive and unrealistic in some cases.
Besides, Byun et al. [3] pointed out that the first PEKS was compromising from
Off-line Keyword Guessing Attack (OKGA). In 2008, Baek et al. [2] proposed a
new PEKS scheme to remove the secure channel from the first PEKS system.
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But, Yau et al. [4] also found that Baek et al.’s PEKS suffers OKGA. Tang
et al. [5] introduced a new PEKS scheme resisting OKGA, but the encryption
algorithm is complex. Soon later, Rhee et al. [6] defined the concept of Trapdoor
Indistinguishability to PEKS (called dPEKS) for preventing OKGA. However,
dPEKS scheme is able to search single keyword only instead of multiple keywords
so that it may not be applied to the general public networks. Meanwhile, Baek
et al.’s proposed MPEKS [2] scheme to solve multiple keywords search problem.
However, MPEKS also needs a secure channel. Later on, Wang et al. [7] came up
with a Secure Channel Free MPEKS system to remove the secure channel and
support multiple keywords search, but it suffers OKGA. Recently, PEKS wit-
nesses a dramatic development and becomes much security and functionalities.

In practice, several keywords are distilled to represent the whole document
instead of one keyword only. Besides, the user may type imprecise keyword for
searching, such as “latest”, “biggest”, etc. Due to PEKS ciphertext may con-
tain fuzzy keyword leading to system errors, therefore, Mamdani Fuzzy Infer-
ence method could be perfectly applied to PEKS scheme in order to solve fuzzy
keyword search problem. In 1973, Lotifi Zadeh’s [8] came up with new fuzzy
algorithms to analyse complex systems and decision processes. Later, Ebrahim
Mamdani [9] revisited Lotifi’s approach and then proposed an inference sys-
tem to control a steam engine and boiler combination based on linguistic rules
from human knowledge. However, Mamdani-style inference is not computation-
ally efficient, Michio Sugeno [10] proposed a new fuzzy inference using a single
spike (a singleton) as the rule consequent. Recently, Fuzzy sets theory has been
applied successfully in many areas. Singh et al. [11] pointed out fuzzy systems
could applied to classification, modelling control problems. Lermontov et al. [12]
analysed water quality using fuzzy set. Meanwhile, Marchini et al. [13] proposed
a framework for fuzzy indices of environmental conditions.

This paper formally defines a new PEKS scheme named Public Key Encryp-
tion with Multi-keywords Search using Mamdani System (m-PEMKS) and then
presents a concrete construction of it. Besides, m-PEMKS is proved to be seman-
tic secure under random oracle models so that it could resist OKGA. In addition,
the proposed scheme incorporates with Mamdani System to solve fuzzy keyword
search problem, which is the first paper combining Fuzzy Logic and PEKS.

2 Methodology

2.1 Bilinear Pairings

Let G1 be an additive cyclic group and GT be a multiplicative cyclic group. g is a
generator of G1 and a prime number p is the order of G1. Suppose a and b are the
elements in Zp. A bilinear pairing can be regarded as a map e : G1 × G1 → GT ,
which has the following properties:

i. Bilinear: e(aU, bV ) = e(U, V )ab for all U, V ∈ G1 and a, b ∈ Zp.
ii. Computable: e(U, V ) ∈ GT is computable in a polynomial time algorithm,

for any U, V ∈ G1.
iii. Non-degenerate: e(U, V ) �= 1.
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2.2 The Bilinear Diffie-Hellman (BDH) Assumption

Given g, xg, yg, zg as input (where x, y, z ∈ Zp), compute e(g, g)xyz ∈ GT .
An algorithm A has an advantage ε in solving BDH assumption in G1, if
Pr[A(g, xg, yg, zg) = e(g, g)xyz] ≥ ε. It is shown that BDH assumption holds
in G1 if no t time algorithm has an advantage at least ε in solving BDH assump-
tion in G1.

2.3 The 1-Bilinear Diffie-Hellman Inversion (1-BDHI) Assumption

Given g, xg as input (where x ∈ Zp), compute e(g, g)
1
x . An algorithm A has an

advantage in solving 1-BDHI assumption in G1, if Pr[A(g, xg) = e(g, g)
1
x ] ≥ ε.

It is shown that 1-BDHI assumption holds in G1 if no t time algorithm has an
advantage at least ε in solving 1-BDHI assumption in G1.

2.4 Fuzzy Rule Based Model

The fuzzy rule based model has four steps as follows:

1. Fuzzification of the input variables: The aim of this step is transforming
crisp inputs into fuzzy inputs by the membership functions.

2. Rules evaluation: The fuzzified inputs are applied to the antecedents of the
fuzzy rules and then apply “AND” operation to these rule antecedents.

3. Aggregation of the rule outputs: The membership functions of all rule con-
sequents previously clipped or scaled are combined into a single fuzzy set.

4. Defuzzification: The defuzzification method, center of gravity (COG), is
utilized to transform fuzzy outputs into crisp outputs.

3 Public Key Encryption with Multi-keywords Search
Using Mamdani System

Let sender, server and receiver be three parties in PEKS scheme. The sender is
a party who runs PEKS algorithm to create a Searchable ciphertext. Besides,
the receiver is a party who executes Trapdoor algorithm to create a Trapdoor
query. Once the server receives the encrypted messages from the sender and the
receiver, it will run Test algorithm to estimate whether two ciphertexts contain
the same keyword or not, and replies to the receiver in the end.

3.1 Formal Definition of m-PEMKS

The proposed scheme has eight Probabilistic Polynomial Time algorithms:

1. KeyGenParam−PEMKS(1ζ): Input 1ζ for generating a common parameter cp.
2. KeyGenParam−RSA(k): Input k for generating a global parameter gp.
3. KeyGenServer−PEMKS(cp): Input cp and then produce a public and private

PEMKS key pair (pkSer−PEMKS , skSer−PEMKS) of the server.
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4. KeyGenServer−RSA(gp): Input gp and then produce a public and private RSA
key pair (pkSer−RSA, skSer−RSA) of the server.

5. KeyGenReceiver−PEMKS(cp): Input cp and then produce a public and private
PEMKS key pair (pkRec−PEMKS , skRec−PEMKS) of the receiver.

6. Encryption(pkSer−PEMKS , pkRec−PEMKS , pkSer−RSA,W ): A searchable
encryption E = (E1, E2) = SCF-PEMKS(pkSer−PEMKS , pkRec−PEMKS ,
Wpart1)‖RSA(pkSer−RSA, Wpart2) is created, where W = (Wpart1, Wpart2) =
[(w1, w2,..., wn); wn+1].

7. Request(pkSer−PEMKS , skRec−PEMKS , pkSer−RSA,W ): A trapdoor
request R = (R1, R2) = Trapdoor(pkSer−PEMKS , skRec−PEMKS , Wpart1)‖
RSA(pkSer−RSA, Wpart2) is created, where W = (Wpart1, Wpart2) = [(w1,
w2, ..., wm); wfuzzy].

8. Test(E,R, skSer−PEMKS , skSer−RSA): Test algorithm contains two parts:
Exact Match and Fuzzy Match.

For Exact Match: Input the server’s PEMKS private key skSer−PEMKS ,
an encryption E1 = SCF-PEMKS(pkSer−PEMKS , pkRec−PEMKS , Wpart1) and
a request R1 = Trapdoor(pkSer−PEMKS , skRec−PEMKS , W ∗

part1). If W ∗
part1 ∈

Wpart1, the system will go to Fuzzy Match. Otherwise, the system will terminate.

For Fuzzy Match: Input the server’s RSA private key skSer−RSA, an encryption
E2 = RSA(pkSer−RSA, Wpart2) and a request R2 = RSA(pkSer−RSA, W ∗

part2).
Then, the server decrypts E2 and R2 to obtain Wpart2 and W ∗

part2. Let W ∗
part2

and Wpart2 be the conclusion and the condition of the rules in Mamdani system.
Next, the encrypted file is filtered by Mamdani system and the server will reply
to the receiver in the end.

3.2 The Concrete Construction of m-PEMKS

The details of m-PEMKS are listed in the following (Fig. 1):

1. KeyGenParam−PEMKS(1ζ): Let G1 be an additive cyclic group and GT be
a multiplicative cyclic group. g is a random generator of G1 whose order
is a prime number p. A bilinear pairing is a map e : G1 × G1 → GT . Let
H : {0, 1}◦ → G1 and H∗ : GT → {0, 1}• be two specific hash functions. This
algorithm returns the common parameter cp = {g, p,G1, GT , e,H,H∗}.

2. KeyGenParam−RSA(K): Randomly select prime numbers u and v (where
u �= v) and calculate L = u × v and φ(L) = (u − 1) × (v − 1).

3. KeyGenServer−PEMKS(cp): The server randomly chooses a ∈ Zp and then
computes A = aP . Besides, the server chooses B ∈ G1 uniformly at random.
Therefore, the server’s PEMKS public key is pkSer−PEMKS = (cp,A,B) and
the PEMKS private key is skSer−PEMKS = (cp, a).

4. KeyGenServer−RSA(gp): The server randomly selects x ∈ Zq, where
gcd(φ(L), x) = 1 and 1 < x < φ(L). Next, the server calculates y by y ≡
x−1(modφ(L)). Therefore, the server’s RSA public key is pkSer−RSA = (x,L)
and the private key is skSer−RSA = (y, L).
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5. KeyGenReceiver−PEMKS(cp): The receiver randomly chooses c ∈ Zp and
then computes C = cP . Therefore, the receiver’s PEMKS public key is
pkRec−PEMKS = (cp, C) and the PEMKS private key is skRec = (cp, c).

6. Encryption(pkSer−PEMKS , pkRec−PEMKS , pkSer−RSA,W ): The sender ran-
domly chooses t ∈ Zp and a keyword-vector W=(Wpart1, Wpart2) = [(w1, w2,
..., wn); wn+1]. The sender then computes a searchable encryption E =
(E1, E2) = [(M,N1, N2, ..., Nn);Nn+1] = [(tA,H∗(D1),H∗(D2), ...,H∗(Dn));
(wn+1)xmodL], where D1 = e(H(w1), C)t,D2 = e(H(w2), C)t,...,Dn =
e(H(wn), C)t.

7. Request(pkSer−PEMKS , skRec−PEMKS , pkSer−RSA,W ): The receiver ran-
domly chooses t∗ ∈ Zp and a keyword-vector W = (Wpart1, Wpart2) =
[(w1, w2,..., wm); wfuzzy]. The receiver then computes R = (R1, R2) =
[(Z, T1, T2, ..., Tm), Tfuzzy] = [(e(A, t∗B), cH(w1) ⊕ e(A,B)t∗+c, cH(w2) ⊕
e(A,B)t∗+c, ..., cH(wm−1) ⊕ e(A,B)t∗+c); (wfuzzy)xmodL].

8. Test(E,R, skSer−PEMKS , skSer−RSA): For i ∈ {1, 2, ..., n} and j ∈
{1, 2, ...,m}, where j ≤ i.

(i) For Exact Match: Firstly, the server calculates
Tw1 = T1 ⊕ Z • e(aB,C) = cH(w∗

1), ...,
Twj

= Tj ⊕ Z • e(aB,C) = cH(w∗
j ), ...,

Twm
= Tm ⊕ Z • e(aB,C) = cH(w∗

m)
Then, the server checks whether H∗[e(Twj

, M
a )] = Ni or not. If “yes”, the

system will go to Fuzzy Match. Otherwise, the system will terminate.
(ii) For Fuzzy Match: The server decrypts wn+1 and wfuzzy from

{[(wn+1)xmodL]ymodL} and {[(wfuzzy)xmodL]ymodL}. Let wfuzzy and
wn+1 be the conclusion and condition of the rules in Mamdani system.

Fig. 1. The concrete construction of m-PEMKS
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Without loss of generality, suppose wfuzzy is the keyword “latest” while wn+1

stands for a set of “DATE”. Therefore, three rules can be defined in the following:
Rule1: IF DATE is oldest, THEN the encrypted file is unnecessary.
Rule2: IF DATE is newest, THEN the encrypted file is necessary.
Rule3: IF DATE is either new or old, THEN the encrypted file may necessary
or may unnecessary.

3.3 The Correctness of m-PEMKS

For Exact Match: for i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}, the proposed scheme
is completely correct in the following:
Firstly,
Twj

= Tj ⊕ Z • e(aB,C) = cH(w∗
j ) ⊕ e(A,B)t∗+c ⊕ e(A, t∗B) • e(aB, cP ) =

cH(w∗
j ) ⊕ e(A,B)t∗+c ⊕ e(A,B)t∗ • e(A,B)c = cH(w∗

j ) ⊕ e(A,B)t∗+c ⊕
e(A,B)t∗+c = cH(w∗

j )
Then,
H∗[e(Twj

, M
a )] = H∗[e(cH(w∗

j ), tA
a )] = H∗[e(cH(w∗

j ), tP )] = H∗[e(H(w∗
j ),

C)t] = Ni

For Fuzzy Match: this algorithm is still correct due to the properties of Mamdani
Fuzzy Inference System.

3.4 The Security Analysis of m-PEMKS

The proposed scheme contains two cryptographic algorithms: PEKS and RSA.
The security of proposed scheme mainly relies on Ciphertext Indistinguishabil-
ity of Chosen Plaintext Attack (IND-CPA) and Trapdoor Indistinguishability of
Chosen Plaintext Attack (Trapdoor-IND-CPA).

IND-CPA security is that a malicious server (Game1) could not decide which
PEMKS ciphertext contains which encrypted keyword, if it has not received the
Trapdoor containing the given keyword. Besides, if a malicious receiver (Game2)
that has not obtained the server’s PEMKS private key cannot check whether
PEMKS ciphertext and Trapdoor have the same keyword, even if he/she inter-
cepts all Trapdoors for any specific keyword. For Trapdoor-IND-CPA security,
it is an outside attacker excluding the server and the receiver (Game3) cannot
differentiate any difference between Trapdoors containing the same keyword.
To conclude, the proposed scheme satisfies Ciphertext Indistinguishability and
Trapdoor Indistinguishability against a Chosen Plaintext Attack (CPA).

Theorem 1. The m-PEMKS above is IND-CPA secure against CPA in Game1
under the random oracle model assuming that BDH assumption is intractable.
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Game 1: A is supposed to be a malicious server.

Proof: Suppose that E has (g, p,G1, GT , e, xg, yg, zg) as an input of BDH
assumption whose running time is bounded by T . E’s aim is to calculate a
BDH key e(g, g)xyz of xg, yg and zg using A’s IND-CPA. Besides, A asks for
at most h and h∗ times for the queries of H and H∗ hash functions.

Setup Simulation
E firstly sets C = xg and randomly selects a ∈ Zp and then calculates A = ag.
E also picks up B ∈ G1 uniformly at random. After that, A obtains the common
parameter (g, p,G1, GT , e,H,H∗), the server’s PEMKS public key (cp, A, B)
and PEMKS private key (cp, a) and the receiver’s PEMKS public key (cp, C).
Besides, E chooses two hash functions H and H∗ in the following:

– A can query a keyword wi to H function at any time. To respond, E searches
H List for a tuple (wi, Fi, fi, θi) and the H List is empty in original. If the
tuple exists, A will receive H(wi) = Fi as a response. Otherwise, E does the
following steps:

i. E picks up a coin θi uniformly at random and then calculates Pr[θi = 0] =
1

h+1 .
ii. E selects fi ∈ Zp uniformly at random. If θi = 0, E will calculate Fi =

yg + fig. If θi = 1, E will calculate Fi = fig.
iii. E returns Fi as an answer to A and adds (wi, Fi, fi, θi) into H List.

– A queries Di to H∗ function at any time. Then, E searches H∗ List for a
tuple (Di, Ni). If the tuple exists, A will receive Ni as a response. Otherwise,
E selects Ni ∈ {0, 1}• uniformly at random and then returns it to A and also
adds (Di, Ni) into H∗ List.

Phase 1–1 Simulation (Trapdoor queries)
A issues a query for the trapdoor corresponding to the keyword-vector Wl =
(w∗

l1, w
∗
l2, ..., w

∗
lm). To respond, E executes the following steps:

– E randomly selects i′ ∈ {1, 2, ...,m}
– E runs the above algorithms for simulating H function to create a tuple

(wli′ , Fli′ , fli′ , θli′). If θli′ = 0, E will output “Suspend” and terminate the
system. Otherwise, E conducts the following:

• E selects t∗ ∈ Zp and then computes T1 = fl1C ⊕ e(A,B)t∗+x =
fl1xg ⊕ e(A,B)t∗+x = xFl1 ⊕ e(A,B)t∗+x = xH(wl1) ⊕ e(A,B)t∗+x, T2 =
xH(wl2) ⊕ e(A,B)t∗+x,...,Tm = xH(wlm) and Z = e(A, t∗B). Therefore,
TW = (Z, T1, T2, ..., Tm).

Challenge Simulation
A sends W0 = (w01, w02,..., w0n) and W1 = (w11, w12,..., w1n) to E. Once E
receives the target keyword-vector pair, he/she does the following:
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– E randomly selects i ∈ {1, 2, ..., n}.
– E runs the above algorithms for simulating H function to obtain two

vectors of tuples (W ∗
0i, F

∗
0i, f

∗
0i, θ

∗
0i) and (W ∗

1i, F
∗
1i, f

∗
1i, θ

∗
1i). If θ∗

0i and θ∗
1i

are equal to 1, E will output “Suspend” and terminate the system.
Otherwise, E runs the above algorithms for simulating H function at
2(n − 1) times to obtain two vectors of tuples ((w∗

01, F
∗
01, f

∗
01, θ

∗
01), ...,

(w∗
0i−1, F

∗
0i−1, f

∗
0i−1, θ

∗
0i−1), (w

∗
0i+1, F

∗
0i+1, f

∗
0i+1, θ

∗
0i+1), ..., (w

∗
0n, F ∗

0n, f∗
0n, θ∗

0n))
and ((w∗

11, F
∗
11, f

∗
11, θ

∗
11), ..., (w

∗
1i−1, F

∗
1i−1, f

∗
1i−1, θ

∗
1i−1), (w

∗
1i+1, F

∗
1i+1, f

∗
1i+1,

θ∗
1i+1), ..., (w

∗
1n, F ∗

1n, f∗
1n, θ∗

1n)) . If θ∗
0i and θ∗

1i are equal to 0 for all i =
0, ..., i − 1, i + 1, ..., n, E will output “Suspend” and terminate the system.
Otherwise, E does the following:

– E chooses β ∈ {0, 1} uniformly at random.
– E chooses Ni ∈ {0, 1}• uniformly at random and creates a target SCF-

PEMKS

Ciphertext S∗ = (M∗, N∗
1 , N∗

2 , ..., N∗
n) = (zA,H∗[J1],H∗[J2], ...,H∗[Jn]) So,

S∗ = (M∗, N∗
1 , ..., N∗

i−1, N
∗
i+1, ..., N

∗
n) = (zA,H∗[e(H(wβ1), C)z], ...,H∗[e(H

(wβi−1), C)z],H∗[e(H(wβ1+1), C)z], ...,H∗[e(H(wβn
), C)z])

Note that Ji = e(H(wβi
), C)z = e(yg + fβi

g, xg)z = e(yg, xg)z • e(fβi
g, xg)z =

e(g, g)xyz • e(zg, xg)fβi

Note also that e(fγi
g, xg)z = e(fγi

g, C)z = e(H(wγi
), C)z

Phase 1–2 Simulation (Trapdoor queries)
A can continue to ask E for Trapdoor queries for the keyword-vector Wi. E
answers to A as in Phase 1–1, as long as wi �∈ W0,W1.
Guess
A outputs the guess β∗ ∈ {0, 1}. Then, E selects d in the list for H∗ function

and returns
dβ∗

i

e(zg,xg)
fβ∗

i

as its guess for BDH key.

Analysis of Game 1. Let Event1 and Event2 be events that E does not sus-
pend during Phase 1–1 and Phase 1–2 (Trapdoor queries) and E does not
suspend during Challenge Simulation respectively. Therefore, the probability
of Event1 happening is at least [(1 − 1

h+1 )m]h ≥ 1
em . Besides, the proba-

bility of Event2 happening is at least (1 − 1
h+1 )2(n−1){1 − (1 − 1

h+1 )2} ≥
( 1

h+1 )•( h
h+1 )2(n−1). In addition, let Hybridr for r ∈ {1, 2, ..., n} be an event that

the attacker A can successfully guess the keyword of the left part of a “hybrid”
PEMKS Ciphertext formed with r, coordinates from Wβ followed by (n − r)
coordinates from W1−β . Consequently, Pr[Event3] = 2Σn

k=1(Pr[Hybridr] −
Pr[Hybridr−1]) = 2(Pr[Hybridr] − Pr[Hybrid0]) = 2ε. However, the probabil-
ity that A requests a query for either H∗(e(H(W ∗

0i), C)z) or H∗(e(H(W ∗
1i), C)z)

is at least 2ε, so the probability that A issues a query for H∗(e(H(W ∗
i ), C)z) is

at least ε. In total, E’s success probability ε∗ is ( h
h+1 )2(n−1) • ε

em(h+1)h∗ , which
is negligible.

Theorem 2. The m-PEMKS above is IND-CPA secure against CPA in Game2
under the random oracle model assuming that 1-BDHI assumption is intractable.
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Game 2: A is supposed to be a malicious receiver.

Proof: Suppose that E has (g, p,G1, GT , e, xg) as an input of 1-BDHI assump-
tion whose running time is bounded by T . E’s aim is to calculate a 1-BDHI key
e(g, g)

1
x of xg using A’s IND-CPA. Besides, A asks for at most h and h∗ times

for the queries of H and H∗ hash functions.

Setup Simulation
E firstly sets A = xg and B ∈ G1. E also selects c ∈ Zp uniformly at
random and calculates C = cP . Then, A obtains the common parameter
(g, p,G1, GT , e,H,H∗), the server’s PEMKS public key (cp, A, B), the receiver’s
PEMKS public key (cp, C) and PEMKS private key (cp, c). Besides, E chooses
two hash functions H and H∗ in the following:

– A can query a keyword wi to H function at any time. To respond, E selects
fi ∈ Zp uniformly at random and then calculates Fi = fig and finally returns
Fi as a response to A.

– A can query Di to H∗ function at any time. Then, E searches H∗ List for a
tuple (Di, Ni). If the tuple exists, A will receive Ni as a response. Otherwise,
E selects Ni ∈ {0, 1}• uniformly at random and then sends it to A. E also
adds (Di, Ni) into H∗ List.

Challenge Simulation
A sends (W ∗

0i, F
∗
0i, f

∗
0i, θ

∗
0i) and (W ∗

1i, F
∗
1i, f

∗
1i, θ

∗
1i) to E, where W ∗

0 =
(w01, w02, ..., w0n) and W ∗

1 = (w11, w12, ..., w1n). E randomly chooses β ∈
{0, 1} and Ni ∈ {0, 1}•. Then, E creates a target PEMKS Ciphertext S∗ =
(M∗, N∗

1 , N∗
2 , ..., N∗

n)= (ψxg,H∗[J1],H∗[J2], ...,H∗[Jn])
So, S∗ = (M∗, N∗

1 , N∗
2 , ..., N∗

n) = (ψxg,H∗(e(H(wβ1), C)ψ),H∗(e(H(wβ2),
C)ψ), ...,H∗(e(H(wβn

), C)ψ))
Notice that e(H(wβ∗

i
), C)ψ) = e(fig, cg)ψ = e(g, g)ψ·fic.

Guess
A outputs the guess β∗ ∈ {0, 1}. Then, E returns ψ = 1

x·fic
as the guess for

1-BDHI key.

Analysis of Game 2. Let Event4 and Event5 be events that E does not sus-
pend during Challenge Simulation and A does not issue a query for either one
of H∗(e(H(W ∗

0i), C)ψ) or H∗(e(H(W ∗
1i), C)ψ) respectively. So, the probability

of Event4 happening is equal to 1. Besides, according to Bayes’s rule and the
definition above, the probability of Event5 happening is at least 2ε and there-
fore, the probability that A issues a query for H∗(e(H(W ∗

i ), C)ψ) is at least ε.
Therefore, e(H(W ∗

j ), C)ψ = e(g, g)ψ·fic will appear in H* List. Due to A asks
for at most h∗ times H∗ hash function queries, the probability that E selects the
correct answer is at least 1

h∗ . In total, E’s success probability ε∗ is ε
h∗ , which is

negligible.

Theorem 3. The m-PEMKS above is Trapdoor-IND-CPA secure against CPA
in Game3 under the random oracle model assuming that BDH assumption is
intractable.
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Game 3: A is supposed to be an outside attacker excluding the server and the
receiver.

Proof: Suppose that E has (g, p,G1, GT , e, xg, yg, zg) as an input of BDH
assumption whose running time is bounded by T . E’s aim is to calculate a
BDH key e(g, g)xyz of xg, yg and zg using A’s Trapdoor-IND-CPA. Besides, A
asks for at most h and h∗ times for the queries of H and H∗ hash functions.

Setup Simulation
E firstly sets A = xg,B = yg, C = zg and returns (cp,A,B) as the server’s
PEMKS public key and (cp, C) as the receiver’s PEMKS public key. E also
chooses two H and H∗ hash functions at random.
Phase 3–1 Simulation (Trapdoor queries)
A issues a query for the trapdoor corresponding the keyword-vector Wi, where
i ∈ {1, 2, ...,m}. To respond, E chooses t∗ ∈ Zp uniformly at random. Then, E
computes T1 = zH(wi1) ⊕ e(yg, xg)t∗+z, T2 = zH(wi2) ⊕ e(yg, xg)t∗+z, ..., Tm =
zH(wim) ⊕ e(yg, xg)t∗+z and Z = e(t∗yg, xg). So TW = (Z, T1, T2, ..., Tm).
Finally, E returns TW to A.
Challenge Simulation
A sends (W ∗

0 ,W ∗
1 ) to E, where W ∗

0 = (w01, w02, ..., w0m), W ∗
1 = (w11, w12, ...,

w1m). E creates the challenge Trapdoor request as follows:
E randomly selects a bit β ∈ {0, 1}. Therefore, T1 = zH(wβ∗

1
) ⊕ e(yg, xg)t∗+z =

zH(wβ∗
1
)⊕e(g, g)xyz •e(g, g)xyt∗

, T2 = zH(wβ∗
2
)⊕e(g, g)xyz •e(g, g)xyt∗

, ..., Tm =
zH(wβ∗

m
) ⊕ e(g, g)xyz • e(g, g)xyt∗

, R = e(t∗yg, xg).
Phase 3–2 Simulation (Trapdoor queries)
A can continue to ask Trapdoor queries for the keyword-vector Wi. While, E
answers to A as in Phase 3–1, as long as Wi �= W0,W1.
Guess
A outputs the guess β∗ ∈ {0, 1}. If β = β∗, E outputs “yes”, otherwise, E
outputs “no”.

Analysis of Game 3. Due to A is a malicious outside attacker, he/she cannot
distinguish any difference between two Trapdoors even though these two Trap-
doors have the same keyword. The reason is that E randomly chooses t∗ ∈ Zp

and t∗ changes every time leading to Ti = cH(wβi) ⊕ e(A,B)t∗+c changes every
time. Even if two Trapdoors have the same keyword, the results are still different
because of t∗. Therefore, the key part of Trapdoor Indistinguishability in this
proposed scheme is the confidentiality of e(A,B)t∗+c.

Suppose the attacker A obtains the value of e(A,B)t∗+c, he/she can distin-
guish whether two Trapdoors have the same keyword. The reason is that
the attacker A only calculates one extra XOR operation as Ti = cH(wβi) ⊕
e(A,B)t∗+c ⊕ e(A,B)t∗+c = cH(wβi). Therefore, the attack A can distinguish
that Tw0i

= cH(w0i) and Tw1i
= cH(w1i) are equal as long as w0i = w1i.

Consequently, the attack A could distinguish two Trapdoors TW0 and TW1 .
However, according to Challenge Simulation in Game3, it is easy to acquire
e(A,B)t∗+c = e(g, g)xyz • e(g, g)xyt∗

, which satisfies BDH assumption. Hence,
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the attacker A cannot calculate the value of e(A,B)t∗+c and therefore, it cannot
compute Ti = cH(wβi) ⊕ e(A,B)t∗+c.

4 The Performance of m-PEMKS

The proposed system is implemented by JAVA, which requires two libraries in
the following: JPBC library [14] and jFuzzyLogic library [15,16].

The proposed scheme applies the Single Input Single Output (SISO) Mam-
dani Fuzzy Inference System. The is because of the properties of Artificial Intel-
ligence and Cryptography. Artificial Intelligence explores and analyses the data
for discovering the relationships between the different data sets. On the contrary,
the purpose of cryptography is hiding as much as possible information. Besides,
the input value of Mamdani system is plaintext. Therefore, if m-PEMKS applies
Two or More Input Single Out (T/MISO) Mamdani Fuzzy Inference System,
sufficient data will be exposed to the public networks and therefore, crackers are
able to launch attacks to recover more information. Figure 2 shows the member-
ship functions for an example of searching “latest” financial reports and Fig. 3
shows the assessed value for each input. More specially, three senders upload the
financial reports with different dates to the server by m-PEMKS system. Once
the server receives them, it will run Test algorithm incorporating with SISO
Mamdani Fuzzy Inference System to filter the “latest” reports. By Fig. 3, it can
be seen that the first report partly belongs to the old and acceptable finan-
cial report while the second report belongs to the acceptable financial report.
However, the third report completely belongs to the “latest” financial report.

Fig. 2. Membership functions for an example of searching “latest” financial reports

Fig. 3. Assessed values for an example of searching “latest” financial reports
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5 Conclusion

In this paper, a novel and a robust Public Key Encryption with Multiple Key-
words Search using Mamdani System(m-PEMKS) scheme is presented. The new
scheme is proved to be semantic secure in the random oracle models under BDH
and 1-BDHI assumptions and also satisfies the properties of Ciphertext Indistin-
guishability and Trapdoor Indistinguishability and therefore, it is able to resist
Off-line Keyword Guessing Attack. Furthermore, Single Input Single Output
Mamdani technique is applied to m-PEMKS so that it has the ability to solve
fuzzy and imprecise keywords, such as “latest” and “tallest”, etc., as described
in the paper.
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System for Data Log and Prediction
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Abstract. Car driver’s performance is affected by physiologic behavior,
causing automotive accidents. A system that predicts incoming behaviors is
proposed considering vital signs as data to infer by Evolving Systems (EVOS)
paradigms and several behaviors as prediction targets. A black-box like
approach is proposed. It implements data loging of the vital signs and it applies
an evolving prediction paradigm. Long term data log enables post-event analysis
and data set building for supervised learning for the prediction paradigms.

Keywords: EFuNN � Behavior’s onset � Wearable systems � EVOS � Car
driver’s performance � Vital signs

1 Introduction

Several physiologic behaviors affect the car driver’s performance and are the cause of
automotive accidents: drosiness, fatigue, alcohol abuse, drug abuse, hyperarousal. [1].
The main investigation topic has concerned sleep onset prediction [2, 3], but effective
solutions to this issue need to consider all the physiologic behavior and the vital signs
that concur to affect the car driver’s performance. Heart rate (HR) and its variability
(HRV) are the primary vital signs correlated to driver behavior because they are under
the control of the Autonomic Nervous System (ANS) that consists of two main divi-
sions: the sympathetic (SNS) and the parasympathetic (PNS).

PNS controls the homeostasis and body’s rest-and-digest response. SNS controls
the body’s fight-or-flight response. SNS and PNS execute antagonist control of body’s
functions: e.g. PNS decreases the HR and SNS increases HR. That is, when a subject is
falling asleep or relaxed PNS is active and SNS is inactive, when the subject is awake
or fatigued SNS is active and PNS is inactive [2, 3].

Because HR and HRV reflects the ANS activity, by measuring the HR and HRV
vital signs is possible to know which one, PNS or SNS, is active, that is, if the subject is
asleep or awake (fatigued or relaxed). The transition between PNS and SNS activity is
when happens the behavior onset. The switching between PNS and SNS activity could
be detected measuring the power spectrum density (PSD) of the HRV time-series
sequences: SNS modulates HRV’s low frequencies (0.04–0.15 Hz) and PNS modulates
HRV’s high frequencies (0.18–0.4 Hz) [6].

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
L. Iliadis et al. (Eds.): EANN 2020, INNS 2, pp. 423–431, 2020.
https://doi.org/10.1007/978-3-030-48791-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48791-1_33&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48791-1_33&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48791-1_33&amp;domain=pdf
https://doi.org/10.1007/978-3-030-48791-1_33


ANS also controls other physiologic body functions, such as respiration, contrac-
tion of muscles, release of adrenaline so that other vital signs could be measured to
predict the subject’s physiologic behavior: e.g. bio-impedance, temperature, muscle’s
activity. Measuring vital signs and executing prediction on such measurements can lead
to develop a system that predicts subject’s behavior and do him aware about incoming
unwanted physiologic status such as sleep onset or loss of attention when he is
involved in critical activities (e.g. car driving).

A variety of technologies have been investigated to the purpose of maintaining
alertness in car driving activity, most of them with limited success [4]. A popular
approach to the issue consists in measuring and predicting from movements mainly
related to arms (actigraphy) [5]. This is hardcomputing-based and do not measure other
physiologic parameters.

In our investigation we had an holistic approach combining the measurement of
most of the vital signs in a softcomputing-based paradigm for prediction in evolving
mode and online.

1.1 EVOS Paradigms

Prediction from physical data like vital signs is a challenge because the fuzzy nature of
such data. Evolving brain-inspired paradigms demonstrated to perform well when
applied to real data [7]. Best performing and optimal paradigms are the Evolving Fuzzy
Neural Networks (EFuNNs) and Evolving Spiking Neural Networks (ESNNs).

EFuNN [8] is an implementation of the Evolving Connectionist Systems (ECOSs),
a class of neural networks that combine the adaptive/evolving learning capability of
neural networks with the approximate reasoning and linguistic feature representation of
fuzzy logic.

ECOSs, because based on local learning, is characterized by:

• Fast learning
• Real-time adaptation
• Evolving
• Spatio-temporal representation.

These peculiarities fits well the wearable system-oriented applications.
ESNNs are further development of ECOSs where the neuron’s model is the bio-

logical neuron and its synapses, the spiking neuron [9]. This assumes that the infor-
mation is represented as trains of spikes over time. The spiking neuron accumulates
input information (spikes) and emits at its axon a spike when a threshold exceeded.

ESNNs are brain-inspired neural networks that are characterized by:

• Fast learning
• Real-time adaptation
• Evolving
• Spatio-temporal representation.

These fits well the requirements of the wearable system-oriented applications.
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1.2 Wearable Technologies and Vital Signs Measurements

Vital signs measurement when became common practice as uninvasive wearable
technology was released by electronic industries [10]. After a first generation of
wearable electronics was released for sport performance monitoring (chest belts), a
second generation made available wrist wearable (watch-like) and finger wearable
sensors-based on photodetecting technology that enabled the deployment of uninvasive
applications in medical and consumer fields [11].

Photodetector sensing is an optimal alternative to electrodes-based bioelectric
measurements (ECG). Photodetectors are a Light Emitting Diodes (LEDs) technology
combined with PhotoDiode (PD) technology that enable to record the Heart Rate
(HR) by the PhotoPlethysmoGram (PPG). PPG method is uninvasive and reliable
because the sensor don’t require electrical coupling with the person’s body (skin)
requiring the application of conductive gel or pasta for optimal conductivity.

Another importantwearable technology advancementwas been theAnalogFront-End
(AFE) deployment on aChipScale Package (CSP), a less than 1 mm � 1 mm � 0.1 mm
thin package developed by Analog Devices Inc. (ADI), and CSP deployment of a
32-bit microcomputer developed by (Freescale, NXP). These technologies enable com-
plex tasks such as ultra-small andnoisy signal amplification and processingwith very low-
power consumption (nanoWatt).

The availability of RadioFrequency (RF) communication such as a sub-1 GHz RF
Transceiver ultra-low power (under 10 nA), CSP packaged, developed by Microsemi
Corp. completed the wearable technology’s mosaic.

The last step in this wearable technology innovation was system integration in
System-on-Chip (SoC) scale devices that deploy all the required technologies (sensing,
signal processing, communication) in a small device that can be hosted in a small
wearable case like a watch or a bracelet [12].

Bluetooth Low Energy (BLE) was also available at very small integration scale and
available for the development of the personal wireless area network and targeted to
wearable device’s connectivity in medical and fitness applications.

2 System Framework

The proposed Personal Car Driver Black Box is a wearable system consisting of an
analog subsystem (sensors and amplifiers), of a mixed-signal subsystem (Analog to
Digital Converters (ADCs)) and of a digital subsystem (Microcontroller Unit (MCU),
an embedded memory (eM), a wireless communication) (Fig. 1).

The analog subsystem consists of a set of uninvasive sensors such as metal surface
contact electrodes, photosensors, thermistor, inertial sensors (accelerometer, gyro-
scope), connected to an analog-front-end (AFE) for signal conditioning (amplification,
filtering, impedance adaptation).

The vital signs captured and conditioned by the analog subsystem are then applied
to the mixed-signal subsystem (ADC) to be sampled and quantized as data streams.

The data streams are processed by the digital subsystem that runs the learning and
prediction paradigm, and are stored on a nonvolatile memory (NVM).
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All the subsystems consist of state of the art wearable ultra-embedded microelec-
tronics (ultra-low power, ultra-small, ultra-low cost). All the electronics is packaged in
a watch-like case, so the noninvasiveness’s requirement was accomplished.

3 Prediction Paradigm

The reference prediction paradigm is the Evolving Fuzzy Neural Network (EFuNN).
EFuNN’s peculiarities such as adaptability to new data of unknown distribution,
avoiding of catastrophic forgetting, fast adaptation (one step-learning), linguistically
meaningful information representation and online learning concur to accomplish the
prediction requirements for a personal behavior prediction system based on vital signs
measurements.

EFuNN is a predictive paradigm that belongs to the Evolving Connectionist Sys-
tems (ECOSs), a class of modular connectionist-based systems that evolve continu-
ously their structure and functionality, self-organizing, adapting interactively from
incoming data.

EFuNN is a five layers Feed-Forward Artificial Neural Network (ANN) (Fig. 2)
that implements fuzzy rules and a fuzzy logic inference engine in connectionist mode
by four layer of connections. This architecture enables the EFuNN to infer by rules and
to learn by data.

The first layer inputs the crisp data. The second layer encodes the membership
functions that fuzzify the crisp data from the first layer. The third layer encodes the
fuzzy rules that connect the inputs to the outputs. The fourth layer implements the
defuzzification of the output data. The fifth layer is the final output (crisp) (Fig. 2).

Fig. 1. Personal Car Driver Black Box system architecture
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4 Data Set

To train and test the EFuNN a dataset was collected by sensors data measuring vital
signs (Heart rate, movements). The dataset consists of values of heart rate and
movement at time (t − n) as input variables, with the fatigue level at the moment (t) as
an output variable (label).

To train and test the EFuNN the simulation environment NEUCOM [13] was been
used that requires a set of patterns of labeled data such as:

H1 M1 H2 M2 H3 M3 H4 M4 H5 M5 H6 M6 … Hj Mj … HN MN Ln

Hj : i-th amplitude of the i-th sample of the n-th HR measure
Mj : j-th amplitude of the j-th sample of the n-th Movement measure
Ln : n-th label associated to the n-th sequence.

The dataset was built by collecting the HR and movement measurements of a
driver, labeling two fatigue behavioral conditions: (low, severe) (Fig. 3) [14].

Fig. 2. EFuNN five layers feed forward ANN architecture.
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5 Training and Test

To train the EFuNN the fatigue dataset was been applied to the NEUCOM simulation
environment by splitting randomly it in two sub-datasets (80% for training purpose,
20% for test purpose) (Fig. 4).

After training the EFuNN’s setup is as follow with three membership functions
(triangular):

Sensitivity Threshold: 0.9
Error Threshold: 0.1
Number of Membership Functions: 3

Fig. 3. Dataset to train and test the EFuNN’s prediction paradigm.

(a) (b)

Fig. 4. Dataset to train and test the EFuNN’s prediction paradigm. (a) Train: random split
(80%), (b) Test: random split (20%).
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Learning rate for: W1: 0.1
Learning Rate for W2: 0.1
Pruning: On
Node age: 60
Aggregation: On

At the end of training a set of six rules resulted. Follows the Rule 4:

if
[Var 1] –> (MF 1) @ 0.000 & (MF 2) @ 0.091 & (MF 3) @ 0.909
[Var 2] –> (MF 1) @ 0.000 & (MF 2) @ 0.091 & (MF 3) @ 0.909
[Var 3] –> (MF 1) @ 0.000 & (MF 2) @ 0.100 & (MF 3) @ 0.900
[Var 4] –> (MF 1) @ 0.000 & (MF 2) @ 0.091 & (MF 3) @ 0.909
then Output for (MF 1) @ 0.000 Output for (MF 2) @ 0.091 Output for (MF 3) @
0.909

After training was executed (Fig. 5) the prediction capabilities of the EFuNN was
tested by 20% dataset (Fig. 6). The test confirmed the EFuNN capability to predict the
fatigue onset from HR and movements measurements captured by the wearable device
(Fig. 6 and Fig. 7).

Fig. 5. EFuNN’s train with the 80% random splitted dataset
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6 Conclusion and Discussion

The modeling and the tests executed on different behavioral status of the car driver
confirmed that the method could be applied to several risky behavioral condition to warn
the driver about his ability to continue to drive (safe/risky). Because several vital signs

Fig. 6. EFuNN’s test after test with 20% random splitted dataset.

Fig. 7. EFuNN’s after test with full dataset
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measurements concur to assess the driver condition, a data fusion strategy need to be
investigated, considering it one of the capabilities embedded in the EFuNN paradigm.

Another topic to be elaborated on is the continuous data gathering targeted to post
event analysis and dataset building (black box mode).
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Abstract. Clustering is an established unsupervised learning method.
Substantial research has been carried out in the area of feature weighting,
as well instance selection for clustering. Some work has paid attention to
instance weighted clustering algorithms using various instance weight-
ing metrics based on distance information, geometric information and
entropy information. However, little research has made use of instance
density information to weight instances. In this paper we use density to
define instance weights. We propose two novel instance weighted cluster-
ing algorithms based on Local Outlier Factor and compare them against
plain k-means and traditional instance selection.

Keywords: Machine learning · Unsupervised learning · Instance
weighting

1 Introduction

In the area of Data Mining, clustering is one type of unsupervised learning that
involves finding groups of similar instances in data. Arguably the most popular
clustering algorithm is k-means [11]. This algorithm partitions instances into
a given number of clusters k. K-means iteratively assigns instances to clusters
based on their distance to the centroids of the clusters, the centroids’ positions
are then recalculated to be the means of instances in their respective clusters.

Instance selection is a well established technique. It is often used for remov-
ing instances that are outliers. Feature weighting (also referred to as “attribute
weighting”) is an ongoing area of research. In Feature weighting the features of
a dataset are weighted based on their various metrics typically related to how
much they enhance the accuracy of the main data mining activity. Inspired by
instance selection and feature weighting, Instance weighting assigns a weight
to each of the instances in a dataset. Considering outliers for example, from
a statistics’ perspective, outlierness is a scale rather a boolean property, so it
makes sense to use weighting rather than selection in response.
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Hawkins defines an outlier as “an observation which deviates so much from
the other observations as to arouse suspicions that it was generated by a different
mechanism” [9]. Outlier accommodation is enabling algorithms to accommodate
outliers, it is the opposite of outlier diagnosis, where outliers are identified and
removed before processing. Instance Weighting can provide a way for clustering
algorithms to accommodate outliers, by adjusting how much to learn from out-
lying instances. This is important since clustering algorithms, such as k-means
can be adversely effected by the presence of outliers in a dataset. Whilst it is
true that some types and severities of outlier should be fully discarded, some
types and severities of outliers may be best partially retained for the clustering
process to learn from. This is especially important when the total number of
instances is low.

This paper is structured as follows. Section 2 presents the related work.
Section 3 describes our two novel instance weighted clustering algorithms.
Section 4 is the methodology, experimental results and discussion of our findings.
Finally, Sect. 5 draws conclusions from our findings and presents our recommen-
dations for future work.

2 Related Work

Nock and Neilsen’s [12] research is inspired by boosting algorithms (from super-
vised learning) and k harmonic means clustering [15]. They are the first to for-
malise a boosting based approach, their solution penalises bad clustering accu-
racy by updating the instance weights. Their algorithm gives more weight to
data points that are not well modelled. Their approach could be described as a
statistics based approach. Their paper investigates, for which scenarios, instance
weighting improves the accuracy of clustering and if instance weighting can
reduce initialisation sensitivity. They investigate applying instance weighting on
multiple algorithms including k-means, fuzzy k-means, harmonic k-means and
Exception Maximisation and prove the applicability of instance weighting to a
range of algorithms. Their research shows that instance weighting could speed up
the clustering algorithms. They highlight the growing attention around weighted
iterative clustering algorithms in unsupervised learning. In our research we have
applied a simpler method, but used a density based technique. We also investi-
gate the benefit of instance weighting and how instance weighting can address
the presence of outliers in a dataset.

Sample Weighted Clustering by Jian Yu et al. weights instances using a prob-
ability distribution derived from an information theory approach [14]. They point
out that there is little research on sample (another name of instance) weighted
clustering compared to feature weighted clustering. Like our work they inves-
tigate the benefit instance weighting for datasets with outliers wrapping the
popular k-means algorithm. They highlight that just one outlier can adversely
effect the clustering output of k-means, fuzzy c-means and expectation max-
imisation. Their information theory based approach produces promising results
which are robust to outliers across a variety of datasets. They also found their
weighting also made their algorithm less sensitive to initialisation.
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Lei Gu’s research uses geometric based weighting that also takes local neigh-
bour information into account [7]. Their approach uses two weighting schemes
per cluster. One scheme for points close to the center of the clusters and another
scheme for ambiguous points near the clusters boundaries. Their algorithm out-
performs Jain Yu et al.’s algorithm (described in the previous paragraph) for
accuracy. Lei Gu’s research also considers non image segmentation based clus-
tering problems.

Hammerly and Elkan’s research [8] investigates the k harmonic mean algo-
rithm [15]. They found that it produces better accuracy than k-means and show
that having a non-constant (iterative) weight function is also useful. They point
out many wrapper based solutions have been proposed, such as random restart,
optimising the initialisation and optimising k-selection around clustering, but
less research has been put into wrappers which iteratively effect the clustering.
Hammerly and Elkan point out the benefit of wrapper methods is that they can
often be simultaneously applied.

In Adaptive Nonparametric Clustering by Efimov et al. [6] the weightings
are assigned to both the instances and features wij rather than just wi (instance
weighting) or just wj (feature weighting). The idea of their algorithm is to look
for structures in the clustering, for example, slopes away from local homogeneity.
Their approach has several strengths, their algorithm supports manifold cluster-
ing and is robust against outliers. Another useful property of their algorithm is
the lack of a tunable parameter, which many algorithms has. Their paper does
not attempt generalise or suggest the possibility of applying their method as a
wrapper method.

Jain provides an overview of clustering discussing the key issues in designing
clustering algorithms, and points out some of the emerging and useful research
directions [10]. Jain’s paper outlines six problems/research areas, one of which is
“A fundamental issue related to clustering is its stability or consistency. A good
clustering principle should result in a data partitioning that is stable with respect
to perturbations in the data. We need to develop clustering methods that lead
to stable solutions”. This is the problem our research considers solving through
instance weighting. Their review paper also points out challenges related semi-
supervised clustering (however, we are not considering semi-supervised clustering
in this paper), one challenge in the area of semi-supervised clustering is “how
to provide the side information”. Instance weighting is one possible solution to
this problem, our algorithm could be adapted to work in a hybrid mode. Also,
with regard to semi-supervised learning it is highlighted that it is desirable to
have approach which avoids changing clustering existing algorithms, and instead
wrap around them.

Instance weighting is an established technique but there is much less research
compared feature weighting. For instance, in recent and comprehensive liter-
ature, for example, Data Clutering [1] instance weighting is not mentioned.
However, instance weighting is a promising technique and can provide several
enhancements to several existing clustering algorithms. Instance weighting is
also an increasingly important technique, on the popular dataset website UCI
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[5], the average size of the datasets in terms of instances is increasing. Instance
weighting like ours makes clustering more robust leading towards an increas-
ingly automated knowledge discovery process by reducing the requirement for
preprocessing of data.

Some work has paid attention to instance weighted clustering algorithms
using various instance weighting metrics based on distance information, geomet-
ric information and entropy information. However, little research has made use
of instance density information to weight instances. In this paper we use den-
sity to define instance weights, develops clustering methods that lead to stable
solutions by using instance density information to weight instances.

2.1 Local Outlier Factor

Local Outlier Factor (LOF) is an outlier detection algorithm which provides a
measure of outlierness. LOF works by comparing the density of an instance to
that of its neighbours [3]. Equations (1), (2) and (3)1 show how to calculate the
LOF of a point A. A represents the point we are calculating the local density of. k
represents the number of neighbours to consider. k−distance is the distance from
a given point to its kth furthest point. NK(A) is the set of k nearest neighbours
to A.

reachability − distancek(A,B) = max{k − distance(B), d(A,B)} (1)

lrdk(A) := 1/

(∑
B∈Nk(A) reachability-distancek(A,B)

|Nk(A)|

)
(2)

LOFk(A) :=

∑
B∈Nk(A)

lrd(B)

lrd(A)

|Nk(A)| =

∑
B∈Nk(A) lrd(B)

|Nk(A)| /lrd(A) (3)

Consider the example dataset in Fig. 1 (left), the data point at location (5, 5)
labelled a is moderately outlying. k-distance is the distance to the kth furthest
point, so if k = 3, then kth nearest neighbour of a would be the point at location
(1, 1) labelled b. If point a is within the k neighbours of point b (See Fig. 1 (right))
the reachability − distancek(a, b) will be the k − distance of b, the distance to
the kth further point (2, 1) from b. Otherwise, it will be the real distance of a
and b. So in Fig. 1 it is not within the k neighbours of point b so in this case it
is the real distance between a and b.

To get the lrd (local reachability density) for the point a, we will first cal-
culate the reachability distance of a to all its k nearest neighbours and take the
average of that number. The lrd is then simply the inverse of that average. Since
a is not the third nearest point to b see Fig. 1 (right), the reachability distance
in this case is always the actual distance. A value greater than one indicates a
lower density (thus the instance is outlier). A value one indicates similar density
to neighbours. Less than one indicates a higher density. So low density becomes
a high LOF score highlighting a instance as an outlier.
1 https://en.wikipedia.org/wiki/Local outlier factor.

https://en.wikipedia.org/wiki/Local_outlier_factor
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Fig. 1. Calculating the reachability distance.

One of properties that makes LOF ideal is that the LOF algorithm can work
on datasets with clusters of different densities and instance count. As long as the
number of k neighbours is below the number of instances in the smallest cluster.
This is advantageous since it places little restriction on the dataset to which the
weighted clustering algorithm can be applied to. However, one possible drawback
to the LOF algorithm is its time complexity of O(n2), where n is the data size.
However, there is existing work speeding up LOF using GPU acceleration [2].

3 Proposed Methods

We have proposed two novel algorithms based on k-means, Local Outlier Factor
Instance Weighted K-Means (LOFIWKM) and Iterative Local Outlier Factor
Instance Weighted K-Means (ILOFIWKM). LOFIWKM calculates the weights
over the whole dataset once upon initialisation, whereas ILOFIWKM cal-
culates the weights for each cluster upon each iteration. The weights gen-
erated by executing the LOF algorithm are used when calculating means for the
positions of the new centroids in the k-means algorithm. In Fig. 3 the weights are
represented by black circles, where the smaller the circle the higher the weight.

Fig. 2. Demonstrating the LOF scores.
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Fig. 3. The I LOF IW K-Means showing different how weights change as the algorithm
executes.

More formally, LOFIWKM, starts by calculates the LOF score of every
instance considering the whole dataset. Taking the whole dataset into consider-
ation, we highlight outliers relative to the whole dataset. Then as per k-means,
centroids are initialised. However, our algorithm uses a weighted random ini-
tialisation based on LOF scores and instance positions. Then as per k-means,
instances are assigned to the centroids they are closest to. Then as per k-means,
the algorithm iterates until converged (there is no more reassignments of instance
between clusters) or a max allowed iterations is met. Then, the algorithm calcu-
lates the new positions of the centroids based on its’ instances, taking a weighted
average using normalised LOF scores as weights to moderate the impact of the
instance positions on the mean. Then as per k-means instances are assigned
the new centroid they are nearest to. Figure 1 shows a formal description of
the algorithm where, Dataset of instances = Di, D = {D1, D2 ... Di DN}.
LOF Scores for each instance in the dataset = LOFi, LOF = {LOF1, LOF2, ...
LOFi, LOFN}. Clusters corresponding the K value entered = Ck, C = {C1, C2

... Ck, CK} a centroid has a position and collection of instances. The number of
iterations/k-means cycles = c.

ILOFIWKM operates the same as LOFIWKM upto the end of iteration step.
Then the algorithm LOF score of every instance running the LOF algorithm per
cluster and normalising the LOF scores per cluster. Figure 2 shows a formal
description of the algorithm.
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Algorithm 1. LOFIWKM
Calculate LOF for D
for all w in LOF do

Assign
w−min(LOF )

max(LOF )−min(LOF ) to w∗

end for
Assign LOF∗ to LOF
Use LOF weighted random to select K positions from D assign to C
for all i in D do

Assign i to k according to min(dist(i, C))
end for
Assign 0 to c
while C not converged or c ≤ cmax do

for all k in C do

Assign

∑k0
kN

i·w
∑k0

kN
w

to k

end for
for all i in D do

Assign i to k where min(dist(i, C))
end for
Assign c + 1 to c

end while

4 Experimentation

The purpose of the proposed algorithms is to improve k-means ability to handle
outliers. Two variables, count of outliers and range of outliers are experimented
with, furthermore the two new algorithms were compared against plain k-means.
All experiments are repeated 175 times as the algorithms and the synthetic
dataset generation are both stochastic. The outliers are generated using a uni-
form distribution over a given range, and appended to the dataset. Both synthetic
and real world datasets are experimented on. All datasets used included their
ground truths and this was used assess clustering accuracy using ARI (Adjusted
Random Index). The ARI computes a similarity measure between clusterings
by considering all pairs of instances and counting pairs that are assigned in the
same or different clusters in the predicted and true clusterings.

The experiments use the scikit-learn libraries where possible [13] to speed
development and aid repeatability. Most notably scikit-learn’s LOF implemen-
tation was used for calculating the measures of outlyingness. Furthermore, scikit-
learn’s Blobs Dataset Generator, Standard Scaler, PCA and Adjusted Random
Index were utilised. For the k-means algorithm, our own python implementation
was used and updated to create the novel algorithms. This ensures that the only
difference between k-means and our instance weighted k-means algorithms was
changes described in this paper.

For each run of the experiments the dataset was regenerated. The synthetic
blob datasets (noise = 0.3) are generated with 90 instances, 2 features and 3
clusters of equal sizes. For the outlier count various amounts of outliers were
tested: 5, 10, 15, 20, 25. For the outlier range experiment, various ranges were
tested: 20, 40, 60, 80, 100, the (dataset with outliers spans a range of 10 in either
axis) (Fig. 4).
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Algorithm 2. ILOFIWKM
Calculate LOF for D
for all w in LOF do

Assign
w−min(LOF )

max(LOF )−min(LOF ) to w∗

end for
Use LOF weighted random to select K positions from D assign to C
for all i in D do

Assign i to k according to min(dist(i, C))
end for
Assign 0 to c
while C not converged or c ≤ cmax do

for all k in C do

Assign

∑k0
kN

i·w
∑k0

kN
w

to k

end for
for all i in D do

Assign i to k where min(dist(i, C))
end for
for all C do

Partially recalculate LOF for i in k
for all w in k do

Assign
w−min(LOF )

max(LOF )−min(LOF ) to w∗

end for
end for
Assign c + 1 to c

end while

Also experiments are conducted on a real world dataset containing 210
instances, 7 features and 3 clusters the measurements are of damaged wheat ker-
nels of 3 different varieties [4]. The dataset was obtained via the UCI Machine
Learning Repository [5] (Fig. 5).

4.1 Outlier Count and Range Synthetic Dataset Results

Figure 6 shows positive results for density based instance weighted clustering.
The instance weighted algorithms were able to achieve better clustering accuracy

Fig. 4. A sample of the blobs datasets.
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Fig. 5. The seeds datasets.

Fig. 6. Adjusted Random Index scores for the blobs datasets

than k-means. In Fig. 6 on the left, the impact of increasing the count outliers
can be seen. In Fig. 6 on the right, the impact of creating increasingly distance
outliers is shown. The accuracy of k-means quickly deteriorates as the outliers
get distant. The LOFIWKM and ILOFIWKM algorithms are not as strongly
effected by the presence of increasing distant outliers. Across both experiments,
a minimal gain can be seen in using the iterative version, ILOFIWKM.

4.2 Real World Dataset Results

In Fig. 7 instance weighting is compared with instance selection. The three
groups of columns show different conditions of the dataset. Left shows the results
with dataset having additional synthetic outliers added. Center shows the results
of the algorithms having the outliers removed (i.e. Instance Selection). The out-
liers were removed using the LOF algorithm with the same neighbours count as
in LOFIWKM algorithms (neighbours = 5). The outlier contamination value was
set to 0.1 to remove the most outlying 10% of the dataset. Finally right shows
results for the original dataset. We can compare instance weighting to instance
selection by comparing the right group’s LOFIWKM result to the central group’s
k-means result. It can be seen that instance weighting slightly outperformed
instance selection in ARI score, however only slightly. It can also been seen that
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ILOFIWKM and LOFIWKM provided a large benefit on the original dataset
and the with additional outliers added compared to k-means. Our results mir-
ror tests on the seeds dataset in Lei Gu’s research were weighting also enhance
clustering accuracy [7].

Fig. 7. Adjusted Random Index scores for the seeds dataset

5 Conclusion and Future Work

In conclusion, this paper has shown that instance weighting can help mitigate
the effect of outliers on both a synthetic and a real world dataset.

In this paper we only investigated k-means which has a hard membership
function and the LOF algorithm. However, there is likely more useful com-
binations to be found. Hammerly and Elkan found that varying weights did
improve the performance of hard membership function algorithms (i.e. k-means)
[8]. However, Nock and Neilsen’s research confirmed instance weighting to be
more advantageous for clustering algorithms with soft membership functions
such as fuzzy k-means [12]. A future work of this paper should be to investigate
soft membership function algorithms.

Our modifications were made to a basic version of the k-means algorithm.
However, it would be possible to combine the LOF instance weighting with a
version of k-means which has more optimisations or is being used in conjunction
with wrapper functions. Furthermore, with instance weighting there is potential
to simultaneously apply multiple instance weights which could prove to increase
robustness or accuracy.
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The time complexity LOFIWKM is equivalent to LOF instance selection
O(n2) plus k-means O(n), however ILOFIWKM is significantly more costly tak-
ing the complexity of k-means plus the execution of the LOF algorithm per
cluster (for each clusters instances), further experimentation may prove that
ILOFIWKM may be not suitable for large datasets, without optimisation of the
LOF algorithm, such as, the research by Alshawabkeh et al. [2].

Future work also includes testing the algorithms with a more thorough outlier
generation process. In this paper we added instances from a uniform distribution,
centred on the dataset. This had two disadvantages, firstly this method possibly
does not highlight one of the advantages of instance weighting. Instance weight-
ing has the potential to retain some of the information an outlier presents, since
the “outliers” are uniformly random these benefits are negated. Secondarily, it
is possible that when generating the “outliers” that a proportion of fall within
a normal range and end up not being outliers.

Currently our algorithm requires parameter selection of k clusters and the
size of the LOF neighbourhood. Other algorithms [7,14] require some parameter
selection with the exception of the state of the art [6]. It would be clearly better
to not require the parameter selection and it does seem possible to automate the
selection of these parameters.
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Abstract. In this paper, we introduce our efficient simple method which
can locate all occurrences of pattern P of k subpatterns with “don’t
cares” of length m in text S of length n. Our algorithm employs advanced
data structure and the Kangaroo method, which can be applied to
selected suffixes of the suffix tree of S to answer subsequent queries in
O(k) time using a predefined computational method to find all occur-
rences of pattern P with “don’t cares” in text S in a fast and effective
manner.

Keywords: Pattern · Don’t cares · Detect

1 Introduction

Pattern matching is the problem of string matching which is to find the loca-
tion(s) of a given word, the pattern within another one, the text [15,16]. The
classical pattern matching problem is to find all the occurrences of a given pat-
tern P of length m in a text S of length n, both being sequences of characters
drawn from a finite character set Σ. This problem is interesting as a fundamen-
tal computer science problem and is a basic need of many applications, such
as text retrieval, music retrieval, computational biology, data mining, network
security, among many others. Solutions to the pattern matching in strings can
be roughly classified into two categories, window shifts and automaton, and text
indexing [14]. In the first one, the pattern is examined using a window shift
where the window slides along the text from left to right according to the win-
dow rules of each algorithm, such that the found location is reported after a
whole match with the corresponding pattern. The algorithms that are adopted
this approach are Brute-force algorithm, Karp-Rabin algorithm [25] and Boyer-
Moore algorithm [6] which works on skipping a large portion of the text while
searching a pattern, which helps in speeding up the searching process. The KMP
is the first linear-time pattern matching algorithm, which stores the information
of matching to prevent a backward shift to improve the search time with the
help of the failure function [26]. Also, the Aho-Corasick algorithm [1], which is
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an improved version of the KMP algorithm and based on the automaton app-
roach, preprocesses the keywords (dictionary strings) then search for the key-
words simultaneously which runs in time proportional to the sum of the lengths
of the keywords. At the multi-pattern matching level, Commentz-Walter [13]
presented an algorithm which is a combination of the Boyer-Moore and Aho-
Corasick, and Wu-Manber [36] also uses the idea of Boyer-Moore in addition to
building three tables (SHIFT, HASH, and PREFIX) to determine how many
characters should be skipped and which pattern is a candidate for the match.
The other pattern matching solutions involve building an index for a text such
that the occurrences of a query pattern can be reported, where the data struc-
ture contains all the suffixes of the text. Suffix tree and Suffix array are data
structures for text indexing, linear space, and hold the compact representation
of the text suffixes. Recently, classical string indexing problems are extended to
address the patterns with more complicated forms, such as don’t cares charac-
ters, gaps and errors to meet many applications needs in reality. A don’t care
character means that this position of the pattern can match any character in
the text and is denoted with ‘*’. Don’t care is also called wildcard [5] or gap
[32]. A Suffix tree is an efficient data structure as it stores the suffixes of a given
string in linear space and time, and is useful in various applications concern-
ing string matching like finding longest common prefix, repeated substrings and
antiperiods of a string. The majority of applications that use complex patterns
like don’t cares characters, focus on non-indexing data structure where the text
is not preprocessed in advance, while few of them adopted this approach as we
will see in the next section. Hence, in this paper, we propose an algorithm that
is simple and efficient in terms of using text indexing data structure without
using additional data structures. The algorithm is based on preprocessing the
text using a suffix tree without using a generalization suffix tree, and instead, it
applies the Kangaroo method which is enabled by a predefined computational
method. The contributions of this paper as follows:

1. To innovate an efficient and simple approach that can locate all occurrences
of a given pattern P of length m in a text S of length n, where pattern P
is defined over the alphabet Σ ∪ {∗} and text S is sequences of characters
drawn from a finite character set Σ.

2. To achieve the following specific contribution: propose an efficient algorithm
which relies on constructing the suffix tree T for the text S without using a
generalization suffix tree concept of (P +S), instead, it applies the Kangaroo
method on selected suffixes of the suffix tree of S using a predefined compu-
tational method to find all occurrences of pattern P in a fast and effective
manner.

The rest of the paper as follows. In Sect. 2, the related work about pattern
matching with don’t cares is described. In Sect. 3, we introduce background
concepts and definitions, and formally define the problem we address. In Sect. 4,
we detailed our approach in detecting pattern with ”don’t cares” and present
our algorithm. In Sect. 5, we conclude.
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2 Related Work

Pattern matching has been generalized to searching in the presence of errors,
e.g. Hamming distance [4,20,28], edit distance [11,28,33]. These variations of
the original problem are known as approximate pattern matching. Fischer and
Paterson [19] introduced the solution for the pattern matching with don’t cares
based on Fast Fourier Transform (FFT) and presented the algorithm that runs
in O(n log m log |Σ|) time. Subsequently, Indyk [23] gave a randomized algo-
rithm which removed the dependency on the alphabet and involved convolution,
running in time O(n log n). Afterward, Kalai [24] presented a slightly faster and
simpler randomised algorithm as it uses a single simple convolution based on the
simple randomized fingerprinting algorithm of Karp and Rabin [25] and runs in
O(n log m). Finally, Cole and Hariharan in [12], solved the long lasting open
problem of removing the dependency on |Σ| in the algorithm and presented a
deterministic O(n log m) time algorithm which also used convolution. Chen et al.
[7] presented SAIL algorithm that conducts two phases (forward and backward)
to return each matching substring of P in T in O(n + klmg) time complexity,
where k is the frequency of P’s last character occurring in T , l is a user defined
maximum length for each matching substring, and g is the maximum difference
between the user defined maximum length and the minimum number of wildcard
characters between two consecutive letters in P . Pinter [31] on the other hand
avoided the use of convolution and used the Aho-Corasick algorithm [1] to solve
the problem. The running time of Pinter’s algorithm is O(n+m+α), where α is
the total number of occurrences of the component subpatterns. However, Pinter’s
technique cannot be used to index the text. Furthermore, Cole and Lewenstein
[10] also presented an algorithm to solve this problem considering a centroid
path decomposition on tree T . The algorithm in [10] first prepossesses the text
in O(n log Kn+n log |Σ|) time to build a data structure of size O(n log Kn) which
answers subsequent queries in time O(2K log log n+m+ |occ(P )|). Here K is the
number of don’t cares in the pattern and occ(P ) denotes the set of occurrences of
the pattern in the text. Philip et al. [5] used the ART decomposition introduced
by [3] to decompose the tree into a single top tree and a number bottom trees, and
used the LCP data structure by [10] to report the occurrences of P in T . Rahman
et al. [32] presented an algorithm where they prepossess the text in optimal O(n)
time and can answer subsequent queries in O(m + α log log n) time. Thereafter,
Iliopoulos and Rahman [22] presented algorithms for pattern matching which
can solve the problem of pattern matching with don’t cares in O(n + m + α)
time, where α is the total number of occurrences of the component subpatterns.
Lam et al. [27] make use of [22] to find a set of candidate positions in T which
are a superset of all matches of P in T , then the algorithm verifies whether
each of them is real or not. Clifford and Porat [9] presented a filtering based
algorithm for the k mismatch pattern with don’t care symbols in either pattern
P or text T and bounded with k mismatch and runs in (nm1/3k1/3 log2/3 m).
Subsequently, Clifford et al. [8] presented two solutions for pattern matching
with don’t cares and bounded with k mismatches. The first solution uses a ran-
domized algorithm that works in (n(k + logm log k) log n) time, and the second
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solution uses a deterministic algorithm which runs in (nkpoly log m) time and
based on k selectors to find k mismatch problem with don’t cares. Nicolae and
Rajasekaran [30] gave two algorithms for pattern matching with k mismatches
and don’t cares in the pattern. The first one runs in O(n

√
(q + k) log m) time,

and the second one runs in O(3
√

qk log2 m+n
√

k log m) time. Finally, Liu et al.
[29] proposed two suffix tree-based algorithm (MMST-S and MMST-L) to solve
variable length wildcards, according to the length of exact characters in a pat-
tern. The algorithms involve three phases: the first phase includes constructing
the suffix tree, the second phase for preprocessing the multipattern by sorting
them which requires to split the exact characters into groups and gaps and then
classified them according to the alphabetical order of each character in MMST-S
and according to the last exact characters’ group in MMST-L approach, finally,
they are solved using the proposed algorithms. Most relevant to our work is the
work of Iliopoulos and Rahman [22] as the algorithm based on text indexing
approach by building a suffix array for the text T , then, it works on dividing the
pattern P into l groups of sub-patterns, where each sub-pattern Pi is a string
over the alphabet Σ and 1 ≤ i ≤ l − 1. For each sub-pattern, there is parameter
ki which indicates the number of don’t cares characters between Pi and Pi+1.
The algorithm in [22] computes the occurrences of occ(Pi) using SA(T ) and for
each occurrence position (r ∈ occ(Pi)), the algorithm uses two arrays (val and
permitted) which computes the accumulated length of each sub-pattern Pi in
val array first, then uses that array in permitted array to check each candidate
position is an occurrence position for the pattern P . This is done, after com-
paring the result of the checking with the total number of the subpatterns each
time a new candidate position is tested, which requires the algorithm to test all
the subpatterns of P to decide whether it has an occurrence in the text or not.
However, comparing to our work, this paper focuses on innovating simple, less
complicated and efficient algorithm that can exactly locate all occurrences of a
given pattern P of length m with don’t cares characters in a text S of length n
based on selected suffixes of the suffix tree of S using a predefined simple equa-
tion to enable the Kangaroo method without using additional data structures.
Furthermore, the test for each P comes logically coherent and sequential such
that the test starts from the first subpattern of P , then it moves to the next
subpattern as long as the previous test was successful, otherwise, it stops testing
the remaining subpatterns of P to save the time of the algorithm and report
that pattern does not exist.

3 Background and Problem Definition

3.1 Background

String and Substring. Let S = S[1, n] be a string of length |S| = n over an
alphabet Σ of size |Σ| = σ. The empty string ε is the string of length 0. For
1 ≤ i ≤ j ≤ n, S[i] denotes the ith symbol of S, and S[i . . . j] the contiguous
sequence of symbols (called factor or substring) S[i]S[i + 1] . . . S[j]. A substring
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S[i . . . j] is a suffix of S if j = n and it is a prefix of S if i = 1. A string
p is a repeat of S ⇐⇒ p has at least two occurrences in S. In addition p
is said to be right-maximal in S ⇐⇒ there exist two positions i < j such
that S[i, i + |p| − 1] = S[j, j + |p| − 1] = p and either j + |p| = n + 1 or
S[i, i + |p|] 	= S[j, j + |p|] [15,21].

Suffix Tree. The suffix tree T for a string S of length n over the alphabet Σ is
a rooted directed compacted trie built on the set of suffixes of S. The suffix tree
has n leaves and its internal nodes have at least two children whiles its edges
are labelled with substrings of S. The labels of all outgoing edges from a given
node start with a different character. All leaves of the suffix tree are labelled
with an integer i, where i ∈ {1 . . . n} and the concatenation of the labels on the
edges from the root to the leaf gives us the suffix of S which starts at position i.
The nodes of the (non-compacted) trie which have branching nodes and leaves of
the tree are called explicit nodes, while the others are called implicit nodes. The
occurrence of a substring P in S is represented on T by either an explicit node
or implicit node and called the locus of P . The suffix tree T can be constructed
in O(n) time and space. In order to have one-to-one correspondence between the
suffixes of S and the leaves of T, a character $ /∈ Σ is added to the end of the
label edge for each suffix i to ensure that no suffix is a prefix of another suffix.
To each node α in T is also associated an interval of leaves [i..j], where [i..j] is
the set of labels of the leaves that have α as an ancestor (or the interval [i..i]
if α is a leaf labelled by i). The intervals associated with the children of α (if
α is an internal node) form a partition of the interval associated with α (the
intervals are disjoints sub-intervals of [i..j] and their union equals [i..j]). For any
internal node α in the suffix tree T, the concatenation of all edge labels in the
path from the root to the node α is denoted by ᾱ and the string depth of a node
α is denoted by |ᾱ| [2,17,21].

Definition 1. The Lowest Common Ancestor (LCA) of two nodes u and v in
a tree T is defined as the deepest node in T that is an ancestor of both u and v.
This node, denote it by α, lies on all root to u and on all root to v path [18].

Pattern Matching. In what follows, we assume that we are given a text S of
length n and a pattern P of length m. The classical matching problem consists
in locating all occurrences of P in S, that is, all possible i such that for all
j ∈ [1,m], S[i + j − 1] = P [j]. This problem has been extended by introducing
“don’t care” character as follows:

Definition 2. A don’t care character, denoted by ‘∗’ is a character such that
∗ /∈ Σ and matches any character σ ∈ Σ for all σ ∈ Σ [22].

3.2 Problem Definition

Given a text S over the alphabet Σ and a pattern P over the alphabet Σ ∪ {∗}.
The problem is to find all the occurrences of P in S.
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Example 1. Consider that we have the following text S over the alphabet Σ and
a pattern of actions P over the alphabet Σ ∪ {∗}:

S = ABXABGCABGCAFFBY BGAFABGCAFFBY
P = AB ∗ CA ∗ ∗BY

As we note from the example, ‘∗’ can match any action in S, therefore the pattern
of actions P has two occurrences in S at positions 7 and 20. Note that indexing
the text starts from 0. Before describing our proposed solution, we will start by
stating some useful lemmas.

Lemma 1. Two sub-strings S[i, i + d − 1] and S[j, j + d − 1] are equal ⇐⇒
they have the same locus in the suffix tree of S [2].

Example 2. Consider the sequence S in example 1, and the pattern P =
ABGCAFFBY . The pattern P has two occurrences in S at positions 7 and
20 (S[7, 15], S[20, 28]) and have the same locus on the suffix tree (Fig. 1) at
suffixes 7 and 20.

Lemma 2. If X is a subsequence of sequence S, then X is the deepest non leaf
node from the root node, and X must be the longest common subsequence or the
longest repeat subsequence [29].

Example 3. As shown in Fig. 1, the subsequence X = AB is the deepest non
leaf node from the root node, and the longest common subsequence of length 2
for the suffixes (0, 7, 20, 3). This also means that the subsequence X occurred 4
times in S.

Fig. 1. Sub-tree of the suffix tree of the text S (see Example 1)
and illustration of locating occurrences of the pattern P = AB ∗
CA∗∗BY in S using our method. The occurrences of pattern P
in S are at (7 and 20).

Table 1. Pα array of
pattern P = AB ∗
CA ∗ ∗BY

j ᾱj |ᾱj | δj

0 AB 2 1

1 CA 2 2

2 BY 2 0
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4 Detecting Pattern with “Don’t Cares”

In a pattern with “don’t cares” characters problem, we are given a string S of
length n over the alphabet Σ and a pattern P of length m over the alphabet
Σ∪{∗} and have to find all occurrences of P in S efficiently. This problem can be
solved using the suffix tree of S and Kangaroo method to find all occurrences of
P with its sub-patterns in S. To find a pattern P with “don’t cares” characters,
it will be useful to define a pattern P having “don’t cares” characters as follows:

Definition 3. A pattern P with “don’t cares” characters is a pattern consists
of k subpatterns, where each subpattern Pj is a string over the alphabet Σ ∪{∗}.
For each 0 ≤ j ≤ k − 1, we have a pair (|ᾱj |, δj), where |ᾱj | is the letters string
length starting at position 0 at Pj and ∈ Σ, and δj is the “don’t cares characters”
length followed |ᾱj | at Pj.

For example: suppose we have P = AB ∗ CA ∗ ∗BY . We divide P into Pk

sub-patterns as follows:

AB∗CA∗∗BY = P0P1P2 = (|ᾱ0|, δ0)(|ᾱ1|, δ1)(|ᾱ2|, δ2) = (2, 1)(2, 2)(2, 0)

4.1 Kangaroo Method

Kangaroo approach is commonly used in string pattern matching with at most
k mismatches. The Kangaroo method is usually used with a generalization suffix
tree of (P + T ) and works on matching strings by using LCA (Lowest Common
Ancestor) query on the suffix tree. More precisely, to match pattern P with text Ti

with at most k mismatches, the LCP (Longest Common Prefix) between P and Ti

is found by using LCA query in the suffix tree between the nodes representing P
and Ti. The LCP ends either at the first mismatch between P and Ti at position
q of P or one of the strings terminates. The first mismatch can be skipped using a
Kangaroo jump in O(1) time. To allow for another mismatch, another Kangaroo
jump should be done from the suffix q+1 of P and suffix i+q−1 of T on the suffix
tree. We continue on doing Kangaroo jumps until we hit the maximum number of
mismatches in O(k) time or one of the strings terminates [37]. Our algorithm uses
a new simple and efficient approach such that it relies on constructing a suffix
tree T for the text S only without using the generalization concept of (P + T ),
and instead, the algorithm applies the Kangaroo jumps on chosen suffixes of the
suffix tree using a predefined computational method to find all occurrences of the
pattern P with “don’t cares” in S, in a fast and effective manner.

4.2 Detecting Pattern with “Don’t Cares”

The proposed algorithm starts by preprocessing the suffix tree T of text S and
decomposing pattern P into k subpatterns (P0 . . . Pk−1) such that each subpat-
tern consists of a pair (|ᾱj |, δj), where |ᾱj | represents the letters string length of
Pj over the alphabet Σ, δj represents the ‘*’ length at Pj and k is the number of
subpatterns, (see Algorithm 1 Step 2). The algorithm also, constructs an array Pα
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of length k at the preprocessing phase which retains the letters of each subpattern
Pj that corresponds to the label ᾱj on the suffix tree, the label length |ᾱj |, the ‘*’
length δj and indexed with a value of j, (see Table 1 for illustration). The algo-
rithm proceeds into k phases. At the first phase, the algorithm traces the suffix
tree T of S starting from the root to find the locus of the first subpattern α0 of
the label Pα[0, 0], which is of length |ᾱ0|. If the locus α0 is found, the algorithm
locates its associated suffixes interval [is, ie] such that α0 is its ancestor and rep-
resents the longest common prefix for those suffixes (lemma 2), see (Steps 4–8).
The associated suffixes interval [is, ie] represents the possible suffixes that the pat-
tern P with “don’t cares” characters occurs at one or more of them. To check the
occurrence of pattern P , the remaining subpatterns (P1 . . . Pk−1) of P should be
found on the tree. To do so, for each l ∈ [is, ie], the algorithm applies the Kangaroo
method (Steps 10–11) such that it starts from the suffix l and find the next suffix
d of the subpattern P1 by adding the suffix number l to the label length |ᾱ0| and
“don’t cares” length δ0 on the tree as follows:

l + |ᾱ0| + δ0 = d

Next, the algorithm jumps to the suffix d, where d ∈ [1 . . . n] suffixes of the
tree and a query runs at this suffix starting from the root of T to test the label
existence of the next subpattern Pα[1, 0] where its locus is α1 and of length
|ᾱ1|. If the returned result of the query is true, then a second Kangaroo jump
should be done at the suffix (d) to go to the next suffix (d + 1) to test the next
subpattern Pj+1 by adding the suffix number d to the label length of the previous
subpattern |ᾱj | and “don’t cares” length δj on the tree as follows (Steps 16–29):

d + |ᾱj | + δj = d + 1

The algorithm will continue to do this procedure until it achieves the query of
the last subpattern Pk−1 and an occurrence is reported at l (Steps 30–33). At
any phase the algorithm fails in testing l such that the query returns false, the
algorithm stops testing l (Steps 26–27) and proceeds to test the next l in the
suffixes interval [is, ie] which saves the time of the algorithm and can find all
occurrences of the pattern P in a faster and effective way. Figure 1 illustrates
our algorithm in finding the occurrence(s) of pattern P on the suffix tree of
text S (which is given in Example 1). At this example, the algorithm divides
pattern P into 3 subpatterns and builds the suffix tree of S as a preliminary
stage. Then, starts with the first subpattern P0 to find its locus on the suffix
tree which is denoted by α0 and represents the label at Pα[0, 0]. Afterwards,
it locates its associated suffixes subset where “AB” is its ancestor which are
[0, 7, 20, 3]. Then, for each l ∈ [0, 7, 20, 3], the algorithm conducts a testing for
the occurrence of pattern P using the equation in (Algorithm 1 Step 19) where
it calculates the next suffix that the algorithm should jump to test the next
subpattern existence. This can be done by adding the length of |ᾱj−1| and δj−1

to the current suffix being tested. At our example, pattern P has two occurrences
at suffix 7 (which its Kangaroo jumps illustrated using blue dotted curve) and
at suffix 20 (which its Kangaroo jumps illustrated using violet dotted curve) but
has no occurrence at suffixes 0 and 3. For further clarification, at suffix 7, the
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algorithm computes the next suffix d to jump which is 10 (7 + 2 + 1), and it
inquiries the occurrence of the subpattern Pα[1, 0] at suffix 10 which is found at
locus α1. Next, a second jump should be done to the next suffix d+1 which is 14
(10+2+2) and a second query at this suffix runs to test the existence of Pα[2, 0]
where the returned result is true and the locus is α2. At the end, an occurrence
of the pattern P is reported at the current suffix l being tested which is 7. The
efficiency of our algorithm lies on testing only subset of the suffixes of the suffix
tree T of S. In addition to, testing only the alphabetic part of each subpattern
without caring of “don’t cares” symbols, which shortens the search process and
thus reduces the search time. Furthermore, the test for each pattern P in terms
of its subpatterns is conducting sequentially such that the pattern test starts
from the first subpattern of P , then it moves to the next subpattern as long
as the previous test was successful, otherwise, it does not require completion of
the remaining subpatterns, which improves the search efficiency. We have thus
obtained the following theorems.

Algorithm 1. Detect Pattern P with Don’t Cares in text S

Input: Text string S, Pattern P with Don’t Cares
Output: P occ[]: all suffixes where P has an occurrence in S

1: procedure Locate Pattern P with Don’t Cares in text S

2: � Phase 0: (Preprocessing)

– Build Suffix Tree T of S

– Decompose pattern P into sub-patterns (P0 . . . Pk−1), where each Pj = (|ᾱj |, δj) and 0 ≤ j ≤ k − 1,
k = no. of sub-patterns

– Build an array Pα indexed j = (0 . . . k − 1), where Pα[j, 0] = ᾱj , Pα[j, 1] = |ᾱj | and Pα[j, 2] = δj

3: � Phase 1: (Find Occ (P0))

4: Start from the root T

5: Find the locus α0 of Pα[0, 0]
6: if (found) then

7: Locate the associated suffixes interval [is, ie] where the locus α0 is its ancestor
8: occ ← 0
9: // Find all occurrences of P in S

10: for each l ∈ [is, ie]
11: go to Phase 2

12: else � P is not found
13: exit matching
14: end if

15: � Phase 2: (Find Occ (P1 . . . Pk−1))

16: j ← 1
17: d0 ← l

18: while (j ≤ k − 1) do

19: d1 ← d0 + |ᾱj−1| + δj−1 � d1 ← d0 + Pα[j − 1, 1] + Pα[j − 1, 2]

20: go to suffix (d1) � Kangaroo jump
21: Start from the root T

22: Find the locus αj of Pα[j, 0]

23: if (found) then

24: j ← j + 1
25: d0 ← d1
26: else

27: exit � there is no occurrence for pattern P at suffix l

28: end if

29: end while

30: if (j = k) then

31: P occ[occ] ← l � there is an occurrence at suffix l

32: occ ← occ + 1
33: end if

34: end procedure
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Theorem 1. Given a text S over the alphabet Σ of length n and a pattern P
over the alphabet Σ ∪{∗} of length m, we can compute the occurrence of P in S
in O(n + m + k) time complexity, where k is the total number of the subpatterns
of P . 
�
Proof. Let us analyse the time complexity of Algorithm 1. Phase 0, is the pre-
processing stage which consists of constructing the suffix tree of sequence S of
length n in O(n) linear time and space using linear algorithm [35], decomposing
pattern P of length m into k subpatterns in O(m) time, and then storing them
in an indexed two dimensional array Pα of length k which requires 3k space as
each subpattern is split into (|ᾱ| and δ) with ᾱ. Given that, the time requires to
access an index array is O(1) time, and the time requires to answer the lowest
common ancestor (LCA) on the suffix tree is O(1) time [34], we analyse the rest
of the algorithm as follows. At Phase 1, after the algorithm finds the locus of
the first subpattern P0 of P of length |ᾱ0|, it uses the (for) loop to test l selected
suffixes of the suffix tree in O(l) time. For each l tested, Phase 2 should be imple-
mented to find the occurrences of remaining subpatterns (P1 . . . Pk−1). Here, we
have three possibilities. Case 1, the pattern P is exist in the text and therefore
the (while) loop will be executed (k − 1) times which is the case for finding the
pattern in the text. Knowing that (k − 1) kangaroo jumps should be executed
at this case, where at each kangaroo jump, the algorithm runs the LCA query
at the current suffix that it moved to in total O(k −1) time. Therefore, the time
required for this case is O(k − 1). Case 2, when only the first q subpatterns
are found, the algorithm will exit the while loop after testing subpattern (q + 1)
which means that there is no occurrence for the pattern P in S. Therefore, the
time required for this case is O(q). Case 3, When only the first subpattern P0

is located at phase 1, but there is no occurrence for the remaining (k − 1) sub-
patterns. At this case, the (while) loop will be executed only once at phase 2,
and the time is O(1) which is considered as an efficient time for the execution
time when the pattern is not part of the text, and the algorithm requires no
completion on testing the remaining of subpatterns which saves the time of the
algorithm. Therefore, the time required for this case is O(1) time. Since we are
interested in the degree of the function f(n) for the algorithm which is related
to the execution time of the statements inside the (for) loop, we will ignore l.
Hence, the time complexity of Algorithm 1 is O(n + m + k) for the Case 1,
O(n + m + q) for the Case 2 and O(n + m) for the Case 3. 
�
According to Theorem 1, we can conclude our next theorem to find all occur-
rences of pattern P with “don’t cares” in text S as follows.

Theorem 2. Given a text S over the alphabet Σ of length n and a pattern P
over the alphabet Σ ∪ {∗} of length m, we can compute all occurrences of P in
S in O(n + m + k + occ(P )) time complexity, where k is the total number of the
subpatterns of P and occ(P ) is the total number of occurrences of P in S. 
�
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5 Conclusion

We have introduced our simple and efficient method which can find all the occur-
rences of pattern P with “don’t cares” in text S. This problem is interesting as
a fundamental computer science problem and is a basic need for many applica-
tions which are concerned with the occurrence of the subsequence of the original
pattern sequence. In response, we designed our algorithm using linear space and
time data structure with help of the Kangaroo method such that be able to test
only selected suffixes of the suffix tree of S in a fast and effective way. Com-
paring to the work in [22] and to the others described in the related work, our
algorithm adopted the logical sequential approach for testing each pattern P
such that the test starts from the first subpattern of P , then it moves to the
next subpattern as long as the previous test was successful which saves the time
of the algorithm and speeds up the locating process. The interesting issues that
will be studied in our future work are, improving our work to detect patterns
with “don’t cares” and errors from the text, and detecting patterns from a text
contains “don’t cares” characters, while maintaining our goal of the algorithm
simplicity and efficiency.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Alamro, H., Badkobeh, G., Belazzougui, D., Iliopoulos, C.S., Puglisi, S.J.: Com-
puting the antiperiod (s) of a string. In: 30th Annual Symposium on Combinatorial
Pattern Matching (CPM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2019)

3. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proceed-
ings 39th Annual Symposium on Foundations of Computer Science (Cat. no.
98CB36280), pp. 534–543. IEEE (1998)

4. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. J. Algorithms 50(2), 257–275 (2004)

5. Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns with
wildcards. Theory Comput. Syst. 55(1), 41–60 (2014)

6. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977). https://doi.org/10.1145/359842.359859

7. Chen, G., Wu, X., Zhu, X., Arslan, A.N., He, Y.: Efficient string matching with
wildcards and length constraints. Knowl. Inf. Syst. 10(4), 399–419 (2006)

8. Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: Pattern matching with don’t
cares and few errors. J. Comput. Syst. Sci. 76(2), 115–124 (2010)

9. Clifford, R., Porat, E.: A filtering algorithm for k-mismatch with don’t cares. In:
International Symposium on String Processing and Information Retrieval, pp. 130–
136. Springer (2007)

10. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proceedings of the Thirty-Sixth Annual ACM Sympo-
sium on Theory of Computing, pp. 91–100 (2004)

11. Cole, R., Hariharan, R.: Approximate string matching: a simpler faster algorithm.
SIAM J. Comput. 31(6), 1761–1782 (2002)

https://doi.org/10.1145/359842.359859


458 H. Alamro and C. Iliopoulos

12. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 592–601 (2002)

13. Commentz-Walter, B.: A string matching algorithm fast on the average. In: Inter-
national Colloquium on Automata, Languages, and Programming, pp. 118–132.
Springer (1979)

14. Crochemore, M., Hancart, C.: Pattern matching in strings. In: Mikhail, J.A. (ed.)
Algorithms and Theory of Computation Handbook, pp. 11.1–11.28. CRC Press
(1998). https://hal-upec-upem.archives-ouvertes.fr/hal-00620790

15. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

16. Crochemore, M., Perrin, D.: Pattern matching in strings. In: Image Analysis and
Processing II, pp. 67–79. Springer (1988)

17. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings
38th Annual Symposium on Foundations of Computer Science, pp. 137–143. IEEE
(1997)

18. Fischer, J., Huson, D.H.: New common ancestor problems in trees and directed
acyclic graphs. Inf. Process. Lett. 110(8–9), 331–335 (2010)

19. Fischer, M.J., Paterson, M.S.: String-matching and other products. Tech. rep. Mas-
sachusetts Institute of Technology, Cambridge Project MAC (1974)

20. Galil, Z., Giancarlo, R.: Improved string matching with k mismatches. ACM
SIGACT News 17(4), 52–54 (1986)

21. Gusfield, D.: Algorithms on stings, trees, and sequences: computer science and
computational biology. ACM SIGACT News 28(4), 41–60 (1997)

22. Iliopoulos, C.S., Rahman, M.S.: Pattern matching algorithms with don’t cares. In:
Proceedings of 33rd SOFSEM, pp. 116–126 (2007)

23. Indyk, P.: Faster algorithms for string matching problems: matching the convolu-
tion bound. In: Proceedings 39th Annual Symposium on Foundations of Computer
Science (Cat. no. 98CB36280), pp. 166–173. IEEE (1998)

24. Kalai, A.T.: Efficient pattern-matching with don’t cares. In: SODA 2002 Proceed-
ings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
655–656. ACM Press (January 2002). https://www.microsoft.com/en-us/research/
publication/efficient-pattern-matching-dont-cares/

25. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

26. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

27. Lam, T.W., Sung, W.K., Tam, S.L., Yiu, S.M.: Space efficient indexes for string
matching with don’t cares. In: International Symposium on Algorithms and Com-
putation, pp. 846–857. Springer (2007)

28. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
J. Algorithms 10(2), 157–169 (1989)

29. Liu, N., Xie, F., Wu, X.: Multi-pattern matching with variable-length wildcards
using suffix tree. Pattern Anal. Appl. 21(4), 1151–1165 (2018)

30. Nicolae, M., Rajasekaran, S.: On pattern matching with k mismatches and few
don’t cares. Inf. Process. Lett. 118, 78–82 (2017)

31. Pinter, R.Y.: Efficient string matching with don’t-care patterns. In: Combinatorial
Algorithms on Words, pp. 11–29. Springer (1985)

32. Rahman, M.S., Iliopoulos, C.S., Lee, I., Mohamed, M., Smyth, W.F.: Finding pat-
terns with variable length gaps or don’t cares. In: International Computing and
Combinatorics Conference, pp. 146–155. Springer (2006)

https://hal-upec-upem.archives-ouvertes.fr/hal-00620790
https://www.microsoft.com/en-us/research/publication/efficient-pattern-matching-dont-cares/
https://www.microsoft.com/en-us/research/publication/efficient-pattern-matching-dont-cares/


Detecting Pattern Efficiently with Don’t Cares 459

33. Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic matching of pat-
terns using a labeling paradigm. In: Proceedings of 37th Conference on Foundations
of Computer Science, pp. 320–328. IEEE (1996)

34. Sung, W.K.: Algorithms in Bioinformatics: A Practical Introduction. CRC Press,
Boca Raton (2009)

35. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

36. Wu, S., Manber, U., et al.: A fast algorithm for multi-pattern searching. University
of Arizona, Department of Computer Science (1994)

37. Ziviani, N., Baeza-Yates, R.: String processing and information retrieval. In: 14th
International Symposium, SPIRE 2007 Santiago, Chile, October 29–31, 2007 Pro-
ceedings, vol. 4726. Springer (2007)



Eye Movement Data Analysis

Olga Georgieva1(&), Nadejda Bocheva2, Bilyana Genova2,
and Miroslava Stefanova2

1 Faculty of Mathematics and Informatics,
Sofia University “St. Kliment Ohridski”,

5 James Bourchier Blvd., 1164 Sofia, Bulgaria
o.georgieva@fmi.uni-sofia.bg

2 Institute of Neurobiology, Bulgarian Academy of Sciences,
1113 Sofia, Bulgaria

nadya@percept.bas.bg

Abstract. The aim of the present study is to investigate the separation abilities
of three statistical parameters for grouping participants in the visual-motor
experiment by their age and gender. These parameters represent different
characteristics of the decision-making process and were determined by applying
the hierarchical drift diffusion model to the response time and accuracy of the
experimental data [1]. The objective function cluster analysis was applied to
explore distinct data spaces formed by the parameters’ data. The ability for
grouping is assessed and interpreted according to the differences in the subjects’
capabilities to perform the visuo-motor task. The study compares the conclu-
sions based by drift-diffusion model using Bayesian parameter estimation with
those based on the cluster analysis in terms of ability to distinguish the per-
formance of different age groups. The investigation of gender effects are
uniquely investigated by cluster analysis technique.

Keywords: Decision making � Visuo-motor task � Cluster analysis � Fuzzy
clustering

1 Introduction

A significant part of the brain studies concerns the revealing existing dependencies of
the biosignal parameters. The common implementation base of these purposes is the
new generation of communication devices as well as the new information technologies.
The problem of research is to investigate and apply an appropriate algorithm for data
processing enabling information retrieval in order to bring significant information about
the existing dependencies of the brain activity [10, 12].

The potential of the unsupervised learning algorithms as cluster analysis could be
considered as possible alternative for biosignal discrimination. These methods are
powerful in dealing with complex and uncertain information. They find groups within
the data and thus conclude about existing relations and features among them. Different
brain states have been benefited by this approach as a basis for theoretical and
experimental evidence for a scientific forecast of the human condition [10, 11].
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The process of human decision making involves a multitude of processes - from
coding stimulus information to organizing a response based on the decision choice.
A successful approach to separate the contribution of these processes is the drift
diffusion model [5–9]. The model is applicable for two-choice decision tasks and
assumes that the decision is reached by sequential accumulation of evidence in support
of the two decision choices. It combines the information about the accuracy and the
speed of performance and decomposes the processes not related to the decision in a
separate parameter (t-c) that describes the time needed to code the stimulus information
and prepare the response. The model assumes that the evidence in support of the two
possible choices accumulates in time and this process is noisy. The speed of evidence
accumulation depends on the task difficulty and is characterized by a parameter labelled
drift rate (v-c). An additional parameter (a-c) describes the balance between the
accuracy and speed of the response representing the decision boundary between the
two choices – if this boundary is large, more time is needed to make a choice, however,
the probability of accidental errors diminishes. If there is no imbalance in stimulus
presentation or a bias in selecting one choice more often, the starting point of evidence
accumulation is at the middle of the boundary between the two choices. However, all
main parameters of the model have variability due to instability to keep a constant
criterion in the decision process, the random variations in evidence accumulation from
trial to trial and the variability in the non-decision processes.

A Python toolbox named Hierarchical Drift Diffusion Model (HDDM) [13] applies
the drift-diffusion model by using Bayesian parameter estimation. It is flexible, allows
estimation of both individual and group parameters, tolerates missing values and
requires less data to estimate model parameters. However, coding mixed-effects models
with the toolbox is a challenge. In certain cases, it is quite difficult to evaluate the
interaction of between-subject factors. More complex models are also time-consuming.

In this study we try to evaluate whether, based on the parameters evaluated by
HDDM, it is possible to estimate the contribution of other between-subject factors, not
included in the analysis and to obtain additional information about different charac-
teristics of the stimulus conditions or experimental groups. The first part of the study
compares the conclusions based on the hypothesis testing in the HDDM with those
based on the application of a methodology by clustering algorithm about the infor-
mativeness of different experimental conditions and respective parameters of the drift
diffusion model. The assessment focuses the ability to distinguish the performance of
different age groups. The last study part extracts information about gender effects and
their interaction with age that were not assessed by the HDDM.

2 Data Description

Data from four types of visual experiments have been examined. Three types of
movements and one static condition were used. The stimuli were the so-called glass
patterns. They are generated by repeating the initial dot pattern after being transformed
by a certain rule e.g. all points are offset or rotated at a certain angle or offset from the
center of the set. In this way a pattern is formed in which each point is paired with
another. In our experiments, the points were offset from a given center, but it was
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displaced from the mid-point of the image in a horizontal direction. The pairs of dots
are relatively close together (at a distance of 60 pixels = 2 cm) and rotated in such a
way that if connected with a line, most lines would intersect at the displaced center of
the pattern. Out of 25 pairs of points (50 points in total) 18 pointed to the center of the
pattern, and 7 pairs were randomly oriented (this is called coherence of 72%). This
description corresponds to the static condition in the experiments.

The other conditions used are combined, flicker and motion. In all of them the
lifetime of the dots was three frames (100 ms). In the flicker condition, one-third of the
pairs are re-generated elsewhere on every frame keeping their initial orientation. This
gives the impression of movement, but it is not related to the orientation of the pairs. In
the combined condition, the pairs move in the direction of their orientation, so that
those pointing to the center of the set move away from it and the others (7) move in a
random direction. Again, each frame updates the position of one-third of the pairs. In
motion condition, there are no pairs, and 18 � 2 (36) points in the pattern move away
from a common center, while the remaining 7 � 2 (14) move randomly.

Data of 35 observers participating in the four experiments were collected. The
subjects are classified in three age groups: 12 young (19 to 34 years, median = 23
years); 11 middle aged (36 to 52 years, median = 44 years); 12 old (57 to 84 years,
median = 72) having a parity representation of both sexes in each group. Each pattern
was presented to each participant 20 times in random order. Each condition was
performed on a separate day. The task of the participants was to determine whether the
center of the patterns was to the left or to the right of the screen. They had to make a
saccade to the perceived pattern center and to press a mouse button according to their
decision.

3 Methodology

The present study aims to analyze the capabilities to extract information based on
statistical parameters, which represent the relationship between the accuracy of the
response and the response time when examining data from eye saccade movements in
the visuo-motor task. The problem needs to explore different spaces formed by these
data in order to answer which parameters best define the difference between the age
groups, as well as to assess the impact of the gender on their performance abilities.

For this search the raw data of the four experiments were processed to calculate the
statistical characteristics related to decisions in a two-choice task determined by
applying the HDDM to the response time and accuracy of the experimental task [1].
These parameters represent different properties of the decision-making process:

A) Time data not related to decision making processes, t-c. It represents the time
needed for coding the stimulus information and for organizing motor response.

B) Boundary between the two alternatives, a-c in decision. This parameter represents
the individual willingness for higher accuracy or faster speed.

C) Rate of accumulation of evidence about the two alternatives, v-c.
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Two types of data spaces could be organized to reveal different information:

1. The separation abilities of each parameter: t-c, a-c and v-c, could be investigated by
processing the corresponding four-dimensional space formed by each parameter
data obtained via all four experiments.

2. The distinguishing ability of each experiment namely static, combined, flicker and
motion, could be discovered by processing the corresponding three-dimensional
data space formed by the data of the parameters t-c, a-c and v-c obtained for the
respective experiment.

Our understanding is that clustering based on the parameters data characterizes the
decision-making process, whereas clustering by movement types - performance
accuracy related to the task difficulty. Exploring the structure of these spaces by
determining significant data groups we would be able to detect the influence of
the separate characteristics of the calculated parameters as well as the condition -
combined, motion, flicker, static on separating the contribution of the age and gender
on the decision process. Due to the lack of a reference model, studies of these data
spaces can be carried out using unsupervised learning methods as cluster analysis. For
each formed data space the research procedure follows several steps:

a) Data clustering;
b) Evaluation of clustering quality to find the optimal number of clusters;
c) Comparative analysis of the obtained grouping;
d) Visualization and interpretation of the results.

According to the preliminary investigations the data do not present clear structure
due to the complexity of the visuo-motor factors’ dependencies. In this situation, an
effective solution could be found by methods of objective function clustering. These
are methods based on optimization of clustering criterion for desirable separation. The
clusters are described by their center, which is a point in the data space that is most
representative for the cluster in probabilistic sense. Further, we apply fuzzy clustering
technique as a good opportunity to deal with uncertainty of the spaces. Its advantage is
that it assesses belonging, as well as the degree of belonging to the distinct clusters.

Fuzzy-C-Means (FCM) Algorithm
Fuzzy clustering technique is particularly successful in partitioning not well separated
data groups with vague and uncertain boundaries. Every point of the data space belongs
to the clusters with degree of membership, which is a value between 0 and 1. If the data
is close to the cluster center, the membership degree is closer to one. FCM is an
objective function-based algorithm with clustering criteria J that minimizes the fol-
lowing sum [4]:

J ¼
Xc

i¼1

XN
k¼1

umik xk � vik2
�� ; ð1Þ

where uik denotes the membership degree of the data point xk, k = 1,…, N, to the i-th
cluster center vi, i = 1,…, c. Here N is the number of data in the data space and c is the
number of clusters. The coefficient m 2 [1, ∞) determines how much clusters may
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overlap and its default value is m = 2. As we don’t have a preliminary knowledge
about the shape and orientation of the searched clusters, Euclidean distance is incor-
porated as a data distance measure of (1).

Quality of Clustering
Several indexes are calculated to evaluate the quality of clustering:

1) Average within cluster distance (AWCD) value estimates the data distances to the
cluster center in the clusters. Minimum value is preferred, however the “knee”
principle is applied to determine the best clustering for a given data space.

AWCD ¼ 1
c

Xc

i¼1

PN
k¼1 u

m
iku xk � vik kmPN
k¼1 u

m
ik

ð2Þ

2) Average partition density (APD) assesses the density of the clusters. An index
measures the fuzziness of the partition but without considering the data set itself.
Good partitions are indicated by large values of APD.

APD ¼ 1
c

Xc

i¼1

SiPN
k¼1 uik

; ð3Þ

where Si ¼
PN
k¼1

uik for every point k that xk � við Þ xk � við ÞT\1.

3) The cluster volume, Vi, i = 1,.., c, is calculated by a sum of the memberships
values that form the cluster. Maximum value indicates better clustering.

The AWCD, APD and Vi indexes are parameters that evaluate the quality of the
obtained data grouping itself, but not the classification capabilities of the obtained
grouping. In order to assess the extent to which the obtained clusters cover actually
existing groups in data in terms to the age and gender, it is necessary to account for the
degrees of affiliation of the subject data to each cluster presented. As all data belong to
all clusters in order to evaluate the subject affiliation the maximum degree of mem-
bership is taken to determine the affiliation to a particular cluster.

4 Results and Analysis

Results of FCM application to the four-dimensional data spaces of each experimental
parameter: t-c, a-c, v-c, are considered.

4.1 Age Grouping Assessment

The obtained values for AWCD and APD indexes allow to set appropriate data sep-
aration among division in 2, 3, 4 and 5 clusters as well as to compare the three studied

464 O. Georgieva et al.



data spaces t-c, a-c, v-c (Table 1). Best clustering in terms of group compactness,
which means better informativeness, is identified in space t-c as the APD index takes
highest values, followed by space v-c. The least informative is the space a-c. This result
means that the parameter that could best distinguishes the age of the participants in a
decision making task is the time needed for coding the stimulus information and for
organizing motor response. The parameters that are directly involved in making a
decision like the rate of evidence accumulation or the boundary between the two
choices are less informative for this task.

The results of AWCD enable to set the proper number of clusters. However, this
answer is not straightforward. By applying the knee method to all data spaces we found
that most representative is clustering in 3 and 4 clusters. Bearing in mind the number of
data, division in more than five clusters does not give reliable information.

Further consideration of t-c data space division as most informative one could
reveal more existing dependences. Thus, when dividing into three clusters, the inter-
pretability of the results is directly referred to the three studied age subjects groups,
whereas at c = 4 three significant clusters and one of outliers could be discussed.

The coordinates of the cluster centers give us some more inside information about
the obtained grouping (Table 2). For separation in three clusters, c = 3, the first cluster
comprises most of the young and part of the middle aged adults, the second cluster
includes part of the elderly people and the third - most of the elderly and part of the
middle aged subjects. This division is not able to recognize the middle aged persons,
whereas the two others – young and old, are well defined. The division in four clusters,
c = 4, identifies well the young and old people as the first cluster comprises only young
people and the fourth cluster includes only elderly people. The second cluster is formed
mostly by middle aged; the third one is mostly formed by old subjects.

Table 1. Clustering indexes results of the distinct parameters

Index \c 2 3 4 5
t-c data space
AWCD 0,279133 0,179799 0,129162 0,053895
APD 0,887900 0,886915 0,910591 0,913007
a-c data space
AWCD 0,710794 0,489768 0,377499 0,261670
APD 0,638586 0,766424 0,769378 0,779237
v-c data space
AWCD 0,555400 0,351397 0,270981 0,217894
APD 0,752245 0,855247 0,827687 0,851103
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It could be summarized that the middle aged group is difficult to distinguish,
especially when separation is in three clusters. The elderly group is more scattered than
the young one in both clustering (Fig. 1). According to the cluster centers values, the
dynamic conditions better distinguish participants then the static one. In particular, best
one is motion condition, where no form information (e.g., orientation grouping) is
presented. This implies that the absence of form information (no orientation grouping)
in the visual motion task allows better separation of the age groups.

In order to assess the extent to which the obtained clusters cover actually existing
data groups formed by the age and gender, it is necessary to account for the degrees of
membership of each person’s data to each cluster obtained. The maximum degree of
membership determines the affiliation with a particular cluster. The affiliation of par-
ticipants from different age groups to a cluster for each of the studied spaces in 4
clusters is presented in Figs. 1, 2 and 3, where young subjects’ data are in pink, in
green are data of the middle group and in blue – elderly subjects. Each examined
person is represented by a line connecting it to the center of a cluster. The length of the
line corresponds to the degree of membership to that cluster.

Table 2. Cluster centers of t-c parameter data clustering grouped into 3 and 4 clusters

c Combined Flicker Motion Static c Combined Flicker Motion Static

1 0,3219 0,3314 0,3340 0,3264 1 0,2786 0,2589 0,2479 0,2534
2 0,9736 1,0641 1,3208 0,6849 2 0,3993 0,4169 0,4737 0,4298
3 0,5477 0,5353 0,5965 0,5439 3 0,5865 0,5795 0,6284 0,5729

– – – – 4 0,9609 1,0519 1,3070 0,7344

Fig. 1. Clustering in 4 clusters based on t-c: time unrelated to the decision-making process.

Fig. 2. Clustering in 4 clusters via v-c: rate of information accumulation for the two alternatives.
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The results of three-dimensional spaces organized for the data of the different
conditions of the experiments are less informative and will not be presented here.

4.2 Gender Grouping Assessment

The assessment of the gender differentiation of the subjects participated in the visual
experiments can be done by the grouping of the four-dimensional space. For this
purpose, the volume of clusters, Vi, i = 1, c formed from the data for the two genders
are compared. The respective relative volume values are calculated in order to account
for the different number of female and male participants in each group.

Relative value of the cluster volumes of t-c data set separation shows that males are
more represented in the clusters of young people and part of the middle-aged, whereas
women predominantly form the cluster of elderly. The bold values at Table 3 present
the highest volume for each gender for separation in 3 and 4 clusters, respectively.

By the same method the two genders are distinguished for each group separately
(Table 4). Again, female are less likely to form the group of young people, while male
are strongly represented in it: 0,559 vs. 0,8799 for division into 3 clusters and 0,3645
vs. 0,6945 for division into 4 clusters. Conversely, women more strongly form the
elderly group, whereas male are less represented. These results are visible at Fig. 4a
and b. The interaction between age and gender obtained here for a task of decision
making based on dynamic visual information is in agreement with previous data
analysis on motion direction discrimination [2].

Fig. 3. Clustering in 4 clusters based on a-c: the boundary between the two alternatives

Table 3. Relative values of the cluster volumes for the two genders of t-c data clustering

c = 3 c = 4
Cluster Female Male Cluster Female Male

1 0,3019 0,5844 1 0,1598 0,3268
2 0,1544 0,0834 2 0,3178 0,4033
3 0,5438 0,3322 3 0,3855 0,2110

4 0,1369 0,0589
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5 Conclusion

The results shown can be used to account for existing dependencies in the age and
gender to deal with the visual decision making task. The accuracy of the responses for
different types of stimuli and reaction time are accounted for. The results of separating
the age groups based on the values of the parameters of the drift diffusion model are in
agreement with the conclusions based on the probability to distinguish the three age
groups in the different tasks obtained by the HDDM [1]. In our experimental condition
the non-decision time provides better separation of the age groups than any other

Table 4. Relative volumes of clusters calculated for the two genders in t-c space; a) division in
three clusters; b) division in four clusters

a) Young Middle aged Elderly
Cluster Female Male Female Male Female Male
1 0,559 0,8799 0,3104 0,5859 0,079 0,2384
2 0,0213 0,0191 0,0291 0,0211 0,3906 0,2105
3 0,4197 0,1011 0,6605 0,3931 0,5304 0,5511
b) Young Middle aged Elderly
Cluster Female Male Female Male Female Male
1 0,3645 0,6957 0,1048 0,0969 0,0443 0,0881
2 0,3223 0,2507 0,4896 0,6369 0,109 0,3866
3 0,2614 0,0444 0,3853 0,2572 0,4891 0,3669
4 0,0118 0,0092 0,0204 0,0091 0,3576 0,1585

Fig. 4. a. Gender distribution for division into 3 clusters of t-c groups of young (pink), middle
aged (green) and elderly (blue); female - empty square, male - filled circles. b. Gender distribution
for division into 4 clusters of t-c groups of young (pink), middle aged (green) and elderly (blue);
female - empty square, male - filled circles.
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parameter. In single experiments Ratcliff and colleagues found that the boundary
separation and the non-decision time distinguish most the young and the old partici-
pants [9]. They showed that the non-decision time is the parameter that correlates most
between the different studies with the same participants. This result may imply that the
non-decision time is the most stable individual characteristic of the participants in the
two-choice decision tasks.

Our findings suggest that the differences in the experimental conditions in a
common task significantly affect various aspects of the process of decision making and
allow separating the participants in the experiments by some individual characteristics
in the space of the HDDM parameters. The correspondence of the conclusions based on
the HDDM and the clustering data of our study validates the possibility to complement
the analysis of the subjects’ performance in two-choice decision tasks by method based
on fuzzy clustering analysis. The application of this approach provides additional
information based on the cluster separation. It implies that in a visual task where the
location of the pattern center could be determined by form cues (orientation), motion
cues (direction of motion) or by their combination, the dynamic conditions provide
better separation of the age groups. These conclusions are in agreement with the
knowledge that static information is predominantly processed by the ventral pathway in
the brain and dynamic information by the dorsal pathway [3]. The first pathway is
slower and involves the recognition of images as the final stage of information pro-
cessing, while the dorsal pathway is associated with determining the location of
objects, their spatial location and their movement.

Our results also imply that between-factors not studied by HDDM can be evaluated
based on the individual values of the parameters extracted from the model application.
Clustering methodology is successful to the gender estimation obtaining results similar
to our previous findings. This possibility allows the simplification of model coding and
estimation by HDDM. Improvement of the interpretability of the clustering results is
also expected by processing of the raw data recorded by the eye tracker.
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Abstract. This work deals with the analysis of Kabsch and quaternion algo-
rithms, which may be used for 3D superimposition of molecules by rigid roto-
translation in computational chemistry and biology. Both algorithms, which are
very important for in silico drug design, were studied from the point of view of
their non-trivial mathematical structure. Their computational complexity was
investigated by a superimposition of various random pseudo-molecules with 2 –

100,000 atoms in Matlab. It was found that both proposed algorithm imple-
mentations exhibit the same asymptotic time computational complexity of O(n),
with the quaternion algorithm involving a higher number of floating-point
operations (FLOPs) and showing lower computational performance in terms of
serial CPU time.

Keywords: Molecular superimposition � Computational complexity � Kabsch
algorithm � Quaternions � Drug design

1 Introduction

Over the last few decades, rational approaches in computational chemistry, computa-
tional biology, bioinformatics, chemoinformatics and drug research have increasingly
applied various algorithms, which can predict, under certain conditions, structures of
chemical substances with the desired biological activity before they are synthesized and
biologically tested on living organisms [1, 2]. This gradually leads to a qualitative
departure from outdated drug development methods based on trial-and-error heuristic
approaches towards cheaper, faster and more efficient ways of drug design using
modern biomedical technologies. The impact of these applied information technologies
is evidenced mainly by more than 200 drugs that have been successfully introduced
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into clinical trials with significant help of so-called computer-aided drug design
(CADD) methods [3]. However, CADD methods are not widespread globally and their
potential is not fully realized at present. On the other, CADD methods still present a
challenge for computer scientists, since the required high accuracy in the desired
predictions may be satisfied only by extremely demanding calculations.

From the vast number of different CADD methods (e.g. pharmacophore analysis,
structure-activity relationships, molecular docking, molecular metadynamics, Free
energy perturbation, core hopping, virtual screening, ab initio calculations), we will
select and focus on a crucial problem of efficient superimposing two chemical mole-
cules in a three-dimensional Euclidean space [4]. The superimposition of two mole-
cules is an important computational operation performed, for example, to assess
similarity of the electron density of chemical structures, to create a reference Cartesian
system for molecular interaction fields in 3D structure-biological activity analyses (3D
QSAR), or to quantify conformational changes of molecules in molecular dynamics
studies [5, 6]. In a certain variation, the problem of the best superimposition of two
structures is also encountered in bioinformatics, where it has a related principle of
searching for similarities between text strings that represent the genetic code as a
sequence of nucleic acids.

We will focus, in this work, on the presentation of the computational part of the
roto-translation of molecules in the context of computational chemistry. The aim of this
work will, thus, be to outline present techniques to superimpose two molecules that
differ in a particular way (e.g. by the constitution, configuration, conformation, position
and rotation in 3D space). We will try to define and interpret the problem from the point
of view of theoretical computer science. This part will be followed by an overview of
possible program implementations that superimpose two molecules and by an exper-
imental analysis of their computational complexity in Matlab 2018. Although molec-
ular superimposition has been to some extent reported in the literature, this work clearly
proves and explains that the Kabsch algorithm is better for implementation in bioin-
formatics tasks than the quaternion based superimposition algorithm.

2 Problem Definition

At first, we introduce the problem of optimal superimposition of two molecules A and
B by defining each molecule as a separate, rigid object in three-dimensional space. We
will characterize each molecule in a simplified way as a point group in 3D space using
Cartesian coordinates of all n atoms. We will use a matrix notation, where chemical
symbols of the elements (Z, consisting of one or two characters) are in the first column
and the Cartesian coordinates x, y and z, expressed in units Å (10−10 m) in the next
three columns. We call this matrix molecular identity matrix I (1).

I ¼
Z1
..
.

Zn

x1
..
.

xn

y1
..
.

yn

z1
..
.

zn

2
64

3
75 ð1Þ
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The simplest case of superimposing two identical molecules can be solved as a
problem of minimizing the distances of the same atoms in their identity matrices IA and
IB (Fig. 1). If two different molecules are to be superimposed, it is necessary to specify
additional superimposition rules for two molecules in mathematical terms. For instance,
it is possible to superimpose only some important atoms or groups of atoms in
molecules (e.g. pharmacophores) or to add a factor that favors the closest superim-
position of the atoms that are most chemically similar (e.g. bioisosteric groups, atoms
in the same group of elements). In the special case of constitutional isomers (e.g. 1,4-
dichlorobenzene and 1,3-dichlorobenzene, Fig. 1, right part), we can also use the same
algorithm as in the case of the superimposition of identical molecules roto-translated in
3D space which minimizes Euclidian distances between the corresponding chemical
elements in the identity matrices IA and IB. In the case of “very” different molecules, it
is therefore necessary to introduce similarity or priority criteria for matching atoms, but
this is evidently an arbitrary condition that opens door to various solutions.

Thus, the problem of superimposing two molecules is to minimize the distances of
the same or similar atoms in the two molecules. In the case of superimposing so-called
conformational isomers or proteins, root-mean-square distance (RMSD) is used to
evaluate the achieved superimposition. When comparing conformers A and B, i.e. two
molecules with the same identity and connectivity, the calculation of RMSD is given
by Eq. (2):

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
xAi � xBið Þ2 þ yAi � yBið Þ2 þ zAi � zBið Þ2

r
ð2Þ

where xi, yi and zi represent coordinates of the same atoms in the identity matrices I of
molecules A and B. The RMSD function in this definition can only be used to char-
acterize a pair of the same molecules in a different conformations. For instance, RMSD
can be utilized to compare results of X-ray analysis and molecular docking simulation
of a drug-receptor complex. When calculating RMSD for two conformers, distances
between two corresponding atoms in the identity matrices IA and IB are simply eval-
uated. In the case of two different molecules, RMSD could be alternatively calculated
from all intermolecular atom pair distances. In such a case, the asymptotic time cal-
culation complexity of the RMSD calculation has a value of O(n � m).

Fig. 1. A symbolic superimposition of two molecules in 2D space, which may be identical
(1) or different (2).
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In practice, several simplifying rules can be applied to achieve lower complexity of
RMSD calculations, because this measure should be simple in order to be utilized in
superimposing algorithms as an objective function which should be minimized. Then
the optimal superimposing algorithm can be selected for massive calculations with
millions of molecules.

3 State of the Art

3D molecular superimposition currently plays an important role in studies of energetic,
physical-chemical, and biological properties of chemical substances (e.g. small mole-
cule drugs, proteins, nucleic acids). The basic difficulty in superimposing molecules is
that there are many ways to superimpose molecules. This makes the problem inherently
very complex, especially if the conformational flexibility is allowed. In practice,
therefore, various heuristic approaches or sampling techniques are used to perform
molecular superimposition.

In principle, molecular superimposition techniques can be divided into two basic
categories: 1) comparing dimensionless atoms or groups of atoms (e.g. functional
groups or pharmacophores); 2) comparing atoms or groups of atoms having a volume.
From a computational point of view, the least squares methods, genetic algorithms,
Monte Carlo algorithms, brute force algorithms or simulated annealing are used in
practice to superimpose two molecules [7]. From a chemical point of view, superim-
position methods can be divided into those that consider the simple qualitative identity
of dimensionless atoms and those that are derived from maximizing the electron
density overlap between two molecules [8]. In addition, various approximate super-
imposition algorithms that are inaccurate but very fast are used in practice (e.g.
algorithms for projecting chemical structures into a symmetric icosahedron, maxi-
mization of molecular surface overlap). Other algorithms are based on the insertion of
elastic bonds between similar atoms of the ordered molecules and subsequent geo-
metrical minimizing the potential energy of the system thus defined. However, many of
these algorithms are implemented in commercial programs for computational chemistry
and revealing their structure or determining their asymptotic time complexity is quite
demanding due to the unavailability of the program source codes [9].

Mathematically, the problem of superimposing two molecules is commonly solved
by orthogonal rotation of one molecule, with RMSD being an objective function that
needs to be minimized. In the case of protein alignment, RMSD is calculated only for
alpha carbons of the same amino acids. Several least squares algorithms have been
proposed to find a rotation that minimizes RMSD [10]. The most effective superim-
position methods require finding the eigenvectors of a matrix of squares of interatomic
distances (e.g. Kabsch method, Diamond method) [11, 12]. Currently, superimposing
techniques are still evolving and turn out to be more computationally efficient than
older matrix-based methods. For example, a quick and easy iterative Newton-Raphson
(NR) superimposition method that determines the eigenvalues of the quadratic
molecular distance matrix from its characteristic polynomial may be mentioned [13].
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Based on the NR method, a quaternion based algorithm was lately proposed which
seems to be very efficient and less complex in comparison to the Diamond algorithm
[14]. Quaternion algorithms are utilized for example in molecular docking software to
superimpose various molecules.

In the study, we will focus on two types of superimposing algorithms, namely on
the Kabsch algorithm which uses 3 � 3 rotation matrices and on the quaternion method
which applies 4 � 4 rotation matrices. We will try to briefly describe their computa-
tional complexity and compare them experimentally in Matlab. Up to our best
knowledge, performance and scalability testing of both algorithms has not been pub-
lished yet.

4 Methodology and Proposed Solutions

4.1 Formal Definition of Superimposition

Let us have two vectors p = {p1, p2, …, pn} and q = {r1, r2, …, rn}, which denote two
point groups with one-to-one correspondence. Each component pi and ri has three sub-
components: (pi(x), pi(y), pi(z)), (ri(x), ri(y), ri(z)). Assuming that the vectors p and q
have properties of a rigid body, the superimposition problem can be defined as finding
the optimal rotation matrix R and the translation vector t so that the following holds (3):

RMSD ¼
ffiffiffiffiffi
e
n
;

2

r
e ¼ min Rpþ t � qj j2¼ min

Xn

i¼1
Rpi þ t � rij j2: ð3Þ

The task defined in this way belongs to the problems of finding the least squares. It
can be shown that the optimization of translation vector t is independent of rotation
(4–6):

@e
@t

¼ @

@t

Xn

i¼1
Rpi þ t � rij j2¼

Xn

i¼1
2
@ Rpi þ t � rið Þ

@t
Rpi þ t � rið Þ ¼ 0; ð4Þ

@e
@t

¼
Xn

i¼1
Rpi þ t � rið Þ ¼ 0 ! t ¼

Pn
i¼1 ri
n

� R
Pn

i¼1 pi
n

; ð5Þ

t ¼ centroid pð Þ � Rcentroid qð Þ: ð6Þ

Importantly, the rotation of a centroid point is identity. It follows that after moving
both vectors p and q to their centroids, the optimal superimposition can be simply
found by rotating the vectors (7):

e ¼ min
Xn

i¼1
Rp

0
i � r

0
i

�� ��2;where p
0
i ¼ pi �

Pn
i¼1 pi
n

and r
0
i ¼ ri �

Pn
i¼1 ri
n

: ð7Þ
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4.2 Kabsch Algorithm

In this subsection, our implementation of Kabsch algorithm is described. This algo-
rithm was designed to minimize RMSD for two molecular systems A and B with
defined atom one-to-one correspondence, which optimizes the rotation matrix R (8).

RMSD ¼
ffiffiffiffiffi
e
n
;

2

r
e ¼ min IBR� IAk k2: ð8Þ

The Kabsch algorithm can be separated into three main steps:

1. translation of the geometric center of molecule A (e.g. centroid) into the geometric
center of molecule B,

2. calculation of the covariance matrix,
3. calculation of the optimal rotation matrix R.

Translation of molecule A requires the calculation of the geometric centers of
molecules A and B. The calculation can be characterized by a simple algorithm whose
time complexity is given by the number of atoms n in a given molecule, respectively in
the corresponding identity matrix I, as O(n).

function mid = ctrd(I,n) % I is an identity matrix
mid = [0, 0, 0];
for (int i = 1; i <= n; i++) {

mid (1,1) = mid (1,1) + I(i, 2);
mid (1,2) = mid (1,2) + I(i, 3);
mid (1,3) = mid (1,3) + I(i, 4);}

mid = mid./n;

The translation itself is accomplished by determining the translation vector t, which
is subtracted from the coordinates of the mobile molecule B. Again, it is a calculation
with time complexity of O(n), which is dependent only on the number of atoms n in
molecules A and B.

mid1 = ctrd(I_A,n); % I_A is the identity matrix of A
mid2 = ctrd (I_B,n);
t = mid2 – mid1,
function C = shift (I_B, n, t) 
for (int i = 1; i <= n; i++) {

I_B(i,2) = I_B(i,2) – t(1,1);
I_B(i,3) = I_B(i,3) – t(1,2);
I_B(i,4) = I_B(i,4) – t(1,3);}

C = sqrt(sum(t.*t)); % returning the magnitude of t

Calculating the covariance matrix H from the identity matrix of molecule A (IA)
and the shifted molecule B (IB) is a mathematical operation that involves transposition
and multiplication of the matrices (H = ATB). Summing up the transposition and the
product into one algorithm, this calculation shows an asymptotic time complexity of O
(n). At this point, the algorithm assumes that the matrices IA and IB contain the same
number of n corresponding atoms (i.e. unmatched atoms have to be excluded from the
calculation).
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function H = covariance (I_A, I_B, n)
H = zeros(3,3);
for (int i = 2; i <= 4; i++) {

for (int j = 2; j <= 4; j++) {
for (int k = 1; k <=n; k++) {
H(i-1,j-1) = H(i-1,j-1) + I_A(k,i)*I_B(k,j);}}}

However, it should be recalled here that iterative multiplication of square matrices
that is performed in the covariance calculation has generally time computational
complexity of O(n3) due to three nested for loops, as seen in the above algorithm.
However, in the above multiplication of matrices n � 3, the asymptotic time com-
plexity in the big O notation is only proportional to n. Regarding multiplication of
matrices of different dimensions, there are currently algorithms the time complexity of
which is proportional to n with an exponent between 2 and 3 (e.g. Strassen or CW-like
algorithms).

The last step of the Kabsch algorithm is the calculation of the optimal rotation
matrix R. This matrix can be calculated according to the following mathematical
formula (9):

H ¼ USVT; d ¼ det VUT� �
;R ¼ V

1 0 0
0 1 0
0 0 d

0
@

1
AUT: ð9Þ

Since the covariance matrix H has a dimension of 3 � 3 in this case, the calculation
of the rotational matrix R by singular value decomposition (SVD), determinant cal-
culation and matrix multiplication have a constant time complexity of O(1). However,
if the matrix H were generally of m x n dimensions, the asymptotic time complexity of
the SVD calculation would be of O(m2n + mn2) and the calculation of the determinant
by the Bareiss algorithm of O(n3).

Importantly, the most complicated operation in superimposition of two molecules is
calculation of the covariance matrix H, which is essentially based on matrix multi-
plication. Another question, however, is how effective the Kabsch algorithm is, for
example, in achieving minimum RMSD.

4.3 Quaternion Algorithm

The quaternion algorithm is based on the same problem definition of superimposition
as the Kabsch algorithm (see Eq. (8)). If we expand the Eq. (8), we get the relation (10),
in which the center, linear and negative term causes a change in distance as a function
of rotation. The other two quadratic terms are constant.

e ¼ min IBR� IAk k2¼
Xn

i¼1
R bið Þk k2�2

Xn

i¼1
R bið Þ � ai þ

Xn

i¼1
aik k2: ð10Þ
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The middle, non-quadratic term can be expressed using quaternion notation (11):

Xn

i¼1
R bið Þ � ai ¼

Xn

i¼1
qaiq

� � bi ¼
Xn

i¼1
qaið Þ � biqð Þ: ð11Þ

The quaternion can be expressed as a four-component vector q = (q0, q1, q2, q3)
T or

it can be expanded to a quaternion matrix Q with dimensions 4 � 4 (12):

Q ¼
q0 �q1 �q2 �q3
q1 q0 �q3 q2
q2 q3 q0 �q1
q3 �q2 q1 q0

0
BB@

1
CCA: ð12Þ

Using the quaternion matrix form (12), the coordinate part of identity matrices for
molecules A (e.g. A) and B (e.g. B) may be expressed as quaternions, whose first
components will be zeros (13):

Ai ¼
0 �ai;x �ai;y �ai;z
ai;x 0 �ai;z ai;y
ai;y ai;z 0 �ai;x
ai;z �ai;y ai;x 0

0
BB@

1
CCA;Bi ¼

0 �bi;x �bi;y �bi;z
bi;x 0 �bi;z bi;y
bi;y bi;z 0 �bi;x
bi;z �bi;y bi;x 0

0
BB@

1
CCA: ð13Þ

By means of the quaternion definitions of molecules A and B, the rotation of the
molecular system can be expressed as (14):

Xn

i¼1
Aiqð Þ � Biqð Þ ¼

Xn

i¼1
qTAT

i Biq ¼ qT
Xn

i¼1
AT

i Bi

� �
q: ð14Þ

When we define these equations: Ni ¼ AT
i Bi;N ¼Pn

i¼1 Ni, then we get the fol-
lowing relationship (15):

Nq ¼ kq; ð15Þ

where N is a symmetric matrix and its elements Ni are equal to (16):

Ni ¼

axibxi þ ayibyi þ azibzi azibyi � ayibzi axibzi � azibxi ayibxi � axibyi
azibyi � ayibzi axibxi � ayibyi � azibzi ayibxi þ axibyi axibzi þ azibxi
axibzi � azibxi ayibxi þ axibyi �axibxi þ ayibyi � azibzi azibyi � ayibzi
ayibxi � axibyi axibzi þ azibxi azibyi þ ayibzi �axibxi � ayibyi þ azibzi

0
BBB@

1
CCCA:

ð16Þ

To simplify the calculation, let’s define the paired products of the coordinates Sxy in
A and B molecules using summations (17):

Sxy ¼
Xn

i¼1
axibyi : ð17Þ
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Subsequently, we can express the total matrix N by summations S (18):

N ¼
Sxx þ Syy þ Szz Szy � Syz Sxz � Szx Syx � Sxy

Szy � Syz Sxx � Syy � Szz Syx þ Sxy Sxz þ Szx
Sxz � Szx Syx þ Sxy �Sxx þ Syy � Szz Szy � Syz
Syx � Sxy Sxz þ Szx Szy þ Syz �Sxx � Syy þ Szz

0
BB@

1
CCA: ð18Þ

If we diagonalize the matrix N, we obtain eigenvectors vi and eigenvalues ki for
which this holds (19):

q ¼
X4
i¼1

aivi;Nq ¼
X4
i¼1

aikivi; qTNq ¼
X4
i¼1

aikiqTvi

¼
X4
i¼1

aiki
X4
j¼1

ajv
T
j

 !
vi:

ð19Þ

The eigenvector, which has the maximum eigenvalue (i.e. the maximum because
we require the relationship (11) to have the maximum value and, due to its negative
sign, to cause the lowest decrease in RMSD), represents quaternion elements that
provide the most advantageous rotation minimizing RMSD. The characteristic poly-
nomial of the matrix N, whose roots represent eigenvalues, can be expressed as follows
(20–21):

det N� kIj j ¼ p0k
4 þ p1k

3 þ p2k
2 þ p3kþ p4 ¼ 0; ð20Þ

k� e1ð Þ k� e2ð Þ k� e3ð Þ k� e4ð Þ ¼ 0: ð21Þ

The roots of a characteristic polynomial can be obtained e.g. by the Ferrari method
(22–25):

e1;2 ¼ � p1
4p0

� S� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4S2 � 2aþ x

S

r
; e3;4 ¼ � p1

4p0
þ S� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4S2 � 2aþ x

S

r
;

ð22Þ

a ¼ 8p0p2 � 3p21
8p20

;x ¼ p31 � 4p0p1p2 þ 8p20p4
8p30

; S ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2
3
aþ 1

3p0
Qþ D0

Q

� 	
;

s

ð23Þ

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
1 � 4D3

0
2
q

2
;

3

vuut
D0 ¼ p22 � 3p1p3 þ 12p0p4; ð24Þ

D1 ¼ 2p2 � 9p1p2p3 þ 27p21p4 þ 27p0p23 � 72p0p2p4 ð25Þ
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When we define the relationships between the characteristic polynomial parameters
and the elements of the matrix N, the following relationships hold (26–29):

p0 ¼ 1; p1 ¼ 0; ð26Þ

p2 ¼ � 2 Sxxð Þ2 þ Sxy
� �2 þ Sxzð Þ2 þ Syx

� �2 þ Syy
� �2 þ Syz

� �2 þ Szxð Þ2 þ Szy
� �2 þ Szzð Þ2

� �
;

ð27Þ

p3 ¼ � 8 SxxSyySzz þ SyzSzxSxy þ SxySyxSxz
� �

; ð28Þ

p4 ¼ Sxy
� �2 þ Sxzð Þ2� Syx

� �2� Szxð Þ2
� �2

þ � Sxxð Þ2þ Syy
� �2 þ Szzð Þ2þ Syz

� �2h
þ Szy
� �2� 2ðSyySzz�SyzSzyÞ

i
� � Sxxð Þ2 þ Syy

� �2 þ Szzð Þ2 þ Syz
� �2 þ Szy

� �2 þ 2 SyySzz�SyzSzy
� �h i

þ �ðSxz þ SzxÞ Syz�Szy
� �þ Sxy�Syx

� �
Sxx�Syy�Szz
� �
 �� � Sxz�Szxð Þ Syz þ Szy

� �

þ Sxy�Syx
� �ðSxx�Syy þ SzzÞ

�þ � Sxz þ Szxð Þ Syz þ Szy
� �


� Sxy þ Syx
� �

Sxx þ Syy�Szz
� ��� � Sxz�Szxð Þ Syz�Szy

� ��ðSxy þ SyxÞ Sxx þ Syy þ Szz
� �
 �

þ Sxy þ Syx
� �

Syz þ Szy
� �


þ Sxy þ Szx
� �

Sxx�Syy þ Szz
� ��� �ðSxy�SyxÞ Syz�Szy

� �

� Sxz þ Szxð Þ Sxx þ Syy þ Szz

� ��þ Sxy þ Syx
� �

Syz þ Szy
� �


þ Sxz þ Szxð ÞðSxx�Syy�SzzÞ
�� � Sxy�Syx

� �
Syz�Szy
� � þ Sxz þ Szxð Þ Sxx þ Syy�Szz

� �
 �
:

ð29Þ

The above equations represent a non-trivial mathematical way for finding the
optimal rotational matrix R using quaternion calculus. If we look at these calculations
from the informatics point of view, we can draw the following conclusions:

• The translation of the centers of molecules is the same in the quaternion algorithm
as in the Kabsch algorithm,

• the most computationally intensive is finding a quaternion that maximizes
expression (11),

• once the highest eigenvalue of the matrix N kmax is found, the optimal quaternion
can be found as eigenvector by solving the equation (e.g. by the Gaussian method)
(30):

N� kmaxIð Þv ¼ 0: ð30Þ

Let us take a closer look at the time complexity of the steps involved in finding the
optimal quaternion to minimize RMSD of two molecules by rotation. The expression
(17) can be calculated by the following simple algorithm:

Sxy = 0;
for (int i = 1; i <= n, i++) {

Sxy = Sxy + I_A(i,2)*I_B(i,3); }% I_A, I_B - identity matrices
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The algorithm for calculating Sij has an asymptotic time complexity of O(n).
However, Sij has to be calculated for all variations from the set of x, y, z coordinates for
molecules A and B, which are 32, (see (19)). Even though the above formula seems to
be complicated, the complete quaternion rotation still retains the asymptotic time
complexity of O(n).

Similarly, all operations in (19–21) involve a constant number of algebraic oper-
ations and therefore they have an asymptotic time complexity equal to constant, that is,
O(1). It would be possible to prove that the Gaussian method for calculating eigen-
vectors of the matrix N also exhibits the asymptotic time complexity of O(1). If we
compare the Kabsch and quaternion algorithms, it follows that both algorithms have the
same time complexity. However, it is obvious that the Kabsch algorithm includes fewer
floating-point operations (FLOPs).

5 Results and Discussion

In this study, both the Kabsch and quaternion algorithms were implemented and tested
to evaluate their computational complexity in Matlab 2018. Taking into account
Matlab’s publicly available M codes, custom algorithms for the Kabsch and quaternion
based superimposition were developed which estimated the relationship between the
time necessary to superimpose two molecules containing 2 – 100,000 randomly
positioned atoms. During the tests, calculation wall-time and RMSD values were
monitored. The following simple script for Matlab was designed for the tests:

function []=test (n) % n is the maximal number of atoms to test
for i=2:n

A = rand (3,i); % generation of random pseudo-molecule
B = rand (3,i);
tic; % start of time measurement
lrmsd_1(i-1) = kabsch(A,B); % evaluation of RMSD
time(i-1)=toc; % stop of time measurement 
tic;
lrmsd_2(i-1) = quaternion (A,B); % evaluation of RMSD
time_b(i-1)=toc;

end
a = subplot(2,1,1); 
plot(2:n,time,2:n,time_b);
legend(a, {'Kabsch','Quaternion'});
b = subplot(2,1,2);
plot(lrms_1,lrms_2);
legend(b, {'Kabsch vs. Quaternion'});

The calculations confirmed that when the number of atoms in molecules got
increased from 2 to 10, the computational wall-time required by the quaternion algo-
rithm was higher compared to that of the Kabsch algorithm (Fig. 2). Higher time
demands of the quaternion algorithm indicate that this method involves a higher
number of FLOPs. Regarding the resulting RMSD value, both algorithms give exactly
the same results (e.g. R2 = 1) when testing molecules with 2 to 10 atoms.
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Testing computational time complexity for molecules with randomly generated 2 -
100,000 atoms proved that both algorithms have linear time complexity of O(n), with
the quaternion algorithm being more time consuming (Fig. 3). The RMSD values by
both algorithms are exactly the same for molecules with up to 100,000 atoms.

A comparison of the Kabsch and quaternion algorithms shows that both have the
same asymptotic time complexity of O(n). The most demanding step in the Kabsch
algorithm is the computation of the covariance matrix, in the case of the quaternion
algorithm, it is the computation of the elements of the matrix N. Calculating diagonal
matrices and determinants has a constant asymptotic complexity of O(1), because they
perform these operations on matrices of constant sizes.

However, in terms of the number of FLOPs, the two algorithms differ as the Kabsch
algorithm comprises fewer FLOPs than the quaternion algorithm does. This result is
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Fig. 2. Computational time to superimpose two molecules with random configuration of 2 - 10
atoms and the resulting RMSD by Kabsch and quaternion algorithms.
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clearly evident from the computational time testing, in which the quaternion algorithm
requires constantly increased computational time to superimpose two molecules in
comparison with the Kabsch algorithm. This is related to the fact that the Kabsch
algorithm uses 3 � 3 rotation matrices, whereas the quaternion algorithm is loaded by
calculating a 4 � 4 matrix N. Overall, the quaternion algorithm appears to be less
advantageous for molecule superimposition, which opposes the proposition by Popov
[15].

6 Conclusions

The objective of this work is to briefly introduce the problem of rigid superimposing
two molecules by roto-translation so that the molecule atoms get as close as possible to
each other and the resulting RMSD has the lowest value. The analyzed Kabsch and
quaternion algorithms for superimposition differ mainly in the methodology and in the
number of mathematical steps performed. Importantly, it was found by analysis of the
mathematical principles of the algorithms and confirmed by computer simulations in
Matlab that both algorithms have the same, trivial asymptotic time complexity of O(n).
Nonetheless, application of the Kabsch algorithm should be prioritized for application
in computational chemistry and biology, because it is less computationally demanding.
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Abstract. We present a project to design of the simplified model of
thinking located in a little-explored field between neurobiology and psy-
chology. While neurobiology in the incredibly complex microscopic sys-
tem is dedicated to the structures and signals at the molecular level
and the psychology is committed at the opposite extreme with highly
sophisticated, they are very abstract and, therefore, difficult to grasp
these wholes. There is a vast space between these two extremes. From
the perspective of the inherent observers, it is investigable without over-
coming the complexity of both points of interest. The primary goal of
this research is to construct a multi-layer analog configuration space, the
Electronic Equivalent of Consciousness (ECC), wherein the signals have
the same properties (bioelectrical) as in the human brain.

Keywords: Neural network · Neurobiology · Electronics · Reticular
formation · Neurohumoral process

1 Introduction

To create insight into the issue, it will follow the mental process in human from
his point of view, as a human sees from his own subjective perspective. Thus cre-
ating an analogy subsequently usable for technological applications. our deepest
pe A newborn baby is a highly plastic neural network (NN) defined by the 11
essential sensory inputs which are following: vision [17], hearing [37], smell [23],
touch, heat, cold, pain [7], proprioception [39], vestibular sensor [18], interore-
ceptors [26] and taste [25]. All input signals are transformed via receptor systems
into a bioelectric signal of a similar amplitude, which propagates across the NN
at an average speed of 15–30 m/s [11,27], forming a signal object within the
organic spatial structure where signals interfere with each other. The result of
the harmonious constructive interference of these signals is a system of reflex
actions that control the physiological functions of the body. They create an
eleven-dimensional configuration space, formed by sensory inputs in the super-
position, and they develop the mental activity. For the simplified model, we
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consider only optical VISUAL (V) and verbal AUDIO (A) signals. The anatom-
ical region of this signal object with two parameters (A, V) in the human body
is the reticular formation located in the extended spinal cord [24]. In the course
of further development of the NN, a newborn encounters incoming signals A and
V, which repeatedly assign the oral formulation A to each optical V signal and
vice versa.

2 Introduction

To create insight into the issue, it will follow the mental process in human from
his point of view, thus creating an analogy subsequently usable for technological
applications. A newborn baby is a highly plastic neural network (NN) defined
by the 11 essential sensory inputs which are following: vision [17], hearing [37],
smell [23], touch, heat, cold, pain [7], proprioception [39], vestibular sensor [18],
interoreceptors [26] and taste [25]. All input signals are transformed via recep-
tor systems into a bioelectric signal of a similar amplitude, which propagates
across the NN at an average speed of 15–30 m/s [11,27], forming a signal object
within the organic spatial structure where signals interfere with each other. The
result of the harmonious constructive interference of these signals is a system
of reflex actions that control the physiological functions of the body. They cre-
ate an eleven-dimensional configuration space, formed by sensory inputs in the
superposition, and they develop the mental activity. For the simplified model, we
consider only optical VISUAL (V) and verbal AUDIO (A) signals. The anatom-
ical region of this signal object with two parameters (A, V) in the human body
is the reticular formation located in the extended spinal cord [24]. In the course
of further development of the NN, a newborn encounters incoming signals A and
V, which repeatedly assign the oral formulation A to each optical V signal and
vice versa.

An example of this process could be the mother’s face in the visual field
of the newborn (V), which is repeatedly interfered with the word the mother
(A) [13,32]. This creates the AUDIO/VISUAL COMPLEX (AV), where the NN
is gradually learned to assign a verbal (A) signal to the optical signal (V) of
each person, object, situation and the phenomenon to verbal signal (A) and
vice versa. When a particular AV complex is implemented into the NN, the NN
completes the second component of AUDIO mother to mother face VISUAL
and conversely. The gradual learning of the individual AV complexes arises in
the NN with the 11- dimensional harmonic matrix of all acquired AV complexes
and their interactions – the complex information (CI). The CI is a fundamen-
tal determining mechanism modifying the initially thoughtful responses to a
superset of all relationships and interactions between all other implemented AV
complexes. This superset is called, for this model, the cognitive resonance (CR).
The continuous increase of the complexity of the CR develops the phenomenon
of self-awareness and germination.
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3 Hypotesis of Redundancy

Ongoing mental processes in the configuration space, nature creates an evolution-
ary extension of the original sensorimotor system to predict future events, which
increases the ability to adapt to changing external conditions to improve survival
chances. The complexity of human neurobiology is very redundant for the men-
tal process because it is the consequence of all the demands which nature has
for the human systems, as is described in [2,5]. The model of selective attention,
the Intersensory Redundancy Hypothesis (IRH) [3,4], to explain how and under
what conditions attention and perceptual processing are promoted to different
aspects of events (amodal versus modality specific). Intersensory redundancy
refers to the temporally synchronous and spatially collocated occurrence of the
same information (e.g. rate, rhythm, duration, intensity shifts) across two or
more senses. According to the IRH, intersensory redundancy is highly salient,
it directs selective attention to the amodal aspects of events that are redun-
dantly specified across the senses at the expense of nonredundantly specified
information within the same event, particularly during early development.

The human bodies have to maintain homeostasis [22], neurohumoral regula-
tion [14], obtain food, use movement, reproduce, grow up, control the immune
system [28], breath. The fundamental principles based on our mental processes
are significantly elementary. Therefore the construction of a device for creating
a simulation of the simplified human conscious model does not have too extreme
complexity.

4 Project Description

The primary goal of this research is to construct a multi-layer electronic analog
configuration space wherein the incoming optical signals, in the first layer, form
an input matrix which shifts the message of each point towards to the next layer
at an average speed 15–30 m/s [11,27]. The distribution speed of signals between
layers is 15–30 m/s [11,27]. By this method, a three-dimensional dynamic visual
record of the current situation (V) (the analogy of short-term memory) is created.
In parallel with the active optical 3D matrix, in individual layers, the acoustic
signal is assigned for each point of the matrix separately, and their frequencies
and amplitudes are partially summed. Thus each particular matrix point gets a
unique dynamic address summed from the VISUAL for a pixel and the current
AUDIO for the moment defined by each layer. Matrix points of all layers are
created by AV complexes, which represent the input data for the superior NNs
for further processing, as shown in Fig. 1.
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Fig. 1. Top: The schema of the situational processor, bottom: the situational model

4.1 Electronic Equivalent of Consciousness (EEC)

The EEC design does not replicate the human NN, but simulates the perception
of spatial events over time, according to the subjective perception of the observer.
The EEC creates a simplified dynamic model of a particular situation for the
hierarchically superior networks. Figure 2 shows a functional block schema of the
EEC. The optical input signal is connected to the first EEC layer (AVout) as a
pixel array and proceeds at a speed of 15–30 m/s to the other layers [11,27]. Each
point (pixel) of the layers is summed with an adjusted acoustic signal to the same
amplitude. A spatial signal object is created, the situational processor, which
contains the flow of each situation (complex information). The input optical
signal in the layers is shifted in the space towards the rear (to the past), and
for each point is summed the acoustic signal separately. A time delay of the
visual flow (VISUAL) is created if the signals and their layering are slowed in
the EEC structure. In the time delay, the visual flow (VISUAL) is associated
with the acoustic signal of a verbal formulation. The result is the spatial signal
object (complex information) where each situation is layered by a specific word
formulation plus the accompanying AUDIO situation.

The configuration space, which simulates the situation as perceived in the
user’s consciousness, is created. Each point (pixel) in each layer is an input for
the superior Analog Artificial Neural Networks audio and visual (AANNA and
AANNV ), which are learned by subtracting the dynamic variation of the whole
situation from the AV complex. The AANNV subtracts a dynamic variation of
the acoustic signal (AUDIO) from the AVout complex and proposes to the next
situation process AVin its own design of the Vin (VISUAL). AANNA subtracts
the dynamic visual signal variation (VISUAL) from the AVout complex and
proposes to the next situation process AVin its design of the Ain (AUDIO). The
AVin situation processor creates another AVcomplex which forms the simulation
(model) of the observer imagination.

The Artificial Analog Neural Network decision (AANNDecision), the high-
est hierarchically superior Analog Artificial Neural Network, performs the cor-
rections comparisons (weight adjustment) in the AANNA and AANNV. The
AANNDecision is a simulation of the decision-making process. In the learning
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Fig. 2. Learning and working status block schema of the EEC.

status, the input of the AVout is an AUDIO signal simultaneously with the
VISUAL signal. The AANNDecision includes the external signal for the network
configuration, where the correction is performed between inputs of the AVout
and the outputs AANNV and AANNA. In the working status, the AANN net-
work performs the corrections automatically. The output of the learned device
is a verbal formulation or an acoustic expression if the input is a visual signal of
a particular situation. Verbal communication, which is the input of the learned
device produces a visual representation of the output.

The VISUAL point Pv is a tuple of three values where first is the luminance
(cd/m2), second the chrominance and third the saturation.

Pv = (vimunance + vchrominance + vsaturation) (1)

The VISUAL screen is defined by

V =

⎛
⎜⎝

a1,1 · · · a1,n

...
. . .

...
am,1 · · · am,n

⎞
⎟⎠ = (ai,j) ∈ Pm×n

v (2)
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where V is the visual matrix of the VISUAL points array with size m × n.
The AUDIO point Pa is a tuple of two values aleft, aright, which represent 2
microphones.

Pa = (aleft, aright) (3)

The Timescreen S is a tuple of the VISUAL matrix and AUDIO point. In
the Fig. 1 is shown the VISUAL input with the associated AUDIO input.

S = (V, Pa) (4)

The EEC is formed by situations per time units. S0 has speed 15–30 m/s [11,
27].

EEC = (S0, S, ..., St) (5)

The forward promotion y consists of a large number of neurons.

y = s

(
n∑

i=1

wixi

)
(6)

The (NN) consists of neurons, as is described in [1,12]. There is y outputs
of neuron, s is an activation function (sigmoid), wi are weights (synapsis) and
xi are inputs of the neuron. These weights determine how the NN works. In the
multilevel NN are outputs the inputs of the next layer.

The (AANNDecision) decides the accurate of the imagination (AVinside) and
the output is the ERROR (E). Classical NN learns step by step according to the
formula:

wt+1 = wt − η
∂E

∂wt
(7)

where wt+1 - he weight in the time t + 1 time unit. The most widespread
method of training the NN is backpropagation with gradient descendent, where
each weight is updated by partial derivation of Error by the weight itself (8),

wt = wt0 − η

∫ t

t0

∂E

∂wt
dτ (8)

where wt = the weight in the time t and η shapes the learning rate [8].
The NNs are trained from continuous signal because the sampling of the

signals causes loss of pieces of informations, and Von Neumann Bottleneck
[33–35].

4.2 Possible Technological Realization

The selection of suitable technology is governed mainly by the price per mm2
of the proposed chip and by technology performance. One of the main criteria
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of nanotechnologies for the EEC development is the deacceleration of signals
propagation in the material to 15–30 m/s [11,27].

One of the most widely used technologies for analog circuits is CMOS archi-
tecture. However, the individual pixels (neurons) are not physically separated
from the others. The solution for manufacturing physical separation of the struc-
ture on the chip is to place the sensitive part (neuron) and electronic circuits
on the same wafer. Silicon On Insulator (SOI) technology seems to be an ideal
solution for this application [10]. The analog delay structures are included in
SOI technology. The Buried Oxide (BOX) layer isolates the CMOS electronics
implemented on a thin, low resistivity, epitaxial silicon layer from a thick, high
resistivity handle wafer. The sensitive element (neuron) is integrated into the
handle wafer, as illustrated in Fig. 3.

In contrast to other SOI technologies, the thick film SOI provides a double-
well structure to shield the thin gate transistors from the BOX layer. The chosen
technological process allows applying high bias voltages (up to 200 V), which
are used to deplete the substrate partially and to fabricate devices with higher
resistivity. At this time, there is no backside processing. Thus, the HV is applied
from the top side using an ohmic contact. The pixel electronics are processed
on a 3.5 μm thin epitaxial layer separated from the handle wafer by a 1 μm
thin BOX layer. The electronics circuit of each pixel is located in an insulating
substrate, which is surrounded by Deep Trench Insulation (DTI) [6].

Fig. 3. Cross section of the SOI CMOS technology. The sensitive part of a pixel (neu-
ron) is in the middle separated from electronics by DTI. The pixel is separated from
the other by the DTI [6].

5 Conclusion

Although the artificial intelligence (AI) is an excessively evolving field with a
partial performance, which dramatically exceeds our abilities (chess, voice recog-
nition, faces), its real cognitive abilities are confronted with fundamental limits.
The AI is currently unable to understand humor, read between the lines, and
has no hint of self-awareness. The reason is that the mathematical models and
systems of the current AI have no question of consciousness in their structure.
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It is precisely the question of the inclusion of consciousness into the fundamental
innovations of the AI field. The AI which is described in this paper is applica-
ble in medicine [15], economy [20], sociology [40], education and music [19],
music composition [38], emotional computation [36], philosophy [31] and many
other research areas. The simplified model of human thinking and the ensu-
ing development of its electronics equivalent (EEC) might be able to bring new
technological applications. Many articles deal with the problem of sensorimotor
transformation [9,21,30], however, the innovative approach of this project corre-
sponds to questions of the perception and the consciousness of humans [29] and
animals [16].

Acknowledgments. Research described in the paper was supported by the Czech
Technical University grant SGS20/176/OHK3/3T/133 and Nadace Science 21 founda-
tion.
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Abstract. Metalearning is a methodology aiming at recommending the
most suitable algorithm (or method) from several alternatives for a par-
ticular dataset. Its classification rule is learned over an available training
database of datasets. It gradually penetrates to various applications in
computer science and has also the potential to recommend the most
suitable statistical estimator for a given dataset. We consider the non-
linear regression model. While there are some robust alternatives to the
traditional (and very non-robust) nonlinear least squares available, it is
not theoretically known which estimator performs the best for a partic-
ular dataset. In this work, we perform a metalearning study performed
over 721 datasets predicting the best nonlinear regression estimator for
an independent dataset. The estimators considered here include stan-
dard nonlinear least squares as well as its robust alternatives with a high
breakdown point. On the whole, the presented study brings new argu-
ments in favor of the nonlinear least weighted squares estimator, which
is based on the idea to assign implicit weights to individual observations
based on outlyingness of their residuals.

Keywords: Metalearning · Nonlinear regression · Robustness

1 Introduction

The aim of regression modeling is to explain a continuous response variable
based on one or more independent variables (regressors), where the latter may
be continuous and/or discrete, and thus to predict the response for individual
fixed values of the regressors. Parametric estimators in the standard nonlinear
regression model with a known regression function will considered in this paper.

Numerous estimation techniques for the nonlinear regression have established
and successfully applied in economics, engineering, biomedicine etc. The most
traditional tool here, i.e. the nonlinear least squares estimator, is well known
to be too vulnerable to the presence of outlying measurements (outliers) in the
data [19]. Therefore, robust alternatives to the least squares principle are highly
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(P. Vidnerová) of the Czech Science Foundation.

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
L. Iliadis et al. (Eds.): EANN 2020, INNS 2, pp. 499–510, 2020.
https://doi.org/10.1007/978-3-030-48791-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48791-1_39&domain=pdf
http://orcid.org/0000-0002-8491-0364
http://orcid.org/0000-0003-3879-3459
https://doi.org/10.1007/978-3-030-48791-1_39


500 J. Kalina and P. Vidnerová

desirable for the nonlinear regression model [2,17]. The concept of breakdown
point as a measure of robustness suitable for nonlinear regression estimators was
developed in [21]. Metalearning is a machine learning approach aiming at recom-
mending the most suitable algorithm (or method) from several alternatives for
a particular dataset. In the current paper, metalearning will be in the context
of nonlinear regression with the aim to predict the best method for particular
datasets not contained in the training database containing 721 datasets. Recom-
mending a suitable estimator is even more important for the nonlinear regression
for several reasons, namely due to the higher complexity of the model. Compli-
cations of nonlinear regression models namely include their bias, sensitivity to
model specification, unknown properties for small sample sizes etc.

Section 2 of the paper recalls various estimators for the nonlinear regression
model. Section 3 describes our metalearning study and its results are presented
in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Robust Estimation in Nonlinear Regression

Let us consider the nonlinear regression model

Yi = f(β1Xi1, . . . , βpXip) + ei, i = 1, . . . , n, (1)

where f is a given continuous nonlinear function, Y1, . . . , Yn is a continuous
response, and (Xi1, . . . , Xip)T is the vector of regressors (independent vari-
ables) available for the i-th observation. We use the notation e1, . . . , en for ran-
dom errors and X for the matrix with elements Xij , where i = 1, . . . , n and
j = 1, . . . , p. The task is to estimate the parameters β = (β1, . . . , βp)T . We
stress here that the function f is specified. The most commonly used method
for this estimation task is nonlinear least squares (NLS) estimator of β. Thus,
the task is different from nonlinear regression tasks with an unknown f , which
is a common situation in machine learning; in such a situation, multilayer per-
ceptrons or support vector regression (SVR) [6] would be the commonly used
tools for estimating the unknown nonlinear trend.

The NLS estimator is known to be vulnerable to the presence of outliers in
the data [2,17]. Therefore, we recall several of its potential robust alternatives
in this section, which are natural generalizations of robust estimators known in
linear regression [7]. All of them will be used later in the metalearning study of
Sect. 3.

2.1 Nonlinear Least Trimmed Squares

The nonlinear least trimmed squares (NLTS) estimator represents one of robust
methods with a high breakdown point [21] and also an extension of the popular
least trimmed squares from linear regression [16]. We denote by R the set of real
numbers. Denoting the residual for any (fixed) b = (b1, . . . , bp)T ∈ Rp as

ui(b) = Yi − f(b1Xi1, . . . , bpXip), i = 1, . . . , n, (2)
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squared residuals will be arranged in ascending order as

u2
(1)(b) ≤ u2

(2)(b) ≤ · · · ≤ u2
(n)(b). (3)

The user must specify a suitable value of the trimming constant h (n/2 ≤ h ≤ n).
Then, the NLTS estimator bNLTS of β is obtained as

arg min
b∈Rp

h∑

i=1

u2
(i)(b). (4)

While it may be profitable to choose h to reflect the true percentage of contam-
inated data, we use here the very popular choice h = �3n/4�, where �x� denotes
the integer part of x ∈ R [7].

2.2 Nonlinear Least Weighted Squares

The nonlinear least weighted squares (NLWS) estimator represents an extension
of the least weighted squares estimator from the linear regression [9,22,23] and
at the same time a weighted analogy of the NLTS estimator. Let us assume the
magnitudes w1, . . . , wn of nonnegative weights to be given. The NLWS estimator
of the parameters in (1) is defined as

arg min
b∈Rp

n∑

i=1

wiu
2
(i)(b), (5)

where the argument of the minimum is computed over all possible values of
b = (b1, . . . , bp)T and squared residuals are arranged as in (3).

The choice of weights has a determining influence on properties of the esti-
mator [13]. If zero weights are assigned to outlying observations, then the esti-
mator is ensured to be highly robust in terms of the breakdown point. The main
reason for such robustness of the NLWS estimator is the implicitly weighted
construction of the estimator itself, just like for the LWS estimator in the linear
regression. Various weighting schemes will be described in Sect. 2.4. The NLWS
algorithm may be computed by means of a generalization of the FAST-LTS
algorithm of [18].

2.3 Nonlinear Regression Median

Regression quantiles represent a natural generalization of sample quantiles to
the linear regression model. Their parameter α ∈ (0, 1), which corresponds to
dividing the disturbances to α·100% values below the regression quantile and the
remaining (1−α) ·100% values above the regression quantile. In general, regres-
sion quantiles represent an important tool of regression methodology, which is
popular in economic applications. A natural extension of regression quantiles to
nonlinear regression was investigated already in [15], while the most important
special case remains to be the nonlinear regression median (NRM) with α = 1/2.
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2.4 Estimators Used in the Computation

We use the following seven available estimators, which will be denoted as esti-
mators 1, . . . , 7. For each of the choices for the NLWS, we require a standard
normalization of weights to

∑n
i=1 wi = 1.

1. Nonlinear least squares (NLS).
2. Nonlinear regression median (NRM).
3. NLTS with h equal to �3n/4�.
4. NLWS with data-dependent adaptive weights of [4].
5. NLWS with linear weights

wi =
2(n + 1 − i)

n(n + 1)
, i = 1, . . . , n. (6)

6. NLWS with trimmed linear weights

wi =
h − i + 1

h
I[i ≤ h], i = 1, . . . , n, (7)

where I[.] denotes an indicator function and h equals again to �3n/4�.
7. NLWS with weights generated by the (strictly decreasing) logistic function

wi =
(

1 + exp
{

i − n − 1
n

})−1

, i = 1, . . . , n. (8)

2.5 Computational Complexity

The NLTS and NLWS estimators are computed (as already mentioned) by means
of an adaptation of the FAST-LTS algorithm [18], which includes a selected
number J of initial choices of p observations out of their total number n. Further,
iterations are performed to permute the observations to order them according to
the outlyingness of their residuals from the estimated trend. The computational
complexity of the algorithm heavily depends on the choice of J . We believe this
is the reason why the FAST-LTS has not been, to the best of our knowledge,
analyzed in the literature in terms of computational complexity as a function
of n and p. While the approximate computational complexity in terms of n and
of the number of variables p is very difficult to evaluate here, it is mainly the
repeated evaluation of the iterative part of the algorithm, which influences the
complexity.

In addition, we are not aware of any study of computational aspects of the
NLTS and NLWS estimators. There seem no recommendations for the choice
of J . For the LTS in the linear regression model, J = 500 is advocated in the
original paper [18]. However, it is clear that a larger J will be necessary in the
nonlinear situation. The choice J = 10 000 was proposed in [9], however without
studying the effect of reducing J to smaller values. Therefore, we decided to
use J = 10 000 here for both the NLTS and NLWS, even at the price of high
computational demands, while improving the speed was the main aim of our
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work. This gives a very high probability that the algorithm gives a reasonable
approximation to the true value of the robust estimate.

Concerning the nonlinear regression median, its available algorithm based
on the interior point method [15] stands on principles close to the algorithm
for regression quantiles, which has been proven reliable in the linear regression
model [14].

2.6 Illustration of Robust Nonlinear Regression

We randomly generate 70 observations following the Gompertz curve model

Yi = β1 + β2 exp{β3 + eβ4Xi} + ei, i = 1, . . . , n, (9)

to illustrate the performance of the NLWS estimator with β = (2, 1.5,−1,−1)T .
The Gompertz growth curve is known as a model suitable e.g. for modeling of
economic growth or as a consumption curve. The random error are generated as
independent identically distributed random variables following the normal dis-
tribution N(0, σ2) with σ = 0.05. Figure 1 (left) contains the plot of the response
depending on the single regressor. To study the performance of various estimators
under contamination, we performed an additional contamination by outliers as
shown in Fig. 1 (right). Particularly, values in 10 observations with index i = 10k
for k ∈ {1, 2, . . . , 7} are increased by 1.

We used several estimates of regression parameters of the model (9) based on
the simulated data set and the results are presented in Table 1. We are especially
interested in implicitly weighted methods with a high breakdown point here. For
raw (non-contaminated) data, all estimates are close to the true values of the
parameters, while the NLS seems to be the most accurate estimate here. For
contaminated data, the NLS estimates are heavily influenced by the contamina-
tion, but they are resistant for the other estimates, i.e. they are changed only
slightly. From the practical point of view, using (any) robust method is more
suitable compared to the non-robust NLS estimate. Such results reveal shows
the added value of the robust approach in the nonlinear model in a unique way,
because asymptotic interrelations of robust estimators (studied in [8] for the
linear model) are not available for the nonlinear model.

Table 1. Estimated values of the vector of parameters β = (2, 1.5, −1, −1)T for raw
and contaminated data of Sect. 2.6.

Raw data Contam. data

b0 b1 b0 b1 b0 b1 b0 b1

NLS 2.00 1.52 −0.98 −0.99 2.07 1.65 −0.97 −0.82

NLTS (h = �3n/4�) 1.98 1.55 −0.97 −0.94 1.98 1.57 −0.97 −0.90

NLWS (7) 1.97 1.55 −0.95 −0.93 2.01 1.56 −0.96 −0.92
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Fig. 1. Dataset from Sect. 2.6. Left: raw data. Right: contaminated data.

3 Description of the Metalearning Study

Metalearning is a computational approach allowing to exploit information from
previously observed datasets and to extend them to new datasets [3]. It is popular
for algorithm selection for optimization or classification tasks [20], although it
may be also exploited for recommending the most suitable statistical estimator
in regression context. In this paper, we describe our metalearning study with
the aim to compare various nonlinear regression estimators. The study allows
us also to detect the most relevant criteria for determining the most suitable
weights for the NLWS.

In the primary learning part of the task, various nonlinear regression esti-
mators are fitted for each of the given datasets and the best estimator is found
using either the prediction mean square error or its robust version, described in
Sect. 3.2. The subsequent secondary learning part has the aim to learn a classifi-
cation rule allowing to predict the best regression method for a new dataset not
present in the training database. Its input data are only selected features of indi-
vidual datasets together with the result of the primary learning, which typically
has the form of the index of the best method for each of the training datasets.
In general, the user of metalearning must specify a list of essential components
(parameters). We will now describe our choices for the primary and secondary
parts of the metalearning task.

3.1 Data Acquisition

We work with the database of about 2000 real publicly available datasets avail-
able at the website [1]. The datasets come originally from various packages of
R statistical software. The datasets come from different applications domains,
e.g. there are datasets concerning economics, sociology, biomedicine, engineering
etc.; a homogeneity of the datasets in terms of the domain application would
be beneficial, but could be hardly acquired under our fully automatic process of
downloading the datasets. On the other hand, such data acquisition ensures a
desirable heterogeneity (diversity) of the datasets from the point of view of their
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statistical properties. To explain this, let us consider the skewness of residuals of
the NLS estimator, considered as one of the features below in Sect. 3.4. If these
residuals are heavily skewed and thus not likely to be considered as Gaussian, a
highly robust estimator is more likely to be more suitable than the NLS. Thus,
diverse statistical properties of the datasets is beneficial for the metalearning,
because it allows to recommend the most suitable estimator correctly also for
datasets with extreme characteristics.

First, we implemented an automated procedure for downloading each dataset
and pre-processing the data from the internet. With the requirement to work
with a large number of datasets effectively, the linux command line was used
for an automatic manipulation with the datasets and particularly the command
wget allowed us to download all the files in a CSV format. Then, the trans-
formed datasets were loaded to Python. All the remaining manipulations and
computations were implemented in Python, which gradually becomes a popular
tool among data scientists thanks to numerous available packages for a more
comfortable programming. The datasets were prepared to a format suitable for
metalearning by means of a script exploiting packages Pandas and NumPy of
Python. Each dataset is stored in a CVS file and is accompanied by a text
description about the task of the analysis, number of observations and variables,
and a link to a text description in a corresponding package of R software.

The sizes of the datasets were reduced in order to reduce the computational
complexity of the datasets. Also this improves the homogeneity of the datasets
(from the point of view of their sizes), which is desirable, as some of the features
used below in Sect. 3.4 depend on the size of the dataset. To be specific, features
in the form of p-values of hypothesis tests do not only depend on the violation
of the null hypothesis, but also heavily depend on the size of the considered
dataset, as the powers of these tests converge to 1 with an increasing size of
the datasets. The reduction of their sizes is performed in the following way. If
the number of observations in a particular dataset exceeded 100, we generated
a random variable (say m) generated from the uniform distribution over the set
{50, . . . , 100}. Then, m observations were randomly selected from the dataset
and retained, ignoring all remaining ones. In this way, sample sizes of individual
datasets are diverse.

All observations with at least one missing value were omitted. While various
automatic tools for perform imputation of missing values are available in R soft-
ware, these would increase the computational costs even further, as the missing
values appear in most of the datasets. Thus, we prefered reducing the sizes of
the datasets, as explained in the previous paragraph.

Further, we performed an automatically detection of categorical variables.
One of the remaining (i.e. continuous) variables was randomly chosen to be
the response. Categorical variables such with 3 or more categories were omitted
for the purpose of computational complexity. Binary variables were replaced by
a single dummy variables, interpreted as indicators of the first group. We do not
however keep all the variables. If a dataset contains more than 9 variables, some
randomly chosen ones are omitted to have finally 9 variables; if there are binary
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regressors, these are omitted preferably. We consider the intercept in each of the
datasets, i.e. a column with all ones was included to each dataset. Thus, the
number of regressors (apart from intercept) is always between 1 and 9.

3.2 Data Pre-processing

In some of the datasets, regressors happen to be more or less multicollinear.
We do not perform any special treatment, as prediction (rather than testing) in
nonlinear regression is known not to suffer from multicollinearity. The computa-
tion of robust estimators of Sect. 3.3 seems resistant to multicollinearity as well.
Nevertheless, to be sure, we computed each of the estimators for each of the
datasets and if some warnings were reported, we omitted the whole dataset from
the study. If the dataset after all these steps contains less than 20 observations
or no regressor, it is omitted. Thus, the total number of datasets was reduced
to the final number of 721. This is about 36% of the initial number of datasets
in [1], which are to a large extent small and contain many missing values. The
data acquisition and pre-processing often belongs to the most demanding tasks
in applied machine learning problem and also in our study consumed most of
the time and effort.

The response Y1, . . . , Yn was transformed to contain values between 0 and 1
by the commonly used transform

Yi �−→ Yi − mini Yi

maxi Yi − mini Yi
, i = 1, . . . , n. (10)

In the same way, all continuous regressors were transformed. Such transforms
do not influence the prediction ability of the regression estimators, because all
regression methods of this study are scale- and regression-equivariant, but do
influence the features computed from each dataset. This is beneficial, as the
original measurements differ greatly among datasets, as they also come from
different fields and applications. On the whole, the fully automatic pre-processing
has some disadvantages (e.g. the need for a random selection of the response),
but a manual approach would not be feasible with this metalearning study, which
is extraordinarily large (cf. [3,20]).

3.3 Primary Learning

In each of the 721 datasets, we consider the nonlinear model

Yi = β0 +
p∑

j=1

βjXij +
p∑

j=1

βp+j(Xij − X̄j)2 + ei, i = 1, . . . , n, (11)

with the total number of 2p + 1 regressors (which depend on the original p
regressors), where the variables are centered using the mean of the j-th variable
X̄j (for j = 1, . . . , p) for the sake of numerical stability.

For the prediction measure, we use the (prediction) mean square error (MSE),
which represents the most standard choice. We find the best method for each
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dataset using MSE in a leave-one-out cross validation, which represents a stan-
dard attempt for an independent validation. In addition, two possible robust
alternatives are the trimmed mean square error (TMSE) and weighted mean
square error (WMSE). To define them, we denote prediction errors as r1, . . . , rn

and consider their ordered squared values r2(1) ≤ · · · ≤ r2(n). The user chooses h

as integer between n/2 and h, and some non-negative weights w1, . . . , wn. The
robust error measures are defined as

TMSE =
1
h

h∑

i=1

r2(i) and WMSE =
n∑

i=1

wir
2
(i), (12)

while we use the particular choices h = �3n/4� for TMSE and trimmed linear
weights (7) for WMSE.

3.4 Secondary Learning

The output of the primary learning is used in the form of the factor variable
(index, indicator) of the best method for each of the datasets together with
a list of features computed for each dataset. In the nonlinear model, we must
consider the features for the metalearning rather carefully. For example, there
is no meaningful analogue of the coefficient of determination in the nonlinear
model. Other features must be evaluated for the NLS fit. Thus we came to
selecting the following set of 9 features.

(A). The number of observations n,
(B). The number of regressors p (excluding the intercept),
(C). The ratio n/p,
(D). Condition number of the matrix (XT X)−1,
(E). P -value of the Shapiro-Wilk test of normality of NLS residuals,
(F). Skewness of residuals of the NLS,
(G). Kurtosis of residuals of the NLS,
(F). P -value of White’s test of heteroscedasticity based on NLS residuals,
(I). P -value of the Wald test of linearity, i.e. of H0 : βp+1 = · · · = β2p = 0

in (11), based on NLS estimates of β.

For the subsequent metalearning task, which is a task of classification to
7 groups (i.e. finding the best among the 7 estimators of Sect. 2.4), we exploit
various classification methods including support vector machines (SVM), a clas-
sification tree, k-nearest neighbors, and a multilayer perceptron with one hidden
layer. We use also several other less known methods including a regularized ver-
sion of linear discriminant analysis (LDA) denoted as SCRDA of [5], or a robust
version of LDA denoted as linear MWCD classification [10].

4 Results

We used the R software for all the computations including necessary libraries
(robustbase, quantreg, rda) for specific tasks such as robust estimation and clas-
sification. Our metalearning codes (for a preliminary version of the study) are
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presented on the website [11]. Using MSE in a leave-one-out cross validation
study, the NLWS turns out to be the best estimator. The NLS yields the min-
imal prediction error for 23% of the datasets, the NRM for 20%, the NLTS in
26% and any of the versions of the NLWS in the remaining 31% of datasets. If
TMSE is used, the NLWS becomes most successful for 35% and the NLTS for
39% of datasets. If WMSE is used, the NLWS becomes the best for 45% and the
NLTS for 34% of datasets. In terms of these percentages, all the four choices of
weights for the NLWS turn out to be roughly equally successful for any choice
of the error measure.

Within the subsequent metalearning task, we computed various classifiers,
while default settings of parameters was used for those computed using the
R software. Hyperparameters for SVM or neural networks were estimated in
a standard leave-one-out cross validation. The results are presented in Table 2
evaluated as the classification accuracy, i.e. ratio of correctly classified cases
(datasets). The SVM classifier turns out to yield the best performance. The
best result is obtained for the SVM with a Gaussian kernel for the TMSE; in
this situation, the best regression method is found correctly in 71% of datasets.
Because there are as many as 7 classes, the overall prediction ability is not very
high. The most useful criteria for the choice of weights for the NLWS turn out to
be heteroscedasticity and normality of the NLS residuals, which correspond to
our intuition, because their heavy violation requires a strongly robust approach.

Table 2. Results of metalearning evaluated as the classification accuracy in a leave-
one-out cross validation study. Three different prediction error measures are compared.

Classification method Classification accuracy

MSE TMSE WMSE

Classification tree 0.35 0.45 0.47

k-nearest neighbor (k = 3) 0.56 0.61 0.64

LDA 0.60 0.68 0.65

SCRDA 0.60 0.68 0.66

Linear MWCD-classification 0.60 0.68 0.66

Multilayer perceptron 0.56 0.66 0.66

Logistic regression 0.56 0.67 0.69

SVM (linear) 0.60 0.69 0.70

SVM (Gaussian kernel) 0.64 0.71 0.70

5 Conclusions

In this paper, a metalearning study for finding the most suitable nonlinear regres-
sion estimator is presented. To our knowledge, this is the first metalearning study
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for nonlinear regression. The metalearning study presented here has the aim to
construct a classification rule allowing to predict the most suitable nonlinear
regression estimator for a particular dataset. For this purpose, we work with 721
real publicly available datasets. The NLWS seems to yield the best result for the
majority of the datasets, while no weighting scheme is uniformly optimal over
all datasets.

The results obtained here and presented in Table 1 are evaluated across all
datasets, i.e. from various domains of applications (economy, sociology, biomedi-
cine, engineering etc.). Concerning the analysis of a single dataset, the benefits of
robust approaches (compared to the classical NLS) are also revealed here, i.e. the
paper indicates the necessity of a robust approach for analyzing a dataset con-
taminated by more or less severe outliers. The NLTS and the nonlinear regression
median have a weaker performance due to a low efficiency. Thus, the concept of
efficiency (and not only the robustness) also seems to play a prominent role in
the nonlinear regression modeling of real data. While the NLTS estimator has
been already considered already in [4], the more novel NLWS estimator seems
more promising as it has the ability to combine global and local robustness with
efficiency. Robust prediction measures, and especially TMSE, are superior to the
standard MSE.

The resulting metalearning is relatively successful in recommending the most
suitable nonlinear regression estimator, even in spite of the difficulty of the sec-
ondary learning into as many as 7 groups. The results go far beyond those of [12],
where only 30 datasets were considered.

As future research, we intend to work on the robustification of the whole met-
alearning process, which would bring very practical consequences to metalearn-
ing. Investigating computational aspects of the NLTS and NLWS estimators
seem as a major open problem. After it becomes possible to reduce computa-
tional demands by improving the algorithm for their computation, our future
aim remains to be a sophisticated (and computationally demanding) imputa-
tion of missing values. After the study being finalized, we also plan to make the
database of 721 datasets to be made available in the github repository.
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Hradec Králové (2017)
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P.K. (eds.) Nonparametrics and Robustness in Modern Statistical Inference and
Time Series Analysis: A Festschrift in Honor of Professor Jana Jurečková. IMS
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Abstract. Unbalanced electrical loads on feeders of power electri-
cal systems can cause serious problems, including power losses, sig-
nificantly lower power quality, damaging of electrical equipment, and
tripping of protective devices. Nevertheless, the problem of balancing
such systems—which essentially is equivalent to the problem of integer
partitioning—has proven to be NP-complete. Against this background,
in this article, an algorithm based on the powerful, declarative frame-
work of Answer Set Programming (ASP) is provided, that efficiently
attacks practical instances of the phase-balancing problem. To the best
of our knowledge, this is the first attempt of approaching this significant
engineering problem by means of the ASP paradigm. The whole study
indicates that the examined problem is of great interest from an algo-
rithmic viewpoint, as well as an engineering application that highlights
ASP’s modelling methodology.

Keywords: Answer Set Programming · Power electrical systems ·
Phase-balancing problem · Energy distribution

1 Introduction

Modern power electrical systems demand high efficiency, robustness, and high-
quality power supply for the consumers’ sensitive electrical loads [3,12].

A typical three-phase 4-wire power system is depicted in Fig. 1. A three-phase
alternating current (AC) source, connected as a wye (Y), feeds a three-phase wye
(Y) connected, linear load.1 Each (complex) impedance Za, Zb and Zc represents
1 The current of a linear electrical load (e.g., resistor, motor, capacitor) is, at any

time, linearly proportional to its voltage.
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Fig. 1. A typical three-phase 4-wire power electrical system.

a single or, sometimes, a cluster of single-phase loads. Kirchhoff’s Law enforces
that the sum total of the phase currents ia, ib, ic is equal to the current iN of
the neutral line; i.e., ia + ib + ic = iN .

For reasons that will become apparent in what follows, the ideal case is where
the load is fully balanced (or symmetric), that is, Za = Zb = Zc, and the current
iN in the neutral line is zero (since ia + ib + ic = 0). Nevertheless, achieving
balance is not always an easy task, as the impedance of each phase is changing
frequently over time (for instance, due to single-phase load variations), and the
system drifts into unbalance; thus, ia + ib + ic �= 0. The goal of the network
administrator is, therefore, to effectively distribute the loads in the first place,
so that the minimum possible degree of unbalance to be achieved.

Unbalanced electrical loads of power electrical systems can cause numer-
ous undesirable circumstances, including power losses, significantly lower power
quality, damaging of electrical equipment, and tripping of protective devices [16].

The problem of phase balancing of feeders becomes even more demanding
whenever a single-phase-to-ground fault has been occurred, and a single-pole
tripping situation is ongoing, as depicted in Fig. 2. In this case, for as long as
the faulted phase is out of service, and the total electrical load is served by the
remaining two healthy phases, the feeder becomes significantly unbalanced. Given
that faults of power electrical systems are predominantly single-phase-to-ground
faults, the single-pole tripping situation is a quite often phenomenon [9].

In power systems where single-phase distribution transformers are utilized—
a common practice in USA and Canada—the problem of phase balancing con-
cerns HV/MV power transformers as well, since each single-phase distribution
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ia

ib

ic Fault

Fig. 2. A single-phase-to-ground fault in a three-phase power transmission line; only
currents ia and ib reach the load, as ic flows to the ground due to the fault.

transformer acts as a single-phase load for the HV/MV power transformers.2

Therefore, a failure of the former can cause the unbalanced loading of the latter.
Against this background, an algorithm based on the powerful paradigm of

Answer Set Programming (ASP) is provided in this article, that efficiently attacks
practical instances of the phase-balancing problem. ASP is a modelling tool ori-
ented towards difficult declaratively-specified search problems [7,8]. Despite the
fact that it is a rather new programming framework, it has already successfully
implemented to a plethora of real-world applications, including applications in
science and humanities, industrial applications, data management and Artificial
Intelligence [2].

Although there has been work made concerning phase balancing—the inter-
ested reader may, indicatively, refer to [10,13,16,17]—to the best of our knowl-
edge, this is the first attempt of attacking this interesting search problem by
means of ASP. As a matter of fact, this work constitutes a first step of our
work-in-project according to which standard optimization problems in electri-
cal engineering are addressed employing declarative problem-solving tools. It is
noteworthy, lastly, that, as the phase-balancing problem is strongly related to
power losses, the proposed algorithm is a useful tool for efficient energy manage-
ment in any type of power transmission system, such as in smart grids [15]; see
[14] for a study on phase balancing in a distribution smart grid.

For ease of presentation, throughout this work, we shall assume that each
phase is compensated so that all three phases have the same power factor; i.e.,
arg(Za) = arg(Zb) = arg(Zc).3 For details on the structure and operation of
power electrical systems, the interested reader is referred to [4,12].

The remainder of this paper is structured as follows: The next section intro-
duces the problem of three-way integer partitioning, which, as it turns out, is
equivalent to the phase-balancing problem. Section 3 presents the basic syntax
and semantics of the ASP language, Sect. 4 introduces the alluded ASP-based
algorithm, whereas, Sect. 5 conducts a brief experimental case study evaluating
the proposed algorithm. The last two sections are devoted to a brief discussion
and some concluding remarks.

2 HV and MV stand for High-Voltage and Medium-Voltage, respectively.
3 For a (non-zero) complex number z, arg(z) denotes the argument of z.
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2 The Integer Partitioning Problem

The problem of three-way integer partitioning is formally described as follows
[11]:

Given a multiset of positive integers, the three-way integer partitioning
problem is to divide them into three subsets, so that the sum of the numbers
in each subset are as nearly equal as possible.4

The integer partitioning problem has been shown to be NP-complete [5].
It turns out that the problem of three-way integer partitioning is equivalent

to the three-phase-balancing problem, where each positive integer represents the
apparent power of a load, and the three subsets correspond to the three phases of
the feeder. Notice that, as arg(Za) = arg(Zb) =arg(Zc), it is indifferent whether
the apparent power, the impedance or the current of each load is utilized as the
entity under partition.

Before presenting our ASP-based algorithm that addresses the phase-
balancing problem, in the next section we introduce the basic syntax and seman-
tics of the ASP language.

3 Answer Set Programming in a Nutshell

Answer Set Programming (alias, ASP) is a declarative problem-solving frame-
work, that constitutes an easy and powerful modelling tool for Knowledge Rep-
resentation and Reasoning applications (mainly, for solving NP-hard search prob-
lems) [7,8]. ASP’s expressive power allows for a transparent and natural repre-
sentation of the basic characteristics of the underlying problem.

The basic idea of ASP is to express a problem in a formal way, so that the
stable models of its representation (alias, the answer sets) correspond to the
solutions of the original problem. From a representational viewpoint, the closed-
world assumption is adopted; that is, considering propositions as false, unless
proved otherwise. In this sense, ASP can effectively capture non-monotonicity,
a crucial feature for a wide range of applications.

In the rest of this section, we shall briefly review a subset of ASP’s language
that is sufficient for the purpose of this article, mainly borrowed from [1]; for
more technical details on ASP, the reader is referred to [6].

3.1 Syntax

Definition 1 (Predicate Atom). A predicate atom (or simply predicate) is
denoted by p(t1, . . . , tn), where p is a predicate name, t1, . . . , tn are terms
(constants or variables)—i.e., the arguments of predicate atoms—and the non-
negative integer n is the arity of the predicate atom.
4 Recall that a multiset is a special type of set that allows for multiple instances for

each of its elements.
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Definition 2 (Conditional Atom). A conditional atom is denoted by a0 :
a1, . . . , an, where every ai for 0 � i � n is a predicate atom, a1, . . . , an is the
condition, and ‘:’ resembles mathematical set notation.

The purpose of ‘:’ is to govern the instantiation of the “head literal” a0,
through the ones of a1, . . . , an. When a conditional atom is in the body of a rule,
it expands conjunctively, whereas, when it is in the head of a rule, it expands
disjunctively. If n = 0, we get a regular predicate atom, and denote it by a0.

Definition 3 (ASP Logic Program). An ASP logic program is a finite set of
rules of the form:

h1; . . . ;hm ← b1, . . . , bn.

In the head of the rule, every hj (for 1 � j � m) is a predicate atom. In the
body of the rule, every bi (for 1 � i � n) is a literal of the form a, not a, or ¬a,
where a is a predicate atom, and the connectives ‘not’ and ‘¬’ denote default
and classical negation, respectively. Operators ‘;’ and ‘,’ express disjunctive and
conjunctive connectives, respectively.

The rule is called integrity constraint if m = 0 (i.e., filters solution candidates,
meaning that the literals in its body must not jointly satisfied), and fact if m = 1
and n = 0. In this latter case, the ‘←’ sign is usually omitted.

3.2 Semantics

Let P be an ASP logic program. The set of all constants that occur in P is called
Herbrand universe of P. The set of all predicate atoms constructible combining
predicate names appearing in P, with elements of the Herbrand universe of P,
is called Herbrand base of P. A (Herbrand) interpretation I for P is a subset of
the Herbrand base of P that contains all atoms interpreted as true by I.

A rule is ground if it contains no variables. The grounding Pg of P is the
set of all ground rules obtained by replacing all variables in each rule of P by
all combinations of constants in the Herbrand universe. Given that an ASP
logic program P with variables can be regarded as an abbreviation for Pg, we
henceforth concentrate on the propositional case.

Let I be an interpretation of P. For a variable-free predicate atom a, I |= a
iff a ∈ I. For a default negated literal not a, I |= not a iff I � a, and for a
classically negated literal ¬a, I |= ¬a iff ¬a ∈ I.

A rule of P is satisfied by I if, for some hj of the rule, I |= hj whenever
I |= bi, for all bi of the rule. In this sense, an ASP logic program P is satisfied
by I iff all rules of P are satisfied by I.

Definition 4 (Model). An interpretation I that satisfies an ASP logic program
P is called a model of P. A model of an ASP logic program P is a minimal model
of P iff no proper subset of it satisfies P.

Those rules for which I |= bi, for all bi, constitute the reduct PI of P, with
respect to I.
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Definition 5 (Answer Set—Stable Model). An interpretation I is an
answer set or stable model of an ASP logic program P iff I is a minimal model
of the reduct PI .

4 The ASP-Based Algorithm

This section is devoted to the presentation of the alluded ASP-based algo-
rithm that minimizes the degree of unbalance on feeders. The approach that
the algorithm follows is the automated generation of optimal solutions for the
declaratively-specified phase-balancing (search) problem. The source code of the
program is presented subsequently in Listing 1, whereas, the predicates used are
explained in Table 1.

1 phase(a). phase(b). phase(c).

2 l(1,25). l(2,10). ... l(n,30).

3 { line(F,l(N,W)) } :- phase(F), l(N,W).
4 :- line(F1,l(N,_)), line(F2,l(N,_)), F1 != F2.
5 :- not line(_,l(N,W)), l(N,W).
6 :- not line(F,_), phase(F).

7 line_load(F,S) :- phase(F), S = #sum{ P,N : line(F,l(N,P)) }.
8 balanced(S/3) :- S = #sum{ P,N : l(N,P) }.
9 error(F,|P-S|) :- phase(F), balanced(P), line_load(F,S).

10 total_error(S/3) :- S = #sum{ P,F : error(F,P) }.

11 #minimize { S : total_error(S) }.

12 #show line/2. #show line_load/2. #show total_error/1.

Listing 1. The ASP-based algorithm for the three-phase-balancing problem.

Some comments on the source code are in order. First of all, observe that a
logic program consists of statements, all of which are terminated by a period ‘.’.
Moreover, the connective ‘:-’ can be read as ‘if ’.

The algorithm takes as input the power Si of each load i (for 1 � i � n).
Note that a cluster of loads can be, also, regarded as a single load.

Line 1 sets (in the form of facts) the three phases of the system, whereas,
line 2 sets the available electrical loads, along with their power consumption
(the number of phases and the power consumption of loads are indicative). Note
that ASP’s language supports only integer numbers (written as sequences of the
digits 0 . . . 9), however, for all practical purposes of the examined application,
the (potential) loss in precision is insignificant. Moreover, the load range can be
set between 1 and 100, and larger loads range can be scaled accordingly to this
range.
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Table 1. Explanation of the predicates appearing in Listing 1.

Predicate name Explanation

phase/1 Phase (a or b or c)

l/2 Number (i) and power (Si) of an electrical load

line/2 Phase on which an electrical load is connected

line load/2 Total power that each phase supplies

balanced/1 Balanced power (Sbal)

error/2 Power error for each phase (εa or εb or εc)

total error/1 Total power error (ε)

Line 3 generates solution candidates, by means of a choice rule. The idea of
a choice rule is to express choices over subsets of atoms. Any subset of its head
atoms can be included in an answer set, provided the body literals are satisfied.5

Hence, in each solution candidate, arbitrary connections of each load to some
phase(s) are made.

Line 4 is an integrity constraint which ensures that a load cannot be con-
nected, simultaneously, to two distinct phases. In the same manner, line 5 ensures
that every load is connected to at least one phase, and line 6 excludes phases
without load. We note here that, unlike a variable name, whose recurrences
within a rule refer to the same variable, the token ‘ ’ (not followed by any letter)
stands for an anonymous variable that does not recur anywhere; one can view
this as if a new variable name is invented on each occurrence of ‘ ’.

Line 7 calculates the total power that each phase supplies. Line 8 calculates
what we shall call balanced power. Balanced power, denoted Sbal, is the power
of each phase when the three-phase load is perfectly balanced, and is calculated
by the sum of the power of all electrical loads, divided by 3. In symbols:

Sbal =

n∑

i=1

Si

3
(1)

Line 9 calculates the power error εx (where x stands for a phase a, b or c) for
each one of the three phases; that is, the absolute value of the difference between
Sbal and the total power that each phase supplies. Line 10 calculates the total
power error ε; that is, the mean value of the errors of each phase. In symbols:

ε =
εa + εb + εc

3
(2)

Line 11 is a minimization statement which generates the answer set with
the minimum value of total power error ε. Lastly, line 12 indicates that only
atoms over the predicates line/2, line load/2 and total error/1 ought to
be printed.
5 For instance, the logic program P =

{
a, {b} :- a

}
has two answer sets; i.e., {a}

and {a,b}.
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Table 2. Computation time for indicative load distributions; the electrical loads are
separated by semi-colons.

Loads distributions (kVA) Total load (kVA) Time (ms)

1; 5; 7; 10; 4; 8; 4; 1; 2; 3 45 410

11; 3; 3; 6; 5; 4; 7; 2; 1; 1 43 449

2; 4; 1; 10; 1; 4; 3; 2; 8; 13 48 550

6; 3; 9; 1; 5; 4; 3; 2; 1; 1 35 310

2; 4; 1; 2; 1; 5; 3; 7; 2; 14 41 406

5 Experimental Case Study

In order to test the performance of the proposed algorithm, indicative instances
of the phase-balancing problem shall be considered in this section. The electrical
system under investigation is assumed to be the electricity distribution network
of Greece. The typical feeder of this network is a pole-mounted three-phase trans-
former, with the following technical characteristics: 50 kVA, 20/0.4 kV, Dyn1, 4%.

We consider 10 electrical loads (or cluster of loads). The computation time
for indicative (random) load distributions of the electrical system is presented in
Table 2. All computations were performed on an Intel c© CoreTM i5-2410M CPU
@ 2.30 GHz machine, with 4 GB RAM available, using Clingo (version 4.5.4).6

The results obtained by Clingo for the first electrical load distribution are
reported subsequently.

line(a,l(4,10)) line(a,l(5,4))

line(b,l(1,1)) line(b,l(3,7)) line(b,l(6,8))

line(c,l(2,5)) line(c,l(7,4))

line(c,l(8,1)) line(c,l(9,2)) line(c,l(10,3))

line_load(a,14) line_load(b,16) line_load(c,15)

total_error(0)

It is evident from Table 2 that the algorithm performs excellent for all prac-
tical instances of the problem; the time required to find the optimal solution
for every considered scenario is in the order of milliseconds (ms). As it may be
expected, its performance depends, not only on the total number of loads, but
also on the loads distribution. In any case, if quality is what primarily mat-
ters, then lower performance can be tolerated, whereas, if protection is the main
factor under consideration, then high performance seems to be imperative.

6 https://potassco.org/clingo.

https://potassco.org/clingo
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Switching Hub

Phase a Phase b Phase c

L1 L2
. . . Ln

Algorithm Output

Fig. 3. The switching hub of the system. The hub implements the proper hard-wiring,
so that each phase a, b or c of the feeder feeds the appropriate electrical load Li (with
1 � i � n), according to the output of Listing 1.

6 Discussion

In order for the results of the algorithm of Listing 1 to be practically imple-
mented, a hardware installation in the form of switching hub is necessary, so
that the appropriate connections between the three phases of the feeder and the
available (clusters of) electrical loads to be employed (see Fig. 1). Such switch-
ing hub is depicted in Fig. 3, where the three phases of the feeder enter the
hub which, given the output of the proposed algorithm, implements the proper
hard-wiring so that each phase feeds the appropriate electrical load Li (with
1 � i � n).

7 Conclusion

In this article, we provided an ASP-based algorithm that efficiently attacks prac-
tical instances of the phase-balancing problem, a well-known NP-complete prob-
lem of power electrical systems. This is an interesting search problem from an
algorithmic viewpoint, as well as an electrical-engineering application that high-
lights ASP’s modelling methodology. The proposed algorithm aims to contribute
to the development of a robust method for phase balancing in high-quality
modern power electrical systems, given that unbalanced feeders may lead to
a plethora of undesirable and harmful circumstances.

Following a line of research according to which standard optimization prob-
lems in electrical engineering are addressed by means of declarative problem-
solving tools, future work is to be devoted to the study of the electricity cost-
minimization problem with the aid of ASP.

Acknowledgements. The authors are grateful to the two anonymous reviewers for
their valuable comments on this work.
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Abstract. This paper studies the global asymptotic robust stability of
dynamical neural networks with discrete time delays under parameter
uncertainties. By utilising the Lyapunov stability and Homeomorphic
mapping theorems, a new sufficient condition is presented for the exis-
tence, uniqueness and global robust asymptotic stability of this class of
neural systems with respect to the Lipschitz continuous activation func-
tions. The proposed stability criterion is derived by employing a new
type of Lyapunov functional and it unifies some of the key robust stabil-
ity results obtained in the past literature.

Keywords: Delayed neural networks · Robust stability analysis ·
Homeomorphic mapping · Lyapunov functionals

1 Introduction

In the past years, dynamical neural networks have been successfully employed
to solve real world engineering problems such as combinatorial optimization,
image processing, pattern recognition, and associative memories. These applica-
tions usually require that the employed neural network must possess unique and
globally asymptotically stable equilibrium points. Therefore, it is of great inter-
est to carrying out the stability analysis of dynamical neural networks. Another
important issue regarding stability of neural systems is the problem of time
delays due to the finite switching speed of amplifiers during the neuronal signal
transmission, which can have negative impact on the dynamical behaviours of
the system. On the other hand, when electronically implementing neural sys-
tems, some external disturbances may cause undesired deviations in the values
of the network parameters. Therefore, in order to conduct a complete and proper
stability analysis of neural systems, the time delays and parameter uncertainties
must be adequately introduced into the mathematical models of neural networks.
This leads us to study the robust stability of neural networks in the presence
of time delays. Recently, many papers have proposed various robust stability
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results for different types of delayed neural networks [1–20]. In this paper, by
employing the Lyapunov stability and Homeomorphic mapping theorems, a new
sufficient condition is obtained for the existence, uniqueness and global robust
asymptotic stability of neural systems involving discrete time delays with respect
to the Lipschitz continuous activation functions.

Notations: Let v = (v1, v2, ..., vn)T be real vector and Q = (qij)n×n be
a real matrix. |v| will denote |v| = (|v1|, |v2|, ..., |vn|)T and |Q| will denote
|Q| = (|qij |)n×n. If P = (pij)n×n and Q = (qij)n×n are two real matrices,
then, P � Q will imply that pij ≤ qij , i, j = 1, 2, ..., n. The three commonly used
vector norms for v and matrix norms for Q are as follows:

||v||1 =
n∑

i=1

|vi|, ||v||2 =

√√√√
n∑

i=1

v2
i , ||v||∞ = max

1≤i≤n
|vi|

||Q||1 = max
1≤i≤n

n∑

j=1

|qji|, ||Q||2 = [λmax(QT Q)]1/2, ||Q||∞ = max
1≤i≤n

n∑

j=1

|qij |

This paper will consider the following neural network model with discrete time
delays:

dxi(t)
dt

= −cixi(t)+
n∑

j=1

aijfj(xj(t))+
n∑

j=1

bijfj(xj(t−τj))+ui, i = 1, 2, ..., n (1)

where n is the number of the neurons, xi(t) denotes the state of the neuron
i at time t, fi(·) denote activation functions, aij and bij denote the strengths
of connectivity between neurons j and i at time t and t − τj , respectively; τj

represents the time delay required in transmitting a signal from the neuron j to
the neuron i, ui is the constant input to the neuron i, the positive constant ci is
the charging rate for the neuron i.

The matrix-vector form of (1) is as follows:

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t − τ)) + u (2)

where x(t) = (x1(t), x2(t), ..., xn(t))T , A = (aij)n×n, B = (bij)n×n, C = diag
(ci), u = (u1, u2, ..., un)T , f(x(t)) = (f1(x1(t)), f2(x2(t)), ..., fn(xn(t)))T and
f(x(t − τ)) = (f1(x1(t − τ1)), f2(x2(t − τ2)), ..., fn(xn(t − τn)))T .

In order to study the stability of dynamical neural networks, we first require
to define properties of the activation functions. In the current paper, the activa-
tion functions fi will be choosen to be Lipschitz continuous. Lipschitz activation
functions satisfy the following condition:

|fi(x) − fi(y)|≤�i|x − y|, i = 1, 2, · · ·, n, ∀x, y ∈ R, x �=y. (3)

where �i are the Lipschitz constants.
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When studying the robust stability of neural systems, it is customary to
assume that the system matrices A = (aij), B = (bij) and C = diag(ci > 0) are
defined in the following intervals:

CI := {C : 0 ≺ C�C�C, i.e., 0 < ci≤ci≤ci}
AI := {A = (aij) : A�A�A, i.e., aij≤aij≤aij} (4)

BI := {B = (bij) : B�B�B, i.e., bij≤bij≤bij}
Note that (4) implies that the system matrices A = (aij), B = (bij) and C =
diag(ci > 0) have the bounded norms. Therefore, in this paper, we will assume
that the norms of the matrices A = (aij), B = (bij) and C = diag(ci > 0)
are bounded. In other words, the matrices A = (aij), B = (bij) and C =
diag(ci > 0) may have different upper bound norms. In the following, we unify
the previous literature results which define various upper bound norms for the
matrices intervalized in the form given in (4).

Lemma 1: Assume that the matrices A and B in (2) are defined within the
intervals given by (4). Define A∗ = 1

2 (A + A), A∗ = 1
2 (A − A), Â = (âij)n×n

with âij = max{|aij |, |aij |}, B∗ = 1
2 (B +B), B∗ = 1

2 (B −B), B̂ = (b̂ij)n×n with
b̂ij = max{|bij |, |bij |}. Let

σ1(A) =
√

‖|A∗T A∗| + 2|A∗T |A∗ + AT∗ A∗‖2
σ2(A) = ‖A∗‖2 + ‖A∗‖2
σ3(A) =

√
‖A∗‖22 + ‖A∗‖22 + 2‖AT∗ |A∗|‖2

σ4(A) = ‖Â‖2
and

σ1(B) =
√

‖|B∗T B∗| + 2|B∗T |B∗ + BT∗ B∗‖2
σ2(B) = ‖B∗‖2 + ‖B∗‖2
σ3(B) =

√
‖B∗‖22 + ‖B∗‖22 + 2‖BT∗ |B∗|‖2

σ4(B) = ‖B̂‖2
Then, the following conditions are satisfied:

‖A‖2 ≤ σm(A) = min{σ1(A), σ2(A), σ3(A), σ4(A)} (5)

and

‖B‖2 ≤ σm(B) = min{σ1(B), σ2(B), σ3(B), σ4(B)} (6)

We note here that the conditions ‖A‖2 ≤ σ1(A), ‖A‖2 ≤ σ2(A), ‖A‖2 ≤ σ3(A)
and ‖A‖2 ≤ σ4(A) have been obtained in the references [1–3] and [4], respectively.

The following well known result provides an important toll for the analysis
of the existence and uniqueness equilibrium point for nonlinear systems:
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Lemma 6 [5]: If a map H(x) ∈ C0 satisfies the conditions H(x) �= H(y) for all
x �= y and ||H(x)||→∞ as ||x||→∞, then, H(x) is homeomorphism of Rn.

2 Existence and Uniqueness Analysis of Equilibrium
Point

In this section, we will present a new sufficient condition that ensures the exis-
tence and uniqueness of the equilibrium point of the neural network model (1).

Theorem 1: For the neural system defined by (1), let the activation functions
fi(·) satisfy (3) and the network matrices A, B and C satisfy (4). Then, the neural
network model (1) has a unique equilibrium point for each u, if the following
condition holds:

Υ =
c2m
�2M

− σ2
m(A) − σ2

m(B) − 2‖ÂT B̂||2 > 0

where cm = min{ci}, �M = max{�i}, σm(A) = min{σ1(A), σ2(A), σ3(A),
σ4(A)} and σm(B) = min{σ1(B), σ2(B), σ3(B), σ4(B)}, Â = (âij)n×n with
âij = max{|aij |, |aij |} and B̂ = (b̂ij)n×n with b̂ij = max{|bij |, |bij |}.

Proof: In order to prove the existence and uniqueness of the equilibrium point,
we will make use of the result of Lemma 6. For the neural network model (1),
we can define the following associated map:

H(x) = −Cx + Af(x) + Bf(x) + u (7)

H(x) = 0 implies that

−Cx + Af(x) + Bf(x) + u = 0

which is exactly the equilibrium equation of system (1). Therefore, every solution
of H(x) = 0 is an equilibrium point of (1) since H(x) = 0 is equivalent to ẋ = 0.
Therefore, the fact that H(x) is homeomorphism of Rn will directly imply the
the proof of Theorem 1. We will now show that the condition given Theorem
1 ensures that H(x) is homeomorphism of Rn. Let x ∈ Rn and y ∈ Rn be two
vectors such that x �= y. Then, for H(x) defined by (7), we can write

H(x) − H(y) = −C(x − y) + A(f(x) − f(y)) + B(f(x) − f(y)) (8)

For the activation functions belonging to class K, x �= y implies two distinct
cases: x �= y and f(x) − f(y) = 0, or x �= y and f(x) − f(y) �= 0. In the case of
x �= y and f(x) − f(y) = 0, (8) takes the form

H(x) − H(y) = −C(x − y)
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Since C is a positive diagonal matrix, x − y �= 0 directly implies that H(x) �=
H(y). Now consider the case where x − y �= 0 and f(x) − f(y) �= 0. In this case,
from (8), we can derive the following

[2C(x − y) + H(x) − H(y)]T [H(x) − H(y)]
= [C(x − y) + A(f(x) − f(y)) + B(f(x) − f(y))]T

×[−C(x − y) + A(f(x) − f(y)) + B(f(x) − f(y))]
= (x − y)T C2(x − y) + (f(x) − f(y))T AT A(f(x) − f(y))

+(f(x) − f(y))T BT B(f(x) − f(y)) + 2(f(x) − f(y))T AT B(f(x) − f(y))
≤ −c2m‖x − y‖22 + ‖A‖22‖f(x) − f(y)‖22 + ‖B‖22‖f(x) − f(y)‖22

+2|f(x) − f(y)|T |AT ||B||f(x) − f(y)| (9)

From Lemma 1, we know that ‖A‖22 ≤ σ2
m(A) and ‖B‖22 ≤ σ2

m(B). Thus, (9)
satisfies

[2C(x − y) + H(x) − H(y)]T [H(x) − H(y)]
≤ −c2m‖x − y‖22 + σ2

m(A)‖f(x) − f(y)‖22 + σ2
m(B)‖f(x) − f(y)‖22

+2|f(x) − f(y)|T |AT ||B||f(x) − f(y)| (10)

Since |A| � Â and |B| � B̂, we can write the following inequality

|f(x) − f(y)|T |AT ||B||f(x) − f(y)| ≤ |f(x) − f(y)|T |ÂT ||B̂||f(x) − f(y)|
≤ ‖ÂT B̂||2‖f(x) − f(y)‖22 (11)

Using (11) in (10) leads to

[2C(x − y) + H(x) − H(y)]T [H(x) − H(y)]
≤ −c2m‖x − y‖22 + σ2

m(A)‖f(x) − f(y)‖22 + σ2
m(B)‖f(x) − f(y)‖22

+2‖ÂT B̂||2‖f(x) − f(y)‖22 (12)

In the light of (3), we can write ‖f(x) − f(y)‖22 ≤ �2M‖x − y‖22. Hence, (12) takes
the form:

[2C(x − y) + H(x) − H(y)]T [H(x) − H(y)]
≤ −c2m‖x − y‖22 + �2Mσ2

m(A)‖x − y‖22 + �2Mσ2
m(B)‖x − y‖22

+2�2M‖ÂT B̂||2‖x − y‖22
= −�2MΥ‖x − y‖22 (13)

(13) can be written as

2(x − y)T C(H(x) − H(y)) + (H(x)) − H(y))T (H(x) − H(y))
≤ −�2MΥ‖x − y‖22 (14)

Since the term (H(x)) − H(y))T (H(x) − H(y)) ≥ 0, it follows from (14) that

2(x − y)T C(H(x) − H(y)) ≤ −�2MΥ‖x − y‖22 (15)
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Since Υ > 0, for x − y �= 0, (15) implies that

2(x − y)T C(H(x) − H(y)) < 0 (16)

It can be directly concluded from (16) that H(x) �= H(y) for all x �= y.
Letting y = 0 in (15) leads to

2xT C(H(x) − H(0)) ≤ −�2MΥ‖x‖22 (17)

Taking the absolute value of both sides of (17) yields:

2|xT C(H(x) − H(0))| ≥ �2MΥ‖x‖22 (18)

Form (18), the following can be written

2‖C‖∞‖x‖∞‖H(x) − H(0)‖1 ≥ �2MΥ‖x‖22 (19)

Since ‖x‖∞≤‖x‖2 and ‖H(x) − H(0)‖1≤‖H(x)‖1 + ‖H(0)‖1, we obtain from
(19) that

‖H(x)‖1 ≥ �2MΥ‖x‖2
2‖C‖∞

− ‖H(0)‖1 (20)

Since, ‖C‖∞ and ‖H(0)‖1 are real finite values, it directly follows from (20) that
‖H(x)‖ → ∞ as ‖x‖ → ∞. Thus, the proof of Theorem 1 is complete.

3 Stability Analysis of Equilibrium Point

In this section, it will be shown that the condition obtained in Theorems 1 for
the existence and uniqueness of the equilibrium point also implies the asymptotic
stability of equilibrium point of neural system (1). Let x∗ denote the equilibrium
point of neural network model (1). By using the transformation zi(·) = xi(·) −
x∗

i , i = 1, 2, ..., n , system (1) can be put into the following form:

żi(t) = −cizi(t) +
n∑

j=1

aijgj(zj(t)) +
n∑

j=1

bijgj(zj(t − τj)) (21)

where gi(zi(t)) = fi(zi(t)+x∗
i )−fi(x∗

i ),∀i. Note that neural system (21) inherits
the assumption given by (3), namely,

|gi(zi(t))|≤�i|zi(t)|, ∀i. (22)

The stability of the origin of the transformed system (21) is equivalent to the
stability of the equilibrium point x∗ of (1). Therefore, we will establish the
stability of the origin of system (21) instead of considering the stability of the
equilibrium point of system (1).

System (21) can be written in the form:

ż(t) = −Cz(t) + Ag(z(t)) + Bg(z(t − τ)) (23)

with z(t) = (z1(t), z2(t), ..., zn(t))T , g(z(t)) = (g1(z1(t)), g2(z2(t)), ..., gn(zn(t)))T

and g(z(t − τ)) = (g1(z1(t − τ1)), g2(z2(t − τ2)), ..., gn(zn(t − τn)))T .
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We can now proceed with the following result:

Theorem 2: For the neural system defined by (21), let the activation functions
gi(·) satisfy (22) and the network matrices A, B and C satisfy (4). Then, the
origin of neural network model (21) is globally asymptotically stable, if the
following condition holds:

Υ =
c2m
�2M

− σ2
m(A) − σ2

m(B) − 2‖ÂT B̂||2 > 0

where cm = min{ci}, �M = max{�i}, σm(A) = min{σ1(A), σ2(A), σ3(A),
σ4(A)} and σm(B) = min{σ1(B), σ2(B), σ3(B), σ4(B)}, Â = (âij)n×n with
âij = max{|aij |, |aij |} and B̂ = (b̂ij)n×n with b̂ij = max{|bij |, |bij |}.

Proof: We employ the following Lyapunov functional [21]:

V (z(t)) =
n∑

i=1

ciz
2
i (t) +

n∑

i=1

∫ t

t−τi

ż2i (s)ds + α

n∑

i=1

∫ t

t−τi

g2i (zi(s))ds

+ β
n∑

i=1

∫ t

t−τi

z2i (s)ds

where α and β are some positive constant whose values will be obtained in what
follows. The time derivative of the functional along the trajectories of system
(23) is obtained as follows

V̇ (z(t)) =
n∑

i=1

2cizi(t)żi(t) +
n∑

i=1

ż2i (t) −
n∑

i=1

ż2i (t − τi)

+α
n∑

i=1

g2i (zi(t)) − α
n∑

i=1

g2i (zi(t − τi)) + β
n∑

i=1

z2i (t) − β
n∑

i=1

z2i (t − τi)

=
n∑

i=1

(2cizi(t) + żi(t))żi(t) −
n∑

i=1

ż2i (t − τi)

+α
n∑

i=1

g2i (zi(t)) − α
n∑

i=1

g2i (zi(t − τi)) + β
n∑

i=1

z2i (t) − β
n∑

i=1

z2i (t − τi)

=
n∑

i=1

[(cizi(t) +
n∑

j=1

aijgj(zj(t)) +
n∑

j=1

bijgj(zj(t − τj)))

×(−cizi(t) +
n∑

j=1

aijgj(zj(t)) +
n∑

j=1

bijgj(zj(t − τj)))]

−
n∑

i=1

ż2i (t − τi) + α

n∑

i=1

g2i (zi(t)) − α

n∑

i=1

g2i (zi(t − τi))
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+β

n∑

i=1

z2i (t) − β

n∑

i=1

z2i (t − τi)

≤
n∑

i=1

[(cizi(t) +
n∑

j=1

aijgj(zj(t)) +
n∑

j=1

bijgj(zj(t − τj)))

×(−cizi(t) +
n∑

j=1

aijgj(zj(t)) +
n∑

j=1

bijgj(zj(t − τj)))]

+α

n∑

i=1

g2i (zi(t)) − α

n∑

i=1

g2i (zi(t − τi)) + β

n∑

i=1

z2i (t) − β

n∑

i=1

z2i (t − τi)

=
n∑

i=1

[−c2i z
2
i (t) + (

n∑

j=1

aijgj(zj(t)))(
n∑

j=1

aijgj(zj(t)))

+(
n∑

j=1

bijgj(zj(t − τj))))(
n∑

j=1

bijgj(zj(t − τj))))

+2(
n∑

j=1

aijgj(zj(t)))(
n∑

j=1

bijgj(zj(t − τj))))]

+α

n∑

i=1

g2i (zi(t)) − α

n∑

i=1

g2i (zi(t − τi)) + β

n∑

i=1

z2i (t) − β

n∑

i=1

z2i (t − τi)

= −
n∑

i=1

c2i z
2
i (t) +

n∑

i=1

(
n∑

j=1

aijgj(zj(t)))(
n∑

j=1

aijgj(zj(t)))

+
n∑

i=1

(
n∑

j=1

bijgj(zj(t − τj))))(
n∑

j=1

bijgj(zj(t − τj))))

+2
n∑

i=1

(
n∑

j=1

aijgj(zj(t)))(
n∑

j=1

bijgj(zj(t − τj)))) + α

n∑

i=1

g2i (zi(t))

−α

n∑

i=1

g2i (zi(t − τi)) + β

n∑

i=1

z2i (t) − β

n∑

i=1

z2i (t − τi) (24)

(24) can be written as

V̇ (z(t)) ≤ −zT (t)C2z(t) + gT (z(t))AT Ag(z(t))
+gT (z(t − τ))BT Bg(z(t − τ)) + 2gT (z(t))AT Bg(z(t − τ))
+αgT (z(t))g(z(t) − αgT (z(t − τ))g(z(t − τ))

≤ −zT (t)C2z(t) + gT (z(t))AT Ag(z(t))
+gT (z(t − τ))BT Bg(z(t − τ)) + 2|gT (z(t))||AT ||B||g(z(t − τ))|
+αgT (z(t))g(z(t) − αgT (z(t − τ))g(z(t − τ))
+βzT (t)z(t) − βzT (t − τ)z(t − τ) (25)
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Since |A| � Â and |B| � B̂, (25) can be written in the form:

V̇ (z(t)) ≤ −zT (t)C2z(t) + gT (z(t))AT Ag(z(t))
+gT (z(t − τ))BT Bg(z(t − τ)) + 2|gT (z(t))|ÂT B̂|g(z(t − τ))|
+αgT (z(t))g(z(t) − αgT (z(t − τ))g(z(t − τ))

≤ −c2m‖z(t)‖22 + ‖A‖22‖g(z(t))‖22 + ‖B‖22‖g(z(t − τ))‖22
+2‖ÂT B̂||2‖g(z(t))‖2‖g(z(t − τ))‖2
+αgT (z(t))g(z(t) − αgT (z(t − τ))g(z(t − τ))
+βzT (t)z(t) − βzT (t − τ)z(t − τ) (26)

Since ‖A‖2≤σm(A) and ‖B‖2≤σm(B), (26) leads to

V̇ (z(t)) ≤ −c2m‖z(t)‖22 + σ2
m(A)‖g(z(t))‖22 + σ2

m(B)‖g(z(t − τ))‖22
+‖ÂT B̂||2(‖g(z(t))‖22 + ‖g(z(t − τ))‖22)
+αgT (z(t))g(z(t) − αgT (z(t − τ))g(z(t − τ))

= −c2m‖z(t)‖22 + σ2
m(A)‖g(z(t))‖22 + σ2

m(B)‖g(z(t − τ))‖22
+‖ÂT B̂||2‖g(z(t))‖22 + ‖ÂT B̂||2‖g(z(t − τ))‖22
−α‖gT (z(t − τ))‖22
+βzT (t)z(t) − βzT (t − τ)z(t − τ) (27)

If we choose α = σ2
m(B) + ‖ÂT B̂||2, then (27) takes the form

V̇ (z(t)) = −c2m‖z(t)‖22 + σ2
m(A)‖g(z(t))‖22 + ‖ÂT B̂||2‖g(z(t))‖22

+(σ2
m(B) + ‖ÂT B̂||2)‖gT (z(t))‖22

= −c2m‖z(t)‖22 + σ2
m(A)‖g(z(t))‖22 + σ2

m(B)‖g(z(t))‖22
+2‖ÂT B̂||2‖g(z(t))‖22 + β‖z(t)‖22 (28)

In the light of (22), we can write ‖g(z(t))‖22 ≤ �2M‖z(t)‖22. Hence, (28) becomes:

V̇ (z(t)) ≤ (−c2m + (σ2
m(A) + σ2

m(B) + 2‖ÂT B̂||2)�2M )‖z(t)‖22 + β‖z(t)‖22
= −�2M (

c2m
�2M

− σ2
m(A) − σ2

m(B) − 2‖ÂT B̂||2)‖z(t)‖22 + β‖z(t)‖22
= −�2MΥ‖z(t)‖22 + β‖z(t)‖22 = −(�2MΥ − β)‖z(t)‖22 (29)

It can be seen from (29) that, if β < �2MΥ , then V̇ (z(t)) < 0 for all z(t) �= 0. Let
z(t) = 0. In this case, from (26), we have

V̇ (z(t)) ≤ ‖B‖22‖g(z(t − τ))‖22 − α‖g(z(t − τ))‖22 − β‖z(t − τ)‖22 (30)

Since α > ‖B‖22, it follows from (30) that

V̇ (z(t)) ≤ −β‖z(t − τ)‖22 (31)
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(31) implies that V̇ (z(t)) is negative definite for all z(t − τ) �= 0. Let z(t) = 0
and z(t − τ) = 0 in which case ż(t) = 0, implying that

V̇ (z(t)) = −
n∑

i=1

ż2i (t − τi) = −żT (t − τ)ż(t − τ) (32)

(32) implies that V̇ (z(t)) < 0 for all ż(t − τ) �= 0. Hence, we observe that
V̇ (z(t)) = 0 if and only if z(t) = z(t − τ) = ż(t) = ż(t − τ) = 0, otherwise
V̇ (z(t)) < 0. In addition, V (z(t)) is radially unbounded since V (z(t)) → ∞ as
‖z(t)‖ → ∞. Thus, the origin of (21) is globally asymptotically robust stable.

4 A Numerical Example and Comparisons

In this section, a numerical example is given to make a comparison between the
result of this paper and the previous literature results. We first unify the robust
stability results obtained in [1–4] and [6–8] in the following theorem:

Theorem 3: For system (21), let the activation functions gi(·) satisfy (22) and
the network matrices A, B and C satisfy (4). Then, the origin of (21) is globally
asymptotically stable, if the following condition holds:

Δ =
cm

�M
− σm(A) − σm(B) > 0

where cm = min{ci}, �M = max{�i}, σm(A) = min{σ1(A), σ2(A), σ3(A),
σ4(A)} and σm(B) = min{σ1(B), σ2(B), σ3(B), σ4(B)}.

A =

⎡

⎢⎢⎣

−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

⎤

⎥⎥⎦ , A =

⎡

⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

−3 −3 −3 −3
−3 −3 −3 −3
−2 −2 −2 −2
−2 −2 −2 −2

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

3 3 3 3
3 3 3 3
2 2 2 2
2 2 2 2

⎤

⎥⎥⎦ ,

c1 = c2 = c3 = c4 = cm, �1 = �2 = �3 = �4 = 1

We obtain the following matrices:

A∗ = B∗ =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , A∗ = Â =

⎡

⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥⎥⎦ , B∗ = B̂ =

⎡

⎢⎢⎣

3 3 3 3
3 3 3 3
2 2 2 2
2 2 2 2

⎤

⎥⎥⎦

We have ‖ÂT B̂||2 = 40, σ1(A) = σ2(A) = σ3(A) = σ4(A) = 4 and σm(A) = 4,
σ1(B) = σ2(B) = σ3(B) = σ4(B) = 10.198 and σm(B) = 10.198.

Applying the result of Theorem 3 to this example yields

Δ =
cm

�M
− σm(A) − σm(B) = cm − 14.198 > 0
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from which the robust stability condition is obtained as cm > 14.198. When
applying the result of Theorem 3 to this example, we get that

Υ =
c2m
�2M

− σ2
m(A) − σ2

m(B) − 2‖ÂT B̂||2 = c2m − 16 − 104 − 80 = c2m − 200 > 0

from which the robust stability condition is obtained as cm > 14.140. Thus,
for the parameters of this example, Theorem 2 yields a weaker robust stability
condition than the robust stability condition stated in Theorem 3.

5 Conclusion

This paper has studied the global asymptotic robust stability of delayed neural
networks with the uncertain system matrices having the bounded norms and
presented a novel sufficient condition for the existence, uniqueness and global
asymptotic stability of the equilibrium point with respect to the Lipschitz acti-
vation functions. By giving a numerical example, the proposed result has been
shown to be a new sufficient condition when compared with previously reported
corresponding robust stability results.
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Abstract. Artificial neural networks are powerful tools for data analysis and are
particularly suitable for modelling relationships between variables for best
prediction of an outcome. A large number of error functions have been proposed
in the literature to achieve a better predictive power of a neural network. Only a
few works employ Tsallis statistics, although the method itself has been suc-
cessfully applied in other machine learning techniques. This paper undertakes
the effort to examine various characteristics of the q-generalized function based
on Tsallis entropy as an alternative loss measure in neural networks. To achieve
this goal, we will explore various methods that can be used to interpret super-
vised neural network models. These methods can be used to visualize the model
using the neural network interpretation diagram, assess the importance of
variables by disaggregating the model’s weights (Olden’s and Garson’s algo-
rithms) and perform a sensitivity analysis of model responses to input variables
(Lek’s profile).

Keywords: Generalized entropy � Neural networks � Sensitivity analysis �
Variable’s importance

1 Introduction

Artificial intelligence (AI) methods, especially those based on machine learning
methods, are rapidly becoming essential for the analysis of complex data. Artificial
neural networks (ANNs) are highly parametrized, non-linear models with sets of
processing units called neurons that can be used to approximate the relationship
between the input and the output signals of a complex system [1]. They have been
extensively and successfully applied in areas such as pattern recognition, signal pro-
cessing, and system control in a number of real-world problems including engineering,
medicine, or business [2–4].

In general, neural networks must determine the required mapping of input to output
variables to solve a given problem during iterative training process. The main goal of
the training is to find the correct weights values between the inputs and the outputs of
the layers that minimize some predefined loss function (also called error measure) [5].
For the successful application it is important to train the network with a loss function
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that reflects the objective of the problem. For instance, the mean square error (MSE) is
the most commonly used function, however it is not necessarily the best function for
classification tasks. Consequently, a number of alternative loss functions have been
investigated, and for the classification tasks the cross entropy loss function is consid-
ered as more appropriate [6].

In this article we make an effort to investigate an extension of the cross entropy loss
function, which is a q-generalized loss function based on Tsallis statistics [7]. We will
explore the properties of the proposed loss function and measure the performance of the
neural network by assessing the variables’ importance through a sensitivity analysis of
response variable to changes in the input variables.

Although ANNs can be seen as powerful predictive tools compared to more con-
ventional models such as linear or logistic regression, they are also criticized as ‘black
boxes’, because ANN based models are hard to interpret and it is difficult to determine
which features are most important for the problem and how they are related to the
modelled phenomenon. To address this weakness, we will present several methods that
will help broad audience to understand various aspects of the final neural network
model outcome. For this purpose a Garson and Olden algorithms will be used to assess
the importance of each input variable and the Lek’s profile will be used to evaluate the
effects of input variables by returning a plot of model predictions across the range of
values for each variable [1, 8].

In particular, using artificially simulated data with the known underlying structure,
we aim to answer the following research questions:

• What is the effect of the q-parameter in the proposed loss function on the various
properties of the neural network?

• To what extent is it possible to analyse various characteristics of the neural
network?

The remainder of this paper is organized as follows: Sect. 2 provides an overview
of the similar research problems as well as the theoretical frameworks of the gener-
alized entropy and artificial neural networks. In Sect. 3, the research framework was
outlined, including the details of numerical implementation, artificial dataset and model
performance measures. Section 4 outlines the experiments and presents the discussion
of the results. The paper ends with concluding remarks in Sect. 5.

2 Theoretical Background

2.1 Artificial Neural Networks

Artificial neural networks are a set of algorithms created to mimic the human brain, that
are designed to recognize patterns. They interpret input data through a kind of machine
perception, labelling or clustering raw input. The patterns they recognize are numerical,
contained in vectors, into which all real-world data, be it images, sound, text or time
series, must be translated [9]. Usually ANNs are composed of several layers (e.g. multi-
layer perceptron; MLP) [10]. The layers are made of nodes. A node is just a place
where computation happens, loosely patterned on a neuron in the human brain, which
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fires when it encounters sufficient stimuli. A node combines input from the data with a
set of coefficients, or weights, that either amplify or dampen that input, thereby
assigning significance to inputs with regard to the task the algorithm is trying to learn.
These input-weight products are summed and then the sum is passed through a node’s
so-called activation function, to determine whether and to what extent that signal
should progress further through the network to affect the ultimate outcome [11].

In general, artificial neural network (MLP) with a one hidden layer consisting of J
hidden neurons and p input neurons (neurons from each layer activated by the logistic
function f ) estimates the following function:

ANN ¼ f w0 þ
XJ

j¼1
wjf w0j þ

Xp

i¼1
wijxi

� �� �
; ð1Þ

where w0 stands for the bias synaptic weight of the output neuron, w0j stands for the
bias synaptic weight of the j-th hidden neuron, xi stands for the i input feature, wj stands
for the weight corresponding to the synapse starting at the j-th hidden neuron and
leading to the output neuron and wij stands for the weight of the i-th neuron from the
input layer to the j neuron from the hidden layer [6].

ANNs are matched to data by learning algorithms during the iterative training
process by the use of a given output, which is compared to the predicted output and the
adjustment of all parameters. The parameters of ANNs are their weights. A common
learning algorithm is the resilient backpropagation algorithm [12] that modifies neural
network weights to find a local minimum (in ideal case a global minimum) of some
predefined loss function E, which is, in this article, the function defined in the Eqs. 3
and 4.

2.2 Generalized Entropy

Information entropy introduced by Shannon [13] is the average rate at which infor-
mation is produced by a stochastic source of data (or equivalently unpredictability of a
particular event/state). The value of the entropy depends on two parameters: (1) dis-
order (uncertainty) and it is maximum when the probability of every possible states are
equal; (2) number of possible events.

Standard Shannon entropy assumes a compromise contributions from the main
mass of the distribution and the tail. To control both parameters, a generalization was
proposed by Tsallis [7], defined as:

HTq ¼
1

q� 1
1�

Xn

i¼1
tqi

� �
; ð2Þ

where ti is the probability of occurrence of an event xi being an element of a random
variable X that can take values x1; . . .; xn, and q is the adjustable generalization
parameter. Using this generalized entropy with q[ 1, high probability events con-
tribute to the entropy value more than these with low probability. Therefore, the higher
the value of q, the greater is the share of highly probable events in the final result.

Generalized Entropy Loss Function in Neural Network 537



ANNs require loss function that accepts target variable and its predicted value. To
estimate this loss the Kullback-Leibler (K-L) divergence measuring distance between
two distributions can be used. Generally K-L divergence measures the inefficiency of
assuming that the distribution is yif g, when the true distribution is tif g. For the same
reason, the mutual entropy of Tsallis is a generalization of K-L entropy, the latter being
only a limiting case of the former for q ! 1. The mutual entropy of Tsallis refers to
two probability distributions tif g and yif g, (i ¼ 1; . . .; n), over the same alphabet, and
is defined as [5]:

HTqðtjjyÞ ¼
1

1� q
1�

Xn

i¼1
tqi y

1�q
i

� �
: ð3Þ

The loss function being minimized during the training should accept input data,
output data and the parameter vector. Based on these, a given loss function returns both
the current loss and its gradients. For this reason, the loss function that implements
Tsallis mutual entropy is defined as follows [5]:

E t; y; qð Þ ¼ 1
1� q

1� tqy1�q � 1� tð Þqð1� yÞ1�q
� �

; ð4Þ

where (as previously) t and y stand for the true value and output of a given neural
network respectively. Moreover q stands for the current value of the q-parameter and
the gradient of the loss function defined as:

@

@y
E t; y; qð Þ ¼ � y� 1ð Þyð Þ�q yq 1� tð Þq� 1� yð Þqtqð Þ; ð5Þ

is required for any gradient-based optimization algorithms.

2.3 Related Works on Variable’s Importance

Machine learning systems are increasingly capable of solving many complex problems
in many disciplines. Unfortunately, these systems remain characteristically opaque as
these are difficult to look inside so the underlying relations between the input variables
and the output cannot be easily captured.

In the last decades, several methods have been proposed to measure the importance
of input variables, which basically apply some changes into input values and checks
what happens to the output. In some methods called pruning, the approach is to
eliminate irrelevant input e.g. [14–16], where the most significant input variables are
determined first and, then these which are below a threshold are excluded from the
neural network. This minimizes redundancy and allows to limit the size of the network.

There are some methods, as opposite to pruning methods, which aim to capture the
relative contribution or the contribution profile of the input factors. For instance partial
derivatives method by Dimopoulos et al. [17], which consists in calculating the partial
derivatives of the output with respect to each input variable.
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Some approaches are called ‘weights’ methods as these apply a computation using
the connection weights. For example, Garson [18] proposed a method of partitioning
the ANN connection weights in order to determine the relative importance of each
input variable within the network. The same idea has been modified and applied by
Goh [19]. In the case of a single layer of hidden units, the equation is:

Qik ¼
PJ

j¼1 wijvjk
�� �� =

Pp
r¼1 wrj

�� ��
Pp

i¼1

PJ
j¼1 wijvjk

�� �� =
Pp

r¼1 wrj

�� ��� � ; ð6Þ

where wij is the connection weight between the input i-th neuron and the j-th hidden
neuron, vjk is the connection weight between the j-th hidden neuron and the k-th output

neuron, and
Pp

r¼1
wrj

�� �� is the sum of the connection weights between the p input neurons

(features) and the j-th hidden neuron. Qik represents the percentage of influence of the
input variable on the output. In order to avoid the counteracting influence due to
positive and negatives values, all connection weights were given their absolute values
in the modified Garson algorithm.

Similarly, the Olden’s algorithm [20], which, in comparison to the Garson’s
method, uses the product of the raw connection weights between each input and the
output neuron and sums the product across all hidden neurons. An advantage of this
approach is that relative contributions of each connection weight are maintained in
terms of both, magnitude and sign, as compared to Garson’s algorithm which considers
only the absolute magnitude.

An alternative approach to assess the relationship of variables in the neural network
is Lek’s profile method [21]. The profile method is fundamentally different from
Garson’s, Olden’s algorithms or pruning methods, as it is to assess the behaviour of
target across different values of the input variables [8].

The Lek’s profile method evaluates the effects of each input feature by returning a
model forecast graph across the range of values for this variable. The remaining fea-
tures are kept constant when assessing the effects of each input variable. This method
provides two options for setting fixed values of other invaluable features. The first
option holds invaluable features at different quantiles such as minimum, 20th per-
centile, median or maximum. The second option clusters the invaluable features
according to their natural grouping defined by data. Covariance among the variables
may present unlikely scenarios if all invaluable features are kept at the same level. In
other words high values for one features may be unlikely with high values for other
features. This approach holds invaluable features at means defined by natural clusters in
the data using k-means clustering algorithm.

The relationship between an outcome and the predictor may vary, taking into
account the context of other variables (i.e. the presence of interactions) and sensitivities
may vary at different points in the surface, taking into account the ability of the model
to describe non-linear relationships [1]. Basically, this method generates a partial
derivative of the response for each investigated feature and can provide insight into
these complex relationships described by the model. Unfortunately, the Lek’s profile is
only applicable to models with continuous features.
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This paper intends to deal with the problem of variables’ importance ranking
applicable to the neural networks that use generalized entropy loss functions. Specif-
ically, Olden’s and Garson’s algorithms were tested followed by sensitivity analysis
using Lek’s profile as those are supposed to be helpful based on the literature review.

3 Research Framework and Settings

3.1 Artificial Dataset

To assess any statistical method it is desirable to carry out an appropriate simulation
analysis which may give results where the true signal is known in advance. A good
simulation system should test several different aspects of classification problems such
as linear and nonlinear features, non-informative features and correlation among the
features. The dataset simulation was prepared according to the process described by
Gajowniczek et al. [5]. Based on this aforementioned framework in the current article
the simulation system (twoClassSim function from the caret package [22]) models a
logarithmic binary event (Bernoulli random target variable) as a function of real signals
using additive sets of a few different types. The final set consists of the following
features:

• Factor1 and Factor2 which are truly important features;
• Linear having linear relationship with the target variable;
• Nonlinear adding some fluctuation to the log-odds;
• Noise which is non-informative for the target variable.

The entire dataset consist of 10,000 observations while the class imbalance ratio for
binary classification task is set at approx. 50–50%. Moreover, all aforementioned
variables were normalized to the range [0,1].

3.2 Numerical Implementation

All numerical experiments presented below were prepared using R programming
language [23] installed on Ubuntu 18.04 operating system on a personal computer
equipped with Intel Core i7-9750H2.6 GHz processor (12 threads) and 32 GB of
RAM. As stated previously the dataset was prepared using the caret package.
Each ANN was built using neuralnet package [24] which allows for flexible settings
through custom-choice of loss function (see Eq. 4 and 5). Each time the ANN had 5
input neurons (equal to the number of the investigated features), 4 hidden neurons and
one output neuron. All neurons were activated by the logistic function and the maxi-
mum steps for the training of the ANN was set at 10,000 iterations. Since usually the
standard Shannon entropy is used as a loss function (q equals 1), to investigate the
influence of the q-parameter on the ANN’s structure, we set this parameter at 0.000001
(due to the numerical issues in calculating Eq. 4 from now on we will use the
abbreviation 0), 1.000001 (abbreviation 1; approximately equals Shannon entropy) and
2. Finally, to prepare the variable’s importance plots and Lek’s profiles we used the
NeuralNetTools package [8].
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4 Numerical Experiment

The weights connecting neurons in ANN are partially analogous to the coefficients in
the generalized linear model. The combined impact of the weights on model forecasts
represents the relative importance of the predictors in their relationship to the output
variable. However, there are a number of weights that combine one predictor with the
output in the ANN. The large number of adjustable weights in ANN makes it very
flexible in modelling non-linear effects, but imposes challenges for the interpretation.

To overcome this issue one can calculate the importance of each predictor using
Olden’s and Garson’s algorithms (please see Fig. 1). The Garson’s method suggests
that Factor2 (left part of the figure) has the strongest relationship with the output
variable (followed by Factor1 and NonLinear), similar to a strong positive association
shown with the Olden’s method (right part of the figure). For both methods all features
are ranked in the same order.
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Fig. 1. Importance of each predictor using Garson’s (left part) and Olden’s (right part) for q-
parameter set at 0 (upper part), 1 (middle part) and 2 (bottom part).
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When analysing vertically the left part of the Fig. 1 it can be seen that q-parameter
changes affect the validity of features. The relative importance of the most important
feature (Factor2) increases from 0.42 (q equals 0 for the upper part of the figure) even
up to 0.50 (q equals 2 for the bottom part of the figure). Simultaneously, the relative
importance of other less important features (Linear and Noise) decreases even to 0.01-
0.03. In total, the overall importance of the two most important features (which are
truly relevant) becomes bigger and clearer from the initial value of about 0.71 even up
to 0.89.

Right part of the Fig. 1 reveals that some features have positive and some negative
impact on the target variable. Factor1 which is the second most important feature based
on the Garson’s method has very strong negative influence on the outcome variable
based on the Olden’s method. When using this method one can notice that when q-
parameter increases from 0 to 2 the range/diversity of the relative importance flattens
from the range 2500–(-7500) to the range 50–(-300). One more time the joint
importance of Factor1 and Factor2 becomes bigger.

The results in Fig. 2 present Lek’s profiles by holding other predictors at six
different constant values i.e. their minimum (red colour), 20th, 40th, 60th, 80th quantiles

Fig. 2. Lek’s profiles by holding other predictors at constant values of their minimum, 20th,
40th, 60th, 80th quantiles and the maximum algorithms for q-parameter set at 0 (upper part), 1
(middle part) and 2 (bottom part).
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(orange, green, cyan, and blue colours, respectively) and the maximum (purple colour).
The horizontal axes present the whole range of each feature (as provided in Sect. 3.1 all
the features were normalized) while the vertical axes show values of the response
variable. Let’s take first look on the most important variables presented in the upper
part of the figure (q set at 0). The Olden’s algorithm revealed that Factor1 and Factor2
have negative and positive influence on the target, respectively.

The Lek’s profile shows the same relationship i.e. when the values of the Factor1
(x-axis) are increasing then the values of the outcome are decreasing from 1 to 0. This
happens for the Factor1 values approx. between 0.3 and 0.7. In opposite, the behaviour
of Factor2 is almost the same but has inverse relationship. In general, for both features
the change is rapid i.e. all lines are almost vertical. For other three variables it can be
seen that when other remaining variables are set at their minimums (group 1) or their
60th percentiles (group 4) there is no impact on the target variable (straight horizontal
lines). On the other hand, the change is observed for group 5 (80th percentile; Noise) or
for group 2 and 5 (20th and 80th percentiles; Linear and NonLinear).

When q-parameter is set at 1 or 2 (middle and bottom part of the Fig. 2) the
influence on the outcome changes its behaviour and shape. Firstly, for Factor1 and
Factor2 the change is not so rapid as previously i.e. curves are smoothed at the ends
and are slightly tilted. Secondly, other three features lose their influence on the target
and become almost horizontal.

Fig. 3. Lek’s profiles by holding other predictors at constant values at means defined by k-
means algorithm for q-parameter set at 0 (upper part), 1 (middle part) and 2 (bottom part).
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Results in Fig. 3 present Lek’s profiles by holding other predictors at six different
constant values (their means) defined by natural clusters in the data using k-means
clustering algorithm.

The first difference is for Factor1 and Factor2 (upper part of the figure when q is set
at 0). This time all curves changed their shapes (previously group 6 remained constant).
This observation is also valid for three other features. Profile for the Linear confirms
that this feature has straight influence on the outcome, i.e. target becomes either 0 or 1
after the change. Profiles for the Noise and for the NonLinear confirm that these
features have variable impact on the outcome, especially for the group 1 and 6 which
theoretically define the lowest and the biggest averages from the data.

Finally, with increased q-parameter to 1 or 2, in comparison to the Fig. 2, the
similar behaviour can be observed. However, this time all curves for all features are
squeezed next to each other more than before.

5 Conclusions

In this work, we have presented non-standard loss function based on the generalized
(Tsallis) entropy measure and the methods to evaluate variable importance (Garson’s,
Olden’s) and conduct a sensitivity analysis based on Lek’s profiles. With our analysis
we confirmed that the q-parameter within proposed loss function has an impact on
different properties of the neural network, including variables importance and sensi-
tivity of the neural network.

The analysis addresses the typical concern that supervised neural networks are
black boxes that provide no information about underlying relationships between
variables in the model. Importantly, we assessed the importance of a variables through
disaggregating the model’s weights and performed a sensitivity analysis providing
meaningful interpretations that can enhance understanding of the relation between
responses and input variables.

The future research will be focused on 1) examining the influence of the q-para-
meter on the final results provided by the ANN based models; 2) incorporating the
generalized entropy loss function in other machine learning algorithms such as clas-
sification trees, random forests and support vector machines; 3) applications of the
proposed interpretation/visualization methods (Garson’s and Olden’s algorithms, and
Lek’s profiles) to analyse various characteristics of other machine learning algorithms.
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Abstract. Common types of artificial neural networks have been well
known to suffer from the presence of outlying measurements (outliers) in
the data. However, there are only a few available robust alternatives for
training common form of neural networks. In this work, we investigate
robust fitting of multilayer perceptrons, i.e. alternative approaches to
the most common type of feedforward neural networks. Particularly, we
consider robust neural networks based on the robust loss function of
the least trimmed squares, for which we express formulas for derivatives
of the loss functions. Some formulas, which are however incorrect, have
been already available. Further, we consider a very recently proposed
multilayer perceptron based on the loss function of the least weighted
squares, which appears a promising highly robust approach. We also
derive the derivatives of the loss functions, which are to the best of
our knowledge a novel contribution of this paper. The derivatives may
find applications in implementations of the robust neural networks, if
a (gradient-based) backpropagation algorithm is used.

Keywords: Neural networks · Loss functions · Robust regression

1 Introduction

Neural networks represent a wide class of habitually used tools for the task of non-
linear regression. Numerous applications of estimation in nonlinear regression in
various fields are nowadays solved by neural networks. Thus, they represent impor-
tant exploratory tools of modern data analysis [15], particularly of exploratory
data analysis (see e.g. [7]). However, the most commonly used methods for training
regression neural networks based on the least squares criterion are biased under
contaminated data [18] as well as vulnerable to adversarial examples.

Under the presence of outlying measurements (outliers) in the data, train-
ing multilayer perceptrons is known to be unreliable (biased). Such their non-
robustness, caused by their minimization of the sum of squared residuals (see [11]
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for discussion), becomes even more severe for data with a very large number of
regressors [3]. Therefore, researchers have recently become increasingly interested
in proposing alternative robust (resistant) methods for training of multilayer per-
ceptrons [2]. So far, only a few robust approaches for training for MLPs have
been introduced and even smaller attention has been paid to a robustification of
radial basis function (RBF) networks. Approaches replacing the common sum
of squared residuals by a robust loss considered the loss functions corresponding
to the median [1], least trimmed absolute value (LTA) estimator [17], or least
trimmed squares (LTS) estimator [2,18]. The last two estimators were proposed
for the model of the so-called contaminated normal distribution, assuming the
residuals to come from a mixture of normally distributed errors with outliers,
typically assumed to be normally distributed as well but with a (possibly much)
larger variance than the majority of the data points. Other robust loss functions
within multilayer perceptrons were examined in [13]. A different robust approach
to neural networks based on finding the least outlying subset of observations but
exploiting the standard loss minimizing the sum of least squares of residuals was
proposed in [11], where also some other previous attempts for robustification of
neural networks are cited. All these robust approaches were also verified to be
meaningful in numerical experiments. Robust approaches to fitting neural net-
works were investigated also in the context of clustering (unsupervised learning),
based on replacing means of clusters by other centroids (e.g. medoids [4]).

Here, we use the idea to replace the common loss function of multilayer per-
ceptron by a robust version. On the whole, we consider here three particular loss
functions for multilayer perceptrons, corresponding to

– Least squares (i.e. the most common form of the loss for multilayer percep-
trons),

– Least trimmed squares (see Sect. 2),
– Least weighted squares (see Sect. 2).

As the main contribution, partial derivatives of the loss function with respect
to each of the parameters are evaluated here for robust multilayer perceptrons.
These are very useful, because the backpropagation algorithm for computing
the robust neural networks requires them. We derive the derivatives for a par-
ticular architecture of the multilayer perceptron, while they can be extended
in a straightforward way to more complex multilayer perceptrons. Neverthe-
less, we point out that the derivatives are difficult to find in the literature even
for a standard multilayer perceptron with a loss based on minimizing the least
squares criterion. Available robust estimators for linear regression and for the
location model are recalled in Sect. 2 of this paper. Section 3 presents derivatives
of standard as well as robust loss functions for a multilayer perceptron with one
hidden layer. Section 4 concludes the paper.

2 Linear Model and Robust Estimation

This section recalls robust estimates in linear regression model (and the location
model, which is its special case), which will serve as inspiration for the robust
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versions of neural networks studied later in Sect. 3. The standard linear regression
model

Yi = β0 + β1Xi1 + · · · + βpXip + ei, i = 1, . . . , n, (1)

considers n observations, for which a continuous response is explained by p
regressors (independent variables, features) under the presence of random errors
e1, . . . , en. The presence of the intercept β0 in the model can be interpreted as
the presence of a vector of ones in the design matrix X containing the elements
Xij . As the most common least squares estimator of β = (β0, β1, . . . , βp)T in (1)
is vulnerable to the presence of outliers in the data, various robust alternatives
have been proposed [8].

Robust statisticians have proposed a variety of estimation tools, which are
resistant to the presence of outliers in the data. Such estimators are considered
highly robust with respect to outliers, which have a high value of the breakdown
point. We can say that the breakdown point, which represents a fundamental
concept of robust statistics [8], is a measure of robustness of a statistical esti-
mator of an unknown parameter. Formally, the finite-sample breakdown point
evaluates the minimal fraction of data that can drive an estimator beyond all
bounds when set to arbitrary values. Keeping in mind the high robustness, we
decide for replacing the sum of squared residuals by loss functions of the least
trimmed squares and least weighted squares estimators, which are known to yield
reliable and resistant results over real data [10].

The least trimmed squares (LTS) estimator [16] represents a very popular
regression estimator with a high breakdown point (cf. [8]). Consistency of the
LTS and other properties were derived in [19]. Formally, the LTS estimate of β
is obtained as

arg min
b∈IRp+1

1
h

h∑

i=1

u2
(i)(b), (2)

where the user must choose a fixed h fulfilling n/2 ≤ h < n; here, ui(b) is a residual
corresponding to the i-th observation for a given b, and we consider squared values
arranged in ascending order denoted as u2

(1)(b) ≤ · · · ≤ u2
(n)(b). The LTS estimator

may attain a high robustness but cannot achieve a high efficiency [19].
The least weighted squares (LWS) estimator [20] for the model (1), moti-

vated by the idea to down-weight potential outliers, remains much less known
compared to the LTS, although it has more appealing statistical properties. The
definition of the LWS exploits the concept of weight function, which is defined
as a function ψ : [0, 1] → [0, 1] under technical assumptions. The LWS estimator
with a given ψ, which is able to much exceed the LTS in terms of efficiency, is
defined as

arg min
b∈IRp+1

n∑

k=1

ψ

(
k − 1/2

n

)
u2
(i)(b). (3)

We may refer to [20] and references cited therein for properties of the LWS; it
may achieve a high breakdown point (with properly selected weights), robustness
to heteroscedasticity, and efficiency for non-contaminated samples. The perfor-
mance of the LWS on real data (see [9] and references cited therein) can be
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described as excellent. We also need to consider the location model, which is
a special case of (1), in the form

Yi = μ + ei, i = 1, . . . , n (4)

with a location parameter μ ∈ IR. The LTS and LWS estimators are meaningful
(and successful [9]) also under (4), while the LWS estimator in (4) inherits the
appealing properties from (1).

3 Theoretical Results

This section presents partial derivatives of three loss functions for a particular
architecture of a multilayer perceptron, i.e. assuming a single hidden layer. Their
usefulness is discussed in Sect. 4.

3.1 Model and Notation

We assume that a continuous response variable Yi ∈ IR and a vector of regressors
(independent variables) Xi = (Xi1, . . . , Xip)T ∈ IRp are available for the total
number of n observations. The regression modeling in the nonlinear model

Yi = ϕ(Xi) + ei, i = 1, . . . , n, (5)

with an unknown function ϕ and random errors e1, . . . , en will be performed
using a multilayer perceptron (MLP) with a single hidden layer, which contains
N hidden neurons.

The MLP estimates the response Yi of the i-th observation by

Ŷi = Ŷi(c, γ, ω) = g

⎛

⎝
N∑

k=1

γkf

⎛

⎝
p∑

j=1

ωkjXij + ωk0

⎞

⎠ + γ0

⎞

⎠ + c, i = 1, . . . , n,

(6)
where f and g must be specified (possibly nonlinear) functions. The formula (6)
for computing the fitted values of the response considers two layers only however
can be generalized for more layers easily. We use here a notation following [6],
although other more or less different versions of notation may be used in this
context as well. If g is an identity function, then of course γ0 + c represents
a single parameter (intercept).

We estimate parameters c, γ = (γ0, γ1, . . . , γN )T , and

ω = (ω10, . . . , ωN0, ω11, . . . , ωN1, . . . , ω1p, . . . , ωNp)T (7)

of (6) exploiting a (rather complicated) nonlinear optimization of a certain
(selected) loss function. To simplify the notation, we further denote

τi =
N∑

k=1

γkf

⎛

⎝
p∑

j=1

ωkjXij + ωk0

⎞

⎠ + γ0, i = 1, . . . , n. (8)
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In the rest of the paper, we require that the derivatives of f and g exist.
Under such (rather common) assumption, these derivatives will be denoted as f ′

and g′, respectively. Although it is common in regression tasks to choose g in (6)
as an identity function, which simplifies the computational efforts, we retain the
general notation g here. Independently on the choice of the loss function we
will use the notation ui = Yi − Ŷi for residuals of the multilayer perceptron for
i = 1, . . . , n.

3.2 Derivatives of Fitted Values

As a preparatory result for further computations, we now derive independently
on the choice of the loss function

∂Ŷi

∂c
(c, γ, ω) = 1, i = 1, . . . , n, (9)

∂Ŷi

∂γ0
(c, γ, ω) = g′(τi), i = 1, . . . , n, (10)

∂Ŷi

∂γa
(c, γ, ω) = g′(τi)f

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , i = 1, . . . , n, a = 1, . . . , N,

(11)

∂Ŷi

∂ωa0
(c, γ, ω) = γag′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , i = 1, . . . , n, a = 1, . . . , N,

(12)
and

∂Ŷi

∂ωab
(c, γ, ω) = γaXibg

′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (13)

where i = 1, . . . , n, a = 1, . . . , N, and b = 1, . . . , p.
These partial derivatives of (6) were derived by a repeatedly used chain rule

for computing derivatives of a composite function. They are expressed as func-
tions, i.e. depending on their parameters c, γ, and ω. Of course, computations
with real data (e.g. within the neural network training) require to use estimated
versions of these derivatives, which can be easily obtained by replacing c, γ, and ω
by their estimates. We would like to point out that such estimates are always
available within the backpropagation algorithm, because its user is required to
specify initial estimates of these parameters. These partial derivatives appear in
derivatives of the loss function, which will be now expressed for three different
versions of the loss function, namely for the standard one based on least squares
and for two robust alternatives.
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3.3 Multilayer Perceptron with a Standard Loss

The most commonly used loss for multilayer perceptrons will be denoted as

ξ1 = ξ1(c, γ, ω) =
1
n

n∑

i=1

u2
i , (14)

which is known as the mean square error (MSE), corresponding to the least
squares estimator in a location model. To estimate all parameters of (6), the
common optimization criterion has the form

arg min
c,γ,ω

ξ1(c, γ, ω), (15)

which is commonly solved by backpropagation. To derive the explicit expressions
for partial derivatives, which are formulated below as a lemma, we will exploit
the facts that e.g. it holds for a = 1, . . . , N that

∂ξ1
∂γa

=
∂

∂γa

n∑

i=1

(
Yi − Ŷi

)2

=
n∑

i=1

∂

∂γa

(
Yi − Ŷi

)2

= −2
n∑

i=1

(
Yi − Ŷi

) ∂Ŷi

∂γa
.

(16)

Lemma 1. Under the notation of Sect. 3.1, it holds that

(a)
∂ξ1
∂c

(c, γ, ω) = − 2
n

n∑

i=1

ui, (17)

(b)
∂ξ1
∂γ0

(c, γ, ω) = − 2
n

n∑

i=1

uig
′(τi), (18)

(c)

∂ξ1
∂γa

(c, γ, ω) = − 2
n

n∑

i=1

uig
′(τi)f

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (19)

where a = 1, . . . , N,
(d)

∂ξ1
∂ωa0

(c, γ, ω) = − 2
n

n∑

i=1

uiγag′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (20)

where a = 1, . . . , N,
(e)

∂ξ1
∂ωab

(c, γ, ω) = − 2
n

n∑

i=1

uiγaXibg
′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (21)

where a = 1, . . . , N and b = 1, . . . , p.
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It is rather surprising that we are not aware of the results of Lemma 1 being
available anywhere in the literature. The formulas do not appear in standard
textbooks (e.g. [6]), and texts on this topic available on the internet usually con-
tain serious mistakes. Concerning the computations of the derivatives, Lemma 1
formulates them as depending on c, γ and ω, while the derivatives for numerical
data can be estimated by using estimates of c, γ and ω, respectively.

3.4 LTS-loss in Linear Regression

The loss function of the LTS estimator in (1) is defined as

ξ2 = ξ2(β) =
1
h

h∑

i=1

u2
(i). (22)

To express its derivatives, we may recall the following result given on p. 7 of [19]
stating that

∂ξ2
∂β

(β) = − 2
n

n∑

i=1

[
ui(β)Xi1[u2

i (β) ≤ u2
(h)(β)]

]
(23)

almost everywhere, where ui(β) = Yi−XT
i β for each i are residuals and 1 denotes

an indicator function. The expression (23) contains p + 1 particular derivatives
for individual elements of β. In (23), the i-th squared residual is compared with
the h-th largest squared residual. To conclude, the LTS estimator bLTS in (1)
can be computed (using now our notation) as the solution of the set of equations

n∑

i=1

ui(b)Xi1[u2
i (b) ≤ u2

(h)(b)] = 0, (24)

where b is the p + 1-dimensional variable.

3.5 Multilayer Perceptron with an LTS-loss

An MLP with the loss function corresponding to the LTS estimator was consid-
ered already in [17], where however the derivatives of the loss function are in our
opinion incorrect. The same formulas were repeated in [18]. However, we must
be much more careful in deriving the derivatives, which turn out to be have more
complex formulas. Let us first consider the loss

ξ2 = ξ2(c, γ, ω) =
1
h

h∑

i=1

u2
(i), (25)

where h is a specified constant fulfilling n/2 ≤ h < n. The loss corresponds to
the LTS estimator and thus we introduce the notation LTS-MLP for the (robust)
multilayer perceptron with parameters estimated by the criterion

arg min
c,γ,ω

ξ2(c, γ, ω). (26)
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The derivatives of ξ2 will be derived in an analogous way to the approach of
Sect. 3.4.

Lemma 2. We use the notation of Sect. 3.1. To avoid confusion, let us denote
the residuals of the LTS-MLP as ũ = ũi(c, γ, ω) for i = 1, . . . , n, to stress that
they are functions of c, γ and ω. Let us further denote ũ2

(1) ≤ · · · ≤ ũ2
(n). It holds

that

(a)
∂ξ2
∂c

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h)], (27)

(b)
∂ξ2
∂γ0

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h)]g
′(τi), (28)

(c)

∂ξ2
∂γa

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h))]g
′(τi)f

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (29)

where a = 1, . . . , N,
(d)

∂ξ2
∂ωa0

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h)]γag′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (30)

where a = 1, . . . , N,
(e)

∂ξ2
∂ωab

(c, γ, ω) = − 2
h

n∑

i=1

ũi1[ũ2
i ≤ ũ2

(h)]γaXibg
′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ ,

(31)
where a = 1, . . . , N and b = 1, . . . , p.

3.6 LWS-Loss in Linear Regression

Let us now consider the model (1) with the loss corresponding to an LWS esti-
mator. The loss

ξ3(β) =
n∑

i=1

ψ

(
i − 1/2

n

)
u2
(i) (32)

exploits a specified weight function ψ. Equivalently, we may express

ξ3(β) =
n∑

i=1

wiu
2
(i), (33)
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where the weights are generated by ψ under a natural requirement
∑n

i=1 wi = 1.
The LWS estimator is defined by

arg min
β

ξ3(β). (34)

The set of derivatives of the loss function in (1) has the form

∂ξ3
∂β

= −2
n∑

i=1

Xiuiψ
(
F̂ (n) (|ui(β)|)

)
, (35)

where F̂ (n) denotes the empirical distribution function

F̂ (n)(r) =
1
n

n∑

j=1

1[|uj(β)| < r], r ∈ IR; (36)

a detailed proof was given on p. 183 of [20]. The special case for (4) again
considers Xi ≡ 1 for each i. Let us consider the empirical distribution function

F̂ (r, b) =
1
n

n∑

j=1

1[|uj(b)| < r], r ∈ IR. (37)

The LWS estimator bLWS in (1) can be obtained as the solution of
n∑

i=1

ui(b)Xiψ
(
F̂ (|ui(b)|, b)

)
= 0, (38)

which is a set of normal equations with the variable b ∈ IRp+1. Here, |ui(b)| for
each i plays the role of the threshold r from (37).

3.7 Multilayer Perceptron with An-LWS Loss

We introduce the notation LWS-MLP for the (robust) multilayer perceptron
based on the robust loss function corresponding to the LWS estimator. Let us
consider the loss

ξ3(c, γ, ω) =
n∑

i=1

ψ

(
i − 1/2

n

)
u2
(i), (39)

formulated using a specified weight function ψ. The loss can be equivalently
expressed as

ξ3 = ξ3(c, γ, ω) =
n∑

i=1

wiu
2
(i), (40)

if the weights are generated by ψ and again fulfil
∑n

i=1 wi = 1. The loss corre-
sponds to an LWS estimator and therefore we introduce the notation LWS-MLP
for the (robust) multilayer perceptron with parameters given by

arg min
c,γ,ω

ξ3(c, γ, ω). (41)

Our deriving the derivatives of ξ3 is analogous to the reasoning of Sect. 3.6.
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Lemma 3. We use the notation of Sect. 3.1. Residuals of the multilayer percep-
tron will be denoted as ũi = ũi(c, γ, ω) and the corresponding empirical distribu-
tion function as

F̂ (r) =
1
n

n∑

i=1

1[|ũi| < r], r ∈ IR. (42)

It holds that

(a)
∂ξ3
∂c

(c, γ, ω) = −2
n∑

i=1

ũiψ
(
F̂ (n)(|ũi|)

)
, (43)

(b)
∂ξ3
∂γ0

(c, γ, ω) = −2
n∑

i=1

ũiψ
(
F̂ (n)(|ũi|)

)
g′(τi), (44)

(c)

∂ξ3
∂γa

(c, γ, ω) = −2
n∑

i=1

ũiψ
(
F̂ (n)(|ũi|)

)
g′(τi)f

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ , (45)

where a = 1, . . . , N,
(d)

∂ξ3
∂ωa0

(c, γ, ω) = −2
n∑

i=1

ũiγaψ
(
F̂ (n)(|ũi|)

)
g′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ ,

(46)
where a = 1, . . . , N,

(e)

∂ξ3
∂ωab

(c, γ, ω) = −2
n∑

i=1

ũiγaXibψ
(
F̂ (n)(|ũi|)

)
g′(τi)f ′

⎛

⎝
p∑

j=1

ωajXij + ωa0

⎞

⎠ ,

(47)
where a = 1, . . . , N, b = 1, . . . , p.

3.8 Applications

Several datasets were analyzed by the presented robust neural networks (LTS-
MLP and LWS-MLP) in [12]. In all datasets, which are contaminated by outliers,
a robust mean square error was better (i.e. smaller) for all the robust MLPs than
that of a plain MLP. This is true especially for simple artificial data and also
the Boston housing dataset [5] and the Auto MPG dataset [5]. For the Boston
housing dataset, some real estates in the very center of Boston are outlying, as
they are small but extremely overpriced compared to those in the suburbs of the



556 J. Kalina and P. Vidnerová

city. For the Auto MPG, we found those cars to be outlying for the model, which
have a high weight and a high consumption. Other outliers can be identified as
cars with a low weight, as there appears only a small percentage of them; such
findings are in accordance with those of [14].

4 Conclusions

Standard training of neural networks, including their most common types, is vul-
nerable to the presence of outliers in the data and thus it is important to consider
robustified versions instead. Due to a lack of reliable approaches, robustness in
neural networks with respect to outliers remains a perspective topic in machine
learning with a high potential to provide interesting applications in the analysis
of contaminated data. In this paper, we focus on robust versions of multilayer
perceptrons, i.e. alternative training techniques for the most common type of
artificial neural networks. We propose an original robust multilayer perceptron
based on the LWS loss.

We derive here derivatives of the loss functions based on the LTS and LWS esti-
mates for a particular (rather simple) architecture of a multilayer perceptron. Our
presenting this compact overview of derivatives needed for any available gradient-
based optimization technique is motivated by an apparent mistake in the deriva-
tives for a similar (although different) robust multilayer perceptron based on the
LTA estimator in [18]. The main motivation for our deriving the derivatives is how-
ever their usefulness within the backpropagation algorithm, allowing to compute
the robust neural networks. This paper does not however investigate any conver-
gence issues of the proposed robust multilayer perceptron; to the best of our knowl-
edge, convergence is not available for any other type of versions of neural networks,
which are proposed as robust to the presence of outliers in the data. Implement-
ing the LTS-MLP and LWS-MLP using the presented results is straightforward.
Derivatives for more complex multilayer perceptrons, i.e. for networks with a larger
number of hidden layers, can be obtained in an analogous way only with additional
using the chain rule for computing derivatives.

While the presented results represent a theoretical foundation for our future
research, there seems at the same time a gap of systematic comparisons of various
different robust versions of neural networks over both real and simulated data.
Such comparisons are intended to be a topic for our future work, because a statis-
tical interpretation of the results of robust neural networks remains crucial.

Acknowledgments. The authors would like to thank David Coufal and Jǐŕı Tumpach
for discussion.
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Abstract. The main aim of this paper is to study the stability problem
for neutral-type Hopfield neural networks possessing multiple time delays
in the states of the neurons and multiple neutral delays in time derivative
of states of the neurons. By using a suitable Lyapunov functional, a novel
sufficient stability condition is obtained for global asymptotic stability
of neutral-type neural networks with multiple delays. The derived sta-
bility criterion can be expressed in terms of the parameters of the neural
network model which totally relies on some simple relationships estab-
lished between the network parameters and it is completely independent
of time delays and neutral delays. Hence, this new global asymptotic
stability condition can be easily tested and verified by using some alge-
braic mathematical properties. We will also make a comparison between
the result of this paper and previously published corresponding results.
This comparison will indicate the advantages of our proposed stability
condition over the previously reported stability conditions. Since obtain-
ing stability conditions for neutral type neural networks with multiple
delays is a difficult task to achieve due to the insufficient mathematical
methods and techniques, the result given in this paper can be considered
an important and alternative result for this class of neutral type neural
systems.

Keywords: Neutral systems · Delayed neural networks · Stability
analysis · Lyapunov functionals

1 Introduction

In recent years, various classes of neural networks have been studied by many
researches to solve some important engineering problems such as optimization,
signal processing, control problems, pattern recognition and associative mem-
ories [1–6]. In most of these applications, the designed neural networks are
required be stable as the processed information is represented by the stable states
of the neurons. Therefore, it is of great importance to carry out a proper stability
analysis of dynamical behaviors of neural networks. On the other hand, when
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electronically implementing neural networks, due to the finite switching speed of
amplifiers and the communication times among the neurons cause time delays,
which can turn a stable neural network into an unstable neural network. These
time delay parameters can effect the dynamical behaviours of neural networks.
Hence, when analyzing the stability properties of dynamical neural networks, it
is needed to consider the effect of the time delays on the dynamics of the designed
neural network model. On the other hand, in order to evaluate the exact effect
of time delays, the delays must also be introduced into the time derivatives of
the states of the neurons. The neural networks having delays in both the states
and the time derivative of the states are called neutral-type neural networks.
This type of neural networks has been widely used to solve many engineering
problems. Therefore, the stability of the class of neutral type neural networks
has been studied by many researchers and a variety of important stability results
have been proposed [7–32]. This paper will consider the neutral-type Hopfield
neural networks involving multiple time delays in the states of the neurons and
multiple neutral delays in time derivatives of the states of the neurons described
by the following sets of differential equations:

ẋi(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijfj(xj(t − τij)) + ui

+
n∑

j=1

eij ẋj(t − ζij), i = 1, · · ·, n. (1)

where xi represents the state of the ith neuron, ci are some positive constants,
the constant parameters aij and bij represent the strengths of the neuron inter-
connections. τij (1 ≤ i, j ≤ n) are the time delays and ζij (1 ≤ i, j ≤ n) are
the neutral delays. The constants eij are coefficients of the time derivative of
the delayed states. The fj(·) represent the nonlinear neuron activation func-
tions, and the constants ui are some external inputs. In neural system (1), if
we let τ = max{τij}, ζ = max{ζij}, 1 ≤ i, j ≤ n, and δ = max{τ, ζ}, then,
the initial conditions of neural network model (1) are given by: xi(t) = ϕi(t)
and ẋi(t) = ϑi(t) ∈ C([−δ, 0], R), where C([−δ, 0], R) represents the set of all
continuous functions from [−δ, 0] to R.

In the stability analysis of neutral network model defined by (1), it is impor-
tant to first determine the characteristics of activation functions fi(x). In general,
these activation functions are assumed to satisfied the following conditions:

|fi(x) − fi(y)|≤�i|x − y|, i = 1, 2, · · ·, n, ∀x, y ∈ R, x �=y. (2)

where �i are the Lipschitz constants.
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2 Stability Analysis

This section is devoted to determining the criterion that establishes global sta-
bility of neutral-type delayed neural system described by (1). For the sake of
simplicity of the proofs, the equilibrium points x∗ = (x∗

1, x
∗
2, ..., x

∗
n)T possessed

by (1) will be transferred to the origin. By defining z(t) = x(t) − x∗, we can
deduce the following neutral-type neural system

żi(t) = −cizi(t)+
n∑

j=1

aijgj(zj(t))+
n∑

j=1

bijgj(zj(t−τij))+
n∑

j=1

eij żj(t−ζij), ∀i (3)

where gi(zi(t)) = fi(zi(t)+x∗
i )−fi(x∗

i ),∀i. Note that neutral-type neural system
(3) inherits the assumption given by (2), namely,

|gi(zi(t))|≤�i|zi(t)|, ∀i. (4)

It can now be proceeded further with the following theorem:

Theorem 1: For neutral-type neural system (3), let the activation functions
satisfy (4). Then, the origin of neutral-type Hopfield neural network model (3)
is globally asymptotically stable if there exist positive constants p1, p2, ..., pn and
a positive constant 0 < κ < 1 such that

ξi = pi
ci

�i
−

n∑

j=1

pj(|aji| + |bji|) > 0, ∀i

and

ηji =
κ

n
pi − pj |eji| > 0, ∀i, j.

Then, the origin of system (3) is globally asymptotically stable.

Proof: We will construct the following positive definite Lyapunov functional

V (t) =
n∑

i=1

pi

(
1 − κsgn(zi(t))sgn(żi(t))

)
sgn(zi(t))zi(t)

+
1
n

κ

n∑

i=1

n∑

j=1

pj

∫ t

t−ζij

|żj(s)|ds +
n∑

i=1

n∑

j=1

pi

∫ t

t−τij

|bij ||gj(zj(s))|ds

+ ε

n∑

i=1

n∑

j=1

∫ t

t−τij

|zj(s)|ds (5)
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where ε is a positive constant whose value will be obtained in what follows. The
time derivative of V (t) can be obtained as follows:

V̇ (t) =
n∑

i=1

pi

(
1 − κsgn(zi(t))sgn(żi(t))

)
sgn(zi(t))żi(t)

+
1
n

κ

n∑

i=1

n∑

j=1

pj |żj(t)| − 1
n

κ

n∑

i=1

n∑

j=1

pj |żj(t − ζij)|

+
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t))| −
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t − τij))|

+ ε

n∑

i=1

n∑

j=1

|zj(t)| − ε

n∑

i=1

n∑

j=1

|zj(t − τij)| (6)

Since

pi

(
1 − κsgn(zi(t))sgn(żi(t))

)
sgn(zi(t))żi(t)

= pi

(
sgn(zi(t)) − κ

(
sgn(zi(t))

)2

sgn(żi(t))
)

żi(t)

= pisgn(zi(t))żi(t) − piκ
(
sgn(zi(t))

)2

sgn(żi(t))żi(t) (7)

and

1
n

κ

n∑

i=1

n∑

j=1

pj |żj(t)| =
1
n

κ

n∑

i=1

n∑

j=1

pi|żi(t)| = κ

n∑

i=1

pi|żi(t)|

= κ

n∑

i=1

pisgn(żi(t))żi(t) (8)

Using (7) and (8) in (6) results in

V̇ (t) =
n∑

i=1

pisgn(zi(t))żi(t) −
n∑

i=1

piκ
(
sgn(zi(t))

)2

sgn(żi(t))żi(t)

+
n∑

i=1

piκsgn(żi(t))żi(t) − 1
n

κ

n∑

i=1

n∑

j=1

pj |żj(t − ζij)|

+
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t))| −
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t − τij))|

+ ε
n∑

i=1

n∑

j=1

|zj(t)| − ε
n∑

i=1

n∑

j=1

|zj(t − τij)| (9)

Let

υi(t) = pisgn(zi(t))żi(t) − piκ
(
sgn(zi(t))

)2

sgn(żi(t))żi(t)

+ piκsgn(żi(t))żi(t), i = 1, 2, · · ·, n
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Then, (9) can be written as

V̇ (t) =
n∑

i=1

υi(t) − 1
n

κ

n∑

i=1

n∑

j=1

pj |żj(t − ζij)| +
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t))|

−
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t − τij))| + ε
n∑

i=1

n∑

j=1

(|zj(t)| − |zj(t − τij)|)(10)

If zi(t) �= 0, then,
(
sgn(zi(t))

)2

= 1. In this case, we obtain

υi(t) = pisgn(zi(t))żi(t)

= −pisgn(zi(t))cizi(t) +
n∑

j=1

pisgn(zi(t))aijgj(zj(t))

+
n∑

j=1

pisgn(zi(t))bijgj(zj(t − τij)) +
n∑

j=1

pisgn(zi(t))eij żj(t − ζij)

≤ −pici|zi(t)| +
n∑

j=1

pi|aij ||gj(zj(t))|

+
n∑

j=1

pi|bij ||gj(zj(t − τij))| +
n∑

j=1

pi|eij ||żj(t − ζij)|

If zi(t) = 0, then, sgn(zi(t)) = 0. In this case, we obtain

υi(t) = piκsgn(żi(t))żi(t)

Since κ < 1, we get

υi(t) ≤ pisgn(żi(t))żi(t)

= −pisgn(żi(t))cizi(t) +
n∑

j=1

pisgn(żi(t))aijgj(zj(t))

+
n∑

j=1

pisgn(żi(t))bijgj(zj(t − τij)) +
n∑

j=1

pisgn(żi(t))eij żj(t − ζij)

≤ −pici|zi(t)| +
n∑

j=1

pi|aij ||gj(zj(t))|

+
n∑

j=1

pi|bij ||gj(zj(t − τij))| +
n∑

j=1

pi|eij ||żj(t − ζij)|
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Thus, for all zi(t) ∈ R, the following holds:

υi(t) ≤ −pici|zi(t)| +
n∑

j=1

pi|aij ||gj(zj(t))|

+
n∑

j=1

pi|bij ||gj(zj(t − τij))| +
n∑

j=1

pi|eij ||żj(t − ζij)| (11)

Hence, using (11) in (10) yields

V̇ (t) ≤ −
n∑

i=1

pici|zi(t)| +
n∑

i=1

n∑

j=1

pi|aij ||gj(zj(t))| +
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t − τij))|

+
n∑

i=1

n∑

j=1

pi|eij ||żj(t − ζij)| − 1

n
κ

n∑

i=1

n∑

j=1

pj |żj(t − ζij)|

+
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t))| −
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t − τij))|

+ ε

n∑

i=1

n∑

j=1

|zj(t)| − ε

n∑

i=1

n∑

j=1

|zj(t − τij)| (12)

(12) can be rewritten in the form:

V̇ (t) ≤ −
n∑

i=1

pici|zi(t)| +
n∑

i=1

n∑

j=1

pi|aij ||gj(zj(t))| +
n∑

i=1

n∑

j=1

pi|bij ||gj(zj(t))|

+
n∑

i=1

n∑

j=1

pi|eij ||żj(t − ζij)| − 1
n

κ

n∑

i=1

n∑

j=1

pj |żj(t − ζij)| + ε

n∑

i=1

n∑

j=1

|zj(t)|

= −
n∑

i=1

pici|zi(t)| +
n∑

i=1

n∑

j=1

pj |aji||gi(zi(t))| +
n∑

i=1

n∑

j=1

pj |bji||gi(zi(t))|

+
n∑

i=1

n∑

j=1

pi|eij ||żj(t − ζij)| − 1
n

κ

n∑

i=1

n∑

j=1

pj |żj(t − ζij)| + nε

n∑

i=1

|zi(t)| (13)
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Under the assumption given by (4), we can write (13) as follows:

V̇ (t) ≤ −
n∑

i=1

pici|zi(t)| +
n∑

i=1

n∑

j=1

�ipj |aji||zi(t)| +
n∑

i=1

n∑

j=1

�ipj |bji||zi(t)|

+
n∑

i=1

n∑

j=1

pi|eij ||żj(t − ζij)| − 1
n

κ
n∑

i=1

n∑

j=1

pj |żj(t − ζij)| + nε
n∑

i=1

|zi(t)|

= −
n∑

i=1

(pici − �i

n∑

j=1

pj(|aji| + |bji|))|zi(t)|

−
n∑

i=1

n∑

j=1

(
κ

n
pi − pj |eji|)|żi(t − ζji)| + nε

n∑

i=1

|zi(t)|

= −
n∑

i=1

ξi|zi(t)| −
n∑

i=1

n∑

j=1

ηji|żi(t − ζji)| + nε

n∑

i=1

|zi(t)| (14)

Since ηji > 0,∀i, j, (14) satisfies:

V̇ (t) ≤ −
n∑

i=1

ξi|zi(t)| + nε

n∑

i=1

|zi(t)| ≤ −
n∑

i=1

ξm|zi(t)| + nε

n∑

i=1

|zi(t)|

= −ξm||z(t)||1 + nε||z(t)||1
= −(ξm − nε)||z(t)||1 (15)

where ξm = min{ξi} > 0, i = 1, 2, · · ·, n. Clearly, the choice 0 < ε < ξm
n directly

implies from (15) that
V̇ (t) < 0,∀z(t) �= 0

Now, we consider the case where z(t) = 0. In this case, (14) satisfies:

V̇ (t) ≤ −
n∑

i=1

n∑

j=1

ηji|żi(t − ζji)| (16)

Clearly, since ηji > 0, if żi(t − ζji) �= 0 for any pairs of i and j, then, from
(16) we get that V̇ (t) < 0.

Now, we consider the case where z(t) = 0 and zi(t − ζji) = 0 In this case,
(12) satisfies:

V̇ (t) ≤ −ε

n∑

i=1

n∑

j=1

|zj(t − τij)|

Clearly, since ε > 0, if zj(t − τij) �= 0 for any pairs of i and j, then, V̇ (t) < 0.
Let z(t) = 0, (for z(t) = 0, we have g(z(t)) = 0), żi(t − ζji) = 0, ∀i, j, and
zj(t − τij) = 0, (zj(t − τij) = 0 implies that gj(zj(t − τij)) = 0). In this case,
żi(t) = 0, ∀i and V̇ (t) = 0. Hence, V̇ (t) = 0 holds iff z(t) = 0, g(z(t)) = 0),
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żi(t−ζji) = 0, ∀i, j, zj(t−τij) = 0, gj(zj(t−τij)) = 0) and żi(t) = 0, ∀i. Clearly,
V̇ (t) < 0 except for the origin. Hence, origin z(t) = 0 of (3) is asymptotically
stable. It is easy to observe that the Lyapunov function employed to carry out
the stability analysis is radially unbounded, (V (t) → ∞ as ||z(t)|| → ∞), and
therefore, z(t) = 0 is globally asymptotically stable. Q.E. D.

3 Comparisons

In this section, we will compare our results with the previous key stability results
obtained in the literature. In order to make a precise comparison, we need to
express these previously derived results for the stability of neutral-type Hopfield
neural network model (1):

Theorem 2 [31]: For the neutral-type neural network model (3), assume that
the activation functions satisfy (4). Let α be a positive constant with 0 < α < 1.
Then, the origin of neutral-type Hopfield neural network model (3) is globally
asymptotically stable if there exist positive constants p1, p2, ..., pn such that

ωi = pi
ci

�i
− 1 + α

1 − α

n∑

j=1

pj(|aji| + |bji|) > 0, ∀i

and
εji =

α

n
pi − (1 + α)pj |eji| > 0, i, j = 1, 2, ..., n.

Theorem 3 [32]: For the neutral-type neural network model (3), assume that
the activation functions satisfy (4) and ζij = ζj ,∀i, j. Then, the origin of neutral-
type Hopfield neural network model (3) is globally asymptotically stable if there
exist positive constants p1, p2, ..., pn such that

ρi = pi
ci

�i
−

n∑

j=1

pj(|aji| + |bji|) > 0, ∀i

and

μi = piα −
n∑

j=1

pj |eji| > 0, ∀i

In Theorem 2, since 0 < α < 1, the term 1+α
1−α > 1, the conditions given by ξi in

Theorem 1 improves the conditions given by ωi in Theorem 2. It should also be
noted that, if we choose κ = α, then the conditions given by εji in Theorem 2
are always less than the conditions given by ηji in Theorem 1 since 0 < α < 1.
Therefore, the results of Theorem 1 generalize the results of Theorem 2.

When the results of Theorems 1 and 3 are examined, it can be seen that the
results of these two theorems are very similar. However, Theorem 1 considers the
multiple neutral delays and Theorem3 considers the discrete neutral delays in the
neural network model (1). Therefore, the results of Theorem 1 can be considered
as the generalizations of the results of Theorem 3 as Theorem 1 involves the
stability results for a more general class of neutral-type neural network model.
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4 Conclusions

The main aim of this study was to carry out an investigation into stability prob-
lem for the class of neutral-type Hopfield neural networks involving multiple
time delays in states and multiple neutral delays in time derivative of states.
By using a suitable Lyapunov functional, a new sufficient condition has been
proposed for global asymptotic stability of neutral-type neural network of this
class. The proposed stability condition is independently of time delay and neu-
tral delay parameters, and it is totally stated in terms of the system matrices
and network parameters. Thus, this new stability condition can be validated
by only examining the some algebraic equations that are related to the system
parameters and matrices of this neutral-type neural network. We have also com-
pared the result of this paper with the previously reported key stability results
for the neutral-type neural network with multiple delays. This comparison has
demonstrated the main advantages of our results over the past literature results.
Since stability analysis of the class of neutral-type neural networks considered in
this paper has not been studied because of the difficulty of employing the proper
and efficient mathematical techniques and methods to investigate the stability
analysis of such neutral-type neural systems, the stability criterion obtained in
this paper can be considered as one of important stability results for neutral-type
Hopfield neural networks with multiple time and multiple neutral delays.
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Abstract. Reduction of data variables is an important issue and it is needed for
the processing of higher dimensional data in the application domains and AI, in
which threshold neural networks are extensively used. We develop a reduction
of data variables and classification method based on the nearest neighbor rela-
tions for threshold networks. First, the nearest neighbor relations are shown to
be useful for the generation of threshold functions and Chow parameters. Sec-
ond, the extended application of the nearest neighbor relations is developed for
the reduction of variables based on convex cones. The edges of convex cones
are compared for the reduction of variables. Further, hyperplanes with reduced
variables are obtained on the convex cones for data classification.

Keywords: Nearest neighbor relation � Generation of Chow parameters �
Reduction of variables � Degenerate convex cones

1 Introduction

By Pawlak’s rough set theory [1], a reduct is a minimal subset of features, which has
the discernibility power as using the entire features, which shows the dimensionality
reduction of features. Skowlon [2, 3] developed the reduct derivation by using the
Boolean reasoning for the discernibility of data, which is a computationally complex
task using all the data. A new consistent method for the generation of reduced variables
and their classification in threshold networks is expected from the point of the efficient
processing of data. In this paper, we have developed a method of reduction of data
variables and it’s classification based on the nearest neighbor relations [8]. First, it is
shown that the nearest neighbor relations are useful for the generation of threshold
functions and Chow parameters [5, 6]. Next, the extended application of the nearest
neighbor relations is developed for the reduction of variables [9–11]. Then, the
degenerate convex cones and their operations using nearest neighbor relation, are
developed. The dependent relations and algebraic operations of the edges on the
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degenerate convex cones in the linear subspaces are derived for the reduction of
variables. Finally, the hyperplanes using the reduced variables is derived based on the
convex cones of nearest neighbor relations.

2 Nearest Neighbor Relations in Threshold Function

The nearest neighbor relation is also applicable to the generation of threshold functions.
The function f is characterized by the hyperplane WX � h with the weight vector
Wð¼ ðw1;w2; . . .;wnÞÞ and threshold h. The X is a vertex of the cube 2n. In the
following, the threshold function is assumed to be positive and canonical threshold
function, in which the Boolean variables hold the partial order [5].

Definition 1. The nearest neighbor relation ðXi;XjÞ on the threshold function f is
defined to be vertices satisfying the following equation,

fðXi;XjÞ : f ðXiÞ 6¼ f ðXjÞ ^ jXi � Xj j � dð¼ 1Þg; ð1Þ

where d ¼ 1 shows one bit difference between Xi and Xj in the Hamming distance
(also in the Euclidean distance).

Definition 2. The boundary vertex X is defined to be the vertex which satisfies

jWX � hj � jWY � hj for the Xð6¼ Y 2 2nÞ ð2Þ

Theorem 3. The boundary vertex X becomes an element of nearest neighbor relation
in the threshold function.

Corollary 4. The boundary vertex X generates a pair of nearest neighbor relation in
the threshold function.

2.1 Logical Operation for Nearest Neighbor Relation

Generation of threshold function is performed as follows. As an example, the three
dimensional vertices are shown in the cube in Fig. 1. As true valued vertices, (101),
(110) and (111) are given in the black circle, ●, which belongs to +1 class. As false
valued vertices, (000), (010), (100), (001), and (011) are given in the circle, ○, which
belongs to 0 class. In Fig. 1, the true vertex (101) has nearest neighbor relations as
{(101), (001)} and {(101), (100)}. Then, the directed arrow vector indicates the nearest

neighbor relation as 101ð Þ; 001ð Þf g���������!
Two directed arrow vectors, 101ð Þ; 001ð Þf g���������!

and

101ð Þ; 100ð Þf g���������!
generate one plane in the Boolean AND operation in Fig. 2. The

101ð Þ; 100ð Þf g���������!
has x3 variable, while, 101ð Þ; 001ð Þf g���������!

has x1 variable. By the AND
operation x1 and x3, the Boolean product x1 � x3 is generated. Similarly, the Boolean
product x1 � x2 is generated. Since these two planes are orthogonal, the threshold
function x1 � x3 þ x1 � x2 is obtained by OR connecting two perpendicular planes.
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Similarly, another logical operation OR is developed as shown in Fig. 3, which also
realizes the threshold function x1 � x2 þ x1 � x3.
Theorem 5. Nearest neighbor relations in the threshold function are minimal infor-
mation for generating the given threshold function in the Boolean logical form.

2.2 Iterative Generation of Chow Parameters of Threshold Functions
Activated Through Nearest Neighbor Relations

The hyperplane is based on the independent true and false vertices, which are derived
from the linear inequality equations of inputs [4, 5]. These independent true and false
inputs become boundary vertices, which also make respective nearest neighbor rela-
tions in Theorem 5.

1(001)X

0 (000)X 2 (010)X

4 (100)X

5 (101)X

3(011)X

6 (110)X

7 (111)X

Fig. 1. Directed arrows for nearest neighbor relations

Fig. 2. Boolean AND operations for nearest neighbor relations

5 (101)X 2 (010)X 5 (101)X 6 (110)X 7 (111)X

3x 2xOR

4 (100)X 1(001)X 2 (010)X 3(011)X

1x1x1x

Fig. 3. Boolean OR operation for nearest neighbor relations

Reduction of Variables and Generation of Functions 571



In Fig. 4, the iterative generation of Chow parameters with 5 variables [6] is
performed based on the nearest neighbor relations of threshold functions. The Chow
parameter shows 6 tuples ½m : s1; s2; s3; s4; s5�, in which m shows the summed number
of true vertices, while s1; s2; s3; s4; s5 indicate the summed number of the first com-
ponent, that of the second component, . . ., that of the fifth component of the true
vertices [6]. From the Chow parameter ½m : s1; s2; s3; s4; s5� ¼ ½6 : 11111�, the new
Chow parameter ½7 : 22111� is generated changing the false boundary vertex ð11000Þ
to the true vertex in the nearest neighbor relation fð10000Þ; ð11000Þg. The iterative
generation of Chow parameters is performed through the small change of weights of
the boundary vertex.

3 Extension to Threshold Networks Based on Nearest
Neighbor Relations

A nearest neighbor relation with minimal distance is introduced here for the extension
to threshold networks.

Definition 6. A nearest neighbor relation with minimal distance is a set of pair of
instances, which are described in

fðxi; xjÞ : dðxiÞ 6¼ dðxjÞ ^ jxi � xjj � dg; ð3Þ

where jxi � xjj shows the distance between xi and xj. Further, dðxiÞ is a decision
function and d is the minimal distance. Then, xi and xj in the Eq. (3) are called to be in
the xj nearest neighbor relation with minimal distance d.

6: 11111(11000) 

7: 22111(1100)

8:32211(01100)

9:42221(10010)    9:33311(01100)

                 10:43321(01100)    10:44411(11100)

11:53322(10001)   11:44331(01010)    11:54421(10010)

12:54332(01010)   12:44441(00110)     12:55431(01010)      13:66441(11010)

13:54442(10001) 13:55333(01001) 13:55541(01001) 13:65432(1001)                                     

14:55443(11100)     14:65542(11100)            14:66551(10110) 14:66433(01001)

15:66543(00101) 15:55544(00101) 15:76552(01001) 15:76661(01110) 15:77443(11010)

16:66644     16:55555      16:77553       16:7771 

Fig. 4. Generation of Chow parameters with 5 variables of threshold functions through nearest
neighbor relations. Parenthesis shows false vertex to generate next Chow parameter.
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3.1 Reduction of Variables Based on Convex Cones

An example of the decision table is shown in Table 1. The left side data in the column
in Table 1 as shown in, x1; x2; x3; . . .; x7f g is a set of instances, while the data
a; b; c; df g on the upper row, shows the set of attributes of the instance.

In Fig. 5, linearly separated classifications are shown for the data in Table 1. As the
first step, one hyperplane A1 divides the instances of data fx3; x5; x7; x4g shown
with � from those of fx2; x6g shown with •. But, it misclassifies the instance fx1g with
• from fx3; x5; x7; x4; x1g with �. As the second step, another hyperplane A2 divides the
instance fx1g with • from fx3; x5; x7; x4g with �. In the linearly separated sub spaces,
the divided instances are represented by the system of the linear inequality equations.
Processing steps for the reduction of variables are classified to the following two steps,
which are shown in circles ① and ② in Fig. 6.

Step ① Variables of Nearest Neighbor Relations
Each approximated reduct based on the convex cone is generated based on the nearest
neighbor relation, in the step, ① in Fig. 6. The obtained convex cone plays for the
reduction of variables in steps ②.

Table 1. Decision table of data example (instances)

Attribute a b c d Class

x1 1 0 2 1 +1
x2 1 0 2 0 +1
x3 2 2 0 0 −1
x4 1 2 2 1 −1
x5 2 1 0 1 −1
x6 2 1 1 0 +1
x7 2 1 2 1 −1

Fig. 5. Piecewise linear separated classification for data in Table 1
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Step ② Removal of Variables Using Nearest Neighbor Relations
The convex cones based on the nearest neighbor relations are transformed to the
reduced ones for the reduction of variables. Dependent relations and edge processing
between the convex cones are applied for the complete reducts, which show the
reduction of variables in the step ② in Fig. 6. In the next section, the reduction of
variables on the convex cones is shown in the next Sect. 3.2, step (3.2.1) and step
(3.2.2).

3.2 Dependent Relations on Degenerate Convex Cones, Step (3.2.1)

Independent vectors of nearest neighbor relations, which consist of the degenerate
convex in the affine subspaces, are useful for the operations of dimensional reduction.
Independent vectors are derived in the subspaces [4, 7] as follows.

~X 0
3 ¼ X 0

3 � X 0
6; ~X

0
5 ¼ X 0

5 � X 0
6 and~X

0
7 ¼ X 0

7 � X 0
6 ð4Þ

In the Eq. (4) vectors ~X 0
3;
~X 0
5 and ~X 0

7 are independent. The set of reduced variables
fb; cg is preserved from ~X 0

3 of the nearest neighbor relation fX3;X6g. Similarly, the set
of reduced variables fc; dg is preserved from ~X 0

5 or ~X
0
7 of the nearest neighbor relation

fX5;X6g or fX7;X6g, respectively. Thus, the reduced variables fb; c; dg are preserved
as shown in Fig. 7.

Theorem 7. If a linear dependent equation of the vector value holds on the degenerate
convex of the nearest neighbor relations, the corresponding Boolean term to the vector
value is removed by the absorption of Boolean terms of the nearest neighbor relations.

Fig. 6. Processing steps based on hyperplane derived from nearest neighbor relation

{c,d} {b,c} c,d}
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Fig. 7. Degenerate convex cone generated by X 0
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3.3 Chaining of Edges Between Degenerate Convex Cones, Step (3.2.2)

We can construct two degenerate convex cones as shown in Fig. 8. The upper de
degenerate convex cone (solid line) is made of the nearest neighbor relations which is
fromdifferent classes data,while the lower one (dotted line) ismade of the same class data.

The data difference equations except the nearest neighbor relations are shown in (5)

ðX 0
i � X 0

jÞk 6¼ 0 for i ¼ 3; 4; 5; j ¼ 1; 2 and k ¼ b; c; d ð5Þ

If the Eq. (5) hold for both k ¼ b and k ¼ c, the element ðxi; xjÞ, is removed by the
equality equation of ðXi ¼ XjÞk¼b;k¼c, since it is absorbed from the nearest neighbor
relation fb; cg. Similarly, if the Eqs. (5) holds for both k ¼ c and k ¼ d, the element
ðxi; xjÞ is removed, since it is absorbed from the nearest neighbor relation fc; dg. The
left side of the Eqs. (5) is replaced to the following equation using the nearest neighbor
relation in Fig. 8.

ðX 0
i � X 0

jÞk ¼ ðX 0
i � X 0

6Þk � ðX 0
j � X 0

6Þk ð6Þ

From the Eq. (5), the Eq. (6) becomes

ðX 0
i � X 0

6Þk 6¼ ðX 0
j � X 0

6Þk ð7Þ

Theorem 8. The element ðxi; xjÞ with Boolean variables are removed by the nearest
relations with reference data X 0

n, where X 0
n is in the class fjgð6¼ figÞ, if the following

equations hold

ðX 0
i � X 0

nÞk 6¼ ðX 0
j � X 0

nÞk ð8Þ

for i 2 fig; j 2 fjg, i and j are in the different class and k is components in X 0
l .

Fig. 8. Comparison of edges on degenerate convex cones in the subspaces
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By Theorem 8, an example of X 0
n ¼ X 0

6 and ðX 0
3 � X 0

2Þ, which are in the case of
i ¼ 3; j ¼ 2, is developed as follows,

ðX 0
3 � X 0

2Þ ¼ ðX 0
3 � X 0

6Þ � ðX 0
2 � X 0

6Þ ð9Þ

As the final results in this section, by Theorem 8, all the elements ðxi; xjÞ are removed
by the nearest neighbor relations ðX3;X6Þ ; ðX5;X6Þ and ðX7;X6Þ using the hyperplane
A1. Thus, the reduced variables by the hyperplane A1, become fb; cg and fc; dg, which
derive the Boolean sum terms ðbþ cÞ and ðcþ dÞ. Similarly, by the hyperplane A2,
reduced variable ðbÞ is obtained. By the Boolean product of terms of A1 and A2,
b � ðbþ cÞ � ðcþ dÞ ¼ bcþ bd is obtained. Then, complete reducts of reduced variables
become fbc; bdg.
Corollary 9. The element ðxi; xjÞ with Boolean variables is not removed, if the Eq. (8)
holds. Then, the Boolean sum of the variables in the ðxi; xjÞ is multiplied to other
Boolean sum of variables of the nearest neighbor relations.

Theorem 10. Dimensionality reduction of variables for reducts is realized by convex
cones on the nearest neighbor relations, which are generated by the linear subspaces.

4 Hyperplanes of Reduced Variables for Threshold Network

By using this reduct fbcg, a classification of the reduced variables is performed as
shown in Fig. 9. In Fig. 9, three hyperplanes, H1fbcg;H2fbcg;H3fbcg are shown. The
hyperplane A1 in Fig. 5 is shown, which is also in the degenerated convex in Fig. 8.

All the correct classifications of the classes are carried out by majority voting using
these three hyperplanes with reduced variables, H1fbcg; H2fbcg; H3fbcg in Fig. 9. Then,
all the instances are classified, correctly. Combining these three hyperplanes with
reduced variables, correct classification is performed using the majority selection. The
comparison of the classification accuracy is shown in Fig. 10.

Fig. 9. Hyperplanes generated on convex cones with nearest neighbor relations
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5 Conclusion

In this paper, the reduction of data variables and it’s classification through the nearest
neighbor relations are proposed. First, it is shown that the nearest neighbor relations are
useful for the generation of threshold functions and the Chow parameters. Next, the
extended application of the nearest neighbor relations is proposed for the reduction of
variables based on convex cones. Then, the dependent relations and the algebraic
operations of edges on the degenerate convex cones are carried out in the linear
subspaces. Further, hyperplanes with reduced variables are obtained on the same
degenerate convex cones for data classification.
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Abstract. Well-known as an effective algorithm for optimizing expen-
sive black-box functions, the popularity of Bayesian Optimization has
surged in recent years alongside with the rise of machine learning thanks
to its role as the most important algorithm for hyperparameter optimiza-
tion. Many have used it, few would comprehend, since behind this power-
ful technique is a plethora of complex mathematical concepts most com-
puter scientists and machine learning practitioners could barely famil-
iarize themselves with. Even its simplest and most traditional building
block - Gaussian Process - alone would involve enough advanced mul-
tivariate probability that can fill hundreds of pages. This work reviews
this powerful algorithm and its traditional components such as Gaussian
Process and Upper Confidence Bound in an alternative way by present-
ing a fresh intuition and filtering the complications of mathematics. Our
paper will serve well as a functional reference for applied computer sci-
entists who seek for a quick understanding of the subject to apply the
tool more effectively.

Keywords: Bayesian Optimization · Gaussian Process · Upper
Confidence Bound · Hyperparameter optimization · Expensive
black-box functions

1 Introduction

1.1 What Is Bayesian Optimization?

Life always involves choices, each may bring forth certain up- and downsides. A
normal person would be fine with making a random decision, but for big com-
panies, especially those specialized in mass manufacturing, a slightly better or
worse decision could generate an additional revenue or loss in millions. That
inspired the birth of optimization algorithms that could optimize the decision-
making process and search for a choice that maximizes the overall beneficial gain
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as much as possible. Bayesian Optimization [12] is one such algorithm with cer-
tain characteristics that distinguish itself from the vast majority of alternatives
such as quick convergence, no derivative required and combinable with other
well-studied techniques. In its most generic form, the goal of this technique can
be represented as in (1).

x∗ = argmax
x∈X

(f(x)), (1)

where f can be not only a non-differentiable function but also an extremely
costly one implying that it may take a significant amount of resources such as
time or money to evaluate.

1.2 Why Bayesian Optimization?

Optimization is an old and on-going research topic for decades with countless
known solutions, many of which have demonstrated state-of-the-art performance
in numerous scenarios such as genetic algorithm [9], ant colony optimization [6],
particle swarm optimization [19], gradient descent [23] or Newton-Quasi method
[13], L-BFGS-B [8] and much more. That leads to the question as for why
Bayesian Optimization should be given special attention. The answer lies in
its role as the most effective method for optimizing hyperparameters of machine
learning algorithms.

The past decade has witnessed an incredible growth of machine learning and
data science. Their influence on human lives has been pervasive more than never
before and every bit of improvement on machine learning may have an enormous
impact on every part of our society since they are everywhere. Machine learning
algorithms can, however, rarely work out-of-the-box, but they must undergo
a sequence of steps as illustrated in Fig. 1 to fully unleash their ability and
hyperparameter optimization is one indispensable part.

Fig. 1. A simplified workflow for machine learning

This step is, nonetheless, not something just any optimization algorithm can
apply for the following reasons:

1. Expensive. Machine learning tasks are closely coupled with data. In this
era of big data, machine learning rarely involves small number of training
examples, which makes the process extremely costly. Population-based opti-
mization techniques such as evolutionary algorithms, ant colony optimization
or particle swarm optimization usually require a huge number of computa-
tions and hence are unsuitable for this task.
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2. Derivative-free. A training algorithm is usually perceived as derivative-free
and even if a derivative exists, formulating its analytic form is a demanding
task. That disqualifies various gradient-based techniques such as Newton-
Quasi method, L-BFGS-B or Gradient Descent. Albeit numerical methods
[4] provide a painless alternative to compute the derivative (if exists), it is
again too costly to be practical.

These problems, however, align perfectly with Bayesian Optimization’s
advantages. First, it is known for quick convergence in a small number of evalu-
ations and hence reducing the need to evaluate the costly objective function too
often. Secondly, it is known to work for any black-box derivative-free function.
Optimization algorithms are numerous, but those with such properties are few,
and Bayesian Optimization algorithm is the most important solution out of these
few especially in hyperparameter optimization as it is the foundation of many
techniques such as the recent Bayesian Optimization and Hyperband (BOHB)
[7] which is just another variant. In addition, it is also the chosen technique uti-
lized by various machine learning platforms such as Google Cloud, Amazon Web
Services and Microsoft Azure [16]. That is why such an important algorithm
deserves special attention.

1.3 Why This Review?

This powerful technique has been embedded in a variety of machine learning
framework, and using them requires no knowledge of how Bayesian Optimiza-
tion works. That is, nevertheless, not favorable against the research and devel-
opment of optimization algorithms for machine learning. Furthermore, behind
this powerful technique are complex mathematical concepts that are beyond the
reach of the majority of applied computer and data scientists. Understanding
this fact led us to the creation of this work to provide a more comprehensible
and insightful guide to researchers who wish to learn more about this method,
either for future research or just to apply it more effectively. After finishing this
paper, researchers should have a vivid picture of how this algorithm works with-
out worrying much of its internal implementation, which is impossible to achieve
with the current publications in this area.

1.4 Organization

This work would begin by introducing the simplest-by-nature algorithm for opti-
mization: Random Search. After that is a connection to the target Bayesian
Optimization by minimal improvements. To aid the readers in acquiring the
general idea easier, we also provide an example of The Girlfriend and Flow-
ers to support our explanation. Last, but not least, will come a brief intuitive
explanation for its most important building blocks: Gaussian Process as a prob-
abilistic model and Upper Confidence Bound as an acquisition function. These
concepts will, unfortunately, require a general understanding of basic probability
including Gaussian (normal) distribution. Nonetheless, readers are only required
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to know the surface of these concepts like what it is about and need not to worry
about its advanced properties, which is insignificant compared to the required
knowledge in all classical literature in existence about this topic.

2 Bayesian Optimization - An Insightful Intuition

2.1 Random Search

In search of the best decision, the best method would be to try all possibilities
and decide on the best after gathering all results. That method is, unfortunately,
impractical for problems with infinite solution space. For example when searching
for a flower a girl likes most, it is infeasible to buy all flowers in the world and
ask for her opinion for all of them. Assuming that the budget is sufficient, it
may still take her a lifetime just to analyze each and every kind of flower in
existence. Alternatively, picking a few random types of flower and offer the one
she likes most would be a more reasonable approach. That is the idea behind
random search. In the view of a computer scientist, a random search algorithm
would look like Algorithm 1.

Algorithm 1. Random Search
1: x∗ ∈ ∅, y∗ ← −∞
2: for i ∈ {1, 2 . . . N} do
3: Generate a random x
4: y ← f(x)
5: if y∗ < y then
6: x∗ ← x
7: y∗ ← y
8: end if
9: end for

10: Output (x∗, y∗)

Algorithm 1 illustrates how a random search algorithm can be implemented
where N in line 2 represents our budget such as the number of flowers that
can be bought for testing. Line 3 says that we just consider a random solution
such as picking a random flower. Line 4 indicates that we are testing the current
solution by, for example, asking the girl how much she likes it. It is worth noting
that process f is treated as an expensive black-box function in this paper. For
example, it will take time to invite the girl on a date, a sufficient amount of
money to book a place in a 5-star restaurant and a great amount of effort asking
for her opinion. The whole procedure is, as described, extremely costly and non-
differentiable. Steps 5−7 compare and optimize the current solution x∗ - the
currently best flower - and y∗ - her opinion on it, which is a common block in all
optimization algorithms. After repeating it as much as our budget N is allowed,
step 10 concludes our algorithm. How can this simple, popular and intuitive
algorithm be related to the advanced and efficient Bayesian Optimization?
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2.2 Improved Random Search and Bayesian Optimization

As mentioned, since our objective function f is very costly, its evaluation should
be prioritized for special candidates instead of random solutions. The question is
how these special candidates can be found? What will happen if your obedient
sister is already the best friend of the girl you like and they have shared a good
amount of time together shopping and going out?

If that is the case, they may share the same hobbies, hence a flower your
sister loves may also be your girlfriend’s favorite, and asking your sister is much
easier or you may already know it yourself as a good brother. So the process is as
follows: 1) Ask for the best flower your sister likes, 2) show it to your girlfriend
and ask for her opinion, and 3) tell your sister the new information to help her
improve her knowledge. In the language of a computer scientist, the process is
as the one described in Algorithm 2.

Algorithm 2. Bayesian Optimization
1: Make g from initial (x, y)
2: x∗ ∈ ∅, y∗ ← −∞
3: for i ∈ {1, 2 . . . N} do
4: x′ ← argmax

x∈X
(g(x))

5: y ← f(x′)
6: if y∗ < y then
7: x∗ ← x′

8: y∗ ← y
9: end if

10: Update g with (x′, y)
11: end for
12: Output (x∗, y∗)

As can be seen in Algorithm 2, from a random search algorithm that can be
written from scratch by any computer science student in a couple of minutes
to the advanced and extremely hard to understand, let alone implementing,
Bayesian Optimization, the outlines differ by only 3 minor modifications in line
1, line 4 and line 10.

Line 1 means that we should not immediately focus on our expensive-to-handle
target, and should search for a third-party helper which is inexpensive, such as ask-
ing the sister instead of the girlfriend. Line 4 says that instead of trying a random
solution, asking the third-party helper for the best is more reasonable. For exam-
ple, it is easier to ask your sister what her best flower is. Last, but not least, line 10
indicates that after the new information is acquired, it should be transferred to the
third-party helper to improve its own reliability and performance. For instance, if
the sister knows that the girlfriend does not like her choice, she may come up with
a better plan next time. Those simple steps are the essence of Bayesian Optimiza-
tion. After this section, readers should have the general idea of how Bayesian Opti-
mization works. All classical publications in existence would start off differently by
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jumping right into the concept of Gaussian Process which may require hundreds
of pages of literature to explain [17].

Further subsections will give an intuitive description of Gaussian Process
which is known as a surrogate or probabilistic model, and Upper Confidence
Bound - another building block of Bayesian Optimization named acquisition
function. These concepts are important to implement the function g mentioned
in Algorithm 2. Functionally, g is expected to possess the following qualities:
a) cheap to evaluate, b) suitable for derivative-free black-box function, and c)
commensurate to f , implying that if g(x) is high, f(x) is likely to be high and vice
versa. After countless studies, it has been discovered that such a g function could
be realized by composing 2 different function as shown in (2) where A is called
an acquisition function such as Upper Confidence Bound and S is a surrogate or
probabilistic model such as Gaussian Process. After such a function g is acquired,
all known optimization techniques can be applied with no restrictions as it has
been free of all special characteristics of a machine learning problem (Bayesian
Optimization’s most popular application).

g(x) = A ◦ S(x) = A(S(x)) (2)

2.3 Extending Bayesian Optimization

The simple design of Bayesian Optimization gives it the flexibility to evolve. By
mutating A and S with appropriate acquisition functions and surrogate models,
respectively, a variety of new algorithms could be born with their own interesting
properties. Hence Bayesian Optimization acts more like a framework rather than
an individual algorithm. Studies on this topic has existed since the last century
with various results on what could integrate well with the Bayesian Optimization
framework.

For surrogate models, the traditional and probably the first candidate is
Gaussian Process [17] which implies that its resulting distributions will be Gaus-
sian (normal distributions) [20]. This method has demonstrated state-of-the-art
performance in various machine learning applications where the input vector is
consisted of only real numeric features x = (x1, x2 · · · xn) where xi ∈ R, which
is in most of the cases, and hence still enjoys high popularity even after decades
of presence. Recently, research on this topic has involved other types of distri-
butions including the inverse Wishart [15] and Student-t distribution [11], and
gave birth to a promising alternative called Student-t Process [18], but they are
not yet as popular as the traditional model. Last, but not least, another lesser
known model worth mentioning is Random Forests [1] - a well-known machine
learning model which has also proven to work well as a surrogate for data with
categorical features.

In the area of acquisition functions, the traditional methods still remain rel-
evant. They include, but not restrict to, Upper Confidence Bound (UCB) [5],
Expected Improvement (EI) [2], Knowledge Gradient (KG) [22], Entropy Search
(ES) [10] and Probability of Improvement (PI) [21]. Nevertheless, most applica-
tions would employ EI and UCB by default for their superior performance.
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In this paper, only Gaussian Process and UCB will be considered. The former
has been known as the de facto standard for Bayesian Optimization, whilst for
the latter, it is the simplest of all, which works well and is free from the burden
of probability (at least for using it).

3 Gaussian Process

3.1 An Intuitive Explanation

Probably the best-known companion to Bayesian Optimization, a Gaussian Pro-
cess (GP) is mathematically defined as a probability distribution over all possible
functions. This popular definition of Gaussian Process is, however, far beyond
the comprehensible realm of most applied engineers with a novice understanding
of probability. Alternatively, a Gaussian Process could be regarded as a collec-
tion of points (x, y) and all the functions (lines) going through ALL these points.
An intuitive example of a Gaussian Process in the 2-dimensional space could be
visualized in Fig. 2. As can be seen in Fig. 2a, all functions - just lines in space -
controlled by a Gaussian Process intersect at a certain number of points. There
may be infinitely many such functions, but most of them are contained in the
shaded area in Fig. 2b.

Fig. 2. A sample Gaussian Process of 2 points

What exactly are these lines? It is known that each function may be repre-
sented by a line. Our target function f is also a line in the multi-dimensional
space. A Gaussian process is a tool that allows governance over an infinite num-
ber of lines with some common properties, one of which is to go through a fixed
set of points. These points are the real observations we acquired from lines 4–5 in
Algorithm 2. Since all the lines controlled by our Gaussian process going through
the same points of our target function, they are believed to behave similarly to
f . By updating the Gaussian process with new information as said in line 10 of
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Algorithm 2, it means adding a newly found observation (point) to our Gaus-
sian process as visualized in Fig. 3. As can be seen, the shaded area has become
thinner, implying that the number of possible target functions has been reduced
significantly and they have all been closer to our target, implying that even if
our choice is wrong, it is still acceptable as it is close enough.

Fig. 3. A sample Gaussian Process of 3 points

As shown in (2), a Gaussian process acts like a normal mathematical function
as shown in (3) known as a probabilistic model.

y = f(x) (3)

In essence, compared to a normal function, a probabilistic model S differ by
returning a probabilistic object called distribution, or more precisely a normal
distribution defined by its mean μ and variance σ2 in the case of a Gaussian
process as illustrated in (4).

N (μ, σ2) = S(x) (4)

Why is S(x) a distribution? Figure 4 explains why evaluating a function at a
candidate solution x can return a distribution by drawing a vertical line at that
location. As already known, a Gaussian process is a collection of lines, and all the
lines belonging to our Gaussian process will intersect with the vertical line at an
infinite number of locations. Their intersection values will form a distribution,
which is assumed to be normal.

To summarize, a Gaussian distribution is a powerful mathematical tool that
allows us to govern over an infinite number of possible candidate target func-
tions which are expected to be similar to our original target function. A Gaussian
process can be treated as a mathematical function which can be evaluated for a
given solution x and can return some output which is, unfortunately, a distribu-
tion defined by its mean and variance. However, the pair (μ, σ2) is like quality
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Fig. 4. Gaussian Process - evaluation as a normal distribution

and quantity which cannot be optimized simultaneously, and hence it requires
another so-called acquisition function to summarize into a single numeric value
that can be used for optimization problem.

3.2 Kernel for Gaussian Process

The previous subsection has provided sufficient information on what a Gaussian
process is, but for those who wish to further explore it, it is insufficient. A
Gaussian process could also be treated as a machine learning model, implying
that it also needs training before being usable with the data being the observation
points which we have known. What exactly needs to be trained? As previously
know, a Gaussian process contains an infinite number of lines, but as shown in
Fig. 2 and 3, it is far from enough to cover all possible lines in space, which
implied that only some specific type of line can be considered for a Gaussian
process. The one controlling that is called a kernel which is at the same time
the component that needs to be trained. Exactly how the selection of lines is
conducted is beyond the scope of this review. Alternatively, an insightful example
can be given. As can be seen in Fig. 3a, all the line functions are very smooth.
In case the term ‘smooth’ is confusing, let’s take a look at a few rough (not so
smooth) functions in Fig. 5 for comparison.

At this point, readers should have acquired a feeling of smoothness for a
function, but mathematically, smoothness is measured by to what extent a func-
tion can be differentiated. The reason why functions in Fig. 3a are so smooth is
because its kernel uses the radial basis function (RBF) whose analytic form is
represented in (5) where x and x′ are some multidimensional vectors of the same
number of dimensions.
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Fig. 5. Examples of function smoothness

k(x, x′) = − exp
‖x − x′‖2

2σ2
(5)

As you may know, a function of type ex is infinitely differentiable and hence
its representative lines are extremely smooth. By mutating the kernel function
with others, such as the Matern covariance function [14], the lines can be very
rough as in Fig. 5a. This is but one example to show a criterion for filtering the
target functions. The most important gain after reading this subsection is to
understand what a kernel does for a Gaussian process.

3.3 Upper Confidence Bound

As known from the previous subsection, a probabilistic model such as Gaussian
process will evaluate to a pair (μ, σ2) defining a normal distribution which can
not be directly used in an optimization problem. That is why an acquisition
function comes in handy as it can summarize the information from the given
distribution into a single numeric value suitable for maximizing or minimizing.
One popular method for this task is Upper Confidence Bound, which works by
balancing the trade-off between exploitation and exploration.

The pair (μ, σ2) could be viewed as quality and quantity. If the mean is high,
that means the overall fitness of all lines contained by the Gaussian process is
high. As for the variance, high variance means that the shaded area is wider and
that there are more possible functions implying that the probability that one of
them is our target function is also higher. The Upper Confidence Bound theorem
says that the best choice is one with high mean (exploitation) and high variance
(exploration) and the 2 terms must be balanced by a third parameter called
the confidence band β. The full form of the Upper Confidence Bound function
is presented in (6). As can be deduced, the result will be just a single numeric
value.
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A(μ, σ2) = μ + β1/2σ (6)

How can it work? The answer to this question may require unnecessary math-
ematical knowledge which is against the purpose of this article, which is why to
assure the readers that this formula works, it is worth pointing out that the same
strategy has been applied in various applications, especially games and artificial
intelligence, and has gained state-of-the-art performance in many of them. Most
recent was the birth of the AlphaGo program by Google which was famous for
defeating the human champion in Go [3] by employing a similar strategy in a
slightly different form. In fact, this method is known to provide top performance
for Bayesian Optimization, on par with Expected Improvement - the most pop-
ular technique in use - but much simpler to implement.

4 Conclusion and Future Work

This paper reviews the popular Bayesian Optimization algorithm and its popular
building blocks from a fresh perspective of an applied computer or data scientist
without the hassles of advanced mathematics such as multivariate probability.
Beginning with the story of The Girlfriend and Flowers and the basic Random
Search algorithm, we have presented the general idea of Bayesian Optimization in
the most comprehensible way without analyzing the complex concept of Gaussian
Process as in all articles in existence. After that comes intuitive explanations for
Gaussian Process and Upper Confidence Bound with most focus on what they
are. Our paper aims to provide researchers in this area a quick and functional
reference to gain a general understanding of the subject without the need to
read hundreds of pages in classical publications.

Albeit our paper emphasizes the importance of intuition, the value of math-
ematics is undeniable, especially for those who wish to completely explore the
depth of this algorithm. To promote further research and development for this
technique rather than its use only as a black box optimization method, we are
working towards a short but comprehensible mathematics manual for all men-
tioned concepts which will complement, but not replace, this work.
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Tunis-Carthage, Tunisia
walid.barhoumi@enicarthage.rnu.tn

Abstract. Texture offers an effective characterization of image shape
and orientation. Thus, a predominant task is to detect and extract tex-
ture features that discriminate accurately images within different seman-
tic classes. The challenge resides in making these features invariant to
several changes, such as affine transformation and viewpoint change, in
order to ensure their robustness. Besides, the training phase requires a
large number of images. To deal with these issues, Genetic Programming
(GP) is adopted in this work with the intention of classifying precisely
texture images using some training images per class. In fact, in order
to automatically generate a descriptor that is invariant to illumination,
rotation and scale; the proposed method combines GP with the scale
extraction technique involved by SIFT. The performance of the pro-
posed method is validated on five challenging datasets of non-scaled as
well as scaled texture images. Results show that the method is robust not
only to scale but also to rotation, while achieving significant performance
compared to the state of the art methods.

Keywords: Texture · Genetic programming · Scale invariance ·
SIFT · Image classification

1 Introduction

Texture is an important characteristic in the field of image analysis compared to
both shape and color primitives. It has been used in different areas of research in
computer vision, pattern recognition and content-based image retrieval. Texture
can be recognized either by touch or by vision. Indeed, the toughness level and
the impression can give an important information about the texture type and
this is known as “tactile texture”. Nevertheless, human can distinguish between
textures not only by the touch, but it exists another form which is the “visual
texture”. It is a variation of the intensity of a surface that affects human vision.
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The visual texture can be noticeable without the need of the tactile texture.
In order to represent the perception of the texture and to promote an automatic
processing of the information that represents the texture, the analysis process
aims to produce numerical features that represents the texture. To deal with
this issue, three steps are commonly involved: (1) keypoint detection (2) feature
detection and (3) feature extraction. The first step runs through the whole image
and decides whether the current pixel is a keypoint or not. Various methods have
been used to achieve this task, such as Hessian and Harris corner detection,
Sobel Operator, Laplacian of Gaussian (LoG) for corner detection, Canny and
Harris for edge detection, grey-level blobs and Principal Curvature-Based Region
detector (PCBR) for blobs detection [12,16]. The second step consists to extract
informative features, what means going from raw pixel values to another set
of values in a lower dimension using mainly statistical measures (e.g. mean,
variance, histogram. . .). This step aims to extract the important information
while reducing the irrelevant ones. The last step is the feature extraction. It is
the same process as the previous one with some changes in the input data, which
are the extracted features from the previous step. The main goal is to reproduce
a better set of features in order to improve the performance of the model. The
difficulty resides in using an important number of images for training the model
due to the increase in the complexity while detecting a reliable set of features.
Indeed, training a model to perform the classification task is highly relying on
the number of the training images and the quality of the extracted features.
In this work, we propose to adopt the Genetic Programming (GP) within the
task of supervised image classification, using a relatively small training set of
textured images, while being invariant to illumination, rotation and scale. The
main contribution of this work resides in constructing an efficient descriptor
that preserves the rotation change while being invariant to several scale and
illumination changes. Besides, the proposed method allows to reduce remarkably
the computational cost of the training process.

The rest of this paper is structured as follows. A brief review about the
related work is presented in Sect. 2. The proposed method is discussed in Sect. 3.
The experimental design and the obtained results are described in Sect. 4. A
conclusion and some ideas for future work are discussed in Sect. 5.

2 Related Work

In this section, classical texture classification methods are briefly discussed,
before detailing a very well-known GP-based method that we adopted. Most
research on texture classification focuses on feature extraction, since more pow-
erful and highly discriminative features generally yield higher classification accu-
racies regardless the used classifier [14]. Indeed, descriptors must be invariant
to many classes of transformations in order to ensure that changes in lighting
conditions and camera parameters, notably scale change, do not induce large
changes in feature description [2,6]. Classical descriptors can be divided into
two groups: “dense” descriptors and “sparse” ones. Dense descriptors (e.g. Local
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Binary Patterns (LBP). . .) discriminate between the model and the background.
However, sparse descriptors (e.g. Scale Invariant Feature Transform (SIFT) [9],
Speeded-up Robust Filter (SURF) [4]. . .) are known by their robustness to varia-
tions in viewpoints and scales. In order to deal with invariance against the scale
change, many methods are based on extracting a scale invariant feature from
a selection of interest area in the image [7,11]. Differently, some methods are
based on logpolar transforms [15]. Furthermore, the fractal dimension and the
Gabor filters proved to be scale invariant feature descriptors. To overcome scale
variation, other methods generate a set of multi-scale representations from train-
ing images. Nevertheless, existing texture descriptors have multiple limitations.
First, they require a domain expert to identify specific keypoints in an image.
Second, the difficulty to find such a descriptor increases while the number of
classes increases, and the final results rely on the preselected keypoints. Third,
these descriptors are convoluted and some of them rely only on detecting a spe-
cific type of keypoints. Generally, the choice of keypoints is crucial for the qual-
ity of the descriptor and automating their detection would be much better than
extracting them in a way that can be subjective. In addition, automation can be
configured to reduce the search in a specific set of keypoints to ensure robustness
to rotation and scale changes. An effective tool for the automation of keypoint
extraction is Genetic Programming (GP), which has been evolving rapidly, and
new techniques have been constantly proposed in order to tackle image changes
within the texture classification framework. For instance, GP-criptor has been
proposed [3] for the attention of manipulating an illumination-invariant descrip-
tor. Al-Sahaf [1] extended this work and designed the GP-criptorri to handle
image with rotation changes. The method incorporates automatically the illu-
mination and rotation invariant descriptors while using only two instances, and
it operates on raw pixel values like the previous method. Therefore, there is no
human intervention to determine a set of predefined features. It is inspired by the
LBP descriptor and uses specific operators in order to handle rotation changes.
In the proposed method, we adapt the GP technique for the automatic extrac-
tion of keypoints. However, instead of making random sampling of the image,
we select a specific set of keypoints. We use the first step of the SIFT algo-
rithm to select only scale invariant keypoints. The reduction of the search space
leads automatically to a reduction of the training computational cost without
decreasing the classification accuracy, as will be shown in the results.

3 Proposed Method

The proposed Evolutionary Texture Classification Algorithm (ETCA) is an
extension of the GP-criptorri technique, what guarantees the invariance against
rotation and illumination changes. Besides, since features are defined according
to only some SIFT-based keypoints, ETCA is also invariant against scale change,
while being computationally efficient. In fact, in order to generate the descriptor,
two main processes have to be performed (Fig. 1). First, the generation of SIFT
features is performed on the input image in order to detect keypoints that form
the GP process input. Then, the GP-based texture descriptor is generated.
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Fig. 1. Flowchart of the proposed method for scale-invariant texture classification.

3.1 First Step: SIFT Keypoint Generation (SKG)

Gaussian pyramids are firstly created from the input images by smoothing and
subsampling them in various repetitions. Each image is processed with multiple
Gaussian filters to generate a scale for each filter. Each set of scales is called
octave, and the algorithm moves to the next octave by down-scaling the image
of a factor 2 while generating another set of Gaussian blurred images. The algo-
rithm continues until reaching a predefined threshold. From the set of octaves
we can build the scale-space S which applies a smooth filter on the octave with
multiple Gaussian filters of different values in order to create various scale of the
image. Secondly, in order to detect stable keypoints locations in each scale-space,
the difference of Gaussian is used to locate scale-space extrema. Then, keypoints
are selected from local minima or maxima. In fact, each pixel (x, y) is compared
with its 3 × 3 × 3 neighborhood σ; eight neighbor in the same scale and nine
neighbors up and down scale. If the selected pixel represents an extremum, then
it is a potential SIFT interest point. Finally, the keypoint localization step aims
to localize for each interest point what is the best scale location (x, y, σ). Having
a large number of keypoints, the goal is to eliminate those that cause noise due to
low contrast or poor localized pixel on an edge. The edge should not be detected
as a keypoint because it has a high maximal curvature and low minimal curva-
ture. In contrast, a corner represents a keypoint since it has a high maximal and
minimal curvature. This work relies not only on detecting those potential SIFT
keypoints but also their neighborhoods, which offer a rich additional informa-
tion. Hence, the LBP8,1 is used to deal with invariance against rotation change
and illumination variation. It detects image keypoints and generates a histogram
that corresponds to the distribution of these keypoints.
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3.2 Second Step: GP-Criptorri Loop

The input of the second step is the set of scale-invariant keypoints for each image.
This allows to minimize the computation cost by using only potential keypoints
instead of running through all the image pixel by pixel. Thus, a small number
of input images is sufficient for the training, without needing human interven-
tion. In the following paragraphs, we detail the representation of individuals as
well as the fitness function. Then, we show the step of building histograms from
the individual programs. Finally, we describe how the elected individuals gener-
ate the descriptors to be fed to the classifier. It is very important to begin by
explaining the structure of the individuals (also referred to as “programs”) of our
GP process. In fact, each program corresponds to a tree of functions (Fig. 2),
such that a quality fitness measure is assigned to it. These fitness values are
then used to select the best parents for reproduction using crossover and muta-
tion operators. Once the offspring programs are generated, children and parents
compete for survival based on an environmental selection mechanism. Thus, the
GP parent population is updated with the best programs. By running the GP
for a certain number of generations, GP programs are optimized automatically
thanks to the intelligent sampling of the search space. At the end of the run, the
parent population programs define the descriptors for texture classification.

Fig. 2. Tree representation of an evolved program.

More specifically, a program is a tree made up by a root node, some internal
nodes, and some leaf nodes (Fig. 2). The leaf nodes are scalar values, and the oth-
ers are functions that could be arithmetic operators or complex loop structures.
The terminal set can be categorized into four nodes of different type: min(�x),
max(�x), mean(�x) and stdev(�x) which return minimum, maximum, mean and
standard deviation values of a given vector �x, respectively. These four functions
give always the same value even if the vector elements change orders, what is
useful when dealing with rotation changes. The function set is composed by the
code node and four arithmetic operators (+, −, *, /). The whole program is
constructed to automatically detect the main keypoints in an image and extract
a feature vector from it. To do so, we pursue five steps. Firstly, the system
examines the leaf nodes and calculates its corresponding arithmetic function.
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Secondly, the resulting values are communicated to the parent node. Thirdly,
the parent node, which is the internal node, evaluates and returns the corre-
sponding results to the parent node until it is the code node. Fourthly, the code
node returns a binary code. Finally, the generated binary code is converted into
decimal and fed into its position in a histogram which is incremented by 1. As
in the GP-criptorri, we use a knowledge base D, which contains a set of feature
vectors. D is a set that is thereafter used to train the classifier. Indeed, the
two instances that are used during the mutative process are fed to the evolved
descriptor to generate the knowledge base. To measure the performance of each
program, accuracy cannot be used in this case. In fact, the number of instances
is very low (only two instances), what can increase the probability of over-fitting.
Instead of this, we adopt the fitness presented in [3] and described by (1):

fitness = 1 − (
1

1 + exp−5(Db−Dw)
), (1)

where, Db is the average distance of between-class instances (2) and Dw is the
average distance of within-class instances (3).

Db =
1

z(z − m)

∑

uα,vβ∈Str

∀�u∈uα

∀�v∈vβ

X2(�u,�v), α, β ∈ {1, 2, . . . , C}, α �= β (2)

Dw =
1

z(m − 1)

∑

uα,vα∈Str

∀�u∈uα

∀�v∈vα

X2(�u,�v), α ∈ {1, 2, . . . , C} (3)

Str = {(�xi, yi), i ∈ {1, . . . , z}} is the training set, where �xi (∈R+) is the feature
vector and yi is the class label. C and m are the total number of classes and
the number of instances per class, respectively, and z is the total number of
instances in the training set (=C.m), and xα is the set of all instances of the αth

class in Str. The widely used X2(·, ·) function measures the distance between
two normalized vectors of the same length as follows:

X2(�u,�v) =
1
2

∑

i

(ui − vi)2

(ui + vi)
, (4)

where, ui and vi are the ith element in the �u and �v vectors, respectively. Since
X2 returns values in [0, 1] and the fitness function returns values in [0.27, 0.73],
the factor 5 is used in order to scale the output interval to be in [0, 1]. If the
denominator of Eq. 4 is equal to 0, the function returns 0 in order to prevent the
division per zero. Thus, the fitness measure (Eq. 1) returns 0 in the best scenario
and 1 in the worst scenario. After the computation of the best fitness function
of each keypoint, the best keypoints are fed into the knowledge base. The main
difference between the GP-criptorri and ETCA is the input of the terminal set.
The leaf nodes of an individual, in GP-criptorri, compute statistics of the pixel
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values of the sliding window, whereas ETCA takes statistics of the coordinates
values of the sliding window of the generated keypoints from the scale space
analysis process. The idea behind this is to enhance the program to take a set
of pre-generated keypoints that are invariant to scale and fed them to the GP-
criptorri program at the leaves’ nodes. This permits particularly to reduce the
computational time, since that instead of using a sliding window of a generated
image that is invariant to scale, we use only the significant keypoints processed
from the previous step. In fact, the sliding window is represented by only the
selected keypoints. Furthermore, in order to understand how the descriptor is
designed, it is very important to show how the program constructs the histogram
from the selected keypoints. Indeed, each tree constructs a feature vector which
is the binary code developed from the root node. The set of the feature vectors
defines the histogram of the input instance. Indeed, the proposed method treats
only the keypoints extracted by SIFT while using a sliding window. Then, for
each keypoint, the ETCA performs six main steps: (1) the values of the current
pixel are fed into the leaf nodes of the program tree, (2) minimum, maximum,
mean and standard deviation values of the current window are computed, (3)
resulting values are fed into the terminal nodes of the individual, (4) internal
(non-terminal) nodes, apart from the root node, are evaluated starting from those
near the leaves by applying the corresponding operator to the list of arguments,
(5) the root node returns a binary code by converting each of its arguments to 0
if it is negative and to 1 otherwise, and here comes the role of the LBP8,1 that
works as a thresholding parameter (the central pixel represents the threshold),
(6) the generated binary code is converted to decimal, and the corresponding bin
of the feature vector (histogram) is incremented by 1. It is worth noting that the
length of the generated code depends on the number of the children of the code
node, which is equal to 2n, where n is the number of the code node children.

To summarize briefly, the proposed method offers a descriptor that is invari-
ant to scale, rotation and illumination using small number of instances. In fact,
ETCA combines arithmetic operators and first-order statistics in order to form
a model that takes an image as input and generates a feature vector in various
steps as previously mentioned. The generated codes (histograms) are thereafter
fed into a classifier to predict the class label. An important task is how to select
and discriminate between the training instances in order to classify them regard-
ing to the small number of images used in the training phase. Instead of using
the accuracy to measure the fitness function that will be used to detect as much
representative keypoints as possible, it reliably separates the distances of differ-
ent classes further apart and keeps the distances between instances of the same
class as close to each other as possible.

4 Experimental Study

Realized experiments are highlighted and discussed in this section. The dis-
cussion includes datasets, performance metrics, parameter settings and the
results. The experiments have been executed on a PC with Windows 10 with
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Table 1. A summary of the benchmark image classification datasets.

Dataset Classes Instances Changes Dimensions

Illum. Rotation Scale Width Height

KTH-TIPS [10] 10 810 � x � 200 200

UIUC [8] 25 1000 � � � 640 480

MINC [5] 23 2500 � � � 192 192

OUTEXTC10 [13] 24 4320 � � x 128 128

OUTEXTC00 [13] 24 4800 � x x 128 128

Intel�CoreTM i7-7500U CPU @ 2.70 GHz and 8G of memory. It is worth not-
ing that the measured time in our experiments is the CPU time and not the
wall-clock time.

4.1 Datasets and Evaluation Protocol

ETCA is evaluated on five challenging datasets widely used for texture classi-
fication assessment. The total number of instances in each dataset is equally
divided between the training set and the test set. The instances of all texture
datasets are grey-scale images. These five image datasets vary in number of
classes (binary and multi-class), size of instances (from 128 × 128 to 640 × 480
pixels) and various texture applications (foliage classification, hair classification,
brick, wall. . .). Thus, since the methods investigated in this work are evaluated
using a set of carefully chosen benchmarks for image classification of varying dif-
ficulty, these methods can be used not only in the domain of image classification
but also to perform other tasks such as image segmentation and content-based
image retrieval. The datasets vary in domain (texture and object classification),
illumination, scale, point of view, rotation, size of instances (images), number
of classes and number of instances per class (Table 1). The datasets mentioned
in Table 1 are primarily sorted in ascending order based on the total number of
classes and then sorted by the total number of instances. As performance met-
rics, the classification accuracy is used as a fitness measure to indicate the per-
formance of each individual to differentiate between instances of various classes.
It is defined as the ratio between the number of correctly classified instances
and the total number of instances. In the case of small number of instances (less
than 10 instances), the use of accuracy is insufficient because the system can
easily capture features that are good enough to discriminate between the train-
ing instances, but not sufficient to classify the unseen data. Thus, we rely also
on the fitness function as defined in Eq. 1. Furthermore, in order to compute the
required time to evolve a descriptor by the proposed method, the CPU time is
measured for each evolutionary run from the beginning of generating the initial
population until it reaches the stopping criterion.
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Table 2. Parameter settings of the genetic process.

Parameter Value Parameter Value

Crossover rate 0.80 Generations 50

Mutation rate 0.20 Population size 200

Elitism Keep the best Initial population Ramped half-and-half

Tree min depth 2 Selection type Tournament

Tree max depth 10 Tournament size 7

Table 3. The average time required to evolve a descriptor by ETCA.

Dataset KTH-TIPS MINC UIUC OutexTC00 OutexTC10

Time (hour) 4 4.9 4.8 1.4 1.1

4.2 Experimental Setup and Results

The parameter settings of ETCA are summarized in Table 2. The ramped half-
and-half method is used to generate the initial GP population. Since we use
a small number of instances, the task of dealing with the input images is an
expensive task, so the population size is set to 200 individuals. A tournament of
a size 7 is used to maintain the population diversity. The crossover probability is
set to 0.80 and the mutation probability is set to 0.20. We notice that only the
best mechanism in kept to prevent the evolutionary process from degrading. The
tree depth of an evolved program is between 2 and 10 levels in order to avoid code
bloating. To end with, the evolving process stops when the fitness value is very
close to 0 (<10−6), or the maximum number of generations is attempt (=50). It
is known that the multi-scale space should cover a sufficient range of scales. It is
worth noting that the size of the images is small (=128×128 in OutexTC00 and
OutexTC10) and with the down-sampling process the image size will be much
smaller, so we suppose that the down-sampling rate is greater than 1/10, what
results to sub-images of a size larger than 20 × 20. Furthermore, we recorded
the average time required to evolve an image descriptor on the different datasets
(Table 3). It is clear that ETCA needs shorter time to evolve a descriptor on the
OutexTC10 dataset compared to the time needed for the other datasets. This is
expected mainly because this dataset has minimum size and number of instances.
It has also cropped texture with different scales unlike the MINC dataset which
has background with the texture. The UIUC dataset requires more time than
the other datasets, given that it has bigger size instances.

Table 4 shows the results of applying seven relevant classification techniques
using the generated features by ETCA as well as the ones of the baseline meth-
ods. Using the studied classification techniques, ETCA achieves comparable or
better performance in most of the cases. This is the case with OutexTC00 and
OutexTC10 datasets. However, the accuracy level degrades for MINC and UIUC
datasets, as compared with the other datasets. Overall, ETCA has achieved
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Table 4. The average accuracy (%) of seven classifiers using five image descriptors on
five challenging standard datasets (best values are in bold).

SIFT SURF DIF GPcriptri ETCA

Training Test Training Test Training Test Training Test Training Test

KTH-TIPS

1-NN 100 52.4 100 64.8 22.5 17.4 95.1 40.9 100 93.6

Adaboost 100 78.4 93.05 45.2 11.1 9.0 52.1 48.9 100 92.9

SVM 96.4 90.4 98.1 53.9 15.3 14.7 100 31.0 100 93.4

NB 81.8 56.1 76.9 54.9 12.1 11.1 98.3 39.3 100 91.3

NB-Tree 93.8 50 93.8 53.0 12.2 12.3 100 34.5 100 90.8

NNge 92.4 90.1 93.1 53.0 15.9 15.7 97.8 45.1 100 90.9

K* 100 32.7 100 43.2 14.0 14.0 97.8 35.1 100 93.1

OutexTC00

1-NN 100 65.1 100 73.2 25.2 17.4 100 87.7 100 95.0

Adaboost 100 72.4 70.1 45.1 11.6 9.0 60.2 57.1 100 94.0

SVM 93.1 70.7 65.7 35.2 16.2 14.7 85.1 73.9 100 95.0

NB 78.9 44.1 43.6 61.1 13.2 11.1 80.0 72.0 100 93.2

NB-Tree 89.3 64.1 88.2 44.7 15.1 12.3 95.0 79.9 100 94.0

NNge 70.4 33.1 100 77.9 16.2 15.7 100 85.4 100 90.1

K* 60.1 45.5 100 45.1 14.0 14.0 100 87.6 100 95.2

OutexTC10

1-NN 90.5 45.1 80.0 33.1 15.1 8.2 100 86.8 100 87.5

Adaboost 80.8 32.1 60.4 22.1 10.2 6.6 70.0 51.2 100 82.2

SVM 70.1 15.0 55.5 15.2 10.5 7.4 90.0 72.2 100 80.5

NB 33.6 22.3 60.1 50.9 12.0 7.5 80.5 70.5 97.3 81.5

NB-Tree 20.1 9.5 20.0 10.1 12.0 7.7 100 87.1 100 87.1

NNge 20.0 11.2 15.2 7.6 12.0 9.4 100 85.6 100 88.1

K* 50.0 44.1 12.3 6.9 10.0 7.4 100 86.2 100 87.1

UIUC

1-NN 100 93.7 100 72.1 54.1 32.5 85.0 33.1 100 85.8

Adaboost 80.1 54.4 75.0 66.1 33.2 8.9 77.1 25.9 100 74.0

SVM 93.2 65.4 83.4 71.8 12.1 7.9 56.2 23.3 100 72.0

NB 92.9 84.3 89.4 72.5 10.9 6.8 40.5 12.7 100 70.1

NB-Tree 96.4 70.9 53.3 48.4 33.5 10.9 36.7 15.1 100 75.0

NNge 71.1 66.3 93.4 77.9 12.1 7.4 28.5 18.1 98.3 70.0

K* 100 89.8 100 72.1 45.8 22.9 46.1 21.6 100 75.0

MINC

1-NN 100 52.4 100 64.8 55.4 25.2 21.1 10.1 100 72.0

Adaboost 95.0 66.0 80.4 44.1 75.8 66.1 33.1 12.5 100 74.0

SVM 85.1 45.2 50.2 21.3 44.8 20.0 35.6 12.1 100 75.0

NB 81.8 56.1 76.9 54.9 25.1 9.4 40.1 25.3 100 73.0

NB-Tree 93.8 50.0 93.8 53.0 10.1 5.4 20.5 11.1 100 77.0

NNge 71.1 66.3 93.4 77.9 12.1 7.4 19.2 11.0 96.9 70.0

K* 100 32.7 100 43.2 33.1 10.1 23.4 10.1 100 75.0
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the best performance among all the baseline methods with almost all the clas-
sifiers. Indeed, for the KTH-TIPS dataset the proposed method has achieved
93.6% as accuracy using 1-NN. KTH-TIPS provides images with variations in
scale as well as variations in pose and illumination. In particular, ETCA shows
better performance regarding SIFT and GP-criptorri. The latter one achieves
only 41% average accuracy, since it does not handle scale change. Likewise,
ETCA has achieved the overall best performance, which is 95.0%, on the Out-
exTC00 dataset, using the classifiers 1-NN, SVM and K*. This dataset is char-
acterized by its extensive viewpoint and illumination changes, but it does not
have scale and rotation changes. ETCA shows better performance to handle
these changes in comparison to the GP-criptorri. Furthermore, in order to val-
idate invariance against rotation change without considering scale change, the
studied methods have been validated on the OutexTC10 dataset. The results
show that the proposed method achieves the best performance accuracy, which
is 88.1% using the NNge classifier. This confirms that our method is able to
handle rotated and non rotated images with and without scale changes. Simi-
larly, results on the UIUCTex dataset show that the proposed method records
95.00% accuracy using the 1-NN classifier and has the overall best performance
among the compared methods (e.g. best SIFT accuracy is 89.8% using the K*
classifier). This dataset is very challenging due to its high intra-class variation
and to the presence of many deformations (illumination, viewpoint, rotation and
scale). For the MINC-2500 dataset, SURF achieves the best accuracy which is
77.9% using the NNge classifier. Proposed method has achieved comparable per-
formance accuracy which is 77.00% using the NB-Tree classifier. This confirms
that ETCA can handle all kind of deformation at once. The overall (for all the
classifiers) average accuracy for this dataset is about 77% for ETCA and about
50% for SURF.

5 Conclusion

This work is devoted to introducing a genetic programming method to elaborate
optimal texture image descriptor for scale-invariant texture classification. Fea-
tures are extracted using the SIFT technique in order to have potential keypoints
with a significant neighborhood distance that captures keypoints at different
levels (zoom) and fed them to a tree representation. Proposed method has the
potential of classifying not only texture images but also real-world images. More-
over, ETCA does not require domain expert to detect a set of keypoints, since it
detects these keypoints automatically and it does not require any domain knowl-
edge. The main contribution of this work is to automatically evolve a descriptor
generated from genetic programming based on a scale invariant set of keypoints
extracted in a pretreatment step. The evaluation shows that the method is effec-
tive to evolve a descriptor that is invariant against illumination, rotation and
scale changes, with no need to human intervention. Indeed, the application area
and the obtained results demonstrate that using ETCA may result in data-
driven elaboration of an optimal filter image descriptor for subsequent solution
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of the image classification task. As future work, genetic programming could be
also adapted to generate a combination of textural and edge description of the
texture, while preserving rotation and scale invariance.
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Abstract. We propose a novel monetary policy strategy in an attempt
to provide an auxiliary tool to central banks, whose main predictive mod-
els are still from the Dynamic Stochastic General Equilibrium (DSGE)
family, which has some flaws. We derive an objective function from three
empirical relationships that have long been established in the economic
literature and we seek to minimise the value of this function by choosing
the interest rate via a genetic algorithm. Since the function is forward
looking, we use a neural network to predict values of unemployment and
inflation. Using data from Brazil, simulation results suggest that had
the Brazilian central bank applied our strategy, and all other economic
conditions remained equal, inflation could have been lower for 62.48% of
the time. Predicted unemployment, however, was lower only for 39.69%
of covered periods, as it faces a trade-off with inflation.

Keywords: Neural networks · Monetary policy · Genetic algorithms

1 Introduction

Monetary authorities around the world conduct policy in order to stabilise infla-
tion and mitigate its deleterious effects. Some of them also take unemployment
explicitly into account, trying to minimise the trade-off between this variable and
inflation. Whether this is the case or not, the policy instrument is the short-term
interest rate almost everywhere and Dynamic Stochastic General Equilibrium
(DSGE) models are the favourite choice of central bankers to help them setting
the interest rate, despite these models’ flaws. Efforts to subdue the shortcomings
have been insufficient: to this date, there is an ongoing demand for building a
new framework to support monetary policy.

We aim at filling this gap and apply our strategy to the case of Brazil. In con-
trast with the traditional approach, we do not build a model affected by ad hoc
assumptions, identification issues, and questionable policy prescriptions. Rather,
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in a novel approach, we use a genetic algorithm and a neural network, seeking to
minimise an objective function that depends on the interest rate through future
inflation and future unemployment. We derive this objective function from three
empirical relationships observed in a wide range of countries and periods.

Since the objective function is prospective, it is necessary to estimate future
unemployment and inflation for every potential solution (i.e. series of interest
rates) generated by the genetic algorithm. Predictions are computed by a mul-
tilayer perceptron, whose inputs are the attempted series of interest rates and a
large set of covariates. Our results suggest that had the Brazilian central bank
applied our strategy, and all other economic conditions remained equal, inflation
could have been lower for 62.48% of the time. Predicted unemployment, how-
ever, was lower only for 39.69% of covered periods, as it faces a trade-off with
inflation.

Given the importance of inflation and unemployment for any given country,
and in particular for Brazil, where inflation has been historically high and unem-
ployment is currently a major concern, this work’s contribution intends to be of a
practical nature above all. Nonetheless, it also adds to the literature on machine
learning applied to monetary policy. There are few papers relating both subjects
and, to the best of our knowledge, this is only the second study trying to create
a novel interest rate rule based on machine learning. Unlike this previous study,
which automatises a central bank’s behaviour, ours suggests that our framework
could be of help in lowering inflation.

The remainder of this article is organised as follows. The Sect. 2 is devoted to
a very brief literature review. Section 3 describes our proposed model and lists
the time series we used. Section 4 discusses the results and shows how the model
can be used in practice. Section 5 concludes the article.

2 Background

2.1 Failure of DSGE Models

Before the 2008 financial crisis, the DSGE framework was standard, but the crisis
was a disruption in the financial sector only comparable to that of 1929 and no
economist could see it coming. Their models were evidently flawed. Problems
have been recognised by several researchers: (i) assumptions are unrealistic and
most conclusions were not empirically confirmed [1], (ii) policy implications are
unconvincing [4], and (iii) there are more parameters to estimate than equations
and all estimation methods are prone to cherry-picking [10]. The most promising
proposed alternative to DSGEs, agent-based models, are also subjected to this
last issue.

2.2 Macroeconomic Relationships

Our model stems from economic relationships that are observed across almost
all countries and at most periods for which historical data is available. In the
next subsections, we briefly discuss the literature on these relationships and their
empirical validity, besides describing the correlations themselves.
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Okun’s Law: This law implies an empirical and negative relationship between
the unemployment rate and the gross domestic product (GDP)1 growth rate.
Evidence that it holds for most countries is available [2]. Its general form is:

u − ū = F (y − ȳ) + κ (1)

where u is the unemployment rate, ū is the natural2 unemployment rate, y is
the GDP growth rate, κ is a random shock, ȳ is the natural GDP growth rate
and F is a function such that ∂F (y−ȳ)

∂(y−ȳ) < 0.

Phillips Curve: The Phillips Curve, in its modern form, is an inverse relation-
ship between expected inflation and unemployment. Strong empirical evidence
across countries can be easily found [8]. The curve is stated as follows:

π = Et[π] + H(u − ū) (2)

where π is the inflation rate and ε is a stochastic variable. H is assumed to be a
function such that ∂H((u−ū)

∂(u−ū) < 0.

Liquidity Effects: Interest rates established by central banks impact a coun-
try’s total production, albeit not immediately, but over time. Higher interest
rates gradually decrease GDP growth, as empirically demonstrated by [6]. This
relationship, the so-called liquidity effects, is shown below:

yt = GL(i) ≡ G(it−d, it−d−1, ..., iL) (3)

where i is the interest rate, d is an integer representing the distance of the first
lag, L is the number of lags on i, and G is a function such that ∂G(i)

∂i < 0.

2.3 Machine Learning Applied to Monetary Policy

Literature relating machine learning to monetary economics is rather scarce.
Some recent applications can be found in [5,11]. The only study that is closely
related to ours is [9], in which the authors proposed a new model for inflation
targeting based on fuzzy control techniques. However, the fuzzy rules merely
automate the Czech Central Bank’s actual strategy, instead of pursuing a method
for improving its performance.

1 A country’s total production of final goods and services.
2 The word natural refers to the value of a given country’s economic variable when

production of goods and services is operating at full capacity, i.e. production would
not increase with more resources.
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3 Developing the Framework

The method we propose to minimise future inflation and unemployment consists
of three steps. First, from three empirical relationships, we derive an objective
function that depends on current and past interest rates (in Brazil, the SELIC
rate3) through future inflation and future unemployment rates. Then the genetic
algorithm generates potential solutions to the central bank’s problem. Finally,
using these potential solutions, a neural network predicts future inflation and
unemployment rates. These two are necessary to evaluate the objective function
for each potential solution and then pick the best among them. If the number
of generations has reached a maximum, the procedure stops and the solution
is considered to be the one for which the objective function value is the lowest.
Otherwise, the genetic algorithm generates new potential solutions from the ones
that were previously picked.

3.1 Overview

We now detail the procedure a little longer. For clarity, the whole process is
illustrated in Fig. 1. The starting box (the upper pink one) states that there is
an objective function O(.) that we need to minimise by choosing an interest rate
series {it}T

t=1. We derived O(.) from the three empirical relationships that were
explained and justified in Sect. 2.2, and it has the following form:

O(.) =
T∑

t=1

Rt · Et[πt+17] · Et[ut+17] · Et[πt+34] · Et[ut+34] (4)

Fig. 1. Detailed overview of the framework

3 From portuguese, Sistema Especial de Liquidação e Custódia, which stands for Spe-
cial Clearance and Escrow System. It is the base interest rate in Brazil.
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Hence our objective function is a discounted sum of Cobb-Douglas value
functions4 V (.) = Et[πt+17] · Et[ut+17] · Et[πt+34] · Et[ut+34] where the discount
factor is R ∈ [0, 1], i.e. inflation and unemployment have more weight in periods
that are closer to the current one (since the central bank is more concerned
about recent periods). The arguments of V (.) are the expected inflation and
unemployment seventeen weeks (four months) ahead, as well as inflation and
unemployment thirty four weeks (eight months) ahead, and these four variables
are actually functions of the interest rate at time t. This means that we need to
minimise O(.) by choosing a whole series {it}T

t=1.
Any choice of how far is the future (in our notation, it means how big is d)

is good as any other, so here we defined that π = πt+17 and u = ut+17
5, i.e.

both inflation and unemployment four months ahead. Moreover, we add πt+34

and ut+34 to the value function with two purposes: (i) increase the precision of
the estimates, and (ii) account for mid-term inflation and unemployment.

Since O(.) is forward looking, we need to calculate expected values for future
inflation and unemployment. We do so by using a neural network, specified
in Sect. 3.4. As depicted in the blue box in Fig. 1, the neural network initially
predicts values for six series: the original SELIC series and five other series
generated from this series by adding a draw from a random uniform distribution
to each of its elements, five different times. Afterwards, as shown by the loop in
Fig. 1, the network is fed by the genetic algorithm, which generates a new set of
six series in its attempt to minimise O(.).

3.2 Data

Time series were all extracted from the Central Bank of Brazil (CBB) web-
site, with the exception of unemployment. In this case, the National Continuous
Household Sample Survey (PNADC6) was used. A complete list of these series,
their frequencies and precise sources is shown in Table 1. Note that most series
are originally monthly ones, but if we had kept this frequency, there would have
been too few data points to train the neural network. Since there are also daily
series, we decided to work with weekly data7. Values for monthly data were
repeated for all weeks of a given month, while data for daily series were col-
lapsed in weekly averages. As a result, we obtained 728 observations (T ≡ 728)
per series, stretching from the 48th week of year 2001 to the 34th week of 2016.

4 This family of functions, i.e. z = xa1
1 · xa2

2 · ... · xan
n , possesses a number of important

properties which have made it widely useful in the analysis of economic theories.
5 We tried several other horizons, but this one delivered the best results.
6 From portuguese, Pesquisa Nacional por Amostra de Domićılios Cont́ınua, which

translates into Continuous National Household Sample Survey.
7 Although real world unemployment and inflation vary weekly, for these variables

we dispose only of aggregate data from the end of each month. Therefore, the best
approximation for a week of a given month is the value reported for the end of
that same month. Some available data is daily and can be used to enhance this
approximation through a forecasting model, which is part of what we are doing
here.
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Table 1. Time series used in this study

Description Frequency Source

International reserves (US$ millions) Daily CBB

Net public sector debt (%GDP) Monthly CBB

Public sector borrowing requirements (%GDP) Monthly CBB

United States official interest rates (%p.y.) Monthly FEDa

Net current account (US$ millions) Monthly CBB

Net capital account (US$ millions) Monthly CBB

Exchange rate US$ Daily CBB

National consumer price index (in 12 months) Monthly IBGEb

SELIC target (%p.y.) Daily CBB

SELIC in annual terms (basis 252, %p.y.) Daily CBB

GDP accumulated in the last 12 months (current R$ millions) Monthly CBB

Unemployment rate (PNADC, chained backwards) Monthly IBGE/FGVc

a Federal Reserve System
b Brazilian Institute of Geography and Statistics
c Fundação Getulio Vargas

Fig. 2. Genetic algorithm flowchart
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3.3 Genetic Algorithm

The algorithm we use to minimise Eq. 4 by choosing the whole SELIC time
series is illustrated in Fig. 2 and works as follows. An individual (chromosome)
is denoted by {it}T

t=1. Naturally, a gene is considered to be an observation of the
series. There are 728 observations for each series, but there is no need to find
728 values. In fact, the CBB chooses the SELIC every seven weeks so, since our
data is weekly, an individual actually has N ≡ T/7 = 728/7 = 104 genes.

The first generation population, P (g = 0), is composed of six individuals: the
actual (original) SELIC rate and five other individuals generated from the actual
SELIC series by adding an stochastic component, namely, a uniform random
variable. We denote this set by P (g = 0) = ({it}T

t=1)
6
n=1, where n ∈ [1, 6]

indexes the individuals, so (it)n represents a gene t from individual n.
We then are able to evaluate the objective function O(.) for each one of the

six initial individuals. The weekly discount rate (parameter R in O(.)) we use
is 0.0012. Thus, (1 + R)52 ≈ 6.5, which is the mean annual SELIC interest rate
over the period covered by the data. Using the base interest rate as a discount
rate is standard in economic literature.

Next, we pick the two individuals for which O(.) are the lowest and a random
individual, the three survivors of the current generation. We apply crossover and
mutation operations to these survivors to obtain six new individuals (by com-
bining all possible pairs of survivors when crossing over), the candidate members
of the new generation. If the lowest value O∗(.) of the objective function among
all members of the new generation is lower than the lowest value for the previ-
ous generation, O∗

−1(.), we substitute the new generation for the old one. If not,
we discard the new generation and apply the operators to the old one again,
restarting the cycle. The algorithm stops after two thousand generations, the
reason being explained in Sect. 4.2.

Crossover operation is standard: new individuals are generated from N/2
random genes from two parents, using a one-point cut in each chromosome (indi-
vidual). As for mutation, a percentage of the total number of genes is randomly
picked to be replaced by a random value. The percentage of mutated genes
decays with generations: it starts at 7% and is reduced by a factor of 1.001 until
it reaches the lower bound of 3%.

3.4 Neural Network Regression

Every week, the central bank will estimate future unemployment and inflation for
each it ∈ {it}T

t=1 for all attempted solutions, in order to evaluate the objective
function 4, as part of the algorithm defined in Sect. 3.3. We use a multilayer
perceptron (MLP) for this purpose.

The inputs of the MLP are seven lags of the following variables: unemploy-
ment rate, inflation rate, base interest rate (SELIC), effective interest rate8, net
government debt, government deficit, net current account, net capital account,

8 This rate is slightly different from the SELIC, since it is determined by the market.
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GDP, exchange rate with respect to US dollars, and United States official inter-
est rate. Additionally, there are four outputs: unemployment in seventeen weeks
(four months ahead), inflation in seventeen weeks, unemployment in thirty four
weeks (eight months ahead), and inflation in thirty four weeks. All values are
normalised to increase convergence speed.

The reason why we chose a window of size eight is that the CBB makes its
decision about the base interest rate every seven weeks. Therefore, we assume it
considers current variables as well as their values on each of the seven previous
weeks. As for the variables themselves, they have long been established in eco-
nomic literature to have predictive power over inflation and unemployment. We
use a subset of variables that figure in the classical paper by James Stock and
Mark Watson [12], which focus on forecasting inflation, and in a more recent
work by Regis Barnichon and Paula Garda [3], about predicting unemployment.

4 Simulations

4.1 Neural Network’s Predictions

We have tested a large range of parameters using a grid search to find the most
appropriate configuration for the MLP. Choice was based on a 10-fold nested
cross-validation procedure (also known as double cross validation), performed
over 80% of randomly picked observations in our total sample, further split into
random training (70% of the sub-sample) and validation (remaining 30% of the
sub-sample) sets, both in external and internal loops. The other 20% of total
observations have been used as a final testing set, again to avoid training bias.

The mean root mean square error (RMSE) over the 10 outer folds was of 0.104
and the best configuration turned out to be the following: (i) the activation
function is the hyperbolic tangent (HTAN); (ii) there are four hidden layers
with five neurons each; (iii) the solving method is the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm. The RMSE of this network is
of 0.095 for the training set and of 0.149 for the testing set, so the fact that
the preferred configuration for the MLP does not suffer from overfitting seems
warranted.

The other options for the activation function were the rectified linear unit
function (RELU) and the logistic sigmoid function (LSIG), while the other pos-
sibilities for the solving method were the standard stochastic gradient descent
(SGD) and the adaptive moment estimator (ADAM). The whole set of param-
eters used in the grid search are shown in Table 2.

4.2 Genetic Algorithm Evolution

Testing a range of parameters for the genetic algorithm was a challenge, since
each battery of 1000 generations took approximately five hours9 to run when the
9 The machine in which we ran the algorithm has the following specifications: processor

Intel(R) Core(TM) i7-4700MQ, CPU 2.40 GHz; memory 16 gb; operating system
Ubuntu 18.04.2 LTS.
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Table 2. Set of parameters used in the grid search

Parameter Values

Number of neurons per hidden layer 3 to 5

Number of hidden layers 2 or 4

Solving algorithm ADAM, SGD, or BFGS

Activation function RELU, HTAN, or LSIG

least number of survivors per generation (2) was set. When we added one more
survivor, the running time almost doubled: eight hours per 1000 generations.
With four survivors per generation the running time got prohibitive and we
simply interrupted the algorithm. A similar running time hike happened when
we increased the initial population from six to greater numbers. The full set of
tested values for parameters are presented in Table 3.

Table 3. Set of parameter values that were tested for the genetic algorithm. Preferred
values are highlighted in blue.

Operator/Property Parameter Values

Mutation Rate 0.03, 0.04, 0.06, 0.07, or [0.03, 0.07]

Decay 1.001 or 1.0005

Type Random choice or random sum

Crossover Type One point

Survivors Number 2, 3, or 4

Initial population Number 6, 12, or 18

Other values were rejected on the basis of convergence speed. Fixed mutation
rates reduced convergence speed, and the same was observed if the mutation rate
was allowed to decrease from 7% to 3% at a rate of 1.0005, or if the mutation
operator was adding to the chosen genes a random draw from a standard normal
distribution (random sum) and not substituting random draws from a set of pre-
determined values for these genes (random choice).

Most of the evolution happened before 250 generations and convergence
seems to have been achieved around the 1600th generation. We tested for
4000 generations and there were no significant changes, i.e. the best individual
improved only by a few hundreds, but these 2000 extra generations had a large
cost in terms of time (10 h, due to nested loops inside the crossover operator).

4.3 Results

We now evaluate our strategy’s performance. First, we compare the original
SELIC series with the one generated by the genetic algorithm (the best individual
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after 2000 generations). Both are depicted in Fig. 3. We can see that, according to
the strategy, the SELIC rate should in general have been lower. This is specially
true in the two extremes of the period covered by our model.

Fig. 3. SELIC target: actual series versus solution generated by the genetic algorithm

Moreover, it is clear that the generated SELIC series is significantly less
persistent than the original series, albeit remaining in a shorter interval. Low
persistence might pose a problem. According to several authors, for monetary
policy to work, agents must be able to understand the central bank behaviour
in order to adjust their expectations and make the decisions that, ultimately,
policy-makers expect them to [7].

In agreement with this view, the central bank must have credibility and be
able to commit to a certain smooth path for the target interest rate. If the SELIC
frequently suffers large shocks, agents may not be able to believe in central bank’s
commitment, even if the institution anticipates these changes to the public. The
policy would possibly be seen as discretionary, leading to negative effects on the
economy. To avoid these possible deleterious effects, we smoothed the SELIC
series, calculating its 12-month moving average (MA). As we note in Fig. 4,
results now seem much less likely to cause the problems discussed above.

Fig. 4. SELIC target: actual series versus 12-month MA solution. First values were
lost when calculating the MA.
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We use the neural network to predict the values of unemployment and infla-
tion for the MA version of our solution and compare it to actual inflation and
unemployment. Inflation, for both horizons, was quite frequently lower when
predicted by our solution as compared to what was observed under CBB actual
policy decisions, while the same cannot be said about the unemployment rate.
Table 4 summarises these results. On average, predicted inflation was lower than
actual inflation for 62.48% of the time. Predicted unemployment, however, was
lower only for 39.69% of weeks. This result might seem undesirable, but we need
to stress, as we did in Sect. 2.2, that there is a trade-off between the expected
inflation and the unemployment rate, so in fact we have achieved a reasonable
outcome. It is possible, then, that the objective function has another minimum,
where the predicted unemployment rate would be lower for most of the periods,
as opposed to the predicted inflation.

Table 4. Descriptive statistics of genetic algorithm solution as compared to actual
CBB solution

Lower (%) Relative volatility Relative persistence

Inflation 4 mo 58.6 −0.07 −0.059

Unemployment 4 mo 45.27 −0.24 0.005

Inflation 8 mo 66.36 −0.08 −0.063

Unemployment 8 mo 34.11 −0.45 −0.009

SELIC 94.88 0.11 0.001

As a rule, predicted inflation and unemployment rate were less volatile than
actual inflation and unemployment. This means that both variables remained
bounded in a smaller interval, i.e. our strategy reduced the variance of both
variables for the two horizons. This, of course, is a desirable feature of prospective
inflation and unemployment, as it implies less uncertainty in the economy.

In spite of that, jumps were more frequent, with persistence, as estimated by
AR(1) coefficient, being lower in all cases but the 4-months ahead unemployment
and the SELIC. The MA version of the SELIC series generated by our strategy
is, in its turn, lower than the actual SELIC for 94.88% of the time, which is a
positive outcome in general, since lower interest rates is commonly associated
with higher economic growth. In addition, using the same criteria as before,
the MA of the SELIC series found by our algorithm is relatively more volatile,
albeit almost as persistent as the CBB SELIC, meaning that we achieved our
goal overall.

5 Conclusion

This paper presented in detail a novel tool to back the decision-making process of
central banks. Our framework was based on well-established empirical evidence.
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The first step was to obtain an objective function for the central bank, which
we derived from three empirical relationships: Okun’s Law, the Phillips Curve,
and liquidity effects. Then we designed a genetic algorithm to minimise this
objective function by choosing a time series of interest rates. Since the function
is forward looking, we used a tuned multilayer perceptron to predict future values
of unemployment and inflation.

The best individual was less persistent than the actual series set by the CBB.
Thus we smoothed the series to avoid unfavourable economic results that could
stem from low persistence. Compared to the original SELIC rate series, our
solution was shown to be less volatile and lower 94.88% of the time, which is
most likely positive from an economic standpoint. Besides, it implied lower values
for inflation 62.48% of covered periods. Predicted unemployment, however, was
lower only at 39.69% of the time, as it faces a trade-off with inflation.
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