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Abstract In this work, Uncertainty Quantification (UQ) based on non-intrusive
Polynomial Chaos Expansion (PCE) is applied to the CFD problem of the flow
past an airfoil with parameterized angle of attack and inflow velocity. To limit the
computational cost associated with each of the simulations required by the non-
intrusive UQ algorithm used, we resort to a Reduced Order Model (ROM) based on
Proper Orthogonal Decomposition (POD)-Galerkin approach. A first set of results
is presented to characterize the accuracy of the POD-Galerkin ROM developed
approach with respect to the Full Order Model (FOM) solver (OpenFOAM). A
further analysis is then presented to assess how the UQ results are affected by
substituting the FOM predictions with the surrogate ROM ones.

1 Introduction

Many methods have been developed to assess how uncertainties of input parameters
propagate, through Computational Fluid Dynamics (CFD) numerical simulations,
into the outputs of interest. The aim of this work is to carry out a study on the
application of non-intrusive Polynomial Chaos Expansion (PCE) to CFD problems.
The PCE method is a way of representing random variables or random processes in
terms of orthogonal polynomials. One important feature of PCE is the possibility
of decomposing the random variable into separable deterministic and stochastic
components [20, 25]. By a computational stand point, the main problem in PCE
consists in finding the deterministic coefficients of the expansion. In non-intrusive
PCE, no changes are made in the simulations code, and the coefficients are
computed in a post processing phase which follows the simulations. Thus, the
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deterministic terms in the expansion are obtained via a sampling based approach
such as the one used in [21, 32]. In this framework, samples of the input parameters
are prescribed and then numerical simulations are carried out for each sample.

Once the output of the simulations corresponding to each sample is evaluated,
it is used to obtain the PCE coefficients. In the projection approach, the orthog-
onality of the polynomials is exploited to compute the deterministic coefficients
in the expansion through integrals in the sampling space. As the sampling points
chosen are quadrature points for such integrals, the computational cost will grow
exponentially as the parameter space dimension increases. This is of course quite
undesirable, given the considerable computational cost of the CFD simulations
associated to the output evaluation at each sampling point. To avoid such problem, in
this work the PCE expansion coefficients are computed using a regression approach
which is based on least squares minimization.

To explore even further reductions of the computational cost associated with
sample points output evaluations, in the present work we apply the PCE algorithm
both to the full order CFD model and to a reduced order model based on POD-
Galerkin approach. In the last decade, there have been several efforts to develop
reduced order models and apply them to industrial continuous mechanics problems
governed by parameterized PDEs. We refer the interested readers to [11, 17, 30]
for detailed theory on ROMs for parameterized PDE problems. More in particular,
the solution of parameterized Navier–Stokes problem in a reduced order setting
is discussed in [31]. In such work, the FOM discretization was based on Finite
Element Method (FEM). Projection-based Reduced Order Methods (ROMs) have
in fact been mainly developed for FEM, but in the last years many efforts have
been dedicated to extend them to Finite Volume Method (FVM) and to CFD
problems with high Reynolds numbers. Some examples of the application of ROMs
based on the Reduced Basis (RB) method to a finite volume setting are found in
[12, 15, 16]. In this work, we instead focus on POD-Galerkin methods applied to
CFD computations based on FVM discretization. A large variety of works related to
POD-Galerkin can be found in the literature, and here we refer only to some of them
[2, 3, 6, 7, 24, 28], as examples. As for POD-Galerkin approach applied to Navier–
Stokes flows discretized via FVM, we mention [26], in which the authors treat the
velocity pressure coupling in the reduced model using the same set of coefficients
for both velocity and pressure fields. In [35], the coefficients of velocity and pressure
are instead different, and Poisson equation for pressure is added to close the system
at reduced order level. In [36] a stabilization method for the finite volume ROM
model is presented. In [8] a study on conservative reduced order model for finite
volume method is discussed. For applications of ROMs to UQ problems we refer
the readers to [9, 10, 14].

PCE is a tool that is independent of the output evaluator and in this work we
will apply it to output parameters both obtained from the full order solution and
to its POD-Galerkin reduced order counterpart. In this regard, the objective of the
present work is to assess whether PCE results are significantly influenced by the
use of a POD-Galerkin based model reduction approach. To this end, we will apply
POD model reduction to CFD simulations based on incompressible steady Navier–
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Stokes equations, and compare the PCE coefficients and sensitivities obtained for
the reduced order solution to the ones resulting from the full order simulations.

This article is organized as follows: in Sect. 2 the physical problem under study
is described at the full order level. In Sect. 3 the reduced order model is introduced.
In particular, the most relevant notions on projection based methods are reported
in Sect. 3.1, while boundary conditions treatment is discussed in Sect. 3.2. The
theory of the non intrusive PCE is summarized in Sect. 4 with direct reference to
the quantities of interest in the present work. Numerical results are presented in
Sect. 5, starting with the ones of the reduced order model in Sect. 5.1 and then the
PCE results in Sect. 5.2. Finally, conclusions and possible directions of future work
are discussed in Sect. 6.

2 The Physical Problem

In this section, we describe the physical problem of interest which consists into
the flow around an airfoil subjected to variations of the angle of attack and inflow
velocity. In aerospace engineering, the angle of attack is the angle that lies between
the flow velocity vector at infinite distance from the airfoil (U∞) and the chord of the
airfoil, see Fig. 1. We are interested in finding the angle of attack that produces the
maximum lift coefficient before stall happens. Figure 2 depicts for the lift coefficient
curve of the airfoil NACA 0012−64 [1, 34] at a fixed Reynolds number of 106. The

Fig. 1 The angle of attack on an airfoil
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Fig. 2 The lift coefficient curve for the airfoil NACA0012
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plot suggests that as the angle of attack increases, the lift coefficient grows until flow
separation occurs leading to a loss of the lift force. At laminar flow regimes such
as the ones that will be analyzed later in Sect. 5, such stall phenomenon happens
in a mild fashion, as opposed to more abrupt stalls observed at higher velocities
like the one in Fig. 2. It can be noticed from the plot that the lift coefficient reaches
its maximum value when the angle is about 17◦ before stall happens. For lower
Reynolds numbers, the maximum in the CL-α curve is observed at higher angles
of attack. The fluid dynamic problem is mathematically governed by the steady
Navier-Stokes equations which read as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(u · ∇)u − ∇ · ν∇u = −∇p in Ωf ,

∇ · u = 0 in Ωf ,

u(x) = f(x,μ) on ΓIn,

u(x) = 0 on Γ0,

(ν∇u − pI)n = 0 on ΓOut ,

(1)

where Γ = ΓIn∪Γ0∪ΓOut is the boundary of the fluid domain Ωf and is composed
by three different parts ΓIn, ΓOut and Γ0, indicating respectively inlet boundary,
outlet boundary and wing. In the flow equations u is the flow velocity vector, ν is
the fluid kinematic viscosity, and p is the normalized pressure, which is divided by
the fluid density ρf . As for the boundary conditions in which f is a generic function
that prescribes the value of the velocity on the inlet ΓIn and it is parameterized
through the vector quantity μ. In the present work the problem is solved using a
finite volume discretization technique [5, 23, 27, 39], the standard approach is to
work with a Poisson equation for pressure, rather than directly with the continuity
equation. System (1) is then modified into:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u · ∇)u − ∇ · ν∇u = −∇p in Ωf ,

Δp = −∇ · (u · ∇)u in Ωf ,

u(x) = f(x, μ) on ΓIn,

u(x) = 0 on Γ0,

(∇u)n = 0 on ΓOut ,

∇p · n = 0 on Γ \ ΓOut ,

p = 0 on ΓOut .

(2)

In the above system of equations all the quantities assume the same meaning of those
presented in (1). The Poisson equation for pressure is obtained taking the divergence
of the momentum equation, and then exploiting the divergence free constraint on
velocity. The two equations are solved in a segregated fashion, making use of the
SIMPLE algorithm [29]. Historically, the FVM discretization technique has been
widely used in industrial applications and for flows characterized by higher values
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of the Reynolds number. One important feature of the FVM is that it ensures that
conservative laws are satisfied at local level. In this work the Full Order Model
(FOM) simulations are carried out making use of the finite volume open source
C++ library OpenFOAM® (OF) [40].

3 The Reduced Order Model

The FOM simulations carried out by OpenFOAM present a high computational
cost. In the framework of a many query problem such as the one associated
with non-intrusive PCE employed in this work, the search for ways to reduce the
computational cost becomes paramount. For this reason, we resort to reduce order
modelling and we couple it with PCE in the next sections. In This section, we recall
the notion of ROM and the POD approach to build the reduced order spaces. Here,
only few details are addressed, while for further information on how to adapt ROM
for finite volume discretization method the reader may refer to [26, 35, 36].

The key assumption of ROMs is that one can find a low dimensional space in
which it is possible to express the solution of the full order problem with good
approximation properties. That space is spanned by the reduced order modes [17].
The latter assumption translates to the following decomposition of the velocity and
pressure fields:

u(x,μ) ≈ ur (x,μ) =
Nu∑

i=1

ai(μ)φi (x), (3)

p(x,μ) ≈ pr(x,μ) =
Np∑

i=1

bi(μ)χi(x), (4)

where ur (x,μ) and pr(x,μ) are the reduced order approximations of velocity and
pressure, respectively, ai and bi are scalar coefficients that depend on the parameter
value μ, φi and χi are the basis functions of the reduced basis spaces for velocity
and pressure, respectively. Nu and Np represent the dimension of the reduced
basis spaces for velocity and pressure, respectively, obviously Nu and Np are not
supposed to have the same value.

The next step in constructing the reduced order model is to generate the reduced
order space. For such step we resort to a POD approach. The POD space is
constructed by solving the following minimization problem:

VPOD = arg min
1

Ns

Ns∑

n=1

||un −
Ns∑

n=1

(un,φi )L2(Ω)φi ||2L2(Ω)
, (5)



222 S. Hijazi et al.

where un is a solution snapshot obtained for a certain parameter value μn and Ns

is the total number of solution snapshots. One can see that the reduced order space
(or VPOD) is optimal in the sense that it is spanned by the modes that minimize the
projection error between the fields and their projection into the modes. For further
details on how the problem (5) is solved one can refer to [35].

3.1 Projection Based ROM

The next step in building the reduced order model (this procedure is referred as
POD-Galerkin projection) is to project the momentum equation of (1) onto the POD
space spanned by the POD velocity modes, namely:

(
φi , (u · ∇)u − νΔu + ∇p

)

L2(Ω)
= 0. (6)

Inserting the approximations (3) and (4) into (6) yields the following reduced
system:

νBa − aT Ca − Hb = 0, (7)

where a and b are the vectors of coefficients for reduced velocity and reduced pres-
sure respectively, while B,C,H are the reduced discretized differential operators
which are computed as follows:

Bij = (
φi , Δφj

)

L2(Ω)
, (8)

Cijk = (
φi , (φj · ∇)φk)

)

L2(Ω)
, (9)

Hij = (
φi ,∇χj

)

L2(Ω)
. (10)

To solve the system (7), one needs Np additional equations. The continuity
equation cannot be directly used because the snapshots are divergence free and
so are the velocity POD modes. The available approaches to tackle this problem
are either the use of the Poisson equation [35, 36] or the use of the supremizer
stabilization method [4, 33], which consists into the enrichment of the velocity space
by the usage of supremizer modes. These modes are computed such that a reduced
version of the inf-sup condition is fulfilled. The latter approach usually employed
in a finite element context has been also extended to a FV formulations [36]. In this
work we rely on the supremizer stabilization method. After a proper enrichment
of the POD velocity space it is possible to project the continuity equation onto the
space spanned by the pressure modes giving rise to the following system:

{
νBa − aT Ca − Hb = 0,

Pa = 0,
(11)
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where the new matrix P, is computed as follows:

Pij = (
χi,∇ · φj

)

L2(Ω)
. (12)

System (11) can be solved respect to a and b in order to obtain the reduced order
solution for velocity and pressure respectively.

3.2 Treatment of Boundary Conditions

The current problem involves non-homogeneous Dirichlet boundary conditions at
the inlet ΓIn. The term f(x,μ) in (1) becomes f(x,μ) = (μx, μy) where μx and μy

are the components of the velocity at ΓIn along the x and y directions respectively.
Non-homogeneous Dirichlet boundary conditions have been treated making use of
the so called lifting control function. In this method the POD procedure is applied
on a modified set of snapshots which have been homogenized in the following way:

u′
i = ui − μxφcx

− μyφcy
, for i = 1, . . . , Ns, (13)

where φcx
and φcy

are the two lifting functions which have at the inlet ΓIn the
following values (1, 0) and (0, 1) respectively. The approach used in this work to
obtain the lifting functions involves solving two linear potential flow problems with
the initial boundary conditions at ΓIn being (1, 0) and (0, 1) respectively for φcx
and φcy

.
The POD is then applied to the snapshots matrix U ′ = [u′

1, u′
2, . . . , u′

Ns
]

that contains only snapshots with homogeneous boundary conditions. It has to be
noted that the way the lifting functions have been computed assures that they are
divergence free and thus the new set of snapshots has the same property.

At the reduced order level, it is then possible to deal with any boundary velocity
at ΓIn (obviously the results will be more accurate if the prescribed velocity values
are sufficiently close to the ones used during the training stage). If the new sample
μ	 (which has the new boundary velocity) is introduced in the online stage, one can
compute the reduced velocity field as follows:

u(x,μ�) ≈ μ	
xφcx

+ μ	
yφcy

+
Nu∑

i=1

ai(μ
�)φi(x). (14)

4 Non-intrusive PCE

According to Polynomial Chaos (PC) theory which was formulated by Wiener [41],
real-valued multivariate Random Variables (RVs), such as the one considered in this
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work (the lift coefficient Cl) can be decomposed into an infinite sum of separable
deterministic coefficients and orthogonal polynomials [22]. These polynomials are
stochastic terms which depend on some mutually orthogonal Gaussian random
variables. Once applied to our output of interest—the lift coefficient Cl—such
decomposition assumption reads

Cl
	(ζ ) =

∞∑

i=0

Cliψi(ζ ). (15)

Here the random variable ψ = (α,U) is used to express the uncertainty in the angle
of attack and inflow velocity. ψi(ζ ) is the ith polynomial and Cli is the so-called
ith stochastic mode. In practical application this series is truncated and only its first
P + 1 values are computed, namely

Cl
	(ζ ) =

P∑

i=0

Cliψi(ζ ). (16)

In this work the orthogonal polynomial are called Hermite polynomials. These
polynomials form an orthogonal set of basis functions in terms of Gaussian
distribution [13]. In (16) P + 1 is the number of Hermite polynomials used in the
expansion and has to depend on the order of the polynomials chosen and the on
dimension n of the random variable vector ζ = {ζ1, . . . , ζn}. More specifically, in
an n-dimensional space, the number P of Hermite polynomials of degree p is given
by P + 1 = (p+n)!

p!n! [13].

4.1 Coefficients Computation

The estimation of the coefficients Cli(x) in (15) can be carried out in different ways.
Among others, we mention the sampling based method and the quadrature method.
The one here used is based on the sampling approach, following the methodology
proposed by Hosder et al. [20]. The coefficient calculation algorithm starts from a
discretized version of Eq. (16), namely

⎡

⎢
⎢
⎢
⎣

Cl
∗
0

Cl
∗
1

...

Cl
∗
N

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

ψ1(ζ 0) ψ2(ζ 0) . . . ψP (ζ 0)

ψ1(ζ 1) ψ2(ζ 1) . . . ψP (ζ 1)
...

. . .

ψ1(ζN) ψ2(ζN) . . . ψP (ζN)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Cl0

Cl1
...

ClP

⎤

⎥
⎥
⎥
⎦

,

where N is the number of the samples taken. If N coincides with the number
of Hermite polynomials P + 1 needed for the PCE expansion, the system above
presents a square matrix and can be solved to determine the coefficients Cli from the
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known output coefficients Cl
	
i . In the most common practice, a redundant number

of samples are considered and the system is solved in a least squares sense, namely

Cl = (LT L)−1LT C∗
l , (17)

where L, Cl and C∗
l denote the rectangular matrix in (4.1), the PCE coefficients

vector and output vector, respectively.

5 Numerical Results

This section presents the results for the simulations carried out with the POD-
Galerkin ROM and PCE for UQ described in the previous sections. The first part of
the analysis will be focused on the results obtained with the POD-Galerkin ROM.
In the second part we will assess the performance of the UQ technique on the airfoil
problem, both when FOM and ROM simulation results are used to feed the PCE
algorithm. The overall objective of the present section is in fact twofold. The first
aim is to understand the influence of the samples distribution used to train the ROM
in the results of the POD-Galerkin ROM. The second aim is to compare between
the PCE UQ results obtained using full order model to those obtained with POD
Galerkin-ROM.

5.1 ROM Results

The FOM model used to generate the POD snapshots has been set up as reported in
Sect. 2. Making use of the computational grid shown in Fig. 3, a set of simulations
was carried out, selecting a Gauss linear numerical scheme for the approximation

Fig. 3 (a) The OpenFOAM mesh used in the simulations. (b) A picture of the mesh zoomed near
the airfoil
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of gradients and Laplacian terms, and a bounded Gauss upwind scheme for the
convective term approximation.

As mentioned, the parameters considered in the ROM investigation are the airfoil
angle of attack and the magnitude of the inflow velocity at the inlet. The training of
the POD-Galerkin ROM requires a suitable amount of snapshots (FOM solutions) to
be available. Thus, 520 samples have been produced and a single FOM simulation
is launched for each sampling point. As for the distribution in the parameters space,
the samples are obtained making use of the Latin Hyper Cube (LHC) [37] sampling
algorithm. Figure 4 depicts the lift coefficient against the angle of attack curve
obtained from a first FOM simulation campaign in which the 520 samples were
generated imposing mean values of 100 m/s and 0◦ and variances of 20 m/s and
300, for velocity and angle of attack, respectively. As can be appreciated in the
picture, the lift coefficient values do not significantly depend on the inflow velocity.
In fact sampling points with equal α and different U∞ values, result in practically
identical output. For this reason, the input-output relationship appears like a curve
in the Cl-α plane. We also point out that this is a consequence of considering
a nondimensionalized force a Cl as our output, rather then the corresponding
dimensional lift values.

The POD modes are generated after applying POD onto the snapshots matrices
of the flow fields obtained in the simulation campaign. After such offline phase, the
computation of the reduced order fields is performed in the online stage, as presented
in Sect. 3. In this first reproduction test, we performed a single reduced simulation
in correspondence with the velocity and the angle of attack used to generate each
offline snapshot. This means that we used the same sample values both in the online
stage and in the offline one. The ROM results of the reproduction test for the lift
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Fig. 4 The FOM lift coefficient for the first case, as it can be seen in the plot the vast majority of
the samples is clustered around α = 0
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coefficient are reported in Fig. 5. The figure refers to the ROM results obtained
considering 10 modes for the discretization of velocity, pressure and supremizer
fields. The plot shows that the reconstruction of the lift coefficient is only accurate
in the central region. In the lateral regions the lift coefficient computed with the
ROM solution does not match the corresponding FOM solution. The poor quality
of the ROM prediction on the lift coefficient, as well as of the forces acting on the
airfoil, is a direct consequence of the fact that the fields were not reconstructed in an
accurate way. For the particular physical phenomenon this inaccuracy may be even
more undesirable, since the stall occurs in these regions. One might originally guess
that the problem can be mitigated by increasing the amount of POD modes. Yet, as
Fig. 6 clearly shows, even increasing the modes for velocity to 30 is not solving the
problem. In this particular case adding more modes will not solve the problem since
the energy added by considering more modes is negligible. An explanation of the
poor performances of the ROM model in the stall region may be instead associated
to the distribution of the offline samples used to generate the POD snapshots. In fact,
the samples generated with LHC are distributed around a mean value of the angle
of attack of 0◦ and their density is rather coarse in the stall regions.

To confirm such deduction, we tried to generate the snapshots by means of a
different set of samples generated so as to be more dense in the stall regions. More
specifically, we have generated thirteen different groups of samples in which the
velocity mean and variance were kept fixed at values of 100 and 20 m/s respectively,
while the mean and the variance for the angle of attack were varied in each set as
summarized in Table 1. As illustrated in Figs. 7 and 8 for angle of attack and velocity
respectively, the overall training data for the ROM offline phase has been generated
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Fig. 5 The first sampling case: the full order lift coefficients curve versus the ROM reconstructed
one with 10 modes used for each of velocity, pressure and supremizer fields
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Fig. 6 The first sampling case: the full order lift coefficients curve versus the ROM reconstructed
one with 30, 10 and 10 modes are used for velocity, pressure and supremizer fields respectively

Table 1 The mean and
variance for the group of
samples that form the training
set in the second case

Group number N E(α) in ◦ σ(α) in ◦

1 90 0 20

2 20 −10 2

3 20 10 2

4 50 −15 2

5 50 15 2

6 40 −22 5

7 40 22 5

8 40 −30 10

9 40 30 10

10 20 −38 2

11 20 38 2

12 50 −45 5

13 40 45 5

combining into a single sample set all the 13 groups generated by means of LHC
algorithm. Finally, Figs. 9 and 10 depict the Probability Density Function (PDF) of
the overall input parameters set.

After running the offline phase, we applied POD-Galerkin reduced order
approach on the new set of snapshots generated. Table 2 shows the cumulative
eigenvalues for the correlation matrices built by the snapshots obtained for velocity,
pressure and supremizer fields. Only the values of the cumulative eigenvalues up to
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Fig. 7 The angle of attack samples for the second case
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Fig. 8 The magnitude of velocity samples for the second case

the fifteenth mode are listed. Yet, such data indicate that by using 15 modes in the
online phase, we can recover 99.9% of the energy embedded in the system.

Figure 11 displays the FOM lift coefficients of the airfoil corresponding to the
set of angles of attack previously introduced in Table 1. Figure 12 shows the results
obtained with the reduced order model trained with the samples summarized in
Table 1. Here, the online phase was carried out using the same samples used in
the offline stage. To provide a quantitative evaluation of the results, we used L2



230 S. Hijazi et al.

80 85 90 95 100 105 110 115 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fig. 9 The PDF of the input data set for the magnitude of the velocity
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Fig. 10 The PDF of the input data set for the angle of attack

relative error, computed as follows:

ε = 100

√∑n
t=1(C

FOM
lt

− CROM
lt

)2

√∑n
t=1(C

FOM
lt

)2
%, (18)

where n is the number of sampling points, CFOM
lt

and CROM
lt

are the t-th sample
point lift coefficients for FOM and ROM, respectively. In this case we have a relative
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Table 2 Cumulative
Eigenvalues of the correlation
matrices for velocity, pressure
and supremizer fields

N modes u p usup

1 0.679635 0.738828 0.557189

2 0.930038 0.960781 0.987862

3 0.955239 0.990746 0.995984

4 0.971768 0.998833 0.999228

5 0.981370 0.999730 0.999796

6 0.987603 0.999880 0.999927

7 0.992311 0.999945 0.999975

8 0.994793 0.999963 0.999983

9 0.996651 0.999976 0.999990

10 0.997914 0.999982 0.999993

11 0.998679 0.999987 0.999995

12 0.999165 0.999991 0.999997

13 0.999492 0.999993 0.999998

14 0.999700 0.999995 0.999999

15 0.999806 0.999996 0.999999
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Fig. 11 The FOM lift coefficient as a function of the angle of attack α for the second case.
Compared to Fig. 4, the samples span a wider range with sufficient accuracy sought by the ROM
reconstruction

error of 6.69% in L2 norm between the FOM and the ROM lift coefficients, when
10 modes have been used in the online phase for each of velocity, pressure and
supremizer fields. Using 10 additional modes for velocity, results instead in a 3.75%
error. The corresponding plots in Fig. 12 clearly suggest that the qualitative behavior
of the ROM lift output was substantially improved with respect to the first case.
This improvement in the prediction of the ROM lift coefficients is due to a more
accurate reproduction of the ROM fields. This is highlighted by Fig. 13, which
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Fig. 12 A comparison between FOM and ROM reconstructed lift coefficients for the second case
(a) 10 modes are used for each of velocity, pressure and supremizer fields. (b) 20, 10 and 10 modes
are used for velocity, pressure and supremizer fields, respectively. In both figures we have online
parameters set that coincide with the offline ones
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Fig. 13 The full order velocity field for the parameter μ̄ = (90.669, 5.4439 m/s) and a comparison
with the reconstructed field by means of different number of modes for velocity, pressure and
supremizer fields. (a) FOM field (b) ROM velocity field with 3, 10 and 10 modes used. (c) ROM
velocity field with 8, 10 and 10 modes used. (d) ROM velocity field with 20, 10 and 10 modes used

shows the FOM velocity field along with different reconstructed surrogate fields
obtained employing different number of modes at the projection stage.

5.2 PCE Results

The aim of the present section is to evaluate the performance of the PCE algorithm
implemented for the fluid dynamic problem at hand. To better describe the
amount of simulations carried out to both train and validate the UQ PCE model
implemented, we present in Fig. 14 a conceptual scheme of the simulation campaign
carried out in this work.

As mentioned, one of the main features of non intrusive PCE is that it can use
any deterministic simulation software as a black box input source. We will then
present different tests in which PCE has been fed with the output of fluid dynamic
simulations based on models characterized by different fidelity levels. In a first test
we in fact generated a PCE based on the FOM, and evaluate its performance in a
prediction test. The second test consisted in generating a PCE based on the ROM
described in the previous section. The latter test allows for an evaluation of how the
PCE results are affected when the expansion is based on a surrogate ROM model
rather than the FOM one. Given the relatively high number of samples required for
the PCE setup, in fact it is interesting to understand if ROM can be used to reduce
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(a)

(b)

Fig. 14 The flowcharts describing procedure followed in the numerical simulations for the
UQ model generation and validation campaign respectively. The top scheme in (a) focuses on the
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Fig. 15 The FOM lift coefficient for the UQ case

the computational cost for their generation of the system output at each sample,
without a significant loss in terms of accuracy.

One of the main assumptions of the non intrusive PCE algorithm implemented is
that of operating on Gaussian distributed input parameters. For such reason, the tests
in the present section were generated with a set of 300 sampling points consisting of
a single Gaussian distributed bulk. Making use of LHC algorithm, the samples have
been randomly generated around angle of attack and velocity magnitude means of
0◦ and 100 m/s respectively. As for the variances, we prescribed 40◦ and 20 m/s,
for angle of attack and velocity magnitude respectively. The FOM lift coefficient
curve obtained with the input sampling points described can be seen in Fig. 15.

The samples, which have been just mentioned above, will be used as cross
validation test for the ROM model developed in the previous subsection. As
mentioned earlier, the first test will be to feed PCE with FOM output data and then
to conduct a prediction test. PCE is used to predict the value of the lift coefficient

�
Fig. 14 (continued) procedure adopted for the generation of the UQ model, and in particular on
the identification of the PCE coefficients. The polynomial surrogate based on the full order model
(indicated in green) has been generated using 300 Gaussian distributed samples in the α,U space.
The same samples have been used to obtain the polynomial surrogate input-output relationship for
the POD-Galerkin ROM (denoted by the yellow box). Note that the ROM used in this simulation
campaign has been trained by means of 520 samples in the α,U space, organized in 13 Gaussian
distributed bulks, as reported in Table 1. Finally, the bottom flowchart in (b) illustrates the PCE
validation campaign. Here, 300 sample points in the input space have been used to obtain the
corresponding output with the full order model, with the polynomial UQ surrogate trained with
the FOM simulations (green box), and with the polynomial UQ surrogate trained with the ROM
simulations (yellow box)
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Fig. 16 PCE reconstructed lift coefficient versus FOM one, here polynomials of second degree
have been used

for 200 samples which differ of the 100 samples used for the PCE coefficients
evaluation. Thus the first 100 samples with their corresponding FOM lift coefficient
values were used to build the matrix system (4.1), which has been solved in the least
squares sense. Figure 16 displays the Cl values computed with both FOM and PCE
in correspondence with all the samples used for check. The overall error in L2 norm
between FOM and PCE predications is 5.04%.

In the second test we have used ROM data as input for PCE. After using 100
samples to compute the PCE coefficients, we used the PCE to predict the lift
coefficients at 200 additional samples used for check. We then compared the value
of the predicted PCE coefficients in this case to both ROM values and FOM values.

The result of the aforementioned test are reported in Fig. 17. The figure includes
comparison of the PCE predicted Cl curve with both its ROM and FOM counter-
parts. The plots show a similar behaviour of the PCE predictions obtained using
ROM and FOM output data. By a quantitative standpoint, the PCE predictions
present a 4.4% error with respect to the ROM predictions, while the L2 norm of the
error with respect to the FOM predictions is 5.14%. A summary of the comparisons
made is reported in Table 3.

6 Conclusions and Future Developments

In this work, we studied two popular techniques which are used often in the fields
of ROM and UQ which are the POD and PCE, respectively. The study aimed at
comparing the accuracy of the two techniques in reconstructing the outputs of
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Fig. 17 (a) The ROM lift coefficient versus PCE lift coefficient curve when PCE has been applied
on ROM output with 30, 10 and 10 modes used for velocity, pressure and supremizer fields
respectively. (b) The FOM lift coefficient versus PCE lift coefficient curve when PCE has been
applied on ROM output with same number of modes as in (a)
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Table 3 A comparison
between the relative error in
L2 norm for the results
obtained from ROM and
PCE, with PCE being used on
both FOM and ROM results

First data Second data Error

FOM ROM 1.53%

FOM PCE on FOM 5.04%

ROM PCE on ROM 4.4%

FOM PCE on ROM 5.14%

We remark that the number of POD
modes used (if apply) are 30, 10 and
10 for velocity, pressure and suprem-
izer fields, respectively, for all cases.
We underline also that 200 samples
have been used for testing the PCE
wherever it is used

interest of viscous fluid dynamic simulations. We have concluded the work with
combining the two approaches so as to exploit ROM to speed up the many query
problem needed to obtain the PCE coefficients. POD can be a reliable output
evaluator for PCE, as the value of relative error PCE had when it was based on
ROM results was 5.14% while the error was 5.04% when PCE was based on FOM
outputs. The last result speaks positively for POD and makes it a valid tool to be
possibly used in the field of uncertainty quantification.

The work can be extended in the direction of merging the two approaches in a
different way, where one can assume the coefficients in the ROM expansion are not
deterministic, but rather dependent on some random variables. The latter assumption
can bring UQ into play and one may use techniques such as intrusive/non-intrusive
PCE. Our interest is also to extend the proposed methodology, still in the context of
reduced order models, to more complex and turbulent flow patterns such as those
presented in [18, 19, 38].
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