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Preface

The international workshop “Quantification of Uncertainty: Improving Efficiency
and Technology” (QUIET) was held in July 2017 at SISSA (International School for
Advanced Studies) in Trieste, Italy. The workshop focused on promising approaches
for near-future improvements in the way uncertainty quantification problems in the
partial differential equation setting are solved. Its central objectives were to bring
together both senior and junior researchers: (1) to share and compare their latest
findings; (2) to provide guidelines for the most promising approaches for near-future
research; and (3) to provide junior researchers with new problems that they can
incorporate into their research plans.

Group picture at QUIET workshop, SISSA Trieste, summer 2017

One particular focus in the workshop’s planning was on problems with a high
number of random parameters and on four specific avenues that have recently shown
considerable promise, namely: reduced order modeling, more efficient solvers, high-
dimensional approximation, and applications.

Through the formal presentations and daily discussion sessions, the outcomes
of the workshop included: (1) synergistic exchanges across topics facilitated by the
commonality of algorithms used for more than one topic; (2) the exchange, among

v



vi Preface

participants in the four focus topics, of recent and often unpublished progress and
results; (3) the exposure of a sizable group of junior researchers already active in
uncertainty quantification research to new problem areas and new directions for
their own research; and (4) extensive discussions on identifying the most promising
future research directions.

This volume consists of 11 peer-reviewed chapters based on workshop presen-
tations. Although these selected contributions are only a sample of the talks given
at the workshop, they are eminently representative of the presentations’ broad and
deep coverage of algorithms and applications, and give ample illustrations of the
aforementioned outcomes of the workshop.

QUIET 2017 was supported by SISSA, International School for Advanced Stud-
ies, in Trieste, Italy; the US National Science Foundation, Division of Mathematical
Sciences; US Air Force Office of Scientific Research, Computational Mathematics
Program; and Florida State University, Department of Scientific Computing, Talla-
hassee, FL.

More information on the workshop can be found at indico.sissa.it/event/8.
We would like to thank the SISSA mathLab organizing team, the anonymous

reviewers for their diligent work, as well as Springer Nature, especially Francesca
Bonadei and the LNCSE series editorial board, for their valued support.

Livermore, CA, USA Marta D’Elia
Denver, CO, USA Max Gunzburger
Trieste, Italy Gianluigi Rozza
March 2020

indico.sissa.it/event/8
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Effect of Load Path on Parameter
Identification for Plasticity Models Using
Bayesian Methods

Ehsan Adeli, Bojana Rosić, Hermann G. Matthies, and Sven Reinstädler

Abstract To evaluate the cyclic behavior under different loading conditions using
the kinematic and isotropic hardening theory of steel, a Chaboche viscoplastic
material model is employed. The parameters of a constitutive model are usually
identified by minimization of the distance between model response and experi-
mental data. However, measurement errors and differences in the specimens lead
to deviations in the determined parameters. In this article the Chaboche model is
used and a stochastic simulation technique is applied to generate artificial data
which exhibit the same stochastic behavior as experimental data. Then the model
parameters are identified by applying an estimation using Bayes’s theorem. The
Gauss–Markov–Kalman filter using functional approximation is introduced and
employed to estimate the model parameters in the Bayesian setting. Identified
parameters are compared with the true parameters in the simulation, and the
efficiency of the identification method is discussed. At the end, the effect of the
load path on the parameter identification is investigated.

1 Introduction

In order to predict the behavior of loaded metallic materials, constitutive models
are applied, which present a mathematical frame for the description of elastic and
inelastic deformation. The models by Miller, Krempl, Korhonen, Aubertin, Chan,
and Bodner are well-known constitutive models for isotropic materials [1–5]. In
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1983, Chaboche [6, 7] put forward what has become known as the unified Chaboche
viscoplasticity constitutive model, which has been widely accepted.

All inelastic constitutive models contain parameters which have to be identified
for a given material from experiments. In the literature only few investigations
can be found dealing with identification problems using stochastic approaches.
Klosowski and Mleczek have applied the least-squares method in the Marquardt–
Levenberg variant to estimate the parameters of an inelastic model [8]. Gong et
al. have also used some modification of the least-squares method to identify the
parameters [9]. Harth and Lehn identified the model parameters of a model by
employing some generated artificial data instead of experimental data using a
stochastic technique [10]. A similar study by Harth and Lehn has been done for
other constitutive models like Lindholm and Chan [11].

In this paper, a viscoplastic model of Chaboche is studied. The model contains
five material parameters which have to be determined from experimental data. It
should be noted that here virtual data are employed instead of real experimental
data. A cyclic tension-compression test is applied in order to extract the virtual data.

The model is described in Sect. 2, whereas Sect. 3 explains how to propagate the
uncertainty in the model and how to perform the update. The probabilistic model is
reformulated from the deterministic model, and once the forward model is provided,
the model parameters are updated using a Bayesian approach.

In Sect. 4 the desired parameters are identified from the measured data. In fact,
the parameters which have been considered as uncertain parameters are updated and
the uncertainties of the them are reduced while the random variables representing
the uncertain parameters are updated during the process. The results are thoroughly
studied and the identified parameters as well as the corresponding model responses
are analyzed. Finally the prediction of the models is compared with the measured
data for different applied load paths. It is also explained why different load paths
cause different identification of model parameters.

2 Model Problem

The mathematical description of metals under cyclic loading beyond the yield
limit that includes viscoplastic material behavior as well as the characterization
of compulsory isotropic-kinematic hardening is here given in terms of a modified
Chaboche model introduced in [12]. As we consider classical infinitesimal strains,
we assume an additive strain decomposition. The material behavior is described
for the elastic part by isotropic homogeneous elasticity, and for viscoplasticity the
dissipation potential is given by

φ(σ ) = k

n + 1

〈
σex

k

〉n+1

, (1)
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with 〈·〉 = max(0, ·) and k and n as the material parameters. Here σex is the over-
stress, defined via the equivalent stress (σeq ) which reads

σeq =
√

3

2
tr((σ − χ)D.((σ − χ)D), (2)

where (·)D denotes the deviatoric part and χ is the back-stress of kinematic
hardening. The over-stress σex is given by

σex = σeq − σy − R =
√

3

2
tr((σ − χ)D.(σ − χ) − σy − R, (3)

where σy is the yield stress and R models the isotropic hardening which is
introduced in the following. The partial derivative of the dissipation potential φ
with respect to σ leads to the equation for the inelastic strain rate

ε̇vp = ∂φ

∂σ
=
〈
σex

k

〉n
∂σex

∂σ
. (4)

The viscoplastic model allows for isotropic and kinematic hardening, which is
considered in order to describe different specifications. Assuming R(t) and χ(t)

with R(0) = 0 and χ(0) = 0 to describe isotropic and kinematic hardening
respectively, the evaluation equations for these two are

Ṙ = bR(HR − R)ṗ (5)

and

χ̇ = bχ (
2

3
Hχ

∂σeq

∂σ
− χ)ṗ (6)

respectively. In the evaluation equations of the both hardening, ṗ is the viscoplastic
multiplier rate given as:

ṗ =
〈
σex

k

〉n
, (7)

which describes the rate of accumulated plastic strains. The parameter bR indicates
the speed of stabilization, whereas the value of the parameter HR is an asymptotic
value according to the evolution of the isotropic hardening. Similarly, the parameter
bχ denotes the speed of saturation and the parameter Hχ is the asymptotic value of
the kinematic hardening variables. The complete model is stated in Table 1. Note
that E represents the elasticity tensor.

By gathering all the desired material parameters to identify into the vector q =
[κ G bR bχ σy ], where κ and G are bulk and shear modulus, respectively, which
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Table 1 The constitutive
model of Chaboche

Strain ε(t) = εe(t) + εvp(t)

Hooke’s law σ (t) = E : εe(t)

Flow rule ε̇vp(t) = 〈 σeq (t)−σy−R(t)

k
〉n ∂σex

∂σ

Hardening Ṙ = bR(HR − R)ṗ

χ̇ = bχ (
2
3Hχ

∂σeq
∂σ

− χ)ṗ

Initial conditions εvp(0) = 0, R(0) = 0, χ(0) = 0

Parameters σy (yield stress)

k, n (flow rule)

bR , HR , bχ , Hχ (hardening)

determine the isotropic elasticity tensor, the goal is to estimate q given measurement
displacement data, i.e.

u = Y (q) + e, (8)

in which Y (q) represents the measurement operator and e the measurement (also
possibly the model) error. Being an ill-posed problem, the estimation of q given
u is not an easy task and usually requires regularization. This can be achieved
either in a deterministic or a probabilistic setting. Here, the latter one is taken into
consideration as further described in the text.

3 Bayesian Identification

By using additional (prior) knowledge on the parameter set next to the observation
data, the probabilistic approach regularizes the problem of estimating q with the
help of Bayes’s theorem

πq|u(q|u) ∝ L(u|q)πq(q), (9)

in which the likelihood L(u|q) describes how likely the measurement data are
given prior knowledge πq(q). This in turn requires the reformulation of the
deterministic model into a probabilistic one, and hence the propagation of material
uncertainties through the model—the so-called forward problem—in order to obtain
the likelihood [13, 14].

The main difficulty in using Eq. (9) lies in the computation of the likelihood.
Various numerical algorithms can be applied, the most popular example of which
are the Markov chain Monte Carlo methods. Being constructed on the fundamentals
of ergodic Markov theory, these methods are characterized by very slow conver-
gence. To avoid this, an approximate method based on Kolmogorov’s definition of
conditional expectation as already presented in [15] is considered here.
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Let the material parameters q be modeled as random variables on a probability
space S := L2(�,B,P). Here, � denotes the space of elementary events ω, B is the
σ -algebra and P stands for the probability measure. This alternative formulation of
Bayes’s rule can be achieved by expressing the conditional probabilities in Eq. (9) in
terms of conditional expectation. Following the mathematical derivation in [15–18],
this approach boils down to a quadratic minimization problem by considering the
forecast random variable qf and the update of the forecast random variable qa:

q̄ |z = PQsnqf = arg min
η∈Qsn

‖qf − η‖2
L2

= �(uf (ω)), (10)

where PQsn
is the orthogonal projection operator of qf onto the space of the new

information Qsn := Q ⊗ Sn in which the space Sn is the space of random variables
generated by the measurement u = Y (q) + e. Due to the Doob–Dynkin lemma, q̄ |z
is a function of the observation, where uf (ω) = Y (q(ω))+e(ω) is the forecast, and
the assimilated value is qa(ω) = qf (ω) + (�(ẑ) − �(uf (ω))).

Constraining the space of all functions � to the subspace of linear maps, the
minimization problem in Eq. (10) leads to a unique solution K . Note that the
projection is performed over a smaller space than Qsn. An implication of this is that
available information is not completely used in the process of updating, introducing
an approximation error. This gives an affine approximation of Eq. (10)

qa(ω) = qf (ω) + K(ẑ − uf (ω)), (11)

also known as a linear Bayesian posterior estimate or the so-called Gauss–Markov–
Kalman filter (GMKF). Here, qf represents the prior random variable, qa is the
posterior approximation, uf = Y (qf (ω)) + e(ω) is the predicted measurement and
K represents the very well-known Kalman gain

K := Cqf uf

(
Cuf + Cε

)−1
, (12)

which can be easily evaluated if the appropriate covariance matrices Cqf uf , Cuf and
Cε are known.

An advantage of Eq. (11) compared to Eq. (9) is that the inference in Eq. (11) is
given in terms of random variables instead of conditional densities. Namely, qa(ω),
qf (ω), and uf (ω) denote the random variables used to model the posterior, prior,
observation, and predicted observation, respectively.

In this light the linear Bayesian procedure can be reduced to a simple algebraic
method. Starting from the functional representation of the prior

q̂f (ω) =
∑
α

q
(α)
f ψα(ω), (13)
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where ψα are multivariate Hermite polynomials, and by considering the proxy in
Eq. (13), one may discretize Eq. (11) as:

qa = qf + K
(
ẑ − uf

)
, (14)

where qa = [. . . , q(n)a , . . .], etc. are the PCE coefficients. As the measurement
is a deterministic value, ẑ = [ẑ, 0, . . . , 0] has only a zero-th order tensor. The
covariances for the Kalman gain Eq. (12) are easily computed, e.g.

Cq̂f ,ûf =
∑
α>0

α! q(α)f (u
(α)
f )T . (15)

4 Numerical Results

The identification of the material constants in the Chaboche unified viscoplasticity
model is a reverse process, here based on virtual data. In case of the Chaboche
model the best way of parameter identification is using the results of the cyclic
tests, since more information can be obtained from cyclic test rather than creep
and relaxation tests, specifically information regarding hardening parameters. The
aim of the parameter identification is to find a parameter vector q introduced in
the previous section. The bulk modulus (κ), the shear modulus (G), the isotropic
hardening coefficient (bR), the kinematic hardening coefficient (bχ ) and the yield
stress (σy ) are considered as the uncertain parameters of the constitutive model.

A preliminary study is on a regular cube, modeled with one 8 node element,
completely restrained on the back face, and with normal traction on the opposite
(front) face. Two cases are considered in order to compare the effect of applied force
on identified parameters. For both cases the magnitude of the normal traction and a
stress in the plane of the front face are plotted in Figs. 1 and 2, respectively. Blue and
red colors represent the stress value in normal and in plane directions, respectively.
As it is seen, the magnitude of the applied force for the case 1 is constant all time
but for the case 2 the magnitude of the applied force grows gradually by time.

Considering the parameters listed in Table 2, the related σ − ε hysteretic graph
obtained for the applied force cases 1 and 2 which can be seen in Figs. 3 and 4,
respectively.

The displacements of one of the nodes on the front surface in normal and in
plane directions are observed as the virtual data in this study. Applying the Gauss–
Markov–Kalman filter with functional approximation as explained in the previous
chapter and introducing measurement error in such a way that 15% of mean values
are equal to the coefficient of variation for the related parameter, the probability
density function (PDF) of prior and posterior of the identified parameters can be
seen in Figs. 5 and 6 for the first and second case, respectively.
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Fig. 1 Decomposed applied force on desired node according to time—case 1
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Fig. 2 Decomposed applied force on desired node according to time—case 2

Table 2 The model parameters

κ G σy n k bR HR bχ Hχ

1.66e9 7.69e8 1.7e8 1.0 1.5e8 50 0.5e8 50 0.5e8
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Fig. 3 σ − ε for node on the front surface in plane and normal directions—case 1
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Fig. 4 σ − ε for node on the front surface in plane and normal directions—case 2

Summarizing the results, the true values qtrue and the mean and standard
deviation of the estimated parameters, qm

est and qstd
est respectively, for both cases are

compared in Table 3.

4.1 Discussion of the Results

From the sharpness of the posterior PDF of κ , G and σy , it can be concluded
that enough information from virtual data is received and updating the parameters
considering their uncertainty is done very properly for the both cases, as the standard
deviation of the residual uncertainty is below 1% of the mean.

For the posterior PDF of bR and bχ , it can be inferred that better updating is
done for the second case compared to the first case. Not only are the more accurate
estimations of the exact hardening parameters, bR and bχ , predicted for the second
case, but the uncertainty of the estimated hardening parameters are also reduced
much more for the second case.
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Fig. 5 PDF of identified parameters—case 1

One reason that can be mentioned is that the process is not always in the
states that hardening equations are involved like the elastic states. Therefore less
information from the whole simulation can be analyzed for estimating the hardening
parameters and updating their parameters’ uncertainties. Figures 7 and 8 prove this
fact that since more states are out of the von Mises yield criterion for the second
case compared to the first case, in which the hardening equations are involved only
in these states, the better identification can be done for the second case, where a
gradually varying increasing applied force is considered, for hardening parameters
in comparison with the first case where a constant magnitude applied force is
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Table 3 The identified
model parameters

Parameters q true qmest-1 qstd
est-1 qmest-2 qstd

est-2

κ 1.66e9 1.66e9 1.13e7 1.66e9 2.59e6

G 7.69e8 7.68e8 3.47e6 7.68e8 6.39e5

bR 50 52.36 3.71 50.27 0.29

bχ 50 52.04 3.01 50.19 0.53

σy 1.7e8 1.69e8 1.35e6 1.69e8 1.52e5
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Fig. 7 Principal stresses of applied force in 3D considering the von Mises yield criterion—case 1
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Fig. 8 Principal stresses of applied force in 3D considering the von Mises yield criterion—case 2

employed. In fact, the cyclic applied force in the second case causes the more
activation of the desired parameters in the studied set of equations comparing to the
first case and accordingly a better determination of the parameters can be carried
out for the second case. It should be pointed out that the von Mises yield criterion
is illustrated by the green cylinder in the mentioned figures i.e. inside and outside
of the cylinder respectively refer to the elasticity and plasticity states, respectively.
Also the blue color represents the principal stresses in these figures.

5 Summary

Using the Gauss–Markov–Kalman Filter method explained in Sect. 3 to identify the
model parameters of the Chaboche model indicates that it is possible to identify
the model parameters by employing this method using functional approximation.
The parameters are well estimated and the uncertainty of the parameters is reduced
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while the random variables of the parameters are updated during the process. The
other conclusion that can be made is that the more information we receive, the better
parameter identification we can do using the Gauss–Markov–Kalman filter method.
This fact is observed by comparing the posterior probability density functions
of hardening parameters, bR and bχ , for cases 1 and 2. Therefore in terms of
mechanical models, it should be always considered that the applied force should
be applied in such a way that all time all equations should be involved. In other
words, the applied load path should lead to activation of all uncertain parameters
in the set of equations, as here a cyclic gradually varying increasing applied force
leads to a better determination of the parameters. Otherwise only the parameters
which are in the involved equations are updated.
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A Compressive Spectral Collocation
Method for the Diffusion Equation Under
the Restricted Isometry Property

Simone Brugiapaglia

Abstract We propose a compressive spectral collocation method for the numerical
approximation of Partial Differential Equations (PDEs). The approach is based on a
spectral Sturm-Liouville approximation of the solution and on the collocation of the
PDE in strong form at randomized points, by taking advantage of the compressive
sensing principle. The proposed approach makes use of a number of collocation
points substantially less than the number of basis functions when the solution to
recover is sparse or compressible. Focusing on the case of the diffusion equation,
we prove that, under suitable assumptions on the diffusion coefficient, the matrix
associated with the compressive spectral collocation approach satisfies the restricted
isometry property of compressive sensing with high probability. Moreover, we
demonstrate the ability of the proposed method to reduce the computational
cost associated with the corresponding full spectral collocation approach while
preserving good accuracy through numerical illustrations.

1 Introduction

Compressive Sensing (CS) is a mathematical principle introduced in 2006 that
allows for the efficient measurement and reconstruction of sparse and compressible
signals. Its success is now established in the signal processing community and
its wide range of applications include medical imaging, computational biology,
geophysical data analysis, compressive radar, remote sensing, and machine learning.
More recently, CS has also started attracting more and more attention in scientific
computing and numerical analysis, in particular, in the fields of numerical methods
for Partial Differential Equations (PDEs), high-dimensional function approxima-
tion, and uncertainty quantification.
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In this paper, we present a novel technique for the numerical solution of PDEs
based on CS. The proposed approach, called compressive spectral collocation takes
advantage the CS principle in the context of spectral collocation methods. Its con-
stitutive elements are: (1) Sturm-Liouville spectral approximation, (2) randomized
collocation, and (3) greedy sparse recovery. In order to make the presentation easier
and the theoretical analysis of the method accessible, we focus on the case of
a stationary diffusion equation over a tensor product domain with homogeneous
boundary conditions.

1.1 Main Contributions

We propose a novel numerical method for PDEs, called compressive spectral
collocation, focusing on the case of a stationary diffusion equation over a tensor
product domain with homogeneous boundary conditions. The approach leverages
the CS principle by randomizing the choice of the collocation points and by
promoting sparse solutions with respect to a Sturm-Liouville basis, which are
recovered via the greedy algorithm orthogonal matching pursuit.

Our main contributions can be summarized as follows:

1. In Algorithm 1, we present a rigorous formulation of the compressive spectral
collocation approach for the diffusion equation.

2. In Theorem 4, we prove that the matrix associated with the compressive spectral
collocation approach satisfies the restricted isometry property of CS under
suitable assumptions on the diffusion coefficient.

3. In Sect. 5, we demonstrate numerically that the compressive spectral collocation
approach is able to recover sparse solutions with higher accuracy and lower
computational cost than the corresponding “full” spectral collocation method.
Moreover, in the case of compressible solutions, we show that the compressive
approach is computationally less expensive than the full one while maintaining a
good level of accuracy.

Before outlining the structure of the paper, we review the literature about CS-
based methods in numerical analysis, placing particular emphasis on numerical
methods for PDEs.

1.2 Literature Review

CS was proposed in 2006 by the pioneering works of Donoho [13], Candès et al. [9]
and has triggered an impressive amount of work since then.

The very first attempt to apply CS to the numerical approximation of a PDEs
can be found in [21]. The authors propose a Galerkin discretization of the Poisson
problem, where the trial and test spaces are composed by piecewise linear finite
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elements. The technique is deterministic and relies on the successive refinement
of the solution on different hierarchical levels and on a suitable error estimator.
Recovery is based on �1-minimization.

The CS principle has then been applied to Petrov-Galerkin discretizations of
advection-diffusion-reaction equations via the COmpRessed SolvING method
(in short, CORSING), proposed in [7]. The method employs Fourier-type trial
functions and wavelet-like test functions (or vice versa) and the dimensionality of
the discretization is reduced by randomly subsampling the test space. The theoretical
analysis of the method in the infinite-dimensional setting has been carried out in
[8]. The CORSING method has also been applied to the two-dimensional Stokes’
equation in [6].

Numerical methods for PDEs based on �1 minimization can be considered
the ancestors of CS-based methods for PDEs. Lavery conducted some pioneering
studies on finite differences for the inviscid Burgers’ equation [23] and on finite
volumes dicretizations for steady scalar conservation laws [24]. More recently,
similar techniques have been analyzed for transport and Hamilton-Jacobi equations
[17, 18]. Moreover, some works considered sparsity-promoting spectral schemes for
time-dependent multiscale problems based on soft thresholding [25, 30] or on the
sparse Fourier transform [12].

On a different but related note, there has been a lot of research activity around
CS-based methods for the uncertainty quantification of PDEs with random inputs
[5, 14, 26–28, 33]. In these works, the CS principle is combined with Polynomial
Chaos in order to approximate a quantity of interest of the solution map of the
PDE. Being very smooth for a wide family of operator equations, this map can
be approximated by a sparse combination of orthogonal polynomials and the CS
principle employed to lessen the curse of dimensionality.

Finally, it is worth mentioning recent works where CS is employed to learn the
governing equations of a dynamical systems given time-varying measurements [32]
and to solve inverse problems in PDEs [4].

1.3 Outline of the Paper

The paper is organized as follows.
In Sect. 2, we recall some of the main elements of CS, of particular interest in

our context. We place more emphasis on greedy recovery via orthogonal matching
pursuit and on recovery guarantees based on the restricted isometry property.

Equipped with the CS fundamentals, we present the compressive spectral
collocation method in Sect. 3, focusing on the case of a homogeneous stationary
diffusion equation.

Section 4 deals with the theoretical analysis of the method. We prove that the
matrix associated with the compressive spectral collocation approach satisfies the
restricted isometry property with high probability under suitable conditions on
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the diffusion coefficient. Moreover, we discuss the implications of the restricted
isometry property for the recovery error analysis of the method.

In Sect. 5, we illustrate some numerical results for the two-dimensional diffusion
equation. We assess the performance of the compressive spectral collocation
approach when recovering sparse and compressible solutions. Moreover, we com-
pare it with the corresponding “full” spectral collocation approach, demonstrating
the computational advantages associated with the proposed strategy.

Conclusions and future directions are finally discussed in Sect. 6.

2 Elements of Compressive Sensing

We introduce some elements of CS that will be useful to define the compressive
spectral collocation approach. Our presentation is based on a very special selection
of topics. For a comprehensive introduction to CS, we refer the reader to [15].

CS deals with the problem of measuring a sparse or compressible signal by using
the minimum amount of linear, nonadaptive observations, and of reconstructing
it via convex optimization techniques (such as �1 minimization and its variants),
greedy algorithms, or thresholding techniques.

Here, we focus on CS with greedy recovery via orthogonal matching pursuit.
After introducing this setting in Sect. 2.1, we recall some theoretical results based
on the restricted isometry property in Sect. 2.2.

2.1 Compressive Sensing and Greedy Recovery

Let us consider a vector x ∈ R
N (often called “signal”). We restrict the presentation

to the real case, even though the theory can be generalized to the complex case. We
collect m linear nonadaptive measurements of x into a vector b ∈ R

m, i.e.

Ax = b. (1)

The matrix A ∈ R
m×N is called the sensing matrix and m 	 N . The problem of

finding x given b is clearly ill-posed since the linear system (1) is highly underdeter-
mined. In order to regularize this inverse problem, the a priori information assumed
on x is sparsity or compressibility.

A vector is said to be s-sparse if it has at most s nonzero entries. More in general,
x is said to be compressible if, for some p ≥ 1, its best s-term approximation error
(with respect to some �p norm) σs(x)p decays quickly in s, where σs(x)p is defined
as

σs(x)p := inf{‖x − v‖p : v ∈ R
N, ‖v‖0 ≤ s},
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with

‖v‖0 := | supp(v)|, supp(v) := {j ∈ [N] : vj �= 0}, ∀v ∈ R
N,

and where we have employed the notation

[n] := {1, . . . , n}, ∀n ∈ N.

Notice that if the signal x is s-sparse, then σk(x)p = 0, for every k ≥ s and p ≥ 1.
A plethora of recovery strategies is available in order to find sparse or com-

pressible solutions to the linear system (1). In this paper, we focus on the greedy
algorithm Orthogonal Matching Pursuit (OMP) (see [31] and references therein),
outlined in Algorithm 1.

Algorithm 1 Orthogonal matching pursuit (OMP)
Inputs:

• A ∈ R
m×N : sensing matrix, with �2-normalized columns;

• b ∈ R
m: vector of measurements;

• K ∈ N: number of iterations.

Orthogonal Matching Pursuit:

1. Let x̂0 = 0 and S0 = supp(x̂0) = ∅;
2. For k = 1, . . . ,K , repeat the following steps:

a. Find jk = arg max
j∈[N] |(AT (Ax̂k−1 − b))j |;

b. Define Sk = Sk−1 ∪ {jk};
c. Compute x̂k = arg min

v∈RN
‖Av − b‖2 s.t. supp(v) ⊆ Sk .

Output:

• x̂K ∈ R
N : K-sparse approximate solution to (1).

OMP iteratively constructs a sequence of k-sparse vectors x̂k that approximately
solve (1), with k = 1, . . . ,K , by adding at most one new entry to the support at each
iteration. During the k-th iteration, OMP seeks the column of A mostly correlated
with the residual associated with the previous approximation x̂k−1. Then, the
support is enlarged by adding the corresponding index, and the k-th approximation
x̂k is computed by solving an m × k least-squares problem. Observe that the least-
square problem solved to compute x̂k is overdetermined if K ≤ m, which is usually
the case in practice.
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2.2 Recovery Guarantees Based on the Restricted Isometry
Property

In order to quantify the approximation error associated with the OMP solution, we
present some theoretical results based on the restricted isometry property, which has
by now become a standard tool in CS.

Definition 1 A matrix A ∈ R
m×N is said to satisfy the restricted isometry property

of order s and constant 0 < δ < 1 if

(1 − δ)‖v‖2
2 ≤ ‖Av‖2

2 ≤ (1 + δ)‖v‖2
2, ∀v ∈ R

N, ‖v‖0 ≤ s. (2)

The smallest 0 < δ < 1 such that (2) holds is referred to as the s-th restricted
isometry constant of A and it is denoted by δs(A).

Intuitively, the restricted isometry property requires the map x �→ Ax to
approximately preserve distances when its action is restricted to the set of s-sparse
vectors, up to a distortion factor δ. Computing δs(A) given A is not computationally
feasible in general since it implies a search over all the

(
N
s

)
subsets of [N] of

cardinality s. However, what makes this tool extremely useful in practice is the
fact that it is possible to show that certain classes of random matrices satisfy the
restricted isometry property with high probability.

The following theorem gives sufficient conditions for a matrix A ∈ R
m×N

built by independently selecting m random rows according to a suitable probability
density from a “tall” matrix B ∈ R

M×N in order to satisfy the restricted isometry
property (up to a suitable diagonal preconditioning). These conditions depend on
the spectrum of the Gram matrix BT B and on the so-called local coherence of B,
i.e., the vector whose entries are

max
j∈[N](Bqj )

2, ∀q ∈ [M].

The proof of this result can be found in [6, Theorem 1.21]. Let us note that this is an
extension of the restricted isometry property analysis based on the local coherence
for bounded orthonormal systems proposed in [22], where the orthonormality
condition is relaxed.

Theorem 1 Consider B ∈ R
M×N , with M ≥ N , and suppose that there exist two

constants 0 < r ≤ R < +∞ such that the minimum and maximum eigenvalues of
BT B satisfy

0 < r ≤ λmin(B
T B) ≤ λmax(B

T B) ≤ R.
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Moreover, assume that there exists a vector ν ∈ R
M such that the local coherence

of B is bounded from above as follows:

max
j∈[N](Bqj )

2 ≤ νq, ∀q ∈ [M].

Then, for every 1 − r
R
< δ < 1, there exists a universal constant c > 0 such that,

provided

m ≥ c̃ s ln3(s) ln(N),

and s ≥ c̃ ln(N), where

c̃ = c max

(‖ν‖1

R
, 1

)(
δ −
(

1 − r

R

))−2
,

the following holds.
Let us draw τ1, . . . , τm i.i.d. from [M] distributed according to the probability

density

p = ν

‖ν‖1
∈ R

M,

and define A ∈ R
m×N and D ∈ R

m×m as

Ai,j = Bτi ,j , ∀i ∈ [m], ∀j ∈ [N], D = diag

((
1√

mRpi

)
i∈[m]

)
, (3)

where diag(v) denotes the matrix having the entries of v on the main diagonal and
zeros elsewhere. Then, the s-th restricted isometry constant of DA satisfies

δs(DA) ≤ δ,

with probability at least 1 − N− ln3(s).

The restricted isometry property is a sufficient condition to show that the vector
x̂K computed by K iterations of OMP is a good approximation to x. In particular, a
suitable upper bound on the 26s-th restricted isometry property constant is sufficient
for OMP to reach the accuracy of the best s-term approximation error up to a
universal multiplicative constant using K = 24s iterations. The following theorem
is a direct consequence of [15, Theorem 6.25]. The recovery error analysis of OMP
based on the restricted isometry property was originally proposed in [34].
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Theorem 2 Let A ∈ R
m×N with �2-normalized columns such that

δ26s(A) <
1

6
. (4)

Then, there exists a universal constant C > 0 such that for every x ∈ R
N and

b ∈ R
m such that (1) holds, the vector x̂K computed by K = 24s iterations of OMP

(Algorithm 1) satisfies

‖x − x̂K‖2 ≤ C
σs(x)1√

s
. (5)

This type of recovery error estimate is called “uniform” since it holds for every
signal x ∈ R

N . It is worth noticing that when x is s-sparse, it is recovered exactly
since σs(x)1 = 0. Moreover, let us observe that a more general version of this
theorem holds in the case of noisy measurements, i.e., when y = Ax + e, where
e ∈ R

m is a noise vector corrupting the measurements. In that case, an additive
term directly proportional to ‖e‖2 appears on the left-hand side of (5) (see [15,
Theorem 6.25]).

3 Compressive Spectral Collocation

We are now in a position to introduce the compressive spectral collocation method.
Let us consider the following diffusion equation in strong form:

{
−∇ · (η∇u) = F, in Ω,

u = 0, on ∂Ω,
(6)

where Ω = (0, 1)d is the physical domain, u ∈ C2(Ω) is the unknown solution, the
function η : Ω → R, with η ∈ C1(Ω) and η(x) ≥ ηmin > 0 for every x ∈ Ω , is
the diffusion coefficient, and F ∈ C0(Ω) is the forcing term. We also consider the
dimension d to be of moderate size.

We will define the compressive spectral collocation approach in two steps. First,
we describe the Sturm-Liouville basis, the collocation grid employed, and the
corresponding “full” spectral collocation method in Sect. 3.1. Then, in Sect. 3.2, we
define the compressive approach, outlined in Algorithm 1.
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3.1 The Spectral Basis and the Collocation Grid

We discretize Eq. (6) by using a spectral collocation method based on a Sturm-
Liouville basis (for a comprehensive introduction to spectral methods, we refer the
reader to [10, 16]). In particular, let us consider the functions

ξj (z) := 2d/2

π2‖j‖2
2

·
d∏

k=1

sin(πjkzk), ∀x ∈ Ω, ∀j ∈ N
d . (7)

The system {ξj }j∈Nd is formed by eigenvectors of the Laplace operator with
homogeneous Dirichlet boundary conditions, normalized such that

‖Δξj‖L2(Ω) = 1, ∀j ∈ N
d .

In fact, the system {Δξj }j∈Nd is an orthonormal basis for L2(Ω) with respect to the
standard inner product

∫
Ω
uv. Expanding a function with respect to this basis (up

to normalization) corresponds to the so-called “modified Fourier series expansion”.
The coefficients’ decay rate of the modified Fourier series expansion of a function
is related to its Sobolev regularity and to suitable boundary conditions involving its
derivatives. Here, we will assume the solution u to be regular enough to guarantee
the compressibility of its coefficients and, consequently, to enable the application
of the CS principle. For more details on the approximation properties of univariate
and multivariate modified Fourier series expansions and on their usage in spectral
methods for PDEs, we refer the reader to [1, 2, 19, 20].

Let us now truncate the multi-index set Nd by using the tensor product multi-
index space of order n ∈ N, i.e.

[n]d ⊆ N
d,

of cardinality N := nd . Given a truncation level n, we rescale of the basis functions
and define

ψj(z) := ξj (z)

(n + 1)d/2 , ∀x ∈ Ω, ∀j ∈ [n]d . (8)

(The normalizations chosen in (7) and in (8) will turn out to be crucial in order to
guarantee the restricted isometry property.)

As a collocation grid, we consider a tensorial grid of uniform step h = 1/(N+1)
over Ω , defined as

tq := q

n + 1
, ∀q ∈ [n]d.
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Notice that we do not need collocation points on ∂Ω since the functions {ψj }j∈[n]d
already satisfy the homogeneous boundary conditions.

The resulting “full” spectral collocation discretization of (6) is given by

Bxfull = c, (9)

where

Bqj = [∇ · (η∇ψj )](tq), cq = F(tq), ∀q, j ∈ [n]d, (10)

and where we are implicitly assuming some ordering for multi-indices in [n]d (e.g.,
the lexicographic ordering). Given a solution xfull to the system (9), the full spectral
approximation to u is defined as

ufull =
∑
j∈[n]d

xfull
j ψj . (11)

3.2 The Compressive Approach

Before describing the compressive approach, let us explain the rationale behind the
normalizations adopted in (7) and (8) by considering for a moment the simple case
of the Poisson equation. The normalization chosen for the system {ψj }j∈[n]d ensures
that

if η(x) = 1, ∀x ∈ Ω, then B = Sn ⊗ · · · ⊗ Sn︸ ︷︷ ︸
d times

,

where ⊗ denotes the matrix Kronecker product and where Sn ∈ R
n×n is the matrix

associated with the discrete sine transform, defined as

(Sn)ij =
√

2

n + 1
sin

(
ijπ

n + 1

)
, ∀i, j ∈ [n]. (12)

In particular, the full spectral collocation matrix B is orthogonal, i.e. it satisfies

BT B = I, (13)

where I is the identity matrix, because Sn is orthogonal. Moreover, the local
coherence of the matrix B satisfies the upper bound

max
j∈[n]d

(Bqj )
2 ≤
(

2

(n + 1)

)d
≤ 2d

N
, ∀q ∈ [n]d . (14)
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Therefore, in view of Theorem 1, drawing m indices independently distributed
according to the uniform measure over [n]d , i.e.,

τ1, . . . , τm i.i.d. with P{τi = q} = 1

N
, ∀q ∈ [n]d, ∀i ∈ [m],

it is natural to define the resulting compressive spectral collocation discretization as

Ax = b, (15)

where the matrix A ∈ R
m×N and b ∈ R

m are defined as

Aij =
√
N

m
Bτi ,j , bi =

√
N

m
cτi , ∀i ∈ [m], ∀j ∈ [n]d . (16)

The normalization by a factor
√
N/m is done in order to ensure the restricted

isometry property for A (see Theorem 1). In particular, we observe that since the
probability density is uniform, we have D = √

N/m · I in (3).
The compressive spectral collocation solution is then computed by applying

OMP in order to find a sparse solution to (15), up to normalizing the columns of
A with respect to the �2 norm. The proposed method is summarized in Algorithm 1.

Algorithm 1 Compressive spectral collocation
Inputs:

• n ∈ N: order of the tensor product multi-index space [n]d ;
• m ∈ N: number of randomized collocation points;
• K ∈ K: number of OMP iterations.

Compressive spectral collocation:

1. Draw τ1, . . . , τm i.i.d. uniformly at random from [n]d ;
2. Build A ∈ R

m×N and b ∈ R
m according to (16);

3. Build M = diag
(
(‖aj‖2)j∈[n]d

) ∈ R
N×N , where aj is the j -th column of A;

4. Define Ã = AM−1 ∈ R
m×N ;

5. Compute x̂K ∈ R
N using OMP (Algorithm 1) with inputs Ã, b, and K;

6. Define x̂ = Mx̂K ;
7. Define û =

∑
j∈[n]d

x̂jψj , with {ψj }j∈[n]d given by (8).

Output:

• û ∈ C∞(Ω): Compressive spectral approximation to (6).
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At least three questions naturally arise at this point:

(i) The compressive spectral collocation method looks tailored to the Poisson
equation. Does this method work for nonconstant diffusion coefficients?

(ii) How to choose the input parameters n, m, and K in Algorithm 1?
(iii) What are the benefits (if any) of the compressive approach with respect to the

full one?

Answering to these questions will be the objective of the next two sections. In
particular, Sect. 4 will focus on questions (i) and (ii). Applying the theory of CS
introduced in Sect. 2, we will give a sufficient condition on η that implies a positive
answer to (i) and propose a recipe for (ii). In Sect. 5, we will deal with question (iii)
by showing the benefits of the compressive approach with respect to the full one
through a numerical illustration.

4 Theoretical Analysis

In the previous section, we have proposed the compressive spectral collocation
method for the diffusion equation (6), summarized in Algorithm 1. In this section,
we see that, given n ∈ N, in order to recover the best s-term approximation error to
xfull (up to a universal constant) with high probability, it is sufficient to choose the
number of collocation points and the iterations of OMP such that

m ≥ C2ds ln3(s) ln(N) and K = 24s, (17)

where C > 0 is a universal constant independent of s, n, and d . This shows that
for s 	 N , the number of collocation points to employ is substantially less than
the dimension of the approximation space N . In particular, it scales linearly with
respect to the target sparsity s, up to logarithmic factors. The main ingredients of
the theoretical analysis are Theorems 1 and 2.

4.1 Restricted Isometry Property

Let us first consider the case of the Poisson Problem, where η(z) = 1 for every
z ∈ Ω . We have seen that in this case the full spectral collocation matrix B defined
in (10) is orthogonal (recall (13)) and that its local coherence satisfies the upper
bound (14). Therefore, a direct application of Theorem 1 with r = R = 1, yields
the following restricted isometry result.

Theorem 3 Let d, s,N ∈ N, with s ≤ N . Then, there exists a universal constant
c > 0 such that the following holds. For the Poisson equation, the full spectral
collocation matrix B ∈ R

N×N defined by (10) is orthogonal and the corresponding
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compressive spectral collocation matrix A ∈ R
m×N defined by (16) has the

restricted isometry property of order s and constant δ with probability at least
1 − N− lns (s), provided that

m ≥ c 2dδ−2s ln3(s) ln(N), (18)

and s ≥ c δ−2 ln(N).

Let us now consider the case of a nonconstant coefficient η. In this case, B is not
necessarily orthogonal and, in order to apply Theorem 1, we need to estimate the
minimum and maximum eigenvalue of the Gram matrix BT B and to find a suitable
upper bound to the local coherence of B. Using this strategy, in the next theorem
we give sufficient conditions on the diffusion coefficient η able to guarantee the
restricted isometry property for the compressive spectral collocation matrix A with
high probability.

Theorem 4 Let d, s,N ∈ N with s ≤ N , and η ∈ C1(Ω) satisfying the following
conditions:

ηmin := min
z∈Ω

η(z) > 0, (19)

‖η‖L∞(Ω)

d∑
k=1

‖(∇η)k‖L∞(Ω) <
π

2
η2

min. (20)

Then, the full spectral collocation matrix B defined by (10) satisfies

r ≤ λmin(B
T B) ≤ λmax(B

T B) ≤ R, (21)

where

r := η2
min − 2

π
‖η‖L∞(Ω)

d∑
k=1

‖(∇η)k‖L∞(Ω), (22)

R :=
(

‖η‖L∞(Ω) + 1

π

d∑
k=1

‖(∇η)k‖L∞(Ω)

)2

. (23)

Moreover, given 1 − r/R < δ < 1 and provided

m ≥ C̃ s ln3(s) ln(N),

and s ≥ C̃ ln(N), where

C̃ = C · 2d
(
δ −
(

1 − r

R

))−2
,
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the matrix A/
√
R, where A is defined as in (16) satisfies the restricted isometry

property of order s and constant δ with probability at least 1 − N− ln3(s).

Proof Let us consider the matrices Sn ∈ R
n×n defined as in (12) and Cn ∈ R

n×n as

(Cn)ij :=
√

2

n + 1
cos

(
πij

n + 1

)
, ∀i, j ∈ [N].

Using basic trigonometric formulas and Lagrange’s trigonometric inequality, it is
not difficult to show that

STn Sn = I, (24)

CT
n Cn = I − 2

n + 1
Qn, (25)

where I ∈ R
n×n is the identity matrix and Qn ∈ R

n×n is a checkerboard-structured
matrix whose entries are 1 on the diagonals of even order and 0 on the diagonals of
odd order, namely

(Qn)ij = 1 − (−1)i+j+1

2
, ∀i, j ∈ [n].

As already observed,Sn is orthogonal. On the other hand,Cn is “almost orthogonal”,
up to the corrective term − 2

n+1Qn. Now, using the chain rule

− ∇ · (η∇ψj)(tq) = −η(tq)Δψj (tq)− ∇η(tq) · ∇ψj(tq), ∀q, j ∈ [n]d, (26)

we see that the full spectral collocation matrix B defined in (10) has the form

B = B1 + B2,

where

B1 = −D0

d⊗
k=1

Sn,

B2 = −
d∑

k=1

Dk

(
k−1⊗
�=1

Sn ⊗ (CnE) ⊗
d⊗

�=k+1

Sn

)
F.

and

D0 = diag
(
(η(tq))q∈[n]d

) ∈ R
N×N ,

Dk = diag
(
((∇η)k(tq))q∈[n]d

) ∈ R
N×N , ∀k ∈ [d],
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E = diag
(
(πj)j∈[n]

) ∈ R
n×n,

F = diag

⎛
⎝
(

1

π2‖j‖2
2

)
j∈[n]d

⎞
⎠ ∈ R

N×N .

In particular, we have

‖Bv‖2
2 = ‖B1v‖2

2 + ‖B2v‖2
2 + 2vT BT

1 B2v, ∀v ∈ R
N .

Now, we estimate the three terms in the right-hand side separately. Recalling (24)-
(25), the first term can be estimated as

ηmin‖v‖2 ≤ ‖B2v‖2 ≤ ‖η‖L∞(Ω)‖v‖2, ∀v ∈ R
N . (27)

As for the second term, we have

‖B1v‖2 ≤
d∑

k=1

‖(∇η)k‖L∞(Ω)

∥∥∥∥∥
(
k−1⊗
�=1

Sn ⊗ (CnE) ⊗
d⊗

�=k+1

Sn

)
Fv

∥∥∥∥∥
2

.

Recalling properties (24) and (25), noticing that Qn is positive semidefinite, using
standard properties of the Kronecker product, and defining w := Fv, we see that

∥∥∥∥∥∥
⎛
⎝k−1⊗
�=1

Sn ⊗ (CnE) ⊗
d⊗

�=k+1

Sn

⎞
⎠Fv

∥∥∥∥∥∥
2

2

= wT

⎛
⎝k−1⊗
�=1

STn Sn ⊗ (ECT
n CnE) ⊗

d⊗
�=k+1

STn Sn

⎞
⎠w

= wT

⎛
⎝k−1⊗
�=1

In ⊗ (ECT
n CnE) ⊗

d⊗
�=k+1

In

⎞
⎠w

= wT

⎛
⎝k−1⊗
�=1

In ⊗ E2 ⊗
d⊗

�=k+1

In

⎞
⎠w − 2

n + 1
wT

⎛
⎝k−1⊗
�=1

In ⊗ (EQnE) ⊗
d⊗

�=k+1

In

⎞
⎠w

≤
∥∥∥∥∥∥diag

⎛
⎝
(

πjk

π2‖j‖2
2

)

j∈[n]d

⎞
⎠ v

∥∥∥∥∥∥
2

2

≤ 1

π2 ‖v‖2
2.

As a result, we obtain

0 ≤ ‖B2v‖2 ≤ 1

π

(
d∑

k=1

‖(∇η)k‖L∞(Ω)

)
‖v‖2, ∀v ∈ R

N . (28)
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Finally, using the Chauchy-Schwartz inequality and combining the inequali-
ties (27) and (28), the third term can be estimated as

|vT BT
1 B2v| ≤ 1

π
‖η‖L∞(Ω)

d∑
k=1

‖(∇η)k‖L∞(Ω)‖v‖2
2. (29)

Finally, combining (27), (28), and (29) yields the spectral bound (21) under
sufficient conditions (19)-(20) on the diffusion coefficient η.

The last step is the local coherence upper bound. Recalling (26) and the
definition (23) of R, we see that

max
j∈[n]d

(Bqj )
2 = max

j∈[n]d
(−η(tq)Δψj (tq) + ∇η(tq) · ∇ψj(tq)

)2

≤
(

2

n + 1

)d
max
j∈[n]d

(
|η(tq)| +

d∑
k=1

|(∇η)k(tq)| πjk

π2‖j‖2
2

)2

≤ 2dR

N
=: νq.

This choice of the local coherence upper bound ν yields ‖ν‖1 ≤ 2dR and pq =
νq/‖ν‖1 = 1/N , for every q ∈ [N]. Finally, a direct application of Theorem 1
completes the proof. �

Let us take a closer look to the sufficient condition (20) on the diffusion coeffi-
cient η. First of all, it is homogeneous in η, as it is natural to be expected. Moreover,
this condition becomes more and more restrictive as the dimension d increases,
which is another tangible effect of the curse of dimensionality. Nevertheless, the
following example shows that (20) can be satisfied in practice.

Example 1 Let us consider an affine diffusion coefficient of the form

η(z) = 1 + wT z, ∀z ∈ Ω,

where w ∈ R
d with w ≥ 0. In this case, (20) is equivalent to

‖w‖1 <
1

2

(√
1 + 2π − 1

)
≈ 0.85.

As d gets larger, the above condition becomes more and more restrictive. One
possible way to mitigate the effect of d on this condition is by requiring the gradient
w = ∇η to be sparse. �

We conjecture that condition (20) is suboptimal and that it could be improved.
How to make it less restrictive is an object of future investigation. Equipped with
a restricted isometry property result for the compressive spectral collocation matrix
A, we can now discuss the recovery guarantees of the proposed approach.
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4.2 Recovery Guarantees (Discussion)

In view of Theorem 2, the restricted isometry property is a sufficient condition
for OMP to recover the best s-term approximation error to a given signal up to a
universal constant in K = 24s iterations. In this section, we discuss the implications
of this result for the compressive spectral collocation approach. A fully rigorous
analysis of the recovery guarantees is beyond the objectives of this paper and is left
to future work.

In order to combine the restricted isometry result (Theorem 4) with the OMP
recovery result (Theorem 2), one has to take into account the effect of the �2-
normalization of the columns of A onto the restricted isometry constant. Let Ã be
the normalized version of A, as defined in Algorithm 1. Then, it is not difficult to
show that

δs(Ã) ≤ 2δs(A)

1 − δs(A)
, ∀s ∈ N, s ≤ N.

In particular, the condition δ26s(Ã) < 1/6 required to apply Theorem 2 and ensure
the recovery via OMP, is implied by δ26s(A) < 1/13.

Due to the additional constraint δ > 1 − r/R required by Theorem 4, we see that
in order to be able to choose δ < 1/13, we need

1 − r

R
<

1

13
�⇒ r

R
>

12

13
≈ 0.92, (30)

where r and R are defined as in (22) and (23).
Now, let us notice that a solution xfull to the full system (9) is also a solution

to the compressive system (15). Using Theorem 2 and the fact that {Δξj }j∈Nd

is orthonormal in L2(Ω), we can estimate the error between the full spectral
approximation ufull and the compressive spectral approximation û computed by
choosing m and K as in (17) as

‖Δ(ufull − û)‖L2(Ω) = ‖xfull − x̂‖2

(n + 1)d/2 ≤ C · σs(x
full)1

(n + 1)d/2
√
s
, (31)

where C > 0 is a universal constant. (C depends on the universal constant of
Theorem 2 and on

√
1 + δ, due to the �2-normalization of the columns of A.

Moreover, notice that we can fix, e.g., δ = 1/14 < 1/13). It is worth observing that
when xfull is s-sparse, the compressive spectral collocation recovers the coefficients
of ufull exactly.
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Remark 1 Combining (31) with the triangle and the Poincaré inequalities yields

|u − û|H 1(Ω) ≤ |u − ufull|H 1(Ω) + |ufull − û|H 1(Ω)

≤ |u − ufull|H 1(Ω) + CΩ · ‖Δ(ufull − û)‖L2(Ω)

≤ |u − ufull|H 1(Ω) + CΩ · C · σs(x
full)1

(n + 1)d/2
√
s
,

where CΩ is the Poincaré constant of Ω . In this way, an estimate of |u−ufull|H 1(Ω)

can be converted to an estimate of |u − û|H 1(Ω). The error term |u − ufull|H 1(Ω)

can be studied using the tools in [10, Section 6.4.2]. These tools allow to compare
|u−ufull|H 1(Ω) to the best linear approximation error of the solution u with respect to
the basis {ψj }j∈[n]d in the H 1(Ω)-seminorm. In turn, the best linear approximation
error can be estimated by assuming enough regularity of u with respect to standard
or mixed Sobolev norms when fulfilling suitable boundary conditions (see [2,
Lemma 3.4 and Lemma 3.5]). �

5 Numerical Experiments

We conclude by illustrating some numerical experiments that show the robustness of
the spectral collocation method described in Algorithm 1 for the numerical solution
of the diffusion equation (6) when the solution is sparse or compressible. The
experiments demonstrate that the compressive approach is able to outperform the
full one both from the accuracy and the efficiency viewpoints when the solution is
sparse. When the solution is compressible, the compressive method can reduce the
computational cost of the full method while preserving good accuracy.

We underline that the comparison is made without using fast transforms, which
could considerably accelerate performance of both methods.

Given the order n of the ambient multi-index set [n]d and a target sparsity s ∈ N,
in all the numerical experiments we define the number of collocation points and of
OMP iterations as

m = �2s ln(N)� and K = s, (32)

numerically showing that the sufficient condition (17) is rather pessimistic in prac-
tice. Moreover, we focus on a two-dimensional diffusion equation with nonconstant
coefficient

η(z) = 1 + 1

4
(z1 + z2), ∀z ∈ Ω, (33)

satisfying condition (20).
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All the numerical experiments have been performed in MATLAB® R2017b
version 9.3 64-bit on a MacBook Pro equipped with a 3 GHz Intel Core i7 processor
and with 8 GB DDR3 RAM. We have employed the OMP implementation provided
by the MATLAB® package OMP-Box v10 [29].

5.1 Recovery of Sparse Solutions

We start by comparing the full and the compressive spectral collocation approaches
for the recovery of sparse solutions.

Given s, n ∈ N with s ≤ n2 =: N , we consider s-sparse solutions x randomly
generated as follows. First, we draw s indices from [N] uniformly at random.
Then, we fill the corresponding entries with s independent realizations of a standard
Gaussian variable N(0, 1). This is implemented in MATLAB® using the commands
randperm and randn, respectively. For each randomly-generated vector x, we
run the full and the compressive methods 5 times. The recovery error of the full and
of the compressive solution is measured using the relative discrete �2-error of the
coefficients, namely,

‖xfull − x‖2

‖x‖2
and

‖x̂ − x‖2

‖x‖2
.

The results are shown in Fig. 1, where we plot the relative error as a
function of the computational cost for n = 32 (corresponding to N = 1024)
and s = 2, 4, 8, 16, 32. Recalling (32), these values correspond to m =
28, 56, 111, 222, 444.

Fig. 1 Accuracy vs. cost plots for the full and the compressive spectral collocation approaches for
the recovery of randomly generated s-sparse solutions to the diffusion equation with nonconstant
coefficient η defined by (33). Different colors refer to different sparsity levels: s = 2 (red),
s = 4 (green), s = 8 (blue), s = 16 (magenta), and s = 32 (orange). The markers diamond,
triangle, right triangle, left triangle and down triangle correspond to the full approach with
s = 2, 4, 8, 16, 32, respectively. The markers +,×,∗, ◦, and � refer to the compressive approach
with s = 2, 4, 8, 16, 32, respectively
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The computational cost is distinguished in assembly and recovery cost:

• For the full approach, the assembly cost is the time employed to build B and c as
in (10) and the recovery cost is the time employed by the backslash MATLAB®

command to solve the linear system (9).
• For the compressive approach, the assembly cost is the time employed to

randomly generate the multi-indices τ1, . . . , τm and to build A and b as in (16)
and the recovery cost is the time needed to recover the solution to (15) via OMP,
including the time to normalize the columns of A with respect to the �2 norm and
the time to rescale the entries of the OMP solution accordingly, as prescribed by
Algorithm 1.

Both approaches have a high level of accuracy, around 10−15 and 10−14. The
markers corresponding to the compressive approach are closer to the lower left
corner of the plot. This shows that when dealing with exact sparsity, the compressive
approach is more advantageous both in terms of accuracy and of computational cost.

Let us now assess cost and accuracy of both approaches in a more systematic way.
Figure 2 shows the box plots generated after repeating the same random experiment
as before 100 times and for s = 2, 4, 8, 16, 32, 64. Recalling (32), the corresponding
numbers of collocation points are m = 28, 56, 111, 222, 444, 888. For the full
approach we also compare backslash with OMP. In practice, the backslash approach
simply computes a solution to (9) as B\c, whereas the OMP-based approach
computes an s-sparse approximate solution to (9) (up to normalization of the
columns of B) via OMP.

The very good level of accuracy of both approaches is confirmed by this second
experiment. It is remarkable that the recovery error of the compressive approach is
slightly better than that of the full approach, especially for smaller sparsities. We
observe that, in general, the compressive approach outperforms the full one both in
terms of accuracy and computational cost. In general, the smaller the sparsity s, the
higher the computational cost reduction gained by compressing the discretization.
By looking at the second column, we can see that, in the full case, OMP is able to
compute more accurate solutions with respect to the backslash. This is arguably due
to the fact that the largest least-squares problem solved by OMP (during the s-th
iteration) is associated with an N × s submatrix of the full N × N discretization
matrix linear system. Therefore, the former matrix is, in general, better conditioned
than the latter.1

1The substantial independence of the OMP recovery cost with respect to s for the full approach
depends on two factors: the particular implementation of OMP in the package OMP-Box and the
normalization step Ã = AM−1 in Algorithm 1. In fact, in order to speed up the OMP iteration, the
function omp of OMP-Box used to produce these results takes ÃT Ã as input. When A is N × N ,
the cost of computing the matrices Ã and ÃT Ã is independent of s and it turns out to be consistently
larger than the cost of OMP itself. As a result, the effect of s on the overall computational cost is
negligible. The same remark holds for Fig. 4.
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Full (backslash recovery) Full (OMP recovery) Compressive

Fig. 2 Performance analysis of full and compressive spectral collocation from the accuracy and
computational cost viewpoints for the recovery of randomly generated s-sparse solutions to the
diffusion equation with nonconstant coefficient η defined by (33). The box plots are referred to
100 random runs

5.2 Recovery of Compressible Solutions

We compare the full and the compressive approaches for the recovery of compress-
ible solutions. We will test the methods for the recovery of the exact solution

u(z) = (16 z1 z2 (1 − z1)(1 − z2))
2, ∀z ∈ Ω, (34)

whose plot is shown in Fig. 3 (top left). The forcing term F in (6) is defined in order
to have (34) as exact solution.
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Fig. 3 Full and compressive spectral approximation of the compressible solution (34) to a
diffusion equation with coefficient η defined by (33). Top left: exact solution defined as in (34).
Top right: full spectral collocation approximation with n = 32. Bottom left: Compressive spectral
collocation approximation with n = 32 and s = 32. Bottom right: plot of the coefficients xfull and
x̂, corresponding to the full and compressive approximations

Let us fix n = 32, corresponding to N = 1024, and s = 32. With this
choice, and recalling (32), we have m = 444. Figure 3 shows the results of the
full and the compressive spectral collocation approaches. Both methods produce
a very good approximation to the exact solution. We can appreciate the ability of
OMP to recover the largest absolute coefficients of the vector xfull in Fig. 3 (bottom
right). Comparing Fig. 3 (top right) and Fig. 3 (bottom left), we see that computing
a 32-sparse approximation to the 1024-dimensional vector xfull is sufficient to
recover a compressive approximation that is visually indistinguishable from the full
approximation, thanks to the compressibility of the solution.

In the same setting as before, we consider sparsity levels s = 2, 4, 8, 16, 32, 64
and carry out a more extensive numerical assessment, in the same spirit as Fig. 2.
We repeat the previous experiment 100 times and show the corresponding box plots
in Fig. 4. The recovery and assembly times are analogous to those of Fig. 2. In terms
of accuracy, we are of course not able to obtain exact recovery, as in the sparse
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Full (backslash recovery) Full (OMP recovery) CS

Fig. 4 Performance analysis of full and compressive spectral collocation from the accuracy and
computational cost viewpoints for the recovery of the compressible solution (34) to the diffusion
equation with nonconstant coefficient η defined by (33). The box plots are referred to 100 random
runs

case. The relative L2(Ω)-error associated with the full spectral approximation is
4.0 · 10−3. When performing s iterations of OMP on the full system (Fig. 4 top
center), the error decays up to s = 32, when the accuracy saturates to the level of
the full approximation. The situation is analogous for the compressive approach, and
the decay of the recovery error shares the same trend as the full approach with OMP
recovery, up to a distortion due to randomization and to subsampling. Of course,
the assembly cost is always lower for the compressive approach. The recovery cost
is lower for s ≤ 16. The values s = 8, 16, 32 seem to be realize a good trade-off
between accuracy and computational efficiency.
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6 Conclusions

We have proposed a compressive spectral collocation approach for the numerical
solution of PDEs, focusing on the case of the homogeneous diffusion equation
(Algorithm 1).

From the theoretical viewpoint, we have shown that the proposed approach
satisfies the restricted isometry property of compressive sensing under suitable
assumptions on the diffusion coefficient (Theorem 4). This implies sparse recovery
properties for the method, discussed in Sect. 4.2.

From the numerical viewpoint, we have implemented the method in MATLAB®

and compared it with the corresponding full spectral collocation approach in the
two-dimensional case (Sect. 5). In the case of exact sparsity, the compressive method
outperforms the corresponding full spectral method both in terms of accuracy and
sparsity. For compressible solutions, we have studied the trade-off between accuracy
and computational efficiency, showing that the compressive approach can reduce the
computational cost while preserving good accuracy.

This first study shows the promising nature of the compressive spectral colloca-
tion method. However, many issues still remain open for future investigation. First,
a rigorous study of the recovery guarantees of the method. Moreover, when d � 1,
the approach suffers from the curse of dimensionality. This effect may be lessened
by resorting to weighted �1-minimization and by considering smaller multi-index
spaces, using techniques analogous to [3, 11]. The method can be generalized in
a straightforward way to advection-diffusion-reaction equations, but its analysis in
this case deserves a careful investigation. Finally, the application of the method to
nonlinear problems is also a next promising research direction.
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Surrogate-Based Ensemble Grouping
Strategies for Embedded Sampling-Based
Uncertainty Quantification

M. D’Elia, E. Phipps, A. Rushdi, and M. S. Ebeida

Abstract The embedded ensemble propagation approach introduced in Phipps
et al. (SIAM J. Sci. Comput. 39(2):C162, 2017) has been demonstrated to be a
powerful means of reducing the computational cost of sampling-based uncertainty
quantification methods, particularly on emerging computational architectures. A
substantial challenge with this method however is ensemble-divergence, whereby
different samples within an ensemble choose different code paths. This can reduce
the effectiveness of the method and increase computational cost. Therefore grouping
samples together to minimize this divergence is paramount in making the method
effective for challenging computational simulations. In this work, a new grouping
approach based on a surrogate for computational cost built up during the uncertainty
propagation is developed and applied to model advection-diffusion problems where
computational cost is driven by the number of (preconditioned) linear solver itera-
tions. The approach is developed within the context of locally adaptive stochastic
collocation methods, where a surrogate for the number of linear solver iterations,
generated from previous levels of the adaptive grid generation, is used to predict
iterations for subsequent samples, and group them based on similar numbers of
iterations. The effectiveness of the method is demonstrated by applying it to highly
anisotropic advection-dominated diffusion problems with a wide variation in solver
iterations from sample to sample. It extends the parameter-based grouping approach
developed in D’Elia et al. (SIAM/ASA J. Uncertain. Quantif. 6:87, 2017) to
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more general problems without requiring detailed knowledge of how the uncertain
parameters affect the simulation’s cost, and is also less intrusive to the simulation
code.

1 Introduction

During the last decade the quantification of the uncertainty in predictive simulations
has acquired great importance and is a topic of very active research in large scale
scientific computing; we mention, e.g., random sampling methods [23, 35, 43–45],
stochastic collocation [2, 46, 47, 59] and stochastic Galerkin methods [28, 29, 60]. It
is very often the case that the source of uncertainty resides in the parameters of the
mathematical models that describe phenomena of interest; when these parameters
belong to a high-dimensional space or when the solution exhibits a non-smooth
or localized behavior with respect to those parameters, sampling methods for
uncertainty quantification (such as those mentioned above) may require a huge
number of samples making the problem computationally intractable. For this reason,
many methods, with the goal of reducing the number of samples, have been
developed; among the others, we have locally adaptive sampling methods [26, 32,
58], multilevel methods [7–9, 14, 30], compressed sensing [19, 42], and tensor
methods [1–3, 15, 25, 27, 46, 47, 55, 59].

Nevertheless, the problem remains that for large scale scientific computing
most of the computational cost is in the sample evaluation which, in most cases,
corresponds to the numerical solution of a partial differential equation (PDE).
Previous work [51] demonstrated that solving for groups (ensembles) of samples
at the same time through forward simulations can dramatically reduce the cost of
sampling-based uncertainty quantification (UQ) methods. However, fundamental
to the success of this approach is the grouping of samples into ensembles to
further reduce the computational work; in fact, the total number of iterations of
the ensemble system is strongly affected by which samples are grouped together.

In a previous work [17] we investigated sample grouping strategies for local
adaptive stochastic collocation methods applied to highly anisotropic diffusion
problems where the uncertain diffusion coefficient is modeled by a truncated
Karhunen-Loéve (KL) expansion. There, we investigated PDE-dependent and
location-dependent grouping techniques and demonstrated that a measure of the
total anisotropy of the diffusion coefficient provides an effective metric for grouping
samples as it is a good proxy for the number of iterations associated with each sam-
ple. We referred to this approach as parameter-based as it depends on the parameters,
or coefficients (the diffusion tensor in this case), of the PDE. However, accessing
problem-related information can be non-trivial or time/memory consuming.

The main contribution of this follow-up work is the design of new grouping
strategies that are cheaper and independent of the PDE. In the context of adaptive
selection of the samples in the parameter space we propose a grouping strategy
based on the construction of a (polynomial) surrogate for the number of solver
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iterations; the key idea of this approach is to group together samples with a similar
predicted number of iterations. At each level of the adaptive grid generation algo-
rithm we utilize data at previous levels to build surrogates of increasing accuracy
so to maximize the computational saving. For the construction of the surrogate we
consider standard polynomial sparse grid surrogates (SGS). This technique proves
to be as successful as the parameter-based strategy for diffusion problems, whereas,
as expected, it outperforms the parameter-based one in case of advection-dominated
problems. It is also less intrusive and requires less computational work.

The use of surrogates is certainly not new in UQ methods for the solution of a
variety of high-dimensional problems; we mention computational mechanics [12,
34, 54], computational fluid dynamics [24, 53], microwave circuit design [5, 6, 16],
as well as system reliability and failure analysis [11, 20, 38, 39]. Surrogate models
have received more research attention as cheap approaches to deal with model
uncertainties in scientific computing applications. More specifically, surrogate
models (also known as emulators, metamodels, or response surface models) would
fit a set of expensive evaluations, introducing an appealing alternative to running
costly/lengthy numerical simulations and they mimic the behavior of the high-
fidelity simulation model as closely as possible while being computationally cheap
to evaluate.

The paper is structured as follows. In Sect. 2 we introduce PDEs with random
input parameters and stochastic collocation methods. We also describe SGSs
and recall the main aspects of the numerical solution via embedded ensemble
propagation. In Sect. 3 we describe the construction of the surrogates for the number
of iterations using sparse grid approximations and show how to use them for
sample grouping. We also report the results of analytic test cases that illustrate
the proposed approach. In Sect. 4 we present the results of numerical tests for
anisotropic advection-diffusion problems in three-dimensional spatial domains and
multi-dimensional parameter spaces. Here we demonstrate the efficacy of the
surrogate-based grouping and its overall better performance with respect to the
parameter-based grouping approach. Finally, in Sect. 5, we draw conclusions and
present future research plans.

2 Preliminaries

In this section we briefly introduce stochastic PDEs (SPDEs) and specify the
mathematical model and its uncertain parameters. Following [33] we introduce
stochastic collocation methods and sparse grid approximations. Also, based on [51],
we recall the principal aspects of embedded ensemble propagation for the solution
of groups of parameter dependent deterministic PDEs.



44 M. D’Elia et al.

2.1 PDEs with Random Input Parameters

Let D ⊂ R
d (d = 1, 2, 3) be a bounded domain with boundary ∂D and let

(Ω,F,P) be a complete probability space.1 We consider the following stochastic
elliptic boundary value problem. Find u : D × Ω such that almost surely we have
that

{
L(a, v)u = f x ∈ D

u = 0 x ∈ ∂D,
(1)

where L is an elliptic operator defined on D parametrized by the uncertain
parameters a( x, ω) and v(x, ω), and f (x) is a forcing term with x ∈ D and ω ∈ Ω .
We make the following assumptions.2

1. a(x, ω) and v(x, ω) are bounded from above and below with probability 1.
2. a(x, ω) can be written as a(x, ω) = a(x, y(ω)) in D × Ω , where

y(ω) = (y1(ω) . . . yN(ω)) ∈ R
N is a random vector with uncorrelated

components. The same representation holds for v(x, ω) = v(x, y(ω)).

A classical example of random parameter that satisfies (1) and (2) is given by a
truncated KL expansion [40, 41], i.e.

a(x, ω) = Ea +
N∑
n=1

√
λn bn(x)yn(ω). (2)

The latter corresponds to the approximation of a second order correlated random
field with expected value Ea and covariance cov(x, x′) with eigenvalues (in
decreasing order) λn and eigenfunctions bn(x). Note that the random variables
{yn(ω)}Nn=1 map the sample space Ω into R

N ; for Γn = yn(Ω) ⊂ R, we define

the parameter space as Γ =∏N
n=1 Γn.

A Stochastic Linear Elliptic PDE In this work we consider the following SPDE
in (D × Γ ) ⊂ (Rd × R

N)

{
L(a(x, y))u = −∇ · (A(x, y)∇u) + v(x, y) · ∇u = f x ∈ D, y ∈ Γ

u = 0 x ∈ ∂D
(3)

where A(·, y) : RN → R
d×d is a diffusivity tensor and v(·, y) : RN → R

d is an
advection coefficient. In the first part of the paper we consider v = 0; we introduce
and test the parameterized advection case in Sect. 4. As an example, for d = 3, A

1Here, Ω is a set of realizations, F is a σ -algebra of events and P : F → [0, 1] is a probability
measure.
2For details regarding the functional spaces and the well-posedness of problem (1) we refer to [33].
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may be defined as A( x, y) = diag(a(x, y), ay, az) with ay, az ∈ R+ and

a(x, y) = amin + â exp

{
N∑
n=1

√
λnbn( x)yn

}
. (4)

Here, instead of using the classical KL expansion, to preserve the positive-
definiteness of the diffusion tensor required for the well-posedness of problem (3),
we consider the expansion of the logarithm of the random field.

Quantity of Interest In the SPDE context the goal of uncertainty quantification is
to determine statistical information about an output of interest that depends on the
solution. In most of the cases the output of interest is not the solution itself but a
functional Gu(y), e.g., the spatial average of u(·, y): Gu(y) = 1

|D|
∫
D
u(x, y) dx.

Then, the statistical information may come in the form of moments of Gu(y); as an
example, the quantity of interest (QoI) could be the expected value of Gu(y) with
respect to the probability density function of y. Note that UQ methods aim to find
accurate approximations of Gu, say Ĝu, that are used to cheaply evaluate the QoI.

2.2 Numerical Solution via Stochastic Collocation Methods

For the finite-dimensional approximation of problem (3) we focus on stochastic
collocation (SC) methods; these are non-intrusive stochastic sampling methods
based on decoupled deterministic solves. For a detailed description of stochastic
collocation methods we refer to [33] and for a summary, with results relevant to this
paper, to [17].

Given a Galerkin method for spatial discretizations of (3), we denote by uh(·, y)
the semi-discrete approximation of u(x, y) for all random vectors y ∈ Γ . The main
idea of stochastic collocation methods is to collocate uh(·, y) on a suitable set of
samples {ym}Mm=1 ⊂ Γ to determine M semi-discrete solutions and then use the
latter to construct a global or piecewise polynomial to represent the fully SC discrete
approximation uhM(x, y), i.e.

uhM(x, y) =
M∑

m=1

cm(x)ψm(y),

where {ψm}Mm=1 are polynomial basis functions and cm(x) are coefficients that
depend on the semi-discrete solutions. Because we are mainly interested in problems
where the solution has an irregular dependence on the random parameters, we
consider only local stochastic collocation methods, which use locally supported
piecewise polynomials to approximate the dependence of the solution on the random
parameters.
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We consider a generalized version of sparse grids, introduced by Smolyak in [56],
used in [3, 46, 47] that relies on tensor products of one-dimensional approximations.
We choose the basis {ψm}Mm=1 to be a piecewise hierarchical polynomial basis [13,
31].

For the generation of the grid and of the SGS we proceed level by level using
the adaptive procedure described in [33] and summarized in [17]. We indicate the
total number of collocation (or sparse grid) points at level l by Ml . The adaptivity
is based on surpluses; these are error indicators of the accuracy of the SGS at level
l at any point of the sparse grid at level (l + 1). A surplus-based adaptive algorithm
adds points at level (l + 1) only if the surplus-based error indicator is higher than a
given tolerance.

Remark 1 As already mentioned, the output of interest is usually a functional of
the solution; in such cases at each step of the adaptive grid generation we construct
an approximation, or surrogate, of Gu(y) and base the stopping criterion on the
accuracy of the surrogate itself.

Also, for the purpose of this paper, it must be noted that at each step we can
compute multiple surrogates for functionals of interest, i.e., approximations of
Iu(y), to be used for different tasks; in our case, a functional representing the
number of linear solver iterations is computed to perform the grouping.

2.3 Numerical Solution via Ensembles

Sampling-based uncertainty quantification methods such as the stochastic collo-
cation methods described above are attractive since they can be applied to any
scientific simulation code with little to no modification of the code. Furthermore,
these methods are trivially parallelizable since each sample can be evaluated
independently and therefore in parallel. However, in many cases of interest to large-
scale scientific computing, each sample evaluation consumes a large fraction of the
available computational resources due to the extremely high fidelity and complexity
of the simulations. Therefore it is often possible to only parallelize a small
fraction of the required sample evaluations, with the remaining fraction evaluated
sequentially. Moreover, in many cases a large amount of data and computation is
the same in each sample evaluation and in principle could be reused across samples
that are being evaluated sequentially, potentially reducing aggregate computational
cost.

In this context, an intrusive sample propagation scheme called embedded ensem-
ble propagation was introduced in [51] where small groups of samples (called
ensembles) are propagated together through the simulation. Given a user-chosen
ensemble size S (typically in the range of 4–32), this approach requires modifying
the simulation code to replace each sample-dependent scalar with a length-S array
and mapping arithmetic operations on those scalars to the corresponding operation
on each component of the array. In [51] it was demonstrated that this approach can
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substantially reduce the cost of evaluating S samples compared to evaluating them
sequentially for several reasons:

• Sample independent quantities (for example spatial meshes and sparse matrix
graphs are often sample independent) are automatically reused. This reduces
computation by only computing these quantities once per ensemble, reduces
memory usage by only storing them once per ensemble, and reduces memory
traffic by only loading/storing them once per ensemble.

• Random memory accesses of sample-dependent quantities are replaced by con-
tiguous accesses of ensemble arrays. This amortizes the latency costs associated
with these accesses over the ensemble, since consecutive memory locations can
usually be accessed with no additional latency cost. It was demonstrated in [51]
that this effect, combined with reuse of the sparse matrix graph can result in 50%
reduction in cost of matrix-vector products associated with sparse iterative linear
system solvers on emerging computational architectures, when applied to scalar
diffusion problems such as those considered here.

• Arithmetic on ensemble arrays can be naturally mapped to fine-grained vector
parallelism present in most computer architectures today, and this vector paral-
lelism can be more easily extracted by compilers than can typically be extracted
from the simulation itself.

• The number of distributed memory communication steps of sample-dependent
information (e.g., within sparse iterative linear system solvers) is reduced by a
factor of S, with the size of each communication message increased by a factor
of S. This both reduces the latency cost associated with these messages by S as
well as improves the throughput of each message since larger messages can often
be communicated with higher bandwidth. It was demonstrated in [51] that this
can substantially improve scalability to large processor counts when the costs
associated with distributed memory communication become significant.

Furthermore, it was also shown in [51] that the translation from scalar to
ensemble propagation within C++ simulation codes can be facilitated through
the use of a template-based generic programming approach [48, 49] whereby the
traditional floating point scalar type is replaced by a template parameter. This
template code can then be instantiated on the original floating point type to recover
the original simulation, as well as a new C++ ensemble scalar type that internally
stores the length-S ensemble array to implement the ensemble propagation. Such
a scalar type is provided by the Stokhos [50] package within Trilinos [36, 37] and
has been integrated with the Kokkos [21, 22] package for portable shared-memory
parallel programming as well as the Tpetra package [4] for distributed linear algebra.

In [51] it was shown that the ensemble propagation method was equivalent to
solving commuted Kronecker product systems. To be precise, consider a finite
element discretization of (3). For every sample ym, m = 1, . . .M , we write the
resulting algebraic system as follows

LmUm = Fm, Lm ∈ R
J×J , Um ∈ R

J , Fm ∈ R
J , (5)
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where J is the number of spatial degrees of freedom.3 Consider solving (5) for S
samples ym1

, . . . , ymS
:

Lm1 Um1 = Fm1,

...

LmSUmS = FmS ,

(6)

which can be written more compactly through Kronecker product notation:

(
S∑
i=1

eie
T
i ⊗ Lmi

)(
S∑
i=1

ei ⊗ Umi

)
=

S∑
i=1

ei ⊗ Fmi . (7)

Here ei is the i-th column of the S × S identity matrix. Furthermore, a symmetric
permutation may be applied to (7) which results in commuting the order of the terms
in each Kronecker product:

(
S∑
i=1

Lmi ⊗ eie
T
i

)(
S∑
i=1

Umi ⊗ ei

)
=

S∑
i=1

Fmi ⊗ ei. (8)

Systems (7) and (8) are mathematically equivalent, but have different orderings of
degrees of freedom. In (7), all spatial degrees of freedom for a given sample ymi

are
ordered consecutively, whereas in (8) degrees of freedom for all samples are ordered
consecutively for a given spatial degree of freedom.

The embedded ensemble propagation method described in [51] produces
linear systems equivalent to the commuted Kronecker product system (8) by
storing each nonzero entry (i, j) in the ensemble matrix as a length-S array
{(Lm1)ij , . . . , (LmS )ij }. Furthermore, to maintain consistency with the Kronecker-
product formulation, norms and inner products of ensemble vectors produce scalar
results by summing the components for the norm/inner-product across the ensemble.
In terms of sparse iterative solvers such as the conjugate gradient (CG), this has the
effect of coupling the systems in (6) together, causing them all to converge at the
same rate.

Note that this makes it impossible to determine when each system would have
converged when solved independently, which is required for the surrogate-based
grouping strategy described below. To remedy this, we changed the implementation
of norms and inner products to not sum contributions across the ensemble, and
instead compute an ensemble norm/inner-product. This breaks the equivalency to
a Kronecker-product formulation, but is instead equivalent to solving the systems
independently as in (5) and allows each component system to converge at its own

3Note that here we allow the forcing term f to be sample dependent.
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rate. However since the component systems are stored through the ensemble arrays,
the iterative solver must continue until all systems have converged. Through a
custom implementation of the iterative solver convergence test, we are able to
determine when each system would have converged when solved independently.
How this is implemented in the software is described in the numerical tests section.

The amount of performance improvement enabled by the embedded ensemble
propagation approach is highly problem, problem size, and computer architecture
dependent. For an in-depth examination of performance, see [51]. However as moti-
vation for the usefulness of the ensemble propagation approach, as well as to provide
a quantitative means of evaluating the impact of the grouping approaches described
below, Fig. 1 displays the speed-up observed when solving (5) using the ensemble
technique for several choices of ensemble size S relative to solving S systems
sequentially. In these calculations an isotropic diffusion parameter is modeled by the
truncated KL expansion a(x, y) = amin + â

∑N
n=1

√
λnbn(x)yn, where λn and bn

are the eigenvalues and eigenfunctions of an exponential covariance, see Sect. 4, and
yn ∈ [−1, 1]. A spatial mesh of 323 mesh cells was used for the spatial discretization
and the resulting linear equations are solved by CG preconditioned with algebraic
multigrid (AMG). The calculations were implemented on a single node of the Titan
CPU architecture (16 core AMD Opteron processors using 2 MPI ranks and 8
OpenMP threads per MPI rank). In this case, due to the isotropy and the fact that we
are using a uniform grid, the number of CG iterations is independent of the sample

Fig. 1 Speed-up for the embedded ensemble propagation approach for various ensemble sizes
S when applied to a simple isotropic diffusion problem where the number of solver iterations is
sample independent, implemented on a single node of the Titan architecture
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value and therefore the number of CG iterations for each ensemble is independent
of the choice of which samples are grouped together in each ensemble. Essentially,
this curve indicates the maximum speed-up possible for the ensemble propagation
approach (for the given problem, problem size, and computer architecture) with
perfect grouping, obtained when all samples within every ensemble require exactly
the same number of preconditioned CG iterations. Variation in the number of
iterations will reduce this speed-up due to increased computational work, which
the grouping approaches discussed next attempt to mitigate.

3 Grouping Strategies

In this section we introduce an ensemble grouping approach with the goal of
maximizing the performance of the embedded ensemble propagation algorithm
described in the previous section when the number of linear solver iterations varies
dramatically from sample to sample; we describe the grouping algorithm and apply
it to analytic test cases for illustration. Also, for the sake of comparison, we recall
the parameter-based grouping strategy, a successful technique introduced in [17]
where the grouping depends on the diffusion parameter characterizing the PDE.

3.1 Surrogate-Based Grouping

The key idea of our grouping strategy is to construct a surrogate for the number of
iterations so to predict which samples induce a similar convergence behavior and
group them together at each step of the adaptive grid generation. In what follows
we denote by G(̃y) the exact value of the output of interest at sample ỹ and by
Ĝ(̃y) its predicted value, i.e. Ĝ(·) is a surrogate for the output of interest. Also, we
denote by I (̃y) the exact number of iterations associated with sample ỹ and by Î (̃y)

the predicted number of iterations, i.e. Î (·) is a surrogate for the number of linear
solver iterations at any point in the sample space. For a general surrogate model we
summarize the grid generation and grouping algorithm in Fig. 2 and provide more
details in the two following paragraphs.

The Algorithm Given a sample budgetNmax, that represents the maximum number
of samples that one can afford, an ensemble size S, an error tolerance τ , and an error
indicator e for the accuracy of the surrogate Ĝ, we generate an initial sample set Y0
(a sparse grid in our case) and group the samples in ensembles in the order they
are generated. Then, we iterate performing the following steps until one of the two
stopping criteria (green circles in Fig. 2) is satisfied.

1. Solve the PDEs in ensembles and evaluate G(yi ) and I (yi ) for all yi in Yl .
2. Build the surrogates Ĝ and Î based on the values of G and I at yi ∈ ∪L

l=0Yl .
If the current surrogate does not satisfy the accuracy requirement, i.e. e ≥ τ
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Fig. 2 Flow chart summarizing the general grid generation and grouping algorithm; here Y =
∪L
l=0Yl , Nmax is the maximum number of samples that one can afford and τ is a user-defined error

tolerance

3. Use Ĝ to select the new sample set Yl+1.
If the total number of samples is below the sample budget, i.e. |Y| < Nmax

4. Update Y, use Î to group the samples in ensembles and go back to 1.

Note that the number of ensembles to be solved in (1.) is not known a priori but it
depends on the sparse grid generator. In fact, the number of samples at every level is
determined by the adaptive grid generation algorithm and it depends on the accuracy
of the surrogate Ĝ. In the next paragraph we describe how to perform (3.) and (4.)
using SGS.

SGS-Based Grouping As described in Sect. 2.2, at every level of the adaptive grid
generation we can construct a sparse grid approximation of the solution of (3) or
we can compute an approximation (a surrogate) of an output of interest. We express
such surrogate in terms of sparse grid basis functions as follows:

Ĝ(y) =
Ml∑
m=1

c̃mψm(y), (9)
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where the coefficients c̃m depend on values of the output of interest at the sparse
grid points. Note that at each level of the adaptive algorithm every point has 2N
candidate children (or refinement points); in step (3.), among those candidates,
we select only those points associated with a surplus higher than the prescribed
tolerance.

With the purpose of improving the efficiency of the embedded ensemble
propagation, at each level we also build a SGS for the number of linear solver
iterations:

Î (y) =
Ml∑
m=1

cmψm(y), (10)

where cm depend on the number of iterations associated to each point in the current
grid. This surrogate is used in step (4.) to group together samples with similar
predicted number of iterations. Our strategy consists in ordering the new selected
samples according to increasing values of Î and then dividing them in ensembles of
size S.

Note that we are using a piecewise polynomial surrogate to approximate a
function that takes discrete positive values; this could potentially lead to inaccurate
results and compromise the efficiency of the grouping. However, our numerical tests
show that this choice is successful.

The Computational Saving To assess the computational saving brought by our
grouping strategy we consider the quantities

Rl =
S

Kl∑
k=1

Ik

Kl∑
k=1

S∑
i=1

I (yk,i)

, or, equivalently Rl =
S

Kl∑
k=1

max
i=1,...S

I (yk,i)

Kl∑
k=1

S∑
i=1

I (yk,i)

(11)

R =
S

K∑
k=1

Ik

K∑
k=1

S∑
i=1

I (yk,i)

, or, equivalently R =
S

K∑
k=1

max
i=1,...S

I (yk,i)

K∑
k=1

S∑
i=1

I (yk,i)

(12)

where Ik is the number of iterations required by the kth ensemble, I (yk,i) is the
number of iterations required by the ith sample in the kth ensemble, Kl is the
number of ensembles at level l andK is the total number of ensembles.Rl represents
the increase in computational work (as indicated by the number of solver iterations)
induced by the ensemble propagation at level l, whereas R represents the same
quantity over all levels. This increase in work is mitigated by the computational
savings induced by the ensemble propagation technique, referred to as speed-up.
The achieved speed-up in practice is then reduced by a factor of R.
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Note that the equivalence in (11) and (12) follows from the implementation of
the embedded ensemble propagation described in Sect. 2.3.

Illustrative Tests We perform some illustrative tests using quantities of interest
represented by analytic functions. More specifically, using continuous and discon-
tinuous functions we test the efficacy of the surrogate-based grouping. For N = 2,
we consider the following quantities

G1(y) = −e−(y1−1)2 + e−0.8(y1+1)2
e−(y2−1)2 + e−0.8(y2+1), (y1, y2) ∈ [−2, 2]2

G2(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 y2
1 + y2

2 < r1

0 r1 ≤ y2
1 + y2

2 ≤ r2

1 y2
1 + y2

2 > r2,

(y1, y2) ∈ [0, 1]2,

I (y) = e−a2
1(y1−u1)

2−a2
2(y2−u2)

2 + 1.
(13)

The functionsG1 andG2 (only used in this section for testing purposes) play the role
of outputs of interest and are used to perform adaptivity, whereas I plays the role
of the number of iterations and it is used to test the effectiveness of the surrogate-
based grouping, i.e. we build a surrogate for I , we use it to order the samples for
increasing predicted values of I , and we group the samples in ensembles of size S.

For the generation of the sparse grid and the adaptive refinement based on
Ĝ we use TASMANIAN [57] (toolkit for adaptive stochastic modeling and non-
intrusive approximation), a set of libraries for high-dimensional integration and
interpolation, and parameter calibration, sponsored by the Oak Ridge National
Laboratory. TASMANIAN implements a wide class of one-dimensional rules (and
extends them to the multi-dimensional case by tensor products) based on global and
local basis functions. In this work the sparse grid is obtained using piecewise linear
local basis functions and classic refinement.

It is common practice to apply the adaptive refinement to a grid of level l >

1; in these experiments we set the initial level to l = 2. Also, we set τ = 5 ·
10−4 and Nmax = 1000 or 2000 and we use the second definition of R in (12).
Results are reported in Table 1, for G1 on the left and G2 on the right. Values of R
are very close to 1, the optimal value that corresponds to perfect grouping; this is
expected due to the ability of SGS to well approximate smooth functions. However,
in our application I is not only discontinuous, but it takes values in N+; nonetheless,
results in the next section show the performance improvement enabled by the SGS-
based grouping for SPDEs.
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Table 1 SGS: For G1 (left)
and G2 (right), values of R
for different ensemble sizes
and maximum number of
points

S Nmax R

8 2000 1.428

16 2000 1.501

20 2000 1.470

8 1000 1.064

16 1000 1.362

20 1000 1.075

S Nmax R

8 2000 1.039

16 2000 1.059

20 2000 1.067

8 1000 1.072

16 1000 1.112

20 1000 1.114

3.2 Parameter-Based Grouping

We recall that we are interested in the solution of anisotropic diffusion problems;
common choices of solvers include PGC with AMG preconditioners. However,
AMG methods exhibit poor performance when applied to diffusion problems
featuring pronounced anisotropy; this suggests that a measure of the anisotropy is
a good indicator of the solver convergence behavior. In [17] we proposed as an
indicator of slow convergence (high number of iterations) for yi the quantity

H(̃y) = ‖r(x, ỹ)‖L∞(D) where r(x, ỹ) = λmax(A(x, ỹ))
λmin(A( x, ỹ))

. (14)

As in the surrogate-based grouping, this strategy consists in ordering the samples
according to increasing values of H and then dividing them in ensembles of size S.

The idea of this approach is to identify the intensity of the anisotropy at each
point in the spatial domain with the ratio between the maximum and minimum
eigenvalues of the diffusion tensor; the maximum value of this quantity over D
then provides a measure of the anisotropy associated with the sample ỹ. Note that
the computation of this indicator comes at a cost. In fact, prior to the assembling of
the ensemble matrix we need to compute for each sample the diffusion tensor and
its eigenvalues.

The Algorithm Given Nmax, S, τ , and e, we generate an initial sample set Y0.
Then, we iterate performing the following steps until one of the two stopping criteria
is satisfied.

1. Evaluate H(yi ) for all yi in Yl and group the samples.
2. Solve the PDEs in ensembles.

If the current surrogate does not satisfy the accuracy requirement, i.e. e ≥ τ

3. Use Ĝ to select the new sample set Yl+1.
If the total number of samples is below the sample budget, i.e. |Y| < Nmax

4. Update Y and go back to 1.
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4 Numerical Tests

In this section we present the results of numerical tests performed on a spatial
domain of dimension d = 3 and a sample space of dimension N = 4, first for the
anisotropic diffusion problem (3) in Sect. 4.1, followed by an anisotropic advection-
diffusion problem in Sect. 4.2.

4.1 Anisotropic Diffusion

For the solution of the anisotropic diffusion problem (3) we let D = [0, 1]3 and
Γ = [−1, 1]4. We consider the following exponential covariance function

cov(x, x′) = σ0 exp

{
−‖x − x′‖1

δ

}
, (15)

where δ is the characteristic distance of the spatial domain, i.e. the distance for
which points in the spatial domain are significantly correlated. In all our simulations
we set δ = 1/4 and σ0 = √

300. We discretize (3) using trilinear finite elements and
323 mesh cells. The Kokkos [21, 22] and Tpetra [4] packages within Trilinos [36, 37]
are used to assemble and solve the linear systems for each sample value using hybrid
shared-distributed memory parallelism via OpenMP and MPI. The equations are
solved via CG implemented by the Belos package [10] with a linear solver tolerance
of 10−7. CG is preconditioned via smoothed-aggregation AMG as provided by the
MueLu package [52]. A second-order Chebyshev smoother is used at each level of
the AMG hierarchy and a sparse-direct solve for the coarsest grid. The linear system
assembly, CG solve, and AMG preconditioner are templated on the scalar type
for the template-based generic programming approach to implement the embedded
ensemble propagation as described in Sect. 2.3, allowing the code to be instantiated
on double for single sample evaluation and the ensemble scalar type provided
by Stokhos [50] for ensembles. As before, the calculations were implemented on a
single node of the Titan CPU architecture (16 core AMD Opteron processors using
2 MPI ranks and 8 OpenMP threads per MPI rank).

For the adaptive grid generation we use TASMANIAN and we consider a classic
refinement; we set the initial sparse grid level to l = 1, τ = 10−3 and Nmax = 2000.
We choose the �2-norm of the vector of the values of the discrete solution at the
degrees of freedom as the output of interest, i.e. G(y) = ‖u(y)‖2

�2 , where u(y) is
the discrete solution in correspondence of the sample y.

The surrogate-based grouping strategy described above requires access to the
number of CG iterations for each sample within an ensemble in order to build
up the iterations surrogate Î . As described in Sect. 2.3 we modified the ensemble
propagation implementation to compute inner products and norms of ensemble
vectors as ensembles (instead of scalars). Thus the CG residual norm computed
during the CG iteration becomes an ensemble value. The CG iteration must continue
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until each ensemble residual norm satisfies the supplied tolerance, and thus all
samples within the ensemble must take the same number of iterations. However
we modified the convergence decision implementation in Belos (through partial
specialization of the Belos convergence test abstraction on the ensemble scalar type)
to keep track of when each sample within the ensemble would have converged,
based on its component of the residual norm. These values are then reported to
TASMANIAN to build the iterations surrogate.

Note that because of the high variation in CG iterations from sample to sample
present in the following tests, and the requirement that the CG iteration continue
until each component of the ensemble satisfies the convergence criteria, numerical
underflow in the A-conjugate norm calculation may occur for some samples within
an ensemble. When this occurs, the corresponding components of the norm appear
numerically as zero, resulting in invalid floating point values (i.e., NaN) in the next
search direction. While the grouping strategies generally mitigate this, it may occur
with a poor grouping of samples. To alleviate this, we also modified the CG iteration
logic (again via partial specialization of the Belos iteration abstraction) to replace
the update with zero for each ensemble component when the A-conjugate norm is
zero. For these samples, the CG algorithm continues until the remaining samples
have converged, but the approximate solution no longer changes.

Test 1 For S = 4, 8, 16, 32 we report the results of our tests in Table 2. The
adaptive algorithm generates a sparse grid of size |Y| = 1372 after achieving
the prescribed error tolerance τ with eight levels of refinement. The strategies
“sur”, “par” and “nat” correspond to the SGS-based grouping, the parameter-based
grouping and the one based on the order in which the samples are generated
by TASMANIAN. We also include the best hypothetical grouping based on the
actual iterations for each sample in the rows labeled “its”. For each method and
ensemble size, Table 2 displays the calculated Rl for each level l of the adaptive
grid generation (see (11)), the final R for the entire sample propagation (see (12)),
and the total measured speedup for the ensemble linear system solves defined to
be the time for all linear solves computed sequentially divided by the time for
all ensemble solves (for the “its” method, a speedup is not computed since it is a
hypothetical grouping constructed after all solves have been completed). To validate
the measured speed-ups, we also computed the predicted speed-up determined by
the iteration independent speed-up given by Fig. 1 divided by R.

Because of the large variation in number of CG iterations from sample to
sample, we observe large values of R for the natural ordering based on the
order in which samples are generated, particularly for larger ensemble sizes; this
reduces the performance of the ensemble propagation method.4 However the

4Note that at each level, the number of samples is not usually evenly divisible by the ensemble
size. To use a uniform ensemble size for all ensembles, samples are added by replicating the last
sample in the last ensemble. This results in larger R values when the number of samples is small
and the ensemble size is large, as can be seen in the results for R1.
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parameter and surrogate-based orderings reduce R and therefore lead to larger
speed-ups. The surrogate and iterations-based orderings lead to similar R values,
demonstrating that the surrogate approach is predicting the number of solver
iterations well. This is particularly evident for higher refinement levels where a more
accurate surrogate for the number of iterations has been constructed. In Fig. 3 the

Fig. 3 Actual (“its”) and surrogate-predicted (“sur”) linear solver iterations for each sample at
each adaptive level for Test 1
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number of solver iterations for each sample at each level as well as the iterations
predicted by the surrogate are displayed, demonstrating that the surrogate generally
predicts the number of iterations well, and its accuracy generally improves as the
stochastic grid is refined. Spikes in the graph correspond to samples generating
parameter combinations that result in highly anisotropic random fields, where the
preconditioner performs very poorly.

Test 2 Next we consider a diffusion parameter with a discontinuous behavior with
respect to the uncertain variable y. Specifically, we define â as follows

â(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 r(y) < d
4

100 d
4 ≤ r(y) < d

2

10 r(y) ≥ d
2 ,

(16)

with d = √
3 and r(y) =

√∑
i y

2
i . Due to the discontinuous nature of the

problem, the adaptive algorithm is unable to achieve the error tolerance τ within
the maximum number of points, and stops after reaching a size of |Y| = 1009 and
five levels of refinement. We report the results in Table 3; generally, results similar
to the continuous case above are observed. However we do see larger differences

Table 3 Computational results for Test 2, displaying Rl for each level l, the final R, measured
ensemble linear solver speed-up and predicted speed-up based on R and Fig. 1, for the iterations-
based (“its”), surrogate-based (“sur”), parameter-based (“par”), and natural grouping (“nat”)
methods

I S R1 R2 R3 R4 R5 R Speed-up Pred. speed-up

its 4 1.77 1.06 1.20 1.06 1.06 1.08 – 2.51

sur 4 2.08 1.13 1.24 1.14 1.25 1.22 2.09 2.23

par 4 2.08 1.44 1.62 1.36 1.37 1.41 1.93 1.94

nat 4 2.08 1.51 1.32 1.34 1.35 1.36 2.00 2.01

its 8 2.91 1.23 1.56 1.16 1.14 1.22 – 3.22

sur 8 2.91 1.29 1.64 1.27 1.21 1.30 2.80 3.02

par 8 2.91 1.74 2.01 1.49 1.79 1.74 2.29 2.25

nat 8 2.91 1.56 1.80 1.55 1.55 1.59 2.41 2.46

its 16 3.33 1.79 1.64 1.22 1.17 1.29 – 3.97

sur 16 3.33 1.79 1.69 1.33 1.24 1.36 3.22 3.74

par 16 3.33 2.38 2.37 1.60 1.66 1.77 2.87 2.88

nat 16 3.33 2.38 2.10 1.99 1.81 1.93 2.60 2.65

its 32 6.65 2.88 2.28 1.38 1.28 1.54 – 3.74

sur 32 6.65 2.88 2.34 1.46 1.37 1.62 3.04 3.55

par 32 6.65 2.88 2.53 1.75 1.77 1.94 2.87 2.96

nat 32 6.65 2.88 2.87 2.56 2.16 2.43 2.39 2.38



60 M. D’Elia et al.

Fig. 4 Actual (“its”) and surrogate-predicted (“sur”) linear solver iterations for each sample at
each adaptive level for Test 2

between the R values at higher levels between the iteration and surrogate-based
groupings. As before, the solver iterations at each level as well as the iterations
predicted by the surrogate are displayed in Fig. 4. Again, the surrogate predicts the
number of iterations for most samples reasonably well, even for this more difficult
discontinuous case.
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4.2 Anisotropic Advection-Diffusion

As a final numerical test we consider applying the above grouping strategies to
the advection-diffusion problem (3), where A(x, y) is represented by the same
anisotropic diffusivity tensor (4):

A(x, y) = diag(a(x, y), ay, az), a( x, y) = amin + â exp

{
Na∑
n=1

√
λnbn(x)yn

}
,

with the same exponential covariance (15) as above. The advection coefficient
v(x, y) = (v(x, y), v(x, y), v( x, y)) has a fixed direction (1, 1, 1) but a varying
magnitude also modeled by a truncated KL expansion

v(x, y) = vmin +
Na+Nv∑
n=Na+1

σ0
√
λnbn( x)yn (17)

derived from the exponential covariance (15) with δ = 1/4, σ0 = 103, and vmin =
0. For this test, we set Na = Nv = 2 so that N = Na + Nv = 4. As above,
we discretize (4) using trilinear finite elements and 323 mesh cells, however now
including SUPG stabilization [18] because of the large advection coefficient. The
solver and sparse grid parameters are the same as in Test 1 above, however this time
we use GMRES as the linear solver since the problem is no longer symmetric.

In Table 4 we display Rl for each level l = 1, . . . , 5 and the final R for each of the
four grouping methods and S = 4, 8, 16, and 32.5 The convergence behavior of the
preconditioned linear solver is now sensitive to both the level of anisotropy and the
magnitude of the advection, which vary independently according to their respective
random field representations. Thus we see the surrogate approach significantly out-
performs the parameter-based grouping which is based on the level of anisotropy
of the diffusion tensor alone. And because the diffusion and advection coefficients
vary independently, deriving an effective parameter-based grouping for this problem
would be extremely difficult. This example shows that using a surrogate-based
technique is more efficient and more accurate at the same time.

5Note that we do not include timing results in Table 4 since the ensemble implementation is
currently not optimized for GMRES. A significant cost within GMRES is the orthogonalization
of each new Krylov vector against the previous set of vectors, which in Trilinos is implemented
through GEMV dense matrix-vector product BLAS routine. An optimized implementation of this
routine for ensembles is currently being developed.
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Table 4 Computational
results for the
advection-diffusion problem,
displaying Rl for each level l
and the final R for the
iterations-based (“its”),
surrogate-based (“sur”),
parameter-based (“par”), and
natural grouping (“nat”)
methods

I S R1 R2 R3 R4 R5 R

its 4 1.94 1.26 1.05 1.13 1.01 1.06

sur 4 1.97 1.36 1.27 1.33 1.14 1.21

par 4 1.97 1.47 1.54 1.49 1.42 1.45

nat 4 1.97 1.62 1.50 1.55 1.40 1.46

its 8 3.16 1.39 1.34 1.31 1.06 1.17

sur 8 3.16 1.66 1.54 1.58 1.24 1.37

par 8 3.16 1.65 2.04 1.77 1.63 1.71

nat 8 3.16 2.08 2.06 1.91 1.78 1.85

its 16 3.41 1.75 1.47 1.68 1.09 1.30

sur 16 3.41 1.76 1.58 1.96 1.33 1.53

par 16 3.41 1.75 2.37 2.03 1.82 1.93

nat 16 3.41 2.93 2.45 2.51 2.24 2.35

its 32 6.81 3.12 1.91 1.84 1.17 1.49

sur 32 6.81 3.12 2.01 2.15 1.45 1.74

par 32 6.81 3.12 2.90 2.50 1.99 2.25

nat 32 6.81 3.12 4.02 3.24 2.70 2.99

5 Conclusion

The embedded ensemble propagation approach introduced in [51] has been demon-
strated to be a powerful means of reducing the computational cost of sampling-based
uncertainty quantification methods, particularly on emerging computational archi-
tectures. A substantial challenge with this method however is ensemble-divergence,
whereby different samples within an ensemble choose different code paths. This can
reduce the effectiveness of the method and increase computational cost. Therefore
grouping samples together to minimize this divergence is paramount in making the
method effective for challenging computational simulations.

In this work, a new grouping approach based on a surrogate for computational
cost built up during the uncertainty propagation was developed and applied to model
advection-diffusion problems where computational cost is driven by the number
of (preconditioned) linear solver iterations. The approach was developed within
the context of locally adaptive stochastic collocation methods, where an iterations
surrogate generated from previous levels of the adaptive grid generation is used to
predict iterations for subsequent samples, and group them based on similar numbers
of iterations. While the approach was developed within the context of stochastic
collocation methods, we believe the idea is general and could be easily applied
to any adaptive uncertainty quantification algorithm. In principle it could even be
applied to non-adaptive algorithms by pre-selecting a set of samples, evaluating
those samples, and generating an appropriate iterations surrogate from those results.
The method was applied to two highly anisotropic diffusion problems with a
wide variation in solver iterations from sample to sample, one continuous with
respect to the uncertain parameters, and one discontinuous, and the method was
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demonstrated to significantly improve grouping and increase performance of the
ensemble propagation method. Numerical tests performed on advection-dominated
problems show that this technique extends the (less effective) parameter-based
grouping approach developed in [17] to more general problems without requiring
detailed knowledge of how the uncertain parameters affect the simulation’s cost,
and is also less intrusive to the simulation code.

The idea developed here could be further improved by allowing for variation in
the ensemble size within each ensemble step. Given a prediction of how each ensem-
ble size affects performance (e.g., from Fig. 1) and a surrogate for computational
cost as developed here, ensembles of varying sizes could be selected to maximize
performance through a constrained combinatorial optimization. Furthermore, the
adaptive uncertainty quantification method could be modified to select new points
not only based on the PDE quantity-of-interest, but also choose points that minimize
divergence of computational cost/iterations. These ideas will be pursued in future
works.
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Conservative Model Order Reduction
for Fluid Flow
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Abstract In the past decade, model order reduction (MOR) has been successful in
reducing the computational complexity of elliptic and parabolic systems of partial
differential equations (PDEs). However, MOR of hyperbolic equations remains a
challenge. Symmetries and conservation laws, which are a distinctive feature of
such systems, are often destroyed by conventional MOR techniques which result
in a perturbed, and often unstable reduced system. The importance of conservation
of energy is well-known for a correct numerical integration of fluid flow. In this
paper, we discuss model reduction, that exploits skew-symmetry of conservative
and centered discretization schemes, to recover conservation of energy at the level
of the reduced system. Moreover, we argue that the reduced system, constructed
with the new method, can be identified by a reduced energy that mimics the
energy of the high-fidelity system. Therefore, the loss in energy, associated with
the model reduction, remains constant in time. This results in an, overall, correct
evolution of the fluid that ensures robustness of the reduced system. We evaluate
the performance of the proposed method through numerical simulation of various
fluid flows, and through a numerical simulation of a continuous variable resonance
combustor model.

1 Introduction

Model order reduction (MOR), and in particular reduced basis (RB) methods, has
emerged as a powerful approach to cope with the complex and computationally
intensive models in engineering and science. Such techniques construct a reduced
ordered representation for the state of a model which accurately approximates the
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configuration of the system. The evaluation of this representation is then possible
with considerable acceleration.

Although RB methods are successful in reducing the computational complexity
of models with elliptic and parabolic partial differential equations (PDEs), MOR of
systems of hyperbolic equations, or models with strong advective terms, remains a
challenge. Often, such models arise from a set of invariants and conservation laws,
some of which are violated by MOR which result in a qualitatively wrong, and
sometimes unstable, solution.

Constructing MOR techniques and RB methods that preserve intrinsic structures
has recently attracted attention [3, 4, 14, 26, 28, 33]. Structure preservation can
recover a physically meaningful reduced model, rather than a pure algebraic
coupling of equations. This enforces robustness and can help with the stability
of the reduced model. Preserving time-symmetries of Lagrangian, Hamiltonian,
and port-Hamiltonian systems can be found in the works of [3, 8, 10, 19, 28, 33].
Conserving inf-sup stability, in the context of finite element methods, can be found
in [1, 14]. Furthermore, a flux preserving model reduction for finite volume methods
is presented in [7].

Large scale simulations of fluid flows arise in a wide range of disciplines and
industries. Therefore, MOR of fluid flows, specially when advective terms are dom-
inant, is important. It is well known that conservation of the energy, specially kinetic
energy, is essential for a qualitatively correct numerical integration of fluid flows.
Conventional model reduction techniques often violates conservation of mass,
momentum [7], or energy in fluid flows which result in an unstable reduced system,
in particular for long time-integration. In [2] an entropy stable model reduction
method for linear compressible flows is presented by considering an entropy-stable
formulation of linearized compressible flows. Furthermore, a conservative model
reduction for finite-volume models is presented in [7] that conserves any quantity
conserved by the finite-volume scheme. This method finds a reduced linear subspace
that ensures conservation of quantities by solving an optimization problem with,
generally nonlinear, equality constraints. The constrained optimization problem is
solved online, and is only slightly more expensive than solving the unconstrained
optimization problem associated with a typical Galerkin MOR.

Skew-symmetric formulation of fluid flows constructs a skew-symmetric differ-
ential operator, acting on the momentum vector field, that ensures conservation
of quadratic invariants, such as energy. Combined with centered time and space
discretization schemes, typically a finite differences discretization method, they
recover time-symmetries of a fluid at the discrete level. Such discretization schemes
are studies comprehensively over the past few decades and can be found in the works
of [11, 30, 31, 35, 38] and the references therein.

In this paper we discuss how to preserve skew-symmetry of the differential
operators at the level of the reduced system. This results in conservation of
quadratic invariants. The conservation of quantities in the proposed method is
guaranteed through the mathematical formulation of the reduced system, for any
orthonormal reduced basis. Therefore, the offline and online computational costs
of this method is comparable with conventional MOR techniques. However, other
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conservative model reduction methods, e.g. [7], often require solving multiple
nonlinear optimization problems to ensure conservation which can increase the
computational costs. Furthermore, we show that the reduced system, as a system
of coupled differential equations, contains quadratic invariants and an associated
energy which approximates the energy of the high-fidelity system. Therefore, a
proper time stepping scheme preserves the reduced representation of the energy,
and therefore, the loss in energy due to model reduction remains constant in time.
Furthermore, we demonstrate, through numerical experiments, that a quasi-skew-
symmetric form of fluid flow, i.e. a formulation where only spacial differential
operators are in a skew-symmetric form, offer remarkable stability properties
in terms of MOR. This allows an explicit time-integration to be utilized while
recovering robustness of skew-symmetric forms at the reduced level.

The rest of this paper is organized as follows. In Sect. 2 we summarize the
theory on MOR and introduce the proper orthogonal decomposition (POD) as a
conventional RB method. We discuss skew-symmetric and conservatives methods
for compressible and incompressible fluid flows in Sect. 3. Conservative and energy-
preserving model reduction of fluid flows is discussed in Sect. 4. We evaluate
the performance of the method through numerical simulations of incompressible
and compressible fluid flow in Sect. 5. We also apply the method to construct a
reduced system for the continuous variable resonance combustor, a one dimensional
reaction-diffusion model for a rocket engine. Finally, we present conclusive remarks
in Sect. 6.

2 Model Order Reduction for Time Dependent Problems

Consider a dynamical system of the form

⎧⎪⎨
⎪⎩

d

dt
u(t) = f (t, u(t)),

u(0) = u0.

(1)

Here, u(t), u0 ∈ R
n and f : [0, T ] × R

n → R
n, for some T < ∞, is a Lipschitz

function. We may apply the method of lines [13] to a system of partial differential
equations to obtain a dynamical system of the form (1). The solution manifold for
(1) is defined as

Mu := {u(t)|t ∈ [0, T ]}. (2)

When Mu has a low-dimensional representation, it is referred to as reducible.
Assume that Mu can be well approximated by a k-dimensional linear subspace Vk ,
with k 	 n and let Ek = {v1, . . . , vk} be the basis vectors for Vk and Vk the basis
matrix that contains these vectors in its columns. A reduced basis (RB) method
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assumes that u ≈ ũ = Vkv, where v ∈ R
k is the expansion coefficients of ũ in the

basis Vk. Substituting this into (1) yields

Vk
d

dt
v(t) = f (t, Vkv) + r(t, u). (3)

Here, r is the error vector in this approximation. The Petrov–Galerkin projection
of (1) onto Vk requires r to be orthogonal to a k-dimensional subspace Wk . One
can construct a projection operator PVk,Wk

that projects elements of Rn onto Vk ,

orthogonal to Wk as PVk,Wk
= Vk(W

T
k Vk)

−1WT
k , where Wk is the basis matrix

that contains the basis vectors of Wk in its columns and WT
k Vk is assumed to be

invertible. With this projection, (1) reduces to the k-dimensional problem

⎧⎪⎨
⎪⎩

d

dt
v(t) = (WT

k Vk)
−1f (t, Vkv),

v(0) = (WT
k Vk)

−1u0.

(4)

When we require Wk = Vk , then (4) is referred to as the Galerkin projection of
(1) onto Vk . Since (4) has a smaller size, as compared to (1), one can expect an
accelerated evaluation. To numerically identify the best possible subspace Vk we
first discretize the solution manifold to obtain

MΔ
u = {u(ti)|i ∈ {1, . . . , Nt }}. (5)

Members of MΔ
u are referred to as snapshots of (1). One can obtain these snapshots

by applying a time-integration scheme, e.g., the Runge–Kutta methods, to (1) to

obtain M̃
Δ

u as an approximation to MΔ
u . Throughout this paper, we assume that

we can choose M̃
Δ

u arbitrary close to MΔ
u . By an abuse of notation, we drop the

overscript “∼”. For a Galerkin projection, the best possible basis Vk is the one that
minimizes the collective projection error [22], i.e., the solution to the minimization
problem

minimize
Vk∈Rn×k

‖S − VkV
T
k S‖F ,

subject to V T
k Vk = Ik.

(6)

Here S collects vectors in MΔ
u in its columns, referred to as the snapshot matrix,

‖ · ‖F is the Frobenius norm [40], and Ik is the identity matrix of size k. Note that
the constraint in (6) requires Vk to be orthonormal. The basis matrix Vk that solves
the minimization problem (6) is referred to as the proper orthogonal decomposition
(POD) of S of size k [22] and, according to the Schmidt–Mirsky theorem, can be
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constructed using the left singular vectors of S as

Vk = [ui]ki=1. (7)

Here ui , for i = 1, . . . k, are the first k singular vectors of S.
Model order reduction is often studied in the parametric setting, where the vector

u, u0, and the right hand side function f of (1) are of the form u(t;μ), u0(μ), and
f (t, u;μ), respectively. Here μ belongs to P, a closed subset of Rd . In this case,
the reduced system can recover quantities of interest at low cost. Since the nature of
time, as a parameter, is different from other spacial and physical parameters, in this
paper we solely focus on t as the parameter. Nevertheless, it is straight forward to
extend the results of this paper to the parameter setting by using POD in time and
parametric space, or by using the POD-Greedy [20, 22, 34] method to generate a
basis Vk.

Since the approximate solution ũ is a linear combination of the POD basis
vectors, ũ inherits linear properties of these basis vectors. However, when the
solution u to (1) satisfies some nonlinear invariants, there is no guarantee that, in
general, ũ also satisfy such invariants [8, 28, 29, 33]. This results in a qualitatively
wrong and often unstable solution to (4). In the later sections, we discuss how
the skew-symmetric formulation of the fluid flow allows conservation of quadratic
invariants, e.g. the kinetic energy, at the level of the reduced system.

3 Skew Symmetric and Centered Schemes for Fluid Flows

In this section we summarize the conservation properties of skew-symmetric forms
and discretization schemes, following, closely, the works of [30, 31, 35, 38].

3.1 Conservation Laws

In the context of fluid flows, transport of conserved quantities, can be expressed as

∂

∂t
ρϕ + ∇ · (ρuϕ) = ∇ · Fϕ defined in Ω ⊂ R

d . (8)

Here, d = 1, 2 or 3, ρ : Ω → R is the density, u ∈ Ω → R
d is the velocity

vector field, ϕ is a measured scalar quantity of the flow, and Fϕ is the flux function
associated to ϕ. Integration of (8) over Ω yields

d

dt

∫
Ω

ρϕ dx =
∫
∂Ω

(Fϕ − ρuϕ) · n̂ ds, (9)
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where ∂Ω is the boundary of Ω , and n̂ is the unit outward normal vector to ∂Ω .
This means that the quantity (ρϕ) is explicitly conserved over control volumes.
Therefore, (8) is referred to as the conservative form and the convective term in (8)
is referred to as the divergence form. However, using the continuity equation

∂

∂t
ρ + ∇ · (ρu) = 0, (10)

we can rewrite (8) as

ρ
∂

∂t
ϕ + (ρu) · ∇ϕ = ∇ · Fϕ. (11)

The convective term in this formulation is referred to as the advective form. The
skew-symmetric form of the convective term is obtained by the arithmetic average
of the divergent and the advective form:

1

2

(
ρ
∂

∂t
ϕ + ∂

∂t
(ρϕ)

)
+ 1

2
((ρu) · ∇ϕ + ∇ · (ρuϕ)) = ∇ · Fϕ. (12)

Multiplying (12) with ϕ yields

∂

∂t
ρϕ2 + ∇ · (ρuϕ2) = ϕ∇ · Fϕ. (13)

Therefore, ρϕ2 is a conserved quantity for a flux-free ϕ. Since the divergence, the
advective and the skew-symmetric forms are identical at the continuous level, ϕ2 is
a conserved quantity for all forms. However, the equivalence of these forms is not
preserved through a general discretization scheme and we can not expect ϕ2 to be
a conserved quantity at the discrete level. To motivate numerical advantages of the
skew-symmetric form consider the operator

Sρu(·) = 1

2
([∇ · ρu] + (ρu) · ∇)(·). (14)

With a proper set of boundary condition, this operator is a skew-adjoint operator on
L2. Here, [·] indicates that the inside of the brackets act as a differential operator.
This skew-adjoint property is used later to show the conservation of some quadratic
quantities in (8). Similarly, we can define a skew-adjoint operator with respect to
the time variable as

Sρ,∂t = 1

2

(
ρ
∂

∂t
+ [ ∂

∂t
ρ]
)
. (15)

Here, the subscript ∂t is to emphasize that Sρ,∂t is a differential operator with
respect to t . A proper time and space discretization of Sρu and Sρ,∂t can preserve
the skewness property.
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Numerical time integration of (12) can be challenging since the time differentia-
tion of different variables is present. Following [30], we rewrite (12) as

√
ρ
∂

∂t
(
√
ρϕ) + Sρu(ϕ) = ∇ · Fϕ. (16)

Time integration of this form is presented in [30, 35]. Note that one can also generate
a quasi-skew-symmetric form [6, 32] of (8) as

∂

∂t
(ρϕ) + 1

2
(∇ · (ρuϕ) + ρu · ∇ϕ + ϕ∇ · (ρu)) = ∇ · Fϕ. (17)

Even though this is not a fully skew-symmetric form (skew-symmetric only in
space), the numerical stability of this form is significantly better than the divergence
and advective form [6, 30, 32]. Note that this quasi-skew-symmetric form is identical
to the skew-symmetric form in the incompressible limit.

3.2 Incompressible Fluid

Consider the governing equations of an incompressible fluid with skew-symmetric
convective term:

⎧⎪⎨
⎪⎩

∇ · u = 0,

∂

∂t
u + Su(u) + ∇p = ∇ · τ,

(18)

defined on Ω . Here, p : Ω → R
+ is the pressure, τ : Ω → R

d×d is the viscous
stress tensor, and Su = 1

2 ([∇ · u] + u · ∇). It is straight forward to check

d

dt
K + ∇ · (Ku) + ∇ · (pu) = ∇ · (τu) − (τ∇) · u, (19)

where K = 1
2

∑d
i=1 u

2
i is the kinetic energy and we used

u · Su(u) = ∇ · (Ku). (20)

The only non-conservative term in (19) is −(τ∇) · u, which corresponds to
dissipation of kinetic energy. Therefore, in the absence of the viscous terms, K
is a conserved quantity of the system, and d

dt

∫
Ω
K dx < 0 when τ �= 0. Note

that as long as ∇ · u = 0, as discussed in Sect. 3.1, the divergence, the convective,
and the skew-symmetric forms are identical for the incompressible fluid equation.
Thus, kinetic energy is conserved for all forms. However, for a general discretization
scheme, these forms are not identical and often the conservation of kinetic energy
(in the discrete sense) is be violated.
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A skew-symmetric discretization of (18) is a centered scheme that exploits the
skew-adjoint property of Su, and ensures conservation of kinetic energy at the
discrete level. We uniformly discretize Ω into N points and denote by u ∈ R

N×d ,
p ∈ R

N , and T ∈ RN×d×d the discrete representation of u, p, and τ , respectively.
Let Dj be the centered finite difference scheme for ∂/∂xj , and for j = 1, . . . , d .
The momentum equation in (18) is discretized as

d

dt
ui + Suui + Dip =

d∑
j=1

DjTij , i = 1, . . . , d, (21)

where Su is the discretization of Su given by

Su =
d∑

j=1

DjUj + UjDj , (22)

and Ui contains components of ui on its diagonal. We require Di to satisfy

1. Di = −DT
i

2. Di1 = 0, where 1 and 0 are vectors of ones and zeros, respectively.

Conditions 1 and 2 yield

Su = −STu , 1T Suui = 0, i = 1, . . . , d. (23)

Conservation of momentum in the discrete sense is expressed as

d

dt

d∑
i=1

1T ui =
d∑

i=1

⎛
⎝−1T Suui − 1T Dip +

d∑
j=1

1T DjTij

⎞
⎠ = 0. (24)

Similarly, it is verified that

d

dt

d∑
i=1

(
1

2
uTi ui

)
= −

d∑
i,j=1

TijDjui ≤ 0. (25)

Conditions 1 and 2 for Di are easily checked for a centered finite differences
scheme on a periodic domain. For other types of boundaries, e.g., wall boundary
and inflow/outflow, we refer the reader to [11, 31] for the construction of the proper
discrete centered differentiation operator. We note that the finite differences schemes
are chosen here for illustration purposes. It is easily checked that any discrete
differentiation operator that satisfies discrete integration by parts, e.g. summation
by part (SBP) methods and discontinuous Galerkin (DG) methods, also satisfies
conditions 1 and 2 and can be used to construct a skew-symmetric discretization.
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3.3 Compressible Fluid

Consider the equations governing the evolution of a compressible fluid in a skew-
symmetric form in one spacial dimension

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ + ∂

∂x
(ρu) = 0,

Sρ,∂t (u) + Sρu(u) + ∂

∂x
p = ∂

∂x
τ,

∂

∂t
ρE + ∂

∂x
(uE + up) = ∂

∂x
(uτ − φ).

(26)

Here E = e + u2/2 is the total energy per unit mass, with e = p/ρ(γ − 1) being
the internal energy, γ the adiabatic gas index, and φ = −λ∂T

∂x
is the heat flux, with

λ the heat conductivity. The remaining variables are the same as those discussed in
Sect. 3.2. Following [35], the evolution of the momentum equation is

∂

∂t
(
ρu2

2
) + ∂

∂x
(ρu

u2

2
) = 1

2
u(

d

dt
ρu + ρ

d

dt
u) + 1

2
u([ ∂

∂x
ρu]u + ρu

∂

∂x
u)

= −u
∂

∂x
p + u

∂

∂x
τ.

(27)

Substituting this into the energy equation in (26), while assuming a constant
adiabatic index, yields

1

γ − 1

d

dt
p + γ

γ − 1

∂

∂x
up − u

∂

∂x
(p) = −u

∂

∂x
τ + ∂

∂x
(uτ − φ). (28)

We discretize the real line, uniformly, into N grid points and denote by r,u,p ∈
R
N , the discrete representations of ρ, u, and p, respectively. Using the matrix

differentiation operator D ∈ R
N×N (we omit the subscript “i” for the one

dimensional case), introduced in Sect. 3.2, we define the skew-symmetric matrix
operator Sru = 1

2 (DUR + RUD), where R is the matrix that contains r in its
diagonal. Semi-discrete expression of (26) and (28) takes the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt
r + DUr = 0,

Sr,∂t (u) + Sruu + Dp = DT,

1

γ − 1

d

dt
p + γ

γ − 1
DUp − UDp = −UDT + D(UT − φ).

(29)
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Recalling conditions 1 and 2 for D, discussed in Sect. 3.2, it is easily verified that

STru = −Sru, 1T Sruu = −uT DUr. (30)

Conservation of mass is expressed as

d

dt
(1T r) = −1T DRu = 0. (31)

Furthermore, we recover conservation of momentum in the discrete sense as

d

dt
(rT u) = 1

2

d

dt
(rT u) + 1

2

(
rT

d

dt
u + uT

d

dt
r
)

= 1

2
uT

d

dt
r + 1T Sr,∂t (u)

= −1

2
uT DUr − 1

2
1T Sruu − 1T Dp + 1T DT = 0.

(32)

Here we used (30) and the mass and the momentum equation in (29). Similarly, for
conservation of the total energy, we have

d

dt

(
1

γ − 1
1T p + 1

2
(Ru)T u

)
= d

dt

(
1

γ − 1
1T p
)

+ 1

2
uT Sr,∂t (u) = 0.

(33)

In addition to the conservation of the total energy, the skew-symmetric form of (29)
also conserves the evolutions of the kinetic energy:

d

dt
(
1

2
uT Ru) = 1

2
uT Sr,∂t (u) = −uT Sruu + uT Dp + uT DT

= uT Dp + uT DT .

(34)

Here, we used the skew-symmetry of Sru. Therefore, only the pressure and the
viscous terms contribute to a change in the kinetic energy.

We point out that there are other methods to obtain a skew-symmetric form for
(26), that result in the conservation of other quantities. An entropy preserving skew-
symmetric form can be found in [36]. Furthermore, a fully quasi-skew-symmetric
form for (26), where all quadratic fluxes are in a skew-symmetric form, is shown to
minimize aliasing errors [23, 24]
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3.4 Time Integration

Following [30, 35] we can construct a fully discrete second order accurate scheme
for (3.3) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

√
r
n+1/2

√
rn+1 − √

rn

Δt
+ DUn+1/2rn = 0,

√
r
n+1/2

√
R
n+1

un+1 − √
R
n
un

Δt
+ Srnunun+1/2

α + Dpn = DT n,

1

γ − 1

pn+1 − pn

Δt
+ γ

γ − 1
DUnpn − UnDpn = −UnDT n + D(UnT n − φn),

(35)

and all the variables are stored at the same location with the same resolution
(colocated). Here, R contains elements of r on its diagonal, Δt is the time step,
superscript n denotes evaluating at t = nΔt , superscript n + 1/2 denotes the
arithmetic average of a variable evaluated at t = nΔt and t = (n + 1)Δt , the
square root sign denotes element-wise application of square root, and

un+1/2
α =

√
R
n+1

un+1 + √
R
n
un

2
√

rn+1/2
. (36)

As discussed in [35], this time discretization scheme preserves the symmetries
expressed in (25), (32), (33), and (34). In the incompressible case, the method
reduces to the implicit mid-point scheme [21]. For further information see [30, 35].

4 Model Reduction of Fluid Flow

A straight-forward model reduction of (18) and (26) does not, in general, preserve
symmetries and conservation laws, presented in Sect. 3. In this section we discuss
how to exploit the discrete skew-symmetric structure of (21) and (29) to recover
conservation of mass, momentum, and energy at the level of the reduced system.

Let Vr, Vru, and Vui be the reduced bases for the snapshots of r, Ru, and ui ,
respectively. For the one dimensional case, the subscript “i” is omitted and for an
incompressible fluid, Vr and Vru are not computed. For the purpose of simplicity,
we assume that all bases have the size k. We seek to project Su and Sru onto the
reduced space, such that the projection preserves the skew-symmetric property. The
projected operators, using a Galerkin projection, read

Sru = V T
ui SuVui , i = 1, . . . , d, (37)
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and

Srr,∂t = V T
ruSr,∂t Vu, Srru = V T

ruSruVu. (38)

Note that Srr,∂t is not computed explicitly. It is clear that Sru is already in a skew-
symmetric form. On the other hand, Srr,∂t and Srru are not, in general, skew-adjoint
and skew-symmetric, respectively. This can be ensured, however, by requiring
Vru = Vu. We denote such a basis by Vru,u.Using (37) and (38), a Galerkin
projection of the momentum equation in (21) and the governing equations for a
compressible fluid in (29) take the form

d

dt
ur i + Sruuri + V T

ui Dip =
d∑

j=1

V T
k3,uiDj Tij (Vuiu

r
i ), i = 1, . . . , d, (39)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
rr +

k∑
i=1

V T
r DUiVrrr = 0,

Srr,∂t + Srruur + V T
ru,uDVppr = V T

ru,uDT,

1

γ − 1

d

dt
pr + γ

γ − 1
V T

p DUVppr − V T
p UDVppr = −V T

p UDT + V T
p D(UT − φ),

(40)

respectively. Note that in (40), dependency of T on Vru,u is not shown for
abbreviation. In (39) and (40), Di is always multiplied from the left with a basis
matrix or a diagonal matrix. Therefore, the telescoping sum, discussed in Condition
2 in Sect. 3.1, cannot be used to show conservation of mass and momentum.
However, POD preserves linear properties of snapshots. To demonstrate this, let
the overscript “∼” denote the representation of a reduced variable in the high-
fidelity space. An approximated variable, e.g. density, can be represented as a linear
combination of some snapshots as r ≈ r̃ = ∑k

i=1 ciri , for some snapshots ri and
some coefficients ci ∈ R, for i = 1, . . . , k. Conservation of mass, evaluated by r̃,
reads

d

dt
1T r̃ =

k∑
i=1

ci

(
1T

d

dt
ri

)
= −

k∑
i=1

ci

(
1T DRiui

)
= 0, (41)
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where we used the fact that 1T D = 0T . Similarly, we recover conservation of
momentum

d

dt
(r̃T ũ) = 1

2

d

dt
(r̃T ũ) + 1

2

(
r̃T

d

dt
ũ + ũT

d

dt
r̃
)

=
k∑

i,j=1

dicj

(
uTi

d

dt
rj +

(
rTj

d

dt
ui + uTi

d

dt
rj

))
= 0.

(42)

Here, ũ = ∑k
i=1 diui , for some snapshot ui and coefficients di ∈ R. Denoting

by {Ru}r the reduced representation of Ru in basis Vru,u, the evolution of kinetic
energy is expressed as

d

dt

(
1

2
ũT R̃ũ

)
= d

dt

(
1

2
ur T V T

ru,uVru,u{Ru}r
)

= d

dt

(
1

2
urT {Ru}r

)

= 1

2

(
ur T

d

dt
{Ru}r + {Ru}r d

dt
ur
)

= 1

2

(
ur T V T

ru,uVru,u
d

dt
{Ru}r + {Ru}r d

dt
V T

ru,uVru,uur
)

= ur T Srr,∂t u
r = urT Vru,uDVpPr + urT V T

ru,uDT.

(43)

In the missing steps in the last line, skew-symmetry of Srru is used. Note, that only
the reduced pressure and the viscous term contribute to the evolution of kinetic
energy. Furthermore, the quantity 1

2 ur T {Ru}r is the kinetic energy associated
with the reduced system (40), approximating the kinetic energy of the high-
fidelity system (29), and is a quadratic form with respect to the reduced variables.
Conservation of kinetic energy for (39) follows similarly. It is straight-forward to
check that

d

dt

(
1

γ − 1
1T p̃ + 1

2
ũT R̃ũ

)
= 0, (44)

i.e., the total energy is conserved. We immediately recognize that pr/(γ − 1) is the
internal energy of the reduced system. However, the total internal energy of (40) is a
weighted sum, bT pr/(γ − 1), with b = V T

p 1 which is an approximation of the total
internal energy in (29). From (41), (42), (43), and (44) we conclude the following
proposition.

Proposition 1 The loss in the mass, momentum and energy associated with the
model reduction in (40) is constant in time, and therefore, bounded.
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4.1 Assembling Nonlinear Terms and Time Integration

Nonlinear terms that appear in (39) and (40) are of quadratic nature. These terms
can be evaluated exactly using a set of precomputed matrices as proposed in [5]. As
an example, consider

Sru = V T
u (DU + UD)V T

u . (45)

We write U as a linear combination of matrices as U = ∑k
j=1 urjUj , where urj is

the j th component of ur , and Uj contains the j th column of Vu on its diagonal. It
follows

Sru =
k∑

j=1

ur
j

(
V T

u (DUj + UjD)V T
u

)
. (46)

The matrices V T
u (DUj + UjD)V T

u can be computed prior to the time integration
of the reduced system. However, the form of the fully discrete system in (35)
introduces cubic and even quartic terms. In principle, the same method can be
applied to assemble the nonlinear terms. However, the number of precomputed
matrices grows proportional to the order of the nonlinear term.

To accelerate assembly of the nonlinear terms we may approximately evaluate
them using the discrete empirical interpolation method (DEIM). This approximation
can affect the accuracy of conserved quantities in (40). Therefore, the accuracy of
the DEIM approximation must be chosen higher than the one of POD.

To integrate (40) in time, the fully discrete system (35) is modified prior to model
reduction, by dividing the mass and momentum equation with

√
rn+1. Note that

since the new form is identical to (35), it does not affect the conserved quantities.
Subsequently, a basis for

√
r, denoted by V√

r, is constructed. Since the reduced
system shows the same structure of (35), the same numerical integrator is used to
compute the reduced solution, without decoupling the modes related to velocity,
density and pressure. The nonlinear terms are evaluated exactly using the quadratic
expansion or approximated using the DEIM.

5 Numerical Experiments

5.1 Vortex Merging

Consider the two-dimensional incompressible Euler equation (18) on a square
domain Ω = [0, 2π]2, with periodic boundary conditions. Spatial derivatives are
discretized using a Fourier spectral method. To capture the fine details character-
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izing the solution, 256 × 256 modes are used. We consider the evolution of three
vortices, with the initial structure given by

ω = ω0 +
3∑

i=1

αie
− (x − xi)

2 + (y − yi)
2

β2
. (47)

Here, ω = ∇ ×u is the vorticity, (x, y) represents the spatial coordinates, (xi, yi) is
the center of the ith vortex, αi its maximum amplitude, and β controls the effective
radius of the vortex. In this example, the center of three vortices are

(x1, y1) = (0.75π, π) , (x2, y2) = (1.25π, π) , (x3, y3) = (1.25π, 1.5π) , (48)

close to the center of the domain. Two of the vortices have a positive spin with
α1 = α2 = π and the third rotates in the opposite direction with α3 = −0.5π .
The effective radius of all the vortices is set to β = 1/π . This arrangement of
vortices is an interesting initial condition to study the process of vortex merging.
This phenomenon is often a result of fast-moving dipoles of vortices with the same
spin facing another vortex [12] of opposite spin. The merging process transfers the
vorticity from the initial configuration into long, narrow, and spiral-shaped strips of
intense vorticity [27]. The formation of such thin vorticity filaments in the fluid may
pose numerical challenges, due to aliasing.

In the context of MOR, conservation of energy and stability is crucial to capturing
fine structures. With the absence of natural dissipation, straight forward application
of MOR techniques for the Euler equation is often unstable.

To define the initial conditions in terms of the velocity components u and the
pressure p, we define a stream-function Ψ , the solution to the equation

− ΔΨ = ω. (49)

The initial velocity is then given by ∇ × Ψ . To solve the stream-function problem
(49), we require

∫
Ω ω dx = 0. It is easily verified that this requirement implies

ω0 = 0.038. The pressure is recovered by solving the related Poisson pressure
equation

Δp = −∇ · Su(u),

obtained by applying the divergence operator to (18) and using the incompressibility
condition. The implicit midpoint scheme, to mimic the time integration scheme
presented in (35), is used to integrate in time. The merging phenomenon is simulated
for a total of 18 time units using a temporal step Δt = 0.004.
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Fig. 1 (a) The kinetic energy K for the advective, divergence and the skew-symmetric formula-
tions. (b) The decay of the singular values for the vortex merging

Figure 1a illustrates the evolution of the kinetic energy for the advective,
divergence, and the skew-symmetric form of the high-fidelity system. It is observed
that only the skew-symmetric form preserves the kinetic energy, confirming the
discussion in Sect. 3.2.

A total of 5000 temporal snapshots is used to construct a reduced basis, following
the process discussed in Sect. 2. The decay of the singular values, used as an
indication of the reducibility of the problem, is presented in Fig. 1b. The first 35
POD modes corresponds to over 99% of the modes of the high-fidelity solution.
This suggests that an accurate reduced system can be constructed using a small
number of basis vectors. To illustrate the effectiveness of the method, smaller bases
are also considered.

For a qualitative analysis, in Fig. 2, four solutions at different times are shown for
the high fidelity system and the reduced system with k = 17 and k = 35 modes. The
overall dynamics of the problem, and in particular the formation and development
of vorticity filaments, are correctly represented, even with a moderate number of
basis vectors. Although small details are not captured by the reduced system with
a small number of basis vectors, the position and the spreading of the vortices are
comparable.

Figure 3a shows the L2 error between the high-fidelity solution and the reduced
solution. The error decreases, consistently, as the number of basis vectors increases.
Furthermore, the accuracy is maintained over the period of time integration.

The conservation of the kinetic energy is presented in Fig. 3b. Even for a small
number of basis vectors, where the solution is not well approximated, the kinetic
energy remains constant. Furthermore, the error in the kinetic energy, due to MOR,
is constant in time. This is central for the robustness of the reduced system during
long time-integration.
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Fig. 2 Snapshots of the high-fidelity system and the reduced system at t = {4, 8, 12, 18}. From
left to right: the solution of the reduced model with k = 17, k = 35 and the high fidelity solution

5.2 2D Kelvin–Helmholtz Instability

Consider the two-dimensional compressible Euler equation (26) in a periodic
square box [0, 1]2. Unlike the incompressible example in Sect. 5.1, a centered finite
difference scheme of fourth order is used to discretize (26). The physical domain is
discretized into a grid of 256 × 256 nodes.
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Fig. 3 (a) Evolution of L2 error in velocity, between the high-fidelity system and the reduced
system. (b) Conservation of the kinetic energy

The initial velocity field is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r =
{

2, if 0.25 < y < 0.75,

1, otherwise ,

ux = a sin(4πy)

⎛
⎜⎝e− (y − 0.25)2

2σ 2 + e
− (y − 0.75)2

2σ 2

⎞
⎟⎠ ,

uy =
{

0.5, if 0.25 < y < 0.75,

−0.5, otherwise ,
,

p = 2.5,

where a = 0.1 and σ = 5
√

2 · 10−3. This corresponds to contacting streams of
fluid with different densities. For specific choices of parameters describing the jets,
fine structures and vortices emerges at the interface between the streams. Such an
instability is referred to as the Kelvin–Helmholtz instability [9].

As centered schemes are often dissipation free, resolving the discontinuous
initial data requires some artificial viscosity. In the high-fidelity model, the method
discussed in [42], based on a derivative-based model, is used as an artificial
viscosity. However, at the level of the reduced system, this is replaced with a low
pass filter on the expansion coefficients of POD basis vectors. The last 5% of the
POD modes are put to zero every 20 time iterations. The reason for the different
treatment is that we want to avoid the reconstruction of the derivative of the solution
in the full space during the integration of the reduced system.

The fully discrete skew-symmetric form (35) is used as a time marching scheme
with Δt = 5 · 10−4 over a period of 1 time unit. A total of 500 snapshots have been
used for the computation of the basis in the offline stage.

Figure 4 illustrates that the accuracy of the method consistently improves as
a higher number of POD basis modes are considered. Furthermore, the skew-
symmetric form preserves the accuracy over the period of time integration (Fig. 5).
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Fig. 5 Difference between the high-fidelity solution of the Kelvin–Helmholtz problem and the
reduced solution of the mass (a), the momentum (b), and the total energy (c)

It is observed in Fig. 6 that all features of the flow are correctly represented in the
reduced system, even with a low number of basis vectors.

Conservation of mass, momentum and energy is presented in Fig. 5. The accuracy
of the method in approximating these invariants improves as the size of the basis is
increased. Furthermore, Fig. 5c shows how the kinetic energy associated with the
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Fig. 6 Solutions of the Kelvin–Helmholtz problem at t = {0.4, 0.6, 0.8, 1}. From left to right we
show the solution of the reduced model with k = 200, k = 500 and the high fidelity solution

reduced system mimics the kinetic energy of the high-fidelity system. This helps to
ensure the correct evolution of kinetic energy, and thus, the internal energy.

5.3 1D Shock Problem

In this section we study the one-dimensional compressible Euler problem, (26)
without viscous terms, with a steady state discontinuous solution. This is in
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preparation for Sect. 5.4, where development and propagation of shock waves is
discussed. Here we asses how the skew-symmetric form of (26) can recover moving
discontinuities at the level of the reduced system. Consider a periodic boundary
conditions on Ω = [0, 1] with the initial condition

⎧⎪⎪⎨
⎪⎪⎩

r = 0.5 + 0.2 cos(2πx),

u = 1.5,

p = 0.5 + 0.2 sin(2πx).

The domain is discretized into N = 2000 nodes and a centered finite differences
scheme is used to assemble the discrete Euler equation in skew-symmetric form, as
discussed in Sect. 3.3.

The fully discrete skew-symmetric form (35) is used for time integration over
a time interval [0, 0.3]. To resolve the discontinuous solution we use an artificial
viscosity with τ = μ∂u/∂x, where μ = 0.5 · 10−4. Regarding the reduction
procedure, 1000 snapshots of the numerical solution given by the high fidelity
method have been collected.

Figure 7 shows the evolution of conserved quantities for the high-fidelity and
reduced system. Here, the high-fidelity model is also considered in the divergence
and advective form in addition to the skew-symmetric form. It is clear that when the
reduced systems is not in skew-symmetric form, it violates conservation of mass,
momentum, and energy. Even while the high-fidelity systems in divergence and
advective forms are stable, the constructed reduced system is unstable, independent
on the number of basis vectors. On the other hand, the skew-symmetric form yields
a stable and conservative reduce system. Note that the loss in the energy associated
with the skew-symmetric form, illustrated in Fig. 7b, d, f, is due to the application
of an artificial viscosity.

Figure 8 shows the total error, when the reduced system captures a discontinuous
solution at t = 0.16. It is observed that the formation of a discontinuity affects the
accuracy of the method. This is expected as a sharp gradient is approximated by a
relatively few POD modes. However, the method remains robust and stable during
the period of time integration.

In Fig. 9 we compare the numerical artifacts of different formulations of the Euler
equation. The advective formulation is not presented since it does not yield a stable
reduced system. It is observed that the reduced system based on the skew-symmetric
formulation accurately represent the overall behavior of the high-fidelity solution.
On the other hand, a Gibbs-type error [39] appears near sharp gradients, for the
reduced system based on the divergence form of the Euler equation. The well-
representation of the skew-symmetric form is due the low aliasing error property.

As discussed in Sect. 4, the DEIM approximation needed for an efficient evalu-
ation of the nonlinear components of (26), can affect the conservation properties
of the skew-symmetric form. Figure 10 shows the decay of the singular values
of the nonlinear snapshots. The decay of these snapshots is significantly slower
than the temporal snapshots of (26). This indicates that to maintain the accuracy
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(c) (d)

(a) (b)

(e) (f)

Fig. 7 (a,c,e) Evolution of the three conserved quantities for the reduced solution of the
compressible Euler equation (mass, total momentum and total energy). The divergent, advective
and skew-symmetric formulations have been considered and k = 102, 204 basis are used in the
reduced model. (b,d,f) Evolution of the conserved quantity for a stable reduced model using the
skew-symmetric formulation

of the reduced system, the DEIM basis should be chosen richer than the POD
basis. Figure 11a, b present the error and the conservation of total energy when
the DEIM is used to approximate the nonlinear term. The conservation of energy is
recovered once DEIM approximates the nonlinear terms with enough accuracy. In
this numerical experiment, evaluation of the nonlinear terms in (26) using the DEIM
is ten times faster than the high-fidelity evaluation.
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Fig. 8 Evolution in time of the error between the high-fidelity solution of the 1D compressible
Euler and the reduced solution for different number of basis k. As error measure we consider
e(t) = √‖r − rr‖2 + ‖ur − urr‖2 + ‖p − pr‖2

5.4 Continuous Variable Resonance Combustor

CVRC is a model rocket combustor, designed and operated at Purdue University
(Indiana, USA) to investigate combustion instabilities [43]. This setup is called the
Continuously Variable Resonance Combustor (CVRC) because the length of the
oxidizer injector can be varied continuously, allowing for a detailed investigation
of the coupling between acoustics and combustion in the chamber [18]. The 2D/3D
high-fidelity simulations of CVRC are expensive. Thus to get a fast analysis tool,
a quasi-1D model has been proposed by Smith et al. [37] and further developed by
Frezzotti et al. [15–17].

The CVRC consists of three parts: oxidizer post, combustion chamber and
exit nozzle, as shown in Fig. 12. The oxidizer is injected from the left end of
the oxidizer post and meets the fuel, injected through an annular ring around the
oxidizer injector, at the back-step. The combustion happens in a region around the
back-step. The combustion products flow through the chamber and exit the system
from the nozzle. Both the injector and the nozzle are operated at choked condition
during the experiment. The length of the oxidizer post Lop of the CVRC can be
varied continuously, leading to different dynamics. Here, we focus on the case with
Lop = 14.0 cm, in which the combustion is unstable.

The geometry parameters of the quasi-1D CVRC with a oxidizer post length
Lop = 14.0 cm are shown in Table 1. The back-step and the converging part of
the nozzle are sinusoidally contoured to avoid a discontinuity of the radius that will
invalidate the quasi-1D governing equations presented in the next subsection.

The fuel is pure gaseous methane. The oxidizer is a mixture of 42% oxygen
and 58% water (per unit mass), and is injected in the oxidizer post at a temperature
Tox = 1030 K so that both water and oxygen are in the gaseous phase. The operating
conditions are listed in Table 2.
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Fig. 9 Qualitative comparison between different formulations for the reduced model in terms of
density and pressure at t = 0.1 (a–b), 0.3 (c–d) and 1s (e–f). Results for the advective formulation
are not showed here because the related reduced solutions are unstable after a few time steps

For the combustion, we consider the one-step reaction model

CH4 + 2O2 → CO2 + 2H2O.

We assume that the fuel reacts instantaneously to form products, allowing us to
neglect intermediate species and finite reaction rates. As the equivalence ratio is
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Fig. 10 Decay of the singular values of the snapshot matrix related to POD and DEIM algorithms
for the 1D compressible Euler problem

Fig. 11 Comparison between standard POD and POD with DEIM treatment of the nonlinear term
in terms of the error (a) and the total energy (b)

Fig. 12 Geometry of quasi-1D CVRC model

less than one, there is oxidizer left after the combustion. Therefore, only two species
need to be considered: oxidizer and combustion products.

The governing equations that describe the conservation of mass, momentum, and
energy of the quasi-1D CVRC flow, are the quasi-1D unsteady Euler equations for
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Table 1 Geometry parameters of the quasi-1D CVRC with an oxidizer post length Lop = 14 cm

Section
Oxidizer post

Chamber
Nozzle

Injector Back-step Converging part Diverging part

Length (cm) 12.99 1.01 38.1 1.27 3.4

Radius (cm) 1.02 1.02–2.25 2.25 2.25–1.04 1.04–1.95

Table 2 CVRC operating
conditions

Parameter Unit Value

Fuel mass flow rate, ṁf kg/s 0.027

Fuel temperature, Tf K 300

Oxidizer mass flow rate, ṁox kg/s 0.32

Oxidizer temperature, Tox K 1030

O2 mass fraction in oxidizer, YO2 – 42.4%

H2O mass fraction in oxidizer, YH2O – 57.6%

Mean chamber pressure MPa 1.34

Equivalence ratio, Er – 0.8

multiple species, expressed in conservative form as

∂

∂t
v + ∂

∂x
Fv = sA + sf + sq . (50)

The conserved variable vector v and the convective flux vector F are

v =

⎛
⎜⎜⎜⎜⎜⎝

ρA

ρuA

ρEA

ρYoxA

⎞
⎟⎟⎟⎟⎟⎠
, F =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρuA(
ρu2 + p

)
A

(ρE + p) uA

ρuYoxA

⎞
⎟⎟⎟⎟⎟⎟⎠
, (51)

where ρ is the density, u is the velocity, p is the pressure, E is the total energy, Yox
is the mass fraction of oxidizer, and A = A(x) is the cross sectional area of the duct.
The pressure p can be computed using the conserved variables as

E = p

ρ(γ − 1)
+ u2

2
− CpTref , (52)

where Tref is the reference temperature and is set as 298.15 K. The temperature T
is recovered from the equation of state p = ρRT . The gas properties Cp, R and γ

are computed as Cp =∑CpiYi , R =∑RiYi and γ = Cp/(Cp −R), respectively.
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The source terms are

sA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

p
dA

dx

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, sf =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω̇f

ω̇f u

ω̇f

(
h
f

0 + Δhrel0

)

ω̇ox

⎞
⎟⎟⎟⎟⎟⎟⎠
, sq =

⎛
⎜⎜⎜⎜⎜⎝

0

0

q ′

0

⎞
⎟⎟⎟⎟⎟⎠
, (53)

where ω̇f is the depletion rate of the fuel, ω̇ox is the depletion rate of the oxidizer,

h
f

0 is the total enthalpy of the fuel, Δhrel0 is the heat of reaction per unit mass of
fuel and q ′ is the unsteady heat release term. sA accounts for area variations, sf
and sq are related to the combustion. sf represents the addition of the fuel and its
combustion with the oxidizer, which in turn results in the creation of the combustion
products. The depletion rate of the fuel is

ω̇f = kf ṁf Yox (1 + sinξ)

lf − ls
, (54)

where

ξ = −π

2
+ 2π

x − ls

lf − ls
, ∀ ls < x < lf . (55)

The setting of the fuel injection restricts the combustion to the region ls < x < lf .
The reaction constant kf is selected to insure that the fuel is consumed within the
specified combustion zone. The depletion rate of the oxidizer is computed by

ω̇ox = Co/f ω̇f , (56)

where Co/f is the oxidizer-to-fuel ratio.
The unsteady heat release term q ′, also called the combustion response function,

models the coupling between acoustics and combustion. Here, we use the combus-
tion response function designed by Frezzotti et al. [15, 16], which is a function of the
velocity, sampled at specific abscissa x̂ that is almost coincident with the antinode
of the first longitudinal modal shape with a time lag t0, i.e.,

q ′ (x, t) = αg (x)A (x)
[
u
(
x̂, t − t0

)− ū
(
x̂
)]
. (57)

Here ū is the time averaged velocity, estimated with the steady-state quasi-1D model
assuming q ′ = 0, and g(x) is a Gaussian distribution

g (x) = 1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)
, (58)
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where μ is the mean and σ is the standard deviation. The amount of heat release due
to velocity oscillations is controlled by the parameter α, in (57).

The boundary conditions for the quasi-1D CVRC flow include the fixed mass
flow rate and the stagnation temperature at the head-end of the oxidizer injector,
and the supersonic outflow at the exit of the nozzle.

Prior to the unsteady simulation, the quasi-1D CVRC needs to be excited, which
is achieved by adding a perturbation to the steady-state solution. The perturbation is
added by forcing the mass flow rate with a multi-sine signal

ṁox (t) = ṁox,0

[
1 + δ

K∑
k=1

sin (2πkΔf t)

]
, (59)

where ṁox,0 is the oxidizer mass flow rate in Table 2, Δf is the frequency resolution
and K is the number of frequencies. In this paper, Δf = 50 Hz and K = 140,
resulting in a minimal frequency of 50 Hz and a maximal frequency of 7000 Hz. δ is
required to be small to control the amplitude of the perturbation and is set as 0.1%.

The procedure of the unsteady simulation of the quasi-1D CVRC flow includes
three steps:

1. Compute the steady-state solution by setting ṁox = ṁox,0 and q ′ = 0.
2. Excite the system by adding a perturbation to the oxidizer mass flow rate

according to (57) and setting q ′ = 0.
3. Perform the unsteady simulation by turning on the combustion response function

q ′ in (53) and turning off the oxidizer mass flow rate perturbation by setting
ṁox = ṁox,0.

Introduction of an artificial viscosity is essential for a robust and long time-
integration of (53). Common discretization schemes for (53) are often dissipative,
e.g., the Lax–Friedrich scheme used in [41]. Since the skew-symmetric discretiza-
tion is non-dissipative, we modify (53) as

∂

∂t
v + ∂

∂x
F = sA + sf + sq + d, d = (0,

∂

∂x
τ, 0, 0)T , (60)

with τ = μ∂(uA)/∂x, and μ = 6 × 10−5. This type of artificial viscosity is
chosen for its simplicity. This, however, can be replaced with a more moderate and
sophisticated method.

Note that the right hand side in (60) suggests that, in general, mass, momentum,
and energy is not conserved. Furthermore, the complex coupling of the variables in
(53) and the non-constant adiabatic gas index prohibits the application of complex
and implicit time integration schemes. Therefore, a quasi-skew-symmetric form,
introduced in (17), is used for (53). It is straight-forward to check [36], for t, s ∈ R

N

1

2
δx(st)j + 1

2
sj δx(t)j + 1

2
tj δx(s)j = 1

4
δ+
x (sj + sj−1)(tj + tj−1). (61)
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where δx(v)j = (vj+1 − vj−1
)
/Δx is centered finite difference approximation of

the space derivative and δ+
x (vj ) = (vj+1 − vj

)
/Δx, for some v ∈ R

N . Therefore,

FΔ
i+1/2(sj tj , sj+1tj+1) = (sj + sj−1)(tj + tj−1), (62)

can be interpreted as an approximation of a quadratic flux function at the boundary
of two adjacent finite volume cells. A better approximation of the flux in (62)
corresponds to a higher order skew-symmetric form for a quadratic variable st in
(61). We discretize the real line into N uniform cells of size Δx. A quasi-skew-
symmetric form for (60) now takes the form

d

dt
qij + δ+FΔ

i+1/2(q
i
j r

i
j , q

i
j+1r

i
j+1) − δ+FΔ

d (dij , d
i
j+1) + δ+FΔ

p (pj , pj+1)

=
∫
cj

sA + sf + sq dx.

(63)

for j = 1, . . . , N . Here, cj is the j th cell, qij = ∫cj vi dx is the cell average of the

ith component of v, FΔ
p is the flux approximation of the pressure term, FΔ

d is the

flux approximation for the viscous term and r = (u, u, u, u)T .
The three-stage Runge–Kutta (SSP RK3) [25] is used to integrate (60) in time.

The pressure profile for the steady state, with q ′ = 0, and the pressure oscillatory
mode in the unsteady phase is presented in Fig. 13a, b, respectively.

The discontinuities that appear in the solution of (60) suggests that a relatively
large basis is required to resolve fine structures in the solution. Here, a POD basis
is generated with k = 200, k = 300 and k = 400 number of basis vectors. To avoid
basis changes in the reduced system, only one POD basis is considered for ρ, ρu
ρE and ρYox . The explicit SSP RK3 is then used to integrated the reduced system
in time, for the unsteady system. The source terms are evaluated in the high-fidelity
space and projected onto the reduced space. However, in principle, the DEIM can
be applied to accelerate the evaluation this component.

Figure 13c shows the approximation error of the pressure, due to MOR. It is
observed that the approximation is consistently improved as the number of basis
vectors increases. Furthermore, the approximate solution maintains high accuracy
over a relatively long time-integration. The oscillations of pressure is demonstrated
in Fig. 13d. The overall behaviour of pressure is well approximated by the reduced
system. Similar results are obtained for a POD basis with higher number of modes.

We note that the discrete form of (60) is not in the full skew-symmetric form.
Nonetheless, the quasi-skew-symmetric discretization offers remarkable stability
preservation.
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Fig. 13 (a) Pressure profile of the steady state. (b) Oscillatory mode of pressure located at x =
0.36 for the unsteady flow. (c) Relative error between the high-fidelity and approximated pressure.
(d) Approximation of the oscillations

6 Conclusions

Conservation of nonlinear invariants are not, in general, guaranteed with conven-
tional model reduction techniques. The violation of such invariants often result in a
qualitatively wrong or unstable reduced system, even when the high-fidelity system
is stable. This is particularly important for fluid flow, where conservation of the
energy, as a nonlinear invariant of the system, is crucial for a correct numerical
evaluation.

In this paper, we discuss that conservative properties of the skew-symmetric form
for fluid flow can naturally be extended to the reduced system. Conventional MOR
techniques preserves the skew-symmetry of differential operator which result in the
conservation of quadratic invariants at the level of the reduced system. Furthermore,
the reduced system also contains quadratic invariants with respect to the reduced
variables that approximates the invariants of the high-fidelity system. This results
in the construction of a physically meaningful reduced system, rather than a mere
coupled system of differential equations.
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Numerical experiments for the incompressible and compressible Euler equation
confirms conservation of mass, momentum and energy for the reduced model
with the skew-symmetric discretization. In contrast, when a non-skew-symmetric
form, e.g. divergence form or advective form, is considered, MOR does not
necessarily yield a stable reduced system. On the other hand the skew-symmetric
form consistently yields a robust reduced system over long time-integration, even
when the reduced space does not represent the high-fidelity solution accurately.

Finally, a MOR of a quasi-skew-symmetric form for the CVRC model is
presented. Although this model is not in a full skew-symmetric form and an explicit
Runge–Kutta method used for time-integration, we still recover a reduced model
with excellent stability properties.

Acknowledgments The work was partially supported by AFOSR under grant FA9550-17-1-9241
and by SNSF under the grant number P1ELP2-175039. We also thank prof. Karen E. Willcox who
provided insight and expertise that greatly assisted this work.

References

1. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin
approximation of parametrized steady incompressible Navier–Stokes equations. Int. J. Numer.
Methods Eng. 102(5), 1136–1161 (2015)

2. Barone, M.F., Kalashnikova, I., Segalman, D.J., Thornquist, H.K.: Stable Galerkin reduced
order models for linearized compressible flow. J. Comput. Phys. 228(6), 1932–1946 (2009)

3. Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian
systems. In 2011 50th IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), pp. 6564–6569. IEEE (2011)

4. Benner, P., Breiten, T.: Interpolation-based H2-model reduction of bilinear control systems.
SIAM J. Matrix Anal. Appl. 33(3), 859–885 (2012)

5. Benner, P., Goyal, P.: An Iterative Model Reduction Scheme for Quadratic-Bilinear Descriptor
Systems with an Application to Navier–Stokes Equations, pp. 1–19. Springer, Cham, (2018)

6. Blaisdell, G.A.: Numerical simulations of compressible homogeneous turbulence. Ph.D. thesis,
Stanford University (1991)

7. Carlberg, K., Choi, Y., Sargsyan, S.: Conservative model reduction for finite-volume models.
J. Comput. Phys. 371, 280–314 (2018)

8. Carlberg, K., Tuminaro, R., Boggs, P.: Preserving Lagrangian structure in nonlinear model
reduction with application to structural dynamics. SIAM J. Sci. Comput. 37(2), B153–B184
(2015)

9. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Courier Corporation, Chelms-
ford (2013)

10. Chaturantabut, S., Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear
port-Hamiltonian systems. SIAM J. Sci. Comput. 38(5), B837–B865 (2016)

11. Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference
scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227(15),
7125–7159 (2008)

12. Dritschel, D.G., Zabusky, N.J.: On the nature of vortex interactions and models in unforced
nearly inviscid two dimensional turbulence. Phys. Fluids 8(5), 1252–1256 (1996)

13. Edsberg, L.: Introduction to Computation and Modeling for Differential Equations. Wiley-
Interscience, New York (2008)



98 B. Maboudi Afkham et al.

14. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of
the energy-conserving sampling and weighting method for the hyper reduction of nonlinear
finite element dynamic models. Int. J. Numer. Methods Eng. 102(5), 1077–1110 (2015)

15. Frezzotti, M.L., Nasuti, F., Huang, C., Merkle, C.L., Anderson, W.E.: Quasi-1D modeling of
heat release for the study of longitudinal combustion instability. Aerosp. Sci. Technol. 75, 261–
270 (2018)

16. Frezzotti, M.L., D’Alessandro, S., Favini, B., Nasuti, F.: Numerical issues in modeling
combustion instability by quasi-1D Euler equations. Int. J. Spray Combust. Dyn. 9(4), 349–
366 (2017)

17. Frezzotti, M.L., Nasuti, F., Huang, C., Merkle, C., Anderson, W.E.: Determination of heat
release response function from 2D hybrid RANS-LES data for the CVRC combustor. In: 51st
AIAA/SAE/ASEE Joint Propulsion Conference, p. 3841 (2015)

18. Garby, R.: Simulations of flame stabilization and stability in high-pressure propulsion systems.
Ph.D. thesis, INPT (2013)

19. Gugercin, S., Polyuga, R.V., Beattie, C., Van Der Schaft, A.: Structure-preserving tangential
interpolation for model reduction of port-Hamiltonian systems. Automatica 48(9), 1963–1974
(2012)

20. Haasdonk, B.: Convergence rates of the POD-Greedy method. ESAIM: Math. Model. Numer.
Anal. 47(3), 859–873 (2013)

21. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

22. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized
Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Berlin (2015)

23. Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible
turbulence simulations. J. Comput. Phys. 201(2), 531–545 (2004)

24. Honein, A.E.: Numerical aspects of compressible turbulence simulations (2005)
25. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput.

Phys. 126(1), 202–228 (1996)
26. Kalashnikova, I., van Bloemen Waanders, B., Arunajatesan, S., Barone, M.: Stabilization of

projection-based reduced order models for linear time-invariant systems via optimization-
based eigenvalue reassignment. Comput. Methods Appl. Mech. Eng. 272, 251–270 (2014)

27. Kevlahan, N.K.R., Farge, M.: Vorticity filaments in two-dimensional turbulence: creation,
stability and effect. J. Fluid Mech. 346, 49–76 (1997)

28. Maboudi Afkham, B., Hesthaven, J.S.: Structure preserving model reduction of parametric
Hamiltonian systems. SIAM J. Sci. Comput. 39(6), A2616–A2644 (2017)

29. Maboudi Afkham, B., Hesthaven, J.S.: Structure-preserving model-reduction of dissipative
Hamiltonian systems. J. Sci. Comput. 81(1), 3–21 (2019)

30. Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite differ-
ence schemes for variable density low-Mach number flows. J. Comput. Phys. 229(2), 276–300
(2010)

31. Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite
difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90–124 (1998)

32. Morinishi, Y., Tamano, S., Nakabayashi, K.: A DNS algorithm using B-spline collocation
method for compressible turbulent channel flow. Comput. Fluids 32(5), 751–776 (2003)

33. Peng, L., Mohseni, K.: Symplectic model reduction of Hamiltonian systems. SIAM J. Sci.
Comput. 38(1), A1–A27 (2016)

34. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential
Equations: An Introduction. UNITEXT. Springer, Berlin (2015)

35. Reiss, J., Sesterhenn, J.: A conservative, skew-symmetric finite difference scheme for the
compressible Navier–Stokes equations. Comput. Fluids 101, 208–219 (2014)

36. Sjögreen, B., Yee, H.C.: On skew-symmetric splitting and entropy conservation schemes for
the Euler equations. In: Numerical Mathematics and Advanced Applications 2009, pp. 817–
827. Springer, Berlin (2010)



Conservative Model Order Reduction for Fluid Flow 99

37. Smith, R., Ellis, M., Xia, G., Sankaran, V., Anderson, W., Merkle, C.L.: Computational
investigation of acoustics and instabilities in a longitudinal-mode rocket combustor. AIAA J.
46(11), 2659–2673 (2008)

38. Tadmor, E.: Skew-selfadjoint form for systems of conservation laws. J. Math. Anal. Appl.
103(2), 428–442 (1984)

39. Thompson, W.J.: Fourier series and the Gibbs phenomenon. Am. J. Phys. 60(5), 425–429
(1992)

40. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM (1997)
41. Wang, Q., Hesthaven, J.S., Ray, D.: Non-intrusive reduced order modeling of unsteady flows

using artificial neural networks with application to a combustion problem. J. Comput. Phys.
384, 289–307 (2019)

42. Yu, J., Hesthaven, J.S.: A Comparative Study of Shock Capturing Models for the Discontinuous
Galerkin Method. No. EPFL-ARTICLE-231188. Elsevier, Amsterdam (2017)

43. Yu, Y., Koeglmeier, S., Sisco, J., Anderson, W.: Combustion instability of gaseous fuels in a
continuously variable resonance chamber (CVRC). In: 44th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit, p. 4657 (2008)



Piecewise Polynomial Approximation
of Probability Density Functions
with Application to Uncertainty
Quantification for Stochastic PDEs

Giacomo Capodaglio and Max Gunzburger

Abstract The probability density function (PDF) associated with a given set
of samples is approximated by a piecewise-linear polynomial constructed with
respect to a binning of the sample space. The kernel functions are a compactly
supported basis for the space of such polynomials, i.e. finite element hat functions,
that are centered at the bin nodes rather than at the samples, as is the case for
the standard kernel density estimation approach. This feature naturally provides
an approximation that is scalable with respect to the sample size. On the other
hand, unlike other strategies that use a finite element approach, the proposed
approximation does not require the solution of a linear system. In addition, a simple
rule that relates the bin size to the sample size eliminates the need for bandwidth
selection procedures. The proposed density estimator has unitary integral, does not
require a constraint to enforce positivity, and is consistent. The proposed approach
is validated through numerical examples in which samples are drawn from known
PDFs. The approach is also used to determine approximations of (unknown) PDFs
associated with outputs of interest that depend on the solution of a stochastic partial
differential equation.

1 Introduction

The problem of estimating a probability density function (PDF) associated with a
given set of samples is of major relevance in a variety of mathematical and statistical
applications; see, e.g., [1, 5, 6, 9, 11, 14, 20, 27, 31]. Histograms are perhaps the most
popular means used in practice for this purpose. A histogram is a piecewise-constant
approximation of an unknown PDF that is based on the subdivision of the sample
space into subdomains that are commonly referred as bins. For simplicity, consider
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the case in which all bins have equal volume. The value of the histogram on any
bin is given by the number of samples that lie within that bin along with a global
scaling applied to ensure that the histogram has unitary integral. As an example,
assume that a bounded one-dimensional sample domain � has been discretized into
a set Bδ = {B�}Nbins

�=1 of Nbins non-overlapping, covering, bins (i.e., intervals) of
length δ. Assume also that one has in hand M samples {Ym}Mm=1 of an unknown
PDF f (Y ). For every B� ∈ Bδ , the value of the histogram function f histo

δ,M (Y ) on B�

is given by

f histo
δ,M (Y )

∣∣B�
= 1

δM

M∑
m=1

XB�
(Ym), � = 1, . . . , Nbins , (1)

where XB�
(Y ) denotes the indicator function for B�. The above formula easily

generalizes to higher-dimensional sample domains. Although the histogram is
probably the easiest, with regards to implementation, means for estimating a PDF,
it suffers from some limitations. For instance, being only a piecewise-constant
approximation, it is discontinuous across bin boundaries and also the use of
piecewise-constant approximations severely limits the discretization accuracy one
can achieve.

A popular alternative method capable of overcoming the differentiability issue is
kernel density estimation (KDE) for which the PDF is approximated by a sum of
kernel functions K(·) centered at the samples so that a desired smoothness of the
approximation can be obtained [20]. Considering again a one-dimensional sample
domain �, the KDE approximation is defined as

f kde
b,M(Y ) = 1

bM

M∑
m=1

K
(Y − Ym

b

)
, (2)

where b, which is referred to as the bandwidth, usually governs the decay rate of
the kernel as |Y − Ym| increases. KDE approximations have been shown to be
effective in a variety of applications; see, e.g., [14, 22, 29, 30]. A limitation of KDE
is that the choice of the bandwidth strongly affects the accuracy [19, 28] of the
approximation. More important, the naive KDE method of (2) does not scale well
with the dimension M of the sample data set, i.e., for a given Y , the evaluation of
the KDE approximation (2) requires M kernel evaluations so that clearly evaluating
(2) becomes more expensive as the value of M grows. A way to overcome this issue
is performing an appropriate binning of the sample set, as for the histogram, and
appropriately transferring the information from the samples to the grid points. The
kernel functions are then centered at the grid points and scalability with respect to
the sample size can be achieved [12, 17]. Another method related to KDE is the
one presented in [18], which is based on spline smoothing and on a finite element
discretization of the estimator. This method is related to our approach because the
PDF is also approximated by a finite element function. Our method presents several
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advantages compared to that of [18]. First, to determine the coefficients, the solution
of a linear system is not required. Second, our method only involves the binning
size as a smoothing parameter, whereas the one in [18] also requires the treatment
of an additional smoothing parameter λ. Third, no special constraints have to be
introduced to ensure positivity of the PDF approximation. In turn, the method in
[18] has features that our approach does not provide such as the ability to match
the sample moments up to a certain degree and the possibility of allowing aggregate
data. We note that in [25], sparse-grid basis functions are substituted for the standard
finite element basis functions in the method of [18], allowing for consideration of
larger dimension N� .

In our approach, the unknown PDF is approximated by a piecewise-polynomial
function, specifically a piecewise-linear polynomial, that is defined, as are his-
tograms, with respect to a subdivision of the sample domain � into bins. The
piecewise-linear approximation we propose is a finite element function obtained as
a linear combination of hat functions. The procedure to determine the coefficients
of the linear combination is purely algebraic and can be efficiently carried out. The
approach is consistent in the sense that the approximate PDF converges to the exact
PDF with respect to the L2(�) norm as the number of samples tends to infinity
and the volume of the bins tend to zero. Moreover, the only smoothing parameter
involved is the bin size that can be related heuristically to the sample size by a simple
rule.

The paper is structured as follows. In Sect. 2, the mathematical foundation of our
approach is laid out; there, it is shown analytically that the proposed approximation
satisfies several requirements needed for it to be considered as a PDF estimator.
A numerical investigation of the accuracy and computational costs incurred by our
approach is then provided. First, in Sect. 3, our method is tested and validated using
sample sets associated with different types of known PDFs so that exact errors can
be determined. Then, in Sect. 4, the method is applied to the estimation of unknown
PDFs of outputs of interest associated with the solution of a stochastic partial
differential equation. Finally, concluding remarks and future work are discussed in
Sect. 5.

2 Piecewise-Linear Polynomial Approximations of PDFs

Let Y denote a multivariate random variable belonging to a closed, bounded
parameter domain � ⊂ R

N� which, for simplicity, we assume is a polytope in R
N� .

The probability density function (PDF) f (Y ) corresponding to Y is not known.
However, we assume that we have in hand a data set of M samples Ym ∈ �,
m = 1, . . . ,M , of Y ∈ �. The goal is to construct an estimator for f (Y ) using
the given data set {Ym}Mm=1 of samples. To this end, we use an approximating space
that is popular in the finite element community [7, 10].
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Let Bδ = {B�}Nbins

�=1 denote a covering, non-overlapping subdivision of the sample
domain � into Nbins bins.1 Here, δ parametrizes the subdivision and may be taken
as, e.g, the largest diameter of any of the bins {B�}. The bins are chosen to be
hyper-quadrilaterals; for example, if N� = 2, they would be quadrilaterals. It is
also assumed that the faces of the bins are either also complete faces of abutting
bins or part of the boundary of �. From a practical point of view, our considerations
are limited to relatively small N� because Nbins = O(1/δN�). Detailed discussion
about the subdivisions we use can be found in, e.g., [7, 10].

Let {Ŷ j }Nnodes

j=1 denote the set of nodes, i.e., vertices, of Bδ with Nnodes denoting

the number of nodes of Bδ . Note that we also have that Nnodes = O(1/δN�). Based
on the subdivision Bδ , we define the space of continuous piecewise polynomials

Vδ = {v ∈ C(�) : v|B�
∈ P1(B�) for � = 1, . . . , Nbins

}
,

where, for hyper-quadrilateral elements, P1(·) denotes the space of N�-linear
polynomials, e.g., bilinear and trilinear polynomials in two and three dimensions,
respectively.

A basis {φj (Y )}Nnodes

j=1 for Vδ is given by, for j = 1, . . . , Nnodes ,

φj (Y ) = {φj (Y ) ∈ Vδ : φj (Ŷ j ′) = δjj ′ for j ′ = 1, . . . , Nnodes

}
,

where δjj ′ denotes the Kronecker delta function. In detail, we have that

{φj (Y )}Nnodes

j=1 denotes the continuous piecewise-linear or piecewise N�-linear

Lagrangian FEM basis corresponding to Bδ , i.e, we have that, for j =
1, . . . , Nnodes ,

– for hyper-quadrilateral bins, φj (Y ) is an N�-linear function on each bin B�, � =
1, . . . , Nbins , e.g., for N� = {1, 2, 3}, a linear, bilinear, or trilinear function,
respectively;

– φj (Y ) is continuous on �;
– φj (Ŷ j ) = 1 at the j -th node Ŷ j of the subdivision Bδ; and
– if j ′ �= j , φj (Ŷ j ′) = 0 at the j ′-th node Ŷ j ′ of the subdivision Bδ .

1In the partial differential equation (PDE) setting, what we refer to as bins are often referred to
as grid cells or finite elements or finite volumes. We instead refer to the subdomains {B�}Nbins

�=1
as bins because that is the notation in common use for histograms which we use to compare to
our approach. Furthermore, in Sect. 4, we also use finite element grids for spatial discretization of
partial differential equations, so that using the notation “bins” for parameter domain subdivisions
helps us differentiate between subdivisions of parameter and spatial domains. For the same reason,
we use δ instead of h to parametrize parameter bin sizes because h is in common use to parametrize
spatial grid sizes.
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Fig. 1 The set of basis function {φj (Y )}6
j=1 for the case of Nnodes = 6 in one dimension. Note

that the support of the basis functions is limited to the two intervals that contain the corresponding
node. Here, the number of bins is Nbins = 5 and the number of bins Nbins,j in the support of the
basis functions φj (Y ) is one for j = 1, 6 and two for j = 2, 3, 4, 5

For j = 1, . . . , Nnodes , let Sj (Y ) = support {φj (Y )} ⊂ � and let Vj =
volume {Sj (Y )}; note that Sj (Y ) consists of the union of the bins B� ∈ Bδ having
the node Ŷ j as one of its vertices. Thus, the basis functions have compact support
with respect to �. An illustration of the basis functions in one dimension is given in
Fig. 1. We further let Nbins,j , for j = 1, . . . , Nnodes , denote the number of bins in
Sj (Y ), i.e., the number of bins that share the vertex Ŷ j .

Note that the approximating space Vδ and the basis {φj (Y )}Nnodes

j=1 are in common
use for the finite element discretization or partial differential equations. Details
about the geometric subdivision Bδ , the approximation space Vδ , and the basis
functions {φj(Y )} and their properties may be found in, e.g., [7, 10].

Below we make use of two properties of the basis {φj (Y)}Nnodes

j=1 . First, we have
the well-known relation

Nnodes∑
j=1

φj (Y) = 1 ∀ Y ∈ �. (3)

We also have that

Cj =
∫
�

φj (Y )dY =
∫
Sj (Y )

φj (Y )dY =
∑

B�∈Sj (Y )

∫
B�

φj (Y )dY . (4)

Note that, in general, Cj is proportional to Vj .
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2.1 The Piecewise-Linear Approximation of a PDF

Given the M samples values {Ym}Mm=1 in �, we define the approximation fδ,M(Y )

∈ Vδ of the unknown PDF f (Y ) given by

f (Y ) ≈ fδ,M(Y ) =
Nnodes∑
j=1

Fjφj (Y ) ∈ Vδ,

where Fj = 1

MCj

∑
Ym∈Sj (Y )

φj (Ym),

with Cj =
∫
Sj (Y )

φj (Y )dY , j = 1, . . . , Nnodes.

(5)

Note that only the samples Ym ∈ Sj (Y ), i.e., only the samples in the support Sj (Y )
of the basis function φj (Y ), are used to determine Fj . We observe that the proposed
estimator can be regarded as a kernel density estimator with linear binning [17],
where the binning kernel and the kernel associated with a given grid point are
equal to the same hat function. With this choice, the smoothing parameter of the
kernel becomes the binning parameter δ, so no additional tuning of the bandwidth
is necessary.

Of course, the approximate PDF (5) should be a PDF in its own right. That it is
indeed a PDF is shown in the following lemma.

Lemma 1 fδ,M(Y) ≥ 0 for all Y ∈ � and
∫
� fδ,M(Y)dY = 1.

Proof Clearly fδ,M(Y ) is non-negative because it is a linear combination of non-
negative functions with non-negative coefficients.

∫
�

fδ,M(Y)dY =
Nnodes∑
j=1

Fj

∫
�

φj (Y)dY

=
Nnodes∑
j=1

1

M Cj

M∑
m=1

φj (Ym)

∫
�

φj (Y)dY

= 1

M

Nnodes∑
j=1

M∑
m=1

φj (Ym) = 1

M

M∑
m=1

1 = 1.

(6)

The third and fourth equalities hold because of (4) and (3), respectively. $%
The next lemma is useful to prove the convergence of our approximation.
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Lemma 2 Let f ∈ C2(�) with f |∂� = 0 and let E[Fj ] denote the expectation of
Fj with respect to f . Then

∣∣∣f (Ŷ j ) − E[Fj ]
∣∣∣ ≤ Cδα, (7)

where the constantC does not depend on either δ or M , and α is a positive integer. If
[−1, 1]N� ∩ � = [−c1, c1]N� for some positive constant c1, then α = 2. Otherwise
α = 1.

Proof Let χ[−1,1] be the characteristic function of [−1, 1] and define φ(Y ) := (1 −
|Y |)χ[−1,1]. Let φ(Y) :=∏N�

n=1 φ(Yn) be defined in the usual tensor product fashion.
Assuming f |∂� = 0, we have Cj = δN� for all j . Then

φj (Ym) = φ
( Ŷ j − Ym

δ

)
, Fj = 1

δN� M

M∑
m=1

φ
( Ŷ j − Ym

δ

)
. (8)

Fj is the value of a naive kernel density estimator of f evaluated at Ŷ j , with the
function φ as a kernel. Using a standard argument for the bias of kernel density
estimators we have that

∣∣∣f (Ŷ j ) − E[Fj ]
∣∣∣ ≤δ

∣∣∣∂f (Ŷ j )

∂Y

∫
[−1,1]N�∩�

φ(Y
′
)Y

′
dY

′ ∣∣∣

+
δ2

2

∣∣∣
∫

[−1,1]N�∩�
Y

′T ∂2f (Ŷ j )

∂Y2 Y
′
dY

′ ∣∣∣+ O(δ2).

(9)

The above inequality proves the result for α = 1. Thanks to the symmetry
of φ, if [−1, 1]N� ∩ � = [−c1, c1]N� for some positive constant c1, then∫

[−1,1]N�∩� φ(Y
′
)Y

′
dY

′ = 0, hence the result follows with α = 2. $%
The next theorem shows that the approximate PDF obtained with our method
converges to the exact PDF with respect to the L2(�) norm.

Theorem 1 Let � be a polytope in R
N� and f ∈ C2(�) with f |∂� = 0. If fδ,M is

the approximation of f given in (5), then:

lim
δ→0

lim
M→∞ ‖f − fδ,M‖L2(�) = 0.

Moreover, if [−1, 1]N� ∩ � = [−c1, c1]N� for some positive constant c1, then

lim
M→∞ ‖f − fδ,M‖L2(�) ≤ Cδ2,

where C is a constant that does not depend on δ or M .
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Proof Let Iδf =
Nnodes∑
j=1

f (Ŷ j )φj be the finite element nodal interpolant of f , then

‖f − fδ,M‖L2(�) ≤ ‖f − Iδf ‖L2(�)+‖Iδf − fδ,M‖L2(�)

≤ C1δ
2+‖Iδf − fδ,M‖L2(�),

(10)

where C1 is a constant that does not depend on δ [7]. Considering the second term
in the above inequality, we have

‖Iδf − fδ,M‖L2(�) ≤

√√√√√
∫
�

(Nnodes∑
j=1

|f (Ŷ j ) − Fj |φj
)2

≤

√√√√√
∫
�

[(Nnodes∑
j=1

|f (Ŷ j ) − E[Fj ]|φj
)

+
(Nnodes∑

j=1

|E[Fj ] − Fj |φj
)]2

≤

√√√√√
∫
�

[
C2δα+

(Nnodes∑
j=1

|E[Fj ] − Fj |φj
)]2

.

(11)

The last inequality is obtained using Lemma 2 and (3). Considering that E[Fj ] =
E

[ φj
δN�

]
= 1

δN�
E

[
φj

]
, we have

|E[Fj ] − Fj | =
∣∣∣E[ φj

δN�

]
− 1

M

M∑
m=1

φj (Ym)

δN�

∣∣∣

= 1

δN�

∣∣∣E[φj
]

− 1

M

M∑
m=1

φj (Ym)

∣∣∣ ≤ σ(φj )

δN�
√
M

,

(12)

where σ(φj ) =
√
E[φ2

j ] − E[φj ]2 ≤ C3
√
δN� for all j , with C3 independent of

both δ and M . Hence

‖f − fδ,M‖L2(�) ≤ C1δ
2+C2δ

α+
C3√

δN�

√
M

, (13)

so the first result is obtained. If [−1, 1]N� ∩ � = [−c1, c1]N� for some positive
constant c1, then α = 2 in (13), so the second result also follows taking the limit as
M → ∞. $%
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We note that the numerical examples considered below show that convergence
can be obtained even for cases where the PDF is not in C2(�), even when the PDF
is not differentiable or even continuous.

2.2 Numerical Illustrations

In Sect. 3, we validate our approach by approximating known joint PDFs f (Y ). Of
course, in comparing approximations to an exact known PDF, we pretend that we
have no or very little knowledge about the latter except that we have available M

samples {Ym}Mm=1 at M points Ym ∈ �, m = 1, . . . ,M . For the rest of the paper,
whenever M1 < M2, then M1 ⊂ M2, meaning that smaller sample sets are obtained
as subsets of a larger sample set. Comparing with known PDFs allows us to precisely
determine errors in the approximation of the PDF determined using our method.
Then, in Sect. 4, we use our method to approximate the PDFs of outputs of interest
associated with the solution of a stochastic partial differential equation; in that
case, the PDF is not known. All computations were performed on a Dell Inspiron
15, 5000 series laptop with the CPU {Intel(R) Core(TM) i3-4030U CPU1.90 GHz,
1895 MHz} and 8 GB of RAM.

Note that in all the numerical examples, � denotes a sampling domain, i.e., all
samples {Ym}Mm=1 lie within �. For most cases, � is also the support domain for the
PDF. However, we also consider the case in which the support of the PDF is not
known beforehand so that the sampling domain � is merely assumed to contain, but
not be the same as, the support domain.

For simplicity, the sample space is assumed to be a boundedN�-dimensional box
� = [a, b]N� with a < b. We subdivide the parameter domain � into a congruent
set of bins Bδ = {B�}Nbins

k=1 consisting of N�-dimensional hypercubes of side δ =
(b − a)/Nδ, where Nδ denotes the number of intervals in the subdivision Bδ of �
along each of the N� coordinate directions. We then have that the number of bins is
given by Nbins = N

N�

δ and the number of nodes is given by Nnodes = (Nδ+1)N� .
For simplicity, we assume throughout that the components of the random variable
Y are independently distributed so that the joint PDFs are given as the product of
univariate PDFs; our method can also be applied in a straightforward way to cases
in which the components of Y are correlated.

3 Validation Through Comparisons with Known PDFs

In this section, we assume that we have available M samples {Ym}Mm=1 drawn from a
known PDF f (Y ). The error incurred by any approximation fapprox(Y ) of the exact
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PDF f (Y ) is measured by

Ef approx =
( 1

M

M∑
m=1

(
f (Ym) − f approx(Ym)

)2)1/2
. (14)

In particular, we use this error measure for our approximation fδ,M(Y ) defined in
(5).

The accuracy of approximations of a PDF, be they by histograms or by our
method, depends on both M (the number of samples available) and δ (the length
of the bin edges). Thus, M and δ should be related to each other in such a way that
errors in (14) due to sampling and bin size are commensurate with each other. Thus,
if the bin size errors in (14) are of O(δr ) and the sampling error is of O(M−1/2), we
set

M = (b − a)2rδ−2r = Nδ
2r . (15)

Thus, once a and b are specified, one can choose Nδ (or equivalently δ) and the
value of M is determined by (15) or vice versa. Clearly, M increases as δ decreases.

For most of the convergence rate illustrations given below, we

choose Nδ = 2(3−r)k, k = 1, 2, . . . , so that δ = (b − a)

2(3−r)k
and M = 22r(3−r)k.

(16)

Note that neither (15) or (16) depend on the dimension N� of the parameter domain
but, of course, Nbins = N

N�

δ and Nnodes = (Nδ + 1)N� do. If the variance of the
PDF is large, one may want to increase the size of M by multiplying the term δ−2r

in (15) by the variance.
The computation of the coefficients Fj defined in (5) may be costly if M is large

and consequently δ is small. To improve the computational efficiency, we evaluate
a basis function φj (Y ) at a sample point Ym only if the point is within the support
of φj (Y ). However, the determination of the bin B� ∈ Bδ such that Ym ∈ B� may
be expensive in case of large M and N� > 2. For this task, we employ the efficient
point locating algorithm described in [8].

3.1 A Smooth PDF with Known Support

For the first example we consider, we ignore the fact that we know the exact PDF
we are trying to approximate. However, we assume we know the support of the PDF
so the sampling domain � is also the support domain. We also use this example
to illustrate that the number of Monte Carlo samples needed is independent of the
dimension N� of the parameter space.
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We set � = [−5.5, 5.5]N� so that (b − a) = 11 and assume that the components
of the random vector Y = (Y1, . . . , YN� ) are independently and identically
distributed according to a truncated standard Gaussian PDF so that the joint PDF
is given by

f (Y ) =
N�∏
n=1

1√
2πCG

exp
(

− Y 2
n

2

)
for Y ∈ � = [−5.5, 5.5]N�,

with CG = 1

2

(
erf(5.5/

√
2) − erf(−5.5/

√
2)
)
.

(17)

The scaling factor CG is introduced to ensure that we indeed have a PDF, i.e., that
the integral of f (Y ) over � is unity. Note that because the standard deviation of
the underlying standard Gaussian PDF is unity, near the faces of the box � =
[−5.5, 5.5]N� the values of the truncated Gaussian distribution (17) are very small
so that the results of this example are given to a precision such that they would not
change if one considers instead the (non-truncated) standard Gaussian distribution.
Also note that because the second moment of the standard Gaussian distribution is
unity, the absolute error (14) is also very close to the error relative to the given PDF.

Before we use the formula (16) to relate M and δ, we first separately examine the
convergence rates with respect to δ and M . To this end, to illustrate the convergence
with respect to δ, we set

M = 107 and δ = 11/2k for k = 3, 4, 5, 6, (18)

so that the error due to sampling is relatively negligible. For illustrating the
convergence with respect to M , we set

δ = 11/28 and M = 10k for k = 3, 4, 5, 6, (19)

so that the error due to the bin size is relatively negligible. The plots for N� = 1 in
Fig. 2 illustrate a second-order convergence rate with respect to δ and a half-order
convergence rate with respect to 1/M .

Fig. 2 Errors and convergence rates for the approximation (5) for the one-dimensional truncated
standard Gaussian PDF (17). Left: second-order convergence rate with respect to δ with M = 107.
Right: half-order convergence rate with respect to M with δ = 11/28
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Fig. 3 Errors and convergence rates for the approximation (5) for the truncated standard Gaussian
PDF (17) with M and δ related through (16). Left: convergence rates with respect to δ. Right:
convergence rates with respect to M . Top to bottom: N� = 1, 2, 3

We now turn to relating M and δ using the formula (16). We consider the
multivariate truncated standard Gaussian PDF (17) for N� = 1, 2, 3. Plots of the
error vs. both δ and M are given in Fig. 3 from which we observe, in all cases, the
second-order convergence rate with respect δ and the half-order convergence rate
with respect to 1/M . We also observe that the errors and the number of samples
used are largely independent of the value of N� . A visual comparison of the exact
truncated standard Gaussian distribution (17) and its approximation (5) for the
bivariate case is given in Fig. 4.

Computational costs are reported in Table 1 in which, for each N� = 1, 2, 3, we
choose k = 2, 3, 4, 5 in (16) to determine δ and M . Reading vertically for each N� ,
we see the increase in computational costs due to the decrease in δ and the related
increase in M , although the method scales linearly with respect to the sample size
M . Reading horizontally so that δ and M are fixed, the increase in costs is due to the
increasing number of bins and nodes as N� increases. We note that our method is
amenable to highly scalable parallelization not only as δ decreases and M increases,
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Fig. 4 Left: the approximation (5) of the bivariate truncated standard Gaussian PDF (17). Center:
a zoom-in of the approximate PDF. Right: a zoom-in of the exact PDF. For these plots, δ =
0.34375 = 11/25 and M = 1048576 = 165

Table 1 Computational time (in seconds) for determining the approximation (5) of the truncated
standard Gaussian PDF (17).

Computation time in seconds

k Nδ δ = 11
Nδ

M = 24k Nbins N� = 1 Nbins N� = 2 Nbins N� = 3

2 4 2.75 256 4 7.710e−04 16 3.777e−02 64 1.190e−01

3 8 1.375 4096 8 1.356e−02 64 5.114e−01 512 1.955e−00

4 16 0.6875 65,536 16 2.796e−01 256 8.106e−00 4096 3.545e+01

5 32 0.34375 1,048,576 32 5.870e−00 1024 1.281e+02 32,768 1.013e+03

but also as N� increases so that, through parallelization, our method may prove to be
useful in dimensions higher than those considered here. When developing a parallel
implementation of our method, using a point locating algorithm such as that of [8]
to locate a sample on a finite element grid shared by several processors would be
crucial to realize the gains in efficiency due to parallelization.

3.2 A Smooth PDF with Unknown Support

Still considering a known PDF, we now consider a case for which we not only
pretend we do not know the PDF, but, in addition, we pretend we do not know its
support. Specifically, we consider the uniform distribution f (Y ) = 0.5 on [−1, 1].
A univariate distribution suffices for the discussions of this case; multivariate
distributions can be handled by the obvious extensions of what is said here about
the univariate case. We assume that we know that the support of the known PDF lies
within a larger interval �. Of course, we may be mistaken about this so that once
we examine the sample set {Ym}Mm=1, we may observe that some of the samples fall
outside of �. In this case we can enlarge the interval � until we observe that the
interval spanned by smallest to largest sample values is contained within the new �.
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We first simply assume that we have determined, either through external knowl-
edge or by the process just described, that the support of the PDF we are considering
lies somewhere within the interval � = [−1.5, 1.5]. Not knowing the true support,
we not only sample in the larger interval � (so that here we have (b − a) = 3 and
δ = 3/Nδ), but we also build the approximate PDF with respect to�. We remark that
a uniform distribution provides a stern test when the support of the distribution is
not known because that distribution is as large at the boundaries of its support as it is
in the interior. Distributions that are small near the boundaries of their support, e.g.,
the truncated Gaussian distribution of Sect. 3.1, would yield considerably smaller
errors and better convergence rates compared to what are obtained for the uniform
distribution. Choosing k = 2, 3, 4, 5 and r = 2 in (16), we obtain the errors plotted
in Fig. 5. Clearly, the convergence rates are nowhere near optimal. Of course, the
reason for this is that by building the approximation with respect to �, we are not
approximating the uniform distribution on [−1, 1], but instead we are approximating
the discontinuous distribution

f[−1.5,1.5](Y ) =
{

1 for Y ∈ [−1, 1]
0 for Y ∈ [−1.5,−1) and Y ∈ (1, 1.5].

For comparison purposes we provide, in Fig. 6, results for the case where we use
the support interval [−1, 1] for both sampling and for approximation construction.
Because now the PDF is smooth, in fact constant, throughout the interval in which
the approximation is constructed, we obtain optimal convergence rates.

One can improve on the results of Fig. 5, even if one does not know the support
of the PDF one is trying to approximate, by taking advantage of the fact that
the samples obtained necessarily have to belong to the support of the PDF and
therefore provide an estimate for that support. For instance, for the example we
are considering, one could proceed as follows.

1. For a chosen M , sample {Ym}Mm=1 over [−1.5, 1.5].
2. Determine the minimum and maximum values Ymin and Ymax , respectively, of

the sample set {Ym}Mm=1.

Fig. 5 For M and δ related through (16) with r = 2, convergence rates with respect to δ (left) and
M (right) for the uniform distribution on [−1, 1] but for an approximation built with respect to the
larger interval [−1.5, 1.5]
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Fig. 6 For M and δ related through (16) with r = 2, convergence rates with respect to δ (left)
and M (right) for the uniform distribution on [−1, 1] for an approximation built with respect to the
same interval

Fig. 7 For the uniform distribution and for M and δ related through (16) with r = 2, convergence
of the approximate support interval [Ymin, Ymax ] to the exact support interval [−1, 1]

3. Choose the number of bins Nbins and set δ = (Ymax − Ymin)/Nbins .
4. Build the approximation over the interval [Ymin, Ymax ] with a bin size δ.

It is reasonable to expect that as M increases, the interval [Ymin, Ymax ] becomes
a better approximation to the true support interval [−1, 1]. Figure 7 illustrates the
convergence of [Ymin, Ymax] to [−1, 1]. Note that because [Ymin, Ymax ] ⊂ [−1, 1],
the exact PDF is continuous within [Ymin, Ymax ]. Thus, it is also reasonable to
expect that because the approximate PDF is built with respect to an interval which
is contained within the support of the exact PDF, that there will be an improvement
in the accuracy of that approximation compared to that reported in Fig. 5 and, in
particular, that as one increases Nbins so that δ decreases and M increases, better
rates of convergence will be obtained. Figure 8 corresponds to the application of
this procedure and shows the substantially smaller errors and substantially higher
convergence rates compared to that reported in Fig. 5.

A visual comparisons of the approximations obtained using the smallest δ/largest
M pairing corresponding to Figs. 5, 6, and 8 are given in Fig. 9. The defects resulting
from the use of the interval [−1.5, 1.5] for constructing the approximation of
a uniform PDF that has support on the interval [−1, 1] are clearly evident. On
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Fig. 8 For M and δ related through (16) with r = 2, convergence rates with respect to δ (left)
and M (right) for the uniform distribution on [−1, 1] with approximations built with respect to the
approximate support interval [Ymin, Ymax ]

Fig. 9 For the uniform distribution on [−1, 1], the approximate PDF based on sampling in
[−1.5, 1.5] (left), [−1, 1] (center), and [Ymin, Ymax ] (right)

the other hand, using the support interval approximation process outlined above
results in a visually identical approximation as that obtained using the correct
support interval [−1, 1]. Note that for the smallest value of δ, we have that Ymin
approximates −1 and Ymax approximates 1 to seven decimal places.

3.3 A Non-smooth PDF

We next consider the approximation of a non-smooth PDF. Specifically, we consider
the centered truncated Laplace distribution

f (Y ) = 1

3CL

exp
(−|Y |

1.5

)
(20)

over � = [−5.5, 5.5], where CL = 1 − exp(−5.5/1.5) is a scaling factor that
ensures a unitary integral of the PDF over�. Here, the support domain and sampling
domain are the same. This distribution is merely continuous. i.e., its derivative is
discontinuous at Y = 0, so one cannot expect optimally accurate approximations.
However, as illustrated in Fig. 10, it seems the approximation does converge, but
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Fig. 10 Errors and convergence rates for the approximation (5) of the Laplace distribution (20).
Left: convergence with respect to δ with M = 107 is fixed. Right: convergence with respect to M

with h = 11/212 fixed

Fig. 11 For M and δ related through (16) with r = 1, convergence rates with respect to δ (left) and
M (right) for the Laplace distribution with approximations built with respect to the approximate
support interval � = [−5.5, 5.5]

at a lower rate with respect to δ and at the optimal rate with respect to M . The
latter is not surprising because Monte Carlo sampling is largely impervious to the
smoothness or lack thereof of the function being approximated.

Whenever there is any information about the smoothness of the PDF, one can
choose an appropriate value of r in (16). Alternately, possibly through a preliminary
investigation, one can estimate the convergence rate of the approximation (5).
In the case of the Laplace distribution which is continuous but not continuously
differentiable, one cannot expect a convergence rate greater than one. Selecting
r = 1 in (16) to relate M and δ, we obtain the results given in Fig. 11 which depicts
rates somewhat worse that we should perhaps expect.

The Laplace distribution, although not globally C2, is piecewise smooth, with
failure of smoothness only occurring at the symmetry point of the distribution. For
example, for the particular case of the centered distribution (20), the distribution
is smooth for Y > 0 and Y < 0. Thus, in general, one could build two separate,
optimally accurate approximations, one for the right of the symmetry point and the
other for the left of that point. Of course, doing so requires knowledge of where
that point is located. If this information is not available, then one can estimate the
location of that point by a process analogous to what we described in Sect. 3.2 for
distributions whose support is not known a priori. Such a process can be extended
to distributions with multiple points at which smoothness is compromised.
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3.4 Bivariate Mixed PDF

We now consider a bivariate PDF in which the random variables Y1 and Y2 are
independently distributed according to different PDFs. Specifically, we have that
Y1 is distributed according to a truncated Gaussian distribution with zero mean and
standard deviation 2, whereas Y2 is distributed according to a truncated standard
Gaussian. We choose � = [−5.5, 5.5]2 so that the joint PDF is given by

f (Y ) = 1√
8πC′

G

exp
(

− Y 2
1

8

) 1√
2πCG

exp
(

− Y 2
2

2

)
, (21)

where CG is as in (17) and C′
G = 1/2(erf(2.75/

√
2) − erf(−2.75/

√
2)). Results

for this case are shown in Fig. 12, where we observe optimal convergence rates with
respect to both δ and M . Visual evidence of the accuracy of our approach is given
in Fig. 13 that shows the approximation of the exact PDF (21) and zoom-ins of the

Fig. 12 Errors and convergence rates for the approximation (5) of the bivariate mixed-distribution
PDF (21). Left: convergence with respect to δ with M = 107 is fixed. Right: convergence with
respect to M with h = 11/28 fixed

Fig. 13 Left: the approximation (5) of the bivariate mixed-distribution PDF (21). Right-top: a
zoom-in of the exact PDF. Right-bottom: a zoom-in of the approximate PDF. For these plots,
δ = 0.34375 = 11/25 and M = 1048576 = 165
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approximate and approximate PDFs. Computational times are very similar to those
for N� = 2 in Table 1 so that they are not provided here.

4 Application to an Unknown PDFs Associated with a
Stochastic PDE

In this section, we consider the construction of approximations of the PDF of outputs
of interest that depend on the solution of a stochastic PDE. In general, such PDFs
are unknown a priori.

The boundary value problem considered is the stochastic Poisson problem

{
−∇ · ( κ(x,Z) ∇u(x,Z)

) = 1 for x ∈ D, Z ∈ �input

u(x,Z) = 0 for x ∈ ∂D, Z ∈ �input ,
(22)

where D ⊂ R
d denotes a spatial domain with boundary ∂D and �input ⊂ R

N�input

is the sample space for the input random vector variable Z which we assume is
distributed according to a known input joint PDF finput (Z).

For the coefficient function κ(x,Z), we assume that there exists a positive lower
bound κmin almost surely on �input for all x ∈ D. We also assume that κ(x,Z) is
measurable with respect to Z. It is then known that the system (22) is well posed
almost surely for Z ∈ �input ; see, e.g., [4, 16, 23, 24] for details.

Stochastic Galerkin Approximation of the Solution of the PDE
We assume that we have in hand an approximation uapprox(x,Z) of the solution
u(x,Z) of the system (22). Specifically, spatial approximation is effected via a
piecewise-quadratic finite element method [7, 10]. Because this aspect of our
algorithm is completely standard, we do not give further details about how we effect
spatial approximation. For stochastic approximation, i.e., for approximation with
respect to the parameter domain �input , we employ a spectral method. Specifically,
we approximate using global orthogonal polynomials, where orthogonality is with
respect to �input and the known PDF finput (Z). Thus, if {�j(x)} denotes a basis for
the finite element space used for spatial approximation and {�i(Z)} denotes a basis
for the spectral space used for approximation with respect to Z, with the stochastic
Galerkin method (SGM) we obtain an approximation of the form

uapprox(x,Z) =
∑
i

∑
j

Ui,j �j (x)�i(Z)

=
∑
i

ui (x)�i(Z), where ui(x) =
∑
j

Ui,j�j (x).

(23)
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Note that once the SGM approximation (23) is constructed, it may be evaluated
at any point x ∈ D and for any parameter vector Z ∈ �input . Having chosen the
types of spatial and stochastic approximations we use, the approximate solution
uapprox(x,Z), i.e., the set of coefficients {Ui,j }, is determined by a stochastic
Galerkin projection, i.e., we determine an approximation to the Galerkin projection
of the exact solution with respect to both the spatial domain D and the parameter
domain �input . This approach is well documented so that we do not dwell on it
any further; one may consult, e.g., [2, 3, 9, 15, 16], for details. Note that once the
surrogate (23) for the solution of the PDE is built, it can be used through direct
evaluation to cheaply determine an approximation of the solution of the PDE for
any x ∈ D and any Z ∈ �input instead of having to do a new approximate PDE
solve for any new choice of x and Z.

The error in uapprox(x,Z) depends on the grid-size parameter h used for spatial
approximation and the degree of the orthogonal polynomials used for approximation
with respect to the input parameter vector Z. In practice, these parameters should be
chosen so that the two errors introduced are commensurate. However, here, because
our focus is on stochastic approximation and because throughout we use the same
finite element method for spatial approximation, we use a small enough spatial grid
size so that the error due to spatial approximation is, for all practical purposes,
negligible compared to the errors due to stochastic approximation.

Outputs of Interest Depending on the Solution of the PDE
In our context, outputs of interest are spatially-independent functionals of the
solution u(x,Z) of the system (22). Here, we consider the two specific functionals

Y (Z) =
∑
i

( 1

|D|
∫
D

ui(x)dx
)
�i(Z), (24)

or

Y (Z) =
∑
i

( ∫
D

u2
i (x)dx

)
�i(Z), (25)

i.e., the average of the approximate solution and a functional of the integral of the
square ui , respectively, over the spatial domain D. The output of interest Y is a
random variable that depends on the random input vector Z. Note that although we
consider scalar outputs of interest, the extension to vector-valued outputs of interest
is straightforward. Note that throughout, all outputs of interest are standardized,
namely, they are translated by their mean and scaled by their standard deviation.
Hence, we seek approximations of the PDFs of standardized outputs of interest.

It is important to keep in mind that we are dealing with two random variables.
First, we have the input random variable Z having a known PDF finput (Z)
supported over the known parameter domain �input . Second, we have the output
random variable Y having an unknown PDF foutput(Y ) supported over an unknown
parameter domain �output . Although we do not know the output PDF, that is what
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we want to construct, so that further samples of the output of interest Y can be
obtained by simple direct sampling of the PDF foutput(Y ) for Y .

Thus, the task at hand is

given the known PDF finput (Z) of the random input Z ∈ �input , determine
an approximation of the unknown PDF foutput(Y ) of an output of interest
Y (Z).

To deal with this task, one simply follows the recipe:

1. construct the stochastic Galerkin approximation uapprox(x,Z) given in (23) of
the solution u(x,Z) of the PDE (22);

2. choose M samples {Zm}Mm=1 of the input random vector Z according to the
known given input PDF finput (Z);

3. determine M samples of the approximate solution {uapprox(x,Zm)}Mm=1 of the
PDE (22) by evaluating (23) at each of the samples Zm chosen in step 2;

4. use the approximate solution samples obtained in step 3 to determine M samples
{Ym = Y (Zm)}Mm=1 of an output of interest from, e.g., (24) or (25);

5. use the output of interest samples {Ym}Mm=1 obtained in step 4 to determine, using
(5), an approximation to the output PDF foutput (Y ) = foutput

(
Y (Z)

)
.

Of course, because the exact PDF foutput(Y ) is not known, we cannot use (14)
to compute errors. Thus, as a surrogate for the exact PDF, we use a histogram
approximation f histo

M̂ ,̂δ
(Y ) obtained with a large number of bins (and therefore a very

small δ̂ and a large number of samples M̂), where “large” is relative to what is used
in obtaining approximations using, e.g., (5). Thus, we now use

Efapprox =
( 1

M

M∑
m=1

(
f histo

M̂ ,̂δ
(Ym) − fapprox(Ym)

)2)1/2
(26)

as a measure of the error in any approximation fapprox(Y ) of foutput(Y ) that
involves M 	 M̂ samples and a bin width δ � δ̂.

Illustrative Results for a Specific Choice for the Coefficient of the PDE
For the coefficient function in the PDE (22), we choose

κ(x,Z) = κmin+ exp
(
γ (x,Z)

)
with γ (x,Z) = μ +

Ninput∑
n=1

√
λnψn(x)Zn, (27)

where {λn,ψn(x)} are the eigenpairs of a given covariance function, with the eigen-

values arranged in non-increasing order and the random variables {Zn}Ninput

n=1 are
independent and identically distributed standard Gaussian variables. One recognizes
that γ (x,Z) is a truncated Karhunen-Loève (KL) expansion corresponding to a
correlated Gaussian random field with mean μ [13, 21, 26].
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Here, we consider the specific covariance function

Cγ (x, x′) = σ 2
γ exp

[
− 1

L

( d∑
i=1

|xi − x ′
i |
)]
, (28)

where σ 2
γ denotes a variance and 0 < L ≤ diam(D) a correlation length. The

eigenpairs satisfy the generalized eigenvalue problem
∫
D

Cγ (x, x′)ψn(x′)dx′ = λnψn(x). (29)

The eigenpairs {λn,ψn} are approximately determined by means of a Galerkin
projection as in [9, 16].

The Ninput components of the input stochastic variable Z are independent and are
all distributed according to a standard Gaussian PDF. Thus, in the spectral method
discretization with respect to the input stochastic variable Z, we use tensor products
of Hermite polynomials as the orthonormal basis {�j(Z)}. Due to the orthogonality
of these polynomials with respect to the Gaussian PDF, this choice results in very
substantial savings in both the assembly and solution aspects of the discretized SGM
system. Details can be found in, e.g., [9, 16].

For the numerical tests, we choose the spatial domain D to be the unit square
[0, 1]2, the correlation length L = 0.1, κmin = 0.01, and μ = 0.

Output of Interest (24) Here, we consider the approximation (5) of the PDF
foutput(Y ) of the standardized output of interest Y given by (24).

We consider �output = [−5, 3], and in (27) and (28) we set Ninput = 2, σγ =
1.4. Because Z = (Z1, Z2) with Z1 and Z2 being standard Gaussian variables,
�input = (−∞,∞)Ninput . A plot of the output of interest (24) as a function of the
input variables Z = (Z1, Z2) is given, for Z ∈ [−3.5.3.5]2, in Fig. 14 (left). Plots of
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Fig. 14 For the coefficient (27) with Ninput = 2, the outputs of interest (24) (left) and (25) (right)
as a function of the input variable Z = (Z1, Z2)
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Fig. 15 For the coefficient (27) with Ninput = 2 and the output of interest (24), a comparison
between the histogram approximation (1) of the PDF foutput(Y ) with δ̂ = 0.125 and M̂ = 166 and
the approximation (5) with h = 0.5 and M = 164 (top) and with h = 0.25 and M = 165 (bottom)

the approximate output PDF fδ,M(Y ) determined using (5) is given in Fig. 15. For
comparison purposes, a plot of the histogram approximation f histo

δ̂,M̂
(Y ) determined

using (1) is also provided in that figure, but with larger sample size M and smaller
bin size δ compared to those used for fδ,M(Y ).

We next examine the convergence behavior of the approximation (5) of the output
PDF. Because the exact PDF is unknown, we measure the error using (26) with the
histogram surrogate f histo

δ̂,M̂
obtained with a bin size of δ̂ = 8/28 and M̂ = 108

samples. To study the order of convergence with respect to δ, we choose

M = 107 and δ = 8/2k, for k = 2, 3, 4, 5, (30)

whereas for the convergence with respect to M , we choose

δ = 8/27 and M = 10k for k = 3, 4, 5, 6. (31)

Note that for these values, we have M < M̂ and δ > δ̂. In Fig. 16, we observe
that the convergence rates with respect to δ and M are approximately 1.75, and
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Fig. 16 Errors and convergence rates for the approximation (5) to the output PDF foutput(Y )

for the output of interest (24). Left: convergence with respect to δ with M = 107 fixed. Right:
convergence with respect to M with δ = 0.0625 fixed

Fig. 17 Errors and convergence rates for the approximation (5) to the output PDF foutput(Y ) for
the output of interest (24) with δ and M related through (16) with r = 2

0.45, respectively. Given that, from examining Fig. 15, the output PDF seems to
be C2(�output), these rates are lower than the values 2 and 0.5, respectively, that
one might expect. Likely causes of these lower rates are that errors are determined
by comparing to a histogram approximation and not to an exact PDF and also
because the values of M̂ and δ̂ used for the histogram surrogate are “close” to the
corresponding values used to determine the approximation (5).

Further results about errors and convergence rates are given in Fig. 17 for which
(16) with r = 2 is used to relate δ and M . The histogram used for comparison to
estimate errors is obtained with δ̂ = 0.125 and M̂ = 166 samples. The results in
this figure are consistent with those of Fig. 16.

Output of Interest (25) We next consider the approximation (5) of the PDF
foutput(Y ) of the standardized output of interest Y given by (25). The various
inputs are the same as those used for the output of interest (24) except that now
�output = [−3.5, 4] and σγ = 2. A plot of this output of interest as a function of the
input random variables Z ∈ [−3.5.3.5]2 is given in the right plot of Fig. 14. Plots of
the approximate output PDF fδ,M(Y ) determined using (5) are given in Fig. 18. For
comparison purposes, plots of the histogram approximation f histo

δ̂,M̂
(Y ) determined

using (1) are also provided in that figure, but with larger sample size M and smaller
bin size δ compared to those used for fδ,M(Y ). Figure (19) provides plots of the
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Fig. 18 For the coefficient (27) with Ninput = 2 and the output of interest (25), a comparison
between the histogram approximation (1) of the PDF foutput(Y ) with δ̂ = 0.1171875 and M̂ = 166

and the approximation (5) with δ = 0.46875 and M = 164 (top) and with δ = 0.234375 and
M = 165 (bottom)

Fig. 19 Errors and convergence rates for the for the approximation (5) to the output PDF
foutput(Y ) for the output of interest (25) with δ and M related through (16) with r = 2

errors in the approximation (5) determined through comparisons with histogram
approximations determined with δ̂ = 0.1171875 and M̂ = 166. Convergence rates
of 1.75 and 0.4 are observed with respect to δ and M , respectively.



126 G. Capodaglio and M. Gunzburger

5 Concluding Remarks

A piecewise-linear density estimation method (5) for the approximation of the PDF
associated with a given set of samples is presented. The approximation is naturally
scalable with respect to the sample size, is intrinsically positive, and has a unitary
integral. It is also consistent, meaning that it converges to the exact PDF in the
L2 norm if the sample size goes to infinity and the bin size goes to zero. The
construction of the approximation does not require the solution of a linear system
and is fast even for a large number of samples. The computational time has been
shown to scale linearly with the sample size. Moreover, the binning size is the only
smoothing parameter involved, and it can be related to the sample size by a simple
rule.

Future work would involve strategies to extend the method to higher dimensions
and decrease the computational time. For instance, the finite element basis functions
may be replaced with sparse-grid basis functions in the way done in [25], in order to
achieve scalability also with respect to the sample dimension. Computational speed-
ups could be obtained by considering parallelization. Another means to speed up the
computation would be to use adaptive refinement to coarsen the binning subdivision
near the tails of the distribution. With this technique, fewer bins would have to be
checked by the point locating algorithm of [8] that we employ to locate a given
point in the binning subdivision shared by several processors. In addition, the Monte
Carlo sampling used in our method can be replaced by, e.g., quasi-Monte Carlo or
sparse-grid sampling, resulting in efficiency gains.

Acknowledgments This work was supported by US Air Force Office of Scientific Research grant
FA9550-15-1-0001 and by the Sandia National Laboratories contract 1985151.
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Analysis of Probabilistic and Parametric
Reduced Order Models

Hermann G. Matthies

Abstract Stochastic models share many characteristics with generic parametric
models. In some ways they can be regarded as a special case. But for stochastic
models there is a notion of weak distribution or generalised random variable, and the
same arguments can be used to analyse parametric models. Such models in vector
spaces are connected to a linear map, and in infinite dimensional spaces are a true
generalisation. Reproducing kernel Hilbert space and affine- / linear- representations
in terms of tensor products are directly related to this linear operator. This linear map
leads to a generalised correlation operator, and representations are connected with
factorisations of the correlation operator. The fitting counterpart in the stochastic
domain to make this point of view as simple as possible are algebras of random
variables with a distinguished linear functional, the state, which is interpreted as
expectation. The connections of factorisations of the generalised correlation to
the spectral decomposition, as well as the associated Karhunen-Loève- or proper
orthogonal decomposition will be sketched. The purpose of this short note is to
show the common theoretical background and pull some lose ends together.

1 Introduction

Probabilistic and parametric models, used in many areas of science, engineering,
and economics, share many similarities. Probabilistic models are used to describe
uncertainties or random phenomena, whereas parametric models describe variations
or changes of some system as some parameters are changed. Typically these
are part of some larger mathematical model describing some system with such
characteristics. A parameter can of course be a random variable, and this is the
connection between these two kinds of models. Here the interest is mainly in system
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models with an infinite dimensional state space, e.g. systems described by ordinary
or partial differential equations. This often also makes it necessary to theoretically
consider infinitely many parameters. In an actual numerical computation this has
of course to be reduced through some kind of discretisation to a finite number.
And obviously one would like to have this number as small as possible while still
retaining acceptable accuracy. This is the realm of reduced order models.

These reduced order models lessen the possibly high computational demand, and
are hence probabilistic or parametrised reduced order models. The survey [1] and
the recent collection [2], as well as the references therein, provide a good account
of parametric reduced order models and some of the areas where they appear. The
interested reader may find there further information on parametrised reduced order
models and how to generate them.

Here we build on our recent work [17, 18] analysing parametrised reduced order
systems, which itself is a continuation of [20]. In these publications the theoretical
background of such parametrised models is treated in a functional analysis setting.
The purpose of the present note is to use the same kind of techniques for stochastic
or probabilistic models, where some generalisations are required due to the wish
to cover infinite dimensional state spaces, and combine this with the description of
parametric reduced order models.

As an example, assume that some physical system is investigated, which is
modelled by an evolution equation for its state v(t) ∈ V at time t ∈ [0, T ],
where V is assumed to be a Hilbert space for the sake of simplicity: v̇(t) =
A(ς,μ; v(t)) + f (ς,μ; t); v(0) = v0, where the superimposed dot signifies the
time derivative, A is an operator modelling the physics of the system, and f is some
external excitation. Here ς is a random variable (RV) defined on an event space
Ω with values in some Hilbert space S (again for simplicity), and μ ∈ M are
parameters that can be controlled, and can be used to evaluate the design of the
system, control its behaviour, or optimise the performance in some way. No specific
structure is assumed for the set M. We assume that for all possible values of ς
and for all μ of interest the system is well-posed. This will make the system state
v(ς,μ; t) a random variable as well, depending on the value of the parameters μ.

One may be interested in the state of the system v(ς,μ; t) and its statistics,
or some functional of it, say Ψ (μ) = E(ψ(v(ς,μ)), where E is an expectation
operator. While evaluating A(ς,μ) or f (ς,μ) for a certain μ may be straightfor-
ward, evaluating v(ς,μ; t) or Ψ (μ) may be very costly. This is why one wants
representations of v(ς,μ; t) or Ψ (μ) which allow a cheaper evaluation. This is
achieved through reduced order models, which are often also called proxy- or
surrogate-models. It turns out that such random and parametric objects can be
analysed by associated linear maps [17, 18], which renders them much more
accessible to the techniques of linear functional analysis, a well understood subject.
This association with linear mappings has probably been known for a long time,
see [15] for an exposition in the context of stochastic models. In Sect. 2 the
association of parametric and stochastic models with linear maps will be explained,
in passing touching on reproducing kernel Hilbert spaces. The classical probabilistic
framework (cf. [26]), starting from measurable spaces and σ -algebras, can be used
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to define algebras of random variables (RVs) as measurable functions on these
measure spaces, and the expectation operator as integral of these RVs w.r.t. the
probability measure. These algebras of RVs can be used in the case of probabilistic
models to build the range or image space for these linear maps as spaces of classical
RVs. But alternatively one may also start by using as fundamental concepts algebras
of objects that we want to call RVs together with the expectation operator (cf. [24])
as a linear functional, and if this algebra of RVs is Abelian or commutative one
essentially recovers equivalence with classical probability. This approach allows
for non-commuting algebras of RVs, which is important (cf. [21]) in order to deal
with e.g. random matrices, random fields of tensors, quantum theory and quantum
fields. More important for our immediate purposes here, this view greatly facilitates
the specification of stochastic models on infinite dimensional spaces. Such an
algebra of RVs, whether generated classically as derived concept as an algebra
of measurable functions, or used as a primary model of possibly non-commuting
RVs, seems to be a natural object to use in the case of stochastic models on infinite
dimensional vector spaces, as it allows to generalise such stochastic models to so-
called weak distributions or generalised processes (cf. [8, 9, 22, 23]), and thereby
elegantly circumvent many problems which arise when one tries to define σ -additive
set functions for example on Hilbert spaces. This algebraic and analytic view on
probability will be explained in Sect. 3. Everything is tied together in Sect. 4 in
the analysis of the generalised correlation operator, its factorisations, as well as its
spectral decomposition, and the last Sect. 5 concludes by pointing out once more the
connection between functions in high-dimensional spaces and the associated linear
maps and correlation operators, where well-known methods can be used to analyse
their structure.

2 Parametric and Stochastic Models

We start with a short recap of [17, 18], where the interested reader may find more
detail. Let r : M → U be a generic substitute for any one of the parametric
objects alluded to in the introduction, e.g. things like μ �→ v(ς,μ, t) ∈ V or
μ �→ v̇(ς, μ, ·) ∈ L2([0, T ]) ⊗ V ; ω �→ ς(ω) ∈ S—with Ω taking the rôle
of M; (μ, ω) �→ v(ς(ω), μ, t) ∈ V —with M × Ω taking the rôle of M;
ω �→ f (ς(ω), μ, t) ∈ V—with Ω taking the rôle of M, or μ �→ A(ς,μ, ·) ∈
(V → V)—the space of maps from V to V , etc.

The space U is assumed for the sake of simplicity as a separable Hilbert space.
The function r can thus be either a parametric input, or a random input—i.e. a
random variable (RV), in which case M would be a measure space—to a model
like that described in Sect. 1, or the operator of that model, or the state (solution)
of that system. Assuming—without significant loss of generality—that the image
span r(M) = span im r ⊆ U is dense in U , one may to each such function
r associate a linear map R : U ' u �→ 〈r(·)|u〉U ∈ R

M into the space
(M → R) of all real-valued functions on M. By construction, R restricted to
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span im r = span r(M) is injective. In Sect. 3 it will be explained how—in the case
of a probabilistic or random model—the Hilbert space can be generated from an
algebra of RVs.

As an aside, note that on its restricted range R̃ := R(span im r) ⊆ R
M one may

define an inner product as 〈φ|ψ〉R := 〈R−1φ|R−1ψ〉U for all φ,ψ ∈ R̃. Denote
the completion with this inner product by R. This makes R and R−1 into bijective
isometries, hence unitary maps between U and R. It may easily be shown [17, 18]
thatR is a reproducing kernel Hilbert space (RKHS) [3, 12] with reproducing kernel
!(μ1, μ2) := 〈r(μ1)|r(μ2)〉U , such that the reproducing property 〈!(μ, ·)|φ〉R =
φ(μ) holds for all φ ∈ R. In this note the RKHS R will not be used, but the
important thing to keep in mind is that the map R and the space R of scalar functions
on the set M—one might view them as problem oriented co-ordinates—carry the
same information as the parametric object r(μ).

Often some information of what is important in the set M is also available, here
it is assumed to be given by a Hilbert subspace Q ⊆ R

M, usually different from R.
From now on we shall by slight abuse of notation view the map R as mapping into
Q and still assume that it is injective as well as closed, for the sake of simplicity.
Details like the assumption that the subspace R−1(Q) is dense in U will not always
be spelt out in detail for the sake of brevity. The idea is that with u ∈ U of unit
length the vectors Ru ∈ Q with large norm are more important, and this will be
considered in building reduced order models. As will be shown [17, 18] in Sect. 4,
the map C : U → U defined by C = R∗R, where R∗ is the adjoint of R, is central
to the analysis. More precisely, with the above assumptions on R the adjoint R∗ is
surjective, and C is a densely defined self-adjoint positive definite operator, which
we shall call the ‘correlation’ of the model r(μ).

A random variable or stochastic model as exemplified by the RV ς in Sect. 1
is usually formulated as a measurable map ς : Ω → S, where (Ω,A,P) is a
probability space with σ -algebra A and probability measure P. One may view the
set Ω as a parameter set like M above, and one can construct a linear map into the
space R

Ω , i.e. the scalar random variables. Without loss of generality, we assume
that span ς(Ω) = span im ς ⊆ S is dense in the separable Hilbert space S, and
define [15]

S : S ' ξ �→ 〈ς(·)|ξ〉S ∈ R
Ω. (1)

It remains to define an inner product on R
Ω and a subspace corresponding to Q for

the parametric case above. This will be done in Sect. 3. For the time being assume
that this has been defined, i.e. there is an inner product 〈·|·〉V and a corresponding
Hilbert space of (equivalence classes) of RVs V ⊆ R

Ω , and we regard S as a map
S : S → V with the same properties as assumed for R above. Obviously the densely
defined self-adjoint positive definite operator Cς = S∗S : S → S corresponding
to C = R∗R above is indeed the correlation operator of the RV ς .

In case ς is an input to a dynamical system like the one alluded to in Sect. 1, the
state of the system v(ς,μ; t) also becomes a stochastic quantity, and inner product
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with a vector w ∈ V leads for fixed μ and t automatically to a linear mapping

P : V ' w �→ 〈v(ς(·), μ; t)|w〉V ∈ R
Ω, (2)

which we shall regard again as a map P : V → V into the just defined space V. This
defines a third correlation operator Cv = P ∗P : V → V .

It may be seen that with the correspondences

R : U → Q — S : S → V — P : V → V (3)

all three situations are completely analogous, and may in the simplest case be dealt
with in the same formalism. The idea on how to obtain representations of r(μ) resp.
ς(ω) resp. v(ω) is the following [17, 18], which we shall mainly demonstrate for
r(μ): choose a complete basis {qj }j ⊂ Q, and represent r(μ) as

r(μ) =
∑
j

αjR
∗qj (μ). (4)

A good reduced order model is one where

rROM(μ) =
J∑

j=1

αjR
∗qj (μ) (5)

is a good approximation to r(μ) ≈ rROM(μ) with a small J , i.e. with not too
many terms. In Sect. 4 some other possibilities for the choice of basis {qj }j will
be discussed, where the μ-dependence is encoded in the scalar functions from Q,
but where a basis of μ-independent vectors is picked from U , and where again
for the sake of brevity and simplicity we shall confine ourselves to complete
orthonormal systems (CONS). The important message here is that with R one
has a factorisation of C = R∗R, and that the adjoint is the map which carries
a representation on the function space to the space U . Later we shall indicate
[17, 18] how every representation leads to a factorisation of C, and that—with some
additional assumptions on C—every factorisation leads to a representation. But the
description and analysis via factorisations is more general [8, 9, 15, 22, 23], and this
is needed in the formulation of probabilistic models where U resp. S is an infinite
dimensional Hilbert space.

3 Algebras of Random Variables

Here we shall take a closer look at the stochastic or probabilistic model ς : Ω → S
and the associated linear map S : S → V, as well as the space of RVs V and
how it is generated. Although there are classical ways of specifying the space
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V, the most natural one seems to be the algebraic approach to probability. These
ideas are certainly also used in the classical approach, but the algebraic probability
approach distills the essential components in an abstract setting and allows at the
same time generalisations. Historically, when looking back as how in the beginnings
of probability theory the Bernoullis treated random variables (RVs), it is clear
that they added them and took multiples—hence they form a vector space—and
that they multiplied them with each other—so they form an algebra. Although
the formalisation of probability as formulated by Kolmogorov used the concept of
measure and this algebraic background was largely ignored, it was revived with
the advent of quantum theory. It turns out that here this view is essential, as not all
observables can be observed simultaneously, and this is reflected in the fact that they
do not commute in the algebra. Another topic where this view is very advantageous
are random matrices and more generally random fields of even-order tensors.

We are mainly interested in ‘real’ or self-adjoint RVs as they will later be
called. But for analytical convenience we shall treat complex RVs, following Paul
Painlevé’s and Jacques Hadamard’s adage that the shortest path between two truths
in the real domain passes through the complex domain—“le plus court chemin entre
deux vérités dans le domaine réel passe par le domaine complexe”. Some algebraic
language is needed, but most of the terms will be familiar from complex numbers
and from matrices, which are indeed two simple but prime examples of algebras.
Let us start right away with a simple and mostly familiar example from probability
theory, which will at the same time serve as motivation, concrete example, and
explanation of the abstract setting.

3.1 Specifying the Algebra

Consider a probability space (Ω,A,P) with a set of elementary events Ω , a σ -
algebra A of measurable subsets of Ω , and a probability measure P. In the vector
space L0(Ω,A,P;C) of complex-valued measurable functions/classical random
variables on Ω—which for the sake of brevity shall be denoted just by L0(Ω)—
let As := L0s(Ω) ⊂ L0(Ω) be the vector subspace of complex-valued simple
measurable functions, i.e. complex linear combinations of functions 1E , which for
E ∈ A are defined to be 1E (ω) = 1 if ω ∈ E ⊆ Ω , and zero otherwise. Hence As

are the RVs where each one of them can only take finitely many different values.
On this vector space we may define a multiplication by just pointwise multipli-

cation of two such RVs, and the product is obviously again a simple function; in
fact for E,F ∈ A one has 1E1F = 1E∩F , i.e. the multiplication in As reflects
the intersection in the σ -algebra A. This means that the space As is closed under
multiplication and hence thanks to the properties of the multiplication on C is
a complex, associative, and commutative or Abelian algebra, with the familiar
distributive law from C coupling addition and multiplication also on As . Another
way of saying this is to state that the multiplication is a bilinear map fromAs×As to
As . Let us note in passing that with the same definition of pointwise multiplication
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also L0(Ω) is an associative and commutative algebra—with As a sub-algebra—
as the pointwise product of two measurable functions is again measurable, but
we shall see later that for our purposes L0(Ω) is in general too big. The element
1Ω ∈ As ⊂ L0(Ω) which is constant equal to unity is obviously a neutral element
or unit for the multiplication, and hence As and L0(Ω) are called unital algebras.
For ψ ∈ As one can now compute powers ψn = ψψn−1 for any integer n ≥ 1, and
if we define ψ0 = 1Ω in a unital algebra even for any n ≥ 0. Given a polynomial
Q(X) =∑n

k=0 αkX
k ∈ Π1 in one unknown X with complex co-efficients αk ∈ C,

it is now possible to evaluate Q(ψ) ∈ As for any ψ ∈ As . For some φ ∈ As there
is a ψ ∈ As such that φψ = 1Ω . This is then called the (multiplicative) inverse
ψ = φ−1, such that φφ−1 = 1Ω .

For a complex number ζ ∈ C its complex conjugate is denoted by ζ ∗ ∈ C, and
this operation is an involution, as (ζ ∗)∗ = ζ . One may extend this involution from
C to the algebra L0(Ω) through a pointwise definition of complex conjugation, and
hence also to its sub-algebra As . For φ,ψ ∈ L0(Ω) and ζ ∈ C this involution
obviously satisfies (φ + ζψ)∗ = φ∗ + ζ ∗ψ∗ and is thus anti-linear. As regards the
product of two RVs, it satisfies (φψ)∗ = ψ∗φ∗, and it is easy to verify that both As

and L0(Ω) are closed under this involution. Associative algebras with such an anti-
linear involution and the indicated behaviour on products are called ∗-algebras—the
element ψ∗ is usually called in algebraic terms the adjoint of ψ—and both L0(Ω)

and its sub-algebra As = L0s(Ω) are thus ∗-algebras.
Let Πc

2 denote the set of all polynomials Q(X, Y ) with complex co-efficients in
two commuting variables X,Y . For φ ∈ As the unital sub-∗-algebra C[φ, φ∗] :=
{Q(φ, φ∗) | Q ∈ Πc

2 } ⊂ As is called the sub-algebra generated by φ ∈ As .
Observe that if ψ ∈ L0(Ω) is self-adjoint, i.e. ψ = ψ∗, then ψ has only real values,
and if ψ = φ∗φ for some φ ∈ L0(Ω), then ψ is self-adjoint (real) and is called
positive as it can not take negative values, i.e. 0 ≤ ψ = φ∗φ—in case 0 < ψ it
is usually called strictly positive. One says that for self-adjoint φ,ψ ∈ L0(Ω) one
has ψ ≤ φ iff φ − ψ is positive, and thus one can define a partial order on As

and L0(Ω). Positive self-adjoint elements ψ ∈ L0(Ω) which are idempotent, i.e.
satisfy ψ2 = ψψ = ψ , are called projections. Observe that each 1E is a projection,
and that the unit 1Ω is a maximal projection in the order mentioned. In fact all
projections in L0(Ω) and As have the form 1E for some E ∈ A. Ultimately, one
is only interested in the self-adjoint elements of the algebra As , as they take real
values; they are therefore often also called observables. The other elements of the
algebra may be regarded as merely a kind of analytical completion to make the
theory nice. It may be remarked that the self-adjoint elements of As form a real
subspace of As . Obviously an arbitrary φ ∈ As may be decomposed into real and
imaginary parts: φ = (φ + i)φ with real resp. self-adjoint (φ = (φ + φ∗)/2 and
)φ = (φ−φ∗)/(2i), so that the whole algebra is the complex span of the self-adjoint
elements or observables.

To extract the essential point from this example and generalise, we start with an
associative algebra A of what we want to call random variables (RVs) a, b, · · · ∈ A,
i.e. a vector space [24] equipped with an associative and bi-linear multiplication
which will be denoted just by juxtaposition: A × A ' (a, b) �→ ab ∈ A.
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As was noted before, it is advantageous to assume the algebra to be a complex
algebra, which is no loss of generality as any real algebra may be embedded into
a complex one. For a ∈ A the powers an are defined for any integer n ≥ 1 in the
natural recursive fashion. Additionally assume that the algebra is unital, i.e. has a
multiplicative unit e such that ae = ea = a for any a ∈ A, and one defines the
power an for n = 0 by a0 = e. Hence for a polynomial Q(X) ∈ Π1 it is now
possible to evaluate Q(a) for any a ∈ A. Also assume that there is an anti-linear
involution defined, called the ‘adjoint’, denoted as a∗, such that (a∗)∗ = a and
(ab)∗ = b∗a∗.

Let Πn
2 be a set of all polynomials Q(X, Y ) with complex co-efficients in two

non-commuting variables X, Y , then for a ∈ A the unital sub-∗-algebra C{a, a∗} :=
{Q(a, a∗) | Q ∈ Πn

2 } ⊂ A is called the sub-algebra generated by a ∈ A. Elements
a ∈ A such that a = a∗ are called self-adjoint, and self-adjoint elements which may
be factored as a = b∗b are called positive. Positive elements form a salient pointed
cone which defines an order relation onA. Positive elements p which are idempotent
p = pp = p2 = p∗p = p∗ are called projections. Observe that e is a projection,
and that it is maximal w.r.t. the order mentioned. Succinctly stated, we assume that
A is a complex associative unital ∗-algebra, not necessarily commutative. As was
shown, both L0(Ω) and As considered above are commutative examples of such
algebras. Again, one is later ultimately interested in the self-adjoint elements of
A—the observables. Also in the general abstract case they form a real subspace of
A, and an arbitrary a ∈ A may be decomposed into two parts a = as + iaw with
self-adjoint as = (a + a∗)/2 and aw = (a − a∗)/(2i) —also called the symmetric
and skew parts—so that the whole algebra is the complex span of the self-adjoint
elements, the observables. And naturally, if for some a ∈ A there is a c ∈ A such
that ac = ca = e, then c = a−1 is the unique multiplicative inverse of a.

3.2 States and the Expectation Functional

To continue, we return to the example As above. Just as classical probability builds
on the measurable space (Ω,A) on one hand and the probability measure P on
the other hand, in the algebraic framework the second entity needed is the linear
expectation functional E : As → C. To define the expected value for a RV φ ∈ As

one only has to look at the generating elements 1E with E ∈ A. Here one defines
E (1E ) := ∫Ω 1E (ω)P(dω) = P(E) and extends this by linearity to all of As . Thus
the probability of an event E ∈ A is given in terms of the expected value of the
associated projection 1E . For a typical φ(ω) =∑k αk1Ek (ω) ∈ As with αk ∈ C this
gives E (φ) = ∫Ω φ(ω)P(dω) = ∑k αkP(Ek) ∈ C. Obviously, as P(Ω) = 1, the
expected value of the unit is E (1Ω) = 1, a kind of normalisation of the expectation
functional.

This linear functional E additionally satisfies E (φ∗) = (E (φ))∗ and thus
carries the adjoint to its complex conjugate and hence is real on self-adjoint
elements. Such a linear functional is itself called self-adjoint. In addition,E (φ∗φ) =
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∑
k(α

∗
kαk)E

(
1Ek
) = ∑k |αk|2P(Ek) ≥ 0, i.e. the functional is non-negative on

positive ψ = φ∗φ ∈ As . Such a self-adjoint linear functional is itself called
positive. If ρ ∈ As is positive with unit expected value E (ρ) = 1, one may define
a new expectation functional—corresponding to a change of probability measure—
via Eρ(φ) := E (ρφ) = ∫Ω ρ(ω) φ(ω)P(dω). It is easily checked that Eρ is linear,
self-adjoint, positive, and normalised. Such linear functionals which can serve as
expectation are called states, an element of the dual space A∗

s .
The element φ̄ := E (φ) 1Ω ∈ As is called the mean of φ ∈ As and the additive

rest φ̃ = φ − φ̄ ∈ As is its zero-mean or centred or fluctuating part. The one-
dimensional unital ∗-algebra Asc := C[1Ω ] = span{1Ω} ⊂ As—isomorphic to
C—are the constants, whereas the subspace As0 := kerE are the zero-mean or
centred RVs, such that As = Asc ⊕ As0 = C[1Ω ] ⊕ kerE as a direct sum.

One may observe that in general not every measurable φ ∈ L0(Ω) has a finite
integral. Thus the algebra of all classical RVs L0(Ω) is too big for our purpose as
one would like E (·) to be defined on the whole algebra. This is the reason to start
with the ‘smaller’ algebra As = L0s(Ω). It is a building block from which more
complicated RVs can be built via limiting processes.

In the general abstract case one also wants a linear, self-adjoint, positive, and
normalised functional—a state—E : A → C with E (a∗) = E (a)∗. Such a state
is called faithful if E (a∗a) = 0 implies a = 0. If a state is not faithful, then
one can start to work with an algebra of equivalence classes, where two elements
a, b ∈ A are considered equivalent iff E ((a − b)∗(a − b)) = 0. It is therefore no
loss of generality to assume that the state is faithful. The projections p ∈ A are
also identified with events, and the probability of the event p ∈ A may be defined
as P(p) := E (p). As E is positive, one has P(p) ≥ 0, and as e is a maximal
projection, P(p) ≤ P(e) = 1. One defines the mean part of a RV as a multiple of
the identity ā := E (a) e and the fluctuating zero-mean or centred part as ã := a− ā
with E

(
ã
) = 0. The one dimensional sub-∗-algebra Ac = C[e] = span{e} of

constants—isomorphic to C—are multiples of the identity, and the subspace of zero-
mean fluctuating parts A0 = kerE is the kernel of the state, and the whole algebra
is the direct sum of both parts A = Ac ⊕ A0 = C[e] ⊕ kerE. An abstract algebra
which satisfies all these requirements together with a distinguished faithful state as
expectation is called a probability algebra. If $ ∈ A is positive with unit expectation
E ($) = 1, then one may define a new weighted state by E$(a) := E ($ a) for a ∈ A.

A faithful state may be used to define an inner product on A [22–24] via a positive
definite sesqui-linear form:

A2 ' (a, b) �→ 〈a|b〉2 := E
(
b∗a
) ∈ C. (6)

As usual, one may define the square of a norm via ‖a‖2
2 := 〈a|a〉2. The completion

of A in the uniform topology generated by this norm is a Hilbert space denoted by
L2(A), which is one candidate for V := L2(A). Later we shall see more possible
ways of generating a Hilbert space of RVs. With this inner product the above direct
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sum A = Ac ⊕ A0 is an orthogonal direct sum, i.e. Ac = C[e] = span{e} =
(kerE)⊥ = A⊥

0 .
As the expectation or state is normally also continuous in the topology of

the associated Hilbert space V, it can be defined also on V giving an orthogonal
decomposition V = kerE ⊕ (kerE)⊥ =: V0 ⊕ C[e]. For the probabilistic model
S : S → V this means that it can be extended to ξ ∈ S as ES(ξ) := E(Sξ), and
with it an orthogonal decomposition of S = S0 ⊕ S⊥

0 := kerES ⊕ (kerES)⊥,
where (kerES)⊥ = span{S∗e} are multiples of the mean ς̄ := S∗e ∈ S of the
RV ς . Instead of looking at the correlation operator Cς = S∗S, one is usually only
interested in the correlation C̃ς = S̃∗S̃ of S̃, where S̃ : S ' ξ �→ Sξ − ES(ξ)e ∈
V0—C̃ς is called the covariance operator. Completely analogous statements can
be made for the map P : V ' w �→ 〈v(ς)|w〉U ∈ V, the associated expectation
EV (w) := E(Pw), the orthogonal split V = V0 ⊕ V⊥

0 := kerEV ⊕ span{P ∗e}, and
the associated covariance operator.

In the example algebra As = L0s(Ω) from above, identifying 1E and 1F if
E,F ∈ A differ only by a null-set N ∈ A with P(N ) = 0, the integral or
expected value becomes a faithful state. As is well known [24], the construction in
Eq. (6) defines the L2 inner product 〈φ|ψ〉2 = E (ψ∗φ) = ∫

Ω
ψ(ω)∗φ(ω)P(dω)

for φ,ψ ∈ As = L0s(Ω), and the completion is the familiar Hilbert space
L2(Ω) = L2(As ). The inner product 〈φ|ψ〉2 of two RVs φ,ψ ∈ As is also called
their correlation, and one may continue and define the covariance in the usual way

by cov(φ,ψ) := E

(
ψ̃∗φ̃
)

= 〈φ̃|ψ̃〉2, i.e. the inner product or correlation of the

fluctuating parts. The variance of a RV φ ∈ As is then var(φ) := cov(φ, φ), and
one has from Pythagoras’s theorem ‖φ‖2

2 = ‖φ̄‖2
2 + ‖φ̃‖2

2 = E (φ)2 + var(φ).
Two RVs φ,ψ ∈ As are uncorrelated iff their covariance vanishes: cov(φ,ψ) =
0, i.e. their fluctuating parts are orthogonal. Two such RVs are independent iff
cov(Q1(φ, φ

∗),Q2(ψ,ψ
∗)) = 0 for all Q1,Q2 ∈ Πc

2 with E (Q1(φ, φ
∗)) =

E (Q2(φ, φ
∗)) = 0, i.e. if the centred subspaces of the algebras generated by them

are orthogonal, i.e. (C[φ, φ∗] ∩ kerE) ⊥ (C[ψ,ψ∗] ∩ kerE).
Completely analogous in the general case, for two RVs a, b ∈ A one defines

the correlation as the inner product 〈a|b〉2, the covariance as the inner product of
the fluctuating parts cov(a, b) := 〈ã|b̃〉2, and the variance as var(a) := cov(a, a).
Pythagoras’s theorem can be applied here as well to give ‖a‖2

2 = ‖ā‖2
2 + ‖ã‖2

2 =
E (a)2 + var(a). Two RVs a, b ∈ A are uncorrelated iff their covariance vanishes:
cov(a, b) = 0, i.e. if their fluctuating parts are orthogonal 〈ã|ã〉2 = 0. The two
RVs a, b ∈ A are independent iff cov(Q1(a, a

∗),Q2(b, b
∗)) = 0 for all Q1,Q2 ∈

Πn
2 with E (Q1(a, a

∗)) = E (Q2(b, b
∗)) = 0, i.e. if the centred subspaces of the

algebras generated by them are orthogonal, i.e. (C{a, a∗} ∩ kerE) ⊥ (C{b, b∗} ∩
kerE). In the non-commutative case, the concept of freeness and free independence
becomes more important, cf. [10, 21, 25, 27], but we shall not further pursue this
topic here.

We have seen that the example algebra As = L0s(Ω) satisfies all the require-
ments and is thus a concrete example of a probability algebra, and generates the
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Hilbert space L2(Ω), which is one concrete example of the abstract Hilbert space
V := L2(A) for a general probability algebra A.

3.3 More Examples

For the example algebra As = L0s(Ω) it is also well known that one may define
the Lp-norms for any 1 ≤ p < ∞ via ‖φ‖pp := E

(
(φ∗φ)p/2

) = ∫Ω |φ(ω)|p P(dω).
For p = ∞ one sets ‖φ‖∞ := ess supΩ |φ|. The completion of As = L0s(Ω) in
any of the norms ‖ · ‖p for 1 ≤ p ≤ ∞ gives the familiar Banach spaces Lp(Ω).
This gives two more concrete examples of probability algebras, namely L∞(Ω) and
L∞−(Ω) := ⋂1≤p<∞ Lp(Ω). The last example contains unbounded RVs, e.g. all
the Gaussian RVs. Obviously one has As = L0s(Ω) ⊂ L∞(Ω) ⊂ L∞−(Ω) ⊂
L0(Ω), i.e. the classical simple RVs in As are a probability sub-algebra of the
classical bounded RVs L∞(Ω), which is a probability sub-algebra of the algebra
L∞−(Ω) of unbounded RVs which have finite moments of any order, which in turn
is a sub-∗-algebra of the ∗-algebra of all RVs, which is not a probability algebra as
not every element has a finite expected value.

One more classical example which should be mentioned is the case when Ω is
in addition a compact Hausdorff topological space, the σ -algebra A is the Borel
algebra B(Ω), and the probability measure a Radon measure. Then the RVs given
by the continuous complex-valued functions C(Ω;C)—for brevity only C(Ω)—are
a sub-probability algebra of L∞(Ω), in fact a C∗-algebra—a Banach space in the
‖ · ‖∞ norm such that ‖φψ‖∞ ≤ ‖φ‖∞‖ψ‖∞ and ‖φφ∗‖∞ = ‖φ‖∞‖φ∗‖∞ =
‖φ‖2∞, so that the product and adjoint are continuous—called the uniform algebra
on Ω .

These are all examples of classical commutative resp. Abelian algebras of RVs
with the state the usual Lebesgue integral (i.e. the usual expected value) w.r.t the
measure P. The bounded RVs L∞(Ω) are a maximal Abelian W∗-algebra [24]
—a W∗-algebra is in simplest terms defined as a C∗-algebra which as Banach
space is the dual of another Banach space. It may be shown conversely that any
complex maximal Abelian W∗-probability algebra A is isomorphic to an L∞-
algebra on a probability space, a result that will be used in the sequel—this is
the Segal representation. Thus the algebraic approach to probability can completely
recover the classical approach due to Kolmogorov which starts from measure spaces
and defines RVs as measurable functions. Similarly it can be shown that unital
Abelian C∗-algebras are isomorphic to the uniform algebra on a compact space—
the Gel’fand representation. Abelian algebras of this kind are therefore often called
‘function algebras’.

Let us now consider some non-commutative examples. A simple one is
M(C, n) = C

n×n, the algebra of complex n × n matrices with complex conjugate
transposition as involution. The language of the algebra is completely the same,
except that projections in the abstract setting—which are self-adjoint—are called
orthogonal projections here. This kind of algebra corresponds to RVs which can take
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no more than n different values. Let � ∈ M(C, n) be a self-adjoint positive definite
matrix with tr � = 1, called a density matrix. Then E�(A) := tr(�A) is a faithful
state. Of course any sub-algebra of M(C, n) which contains the identity matrix
is another example, and the diagonal matrices are an example of a commutative
sub-algebra. More powerful is the algebra M(L∞(Ω), n) of n × n random matrices
with entries from L∞(Ω), and the expectation is the expected value of a matrix
state, i.e. for A ∈ M(L∞(Ω), n) one may set E (A) := ∫

Ω
E�(A(ω))P(dω).

An example generalising the previous case is L(H), the algebra of bounded
linear maps on a complex Hilbert space H with the adjoint taking the rôle of
the involution, or any unital sub-algebra thereof. L(H) is a W∗-algebra, non-
commutative if dimH > 1. If $ ∈ L(H) is a nuclear resp. trace-class positive
definite operator with unit trace tr$ = 1—called again a density matrix—then
a state may be defined for A ∈ L(H) as E$(A) := tr($A). The example is in
some way universal, as with the Gel’fand-Naimark-Segal (GNS) construction any
algebra with faithful state may be embedded (faithfully represented) into an algebra
of operators on a complex Hilbert space [22–24, 27]; namely a ∈ A is represented
as La : A ' b �→ ab ∈ A in L(L2(A)).

When the Hilbert space H in question is a Lebesgue space L2(Ω), then any
κ ∈ L∞(Ω) can be represented as a linear map Mκ : L2(Ω) ' ϕ �→ Mκϕ = κϕ ∈
L2(Ω). Thus the Abelian algebra L∞(Ω) is represented as a maximal Abelian W∗-
sub-algebra of L(L2(Ω)), it is called the multiplication algebra of L2(Ω).

3.4 Weights, Spectrum, and Spectral Functional Calculus

In this abstract setting we have now seen RVs and their expectation and what can
be deduced from these concepts. The question arises now as to what an actual
observation or sample of such an RV really is. To this end a bit more theory is
needed. First it turns out that with non-commuting observables, in an experiment
or other observation, only commuting observables (self-adjoint elements) can be
observed simultaneously [28]. This is implied by the uncertainty relation. Let a, b ∈
A be two self-adjoint elements resp. observables, and [a, b] = ab − ba be their
commutator. The Cauchy-Bunyakovsky-Schwarz inequality for non-commutative
variables easily gives the uncertainty relation var(a)var(b) ≥ E (i[a, b])2 /4 ≥ 0;
where the expected value on the right hand side is real, as it is easy to see that i[a, b]
is self-adjoint. Once say a has been observed, it is known and its variance vanishes.
This shows that it is not possible to observe a and b simultaneously, unless they
commute.

Therefore the way to approach this is to consider for some observation or
experiment all relevant commuting RVs which can be observed simultaneously,
say a1, . . . , ak ∈ A. They, and hence any powers or polynomials in commuting
variables of them can be observed simultaneously, in fact any element of the Abelian
sub-probability algebra Ax := C[a1, . . . , ak] ⊆ A generated by them. We shall
shortly add more functions beyond polynomials to this list.
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As a1, . . . , ak commute, so do the linear operators La1, . . . , Lak in the GNS-
representation, and the algebra Lx := C[La1, . . . , Lak ] ⊆ L(L2(A)) generated
by them is an Abelian algebra isomorphic to Ax . It is worthwhile at this point to
remember that for linear operators the fact that they commute means that they have
the same spectral resolution, and the Gel’fand representation of AbelianC∗-algebras
and the Segal representation of maximal Abelian W∗-algebras can now be used
[7, 8, 24]. This can in fact be employed to obtain a version of the spectral theorem
for linear operators. We defer this for a moment in order to point out the importance
of spectral theory to the subject.

The concept of a state as a self-adjoint positive normalised linear functional was
already introduced. The set of all possible states S(Ax) is clearly a subset of the
dual A∗

x , and due to the normalisation they are actually on the unit ball of A∗
x . One

can easily show that S(Ax) is a closed, convex, and hence weak-* compact subset
of the unit ball of the dual. The extreme points of S(Ax) are called pure states, and
their convex combinations are weak-* dense in S(Ax). In the case of classical RVs,
the states are naturally represented by probability measures, which are known to
form a convex weak-* compact subset of the unit ball in the space of all measures
of bounded total variation. The extreme points in that case are well known to be
Dirac-δ-measures.

A weight, or more specifically a representational weight, also called a multiplica-
tive character, α ∈ S(Ax) is a special kind of state, namely one that is also an algebra
*-homomorphism Ax → C. This means that for b, c ∈ Ax and η, ζ ∈ C it holds
not only that α(ηb + ζ c) = 〈α, ηb + ζc〉 = ηα(b)+ ζα(c) (linearity), but also that
α(b∗) = (α(a))∗ and α(bc) = α(b)α(c). The set of all weights —one-dimensional
representations of Ax—is denoted by Âx and is called the spectrum of Ax ; it is also
a weak-* compact subset Âx ⊂ S(Ax) ⊂ B1(0) ⊂ A∗

x of the unit ball of the dual.
In the case of classical algebras of RVs the Dirac-δ-measures are a good example of
weights.

The best known meaning of the term spectrum is certainly when used with
regard to a linear map or an element c ∈ A as the set σ(c) = {λ ∈ C | c −
λe is not invertible}. Now let α ∈ Âx be any weight, and b ∈ Ax . If b is invertible
with inverse b−1, then e = bb−1 implies 1 = α(e) = α(bb−1) = α(b)α(b−1), and
hence α(b) �= 0. Invertible elements can thus not be mapped to 0 by any weight,
i.e. any element in the spectrum Âx . Looking at b = c − α(c)e, one sees that
α(b) = α(c − α(c)e) = α(c) − α(c)α(e) = 0, hence b = c − α(c)e can not
be invertible and therefore α(c) ∈ σ(c) for any weight α ∈ Âx . This explains the
name spectrum for the set of weights Âx , i.e. each α(c) is in the spectrum of c . In
fact, for any λ ∈ σ(c) there is an α ∈ Âx such that α(c) = λ.

The interpretation now is that when one observes a RV, i.e. sees a sample, then
one sees the action of some weight on the RV. Hence the possible values (sample
observations) of an abstract RV a ∈ A are given by the action of all weights on
the RV, {α(a) = 〈α, a〉 | α ∈ Âx}. Therefore one concludes that all possible
observations of a RV a are given by its spectrum σ(a); and as the observables are
self-adjoint the spectrum is real, σ(a) ⊆ R.
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Considering general non-commutative probability algebras, the spectrum of the
algebra is often empty as there are no non-zero one-dimensional representations—
another sign that these observables cannot be observed simultaneously—but in the
case of Abelian algebras like Ax or Lx , the ones we are considering when examining
a concrete experiment or observation, the Gel’fand and Segal representations tell
us that the spectrum is rich enough. One may hence use spectral theory of linear
operators to determine the set of possible values, as a ∈ Ax and La ∈ Lx in the
GNS-construction have the same spectrum.

The representation theorems state [24] that an Abelian probability algebra is
isomorphic to a sub-algebra of L∞(X ) on a compact Hausdorff space X . In fact,
the compact space may be chosen as X := Âx . The version of the spectral
theorem for linear operators which is most useful here—and will be used again
for a different purpose in Sect. 4—is that an Abelian algebra of operators like Lx is
not only isomorphic but unitarily equivalent to a sub-algebra of the multiplication
algebra on some measure space Y [7, 24] with total measure equal to unity, i.e.
a classical probability space. The spectrum of such a multiplication operator Mκ

with the function or RV κ ∈ L∞(Y) [24] is the essential range of the function κ .
Hence any of the commuting RVs a� resp. La� is represented by a multiplication
operator Mκ� , and hence as algebra by an RV κ� ∈ L∞(Y). We may thus say that
σ(a�) = σ(La� ) = σ(Mκ�) = σ(κ�) = ess range κ�.

In the classical framework where RVs are measurable maps on a probability
space, one important and relevant fact is that the composition of measurable
functions is again a measurable function, and one can form new RVs by applying a
measurable function to an existing RV. In the algebraic framework presented so far
only polynomials—which are kind of natural when dealing with algebras—have
appeared. Now if f : R → R—or more generally f : σ(a�) ⊆ R → R—
is an essentially bounded measurable function, so is γ = f ◦ κ� ∈ L∞(Y).
Hence there is a corresponding Mγ := f (Mκ�) in the multiplication algebra, and
a Lg := f (La�) ∈ L(L2(A)), and a g := f (a�) in the weak-* closure of Ax .
This defines the function f now on the algebra Lx or Ax , and is the essence of
spectral functional calculus, used here to obtain new RVs by applying a measurable
function f .

3.5 Extensions

With the spectral functional calculus one may define non-commutative analogues of
the classical Lp-spaces for all 1 ≤ p ≤ ∞ by extending any probability algebra A
through completion in a certain uniform topology, and not just for p = 2 as above.
First note that for a positive element a = b∗b ∈ A one can always find a unique
positive c ∈ A such that a = cc = c2 via spectral functional calculus, as this
c = a1/2 ∈ A is the square root. This allows one to define for any a ∈ A the absolute
value as the positive element |a| := (a∗a)1/2 ∈ A. Similarly one may compute the
p-th power for real p > 0. For 1 ≤ p < ∞ the expression ‖a‖pp := E (|a|p) defines
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the p-th power of a norm. Completion of A w.r.t. any of those norms gives non-
commutative Banach spaces Lp(A), and this agrees for p = 2 with the previous
definition. It also immediately gives a new algebra L∞−(A) :=⋂1≤p<∞ Lp(A).

Recalling the functional calculus from the end of the previous Sect. 3.4, one may
now state that Lp(A) contains elements f (a) for a ∈ A and certain measurable
functions f ∈ L0(σ (a)). These measurable functions have to be such that in the
representation of the Abelian probability sub-algebra C[a], where a is represented
by the multiplication operator Mκ on L2(Y) with κ ∈ L∞(Y), and where σ(a) =
σ(κ) = ess range κ , the composite function satisfies f ◦ κ ∈ Lp(Y).

For p = ∞ one has to look at the representation of a ∈ A through the linear
map La in the GNS-construction above and define the ‖a‖∞ := ‖La‖op as the
operator norm of La, effectively ‖a‖∞ := supb �=0 ‖ab‖2/‖b‖2. One may also define
a topology corresponding to the weak operator topology through the semi-norms
qb,c(a) := |〈Lab|c〉2| = |E (c∗ab) |. Completion of the sub-algebra A∞ := {a |
‖a‖∞ < ∞} ⊆ A with finite ∞-norm w.r.t. the uniform locally convex topology
generated by the semi-norms qb,c(·) gives the probability W∗-algebra L∞(A). This
shows that the Lp-spaces of non-commutative RVs can be generated just as in the
classical Abelian case.

As already mentioned, the space L2(A) is a possible candidate for the space
V appearing in the probabilistic model S : S → V. Other candidates may be
generated by the following very general construction: if H is a Hilbert space with
inner product 〈·|·〉0, and A a possibly unbounded self-adjoint positive operator in
H with dense domain domA, one may via spectral calculus define As for any
s > 0 with dense domain domAs . The positive definite sesqui-linear form given
by 〈f |g〉s := 〈f |g〉0 + 〈Asf |g〉0 for f, g ∈ domAs defines an inner product on
domAs , the completion of which in the associated topology defines the densely
embedded Hilbert space Hs ↪→ H. Obviously one also has dense embeddings
Hs ↪→ Ht for s > t > 0. Identifying H with its dual and denoting the dual of
Hs by H−s , one obtains Gel’fand triplets [7, 8] or ‘sandwiched’ dense embeddings
Hs ↪→ H ↪→ H−s of Hilbert spaces. One may even go a step further and introduce
the projective limit S = lim←−s>0

Hs , depending on A often a nuclear space, which
in our case usually will be a new probability algebra. The dual construction of
inductive limit S∗ = lim−→s>0

H−s then generates the dual space of generalised
objects, like the distributions in the sense of Sobolev and Schwartz.

It is worthwhile to recall that the familiar Sobolev-Hilbert spaces Hs (Rn) are
generated in this way by taking H = H0(Rn) = L2(R

n) and A = −& + M|x|2 ,
essentially the negative Laplacian added to a multiplication operator. Then the
Schwartz space of rapidly decaying smooth functions S(Rn) is the projective limit
and additionally an Abelian algebra, and its dual S′(Rn), the inductive limit, is the
Schwartz space of tempered distributions.

The same device can be used here by choosing H = L2(A)—a space which is
naturally given by the expectation state—and an appropriate operator A; then all the
spaces Ht , t ∈ R, are possible candidates for V, and the ‘regularity’ of the RVs in
V := Ht can be controlled by the parameter t ∈ R. For t < 0 these are spaces
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of ‘generalised’ RVs, only defined via the duality, similar to the Sobolev-Hilbert
spaces with negative exponent.

One possible classical choice for the linear operator A for H = L2(Ω) =
L2(L∞−(Ω)) is the following: denote byH :n:, n ∈ N0, the n-th homogeneous chaos
[11, 12] in Wiener’s polynomial chaos decompositionH =⊕∞

n=0H
:n:, and defineA

by Ah := n h for any h ∈ H :n:; a self-adjoint operator with spectrum σ(A) = N0,
called the number operator. More examples of Hilbert spaces of RVs which can
be generated in this way may be found in [11, 12], they are all practically defined
with the help of the Wiener-Itô polynomial chaos expansion and are all possible
candidates for the space V.

3.6 Weak or Generalised Distributions

In any case, this construction of a unital algebra with involution and faithful state
leads to an inner product and Hilbert space V, and the state E may be extended as
continuous functional onto the whole space V. This may be used in the mapping
S : S → V in Sect. 2. With the possibility of also using non-commutative
algebras, this approach also allows to deal with objects such as random matrices,
or more generally random fields of tensors of even order [17, 18], which is much
more cumbersome in the traditional measure space approach. Our first example
As = L0s(Ω) also indicates that the algebraic approach is more general and can
completely recover the measure space approach [10, 21, 24, 25, 27]. The state takes
the place of the usual expectation operator, and it has all its usual properties.

Nevertheless, even in the general abstract setting of a probability algebra, it is
possible to define a distribution probability measure or ‘law’ on R for any non-
commutative self-adjoint RV, i.e. an observable. Classically, for a real-valued or
self-adjoint RV φ ∈ L0(Ω) the law of φ is the push-forward φ∗P of the probability
measure P, given for an element B of the Borel-σ -algebra B(R) by φ∗P(B) :=
P(φ−1(B)).

In the abstract setting, for any a ∈ A one may define the law of a as a map τa :
Π1 → C which assigns to any polynomial Q ∈ Π1 the number τa(Q) := E (Q(a)).
With a ∈ A self-adjoint, we know that the spectrum is real: σ(a) ⊆ R. Let J ⊂ R

be a compact interval which contains the spectrum σ(a). The polynomials Πr
1 with

real co-efficients are known to be dense in C(J ;R) due to the Stone-Weierstrass
theorem, and τa can be shown to be a continuous map, hence may be extended to
all of C(J ;R). From the Riesz-Markov representation theorem it now follows that
there is a Radon probability measure Pa such that

∫
J Q(t)Pa(dt) = τa(Q) for any

Q ∈ Πr
1 , called the distribution measure or law of the self-adjoint RV a ∈ A.

This more general approach via a mapping like S : S → V and abstract
probability algebras A related to V is also needed in many concrete analytic
situations. As a simple example, consider, as in Sects. 1 and 2, a RV ς with values
in an infinite dimensional Hilbert space S. For this to be an ‘honest’ RV, the push-
forward distribution ς∗P = P ◦ ς−1 of the probability measure P should be a
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σ -additive measure on the Borel sets B(S) of S. It is well known that on a Hilbert
space this is only possible (Sazonov’s theorem, cf. e.g. [4, 26]) if the correlation
Cς already mentioned in Sect. 2 is a nuclear or trace-class operator. In particular,
there is no iso-Gaussian measure—i.e. where Cς = I is the identity, invariant under
unitaries—on an infinite-dimensional Hilbert space; one has to resort to so-called
cylindrical pro-measures (which are not σ -additive) or enlargements of the Hilbert
space.

The formulations such as with the mapping S or P from above or Sect. 2
circumvent all the difficulties mentioned in the previous paragraph with non-
nuclear correlation or covariance operators, and such an assignment is called a
weak distribution or generalised RV [4, 9, 22, 23] resp. a generalised process [8].
For example the aforementioned iso-Gaussian weak distribution resp. generalised
process—this is also called white noise on the Hilbert space S—is very simply
defined: Pick any complete orthonormal system {ςn}n in S and an infinite sequence
of independent identically distributed (iid) standard Gaussian RVs {ζn} (zero mean,
unit variance) as CONS, and let H be the Hilbert space generated by them. Define
a linear map W : S ' ςn �→ ζn ∈ H, and it is clear that its covariance is
CW = W∗W = I , as W is by construction unitary. Hence W defines a weak white
noise distribution on S. Other extensions covered by this use of weak distributions
are the cases when the covariance has continuous spectrum, as often happens for
translation invariant covariance kernels [16] which are diagonalised by the Fourier
transform [5].

From all this we conclude that one may define a stochastic model as a weak
distribution on S via a linear map S : S → V, where V was generated by a
probability algebra A as described above, and similarly for P : V → V. For
a conventional probability model we assume that the algebra is Abelian, but the
non-commutative case is useful to model e.g. random matrices or tensor fields
[17, 18]. For a dynamical system like the one mentioned in Sect. 1, the equality in
the equation is to be understood in a probabilistically weak sense as just described:
both sides of the equation are mapped into the space V, and have to be equal as
elements of that space, i.e. in a V-weak sense. First we spell out the meaning of the
map P :

P(v̇(t)) = P(A(ς,μ; v(t))) + P(f (ς,μ; t)) ⇔
∀w ∈ V : 〈v̇(t)|w〉V = 〈A(ς,μ; v(t))|w〉V + 〈f (ς,μ; t)|w〉V , (7)

as an element of V, which in detail in V means

∀ϕ ∈ V : 〈P(v̇(t))|ϕ〉V = 〈P(A(ς,μ; v(t)))|ϕ〉V + 〈P(f (ς,μ; t))|ϕ〉V. (8)

This allows one to deal with a much wider range of probabilistic situations,
including white noise as already alluded to, as well as white noise or a Wiener
process in time, as the Itô-integral can be understood as a weak stochastic distri-
bution [11]. The way Eq. (7) and Eq. (8) are formulated also immediately suggests
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numerical approximations by Galerkin’s method—called the stochastic Galerkin
method [19]—using finite dimensional subspaces Vn ⊆ V and Vm ⊆ V.

It may be noted that this whole development is analogous on how generalised
functions or distributions are introduced in the Sobolev-Schwartz framework. There
they are linear maps from a ‘nice’ space—in fact an algebra—such as S(Rn) into
the algebra C with the distinguished state given as the identity. Here the generalised
probabilistic models on a Hilbert space S are linear maps into an algebra A of
random variables with distinguished state E, which again maps the algebra A into
the algebra C.

4 Correlation Factorisations

The correlation operators C = R∗R, Cς = S∗S, and Cv = P ∗P have already
been mentioned in Sect. 2. We shall show the development in terms of the map
R defining the parametric variable r(μ), for the maps S and P which define the
stochastic content, everything has to be just repeated with different symbols, which
we leave for the reader. In general, one may specify [15, 17, 18] a densely defined
map C in U through the bilinear form

∀u, v ∈ U : 〈Cu|v〉U := 〈Ru|Rv〉Q. (9)

The map C = R∗R may be called the ‘correlation’ operator and is by construction
self-adjoint and positive, and if R is continuous so is C. In case the inner product
〈·|·〉Q comes from a measure ' on M, so that for two functions φ and ψ on M,
one has

〈φ|ψ〉Q :=
∫
M

φ(μ)ψ(μ) '(dμ), so that C = R∗R =
∫
M

r(μ)⊗ r(μ) '(dμ),

the usual formula for the correlation. The space Q may then be taken as Q :=
L2(M,'). A special case is when ' is a probability measure, '(M) = 1, the
situation we have for M ← Ω and ' ← P, this inspired the term ‘correlation’
operator. In terms of the developments in Sect. 3 the Hilbert space Q would be
replaced by any of the candidates for V and instead of C = R∗R we would be
investigating Cς = S∗S or Cv = P ∗P .

The spectral theorem for operators in a Hilbert space was already used in Sect. 3,
but here we start in a gentler way. To make everything as simple as possible to
explain the main underlying idea, assume first that C is a non-singular trace class
or nuclear operator. This means that it is compact, the spectrum σ(C) is a point
spectrum, has a CONS {vm}m ⊂ U consisting of eigenvectors, with each eigenvalue
λm ≥ λm+1 · · · ≥ 0 positive and counted decreasingly according to their finite
multiplicity, and has finite trace trC =∑m λm < ∞. Then a version of the spectral
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decomposition of C is

C =
∑
m

λm(vm ⊗ vm). (10)

Use this CONS to define a new CONS {sm}m in Q: λ1/2
m sm := Rvm, to obtain the

corresponding singular value decomposition (SVD) of R and R∗:

R =
∑
m

√
λm(sm ⊗ vm); R∗ =

∑
m

√
λm(vm ⊗ sm);

r(μ) =
∑
m

√
λm sm(μ)vm =

∑
m

(R∗sm)(μ), (11)

The set ς(R) = {√λm}m = √
σ(C) ⊂ R+ are the singular values of R and R∗.

The last relation in Eq. (11) is the so-called Karhunen-Loève expansion or proper
orthogonal decomposition (POD). The finite trace condition of C translates into the
fact that r is in U ⊗ Q. If in that relation the sum is truncated at n ∈ N, i.e.

r(μ) ≈ rROM(μ) =
n∑

m=1

√
λm sm(μ)vm =

n∑
m=1

(R∗sm)(μ), (12)

we obtain the best n-term approximation to r(μ) in the norm of U . Observe that
r is linear in the sm. This means that by choosing the ‘co-ordinate system’ M '
μ �→ (s1(μ), . . . , sm(μ), . . . ) ∈ R

N, one obtains a linear / affine representation
where the first co-ordinates are the most important ones. For the stochastic cases
Cς = S∗S and Cv = P ∗P we point out again as in Sect. 3 that the nuclearity of
Cς resp. Cv is necessary for the existence of a measurable map ς : Ω → S resp.
v(ς(·), μ; t) : Ω → V .

Equivalently this means that S resp. P has to be a Hilbert-Schmidt operator,
e.g. [7], a condition which severely restricts stochastic models. There is a prac-
tical need to consider more general classes of correlation operators, as already
evidenced in the seminal paper by Karhunen [13, 14], where integral transforms
for representations as in Eq. (12) were investigated. This more general view is
for example necessary to consider homogeneous or stationary random fields or
stochastic processes, cf. e.g. [16].

One formulation of the spectral decomposition extending Eq. (10), already used
implicitly in Sect. 3, which does not require C to be nuclear [7, 24], nor do C or
R have to be continuous, which was used already in Sect. 3 and has to be applied
here to the Abelian algebra C[C], is as follows. The densely defined self-adjoint and
positive operator C : U → U is unitarily equivalent with a multiplication operator
Mγ on an appropriate measure space T ,

C = VMγV
∗, (13)
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where the unitary map is V : L2(T ) → U , and Mγ multiplies a ψ ∈ L2(T ) with a
real-valued function γ ; Mγ : ψ �→ γψ . In case C is bounded, so is γ ∈ L∞(T ).
As C is positive, γ (t) ≥ 0 for t ∈ T , and the essential range of γ is the spectrum of
C. In Sect. 3 this was already used for the Abelian algebra C[a] resp. C[La], which
says then that any member of that algebra is unitarily equivalent to a multiplication
operator.

As already indicated, via spectral calculus one may define the square root
M

1/2
γ := M√

γ , and a factorisation similar to C = R∗R is obtained via C =
(VM√

γ )(VM
√
γ )

∗ =: G∗G. From this factorisation and the spectral decomposition
Eq. (13) follows another singular value decomposition (SVD) of R and R∗, which
is

R = UM√
μV

∗, R∗ = VM√
μU

∗, (14)

where U : L2(T ) → Q is a unitary operator. Having M1/2
γ allows us to compute the

square root of C: C1/2 = VM
1/2
γ V ∗, and from it the self-adjoint positive definite

factorisation C = C1/2C1/2.
Consider now an arbitrary factorisation C = B∗B, where B : U → H is a map

to a Hilbert space H. Any two such factorisations B1 : U → H1 and B2 : U → H2
with C = B∗

1B1 = B∗
2B2 are [18] unitarily equivalent in that there is a unitary

map X21 : H1 → H2 such that B2 = X21B1. Each such factorisation is also
unitarily equivalent to R, i.e. there is a unitary X : H → Q such that R = XB.
For finite dimensional spaces, a favourite choice for such a decomposition of C is
the Cholesky factorisation C = LL∗, where B = L∗ is represented by an upper
triangular matrix.

Let us go back to the situation of Eq. (10) and how the SVD of the factors R in
Eq. (11) in the factorisation C = R∗R was generated. In the same way a SVD of
any of the factorisations just considered may be generated with left-singular vectors
hm := BC−1R∗sm = BC−1/2vm, plus the analogue of Eq. (14), i.e.

B =
∑
m

√
λm(hm ⊗ vm); B∗ =

∑
m

√
λm(vm ⊗ hm);

r =
∑
m

√
λm hmvm =

∑
m

B∗hm,

and with W = X∗U :

B = WM√
μV

∗, R∗ = VM√
μW

∗.

The left-singular vectors hm can now be thought of living on any of the spaces
which appeared in the factorisation, i.e. generically H, for which we have just seen
the examples H = L2(T ) and H = U (not necessarily very useful) [18].
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Instead of C = B∗B, one may of course consider

CH = BB∗ = WMγW
∗ (15)

on H, which has the same spectrum as C—with C nuclear, CH is also nuclear—and
the whole game can be repeated by looking at the spectral decompositions of CH.

When one takes the special case H = Q with CQ = RR∗, we see that CQsm =
λmsm, and sm = UV ∗vm, as well as CQ = UV ∗CVU∗. This abstract equation can
be spelt out in more analytical detail for the special case when the inner product on
Q is given by a measure ' on P , as it then becomes

〈CQφ|ψ〉Q = 〈R∗ϕ|R∗ψ〉U =
∫∫

M×M
ϕ(μ1)!(μ1, μ2)ψ(μ2) '(dμ1)'(dμ2),

i.e. CQ is a Fredholm integral operator with kernel !—on Q the kernel is in general
not reproducing—and its spectral decomposition CQ =∑m λmsm ⊗ sm is nothing
but the familiar theorem of Mercer [6]. Factorisations of CQ are then factorisations
of the kernel !(μ1, μ2) and the corresponding representations of r(μ) are obtained
by integral transforms [17, 18], as already indicated by Karhunen in [13, 14]. The
abstract setting outlined in this section can now be applied to the analysis of a great
number of different situations, see [18] for more detail.

As already indicated, the spectral decomposition Eq. (13) allows one to go
beyond the requirement thatC be nuclear, but in the case of a probability assignment
the push-forward is not a measure any more on U , though it can still be useful in the
computation considering weak distributions. Another formulation of the spectral
decomposition in the same vein as Eq. (10) allows also to cover the general case
[7, 8]. The space U = ⊕jUj can be decomposed into a orthogonal direct sum of
invariant subspaces Uj on each of which the operator has a simple spectrum. So
we may assume for this that the operator has a simple spectrum, otherwise consider
each subspace Uj in turn. It turns out that one can find a so-called rigged Hilbert
space or Gel’fand triplet: N ↪→ U ↪→ N ∗ with N nuclear and densely embedded
in U . The eigenvalue equation for a self-adjoint operator C can be written in weak
form: for λ ∈ σ(C) find vλ ∈ U s.t. for all w ∈ U 〈w|Cvλ〉 = λ〈w|vλ〉, but
there may be no vλ ∈ U if λ is merely in the spectrum and not also an eigenvalue.
Using duality, this is now weakened to: for λ ∈ σ(C) find vλ ∈ N ∗ s.t. for all
w ∈ N 〈Cw, vλ〉 = λ〈w, vλ〉, and it turns out that one can find such vλ ∈ N ∗,
in the larger space N ∗. With this the Eq. (10) may be generalised, where, as the
spectrum σ(C) may be continuous, the sum in general has to be replaced by an
integral w.r.t. a measure ρ on σ(C) ⊆ R. As C = R∗R, the operatorCQ = RR∗ has
the same spectrum, and can be decomposed in a Gel’fand triplet or rigged Hilbert
space P ↪→ Q ↪→ P∗ with sλ ∈ P∗:

C =
∫
σ(C)

λ vλ ⊗ vλ ρ(dλ); CQ =
∫
σ(C)

λ sλ ⊗ sλ ρ(dλ). (16)



150 H. G. Matthies

The sλ ∈ P∗ may be seen as generalised functions, and both decompositions
together in Eq. (16) allow to write a SVD-like decomposition of R and R∗,
corresponding to Eq. (11), and have a representation of r(μ) in a weak sense as
a Karhunen-Loève integral over P∗-generalised functions:

R =
∫
σ(C)

√
λ (sλ ⊗ vλ) ρ(dλ); R∗ =

∫
σ(C)

√
λ (vλ ⊗ sλ) ρ(dλ);

r(μ) =
∫
σ(C)

√
λ sλ(μ)vλ ρ(dλ) =

∫
σ(C)

(R∗sλ)(μ) ρ(dλ). (17)

One familiar and frequent place where this occurs (e.g. [16]) is the classical spectral
representation of a stationary stochastic process

q(t) =
∫
R

√
S(ω) exp(iωt) Z(dω),

where
√
S(ω) is the square root of the spectral density—corresponding to

√
λ—

and Z(dω) is a random measure with orthogonal increments and unit variance. This
random measure corresponds to vλ ρ(dλ) in Eq. (17), the space Q corresponds to
L2(R), the space of generalised functions P∗ corresponds to the Schwartz space of
tempered distributions S ′(R), and the generalised eigenfunction sλ(μ) corresponds
to exp(iωt), a generalised eigenfunction of a stationary covariance kernel which is
in S ′(R) but not in L2(R) [5].

5 Conclusion

Parametric mappings have been analysed together with random variables with
values in infinite dimensional spaces and their generalisations via an associated
linear map, enabling the analysis by using well known techniques for the analysis of
linear mappings. In the case of stochastic elements this leads to what is called weak
distributions, a generalisation of the usual concept of a random variable.

In this connection algebras of random variables, the so-called algebraic approach
to probability, leads to a concise description of the generation of appropriate spaces
of random variables, and can naturally be used to specify randomness on infinite
dimensional spaces via weak distributions. This has as a fundamental building
block, next to the algebra of random variables, a distinguished self-adjoint, positive,
and normalised linear functional called the state, which may be interpreted as an
expectation operator. It is this setting that turns out to be conceptually much simpler
than the measure-theoretic point of view, especially in the infinite dimensional
setting. In particular this allows a natural approach to random matrices and tensor
fields, where the random variables do not necessarily have to commute, and the
interesting object is the behaviour of their spectra, a distinctly analytic and algebraic
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concept which is much more complicated to treat with the usual measure-theoretic
background.

The associated linear map leads to the self-adjoint and positive definite so-called
‘correlation operator’, as well as its different factorisations. Different represen-
tations generate different factorisations and thus allow a uniform analysis of
their behaviour via an analysis of linear maps. It is in particular the different
factorisations, and especially the spectral decomposition, which lead to suggestions
for reduced order models and their analysis.

Not only does each separated representation define an associated linear map,
but conversely under the restrictive conditions of a nuclear or trace-class correlation
operator each factorisation induces a Karhunen-Loève- or proper orthogonal decom-
position (POD)-like separated representation. The extension of this idea to arbitrary
non-nuclear correlations operators is indicated through integral transforms, exempli-
fied through the use of appropriate spectral decompositions, either via multiplication
operators or as spectral integrals with rigged Hilbert spaces. These representations
must be classed as generalised maps or generalised random variables, they can only
be considered in a duality framework in a weak sense. This can be seen as an analogy
to how normal generalised functions or distributions in the Sobolev-Schwartz sense
are treated as a dual space of very smooth functions, and in fact the theoretical
treatment follows along similar lines.

As this is a very short note touching on many diverse subjects to show their
interconnection, it can naturally only be brief and in many cases just provides
hints which have to be followed further with the references indicated. The analytic
techniques used are ‘classical’ and have been developed along with the growth of
quantum theory in the 1940s. It is their combination and uniform view from the
point of linear functional analysis which is novel here.
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Reduced Order Isogeometric Analysis
Approach for PDEs in Parametrized
Domains

Fabrizio Garotta, Nicola Demo, Marco Tezzele, Massimo Carraturo,
Alessandro Reali, and Gianluigi Rozza

Abstract In this contribution, we coupled the isogeometric analysis to a reduced
order modelling technique in order to provide a computationally efficient solution
in parametric domains. In details, we adopt the free-form deformation method to
obtain the parametric formulation of the domain and proper orthogonal decomposi-
tion with interpolation for the computational reduction of the model. This technique
provides a real-time solution for any parameter by combining several solutions, in
this case computed using isogeometric analysis on different geometrical configura-
tions of the domain, properly mapped into a reference configuration. We underline
that this reduced order model requires only the full-order solutions, making this
approach non-intrusive. We present in this work the results of the application of this
methodology to a heat conduction problem inside a deformable collector pipe.
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1 Introduction

Nowadays, in the industrial and engineering fields, as well as in the biomedical
sciences, fast and accurate simulations are crucial in several applications, such as,
for example, shape design optimization and real-time patient specific diagnosis
and control. To this end many reduced order modelling (ROM) techniques have
been developed in the last decade [9, 32, 37, 38, 41]. We cite among others
reduced basis methods [22, 35], proper orthogonal decomposition (POD) [10],
proper generalized decomposition [8], and hierarchical model reduction [4, 28, 29].
Reduced order modelling can be integrated to various high fidelity methods such
as finite element [33], spectral element, or finite volume methods [21, 46, 47].
We do mention also recent features of the reduced methods able to provide
useful algorithms for uncertainty quantification as well as data science and better
exploitation of high performance computing [7, 50].

Reduced order methods allow a fast and reliable approximation of parameterized
PDEs by constructing small-sized approximation spaces. Using these spaces for the
discretization of the original problem, it is possible to build a reduced order model
that is a sufficiently accurate approximation of the original full order problem. The
fundamental characteristic that makes the method functional from an engineering
and industrial point of view is that the offline phase (more expensive), where the
actual analysis is carried out, is performed only once in high performance computing
(HPC) structures and then remains. The online phase exploits the calculations
already performed and therefore a small computational power, like the one of
laptops or portable devices, is sufficient. This ensures real-time processing of the
problem without having to access HPC facilities for the analysis of new parameters.

ROM is crucial in industrial simulation-based design optimization problems in
naval and nautical engineering [16, 50], but also in biomedical applications for
coronary bypass [1, 2] and carotid occlusions [48] for example.

The focus of this work is to embed in a ROM framework the isogeometric
analysis (IGA) [11, 12, 23] for the simulation of heat diffusion inside a col-
lector pipe. The proposed approach is integrated in a numerical pipeline with
efficient geometrical parameterization of the domain through free form deformation
(FFD) [24, 42], an IGA solver as high fidelity discretization, and POD with
interpolation (PODI) [6, 34, 40] for a fast evaluation of the solution field at untested
parameters. Figure 1 depicts the schema of the complete computational pipeline.

We chose FFD instead of other general purpose geometrical parameterization
techniques such as radial basis functions (RBF) interpolation [5, 25, 27], or inverse
distance weighting (IDW) interpolation [3, 20, 43, 54], because of the possibility to
use only few parameters to deform the entire domain of interest.

The IGA approach allows to integrate classical finite element analysis (FEA) into
conventional industrial CAD tools. To this end IGA directly employs standard CAD
representation bases, e.g., B-splines or Non-uniform rational B-splines (NURBS),
as basis for the analysis. In this way we can avoid the classical mesh generation
and the consequent geometrical approximation error, obtaining a direct design-to-
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Fig. 1 Offline-online numerical pipeline. We consider the heat conduction problem described by
PDEs defined on parametrized geometry. The parametrization of the geometry is managed through
the FFD which allows the realization of different deformation settings. In the offline stage we first
solve a full order model using IGA to derive the solutions and then, we create a ROM applying the
POD as space reduction technique. Finally, through the PODI, in the online stage we look for the
real-time solution of the reduced problem for a new parameter

analysis simulation, since we are employing the same class of functions for both the
geometry parameterization and the solution fields approximation. In this context,
the IGA is ideal for solving elliptic and parabolic PDEs on domains of very general
shape. However, when the objective is to solve the same problem repeatedly on
different domains, the cost of setting up the problem (meshing, matrix assembly)
every time from scratch can be too high. An optimal solution to this problem is a
reduction of the model.

Previous IGA-ROMs works were developed in the last years [26, 39, 55], but
we underline that the novelty of this work is related to the POD with interpolation
integration into the numerical pipeline, for a non-intrusive approach. Even if in this
work we present a proof of concept we stress the fact that it can play an important
role for the integration with industrial CAD files being independent from the IGA
full order solver used.

2 The Parametrized Heat Conduction Problem Inside a
Collector Pipe

The problem of interest we are going to solve throughout this work is a parametrized
heat diffusion problem inside a collector pipe.

Let Ω ⊂ R
2 be a domain that describes an idealized collector pipe in 2D, as

shown in Fig. 2. We will refer to Ω as the reference domain, and for practical reasons
it represents the undeformed geometry.

We also introduce D ⊂ R
m which is our parameter space, and for convenience it

will be an hypercube. For every μ ∈ D, which is a vector of geometrical parameters
describing a particular deformation of the domain, we can define a shape morphing
map M(x;μ) : R

2 → R
2. We will indicate the deformed domain as Ω(μ) =

M(Ω;μ). We refer to Sect. 4 for the specific characterization of such mapping.
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Fig. 2 Idealized collector
pipe representation scheme in
2D. Ω represents with
internal domain of interest,
while Γ1,...,4 indicate the
different boundaries. In
particular Γ3 is the inlet, and
Γ4 is the outlet

The parametrized heat diffusion problem reads: find u(μ) such that

⎧⎪⎪⎨
⎪⎪⎩
Δu(μ) = 0 in Ω(μ)

u(μ) = 0 in Γ1,2,4

∇u(μ) · n = g in Γ3,

(1)

where u is the temperature distribution inside the domain, and g represents the
prescribed heat flux at the inlet. The Dirichlet boundary conditions describe a perfect
insulator with no flux. For sake of simplicity from now on g = 1.

We can introduce the weak formulation of the problem (1). We denote with

V = H 1
0124

(Ω) :=
{
v ∈ H 1(Ω) such that v|Γ1,Γ2,Γ4 = 0

}

the Sobolev space for the temperature. Multiplying the first equation of the system
by a test function and integrating by parts we obtain the following problem: given
μ ∈ D, find u ∈ V such that

a(u, v;μ) = L(v;μ) ∀v ∈ V, (2)

where the bilinear form a(u, v;μ), and the linear form L(v;μ), are defined as
follows

a(u, v;μ) =
∫
Ω

∇u(μ) ∇v dV ∀u, v ∈ V, (3)

L(v;μ) =
∫
Γ3

g v dS ∀v ∈ V. (4)
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3 Isogeometric Paradigm for Both the Geometry and the
Solution Field

Usually a CAD representation of the domain is obtained through B-splines or
NURBS, which are able to exactly describe all conic sections. Here we are going to
briefly present both.

It is possible to derive the B-spline basis functions of order p using Cox-de
Boor’s recursion formula [13, 14]

Ni,p (ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) , (5)

where

Ni,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(6)

andΞ = {ξ1, ξ2, . . . , ξn+p+1} is the knot vector, a non-decreasing set of coordinates
with ξi ∈ R, and n is the number of basis functions which comprise the B-spline. B-
spline curves in R

d are constructed by taking a linear combination of B-spline basis
functions. The vector valued coefficients of the basis functions are referred to as IGA
control points. Given n basis functions {Ni,p}ni=1 of order p, and the corresponding
control points Pi , a piecewise polynomial B-spline curve is given by

C (ξ) =
n∑

i=1

PiNi,p (ξ). (7)

IGA control points are points that define the so called control mesh, which is a
mesh made up by the multilinear elements that define and control the geometry
of the problem. It is important to emphasize that the control mesh does not
coincide with the actual geometry of the physical domain. The control points can
be considered as the analog of the nodal coordinates of the finite element method,
with the difference that, in IGA contest they represent the coefficients of the basis
functions of a B-spline having non-interpolatory nature. A generalization of B-
splines are the NURBS, which are a rational version of them and can thus represent
exactly any kind of geometry. This feature of NURBS allows to bypass altogether
the computationally expensive mesh generation and refinement cycle and at the
same time to preserve the exact geometry of the CAD model. The key insight of
IGA is to use the geometrical map of the NURBS representation as a basis for the
push forward used in the analysis. NURBS basis functions of order p are defined
through B-spline basis functions as

Ri,p(ξ) = Ni,p(ξ)wi

W(ξ)
= Ni,p(ξ)wi∑n

j=1 Nj,p(ξ)wj

, (8)
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where wi are the associated weights. Taking a linear combination of basis functions
and control points, we express a NURBS curve as

C(ξ) =
n∑

i=1

PiRi,p(ξ). (9)

The isoparametric concept is utilized for both FEA and IGA. However, the
difference between FEA and IGA lies in the bases employed for the analysis. In
IGA, the inputs for the calculations come from a CAD model defined by NURBS
curves, which can be used directly for analysis, while in FEA the finite element mesh
is generated starting from an approximation of the original geometry. The mapping
from the parametric domain to the physical domain is then given by

x =
n∑

k=1

Rk(ξ)Pk, (10)

where Rk(ξ) are the NURBS basis functions, n is the number of control points,
ξ the parametric coordinate and Pk is the k-th control point. In an isoparametric
formulations the displacement field is approximated by the same shape functions
formally:

u =
n∑

k=1

Rk(ξ)uk, (11)

where uk is the value of the displacement field at the control point Pk . It is therefore
referred to as a control variable or more generally a degree of freedom.

In Fig. 3 we present the IGA representation of the domain Ω we described in
Sect. 2. In red the six IGA control points defining the NURBS curves. In particular
the knot vectors Ξ and H are defined as follows:

Ξ = {0, 0, 1, 1} k = 2 p = 1,

H = {0, 0, 0, 1, 1, 1} k = 3 p = 2,

where k and p respectively indicate the multiplicity and the degree of the polynomial
(k = p + 1).

4 Shape Parameterization and Deformation Through Free
Form Deformation

The FFD method has been proposed in [42]. It was initially used as a tool
for computer-assisted geometric design and animation, nowadays instead it is
mostly adopted in academia, industry and several engineering application fields as
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Fig. 3 Idealized 2D collector pipe and its IGA control points mesh. The six control points are
indicated with red dots

morphing technique for complex geometries thanks to its features [17, 44, 49, 51].
In the FFD procedure, the object to be deformed is embedded into a rectangular
lattice of points, then some of these points are moved to deform the whole embedded
domain. This technique has three main benefits: (1) with few parameters—the
displacement of the lattice points—it is possible to perform global deformations, (2)
it allows to preserve continuity also in the surface derivatives and (3) it is completely
independent with respect to the object, so it results applicable also to computational
grids [24].

Initially, FFD maps the original domain Ω to the reference one using the affine
map ψ defined as ψ : D → [0, 1]n, where D ⊃ Ω is the parallelepiped containing
the domain and n is the number of dimensions. We select a regular grid of control
points P in the unitary hypercube and we perturb the space by moving these
points. The displacements, the so called FFD weights, control the basis functions
whose tensor product constitute the deformation map T̂ . We underline that it is also
possible to move only some points: typically we fix several rows/columns of control
points to obtain desired levels of continuity and to fix certain parts of the domain.

Finally, we need the back mapping to the physical domain, that is the map
ψ−1. Formally, we obtain the FFD map as the composition of the three maps, i.e.
M(·, μ) := (ψ ◦ T̂ ◦ ψ−1)(·, μ), where μ refers to the parametric displacement of
the control points (see Fig. 4 for a schematic summary).
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Fig. 4 Schematic diagram of the free form deformation map M(·, μ), of the control points Pi,k,
and the resulting deformation when applied to the original domain Ω . M(·, μ) is the composition
of the three maps presented: ψ , T̂ , and ψ−1

It must be remarked that, although FFD is characterized by high flexibility and
easiness of handling, it suffers from some limitations. The first lies in the fact that the
design variables may have no physical significance: they are defined in a parametric
domain that can not be expressed into a particular unit of measurement by definition.
Moreover all the control points are restricted to lie on a regular lattice and, in that
way, local refinements could not be performed.

In this work, we apply the FFD to parametrize the initial 2D domain. We embed
the domain with a square lattice of length 3, using 2 × 2 control points. The lattice
origin coincides with the axes origin. We use two different parameters that are
the displacement along the x direction of the FFD control points P11 and P12
depicted in Fig. 5. In particular we define D := [−0.3, 0.3]2. We use Bernstein
polynomials as basis function to deform the geometry in the reference domain. In
Fig. 5 we present on the left the undeformed configuration of the idealized collector
pipe, where in red we highlight the IGA control points, while the white big dots
are the FFD control points. On the right there is just an example of deformation
corresponding to a displacement of 0.4 for P11 and −0.5 for P12, for now on express
as μ = (0.4,−0.5).



Reduced Order IGA Approach for PDEs in Parametrized Domains 161

Fig. 5 The initial unperturbed domain (left) and an example of deformed domain (right) using the
FFD technique with μ = (0.4,−0.5). The red dots are the NURBS control points, the white big
dots are the FFD control points

5 Data-Driven Reduced Order Modelling by Proper
Orthogonal Decomposition with Interpolation

The reduced basis (RB) method is a computational reduction technique allowing
to quickly and accurately obtain the solution of parametric PDEs. The need to
solve parameterized differential problems, possibly in a very rapid calculation time,
emerges in various contexts, particularly when we are interested in characterizing
the response of a system in numerous scenarios or operating conditions [30, 32, 35,
36]. The goal of an RB approximation is the representation of the full-order problem
as combination of the (few) essential characteristics of the problem itself. In this way
the dimensions are considerably lower than those of a problem discretized with a
classic Galerkin method. Any discretization leading to a large system to be solved to
achieve a certain accuracy is referred to as high fidelity (or full order) approximation.
The basic idea of an RB approximation is a computationally efficient solution of the
parametric problem keeping the approximation error lower than a given tolerance.
In particular, the aim is to approximate the solution of a parametric PDE using a
very small number of degrees of freedom instead of the large number required by
an high fidelity approximation.

To do this, the full order problem is solved only for a few instances of the
input parameters during the computationally expensive offline phase. The so stored
snapshots are used in the online phase for the approximation of the solution for
any new parameter. The generation of the snapshots database can be done only
once and it is completely decoupled from any new input-output calculation related
to a new parameter. The online phase exploits the calculations already performed
and therefore not necessary of a large computational power. This ensures real-
time processing of the problem without having to use high performance computing
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infrastructures for analysis, which can be instead run on a simple laptop with limited
computational power.

In this work, we adopt a complete data-driven model order reduction called
proper orthogonal decomposition with interpolation (PODI). PODI is applicable
using only the system output—so also experimental data—without requiring the
equations of the original problem. Especially in the industrial context, this is a big
benefit: it allows to preserve the know how and to be completely independent from
the full-order solver. We list some examples of PODI applications [6, 9, 22, 40].

PODI aims to approximate the solution manifold by interpolating the snapshots
collected in the offline phase. Since for high-dimensional data the interpolation
can be very expensive, we use proper orthogonal decomposition (POD) to project
the original snapshots onto a low-rank space. POD allows to define a subspace
approximating the original data in an optimal least squares sense by using the
singular value decomposition (SVD) algorithm [31, 45, 53]. We consider a set of
ntrain snapshots s1, . . . , sntrain = s(μ1), . . . , s(μntrain) ∈ VN, where VN is the high-
dimensional space and N refers to its dimension. We define the snapshots matrix S
as the matrix that contains the snapshots in the columns S = [s1 . . . sntrain

]
. We

apply the SVD to S:

S = VΣW∗, (12)

where

V = [ζ1 . . . ζntrain

] ∈ C
N×ntrain , (13)

W = [Ψ1 . . . Ψntrain

] ∈ C
ntrain×ntrain, (14)

are orthogonal matrices whose columns are the left and right singular vectors of S
respectively, and

Σ = diag(σ1 . . . σntrain) ∈ C
ntrain×ntrain, (15)

is a diagonal matrix such that σ1 ≥ σ2 ≥ . . . ≥ σtrain ≥ 0 are the computed singular
values of S. The POD modes of dimension N are defined as the first N left singular
vectors of S, that correspond to the N largest singular values

Z = [ζ1 . . . ζN
]
. (16)

Now we project the original snapshots onto the space spanned by the modes: the
snapshots are so described as linear combination of the modes such that

si =
N∑
j=1

Cj,iζj for i = 1, . . . , ntrain, (17)
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where the columns of matrix C are called modal coefficients. We can compute these
coefficients as C = ZT S, where C = [c1 . . . cntrain

] ∈ R
N×ntrain . We remark the

relation between these coefficients and the parameters; hence we can interpolate
the modal coefficients to compute the coefficient for any new point belonging to
the parameter space. Finally, using the modes, we are able to approximate the new
high-dimensional solution.

Since the PODI technique relies on interpolation, the accuracy of the approxi-
mated solution depends mostly by the chosen interpolation method.

6 Numerical Results

In order to construct the reduced order model, we firstly need to sample the
solution manifold using several high-fidelity snapshots. We select 100 different
configurations applying the FFD technique to the initial domain. The parameters
μ are equispaced in the parameter space [−0.3, 0.3] × [−0.3, 0.3]. This strategy
allows us to cover the entire parametric space with a linear interpolation.

For each configuration, IGA is performed testing GeoPDEs [15, 52], an open
source and free package introduced in 2010 by Rafael Vázquez, written in Octave
and fully compatible with Matlab. In GeoPDEs the IGA is efficiently implemented
in its classic Galerkin version. For the resolution of the full-order problem we
created a mesh with 400 degrees of freedom. Figure 6 shows the graphical
representation of the numerical solution.

Once the snapshots are collected, we create the reduced order model using the
PODI method. The modes are so computed by applying the SVD algorithm to the
snapshots matrix. We show in Fig. 7 the obtained singular values: we note that the
first one retains ∼96% of the total energy, while the 10th singular value is below
10−6. We expect that even with only few modes we can generate a reduced order
model introducing only a negligible error.

Using the modes, we can calculate the modal coefficients by projecting the
original snapshots. Hence, we can approximate any new solution in the parametric
space trough the interpolation of the modal coefficients. Among the various
interpolation techniques we choose linear interpolation. We report an example
where the reduced solution is calculated for the undeformed object by setting the
parameter to zero. In Fig. 8 a visual comparison between the high-fidelity solution
and the reduced one is presented: it is very intuitive to note that the two solutions
are almost identical.

In Fig. 9 instead we can see the error between the reduced solution and the IGA
solution. We calculate the error e(μ) as follows

e(μ) = |uN(μ) − uN(μ)|. (18)

The maximum error is around 6×10−4 so it is possible to state that it is an acceptable
error.
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Fig. 6 The adopted computational grid and the graphical representation of the numerical solution
of the Laplace problem for the undeformed configuration
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Fig. 7 The singular values obtained by the snapshots matrix using the SVD technique

We can also evaluate the a posteriori error committed on a test dataset. A
posteriori error estimation allows to minimize the dimension N of the snapshot
database used to generate the reduced space and to quantify the error of the
approximation with respect to the number of modes selected. The error is calculated
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Fig. 8 Comparison between the full-order solution (left) and the reduced order model solution
(right) for the undeformed configuration

Fig. 9 Error between the full-order solution and the reduced order solution for the unperturbed
configuration. The different color corresponds to ascending values of the error. The error gradually
increases from the blue zone to the red zone where there is the greatest diffusive heat effect. The
results show how, even in the red zone, the error assumes acceptable values

computing the relative L2 norm of the difference between the approximated solution
obtained using PODI approach and the IGA truth solution, on a test dataset
composed by high fidelity solutions corresponding to 20 uniformly distributed
random samples in the parameter space. The plots in Fig. 10 show the relative error
against the dimension of the database and the number of modes. We see that 100
samples and only 4 modes are enough for an average error below 10−3. We refer
to [19] for a posteriori error bounds in an RB-IGA setting.
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Fig. 10 A posteriori L2 relative error between the reduced order solution and the high fidelity
one, computed on the test dataset composed by 20 uniformly distributed random samples in the
parameter space. On the left the error with respect to the dimension of the offline database. On
the right the error trend varying the number of modes selected. With only 4 modes we obtain an
average relative error below 10−3

Finally, we can evaluate the performance improvement obtained using ROM by
calculating the speedup Sp as

Sp = uN(s)

uN(s)
, (19)

where we divide the time in seconds needed to compute the full order solution
by the time needed for the reduced one. Due to the different size of the systems,
the difference of computational time is remarkable even if, for this test-case, the
full-order problem is very simple. We measured the computational time required
by the two techniques on the same machine, and for different parameter values,
and we obtained a mean speedup of approximately 1000. Concerning the software
involved, for the model order reduction we adopted EZyRB [18], which is a Python
library for ROM, based on baricentric triangulation for the selection of the parameter
points and on POD for the selection of the modes. The software uses a non-intrusive
approach in which the solutions are projected on the low dimensional space then
interpolated for the approximation of the solution.

7 Conclusions and Future Developments

In this work we presented a complete non-intrusive computational pipeline involv-
ing geometrical parameterization through free form deformation, isogeometric
analysis, and reduced order model, for fast and reliable field evaluation. We applied
this pipeline to a diffusion problem in an idealized 2D collector pipe. We used
a data-driven non-intrusive approach for the model order reduction, that is the
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proper orthogonal decomposition with interpolation. This setting, even if tested on
a simple problem, will allow us to deal with more complex industrial CAD files,
since we used a geometrical parameterization technique independent from the object
of interest, and the ROM chosen uses only the snapshots of the IGA high fidelity
simulations.

Results and speedup achieved look promising to continue with the implemen-
tation of more complex problems on 3D geometries. The effectiveness of an
RB approach would be exploited even better increasing the complexity of the
simulation in cases where a large number of analysis has to be computed, e.g. in
parameter optimization studies. The developed RB-IGA method is thus interesting
from both academic and industrial points of view. As a matter of fact, since IGA
is directly interfaced with CAD, an undergoing development of the work is the
implementation of a dedicated software based on the RB-IGA method, allowing
real-time evaluations of outputs of interest for different NURBS parameterizations.
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to Hemodynamic Simulations of Thoracic
Aorta Aneurysms: Sensitivity to Inlet
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Abstract In this work, the numerical simulation of the blood flow inside a patient
specific aorta in presence of an aneurysm is considered. A systematic sensitivity
analysis of numerical predictions to the shape of the inlet flow rate waveform is
carried out. In particular, two parameters are selected to describe the inlet waveform:
the stroke volume and the period of the cardiac cycle. In order to limit the number
of hemodynamic simulations required, we used a stochastic method based on the
generalized polynomial chaos (gPC) approach, in which the selected parameters
are considered as random variables with a given probability distribution. The
uncertainty is propagated through the numerical model and a continuous response
surface of the output quantities of interest in the parameter space can be recovered
through a “surrogate” model. For both selected uncertain parameters, we first
assumed uniform Probability Density Functions (PDFs) on a given variation range,
and then we used clinical data to construct more accurate beta PDFs. In all cases, the
two input parameters appeared to have a significant influence on wall shear stresses,
confirming the need of using patient-specific inlet conditions.
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1 Introduction

An Ascending Thoracic Aortic Aneurysm (ATAA) is a permanent dilatation occur-
ring in the ascending part of the thoracic aorta. This disease represents a clinical
challenge due to the significant mortality risk carried by both complications [11, 18]
and surgical repair [7]. Currently, decisions about clinical management are based on
the maximum aneurysm diameter: surgery is recommended whether the aneurysm
diameter reaches 5.5 cm. However, [15] reported that 60% of ascending aortic
dissections occur with smaller diameters. In this context, several studies [5, 6] have
showed that simple morphological features like maximum diameter are not able to
accurately predict the potential critical evolutions of aneurysms.

Among the hemodynamic descriptors, the wall shear stresses can have an impor-
tant effect on vessel wall mechanical properties, and, therefore, on the aneurysm
rupture risk. For instance, a recent result by [16], related to Type B dissections (i.e.,
dissections involving the descending aorta), indicated a significantly higher time-
averaged wall shear stress in dissections complicated by rapid aneurysm progression
than in patients with stable aortic diameters.

In this context, Computational Fluid Dynamics (CFD) permits the investigation
of pressure and flow field at a temporal and spatial resolution unachievable by any
clinical methodology. A variety of variables and indicators difficult to be obtained
from in vivo measurements can be easily quantify through CFD and, even better, the
combination of medical imaging with CFD permits to investigate hemodynamics on
a patient-specific basis (see e.g. [4, 10, 12]).

Nonetheless, the accuracy of CFD predictions strongly depends on modeling
assumptions and computational set-up. An important critical aspect is represented
by boundary conditions, which must be correctly prescribed to reproduce the effect
of organs and vessels outside the portion of aorta that is actually simulated. Both
inflow and outflow boundary conditions should be patient specific and can only
seldom be obtained from in vivo measurements (and, when available, experimental
data are often characterized by a space and time resolution not adequate for
numerical simulation).

In two our previous works we investigated on the impact of outflow bound-
ary conditions based on the three-element Windkessel model, by performing a
stochastic analysis of the effect of the uncertainties in the Windkessel parameters
[1, 2]. The results highlighted that although the uncertainties in the outflow
parameters may give significant variability of the instantaneous shear stresses in
regions characterized by flow recirculation or large streamline curvature, the impact
on cycle-averaged shear stresses is moderate. Therefore, the usual procedure of
estimating these parameters in order to obtain a physiological wave pressure form
in a 0D model seems to be adequate for a correct prediction of wall shear stresses,
clearly within all the other sources of error possibly present in the simulations,
and a fine tuning of RCR parameters is not needed (see [1, 2, 9]). Moreover, the
effect of wall compliance has been investigated though a stochastic approach in
[3], where hemodynamic simulations and MRI data for a patient-specific simulation
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have been integrated. Again, as previously found for the outlet boundary conditions,
a significant sensitivity to wall compliance of instantaneous shear stresses was
observed during large part of the cardiac cycle period; however, the variability of
the time-averaged wall shear stresses remains very low.

We focus herein on inlet boundary conditions. A common practice is the
imposition of a flow rate waveform [8, 9]. We consider a real aneurysm geometry
acquired by Magnetic Resonance Imaging (MRI) and perform the simulations with
the open-source software SimVascular [21]. We carried out a systematic sensitivity
analysis to the shape of the inlet flow rate waveform, and, in particular, to the flow
stroke volume and to the period of the cardiac cycle. A deterministic analysis of
the influence of these parameters is difficult because of the significant cost of each
simulation. An efficient alternative is to use a stochastic approach, in which the
selected parameters are considered as random variables with a given probability
distribution. The uncertainty can, thus, be propagated through the CFD model and a
continuous response surface of the output quantities of interest in the parameter
space can be recovered through a “surrogate” model, which requires a limited
number of deterministic simulations. In the present work, we use the generalized
Polynomial Chaos (gPC) approach [19]. For both selected uncertain parameters,
viz. the flow stroke volume and to the period of the cardiac cycle, we first assumed
uniform Probability Density Functions (PDFs) on a given variation range, and then
we used clinical data to construct more accurate beta PDFs. In all analyses, the two
input parameters showed a deep influence on wall shear stresses, and in particular
the stroke volume in the case of beta PDFs.

2 Modeling and Computational Set-Up

The patient-specific geometry of thoracic aorta subjected to aneurysm in its
ascending region is the same as the one object of the study in [2] (see Fig. 1).
It was acquired by MRI before the surgical procedure. The patient object of the
study is male with tricuspid aortic valve, age 65 years, weight 74 kg. The maximum
diameter ratio is Dr = Dmax/Dhealthy = 1.5, where Dmax is the diameter measured
in correspondence of the widest section of the aneurysm and Dhealthy a diameter
characteristic of the healthy segment. The maximum diameter is Dmax = 3.8 cm.

At the inlet section of the computational domain we specified a Dirichlet
boundary condition on the velocity, by imposing idealized physiological profile of
Fig. 2 with different values of the stroke volume and of the period of the cardiac
cycle. Since the stroke volume is the amount of blood pumped by the left ventricle
of the heart in one cardiac cycle, the stroke volume can be evaluated as the integral in
time of the flow rate during the systolic part of the cardiac cycle. For a given cardiac
cycle period, the stroke volume is changed by multiplying the flow rate in Fig. 2 by
a constant factor only in the systolic part of the cycle. The ranges of variation of
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Fig. 1 Sketch of the
considered geometry
(Dr = 1.5). Aortic geometry
from MRI images before
surgical procedure

the stroke volume and of the cardiac period will be in-depth discussed in Sect. 4.
The resulting Reynolds number, based on the diameter of the inlet section and on
the bulk inlet velocity averaged during the cardiac cycle, was all below Re 0 2200.
The spatial distribution was assumed to be uniform in the whole inlet section. As
a further assumption, in-plane velocity components were not considered, as often
made in this type of simulations (see e.g. [13, 20]).

At each outlet, boundary conditions based on the three-element Windkessel
model were imposed, as sketched in Fig. 3. The values of the RCR parameters
were set in order to obtain a desired physiological behavior of the pressure profile
(120/80 mmHg) in the simplified fully lumped model in which the contribution of
the computational domain is neglected (see [9]). In addition, stochastic sensitivity
analyses on the effect of outlet conditions in ATAA simulations [1, 2] highlighted
that a fine tuning of RCR parameters is not needed for these simulations. The so-
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Fig. 3 Sketch of the three-element Windkessel model

obtained values of Rp, Rd and C were then distributed to the various outlets as
follows:

Rpi = Rp

Atot

Ai

Rdi = Rd
Atot

Ai

for i = 1, . . . , noutlets

Ci = C
Ai

Atot

(1)

where noutlets is the number of the outlets (i.e., four in the considered case), Ai is
the area of the outlet i and Atot is the sum of the areas of all the outlets.

Finally, on the arterial wall we imposed a no-slip condition between the fluid and
the wall and the effect of wall compliance is not taken into account in the considered
simulations.

An unstructured computational grid consisting of tetrahedral elements was used.
Based on the preliminary grid sensitivity analyses performed in [2], we used a
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computational grid made of 1.4 × 106 isotropic tetrahedral elements, 6.6 × 104

of which on the wall. The number of the elements at inlet and at the descending
aorta outlet section is 1.5 × 103 and 6.3 × 102, respectively. The grid consists of
2.4 × 105 nodes, 3.3 × 104 of which on the aortic wall. The physical time step was
set in order to obtain 1600 time steps every cardiac cycle, thus depending on the
cardiac cycle period, resulting, e.g., 0.0005 s for a cardiac cycle period T = 0.8 s. In
order to make sure that the flow reached periodicity after an initial transient, in each
simulation we evaluated the L2-norms of the normalized differences between two
successive pressure waveforms and between two successive flow rate waveforms.
The simulations were run until the above L2-norms (evaluated in correspondence of
the descending aortic outlet section) were smaller than 10−3. We typically needed
to simulate 5–10 cardiac cycles to satisfy this criterion.

3 Uncertainty Quantification Methodology

The generalized Polynomial Chaos (gPC) is the strategy used in the present work
to obtain a continuous response surface in the parameter space starting from a few
deterministic numerical simulations. We briefly recall here its main features. The
gPC approach is based on the projection of a given stochastic response in terms of
an orthogonal polynomial basis [19]. The gPC expansion for a given quantity of
interest, say X, may be expressed as follows (term-based indexing):

X(ω) =
∞∑
k=0

akΦk(ξ (ω)) (2)

where ω is an elementary event, ξ (ω) is the vector consisting of the independent
random variables (i.e., the set of considered uncertain parameters), Φk(ξ ) is the
gPC polynomial of index k and ak is the corresponding coefficient.

The response surface is obtained by a truncation of the expansion (2) to a finite
limit Q. Using the maximum polynomial order for all one-dimensional polynomials
(i.e., full tensor-product polynomial expansion), Q is obtained as follows:

Q =
M∏
i=1

(Pi + 1) − 1 (3)

where M is the number of the uncertain parameters and Pi is the maximum
polynomial order for the ith parameter. The coefficient ak can be computed as
follows:

ak = 〈X,Φk〉
〈Φk,Φk〉 = 1

〈Φk,Φk〉
∫
ω∈Ξ

XΦkρ(ξ ) dξ (4)
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where 〈·, ·〉 denotes the usual L2 scalar product involving a weight function
depending on the polynomial family chosen. The integrals in the scalar products
were computed numerically by using Gaussian quadrature. The polynomial family,
Φk , must be a priori specified and its choice affects the speed of the convergence
of the gPC expansion: a suitable polynomial family is able to approximate the
stochastic response by means of fewer degrees of freedom. When dealing with
Gaussian quadrature, an optimal family has a weight function similar to the
probability measure of the random variables. The choice of the polynomial family
thus depends on the Probability Density Function (PDF) shape of the uncertain
parameters.

Finally, in case of stochastic analysis with 2 or more input variables, it is
interesting to estimate their influence (individual or due to their interactions) on
the uncertainty of the output quantities. To this purpose, we use the Sobol indices,
also referred to in the following as partial sensitivities, which are global sensitivity
indices defined in [17].

4 Choice of the Distributions of the Uncertain Parameters

We aim at investigating the sensitivity of the output hemodynamic quantities of
interest to the shape of the flow rate waveform imposed at the inlet section. For
this purpose, we considered the idealized curve presented in Fig. 2 and scaled it
in order to vary the stroke volume and the cardiac cycle period T . Two different
distributions of the uncertain parameters are considered in the present work. For
both selected uncertain parameters, we first assumed uniform Probability Density
Functions (PDFs) on a given variation range, and then we used clinical data to
construct more accurate beta PDFs.

The choice of a uniform PDF is motivated by the fact that, among the classically-
used distributions, it is the least informative distribution with the highest variance
in given intervals. It is expected that, for a given variation interval of the input
parameters, the uniform PDF distribution should give the largest variability of the
output quantities, thus providing a “conservative” estimation of this sensitivity to
the considered input parameters. Therefore, when no information is available on the
output parameter PDF, a uniform distribution is usually chosen. Since in a first phase
of this work we had no clinical information, an assumption should be made also
on the parameter variation range. The chosen variation intervals were determined
by imposing a standard deviation of 10% of the reference value obtained from the
reference case, i.e. SV = 69.5 ml and T = 0.8 s. The resulting variation ranges
are: SV ∈ [61.5, 85.6]ml, T ∈ [0.71, 0.99]s. The optimal polynomial family for the
gPC basis in case of uniform PDF distribution of the input uncertain parameters is
Legendre polynomials. The polynomial expansion was truncated to the third order
for each dimension and thus four quadrature points for each random variable were
needed to compute the coefficients of the expansion. These values are shown in
Table 1 for all the parameters.
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Table 1 Quadrature points
for the input parameter, case
of uniform PDF distributions

Random variable 1st 2nd 3rd 4th

SV [ml] 63.2 69.5 77.7 83.9

T [s] 0.73 0.8 0.89 0.97

Table 2 Quadrature points
for the input parameters, case
of beta PDF distributions

Random variable 1st 2nd 3rd 4th

SV [ml] 41.4 69.1 101.5 133.8

T [s] 0.67 0.79 0.95 1.14

For the second stochastic analysis, we used clinical data regarding 23 patients,
shown in Fig. 4 transposed in the normalized support range. In order to extract a
PDF distribution suitably representing the experimental data, we chose beta PDF
distributions, which have two free parameters α and β to be tuned:

f (x; α, β) = K(1 − x)α(1 + x)β (5)

where K is a constant such that the integral of f (x) in its support range [−1, 1] is
one. With α = 4.3 and β = 2.6 for the PDF of the stroke volume and α = 5.5
and β = 1.3 for the PDF of the cardiac period, we obtained the distributions in
Fig. 4. The variation ranges are: SV ∈ [20, 170]ml, T ∈ [0.6, 1.4]s. It is worth
noting that the resulting standard deviation of the two obtained distributions is about
33% and 14% of the reference case values, for SV and T respectively. In this case
of beta PDF distributions, Jacobi polynomials represent the optimal polynomial
family. Again, the polynomial expansion was truncated to the third order for each
dimension; hence, four quadrature points for each random variable were sufficient
to compute the coefficients of the expansion. The values of the quadrature points are
shown in Table 2 for the two parameters.

Since a full tensor grid is used, each stochastic analysis introduced above
requires 16 evaluations of the output quantities of interest and thus 16 hemodynamic
simulations. It is worth noting that also sparse tensor grids have been proposed in
the literature to mitigate the so-called curse of dimensionality, i.e. the exponential
growth of quadrature points with increasing number of input random variables [14].
However, we did not use such an approach in the present work because in each
performed stochastic analysis the number of random variables was low, in particular
never larger than 2.

5 Definition of the Output Quantities of Interest and
Indicators

When considering the effects of the blood flow on the arterial wall, particular
attention is given to the Wall Shear Stress (WSS), namely the tangential stress τ
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Fig. 4 Comparison between the clinical data and the beta PDF distributions obtained by tuning
the free parameters. (a) Stroke volume SV. (b) Cardiac cycle period T
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exerted by the flow on the wall:

WSS(x, t) = |τ (x, t)| (6)

Moreover, we considered the Time-Averaged Wall Shear Stress (TAWSS), i.e.
the wall shear stress averaged during an entire cardiac cycle of period T :

TAWSS(x) = 1

T

∫ T

0
|τ (x, t)|dt (7)

In order to better quantify the stresses and their distribution, in the following
of the paper we divide the geometry in three main regions: the ascending aorta,
the aortic arch and the descending aorta (the small branches are not considered).
We then identify a suitable number of stress levels and for each region, the surface
fractions associated to the various stress levels are computed.

6 Results of the Stochastic Analysis

In this section the main results of the stochastic analysis are presented. Section 6.1
describes the analysis made by assuming a guessed uniform PDF distribution for
both the stroke volume and the cardiac cycle period T , whereas Sect. 6.2 improves
the analysis by considering a beta PDF distribution of the uncertain parameters
tuned against specific clinical data.

6.1 Results for the Guessed Uniform PDF Distributions

In this first stochastic analysis, the PDF distributions were assumed to be uniform
in the interval SV ∈ [61.5, 85.6]ml, T ∈ [0.71, 0.99]s (see Sect. 3). The stochastic
analysis was carried out from the results of 16 deterministic simulations. We start
by analyzing the results of the single deterministic simulations. Figure 5 shows
the surface fraction of the TAWSS value levels obtained for SV fixed and equal
to 69.5 ml and varying the cardiac cycle period T (increasing from left to right). It
can be seen that the TAWSS values tend to increase when decreasing T , which is
particularly evident in the descending part of the aorta. This can be again explained
in terms of losses inside the aorta: for fixed values of SV, decreasing T gives rise to
a higher value of cycle-averaged flow rate, which in turn produces a higher cycle-
averaged pressure difference between the inlet and the outlets. This results in an
overall increase of TAWSS values. Figure 6 shows the same quantities as Fig. 5, this
time for T equal to 0.8 s and varying the inlet stroke volume (SV increases going
from left to right). It can be seen that the TAWSS values increase with increasing
stroke volume. Once again, this effect is more important in the descending part
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Fig. 5 Surface fraction of the TAWSS levels obtained for the deterministic simulations in which
the uncertain parameter T varies (SV = 69.5 ml). (a) Ascending aorta. (b) Aortic arch. (c)
Descending aorta
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Fig. 6 Surface fraction of the TAWSS levels obtained for the deterministic simulations in which
the uncertain parameter SV varies (T = 0.8 s). (a) Ascending aorta. (b) Aortic arch. (c) Descending
aorta
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of the aorta. This behavior can be intuitively justified by using an analogy with a
Poiseuille flow, in which the wall shear stresses are given by:

|τ (t)| = 4μQi(t)

πr3
i

where Qi(t) and ri are the flow rate and the radius at the considered vessel section,
respectively. In particular, it can be verified that in the present case the decrease in
vessel radius in the descending aorta outweighs the one in flow rate, giving rise to
larger resulting wall shear stresses compared to those found in the other two regions.
The previous relation indicates that also the variation of |τ (t)| with Q(t) is larger
in the descending aorta: the same trend is thus expected also for the corresponding
cycle-averaged quantities, i.e. TAWSS, which is consistent with Figs. 5 and 6.

A more quantitative appraisal of the variability of TAWSS with the considered
inflow parameters can be obtained from Figs. 7 and 8, which show the isocontours
and the fraction surfaces of the stochastic standard deviation of TAWSS in the
parameter space, obtained with the gPC approach. It can be seen that the variability
is almost uniform everywhere, the higher values being assumed in correspondence
of the distal ends of the small branches and in the proximal part of the aortic arch.
Also the region of flow impingement on the posterior part of the ascending aorta

Fig. 7 Stochastic standard deviation of TAWSS. Effect of uncertainties in the values of the cardiac
cycle period T and of the stroke volume SV, uniform PDF distributions. (a) Front view. (b) Back
view
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Fig. 8 Surface fraction of the TAWSS stochastic standard deviation levels. Effect of uncertainties
in the values of the cardiac cycle period T and of the stroke volume SV, uniform PDF distributions.
(a) Ascending aorta. (b) Aortic arch. (c) Descending aorta
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takes values of stochastic standard deviation larger than average. However, Fig. 8c
shows that the region with the largest overall sensitivity to the uncertainties in the
inlet flow rate parameters is the descending aorta, in which about 95% of the surface
has a stochastic standard deviation higher than 0.1 Pa.

Finally, Fig. 9 shows the isocontours of the partial variances, or Sobol indices,
which quantify the sensitivity of TAWSS to the single input parameters, namely T

(Fig. 9a, b) and SV (Fig. 9c, d), and to the interaction between these two parameters
(Fig. 9e, f). It can be seen that in the ascending and descending parts of the aorta the
most important parameter is the cardiac cycle period T , while in the upstream region
of the aortic arch the stroke volume becomes predominant. On the other hand, the
interaction between the uncertainties in T and SV seems to have a negligible impact
on the variability of TAWSS.

6.2 Results for the Clinical Beta PDF Distributions

In this section, the PDF distributions of the two input parameters are no longer
assumed uniform with a desired standard deviation, but rather based on the clinical
data regarding 23 patients as explained in Sect. 3. The resulting PDF shape and
variation interval are different from those guessed in the previous analysis; in
particular, the “realistic” variation interval of SV is significantly larger. Also for
these distributions a total amount of 16 deterministic simulations was needed.

As previously, we analyze first the results of the single deterministic simulations.
Figure 10a shows the surface fraction of the TAWSS levels obtained for the
deterministic simulations in which the uncertain parameter T varies between 0.67 s
and 1.14 s for SV = 69.1 ml (see Table 2). For the sake of brevity, in the present
case we only show the TAWSS levels computed on the whole aorta wall surface
instead of dividing it in three regions. Anyway, as in Sect. 6.1, TAWSS clearly
decreases in average when T is increased. As previously explained, this is due to
the fact that, for fixed SV, a reduction of T would lead during the systolic phase
to higher instantaneous flow rates, which corresponds to larger instantaneous WSS.
Figure 10b shows the same quantities as in Fig. 10a for fixed T = 0.67 s and SV
varying between 41.4 ml and 133.8 ml. Once again, it is evident that, as expected,
TAWSS increases with increasing SV.

Figure 11 shows the distribution of the stochastic standard deviation of TAWSS.
Compared to the case of guessed uniform PDF distributions (Fig. 7), we can notice
a significantly increased variability all over the aorta. This is confirmed by the
histograms in Fig. 12, which also show that the descending aorta is again the region
with the largest stochastic standard deviation.

A significant difference with the previous case is also found in the partial
sensitivity of TAWSS to the input parameters, reported in Fig. 13. Indeed, the
variability of the wall shear stresses is now mainly produced by the uncertainty
in the stroke volume SV, in all the regions of the aorta (Fig. 13c, d). Predominance
of the cardiac cycle period T can only be seen in a small anterior portion of the



186 A. Boccadifuoco et al.

(a) Front view (b) Back view

(c) Front view (d) Back view

(e) Front view (f) Back view

Fig. 9 Partial sensitivities of TAWSS to uncertainties in T (a, b), to uncertainties in SV (c, d), and
to the interaction between T and SV (e, f). Stochastic analysis with uniform PDF distributions
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Fig. 10 Surface fraction of the TAWSS levels obtained for the deterministic simulations in which
(a) T varies (SV = 69.1 ml), (b) SV varies (T = 0.67 s)

ascending aorta (Fig. 13a), which however is a location where the total variability
of TAWSS was found to be very low, as shown in Fig. 11.

7 Conclusions

The aim of the present work was to evaluate the impact of inlet boundary conditions
on the results of hemodynamic simulations of a patient-specific ATAA geometry.
We carried out a stochastic analysis of the sensitivity of the computed wall shear
stresses to the inlet flow waveform, parameterized by varying the stroke volume and
the cardiac cycle period. We used gPC to build the response surface in the parameter
space. As a first step, uniform PDF of the input parameters was initially assumed,
as it is usually done in the most common situation in which specific clinical
information of patient real variability is lacking. Also the range of variability of the
parameters was guessed. It was found that uncertainties in these two parameters lead
to a significant variability of computed TAWSS, especially in the descending aorta.
The cardiac cycle period has the largest impact in the ascending part of the aorta,
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Fig. 11 Stochastic standard deviation of TAWSS. Effect of uncertainties in the values of the
cardiac cycle period T and of the stroke volume SV, beta PDF distributions (case of rigid walls).
(a) Front view. (b) Back view

while the variability in the upstream region of the aortic arch is dominated by the
stroke volume and both parameters affect the TAWSS values in the descending aorta.
As a second step, the PDFs of the inflow parameters were obtained from inflow
waveform data available from 23 patients. The resulting PDF shape and variation
interval are different from those guessed in the previous analysis; in particular, the
“realistic” variation interval of SV is significantly larger. As a result, the variability
of TAWSS was found to be significantly larger than in the previous analysis and
this variability appeared to be mostly due to uncertainties in SV. The present study
indicates thus that patient-specific inlet conditions should be used for quantitative
accurate predictions of WSS and TAWSS. A way to obtain these patient-specific
inlet conditions is clearly through in vivo measurements. These measurements
have however a limited resolution and may be affected by noise. The stochastic
methodology used in the present work could be useful also to quantify the impact of
uncertainties in patient-specific measurements and this could be the object of future
work.
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Fig. 12 Surface fraction of the TAWSS stochastic standard deviation levels. Effect of uncertainties
in the values of the cardiac cycle period T and of the stroke volume SV, beta PDF distributions
(case of rigid walls). (a) Ascending aorta. (b) Aortic arch. (c) Descending aorta
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(a) Front view (b) Back view

(c) Front view (d) Back view

(e) Front view (f) Back view

Fig. 13 Partial sensitivities of TAWSS to uncertainties in T (a, b), to uncertainties in SV (c, d),
and to the interaction between T and SV (e, f). Stochastic analysis with beta PDF distributions
(case of rigid walls)
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Abstract A stochastic sensitivity analysis and calibration of the cavitation
model parameters in the URANS simulations of a configuration representative
of high-pressure injectors for automotive applications is carried out. A popular
homogeneous-flow cavitation model is considered, in which the mass transfer due to
cavitation is given by the Schnerr–Sauer model together with the classical Rayleigh–
Plesset equation. A stochastic approach based on the generalized Polynomial Chaos
(gPC) expansion is adopted, which allows continuous response surfaces of the
quantities of interest in the parameter space to be obtained starting from a few
deterministic simulations. The considered uncertain parameters are the so-called
scaling factors. The calibration of these parameters is carried out by using the gPC
response surfaces for a axisymmetric simplified geometry against the experimental
value of the critical cavitation point, i.e. the condition at which the injector is
choked. The procedure is carried out for two different turbulence models, viz. the
k − ω SST and RSM models. The so-obtained optimal parameter set-ups are then
validated for the real three-dimensional geometry. The k − ω SST optimal set-up
gives very accurate predictions also in the three-dimensional case. Finally, the
results obtained with this optimal set-up are compared to those given by standard
values, confirming that the predictions of the different flow regimes occurring in
high-pressure injectors are highly sensitive to cavitation model parameters.
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1 Introduction

This work is focused on the numerical simulation of real size injector flows for
automotive applications. It has been largely demonstrated that the spray behavior in
the combustion chamber deeply influences the ignition process and, consequently,
the particulate emission level (see for instance [9, 19]). A desired spray must be low-
penetrating (in order to avoid phenomena like the ‘piston impingement’ [9]) with a
high cone angle, such that the fuel is uniformly distributed all over the chamber. In
turn, the spray configuration is strongly dependent on the flow characteristics inside
the injector. Several authors have indeed demonstrated that turbulence and cavitation
play a primary role in spray atomization (see, e.g., [3, 4, 7, 12, 16, 17]). When an
injector is subjected to a pressure difference, the local pressure near the inlet corner
of the channel may go under the saturation value, and cavitation starts to occur.
Keeping constant the inlet pressure and decreasing the outlet value, the cavitating
region becomes more extended along the channel length while, at the same time,
the pressure becomes constant all over the channel inlet cross-section and equal to
the saturation value. Once this last condition is reached, the speed of sound of the
flow drops drastically and the disturbances can not propagate upstream. From this
condition, denoted by an outlet pressure called Critical Cavitation Point (CCP), the
injector (as well as the Mass-Flow-Rate MFR) is considered chocked since further
decreases of the outlet pressure do not influence the upper part of the injector. This
is true till the inception of the hydraulic flip, i.e. a back-flow of air from the outlet
reservoir to inside the orifice that progressively replaces cavitation.

In a pioneering work, Soteriou et al. [16] carried out experiments and visualiza-
tions on a wide range of both large scale and real size simplified cylindrical nozzles.
They found a correlation between the orifice internal flow and the characteristics of
the spray; in particular cavitation occurring inside the channel improves the spray
atomization and the cone angle, and this is particularly true when the cavitating
region approaches the outlet section, also referred to ‘super-cavitation’ (desired
spray condition). However, when hydraulic flip occurs, the spray pattern changes
drastically emerging in a highly-penetrating narrow liquid column. It was also
noticed in [16] that between super-cavitation and hydraulic flip, there is a pressure
drop interval in which the transition from the two opposite spray patterns was ‘not
clear’. This condition has been analyzed by Chaves et al. [7] who noticed a regime
of transition between cavitating/not cavitating flow.

From a computational point of view, the numerical modeling must take into
account all the previously listed phenomena, and it is known that modeling choices
influence the simulation results [1, 13]. For what concerns turbulence closure,
it has been largely demonstrated that turbulent scale resolving approaches, as
Large-Eddy Simulations (LES), seem to be able to accurately describe the flow
dynamics. However, the use of LES implies a very large computational cost,
unaffordable in an industrial context. Focusing on an industrial viewpoint, in
fact, the required compromise between accuracy and computational time makes
the ‘cheaper’ Unsteady-Reynalods-Averaged-Navier–Stokes (URANS) equations
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be very attractive. Another key issue is the modeling of cavitation. In the literature,
several models have been proposed with different levels of complexity (see, for
instance, [8]), but it is not still clear which is the best choice. Once again, in a
industrial context, a compromise between accuracy and computational complexity
must be accepted and achieved. In this work, focused on industry issues, we adopted
the classical one-fluid or homogeneous-flow approach, in which the phase mixture
is treated as a single fluid whose properties are a weighted sum of the properties
of the pure phases. This approach, widely used also in commercial codes, requires
additional transport equations for N − 1 phase fractions, being N the number of
phases simulates. The mass-transfer due to cavitation is modeled in a source term by
the Schnerr–Sauer model [15] together with the classical Rayleigh–Plesset equation
[5]. This model contains a certain number of free-parameters that must be a-priori
assigned, and once again their values can affect the simulation results. Thus, a
suitable cavitation model parameter set-up has to be found; this set-up should be
able to obtain accurate predictions of the conditions at which the major injector
flow changes occur, such as CCP or hydraulic flip inception.

The aim of the present work is to investigate the sensitivity of URANS
predictions of an injector flow to some of the parameters of the cavitation model
and to carry out a model calibration in order to match the available reference
data. This analysis has been performed for a simplified cylindrical nozzle geometry
for which the CCP measurement was carried out in-house by CONTINENTAL
AUTOMOTIVE. To this purpose, we used a stochastic analysis, in particular
generalized Polynomial Chaos (gPC) [21]. Since the costs of each single simulation
of the considered problem is large, the stochastic approach is interesting since
it permits to reconstruct the response surfaces of the quantities of interest in the
parameter space starting from a small number of deterministic simulations. In order
to investigate the effect of the turbulence closure, we repeated the analysis for the
k − ω SST [11] and RSM [10] models.

2 Physical Modeling and Numerical Discretization

In addition to the working liquid and to the vapor generated by cavitation of the
liquid phase, a third gaseous phase, namely air, immiscible with the other phases is
considered. The governing equations are herein the Unsteady Reynolds-Averaged
Navier–Stokes (URANS) equations, meaning that all the flow quantities are time-
averaged. A single-fluid approach has been adopted for the multi-phase flow model;
thus, a single set of URANS equations is solved for a homogeneous mixture whose
properties depend on its composition according to the following relations:

ρ = αlρl + αvρv + αgρg (1)

μ = αlμl + αvμv + αgμg (2)
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where ρ and μ denote the density and the molecular viscosity of the mixture, the
subscripts l, v and g indicate the liquid, vapor and gas phases respectively and αi is
the volume fraction of phase i, defined as:

αi = lim
δV→0

δVi

δV
(3)

being δV an infinitesimal volume and δVi the volume part occupied by the phase i.
Clearly, we have:

δVl + δVv + δVg = δV (4)

that leads to the obvious relation

αl + αv + αg = 1 (5)

In this work, all the pure phase properties are considered constant.
Under the previous assumptions, the continuity equation for the mixture can be

written as follows:

∂uj

∂xj
= (ρ−1

v − ρ−1
l )ṁ (6)

where uj is the time-averaged velocity in the j direction. Since cavitation implies
a mass transfer between liquid and vapor phases, it is necessary to introduce the
source term ṁ, which is the mass transfer rate per unit volume due to cavitation. This
term must be closed by the cavitation model, as it will be shown in the following.

The momentum equation is the following:

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂

∂xj
(μ(

∂ui

∂xj
+ ∂uj

∂xi
)) + ∂τ tij

∂xj
(7)

where ρ and μ are the mixture properties as defined in Eqs. (1) and (2), p is the
time-averaged pressure and τ tij is the so-called Reynolds-stress tensor that contains
the effects of turbulence on the mean flow field. In order to close the last term, a
turbulence model is needed. In this work the sensitivity to the turbulence closure has
investigated by considering two different turbulence models for the Reynolds-stress
tensor: the eddy-viscosity k − ωSST model [11] and the Reynolds-Stress-Model
(RSM) (see e.g. [10]).

The previous equation system must be completed with the transport equations
for the volume fraction of the gaseous and the vapor phases:

∂αg

∂t
+ ∂αguj

∂xj
= 0 (8)
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∂αv

∂t
+ ∂αvuj

∂xj
= ṁ

ρv
(9)

As anticipated, the source term ṁ introduced in Eqs. (6) and (9) accounts for
the mass transfer between liquid and vapor phases due to cavitation. It is modeled
herein by using the Schnerr–Sauer model [15]:

ṁ = 4πn0αlρvR
2 dR

dt
(10)

in which n0 is the “seed-density” defining the concentration of cavitation nuclei per
unit liquid volume, while the cavitation bubbles assumed to be spherical of radius
R. R is inferiorly bounded by R0, also called ‘seed-radius’, which represents the
radial dimension of the cavitation nuclei in the unperturbed flow.

The cavitation bubble dynamics, expressed by the term dR
dt

, is described by a
simplified form of the classical Rayleigh–Plesset equation [5], the so-called inertia
controlled bubble growth, in which the viscous and the surface-tension terms are
neglected:

dR

dt
= SF+/−sgn(psat − p)

√
2

3

|psat − p|
ρl

(11)

psat appearing in Eq. (11) is the saturation pressure of the working liquid, and the
expression sgn(psat − p) accounts for the different sign in the bubble dynamics:
if the pressure p is larger than the saturation pressure, the bubble is collapsing
( dR
dt

< 0), and the condensation rate is directly multiplied by the factor SF−; on
the contrary, if p is lower than psat , the bubble is growing (i.e. dR

dt
> 0) and the

vaporization rate can be tuned by the factor SF+. The two multiplicative parameters
SF+ and SF−, also known as ‘scaling factors’, were not present in the original
formulation of the Schnerr–Sauer cavitation model, but they are usually introduced
in current CFD implementations (see e.g. [1, 6]).

The four values n0, R0, SF+ and SF− are free parameters that must be a-
priori specified in order to close the cavitation model. Difficulties arise from the
fact that their ‘correct’ values are unknown in most practical applications and must
be thus tuned to fit empirical/numerical reference data. Consequently, a stochastic
sensitivity analysis seems particularly suitable to investigate the sensitivity of the
numerical predictions by reducing the number of deterministic simulations. The aim
is to find and validate a possible “optimum” setup.

The simulations have been carried out by using the commercial code SIEMENS
STAR-CCM+ V 12.04 based on a finite-volume method. The convective terms are
discretized through a second-order accurate upwind scheme, while a second-order
central scheme is used for the diffusive terms; the Venkatakrishnan limiter [20] is
implemented to limit the reconstructed gradients. The time-advancing is carried out
by using a second-order accurate implicit scheme (see [18]), while the velocity-
pressure coupling is dealt with the SIMPLE algorithm.
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3 Uncertainty Quantification Methodology

In the previous section, we pointed out that the cavitation model requires that the
values of a certain number of free-parameters to be a-priori assigned, whose values
are unknown in most practical cases. On the other hand, the numerical predictions
can be significantly influenced by the parameter set-up. The use of stochastic
methodologies, often called also Uncertainty Quantification (UQ) methods, permits
to quantify how much the uncertain parameters may affect the simulation at
significantly reduced computational costs compared with deterministic approaches.
Indeed, continuous response surfaces of a certain quantity of interest cane be
obtained by using a limited number of deterministic simulations is very attractive
in parameter calibration and data-fitting. In this work we use the Generalized
Polynomial Chaos (gPC) expansion method.

3.1 Generalized Polynomial Chaos Expansion

The non-intrusive gPC approach is an interpolant method which allows a given
random process to be projected over a known orthogonal basis [21]. This projection
can be written as follows:

R(ω) = a0B0 +
M∑
i1=1

ai1B1(ξi1) +
M∑
i1=1

i1∑
i2=1

ai1i2B2(ξi1 , ξi2)+

+
M∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi3 ) + . . .

(12)

where R(ω) denotes a random process that is function of ξ(ω) = [ξ1, ξ2, . . . , ξM ],
a random vector contained in the M-dimensional parameter space Ω . Bk is the
polynomial of order k containing the interaction of a set of k parameters among M .
The same expression can be simplified by using a term-based indexing as follows:

R(ω) =
+∞∑
j=0

βjΨj (ξ(ω)) (13)

where Ψj(ξ) is the gPC polynomial base of generic index j and βj is the related
Galerkin projection coefficient. Clearly, a bijective relation exists between βj and
ai1i2....
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Each coefficient βj can be easily calculated taking advantage of the orthogonality
properties of the basis as follows:

βj = 〈R,Ψj 〉
〈Ψj ,Ψj 〉 (14)

where

〈f, g〉 =
∫
Ω

w(ξ)f (ξ)g(ξ)dξ (15)

denotes the scalar product between functions f and g. The two functions are
multiplied by a particular weight function w that is associated with the chosen
polynomial family.

From a practical point of view, since the exact expansion of process R(ω) would
imply the evaluation of an infinite number of terms, it is necessary to introduce a
term-limit T such that the spectral decomposition (13) is truncated to a finite number
of elements:

T =
M∑
j=1

(P + 1) − 1 (16)

where P is the maximum polynomial degree for each single parameter (supposed
here the same for sake of simplicity) and M is the already introduced dimension
of the random parameter space. The truncation here defined is also called tensor-
product and contains all the multi-dimensional polynomials till order P and some of
the polynomials of higher order till order MP .

The truncated gPC expansion is thus the following:

RgPC(ω) =
T∑

j=0

βjΨj (ξ(ω)) (17)

and requires the evaluation of T + 1 terms.
Each integral involved in this methodology is evaluated through Gaussian

Quadrature Formula (GQF) using mi = P + 1 quadrature points per parameter
whose tensor-product grid define a set of input parameters for which deterministic
simulations must be carried out. The locations of such nodes depend on the chosen
polynomial family, indicating that this choice is another key-point of the UQ
methodology. The same number of terms appearing in Eq. (17), in fact, may lead
to very different level of accuracy depending on which polynomial base is used. In
particular, a suitable polynomial family needs a few number of terms to reduce the
error of the quadrature formula under a certain threshold tolerance, thus influencing
the speed of convergence of the gPC method. The optimal polynomial family is that
having a weight function similar to the measure of the random variable, and thus to
the Probability Density Function (PDF) of the uncertain parameter [21].
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4 Circular Channel

The test case taken into consideration is, formally, a cylindrical channel 400 μm
long with a diameter of 200 μm. In practice, however, the measurements of the real
internal geometry highlighted that the actual dimensions are slightly different and
are summarized in Table 1.

The experiments on the aforementioned geometry were carried out in-house by
CONTINENTAL AUTOMOTIVE using the Oil ISO4113 as working fluid. It is a
liquid-into-air injection and provides the measurements of the Critical Cavitation
Point (CCP), i.e. the pressure in the outlet reservoir at which the flow inside the
channel can be considered chocked. The pressure in the inlet reservoir has been kept
constant at 100 bar while the outlet pressure has been adjusted to obtain a desired
pressure difference. From a practical point of view, the methodology followed to
evaluate the CCP (see [14]) is based on the relation between the Mass Flow Rate
(MFR) and the cavitation number CN, here defined as:

CN = pin − pout

pin − psat
0 pin − pout

pin
(18)

where the simplification pin − psat 0 pin is justified by the fact that the saturation
pressure is much lower than the inlet pressure. Several studies (see for instance
[12, 14]) have shown that the MFR-CN curves for cavitating orifices (before
hydraulic flip appearance) can be divided in a not-cavitating region in which MFR is
linearly dependent on

√
CN , and a cavitating region in which MFR is not dependent

on CN (chocked condition). Under the previous hypothesis, the CCP is evaluated
intersecting the two lines shown in Fig. 1: the black line (not-cavitating condition)
passes through the points CN = 0.4 and CN = 0.55 corresponding to 60 and 45
bar of outlet pressure respectively, while the horizontal blue line (chocked flow) is
computed by the flow conditions at CN=0.7, i.e. 30 bar of outlet pressure. The CCP
expression can be easily computed as:

CCP = pin(1 − CNCCP ) (19)

where CNCCP is the cavitation number corresponding to CCP.

Table 1 Nominal vs. real channel geometry dimensions

Nominal [μm] Real [μm]

Inlet diameter Din 200 234

Outlet diameter Dout 200 221

Length L 400 384
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Fig. 1 Geometrical interpretation of the critical cavitation point

Table 2 Experimental measurements of the critical cavitation point

Inlet pressure [bar] CCP [bar] MFR @CCP [g/s]

100 37.15 3.475

The experimental measurements are reported in Table 2.

4.1 Computational Setup

The details of the computational geometry used in the simulations are shown in
Fig. 2. A stagnation pressure condition of 100 bar, allowing the entrance of the pure
liquid phase, has been imposed at the inlet surface, while a static pressure condition
(whose value depend on the desired pressure difference) is used at the outlet; on
the remaining surfaces of the computational domain a no-slip condition is imposed.
In order to follow the same CCP evaluation methodology as used in the reference
experiment, three pressure differences are considered herein: Δp = 40 bar, Δp =
55 bar and Δp = 70 bar.

As previously anticipated, the working fluid is the Oil ISO4113; the liquid and
vapor properties, together with those of the air present in the outlet reservoir, are
reported in Table 3.

The computational grid used to discretize the domain is composed of hexahedral
cells and counts about 12 million nodes. The maximum grid spacing inside the
channel is about 2.8 μm in all directions. Since no wall-functions have been used,
the grid resolution should be such that y+ < 1 at the wall. In order to obtain
this condition by increasing the near-wall resolution, a structured prism layer is
present at each wall: in particular, 11 layers, whose wall-normal size increases with
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Fig. 2 Computational domain and boundary condition details

Table 3 Fluid properties Oil Oil

Liquid Vapor Air

Density ρ [ kg
m3 ] 812.81 4.04 1.18

Viscosity μ [ kg
ms ] 2.48 · 10−3 7.0 · 10−6 1.86 · 10−5

Saturation pressure
28.2

psat (40 ◦C) [Pa]

a geometrical progression with a constant growth-rate equal to 1.2, are distributed
over a total height of 2.5 μm. The condition y+ < 1 has been verified a-posteriori.
As it will described in Sect. 5.1, the cavitation model calibration has been performed
on a axisymmetric grid, which was extracted from the three-dimensional geometry
by taking the plane z = 0 (see Fig. 2). Finally, since the simulations cover very
different flow configurations (pure liquid, weakly/massively cavitating flow and
hydraulic flip), the time-advancing was performed with a pressure drop-dependent
time step, whose expression is:

Δt = 0.0000122√
2Δp
ρL

(20)
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that corresponds to a maximum CFL number of about 30 near the inlet corner of the
channel in all the simulations.

For what concerns the stochastic sensitivity analysis, we showed, in a previous
work [2] containing a cavitation model parameter calibration in two-phase flow
condition (liquid-into-liquid injection), that the parameters having the deepest
impact on numerical predictions of cavitating flows are the two scaling factors,
that directly influence the rate of vaporization (SF+) and condensation (SF−). The
optimum setup obtained in [2] was tested in this new flow configuration, but the
agreement between experiment and numerical predictions was not very good. The
disagreement can be reasonably explained by the introduction of the third phase
that adds different phenomena compared with the 2-phase flow, as, for instance, the
hydraulic flip. For these reasons, it has been decided to perform a new cavitation
model calibration considering as uncertain only the scaling factors, fixing the Seed
Radius R0 and the concentration of cavitation nuclei n0 to the same values as in [2],
i.e. R0 = 1.9 μm and n0 = 4 · 1012 m−3.

Regarding the ranges of variation of the uncertainties, we carried out first a few
explorative deterministic simulations which indicated that the parameter ranges for
which the numerical results include the experimental measurements depend on the
turbulence model used. In light of these preliminary simulations, we investigate
the following variation ranges: SF+ ∈]700; 1200[ and SF− ∈]1; 100[ for the
RSM and SF+ ∈]15; 250[ and SF− ∈]45; 60[. As it can be seen, the intervals
of parameter values in which the optimal set-up must be searched are significantly
different for the two considered turbulence models. Although turbulence does not
explicitly appears in the cavitation model, the interplay between turbulence and
cavitation modeling is strong and complex. Indeed, the turbulence model affects
the mean velocity and pressure fields which in turn affect cavitation. On the other
hand, the cavitation model, and in particular the values of its parameters, obviously
influences the mean flow field and turbulence. This explains why the values of
the cavitation parameters that match the reference data can be very different for
different turbulence models. Finally, since there is no information on the probability
distribution of the uncertain parameter values inside these ranges, a constant PDF
has been assigned to each parameter. Consequently we used Legendre polynomials
on a Gauss–Legendre tensor-product grid.

5 Results

The computational cost of a three-dimensional simulation is quite large. On a
workstation having 36 CPU-cores at 2.3 GHz (3.3 GHz with TurboBoost), the
order of magnitude of a typical 3D simulation is about 5 days to reach statistical
convergence on a computational grid of about 12 million nodes. Since a single
evaluation of the CCP implies three deterministic simulations (one for 40, 55 and
70 bar of pressure drop respectively), a fully stochastic analysis with 2 uncertain
parameters on the real 3D geometry appears excessively expensive. Conversely, a
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2D simulation, for which the grid counts about 35,000 nodes, needs about 1 h to
reach statistical convergence. For this reason, taking advantage of the geometrical
shape of the orifice, it has been decided to perform the cavitation model parameter
calibration on a axisymmetric grid. The ‘optimal’ setup obtained by the calibration
has been, thus, tested for the real 3D geometry.

5.1 Cavitation Model Calibration

The gPC analysis has been performed on a tensor-product grid; it means that,
since the number of uncertain parameters is 2, the total number of deterministic
point to be simulated is (pmax + 1)2 for each pressure drop and turbulence model,
being pmax the maximum complete order of the multi-dimensional polynomials
present in the expansion of Eq. (17). Since the parameter space to be analyzed is
significantly different for the two turbulence models, it has been decided to use
different truncation orders: pmax = 3 for the k−ω SST and a higher order pmax = 6
for the RSM. The truncation order of the gPC expansion for RSM was increased
in order to have roughly the same variation of the parameter values between the
different deterministic simulations as for the SST model. However, the convergence
of the gPC coefficients (not shown here for sake of brevity) highlighted that the
speed of convergence is similar, and, concerning the RSM expansion, the terms
higher than order 3 have a negligible impact on the results of the gPC analysis.
For each quadrature point in the parameter space, i.e. for a given combination of
parameter value, three simulations were carried out for the three considered pressure
drops and the CCP was determined following the procedure explained in Sect. 4;
then the gPC expansion was applied to the computed CCP. As previously said, the
procedure was repeated for the two considered turbulence models.

In Fig. 3a, b, the PDF of the difference between the numerical and experimental
CCP normalized with its peak value (such as the maximum value is 1) is shown
for the k − ω SST and RSM respectively. As anticipated in Sect. 4.1, the results
obtained for the considered parameter variation ranges include the experimental
CCP measurements, denoted by the 0 value on the x-axis, indicating that a proper
parameter set-up is able to match the reference data,. However, it can also be seen
that the most probable value, i.e. the prediction obtained by most of the parameter
values, corresponds to a difference with the experiments of about 3 bars. Finally,
both the PDFs are asymmetric with not-negligible tails on the left, and this is
particularly true for the k − ω SST turbulence model.

The response surfaces of the difference between the numerical and experimental
CCP in the parameter space is shown in Fig. 4a, b for the two different turbulence
models. Despite the differences between the two responses, some common features
can be identified. As it can be noticed, in fact, the largest underestimation of
the numerical CCP is concentrated on the bottom-left corner of figures, while
the overestimated predictions are located on the opposite side. This observation
suggests that increasing both parameters means increasing the predicted CCP value.
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Fig. 3 Normalized PDF of (CCP −CCPexp) for k−ω SST (a) and RSM (b). The mean stochastic
value is represented with the red line
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Fig. 4 (CCP − CCPexp) response surface for k − ω SST (a) and RSM (b)

In order, thus, to find an ‘optimum’ cavitation model parameter set-up, we
performed a model calibration starting from the response surfaces of CCP and
MFR@CCP . The procedure is divided in two steps:

1. We extracted a parameter sub-domain Ωreduced in which the absolute difference
|CCP(ω)−CCPexp| is lower than a threshold value. In this work, the threshold
value has been fixed to 0.5 bar.
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2. Inside the parameter space Ωreduced , we found the minimum of the percent
difference on MFR@CCP , defined as:

%MFR(Ωreduced) = 100 · MFR@CCP (Ωreduced) − MFR@CCPexp

MFR@CCPexp

(21)

The sub-domains that verify the condition on the CCP for both turbulence models
(see Figs. 5a and 6a) are very similar, with a narrow region dividing the parameter
space: this indicates that the “optimal” region is inside a high-gradient zone, and the
most part of the parameter set-ups cannot give predictions inside the prescribed error
tolerance. The percent differences on MFR, together with the “optimum” set-up, are
shown in Figs. 5b and 6b; as a remark, the absolute minimum of %MFR(Ωreduced )

with the k − ω SST turbulence model (see Fig. 5b) is on a very flat region of the
response surface. Since the difference between the actual minimum and the nearest
deterministic simulated point inside the acceptable sub-domain is lower that 0.15%,
it has been decided to consider that deterministic set-up as the “optimum”. The two
optimized set-ups are the following:

• k − ω SST

– SF+ = 93
– SF− = 58.96

• RSM

– SF+ = 860.9
– SF− = 30.41

The optimized set-ups have thus been used to characterize this injector flow for
other intermediate pressure drops. Figure 7 shows the results for both the k−ω SST
and RSM. Focusing on the curve obtained with the k − ω SST, the liquid/weakly
cavitating flow can be recognized by the linear dependence between

√
(CN) and

MFR on the left of the figure (corresponding thus to the lowest pressure drops).
At a certain point, the slope of the curve starts to strongly decrease and becomes
horizontal: this is the chocked flow condition, corresponding to a highly cavitating
flow. For higher pressure drops the curve has an abrupt decrease, meaning that the
flow is in a steady hydraulic flip condition (see Fig. 8), i.e a back-flow of air from
the outlet reservoir that replaces cavitation inside the channel. The MFR reduction
can be explained by the fact that, in steady condition, the interface between air and
liquid phases (that are immiscible) is a stream-line; it means that the air back-flow
is similar to a modification of the internal geometry of the channel, and the liquid
entering the channel “sees” a narrower orifice. When steady hydraulic flip occurs,
the flow is liquid and not chocked anymore; for this reason, after the onset of the
hydraulic flip, MFR recovers the linear dependence with

√
CN and it can increase

again. The results for the optimized set-up with RSM are very similar and have not
been here described in detail for the sake of brevity.
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Fig. 5 Acceptable parameter space for the (CCP −CCPexp) tolerance (a) and percent difference
on MFR (b) for the k − ω SST. In the black circle, the ‘optmimum’ setup has been highlighted
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Fig. 6 Acceptable parameter space for the (CCP −CCPexp) tolerance (a) and percent difference
on MFR (b) for the RSM. In the black circle, the ‘optmimum’ setup has been highlighted

5.2 3D Validation

The two ‘optimum’ set-ups, found for the k − ω SST and the RSM models, are the
result of a calibration on an axisymmetric geometry. However, to be considered real
‘optima’ set-ups, the results of the axisymmetric calibration must be validated over
the more realistic 3D geometry.
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Fig. 7 CN-MFR curve obtained with the optimized set-up with k−ω SST (black) and RSM (red).
The green point is the experimental data

Fig. 8 From left to right, stream-wise velocity, vapor and air fraction fields for 82 bar of pressure
drop with the optimized k − ω SST set-up, corresponding to stable hydraulic flip condition

Figure 9 and Table 4 shown the major results of the validation. The k − ω

SST turbulence model preserves the good prediction of the CCP obtained in
axysimmetric condition also in the real 3D model; in particular the difference
CCPk−ω − CCPexp is about 0.76 bar, very close to the tolerance used in the
calibration procedure, while the percent difference on MFR is −2.88%. Conversely,
the prediction with the RSM is much worse than that obtained in axisymmetric
condition since the difference between numerical and experimental CCP is greater
than 4 bar and thus far from the threshold tolerance of 0.5 bar. This result suggests
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Fig. 9 Numerical prediction of the CCP for both turbulence models with the 3D geometry. The
experimental measurements is the green circle

Table 4 Numerical
prediction of the CCP and
MFR(@CCP) for the 3D
geometry

CCP [bar] MFR(@CCP) [g/s]

Experiment 37.15 3.475

k − ω SST 37.91 3.375

RSM 32.64 3.374

that RSM requires a new calibration to be carried out on the 3D geometry. This new
potential calibration would require huge computational costs and it is far beyond
the purpose of this paper; for these reasons it has been decided to neglect the set-
up with the RSM focusing only on the more promising k − ω SST. As a remark,
however, it must be noticed that the MFR for Δp = 70 bar (CN = 0.7), thus for
highly-cavitating flow, is very low-dependent on the turbulence model chosen; this
fact was also observed in [2].

The flow configuration for Δp = 70 bar requires a deeper investigation. In
Fig. 10, the iso-surfaces of streamwise velocity, air and vapor fraction are shown
at different time-instants. As it can be noticed looking at the first panel on the left of
Fig. 10, in correspondence of the end of the cavitating flow, there is a recirculation
area originated by the adverse pressure gradient (due to the cavity collapse [16])
between the vapor cavity, that is at the saturation pressure, and the liquid, that has a
pressure similar to the outlet. If the pressure drop is such that the vapor approaches
the channel outlet, it happens that the recirculation reaches the exit area sucking
air inside the orifice (second panel from the left). Once entered, the air moves
toward the inlet corner progressively replacing the vapor cavity (see Fig. 10). The
pressure drop Δp = 70 is however not sufficient to allow the inception of a stable
hydraulic flip condition. In this flow configuration, indeed, once the air reaches the
channel inlet, it is pushed out of the orifice and the phenomenon starts again from
the beginning. This ‘unstable’ hydraulic flip may explain the ‘atypical’ behavior
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Fig. 10 Flow evolution in unstable hydraulic flip condition (Δp = 70)

Table 5 ‘Optimum’ vs.
default parameter set-up
predictions

CCP [bar]

Experiment 37.15

‘Optimum’ set-up 37.91

Default set-up 32.46

noticed in the experiments on real size cylindrical nozzles in [7, 16] in the range of
cavitation numbers between super-cavitation and stable hydraulic flip conditions.

In Sect. 5.1, it has been demonstrated that, with axisymmetric conditions, the
‘optimum’ set-up improves the numerical prediction of the CCP compared to the
default cavitation model parameter setting provided by STARCCM+ (i.e. SF+ = 1
and SF− = 1). The default set-up, indeed, has been excluded from the stochastic
model calibration since it lays on a parameter space region where the CCP prediction
is underestimated (see Fig. 4a). It has been then shown how the ‘optimum’ set-up
preserves a very good accuracy even with the real 3D geometry. As last check,
however, it is interesting to verify that the prediction improvement between default
and optimized set-up observed with axisymmetric conditions is maintained also in
3D. In Table 5 it has been thus shown the comparison between the ‘optimum’ and the
default prediction of CCP where it is obvious to observe that the absolute difference
respect to the experimental measurement passes from 4.7 bar (default) to the already
mentioned 0.76 bar (‘optimum’).
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Fig. 11 ISO-surfaces of time-averaged air and vapor fraction for Δp = 70 bar using the default
parameter set-up

Moreover, taking a deeper look at the flow configuration for Δp = 70 bar
predicted by the default set-up (see Fig. 11), a time-averaged vapor region extending
till about the 70% of the channel length that is not able to initiate the hydraulic
flip condition; the time-averaged air region demonstrates, indeed, that the air phase
never enters the orifice. Since the ‘optimum’ and the default parameter set-ups
predict different flow behaviors for Δp = 70 bar and different accuracy in matching
the experimental data, this confirms once again the need of calibration of the
cavitation model parameters to correctly capture the flow phenomena occurring in
high-pressure injectors.

6 Conclusions

In this work, focused on URANS simulations of high-pressure injectors for
automotive applications, we performed a calibration of two parameters contained
in a cavitation model implemented in the commercial code STARCCM+ through a
stochastic approach. In particular, the generalized Polynomial Chaos method has
been used to reconstruct the continuous response surface of some quantities of
interest and to minimize the differences with experimental reference data. The
phase mixture has been handled with the classical one-fluid model, i.e. a single
fluid whose properties are an weighted sum of the properties of the pure phases.
The multi-phase flow is then closed by N − 1 additional transport equation for
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the phase fraction, being N the number oh phases simulates. The Schnerr–Sauer
cavitation model [15] is included in the source term of the transport equation for
the vapor fraction and contains four free-parameters. Following the results of our
previous works [2], we focused on the two Scaling Factors, that directly influence
the vaporization and condensation rate respectively. In order to investigate also
the effect of the turbulence closure, we repeated the analysis for both k − ω SST
and RSM. The quantities of interest considered were the CCP (whose correct
prediction is crucial for injector designs) and the MFR(@CCP). The reference test-
case is a real-size simplified circular slightly convergent nozzle geometry for which
the Critical Cavitation Point (CCP) was in-house measured by CONTINENTAL
AUTOMOTIVE.

Taking advantage of the nozzle geometry, the cavitation model calibration has
been performed by using the axisymmetric condition, reducing drastically the
computational costs. The results highlighted that, in the considered parameter
spaces, the numerical predictions include the experimental CCP. However, the
reference data can be very well predicted only in a high-gradient region of the
response surface (for both turbulence models), indicating that CCP is a parameter
highly sensitive to the set up. The two optimized set-up conditions (with k − ω

SST and RSM models) have then been used to compute the entire Cavitation
number(CN)-MFR curve for the axisymmetric case. We observed that the flow
behaviors predicted by both the set-ups are very similar, with some negligible
differences on the pressure drop at which stable hydraulic flip occurs.

The optimized set-ups have been then validated on the realistic 3D geometry. The
k−ω SST set-up demonstrated to preserve the good prediction accuracy even in the
three-dimensional case. In particular, the difference |CCP −CCPexp | is about 0.76
bar, very close to the tolerance imposed in the calibration procedure. Conversely,
the accuracy of the predictions of the optimal set-up for RSM degrades for the 3D
case. This is probably due to the fact that the flow field obtained in 3D simulations
with RSM is characterized by significant 3D features and, hence, it is more different
from the corresponding axisymmetric one than for the k − ω SST simulations. As
a consequence, the values of the caviation parameters calibrated in 2D are no more
valid and a new calibration on the real 3D geometry would be required. This is not
easy in practice because of the huge computational costs required. Therefore, we
decided to focus only on the optimal k − ω SST set-up.

As last check we showed that the optimized parameter set-up improves the CCP
prediction with respect to STARCCM+ default set-up also in 3D. Moreover, we
noticed an important difference in the flow pattern for Δp = 70 bar. The default
parameter setting, indeed, predicts a pure cavitating flow, with a cavitation region
extending till about the 70% of the orifice length. On the other hand, the optimized
set-up predictions suggest that the injector has already experienced the hydraulic
flip inception, resulting in a roughly periodic transition between cavitation and air
back-flow, i.e. an ‘unstable hydraulic flip’. This confirms how the prediction of the
different flow regimes occurring in high-pressure injectors are sensitive to cavitation
model parameters.
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Non-intrusive Polynomial Chaos Method
Applied to Full-Order and Reduced
Problems in Computational Fluid
Dynamics: A Comparison and
Perspectives

Saddam Hijazi, Giovanni Stabile, Andrea Mola, and Gianluigi Rozza

Abstract In this work, Uncertainty Quantification (UQ) based on non-intrusive
Polynomial Chaos Expansion (PCE) is applied to the CFD problem of the flow
past an airfoil with parameterized angle of attack and inflow velocity. To limit the
computational cost associated with each of the simulations required by the non-
intrusive UQ algorithm used, we resort to a Reduced Order Model (ROM) based on
Proper Orthogonal Decomposition (POD)-Galerkin approach. A first set of results
is presented to characterize the accuracy of the POD-Galerkin ROM developed
approach with respect to the Full Order Model (FOM) solver (OpenFOAM). A
further analysis is then presented to assess how the UQ results are affected by
substituting the FOM predictions with the surrogate ROM ones.

1 Introduction

Many methods have been developed to assess how uncertainties of input parameters
propagate, through Computational Fluid Dynamics (CFD) numerical simulations,
into the outputs of interest. The aim of this work is to carry out a study on the
application of non-intrusive Polynomial Chaos Expansion (PCE) to CFD problems.
The PCE method is a way of representing random variables or random processes in
terms of orthogonal polynomials. One important feature of PCE is the possibility
of decomposing the random variable into separable deterministic and stochastic
components [20, 25]. By a computational stand point, the main problem in PCE
consists in finding the deterministic coefficients of the expansion. In non-intrusive
PCE, no changes are made in the simulations code, and the coefficients are
computed in a post processing phase which follows the simulations. Thus, the
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deterministic terms in the expansion are obtained via a sampling based approach
such as the one used in [21, 32]. In this framework, samples of the input parameters
are prescribed and then numerical simulations are carried out for each sample.

Once the output of the simulations corresponding to each sample is evaluated,
it is used to obtain the PCE coefficients. In the projection approach, the orthog-
onality of the polynomials is exploited to compute the deterministic coefficients
in the expansion through integrals in the sampling space. As the sampling points
chosen are quadrature points for such integrals, the computational cost will grow
exponentially as the parameter space dimension increases. This is of course quite
undesirable, given the considerable computational cost of the CFD simulations
associated to the output evaluation at each sampling point. To avoid such problem, in
this work the PCE expansion coefficients are computed using a regression approach
which is based on least squares minimization.

To explore even further reductions of the computational cost associated with
sample points output evaluations, in the present work we apply the PCE algorithm
both to the full order CFD model and to a reduced order model based on POD-
Galerkin approach. In the last decade, there have been several efforts to develop
reduced order models and apply them to industrial continuous mechanics problems
governed by parameterized PDEs. We refer the interested readers to [11, 17, 30]
for detailed theory on ROMs for parameterized PDE problems. More in particular,
the solution of parameterized Navier–Stokes problem in a reduced order setting
is discussed in [31]. In such work, the FOM discretization was based on Finite
Element Method (FEM). Projection-based Reduced Order Methods (ROMs) have
in fact been mainly developed for FEM, but in the last years many efforts have
been dedicated to extend them to Finite Volume Method (FVM) and to CFD
problems with high Reynolds numbers. Some examples of the application of ROMs
based on the Reduced Basis (RB) method to a finite volume setting are found in
[12, 15, 16]. In this work, we instead focus on POD-Galerkin methods applied to
CFD computations based on FVM discretization. A large variety of works related to
POD-Galerkin can be found in the literature, and here we refer only to some of them
[2, 3, 6, 7, 24, 28], as examples. As for POD-Galerkin approach applied to Navier–
Stokes flows discretized via FVM, we mention [26], in which the authors treat the
velocity pressure coupling in the reduced model using the same set of coefficients
for both velocity and pressure fields. In [35], the coefficients of velocity and pressure
are instead different, and Poisson equation for pressure is added to close the system
at reduced order level. In [36] a stabilization method for the finite volume ROM
model is presented. In [8] a study on conservative reduced order model for finite
volume method is discussed. For applications of ROMs to UQ problems we refer
the readers to [9, 10, 14].

PCE is a tool that is independent of the output evaluator and in this work we
will apply it to output parameters both obtained from the full order solution and
to its POD-Galerkin reduced order counterpart. In this regard, the objective of the
present work is to assess whether PCE results are significantly influenced by the
use of a POD-Galerkin based model reduction approach. To this end, we will apply
POD model reduction to CFD simulations based on incompressible steady Navier–
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Stokes equations, and compare the PCE coefficients and sensitivities obtained for
the reduced order solution to the ones resulting from the full order simulations.

This article is organized as follows: in Sect. 2 the physical problem under study
is described at the full order level. In Sect. 3 the reduced order model is introduced.
In particular, the most relevant notions on projection based methods are reported
in Sect. 3.1, while boundary conditions treatment is discussed in Sect. 3.2. The
theory of the non intrusive PCE is summarized in Sect. 4 with direct reference to
the quantities of interest in the present work. Numerical results are presented in
Sect. 5, starting with the ones of the reduced order model in Sect. 5.1 and then the
PCE results in Sect. 5.2. Finally, conclusions and possible directions of future work
are discussed in Sect. 6.

2 The Physical Problem

In this section, we describe the physical problem of interest which consists into
the flow around an airfoil subjected to variations of the angle of attack and inflow
velocity. In aerospace engineering, the angle of attack is the angle that lies between
the flow velocity vector at infinite distance from the airfoil (U∞) and the chord of the
airfoil, see Fig. 1. We are interested in finding the angle of attack that produces the
maximum lift coefficient before stall happens. Figure 2 depicts for the lift coefficient
curve of the airfoil NACA 0012−64 [1, 34] at a fixed Reynolds number of 106. The

Fig. 1 The angle of attack on an airfoil
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Fig. 2 The lift coefficient curve for the airfoil NACA0012
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plot suggests that as the angle of attack increases, the lift coefficient grows until flow
separation occurs leading to a loss of the lift force. At laminar flow regimes such
as the ones that will be analyzed later in Sect. 5, such stall phenomenon happens
in a mild fashion, as opposed to more abrupt stalls observed at higher velocities
like the one in Fig. 2. It can be noticed from the plot that the lift coefficient reaches
its maximum value when the angle is about 17◦ before stall happens. For lower
Reynolds numbers, the maximum in the CL-α curve is observed at higher angles
of attack. The fluid dynamic problem is mathematically governed by the steady
Navier-Stokes equations which read as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(u · ∇)u − ∇ · ν∇u = −∇p in Ωf ,

∇ · u = 0 in Ωf ,

u(x) = f(x,μ) on ΓIn,

u(x) = 0 on Γ0,

(ν∇u − pI)n = 0 on ΓOut ,

(1)

where Γ = ΓIn∪Γ0∪ΓOut is the boundary of the fluid domainΩf and is composed
by three different parts ΓIn, ΓOut and Γ0, indicating respectively inlet boundary,
outlet boundary and wing. In the flow equations u is the flow velocity vector, ν is
the fluid kinematic viscosity, and p is the normalized pressure, which is divided by
the fluid density ρf . As for the boundary conditions in which f is a generic function
that prescribes the value of the velocity on the inlet ΓIn and it is parameterized
through the vector quantity μ. In the present work the problem is solved using a
finite volume discretization technique [5, 23, 27, 39], the standard approach is to
work with a Poisson equation for pressure, rather than directly with the continuity
equation. System (1) is then modified into:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u · ∇)u − ∇ · ν∇u = −∇p in Ωf ,

Δp = −∇ · (u · ∇)u in Ωf ,

u(x) = f(x, μ) on ΓIn,

u(x) = 0 on Γ0,

(∇u)n = 0 on ΓOut ,

∇p · n = 0 on Γ \ ΓOut ,

p = 0 on ΓOut .

(2)

In the above system of equations all the quantities assume the same meaning of those
presented in (1). The Poisson equation for pressure is obtained taking the divergence
of the momentum equation, and then exploiting the divergence free constraint on
velocity. The two equations are solved in a segregated fashion, making use of the
SIMPLE algorithm [29]. Historically, the FVM discretization technique has been
widely used in industrial applications and for flows characterized by higher values
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of the Reynolds number. One important feature of the FVM is that it ensures that
conservative laws are satisfied at local level. In this work the Full Order Model
(FOM) simulations are carried out making use of the finite volume open source
C++ library OpenFOAM® (OF) [40].

3 The Reduced Order Model

The FOM simulations carried out by OpenFOAM present a high computational
cost. In the framework of a many query problem such as the one associated
with non-intrusive PCE employed in this work, the search for ways to reduce the
computational cost becomes paramount. For this reason, we resort to reduce order
modelling and we couple it with PCE in the next sections. In This section, we recall
the notion of ROM and the POD approach to build the reduced order spaces. Here,
only few details are addressed, while for further information on how to adapt ROM
for finite volume discretization method the reader may refer to [26, 35, 36].

The key assumption of ROMs is that one can find a low dimensional space in
which it is possible to express the solution of the full order problem with good
approximation properties. That space is spanned by the reduced order modes [17].
The latter assumption translates to the following decomposition of the velocity and
pressure fields:

u(x,μ) ≈ ur (x,μ) =
Nu∑
i=1

ai(μ)φi (x), (3)

p(x,μ) ≈ pr(x,μ) =
Np∑
i=1

bi(μ)χi(x), (4)

where ur (x,μ) and pr(x,μ) are the reduced order approximations of velocity and
pressure, respectively, ai and bi are scalar coefficients that depend on the parameter
value μ, φi and χi are the basis functions of the reduced basis spaces for velocity
and pressure, respectively. Nu and Np represent the dimension of the reduced
basis spaces for velocity and pressure, respectively, obviously Nu and Np are not
supposed to have the same value.

The next step in constructing the reduced order model is to generate the reduced
order space. For such step we resort to a POD approach. The POD space is
constructed by solving the following minimization problem:

VPOD = arg min
1

Ns

Ns∑
n=1

||un −
Ns∑
n=1

(un,φi )L2(Ω)φi ||2L2(Ω)
, (5)
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where un is a solution snapshot obtained for a certain parameter value μn and Ns

is the total number of solution snapshots. One can see that the reduced order space
(or VPOD) is optimal in the sense that it is spanned by the modes that minimize the
projection error between the fields and their projection into the modes. For further
details on how the problem (5) is solved one can refer to [35].

3.1 Projection Based ROM

The next step in building the reduced order model (this procedure is referred as
POD-Galerkin projection) is to project the momentum equation of (1) onto the POD
space spanned by the POD velocity modes, namely:

(
φi , (u · ∇)u − νΔu + ∇p

)
L2(Ω)

= 0. (6)

Inserting the approximations (3) and (4) into (6) yields the following reduced
system:

νBa − aT Ca − Hb = 0, (7)

where a and b are the vectors of coefficients for reduced velocity and reduced pres-
sure respectively, while B,C,H are the reduced discretized differential operators
which are computed as follows:

Bij = (φi , Δφj

)
L2(Ω)

, (8)

Cijk = (φi , (φj · ∇)φk)
)
L2(Ω)

, (9)

Hij = (φi ,∇χj
)
L2(Ω)

. (10)

To solve the system (7), one needs Np additional equations. The continuity
equation cannot be directly used because the snapshots are divergence free and
so are the velocity POD modes. The available approaches to tackle this problem
are either the use of the Poisson equation [35, 36] or the use of the supremizer
stabilization method [4, 33], which consists into the enrichment of the velocity space
by the usage of supremizer modes. These modes are computed such that a reduced
version of the inf-sup condition is fulfilled. The latter approach usually employed
in a finite element context has been also extended to a FV formulations [36]. In this
work we rely on the supremizer stabilization method. After a proper enrichment
of the POD velocity space it is possible to project the continuity equation onto the
space spanned by the pressure modes giving rise to the following system:

{
νBa − aT Ca − Hb = 0,

Pa = 0,
(11)
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where the new matrix P, is computed as follows:

Pij = (χi,∇ · φj

)
L2(Ω)

. (12)

System (11) can be solved respect to a and b in order to obtain the reduced order
solution for velocity and pressure respectively.

3.2 Treatment of Boundary Conditions

The current problem involves non-homogeneous Dirichlet boundary conditions at
the inlet ΓIn. The term f(x,μ) in (1) becomes f(x,μ) = (μx, μy) where μx and μy

are the components of the velocity at ΓIn along the x and y directions respectively.
Non-homogeneous Dirichlet boundary conditions have been treated making use of
the so called lifting control function. In this method the POD procedure is applied
on a modified set of snapshots which have been homogenized in the following way:

u′
i = ui − μxφcx

− μyφcy
, for i = 1, . . . , Ns, (13)

where φcx
and φcy

are the two lifting functions which have at the inlet ΓIn the
following values (1, 0) and (0, 1) respectively. The approach used in this work to
obtain the lifting functions involves solving two linear potential flow problems with
the initial boundary conditions at ΓIn being (1, 0) and (0, 1) respectively for φcx
and φcy

.
The POD is then applied to the snapshots matrix U ′ = [u′

1,u′
2, . . . ,u′

Ns
]

that contains only snapshots with homogeneous boundary conditions. It has to be
noted that the way the lifting functions have been computed assures that they are
divergence free and thus the new set of snapshots has the same property.

At the reduced order level, it is then possible to deal with any boundary velocity
at ΓIn (obviously the results will be more accurate if the prescribed velocity values
are sufficiently close to the ones used during the training stage). If the new sample
μ- (which has the new boundary velocity) is introduced in the online stage, one can
compute the reduced velocity field as follows:

u(x,μ�) ≈ μ-
xφcx

+ μ-
yφcy

+
Nu∑
i=1

ai(μ
�)φi(x). (14)

4 Non-intrusive PCE

According to Polynomial Chaos (PC) theory which was formulated by Wiener [41],
real-valued multivariate Random Variables (RVs), such as the one considered in this
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work (the lift coefficient Cl) can be decomposed into an infinite sum of separable
deterministic coefficients and orthogonal polynomials [22]. These polynomials are
stochastic terms which depend on some mutually orthogonal Gaussian random
variables. Once applied to our output of interest—the lift coefficient Cl—such
decomposition assumption reads

Cl
-(ζ ) =

∞∑
i=0

Cliψi(ζ ). (15)

Here the random variable ψ = (α,U) is used to express the uncertainty in the angle
of attack and inflow velocity. ψi(ζ ) is the ith polynomial and Cli is the so-called
ith stochastic mode. In practical application this series is truncated and only its first
P + 1 values are computed, namely

Cl
-(ζ ) =

P∑
i=0

Cliψi(ζ ). (16)

In this work the orthogonal polynomial are called Hermite polynomials. These
polynomials form an orthogonal set of basis functions in terms of Gaussian
distribution [13]. In (16) P + 1 is the number of Hermite polynomials used in the
expansion and has to depend on the order of the polynomials chosen and the on
dimension n of the random variable vector ζ = {ζ1, . . . , ζn}. More specifically, in
an n-dimensional space, the number P of Hermite polynomials of degree p is given
by P + 1 = (p+n)!

p!n! [13].

4.1 Coefficients Computation

The estimation of the coefficients Cli(x) in (15) can be carried out in different ways.
Among others, we mention the sampling based method and the quadrature method.
The one here used is based on the sampling approach, following the methodology
proposed by Hosder et al. [20]. The coefficient calculation algorithm starts from a
discretized version of Eq. (16), namely

⎡
⎢⎢⎢⎣
Cl

∗
0

Cl
∗
1
...

Cl
∗
N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ψ1(ζ 0) ψ2(ζ 0) . . . ψP (ζ 0)

ψ1(ζ 1) ψ2(ζ 1) . . . ψP (ζ 1)
...

. . .

ψ1(ζN) ψ2(ζN) . . . ψP (ζN)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
Cl0

Cl1
...

ClP

⎤
⎥⎥⎥⎦ ,

where N is the number of the samples taken. If N coincides with the number
of Hermite polynomials P + 1 needed for the PCE expansion, the system above
presents a square matrix and can be solved to determine the coefficientsCli from the
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known output coefficients Cl
-
i . In the most common practice, a redundant number

of samples are considered and the system is solved in a least squares sense, namely

Cl = (LT L)−1LT C∗
l , (17)

where L, Cl and C∗
l denote the rectangular matrix in (4.1), the PCE coefficients

vector and output vector, respectively.

5 Numerical Results

This section presents the results for the simulations carried out with the POD-
Galerkin ROM and PCE for UQ described in the previous sections. The first part of
the analysis will be focused on the results obtained with the POD-Galerkin ROM.
In the second part we will assess the performance of the UQ technique on the airfoil
problem, both when FOM and ROM simulation results are used to feed the PCE
algorithm. The overall objective of the present section is in fact twofold. The first
aim is to understand the influence of the samples distribution used to train the ROM
in the results of the POD-Galerkin ROM. The second aim is to compare between
the PCE UQ results obtained using full order model to those obtained with POD
Galerkin-ROM.

5.1 ROM Results

The FOM model used to generate the POD snapshots has been set up as reported in
Sect. 2. Making use of the computational grid shown in Fig. 3, a set of simulations
was carried out, selecting a Gauss linear numerical scheme for the approximation

Fig. 3 (a) The OpenFOAM mesh used in the simulations. (b) A picture of the mesh zoomed near
the airfoil
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of gradients and Laplacian terms, and a bounded Gauss upwind scheme for the
convective term approximation.

As mentioned, the parameters considered in the ROM investigation are the airfoil
angle of attack and the magnitude of the inflow velocity at the inlet. The training of
the POD-Galerkin ROM requires a suitable amount of snapshots (FOM solutions) to
be available. Thus, 520 samples have been produced and a single FOM simulation
is launched for each sampling point. As for the distribution in the parameters space,
the samples are obtained making use of the Latin Hyper Cube (LHC) [37] sampling
algorithm. Figure 4 depicts the lift coefficient against the angle of attack curve
obtained from a first FOM simulation campaign in which the 520 samples were
generated imposing mean values of 100 m/s and 0◦ and variances of 20 m/s and
300, for velocity and angle of attack, respectively. As can be appreciated in the
picture, the lift coefficient values do not significantly depend on the inflow velocity.
In fact sampling points with equal α and different U∞ values, result in practically
identical output. For this reason, the input-output relationship appears like a curve
in the Cl-α plane. We also point out that this is a consequence of considering
a nondimensionalized force a Cl as our output, rather then the corresponding
dimensional lift values.

The POD modes are generated after applying POD onto the snapshots matrices
of the flow fields obtained in the simulation campaign. After such offline phase, the
computation of the reduced order fields is performed in the online stage, as presented
in Sect. 3. In this first reproduction test, we performed a single reduced simulation
in correspondence with the velocity and the angle of attack used to generate each
offline snapshot. This means that we used the same sample values both in the online
stage and in the offline one. The ROM results of the reproduction test for the lift
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Fig. 4 The FOM lift coefficient for the first case, as it can be seen in the plot the vast majority of
the samples is clustered around α = 0



Non-intrusive PCE in CFD Problems and Comparison to POD 227

coefficient are reported in Fig. 5. The figure refers to the ROM results obtained
considering 10 modes for the discretization of velocity, pressure and supremizer
fields. The plot shows that the reconstruction of the lift coefficient is only accurate
in the central region. In the lateral regions the lift coefficient computed with the
ROM solution does not match the corresponding FOM solution. The poor quality
of the ROM prediction on the lift coefficient, as well as of the forces acting on the
airfoil, is a direct consequence of the fact that the fields were not reconstructed in an
accurate way. For the particular physical phenomenon this inaccuracy may be even
more undesirable, since the stall occurs in these regions. One might originally guess
that the problem can be mitigated by increasing the amount of POD modes. Yet, as
Fig. 6 clearly shows, even increasing the modes for velocity to 30 is not solving the
problem. In this particular case adding more modes will not solve the problem since
the energy added by considering more modes is negligible. An explanation of the
poor performances of the ROM model in the stall region may be instead associated
to the distribution of the offline samples used to generate the POD snapshots. In fact,
the samples generated with LHC are distributed around a mean value of the angle
of attack of 0◦ and their density is rather coarse in the stall regions.

To confirm such deduction, we tried to generate the snapshots by means of a
different set of samples generated so as to be more dense in the stall regions. More
specifically, we have generated thirteen different groups of samples in which the
velocity mean and variance were kept fixed at values of 100 and 20 m/s respectively,
while the mean and the variance for the angle of attack were varied in each set as
summarized in Table 1. As illustrated in Figs. 7 and 8 for angle of attack and velocity
respectively, the overall training data for the ROM offline phase has been generated
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Fig. 5 The first sampling case: the full order lift coefficients curve versus the ROM reconstructed
one with 10 modes used for each of velocity, pressure and supremizer fields
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Fig. 6 The first sampling case: the full order lift coefficients curve versus the ROM reconstructed
one with 30, 10 and 10 modes are used for velocity, pressure and supremizer fields respectively

Table 1 The mean and
variance for the group of
samples that form the training
set in the second case

Group number N E(α) in ◦ σ(α) in ◦

1 90 0 20

2 20 −10 2

3 20 10 2

4 50 −15 2

5 50 15 2

6 40 −22 5

7 40 22 5

8 40 −30 10

9 40 30 10

10 20 −38 2

11 20 38 2

12 50 −45 5

13 40 45 5

combining into a single sample set all the 13 groups generated by means of LHC
algorithm. Finally, Figs. 9 and 10 depict the Probability Density Function (PDF) of
the overall input parameters set.

After running the offline phase, we applied POD-Galerkin reduced order
approach on the new set of snapshots generated. Table 2 shows the cumulative
eigenvalues for the correlation matrices built by the snapshots obtained for velocity,
pressure and supremizer fields. Only the values of the cumulative eigenvalues up to
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Fig. 7 The angle of attack samples for the second case
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Fig. 8 The magnitude of velocity samples for the second case

the fifteenth mode are listed. Yet, such data indicate that by using 15 modes in the
online phase, we can recover 99.9% of the energy embedded in the system.

Figure 11 displays the FOM lift coefficients of the airfoil corresponding to the
set of angles of attack previously introduced in Table 1. Figure 12 shows the results
obtained with the reduced order model trained with the samples summarized in
Table 1. Here, the online phase was carried out using the same samples used in
the offline stage. To provide a quantitative evaluation of the results, we used L2
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Fig. 9 The PDF of the input data set for the magnitude of the velocity
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Fig. 10 The PDF of the input data set for the angle of attack

relative error, computed as follows:

ε = 100

√∑n
t=1(C

FOM
lt

− CROM
lt

)2

√∑n
t=1(C

FOM
lt

)2
%, (18)

where n is the number of sampling points, CFOM
lt

and CROM
lt

are the t-th sample
point lift coefficients for FOM and ROM, respectively. In this case we have a relative
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Table 2 Cumulative
Eigenvalues of the correlation
matrices for velocity, pressure
and supremizer fields

N modes u p usup
1 0.679635 0.738828 0.557189

2 0.930038 0.960781 0.987862

3 0.955239 0.990746 0.995984

4 0.971768 0.998833 0.999228

5 0.981370 0.999730 0.999796

6 0.987603 0.999880 0.999927

7 0.992311 0.999945 0.999975

8 0.994793 0.999963 0.999983

9 0.996651 0.999976 0.999990

10 0.997914 0.999982 0.999993

11 0.998679 0.999987 0.999995

12 0.999165 0.999991 0.999997

13 0.999492 0.999993 0.999998

14 0.999700 0.999995 0.999999

15 0.999806 0.999996 0.999999
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Fig. 11 The FOM lift coefficient as a function of the angle of attack α for the second case.
Compared to Fig. 4, the samples span a wider range with sufficient accuracy sought by the ROM
reconstruction

error of 6.69% in L2 norm between the FOM and the ROM lift coefficients, when
10 modes have been used in the online phase for each of velocity, pressure and
supremizer fields. Using 10 additional modes for velocity, results instead in a 3.75%
error. The corresponding plots in Fig. 12 clearly suggest that the qualitative behavior
of the ROM lift output was substantially improved with respect to the first case.
This improvement in the prediction of the ROM lift coefficients is due to a more
accurate reproduction of the ROM fields. This is highlighted by Fig. 13, which
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Fig. 12 A comparison between FOM and ROM reconstructed lift coefficients for the second case
(a) 10 modes are used for each of velocity, pressure and supremizer fields. (b) 20, 10 and 10 modes
are used for velocity, pressure and supremizer fields, respectively. In both figures we have online
parameters set that coincide with the offline ones
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Fig. 13 The full order velocity field for the parameter μ̄ = (90.669, 5.4439 m/s) and a comparison
with the reconstructed field by means of different number of modes for velocity, pressure and
supremizer fields. (a) FOM field (b) ROM velocity field with 3, 10 and 10 modes used. (c) ROM
velocity field with 8, 10 and 10 modes used. (d) ROM velocity field with 20, 10 and 10 modes used

shows the FOM velocity field along with different reconstructed surrogate fields
obtained employing different number of modes at the projection stage.

5.2 PCE Results

The aim of the present section is to evaluate the performance of the PCE algorithm
implemented for the fluid dynamic problem at hand. To better describe the
amount of simulations carried out to both train and validate the UQ PCE model
implemented, we present in Fig. 14 a conceptual scheme of the simulation campaign
carried out in this work.

As mentioned, one of the main features of non intrusive PCE is that it can use
any deterministic simulation software as a black box input source. We will then
present different tests in which PCE has been fed with the output of fluid dynamic
simulations based on models characterized by different fidelity levels. In a first test
we in fact generated a PCE based on the FOM, and evaluate its performance in a
prediction test. The second test consisted in generating a PCE based on the ROM
described in the previous section. The latter test allows for an evaluation of how the
PCE results are affected when the expansion is based on a surrogate ROM model
rather than the FOM one. Given the relatively high number of samples required for
the PCE setup, in fact it is interesting to understand if ROM can be used to reduce
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(a)

(b)

Fig. 14 The flowcharts describing procedure followed in the numerical simulations for the
UQ model generation and validation campaign respectively. The top scheme in (a) focuses on the
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Fig. 15 The FOM lift coefficient for the UQ case

the computational cost for their generation of the system output at each sample,
without a significant loss in terms of accuracy.

One of the main assumptions of the non intrusive PCE algorithm implemented is
that of operating on Gaussian distributed input parameters. For such reason, the tests
in the present section were generated with a set of 300 sampling points consisting of
a single Gaussian distributed bulk. Making use of LHC algorithm, the samples have
been randomly generated around angle of attack and velocity magnitude means of
0◦ and 100 m/s respectively. As for the variances, we prescribed 40◦ and 20 m/s,
for angle of attack and velocity magnitude respectively. The FOM lift coefficient
curve obtained with the input sampling points described can be seen in Fig. 15.

The samples, which have been just mentioned above, will be used as cross
validation test for the ROM model developed in the previous subsection. As
mentioned earlier, the first test will be to feed PCE with FOM output data and then
to conduct a prediction test. PCE is used to predict the value of the lift coefficient

�
Fig. 14 (continued) procedure adopted for the generation of the UQ model, and in particular on
the identification of the PCE coefficients. The polynomial surrogate based on the full order model
(indicated in green) has been generated using 300 Gaussian distributed samples in the α,U space.
The same samples have been used to obtain the polynomial surrogate input-output relationship for
the POD-Galerkin ROM (denoted by the yellow box). Note that the ROM used in this simulation
campaign has been trained by means of 520 samples in the α,U space, organized in 13 Gaussian
distributed bulks, as reported in Table 1. Finally, the bottom flowchart in (b) illustrates the PCE
validation campaign. Here, 300 sample points in the input space have been used to obtain the
corresponding output with the full order model, with the polynomial UQ surrogate trained with
the FOM simulations (green box), and with the polynomial UQ surrogate trained with the ROM
simulations (yellow box)
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Fig. 16 PCE reconstructed lift coefficient versus FOM one, here polynomials of second degree
have been used

for 200 samples which differ of the 100 samples used for the PCE coefficients
evaluation. Thus the first 100 samples with their corresponding FOM lift coefficient
values were used to build the matrix system (4.1), which has been solved in the least
squares sense. Figure 16 displays the Cl values computed with both FOM and PCE
in correspondence with all the samples used for check. The overall error in L2 norm
between FOM and PCE predications is 5.04%.

In the second test we have used ROM data as input for PCE. After using 100
samples to compute the PCE coefficients, we used the PCE to predict the lift
coefficients at 200 additional samples used for check. We then compared the value
of the predicted PCE coefficients in this case to both ROM values and FOM values.

The result of the aforementioned test are reported in Fig. 17. The figure includes
comparison of the PCE predicted Cl curve with both its ROM and FOM counter-
parts. The plots show a similar behaviour of the PCE predictions obtained using
ROM and FOM output data. By a quantitative standpoint, the PCE predictions
present a 4.4% error with respect to the ROM predictions, while the L2 norm of the
error with respect to the FOM predictions is 5.14%. A summary of the comparisons
made is reported in Table 3.

6 Conclusions and Future Developments

In this work, we studied two popular techniques which are used often in the fields
of ROM and UQ which are the POD and PCE, respectively. The study aimed at
comparing the accuracy of the two techniques in reconstructing the outputs of
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Fig. 17 (a) The ROM lift coefficient versus PCE lift coefficient curve when PCE has been applied
on ROM output with 30, 10 and 10 modes used for velocity, pressure and supremizer fields
respectively. (b) The FOM lift coefficient versus PCE lift coefficient curve when PCE has been
applied on ROM output with same number of modes as in (a)
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Table 3 A comparison
between the relative error in
L2 norm for the results
obtained from ROM and
PCE, with PCE being used on
both FOM and ROM results

First data Second data Error

FOM ROM 1.53%

FOM PCE on FOM 5.04%

ROM PCE on ROM 4.4%

FOM PCE on ROM 5.14%

We remark that the number of POD
modes used (if apply) are 30, 10 and
10 for velocity, pressure and suprem-
izer fields, respectively, for all cases.
We underline also that 200 samples
have been used for testing the PCE
wherever it is used

interest of viscous fluid dynamic simulations. We have concluded the work with
combining the two approaches so as to exploit ROM to speed up the many query
problem needed to obtain the PCE coefficients. POD can be a reliable output
evaluator for PCE, as the value of relative error PCE had when it was based on
ROM results was 5.14% while the error was 5.04% when PCE was based on FOM
outputs. The last result speaks positively for POD and makes it a valid tool to be
possibly used in the field of uncertainty quantification.

The work can be extended in the direction of merging the two approaches in a
different way, where one can assume the coefficients in the ROM expansion are not
deterministic, but rather dependent on some random variables. The latter assumption
can bring UQ into play and one may use techniques such as intrusive/non-intrusive
PCE. Our interest is also to extend the proposed methodology, still in the context of
reduced order models, to more complex and turbulent flow patterns such as those
presented in [18, 19, 38].
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A Practical Example for the Non-linear
Bayesian Filtering of Model Parameters

Matthieu Bulté, Jonas Latz, and Elisabeth Ullmann

Abstract In this tutorial we consider the non-linear Bayesian filtering of static
parameters in a time-dependent model. We outline the theoretical background and
discuss appropriate solvers. We focus on particle-based filters and present Sequen-
tial Importance Sampling (SIS) and Sequential Monte Carlo (SMC). Throughout
the paper we illustrate the concepts and techniques with a practical example using
real-world data. The task is to estimate the gravitational acceleration of the Earth g

by using observations collected from a simple pendulum. Importantly, the particle
filters enable the adaptive updating of the estimate for g as new observations become
available. For tutorial purposes we provide the data set and a Python implementation
of the particle filters.

1 Introduction

An important building block of uncertainty quantification is the statistical estimation
and sustained learning of parameters in mathematical and computational models.
In science and engineering models are used to emulate, predict, and optimise the
behaviour of a system of interest. Examples include the transport of contaminants
by groundwater flow in hydrology, the price of a European option in finance, or
the motion of planets by mutual gravitational forces in astrophysics. The associated
mathematical models for these examples are an elliptic partial differential equation
(PDE), the parabolic Black-Scholes PDE, and a system of ordinary differential
equations (ODEs) describing the N-body dynamics.

Assuming that we have observational data of the system of interest, it is now
necessary to calibrate the model with respect to these observations. This means that
we identify model parameters such that the model output is close to the observations
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in a suitable metric. In the examples above we need to calibrate the hydraulic
conductivity of the groundwater reservoir, the volatility of the stock associated with
the option, and the masses of the planets.

In this tutorial we focus on the next step following the model calibration,
namely the updating of the estimated parameters as additional observations become
available. This is an important task since many systems are only partially observed.
Thus it is often unlikely to obtain high quality estimates of underlying model
parameters by using only a single data set. Moreover, it is often very expensive or
impossible to restart the parameter estimation with all data sets after a new data set
becomes available. The problem of combining a parameter estimate with a new set
of observations to update the estimate based on all observations is called filtering
in statistics. Filtering can be considered as a learning process: a certain state of
knowledge based on previous observations is combined with new observations to
reach an improved state of knowledge.

Throughout this tutorial we consider a practical example for filtering. We study
the periodic motion of a pendulum. The underlying mathematical model is an ODE.
The model parameters are the length of the pendulum string �, and the gravitational
acceleration of the Earth g. We assume that � is known, however, we are uncertain
about g. Our goal is to estimate and update the estimate for g based on real-world
observational data. Importantly, the pendulum experiment can be carried out without
expensive equipment or time-consuming preparations. Moreover, the mathematical
model is simple and does not require sophisticated or expensive numerical solvers.
However, the filtering problem is non-linear and non-Gaussian. It does not have an
analytic solution, and an efficient approximate solution must be constructed. We use
particle filters for this task.

The simple pendulum setting allows us to focus on the statistical aspects of the
estimation problem and the construction of particle filters. The filters we discuss
are well known in the statistics and control theory communities, and textbooks and
tutorials are available, see e.g. [14, 24, 33]. However, these works focus on filters
for state space estimation. In contrast, we employ filters for parameter estimation
in mathematical models, and within the Bayesian framework.

Bayesian inverse problems attracted a lot of attention in the applied mathematics
community during the past decade since the work by Stuart [35] which laid out
the mathematical foundations of Bayesian inverse problems. The design of efficient
solvers for these problems is an active area of research, and particle filters offer
attractive features which deserve further research. This tutorial enables interested
readers to learn the building blocks of particle filters illustrated by a simple example.
Moreover, we provide the source code so that the reader can combine the filters with
more sophisticated mathematical models.

The remaining part of this tutorial is organised as follows. In Sect. 2 we give a
precise formulation of the filtering problem and define a filter. We introduce the
pendulum problem in Sect. 2.1, and review previous work on model calibration,
filtering and the numerical approximation of these procedures in Sect. 2.2. In
Sect. 3 we introduce the Bayesian solution to the filtering problem. Furthermore,
we explain the statistical modeling of the pendulum filtering problem. In Sect. 4
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we discuss particle-based filters, namely Sequential Importance Sampling and
Sequential Monte Carlo. In Sect. 5 we apply both these methods to the pendulum
filtering problem, and comment on the estimation results. Finally, we provide a
discussion in Sect. 6.

2 The Filtering Problem

We motivated the filtering of model parameters in the preceding section. Now
we give a rigorous introduction to filtering. Note that we first define the filtering
problem in a general setting.

Let X and H be separable Banach spaces. X denotes the parameter space, and
H denotes the model output space. We define a mathematical model G : X → H

as a mapping from the parameter space to the model output space. Next, we observe
the system of interest that is represented by the model. We collect measurements
at T ∈ N points in time t = 1, . . . , T . These observations are denoted by
y1, y2, . . . , yT . Each observation yt is an element of a finite-dimensional Banach
space Yt . The family of spaces Y1, . . . , YT are the so called data spaces. We model
the observations by observation operators Ot : H → Yt , t ≥ 1, that map the
model output to the associated observation. Furthermore, we define a family of
forward response operators Gt := Ot ◦ G, t ≥ 1, that map from the parameter
space directly to the associated data space. We assume that the observations are
noisy and model this fact by randomness. The randomness is represented on an
underlying probability space (Ω,A,P). Each observation yt is the realisation of a
random variable ỹt : Ω → Yt . Moreover,

ỹt ∼ Lt(·|θ†) (1)

where Lt : Yt ×X → [0,∞), t ≥ 1, is a parameterised probability density function
(w.r.t. the Lebesgue measure). θ† denotes the true parameter associated with the
observations.

Example 1 (Additive Gaussian Noise) A typical assumption is that the measure-
ment noise is Gaussian and additive. In that case yt is a realisation of the random
variable ỹt = Gt (θ

†) + ηt , where ηt ∼ N(0, Γt) and Γt : Yt → Yt is a linear,
symmetric, positive definite covariance operator, t ≥ 1. It holds

Lt(yt |θ) = exp

(
−1

2
‖Γ −1/2(Gt (θ) − yt )‖2

)
.

The inverse or smoothing problem at a specific timepoint t ≥ 1 is the task to
identify the unknown true parameter θ† given the data set (y1, . . . , yt ) =: y1:t . We
denote the estimate for the parameter by θ̂ (y1:t ). Hence, a formal expression for
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smoothing is the map

y1:t �→ θ̂ (y1:t ).

The filtering problem, on the other hand, is the task to update the estimate θ̂ (y1:t )
after the observation yt+1 is available. Hence, a formal expression for a filter is the
map

{θ̂ (y1:t ), yt+1} �→ θ̂ (y1:t+1).

Filtering can be considered as a learning process in the following sense. Our point
of departure is a current state of knowledge represented by the parameter estimate
θ̂ (y1:t ). This involves all observations up to the point in time t . The data set yt+1 is
then used to arrive at a new state of knowledge represented by the updated parameter
estimate θ̂ (y1:t+1). We depict this learning process in Fig. 1.

Next we describe two practical filtering problems. The pendulum filtering
problem is used for illustration purposes, and the tumor filtering problem highlights
a more involved application of filtering.

Example 2 (Tumor) The tumor inverse and filtering problem has been discussed
extensively in the literature, see e.g. [8, 18, 25] and the references therein. In
this problem we model a tumor with a system of (partial) differential equations,
for example, the Cahn-Hilliard or reaction-diffusion equations, or, alternatively, an
atomistic model. The goal is to predict the future growth of the tumor. Moreover,
we wish to test, compare and select suitable therapeutical treatments. To do this we
need to estimate model parameters, e.g. the tumor proliferation and consumption
rate, and chemotaxis parameters. These model parameters are patient-specific and
can be calibrated and updated using patient data. The data is given by tumor images
obtained e.g. with magnetic resonance imaging (MRI) or with positron emission
tomography (PET). The images are captured at different timepoints and monitor the
progression of the tumor growth. Note that the data spaces are in general infinite-
dimensional in this setting.

timeline:

state of knowledge: qb qb(y1:t)

t t+2

yt+1

Learning (y1:t+1)

t+1

Fig. 1 The filtering problem. The starting point is the current state of knowledge θ̂ (y1:t ) at the
point in time t . At the timepoint t + 1 we observe yt+1. We want to use these observations
to improve our knowledge concerning θ†. The new state of knowledge is given by the updated
estimate θ̂ (y1:t+1)
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2.1 Pendulum Example

In this section we describe a simple yet practical filtering problem that is associated
with a real-world experiment and data. Throughout this tutorial we will come back
to this problem to illustrate the filtering of model parameters.

The goal of the pendulum inverse problem is the estimation of the Earth’s
gravitational acceleration g using measurements collected from the periodic motion
of a pendulum. Note that the gravitational acceleration at a particular location
depends on the altitude and the latitude of this location. We use measurements that
were collected in Garching near Munich, Germany, where the height above mean
sea level is h = 482 m and the latitude is φ = 48◦15′ N = 48.25◦ N. The formula
(4.2) in [2] gives the gravitational acceleration in Garching:

g† =
(

9.780327
(
1 + 5.3024 · 10−3 sin2(φ) − 5.8 · 10−6 sin2(2φ)

)

− 1.965 · 10−6hm−1
)m
s2 ≈ 9.808

m

s2 .

We use a simplified model to describe the dynamics of the pendulum. Specifi-
cally, we ignore friction, and assume that the pendulum movements take place in a
two-dimensional, vertically oriented plane. In this case the state of the pendulum can
be described by a single scalar that is equal to the angle enclosed by the pendulum
string in its excited position and the stable equilibrium position. By using Newton’s
second law of motion and by considering the forces acting on the pendulum it is
easy to see that this angle x(·; g) satisfies the parametrised non-linear initial value
problem (IVP)

ẍ(τ ; g) = −g

�
sin(x(τ ; g)),

ẋ(0; g) = v0,

x(0; g) = x0,

where � denotes the length of the string that connects the two ends of the pendulum,
and τ ∈ [0,∞) denotes time. An illustration of the model is given in Fig. 2.

Following the framework presented in Sect. 2, we define the model G(g) =
x(·; g) which maps the model parameter, here the gravitational acceleration, to
the model output, here the time-dependent angle. For t = 1, . . . , 10 we define
the observation operator Ot by Ot (x(·; g)) = x(τt ; g). This models the angle
measurement of the pendulum at a fixed point in time τt . Note that in practise the
measurement is reversed since we measure the time at a prescribed angle that is
easy to identify. Mathematically, this can be interpreted as angle measurement at a
specific timepoint. Finally, we define the forward response operators Gt = Ot ◦ G

for t = 1, . . . , 10. The data set y1, . . . , yt of angle measurements corresponds to
realisations of the random variables

ỹt := Gt (g
†) + ηt
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`

x

mg`cosx
mg`sinx

mg`

Fig. 2 Pendulum model and forces applied to the bob with mass m. The black vertical vector
represents the gravitational force. It is decomposed into the gray vectors representing the
components parallel and perpendicular to the motion of the pendulum. The dashed line represents
the angle x = 0 where the pendulum is at rest. In this position the time measurements are taken.
This figure is adapted from [7]

where η1, . . . , ηt are independent and identically distributed Gaussian random
variables according to N(0, σ 2). The pendulum filtering problem consists of
using time measurements (and the associated angle measurements) to sequentially
improve the estimate of the true value of the Earth’s gravitational acceleration g†.

Remark 1 It is possible to simplify the mathematical model of the pendulum
motion. Assume that v0 = 0. If |x| is small, then x ≈ sin(x). Hence, the nonlinear
ODE ẍ = −(g/�) sin(x) above can be replaced by the linear ODE ẍ = −(g/�)x

with the analytical solution

x(τ ; g) := x0 cos(τ
√
g/�).

However, the relation between the angle x and the model parameter g is still
nonlinear and thus the filtering problem remains nonlinear with no analytical
solution. For this reason we do not consider the linear pendulum dynamics.

2.2 State of the Art

Model calibration problems have often been approached with optimisation tech-
niques, for example, the Gauss-Newton or Levenberg-Marquardt algorithm. These
algorithms minimise a (possibly regularised) quadratic loss function which mea-
sures the distance between the data and the model output, see e.g. [29, §10]. Today’s
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availability of high-performance computing resources has enabled statistical tech-
niques for the calibration of computationally expensive models. A popular example
is Bayesian inference. Here we consider the model parameters to be uncertain
and model the associated uncertainty with a probability measure. By using Bayes’
formula it is possible to include information from the observational data in this
probability measure. In particular, the probability measure is conditioned with
respect to the data (see [30]).

Recently, Bayesian inference for model parameters (so-called Bayesian inverse
problems) has attracted a lot of attention in the literature. It was first proposed in
[19] and thoroughly analysed in [9, 35]. A tutorial on Bayesian inverse problems is
given by Allmaras et al. [2]; in fact this work inspired the authors of this article.
However, most works on Bayesian inverse problems, including the works cited
above, are concerned with the so-called static Bayesian learning where one uses
a single set of observations and no filtering is carried out. Taking the step from
including a single set of observations to iteratively including more observations is
both practically important and non-trivial. We mention that the filtering of model
parameters is closely related to the filtering of states in state space models. In the
pendulum problem in Sect. 2.1 this task corresponds to the tracking and prediction
of the pendulum motion. Filtering of states is a central problem in data assimilation
(see e.g. [14, 24, 27]).

Linear-Gaussian filtering problems can be solved analytically with the Kalman
filter, see e.g. [17]. For non-linear filtering problems several non-linear approxima-
tions to the Kalman filter have been proposed. Examples are the extended Kalman
filter (EKF, see e.g. [17]) and the Ensemble Kalman Filter (EnKF, see [15]) which
are essentially based on linearisations of the forward problem. The EKF uses a
Taylor expansion for linearisation. The EnKF uses a probabilistic linearisation
technique called Bayes linear (see e.g. [22, 34]). The Taylor expansion in the EKF
can be evaluated analytically, however, for the Bayes linear approximation this is
not possible. For this reason the EnKF uses a particle approximation—an ensemble
of unweighted particles.

Another family of approximations, so-called particle filters, do not use lineari-
sation strategies, but rely on importance sampling (see [31]). We will discuss two
particle filters—Sequential Importance Sampling and Sequential Monte Carlo—in
this tutorial. Note that these methods are not only used for filtering. Indeed, it is
possible to sample from general sequences of probability measures by using particle
filters. We refer to [10–12] for the theoretical background and further applications
of particle filters. We mention the use of particle filters in static Bayesian inverse
problems. SMC and SIS are here used together with a tempering of the likelihood
(see e.g. [4, 5, 18, 20, 28]), with multiple resolutions of the computational model
(see e.g. [6]) or with a combination of both (see e.g. [23]). An excellent overview
of SMC and particle filters can be found on the webpage of Doucet [13]. Finally,
note that SMC requires a Markov kernel that is typically given by a Markov Chain
Monte Carlo (MCMC) method [26, 31].
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3 Bayesian Filtering

In this section we explain the Bayesian approach to the filtering problem discussed
in Sect. 2. We begin by introducing conditional probabilities and their construction
using Bayes’ formula. We conclude this section by revisiting the pendulum filtering
problem presented in Sect. 2.1 and discuss implications from the Bayesian approach.

Consider some uncertain parameter θ . We model the uncertainty as a random
variable; by definition this is a measurable map from the probability space (Ω,A,P)

to the parameter space X. The expected value E(·) is the operator integrating a
function with respect to P. The probability measure of θ is called μ0 = P(θ ∈ ·).
The measure μ0 reflects the knowledge concerning θ before we include any
information given by observations. For this reason μ0 is called prior (measure).

In Sect. 2 we modeled the data generation at time t as an event that occurs and
that we observe. This event is {ỹt = yt } ∈ A. The process of Bayesian learning
consists in including the information “ỹt = yt” into the probability distribution
of θ . This is done with conditional probability measures. A good intuition about
conditional probabilities can be obtained by consideration of discrete probabilities.

Example 3 (Conditional Probability) Let θ denote a uniformly distributed random
variable on the parameter space X := {1, . . . , 10}. The uniform distribution models
the fact that we have no information whatsoever about θ . Next, an oracle tells us
that “θ is about 4”. We model this information by assuming that θ is equal to 3, 4 or
5 with equal probability. Our state of knowledge is then modeled by the following
conditional probabilities:

P(θ = k|θ is about 4) :=
{

1/3, if k = 3, 4, 5,

0, otherwise.

We revisit this example in the next subsection and illustrate the computation of the
conditional probability measure. For now, we move back to the filtering problem.
Having observed the first data set y1 we replace the prior probability measure μ0 by
the conditional probability measure

μ1 = P(θ ∈ ·|̃y1 = y1).

Analogously to Example 3 the measure μ1 now reflects the knowledge about θ
given the information that the event {ỹ1 = y1} occurred. In the next step we observe
ỹ2 = y2 and update μ1 �→ μ2, where

μ2 = P(θ ∈ ·|̃y1 = y1, ỹ2 = y2) =: P(θ ∈ ·|̃y1:2 = y1:2).

This update models the Bayesian filtering from time point t = 1 to t = 2. More
generally, we can define a Bayesian filter as a map

{μt, yt+1} := {P(θ ∈ ·|̃y1:t = y1:t ), yt+1} �→ P(θ ∈ ·|̃y1:t+1 = y1:t+1) =: μt+1.
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Since μt reflects the knowledge about θ after seeing the data, this measure is called
posterior (measure) at time t for every t ≥ 1. The notions and explanations in Sect. 2
can be transferred to Bayesian filtering by replacing θ̂ (y1:t ) with μt .

3.1 Bayes’ Formula

The Bayesian learning procedure—formalised by the map {μt, yt+1} �→ μt+1—
is fundamentally based on Bayes’ formula. In order to define Bayes’ formula, we
make some simplifying, yet not necessarily restrictive assumptions.

In Sect. 2 the parameter space X can be infinite-dimensional. In the remainder
of this tutorial we consider X := R

N , a finite-dimensional parameter space. For a
treatment of the infinite-dimensional case we refer to [35]. Moreover, we assume
that μ0 has a probability density function (pdf) π0 : X → R with respect to the
Lebesgue measure. This allows us to represent μ0 by

μ0(A) :=
∫
A

π0(θ)dθ,

for any measurable set A ⊆ X. Furthermore, we assume that the model evidence

Zt+1(yt+1) := μt (Lt+1(yt+1|·)) :=
∫
X

Lt+1(yt+1|θ)dμt(θ)

:=
∫
X

Lt+1(yt+1|θ)πt (θ)dθ, t ≥ 0,

is strictly positive and finite. Then it follows that the conditional measures
μ1, μ2, . . . have pdfs π1, π2, . . . on X as well. The associated densities are given
recursively by Bayes’ formula

πt+1(θ) = 1

Zt+1(yt+1)
Lt+1(yt+1|θ)πt (θ), t ≥ 0, a.e. θ ∈ X. (2)

In some situations it is possible to use this formula to compute the densities (πt )∞t=1
analytically. In particular, this is possible if πt is the pdf of a conjugate prior for
the likelihood Lt+1 for t ≥ 0. However, in the filtering of parameters of nonlinear
models it is typically impossible to find conjugate priors. In this case we construct
approximations to the densities (πt )∞t=1 and the measures (μt )

∞
t=1, respectively. We

discuss particle based approximations in Sect. 4.
Before moving on to the Bayesian formulation of the pendulum filtering problem,

we briefly revisit Example 3 and explain Bayes’ formula in this setting. Note that
Bayes’ formula holds more generally for probability density functions that are
given w.r.t. to σ -finite measures, for example, counting densities on Z; these are
sometimes called probability mass functions (pmf).
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Example 3 (continued) Recall that we consider a uniformly distributed random
variable θ taking values in {1, . . . , 10}. Hence the counting density is given by
π0 ≡ 1/10. Furthermore, an oracle tells us that “θ is about 4” and we model this
information by θ taking on values in {3, 4, 5} with equal probability. Hence

L1(y1|k) = P(θ is about 4|θ = k) =
{

1, if k = 3, 4, 5,

0, otherwise.

Now we compute the posterior counting density using Bayes’ formula. We arrive at

π1(k) = 1

Z1(y1)
· π0(k) · L1(y1|k)

=
⎧⎨
⎩

1
1· 1

10 +1· 1
10 +1· 1

10
· 1

10 · 1, if k = 3, 4, 5,

0, otherwise.

=
{

1/3, if k = 3, 4, 5,

0, otherwise.

Since the values of counting densities are identical to the probability of the
respective singleton, we obtain π1(k) := P(θ = k|θ is about 4). This fits with the
intuition discussed in Example 3.

3.2 Bayesian Filtering Formulation of the Pendulum Problem

Next, we revisit the pendulum filtering problem in Sect. 2.1, and reformulate it as
a Bayesian filtering problem. This requires us to define a prior measure for the
parameter g. The prior should include all information about the parameter before
any observations are made. The first piece of information about g stems from the
physical model which describes the motion of the pendulum. Indeed, since we know
that gravity attracts objects towards the center of the Earth, we conclude that the
value of g must be non-negative in the coordinate system we use. Furthermore,
we assume that previous experiments and theoretical considerations tell us that
g ≤ 20 m/s2, and that g is probably close to the center of the interval [0, 20]. We
model this information by a normal distribution with unit variance, centered at 10,
and truncated support on the interval [0, 20]. Thus, the prior density is proportional
to

π0(g) ∝
⎧⎨
⎩

exp
(

− 1
2 (g − 10)2

)
, 0 ≤ g ≤ 20,

0, otherwise.
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Furthermore, the data generating distribution in Sect. 2.1 implies that the likelihoods
are given by

Lt (yt |g) ∝ exp

(
− 1

2σ 2 (yt − Gt (g))
2
)
, t = 1, . . . , 10, (3)

where σ 2 denotes the noise variance. In the numerical experiments we use the
estimate σ 2 = 0.0025. This is obtained by combining typical values for human
reaction time and a forward Monte Carlo simulation as follows. Studies (see e.g.
[36]) suggest that a typical visual reaction time for humans is 450 ms ± 100 ms. We
now would like to use this information about the error in the time measurements
for modelling the error in the angles. To this end we use the forward model
parameterised by the mean of the prior distribution to compute a reference solution
for a set of generated time measurements. We then compute a Monte Carlo estimate
of the angle error resulting from adding a N(0.45, 0.01) noise to the set of time
measurements. The result of this numerical experiment indicates that N(0, σ 2) with
σ 2 = 0.0025 is a suitable model for the angle measurements error. Ideally, one
would estimate the noise variance directly in the pendulum experiment.

By inserting the prior density and the definition of the likelihoods into Bayes’
formula (2) we obtain a recursive expression for the densities π1, . . . , π10 of the
posterior measures μ1, . . . , μ10 as follows:

πt+1(g) := 1

Zt+1(yt+1)
exp

(
− 1

2σ 2 (yt+1 − Gt+1(g))
2
)
πt(g), for a.e. g ∈ [0, 20],

Zt+1(yt+1) := μt

(
exp

(
− 1

2σ 2 (yt+1 − Gt+1(g))
2
))

, t ≥ 0.

The family of posterior densities corresponding to the measurements in Table 1 is
depicted in Fig. 3. As the time increases we see that the posterior densities become

Fig. 3 Sequence of posterior densities for a given value of g for t = 0 (prior), 4, 8, 10 data points.
The densities are computed with kernel density estimation based on a Sequential Monte Carlo
particle approximation
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more concentrated. Note that a more concentrated density indicates less uncertainty
compared to a flat density. Thus, the picture is consistent with our intuition: The
uncertainty in the parameter value for g is reduced as more data becomes available.
We provide further comments on the estimation results in Sect. 5.2.

4 Particle Filters

It is typically impossible to compute the posterior measures (μt )
∞
t=1 analytically.

In this section we discuss two particle filters to approximate the solution of the
Bayesian filtering problem. In Sect. 4.1 we present the Sequential Importance
Sampling (SIS) algorithm. Unfortunately, SIS suffers from efficiency issues when
used for filtering problems. We explain this deficiency in a simple example. It is
possible to resolve the issues by extending SIS to the so-called Sequential Monte
Carlo (SMC) algorithm which we discuss in Sect. 4.2.

Remark 2 The sampling procedures presented in this section approximate posterior
measures (μt )

∞
t=1. In addition, it is also possible to approximate integrals of the

form (μt (f ))
∞
t=1, where f : X → R is a μt -integrable quantity of interest. To

simplify the presentation we focus on the approximation of integrals rather than
on the approximation of measures for the remaining part of this tutorial. This can
be done without loss of generality within the framework of weak representations
of measures. We outline this approach and give some examples for quantities of
interest in Appendix 1.

4.1 Sequential Importance Sampling

We are now interested in constructing an algorithm to approximate the sequence of
posterior measures (μt )

∞
t=1 and thereby efficiently discretise the update rule of the

learning process in Fig. 1. To this end we consider particle-based approximations.
These consist of a collection of M weighted particles (or samples) {Xi,Wi}Mi=1

where Xi ∈ X, Wi ≥ 0 for i = 1, . . . ,M , and
∑M

i=1 Wi = 1. Additionally, the
particles should be constructed in such a way that the random measure

μM
t :=

M∑
i=1

WiδXi

converges weakly with probability one to μt as M → ∞. In particular, for
any bounded and continuous function f : X → R (or bounded and Lipschitz-
continuous function; see Prop. 2 in Appendix 1),

μM
t (f ) :=

M∑
i=1

Wif (Xi)
M→ ∞−−−−→ E[f (θ̂t )] almost surely.
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Note that (μM
t )M≥1 is a sequence of measure-valued random variables; that

is a sequence of random variables defined on the space of measures. Almost
every realisation of this sequence of measures converges weakly to a common
deterministic measure as M → ∞. More precisely, it holds that

P(μM
t → μt, weakly, as M → ∞) = 1.

For simple distributions μ where direct sampling is possible an estimator with
the desired properties above can be constructed by choosing independent random
variables X1, . . . , XM distributed according to μ and by using uniform weights
Wi = 1/M for i = 1, . . . ,M . We denote this construction by the operator SM

and call μM = SMμ the standard Monte Carlo estimate of μ. Since SM creates
an empirical measure by using random variables the operator SM maps probability
measures to random probability measures and is thus a non-deterministic operator.

However, it is typically impossible to sample from the posterior measures (μt )
∞
t=1

in the Bayesian filtering problem. This precludes the construction of Monte Carlo
estimates. Alternatively, we can use the Importance Sampling (IS) method. Let μ,
the target measure, denote the probability measure to be estimated. Let ν denote a
probability measure from which it is possible to sample. The measure ν is called
importance measure. Let μ be absolutely continuous with respect to ν. This means
that ν(A) = 0 implies μ(A) = 0 for any measurable set A ⊆ X. Let furthermore f
denote a measurable, bounded function. Then there exists a non-negative function
w : X → R such that

μ(f ) = ν(f · w)
ν(w)

. (4)

The intuition behind importance sampling is the following. If the importance
measure ν is close to the target measure μ, then sampling from ν should be
approximately equivalent to sampling from μ.

The IS estimate of μ is constructed by creating a Monte Carlo estimate of ν.
Then, the Monte Carlo samples are reweighed using the expression in (4). This
is necessary since we wish to obtain samples distributed according to the target
measure μ, and not samples distributed according to the importance measure ν. We
arrive at

μM(f ) = νM(f · w)
νM(w)

=
1
M

∑M
i=1 w(Xi)f (Xi)

1
M

∑M
j=1 w(Xj )

:=
M∑
i=1

Wif (Xi).

In summary, importance sampling maps the Monte Carlo estimate νM to an updated
estimate μM by adjusting the weights of the particles X1, . . . , XM according to the
formula

Wi = w(Xi)∑M
j=1 w(Xj )

.
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Now we apply the IS approximation in the context of the Bayesian filtering
problem. The prior measure μ0 is often tractable and direct sampling algorithms
are available. It is then possible to create an initial Monte Carlo estimate of the prior
measure. Afterwards we can iteratively update the particles to incorporate the new
knowledge from the observation y1, y2, . . . , yT through importance sampling. This
follows the learning process described in Sect. 2. Observe that Bayes’ formula in (2)
tells us that each measure μt+1 is absolutely continuous with respect to the previous
measure. We use this relation to define the nonlinear operator ISt for any probability
measure μ over X as follows:

(ISt+1μ)(f ) = μ(Lt+1(yt+1|·) · f )
μ(Lt+1(yt+1|·)) .

Since Z(yt+1) = μt (Lt+1(yt+1|·)) for every t ≥ 0 these operators can be used to
describe reweighing in an importance sampling estimate with target measure μt+1
and importance measure μt . In particular, if for some t ≥ 0 a particle approximation
μM
t of μt is given by the particles {X(t)

i ,W
(t)
i }, the operator ISt+1 can be used to

define the following approximations:

ZM(yt+1) := μM
t (Lt+1(yt+1|·)) =

M∑
i=1

W
(t)
i Lt+1(yt+1|Xi),

μM
t+1(f ) := (ISt+1μ

M
t )(f )

= 1

ZM(yt+1)

M∑
i=1

W
(t)
i Lt+1(yt+1|X(t)

i )f (X
(t)
i )

=
M∑
i=1

W
(t+1)
i f (X

(t)
i ),

where the particle weights W(t+1)
i are given by

W
(t+1)
i = W

(t)
i Lt+1(yt+1|X(t)

i )∑M
j=1 W

(t)
j Lt+1(yt+1|X(t)

j )
.

Note that the ISt+1 update requires
∑M

j=1 W
(t)
j Lt+1(yt+1|X(t)

j ) > 0. If the
likelihood Lt+1(yt+1|·) is strictly positive, then this condition is always satisfied.
We observe that the IS update formula only changes the weights

(W
(t)
i )Mi=1 �→ (W

(t+1)
i )Mi=1.
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timeline:

state of knowledge:

t t+1 t+2

μM
t

yt+1

Reweigh by ISt+1 μM
t+1

Fig. 4 Plot of the SIS approximation of the learning procedure. The starting point is the
approximation μM

t of the current state of knowledge at timepoint t . At the timepoint t + 1 we
observe yt+1 and use it to construct the importance sampling operator ISt+1. The new state of
knowledge is approximated by μM

t+1

The positions (X
(t)
i )Mi=1 = (X

(t+1)
i )Mi=1 of the particles remain unchanged. Based

on the recursive update formula, we construct an approximation to the sequence
(μt )

∞
t=0 as follows:

μM
0 = SMμ0,

μM
t+1 = ISt+1(μ

M
t )

see also Fig. 4 for a graphical representation. The sequential importance sampling
algorithm is a natural and asymptotically correct approximation of the Bayesian
filtering process, see e.g. [5, 7] for up to a finite number of observations. Now we
discuss the accuracy of (sequential) importance sampling measured in terms of the
so-called effective sample size (ESS). Let t ≥ 0. First, we define the constant ρt > 0
by

ρt := μ0(L2
t )

μ0(Lt )2 ,

where Lt (θ) =∏t
i=1 L(yt |θ) is the joint likelihood of the dataset y1:t . One can show

that the accuracy of (sequential) importance sampling up to time t is equivalent to
the accuracy of a standard Monte Carlo approximation with M/ρt samples (see
Remark 3). The fraction M/ρt is the effective sample size.

Remark 3 We sketch the derivation of the ESS in SIS for step t ≥ 0. We assume
that we can sample M ′ times independently from μt . Using these samples, we
approximate μt by SM

′
(μt ), the standard Monte Carlo estimator. In this case, one

can show that

sup
|f |≤1

E

(∣∣∣SM ′
(μt )(f ) − μt (f )

∣∣∣2
)

≤ 4

M ′ . (5)

This is an upper bound on the expected squared error between the integrals of any
bounded test function f . Hence, we can now use the sample size M ′ in equation (5)
as an indicator for the accuracy of the standard Monte Carlo approximation SM

′
(μt )

of μt . In the SIS algorithm, M samples are drawn from μ0 and are then reweighed
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by Lt . The resulting approximate measure μM
t fulfills the following error bound:

sup
|f |≤1

E

(∣∣∣μM
t (f ) − μt (f )

∣∣∣2
)

≤ 4ρt
M

, (6)

see e.g. [1]. Note that (5) can be derived from (6), by setting μ0 = μt and Lt ≡ 1,
hence ρt = 1. To make the upper bounds in (5) and (6) comparable, we replace the
sample size M ′ in (5) by the effective sample size M/ρt in (6).

In conclusion, we can interpret the ESS as follows:

• If M/ρt ≈ M , then the estimation is nearly as accurate as sampling directly from
the correct measure. Hence a value ρt ≈ 1 is desirable.

• If M/ρt 	 M , then the estimation is only as accurate as a Monte Carlo
approximation with a very small number of particles.

Unfortunately, during the course of a filtering procedure, it may happen that ρt
explodes. We illustrate this by a simple example.

Example 4 (Degeneracy) Consider the problem of estimating the mean m† of a
normal distribution N(m†, 1) using t ∈ N samples y1, . . . , yt of the distribution. By
choosing the conjugate prior N(0, 1) it is easy to see that the posterior distribution

of the unknown parameter m is equal to N
(

St
t+1 , (1 + t)−1

)
, where St = ∑t

i=1 yi .

It is possible to compute ρt analytically,

ρt = t + 1√
2t + 1

exp

(
S2
t

(2t + 1)(t + 1)

)
.

Hence, ρt = O(t1/2; t → ∞) grows unboundedly as t increases. This implies that
the effective sample size M/ρt converges to 0 as t → ∞.

In a filtering problem where M/ρt → 0 as t → ∞ we cannot use SIS since the
estimation accuracy deteriorates over time. It is possible, however, to estimate the
effective sample size, and to use this estimate to improve SIS.

Remark 4 The SIS algorithm presented in Sect. 4.1 is basic in the sense that the
importance measure for μt+1 at time point t + 1 is simply the measure μt at time
point t . It is possible to construct alternative importance measures by using Markov
kernels in the SIS algorithm. We refer to the generic framework in [12, §2] for more
details.

4.2 Sequential Monte Carlo

The effective sample size is a good indicator of the impoverishment of the particle
estimate for μt due to the discrepancy between the prior and target distributions. In
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practice, we approximate M/ρt by

Meff := M
μM

0 (Lt )
2

μM
0 (L2

t )
=
(∑M

i=1 Lt (Xi)
)2

∑M
i=1 Lt (Xi)2

. (7)

Note that Meff is a consistent estimator of M/ρt . Throughout the rest of this tutorial
we will also refer to Meff as effective sample size.

If Meff is small it is possible to discard particles situated in regions of the
parameter space with low probability. We can then replace these particles with
particles that are more representative of the target distribution in the sense that
they carry a larger weight. This is done by introducing a resampling step after
adjusting the weights of the particles in the IS estimate. Precisely, we consider an
approximationμM

t given by the particles {X(t)
i ,W

(t)
i }Mi=1 at time t ≥ 0. The weights

of the approximation are updated by the ISt+1 operator, and Meff is computed using
the updated set of weights (W(t+1)

i )Mi=1. If Meff is larger than a pre-defined threshold
Mthresh ∈ (0,M], then the positions of the particles remain unchanged in the step
from μM

t to μM
t+1, giving X

(t+1)
i = X

(t)
i , i = 1, . . . ,M . If, on the other hand,

Meff ≤ Mthresh, then a new set of particles is sampled according to the updated
weights. The particle estimate is then given by μM

t+1 = SM(ISt+1μ
M
t ) where we

use the new particle set in the Monte Carlo estimate.

Remark 5 The choice of the threshold parameter Mthresh is highly problem depen-
dent. Doucet and Johansen [14] mention that Mthresh = M/2 is a typical choice. On
the other hand, Beskos et al. [5] use Mthresh = M , that is, the resampling step is
always carried out. Empirical tests targeting a small variance of the posterior mean
estimator may also be helpful to define a suitable threshold.

The resampling procedure can be performed as follows. For i = 1, . . . ,M sample
Ui ∼ Unif[0, 1], a uniform random variable between 0 and 1. Then, define

X
(t+1)
i := X

(t)
j , j = min

{
k ∈ {1, . . . ,M} :

k∑
n=1

W(t+1)
n ≥ Ui

}
,

W
(t+1)
i := 1/M.

Alternative ways of resampling are possible (see [16]). Note that the resampling
step can successfully eliminate particles in low density areas of the parameter space.
However, it still fails to reduce the particle degeneracy, since several particles may
occur in the same position. Moreover, even with resampling the particles cannot
fully explore the parameter space, since their position remains fixed at all times.

Due to the resampling in case of a small value Meff, or if Meff is large,
it is reasonable to assume that the remaining particles are approximately μt+1-
distributed. The idea is now to scatter the particles in a way such that they explore
the parameter space to reduce degeneracy without destroying the approximateμt+1-
distribution. This can be achieved by a scattering with a μt+1-invariant dynamic.
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timeline:
t t+1 t+2

ISt+1 SM Kt+1

state of knowledge: μM
t SMC Update μM

t+1

yt+1

Fig. 5 Plot of the SMC approximation of the learning procedure. The approximation is con-
structed in three steps: reweighing to identify representative particles, resampling to discard
particles in low probability regions, and a correction to adjust the position of the particles to the
new state of knowledge

Such a dynamic is given by an ergodic Markov kernel Kt+1 : X × B(X) →
[0, 1] that has μt+1 as stationary distribution. This means, if X ∼ μt+1 and
X′ ∼ Kt+1(X, ·), then X′ ∼ μt+1. Applying the Markov kernel repeatedly to
a single particle will asymptotically produce particles that are μt+1 distributed
independently of the initial value (see [31, Chapter 6]). Since we assumed that the
particles are approximately μt+1-distributed, we typically rely only weakly on this
asymptotic result.

The reader might find it not easy to construct an ergodic Markov kernel Kt that
has μt as a stationary measure, t ≥ 1. However, this is a standard task in so-called
Markov Chain Monte Carlo methods (MCMC). The literature on MCMC offers a
large variety of suitable Markov kernels. We mention Gibbs samplers, Hamiltonian
Monte Carlo, Metropolis–Hastings, Random–Walk–Metropolis, Slice samplers (see
e.g. [26, 31]). In summary, we add a final step to the approximation, and apply once
or several times the transition kernel Kt to each of the particles to obtain a better
coverage of the probability density of the posterior at time t . The resulting algorithm
is the Sequential Monte Carlo (SMC) method. Its approximation of the learning
process is depicted in Fig. 5.

5 Particle Approximation of the Bayesian Pendulum
Filtering

We are now ready to compute an approximate solution to the Bayesian filtering
problem in Sect. 3.2. To this end we consider the likelihoods in (3) and use the set
of measurements given in Table 1. Note that the distance between τ6 and τ7 is very
short; we suspect that the timer has been operated twice instead of once.

Table 1 Time measurements corresponding to the angle x(τt ) = 0 of a simple pendulum

Measurement t 1 2 3 4 5 6 7 8 9 10

Time (in s) τt 1.51 4.06 7.06 9.90 12.66 15.40 15.58 18.56 21.38 24.36
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The pendulum length is � = 7.4m. The initial angle x0 = 5◦ = π/36, and the
initial speed v0 = 0. Since x0 is small and v0 = 0, it would be possible to consider
the linearised IVP with an analytical solution (see Remark 1). In tests not reported
here the filtering solution obtained with the analytical solution of the linearised IVP
did not differ from the numerical solution of the nonlinear IVP.

import numpy as np
from scipy.stats import norm,truncnorm
from scipy.integrate import odeint
from particle_approximation import ParticleApproximation

measurements = np.array([...]) # see Table 1.

# Define the probabilistic model.
prior = truncnorm(−10, 10, loc=10, scale=1)
error_model = norm(loc=0, scale=0.05)

# The IVP is defined by a RHS and initial values.
theta0 = [5∗np.pi/180, 0]
def pendulum_rhs(theta, t, g):

return [theta[1],−g/7.4 ∗ np.sin(theta[0])]

# The forward response operator is discretized.
mesh = np.append(0, measurements)
def forward_response(g, n):

sol = odeint(pendulum_rhs , theta0, mesh[:n+1], args=(g,))
return sol[1:,0]

# The potential at time n defined using n data points.
def potential(g, n):

if n == 0: return prior.logpdf(g)
return error_model.logpdf(forward_response(g, n)).sum()

vec_potential = np.vectorize(potential)

# Define the proposal kernel for the correction steps.
def gaussian_proposal(x): return norm(loc=x, scale=.25).rvs()

# Approximate the sequence of posteriors.
approximation = ParticleApproximation(2500, prior)
for n in range(measurements.size):

importance_potential = lambda x: vec_potential(x, n)

target_potential = lambda x: vec_potential(x, n+1)
approximation.smc_update(importance_potential, target_potential ,

↪→ gaussian_proposal , correction_steps=5, ess_ratio =1.3)
mean = approximation.integrate(lambda x: x)
var = approximation.integrate(np.square) − mean∗∗2
print("(posterior #%d) mean=%f, var=%f" % (n+1,mean,var))

Display 1 Python file smc_approx.py
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The numerical results presented in the following sections have been computed
with PYTHON. The associated Python code is available online, see https://github.
com/BayesianLearning/PenduSMC. A part of the code is printed in Display 1. It
can be combined with the data set of time measurements in Table 1 to reproduce
our results, and to carry out further experiments. The code in Display 1 also
summarises the complete modelling cycle of the pendulum filtering problem. The
class ParticleApproximation can be found in Appendix 2.

5.1 Sequential Importance Sampling

We first construct approximations of the learning process using the SIS algorithm as
illustrated in Fig. 4. We employ different numbers of particles,M = 24, 25, . . . , 212,
and perform 50 simulations for each value of M . In Fig. 6 we present the results of
the SIS approximations of the posterior distribution at time t = 10 depending on
the number of particles M . The left display in this figure shows that the variance of
the posterior mean estimate is reduced as the number of particles M is increased.
Moreover, we observe in the right display of the figure that the convergence rate of
the variance of the posterior mean estimate is O(1/M). As expected this coincides
with the convergence rate of a standard Monte Carlo approximation (see Remark 3).

Next, we fix the number of particles M = 2500, and investigate the accuracy
in the SIS approximation by studying the effective sample size. Recall that in SIS
only samples from the prior distribution are used throughout the filtering procedure.
Anticipated by the plot of the densities in Fig. 3 we expect that these prior samples
lead to a poor approximation of the sequence of posterior distributions constructed
during the learning process. This intuition is confirmed by numerical experiments

Fig. 6 Accuracy of the SIS approximation. In the plots we use data from runs with a variable
number of particles indicated on the horizontal axis. We show results averaged over 50 runs per
setting. Left: Plot displaying the convergence of the estimated mean of the posterior distribution.
Each black dot represents the sample average over 50 runs, and the bars represent the standard
deviation of the mean within the runs. Right: Plot displaying the asymptotic convergence of the
variance of the posterior mean estimate

https://github.com/BayesianLearning/PenduSMC
https://github.com/BayesianLearning/PenduSMC
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Fig. 7 Plot of the effective sample size for the SIS approximation of the learning process

shown in Fig. 7. We see that the effective sample size is reduced dramatically in the
first step of SIS with t = 1. In the final step with t = 10 the effective sample size is
only about 20% of the initial sample size. Unfortunately, a reduced effective sample
size implies a loss of estimator accuracy.

Recall that the mean square error of a Monte Carlo estimator with 20% · M
samples is 5 times larger compared to the mean square error with M samples. In
the simple pendulum setting, where the parameter space space is one-dimensional
and compact, a sample size of 20% · M is likely still sufficient to obtain a useful
posterior estimate. In real-world applications, however, we typically encounter high-
dimensional and unbounded parameter spaces which require the exploration with a
large number of representative samples. In this case, the decrease of the effective
sample size in SIS is a serious drawback.

5.2 Sequential Monte Carlo

We proceed by constructing an approximation of the learning process using the
SMC algorithm. The Markov kernel Kt is given by a Random-Walk-Metropolis
algorithm with target distribution μt and a Gaussian random walk with standard
deviation 0.25 as proposal distribution. Each Markov kernel Kt is applied 5 times
to correct the approximated distribution. We choose a minimal effective sample size
corresponding to 75% of the total population M . This means that we resample if
Meff < Mthresh := 75% · M .

We present a typical run of the algorithm in Fig. 8. Again M = 2500 particles
are used to approximate the learning process. In the right panel of Fig. 8 we see that
four resampling steps have been performed. This maintains an ESS well over 1500
and thus improves the accuracy of the posterior estimate with SMC compared to the
estimate with SIS.
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Fig. 8 SMC approximation of the final posterior distribution of the learning process at t = 10.
Left: Histogram of the estimated measure μ10 computed by the particle approximation. Right: Plot
of the effective sample size over time. Since Mthresh = 1875 the SMC algorithm performed 4
resampling steps to maintain a large effective sample size

Fig. 9 Comparison of the posterior measure μy with the true parameter g†. We plot μ10(|·−g†| <
εg†) for various values of ε. This value shows how likely the posterior measures sees the uncertain
parameter g to be ε-close to the true value g†. The posterior probabilities are computed with SMC
based on 2500 particles

Moreover, in the left panel of Fig. 8 we see that the SMC approximation to the
posterior measure for t = 10 is centered around the value g ≈ 9.12m/s2. To
compare the estimate with the true value g† = 9.808 m/s2 we compute the posterior
probability of the event {|g − g†| < εg†}. This describes our posterior expectations
about the closeness of the estimated parameter to the truth. We plot the results in
Fig. 9. The posterior μ10 considers values close to the true parameter g† unlikely.
Aside from the first digit we would not be able to identify g†. However, the estimate
is not bad given the very simple experimental setup. The relative error associated
with g = 9.12 m/s2 is 7%; a similar result was obtained in [2].

We suspect that the estimate for g can be improved by using a more sophisticated
physical model for the pendulum dynamics. Moreover, the noise model could
be improved. In tests not reported here we observed that the measurement error
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Fig. 10 Kernel density estimates of μ10 using the MCMC reference solution and the SMC
solution. Each estimate is based on 2500 samples

increases as time increases. This is plausible since the timer has been operated
manually and not automatically by a sensor. Finally, we did not include the
uncertainty in the initial condition x0.

To validate the SMC posterior estimate of μ10 with M = 2500 particles, we have
performed a reference run using a Markov chain Monte Carlo sampler. The MCMC
sampler was run with 3000 posterior samples where the first 500 samples have been
discarded to mitigate the burn-in effect. Using the MCMC and SMC samples we
perform a kernel density estimation for the posterior pdf. We present the estimation
results in Fig. 10. The posterior approximations do not differ significantly which
leads us to conclude that the SMC approximation is consistent with the MCMC
approximation.

Moreover, we again investigate the convergence of SMC based on simulations
with different numbers of particles M = 24, 25, . . . , 212. In each of these settings
we consider the results of 50 simulations. We present the test results in Fig. 11.
We plot the posterior mean approximation at time t = 10 and the variance of the
estimators within 50 simulations.

Comparing Fig. 6 with Fig. 11 we see that the posterior mean estimates obtained
with SMC differ only slightly from the estimates obtained with SIS. Moreover,
we observe again that the variance of the SMC estimate decreases with the rate
O(1/M) as M increases (cf. Remark 3). However, we see a much higher variability
in the posterior mean estimates in SIS. In particular, we need a smaller number
of particles in SMC compared to SIS to reach a certain variance of the estimator.
Recall, however, that the SMC algorithm involves parameters which need to be
selected by the user; we mention the threshold sample size Mthresh, and the Markov
kernels Kt together with the number of MCMC steps. In contrast, the SIS algorithm
does not require parameter tuning, and is simpler to implement. Hence SIS could be
used if the forward response operators (Gt )t≥1 can be evaluated cheaply; this allows
more evaluations within a given computational budget to reach a desired accuracy.



264 M. Bulté et al.

Fig. 11 Accuracy of the SMC approximation. We use data from SMC runs with a variable number
of particles indicated on the horizontal axis of each plot. We show results averaged over 50 runs
per setting. Left: The convergence of the estimated mean of the posterior distribution. The black
dots represent the average over 50 runs and the bars represent the standard deviation of the mean
within the runs. Right: The convergence of the variance of the posterior mean estimate

SMC should be preferred if the evaluation of the forward response operators is
computationally expensive, and if a small number of MCMC steps is sufficient to
mix the particles efficiently in the parameter space.

5.3 Continuing to Learn: Data Sets from Further Experiments

The filtering problem we discussed so far is kept simple for demonstration purposes.
However, in reality one would perhaps not update the posterior after the collection
of every single measurement (so every couple of seconds), and one would try to use
more data sets, possibly from different sources. Indeed, the data set in Table 1 is
only one of several data sets that were collected in independent experiments, each
carried out by different individuals. A more realistic filtering problem is to update
the posterior measure for g after each round of measurements has been completed
by an individual. Then, the posterior measure reflects the knowledge obtained from
a fixed number of independently performed experiments.

Notably, the SIS and SMC algorithm can be used in this situation as well. It
is possible to process the measurements individually or in batches, with both SIS
and SMC, without changes to the implementation. Moreover, there is in principle
no limit for the number of measurements that can be used in an update. However,
since we expect that the posterior measures associated with a larger number of
measurements will be more concentrated, it is likely that the degeneracy of the
effective sample size of SIS will become more pronounced. For this reason we use
SMC to include data sets from further pendulum experiments.

In Fig. 12 we plot the posterior density associated with a single experiment
with 10 measurements (see the set-up in Sect. 5.2) along with the posterior density
for six experiments with a total number of 50 measurements; this includes the
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Fig. 12 Posterior density based on the 10 measurements given in Table 1 (SMC-10) and based on
40 further measurements (SMC-50)

10 measurements in the single experiment setting. We observe that the posterior
measure after six experiments is more concentrated (informed) than the posterior
after one experiment. Thus the uncertainty in the parameter g is reduced after seeing
data from different experiments. This is consistent with our intuition about learning.

6 Discussion

We finish with some comments on current research directions.
For Bayesian filtering problems with finite-dimensional data and parameter

spaces together with a simple mathematical model it is straightforward to prove
the well-posedness of the Bayesian filtering problem (i.e. the existence, uniqueness,
and stability of the posterior measure). In general, we will have to consider infinite-
dimensional parameter spaces (e.g. random fields), infinite-dimensional data spaces
(e.g. the image of a tumor), and complex mathematical models. The theoretical
framework for the well-posedness proof has been established in [35], however, the
conditions therein need to be verified on a case-by-case basis.

A related problem is the inheritance of certain properties of measures (e.g.
Gaussianity, convexity, tail behavior) within the sequence of posterior measures.
This is important since in a (time-dependent) filtering problem the posterior at time
t becomes the prior at time t + 1. Hence it is not sufficient to establish the existence
of a posterior without studying its properties as well.

It is often possible to prove that the Bayesian learning process converges to a
measure concentrated in a small neighbourhood around the true parameter in the
large data limit (Bernstein-von-Mises theorem, Doob’s consistency theorem, see
[37, §10]). However, the particle filters that approximate the learning process often
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suffer from a path degeneracy, meaning that a large number of updates decreases
the estimator quality. We illustrated this for SIS where the effective sample size
decreased over time. For SMC, however, a similar effect might occur, see [3] or [23,
§5.1.2.], where path degeneracy is observed.

Finally, we mention that in current works on the SMC convergence the effect
of the MCMC steps is often not considered (see e.g. [5, Thm 3.1]) and requires
further investigations. If the MCMC steps are analysed, the results require rather
strong assumptions, see [38] and [5, §5]. In addition, the mechanism of importance
sampling, which is a crucial component in SMC, is not fully analysed to date. Recent
works [32] establish bounds on the necessary sample size, however, it is unclear
which metric is appropriate to study the nearness and, eventually, convergence of
measures.
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Appendix 1: Quantities of Interest and Weak Representations
of Measures

For a sequence of measures (μt )
∞
t=1 we are typically interested in computing the

expected value of a measurable and μt -integrable (t ≥ 1) quantity of interest f :
X → R with respect to a measure in the sequence, that is

μt(f ) :=
∫

f dμt, t ≥ 1.

Example 5 (Quantities of Interest) Let t ≥ 1.

• Let f (x) := xi denote the canonical projection onto the coordinate xi of x. Then,
μt (f ) is the mean of the ith marginal density of μt . Moreover, μt(f

k) is the kth
moment (k ∈ N) of the same marginal.

• Let A ⊆ X be measurable, and let f be given by

f (x) =
{

1, if x ∈ A,

0, otherwise.

Then, μt(f ) =: μt (A) is the probability that the parameter takes on values in A.
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The quantities of interest in Example 5 are interesting in their own right. More
importantly, it is possible to use integrals with respect to certain functions to fully
represent a measure.

Proposition 1 Let μ, ν be two measures on (X,BX) := (RN,BR
N). Then, the

identity μ = ν holds, if one of the following conditions is satisfied.

1. μ(A) = ν(A) for all A ∈ BX,
2. μ(f ) = ν(f ) for all bounded, measurable functions f : X → R,
3. μ(f ) = ν(f ) for all bounded, continuous functions f : X → R,
4. μ(f ) = ν(f ) for all bounded, Lipschitz-continuous functions f : X → R.

Proof Condition (1.) is the definition of μ = ν. Condition (2.) implies (1.) by
setting

f (x) :=
{

1, if x ∈ A

0, otherwise,

for any A ∈ BX. Conditions (3.) and (4.) imply equivalence of the characteristic
functions of μ, ν which implies that μ = ν [21, Thm. 13.16, Thm. 15.8].

Moreover, we can use the criteria in Proposition 1 to investigate the convergence of
a sequence of measures.

Proposition 2 Let (μM)∞M=1 be a sequence of measures and let ν denote a further
measure on (X,BX) := (RN,BR

N). Then μM → ν as M → ∞
1. in total variation, if one of the following conditions holds:

a. μM(A) → ν(A) as M → ∞ for all A ⊆ X measurable,
b. μM(f ) → ν(f ) as M → ∞ for all bounded, measurable functions f : X →

R,

2. weakly, if it converges in total variation, or if one of the following conditions
holds:

a. μM(f ) → ν(f ) as M → ∞ for all bounded, continuous functions f : X →
R,

b. μM(f ) → ν(f ) as M → ∞ for all bounded, Lipschitz-continuous functions
f : X → R.

Proof Convergence in total variation holds if

lim
M→∞ sup

A∈BX

|μM(A) − ν(A)| = 0.

This follows directly by condition (1.a) or (1.b). (2.a) is the definition of weak
convergence, (2.b) is implied by the Portmanteau Theorem [21, Thm. 13.16].
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Thus, instead of investigating the properties of measures directly, it is possible to
study integrals of functions with respect to these measures.

Appendix 2: Source Code of the Particle Approximation Class

import numpy as np

import matplotlib.pyplot as plt

class ParticleApproximation:

def __init__(self, num_particles , prior, init=True):

self.num_particles = num_particles

self.prior = prior

# create an initial Monte Carlo approximation of the prior

if init:

self.particles = prior.rvs(size=num_particles)

self.weights = np.full(num_particles , 1.0/num_particles)

@staticmethod

def load(filename, prior):

data = np.load(filename)

approximation = ParticleApproximation(data[’particles’].size,

↪→ prior, init=False)

approximation.particles = data[’particles ’]

approximation.weights = data[’weights’]

return approximation

def save(self, filename):

np.savez(filename, particles=self.particles, weights=self.

↪→ weights)

def hist(self, ∗∗kwargs):
plt.hist(self.particles, weights=self.weights, ∗∗kwargs)

def integrate(self, f):

fv = np.vectorize(f)

return np.dot(fv(self.particles), self.weights)

def sample(self, size):

return np.random.choice(self.particles, size=size, p=self.

↪→ weights, replace=True)
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def resample(self):

self.particles = np.random.choice(self.particles, size=self.

↪→ num_particles , p=self.weights, replace=True)

self.weights = np.full(self.num_particles , 1/self.

↪→ num_particles)

def effective_sample_size(self):

return 1 / np.dot(self.weights, self.weights)

def reweight(self, importance_potential, target_potential):

# Update is done in log−scale

self.weights = np.log(self.weights)

# Compute log−importance−weights and update current weights

importance_weights = target_potential(self.particles) −
↪→ importance_potential(self.particles)

self.weights += importance_weights

# Return to linear−scale to normalize weights

self.weights = np.exp(self.weights)

self.weights /= self.weights.sum()

def mh_correction(self, target_potential , proposal_kernel ,

↪→ n_steps):

total_accepted = 0

# Sample from the proposal kernel, conditioned on currect

↪→ particles

proposals = proposal_kernel(self.particles)

proposal_potentials = target_potential(proposals)

current_potentials = target_potential(self.particles)

for i in range(n_steps):

# Compute the log acceptance ratio

potential_ratio = proposal_potentials −
↪→ current_potentials

prior_ratio = self.prior.logpdf(proposals) − self.prior.

↪→ logpdf(self.particles)

acceptance_ratio = np.exp(potential_ratio + prior_ratio)

# Randomly accept the transitions based on the log

↪→ acceptance ratio
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accepted = np.random.uniform(size=self.num_particles) <

↪→ acceptance_ratio

self.particles[accepted] = proposals[accepted]

total_accepted += np.sum(accepted)

# Recompute necessary potentials for next step

if i < n_steps − 1:

# Update current potentials

current_potentials[accepted] = proposal_potentials[

↪→ accepted]

# Sample new proposals

proposals = proposal_kernel(self.particles)

proposal_potentials = target_potential(proposals)

return total_accepted / (n_steps ∗ self.num_particles)

def smc_update(self, importance_potential, target_potential ,

↪→ proposal_kernel , correction_steps , ess_ratio):

self.reweight(importance_potential, target_potential)

acceptance_ratio = self.mh_correction(target_potential ,

↪→ proposal_kernel , n_steps=correction_steps)

ess = self.effective_sample_size()

if ess < self.num_particles/ess_ratio:

self.resample()

return (acceptance_ratio , ess)

Display 2 Python file particle_approximation.py
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