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Supervisors’ Foreword

One of the most important phenomena in quantum electrodynamics is the so-called
“strong coupling” regime, which appears when the interaction between light, i.e., a
confined electromagnetic field, and an electronic/vibrational matter excitation, i.e.,
an exciton, is so strong that the photon and matter components mix to create hybrid
light/matter states, called polaritons. This is achieved when the Rabi frequency
(energy exchange rate between the exciton and the electromagnetic mode) becomes
faster than the decay and/or decoherence rates of either constituent. These polari-
tons are very attractive from both fundamental and applied perspectives because
they inherit properties from their two constituents. Mutual interactions resulting
from the matter component lead to non-linear effects, whereas low effective masses,
which come from the light constituent, enable new applications such as polariton
condensation and low-threshold lasing. In this way, this hybrid character of
polaritons has been mainly used to achieve new functionalities in which polaritons
are thought of as dressed photons, exploiting exciton–exciton coupling to create
interacting photons.

However, after some seminal experiments reported by the group led by
Prof. Thomas Ebbesen in the University of Strasbourg in 2012, it has become clear
that the strong coupling regime can be used for an alternative purpose to signifi-
cantly modify internal material properties of organic systems by dressing the
excitons with virtual photons. In particular, it has been shown that strong coupling
of a macroscopic collection of organic molecules to a Fabry–Perot cavity mode can
largely alter the energy landscape of the molecules in such a way that photo-
chemical reactions and even ground-state chemical reactions can be modified.
A new area of research has been inaugurated in the last decade: Polaritonic
Chemistry. This is precisely the title of the thesis of Dr. Javier Galego, which aims
to provide the theoretical and fundamental foundation for this field of investigation.
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The main theoretical challenge that we found when we initiated this line of
research is that we needed to combine the expertise from, at least, three different
subjects: chemistry, quantum optics, and nanophotonics. This is why the work
carried out by Javier Galego in this thesis is so valuable: he needed to become
familiar with and acquire expertise in three very distinct areas, each of them with its
own theoretical and numerical framework. It is remarkable that Javier was able to
work successfully in this very interdisciplinary field of research, something that is
not very common for a Ph.D. student. This is why we trust that beginners to the
field and experts alike will find this thesis useful as Javier Galego has made an extra
effort to present the new concepts, techniques and theoretical findings in a very
detailed and accessible way.

The first part of the thesis (Chaps. 1 and 2) is intended to introduce both the state
of the art in this new field of research and the theoretical background needed to
develop the theory of polaritonic chemistry. In line with the interdisciplinary
character of this thesis, Chap. 2 is divided into three parts in which the main
ingredients taken from nanophotonics (“General light-matter Hamiltonian”),
chemistry (“Molecular Hamiltonian”), and quantum optics (“Cavity Quantum
Electrodynamics”) are introduced in detail.

Once this basic knowledge is summarized, Chaps. 3 and 4 are devoted to ana-
lyzing, from a very fundamental and general perspective, how the molecular
structure can be altered when the phenomenon of strong coupling emerges. In
particular, the powerful concept of “Polaritonic Potential Energy Surfaces” is put
forward in Chap. 3, which serves to visualize and understand quantitatively how the
energy landscape in which a chemical reaction takes place is modified when
polaritons are formed. An important aspect also discussed in these two central
chapters is the differences/similarities found between the case of single-molecule
strong coupling and the more common situation in which an ensemble of organic
molecules is strongly coupled to a cavity electromagnetic mode. In this regard, the
relevant phenomenon of “collective protection” is discussed at length in Chap. 4.

The main results and findings of this thesis are discussed in Chaps. 5 and 6.
Using simplified models, Chap. 5 demonstrates how a photo-isomerization reaction
can be suppressed by taking advantage of strong coupling. On a more positive tone,
it also shows how a single photon can trigger a many-molecule reaction thanks to
the modification of the energy landscape provided by the phenomenon of collective
strong coupling. This example nicely illustrates the idea behind the field of
Polaritonic chemistry: as a difference with other approaches to modify chemistry,
this procedure is not intended to guide the motion of the nuclear wavepacket along
a given path but to completely change and tune the roads in which a nuclear
wavepacket can move. Finally, Chap. 6 is devoted to analyzing the most recent
experimental findings of modification of ground-state chemical reactions induced
by strong coupling. By using the so-called Shin-Metiu model, in which there is one
degree of freedom for the nuclei and one for the electron, we introduce the photon
as a third ingredient and find the conditions for altering chemical reaction rates in
the ground state.
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Not all the fundamental questions associated with the brand-new field of
Polaritonic Chemistry have been answered in this thesis and there are still many
important issues that need further theoretical and experimental insights, in particular
the link to the case of cavity-modified ground-state chemistry. It is an exciting time
to enter into this new area of research and we hope that this thesis, which sum-
marizes the research carried out by Dr. Galego during his time as a Ph.D. student,
will serve both as a helpful introduction and as an inspiring piece of theoretical
work.

Madrid, Spain
March 2020

Prof. Francisco J. García-Vidal
Dr. Johannes Feist
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Abstract

Polaritonic chemistry is an emergent interdisciplinary field in which the strong
interaction of organic molecules with the electromagnetic field is exploited in order
to manipulate the chemical structure and reactions of the system. This thesis is
devoted to the theoretical study of the internal structure and processes in the organic
polaritons that arise in these hybrid light–matter systems. In most theoretical
descriptions of the strong coupling regime between light and organic molecules, the
latter are treated using simplified descriptions in which the role of the internal
nuclear structure is significantly reduced. Our work fully embraces this molecular
complexity by combining the usual theoretical descriptions of light found in cavity
quantum electrodynamics with the complete molecular characterization used in
chemistry, built upon the concept of potential energy surfaces. This leads to the
development of a theory in which the tools and concepts of chemistry can be
generalized to hybrid light–matter systems.

While in standard chemistry we make a distinction between light and matter, this
is no longer true in polaritonic chemistry. The two entities become profoundly
mixed, completely altering the properties of the whole. The features of the system
are a product of the interaction of the molecule with the electromagnetic vacuum,
redefined by the confinement of an optical cavity. Remarkably, the material and
chemical properties can be strongly altered even when there is no strong external
input of energy. This motivates the field for more experimental and theoretical
efforts with the goal of introducing such chemical control in technological appli-
cations. In our work, we theoretically study polaritonic chemistry in order to further
understand the current experiments and challenge them with new predictions.

In order to build our theory, we first present an overview of the theoretical
background necessary of quantum chemistry and cavity quantum electrodynamics.
We then combine both descriptions in order to study the molecular structure in
strong coupling, analyzing the limits of validity of the Born–Oppenheimer
approximation and demonstrating how the cavity induces nuclear correlations
between spatially separated molecules. We thus develop a theory of polaritonic
chemistry in which we formally study the system for an arbitrary number of
molecules in terms of polaritonic potential energy surfaces. Of particular relevance
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is the study of collective phenomena in strong coupling, which is central in
reshaping the energy landscape of hybrid systems. This theory is then applied to
two general molecular models that present some form of photochemical process. In
the first one, we demonstrate the general suppression of photochemical reactions by
influencing the excited-state energy surfaces that govern the dynamics of such
processes. Then, in the second molecular model, we prove the possibility of
opening novel reaction pathways by smartly manipulating the surfaces based on the
theory developed previously. This would enable the possibility of triggering many
photochemical reactions over a large number of molecules after absorption of one
single external photon, something forbidden in standard photochemistry. Finally,
we study the ground-state structural modifications of the light–matter system,
investigating the possibility of influencing the reactivity of thermally driven
chemical reactions. We demonstrate that quantum electrodynamical effects are
indeed able to strongly modify the reactivity in the ground state, observing a
collective enhancement for large ensembles of adequately oriented molecules.

xii Abstract
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Chapter 1
Introduction

1.1 Motivation

From the first photosynthetic organisms, approximately three billion years ago, to
the invention of the laser in the twentieth century, light has had a crucial role in shap-
ing the universe and our lives. Light has always interacted with living organisms,
providing energy and information from their environment. Evolution towards com-
plex life forms was rendered possible due to the oxygenation of the Earth produced
by early photosynthetic cyanobacterias [1]. In order to survive and thrive, animals
need to assimilate information from their surroundings, for which they developed
photosensitive cells which later evolved into sophisticated organs: the eyes [2]. Light
is the means through which humans see each other and form societies, and people
throughout the world and across history have understood its importance.

From the earliest times, philosophers in ancient India and Greece considered the
question of light, writing on concepts such as reflection and refraction. Based on some
of these texts, in the 11th century the arab scholar Ibn al-Haytham1 (also known as
Alhazen) wrote about optics and formulated precise laws of refraction [3]. During the
17th and 18th centuries, an intense scientific debate arose questioning the nature of
light. On one hand, Isaac Newton developed his corpuscular theory, arguing that the
straight rays of light demonstrated its particle nature. On the other hand, many of his
contemporaries such as Robert Hooke and Christiaan Huygens maintained that light
was composed of waves. This was later supported by Thomas Young’s double-slit
experiment, where wave characteristics such as interference could be seen on light,
leading to the general acceptance of its wave nature.

We owe the first great revolution in the study of light to James Clerk Maxwell.
By the middle of the 19th century a considerable amount of theoretical knowledge
about electricity and magnetism had been gathered. In 1861Maxwell condensed and

1As a remark, the controlled experimental testing of his scientific hypotheses is considered the first
achievement of the modern scientific method. Because of this, together with his pioneering studies
on the behavior of light, he is considered the “father of modern optics”.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
J. Galego Pascual, Polaritonic Chemistry, Springer Theses,
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2 1 Introduction

corrected it into a set of four equations,2 and stated that electricity and magnetism
are two manifestations from the same substance, and that light is an electromagnetic
(EM) wave propagating according to those laws. With this, the corpuscular theory
appeared to be completely dead, but soon a new revolution would yet again challenge
our perception of reality: quantum mechanics.

In 1900 Max Plank found the solution to the ultraviolet catastrophe related to the
radiation of a black body. In his explanation there was one revolutionary assump-
tion: light was emitted and absorbed in discrete packets of energy. In 1905 this same
hypothesis was used by Albert Einstein to explain the photoelectric effect. These two
events eventually led to the birth of quantum mechanics and its concept of wave–
particle duality, as well as to coining the idea of “photon”. The quantum theory of
light began in the 1920s when Paul Dirac introduced a full quantum description of
light andmatter [4], laying the foundations of the theory of quantum electrodynamics
(QED). This stands as one of the most successful scientific theories in history, and
its understanding soon brought a plethora of technological development and applica-
tions, such as the laser [5], nowadays a basic tool in medicine, industry, and scientific
research among others, or the charge-coupled device (CCD) [6], central for digital
imaging.

In the following decades, fundamental research and innovative experimental tech-
niques allowed humanity to efficiently control light and matter at the nanoscale. This
lead to the dawn of nanophotonics, which has emerged as a dynamic and prolific
research area with the promise of a next generation of photonic devices [7]. Opportu-
nities of avant-garde technology arise thanks to achievements such as superresolution
microscopy [8], the discovery of metamaterials [9], improved solar cells [10], and
nanolitography [11, 12], to cite just a few. Many of the different areas of nanopho-
tonics have as a common ingredient the manipulation of the electromagnetic field
at the nanoscale. Of particular interest to this thesis is the tailoring of EM fields to
achieve strong interactions between light and matter. With this it is possible to enter
the strong coupling regime, where light and matter become profoundly mixed. The
excitations of such a hybrid system do not have a purely material or light nature, but
rather they inherit properties of both constituents, giving rise to unusual phenomena.
These novel excitations (which often can be understood as emerging quasiparticles)
are known as polaritons, and constitute a promising pathway towards engineering
novel materials [13].

One crucial realization of strong coupling is achieved with organic matter [14].
This has attracted a lot of interest in the last decades due to the possibility of achiev-
ing very strong interactions even at room temperature, a limit in which quantum
features often are washed away by thermal fluctuations. Furthermore, in these mate-
rials strong coupling offers an efficient and elegant pathway to shape the material
and chemical properties of organic molecules [15]. The work developed in this the-
sis constitutes a comprehensive theoretical study of the manipulation of chemical
properties and reactions in organic materials. This introductory chapter first sum-

2Originally Maxwell’s equations were composed by 20 different expressions. The simplification to
only four equations is credited to Oliver Heaviside.
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marizes the fundamentals of light–matter interaction at the nanoscale, reviewing the
possible experimental platforms to achieve strong coupling with organic molecules.
Then we present a state-of-the-art review of the field which this thesis is focused on:
polaritonic chemistry.

1.2 Strong Light–Matter Coupling

The lengthy development of quantum electrodynamics had plenty of difficulties on its
path. Possibly one of the most notable ones is the appearance of diverging energies in
vacuum, cured by renormalization theory. In simple terms, all measurable parameters
of particles that can couple to the electromagnetic field are unavoidably “dressed” by
local vacuum fluctuations. This effect produces small corrections in energy levels,
first observed byWillis Lamb in the hydrogen spectrum [16].While these corrections
cannot be switched off, they do depend on the electromagnetic environment and can
thus be modified by manipulating the distribution of modes upon imposing physical
limitations to the field, e.g., by placing mirrors or conductors around the atoms. This
was first noted by Purcell [17], who predicted that the rate of spontaneous emission
for a nuclear magnetic moment should be enhanced by restricting the number of
possible EM modes in a resonant electric circuit to only one strong mode. While
the prediction was made for nuclear magnetic moments, the argument is valid for
any kind of quantum emitter3 in resonant cavities. In the consecutive years, several
studies followed dealing with spontaneous emission rates in atoms near metallic
surfaces. Of particular importance is the study by Casimir and Polder [18], where
they discuss how vacuum fluctuations can produce a force between an atom and a
conducting plane.

All of this new theoretical interest marked the birth of cavity quantum electro-
dynamics (CQED) [19]. In a nutshell, the goal of CQED is to isolate a quantum
emitter inside a box so that the effects of the electromagnetic vacuum on the emitter
are observable. This can be achieved by increasing the strength of the interaction
between light and matter. The light–matter coupling strength is of course a relative
concept, and we need to compare it to some energy scale to gauge it. Typically, two
different regimes are considered: the weak and the strong coupling regimes. The
regime of interaction depends on how large the energy scale of the coupling is com-
pared to the decay rate of both the light and matter constituents. In the following, we
offer a simple discussion of such interaction regimes, for a more involved analysis
see Sect. 2.3.

3We generalize this to “quantum emitters”, which may represent any entity that can absorb or emit
light, such as atoms, molecules, quantum dots, nanoparticles, etc.
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Fig. 1.1 The two main regimes of light and matter interaction in QED a weak and b strong
coupling. Left: conceptual sketches of a single two-level quantum emitter (a qubit, the simplest
matter description) in free space, weakly coupled to the EM field, and inside a cavity, strongly
coupled to the cavity EM field. Right: time evolution of the population of the excited state of
the qubit, showing simple spontaneous emission in weak coupling and Rabi oscillations in strong
coupling

1.2.1 Regimes of Interaction Between Light and Matter

When the light–matter energy exchange is slower than the individual decay and
dephasing rates (loss of excitation and quantum coherence respectively) of both ele-
ments, the system is said to be in theweak coupling regime. This is the most common
scenario in nature, where the interaction between material (electronic and nuclear)
and electromagnetic degrees of freedom can be treated perturbatively [20, 21]. This
describes familiar processes such as absorption and emission. The excitation of a
quantum emitter has a non-zero probability to be transmitted to the electromagnetic
field in the form of a photon (spontaneous emission, see Fig. 1.1a). This is translated
in terms of the excited-state lifetime, after which the emitter is said to have emitted
a photon. This is typically described by a theory of open quantum systems [22, 23],
where the emitter is coupled to a dissipative environment representing the contin-
uum of EM modes that surrounds it. The transition probability depends on the local
density of states of the electromagnetic environment of the emitter. Therefore, by
placing the emitter inside a resonant cavity or near a conducting surface it is possible
to control the emission rate via the so-called Purcell effect mentioned above.
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If the relative coupling strength is further increased, the electromagnetic field can
no longer be treated perturbatively, and ultimately the system will enter the strong
coupling regime. Both photons and material excitations have to be treated on equal
footing. The system then will be able to coherently exchange energy between both
constituents. While typically the exponential decay of the excitations masks this
energy exchange as simple emission or absorption phenomena, i.e., the excitation is
transferred from the emitter to the electromagnetic field only once, and vice versa, in
strong coupling an oscillatory behavior will be observed before loss of excitation, as
a rapid series of emission and reabsorption processes (the so-called Rabi oscillations,
see Fig. 1.1b). This population exchange between light and matter indicates that pho-
tons and material excitations are no longer the proper eigenstates of the system [21].
Instead, new hybrid excitations arise, called polaritons. These states can also absorb
and emit light, but at different frequencies than the original emitter, being referred
to upper and lower polaritons, for the larger and smaller energies respectively. The
difference in energy is the so-called Rabi frequency�R, and corresponds to the oscil-
lation frequency of the emission-absorption cycle between the excited emitter and
the photon.

One exceptional feature of strong coupling arises when a collection of emit-
ters interact with the EM field. The entire ensemble collectively interacts with the
field and can be understood as a “giant quantum emitter” with a very large dipole
moment. The frequency of oscillations is enhanced �R = √

N�0, where N is the
number of emitters and �0 is the corresponding single-emitter Rabi frequency. This
phenomenon is known as collective strong coupling, and is a very common approach
to experimentally achieve strong coupling, since coupling strengths of individual
emitters are often too weak to be notable. The collective nature of such systems is
of utmost importance in many strong coupling effects, as it can correlate emitters
that are far away in distance (and therefore not connected) through the EM field.
We note that collective strong coupling and polaritons are not an inherently quan-
tum phenomenon, but they arise when electromagnetic modes interact with classical
Lorentzian (damped) oscillators, leading also to the

√
N enhancement when a large

number of oscillators are present. Indeed, polaritons appeared first in the context
of classical optics as “collective oscillation of polarization charges in the matter”
sustained by interfaces that separate media with permittivities of opposite signs [24,
25].

If the strength of the interactions keeps increasing, the system enters the ultra-
strong coupling (USC) regime, where some additional counter-intuitive effects
emerge. For example, the total number of excitations in the system is not conserved,
which potentially leads to the global ground state of the system to being dressed by the
EM field, even showing purely quantum properties such as squeezing and entangle-
ment [26]. There is no clear agreement on the coupling strength required to consider
the system to be in the USC regime, as it heavily depends on the particular system
[27–31]. However, signatures typically connected to USC usually appear when the
Rabi splitting energy becomes a significant fraction of the transition frequency of
the quantum emitter excited state [32].
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1.2.2 Experimental Strong Coupling Realizations

Up to now we have discussed the regimes of interaction in a very broad fashion,
overlooking the different possibilities to achieve strong coupling in a realistic setup.
Polaritons can be achieved in a wide range of systems of various natures, dimension-
alities, and energy scales. Experiments can routinely achieve polaritons in solid-state
and organic systems, for structures ranging from a few nanometers to milimetric dis-
tances, and for microwaves and ultraviolet light. The fundamental purpose or desired
technological application is ultimately what determines the experimental realization.
For example, some applications may require the device to work in microwave fre-
quencies, such as in the case of superconducting artificial atoms coupled to on-chip
cavities [33–35]. Or perhaps we favor the ability of the system to perform at room
temperature, for which organic polaritons offer a more suitable platform [36–38].
Both the quantum emitter and the EMmode components of the system present funda-
mental advantages and restrictions that shape the possibilities for a particular strong
coupling realization. In the following, we present these conditions and discuss some
examples of possible single-emitter and collective strong coupling systems.

In order to discuss the fundamental limitations of the interaction, it is vital to
analyze the nature of the light–matter coupling strength. As we present in detail in
Chap.2, this depends, to a very good approximation, on the electric field amplitude
of the system at the position r0 of the emitter and the dipole moment of the emitter
[21]:

g(r0) = µ · E(r0). (1.1)

There are two main alternatives to effectively increase the coupling strength in order
to reach the strong coupling regime.4 The first is to efficiently choose the right
quantum emitters, favoring large dipole moments. Note that in quantum mechanics
the dipole moment is an operator, and finding a “large” and “aligned” dipole moment
is not necessarily a straightforward task. For example, a quantum emitter may have
a very small ground-state permanent dipole, but present a huge transition dipole
moment between ground and excited states, making it suitable for strong coupling.
The second approach is to engineer cavities that present very large electric field
amplitudes. This can be achieved by confining the EM field in very small volumes,
as the electric field associated to a EM mode depends on its mode volume as |E| ∼
1/

√
V . We define this in a proper manner in Sect. 2.3; for now let us focus on the

ability of a cavity to concentrate the electric field in very small volumes. Below we
review some examples of experimental strong coupling realizations, focusing first
on some different cavities presently used to tailor the EM field, and then discussing
the variety of possible quantum emitters in which strong coupling is currently viable.

4While not explicitly listed, increasing the emitter density is often the main approach to achieve
strong coupling is some experimental realizations.
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Fig. 1.2 Conceptual depictions of some model structures employed to confine light. a Fabry–Perot
microcavity based on distributed Bragg reflectors. b Three-dimensional photonic crystal. c Surface
plasmon polaritons on a structured metallic surface. d Bow-tie nanoantenna hosting a strongly
localized surface plasmon resonance

1.2.2.1 Examples of EM Cavities

There are two fundamental approaches to experimentally achieve strong coupling by
manipulating the EM environment of the quantum emitters. The first approach is to
minimize the losses of the system so that Rabi oscillations can be observed within
the lifetime of the cavity and the excited state of the emitter. This is based on a very
efficient trapping of light so that a photon inside takes a very long time to exit the
system. The second is to localize the light in tiny volumes, thus increasing the electric
field amplitude and therefore boosting the light–matter coupling. The two methods
are not mutually exclusive; an ideal cavity would incorporate a great confinement of
the EM field while trapping light indefinitely (that is, without loss). Some reviews on
different kinds of cavities can be found in the literature [39–41]. Let us now overview
some examples of cavities that reach the strong coupling regime.

Possibly the simplest structures to achieve strong coupling are the planar micro-
cavities in which two flat mirrors are brought close together so that only a few light
wavelengths can fit in between them. The so-called Fabry–Perot microcavity can trap
light very efficiently in rather large mode volumes (typically above the diffraction
limit, V � λ3

EM, where λEM is the mode wavelength), which often requires using
very large number of emitters to enhance the interaction and achieve measurable
Rabi splittings. Depending on the choice of material for the reflectors we can sort
between metal and distributed Bragg reflector (DBR) microcavities. The former are
easier to fabricate, composed of two parallel layers of a noble metal enclosing the
material laterally. However, the fundamental parameters of the metals limit the effi-
ciency of the cavity by introducing losses. This is greatly improved in the case of



8 1 Introduction

DBR microcavities (see Fig. 1.2a), in which the metal planes are replaced by mul-
tilayers of alternating refractive index materials such that for certain wavelength
ranges the reflectivity is close to unity. This offers very large photon lifetimes, even
reaching hundreds of picoseconds [42]. Planar microcavities offer confinement in
only one direction, while in the other two dimensions the EM modes can be arbi-
trarily extended. Therefore in these cavities photons can be excited with an in-plane
momentum, thus displaying a continuous dispersion relation, which opens a wide
range of possibilities for polariton condensation and superfluidity [43, 44]. A more
intense confinement can be achieved by forming micropillars that exploit total inter-
nal reflection. While this greatly increases the losses, it also offers possibilities of
novel devices that can present exotic features such as topological properties [45].

Photonic crystals [46] can be thought of extensions of the DBR structure to two
and three dimensions. By generating a three-dimensional crystal (see for example
Fig. 1.2b) with the appropriate combination of electromagnetic and electronic band
structure, it is possible to rigorously forbid light propagation and scattering inside.
By then creating a defect in this crystalline structure, light states can be confined
without possibility of escaping, leading to the observation of a Rabi splitting [47].
This would theoretically provide one of the most efficient EM field confinement
with tiny losses, however, current experimental realizations have not demonstrated
this yet. Two-dimensional photonic crystals are presently the most promising option
showing great figures of merit [48].

Plasmonic cavities [41] offer a great alternative to achieve strong coupling, offer-
ing sub-wavelength EM field confinement. In here we will consider two types of
cavities that support plasmons of slightly different nature. The first type consists
on engineered material interfaces which support surface plasmon polaritons (SPPs)
[49, 50]. These arise when external light is coupled to the plasmonic excitations of
a metal surface. Due to the momentum mismatch between surface plasmons in the
metallic surface and light in air, these cannot straightforwardly be excited. Instead, it
is possible to shine light passing through a high-refractive-index prism to the metal
surface. Alternatively, it is possible to incorporate an extra wave vector to the system
by devising a surface with a periodic grating [51] (see scheme in Fig. 1.2c). The
quantum emitters located at the surface will be inside the evanescent field of the
plasmonic mode, which can present very high electric field amplitudes. Experiments
of organic materials on top of these systems have led to strong coupling between
SPPs and electronic excitations [52] and nuclear vibrations [53].

Other plasmonic cavities commonly used in strong coupling are based on localized
surface plasmons (LSPs). These cavities exploit the geometric properties of intricate
metallic structures to achieve the best EMfield confinement in the literature, however
also showing great losses. Strong coupling has been investigated in a plethora of
different cavities hosting LSPs, such as nanorods [54, 55], nanoprisms [37], and
bow-tie nanoantennas [56–58] (see Fig. 1.2d). Recently the single-molecule strong
coupling limit has been achieved at ambient conditions in the nanoparticle-on-mirror
cavity [38], showing a mode volume for the optically active frequency of ∼40nm3.
It even has been found that inside the gap of these cavities, atomic-sized defects can
localize LSPs below one cubic nanometer [59].
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1.2.2.2 Examples of Quantum Emitters

The choice of quantum emitters heavily relies on the desired properties of the strong
coupling realization. As we discussed above, large transition dipole moments favor
larger coupling strengths, which lead to an easier observation of the mode splitting.
Moreover, the binding energy of the material excitation can also affect the condi-
tions of the experiment, since relatively high temperatures can dissociate excitons
with low-energy binding energies (e.g. quantum-well excitons in inorganic semicon-
ductors are typically only supported at cryogenic temperatures). Another important
quality of the emitters is the ability to achieve high densities, since strong coupling
ultimately depends on

√
N/V . Note that the coupling strength increases as∼ 1/

√
V

and the Rabi splitting with ∼ √
N , therefore it is desirable to fit as many quantum

emitters inside the mode volume of the EM field. More parameters that make each
quantum emitter unique and potentially more suitable for achieving robust strong
coupling are their inertness (i.e., chemical stability) or the possibility of manipulat-
ing them in order to fabricate distinct devices. In the following we will review some
strong coupling realizations with different types of quantum emitters (Fig. 1.3).

The first experimental observation of Rabi oscillations was made for sodium
Rydberg atoms inside Fabry–Perot cavities in the microwave domain [62]. Later, a

Fig. 1.3 Examples of different quantum emitters. a A rubidium atom strongly coupled to a
whispering-gallery-mode microresonator, itself coupled to an optical waveguide, as in reference
[60]. b Simplified atomistic structure of an nitrogen-vacancy center in diamond. c DBR micro-
cavity with an inorganic semiconductor quantum well in the center hosting Wannier–Mott excitons
(schematically depicted in zoom).dMonolayer ofWSe2 (a transitionmetal dichalcogenide) coupled
to a photonic crystal cavity, as in reference [61]
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direct observation of the energy splitting in the absorption spectrum was made in
an optical cavity [63], achieving for caesium even single-atom strong coupling [64].
This lead to an elegant and sensitive way to detect single atoms and deterministically
trap atoms near in the cavity [19, 65]. The great distance between the electron and
the nucleus in a Rydberg state makes it possible to have a rather large dipole moment,
achieving ∼1 Debye (D) in these experiments. This makes them highly attractive
as single-photon sources [66]. Nevertheless, the convoluted experimental setups and
required low temperatures for achieving robust strong coupling heavily restricts the
potential of atoms for more sophisticated and practical photonic devices.

The success of CQED in atomic systems quickly brought the attention of the
solid-state physics community [67]. The interest was first focused on inorganic semi-
conductors, where their intrinsic excitations (excitons) played the role of quantum
emitters. These electronic excitations are called Wannier–Mott excitons [68], corre-
lated electron–hole pairs, in many ways similar to hydrogen atoms, characterized by
very large radius and relatively low binding energies. These states were found to be
more stably confined inside quantum wells, quasi-2D regions enclosed by materials
of wider bandgap. Solid-state cavity exciton-polaritons were first demonstrated for
GaAs quantum wells inside Fabry–Perot microcavities [69], which later led to fasci-
nating achievements such as polariton amplification devices [70] and Bose–Einstein
condensation [71].

Quantum wells can be further confined into zero-dimensional systems with a
set of bound and discrete electronic levels. These “artificial atoms” are known as
quantum dots [72, 73], and constitute a central theme in nanotechnology. Other types
of artificial atoms have been demonstrated in vacancy defects in crystals known as
color centers, being nitrogen-vacancy centers in diamond the most commonly used
[74]. In superconducting circuits, Cooper pairs can be quantum confined through
Josephson junctions [75], playing the role of artificial atoms that can be brought into
the strong coupling regime [34]. Due to the great dipole moment present in these
types of qubits, the so-called field of circuit QED presents one of the best platforms
to achieve the ultra-strong coupling regime [35], even achieving the best figures of
merit in ratio coupling vs frequency [76], and one of the most promising ones to use
for quantum computation [33].

In recent years, a new family of materials has emerged as very promising in
the fields of nanotechnology. These are the van der Waals materials [77, 78], het-
erostructures composed of many atomic monolayers bonded by weak van der Waals
interactions. In particular, two-dimensional transition metal dichalcogenides con-
stitute a particularly promising platform for photonic devices [79]. In these rising
materials very robust strong coupling is possible thanks to their large exciton bind-
ing energies, and it has been demonstrated in many different cavity systems such as
DBRs [80], photonic crystals [81], and plasmonic structures [82, 83].

Currently one of the most interesting quantum emitters in nanophotonics are
organic molecules. Among their numerous advantages they offer high photolumi-
nescence quantum yields, very large dipole moments, and great flexibility in the
building of photonic devices [14]. Since organic molecules are the main interest of
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this thesis, in the following we devote an entire subsection to review the field of
strong coupling with organic molecules.

1.2.3 Strong Coupling with Organic Molecules

Organicmolecules are chemical compounds that contain carbon in their composition.
Due to its ability to form chains with other carbon atoms, there is a great variety of
different organicmolecules, ranging from simplemolecules composed of a few atoms
(e.g. methane CH4), to immensely complex molecules such as DNA.

Organic materials still are one of the most interesting platforms to achieve light–
matter strong coupling, even more than 20 years after its first realization in an opti-
cal microcavity [84]. Such materials present very localized excitations, known as
Frenkel excitons [85], characterized by very large binding energies (∼0.1–1eV)
and large transition dipole moments (∼1–5 D), making them optimal for achieving
robust strong coupling at room temperature. In general these excitations correspond
to excited electronic states bound to single molecules inside the material, thus poten-
tially allowing QED devices with single molecules at room temperature, an ideal
scenario for studying quantum optical, nonlinear and saturation effects, such as pho-
ton blockade, previously achieved for atoms at cryogenic temperatures [86].

Another interesting quality of organic molecules is their ability to self-aggregate
into different types of structures thanks to their weak intermolecular forces. Specifi-
cally, molecular aggregates generally present different absorption and emission spec-
tra than the individual molecules they are composed of, potentially red- or blue-
shifting the excitation frequency for J- and H-aggregates respectively [87]. Addi-
tionally, aggregation can further enhance dipole moments, which made J-aggregates
the first class of organic material in which strong emission of polariton states was
achieved at room temperature [88]. Due to the wide variety of molecular aggregates
it is possible to create narrow absorption spectra tuned to the desired optical or near
infrared frequency [89]. This feature is particularly interesting for imitating natural
aggregates [90], such as photosynthetic complexes that present very efficient energy
absorption and transfer [91]. Notably, strong coupling has been achieved with opti-
cally active biomolecules such as β-carotene [92], optical antenna structures in green
sulphure bacteria [93], enhanced green fluorescent proteins [94], and reported even
in living photosynthetic organisms [95].

Besides aggregates, the attractive van der Waals interactions between molecules
can also lead to the formation of well-ordered molecular crystals [96]. In partic-
ular, anthracene crystals have been used to achieve strong coupling in the optical
regime [97], and even room temperature lasing [36]. The latter achievement was
done with a single anthracene crystal, motivated by the belief that strong structural
and energetic disorder was the reason previous attempts at lasing did not succeed.
However, later experiments demonstrated that it could be accomplished in amorphous
small molecule and polymer films [98, 99]. These experiments demonstrated that
molecular disorder, intrinsic to many organic material realizations, is not necessarily
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detrimental for organic polariton device fabrications, as it was previously thought.
From a practical standpoint, it is easier to manufacture anything in a disordered state
than in an ordered one, making organic materials possibly more advantageous [13].

The versatility of organic molecules has lead to strong coupling experiments in a
wide variety of electromagnetic modes such as planar microcavity photons [84, 100–
103], surface plasmon polaritons [52, 104–106], surface lattice resonances [107–
109], localized surface plasmons [37, 38, 110], and even inside photonic crystals
[111]. In the case of localized surface plasmon structures, organic molecules allow
to reach strong coupling at the single-emitter level even at room temperature [38,
58, 112], an impressive achievement that promotes the technological development of
room-temperature quantum devices. Among other important accomplishments not
mentioned above are devices that present polariton–polariton nonlinear interactions
[99], nonlinear optical responses [113, 114], and even broadband polariton lasing
[115] and polariton-based transistors [116], both at room temperature. Furthermore,
strong coupling constitutes a promising solution in material science. It has been
demonstrated that it enables the possibility of tuning the work function of organic
materials [117], enhancing electrical conductance [118, 119], improving propagation
lengths of energy transport (typically of a few nanometers [120]) by several orders of
magnitude [121–123], and using organic polaritons to harvest and direct excitations
by tuning the cavitymode [124]. Organic systems present also an interesting platform
to achieve energy transport between spatially separated molecules [125–128], thanks
to nonlocal interactions induced by the cavity.

One unique aspect of organic materials is their internal complexity, apparent in
Fig. 1.4a. Typically, organic molecules encompass tens to hundreds of atoms, form-
ing rich structures that involve motion of both electrons and nuclei. Such abundance
of degrees of freedom (DoF) opens new pathways for the electronic excitations to

Fig. 1.4 Complexity of organic molecules. a Depiction of a rhodamine 6G molecule, commonly
used for achieving organic polaritons. b Conceptual example of energy dependence with nuclear
coordinates q1 and q2 of the first two electronic states (S0 and S1) of an organic molecule. These,
in general, multidimensional hypersurfaces are known as potential energy surfaces. Typical energy
landscapes have a dependence on many nuclear degrees of freedom and present multiple electronic
states



1.2 Strong Light–Matter Coupling 13

relax (see an schematic of a typical energy dependence with nuclear coordinates
in Fig. 1.4b). For example, the molecule can lose the excitation nonradiatively, i.e.,
without emitting a photon of the exciton frequency, but rather converting the energy
into vibrational or rotational motion of the nuclei, i.e., essentially heat. Together with
the high level of disorder in organic systems, the rates of dissipation and dephasing
become more relevant than in their inorganic counterpart. Furthermore, the interac-
tion between electronic and nuclear DoF (also known as vibronic coupling) becomes
crucial to explain central features of organic molecules such as the Stokes shift, the
difference in energy between absorption and emission spectra.

However, it should be noted that due to the highmass difference between electrons
and nuclei, nuclear motion is usually much slower than electronic motion, leading to
vibrational modes of lower energy,5 typically in the mid-infrared spectral region. In
some cases, the absorption intensity of certain nuclear bonds is very high, indicating
large transition dipole moments [129]. For example, the C=O bond-stretching mode
presents a dipole of ∼1 D [130] making it suitable for strong coupling. Indeed, this
nuclear bond was exploited to achieve strong coupling with infrared modes, first in a
polyvinyl acetate polymer [131] and in polymethyl methacrylate [132], even achiev-
ing in the latter spatial control over the coupling of vibrations [133]. Additionally,
vibrational strong coupling of different molecules and functional groups in the liquid
phase was later demonstrated [134].

The acknowledgment of this internal structure led to some pioneering experi-
ments in which the nuclear DoF were exploited. In particular, the structure of some
molecules can be altered, which in turn changed the energy of electronic excitation.
This allows to turn on and off strong coupling by changing the molecular structure
externally and thus detuning the exciton energy from the cavity mode. This was
first achieved for a reaction of a porphyrin dye with nitrogen dioxide, which can be
reversed through heating of the system [135]. Then, by using the molecule spiropy-
ran, which can undergo reversible change to its isomer merocyanine by externally
radiating with UV light [100]. Remarkably, it was shown that in this same setup
strong coupling could be used to modify the photoisomerization reaction time from
one species to another [136, 137]. Analogous experiments with strong coupling in
a perovskite salt demonstrated that the energy barrier of a phase transition could be
modified by cavity fields [138]. These experiments demonstrated that the internal
structure does not only play a mayor role in organic polaritons, but that it can be
exploited to modify the chemistry of a system.

5Rotational modes have an even lower energy, and are typically not resolved in spectroscopy mea-
surements, being thus reduced to giving fine structure to the vibrational modes. Therefore, usually
these two modes are jointly referred to rovibrational modes.
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1.3 Polaritonic Chemistry: State of the Art

Although the first realization of strong coupling with organic molecules was more
than 20 years ago [84], it is only during the last few years that chemical aspects have
begun to be explored. Indeed, many experimental works have reported chemical
modifications inside cavities [117, 125, 136, 139–142], and much theoretical effort
has been devoted to develop an adequate theory of polaritonic chemistry [143–150].
This young—but rapidly growing—field might open the doors to the next gener-
ation of polaritonic devices, paving the way towards completely tunable materials
whose properties can be controlled for, e.g., optical sensing or energy harvesting
applications, among others.

By placing an organicmaterial in a suitable cavity it is possible to bring the system
into the strong coupling regime. The molecules and the electromagnetic vacuum are
coupled without the need of an external input of energy (as is the case with strong
lasers [151]). Thanks to the large dipole moments of organic molecules, it is possible
to achieve huge Rabi splittings, completely reshaping the energy structure of the
system. This opens the possibility of altering the chemical properties and reactivity
of a material, bypassing energy-consuming alternatives such as synthetic material
design or control through a large external energy input (e.g., strong lasers or large
temperatures).

In strong coupling, the molecules plus the cavity must be thought of a single
entity with its own distinct energy levels. It is thus intuitively obvious that this
in principle should influence processes that normally take place in the molecular
excited state (see in Fig. 1.5 a Jablonski diagram illustrating many of the different
process present in organic molecules). Moreover, strong coupling can also have an
influence on the electronic ground state of molecules, in two different ways: by

Fig. 1.5 Jablonski diagram depicting the possible processes typically present in organic molecules.
Electronic states are denoted by their total spin (S for singlet and T for triplet) and are schematically
represented by their rovibrational structure. Straight arrows represent events in which single optical
photons are transferred, while wavy arrows depict processes in which energy is transmitted in the
form of nuclear motion of the molecule and/or its environment
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reaching electronic ultra-strong coupling, where molecule–cavity interactions can
potentially “dress” the molecular ground state, and by achieving vibrational strong
coupling with ground-state rovibrational states. We therefore separate the discussion
of polaritonic chemistry by modifications of electronic excited state chemistry, and
modifications of the ground state. In the following we review the experimental and
theoretical efforts crucial to the early development of both of these scenarios.

1.3.1 Manipulating Excited-State Processes

The first experimental observation of chemical reactivity being modified in a cavity
was done by Hutchison et al. [136] for a photoisomerization reaction. The process
was observed in a spiropyran molecule, which undergoes ring opening after UV pho-
toexcitation to form merocyanine, and the inverse reaction is achieved by thermal
means. Spiropyran absorbs 330nm light while merocyanine has an absorption max-
imum at 560nm, which is resonant with the Fabry–Perot cavity the molecules are
embedded in. Therefore, most of the product molecules are in the strong coupling
regime, achieving a Rabi splitting of 700 meV. The authors observe a slow down of
the rate of growth of the merocyanine concentration when measured inside the cav-
ity on resonance. The larger the Rabi splitting, the slower the overall reaction is. By
altering the energy landscape of the excited-state process, they observed a decrease
of the reaction rate. While the system was in the ultra-strong coupling regime (in
which the ground state can also be influenced by the cavity), they did not see any
change in the thermally-driven back-reaction from merocyanine to spiropyran.

This experiment sparked many theoretical studies aiming to understand this phe-
nomenon. At the time, most existing theoretical models were based on oversimpli-
fied descriptions, treating organic molecules as two-level systems. The presence of
a more complex internal structure was generally ignored. However, some models
took this into account by means of an open quantum systems theory (e.g., Lind-
blad theory [152]), that is, by assuming that rovibrational modes act like a ther-
malized bath that induces decay and dephasing on the molecular excitations. The
most sophisticated descriptions explicitly treated single vibrational modes as har-
monic oscillators around the equilibrium configuration. This model, the so-called
Holstein–Tavis–Cummings model [153–155], was early used by Herrera and Spano
to predict an enhancement of intramolecular electron transfer in collective strong
coupling [156]. The authors discuss the mechanism of polaron decoupling, in which
the electronic–nuclear interactions vanish in the thermodynamic limit. This model is
a good approximationwhen the system is close to the equilibrium,which is decidedly
not the case in an excited-state chemical reaction where the initial and final nuclear
configurations are so different.

Strong coupling is a phenomenon typically studied from the point of view of
quantum optics, a field of research that emphasizes the use of simple descriptions to
study highly controllable systems. Organic polaritons were often viewed as a means
to modify light, and little attention was paid to the intrinsic material properties. The
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first theory that embraced the complexity of organic systems with the aim to study
molecularmodifications in strong couplingwas developed in [143], one of the studies
that we focus on Chap.3 of this thesis. In this work we aim for a microscopic descrip-
tion of the molecules, fully including their nuclear degrees of freedom. Because of
the difficulty of such a task, we treated simple model molecules which could be
fully solvable, and analyzed the validity of the Born–Openheimmer approximation,
widely-used in chemistry. A related approach was soon after used by Kowalweski et
al., in which they analyzed the important nonadiabatic dynamics that emerge in the
single-excitation subspace in strong coupling [157, 158]. This method can be inter-
faced with state-of-the-art quantum chemistry approaches, achieving great accuracy
and low computational cost without sacrificing the description of all the internal
degrees of freedom [159].

An additional theoreticalworkwasmade byFlick et al. [147],where they analyzed
matter–photon interactions from the point of view of a quantum-electrodynamical
density-functional theory [160]. They demonstrate the potential of this powerful
idea to calculate chemical quantities such as bond lengths, nonadiabatic couplings, or
absorption spectra. Themain challenge of this approach is finding suitable functionals
that describe electron–nucleus–photon interactions based on the electron–photon
density. It is also of great importance to this thesis (see Chap. 6) the cavity Born–
Oppenheimer approximation [148], one of the possible adiabatic approximations
that can be performed in an electron–nucleus–photon system. More ideas related to
the quantum-electrodynamical density-functional theory were later further explored
[161, 162], including additional insight into the intramolecular charge and energy
transfer mechanics in strong coupling [163].

Up to nowmost of themicroscopic descriptions mentioned above treated in some-
what detail the electronic and nuclear degrees of freedom such that no more that one
or a few molecules could be considered simultaneously due to the exponential com-
plexity of such computational task. Nevertheless, despite the potential of organic
molecules, nowadays most strong coupling realizations consist on huge number of
emitters. In this context, we extended the theory developed in [143] so that we can
treat macroscopic number of molecules in terms of the concept of polaritonic poten-
tial energy surfaces [146], a generalization to light–matter system of the ubiquitous
potential energy surfaces of chemistry. This theory is part of the focus of Chap.4
of this thesis. Based on this, we published a theoretical work [164] in which a large
collection of photoisomerizable molecules were studied. In particular we introduced
a model that represented molecules such as stilbene, azobenzene, or rhodopsin, and
studied the single-molecule dynamics and the energy landscape for collective strong
coupling. In this study, presented in detail in Chap.5, we predict a suppression of
the reaction that grows more effective with the number of molecules. This effect is
a generalization to any kind of energy landscape of the polaron decoupling effect
described in [156]. Another collective effect is described in [165] (see Chap.5),
where we discuss the possibilities in polaritonic chemistry of opening new reaction
pathways, previously not possible in standard chemistry, without relying on very
specific conditions, such as in the case of singlet fission processes [166, 167].
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The potential of this theory has been demonstrated by treating big molecular sys-
tems usingwell-known approaches such asQM/MM(quantummechanics/molecular
mechanics) [168, 169]. This accurate technique allows the simulation of realistic
experiments while providing detailed insight at the atomistic level. Such method
naturally includes nonradiative processes that contributes to the loss of excitation
of the molecules, and spontaneous emission of the cavity photon can be straight-
forwardly added. These processes are often very important in strong coupling with
organic molecules, and thus are incorporated in some other descriptions that do not
treat explicitly the molecular complexity. For instance, despite it only treating elec-
tronic states close to the equilibrium, the aforementionedHolstein–Tavis–Cummings
model has been used to theoretically predict polariton-assisted singlet fission [170].

Let us address more recent experiments dealing with polaritonic chemistry of the
electronic excited state. One important landmarkwas achieved recently byMunkhbat
et al., in an experiment demonstrating suppression of photobleaching of organic
molecules [141]. In this process, amolecule can transfer its excitation from the singlet
to the long-lived triplet state (see Fig. 1.5). In this state there is a higher probability
of reacting with the atmospheric triplet oxygen (3O2), leading to chemically unstable
species that can damage the photo-active organic molecules [171]. In this experiment
it was demonstrated that because of the cavity hybridization of the singlet state,
this inherited the short lifetime of the plasmonic modes it was coupled to. This
significantly reduced the population transfer to the triplet state, which is the first step
of this detrimental process, therefore strongly suppressing the overall photobleaching
reaction. Another similar experiment was achieved for the polymer P3HT in a Fabry–
Perot cavity, where a threefold reduction of molecular photodegradation is observed
[172]. Finally, we note the possibility of using polaritonic chemistry to manipulate
the so-called reverse intersystem crossing, that is, the transfer from triplet to singlet
states, which has been studied in some experiments and recently discussed [173,
174].

1.3.2 Ground State Chemistry in a Cavity

Most of the research of polaritonic chemistry up to now has been devoted to influ-
encing excited-state reactions and structure via electronic strong coupling. Despite
the big relevance of these processes, most common chemical reactions occur in the
electronic ground state and are triggered by thermal fluctuations, i.e., the energy con-
tained in the internal motion of the participating molecules is used to overcome the
transition state of a reaction. The difference in energy between the reactant state and
the transition state is known as activation energy or energy barrier, and its manipu-
lation is one of the main challenges in modern chemistry, for example, by applying
external mechanical forces [175] or electric fields [176]. In the context of cavity-
modified chemistry, the modification of the ground-state energy barrier was first
analyzed for electronic ultra-strong coupling. In the original work of Hutchison et
al., the ground-state back-reaction frommerocyanine to spiropyran is thermally acti-
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vated, but the authors did not observe any modification in strong coupling [136].
Indeed, subsequent theoretical studies confirmed that even in the ultra-strong cou-
pling regime for electronic transitions, the ground-state effects are on the order of the
single-molecule coupling, i.e., they are not influenced by collective strong coupling
[31, 143].

More recently, a number of experiments reported changes in ground-state chemi-
cal reactivity, not by exploiting the usual electronic strong coupling, but by tailoring
cavities that couple to the desired molecular vibrations [139, 140, 142, 177]. The
first observation in 2016 by Thomas et al. reported up to a ∼5-fold decrease of the
reaction rate of a alkynylsilane deprotection process by strongly coupling the Si–C
stretching mode to a infrared cavity [139]. Following experiments achieved strong
coupling catalysis, i.e., increments in the reaction rate. First, by achieving ultra-
strong coupling with the O–H stretching mode in water, rate increments of 102 and
104 were achieved for two different hydrolysis reactions [140]. Then, by inducing
strong coupling in a C=O bond, present both in the reacting molecule and the sur-
rounding solvent, an increase of the reaction rate of over one order of magnitude has
been reported [177].

An experiment of particular relevance is achieved again by Thomas et al. [142]. In
this work the authors aim to recover the idea of “mode-selective chemistry” that was
so prominent in the 1980s. The original idea was to externally excite specific infrared
vibrational modes in order to induce thermally-drive chemical reactions [178]. How-
ever, the abundance of rovibrational states at thermal energies that competed with the
selected mode made the realization of this idea only feasible at cryogenic tempera-
tures, where relaxation processes were minimized. In this recent experimental study
the branching ratio between two different products is modified when the system is
in vibrational strong coupling. Not only the reaction rate is modified, but the final
outcome of the reaction is changed inside a cavity. It should be emphasized that all
of these experiments take place in the dark; there is no explicit input of energy, other
than the intrinsic temperature of the sample.

At the time of writing of this thesis, current theoretical approaches do not explain
these experiments, and many question remain unanswered. The work in [149] con-
stitutes the first attempt for a microscopic description of ground-state reactivity in
strong coupling. This theory, which is the focus of Chap.6, explores the chemistry of
ground-state CQED from a fundamental point of view, studying the formally exact
quantum reaction rates and the widely-used transition state theory of chemistry in
the context of strong light–matter interactions. Some predictions of this theory are
discussed in detail in [179], where quantum chemistry methods are used to simulate
realistic reactions in a cavity. In these works we find that the mechanisms that allow
to influence the chemistry of the system are related to Casimir–Polder forces and do
not explain the resonant condition that the experiments discussed above all share.
More recently, a study by Angulo et al. [180] analyzed a particular ground-state
charge transfer reaction in vibrational strong coupling. The reactant and product
states are modeled as harmonic oscillators so that it is possible to generalize the
widely-used Marcus theory to chemical species in vibrational strong coupling. This
theory predicts an increase of the charge transfer rate that is most prominent under
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resonant conditions. However, this is a very specific model in which the reaction
rate cannot possibly be slowed down, contrary to the original experiment of 2016.
Therefore there is still a need to develop a satisfactory theory of molecule–cavity
systems that successfully describes the mechanisms by which chemical reactions
can be altered in the ground-state, so we can predict unusual phenomena and further
design experimental realizations of interest.

1.4 Summary of Contents

This thesis explores from a theoretical point of view the field of polaritonic chemistry
and in general the modification of molecular structure in strong coupling. It is written
so that most concepts are supported with the appropriate theoretical background. In
the following we explain in more detail the structure of this thesis.

InChap.2we lay the fundamental theoretical background onwhich the thesis rests
upon. We start by providing the crucial ingredients to understand the quantization of
the electromagnetic field from Maxwell equations and the Lorentz force, aiming to
achieve a quantum electrodynamical Hamiltonian that includes both light andmatter.
Then, we focus on the material part of this Hamiltonian and overview the theoretical
tools used to treat it, such as theBorn–Oppenheimer approximation, uponwhichmost
modern chemistry is built. Then, we go back to the light–matter Hamiltonian and
focus on the possible treatments when the electromagnetic component is confined to
a cavity. We overview different theoretical descriptions for cavity QED, such as the
ubiquitous Tavis–Cummings model. Finally, we formally introduce the weak and the
strong coupling regime based on a simple model, showing the key features of this
phenomena.

Next, Chap. 3 is devoted to analyze from first principles the molecular structure
in electronic strong coupling. In order to do this we exploit the concepts that we
learned from previous cavity quantum electrodynamics models and try to combine
themwith themolecular description based on theBorn–Oppenheimer approximation.
We study the effects of strong coupling on the nuclear structure of two different
molecules, rhodamine 6G and anthracene, which are reproduced through simplified
theoretical descriptions. In particular, we focus on the validity of this approximation,
discussing the nonadiabatic terms introduced by the photonic degree of freedom.We
compare the absorption spectra for thesemolecules, with andwithout approximation,
for one photonic mode strongly coupled to one and two molecules. In the case of
two molecules, we analyze the nuclear correlations induced by the cavity in both
the polaritonic and dark states. The results of this chapter have been published in
Physical Review X [143].

The Chap.4 is devoted to the theory of polaritonic chemistry. We formally intro-
duce the molecular description developed previously into a proper CQED theory.
We develop the concept of polaritonic potential energy surfaces, which generalizes
the ubiquitous potential energy surfaces of chemistry to hybrid light–matter systems.
We discuss this theory, analyzing the physical consequences of such description. In
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particular we consider the effects of collective strong coupling, which are crucial to
understand polaritonic chemistry. These results were published in ACS Photonics
[146].

In Chap.5 we use the theory of polaritonic chemistry to study novel effects of
strong coupling in photochemistry. In particular we study the suppression of a model
photoisomerization reaction thanks to the hybridization between molecules and pho-
tons in a cavity. We present how this effect is remarkably enhanced in the case of
collective strong coupling, leading to an almost complete suppression of the reac-
tion. Additionally, we study another model molecule which after photoabsorption
can isomerize to a different configuration with a quantum yield of less than unity. We
then demonstrate how by tuning the cavity parameters, an increase of the reaction
efficiency to essentially one can be achieved. Furthermore, we show how in the case
of collective strong coupling this can lead to a succession of isomerization reactions
of manymolecules, one after another, by originally radiating the systemwith a single
photon. With this we establish the potential of the delocalized nature of polaritons,
achieving even the breakdown of the second law of photochemistry. The results of
this chapter have been published in Nature Communications [164] and in Physical
Review Letters [165].

Finally, in Chap.6 we introduce the problem of influencing thermally-driven
chemical reactions in the ground state. We study the formally exact quantum reac-
tion rates of a model system, in which can apply the cavity Born–Oppenheimer
approximation. We develop a theory that allows to explain and predict non-resonant
energetic and structural changes to molecules coupled to a quasistatic cavity (e.g.,
metallic structures that can host plasmonic modes). We then validate our theory
by applying it to realistic cavity and molecular systems. We furthermore study the
orientation-dependent collective enhancement of the effect both for the reaction rates
and the nuclear structural changes.We discuss how our theory can directly connected
to well-known van der Waals forces, and more generally, to Casimir–Polder interac-
tions.
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Chapter 2
Theoretical Background

This chapter presents the essential theoretical background necessary to explain some
of themost important concepts discussed throughout this thesis. The aim is to provide
the reader with the basic tools to understand the many fundamental equations and
approximations used in the contexts of cavity quantum electrodynamics (CQED)
and quantum chemistry. We start by addressing the question of what is the quantum
Hamiltonian for the light–matter interaction and illustrating what approximations
play an important role in its definition. We then focus on the matter part of the light–
matter Hamiltonian in order to provide the best possible description of a complex
molecule. In this section we address the Born–Oppenheimer approximation, widely
used inmolecular and solid-state physics and in quantum chemistry. Additionally, we
present the description of different characteristic phenomena of organic molecules
such as chemical structure and reactions, and their response to the electromagnetic
field. Then, we focus on this last part, discussing the important features of CQED
and the different theoretical descriptions that study them. Finally we present the
fundamentals of the two different regimes of light–matter interaction: weak and
strong coupling.

2.1 General Light–Matter Hamiltonian

This section is devoted to introduce the quantum description of light–matter interac-
tion by determining the appropriate Hamiltonian operator. In here we focus only on
the essential ingredients to achieve this; a more detailed description can be found in
the literature [1, 2].

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
J. Galego Pascual, Polaritonic Chemistry, Springer Theses,
https://doi.org/10.1007/978-3-030-48698-3_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48698-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-48698-3_2


30 2 Theoretical Background

2.1.1 Maxwell Equations and Coulomb Gauge

The first step towards quantization of a system of charged particles with the elec-
tromagnetic field is to define the Lagrangian that properly describes the classical
equations of electromagnetism, namely, theMaxwell equations and the Lorentz force
law:

∇ · E = ρ

ε0
, (2.1a)

∇ × E = −∂B
∂t

, (2.1b)

∇ · B = 0, (2.1c)

∇ × B = μ0J + μ0ε0
∂E
∂t

, (2.1d)

mi
∂2ri
∂t2

= qi

[
E(ri) + ∂ri

∂t
× B(ri)

]
. (2.2)

For a collection of charged particles, ρ = ∑
i qiδ(r − ri ) is the charge density and

J = ∑
i qi∂triδ(r − ri ) is the current density. The constants ε0 andμ0 are the vacuum

electric permittivity and the magnetic permeability respectively. E and B are the
electric and magnetic fields, in which we omit the spatial and temporal dependence
(E ≡ E(r, t)) for notational convenience. It is useful to express the electric and
magnetic fields in terms of some new variables, the vector potential A and the scalar
potential φ:

E = −∂A
∂t

− ∇φ, (2.3a)

B = ∇ × A. (2.3b)

With these definitions, equations Eqs. (2.1b) and (2.1c) are automatically satisfied,
while the remaining two Maxwell equations can now be written as:

∇(∇ · A) − ∇2A + 1

c2
∂2A
∂t2

+ 1

c2
∇∂φ

∂t
= μ0J, (2.4a)

∇2φ + ∇ · ∂A
∂t

= − ρ

ε0
, (2.4b)

where c = (ε0μ0)
−1/2 is the vacuum speed of light. Therefore, the two equations

in Eq. (2.4) with the definitions of Eq. (2.3), together with the Lorentz force law in
Eq. (2.2), fully describe classical electromagnetic interactions.

The definition of the vector and scalar potentials given by Eq. (2.3) is not unique,
i.e. these equations remain invariant under the gauge transformations A → A + ∇χ
and φ → φ − ∂tχ, where χ(r, t) is any arbitrary function of space and time. This
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property of the equations of electromagnetism gives us a freedom of choice of the
potentials A and φ without altering the underlying physics. Astute gauge fixing can
greatly simplify the equations of a particular problem. For our purpose we specify
the following condition for the vector potential:

∇ · A = 0. (2.5)

This condition is known as the Coulomb gauge and allows to simplify the equations
to the following set:

∇2A − 1

c2
∂2A
∂t2

= −μ0J − 1

c2
∇∂φ

∂t
, (2.6a)

∇2φ = − ρ

ε0
. (2.6b)

Under this choice, the scalar potential φ satisfies the Poisson’s equation of electro-
statics Eq. (2.6b), and thus it corresponds to the instantaneous electrostatic Coulomb
potential φ(ri) = ∑

j �=i q j/(4πε0|r j − ri |).
Furthermore, according to Helmholtz’s theorem, we can separate the electric

field (E = E⊥ + E‖) into transverse (E⊥) and longitudinal (E‖) components, with
zero divergence and zero curl respectively. The Coulomb gauge gives direct phys-
ical meaning to each component, since by definition, the vector potential is purely
transverse, i.e., A = A⊥, and thus the components of the electric field are given
by E⊥ = −∂tA and E‖ = −∇φ. We can thus separate Maxwell’s equations into
transverse and longitudinal sets, where the first describe radiation and retarded inter-
actions via electromagnetic waves, and the second describe instantaneous Coulomb
interactions between charges. We can use these considerations to simplify further
Eq. (2.6a) and get one single equation for the transversal fields:

∇2A − 1

c2
∂2A
∂t2

= −μ0J⊥, (2.7)

whereHelmholtz’s theorem has also been applied to the current density J = J⊥ + J‖.

2.1.2 Minimal Coupling Hamiltonian

Under the Coulomb gauge we have a clear interpretation of the different sets of
Maxwell equations and we have defined the scalar potential φ. The expressions in
Eqs. (2.2) and (2.7) are enough to describe the light–matter system. Note that these
equations depend only on two independent variables, namely A and ri . We can thus
introduce the following form of Lagrangian:

L =
∑

i

[
1

2
mi ṙ2i + qi ṙi · A(ri ) − qiφ(ri )

]
+ ε0

2

∫
V

dV
[
E2

⊥ + c2B2
]
. (2.8)
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Note that the fields E and B, and the potential φ, are all functionals of r and A and
thus this Lagrangian depends on two independent generalized coordinates and their
time derivatives, {ri , ṙi } and {Ai , Ȧi }. It can be shown that this Lagrangian recovers
the original equations of the light–matter system, Eqs. (2.1) and (2.2), by using the
Euler–Lagrange equation.

Now that we defined the Lagrangian and the relevant variables ri , A for our
system, we construct can the classical light–matter Hamiltonian, defined as H =∑

i Q̇i Pi − L, where the Qi are the generalized canonical coordinates (i.e., our
relevant variables) and Pi = ∂L/∂ Q̇i are their corresponding canonical momenta.
In this case:

pi = ∂L
∂ṙi

= mi ṙi + qiA(ri ), (2.9a)

� = ∂L
∂Ȧ

= ε0Ȧ, (2.9b)

where we can actually identify � as minus the transversal displacement field D⊥ =
−�, due to our choice of gauge where E⊥ = −Ȧ. The Hamiltonian of the system
thus reads

H =
∑

i

[
p − qiA(ri )

]2
2mi

+
∑
i> j

qi q j

4πε0|ri − r j | + ε0

2

∫
V

dV
[
E2

⊥ + c2B2
]
, (2.10)

where the first term accounts for the kinetic energy of the charges and the light–
matter coupling, the second term corresponds to the usual Coulomb instantaneous
interaction, and the third term is the electromagnetic energy of the system. This
Hamiltonian is known as the minimal coupling Hamiltonian. Note that despite it
being expressed explicitly in terms of the electric and magnetic fields, these are
functionals of the canonical coordinates and momenta.

Before proceeding to quantize the Hamiltonian, note that, in general, we can write
the vector potential as an expansion in reciprocal space given by

A(r, t) = 1

(2π)3/2

∫
d3k

∑
λ=1,2

[
Aλ(k, t)eλeik·r + c.c.

]
(2.11)

where eλ are unitary orthogonal vectors representing the two only possible directions
of the purely transversal field. The functions Aλ(k, t) are determined by replacing this
expansion into Eq. (2.7).1 We can also express the canonical momenta in reciprocal
space, which allow us to rewrite the electromagnetic energy of the system as:

1This expression is valid both in the presence and absence of sources. It is worth mentioning that
in the case of the free field it is possible to write each term as Ak,λ(r, t) = Ak,λ(r)e−iω(k)t , where
the Ak,λ(r) satisfy the homogeneous Helmholtz equation (∇2 + k2)Ak,λ(r) = 0. In this case the
explicit time dependence of HEM disappears, as the energy is conserved.
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HEM = ε0

2

∫
d3k

∑
λ=1,2

[
�2

λ(k, t)

ε20
+ c2k2 A2

k(k, t)

]
. (2.12)

Note that the explicit dependence with time of Eq. (2.12) means that the energy of the
electromagnetic field alone is not conserved, but rather the energy of the full coupled
system.

Now, we are ready to quantize the Hamiltonian in Eq. (2.10) by transforming the
coordinates andmomenta into operators. The standard procedure to find the quantum
description from a classical theory is known as canonical quantization. This method
was first introduced in 1926 by Paul Dirac in his PhD thesis [3, 4] and consists on
imposing quantum commutation relations to the canonical Poisson brackets, i.e.,

{riα, p jβ} = δi jδαβ → [
r̂iα, p̂ jβ

] = i�δi jδαβ, (2.13a)

{Aλ(k, t),�λ′(k′, t)} = δλλ′δ(k − k′) →
[

Âλ(k, t), �̂λ′(k′, t)
]

= i�δλλ′δ(k − k′).
(2.13b)

By replacing these new variables in the form of operators in Eqs. (2.10) and (2.12)
we thus find the quantum Hamiltonian of the light–matter system in the Coulomb
gauge. Inspection of Eqs. (2.12) and (2.13b) reveals a clear resemblance with the
quantum harmonic oscillator. This motivates us to introduce the ladder operators

âk,λ(t) =
√

ε0

2�ω(k)

[
ω(k) Âλ(k, t) + i

ε0
�̂λ(k, t)

]
, (2.14)

which satisfy the bosonic commutation relations, i.e., [âk,λ, âk′,λ′ ] = 0, [â†
k,λ,

â†
k′,λ′ ] = 0, and [âk,λ, â†

k′,λ′ ] = δλλ′δ(k − k′). With this definition we can now obtain
the vector potential operator and its canonical momentum in reciprocal space as
functions of the ladder operators:

Âλ(k, t) =
√

�

2ε0ω(k)

(
âk,λ(t) + â†

k,λ(t)
)

, (2.15a)

�̂λ(k, t) = −i

√
�ω(k)ε0

2

(
âk,λ(t) − â†

k,λ(t)
)

, (2.15b)

and using Eq. (2.11) and the relations between vector potential and electric and
magnetic fields we can obtain the expressions for the field quantum operators in
real space:

Â(r, t) = 1

(2π)3/2

∫
d3k

∑
λ=1,2

√
�

2ε0ω(k)

(
âk,λ(t)ek,λ(r) + H.c.

)
, (2.16a)
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Ê⊥(r, t) = − i

(2π)3/2

∫
d3k

∑
λ=1,2

√
�ω(k)

2ε0

(
âk,λ(t)ek,λ(r) − H.c.

)
, (2.16b)

B̂(r, t) = 1

(2π)3/2

∫
d3k

∑
λ=1,2

√
�

2ε0ω(k)

(
âk,λ(t)

[∇ × ek,λ(r)
] + H.c.

)
,

(2.16c)

where we now have introduced a general spatial dependence on the unitary vectors
ek,λ. We can finally write the full quantum minimal coupling Hamiltonian using
the ladder operators, with now the electromagnetic energy described as a sum of
quantum harmonic oscillators2:

Ĥ =
∑

i

1

2mi

[
p̂i − qi Â(ri )

]2 +
∑
i> j

qi q j

4πε0|r̂i − r̂ j | +
∑
k,λ

�ω(k)

(
â†
kλâkλ + 1

2

)
.

(2.17)

2.1.3 Dipolar Hamiltonian

In the previous section we defined the appropriate quantum operators to describe
the quantum fields and the electromagnetic Hamiltonian in terms of the
standard creation and annihilation operators. However, we did not explicitly
express in those terms the light–matter interaction Hamiltonian, defined as

Ĥ = ∑
i

1
2mi

[
−2qi p̂i · Â(ri ) + q2

i Â
2(ri )

]
in the Coulomb gauge. The choice of

gauge can impact the physical meaning of many magnitudes, the system model-
ing, and the numerical accuracy of the description. For instance, in systems where
great spatial precision is not required, e.g. in dynamical interactions with a laser,
Eq. (2.17) is the most suitable description [1, 5]. However, in most common scenar-
ios in quantum optics the dipole moments of the emitters and the electric field are the
most convenient operators. We devote this section to transform the minimal coupling
Hamiltonian to describe the light–matter interaction in terms of the electric field.

The following treatment is founded on the original theoretical work of Maria
Goeppert-Mayer in 1931 [6], used in the early quantum radiation theory. Thismethod
was then generalized by Power and Zienau in 1959 by completing the description
when light andmatterwhere treated as a closed dynamical system [7]. Finally, in 1971
Woolley developed a more fundamental view of the transformation [8]. This consists
in the unitary transformation of the type Û = e−i Ŝ with the generator operator

2We see that in the vacuum state of the system the energy is E0 = 1
2

∑
k,λ �ω(k). The frequencies

ω(k) have no upper bound, so E0 diverges. However, this is not a problem since expectation values
only depend on energy differences and not absolute energies, so the divergence of the vacuum state
does not appear in any physical observable.
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Ŝ = 1

�

∫
V

d3rP̂(r) · Â(r) (2.18)

where P̂(r) is the polarization field operator of the matter, which may be written in
terms of the electric multipole moments3 [9]:

P̂(r) =
∑

i

μ̂iδ(r − ri ) − Q̂i∇δ(r − ri ) + · · · , (2.19)

where μ̂i = ∑
j q j (r̂i − r̂ j ) and Q̂i = −1/2

∑
j q j (r̂i − r̂ j )(r̂i − r̂ j ) are respec-

tively the dipole and quadrupole moments of a set of charges q j with center of
mass at ri , typically corresponding to atoms or molecules. The transformation
Ĥnew = Û ĤÛ † changes theHamiltonian, withoutmodifying the underlying physics,
into the so-called multipolar Hamiltonian. This is commonly known as the Power–
Zienau–Woolley transformation [1, 2]. In the following we present how each term
of the Hamiltonian is transformed, for a more detailed explanation see [10]:

Û

⎡
⎢⎣∑

i

(
p̂i − qi Â(ri )

)2

2mi

⎤
⎥⎦ Û † =

∑
i

p̂2i
2mi

−
∫

d3rM̂(r) · B̂(r)

+ 1

2

∫
d3r′

∫
d3rB̂(r)Ô(r, r′)B̂(r′),

(2.20a)

Û ĤEMÛ † = ĤEM − 1

ε0

∫
d3rP̂⊥(r) · D̂⊥(r) + 1

2ε0

∫
d3rP̂2

⊥(r), (2.20b)

Û V̂CoulombÛ
† = V̂Coulomb, (2.20c)

where M̂(r) and Ô(r, r′) are the magnetization and dimagnetization fields respec-
tively. The corresponding magnetic and diamagnetic terms are in general not impor-
tant, as their order of magnitude is always smaller than the electric dipole component
and usually only become relevant in high external static magnetic fields. For the pur-
pose of this thesis, we now perform the dipole approximation,4 which consists in
just considering the dipolar term in Eq. (2.19) and neglecting all higher multipoles.
Since the magnetic dipole interaction is of the same order as the electric quadrupole

3The more fundamental definition for the polarization field is P̂(r) = ∑
i, j q( j)

i (ri −
r j )

∫ 1
0 dsδ3

[
r − r j − s(ri − r j )

]
. This is more cumbersome and less intuitive, so we instead

present P̂(r) directly as a multipole expansion. The connection between each expression can be
found in [2].
4This approximation is completely equivalent to the long-wavelength approximation, in which the
charges conforming each dipole are very close compared to the EMwavelength and thus experience
the same fields, i.e. for μ = qiri + q j r j the fields satisfy A(ri ) ≈ A(r j ). This is analogous to
neglect the effects of higher electric multipoles, as they are more significant as the spatial structure
of the collection of charges becomes important.
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one [2], this approximation directly eliminates all magnetic interactions, leading to
the dipolar Hamiltonian:

Ĥ =
∑

i

p̂2i
2mi

+
∑
i> j

qi q j

4πε0|r̂i − r̂ j | − 1

ε0

∑
α

μ̂α · D̂⊥(r) + 1

2ε0

∫
d3rP̂2⊥(r) +

∑
k,λ

�ω(k)â†
kλâkλ, (2.21)

where now P̂(r) ≈ ∑
α μ̂αδ(r − rα) in the dipole approximation. Note that the

indices i , j represent individual charges, while the indexα indicates a single dipole of
a collection of charges. This distinction is particularly relevant in this thesis, where
we will treat collections of molecules that present an electric dipole moment that
depends on the internal degrees of freedom of the molecule.

The Hamiltonian of Eq. (2.21) represents the starting point of most theoretical
descriptions in this thesis. However, in most practical cases direct use of this Hamil-
tonian is very cumbersome and some simplifications are needed. In the next section
we focus on the material part of the Hamiltonian in order to achieve a more conve-
nient description for our purposes. Later, in Sect. 2.3, we will focus our attention on
a different form of the light–matter Hamiltonian that is more appropriate for CQED.

2.2 Molecular Hamiltonian

In this section we will focus on the material part of Eq. (2.21):

Ĥmat =
∑

i

p̂2i
2mi

+
∑
i> j

qi q j

4πε0|r̂i − r̂ j | . (2.22)

As discussed above, the nature of this Coulomb interaction between charges is instan-
taneous, and deals exclusively with the longitudinal part of the electric field, E‖(r).
While Eq. (2.22) is completely general, in this thesis we do not deal with interacting
unbound charges, but rather with interacting bound systems of particles. For the pur-
poses of this thesis, this will represent interacting molecules, but it also may describe
atoms, quantum dots, nanoparticles, etc.

Let us first rewrite the Hamiltonian for this many-body problem in the following
way:

Ĥmat =
∑

i

Ĥ (i)
mol +

∑
i> j

Ĥ (i j)
int , (2.23)

where Ĥ (i)
mol describes the Hamiltonian of a single molecule, and Ĥ (i j)

int the interaction
term between the i-th and j-th molecules.5 In this section we discuss these two
Hamiltonians for the case of neutral organic molecules.

5Note that, depending on the context, we use the indices i and j to represent either individual
charged particles or molecules.
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2.2.1 Born–Oppenheimer Approximation

Let us focus first on the description of a single molecule, for which the Hamiltonian
in Eq. (2.22) is still valid. We can rewrite it in a more convenient way, by separating
explicitly the Ne electrons and the Nn nuclei conforming the molecule:

Ĥmol =
Ne∑

i=1

p̂2i
2me

+
Nn∑
j=1

P̂2
j

2M j
+ V̂ee(r̂i ) + V̂nn(R̂i ) + V̂en(r̂i , R̂ j ), (2.24)

where the interaction potentials are:

V̂ee(r̂i ) = e2

4πε0

Ne∑
i=1

Ne∑
j>i

1

|r̂i − r̂ j | , (2.25a)

V̂nn(R̂i ) = e2

4πε0

Nn∑
i=1

Nn∑
j>i

Zi Z j

|R̂i − R̂ j |
, (2.25b)

V̂en(r̂i , R̂ j ) = − e2

4πε0

Ne∑
i=1

Nn∑
j=1

Z j

|r̂i − R̂ j |
, (2.25c)

where the r̂i and R̂ j with an explicit subindex outside a sum represent the dependence
with the coordinates of all charges. Note that each nucleus can have different masses
Mi and charges Zi , being this completely general for any molecule.

2.2.1.1 Adiabatic Representation

Typically, directly computing the energies and wavefunctions associated with the
Hamiltonian in Eq. (2.24) without approximations is a virtually impossible task for
typical organic molecules. For example, the anthracene molecule has 24 nuclei and
94 electrons, each of them having 3 spatial degrees of freedom, making a total of 354
different variables in the time independent Schrödinger equation. In the followingwe
will discuss the Born–Oppenheimer approximation (BOA), which allows to describe
the molecule in a less complicated manner. This approximation was first proposed
in 1927 by Max Born and J. Robert Oppenheimer [11, 12] and it is still commonly
used in quantum chemistry today. In order to present it, let us first gather terms in
Eq. (2.24) and rewrite it as

Ĥmol =
Nn∑
j=1

P̂2
j

2M j
+ Ĥe(r̂i ;R j ), (2.26)
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where the electronic Hamiltonian Ĥe contains by definition all electronic contribu-
tions and all the nuclear interactions. Since we have separated the nuclear kinetic

energy T̂n = ∑Nn
j=1

P̂2
j

2M j
, the electronic Hamiltonian only depends parametrically on

the nuclear degrees of freedom. Diagonalization of Ĥe yields a set of electronic
eigenstates {�k(R j )} that inherit this parametric dependence and that satisfy

Ĥe(r̂i ;R j )�k(ri ;R j ) = Vk(R j )�k(ri ;R j ), (2.27)

where the Vk(R j ) are the so-called electronic potential energy surfaces (PESs). The
adiabatic wavefunctions {�k(R j )} constitute a complete and orthonormal set. It can
therefore be used as a basis set in which to expand the total wavefunction of the
system

�(ri ,R j ) =
∑

k

χk(R j )�k(ri ;R j ), (2.28)

where the nuclear wavefunctionsχk(R j ) act as expansion coefficients. This is known
as the Born–Huang expansion [13] and it is formally exact when an infinite number
of electronic states are included. Inserting this into the full Schrödinger equation
of the system Ĥmol�(ri ,R j ) = E�(ri ,R j ) leads to the set of coupled differential
equations

[
T̂n + Vk(R j )

]
χk(R j ) +

∑
k ′

�̂kk ′(R j )χk ′(R j ) = Eχk(R j ), (2.29)

where the operator �̂kk ′(R j ) = 〈�k(ri ;R j )|T̂n|�k ′(ri ;R j )〉ri − T̂nδkk ′ accounts for
nonadiabatic couplings between the different PESs, describing the dynamical inter-
action between electronic and nuclear motion. The subindex ri represents integration
over all the electronic degrees of freedom.

The Born–Oppenheimer approximation consists now in describing the full wave-
function of the system by the ansatz

�(ri ,R j ) = χk(R j )�k(ri ;R j ), (2.30)

i.e., any molecular state is represented by a single product of an adiabatic electronic
state and a nuclear wavefunction. By replacing this in the Schrödinger equation we
get a similar expression to Eq. (2.29) that results in

[
T̂n + Vk(R j ) − �̂kk(R j )

]
χk(R j ) = Eχk(R j ), (2.31)

where �̂(R j ) is now a purely diagonal operator. Although the approximation effec-
tively decouples the nuclear and electronic degrees of freedom, calculating �̂(R j ) is
not generally an easy task. For the sake of clarity let us now consider that all the nuclei
have the same mass M = M j . Then we can rewrite the expression for �̂kk ′(R j ) as
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�̂kk ′(R j ) = 1

2M

(
2F̂kk ′(R j ) · ∇ + Ĝkk ′(R j )

)
, (2.32)

where F̂kk ′(R j ) = 〈�k(R j )|∇�k ′(R j )〉 and Ĝkk ′(R j ) = 〈�k(R j )|∇2�k ′(R j )〉 are
the derivative coupling vector and the scalar coupling respectively. We can now
argue doing an additional adiabatic approximation by neglecting the term�kk(R j ) in
Eq. (2.31). The separability of nuclear and electronic wavefunctions in BOA rests on
the largemass difference between nuclei and electrons. This is reflected in Eq. (2.32),
where it is clear that a large nuclear mass leads to small nonadiabatic couplings.
Therefore, this nonadiabatic term is typically ignored in most calculations, as it is
often too complicated to calculate in organic molecules and represents a negligible
correction to the electronic PESs. Note that this approximation is often known as
the adiabatic approximation. However, the ansatz of Eq. (2.30) is also often called
Born–Huang approximation while neglecting the diagonal nonadiabatic term is the
BOA [14]. Every reference to the BOA throughout this thesis will be referring to the
latter denotation.

Effectively, the BOA considers that the electrons instantaneously adapt to the
nuclear motion so that the energy updates instantly when changing the configuration
of the nuclei. This however only applies for an isolated single electronic state and
can break down when two states come close. This is expressed in the dependence
of the nonadiabatic coupling with F̂kk ′(R j ), which by using the Hellmann–Feynman
theorem can be rewritten as

F̂kk ′(R j ) = 〈�k(R j )|∇Ĥe|�k ′(R j )〉
Vk ′(R j ) − Vk(R j )

. (2.33)

It becomes immediately apparent that the nonadiabatic coupling will increase when
the electronic PESs come close to each other, and even diverge if the energies are
equal. These points of degeneracy are known as conical intersections, and they have
a central role in nonadiabatic transitions [15].

2.2.1.2 Diabatic Representation

While the adiabatic representation is useful for most calculations in organic
molecules, it is still difficult to solve when the nonadiabatic coupling vector F̂kk ′(R j )

is relevant. This nonlocal operator, that describes coupling between electronic states
through nuclearmotion, is not an intuitive quantity toworkwith, and can even present
a singular behavior in the vicinity of intersection between PESs. For these situations
a diabatic basis is more favorable. This is achieved through a unitary transformation
D̂ of the electronic basis set �̃(R j ) = D̂(R j )�(R j ). In general it can be shown [14]
that the equations Eq. (2.29) now read

[
− 1

2M

(
∇ + F̃(R j )

)
+ Ṽ (R j )

]
χ(R j ) = Eχ(R j ). (2.34)
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The diagonal PES matrix has transformed through Ṽ (R j ) = D̂†(R j )V̂ (R j )D̂(R j )

and the transformed nonadiabatic derivative coupling is

F̃(R j ) = D̂†(R j )F̂(R j )D̂(R j ) + D̂†(R j )
(
∇ D̂(R j )

)
. (2.35)

Note that this is general for any kind of unitary transformation to an arbitrary basis.
We can now fix the necessary conditions to transform to the diabatic basis, i.e., one in
which the nonadiabatic couplings in Eq. (2.34) are eliminated. This can be achieved
if the transformation matrix D̂ satisfies the following condition

F̂(R j )D̂(R j ) +
(
∇ D̂(R j )

)
= 0. (2.36)

We can see that for such a transformation F̃(R j ) = 0 and the Schrödinger equation
in the diabatic basis will thus read

[
− 1

2M
∇ + Ṽ (R j )

]
χ(R j ) = Eχ(R j ). (2.37)

In this basis the diabatic PESs significantly change with respect to the adiabatic
picture, and are coupled through the offdiagonal terms Ṽkk ′(R j ), which are much
easier to compute.

One relevant question is whether a pure diabatic basis exists, i.e., does Eq. (2.36)
have in general a solution. The answer is that strictly diabatic states are only possible
in a one-dimensional problem such as a diatomic molecule [16]. The efforts to find
the exact diabatic transformation have thus turned to finding the matrix D̂ such that
F̃(R j ) is not exactly zero, but negligible. The basis set is thus formed by the so-called
quasi-diabatic states, essential for many numerical simulations.

2.2.2 Intermolecular Forces

We now focus on the second part of Eq. (2.23) and calculate the interaction energy
for two different charged systems A and B as schematized in Fig. 2.1. For this it
is particularly useful to describe the systems as two separated charge distributions
ρA(r) and ρB(r) defined as ρα(r) = ∑Nα

i qiδ(r − ri ). The interaction energy reads

VAB = 1

4πε0

∫
d3r

∫
d3r′ ρA(r)ρB(r′)

|r − r′| . (2.38)

If the separation between the center of masses of each distribution, |R̂| = |r̂A − r̂B|
is much larger than the sizes of each distribution, we may expand VAB in a multipole
series with respect to rA and rB, resulting in:
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Fig. 2.1 Scheme of two
interacting charge
distributions in space

V̂AB(R) = 1

4πε0

[
qAqB

|R| + qAμ̂B · eR
|R|2 − qBμ̂A · eR

|R|2

+ μ̂A · μ̂B − 3(μ̂A · eR)(μ̂B · eR)

|R|3 + · · ·
]
, (2.39)

where eR = R/|R| is the unitary vector connecting the two systems, qα is the total
charge of each distribution, and μ̂α = ∫

d3rρα(r̂)(r̂ − r̂α) is the total dipole of each
system.

In the following we only consider neutral molecules as our charge distributions
and we ignore higher order multipoles in the expansion, as their contribution to the
interaction is negligible. Therefore, now the total interaction Hamiltonian between
molecules is purely dipolar:

Ĥdd = 1

4πε0

∑
i> j

μ̂i · μ̂ j − 3(μ̂i · eRi j )(μ̂ j · eRi j )

|Ri j |3 . (2.40)

This interaction gives rise to the well-known van der Waals forces and to Förster res-
onance energy transfer (FRET) between molecules [17–19]. Finally, it is important
to emphasize that this term only accounts for the instantaneous Coulomb interaction,
and that it is mediated by the longitudinal electric near field. For much larger dis-
tances betweenmolecules, a retarded interaction comes into play,6 and its description
requires the full light–matter Hamiltonian.

6This effect emerges because the speed of light is finite.When the information of a particular charge
configuration reaches an emitter situated far away, these charges have already rearranged, so that
the emitter response is no longer in phase. This arises for distances much larger than the wavelength
corresponding to the characteristic absorption frequency of the emitters [20]. In the systems that
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1

2

Fig. 2.2 Some common conceptual energy landscapes in chemistry. a Bond dissociation picture. b
Isomerization scenario between two stable configurations RA and RB. c Two-dimensional ground
state surface with two stable configurations connected by a minimum energy path (light gray line)

2.2.3 Chemical Processes

In here we discuss the relevance of the Born–Oppenheimer approximation in organic
molecules and the wide range of chemical processes these compounds present. The
potential energy surfaces of an organic molecule, or a particular reaction, contain
essential chemical information of the system. However, finding the full energy land-
scape of molecules and reactions is an arduous task due to the great number of
DoF involved, resulting in intricate multi-dimensional hypersurfaces. Furthermore,
most of the nuclear configurations of a molecule do not play a significant role in
any molecular process, so often calculating the full PES landscape is a superfluous
effort. Usually the best strategy is to estimate beforehand which are the relevant
configurations of the molecule. In the following we discuss the relevance of some
points of the PES in chemical processes, as well as introduce some tools that can be
used to obtain chemical information of the system.

Themost relevant points are usually the stationary points of the surfaces. These are
characterized by the condition∇V (R) = 0, and can represent local minima or saddle
points of the PES V (R). The minima describe the equilibrium configurations of the
molecule. Around these points usually a harmonic approximation of the surface is
performed, as depicted in Fig. 2.2a.Here, the ground state PES (blue line) is described
by a Morse potential, Vg(R) = De(1 − eA(R−R0))2, however close to the equilibrium
configuration at R0 it can be approximated by the corresponding quadratic potential
(dashed dark blue line). In this same plot we represent an excited state (orange line)
without a definite minimum. In this conceptual scenario, after photoabsorption, the
molecule would be promoted to this excited state at R0, thus experiencing a force
−∂R Ve(R)|R0 towards a larger R. This is a typical situation in the event of bond
dissociation, where R may represent the bond distance between two nuclei, which
can dissociate after absorption of a photon.

we are concerned with in this thesis, these wavelengths are of the order of hundreds of nanometers,
so we can completely disregard retardation effects when dealing with dipole–dipole interactions.
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Another example for a stationary configuration is the saddle point. This often
represents the transition state configuration in a chemical reaction. Consider for
instance the scenario depicted in the ground-state PES of Fig. 2.2b, where two equiv-
alent equilibrium configurations RA and RB are separated by a local maximum.7

This may describe the reaction between two isomers of the same molecule, i.e., two
different nuclear configurations for the same chemical composition. In the energy
landscape of Fig. 2.2b it is also possible to photoexcite the molecule to trigger a pho-
toisomerization reaction. After absorption, the molecule is in the excited state at RA,
from where it will evolve towards the transition state, where often the nonadiabatic
coupling becomes important, inducing a nonradiative transition to the ground-state
PES. These events often happen close to or through conical intersections, as presented
in Sect. 2.2. In nonradiative transitions the molecule evolves roughly following the
diabatic surfaces, represented as dashed lines in Fig. 2.2b. In Chap.5 we study an
example of a photochemical reactionwhere diabatic surfaces become certainly useful
to study dynamics after photoexcitation.

In the two previous examples we restrict the picture to one-dimensional PESs,
but as already mentioned, often this is not the case in real molecules. The PES
is here used as a conceptual tool that aids to illustrate the analysis of molecular
phenomena. Nevertheless, we can often reduce the dimensionality of the system
PES by finding the appropriate combination of coordinates that describe a particular
process, thus generating an effective PES. See for example the case in Fig. 2.2c,where
a two-dimensional ground-state PES displays two different minima. We can find the
minimum energy path (MEP) between the two (see its projection in light gray). This
combination of R1, R2 is called the reaction coordinate or reaction path. A PES like
the ground state in Fig. 2.2b may be the effective PES of a two-dimensional scenario,
now being R the corresponding reaction coordinate.

Much effort is devoted to develop methods to compute the MEP that can effec-
tively describe a reaction in a multi-dimensional PES [21]. These methods typically
require knowledge of the initial and final configurations of a process, which can be
found with minimization routines such as steepest descent by introducing an initial
estimation as input. This simplification of the PES often can be used to directly cal-
culate the system dynamics [22]. However, it should be noted than in many complex
systems, simulating the actual quantum dynamics of the system can become a rather
crude approximation. If the nuclei move very slowly on the PES they behave approx-
imately classically, and then the MEP can be used to compute classical dynamics of
the reaction.Manymethods use simplified PES to simulate classical dynamics in par-
ticular processes (e.g., the widely-used surface hopping method [23, 24]). However,
often finding the MEP gives information of intermediate states such as transition
states, or metastable configurations. For the sake of illustration, consider that the
two-dimensional PES in Fig. 2.2c represents the ground-state surface of a molecule.
It is possible to obtain the information about the two minima configurations via min-
imization routines and then compute the minimum energy path that connects them.

7Note that while in one dimension the transition state is a local maximum, in general multi-
dimensional scenarios this is a saddle point.
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With this approach, the transition state between the two is apparent, which allows to
compute the energy barrier that separates the two equilibrium configurations.

Energy barriers are central in thermally-driven ground-state chemistry, as it is one
of the magnitudes that govern the reaction rate from one chemical species to another.
In transition state theory (TST) the variance of the rate k of a chemical reaction with
temperature depends on the energy barrier Eb as described by the Eyring equation
(often known as Eyring–Polanyi equation) [25]

k = κ
kBT

h
e− Eb

kBT , (2.41)

where κ is the transmission coefficient, typically considered equal to one if nonadi-
abatic effects are negligible close to the energy barrier. This equation resembles the
well-known empirical Arrhenius equation [26]. However, it should be noted that the
Eyring equation is derived from statistical mechanical arguments. One of the basic
ideas in the development of TST and the Eyring equation is that reaction rates can be
studied by examining the process close to the transition and equilibrium states. This
arises from assuming quasi-equilibrium between reactants and products, where both
states reach a Boltzmann thermal distribution of energies. This fails in short-lived
states where the time to achieve thermal equilibrium is greater than the lifetime of
the state. In these situations TST only gives a rough estimate of the reaction rate.

It should be noted that the Eyring equation arises from classical considerations,
and a rigorous quantum rate theory is required when purely quantum effects become
relevant, such as nonadiabatic couplings, zero-point energy, and tunneling [27]. In
the following we will briefly review an approach based on the correlation function
formalism [28–30] that is used in Chap.6. This states that the rate of a molecular
reaction is given by

k(T ) = 1

Qr(T )

∫ t f →∞

0
C f f (t)dt, (2.42)

where Qr(T ) = tr[exp (−β Ĥ)], with β−1 = kBT , is the time-dependent partition
function of the reactants at temperature T and C f f (t) is the flux-flux autocorrelation
function, defined as

C f f (t) = tr[F̄Û †(tc)F̄Û (tc)]. (2.43)

This correlation function is computed as the trace of a product of operators, where
U (tc) = exp(−i Ĥ tc), with tc = t − iβ/2, is the complex time evolution operator
and F̄ represents the symmetrized flux operator

F̄ = 1

2M

(
P̂ · ∂s(R)

∂R
δ(s) + δ(s)P̂ · ∂s(R)

∂R

)
. (2.44)

Here, P̂ is the nuclear momentum operator and the surface dividing the reactant and
product states is defined by the zeros of the function s = s(R), e.g., the function
s(R) = R corresponds to a dividing surface at R = 0. The flux-flux autocorrelation
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function describes the temporal flux of positive-momenta probability through the
dividing surface of a thermally averaged initial state (which is accounted for by the
thermal part of the Û (tc) operator). Negative values of C f f (t) indicate recrossing of
the dividing surface in the opposite direction, thus contributing to a rate decrease.
Note that this effectively involves generating the full quantum dynamics up to t f ,
as indicated in Eq. (2.42). Nevertheless, relevant purely quantum phenomena, such
as tunneling, take place mostly between times 0 and �β, which corresponds to t f ≈
27 fs for room temperature. Moreover, it is often useful to treat secondary DoF
approximately as, e.g. a thermal bath. In such a scenario it is possible to integrate the
flux-flux autocorrelation function up to the typical dissipation time of the system,
granted that C f f (t f ) ≈ 0.

2.2.4 Response to the Electromagnetic Field

The various effects of the electromagnetic field on organic molecules are crucial to
thework developed in this thesis, not only in order to comprehend polariton formation
but, as discussed above, because some chemical reactions can be triggered by light
absorption or by the presence of external electromagnetic fields. Let us thus present
and discuss in the following some molecular properties related to the coupling to the
electromagnetic field. In the dipolar gauge, the full interaction Hamiltonian is

Ĥint = − 1

ε0

∑
α

μ̂α · D̂⊥(r) + 1

2ε0

∫
d3rP̂2

⊥(r). (2.45)

We see that in these expression the only EM contribution comes from the displace-
ment field D̂⊥(r), and therefore the second term contributes to thematterHamiltonian
by renormalizing its energy.8 Here we only discuss the effect on the molecules of the
dipolar term ∝ μ̂ · Ê⊥(r), which dominates the light–matter interaction. The dipole
moment operator of the molecules becomes of great relevance in this picture. In
general, this operator is defined as

μ̂ = −e
Ne∑
i

r̂i + e
Nn∑
j

Z j R̂ j (2.46)

for a molecule with center of mass at R = 0. The dipole operator in Eq. (2.46) is
expressed in an spatial basis. However, depending on the particular problem, we
might be interested in transforming this operator to an adiabatic (BOA) or diabatic
basis.

8In Sect. 2.3 we analyze the relevance of this termwhen not all EMmodes are explicitly considered.
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2.2.4.1 Molecular Polarizability

When a molecule9 is exposed to an external electric field the charges it is composed
of tend to rearrange in order to minimize the energy. This can alter the properties of
the system, being the electric dipole moment of particular interest. The total dipole
moment in the presence of the electric field can be written in terms of polarizabilities
as

μ = μ0 + αE + 1

2
βE2 + · · · . (2.47)

The term μ0 corresponds to the actual permanent dipole moment of the molecule.
The additional terms are collectively known as the induced dipole moment, and
are characterized by the polarizability α and hyperpolarizabilities of increasingly
higher order (such as β). These are tensors that present larger ranks for increasing
polarizability order. In the following we are going to focus on the lowest-order
modification of the dipole moment, described by the polarizability α, and neglect
any effect of the hyperpolarizabilities.

In many situations the polarizability can be of great importance, such as in
moleculeswith permanent zero dipole, where themain contribution to the response to
an electromagnetic field is given by the polarizability. Moreover, electric fields with
source in other charge distributions may induce dipoles in these molecules so that
they experience an interaction. These interactions are known in general as van der
Waals forces, which are typically weak and short-range but often play a fundamental
role in many diverse fields such as biology or nanotechnology. The polarizability is
also of great importance in macroscopic media, where the relative dielectric constant
depends on the polarizability of the atoms or molecules that constitute the material
through the Clausius–Mossotti relation [31]. Many physical properties of materials
depend on the polarizability, which is central to determine the electronic properties
and structure of atoms, molecules, clusters, etc.

In general, the polarizability α is a tensor and depends on the frequency ω of
the inducing electric field. A complete derivation of this can be found in [32]. We
now present a derivation and a brief discussion of the scalar and static ground-state
polarizability. Let us first define the polarizability as μ = α · E. To express the
change in interaction energy Eint = −μ · E due to an external electric field, let us
consider the infinitesimal work the electric field has to do in order to induce a dipole

dW = −μ · dE = −(α · E) · dE. (2.48)

By integrating from 0 to E we find the total change in energy

W = −1

2
E · α · E. (2.49)

9In this thesis we are mainly interested in molecules, but this occurs for any set of charges such as
atoms, quantum dots, nanoparticles, etc.
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Let us now find the quantum-mechanical expression for the polarizability by consid-
ering the interacting Hamiltonian

Ĥ = Ĥ0 + Ĥint, (2.50)

where the interaction term Ĥint = −μ̂ · E is treated perturbatively, considering a
small external electric field E. The first-order energy shift will simply be V (1)

0 =
−〈0|μ̂|0〉 · E, which is zero if there is no permanent dipole in the ground state. The
second-order energy shift due to the perturbative potential is thus

V (2)
0 =

∑
i �=0

|〈i |μ̂|0〉|2
V0 − Vi

E2, (2.51)

where Vi = 〈i |Ĥ0|i〉. By comparing the last equation to Eq. (2.49) we find the
quantum-mechanical expression for the scalar and static ground-state polarizabil-
ity

α0(ω = 0) = 2
∑
i �=0

|〈i |μ̂|0〉|2
Vi − V0

. (2.52)

2.2.4.2 Absorption Spectra

In the previous section we restricted our discussion to a very simple picture of the
polarizability. A generalization of this tensor is known as the scattering tensor, which
describes the scattering processes of electromagnetic radiation with particles. In
molecules, we can distinguish between Rayleigh (elastic) and Raman (inelastic)
scatterings. A detailed discussion of scattering in molecules and its connection to the
polarizability tensor is out of the scope of this theoretical introduction. Nevertheless,
for an in-depth explanation the reader may consult chapter two in the book of Bonin
and Kresin [32].

We focus now on the absorptive parts of the scattering process. By using the
optical theorem [33] we find that the frequency-dependent absorption cross section
can be expressed as

σ(ω) = 4πω

c
Im [ f (ω)] , (2.53)

where f (ω) is the scattering amplitude at frequency ω, given by

f (ω) =
∑

k

|〈�k |μ̂|�0〉|2
ωk − ω0 − ω − iεk

, (2.54)

where the sum runs over all eigenstates |�k〉 of the system, being ωk their energy
and εk representing the corresponding linewidth.
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Fig. 2.3 a Typical simplified picture of the energy landscape of an organic molecule with different
processes represented: absorption (dark red arrow), emission (dark blue arrow), and nuclear relax-
ation (dashed black arrows). b Corresponding absorption and emission (fluorescence) spectra for
this model system

Let us review the process of absorption in an organic molecule, schematically
illustrated in Fig. 2.3. Initially the molecule is in the electronic ground state, with the
corresponding nuclear configuration that minimizes the energy. It can then absorb
a photon and be promoted to the first electronic excited state. During this fast tran-
sition process the nuclear configuration is unchanged to a vertical transition,10 as
Fig. 2.3a shows. This means that the nuclear wavefunction remained unchanged from
its ground state shape. However, the equilibrium position in the electronic excited
state is often different that the one in the ground state and the nuclear wavepacket is
not an eigenstate anymore, and will thus evolve on the new PES. Kasha’s rule [34]
states that molecules will quickly relax nonradiatively towards the lowest energy
level, thus changing the configuration of the molecule. Typically this relaxation
occurs in much shorter timescales than the lifetime of the excited state. This greatly
depends on the molecule, but generally relaxation occurs in tens of femtoseconds
up to a picosecond, while excited state lifetimes are of the order of nanoseconds [14,
15, 35, 36]. After this period, emission occurs, also as a vertical transition. Vertical
transitions and internal relaxation results in emission of a photon with different fre-
quency than the absorbed photon, i.e. the molecule is fluorescent. This can be seen in
Fig. 2.3b, where the maximum of the fluorescence (emission) spectrum is different
that the absorption one. This difference is the Stokes shift.

The lifetime of the electronic excited state can be calculated using Fermi’s golden
rule. It describes the transition probability from one eigenstate of a discrete system

10The Franck–Condon principle states that the intensity of a vibronic transition (i.e., a change of
electronic and vibrational states) is directly proportional to the overlap between the corresponding
nuclear wavefunctions. This is based on the assumption of a vertical transition, i.e., that there is
some adiabatic separation between nuclear and electronic timescales, similarly as in the Born–
Oppenheimer approximation.
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to states in a continuum. It was first derived by Paul Dirac [3] using time-dependent
perturbation theory, and the resulting transition probability per unit time to first order
reads

�i→ f = 2π

�
|〈 f |Ĥint|i〉|2ρ(E f ), (2.55)

where, for the case of transition to the continuum of EMmodes in free-space, Ĥint =
−μ̂ · Ê⊥ is the interaction Hamiltonian in the dipole approximation and ρ(E f ) is
the density of final states in the continuum. The lifetime of a vibronic state i can
be calculated by summing Eq. (2.55) over all possible final states | f 〉. In the case of
isolated molecules in free space, this lifetime is often the main contribution to the
linewidths εk of the absorptive scattering amplitude of Eq. (2.54). However, in more
complex systems the molecule unavoidably couples to the environment, leading to
incoherent processes of energy loss and quantum decoherence [36, 37]. In this thesis
we do not apply any open quantum system formalism but instead we analyze and
discuss the effect of losses on the results.

2.3 Cavity Quantum Electrodynamics

The field of CQED has proved that the quantum nature of light can be exploited to
dramatically modify the behavior of coupled light–matter systems. The microcavity
influences the electromagnetic environment so that the interaction between light and
matter can be enhanced, leading to many interesting phenomena. In this section we
analyze the impact of the cavity on the dipolar Hamiltonian in Eq. (2.21), and review
some of the theoretical descriptions used to study strong light–matter coupling.

2.3.1 Electromagnetic Fields in Cavities

The geometrical andmaterial properties of the cavity have an effect on the behavior of
light in different ways. A precise microscopic description would encompass the DoF
of all atoms forming the medium, leading to very high computational cost for most
cavities.11 A more feasible approach is to describe the medium macroscopically,
including the EM response of the cavity material. Typically this can be done by
including the relative permittivity and permeability of the medium, which in general
are complex functions of frequency. However, a naive extension of the quantization
scheme performed in Sect. 2.1 leads to issueswhen dielectrics are included. The usual
plane wave solutions in the Helmholtz equation for free space are now replaced by
damped plane waves, which cannot form the complete set of orthonormal functions

11We note that theoretical efforts in this regard have been made for small plasmonic nanoparticles
using time-dependent density functional theory [38].
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required to quantize the field. In macroscopic QED [39, 40] this is solved by using
creation and annihilation operators with spatial dependence that satisfy the Langevin
noise equation in order to accommodate the losses in the medium [41].

Less involved approaches are possible by not including directly the cavitymedium
in the quantization scheme, but rather approximate it as perfect reflectors that can
modify the boundary conditions of the system. For instance, it may force the system
to display EM standing waves, as in Fabry–Perot cavities [42], or it might strongly
localize the electric field, as in plasmonic nanocavities [43]. This depends on the
properties and nature of the cavity, which generally are encoded in the EM fields. As
discussed in Sect. 2.1, the form and behavior of the fields is governed by theMaxwell
equations. In the following let us focus on two different cavities and analyze how the
Hamiltonian can be altered.

2.3.1.1 CQED in a Planar Cavity

We examine the case of two parallel mirrors of a very large area A situated at z = 0
and z = L with no sources, such that the fields satisfy the homogeneous Helmholtz
equation. The transverse electric field can be thus written as:

Ê⊥(z, t) = −i
∑

k

∑
λ=1,2

√
�ωk

2ε0L A

(
âk,λek,λ − H.c.

)
sin(kzz − ωk t), (2.56)

which describes standing waves, where both the frequency and amplitude can be
tuned by modifying the geometry of the cavity. This directly influences the dipolar
Hamiltonian, in which the light–matter interaction is governed by the transverse
electric field. The set of possible EM states allowed by Eq. (2.56) impacts the density
of states in Eq. (2.55), thus altering the decay rate of material excitations. This is the
so-called Purcell effect and will be discussed in more detail later in this section.

The longitudinal part of the electric field,which describes instantaneousCoulomb-
like interactions, is also modified by the presence of the mirrors. The material charge
distribution inside the cavity can induce a redistribution of charges in the material
of the cavity (e.g. a metallic mirror), which can be easily understood in terms of the
method of image charges. This introduces a new interaction that can be written in
terms of the charge density of the system:

Vimag = 1

2

1

4πε0

∫
d3r

∫
d3s

ρ(r)ρ̃(s)
|r − s| , (2.57)

where ρ̃(s) corresponds to the charge density of the images, which will depend on the
geometry of the cavity. Note the new prefactor 1/2 that we need to add for interaction
between the charge distribution and the induced charge distribution. The intuition
behind this is that as a charge moves a distance dr towards the mirror boundary, the
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image charge gets also dr closer, so the actual work dW required to move a distance
dr corresponds to a standard charge Coulomb interaction that has moved 2dr .

In amirror cavity the induced charge distribution is given by ρ̃(s) = − ∫
d3r′ρ(r′)

δ(s − σr′), where σr′ is the virtual location in the mirror corresponding to the
charge at r′. Interestingly, it can be shown [9] that for this particular example of a
planar cavity the interaction with the images exactly cancels with the longitudinal
polarization density, i.e., 1

2ε0

∫
d3rP̂2

‖(r) + Vimag = 0, and thus the effect of the cavity
is only included in the transversal field of Eq. (2.56). This is not the case for more
general cavities, such as metallic geometries that can host plasmonic modes, where
both the transversal and longitudinal fields are modified.

2.3.1.2 Light–Matter Hamiltonian in the Quasistatic Limit

In order to study the Hamiltonian in a nanoscale cavity such as systems hosting plas-
monic modes, we rewrite the minimal coupling Hamiltonian of Eq. (2.17), explicitly
written in terms of the EM fields:

Ĥ =
∑

i

1

2mi

[
p̂i − qi Â(ri )

]2 +
∑
i> j

qi q j

4πε0|r̂i − r̂ j | + ε0

2

∫
dV

(
Ê2

⊥ + c2B̂2
)

.

(2.58)
The collection of charged particles represented by the first two terms form both the
material part of the cavity and quantum emitters. We now assume that the cavity–
emitter system is well-described within the quasistatic approximation, which applies
when all distances in the problem are significantly smaller than the relevant wave-
lengths. In this limit, the role of the transversal fields is reduced to free-space QED
effects such as Lamb shift and radiative decay, which are not significantly modified
by the presence of the cavity. We therefore assume here that the transversal fields are
negligible, i.e., A = B = E⊥ ≈ 0, and the Hamiltonian simply becomes

Ĥ =
∑

i

p̂2i
2mi

+
∑
i> j

qi q j

4πε0|ri − r j | , (2.59)

with the sums over i and j still including all particles in the (nano)cavity aswell as the
quantum emitters. The Coulomb interaction of the second term contains the longi-
tudinal EM fields. We next separate the particles into several groups: one containing
the cavity material, and one for each emitter. We assume that the cavity material is
“macroscopic” enough that it responds linearly to external fields [39, 40, 44–47],
and can thus be well-described by a collection of bosonic modes with frequencies
ωk and annihilation operators ak (e.g., corresponding to the “instantaneous” plasmon
modes in [47]). The Hamiltonian then becomes

Ĥ =
∑

i

p̂2i
2mi

+
∑
i> j

qi q j

4πε0|ri − r j | +
∑

k

�ωk

(
â†

k âk + 1

2

)
+

∑
k

(âk + â†
k )

∑
j

q j φk(r̂ j ),

(2.60)
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where the first two terms correspond only to the charges associated with the quantum
emitters and not with the cavity. The following two terms correspond to the bosonic
cavitymodes and the interaction of the charges of the emitters (with j running over all
the charges of all the emitters) with the electrostatic potentialφk(r), i.e., the Coulomb
potential corresponding to the charge distribution of each cavitymode.Byperforming
a multipole expansion of the emitter charges, similarly as we did in Sect. 2.2 with
a continuous charge distribution, and assuming that the emitter is uncharged and
sufficiently localized, this term can be well-approximated by μ̂ · Ê(rm), i.e., the
interaction of the emitter dipole with the cavity electric field (the gradient of the
potential) at the position rm of the molecule, which we write as

(âk + â†
k )

∑
j

q jφk(r̂ j ) ≈ E1ph,k(rm) · μ̂(x̂, R̂), (2.61)

where E1ph,k(rm) = E1ph,k(rm)εk , with polarization vector ε, is the single-photon
electric field amplitude.

We note that while we have explicitly treated a (nano)cavity within the qua-
sistatic approximation, in which the cavity fields can be understood as due to the
instantaneous Coulomb interaction between charged particles, it still makes sense
to speak of the cavity modes as electromagnetic or photonic modes with an asso-
ciated electric field. The modes, which physically correspond to, e.g., plasmonic
or phonon-polaritonic resonances, can be seen as strongly confined photons. These
modes are most easily obtained by solving Maxwell’s equations for a given geome-
try, either numerically or with approaches such as transformation optics [48]. Only
in the limit of extremely small nanocavities does it become possible, and sometimes
necessary, to treat them explicitly as a collection of nuclei and electrons using ab
initio techniques [49–51].

2.3.2 Common Theoretical Descriptions

While the dipolar Hamiltonian in Eq. (2.21) includes everything required to fully
solve the cavity–matter system, this is often too complex to be exactly solved. Some
approximations and assumptions are needed to sufficiently simplify the system in
order to treat it. Over the years, this has lead to a plethora of theoretical frameworks
that we can use in order to describe the physics inside a cavity. In the following we
overview some models and approximations that are commonly used in the context
of quantum optics and of particular relevance to the content of this thesis.
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2.3.2.1 Single-Mode Hamiltonian and Dipole Self-energy

The fundamental Hamiltonian of Eq. (2.21) accounts for the light–matter interaction
within the dipole approximation. This couples matter to all electromagnetic modes
of the system, independently of the properties of the cavity. However, in many hybrid
light–matter realizations, the number of relevant electromagneticmodes is reduced to
a few or even only one. For instance, in the example of a planar cavity, the distance L
between the mirrors only allow photon frequencies with a corresponding wavelength
λn = 2L/n, with n = 1, 2, 3 . . . . In many situations it can be safely assumed that
the emitters couple to only one photonic frequency to which they are resonant,
while the effect of the rest of modes is neglected. This is the so-called single-mode
approximation, which is a central assumption for many results of this thesis. The
importance of this consideration in the field of quantum optics has recently attracted
attention, with many studies discussing its validity [52–54].

The assumption of only one photonic mode has a deep impact in the dipolar
Hamiltonian of Eq. (2.21), and its consequences must be studied for the particular
cavity geometry. Again, in the case of a simple planar cavity, where the electric field
is described by Eq. (2.56), the Hamiltonian in the single-mode approximation can be
written as (for the detailed deduction see [55])

Ĥ = �ωcâ†â +
∑

i

Ĥi + Ĥdd +
√

�ωc

2ε0V

(
â† + â

)
eE ·

∑
i

μ̂i + 1

2ε0V

⎛
⎝eE ·

∑
i

μ̂i

⎞
⎠
2

,

(2.62)
where V = L A is the effective volume of the relevantmode, and eE the unitary vector
describing the direction of the electric field. The index i sums over all emitters, which
also have dipole–dipole and dipole–induced-dipole interactions represented by Ĥdd.
The last term is the so-called dipole self-energy term and represents the self-coupling
of the matter to its own field [1, 2, 56]. This coupling is mediated through the
omitted high-frequency EM modes, which effectively can influence relevant dipole
interactions.

The dipole self-energy term often represents only a small constant energy con-
tribution in second-order perturbation theory, and therefore is usually considered
unimportant and is neglected in most common theoretical models in quantum optics.
However, in recent years, its proper inclusion to the light–matter Hamiltonian has
become a very active topic of discussion [52, 54, 56–61]. For instance, it has been
found that when reaching ultra-strong coupling conditions this term is required in
order to fit the theory with the experimental data [62]. Nevertheless, for most strong
coupling realizations this term can be safely removed, and therefore it is not included
in the various theoretical calculations throughout this thesis. Moreover, many strong
coupling realizations rely on nanocavities that achieve very strong field concentra-
tions, such as small plasmon- or phonon-polariton nanoantennas and nanoresonators.
Particularly, these cavities are the only currently available systems that can obtain
few-emitter strong coupling for “real” molecules [63–67]. As discussed above, in
these cavities the light–matter interaction is purely longitudinal and, as it is well-
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known in the literature of macroscopic QED [41], the dipole self-energy term does
not appear when the quantum emitters interact with longitudinal modes. However,
it should be noted that, in this case, Eq. (2.62) is still accurate if the emitter poten-
tial (i.e., φk(r̂ j ) in Eq. (2.61)) is renormalized so that it represents the effect of the
high-frequency modes,12 thus avoiding double counting of modes [55].

2.3.2.2 Tavis–Cummings Model

The single-mode Hamiltonian constitutes the starting point for many theoretical
descriptions of cavity QED. Now we wish to model the interaction of N identical
emitters characterized as two-level systems with a single cavity mode. For simplicity
we assume that there is no direct interaction between the emitters, for example
assuming large distances between them. They only collectively interact with the
cavity mode. In this treatment we disregard terms that often only contribute as global
shifts in energy without affecting the excitation transition mechanism, such as the
permanent dipole of the emitters (〈g|μ̂|g〉 = 0) or the ground-state energies of both
the cavity and the emitters. Finally, from now on, we use atomic units unless stated
otherwise (4πε0 = � = me = e = 1, with electron mass me and elementary charge
e). With these considerations we can write the following Hamiltonian:

Ĥ = ωcâ†â +
N∑
i

[
ωeσ̂

†
i σ̂i + gi

(
σ̂†

i + σ̂i

) (
â† + â

)]
, (2.63)

where we define the creation and annihilation operators for the two-level system

σ̂† = |e〉〈g|, σ̂ = |g〉〈e|. (2.64)

Note that the full light–matter coupling is encoded in the parameter gi = E1ph ·
μeg, which depends both on the single-photon electric field amplitude E1ph and
the transition dipole moment from ground to excited state μeg. Equation (2.63) is
known as the Tavis–Cummings (TC) or Dicke Hamiltonian [68, 69]. For the case of

a planar cavity, the electric field amplitude is given by E1ph =
√

�ωc
2ε0V eE. It is then

straightforward to see that Eq. (2.63) corresponds to the single-mode Hamiltonian
where both the dipole–dipole interactions and the dipole self-energy term have been
neglected.

TheHamiltonian in Eq. (2.63) contains terms that do not conserve the total number
of excitations of the system, namely σ̂†

i â† and σ̂i â. By transforming the Hamiltonian
into the interaction picture, we find that the interaction term now reads

12This also includes the emitter–emitter interactions in the multiple-emitter case.
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Ĥint =
∑

i

gi

[
â†

(
σ̂i e

i(ωc−ωi )t + σ̂†
i ei(ωc+ωi )t

)
+ â

(
σ̂i e

i(−ωc−ωi )t + σ̂†
i ei(−ωc+ωi )t

)]
.

(2.65)
Note that the terms that do not conserve the number of excitations oscillate with
frequencies ωc + ωi , much faster than the detuning frequency δ = ωc − ωi at which
the other terms oscillate. If the couplings gi are small enough the fast dynamics are
not appreciable and quickly average to zero. Neglecting these terms constitutes the
so-called rotating wave approximation (RWA) [1] and the resultingHamiltonian now

conserves the total number of excitations, i.e.
[

Ĥ , n̂
]

= 0 for n̂ = â†â + ∑
i σ̂†

i σ̂i

and

Ĥ = ωcâ†â +
N∑
i

[
ωeσ̂

†
i σ̂i + gi

(
σ̂†

i â + σ̂i â
†
)]

. (2.66)

Since this Hamiltonian conserves the number of excitations, we can analyze the
system within the subspace of interest. We can now analyze the collective effects in
the single-excitation subspace, which determines the linear properties of the system,
e.g. absorption under not too strong driving.13 It is possible to define the collective
operator [70]

Ŝ† = 1√∑N
i g2i

∑
i

gi σ̂
†
i , (2.67)

with which the whole light–matter Hamiltonian can be simply rewritten as

Ĥ = ωcâ†â + ωe Ŝ† Ŝ + �R

2

(
Ŝ†â + Ŝâ†

)
, (2.68)

where we have defined�R = 2
√∑N

i g2i . This quantity is the Rabi splitting, a crucial
magnitude in strong coupling that will be discussed more in depth in the last part
of this section. Note that the collective operators allow us to reduce the system to a
2 × 2 Hamiltonian, analogous to the scenario of a single-emitter coupled to a single
light mode. However in this case, instead of coupling the excited state of one emitter,
we have the so-called bright state defined as |B〉 = Ŝ†|0〉, where |0〉 is the vacuum
state. This superposition of excited states collectively couples to the light mode, and
the resulting eigenstates of the system (the polaritons) are thus a superposition of
bright state and cavity mode. The remaining N − 1 states orthogonal to |B〉 that
Eq. (2.66) include but are not described in Eq. (2.68) are known as dark states, and
are completely uncoupled from the light mode. Even in configurations with many
photonic modes (e.g., planar cavities), more than one emitter state is coupled to
the photonic mode (typically at low in-plane momentum), but there remain many
uncoupled (dark) modes at higher in-plane momentum [71, 72]. These states have
energies identical to the uncoupled emitters, ωDS = ωe, obscuring further the actual

13The exact diagonalization of Eq. (2.63) can be done without invoking the RWA. However, for the
sake of brevity we present the diagonalization within the single-excitation subspace.
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nature of the dark modes, with discussions on whether they are actually affected
by strong coupling, or whether they should be thought of as completely unmodified
emitter states. In this thesis we shed light on this problem by including the internal
rovibrational structure of the molecules in the strong coupling description.

One importance consequence of the TC Hamiltonian is that the Rabi splitting
depends on the sum of all the individual emitter–cavity couplings. If we picture the
simple scenario where we have N identical emitters in a uniform electric field, we
have gi = g for all emitters, and thus �R = 2

√
Ng. The Rabi splitting is enhanced

when an ensemble of emitters collectively interact with the cavity mode. This is one
of the key features of collective strong coupling. The collection of emitters couple
through the bright mode to the cavity with a resulting enhancement of the eigenmode
energy splitting of the system of ∼ √

N . Virtually all current experimental strong
coupling realizations are achieved by collective strong coupling, using large ensem-
bles of emitters, making the density of emitter dipoles one of the key magnitudes in
strong coupling.

2.3.2.3 Extension to More Complex Emitters

The description for the light–matter Hamiltonian discussed above is useful when
the emitters can be well-characterized by two-level systems. In the case of organic
molecules this is not always true, as they present a plethora of various internal
DoF, often resulting in very complex internal structures. Furthermore, this simplified
description becomes useless when trying to describe intricate chemical processes.
When describing molecules, it is necessary to include a more complete description
of the level structure. For instance, the Holstein–Tavis–Cummings Hamiltonian [73–
79] is a generalization of Eq. (2.63) that treats nuclear motion as harmonic oscillator
eigenstates, allowing diagonalization of the full bare-molecule Hamiltonian. This is
especially useful for describing phenomena close to the equilibrium position, where
the electronic PESs are well-characterized by harmonic potentials, and has been
successfully implemented in numerous studies for molecular processes in strong
coupling [80]. However, in some phenomena that are far from equilibrium, such as
in chemical reactions, the assumption of harmonic electronic PES is not valid, and
other methods are necessary.

Another approach consists in extending density functional theory to also include
photonic DoF, leading to a quantum-electrodynamical density functional theory [81–
84]. This would allow for numerically feasible ab initio simulations of complex
correlated light–matter systems, where instead of solving the full matter–photon
wavefunction, a set of approximate self-consistent equations of motion for spe-
cific quantities can be solved. The main challenge of this powerful idea relies on
developing suitable functionals that describe light–matter interactions based on the
electron–photon density.

A more complete description can be achieved by using the Born–Oppenheimer
approximation in molecules. This allows to describe the system as a collection of
independent electronic states characterized by PESs. As discussed in Sect. 2.2, this is
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standard procedure in organicmolecules in chemistry.However, the cavity introduces
newdegrees of freedom that have to be somehow included in this approximation. This
is themain focus of Chaps. 3 and 4, in whichwe discuss how to perform this adiabatic
separation in a light–matter coupled system. We do this by describing photons as
discreteDoF and on equal footing as the electrons of the system, thus separating these
two coordinates together from the nuclei [85]. This allows a similar description to the
one of the Tavis–Cummings Hamiltonian in which we add an explicit dependence on
the nuclear configuration to the molecular energy and transition dipole moment. The
detailed discussion of this theory and the validity of the BOA in electronic strong
coupling are some of the main results of this thesis. The idea is first explored in
Chap.3, where first-principles molecular models are exploited to test the validity of
such adiabatic approximation. Then in Chap.4 we formalize this theory and present
a generalization for an arbitrary number of molecules.

We note that another type of adiabatic separation is possible by treating the pho-
tons on equal footing as the nuclear DoF. In the Born–Opennheimer approximation
this means to treat the photonic mode as a continuous coordinate, and separating it
together with the nuclei from the electronic DoF. This is known as the cavity Born–
Oppenheimer approximation [82, 86], and because the separation is performed with
the low-energy nuclear motion, it works better for ground-state molecules coupled
to low-energy photonic modes such as in vibrational strong coupling. We present
this approximation and discuss its validity in detail in Chap.6.

2.3.3 From Weak to Strong Light–Matter Coupling

Finally, let us discuss the different regimes of light–matter interaction depending
on the strength of the coupling. The rate of energy exchange between the quantum
emitter and the electromagnetic field increases with the coupling, and allows us
to differentiate between two distinct regimes of interaction: the weak and strong
coupling regimes.

2.3.3.1 Weak Coupling Regime and Purcell Effect

In the weak coupling regime the light and matter energy exchange is slower than the
decay rate of one of the constituents. Most light–matter interactions in nature occur
in this regime, where the electromagnetic field is not confined and thus the coupling
strength is very small. This means that the interaction term between quantum emit-
ters and the electromagnetic field can be treated perturbatively and thus approaches
like Fermi’s Golden rule are applicable (see Sect. 2.2). One important consequence
of the presence of the cavity is that it reshapes the density of states of the electromag-
netic environment. This can strongly impact the decay rate given by Fermi’s Golden
rule in Eq. (2.55) by enhancing the spontaneous emission rate of the emitter. This
phenomenon is known as the Purcell effect, in which the lifetime of the emitter is
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decreased by adding an additional decay channel. This can improve emission of the
quantum emitters achieving, e.g., single-photon sources with impressive figures of
merit in the solid state [87].

The modification of the lifetime of the emitter inside the cavity with respect to
outside the cavity is controlled by the Purcell factor τ0/τ ∝ FP [88], a key figure
of merit in nanophotonics. Different cavity-modified electromagnetic environments
lead to different Purcell factors, as FP depends on the properties of the cavity. In
particular, the Purcell factor goes as

FP ∝ Q

Veff
, (2.69)

where Q is the quality factor of the cavity, which quantifies the sharpness of the rele-
vant cavity mode through the ratio between the mode frequency ωc and its linewidth
κc, Q = ωc/κc, and Veff is the effective mode volume corresponding to this same
mode. The quality factor describes how good the cavity is in terms of mode lifetime
τc = 1/κc, i.e., how long it traps a photon. This allows the emitter to potentially
reabsorb a photon it just emitted.

Let us now discuss the light–matter coupling constant g, which is key to character-
ize theweak coupling regime in theoretical frameworks such as the Tavis–Cummings
model (Eq. (2.63)). In general, the coupling constant is directly proportional to the
electric field amplitude and the transition dipole moment of the emitter, and can be
defined as

gk(r) =
√

2πωk

Veff(r)
eE · μeg, (2.70)

for the k-th EM mode. For the particular case of a planar mirror microcavity the
mode volume will be Veff ≈ L A, however in general it can be defined as [89]

Veff(r) =
∫

d3rε(r)|E(r)|2
ε(r)|E(r)|2 , (2.71)

where E(r) is the electric field, and therefore Veff effectively depends on the position
of the emitter. The mode volume represents how confined is the light in the cavity.
In Eq. (2.70) we see that in order to maximize the coupling strength for a particular
frequency ωk we need very large emitter dipoles that align with a very confined
electric field. It should be noted that the normalization integral of Eq. (2.71) formally
diverges for lossy modes and a more general definition should properly take this into
account [47, 90–92].

The light–matter coupling characterizes the energy exchange between light and
matter. The larger g, the shorter this exchange process takes. When this is faster that
the typical lifetime of either constituent, i.e. if g � γ,κc, with γ the linewidth of
the emitter resonance, we enter the strong coupling regime. A photon emitted by the
matter constituent is reabsorbed and re-emitted several times before it finally leaks
out of the cavity. This can be achieved by improving the cavity through an increase
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of Q, i.e., enhancing the lifetime of the EM mode inside the cavity, or by decreasing
Veff , i.e., confining the electric field and thus increasing its strength.14 Therefore the
Purcell factor becomes a very important quantity to optimize for the achievement of
strong coupling. Unfortunately, FP is very difficult to enhance arbitrarily as typically
cavities with smaller mode volumes strongly restrict the quality factor, and vice versa
[42].

2.3.3.2 Strong Coupling: A Simple Picture

In order to analyze the strong coupling regime let us present a very simplified model
in which we consider a single two-level emitter coupled to a single-mode cavity
within the RWA, described by the Jaynes–Cummings model [68], the single-emitter
version of Eq. (2.66).15 Moreover, we will focus on the low-pumping regime so that
we can study only the single-excitation subspace, thus reducing the Hilbert space
of the problem to only two states: an excited emitter |e〉 while the cavity is in the
vacuum state |0〉, and a cavity photon |1〉 while the emitter is in its ground state |g〉.
This leads to the 2 × 2 Hamiltonian in the basis {|e, 0〉, |g, 1〉} that reads

Ĥ =
(

ωe g
g ωc

)
, (2.72)

where g = E1ph · μeg is the coupling constant and E1ph the single-photon electric
field amplitude. As presented above, the losses of the system have a great relevance
in the definition of strong coupling and wewish to include them in this simple model.
From a theoretical point of view, the losses represent external degrees of freedom
not directly represented in our Hamiltonian but that couple to the system and can
irreversibly affect it. We can model this loss of energy by adding an imaginary part
to the energies of each constituent.16 We thus set

ωe = ω0 − iγ/2; ωc = ω0 − iκ/2, (2.73)

where we consider the system to be in resonance at energy ω0. If we now diagonalize
the system we see that the new eigenvalues are

E± = ωe + ωc

2
± 1

2

√
(ωe − ωc)2 + 4|g|2. (2.74)

14Note that this also depends on the choice of quantum emitter, as very large Q factors are not
useful if the emitter has a broader linewidth than the cavity.
15This is equivalent to treating the many-particle TC Hamiltonian with collective operators, thus
representing the coupling between the bright state and the cavity mode.
16This is equivalent to consider a Lindblad master equation approach and neglecting the excitation
refilling terms, making the ground state a population reservoir [93, 94].
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Fig. 2.4 Simple representation of the weak and strong coupling regimes. aReal part of the eigenen-
ergies and b decay rates of the eigenstates (polaritons) of the Hamiltonian as a function of the
coupling strength. c View of the energy splitting in the absorption spectrum for different values of
the coupling strength. d Population dynamics for the stated initiated in the excited emitter state |e〉.
The decay rates are γ/ω0 = 0.04 and κ/ω0 = 0.1

Note that due to the complex energieswe can achieve negative values inside the square
root, so that the eigenenergies E± can experience changes only in the imaginary part,
effectively resulting in a modification of the decay rate.

In Fig. 2.4a, b we represent the new energy and lifetime of the resulting eigen-
states as a function of the coupling g, for γ/ω0 = 0.04 and κ/ω0 = 0.1. These
correspond to the real and imaginary part of E±. We see that initially (blue region)
only the imaginary part is modified while the real part remains unaffected. This is
a basic reproduction of the Purcell effect, where the lifetime τ ∼ 1/γ of the emitter
is decreased in the weak coupling regime. We can see this in the absorption spec-
trum in Fig. 2.4c, reproduced with a sum of Lorentzians, where for small couplings
the width of the peak broadens. In Fig. 2.4d we represent the population dynamics
of the system for the initial state |�(t = 0)〉 = |e〉. This is obtained by solving the
Schrödinger equation i∂t |�(t)〉 = Ĥ |�(t)〉 for Eq. (2.72). For g/ω0 = 0 the emitter
does not interact with the cavity and the population decay is governed by the loss
rate γ. As the coupling increases the decay rate of the emitter is modified and the
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population decays faster to the ground state (see green curve for g/ω0 = 0.01). The
highest emission rate out of the cavity is achieved just before entering the strong
coupling regime [95].

As coupling increases further, we start seeing a splitting in the real part of the ener-
gies, indicating the onset of the strong coupling regime (red region). The new eigen-
states of the system are the upper (+) and lower (−) polaritons. While in Fig. 2.4a
the two states split in energy for small couplings, this cannot be seen in the absorp-
tion spectrum due to the linewidths of each peak. As the coupling is increased, so is
the energy separation and the states are properly resolved in absorption (Fig. 2.4c).
This energy separation E+ − E− = �R is the so-called Rabi splitting, which is the
natural frequency of coherent energy exchange between cavity and emitter. This is
illustrated in the yellow curve of Fig. 2.4d, where a characteristic oscillatory behavior
with frequency �R can be observed for the excited emitter. These are known as Rabi
oscillations, and they are the signature of cavity and emitter exchanging excitation,
indicating that they are no longer the eigenstates of the system [1, 96].

While this an oversimplified description of the phenomenon of strong coupling, it
already captures the key physical elements that characterizes this regime. If no losses
are considered, Rabi oscillations are always observed. However, these are not rea-
sonable scenarios since in realistic systems the criterion of achieving strong coupling
is that the Rabi frequency overcomes the typical decay timescales of the emitter and
the cavity. In experiments the usual criterion for the onset of strong coupling is that
the absorption peaks are well-resolved. Nevertheless, it should be noted that in more
complex systems the crossover between weak and strong coupling regimes may not
be so well-defined. Throughout this thesis we do not explicitly include losses in our
descriptions of light–matter interaction, so we always theoretically achieve eigen-
mode splitting. However, we do not ignore the role of the losses, as we discuss their
effects in our results.

2.4 Summary of Methods Applied in This Thesis

The goal of this final section is to provide a brief summary of some of the methods
and theoretical techniques used throughout this thesis. The fundamental pillar of
most results is the many-molecule Hamiltonian coupled to a light mode:

Ĥ = ωcâ†â +
N∑
i

(
Ĥ (i)

mol + E1ph,i · μ̂i (â
† + â)

)
, (2.75)

where the the dipole–dipole interaction between molecules is usually disregarded,
with the exception of Sect. 6.5. Additionally, we do not include the dipole self-energy
term. For most calculations this can be safely removed, as its contribution is of higher
order than the linear dipolar interaction considered. Moreover, this term does not
appear in the interaction with cavities that can be described within the quasistatic
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approximation, such as plasmonic cavities, so widely used to achieve few-molecule
strong coupling.

In the following two chapters we explore the foundations of a theory of polaritonic
chemistry. In particular, in Chap.3 we analyze the validity of the Born–Oppenheimer
approximation, for which the absorption spectrum of the system in and out of strong
coupling is calculated. This is done by solving the corresponding system Hamil-
tonian and then introducing the resulting eigenstates in the scattering amplitude
of Eq. (2.54). Then, in Chap.4, we directly tackle how to solve the Hamiltonian
in Eq. (2.75) for large number of molecules. This is achieved using collective spin
operators, such as the ones used in the TC model Eq. (2.67).

In Chap.5 we solve again the Hamiltonian in Eq. (2.75) for specific molecular
models that present chemical reactions. In particular, this Hamiltonian is used to
calculate the time evolution of a wavepacket on a PES using the time-independent
Schrödinger equation:

i∂t |ψ(t)〉 = Ĥtot|ψ(t)〉. (2.76)

Furthermore, methods often used in chemistry (see subsection “Chemical processes”
in Sect. 2.2) are exploited in this chapter. For example, in order to explore reaction
pathways, the MEP of the system is calculated using the nudged elastic band method
[97]. Additionally, TST is used to calculate reaction rates in the various processes
analyzed.

Then, in Chap.6we again use Eq. (2.75) for the case of nanoscale cavities. In order
to analyze the reaction rates of a molecular model, we compute the exact quantum
reaction rate of Eq. (2.42), which is formally equivalent to solving Eq. (2.76) for
an averaged thermal distribution as initial state. These rates are also compared to
the ones computed using TST. In the theory we develop we apply the cavity Born–
Oppenheimer approximation [82, 86], and present an extension of the discussion
of the subsection “Born–Oppenheimer approximation” of Sect. 2.2. Furthermore, in
order to calculate the ground state of the system we apply perturbation theory to the
Hamiltonian Eq. (2.75), and we discuss the importance of the static polarizability of
Eq. (2.52).

Finally, we note that in all the following chapters, atomic units (a.u.) are often
used (4πε0 = � = me = e = 1, with electron mass me and elementary charge e). In
particular, spatial DoF such as nuclear coordinates are expressed in atomic units of
length, which are defined as the Bohr radius, i.e., 1 a.u. ≈ 0.529 Å.
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Chapter 3
Molecular Structure in Electronic Strong
Coupling

3.1 Introduction

As introduced in Sect. 1.3, organic molecules were initially used in order to achieve
robust room-temperature strong coupling, and were merely seen as another method
to manipulate light. However, their complex internal structure soon became apparent
in many experiments where nuclear degrees of freedom played a relevant role. The
necessity of a theory of strong coupling that included the rovibrational structure was
undeniable. Such a theory implies having a nucleus–electron–photon coupled system,
in which three different timescales play a role. In Sect. 2.3 we have reviewed different
attempts to treat such systems, but that lacked the potential to describe complex
processes such as chemical reactions. This can be achieved by exploiting the usual
picture of potential energy surfaces (PES), sowidely-used in chemistry.However, this
approach faces the challenge of separating not only electronic and nuclear DoF, but
also the photonic one. In herewe study in detail the validity of theBorn–Oppenheimer
approximation formolecule–cavity systems. In order to do that,we introduce a simple
first-principles model that fully describes nuclear, electronic, and photonic degrees
of freedom, but can be solved without approximations. This allows us to provide a
simple picture for understanding the induced modifications of molecular structure.
This enables us to analyze the validity of standard approximations in chemistry for
our light–matter Hamiltonian.

In Sect. 3.2, after introducing themodel, we discuss under which conditions and in
which form the Born–Oppenheimer approximation (BOA) [1, 2] is valid in the strong
coupling regime for a single molecule. The BOA is widely used in molecular and
solid state physics and quantum chemistry, and provides a simple picture of nuclei
moving on effective potential energy surfaces generated by the electrons, which
underlies most of the current understanding of chemical reactions [2]. However, the
BOA depends on the separation of electronic and nuclear energy scales, i.e., the
fact that electrons typically move much faster than nuclei. It could thus conceivably
break down when an additional, intermediate timescale is introduced under strong
coupling to an EMmode. The speed of energy exchange between field andmolecules
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is determined by the Rabi frequency�R, and typical experimental values of hundreds
of meV land squarely between typical nuclear (�100 meV) and electronic (�2 eV)
energies. We show that the BOA indeed breaks down at intermediate Rabi splittings,
but remains validwhen�R becomes large enough. For caseswhere it breaks down,we
show that the nonadiabatic coupling terms can be obtained to a good approximation
without requiring knowledge of the electronic wave functions.

In Sect. 3.3, we focus on the effects of strong coupling when more than one
molecule is involved, using two molecules as the simplest test case. In experiments,
strong coupling is achieved by collective coupling to a large number of molecules,
under which the Rabi frequency is enhanced by a factor of

√
N . Despite the fact that

strong coupling at the single-molecule level has already been achieved experimen-
tally [3], in most cavities the number of molecules is usually much larger, from a
few hundred in nanoparticles hosting LSPs [4], to �105 within planar microcavities
[5–8]. In this context, it is well known that only a small fraction of the collective
electronic excitations are strongly coupled [9–11], with a large number of “dark” or
“uncoupled” modes that show no mixing with the EMmode and no energy shift. We
show that even these dark modes are affected by strong coupling, with the nuclear
motion of separated molecules becoming correlated. This has later been proven to
be of great relevance in exciton transport [12, 13].

3.2 Single Molecule

In this section, we introduce ourmodel for a singlemolecule coupled to an EMmode.
Due to the exponential scaling of the Hilbert space with the number of DoF, solving
the full time-independent Schrödinger equation for an organic molecule without the
BOA is an extremely challenging task that even modern supercomputers can only
handle for very small molecules. We thus employ a reduced-dimensionality model
that we can easily solve, both for the bare molecule and after coupling to an EM
mode.

3.2.1 Bare Molecule Model

We work within the single-active-electron approximation, in which all but one elec-
tron are frozen around the nuclei, and additionally restrict the motion of the active
electron to one dimension, x . Furthermore, we only treat one nuclear DoF, the reac-
tion coordinate R. This could correspond to the movement of a single bond in a
molecule, but can equally well represent collective motion, e.g., the breathing mode
of a carbon ring. The effective molecular Hamiltonian then highly resembles that of
a one-dimensional diatomic molecule,

Ĥmol = T̂n + T̂e + Ven(x; R) + Vnn(R), (3.1)
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where T̂n = P̂2

2M and T̂e = p̂2

2 are the nuclear and electronic kinetic energy operators

(with P̂ , p̂ the corresponding momenta), and M is the nuclear mass. The potentials
Ven(x, R) and Vnn(R) represent the effective electron–nuclei and internuclear inter-
actions, where we assume two nuclei located at x = ±R/2. These potentials encode
the information about the frozen electrons as well as the nuclear structure of the
molecule, and can be adjusted to approximately represent different molecules.

The electron–nucleus interaction Ven contains the interaction of the active electron
with each nucleus, as well as with the frozen electrons surrounding it. Assuming a
nuclear charge of Z , we have 2Z − 1 frozen electrons distributed across the two
nuclei. For large distances, the active electron should thus feel a Coulomb potential
with an effective charge of 1

2 from each nucleus. Conversely, at very small distances,
the active electron is not affected by the cloudof frozen electrons and feels an effective
charge of Z . Since we are working within one dimension, we use a soft Coulomb
potential to take into account that the electron avoids the singularity at the nucleus.
We choose a simple model potential fulfilling these conditions:

Ven(r) = −
1
2 + (Z − 1

2 )e
− r

r0√
r2 + α2

, (3.2)

where α is the softening parameter, r0 describes the localization of the frozen elec-
trons around the nucleus, and r is the electron-nucleus distance. The total potential
is thus Ven(x, R) = Ven(|x − R/2|) + Ven(|x + R/2|), shown in Fig. 3.1a.

The internuclear potential Vnn(R) represents the interaction between the nuclei
and the 2Z − 1 frozen electrons, i.e., the ground state potential energy surface of the
molecular ion. We model this surface by a Morse potential (see Fig. 3.1b)

Fig. 3.1 Top: schematic representation of our molecular model. Bottom: model potentials for
a electron-nuclei and b nucleus-nucleus interactions



70 3 Molecular Structure in Electronic Strong Coupling

Table 3.1 Molecular model parameters

α Z r0 De A R0 M

R6G 0.2 1 3.2 0.6 2.5 2.8 106

Anthracene 0.271 1 2.2 17.1 0.24 2.88 4.5 × 104

Vnn(R) = De
(
1 − eA(R−R0)

)2
, (3.3)

which adds three new parameters: the dissociation energy De, the equilibrium dis-
tance R0, and the width of the potential well A. By tuning the seven free parameters
we have at our disposal (M , Z ,α, r0, De, R0 and A), we can approximately fit both the
electronic and vibrational structure and absorption spectrum to those of real organic
molecules.

We now solve the stationary Schrödinger equation Ĥmol�(x, R) = E�(x, R) for
the bare-molecule Hamiltonian Eq. (3.1) without further approximations by repre-
senting Ĥmol on a two-dimensional grid in x and R.We also calculate the independent
PES within the BOA and the corresponding nuclear eigenstates. For a bare molecule,
the results of solving the Schrödinger equation without approximations and the ones
corresponding to the BOA are virtually identical and thus not shown here.

In the following, we will focus on two model molecules, which approximately
reproduce the absorption spectra of rhodamine 6G (R6G) and anthracene molecules
that are commonly used in experimental realizations of strong coupling [7, 14,
15]. The molecular parameters used are shown in Table3.1, all expressed in the
appropriate atomic units. Only the first two PES, corresponding to the ground Vg(R)

and first electronically excited Ve(R) states, play a role in the results discussed in the
following. They are shown in Fig. 3.2a and c, together with the nuclear probability
densities |χ(R)|2 for the lowest vibrational levels on each PES. Importantly, the two
models differ significantly in two relevant quantities: the vibrational mode frequency
ωv and the offset�R, i.e., the change in equilibrium distance between the ground and
excited PES. This offset is related to the strength of the electron-phonon interaction
and influences the Stokes shift between emission and absorption [16]. The R6G-
like model has relatively small vibrational spacing ωv ≈ 70 meV and small offset
�R ≈ 0.018 a.u., while the anthracene-likemodel has large vibrational spacingωv ≈
180 meV and large offset �R ≈ 0.092 a.u.. Accordingly, their absorption spectra
(Fig. 3.2b and d, obtained usingEq. (2.53)) are qualitatively different,with anthracene
showing a broader absorption peak with well-resolved vibronic subpeaks.

3.2.2 Molecule-Photon Coupling

We now add a single photonic mode and its coupling to the molecule (within the
dipole approximation) into the molecular Hamiltonian. This is achieved through the
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Fig. 3.2 Bare-molecule potential energy surfaces of the two first electronic states in the BOA for
a the rhodamine 6G-likemodel molecule and c the anthracene-likemodel molecule. The vibrational
levels and associated nuclear probability densities are represented on top of the PES. b and d:
Absorption spectrum for the b R6G-like and d anthracene-like molecule in arbitrary units

single-mode approximation, which leads to the general Hamiltonian of Eq. (2.62).
In the present calculation we focus on the linear dipolar coupling that dominates
the light–matter interaction, and thus neglect small energy contributions such as the
dipole self-energy, as discussed in detail in Sect. 2.3. The resulting Hamiltonian is

Ĥc−mol = Ĥmol + ωcâ
†â + E1phμ̂(â† + â), (3.4)

where μ̂ is the dipole operator of the molecule (μ̂ = x̂ in our case1), â† and â are the
creation and annihilation operators for the bosonic EMfieldmode,ωc is its frequency,
and E1ph is the coupling strength constant, given by the electric field amplitude (along
the x-axis) of a single photon. Note that the Hamiltonian of Eq. (3.4) is analogous to
the Jaynes–Cummings Hamiltonian (or alternatively, the single-emitter TC Hamil-

1Due to nuclear symmetry, the only contribution to the total dipole moment operator is electronic.
Including an asymmetry in ourmodelmakes the nuclear contribution to the dipole non-zero and thus
μ̂ = x̂ + R̂. This would add a non-zero permanent dipole to the molecule, which could introduce
small energy contributions to the PES. We note that this does not change the qualitative analysis of
this chapter, and that we include a discussion of its effects on the ground state in Sect. 6.6.
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tonian) for an emitter with an arbitrary structure. In the following, we always set the
photon energy ωc to achieve “zero detuning”, with ωc at the absorption maximum
of the molecule. This gives ωc ≈ Ve(Req) − Vg(Req), where Req is the equilibrium
position at which Vg(R) has its minimum.

Compared to the bare-molecule case, the Hamiltonian now includes a new degree
of freedom, the photon number n ∈ {0, 1, 2, . . .}, with the system eigenstates defined
by Ĥc−mol�(x, n, R) = E�(x, n, R). As discussed above, the typical energies asso-
ciated with strong coupling in organic molecules are somewhere between the nuclear
and electronic energies. Since in electronic strong coupling the photonic frequency
is by definition close to the energy of the first excited state, it makes more sense to
group it with the electronic Hamiltonian. Indeed, grouping it with the nuclear motion
would introduce additional nonadiabatic couplings, and would not lead to a picture
of independent PES on which the nuclei motion could be calculated, and would thus
ruin the advantages of the BOA. Consequently, the only way to maintain the use-
fulness of the BOA and keep a picture of approximately independent surfaces is to
include the photonic degree of freedomwithin the electronic Hamiltonian, leading to
a new set of hybrid polaritonic PESs (PoPESs). We should mention that an alterna-
tive approach is possible by describing the photonic DoF as a continuous parameter
and on equal footing as the nuclear coordinate. This is the so-called cavity BOA,
which is particularly useful for vibrational strong coupling, as we explore in Chap. 6.

We first focus on the singly excited subspace, within which the splitting between
polaritons is observed. Here, either the molecule is electronically excited and no
photons are present, or the molecule is in its electronic ground state and the photon
mode is singly occupied. At zero coupling (E1ph = 0), this gives two uncoupled PES
(Ve(R) and Vg(R) + ωc, dashed curves in Fig. 3.3) that cross close to Req for our
choice of ωc. When the electron–photon coupling is non-zero but small, a narrow

Fig. 3.3 Strongly coupled electronic PES (solid lines) in the singly excited subspace, for the
anthracene-like molecule for a E1ph = 0.001 a.u. and b E1ph = 0.008 a.u.. The dashed lines show
the corresponding uncoupled states: A molecule in the first excited state, Ve(R), and a molecule in
the ground state with one photon present, Vg(R) + ωc
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avoided crossing develops instead (solid lines in Fig. 3.3a), while for large coupling
strengths, the energy exchange between photonic and electronic degrees of freedom
is so fast that we observe two entirely new PES (Fig. 3.3b), the hybrid PoPESs that
contain a mixture of electronic and photonic excitation, the hallmark of the strong
coupling regime.

As discussed above, the BOA is known to be valid when two PES are sufficiently
separated from each other. This implies that the BOAbreaks downwhen E1ph is small
and the two PES possess a narrow avoided crossing. This in itself is not a surprising
result—when the electron–photon coupling is very small, the system is not even in the
strong coupling regime, and the photonmode is better treated as a small perturbation.
Fortunately, the weak coupling regime is also not interesting from the standpoint of
understanding or modifying molecular structure through strong coupling. The real
question thus must be: How strong does the electron–photon coupling have to be
for the BOA to be valid, and is this condition fulfilled for realistic experimental
parameters? In order to better quantify the agreement between the BOA and the
full solution, we next turn to an easily measured physical observable: the absorption
spectrum.

3.2.3 Absorption

In order to calculate the absorption spectrum that would be observed under driving
by an external field, the details of the experimental setup would have to be taken
into account. For example, for a planar microcavity, an input-output formalism [17]
in which the cavity mode is driven by external photons through the cavity mirrors,
would be most appropriate. On the other hand, if the molecules are placed next to a
metallic nanoparticle, an external field would typically drive both the molecules and
the localized surface plasmon resonance. In the following, we calculate the absorp-
tion spectra under the assumption that only the molecules are directly coupled to the
external light source. This allows to focus on the influence of the molecular structure
on the absorption spectrum, without contamination from a peak due to the essentially
pure EM mode at low coupling. We have explicitly checked that our conclusions do
not depend on the choice of driving operator. Under these assumptions, the absorp-
tion cross section at frequency ω can be calculated using Eq. (2.53) as described in
Sect. 2.2, i.e.,

σ(ω) = 4πω

c
Im

[

lim
ε→0

∑

k

|〈�k |μ̂|�0〉|2
ωk − ω0 − ω − iε

]

, (3.5)

where the sum runs over all eigenstates |�k〉 of the system with energies ωk , and
with |�0〉 the overall ground state. As we do not include incoherent processes in our
calculation, this would give δ-like peaks in the absorption cross section. In the plots
shown in the following, we instead introduce a phenomenological width representing
losses and pure dephasing by setting ε to a small non-zero value, such that the
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Fig. 3.4 Top row: Absorption cross sections of a single R6G-like model molecule, calculated using
the full Hamiltonian without approximation (solid green lines) and within the BOA (dashed black
lines) for several values of the coupling strength. Bottom row: Corresponding single-molecule PES
in the single-excitation subspace in strong coupling (solid lines) and uncoupled (dashed lines)

absorption cross section becomes a sum of Lorentzians. For the bare-molecule case
without coupling to an EMmode, the absorption spectra of our two model molecules
approximately agree with those of R6G (Fig. 3.2b, [15]) and anthracene (Fig. 3.2d,
[7]).

In the upper rows of Figs. 3.4 and 3.5 we compare the absorption cross sections
under strong coupling as obtained from a full calculation without approximations
to those obtained within the BOA, for a range of coupling strengths E1ph to the
EM mode. In the bottom rows we also include the corresponding PoPES with one
excitation. For the case of R6G-like molecules with small vibrational spacing in
Fig. 3.4 we find that even for relatively small E1ph the BOA agrees almost perfectly
with the full results. However, for the anthracene-likemoleculewith a high-frequency
vibrational mode and large offset �R, the BOA only agrees with the full result
for relatively large values of E1ph, where the Rabi splitting �R (as defined by the
energy difference between the two “polariton” peaks in the absorption spectrum) is
appreciably larger than the vibrational frequency ωv ≈ 180 meV (Fig. 3.5). As an
aside, we note here that for intermediate values of the coupling strength (e.g., for
E1ph = 0.002 a.u. in Fig. 3.5b), the EM mode strongly couples with the individual
vibronic subpeaks, as observed in experiments using anthracene [7, 18].
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E1ph E1ph E1ph

Fig. 3.5 Top row: Absorption cross sections of a single anthracenelike model molecule, calculated
using the full Hamiltonian without approximation (solid green lines) and within the BOA (dashed
black lines) for several values of the coupling strength. Bottom row: Corresponding single-molecule
PES in the single-excitation subspace in strong coupling (solid lines) and uncoupled (dashed lines)

3.2.4 Nonadiabatic Corrections in Strong Coupling

This qualitative observation can be quantified by calculating the nonadiabtic correc-
tion �UP,LP between the resulting PoPES. As discussed in Sect. 2.2, nonadiabatic
terms become more important for small energy differences, and thus large coupling
strengths are a more favorable scenario for in terms of the validity of the BOA in
the absorption spectrum, as they lead to larger differences in energy. In this section
we present a simple model to derive the nonadiabatic corrections induced by strong
coupling without any explicit knowledge of the electronic wavefunctions. We treat
the two relevant PES in the single-excitation subspace, Vg(R) + ωc and Ve(R), cou-
pled by the term E1phμeg(R), where μeg(R) = 〈e|x̂ |g〉 is the electronic transition
dipole moment between the ground and the excited states. This leads to a 2 × 2
Born–Oppenheimer Hamiltonian of the form

Ĥ(R) =
(
Vg(R) + ωc E1phμeg(R)

E1phμeg(R) Ve(R)

)
, (3.6)

which can be easily diagonalized to obtain polariton eigenstates |+〉 = cos θ |g, 1〉 +
sin θ |e, 0〉 and |−〉 = sin θ |g, 1〉 − cos θ |e, 0〉,where |a, n〉 is short for |φa(x; R), n〉,
and

tan 2θ = 2h(R)

δV (R)
, (3.7)
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where we defined δV (R) = Vg(R) + ωc − Ve(R) and h(R) = E1phμeg(R). Using
Vavg(R) = [

Vg(R) + ωc + Ve(R)
]
/2, the eigenenergies are given by

V±(R) = Vavg(R) ± 1

2

√
4h2(R) + δV (R)2 . (3.8)

With this model we can now evaluate the nonadiabatic coupling terms, which we
can rewrite as �̂kk ′ = 〈k| T̂n

∣∣k ′〉 + 〈k| P̂
M

∣∣k ′〉 P̂ . In order to obtain simple analytical
results we can introduce a series of approximations. First, we linearize δV (R) ≈
a0(R − Rc) around the point of intersection between the two PES, where Vg(Rc) +
ωc = Ve(Rc). Second, in the spirit of the Franck–Condon approximation, we assume
that the dipole coupling is constant over the range of relevant R-values, and set
h(R) = h0. Following the same idea, we additionally assume that the electronic
wave functions do not change significantly with R, i.e., ∂

∂R |φa(x; R)〉 ≈ 0. This
implies that the change in the polaritonic eigenfunctions |±〉 close to the avoided
crossing at Rc is mostly due to the switchover between the two uncoupled surfaces,
i.e., the change in θ(R), not because of an intrinsic change of electronic state with
R. With these approximations, the correction terms become

〈−| P̂ |+〉 = −ia0h0
4h20 + a20(R − Rc)2

, (3.9a)

〈−| P̂2 |+〉 = 2a30h0(R − Rc)

(4h20 + a20(R − Rc)2)2
, (3.9b)

〈±| P̂2 |±〉 = a20h
2
0

(4h20 + a20(R − Rc)2)2
, (3.9c)

with the diagonal terms 〈±| P̂ |±〉 identically zero. Note that diagonal terms only
correspond to energy shifts and do not induce additional transitions [2]. The nona-
diabatic coupling between the polariton surfaces has a Lorentzian shape around the
avoided crossing, and as expected only becomes non-negligible close to it.

As shown inFig. 3.6, the nonadiabatic corrections obtained from this simplemodel
agree almost perfectly with those obtained from the full numerical calculation for our
anthracene-like model molecule. The only molecule-specific information entering
the model are the PES of the uncoupled molecule and the dipole moment between
the coupled surfaces. Specifically, the electronic wave functions are never used here,
and their derivative as a function of the nuclear coordinates is not required. This
implies that this model could be used to obtain accurate non-BO corrections that
describe the transitions between potential surfaces even when the full electronic
wave functions of a molecule are not available (e.g., in density-functional-theory
calculations). The dynamics of the molecule could thus be fully recovered within a
potential energy surface picture even when the BOA per se is not applicable.

We now exploit this model to derive a condition for which the BOA becomes
a better approximation, i.e., when the nonadiabatic terms become negligible. We
approximate the bare molecular potential energy surfaces as two harmonic oscilla-
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Fig. 3.6 Nonadiabatic correction terms C that couple the “lower polariton” and “upper polariton”
PES for a single anthracene-like model molecule for a coupling strength of E1ph = 0.002 a.u.. Solid
colored lines: results from a full numerical calculation. Dashed black lines: results from the model
Eq. (3.9). Note that while all results are given in atomic units, the units of the P̂ and P̂2 terms are
not identical, and thus not directly comparable

tors with the same vibrational frequency ωv , but with an offset in energy �V and
equilibrium position �R,

Vg(R) ≈ Mω2
v

2
R2, (3.10)

Ve(R) ≈ Mω2
v

2
(R − �R)2 + �V, (3.11)

where without loss of generality, we have chosen the origin in nuclear coordi-
nate and energy at the minimum of Vg(R). Note that this model exactly results
from the common approximation of linear coupling between a single electronic
excitation and a bosonic vibrational mode [19–22]. Within this model, δV (R) =
Vg(R) + ωc − Ve(R) = a0(R − Rc) is already exactly linear, i.e., the lineariza-
tion of the energy difference performed above is not an approximation. The con-
stants are given by a0 = Mω2

v�R and Rc = �R
2 + �V−ωc

a0
. The maximum value of

| 〈+| P̂
M |−〉 |, reached at R = Rc, is given by �Rω2

v/(4h0). Comparing this with
the energy splitting at that point, V+(Rc) − V−(Rc) = 2h0, gives the condition that
�Rω2

v/(8h
2
0) must be small compared to the momentum of the respective nuclear

wavefunction (due to the additional P̂ operating on the nuclear wave function). The
off-diagonal terms 〈−| P̂2

2M |+〉 reach a maximum value (again relative to the detun-

ing) of M�R2ω4
v/(25

√
5h30) at R = Rc + h0/(M�Rω2

v).
By analyzing the analytical conditions obtained we find that the model molecules

present two opposite cases for the applicability of the BOA: our R6G-like molecule
has a relatively small vibrational spacing ωv ≈ 70 meV and small electron-phonon
coupling, �R ≈ 0.018 a.u., while our anthracene-like model molecule has a large
vibrational spacing ωv ≈ 180 meV and large electron-phonon coupling, �R ≈
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0.092 a.u.. We note that in many experiments involving organic molecules, �R �
500 meV [6, 8] is significantly larger than typical vibrational frequencies ωv �
200 meV [23]. This shows that the intuitive picture of nuclear dynamics unfolding
on uncoupled Born–Oppenheimer potential energy surfaces can often be applied
to understand the modification of molecular chemistry induced by strong coupling.
Additionally, even when the BOA breaks down, the model presented in here can be
used to obtain the nonadiabatic coupling terms without requiring knowledge of the
electronic wave functions. The only necessary input are the uncoupled PES and the
associated transition dipole moments. Even for relatively large molecules, these can
be obtained using the standard methods of quantum chemistry or density functional
theory.

3.3 Two Molecules

In this section we will study the case for twomolecules. As discussed in Sect. 2.3, the
inclusion of more than one molecule leads to collective strong coupling, where the
linear combination of N emitters so-called bright state couples to the single photonic
mode, while N − 1 dark states appear. We thus expect to observe this phenomenon
in the following analysis.

3.3.1 Method

We now treat the case of two model molecules, which can still be solved exactly
within our approach, but which displaysmany of the effects ofmany-molecule strong
coupling. We extend the Hamiltonian of Eq. (3.4) for two molecules coupled to a
single photonic mode and with no direct dipole–dipole interaction, similarly as in
the TC model (see Sect. 2.3). Then the Hamiltonian for two molecules is

Ĥ 2m
c−mol = ωcâ

†â +
∑

j=1,2

(
Ĥ ( j)

mol + E1phμ̂
( j)(â† + â)

)
, (3.12)

where the superscripts j indicate the molecule on which the operator acts. Directly
diagonalizing this Hamiltonian in the “raw” basis {x1, R1, x2, R2, n} is already a
formidable computational task for typical grid sizes. We thus calculate the full solu-
tion by first diagonalizing the single-molecule Hamiltonian, Ĥmol = ∑

k Ek |k〉 〈k|,
and including only a relevant subset of eigenstates {k} for each molecule in the
total basis {k1, k2, n}. The number of necessary eigenstates to obtain completely
converged results is quite small (≈30 per molecule). However, this approach only
provides limited insight into the dynamics of the strongly coupled system, especially
regarding nuclear motion.
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We thus again apply the Born–Oppenheimer approximation by separating the
nuclear kinetic energy terms and diagonalizing the remaining Hamiltonian para-
metrically as a function of R1 and R2. Similar to above, instead of working in
the {x1, x2, n} basis for each combination (R1, R2), we prediagonalize the single-
molecule electronic Hamiltonian Ĥe(x; R) = ∑

k Vk(R) |k(R)〉 〈k(R)|, where (for
the cases discussed here) the sum only has to include the ground and first excited
states to achieve convergence, k ∈ {g, e}. If we additionally allow at most one photon
in the system, n ∈ {0, 1}, we obtain an 8 × 8 Hamiltonian for each combination of
nuclear coordinates R1, R2.

The electronic Hamiltonian consists of all possible combinations of electronic
states Vg, Ve of the two molecules with 0 or 1 photons. A further simplifica-
tion is achieved by taking into account that the Hamiltonian conserves parity2

� = (−1)π1+π2+n , with π j the parity of the state of molecule j (even or odd). For
large coupling E1ph, this separation by parity avoids some accidental degeneracies
between uncoupled PES and thus improves theBOA.Wenowobtain two independent
4 × 4 Hamiltonians,

Ĥeven(R1, R2) =

⎛

⎜⎜⎜
⎝

Vgg0 E1phμ
(1) E1phμ

(2) 0

E1phμ
(1) Veg1 0 E1phμ

(1)

E1phμ
(2) 0 Vge1 E1phμ

(2)

0 E1phμ
(1) E1phμ

(2) Vee0

⎞

⎟⎟⎟
⎠

, (3.13a)

Ĥodd(R1, R2) =

⎛

⎜⎜⎜
⎝

Vgg1 E1phμ
(1) E1phμ

(2) 0

E1phμ
(1) Veg0 0 E1phμ

(1)

E1phμ
(2) 0 Vge0 E1phμ

(2)

0 E1phμ
(1) E1phμ

(2) Vee1

⎞

⎟⎟⎟
⎠

, (3.13b)

where the uncoupled PES are represented by the compact notation Vαβn = Vα(R1) +
Vβ(R2) + nωc, and the single-molecule dipole transitionmoment between the ground
and first excited state is denoted by μ( j) = 〈

φg(R j )
∣∣ μ̂

∣∣φe(R j )
〉
. Diagonalizing these

Hamiltonians for each (R1, R2) results in a set of two-dimensional PoPES. In Fig. 3.7,
we show the three surfaces in the single-excitation subspace, corresponding to the
three lowest states of Eq. (3.13b). For zero molecule-photon coupling (E1ph = 0,
Fig. 3.7a), there are now a number of one-dimensional seams where the three PES
cross. When the molecule-photon coupling is turned on, these crossings again turn
into avoided crossings, as shown in panels (b) and (c) for two different coupling
strengths E1ph. Following the natural convention discussed in previous chapters, we
label the three PoPES in order of energy as the “lower polaritonic PES”, the “dark-
state PES”, and the “upper polaritonic PES”.

2We note that this is only true because we do not have permanent dipole moments in our model,
which couple states of the form |k, k, 0〉 and |k, k, 1〉.
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Fig. 3.7 a Uncoupled potential energy surfaces of two anthracene-like molecules in the singly
excited subspace: Veg0(R1, R2) (orange), Veg0(R1, R2) (blue), and Vgg1(R1, R2) (green). bCoupled
PES for E1ph = 0.002 a.u. and c E1ph = 0.013 a.u., corresponding to the lower polariton (orange),
dark state (blue), and upper polariton (green). For clarity, only parts where R1 < R2 are shown
(note that the system is symmetric under the exchange R1 ↔ R2)

We first address the applicability of the BOA, which breaks down when two
PoPES are close in energy, for the case of twomolecules.Within the single-excitation
subspace (which determines the linear properties of the system, such as absorption),
there are now a range of (avoided) crossings. They occur when (i) all three surfaces
approach each other Vgg1 ≈ Vge0 ≈ Veg0, (ii) the photonically excited PES is close
to only one of the electronically excited PES, Vgg1 ≈ Vge0 or Vgg1 ≈ Veg0, or (iii)
only the two electronically excited states cross, Vge0 ≈ Veg0. Case (i) corresponds to
the TC model at zero detuning, giving the two polaritonic PES at energy shifts of
±�R/2, and an additional dark state that is unshifted from the bare-molecule case.
The BOA in this region is thus valid for similar conditions as in the single-molecule
case, although the PES separation is reduced by half due to the additional dark-state
surface. Case (ii) corresponds exactly to the single-molecule case, with the second
molecule acting as a “spectator” that only induces additional energy shifts. The BOA
should thus again be valid for similar conditions as with a single-molecule, albeit
with the coupling reduced by 1/

√
2 for a fixed total Rabi splitting. Finally, case (iii)

presents the biggest challenge, as the two electronically excited PES, Veg0 and Vge0,
are not directly coupled, but only split indirectly through coupling to the photonically
excited surface Vgg1. The splitting between the two surfaces is thus small for large
detuning,�V ≈ (E1phμ)2/4(Vgg1 − Veg0). This is clearly observed in Fig. 3.7b along
the line R1 = R2, where the dark state PES almost touches the upper PoPES for small
Rs and the lower PoPES for large Rs.
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3.3.2 Absorption

The discussion above implies that for almost any coupling strength, there will be
regions in the nuclear configuration space R1, R2 where the BOA breaks down.
However, not all parts of the PES are visited by the nuclei during a given physical
process. To explicitly check the BOA in the subspace relevant for polaritonic physics,
in Fig. 3.8 we thus again compare the absorption obtained within the BOA with that
computed by a full diagonalization of the Hamiltonian Eq. (3.12). Compared to the
single-molecule case, many more molecular levels are present in the system, leading
to small changes in the absorption spectra compared to the single-molecule case. In
order to properly compare the results, we use the same Rabi splitting. In the picture
of PoPES, we cannot use the usual definition of�R = E+ − E− of the TCmodel. In
the following we therefore define it as the corresponding separation in equilibrium
(minimum of the bare-molecule ground-state surface Vg(R)) and for zero detuning,
which for a collection of many molecules is

�R = 2
√
NE1phμ(Req), (3.14)

where we can tune the single-photon electric field amplitude to achieve the desired
Rabi splitting in our calculations. We therefore take into account the

√
N scaling

of the total Rabi frequency and reduce the coupling strengths by
√
2 to produce the

same total splitting in the case of two molecules.

E1ph E1ph E1ph

E1phE1phE1ph

Fig. 3.8 Absorption cross section of two molecules driven coherently, calculated using the full
Hamiltonian without approximation (solid green lines) and within the BOA (dashed black lines).
Results are shown for the a R6G-like and b anthracene-like model molecules, for several values
of the coupling strength E1ph. The values of E1ph are scaled by 1/

√
2 with respect to the single-

molecule case (Figs. 3.4a and 3.5a) in order to obtain the same total Rabi frequency �R
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The BOA is shown to again give good results for large enough coupling, but the
minimumcoupling required is increased compared to that for a singlemolecule. In the
commoncase of slownuclearmotion, as for ourR6G-likemodel in Fig. 3.8a, theBOA
already is valid for relatively small Rabi splitting of�R ≈ 250 meV. However, in the
anthracene-like case of very fast vibrational motion, Fig. 3.8b, the BOA still does not
give perfect agreement with the full model for E1ph = 0.0057 a.u. (�R ≈ 600 meV),
and agreement is only reached at roughly twice that value.

In Fig. 3.7 is clear that the new dark state PES is the main source of nonadiabatic
terms that lead to the break down of the BOA. The coupling around some regions
in nuclear coordinate space can be proportional to the single-molecule coupling,
which, at fixed Rabi splitting, goes downwhen the number of molecules is increased.
As discussed in the previous section, a smaller coupling strength leads to larger
nonadiabatic terms. While this would appear to affect the validity of the BOA close
to these configurations, we emphasize that these corrections can be computed using
standard methods of quantum chemistry or density functional theory. The picture of
PoPES is thus not hindered by increasing the number of molecules, as it provides an
intuitive and powerful description of the system, fromwhich nonadiabatic corrections
can be easily computed.

3.3.3 Nuclear Correlation

Having established the validity of theBOAformany relevant cases andRabi splittings
comparable to experimental values, we now discuss the implications of collective
strong coupling for the internal molecular (nuclear) dynamics. The BOA provides
a straightforward approach to this problem. Any two-dimensional surface can be
decomposed into a sum of independent single-molecule potentials, plus a remainder
that describes the coupling between the nuclear motion of the molecules,

V (R1, R2) = V1(R1) + V2(R2) + V12(R1, R2). (3.15)

The nuclear motion of two molecules is independent if and only if the coupled
part V12(R1, R2) is identically zero. In order to quantify this coupling, we expand
each of the coupled surfaces in the single-excitation subspace around its minimum
(R0

1, R
0
2), giving

V (R1, R2) ≈ V0 + α δR2
1 + α δR2

2 + β δR1δR2, (3.16)

with V0 = V (R0
1, R

0
2) and δRi = Ri − R0

i . Note that due to symmetry under the
exchange R1 ↔ R2, the prefactor α is the same for δR2

1 and δR2
2 . As can be seen in

Fig. 3.9a, both the polariton and even the dark state PES show significant coupling of
the nuclear degrees of freedom, with values of β/α on the order of a few percent for
values of E1ph � 0.01 a.u. givingRabi splittings of�1 eV (seeFig. 3.8). Interestingly,
the coupling is much larger for the lower PoPES than for either the upper PoPES
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(a) (b)

E1ph (a.u) E1ph (a.u)

Fig. 3.9 a Coupling between nuclear motion in different molecules for the lower (LP) and upper
polariton (UP) and dark-state (DS) PES. Results are shown as the ratio β/α between the prefactors
of the offdiagonal R1R2 and diagonal R2

i terms in Eq. (3.16), for the R6G-like model molecule.
bMutual information in the nuclear probability distribution for two different states. The solid lines
correspond to the vibrational ground states of the coupled PES as predicted by Eq. (3.19) using the
values of β/α shown in (a), while the dashed lines correspond to the steady state under driving of
a single molecule as defined in Eq. (3.17)

or the dark state PES, and decreases with increasing E1ph for all three surfaces. We
therefore conclude that even dark states that have negligible mixing with photonic
modes are affected by strong coupling, in the sense that the nuclear degrees of
freedom of separate molecules behave like coupled harmonic oscillators, and their
motion becomes correlated. This implies that, e.g., local excitation of nuclear motion
within one molecule could affect the nuclear motion in another, spatially separated
molecule, even when no photon is ever present in the EM mode of the system.

Note that the BOA results predict monotonously increasing correlation for arbi-
trarily small (but non-zero) values of E1ph. This again shows that the BOA is not
correct in the limit of small coupling E1ph → 0, where the correlation should also
go to zero as the molecules are completely uncoupled. We thus start Fig. 3.9a at
E1ph = 0.002 a.u., for which the BOA already produces good agreement with the
full result in the absorption cross section (see Fig. 3.8), and note that our results
indicate that there is a maximum of correlation in the nuclear motion at intermediate
coupling strengths.

In order to verify these results outside the BOA, we calculate the mutual infor-
mation in the nuclear probability distribution both for the harmonic expansion of
Eq. (3.16) within the BOA and under external driving of a single molecule. From
first-order perturbation theory, the driven steady state is given by

∣∣ψdr
1 (ω)

〉 = 1

Ĥ − ω0 − ω − iε
μ̂1 |ψ0〉 (3.17)

which we solve using the full Hamiltonian without approximations. We again use
a non-zero ε to artificially represent losses in the system (for the results below, we
choose ε = 2.5 meV, corresponding to an effective decay rate of 5 meV). While the
eigenstates of theHamiltonian split into quasidegenerate symmetric and antisymmet-
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ric superpositions (which show large correlation) for any non-zero E1ph, the non-zero
value of ε leads to a smearing of the energy resolution, such that the degeneracy is
effectively lifted and the superposition of only a single molecule being excited is
observed in the steady state for small enough E1ph.

The mutual information is calculated as [24]

I =
∫∫

P(R1, R2) log2
P(R1, R2)

P(R1)P(R2)
dR1dR2, (3.18)

with P(R1, R2) being the joint nuclear probability distribution for either the driven
steady-state wave function

∣∣ψdr
1 (ω)

〉
or the ground state of two coupled harmonic

oscillators. For the latter, I can be analytically calculated as

I0 = log2

√
2 − β/α + √

β/α + 2

2 4
√
4 − β2/α2

. (3.19)

In order to compare with the predictions obtained from the ratio β/α for the PES,
we choose driving frequencies ω equal to the vibrational ground state energies of
each surface. The dashed lines in Fig. 3.9b show that, as could be expected, at zero
coupling (E1ph = 0) there is no correlation under driving of a single molecule. As
E1ph increases, the mutual information quickly increases and actually becomes sig-
nificantly larger than the BO ground-state values for the DS and upper PoPES. In
this region, there are a series of avoided crossings, and the results are expected to
depend strongly on the correct description of decay and dephasing, which we only
treat phenomenologically. For larger E1ph, where the BOAbecomes valid, themutual
information in the driven steady state agrees very well with the mutual information
as predicted from the coupling β/α in the Taylor expansion of the PES. Interestingly,
the agreement between the full calculation and the BO result for the LP PES is very
good even at relatively low coupling strengths. This is a consequence of the fact that
the LP ground state is well-isolated in energy, while the DS and UP surfaces are
not. We believe that this property is also related to the experimentally observed fast
nonradiative decay of upper polariton states [6, 13, 25, 26], which can take place
efficiently close to avoided crossings of the PES (where the BOA breaks down).

3.4 Conclusions

In this chapter we studied in detail how strong coupling can influence the internal
structure of organic molecules, and the limitations of the usual Born–Oppenheimer
picture. We show under which conditions the molecular properties under strong
coupling can be understood by the modification of the potential energy surfaces
determining nuclear dynamics under the Born–Oppenheimer approximation. In par-
ticular, we found that in many cases of experimental interest where the Rabi splitting
is large, the BOA is applicable and provides an intuitive picture of the strongly
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coupled dynamics. However, we have also shown that for molecules with fast vibra-
tional modes and large phonon-exciton couplings, the BOA can break down and
nonadiabatic corrections are required in order to fully describe the energy landscape.
We furthermore demonstrated that the nonadiabatic coupling terms between PES in
this case are dominantly due to the change of character between light and matter
excitations which can be obtained from simple few-level models without requiring
knowledge of the electronic wavefunctions.

In addition, we show that under collective strong coupling involving more than
one molecule, the nuclear dynamics of the molecules in electronic “dark states”
that are only weakly coupled to the photonic mode are nonetheless affected by the
formation of strong coupling. In particular, we find that the dark state PES describes
coupling between the nuclear degrees of freedom of the different molecules.

These results validate the use of theBorn–Oppenheimer approximation inmolecu-
lar polaritonics and thus lay the groundwork for the following chapter, where a more
general theory of polaritonic chemistry is developed. This theory is based on the
concept that we have introduced here of polaritonic potential energy surfaces, which
extends the usual PES of chemistry to hybrid light–matter systems participating a
collection of molecules.
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Chapter 4
Theory of Polaritonic Chemistry

4.1 Introduction

In the previous chapter we embraced the complexity of organic molecules by includ-
ing arbitrary PES in our description of strong coupling with the aim of building a
general theory of polaritonic chemistry. In this chapter we generalize these results
and analyze the approach of PoPES. We study the general light–matter Hamiltonian
from the point of view presented in Chap.3, i.e., by separating the electronic and
photonic DoF from the nuclear coordinates. In Sect. 4.2we explicitly analyze this in a
complete and general way, also presenting a conceptual molecular energy landscape
that presents some kind of excited-state process that can be strongly influenced in
strong coupling. Then, in Sect. 4.3 we present the potential of the PoPES picture for
describing collective phenomena. We show how we can use the spin operators used
in the Tavis–Cummings model (see Sect. 2.3) to understand such a complex system.
The ensemble of N molecules is formally identical to a single “supermolecule” that
encompass the internal DoF of all molecules. This immediately leads to novel phe-
nomena such as the collective protection effect and collective conical intersections,
both discussed in detail in this section.

4.2 Polaritonic Potential Energy Surfaces

In order to theoretically describe phenomena in polaritonic chemistry we need to
extend the chemistry formalism discussed in Sect. 2.2 to a collection of N molecules
coupled to one or several quantized light modes. The total Hamiltonian is given by

Ĥtot =
N∑

i

T̂ (i)
n +

N∑

i

Ĥ (i)
e + ĤEM +

N∑

i

Ĥ (i)
int , (4.1)
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where the kinetic energy operator and the electronic Hamiltonians of all molecules
have been explicitly taken into account. Note that in Eq. (4.1) we directly disregarded
the direct dipole–dipole interaction between molecules. Additionally, note that we
neglect the dipole self-interaction term as discussed in Sect. 2.3, restricting the gen-
erality of this Hamiltonian to quasistatic cavities [1] or to coupling strengths outside
the ultrastrong and deep coupling regimes. Finally, it should be noted that the Hamil-
tonian in Eq. (4.1) is also the starting point of more reduced models such as the TC
Hamiltonian, or the Holstein–Tavis–Cummings model [2].

The picture of PoPES is inspired by the formal similarities between Eq. (4.1) and
the standard molecular Hamiltonian discussed in Sect. 2.2

Ĥmol = T̂n + Ĥe(R). (4.2)

In the previous chapter we studied the adiabatic separation of nuclear and electron–
photon energies fromfirst principles.Wenowexplicitlywrite the general “electronic–
photonic” Hamiltonian

Ĥe−ph(q) = Ĥtot −
N∑

i

T̂ (i)
n , (4.3)

where q = (R1,R2, . . . ,RN ) is the vector describing all nuclear coordinates of all
molecules. For future reference, let us now write this Hamiltonian explicitly for one
single photonic mode:

Ĥe−ph(q) = ωcâ
†â +

N∑

i

(
Ĥ (i)

e (Ri ) + E1ph,i · µ̂i (Ri )(â
† + â)

)
, (4.4)

where the exciton–photon interaction is determined by the single-photon electric field
amplitudeE1ph,i , which may be different from one molecule to another. Analogously
as for a single molecular Hamiltonian, the diagonalization of Ĥe−ph(q) yields an
adiabatic basis of hybrid electron–photon states {�k(q)} with the corresponding
PoPES Vk(q).

It should be noted that this new electronic–photonic basis used in the Schrödinger
equation leads to the usual set of differential equations analogous to Eq. (2.29),
with new nonadiabatic terms. In this picture we can again perform the BOA
and neglect these terms. However, these nonadiabatic corrections �kk ′ in the new
adiabatic basis of polaritonic states now contain both the original bare-molecule
nonadiabatic couplings (appropriately transformed to the polaritonic basis) and the
light–matter induced nonadiabatic couplings, as discussed in Chap.3.

The electronic–photonic Hamiltonian can be diagonalized in two stages, first
by doing the appropriate adiabatic separation in each individual molecule (i.e., we
can express Ĥ (i)

e (Ri ) in Eq. (4.1) already in the adiabatic single-molecule electronic
basis), and then selecting the relevant subset of bare molecular states coupled to
the photonic modes. For instance, as discussed in Sect. 2.3, for moderate values of
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Fig. 4.1 Conceptual potential energy surfaces for a single molecule describing a typical bound and
dissociative energy landscape coupled to a light mode in a weak coupling and b, c strong coupling
for different coupling strengths. The color represents the photonic fraction of the state from purely
excitonic (orange) through polaritonic (light gray) to purely photonic (purple). Reprinted with
permission from [3]. Copyright 2018 American Chemical Society

the coupling strength the TC model conserves the number of excitations. This is
also true here, which means that for a single photonic mode, we can restrict the
number of electronic states to the ones close in energy to the photon frequency. This
formulation becomes a compelling tool, as it is straightforward to make an interface
with existing quantum chemistry methods, which can be used to calculate the bare-
molecule structure for the desired electronic states at each configuration R for each
molecule separately.

The light–matter coupling can be readily treated with a small Hamiltonian involv-
ing only a few relevant states per molecule. In the following wewill study the general
properties of the PoPESs by treating a minimal model of a single molecule with two
electronic states and one nuclear DoF, i.e., the bare molecule is characterized by a
ground and excited PES, Vg(q) and Ve(q) respectively. In Fig. 4.1a we present a typ-
ical bound and dissociative energy landscape of diatomic molecules for a conceptual
molecule (see blue and orange lines in Fig. 4.1a), with an additional purple surface
representing the ground-state molecule plus one photon, of energy Vg(q) + ωc. The
coupling to the electronic part is introduced within the RWA (see the discussion of
the Tavis–Cummings model in Sect. 2.3), such that the total number of electronic
and photonic excitations is conserved, but leads to incorrect results when treating the
ultrastrong-coupling regime. The relevant electronic–photonicHamiltonian becomes

Ĥe−ph(q) = Vg(q) + V ′
e(q)σ̂ †σ̂ + ωcâ

†â + E1ph · µeg(q)
(
â†σ̂ + σ̂ †â

)
, (4.5)

where V ′
e(q) = Ve(q) − Vg(q) is the position-resolved energy difference between

ground- and excited-state PESs, σ̂ = |g〉〈e| is the molecular electronic transition
operator, ωc the photon frequency, and â the bosonic ladder operator associated
to the photon. The exciton–photon interaction is determined by the single-photon
electric field amplitude E1ph and the configuration-dependent electronic transition
dipole moment µeg(q) between ground and excited states. It should be noted that
the permanent dipole moments are also omitted, and thus Eq. (4.5) is very similar to
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the Jaynes–Cummings Hamiltonian. Diagonalization of Ĥe−ph(q) yields the set of
adiabatic PoPES of the strongly-coupled system.

When the coupling is negligible (Fig. 4.1a), two clearly distinguishable PES exist
in the single-excitation subspace: the molecular exciton, characterized by the exci-
tonic PES (orange line), and the state corresponding to a single cavity photon, with
the molecule in its ground state (thus the PES inherits the ground-state like behavior
with a shift up the photon energy, ωc, purple line). Throughout most of the plots in
this thesis that feature PoPES, we codify the mixed light–matter character in a color
scale that measures the photon component nph = 〈â†â〉, spanning from orange (bare
exciton) through light gray (polariton) to purple (bare photon). We can see this in
Fig. 4.1b, c, where the Rabi splitting is increased, thus showing a modification in the
energy landscape, as discussed in the previous chapter.

Let us now address the role of dissipative processes in polaritonic chemistry.
Organic molecules coupled with light modes present different mechanisms of decay
and dephasing. The decay processes associated with the cavity are often very fast,
showing in most current experiments typical lifetimes on the order of tens to hun-
dreds of femtoseconds [4–8], to tens of picoseconds for the case of high-Q cavities
such as Fabry–Perot or photonic crystal cavities [9, 10]. Regarding the molecular
part, the dissipative processes emerge from inter- and intra-molecular vibrational
relaxation, i.e., interactions with all the DoF of the molecule itself and the molecular
environment. These processes can in principle be described within the framework
of PoPES, since the phenomena of nuclear relaxation, dephasing, and nonradiative
decays take place on the PES of the molecule, and can thus be included. As an
example, in [11] the molecule is treated fully with all relevant nuclear degrees of
freedom and the solvent molecules are represented through molecular mechanics.
An additional decay channel that molecules present is the free space radiative decay,
determined by Fermi’s golden rule (see Sect. 2.2), which leads to typical lifetimes of
the order of nanoseconds. Throughout this thesis, we neglect dissipative processes in
our theoretical treatment, and only discuss their overall effects on polaritonic chem-
istry when studying particular scenarios (see e.g., Chap.6). However, a more detailed
treatment of dissipation will certainly be beneficial to a complete understanding of
the experimental implementations of polaritonic chemistry.

4.3 Collective Phenomena: The Supermolecule

Here we analyze the effects found when strong coupling is achieved through collec-
tive coupling, i.e., the coherent interaction of many molecules with the same light
mode. As already discussed, this leads to an electronic–photonic Hamiltonian that
depends parametrically on q = (R1,R2, . . . ,RN ), i.e., on the nuclear degrees of
freedom of all involved molecules. This property is inherited by the resulting PoPES
after diagonalization of Ĥe−ph(q), implying that the effective indirect intermolecular
interaction through the photonic mode could lead to novel correlations between the
nuclei of different molecules. Indeed, this has been analyzed in detail in Sect. 3.3
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for the case of two molecules, presenting remarkable correlations even in the dark
states. We can thus understand collective strong coupling in organic molecules as
leading to the formation of a “supermolecule” spanning all coupled molecules. As
we discuss in this section, this offers a range of new phenomena that further enhance
our ability to control the dynamics and chemistry of a molecular ensemble.

Let us again assume that themolecules are described by only two electronic states,
and in additionwe take all molecules to be coupled equally to the photonicmode. The
Hamiltonian is then a straightforward extension of Eq. (4.5) to include sums over all
the molecules. The associated Hilbert space of such Hamiltonian becomes rapidly
unmanageable. In order to treat such a large number of states in the standard TC
model we define collective operators (see Sect. 2.3). This was possible because the
emitters where considered to have the same energy. However, in the picture of PoPES
each molecule has a unique configuration with its associated energy. Nevertheless,
we can focus our study to cuts of the Hilbert space where groups of molecules share
the same configuration, thus making those sets of molecules indistinguishable. For
each of these groups we introduce the different collective spin operators

Ŝ†α =
Nα∑

iα=1

σ̂
†
iα

and Ŝα =
Nα∑

iα=1

σ̂iα , (4.6)

where σ̂i is the usual single-emitter operator used in Eq. (4.5) and α labels groups
of molecules with the same configuration Riα ≡ Rα , such that

∑
α Nα = N . These

correspond to spin-Nα/2 operators so for a group with Nα = 1 we recover the single-
emitter operator σ̂i [12]. By including sums over the groups of “identical” molecules
we get the Hamiltonian

Ĥe−ph(q) = VG(q) +
∑

α

V ′
e(Rα)n̂α + ωcâ

†â + E1ph ·
∑

α

µeg(Rα)
(
â† Ŝα + â Ŝ†α

)

(4.7)
where VG(q) = ∑N

i Vg(Ri ) is the overall ground state of the system, and n̂α = Ŝzα +
Nα/2 is the excitation number operator for the group α (with Ŝzα = ∑Nα

iα=1 σ̂ z
iα
the z-

component of the collective spin operator). Since the Hamiltonian now contains only
collective molecular operators, the electronic–photonic states can be expressed in the
collective spin basis n̂α|nα〉 = nα|nα〉. Here it is more convenient to use nα = mα +
Nα/2 as the quantum number, instead of the usual mα , which is the z-component of
the spin, since nα relates to a relevant physical quantity in our system: the excitation
number. This reduces the size of the Hilbert space from growing with the number
of molecules N , to growing with the number of groups of molecules with the same
configuration. In the following it will become apparent why this can significantly
reduce the size of the Hilbert space.



92 4 Theory of Polaritonic Chemistry

4.3.1 Collective Protection

We now use Eq. (4.7) to study a collection of molecules, modeled through the simple
bound and dissociative PESs depicted in Fig. 4.1. Again we restrict ourselves to the
single-excitation subspace and diagonalize the electronic–photonic Hamiltonian for
different cuts of the full Hilbert space. We start by exploring the two-dimensional
subspace determined by restricting N − 2 molecules to their equilibrium position
qeq (minimum of bound ground state PES Vg(q)). The corresponding lowest excited
PoPES for N = 50 is represented in Fig. 4.2a, for a collective Rabi splitting �R =
0.3 eV. By inspecting this surface we can see that it does not correspond to a simple
sum of independent single-particle potentials VLP(q1, q2, . . . ) = ∑

i Vi (qi ), which
confirms our previous presumption that strong coupling implies some correlation
between nuclear motion of different molecules, as we have seen in Sect. 3.3. Fur-
thermore, the choice of this particular two-dimensional cut reveals a general feature
that aids in the analysis of even higher-dimensional PoPESs, where the choice of
subspace is less restrictive. While motion of a single molecule at a time (dashed
yellow lines) shows a small barrier towards dissociation, motion of two molecules at
the same time (dashed diagonal green line) results in a high potential energy barrier,
making motion of one molecule at a time the most probable scenario. We can see
in Fig. 4.2b how this behavior is general for simultaneous motion of two, three, or
more molecules. Here, we diagonalize again Eq. (4.7) in two different groups: one
of n molecules simultaneously moving (i.e., they all have the same configuration at
all times), and other with N − n molecules in the equilibrium position qeq. We see
that the energy barrier for simultaneous motion quickly increases with the number
of comoving molecules.

This phenomena can be understood easily: there is only a single excitation in the
system, which has to be “shared” among N molecules and one cavity mode, i.e., it is
coherently distributed over N + 1 different states. In the uncoupled system, motion
for all but one state proceeds along a ground-state-like surface, introducing a barrier
for deviations from the equilibrium position. This feature is necessarily reflected also
in the PoPES, where motion of several molecules at a time is strongly suppressed.
This phenomenawill arise inmost typicalmoleculeswith locally stable ground states,
where motion on the lowest PoPES after photon excitation will proceedmostly along
the nuclear coordinate of a single molecule, significantly simplifying the analysis.

We can thus turn our discussion to the full excited-state spectrum, with motion
restricted to a single molecule. The uncoupled excited-state PES then consist of N
surfaces that follow the ground-state PES along q1 (the photonically excited PES and
N − 1 surfaces where a molecule at the equilibrium position is excited), as well as
one surface where the moving molecule is excited and the PES thus follows Ve(q1).
In Fig. 4.2c, d, the resulting PoPESs are shown for N = 5 and N = 50 molecules,
respectively, while keeping the Rabi frequency fixed. Note that here the Rabi split-
ting is defined following Eq. (3.14) for the case of aligned molecules considered
here. Therefore, changing the number of molecules while fixing�R corresponds to a
change of the effective mode volume (i.e., the single-photon electric field E1ph) for a
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Fig. 4.2 Collective energy landscape in the single-excitation subspace. a Lowest excited two-
dimension PoPES formotion of twomolecules of of N = 50molecules.bLowest excited PoPES for
correlatesd simultaneous motion of n = 1, . . . , 5 molecules (for the N − n reamaining molecules
in the equilibrium position, with N = 50). c, d Full PoPES for motion of one molecule for the
case of c N = 5 molecules and d N = 50 molecules, with identical color code to those in Fig. 4.1.
Reprinted with permission from [3]. Copyright 2018 American Chemical Society

constant molecular density. The curves in Fig. 4.2c, d follow the same color code as
in Fig. 4.1, indicating the photon fraction and thus the excitonic/polaritonic/photonic
nature of each PoPES. The polaritonic parts (in light gray) approximately follow
the shape of the ground-state PES. This provides the system some kind of collective
protection effect, in which after photoexcitation the system now presents a more
ground-state-like energy landscape due to the collective coupling of all molecules.
This effect can be understood as a generalization to arbitrary PES of the so-called
“polaron decoupling” found in Holstein–Tavis–Cummings models [13–15], where
the nuclear DoF are treated as pure harmonic oscillators. This effect is analogous
to phenomena in J- and H-aggregates, where an excitation is distributed over many
molecules not due to coupling with a confined light mode but due to direct inter-
molecular interactions [16]. As in molecular aggregates, the similarity between the
ground-state PES and the lowest excited PoPES also implies that optical transitions
lineshapes should be significantly narrower compared to a bare molecule, due to the
fact that the Franck–Condon factors become approximately diagonal (see Sect. 2.2)
if the excited PoPES is ground-state-like in a large enough region around the equi-
librium position.
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The collective protection effect leads to nuclear motion on the PoPES of the
single excitation subspace to have mostly the energy dependence of the molecular
ground state. This consideration suggest some general design principles in polari-
tonic chemistry for obtaining a desired functionality by appropriately tailoring the
cavity-molecule interaction. In particular, the excited-state PoPES can be obtained
by “cutting and pasting” ground-state-like (polaritonic) parts of the surface together
with exciton-like parts, with the details determined by the coupling strength and
photonic mode frequency in addition to the bare-molecule structure. In Chap. 5 we
will illustrate this principle of taking advantage of the collective protection effect to
achieve different novel phenomena in organic photochemical reactions.

4.3.2 Polaritonic Nonadiabatic Phenomena

In Sect. 3.2 we discussed the nonadiabatic corrections that are introduced in strong
coupling for the case of a single molecule. Let us now discuss this for the case
of many molecules in strong coupling. We again disregard the nonadiabatic effects
present in the molecule before coupling to the cavity. As discussed in Sect. 2.2, these
effects become important when two PESs get close in energy or even degenerate
at certain nuclear configurations, which leads to an increase or divergence of the
nonadiabatic coupling vector. In the following we study the instances when this take
place: avoided crossings and conical intersections.

4.3.2.1 Avoided Crossings

In the full energy landscape of Fig. 4.2c, d we can see an avoided crossing between
a purely excitonic PES and a polaritonic one for slightly smaller or larger values of
the equilibrium position q1 = qeq. This avoided crossing is clearly seen to become
much sharper as the number of molecules is increased. By looking at the lowest
excited PoPES, the crossing at q1 = qcross occurs due to the excited molecule moving
sufficiently to fall out of resonance with the photonic mode and thus starts following
the uncoupled single molecule PES (exciton-like orange line). Therefore, in the
case of q1 > qcross the PoPES in light gray correspond to coupling between the
photonic mode and N − 1 molecules, while in q1 = qeq the polariton is formed
with all N molecules. Using a diabatic basis based on these ingredients, i.e., the N
polaritonic surfaces that arise from the N − 1 ground-statemolecules plus the photon
and the moving excited molecule, reveals that the effective coupling between these
PoPES becomes proportional to the single molecule–photon coupling, which scales
as ∼ N−1/2 for our scenario of the collective Rabi frequency being independent of
N . This reduction in coupling can be understood as the distributed excitation having
to collapse onto a single molecule as we go over qcross, or equivalently by interpreting
the polariton involving the N − 1 other molecules as simply a shifted photonic mode
coupling to the single-molecule exciton at this position. It should be noted that this
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reduction is a direct consequence of the collective protection in the system and
that further contributes to the molecular stabilization to purely polaritonic states. In
our current picture, the uncoupled molecule would immediately tend to dissociate
after photoabsorption. However, in strong coupling with a very large collection of
molecules the coupling between the excited purely polaritonic diabatic PES and
the diabatic uncoupled molecular PES goes to zero as N → ∞, thus making the
transition between diabatic PES highly unlikely. In terms of adiabatic surfaces, the
nonadiabatic coupling between the two lowest excited PES at q1 = qcross is so great
that an excited wavepacket will very efficiently transfer between the two so that
population does not reach the dissociating region of the PES.

4.3.2.2 Dark-State Collective Conical Intersections

Let us now focus in more detail in the mostly excitonic regions of the energy land-
scape close to the bare-molecule excitation energy at equilibrium (see black box in
inset of Fig. 4.3). When all molecules are in the same configuration there are N − 1
so-called “dark states” (see TCmodel discussion in Sect. 2.3). In a picture of potential
energy surfaces, this means that exactly at this configuration N − 1 PoPESs become
degenerate. Motion of any degree of freedom (i.e., nuclear motion of any molecule)
lift these degeneracies. This can be seen in Fig. 4.3, which corresponds to a zoom
of the crossing dark state surfaces for motion of two different molecules. Here, the
two sloped surfaces (green and red) roughly correspond to motion of the uncoupled
single-molecule excited PES of each of the two molecules, while the orange hori-
zontal surface actually corresponds to the remaining N − 3 dark PESs, which are
completely degenerate for all q1, q2 (remember that here we focus on the subspace
of restricted motion for N − 2 molecules). Along the seams where this surface inter-
sect the sloped surfaces, N − 2 surfaces are degenerate. These seams (continuous
black lines) correspond to either molecule at q = qeq of collective resonance. The
structure discussed here thus gives rise to a high-dimensional hierarchy of hyperdi-
mensional surfaces where between 2 and N − 1 PoPESs become degenerate, i.e.,
conical intersection seams of different dimensionality [17–20].

Here it should be noted that these intersections do not correspond simply to
intersections of completely decoupled surfaces, but that they actually show nonzero
coupling away from the point of intersection (see along the diagonal q1 = q2, where
outside qeq the small coupling lifts the degeneracy between the red and green sur-
faces). This interaction is due to the cavity, as the approximate dark states are not
completely dark anymore if the perfect degeneracy between emitters is lifted. At the
same time, the very small coupling to the cavity implies that the resultant electronic–
photonic states are almost purely excitonic and thus their intrinsic linewidth is essen-
tially equal to the one of the bare molecule.

One particularly interesting detail here is that these are collective conical inter-
sections, as they describe nuclear motion of different, possibly spatially separated
molecules. This further validates the concept of a “supermolecule” formed from all
molecules through collective strong coupling, being this new kind of conical inter-
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Fig. 4.3 Zoom on the
collective light-induced
conical intersection between
dark-state PoPESs under
motion of two molecules.
Reprinted with permission
from [3]. Copyright 2018
American Chemical Society

section another example of nontrivial collective effects. Note that the occurrence
of this structure is quite robust against inhomogeneous broadening, i.e., shifts of
the transition energies of the different molecules. This just leads to slight shifts of
the nuclear positions where the different molecular PESs become degenerate and
form the conical intersections, but does not destroy their topological properties. In
a recent analysis of the dynamics through collective conical intersections [21] it has
been demonstrated that these have an important role in the non-radiative energy relax-
ation rates upper and lower PoPESs, being this governed by the number of coupled
molecules [22–24].

4.4 Conclusions

In this chapter we presented an overview of the theory of polaritonic chemistry
under strong light–matter coupling based on the picture of PoPES, which generalize
the concept of PES to hybrid electron–photon surfaces with a parametric nuclear
dependence. In the case of collective strong coupling, more common in experiments,
we show the general properties of “collective protection”, which lead to PoPESs that
can be understood from a principle of “cut and paste” operations combining ground-
state-like with exciton-like surfaces. This implies a wide range of freedom for the
design of customized PESs that can describe the desired processes. This allows the
transformation of the surfaces that govern different photophysical and photochemical
phenomena in order to manipulate the resulting product. We here illustrated these
concepts using a common energy landscape modeling a chemical scenario of bond
dissociation, for the case of coupling to a cavity mode of a single molecule and of a
collection of molecules. In the simplest single-molecule scenario we discussed the
underlying theory and the consequences of light–matter hybridization in molecules.
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In the more complex case of collective strong coupling we present a method to study
collective effects with a large number of molecules. Furthermore, we demonstrated
a high-dimensional nested structure of collective conical intersection with varying
amount of degeneracy induced in the dark states of the system. In the following
chapter we present a couple of examples more in order to show the wide variety of
possibilities for manipulation of photochemistry that the PoPESs offer.

The PoPES picture opens the possibility of a straightforward interface to existing
quantum chemistry methods. With this approach we can make physical predictions
of how the energy landscape is altered in realistic strong coupling systems by pre-
viously calculating the molecular information with any current available quantum
chemistry packages such as Therachem [25, 26]. The bare-molecule structure can
then be calculated at each nuclear configuration for each molecule separately. Then,
it is possible to treat the light–matter coupling within a small Hamiltonian involv-
ing only a few relevant states per molecule, similar to that in existing excitonic
models [27, 28]. For the PoPES approach, this effective decoupling between the
“chemical” and “quantum optical” parts of the calculation allows the use of well-
known approaches such as QM/MM (quantum mechanics/molecular mechanics) for
treating big molecular systems. Here, nuclear motion on the PoPESs is treated clas-
sically, with nonadiabatic couplings introduced through surface hopping algorithms.
The clear parallelizability of this approach has allowed the treatment of up to 1600
rhodamine molecules (within the single-excitation subspace) and their surrounding
solvent, corresponding to 43 200 QM and 17 700 800 MM atoms in total [11].
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Chapter 5
Manipulating Photochemistry

5.1 Introduction

The possibility of manipulating photochemical reactions exploiting strong light–
matter coupling, as demonstrated in several experiments [1–3], holds great interest
for many different fields of science. In this chapter we apply the theory developed
in previous chapters in order to understand and predict different chemical changes
in organic photochemistry. We treat two different molecular models that represent
typical simple photoisomerization reactions. In Sect. 5.2 we discuss the possibility
of taking advantage of the collective protection effect introduced in Sect. 4.3 in order
to suppress photoisomerization reactions. We study the single-molecule dynamics in
strong coupling and the decrease of the reaction rate with the number of molecules.
We then investigate the system with two excitations and discuss its effect on the
reaction suppression and the connection to polariton–polariton interactions. Then, in
Sect. 5.3 we demonstrate the possibility of engineering the PoPES to achieve novel
reaction pathways by properly tuning the system in strong coupling. We show how
it is possible to increase the quantum yield of a photochemical reaction, and even
overcome the second law of photochemistry in the case of many molecules.

5.2 Suppressing Photochemical Reactions

An organic molecule can undergo an structural change after absorption of a photon.
This process is known as photoisomerization, a mechanism of great importance in
many biological systems such as the human eye [4]. It presents plenty of possible
technological applications in solar energy storage [5] and as optical switches, mem-
ories, and actuators [6, 7]. However, it can also have detrimental effects, such as
limiting the efficiency of organic solar cells [8] or opening important damage path-
ways in DNA under solar radiation [9, 10]. While sometimes these effects can be
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avoided by shielding the system from light, this is not a viable pathway when the
system precisely relies on the interaction with external light, such as in the case of
solar cells.

In this section we will show that it is possible to suppress photoisomerization by
strongly coupling the relevantmolecules to confined lightmodes. The photochemical
process is governedby the excited statePES,which ismodifiedunder strong coupling,
thus influencing the dynamics that lead to structural changes. ThePoPES that controls
the reaction develops a new minima in which the excited wavepackets are trapped
after photoabsorption. We observe the dynamics in the single-molecule scenario,
and then we discuss how we can exploit the collective protection effect presented in
Sect. 4.3 in order to enhance the suppression of the reaction.

We treat a general molecular model that can represent a variety of commonly
studied photoisomerization reactions, such as cis-trans isomerization of stilbene,
azobenzene or rhodopsin [4, 11, 12] (corresponding to rotation around aC=CorN=N
double bond, as sketched in Fig. 5.1a), or ring-opening and ring-closing reactions in
diarylethenes [6]. The model molecule describes nuclear motion on ground and
excited electronic PES along a single reaction coordinate q.

The adiabatic electronic PESs of the bare molecule are constructed in terms of
diabatic surfaces VA(q) and VB(q), shown in Fig. 5.1b, which are coupled to each

D
ia

ba
ti

c 
co

up
lin

g 
 (

eV
)

(a)

(b)

(d)

(c)

(e)

trans cis

Diabatic

Fig. 5.1 a Sketch of the cis-trans isomerization reaction of stilbene. b Diabatic and c adiabatic
PES for the model molecule. d Constant coupling between the diabatic surfaces. e Nonadiabatic
coupling at q ≈ 0 between adiabatic surfaces Vg(q) and Ve(q)
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other with a small coupling h0 = 0.02 eV assumed constant in space. This gives the
following electronic Hamiltonian:

Ĥe(q) =
(
VA(q) h0
h0 VB(q)

)
. (5.1)

Diagonalization of Ĥel(q) returns the ground and excited state PES of Fig. 5.1c,
Vg(q) andVe(q), togetherwith the adiabatic electronicwavefunctions. This also gives
access to the nonadiabatic coupling that controls the transition between ground and
excited surfaces at q ≈ 0 (see Fig. 5.1e), given by Fi, j (q) = 〈i(q)| ∂q | j (q)〉, where
i, j ∈ {e, g} and |i(q)〉 represent the adiabatic electronic states. We note that nona-
diabatic transitions in “real” molecules typically involve conical intersections (see
the corresponding discussion in Sect. 2.2), which only occur in multi-dimensional
systems; however, the details of this transition do not influence the results presented.

We take into account only one DoF, while all the others are assumed to be fully
relaxed such that the excited PES represents the minimum energy path that governs
the reaction (seeSect. 2.2). The ground state PES,Vg(q) (blue line), possessesminima
at q = q0 ≈ −1.05 a.u. and q ≈ 1 a.u., corresponding to the stable (e.g., trans-) and
metastable (e.g., cis-) isomers, respectively. They are separated by a barrier with a
maximum at q ≈ 0 accompanied by an avoided crossing between the ground and
excited state PES, Ve(q) (orange line). In order to ensure a large quantum yield for
photoisomerization in the bare molecule, we choose a very narrow avoided crossing
(with energy splitting 39 meV, smaller than the width of the lines in Fig. 5.1c).

Besides the bare-molecule PESs, we need to set the molecular dipole moment
operator µ̂, which determines the coupling to the quantized light mode and the
absorption of the system. For simplicity we set µ̂ to be purely offdiagonal in the
adiabatic basis, i.e., µgg = µee = 0. The ground-excited transition dipole moment
µeg is approximately constant close to the stable geometries, but changes rapidly
close to the nonadiabatic transition due to the sudden polarization effect [13]. We
thus choose |µeg(q)| ∝ arctan(q/qm), with qm = 0.625 representing the length scale
on which µeg(q) changes. As discussed below, the specific shape of µeg(q) does not
strongly affect the results presented here.

Therefore the complete molecular Hamiltonian is then given by

Ĥmol(q) = P̂2

2Mq
+ V̂ (q) + �̂(q), (5.2)

where P̂ is the (diagonal) nuclear momentum operator, Mq is the effective mass for
the nuclear coordinate q, V̂ (q) is the (diagonal) potential operator in the adiabatic
basis, and �̂(q) is the operator of offdiagonal (nonadiabatic) couplings as defined in
Eq. (2.32).
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5.2.1 Single Molecule Dynamics

In order to study the dynamics, we need to calculate the population evolution both in
the uncoupled and in the strongly coupled systems by solving the Schrödinger equa-
tion i∂t |ψ(t)〉 = Ĥtot|ψ(t)〉, where Ĥtot is the total Hamiltonian without invoking
the Born–Oppenheimer approximation, i.e., including all nonadiabatic terms, both
in the coupled and uncoupled case. We use a finite-element discrete variable repre-
sentation [14, 15] for the nuclear coordinate q, as well as a Fock basis for the cavity
photon mode. Note that in the strong coupling regime the nonadiabatic couplings in
the polaritonic basis are given by new terms �̂SC due to the change of basis, as well
as the original bare-molecule nonadiabatic couplings �̂(q) transformed to the new
eigenstate basis. The initial wavefunction is given by direct promotion of the ground-
state nuclear wavepacket to the lowest excited state (i.e., |e〉 for no coupling and |LP〉
under strong coupling), filtered by the q-dependent transition dipole moment µeg.
This approximately corresponds to the initial state that would be obtained after exci-
tation by an ultrashort laser pulse tuned to the excited state energy around the nuclear
equilibrium position.

In Fig. 5.2a, d we show the population transfer from the excited to the ground
state in the case of the uncoupled molecule. When the wavepacket encounters the
avoided crossing, it undergoes an efficient nonadiabatic transition (i.e., it follows the
diabatic surfaces, see Fig. 5.1b). In this scenario, the bare model molecule undergoes
rapid photoisomerization, with the nuclear wavepacket reaching the second isomer
(q > 0) within a few hundred fs.
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Fig. 5.2 Suppression of photoisomerization under strong coupling for a single molecule. a–c
Ground (blue) and excited (purple-orange color scale) potential energy surfaces of the model
molecule coupled to a quantized light mode (ωc = 2.65 eV), with the light-matter coupling strength
�R increasing from a to c. The continuous color scale encodes the nature of the hybridized excited
PES. d–f Time propagation of the nuclear wavepacket after sudden excitation to the lowest excited
PES (lower polariton for �R > 0), shown separately for the parts in the lower polariton surface
(orange) and the ground state surface (blue) reached through the nonadiabatic transition at q = 0.
Contributions in the upper polariton surface are negligible and not shown
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In contrast, when the system enters strong coupling, photoisomerization in a
single molecule is suppressed. To show this, we rely on the theoretical framework
we introduced in Chap.4. The electron–photon Hamiltonian is given by

ĤSC = ωcâ
†â + V̂ (q) + µ̂(q) · E1ph(â

† + â), (5.3)

whereωc is the quantized lightmode frequency, andE1ph is the electric field amplitude
of a single confined photon.Without the light–matter coupling term, the photonically
excited surface describes the motion of a ground-state molecule with an (uncoupled)
photon present in the cavity, and is thus simply a copy of the molecular ground
state shifted upwards by the photon energy, Vc(q) = Vg(q) + ωc (purple curve in
Fig. 5.2a). When coupling is turned on, PoPES are formed, presenting both photonic
and excitonic character (see Fig. 5.2b, c). The splitting between the PoPES around
the equilibrium (q0 ≈ −1.05 a.u.) is approximately equal to the Rabi frequency
�R = 2µeg(q0) · E1ph.

Importantly, we observe in Fig. 5.2b, c that the lower PoPES develops a deeper
and deeper minimum as the coupling is increased. This has two primary reasons:
first, the light–matter coupling is most effective when Vc(q) and Ve(q) are close,
“pushing down” the lower polariton at the equilibrium position. At regions of larger
detuning, the “polaritonic” PES are almost identical to the uncoupled ones. Second,
the local shape of the PoPES becomes a mixture of the two uncoupled PES in regions
where they hybridize significantly. Since the photonic surface Vc(q) behaves like the
ground-state PES, this additionally supports the formation of a local minimum in
the PoPES. In combination, this leads to the formation of a reaction barrier against
isomerization as the coupling is increased.At intermediate coupling,where no barrier
is formed yet, the reaction is slowed down, but not suppressed (see Fig. 5.2b, e). Once
the coupling becomes sufficiently large, a barrier appears and the excited wavepacket
is trapped in the local minimum, such that isomerization becomes almost completely
suppressed (see Fig. 5.2c, f). The initial wavepacket on the lower polariton surface in
our calculations is started by a sudden transition and thus includes all vibrationally
excited states that are reachable from the ground state through a dipole transition. If
the coherent excited wavepacket is successfully trapped without undergoing ultrafast
isomerization (as in Fig. 5.2c, f), the ultimate fate of the molecule will be determined
by two additional effects: on the one hand, the excited wavepacket will thermalize
within the lower PoPES on typical timescales of picoseconds. While the exact values
depend on the details of the system, we note that for the model molecule treated
here, the barrier height of ≈ 65 meV in Fig. 5.2c is much larger than the thermal
energy kBT ≈ 26 meV at room temperature, preventing isomerization, according
to transition state theory (TST, see Sect. 2.2). On the other hand, the excited-state
wavepacket will simultaneously decay both by radiative and nonradiative processes
with timescales typically dominated by the photonic part of the PoPES, ranging
from tens of femtoseconds for plasmonic resonances to picoseconds and longer for
dielectric structures.

Note that while the upper PoPES appears even more stable than the lower one
in this model, this is an artifact of the restriction to one degree of freedom, with
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all other degrees of freedom relaxed to their local minimum. This implies that the
lower PoPES indeed corresponds to the lowest-energy excited state, such that the
restriction to one coordinate is well-justified. In contrast, the upper polariton surface
can possess efficient relaxation pathways to the lower polariton along orthogonal
degrees of freedom, and indeed, upper polaritons are known to decay relatively
quickly within the excited-state subspace [16, 17].

We have thus shown that strong coupling of a single molecule to a confined light
mode can strongly suppress photoisomerization reactions and stabilize the molecule.
The experimental realization of single-molecule strong coupling [18] proves that this
could indeed be a viable pathway towards manipulation of single molecules. At the
same time, most experiments achieving strong coupling with organic molecules have
exploited collective coupling [19, 20], inwhich N � 1molecules coherently interact
with a single mode, leading to an enhancement of the total Rabi frequency by a factor
of

√
N (see Eq. (3.14) and TC model).

As presented in Sect. 4.3, when in collective strong coupling, the system will
experience the collective protection effect. In this scenario it is not immediately clear
whether this will be detrimental or beneficial to the suppression of the reaction. As
has recently been shown, many observables corresponding to “internal” degrees of
freedom of the molecules are only affected by the single-molecule coupling strength
and thus not stronglymodified under collective strong coupling [21, 22].We therefore
in the following explicitly check whether this suppression effect is “washed out” by
the presence of the othermolecules by explicitly studying a collection of N molecules
in strong coupling.

5.2.2 Collective Suppression

In order to treat collective strong coupling involving N molecules and a single con-
fined light mode, we again restrict ourselves to the zero- and single-excitation sub-
space.Aswe have seen in the theory Sect. 4.3, themolecules nowhave N total nuclear
degrees of freedom, described by the vector q = (q1, . . . , qN ), and the PES accord-
ingly become N -dimensional surfaces.Diagonalization of the fullHamiltonian ofEq.
(4.4) gives N + 1 polaritonic surfaces, which describe the collective coupled motion
of all molecules. In principle, this could induce, e.g., collective transitions in which
multiple molecules move in concert, but an explicit analysis of all the nuclear DoF is
computationally not feasible. We therefore focus on the subspace of the full Hilbert
space where many molecules share the same configuration by using the collective
spin operators defined in Eq. (4.6). As in the previous chapter, we do it for motion
of two molecules while keeping the remaining N − 2 molecules in the equilibrium
position (q j = q0 for j > 2), shown in Fig. 5.3a. Again, we compute the energy pro-
file for simultaneous motion of n = 1, . . . , 5 molecules, shown in Fig. 5.3b. We see
that the same arguments of Sect. 4.3 are repeated, as the collective protection effect
makes that motion of more than one molecule takes place in ground-state potential
wells, i.e., along steep potential barriers.
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Fig. 5.3 Many-molecule potential energy surfaces under strong coupling. a Lower polariton PES
for N = 50 molecules, under motion of molecules 1 and 2, with all others held in the equilibrium
position q0. b Energy reaction path corresponding to simultaneous motion of several molecules. In
both panels, the photonic mode frequency is ωc = 2.65 eV, while the (collective) Rabi frequency
is fixed to �C = √

N�R = 0.5 eV

(a) (b) (c)

Fig. 5.4 Many-molecule potential energy surfaces under strong coupling. a–c All potential energy
surfaces under motion of only molecule 1, for no light-matter coupling (a), and under strong
coupling for N = 5 (b) and N = 50 (c) molecules. In all panels, the photonic mode frequency is
ωc = 2.65 eV, while the (collective) Rabi frequency is fixed to �C = √

N�R = 0.5 eV

We thus analyze the coupled states under motion of only the first molecule q1, fix-
ing all other molecules to the ground-state equilibrium position (q j = q0 for j > 1).
The corresponding surfaces are shown in Fig. 5.4. When the light–matter coupling is
zero (Fig. 5.4a), the surface V (1)

E (q) behaves like Ve(q1), while all other surfaces (cor-
responding to photonic excitation, or excitation of a “stationary” molecule j > 1)
appear like copies of the ground-state PES Vg(q1) shifted in energy. The PoPES
for varying numbers of molecules are shown in Fig. 5.3b, c. We keep the total Rabi
frequency constant (corresponding to a scaling of the single-photon field strength
with N−1/2). Close to equilibrium (q1 ≈ q0), the N + 1 surfaces can be clearly clas-
sified into a lower and upper polaritonic PES (light gray), which show significant
hybridization with the photonic mode, as well as N − 1 “dark” surfaces (orange)
that are almost purely excitonic.

As the number of molecules is increased the collective protection effect acquires
more relevance, and thus the localminimumof the lower PoPES (the lowest light gray
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surface) close to the equilibrium position q0 becomes more and more reminiscent of
the pure ground-state PES.This introduces a set of changes to the landscape of excited
states that utterly transforms the dynamics of the system. The first consequence
is that the similarity of the ground and lower polariton PES for large N implies
that the Franck–Condon factors become approximately diagonal (i.e., µLP,g(q) ≈
µLP,g(q0) over the width of the vibrational ground-state wavepacket, see Sect. 4.3).
Thus, transitions from the overall ground state to vibrationally excited states in the
lower PoPESbecomemore andmore suppressed. Photoexcitation then cannot change
the vibrational state, such that the excited wavepacket will be close to its vibrational
ground state. Note that this occurs independent of the general shape of the single-
molecule offdiagonal transition dipole moment.

Additionaly, this likeness to the ground-state PES will also generate an energy
barrier to photoisomerization increasingly higher with the number of molecules.
For the cases shown in Fig. 5.4, the barrier height reaches ≈117 meV for N =
5 and ≈156 meV for N = 50 molecules, well above the thermal energy at room
temperature. Therefore, after photoexcitation, a ground-state wavepacket can then
thermalize (on typical time scales of picoseconds at room temperature), with the
lifetime for passing over the barrier determined by the probability of gaining enough
energy from the bath to overcome the barrier. We can now obtain an estimate of the
lifetime based on TST. This estimate should be taken with some caution, as there are
at least two features of the polaritonic system considered here that differ from the
situation treated by standard TST.

First of all, there is not just a single energetic barrier that has to be overcome, but
one for motion of every molecule with all N − 1 others close to equilibrium. This
enhances the probability of overcoming the barrier by a factor of N . However, in the
diabatic picture, the number of molecules also introduces a scaling of 1/N to the
transition probability at the avoided crossing (see isent in Fig. 5.4c) to the excitonic
PES that leads to photoisomerization. Therefore the two effects discussed approx-
imately cancel each other. We thus assume that TST provides a useful estimate of
the excited-state lifetime.1 Under the condition that the photon frequency is fixed to
stay close to resonance at the equilibrium position, the barrier height in the lowest
PoPES depends on two parameters: the Rabi frequency and the number of molecules.
Their combined effect on the energy barrier and the corresponding lifetime is shown
in Fig. 5.5, which demonstrates that increasing N leads to higher barriers, with the
value saturating for a given Rabi splitting. Alternatively, larger Rabi frequencies and
the associated reduction in the minimum energy of the lowest PoPES lead to effec-
tively higher barriers and thus a more efficient suppression of the photoisomerization
reaction. The associated lifetimes range from about one picosecond to about 10 ns
depending on parameters. The final fate of an excitedwavepacket will thus depend on
the competition between two time scales: that of the vibrational wavepacket trapped

1It should be noted that the lifetimes calculated here are an estimate, and a more precise calculation
would require to compute the formally exact quantum reaction rates as discussed in Sect. 2.2 in order
to properly include effects such as tunneling or recrossings. This nevertheless does not strongly affect
the general suppression result.
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Fig. 5.5 Energy barriers
versus number of molecules
for different values of Rabi
splitting. The right axis
shows the equivalen lifetime
predicted through
transition-state theory.
Adapted with permission
from [23]. Copyright 2018
American Chemical Society

inside the local potential well in the lower PoPES, as well as that of the polaritonic
state against relaxation, which is typically dominated by the photonic fraction of the
polariton.

5.2.3 Beyond the Single-Excitation Subspace

Up to now, we have only discussed the PoPES within the zero- and single-excitation
subspace. While this is the subspace probed under weak excitation (linear response)
in experiment, the nonlinear response of polaritonic systems is a topic of great current
interest. It becomes relevant in, among others, transient absorption measurements [1,
24], nonlinear optics setups [25–27], and studies of polariton lasing and condensa-
tion [28–32]. We here focus on the two-excitation subspace and investigate whether
we still observe the collective protection effect and the resulting suppression of
the phosotoisomerization, and whether we observe any effective polariton–polariton
interactions leading to correlated motion. As in the rest of the section, we neglect
direct dipole–dipole interactions between the molecules, such that saturation is the
only source of nonlinearities or effective polariton–polariton interactions (as typically
observed in organic-based polaritonic systems due to the localized nature of Frenkel
excitons [28]). When the number of molecules is much larger than the number of
excitations, it is expected that the system bosonizes, i.e., that the response becomes
linear and polaritons become approximately independent of each other [33]. How-
ever, nonlinearities can survive even for surprisingly large values of N under strong
coupling conditions [34]. In this case, the use of collective spin operators becomes
essential for its computational treatment, as it keeps the problem easily tractable even
for relatively large numbers of molecules (where a naive approach would scale with
N 2).

We now calculate the PoPES for up to two excitations with N = 50, shown
in Fig. 5.6 for the region q1 � 0. The large number of surfaces seen in the two-
excitation subspace can be approximately qualified within an independent-particle
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Fig. 5.6 PoPES up to the
two-excitation subspace for
the treated model molecule,
for N = 50 molecules,
photonic mode frequency
ωc = 2.65 eV, and
(collective) Rabi frequency
fixed to �C = 0.5 eV. The
two color scales indicate the
photon fraction in the single-
and two-excitation subspace,
respectively. Reprinted with
permission from [23].
Copyright 2018 American
Chemical Society

picture (expected to be exact in the limit N → ∞), corresponding to, for example,
excitation of 2 lower polaritons, or one lower and one upper polariton. The color
scale within the two-excitation subspace again measures the photonic contribution
to each state, now spanning from 〈nph〉 = 0 (two excitons, dark orange) through dark
gray (one exciton, one photon) to 〈nph〉 = 2 (two photons, dark purple).

In the following, we will focus on the lowest PoPES within the two-excitation
manifold, which we label as V2LP(q1, q2, . . . , qN ) as it corresponds approximately to
two lower polaritons close to equilibrium. Note that for the two-state molecules con-
sidered here, isomerization after double excitation (i.e., after absorption of two pho-
tons) in the uncoupled system corresponds to two independent excitons on separate
molecules, with motion proceeding on the surface V2e(q1, q2) = Ve(q1) + Ve(q2).
This implies that, in contrast to the single-excitation subspace, concerted motion of
two molecules (e.g., along q1 = q2) is not a priori suppressed under strong coupling.
In the limit N → ∞, the lowest surface should again support independent motion,
but now on polaritonic surfaces. Consequently, a cut where only twomolecules move
should approximately fulfill V2LP(q1, q2, q0, . . . , q0) ≈ VLP(q1) + VLP(q2).

This is studied in Fig. 5.7, which shows two cuts through V2LP, one in which only
q1 is varied (red solid line) and one in which q1 = q2 are varied together (green
solid line). In addition, it shows the independent-particle limit of 2VLP(q1) (dashed
yellow line). In all three cases, all remaining molecules are fixed to the equilibrium
position. The plots are restricted to the region of interest q � −0.5 a.u., with subplots
showing the cases N = 5 (a) and N = 100 (b). For the case of N = 5 molecules,
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Fig. 5.7 a, b Comparison of the PoPES in the double-excitation subspace for motion of one
molecule (red line) and two molecules (green line), and twice the lower PoPES in the single-
excitation subspace for motion of one molecule (orange dashed line), for N = 5 and N = 100
coupled molecules, respectively. c Dependence of the energy barrier for double photoisomerization
with the number of molecules for the reaction paths corresponding to the PoPES in (a, b). Reprinted
with permission from [23]. Copyright 2018 American Chemical Society

it is clearly visible that simultaneous motion of two molecules has a slightly lower
barrier than would be expected in the independent-particle limit due to a noticeable
blueshift around the equilibrium position, indicating effective polariton–polariton
interactions. These differences disappear for large enough N and are barely visible
for the case N = 100 shown in Fig. 5.7b.

In order to clearly distinguish whether simultaneous motion of several molecules
is favored compared to the independent-particle limit, we now directly compare the
barrier heights for two-molecule reactions for the different cases studied here in
Fig. 5.7c. Each line corresponds to the same case in Fig. 5.7a, b, with the differ-
ence that the energy barrier �E for motion of one molecule in the two-excitation
subspace has been multiplied by 2 for the sake of comparison. As expected, all
correlations disappear for large numbers of molecules, with the barrier heights con-
verging to the same value. However, even for a considerable number of molecules
such as N = 100 the correlations are non-negligible (remember that transition rates
approximately depend exponentially on barrier height, according to TST), suggesting
that polaritonic chemistry could possess subtle non-bosonic response even for meso-
scopic numbers of molecules, similarly as recently found for photon correlations [34,
35]. In particular, for the model studied here, the barrier for simultaneous motion of
two molecules after double excitation of the system V2LP(q1, q2) is slightly smaller
than expected from an independent-particle model (2VLP(q1)). Interestingly, motion
of just a single molecule in the two-excitation subspace is even less suppressed, with
the barrier consistently less than twice as high. It should be noted that the subtle
effects found for the specific model discussed here will of course be challenging
to measure experimentally, but they could point a way towards more pronounced
polariton–polariton interaction effects in polaritonic chemistry.
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5.3 Enhancing Photochemistry

Wenow focus on one particular characteristic of photochemistry: the so-called Stark–
Einstein law, which states that “one quantum of light is absorbed per molecule of
absorbing and reacting substance” [36]. This means that the quantum yield φ = Nprod

Nphot

of the reaction, which describes the percentage of molecules that end up in the
desired reaction product per absorbed photon, has a maximum value of 1. This limit
can be overcome in some specific cases, such as in photochemically induced chain
reactions [37–39], or in systems that support singlet fission to create multiple triplet
excitons (and thus electron-hole pairs) in solar cells [40, 41].

In this section we demonstrate a novel and efficient approach to circumvent the
second law of photochemistry, based on exploiting the collective nature of the new
eigenstates of a collection of molecules strongly coupled to confined light modes.
This can allow many molecules to undergo a photochemical reaction after excitation
with just a single photon, thus achieving an effective quantum yield larger than 1.
This obviously cannot lead to a violation of conservation of energy, therefore we
investigate a class of exothermic reactions that release energy, i.e., where the initial
state before photoabsorption has higher energy than the final state after the reaction
has concluded. We focus on a class of model molecules with a structure as proposed
for use in solar energy storage [5, 42, 43], again described within a simplified model
treating a single reaction coordinate, as shown in Fig. 5.8.

In the model molecule, the PES associated with the electronic ground state con-
tains two local minima: a stable ground-state configuration (at q = qs ≈ 0.8 a.u.) and
a metastable configuration (at q = qms ≈ −0.7 a.u.) that contains a stored energy of
about 1 eV. The activation barrier for thermal relaxation from the metastable config-
uration to the global minimum has a height of more than 1 eV, leading to a lifetime on
the order of days or even years for the metastable configuration according to transi-
tion state theory, and thus making it interesting for solar energy storage. In addition,

Fig. 5.8 Potential energy
surfaces of a molecule
presenting a general
photoisomerization reaction
where one isomer has higher
energy than the other, both of
them with roughly equal
reaction quantum yield after
absorption of a photon.
Adapted with permission
from [44]. Copyright 2017
American Physical Society
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Table 5.1 Molecular model parameters

Ei (eV) Ai (eV/a20 ) qi (a0) hi (eV)

vg 1.34 5.0 −0.75 2.0

wg 0.29 5.0 0.85

ve 11.65 5.0 −1.15 14.0

we 10.15 4.0 1.25

the molecule possesses an excited state PES with a relatively flat minimum close to
the ground transition state.

Let us first describe the molecular model in more detail. The two adiabatic PES
(ground state and first excited state) of the single bare molecule are both constructed
independently from two coupled harmonic potentials as follows:

Vi (q) = 1

2

(
vi (q) + wi (q) −

√
4h2i + [vi (q) − wi (q)]2

)
, (5.4)

where i ∈ {g, e} indicates either the ground state or excited state PES and with

vi (q) = E (v)
i + A(v)

i

(
q − q(v)

i

)2
, (5.5a)

wi (q) = E (w)
i + A(w)

i

(
q − q(w)

i

)2
. (5.5b)

Each of the PES (ground and excited state) is then described by 7 parameters, 3 each
for vi (q) and wi (q), as well as a coupling hi . Their values are given in Table5.1.
While there is a relatively large number of free parameters that control the molecular
structure, we have checked that the results presented below are insensitive to small
variations as long as the general shape of the PES is maintained.

In addition to the PES themselves, the properties of the strongly coupled light–
matter system depend on the transition dipole moment µeg(q) = 〈e(q)|µ̂|g(q)〉
between the ground and excited state, which determines the coupling strength to
the photon mode. As discussed in the previous section, the q-dependence of the
transition dipole moment is typically relatively smooth close to local minima, but
can change rapidly close to regions of strong nonadiabaticity, which are absent in
the current model. Furthermore, as we have seen in the previous section, the col-
lective protection effect ensures that the effective transition dipole moment between
the ground state and hybridized parts of the excited polaritonic PES becomes almost
independent of q for N � 1 for motion of one molecule. For simplicity, we therefore
use a q-independent µeg(q) in this section.

Wefinally discuss the decayof an isolatedmolecule to the ground state after excita-
tion, which determines the bare-molecule quantum yields. For simplicity, we assume
that the excitation decays purely radiatively, implying that nonadiabatic effects in
the bare molecule are negligible. The fluorescence quantum yield γr/(γr + γnr ) is
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then close to 1, where γr (γnr ) is the radiative (nonradiative) decay rate from the
excited state. Furthermore, since radiative lifetimes are much longer than vibra-
tional relaxation, we can assume that the wavepacket in the excited PES has reached
thermal equilibrium before fluorescence. We can thus approximate the associated
wavepacket by the vibrational ground state χ(0)

e (q), obtained by diagonalizing the

adiabatic Hamiltonian P̂2

2Mq
+ Ve(q), where P̂ = −i ∂

∂q is the nuclear momentum
operator and Mq = 550 Da is the effective mass. Radiative decay is then modeled
as a vertical transition within the Franck–Condon approximation, such that only
the electronic state changes and the ground-state nuclear wavepacket immediately
after decay is just a copy of the vibrational ground state in the excited-state PES,
χg(q, t = 0) ∝ χ(0)

e (q). The time evolution of this wavepacket on the ground-state
PES thus follows the Schrödinger equation. We then analyze the probability (corre-
sponding to the quantum yield) of finding the wavepacket in each isomer after a time
tf ≈ 160 fs in which it has completely moved away from its initial configuration due
to coherent motion. The quantum yield is then given by φiso = ∫

iso |�(q, tf)|2dq,
where iso ∈ {A, B} labels the isomer regions to the left and right of the energy bar-
rier in Vg(q). This gives a roughly equal reaction quantum yield for reaching either
the stable (44%) or the metastable configuration (56%). As expected in a conven-
tional photochemical reaction, the quantum yields in the bare molecule add up to one
(indeed, the Stark-Einstein law can be reformulated as “the sum of quantum yields
must be unity”).

We note that the condition of high fluorescence quantum yield is not strictly
necessary for the many-molecule reaction effects discussed below to take place. The
important requirement is that the excited-state lifetime is sufficiently long, which
precludes conical intersections between the ground and excited PES along or close
to the reaction path. However, many molecules possess sloped conical intersections
located at a higher energy along a nuclear coordinate orthogonal to q [45], where
it is not easily reachable by the excited-state nuclear wavepacket. The associated
bare-molecule nonradiative decay could be faster than radiative decay (which has
typical timescales of nanoseconds), but would still be slow enough to allow themany-
molecule reactions discussed here to take place. For simplicity, and to avoid having
to introduce additional assumptions about the PES structure in directions orthogonal
to the reaction coordinate q, we assume purely radiative decay in our calculations.

5.3.1 Single Molecule Quantum Yield Increase

We now consider a collection of these molecules placed inside a photonic structure
supporting a single confined light mode. For simplicity, we assume perfect alignment
between the molecular dipoles and the electric field direction. We again rely on the
theoretical framework presented previously, through the use of PoPES resulting from
diagonalization of the Hamiltonian in Eq. (4.4). We first study the scenario of N = 5
molecules, for whichwe show the coupled PES in Fig. 5.9a. Particularly, we present a
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(a) (b)

Fig. 5.9 Potential energy surfaces of a system with one light mode and a N = 5 molecules in
the strong coupling regime with Rabi frequency �R = 0.3 eV and photon energy ωc = 2.55 eV,
and b N = 50 molecules with Rabi frequency �R = 0.75 eV and photon energy ωc = 2.4 eV.
All molecules but one are fixed at the initial position (q1 = qms ≈ −0.7 a.u.). The color scale
represents the cavity mode fraction of the excited states, going from pure photon (purple) to pure
exciton (orange). Partially adapted with permission from [44]. Copyright 2017 American Physical
Society

cut of the five-dimensional PESwhere only the firstmolecule (q1) is allowed tomove,
while all others are fixed to the equilibrium position of the metastable ground-state
configuration (qi = qms for i = 2, . . . , 5).

Already for the motion of just a single molecule, our results show that the quan-
tum yield for the energy-releasing back-reaction can be significantly enhanced under
strong coupling. The lowest-energy excited PoPES (see Fig. 5.9a) is formed by
hybridization of the uncoupled excited-state surfaces of the molecules with the sur-
face representing a photon in the cavity and the molecule in the ground state (a copy
of the ground-state surface shifted upwards by the photon energy of the confined
light mode). The photon energy (ωc = 2.55 eV) is close to resonant with the elec-
tronic excitation energy at the metastable configuration (q = qms), while most other
molecular configurations (and specifically, the stable configuration q = qs) are out of
resonance with the cavity. This implies that the nature of the lowest excited-state PES
changes depending on the molecular position q, corresponding to a polariton in some
cases, and corresponding to a bare molecular state in others (as indicated by the usual
color scale in Fig. 5.9). In the polaritonic states, each molecule is in its electronic
ground statemost of the time (since the excitation is distributed over all themolecules
and the photonic mode), such that the hybrid parts of the lowest excited-state PoPES
inherit their shape mostly from the ground-state PES, as discussed in Chap.4. This
leads to the formation of a new minimum in the lowest excited PoPES at the same
position as the fully relaxed ground-state minimum qs. The surface consists of two
polaritonic regions (close to q1 = qms and q1 = qs) connected by an almost purely
excitonic “bridge” (around q1 = 0, where the cavity-exciton detuning is large), with
smooth transitions between these parts. In the absence of barriers, amolecular system
will quickly relax to the lowest-energy vibrational state on the lowest excited-state
PoPES according to Kasha’s rule [46]. Large-scale molecular dynamics calculations
have recently shown that this rule also applies in polaritonic chemistry [47, 48].
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Vibrational relaxation in the lowest excited hybrid light-matter PES will thus lead
to localization of the nuclear wave packet close to the ground-state minimum qs.
As mentioned above, we assume that nonadiabatic couplings in the bare molecule
are negligible along the reaction path, such that the dominant relaxation pathway is
radiative decay. For the vibrationally relaxed wavepacket at q1 ≈ qs, this would give
a quantum yield of essentially unity for the back-reaction from the metastable to the
stable configuration.

We note that this effect can be achieved because no energy barriers appear in the
reaction path. Nevertheless, these can still emerge and thus the suppression effect
discussed in Sect. 5.2 is possible with the adequate set of parameters.We show this in
Fig. 5.9b, wherewe increased the number ofmolecules to N = 50, aswell as increase
the Rabi frequency and detune the photon energy. This introduces an energy barrier
of ≈230 eV, which would lead to efficient trapping of the wavepacket, effectively
suppressing the reaction. We thus find that precise tuning of the systems parameters
can lead to two complete different outcomes.

5.3.2 Triggering of Many Reactions in Collective Strong
Coupling

While the previous section already presented a large cavity-induced change of the
photochemical properties of such molecules, we next show that the collective nature
of the polaritons can result in even more dramatic qualitative changes in the system,
allowing it to keep releasing energy during sequential relaxation of the molecules
from the metastable to the stable configuration.

To understand this, we have to take into account that the PoPES formed under
strong coupling encompass the nuclear degrees of freedom of all involvedmolecules.
This collective nature can in particular also allow nuclear motion on different
molecules to become coupled, and in the current case creates a reaction path along
which the system can release the energy stored in all molecules, while staying on
a single adiabatic PES reached by single-photon absorption in the initial state. This
is demonstrated for motion of two of the involved molecules in Fig. 5.10a, which
shows a two-dimensional cut of the PoPES of the lowest-energy excited state (with
all other molecules again frozen in the metastable position q = qms). We calculate
the minimum energy path (MEP) connecting the initial configuration q1 = q2 = qms

to the location where the first two molecules have released their stored energy
(q1 = q2 = qs) using the nudged elastic band method [49]. This approximate clas-
sical trajectory defines the reaction coordinate of the full “supermolecule” system.
The initial position, for which we again assume that all molecules are at q = qms,
corresponds to short-pulse excitation from the ground state in the metastable con-
figuration, according to the Franck–Condon principle. The final position is qi = qs
for all i , i.e. the position where all the molecules are in the stable configuration (cor-
responding to the global minimum of the PES). It is worth noticing that due to the
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Fig. 5.10 a Lowest-energy excited state PES for 2 moving molecules in a 5-molecule ensemble.
The minimum energy path (blue to white dots) connects the initial excited region with the final
configuration of the two molecules. b Participation ratio map of the lowest-energy excited state,
indicating over how many molecules the state is delocalized. The MEP is indicated by a dashed
black line. Adapted with permission from [44]. Copyright 2017 American Physical Society

indistinguishability of our molecules, any of the available molecules can undergo the
reaction in each step, and there are N ! equivalent paths from the initial to the final
position. Due to rapid decoherence through interaction with the vibrational bath, we
assume that quantum interference between these equivalent paths can be neglected,
and we show only one of them in the following: the one in which the order of reac-
tions corresponds to the numbering of the molecules. Along this path, indicated as a
series of points in Fig. 5.10a, there are no significant reaction barriers, such that vibra-
tional relaxation after absorption of a single photon indeed can lead to deactivation of
both molecules. While we already proved in the previous section that simultaneous
motion of several molecules is strongly suppressed in the low-excitation regime, we
see that this does not prevent several reactions from occurring. The calculated MEP
demonstrates that, to a good approximation, the reaction proceeds in steps, with the
molecules moving one after the other (i.e., in the first leg, only q1 changes, while in
the second leg, only q2 changes).

In order to gain additional insight into the properties of the polariton states that
enable this step-wise many-molecule reaction triggered by a single photon, we fur-
ther analyze the lowest excited PES by showing its molecular participation ratio in
Fig. 5.10b. Here, the molecular participation ratio is defined as [50]

Pα(q) =
(∑

i |〈ei |�α(q)〉|2)2∑
i |〈ei |�α(q)〉|4 , (5.6)

where |ei 〉 denotes the excited state ofmolecule i , and the sums are over allmolecules.
Theparticipation ratio gives an estimate of the number ofmolecular states that possess
a significant weight in a given state |�α〉, with possible values ranging from Pα = 1
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Fig. 5.11 Energy profile
along the minimum energy
paths for collections of 2, 3,
4 and 50 molecules. For
N = 50, only the first five
steps are shown explicitly.
Thin dashed lines indicate
the approximate location
along the path where one
molecule stops moving and
the next one starts. Adapted
with permission from [44].
Copyright 2017 American
Physical Society

to Pα = N (for N molecules). Analyzing it for the lowest-energy excited state PoPES
(see Fig. 5.10b) demonstrates that the surface at the starting point corresponds to a
collective polariton, with the excitation equally distributed over all molecules. Along
the MEP, the excitation collapses onto a single molecule (the one that is moving),
demonstrated by the participation ratio decreasing to 1 for−0.5 a.u. � q1 � 0.4 a.u..
As the molecule moves, it again enters into resonance with the cavity (and the other
molecules) and the state changes character to a fully delocalized polariton with
PLP = N (at q1 ≈ 0.45 a.u.). However, as the first molecule keeps moving, it falls
out of resonance again and effectively “drops out” of the polaritonic state, leaving the
excitation in a polaritonic state distributed over the photonic mode and the remaining
N − 1 molecules (PLP = 4), which then forms the starting point for the second
molecule to undergo the reaction. Following the MEP along the second leg (where
q1 ≈ qs and q2 moves from qms to qs), the same process repeats, but now involving
one less molecule.

Wenowdemonstrate that the sameprocess can keep repeating formanymolecules.
To this end, we calculate the MEP for varying numbers of molecules from N = 2
to N = 50, with a collective Rabi splitting of �R = 0.3 eV in the initial molecular
configuration (qi = qms for all i) for all cases.As shown inFig. 5.11, the energyprofile
along the MEP is structurally similar for any number of molecules. The main change
is that for larger values of N , the collective protection effect makes the PES resemble
the shape of the uncoupled PES more strongly, leading to a less smooth MEP with
slightly higher barriers, comparable to the average thermal kinetic energy at room
temperature. In addition, the significant change of collective state when passing
the barrier (with the excitation collapsing from all molecules onto a single one in
the “bridge” region around q = 0) leads to narrow avoided crossings in the adiabatic
picture. As in previous chapters, in a diabatic picture formed by the polaritonic PES of
N − 1 coupled molecules and the remaining bare excited PES, their coupling can be
shown to be proportional to the single-molecule coupling strength�R/

√
N , such that

to lowest order in perturbation theory, the transition probability from the polaritonic
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to the pure-exciton surface scales as 1/N . However, this effect is compensated by
the fact that there are many possible equivalent paths, corresponding to motion of
any of the remaining metastable molecules. We thus again assume that TST for a
single barrier of the same height provides a reasonable estimate for the average time

needed to overcome any one of the barriers. This gives τ ≈ h
kBT

exp
(

�E
kBT

)
� 1 ps at

room temperature [51]. It should be noted that several other mechanisms relevant in
the current case imply that the TST predictions correspond to an upper limit, as TST
is known to fail in multi-step reactions where the nuclear wavepacket approaches the
barriers with some initial kinetic energy [52], and also neglects quantum tunneling
effects that are important for small energy barriers as found here.

The estimated times for passing the barriers highlight the importance of the life-
time of the hybrid light–matter states to determine the feasibility of triggering mul-
tiple reactions with a single photon. In most current experiments, polariton lifetimes
(which are an average of the lifetimes of their constituents) are very short, on the
order of tens of femtoseconds, due to the use of short-lived photonic modes such as
localized surface plasmons or low-Q modes in metallic and dielectric Fabry–Perot
microcavities. In contrast, the lifetime of the molecular excitations can be limited
by their spontaneous radiative decay, which is on the order of nanoseconds for typ-
ical organic molecules. Consequently, if long-lived photonic modes as available
in low-loss dielectric structures such as photonic crystals or microtoroidal cavities
are used instead, there is no fundamental reason preventing polariton lifetimes that
approach nanoseconds. This would thus give enough time for thousands ofmolecules
to undergo a reaction before the excitation is lost due to radiative decay.

5.4 Conclusions

To conclude this chapter, we have explored two different possibilities of manipulat-
ing photochemistry using light–matter strong coupling. We first have demonstrated
the stabilization of excited-state molecular structure and accompanying strong sup-
pression of photochemical reactions under strong coupling of molecules to confined
light modes. While already effective in the case of a single coupled molecule, we
find that collective coupling of a large number of molecules to a single light mode
provides an even stronger stabilization due to the collective protection effect. We
additionally find that this phenomenon does not vanish in higher excited subspaces.
These results do not depend on the specifics of the molecular model, such that the
observed stabilization is expected to occur for any kind of photochemical reaction
that is induced by motion on the excited molecular PES.

The combination of the effects discussed in Sect. 5.2 leads to an almost complete
suppression of photoisomerization, with a potentially much larger predicted effect
than the change in rate observed in [1]. There are twomain reasons for this difference.
First, in the experiment the isomer representing the product was the one in strong
coupling, unlike in our study, meaning that the molecule was much less affected by
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the coupling to the cavity. Second, in here we treat a single confined light mode
while the experiment consist of a planar microcavity that hosts a continuum of light
modes. However, a more similar setup was achieved in a 2016 study by the group
of Timur Shegai, where they showed experimentally the possibility of a 100-fold
reduction of the rate of photo-oxidation of organic dyes by strongly coupling them
to plasmonic nanoantennas [2]. This has been further demonstrated in early 2019,
where photodegradation of the semiconducting polymer P3HT has been reduced
threefold [3]. This confirms that the energy landscape is sufficiently altered in the
strong coupling regime to strongly influence the reaction kinetics.

Finally, in Sect. 5.3, we have demonstrated that under strong coupling, a single
photon could be used to trigger a photochemical reaction inmanymolecules. This cor-
responds to an effective quantum yield (number of reactant molecules per absorbed
photon) of the reaction that is significantly larger than one, and thus provides a possi-
ble pathway to break the second (or Stark–Einstein) law of photochemistry without
relying on fine-tuned resonance conditions. The basic physical effect responsible
for this surprising feature is the delocalized nature of the polaritonic states obtained
under collective strong coupling, which require a treatment of the whole collection
of molecules as a single polaritonic “supermolecule”. For the specific model studied
here, this strategy could resolve one of the main problems of solar energy storage
with organic molecules: How to efficiently retrieve the stored energy frommolecules
that are designed for the opposite purpose, i.e., for storing energy very efficiently
under normal conditions [42, 43]. By reversibly bringing the system into strong cou-
pling (e.g., through a moving mirror that brings the cavity into and out of resonance),
one could thus trigger the release of the stored energy through absorption of a single
ambient photon.
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Chapter 6
Cavity Ground-State Chemistry

6.1 Introduction

In recent years, the possibility of influencing the thermally driven reactivity of organic
molecules in the electronic ground state has been demonstrated by coupling the
cavity to vibrational transitions of the molecules [1–4]. This opens a wide range
of possibilities, such as cavity-enabled catalysis and manipulation of ground-state
chemical processes. In this chapter we theoretically investigate the possibility of
modifying ground-state chemical properties of organic molecules. Other attempts to
understanding these experimental observations have been done. More specifically,
it has been shown that chemical reactions are not strongly modified even under
electronic ultrastrong collective coupling [5, 6]. Additionally, in a series of papers
based on more microscopic models, Flick and co-workers have shown that ground
state properties can be significantly modified under single-molecule (ultra-)strong
coupling [7–9], but have not explicitly treated chemical reactivity. It has also been
reported resonant enhancement of ground-state electron transfer reactions in more
specific theoretical descriptions [10].

In the present chapter, we aim to understand cavity-induced modifications of
ground-state chemistry in coupled molecule-cavity systems using a general theoret-
ical model. In Sect. 6.2 we present the light–matter interaction Hamiltonian for a
single molecule coupled to a nanoscale cavity. Then, we review the cavity Born–
Oppenheimer approximation [8, 9], which allows to approach polaritonic chemistry
by treating the photonic DoF as a continuous parameter and on equal footing as the
nuclear DoF. We then present the Shin–Metiu model [11], a simple molecular model
that displays a possible chemical reaction and that allows us to perform calculations
with the full Hamiltonian without invoking any approximation. Then in Sect. 6.3 we
start by obtaining the formally exact quantum reaction rates for the system [12–14].
In order to understand these results we develop a simplified theory based on the
cavity Born–Oppenheimer approximation [8] and on perturbation theory, where we
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find that we can predict the reaction rate changes based on transition state theory [15,
16]. Furthermore, this theory allows us to make explicit connections to electrostatic,
van derWaals, and Casimir–Polder interactions. In Sect. 6.4 we present two different
calculations in realistic systems such as a nanoparticle-on-mirror cavity [17–19],
where the single-molecule coupling can be significant, and on the change in rate
in the internal rotation of the 1,2-dichloroethane molecule, where we demonstrate
the full potential of the cavity to inhibit or catalyze reactions, or even to modify the
equilibrium configuration of the molecule. Then in Sect. 6.5 we extend our model
to an ensemble of molecules and find collective enhancement of the effect under
orientational alignment of the molecular dipoles. We additionally discuss collective
phenomena in Sect. 6.6, where the change of the ground-state equilibrium structure
of themolecule is investigated, also using an approach of polaritonic potential energy
surfaces.

We mention here that we do not explicitly treat the case of many molecules
coupled to a cavity with a continuum of modes, i.e., the case which corresponds to
the experimentally used Fabry–Perot cavities with in-plane dispersion [1, 4]. For
the sake of simplicity, we also neglect solvent effects. While these are well-known
to be important in chemical reactions, their effect depends strongly on the chosen
solvent and experimental setup (particularly in nanocavities). However, we mention
that the latest experimental studies indicate that solvent effects might be responsible
and/or relevant for the experimentally observed resonance-dependent ground-state
chemical reactivity [2, 3].

6.2 Theoretical Model

We restrict the following discussion to organic molecules coupled to a nanocavity,
based on the Hamiltonianwithin the quasistatic approximation presented in Sect. 2.3.
For simplicity, we first consider a single molecule including ne electrons and nn
nuclei. The Hamiltonian is thus

Ĥ =
nn∑

i=1

P̂2
i

2Mi
+ Ĥe(x̂, R̂) +

∑

k

ωk

(
â†k âk + 1

2

)
+

∑

k

ωk q̂kλk · μ̂(x̂, R̂). (6.1)

The bare molecular Hamiltonian corresponds to the first two terms: the kinetic
energy of nn nuclei and the electronic Hamiltonian. The latter includes the kinetic
energy of the ne electrons and the nucleus–nucleus, electron–electron, and nucleus–
electron interaction potentials. This operator depends on all the electronic and
nuclear positions, x̂ = (x̂1, x̂2, . . . , x̂ne) and R̂ = (R̂1, R̂2, . . . , R̂nn), respectively.
In Eq. (6.1) we now use the photonic displacement1 q̂k = 1√

2ωk
(â†k + âk) and the

electric field strength is determined by the coupling strength λk = λkεk . This

1Do not confuse the photonic displacement qk with the generalized nuclear coordinate q used in
previous chapters. To avoid confusion, in this chapter nuclear coordinates are explicitly denoted R.
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coupling constant can be related to both the single-mode electric field strength
and the (position-dependent) effective mode volume of the quantized mode, with

λk =
√

2
ωk
E1ph,k(rm) = √

4π/Veff,k . Here we use the general definition of the effec-

tive EM mode volume of Eq. (2.71).
In the following, we will first treat a cavity in which only a single mode has

significant coupling to the molecule. Since the interaction depends on the inner
product between the electric field and the total dipole moment μ̂ = ∑nn

i Zi R̂i −∑ne
i x̂i , only the projection μ̂ε = ε̂ · μ̂ is relevant, and we only have to deal with

scalar quantities. For the sake of simplicity, we rewrite μ̂ε → μ̂. We also assume
perfect alignment between the molecule and the field unless indicated otherwise.

6.2.1 Cavity Born–Oppenheimer Approximation

In order to treat molecules coupled to low-energy photons (such as in vibrational
strong coupling) we make use of the cavity Born–Oppenheimer approximation [9].
We now review in detail this description, which starts by expressing the photonic
DoF as an explicit harmonic oscillator, where the electromagnetic energy of the k-th
mode reads

Ĥ (k)
EM = ωk

(
â†k âk + 1

2

)
= p̂2k

2
+ ω2

k

q̂2
k

2
, (6.2)

with p̂k = i
√

ωk/2
(
â†k + âk

)
and q̂k = 1/

√
2ωk

(
â†k + âk

)
as the photon canonical

momentum and displacement respectively. By comparing this to the electromagnetic
energy presented in Sect. 2.1, we see that the photon displacement is directly related
to the electric displacement field associated to that mode through D̂k = ωkλk q̂k2 and
the photon momentum is related to the magnetic field [20, 21].

Within the explicit harmonic oscillator description for the electromagnetic Hamil-
tonian, it is possible now to perform an adiabatic separation similar to the standard
BOA. This way of writing the photonic Hamiltonian using a continuous photonic
displacement operator suggests a different approach for treating the photon modes
than employed in the previous chapters: by treating the photonic DoF on equal foot-
ing to a nuclear coordinate within the BOA. Therefore, we include the photonic DoF
in the Born–Huang expansion (see Sect. 2.2):

�(ri , R j , qk) =
∑

l

χl(R j , qk)�l(ri ; R j , qk), (6.3)

where for simplicity we treat the single-molecule case, and thus ri , R j , and qk
represent all the electronic andnuclearDoFof themolecule, and photonic coordinates

2Note that the vector dependence is in the coupling constant λk = λkek so that the photonic dis-
placement q̂k is a scalar operator.
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of all the modes, respectively. The electronic eigenstates satisfy

Ĥe(r̂i ; R j , qk)�l(ri ; R j , qk) = Vl(R j , qk)�l(ri ; R j , qk), (6.4)

where the electronic Hamiltonian is now

Ĥe(r̂i ; R j , qk) = Ĥtot − T̂n −
∑

k

p̂2k
2

= Ĥmol(r̂i ; R j ) +
∑

k

(
ω2
k

2
q2k + ωk q̂kλk · μ̂(r̂i ; R j )

)
.

(6.5)
In this case the electronic wavefunctions depend parametrically on both the nuclear
configuration and the photonic displacements. By replacing this in the Schrödinger
equation we again find a set of differential equations similar to the ones described in
Eq. (2.29) of Sect. 2.1

[
T̂n + p̂2k

2
+ Vl(R j , qk)

]
χl(R j , qk) +

∑

l ′
�̂ll ′(R j , qk)χl ′(R j , qk) = Eχl(R j , qk),

(6.6)
which are coupled through the new nonadiabatic term

�̂
(cav)
ll ′ (R j , qk) = 〈�l(ri ; R j , qk)|

(
T̂n + p̂2k

2

)
|�l ′(ri ; R j , qk)〉ri −

(
T̂n + p̂2k

2

)
δll ′ .

(6.7)
The cavity Born–Oppenheimer approximation (CBOA) [8, 9] consists on neglecting
these nonadiabatic terms, and thus considering the electronic PES (now dependent
on nuclear and photonic degrees of freedom) completely independent. Due to the
formal equivalence between nuclear and photonic degrees of freedomwithin this pic-
ture,3 all the results and standard procedure discussed in Sect. 2.2 can be extended
to the CBOA. Indeed, the emergent nonadiabatic terms will become relevant when
the electronic PES are close in energy. As we later discuss, the separability condi-
tion is precisely fulfilled in vibrational strong coupling, where photonic and nuclear
excitation energies are comparable [9].

Note that this picture does not give any precise insight of the level of hybridization
of light and matter. In conventional strong coupling this is achieved through the
Rabi splitting relative to the resonance frequency �R/ω0, where �R is the energy
separation between polaritons. In this picture, in order to obtain �R, it is required to
explicitly calculate the coupled nuclear-photonic eigenstates determined by the new
cavity-PESs. This is most easily achieved close to local minima, where the surface
can be approximated through coupled harmonic oscillator potentials. A standard
procedure in chemistry is to diagonalize the corresponding Hessian of the surface to
obtain the new normal modes. Let us thus analyze the case of vibrational SC in the
ground-state. Consider that once the CBOA has been performed for a system with

3Note that both Eqs. 2.29 and 6.6 represent the same equation if we considered the photonic term
p̂2k
2 as the kinetic energy of another nuclear DoF.
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one nuclear degree of freedom and one photonic mode, the ground-state PES close
to the minimum is given by

Vg(R, q) = ω2
ν

2
R2 + ω2

c

2
q2 + λωcqμg(R), (6.8)

where we are here using mass-weighted coordinates (R → R/
√
M) for the nuclear

coordinate of vibrational frequency ων and μg(R) = 〈g(R)|μ̂|g(R)〉 is the ground-
state permanent dipole moment. The Hessian of the surface is

H =
(

ω2
ν λωcμ

′
g(R0)

λωcμ
′
g(R0) ω2

c

)
, (6.9)

where μ′
g(R0) is the derivative of the ground-state dipole moment evaluated at

the minimum R0 = 0. The eigenvalues of the Hessian correspond to the squares
of the normal modes frequencies. In the resonant case with the first vibrational
frequency (ωc = ων) it is straightforward to show that the new frequencies are

ω± = ωc

√
1 ± λ

ωc
μ′
g(R0). This is the standard result for the modes of two coupled

harmonic oscillators beyond the RWA [22]. The connection between the coupling
strength and the Rabi splitting is clearer in the low-coupling limit:

ω± ≈ ωc ± 1

2
λμ′

g(R0). (6.10)

The Rabi splitting to lowest order is then �R = λμ′
g(R0), i.e., proportional to λ.

The first derivative of the momentum corresponds to the transition dipole moment
between nuclear eigenstates, making thus the connection to the Rabi splitting pre-
sented in previous sections. This derivation is equivalent to the one performed in
[23], where they demonstrated vibrational strong coupling in organic molecules for
the first time.

6.2.2 Shin–Metiu Model

In order to study changes in ground-state chemical reactivity induced by strong
coupling to a nanocavity, we first treat a simple molecular model system that is
numerically fully solvable and has been extensively studied in model calculations
of chemical reaction rates, the Shin–Metiu model [11]. It treats three nuclei and
one electron moving in one dimension, as presented in Fig. 6.1a. Two of the nuclei
are separated by a distance L and fixed in place, while the remaining nucleus and
the electron are free to move. The repulsive interaction of the mobile nucleus with
the fixed ones is given by a normal Coulomb potential, while the attractive electron–
nuclei interaction is given by softenedCoulombpotentials Ven(ri ) = Zerf(ri/Rc)/ri ,
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where ri is the distance between the electron and nucleus i and Rc is the soften-
ing parameter. The system has two stable nuclear configurations (minima of the
ground-state Born–Oppenheimer surface) that represent two different isomers of
a charge or proton transfer reaction. Given that the electronic excitations energies
and thus the nonadiabatic couplings between different potential energy surfaces can
be varied easily by changing the parameters of the Shin–Metiu model, it has been
extensively studied in the context of correlated electron–nuclear dynamics [24, 25],
as well as in the context of polariton formation under strong coupling [8, 9]. The
parameters chosen throughout the present work are Z = 1, L = 10 Å ≈ 18.9 a.u.,
M = 1836 a.u., and Rc = 1.5 Å ≈ 2.83 a.u. (for all three nuclei), resulting in the
Born–Oppenheimer potential energy surfaces shown in Fig. 6.1b, with negligible
nonadiabatic coupling between electronic surfaces. The figure also shows the first
few vibrational eigenstates close to each minimum (tunneling through the central
energy barrier is negligible for these states, so that they can be chosen to be localized
on the left or right, respectively). In Fig. 6.1c we show the ground-state permanent
dipole moment μg(R) = 〈g|μ(R)|g〉. Below we demonstrate that, to a good approxi-

Fig. 6.1 a Schematic
representation of the
Shin–Metiu model close to
one of the equilibrium
configurations. The two ions
on both sides are fixed at a
distance L , while the
electron and the remaining
ion can move freely in
between. b Potential energy
surfaces of the model with
the vibrational levels and
associated probability
densities of the ground state
(blue) represented. c Ground
state dipole moment

(b)

(a)

(c)
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mation, the ground-state potential energy surface and dipole moment are sufficient to
describe the change in the molecular ground-state structure and chemical reactivity
due to the cavity.

6.3 Effects of the Cavity on Ground-State Reactivity

In this section we study the changes on the ground-state reactivity of the Shin–Metiu
model induced by a single cavity mode, using the Hamiltonian Eq. (6.1). We first
analyzehow the reaction rates aremodifiedwhen increasing the light–matter coupling
λ. We then develop a theory in which we turn to the cavity Born–Oppenheimer
approximation and perturbation theory to explain and predict possible changes.

6.3.1 Reaction Rates

TheShin–Metiumodel presents a possible ground-state proton-transfer reaction from
the left minimum at R ≈ 4 a.u. to the right one (or vice versa). In the following, we
take advantage of the simplicity of the Shin–Metiu model to exactly compute the
quantum reaction rates without any approximation, as reviewed in Sect. 2.2. This
automatically takes into account all quantum effects, including tunneling and zero-
point energy. In particular, we will find the reaction rates by using Eq. (2.42), which
for convenience we rewrite here:

k(T ) = 1

Qr(T )

∫ t f →∞

0
C f f (t)dt. (6.11)

In order to obtain the flux operator F̄ = 1
2M (P̂s ′(R)δ(s) + δ(s)P̂s ′(R)), required to

calculate C f f (t), we define the dividing surface as s(R) = R, such that it divides
reactants and products at R = 0.

In order to obtain the rates of the coupled electronic-nuclear-photonic system,
we discretize all three degrees of freedom, using a finite-element discrete variable
representation [26, 27] for x and R, as well as the Fock basis for the cavity photon
mode. This allows to diagonalize the full Hamiltonian and thus to straightforwardly
calculate the flux-flux autocorrelation function Eq. (2.43) for arbitrary time t . For
numerical efficiency, we perform the diagonalization in steps, first diagonalizing the
bare molecular Hamiltonian, performing a cut-off in energy, and then diagonalizing
the coupled system in this basis.We have carefully checked convergence with respect
to all involved grid and basis set parameters and cutoffs. As is well known [11, 24],
due to the absence of dissipation in the model, for large times the correlation function
becomes negative and oscillates around zero, corresponding to the wave packet that
has crossed the barrier returning back through the dividing surface after reflection at
the other side of the potential (at R ≈ 6 a.u.). However, in a real system the reaction
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coordinate is coupled to other vibrational and solvent degrees of freedom that will
dissipate the energy and prevent recrossing. To represent this, we choose a final
time t f around which the correlation function stays equal to zero for a while and
only integrate up that time in Eq. (6.11). The time chosen, t f = 35 fs, corresponds
to typical dissipation times in condensed phase reactions, and is similar to values
chosen in the cavity-free case [11].

We now study the cavity-modified chemical reaction rates of the hybrid system for
different coupling strengths λ. In order to evaluate the strength of the coupling, we
note here that at the resonance condition with vibrational transitions we can link the
coupling constant λ with the Rabi splitting �R . Note that in the formation of vibro-
polaritons, i.e., hybridization of the photon mode with the vibrational transitions
of the molecule, the Rabi splitting is determined by the transition dipole moment
and frequency of the quantized vibrational levels of the molecule. Within a lowest-
order expansion around the equilibrium position (see Eq. (6.10) and related discus-
sion), Vg(R) ≈ Vg(R0) + 1

2Mω2
ν(R − R0)

2, μg(R) ≈ μg(R0) + μ′
g(R0)(R − R0),

these are given by ων = 72.6 meV, and μv ≈ 1√
2Mων

μ′
g(R0), giving a Rabi frequency

�R = λ√
M

μ′
g(R0) on resonance (ωc = ων) [23]. We note that a coupling strength of

λ = 0.035 a.u. corresponds to aRabi splitting of�R ≈ 0.10ων for the first vibrational
transition. For the sake of comparison, we mention that single-molecule electronic
strong coupling has been achieved with mode volumes of ∼ 40 nm3 [17], corre-
sponding to λ ≈ 0.007 a.u., and there are indications that effective sub-nm3 mode
volumes could be reached due to single-atom hot spots [18, 19], which would allow
the single-mode coupling strength to reach values up to λ ≈ 0.05 a.u..

In Fig. 6.2 we show the resulting rates with different values of the coupling con-
stant in an Arrhenius plot, i.e., the logarithm of the rate divided by the temperature

Fig. 6.2 Arrhenius plot for the rate dependence with temperature in the hybrid system for several
light-matter coupling values. See main text for details
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as a function of the inverse temperature. The straight lines in Fig. 6.2 confirm that
the hybrid light–matter system follows the behavior described by the Eyring equa-
tion [15]

k = κ2πkBT e
− Eb

kBT , (6.12)

which connects the rate of a chemical reaction with the energy barrier Eb that sepa-
rates reactants from products. This expression is Eq. (2.41) expressed in atomic units.
Here,κ is a transmission coefficient, typically considered equal to one if nonadiabatic
effects can be neglected close to the transition state.

We thus observe that evenunder vibrational strong coupling and the accompanying
formation of vibro-polaritons, i.e., hybrid light–matter excitations, the reaction rate
can still be described by an effective potential energy barrier. However, the effective
height of the energy barrier is modified through the CQED effect of strong coupling,
leading (for the studied model) to significantly reduced reaction rates. Although
we treat here a single-mode and single-molecule system, these general observations
agree with experimental studies [1, 2, 4].

6.3.2 CBOA-Based Model

We develop here a theory not based on full quantum rate calculations (which require
the calculation of nuclear dynamics in 3N − 6 dimensions) and that allows to
make predictions beyond simple model systems. In the following we show that
this can be achieved by applying (classical) transition state theory (TST) to the
combined photonic–nuclear potential energy surfaces provided by the cavity Born–
Oppenheimer approximation introduced in Sect. 2.3 and that we can get general
results by combining CBOA and perturbation theory.

6.3.2.1 Cavity Born–Oppenheimer Surfaces

We now apply the cavity Born–Oppenheimer approximation to our system with the
goal to get the cavity-PES of the ground state Ṽg(R, q) in which the modifications
when increasing λ are visible. We achieve this by diagonalizing the new electronic
Hamiltonian Ĥe(x̂; R, q) = Ĥ − p̂2

2 − P̂2

2M . Conceptually, the photonic displacement
corresponds to a single additional nuclear-like DoF. This allows to apply standard
tools such as TST to obtain an estimation for reaction rates. With this theory it is
only necessary to calculate the effective energy barrier for the reaction within the
ground-state CBOA surface.

We use this for the Shin–Metiu model coupled to a cavity mode on resonance
with the first vibrational transition. The two-dimensional PES Ṽg(R, q) is shown in
Fig. 6.3a for a coupling strength of λ = 0.02 a.u., which corresponds to a vibrational
Rabi splitting of �R ≈ 0.05ων . The second panel, Fig. 6.3b, shows the minimum
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Fig. 6.3 a Two-dimensional ground-state PES in the cavity Born–Oppenheimer approximation
for the Shin–Metiu model for λ = 0.02 a.u. and ωc = 72.6 meV. At R = 0 we show the dividing
surface used to compute the reaction flux from reactant to product states. The gray dashed line
curve corresponds to the energy path along qm(R), i.e., the minimum in q . b Value of the energy
path Ṽg(R, qm) for different values of the Rabi frequency, which is related to the coupling strength
through �R = λμ′

g(R0), where the dipole derivative is evaluated at the minimum

Fig. 6.4 Energy barrier and
rates ratio versus coupling
strength for the case of a
CBOA calculation (full
lines) and for the effective
energy barrier fitted from
exact quantum rate
calculations (dashed lines)

along q of this surface as a function of R, i.e., along the path indicated by the curved
dashed line in Fig. 6.3a, for a set of coupling strengthsλ that induce a Rabi splitting of
up to�R = 0.1ων . This path closely corresponds to the minimum energy path of the
proton transfer reaction within the CBOA. As the coupling is increased, the minima
become deeper, while the transition state (TS) at R = 0 stays unaffected. This leads
to an effective increase of the reaction barrier Ẽb = Ṽg(RTS, qTS) − Ṽg(Rmin, qmin),
as shown in Fig. 6.4.

In this figure we also show the corresponding change in the rate predicted by
Eq. (6.12). The full lines correspond to the energy barrier calculatedwithin theCBOA
(blue) and the corresponding rate (red) according to TST, while the dashed lines
show the effective energy barrier E (eff)

b extracted from the fit to the Arrhenius plot
Fig. 6.2 and the corresponding change in the rate obtained from the full quantum
rate calculation above. As can be seen, the effective and CBOA energy barriers
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agree very well, with just an approximately constant overestimation of the barrier
in CBOA due to quantum effects such as zero-point energy and tunneling, which
remain unaffected by the cavity. This leads to excellent agreement for the change
of the reaction rate obtained from the full quantum calculation and the CBOA-
TST prediction. As expected from our previous discussion, the reaction rate of the
hybrid cavity–molecule system decreases dramatically as the coupling increases due
to the increase of the energy barrier height. Finally, we also calculate the CBOA
energy barrier corrected by �̃zp, the difference between the zero-point vibrational
frequencies at the minimum and transition states as obtained from the Hessian of the
PES (disregarding the direction of negative curvature at the TS). This is shown as a
dash-dotted line in Fig. 6.4, and considerably improves the absolute agreement with
the effective barrier extracted from the full quantum rate calculations.

While we have up to now worked within a single-mode model, the CBOA actu-
ally makes it straightforward to treat multiple photonic modes. The ground state PES
then parametrically depends on multiple parameters qk , one for each mode, just as a
realistic molecule depends on multiple nuclear positions Ri . Similarly, the adiabatic
surfaces are not harder to calculate than for the single-mode case, and minimization
strategies can rely on the same approaches used in “traditional” quantum chemistry.
We note that for a general cavity, the mode parameters can be obtained either by
explicitly quantizing the modes (which is in general a difficult proposition) or, alter-
natively, by rewriting the spectral density of the light-matter coupling (proportional
to the EM Green’s function) as a sum of Lorentzians [28–31].

6.3.2.2 Perturbation Theory

Aswehave seen, the cavityBorn–Oppenheimer approximation provides a convenient
framework to evaluate cavity-induced changes in chemical reactivity based on energy
barriers in electronic PES that are parametric in nuclear and photonic coordinates.
In particular, the interaction term ωcqλ · μ̂, with q as a parameter, is equivalent to
that obtained from applying a constant external electric field. The cavity PES for
arbitrary molecules can thus be calculated with standard quantum chemistry codes.
However, obtaining the barrier in general still requires minimization of themolecular
PES along the additional photon coordinate q (or coordinates qk , if multiple modes
are treated). If the coupling is not too large and the relevant values of q are small
enough, the ground-state cavity PES can instead be obtained within perturbation
theory, which up to second order in λ is given by

Ṽg(R, q) ≈ Vg(R) + ω2
c

2
q2 + λωcqμg(R) − λ2

2
ω2
c q

2αg(R), (6.13)

where Vg(R) and μg(R) are the bare-molecule ground-state PES and dipole moment,
respectively, while αg(R) is the ground-state static polarizability (see Sect. 2.2),
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αg(R;ω = 0) = 2
∑

m 
=g

|μm,g(R)|2
Vm(R) − Vg(R)

, (6.14)

and encodes the effect of excited electronic levels, with μm,g(R) the transition dipole
moment between bare-molecule electronic levelsm and g. Obtaining the full ground-
state cavity PES within this approximation then just requires the calculation of the
bare-molecule ground-state properties Vg(R), μg(R), and αg(R).

In addition to providing an explicit expression for the CBO ground-state PES in
terms of bare-molecule ground-state properties, the simple analytical dependence on
q in Eq. (6.13) allows to go one step further and obtain explicit expressions for the
local minima and saddle points (i.e., transition states). In these configurations, the
following conditions are satisfied:

∂q Ṽg(R, q) = 0, (6.15a)

∂RṼg(R, q) = 0. (6.15b)

These conditions yield a set of coupled equations that can be solved in order to find
the configuration of the new critical points along the reaction path. The expression
of Eq. (6.15a) gives the explicit condition

qm(R) = − λ

ωc

μg(R)

1 − λ2αg(R)
, (6.16)

which can be used to obtain the potential profile along the minimum in q,

Ṽg(R, qm) = Vg(R) − λ2

2
μ2
g(R) + O(λ4), (6.17)

wherewehavedropped termsof orderλ4 since the perturbation-theoryPESEq. (6.13)
is only accurate to second order. This shows that the energy barrier on the cavity PES
(within second-order perturbation theory) can be calculated directly from the bare-
molecule potential and permanent dipolemoment. In Fig. 6.5, we analyze the validity
of Eq. (6.17) for computing the barrier height within the Shin–Metiu model. It can be
observed that perturbation theory works quite well for the whole range of couplings,
with a relative error in the cavity-induced change of the energy barrier of about
10% for the largest considered couplings. Due to the exponential dependence of the
rates on barrier height, this corresponds to an appreciable error in the rate constant,
but still provides a reasonable estimate. Note that in the case of the Shin–Metiu
model, the error of the energy barrier stems entirely from the change at the minimum
configuration, as the transition state has zero dipole moment due to symmetry and is
not affected by the cavity.

It is interesting to point out that Eq. (6.17) closely resembles the expression
obtained in electric field catalysis where an external voltage is applied [32], or to
electrostatic shifts provided by some catalysts [33]. This strategy exploits the Stark
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Fig. 6.5 Cavity Born–Oppenheimer energy barrier (purple) and relative change of reaction rates
(yellow) for theShin–Metiumodel inside a cavity, calculated to all orders in the light-matter coupling
strength λ (solid lines), and up to second order in perturbation theory (dashed lines)

effect, i.e., the energy shift observed in the presence of a static electric field, to induce
changes in the energies of the transition state relative to the minimum configuration.
As noted before, theCBOAcorresponds to treating the influence of the cavity through
an adiabatic parameter q determining the electric field strength. However, instead of
being externally imposed, in our case the effective field, determined by Eq. (6.16),
is the one induced in the cavity by the permanent dipole moment of the molecule
itself. This also lends itself to an electrostatic interpretation of the effect.

In addition to the minimum energy barrier of the cavity PES itself, the effective
energy barrier is also affected by the zero-point energy due to the quantization of
nuclear and photonic motion (see Fig. 6.3). We can obtain its cavity-induced shift
within perturbation theory by using Eq. (6.16) to rewrite Eq. (6.13) as

Ṽg(R, q) = Ṽg(R, qm) + ω2
eff(R)

2
(q − qm(R))2, (6.18)

whereωeff(R) = ωc − λ2

2 ωcαg(R) + O(λ4), such that the photonic zero-point energy
ωeff(R)/2 is decreased due to the polarizability of the molecule. We note that this
only accounts for the quantization of the photonic motion along q. Indeed, there is
an additional correction due to the vibrational contribution to the molecular polar-
izability. This can be obtained by diagonalizing the Hessian of Eq. (6.9) and cal-

culating the zero-point energy, which up to second order is given by − ωc�
2
R

4ωv(ωc+ωv)
,

where �R = λ√
M

μ′
g(R0) is the on-resonance vibrational Rabi splitting as discussed

in above. As can be appreciated from Fig. 6.4, the contributions due to zero-point
(photonic and vibrational) fluctuations only contribute negligibly to the change in
reaction rate in the Shin–Metiu model.

In general, a significant change of polarizability (either electronic or vibrational,
which can be comparable in some molecules [34–36]) from the equilibrium to the
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transition state configuration could lead to similarly large effects as a change in the
permanent dipole moment, especially if the cavity frequency ωc is relatively large.
However, it can be estimated that the vibrational contribution to the zero-point energy
shift is negligible for conditions typical for vibrational strong coupling. To be precise,
at resonance ωc = ωv , this reduces to −�2

R/(8ωv). Even for a relatively large vibro-
polariton Rabi splitting of �R ≈ 0.2ωv [23, 37, 38], this contribution is of the order
of ≈ 10−2ωv , and thus small compared to typical barrier heights.

Finally, we note that the energy shifts above can be straightforwardly generalized
to the case of multiple cavity modes within second-order perturbation theory. This
simply leads to a sum over modes k, giving a final energy shift

δE(R) = −
∑

k

λ2
k

2

(
μ2
g(R) + ωk

2
αg(R)

)
. (6.19)

This general expression, which is just the second-order energy correction due to
coupling to a set of cavity modes within the CBOA, corresponds to the well-known
Casimir–Polder energy shift [39]. The additional cavity Born–Oppenheimer approx-
imation, in which nonadiabatic transitions between electronic surfaces are neglected,
amounts to the approximation that the relevant cavity frequenciesωk aremuch smaller
than the electronic excitation energies Vm(R) − Vg(R), such that only the (elec-
tronic) zero-frequency polarizability αg(R) appears in the second term. In contrast,
the first term depends only on the ground-state molecular permanent dipole moment
μg = 〈g|μ̂|g〉, which does not involve electronically excited states, and the CBOA
thus does not amount to an additional approximation.

Interestingly, for cavities with a dipole-like field, the perturbative energy shifts
obtained here correspond exactly to van derWaals forces [40].We can easily demon-
strate this for a general nanoparticle with a series of (bosonic) dipole resonances
characterized by (vectorial) transition dipoles μk and frequencies ωk . In this case,
the coupling operators λk at the molecular position rm are determined by the static
dipole–dipole interaction,

λk =
√

2

ωk

(
3(μk · rm)rm

r5m
− μk

r3m

)
. (6.20)

For simplicity, we assume rm to be along the x-axis, and all dipoles to be oriented

along z, which leads to λk =
√

2
ωk

μk

r3m
. By inserting this in Eq. (6.19) and using the

definition of the zero-frequency polarizability of the nanoparticle αn(0) = ∑
k
2μ2

k
ωk

,
we get that

δE(R) = −αq(0)μ2
g(R)

2r6m
−

∑

k

μ2
kαg(R)

2r6m
. (6.21)
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where the first term corresponds exactly to the static energy of a permanent dipole
μg at rm with the induced dipole of a polarizable sphere at the origin (Debye force),
and the second term corresponds to the London force [41].

Equation (6.19) is general for any kind of molecular process as long as the light–
matter coupling is not too large. It demonstrates that the most relevant bare-molecule
properties determining cavity-induced chemical reactions in the ground state are
the permanent dipole moment and polarizability close to equilibrium, μg(R0) and
αg(R0), and transition state, μg(RTS) and αg(RTS), configurations, and not the tran-
sition dipolemoment of the vibrational excitation close to equilibrium,μν ∝ μ′

g(R0),
that determines the Rabi splitting. In addition to changing reaction barriers, it should
be noted that the cavity-induced modification could potentially lead to a plethora of
diverse chemical modifications, such as a change of the relative energy of different
(meta-)stable ground-state configurations and thus a change of themost stable config-
uration, or even the creation or disappearance of stable configurations. Furthermore,
depending on the particular properties of the molecule, the cavity-induced change
in the energy barriers can either lead to suppression or acceleration of chemical
reactions.

6.3.3 Resonance Effects

The results presented above predict a change in the ground-state reactivity that is
actually independent of the cavity photon frequency and in particular does not rely
on any resonance effects between the cavity mode and the vibrational transitions
of the molecule. Although the cavity PES can and does represent vibro-polariton
formation through normal-mode hybridization, as discussed above and in Sect. 2.3,
the subsequent TST used to predict changes in chemical reaction rates is an inher-
ently classical theory and does not depend on the quantized frequencies of motion on
the PES, and, as mentioned above, neither on the transition dipole moment between
vibrational levels (determined by the derivative of the permanent dipole moment).
While we have shown that TST agrees almost perfectly with full quantum rate cal-
culations, where nuclear and photonic motion is quantized and polariton formation
is thus included, all calculations above have been performed for the resonant case
ωc = ων .

We thus investigatewhether there is any resonance effect on chemical ground-state
reactivity by performing full quantum rate calculations for a wide range of cavity
frequencies within the Shin–Metiu model. In Fig. 6.6, we represent the change k̃/k in
the calculated reaction rate of the coupled system relative to the uncoupled molecule
as a function of ωc, for three different coupling strengths λ. Here, the values at
ωc = ων correspond to the results shown in Figs. 6.3 and 6.4. We observe that the
cavity rates are essentially constant with the frequency, with only a small modulation
(k̃(ωc → ∞) − k̃(ωc → 0) 
= 0) that becomes more important for larger couplings.
For the cases represented in Fig. 6.6, this goes from a relative modulation of 0.4% for
λ = 0.005 a.u. to a 7%modulation for λ = 0.02 a.u.. However, no resonance effects
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Fig. 6.6 Ratio between on- (k̃) and off-cavity (k) rates versus the cavity frequency for three different
values of the coupling strength. We increase the density of points close to the vibrational frequency
of the molecule ων ≈ 72.6 meV in order to explore potential resonance effects

are revealed close to the vibrational frequency of the molecule, ων . At the same time,
the vibrational frequency appears to be the relevant energy that separates the high-
and low-frequency limits for the rates, with TST working particularly well exactly
around that value. In the following, we show that both limits can be understood by
different additional adiabatic approximations.

In the high-frequency limit,ωc � ων , the photonic degree of freedom is fast com-
pared to the vibrational one, and can thus be assumed to instantaneously adapt to
the current nuclear position R. This implies that the photonic DoF can be adiabati-
cally separated (just like the electronic ones), and nuclear motion takes place along
an effective 1D-surface determined by the local minimum in q, i.e., along the path
sketched in Fig. 6.3a, or, within lowest-order perturbation theory, along the surface
defined by Eq. (6.17). Quantum rate calculations along this effective 1D PES indeed
reproduce the reaction rate in the high-frequency limit perfectly. Furthermore, we
note that in this limit, it becomes convenient to directly group the photonic and elec-
tronic degrees of freedom to obtain PoPESwhen performing the Born–Oppenheimer
approximation. In particular, this approach leads to exactly the same expression for
the effective ground-state PES.

In the low-frequency limit, ωc  ων , on the other hand, the photonic motion is
much slower than the vibrations and can also be adiabatically separated. The photons
are now too slow to adjust their configuration and q can be assumed to stay constant



6.3 Effects of the Cavity on Ground-State Reactivity 137

during the reaction. The full quantum rate can then be obtained by performing a
thermal average of independent 1D quantum rate calculations for each cut in q of the
two-dimensional surface Ṽg(R, q). Here, the (normalized) thermal weight at each q,
P(q) = exp(−〈E〉(q)/kBT ), is calculated by calculating the average thermal energy
of the system 〈E〉(q) for constant q. Again, this approximation agrees perfectly with
the full quantum rate calculation for ωc → 0.

These results imply that, on the single-molecule level, the formation of vibro-
polaritons when ωc ≈ ων is not actually required or even relevant for the cavity-
induced change in ground-state chemical structure and reactivity. This fact can be
appreciated by a simple intuitive argument: vibrational strong coupling primarily
occurs with the lowest vibrational transitions close to the equilibrium configura-
tion, while chemical reactions that have to pass an appreciable barrier are typically
determined by the properties of the involved transition state, and the associated bar-
rier height relative to the ground-state configuration. In general, neither of these are
related to the properties of the lowest vibrational transitions (i.e., curvature of the
PES and derivative of the dipole moment at the minimum).

The absence of resonance effects can also be appreciated through the connec-
tion to the well-known material-body-induced potentials obtained within perturba-
tion theory. For example, as we have demonstrated above, if the EM mode is well-
approximated by a point-dipole mode, the obtained energy shift in the cavity PES
can be rewritten as a van-der-Waals-like interaction between the permanent dipole
moment of the molecule and the dipole it induces in the nanoparticle. This corre-
sponds to the Debye force. In turn, the zero-point energy of the EM field reproduces
the London dispersive force due to vacuum fluctuations, and depends on the polar-
izability of the molecule. For an arbitrary EM environment, this effect can also be
directly linked to Casimir–Polder forces [39, 42], which exactly correspond to the
generalization of emitter–emitter interactions to arbitrary material bodies (e.g., cavi-
ties). In particular, within the perturbative regime, the applicability ofCasimir–Polder
approaches could also be used to replace the explicit sum over modes k by integrals
involving the EM Green’s function [43, 44], which is readily available for arbitrary
structures. This provides an additional argument for the absence of resonance effects
in our calculations, as (ground-state) Casimir–Polder forces are well-known not to
depend on resonances between light and matter degrees of freedom.

While we do not explicitly treat the situation in recent experiments on the modi-
fication of ground-state reactions by vibrational strong coupling (which were found
to depend strongly on resonance conditions [1–4]), we believe that our results indi-
cate that the resonance-dependent effects cannot be explained by a straightforward
modification of ground-state reaction energy barriers at thermal equilibrium, as these
would be captured by TST within the CBOA also in a many-mode, many-molecule
setting.
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6.4 Modifying Chemistry in Realistic Systems

Up to nowwe have studied ground-state chemistry in a general way, obtaining useful
expressions such as Eq. (6.19) which describe the Casimir–Polder energy shift in
arbitrary cavities. In order to quantitatively analyze the results, we used the Shin–
Metiu model coupled to a single-mode cavity. Indeed, this is a great simplification
of the system, so we here demonstrate the power of this theory by applying it to
more realistic examples. In this section we analyze two different scenarios. First,
we study a multi-mode cavity that is experimentally available and can reach large
enough values of the coupling strength so that relevant chemical changes are visible.
Then, we will apply the theory to a realistic scenario of internal rotation in the
1,2-dichloroethane molecule, showing not only that this theory can be combined
with quantum chemistry approaches in order to predict more complex and relevant
chemical changes, but also that reactions can be both inhibited or catalyzed depending
on the molecular properties.

6.4.1 Multi-mode Cavity: Nanoparticle on Mirror

To demonstrate that the effects predicted above can be significant in realistic systems,
we treat a nanoparticle-on-mirror cavity with parameters taken from the experiment
in [17]. This consists of a spherical metallic nanoparticle (radius R = 20 nm) sepa-
rated by a small gap from a metallic plane, see the inset of Fig. 6.7. In this system,
there is a series of multipole modes coupled to the molecule [31], with nontrivial
behavior. Although several strategies can be employed to obtain the quantized light
modes in this system [19, 31], we instead exploit that the dominant contribution
we found above is due to Debye-like electrostatic forces induced by the permanent
molecular dipole, and thus simply solve the electrostatic problem. To be precise,
we calculate the energy shift of a permanent dipole in this cavity as obtained by its
interaction with the field it induces in the cavity itself. Due to the simple involved
geometric shapes (a sphere and a plane), this can be achieved by the technique of
image charges and dipoles.

In this nanocavity (see inset of Fig. 6.7) a permanent dipole will generate an
infinite series of image dipoles in both the sphere and the plane due to successive
“reflections” of each image dipole on both components of the cavity. In practice, this
infinite converging series can be truncated after a finite number of terms to obtain any
desired degree of accuracy. Considering both a charge q and a dipole μ at position
r relative to the center of a perfectly conducting grounded sphere of radius R, the
resulting images will be located at r′ = (R/r)2r (where r = |r|) and consist of a
charge and dipole given by
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Fig. 6.7 Change of the energy barrier for the Shin-Metiu model inside a nanoparticle-on-mirror
cavity as a function of gap size. The right y-axis shows the corresponding values of the effective

single-molecule coupling strength λeff =
√∑

k λ2
k . Inset: Illustration of nanoparticle-on-mirror

cavity geometry, with a single molecule placed in the nanogap between a planar metallic surface
and a small metallic nanoparticle of radius R = 20 nm

q ′ = − R

r
q + R

r3
r · μ, (6.22a)

μ′ =
(
R

r

)3 [
2r (r · μ)

r2
− μ

]
. (6.22b)

Here, it is important to take into account that the image of a dipole in a sphere always
consists of both a charge and a dipole. The corresponding expressions for a plane
can be obtained by simply taking R → ∞ (and moving the center of the sphere
accordingly to keep the planar surface fixed). The cavity-induced energy shift of the
dipole is then given byU = − 1

2Eind · μ, where Eind is the total field generated by all
image dipoles and charges, and the factor 1

2 is due to them being induced.
We now rely again on perturbation theory, i.e., we assume that the molecular

rearrangement due to its self-induced field is negligible. Within this approximation,
the energy shift we obtain from the purely electrostatic calculation is equivalent to the
term proportional to μ2

g in Eq. (6.19). The corresponding change�Eb in the height of
the energy barrier for the Shin–Metiu molecule is shown in Fig. 6.7 as a function of
the gap size (as a point of reference, the estimated gap size in [17] is 0.9 nm).We find
that the change in energy barrier can be significant, corresponding to a change of the
reaction rate by an order of magnitude or more (cf. Fig. 6.5). For comparison, in the

figure we also show the effective coupling strength λeff =
√∑

k λ2
k corresponding

to each gap size. This value corresponds to the coupling strength in a single-mode
cavity that would give the same total energy shift as obtained in this realistic multi-
mode cavity. We note that we have here treated a perfect spherical nanoparticle, and
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did not include atomic-scale protrusions, which have been found to lead to even
larger field confinement due to atomic-scale lightning rod effects [18, 19, 45]. For
the experimental gap size of 0.9 nm, the effective coupling still becomes as large as
λeff ≈ 0.031 a.u., corresponding to Veff = 4π/λ2

eff ≈ 1.9 nm3. This corresponds to
a change in the energy barrier of �Eb ≈ 0.07 eV for the Shin-Metiu model within
second-order perturbation theory,which starts to break downat these couplings, aswe
previously saw in Fig. 6.5. This large effective coupling demonstrates the importance
of the multi-mode nature of these cavities and the contribution of optically dark
modes, as the “bright” nanogap plasmon mode that is seen in scattering spectra has
an estimated mode volume of ≈ 40 nm3.

6.4.2 1,2-Dichloroethane Molecule

We now apply the CBOA-TST theory to treat the internal rotation of
1,2-dichloroethane. In order to obtain the ground-state cavity PES under strong
light–matter coupling, we calculate the (ground and excited-state) bare-molecule
potential energy surfaces and permanent and transition dipole moments for a scan
along the rotation angle (defined as the Cl-C-C-Cl dihedral angle). For simplicity, we
here use the relaxed ground-state configuration of the bare molecule for each rota-
tion angle, i.e., we neglect cavity-induced changes in DoF different from the internal
rotation angle. The molecular properties are obtained with density functional the-
ory calculations with the B3LYP [46] hybrid exchange-correlation functional and
the 6-31+G(d) basis set. Excited states were computed with time-dependent density
functional theory within the Tamm–Dancoff approximation [47]. All calculations
were performed with the TeraChem package [48, 49].

The rather simple 1,2-dichloroethanemolecule presents several characteristic con-
figurations along the rotation of the chlorine atoms around the axis defined by the
carbon-carbon bond (see top of Fig. 6.8). It thus constitutes an excellent model sys-
tem to show several possible effects induced by coupling to a cavity. In Fig. 6.8a we
present the calculated ground state energy landscape and dipole moment, while some
relevant configurations are shown at the top. Analogously to the Shin–Metiu case, we
present the path of minimum energy along q in Fig. 6.8b, but here calculated within
perturbation theory, Eq. (6.17). We have explicitly checked that the contribution due
to London forces is negligible here as well, and focus on the Debye-like contribution
in the following. We see that the most stable configuration (θ = 180◦) shows no
change due to the absence of a permanent dipole moment, while the most unstable
one presents a large energy shift. Therefore the different energy barriers of the sys-
tem, represented versus the coupling strength in Fig. 6.8c, are altered significantly.
Here we compare the energy barriers as predicted by perturbation theory (dashed
lines) with the ones from a full diagonalization of the electronic Hamiltonian within
the CBOA (full lines). In order to perform a full calculation we have calculated the
electronic potential energy surfaces and the full dipole moment operator for a basis
of 17 electronic states. We also indicate the points at which the coupling leads to
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Fig. 6.8 Top: Different configurations along the internal rotation of 1,2-dichloroethane. a Energy
landscape and dipole moment of the molecule. b Modified energy path for minimum q for
different coupling strengths. The energy barriers of the bare molecule are defined as E1 =
V (120◦) − V (70◦), E2 = V (0◦) − V (70◦), and E3 = V (120◦) − V (180◦). c Relative modifica-
tion of the energy barriers depending on the coupling strength for the full calculation (full lines,
circles) and for perturbation theory (dashed lines, triangles). The marked points indicate relevant
changes in the rate

important changes in the relative rates calculated with TST, i.e., the coupling/energy
at which we achieve either suppression of k̃/k = 0.5 or enhancement of k̃/k = 1.5
or 2. We see that in the case of perturbation theory (triangles) the energy changes are
slightly underestimated and thus larger couplings are needed to reach the same rate
change as in the full calculation (circles).

As can be clearly seen, this still relatively simple molecule shows several different
kinds of phenomena. We see that the reaction rate out of the global minimum at
θ = 180◦, corresponding to E3, is increased. On the other hand, E1 increases and the
local minimum situated at θ = 70◦ is thus stabilized. Figure6.8b suggests that this
effect could potentially becomemore dramatic for larger couplings than treated here,
as θ = 70◦ could become the new global minimum of the system. Finally, it is worth
noting that the locations of theminima in energy also change for larger couplings.This
shift is most noticeable for the minimum at θ = 70◦, which transforms to θ̃ ≈ 68◦
for λ = 0.05 a.u..

6.5 Collective Effects

We now turn to the description of collective effects, i.e., the case of multiple
molecules. For simplicity, we again restrict the discussion to a single cavity EM
mode. As discussed above, the single-molecule effects we have discussed up to now
only become significant for coupling strengths λ = √

4π/Veff corresponding to the
smallest available plasmonic cavities, which typically operate at optical frequencies.
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However, typical experimental realizations of vibrational strong coupling are per-
formed in micrometer-size cavities filled with a large number of molecules [1, 23,
37, 50]. In this case, the per-molecule coupling λ is so small that the single-molecule
effects discussed above are completely negligible. For strong coupling and the asso-
ciated formation of vibro-polaritons, the coherent response of all molecules leads
to a collective enhancement of the Rabi splitting �R,col = √

N�R. However, as we
have seen that the cavity-induced modification of the single-molecule ground state
does not depend on the formation of polaritons, it is not a priori obvious whether
this collective enhancement of the Rabi splitting also translates to cavity-induced
collective modifications of the effective reaction barrier.

We thus repeat the analysis performed for the single-molecule case above for the
case of multiple molecules, working directly within the cavity Born–Oppenheimer
approach. We note that the arguments for its applicability for treating ground-state
chemical reactions translate straightforwardly from the single- to the many-molecule
case. For N identical molecules, the CBO light–matter interaction Hamiltonian
becomes

Ĥ (N )
e = ω2

c

2
q2 +

∑

i

(
Ĥe(x̂i ; Ri ) + ωcqλi · μ̂(x̂i ; Ri )

)
+

∑

i, j

Ĥdd(x̂i , x̂ j ; Ri , R j ),

(6.23)
where Ĥdd accounts for direct intermolecular (dipole–dipole) interactions. We stress
that we again assume that only a single cavity mode is significantly coupled to the
molecules. The cavity-mediated dipole–dipole interaction is thus fully contained
within the light–matter coupling term, and Ĥdd corresponds to the free-space expres-
sion [51]. In the followingdiscussion,wewill again use lowest-order perturbation the-
ory to obtain analytical insight. The cavity–molecule and dipole–dipole interaction
terms are then independent additive corrections. We first focus on the cavity-induced
effects, and will discuss the influence of direct dipole–dipole interactions later, in
particular when studying a prototype implementation: A nanosphere surrounded by
a collection of molecules. For simplicity of notation, we again use scalar quantities to
indicate the component of the dipole along the field direction, but keep the index ε to
make this explicit, i.e.,λi = λiεi and εi · μ(Ri ) = με(Ri ), so that we can rewrite the
interaction term of the Hamiltonian as ωcq

∑N
i λi μ̂ε(x̂i ; Ri ). The full Hamiltonian

now corresponds to a many-body problem even for simple model molecules. Within
second-order perturbation theory, the new (many-molecule) ground-state cavity PES
is

Ṽ (N )
g (Rt , q) =

∑

i

Vg(Ri ) + ω2
c

2
q2 + ωcq

∑

i

λiμg,ε(Ri ) − ω2
c

2
q2

∑

i

λ2
i αg,εε(Ri ),

(6.24)
where Rt = (R1, R2, . . . , RN ) collects the nuclear configurations of all the
molecules. With this result, we can again apply the usual conditions for finding crit-
ical points in order to analytically find the minimum along q and the corresponding
total energy of the hybrid system up to second order in λi ,
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Ṽ (N )
g (Rt , qm) =

∑

i

Vg(Ri ) − 1

2

(
∑

i

λiμg,ε(Ri )

)2

. (6.25)

It can be seen that the cavity-induced shift depends on the square of the sum of
the (coupling-weighted) permanent dipole moments of the molecules, not on the
sum of their squares. Assuming perfect alignment and identical configurations for
all molecules, this gives an energy shift −N 2λ̄2|μg(R)|2, where λ̄ = 1

N

∑
i λi is

the average coupling. The per-molecule energy shift is then linear in N , indicating
collective enhancement of the molecule-cavity interaction. In contrast, the London-
force-like change in zero-point energy due to the modification of the effective cavity
frequency is additive,

ωeff = ωc − ωc

2

∑

i

λ2
i αg,εε(Ri ) + O(λ4

i ), (6.26)

with a total zero-point energy shift 1
2 (ωeff − ωc) proportional to N , and shows no

collective enhancement for single-molecule reactions. It is interesting to note that the
connection between polarizability and the dielectric function of a material through
the Clausius–Mossotti relation suggests that this energy shift is equivalent to the
change of mode frequency due to the refractive index of the collection of molecules.
The shift in cavity mode frequencies due to refractive index changes after chemical
reactions is exactly the effect used in experiments to monitor reaction rates under
vibrational strong coupling [1, 2, 4].We alsomention that at higher levels of perturba-
tion theory, cavity-mediated contributions analogous to the Axilrod–Teller potential,
i.e., van-der-Waals interactions between three emitters, appear in the intermolecular
potential [44, 52].

Based on Eq. (6.25), we can analyze the effect of the cavity on the reaction rate of
a single molecule within the ensemble. This is determined by the energy difference
between minimum-energy and transition-state configurations of that molecule, with
the other molecules fixed in a stable configuration (here chosen to be the minimum
for all of them). For simplicity, we assume that the critical configurations RMin and
RTS of the coupled system are equal to the uncoupled ones (as we have seen above,
the shifts are generally small). We can then directly express the change in the energy
barrier of the moving molecule (chosen to be molecule i = 1 here) as

Ẽb = Eb − λ2
1

2

(
μ2
g,ε(R1,TS) − μ2

g,ε(R1,Min)
)

−

λ1

(
N∑

i=2

λiμg,ε(Ri,Min)

)
(
μg,ε(R1,TS) − μg,ε(R1,Min)

)
.

(6.27)

This expression can be straightforwardly interpreted,with the first part corresponding
to the Debye-like interaction of molecule 1 itself with the cavity, and the second
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part corresponding to the cavity-mediated interaction of molecule 1 with all other
molecules (which itself can be understood as the sum of two equal contributions,
the interaction of the moving molecule with the cavity field induced by all other
molecules, as well as the interaction of all other molecules with the cavity field
induced by the molecule). Within perturbation theory, this Debye-like energy shift
is again equivalent to the electrostatic energy, in this case that of a collection of
permanent dipoles interacting with the cavity, i.e., a material structure. This makes
the connection to electric field catalysis [32] evenmore direct, with the difference that
the electric field is not generated by applying an external voltage, but represents the
cavity-enhanced field of all the other molecules. The fact that the main contribution
is just the electrostatic energy shift also demonstrates the equivalence of our results
to the approach of taking into account non-resonant effects through cavity-modified
dipole–dipole and dipole-self interactions [51].

To treat the dependence on molecular orientations explicitly, we define the align-
ment angle θi for each molecule through μg,ε(Ri ) = |μg(Ri )| cos θi . Inserting this
in Eq. (6.27), we obtain

Ẽb = Eb − λ2
1

2

(
μ2
g,ε(R1,TS) − μ2

g,ε(R1,Min)
)

−
N ′λ̄2〈cos θ〉′|μg(RMin)|λr,1

(
μg,ε(R1,TS) − μg,ε(R1,Min)

)
,

(6.28)

whereλr,i = λi/λ̄ is the relative coupling ofmolecule i , 〈cos θ〉 = 1
N

∑
i λr,i cos θi is

the coupling-weighted average orientation angle, and primed quantities indicate that
only molecules 2 to N are taken into account (for N � 1, they can be replaced by
unprimed quantities). We obtain a term proportional to the number of molecules
N , i.e., there is a collective effect on the single-molecule energy barrier that is
reminiscent of the collective Rabi splitting, Nλ2 ∝ �2

R,col. Note that the collective
change of the energy barrier still depends on the molecule having a different perma-
nent dipole moment in the transition and minimum configuration. Furthermore, it
requires the molecules not participating in the reaction to have a non-zero permanent
dipole moment and an average global alignment, such that 〈cos θ〉 
= 0. This could be
achieved by fixing the molecular orientation by, e.g., growing self-assembled mono-
layers [53] or using DNA origami [54, 55], or for molecules that can be grown in
a crystalline phase, such as anthracene [56] (although polar molecules tend not to
grow into crystals with a global alignment [57]). Another strategy to achieve align-
ment under strong coupling that has been successfully used experimentally is to align
molecular liquid crystals through an applied static field [58]. However, for general
disordered media such as polymers or molecules flowing in liquid phase [1, 50], the
angular distribution is typically isotropic, leading to 〈cos θ〉 ≈ 0. In that case, our
theory predicts that no collective effect on reactivity should be observed unless the
cavity itself induces molecular orientation (see below). We note for completeness
that the collective Rabi splitting depends on the average of the squared z-component
of the transition dipole moments, i.e., 〈cos2 θ〉, which is nonzero unless all molecules
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Fig. 6.9 a Sketch of the model system of a collection of molecules distributed around a metal
nanosphere with a diameter of 8 nm. The molecules are placed randomly at distances from 1 nm
to 16 nm to the surface of the sphere, with the (permanent) dipoles aligned along the direction
of the field of the sphere’s z-oriented dipole mode. b Energy due to the dipole-sphere (Eds) and
dipole-dipole (Edd) interactions in the system within perturbation theory as a function of number
of molecules N , as well as their sum (Etot). c Change in energy barrier and corresponding change
in reaction rate at room temperature for the most strongly coupled molecule, also resolved into
contributions from dipole-sphere and dipole-dipole interactions. In both panels b and c, the slightly
transparent lines correspond to different random realizations of the system, with the averages in
solid lines

are aligned perpendicular to the electric field of the cavity mode, and equal to 1/3
for isotropic molecules.

In order to test the strength of the collective effect in real cavity, and to compare
it with the effect of direct (free-space) dipole–dipole interactions, we now treat a
specific configuration, as depicted inFig. 6.9a:Ananocavity represented by ametallic
sphere of diameter d = 8 nm, surrounded by a collection of Shin–Metiu molecules,
located at distances from 1 nm to 16 nm from the sphere. We place a collection
of up to N = 6000 molecules at random positions within that volume, imposing a
minimum distance of 1.5 nm between the molecules.

Let us first discuss the treatment of the spherical nanocavity. We describe the
metal sphere4 it using a Drude dielectric function, which allows us to approximate
it as a three-mode cavity; the dipolar localized surface plasmon resonances aligned
along x , y, and z [59, 60]. Higher order multipole modes only couple significantly
to emitters that are very close to the surface [29, 61]. In this regime we can treat the
nanosphere as a point dipole, in which the direction-independent polarizability of
the sphere is given by [62]

αS(ω) = a3
ε(ω) − 1

ε(ω) + 2
, (6.29)

where a is the radius of the sphere. We can then consider two general models for the
dielectric function. The first is a metallic Drude model dielectric function without
losses, εm(ω) = 1 − ω2

p/ω
2. The polarizability of the sphere can then be rewritten as

4Note that the description used here can also represent a dielectric sphere with a single resonance,
such as a phonon mode.
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αS(ω) = a3ω2
0

ω2
0 − ω2

, (6.30)

where ω0 = ωp/
√
3. This is identical to the polarizability of a single-mode quantum

oscillator at frequency ω0 with transition dipole moment μeg = √
ω0a3/2 [63],

αq(ω) = μ2
eg

(
1

ω0 − ω
+ 1

ω0 + ω

)
= a3ω2

0

ω2
0 − ω2

. (6.31)

Here, spherical symmetry implies that there are three degenerate quantumoscillators,
corresponding to the quantized localized surface plasmon resonances in this case,
directed along three orthogonal axes (e.g., x , y, and z). The second possibility is that
the dielectric function is instead given by Lorentzian function representing amaterial
resonance (e.g., a phononmode) at frequencyωph andwith resonator strength charac-

terized by ω f , i.e., ε(ω) = 1 + ω2
f

ω2
ph−ω2 , we again get the same polarizability by using

ω2
0 = ω2

ph + ω2
f

3 and μeg = ω f

√
a3
6ω0

, with the quantized mode now corresponding to
a localized surface phonon polariton resonance.

We furthermore assume that all molecules are aligned perfectly with the electric
field of the z-oriented dipolar mode of the sphere. In this configuration, the sum over
x- and y-oriented fields at the origin cancels out for large N . For these directions,
there is thus no Debye-like collective effect, and we can restrict our attention to just
a single mode of the sphere (the z-oriented dipole mode). For the sake of complete-
ness, we additionally check explicitly that solving the full electrostatic problem, i.e.,
including all modes of the sphere by using the method of image dipoles using the
expressions in Eq. (6.22), gives very similar results to the ones presented here. As
mentioned above, within perturbation theory, where the Debye-force-like contribu-
tion can be understood within a fully electrostatic picture, it is straightforward to
include the direct (free-space) permanent-dipole–permanent-dipole interaction, as
it is simply a further additive electrostatic contribution. In Fig. 6.9b, we show the
total electrostatic energy of the system, as well as the relative contributions due to
molecule–sphere and direct molecule–molecule interactions, as a function of N . For
the configuration considered here, for which we have not performed any optimiza-
tion of total energy, the dipole–dipole interactions give a positive contribution to the
total energy that is significantly larger than the collective dipole–sphere interaction.
The relative strength of dipole–dipole and dipole–sphere interactions depends on
the details of the configuration, and we have checked that, e.g., it is also possible to
maintain the same collective interaction while obtaining an overall negative contri-
bution from dipole–dipole interactions by not choosing random positions as we did
for simplicity.

In contrast to the total energy, the change in energy barrier predicted by Eq. (6.27)
for the most strongly coupled molecule of the ensemble is dominated by the (col-
lective) sphere–dipole interactions, as shown in Fig. 6.9c. The barrier height indeed
increases approximately linearly with N , with changes of up to≈ 0.09 eV due to the
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Fig. 6.10 Alignment
dependence of the cavity
Born–Oppenheimer PES
along the photonic minimum
path qm for the molecule in
Fig. 6.9c, with all other
molecules fixed to the
equilibrium position Rmin

cavity-mediated interaction, and an associated suppression of the reaction rate by a
factor of ≈30 at room temperature. In the geometry treated here, the energy shift
of the target molecule due to dipole–dipole interactions with the other molecules
also increases linearly with N , as the molecular dipoles combine to all act in the
same direction at the sphere location, with an effect that is roughly half of the
cavity-mediated interaction. As mentioned above, the details depend strongly on
the configuration and cavity properties, and in particular, it is also possible to choose
configurations where the direct dipole–dipole interactions dominate. We finally note
that no simple configuration was found where the cavity-mediated interactions were
significantly larger than direct dipole–dipole interactions.

While the barrier height increases here, the effect we predict can also lead to a
decrease, for example in the case that the transition-state dipole moment is larger
than in the minimum configuration, cf. Eq. (6.28). This would be expected, e.g.,
in dissociation reactions in which the molecule splits into two partially charged
fragments, and is also seen for the back reaction from the right to left minimum
in the Shin–Metiu model for the case that all other molecules are in the leftmost
minimum (see Fig. 6.10).

For comparison, Fig. 6.10 shows the effect of average alignment for the sphere-
molecule system considered above, for the case of N = 6000 molecules correspond-
ing to a molecular density of≈2 ·108 µm−3. It displays the CBO PESwithin second-
order perturbation theory as a function of R1, with all other molecules fixed in the
minimum configuration, and along the photonic minimum q = qm . For 〈cos θ〉 = 1,
this demonstrates that the collective cavity effect on the surface is significant, with
the position of the critical points shifting compared to the bare molecule. For the
Shin–Metiu model studied here, the barrier height is actually increased compared to
the approximate prediction Eq. (6.27), which does not take into account these shifts.
In contrast, when there is no average orientation, 〈cos θ〉 = 0, the effect on the surface
is minimal and is reduced to the single-molecule result.

The single-molecule energy shifts we predict for perfect alignment can be sig-
nificant. This implies that the molecules, if they are free to rotate in place, could
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lower their energy by aligning with the electric field of the cavity mode, which could
possibly lead to self-organization (for the example system above, this also requires
breaking of the overall spherical symmetry). The details of this effect depend on the
precise setup, such as the cavitymaterial and shape,molecular and solvent properties,
etc., and would require a more complete treatment taking thermodynamical effects
and free energy into account [64, 65], which is beyond the scope of the current work.
However, we mention that it has recently been shown that strong coupling and the
associated formation of polaritons itself could lead to alignment due to the associ-
ated decrease of the lower polariton energy, provided that a significant fraction of
molecules are excited to lower polariton states [66, 67]. Although thermal excitation
can be efficient for vibrational strong coupling due to the relatively low energies of
vibro-polaritons, on the order of a few times the thermal energy kBT , it should be
noted that the arguments in [66, 67] do not directly translate to thermal-equilibrium
situations. In that case, a change in state energy due to improved orientation also leads
to a change in population, with the average energy per degree of freedom staying
constant and thus no net energy gain.

Finally, wemention that in contrast to the single-molecule case, the generalization
of the above arguments to many cavity modes is not straightforward, and the results
are thus not directly applicable to, e.g., Fabry–Perot cavities with a continuum of
modes following a dispersion relation as a function of the in-plane wave vector,
as employed in existing experiments [1–4]. Our results indicate that solving the
electrostatic problem (where all modes are implicitly taken into account) should
predict the changes in energy barriers, but, e.g., the scaling with number of molecules
is not immediately obvious, and as mentioned above, statistical effects should be
treated more carefully. Only for the special case that all modes have the same electric
field distribution (e.g., different dipolar resonances of a small nanoparticle), the sum
over modes can be performed straightforwardly.

6.6 Modifications of the Ground-State Structure

In this last section we discuss the influence of the cavity on the equilibrium config-
uration of the molecules. The theory developed in this chapter is very well-suited
to study these kinds of changes. For the single-molecule case, it is straightforward
to tackle this problem by looking at the condition for critical points in Eq. (6.15b),
which states that the change in the equilibrium configuration is given by the equa-
tion ∂RVg(R) − λ2μg(R)∂Rμg(R) = 0. Although this depends on the specifics of
the molecule, we can still estimate the change around the bare-molecule equilib-
rium position by doing a harmonic approximation for the ground-state PES, i.e.,
Vg(R) ≈ Vg(R0) + 1

2Mω2
ν(R − R0)

2, in which, for simplicity, we consider only one
internal degree of freedom. For the dipole moment, we can do a first-order expan-
sion, i.e., μg(R) ≈ μg(R0) + ∂Rμg(R0)(R − R0), which is equivalent to limit the
molecule to single-phonon transitions [23]. Here, we consider only the projection of
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the dipolemoment in the direction of the electric fieldμg(R) ≡ μg,ε(R) = μg(R) · ε.
The new equilibrium configuration is

R0,new ≈ R0 + λ2

Mω2
ν

μg(R0)∂Rμg(R0) + O(λ4). (6.32)

We see that the field generates a correction to the original minimum-energy configu-
ration that depends both on the equilibrium dipole moment and on its first derivative,
related to the vibrational transition dipole moment.

In the case for N molecules we get conditions similar to Eq. (6.15b) for every
molecule, resulting in a set of coupled differential equations in which each single-
molecule condition reads

∂Ri Vg(Ri ) − λ2
i μg(Ri )∂Ri μg(Ri ) − λi∂Ri μg(Ri )

⎛

⎝
∑

j 
=i

λ jμig(R j )

⎞

⎠ = 0. (6.33)

where boldface is used to indicate vector quantities, since this set of conditions is
completely general and the single-nuclear-coordinate consideration is not required.
In order to solve this, we can assume that all molecules are equivalent, i.e.,
they share the same nuclear configuration, their dipoles are aligned, and the cou-
pling strength is the same for all of them. This leads to the single condition
∂RVg(R) − Nλ2μg(R)∂Rμg(R) = 0, for which we get that the change of the equi-
librium configuration is given by

R0,new ≈ R0 + N
λ2

Mω2
ν

μg(R0)∂Rμg(R0) + O(λ4). (6.34)

This result is reminiscent of the expression in Eq. (6.28), where there is a collective
enhancement granted that the remainingmolecules have an average global alignment.
Note that the single molecule feels the electric field produced by the cavity dipole,
which is induced by N aligned dipoles, resulting in a natural enhancement of the
electric field of N compared to the single-molecule case. This is similar to the effect of
an external electric field, which it is known to strongly impact molecular geometries
[68, 69]

Note that the new equilibrium configuration does not depend explicitly on the
photon frequency. We analyzed the role of the reaction rates with the frequency
in Sect. 6.3, where we see that there are no appreciable changes for high or low
photon frequencies. However, we know that within the CBOA, the photon is treated
adiabatically, and the method will be more accurate for ωc → 0 (e.g., in vibrational
strong coupling). Therefore, in the following we study structural changes from a
theoretical approach based on the PoPES, used in previous chapters. In this picture,
the photonic DoF is discrete, so the electronic–photonic Hamiltonian reads

Ĥe−ph = Ĥe + ωcâ
†â + E1ph · μ̂(â† + â), (6.35)
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where E1ph is the electric field amplitude in the cavity. We now use this Hamiltonian
in order to find the ground-state PoPES of the system by doing perturbation theory.
The energy shift depends on a sum that runs over states |i, n〉, where i is the electronic
state index and n the photon number. The interaction Hamiltonian E1ph · μ̂(â† + â)

only allows single-photon transitions, so that in second-order perturbation theory the
number of photons is fixed to n = 1. This leads to the perturbed ground state

Ṽg(R) = Vg(R) − E2
1ph

∑

i

|μig(R)|2
Vi (R) − Vg(R) + ωc

+ O(E4
1ph). (6.36)

We can see that for i ≡ g we get the Debye contribution − E2
1phμ

2
g

ωc
= −λ2

2 μ2
g obtained

above. We rewrite the ground-state energy as

Ṽg(R) = Vg(R) − λ2

2
μ2
g(R) − λ2

2
ωc

∑

i 
=g

|μig(R)|2
Vi (R) − Vg(R) + ωc

, (6.37)

wherewe can identify the second term as the usual London dipole–dipole interaction.
Note that in the adiabatic limit of the CBOA, where the electronic energies are much
larger than the photon frequency, i.e., Vi (R) − Vg(R) � ωc, we exactly recover the
result of Eq. (6.19). More importantly, since in this picture the surfaces are hybrid
electronic–photonic states with parametric nuclear dependence (as opposed to the
purely electronic stateswith parametric photonic–nuclear dependence of theCBOA),
the London contribution directly influences the PES instead of the zero-point energy.
The new equilibrium configuration therefore includes changes due to the cavity-
induced London forces.

It is straightforward to approach the many-molecule scenario by doing perturba-
tion theory on the general Hamiltonian of Eq. (4.4). In this case, it is easy to see that
the change in the ground-state PoPES is given by

Ṽg(Rt )=
∑

i

Vg(Ri ) − 1

2

(
∑

i

λiμg(Ri )

)2

− 1

2
ωc

∑

i

∑

j 
=g

λ2
i |μ jg(Ri )|2

Vj (Ri ) − Vg(Ri ) + ωc
.

(6.38)
Again, this equation is in agreement with the results of Sect. 6.5 and we can there-
fore extract the same conclusions for the energy changes. In order to analyze the
influence on the equilibrium configuration, we assume that all but one molecule are
in the equilibrium position R0. This naturally leads to Eq. (6.33) plus a new term

−λ2

2 ωc
∑

j 
=g
|μ jg(Ri )|2

Vj (Ri )−Vg(Ri )+ωc
. We note that this new term, which represents the Lon-

don interaction, does not depend on the number of molecules but rather only on the
single-molecule coupling. In the limit of a very large number of molecules, while
keeping the Rabi splitting �R fixed, the single-molecule coupling goes to zero, and
therefore the effect of the cavity London interaction will be negligible.
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We thus find that the influence of strong coupling on any specific observable is
not immediately obvious, and has to be checked case by case. For some properties,
the molecules will behave as if they feel the full collective coupling �R, while for
others, they will show only the change induced by the single-molecule coupling λ
[5, 70]. These results are also compatible with the experimental observation that
the vibrational frequencies in surface-enhanced Raman scattering, which probe the
ground-state PES, are not strongly modified under strong coupling [71].

6.7 Conclusions

In this chapter we demonstrated the possibility of modifying ground-state chemical
reactions and molecular properties in hybrid cavity-molecule systems without an
external input of energy, motivated by experimental results showing this for vibra-
tional strong coupling [1, 4]. By treating a simple model system, the Shin–Metiu
model, we were able to show how full thermally driven reaction rates can be sig-
nificantly modified under strong light-matter interactions. We then determined that
this change can be interpreted through classical transition state theory, i.e., by the
change in the height of an effective energy barrier (or activation energy) by working
within the cavity Born–Oppenheimer approximation. This approximation is particu-
larly accurate for treating vibrational strong coupling, where the cavity frequency is
much smaller than the electronic energies. We then use perturbation theory in order
to obtain simple analytic expressions relating the effective barrier heights to purely
ground-state molecular properties, namely the uncoupled ground-state PES, dipole
moment, and polarizability of the molecule. We discuss that within second-order
perturbation theory, the energy shifts determining the barrier height on the CBO
PES can be directly related to well-known intermolecular forces, i.e., the Debye and
London forces, and more generally to Casimir–Polder interactions.

We stress that while perturbation theory allows us to make connections to well-
known results, our approach generalizes Casimir–Polder forces beyond the pertur-
bative regime and applies for any coupling strength. Additionally, we have shown
explicitly that the emergence of vibrational strong coupling does not affect the valid-
ity of the derived expressions for the effective energy barriers. At the same time, the
CBOA provides a straightforward way to connect to well-known theories of chem-
ical reactivity. The fact that the energy shifts obtained here become appreciable for
realistic nanocavities with strongly sub-wavelength field confinement and thus suf-
ficiently large λ demonstrates that the (generalized) van-der-Waals forces due to the
interaction of the molecular dipole with the polarization it induces in the cavity can
become strong enough to lead to significant changes in chemical reactivity.

We additionally found that on the single-molecule level, the effects discussed
above do not rely on any particular relation between the cavity photon frequency
ωc and the vibrational transitions in the molecule ων , and thus in particular not on
the formation of polaritons (hybrid light-matter states). This is consistent with the
interpretation of the energy shifts as generalizations of Casimir–Polder interactions
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beyond the perturbative regime. We also showed that the small modulation of the
reaction rate as a function of ωc that is observed numerically can be understood by
simple adiabatic approximations, and again is not related to polariton formation.

We demonstrated the applicability of our approach for a realistic multi-mode cav-
ity, a nanoparticle-on-mirror setup [17], and found that the effective single-molecule
coupling strength in this case becomes significant (corresponding to a mode volume
of≈ 2 nm3) even though themode volume of themain optically activemode is signif-
icantly larger (≈40 nm3). We furthermore applied our theory to a real molecule, 1,2-
dichloroethane, and showed that reaction rates can be both suppressed and enhanced
depending on the relative value of the molecular dipole moment at the critical con-
figurations (local minima and saddle points of the PES). A cavity could thus serve
as a catalyst or as an inhibitor of a ground-state reaction, and could even alter the
global equilibrium configuration of the molecule, all without any kind of external
energy input, with all reactions simply driven by thermal fluctuations. This represents
a potential way to efficiently optimize the desired yield of a molecular reaction.

For the case of many-molecule strong coupling, where the single-molecule cou-
pling λ is typically so small that the single-molecule effects described above are
negligible, we demonstrated that the PES and reaction barriers can be significantly
modified by collective effects provided that the permanent dipole moments of the
molecules are oriented with respect to the cavity mode field, such that they induce
an overall static electric field. However, it should also be noted that similar effects
could be achieved by direct dipole–dipole interactions if one manages to align all
molecules such as to create a strong field at the position of a single molecule. An
interesting open question is whether the cavity-mediated interactions could induce
alignment in materials that do not show this in the absence of the cavity, or if direct
dipole–dipole interactions would prevent this.

We lastly analyze how the cavity modifies the ground-state nuclear structure. We
again find that the Debye and London interactions with the cavity have an impact
on the equilibrium nuclear configuration. We furthermore discuss the fundamental
limitation in the CBOA for calculating the effect of the London forces on the equilib-
rium configuration. We thus analyze the same problem from a picture of polaritonic
potential energy surfaces, which is consistent with the CBOA approach when the
cavity frequency is very small. We find that the influence of the cavity induces col-
lective phenomena for the Debye contribution and single-molecule effects for the
London interaction.

Finally, it should be noted that we have throughout assumed that the whole system
is in thermal equilibrium, i.e., that the effective temperature is identical both for the
molecules and the cavity EMmode. This implies that system-bath interactions do not
have to be explicitly modeled, as the system can simply be assumed to be at a given
temperature (as explicitly included in the quantum rate calculations and TST). This
assumptionwould break down if the internal vibrational temperature of themolecules
is different from the temperature of the thermal radiation bath that the cavity is
coupled to. In that case, the effective temperature of the system could potentially
become an average of the internal and external bath temperatures. In particular,
the effective temperature relevant for a given reaction could depend on whether



6.7 Conclusions 153

vibrational motion along that reaction coordinate is hybridized with the cavity mode,
such that the external black-body radiation bath would conceivably couple more
efficiently to that mode than to others. Such effects have been studied for Casimir–
Polder forces,where resonant contributions that exactly cancel at thermal equilibrium
can become important in non-equilibrium situations [72, 73], and possibly give rise
to additional collective effects [74].
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Chapter 7
General Conclusions and Perspective

In this thesis we have focused on studyingmodifications in the properties and reactiv-
ity of organicmolecules coupled to cavities hosting confined electromagnetic modes.
The aim of these works is to develop a fundamental theory motivated by the various
experimental demonstrations of polaritonic chemistry achieved in recent years, both
for excited-state molecular processes and thermally-driven ground-state reactions.
The work of Chap.3 is devoted to the first step towards the development of this the-
ory, i.e., combine the usual description of the complexity of organic molecules with
theoretical approaches of CQED. We demonstrate the potential of this approach to
understand the molecular structure and properties in electronic excited states. The
theory is then generalized to an arbitrary number of molecules coupled to a cav-
ity in Chap.4, where the arising collective phenomena of the system are discussed.
Then, in Chap.5 we present two examples of photochemical reactions that can be
manipulated by entering the strong coupling regime. Finally, Chap. 6 is devoted to
theoretically study cavity-induced modifications in the ground state, demonstrating
the possibility of achieving strong modifications of the molecular energy landscape.
In this final chapter we present the overall conclusions of the work developed in
this thesis, together with a brief overview of the current status of the related lines of
research.

7.1 General Theory of Polaritonic Chemistry

One of the fundamental goals of this thesis is the expansion of our theoretical under-
standing of polaritonic chemistry. Several chapters focus on establishing a theory
that combines CQED and chemistry in order to gain insight of how the cavity can
influence the properties of organic molecules. We study both excited and ground
states of the hybrid light–matter system with different but related approaches. In
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the following, we first review the conclusions related to excited-state phenomena
in polaritonic chemistry, and then for the ground-state study, as well as discuss the
direction towards a more complete theory of polaritonic chemistry.

InChap.3we explore the use of theBorn–Oppenheimer approximation in a hybrid
light–matter system.Wefind that this is still a good approach in electronic strong cou-
pling and can be used to generalize the concept of PES to polaritonic PES (PoPES).
This picture is a useful platform to study the chemical properties in organic polari-
tons and to understand the nature of their various nonradiative processes in terms of
nuclear relaxation on the PoPES and through nonadiabatic transitions between dif-
ferent polaritonic states. The description is further formalized in Chap.4, where an
extension to treat an arbitrary number of molecules and excitations is presented. This
allows to study the different collective phenomena that arise in strong coupling with
an ensemble of molecules, such as the collective conical intersections and the col-
lective protection effect. The latter phenomenon is crucial in the modification of the
excited-state structure of the system and thus the primary responsible of influencing
the different photochemical reactions studied in Chap.5. This chapter is focused on
the study of some possible modifications of photochemistry, such as suppression of
excited-state processes, and triggering of multiple photochemical reactions on many
molecules after photoabsorption of a single external photon.

Throughout this thesis we establish the potential of the PoPES picture for study-
ing various excited-state processes, providing specific examples of photochemical
reactions with simplified molecular models. This theory is very flexible and its prin-
ciples allow to increase the complexity of both the electromagnetic and molecular
components. For instance, this theory can be interfaced with state-of-the-art quan-
tum chemistry codes in order to make accurate predictions on particular reactions.
Various works show this for different molecules and computational methods, such
as the multi-configuration time-dependent Hartree method for propagation of multi-
dimensional wavepackets [1] and an on-the-fly surface hopping semiclassical tech-
nique for calculating the dynamics on the PoPES [2, 3]. In the work of Luk et al.
[2], rhodamine molecules were characterized in detail using a quantum mechan-
ics/molecular mechanics (QM/MM) approach, where the most relevant part of the
big molecule for characterization of the photophysics was treated quantum mechan-
ically, while the remaining part, as well as the molecular solvent, was described
through classical molecular dynamics. This description allows to fully account for
nonradiative losses of the excitation, while spontaneous decay can be accounted for
by including stochastic jumps to the ground state.

The inclusion of various coherence and excitation loss mechanisms is an impor-
tant goal in a general theory of polaritonic chemistry due to the important role that
disorder, decay, and decoherence play in organic polaritonics. While these can arise
naturally from a detailed-enough microscopic theory (see for example the QM/MM
approach mentioned above, or using a detailed quantum electrodynamical density
functional theory approach [4, 5]), this rapidly becomes computationally infeasible
as the system grows in size, and more sophisticated open-quantum system theories
are required. Previous attempts to combine the picture of standard PES with losses
have beenmade. For example, PES can be generalized to complex PES [6], where the
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imaginary part represents the decay in time of the state. Thus, both real and imaginary
PES surfaces can intersect, leading to a variety of novel effects. Coupled system–
bath approaches can also be used to simulate the effect of weakly coupled vibrational
degrees of freedom such as the environment of a molecule in a condensed phase.
In this context, quantum chemistry methods have been combined with Redfield the-
ory to compute the nonadiabatic photochemical dynamics of the pyrrole-pyridine
hydrogen-bonded complex [7]. Analogous approaches can readily be implemented
in polaritonic chemistry in order to fully understand the role of losses in these pro-
cesses. The final objective of a general theory of polaritonic chemistry is to fully
integrate the methods and understanding of both chemistry and QED to develop a
unified insight on how to modify chemical properties in organic molecules.

Finally, we devote Chap.6 to the theoretical study of cavity-modified ground-state
molecular structure and reactivity. In this chapter we thoroughly discuss chemical
changes in terms of the cavity Born–Oppenheimer approximation. This approach is
related to the picture of PoPES, and therefore offers similar advantages. The micro-
scopic theory that we develop connects the predicted changes in chemical structure
and reactivity with off-resonance Casimir–Polder interactions, and does not require
the formation of polaritons. We note that current experiments of cavity-modified
ground-state chemistry observe that the cavity effects are resonance-dependent [8–
11]. At the time of writing this thesis, only another theoretical work has approached
this problem [12]. This work finds a resonant condition for a specific theoretical
model where only increments in reactivity can be obtained, however the experi-
ments observed both catalysis and suppression of chemical reactions. The mecha-
nism responsible for the experimentally observed resonance-dependent changes in
reactivity thus remains unknown, and further theoretical work is needed to uncover
it. More complete descriptions are required to understand these phenomena, by, e.g.,
explicitly including the role of the solvent (which is known to play a role [10]),
or using a thermodynamical description that does not necessarily assume thermal
equilibrium between cavity and molecules.

Nevertheless, our theory provides a platform to manipulate chemistry in plas-
monic nanocavities. In Chap.6 we provide examples for realistic molecules, using
quantum chemistry packages to compute molecular properties, and for realistic cav-
ities, exploiting electrostatics to fully take into account all the EMmodes coupled to
themolecule. Our latestwork [13], not featured in this thesis, focuses on studying var-
ious chemical systems, demonstrating cavity-induced catalysis and control over the
spin states and transition temperature in spin-crossover complexes. We believe that
readily available cavities, such as the nanoparticle-on-mirror [14], could be exploited
to achieve the few-molecule chemical control predicted by our theory.
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7.2 Applications of Cavity-Modified Chemistry

Due to the infancy of the field of polaritonic chemistry, there is still a need to apply
this theory to more realistic and bigger systems, which, as discussed above, will
require combining it with additional techniques to achieve a more complete descrip-
tion.Accordingly,most of this thesis has been focused on establishing the appropriate
theoretical framework. In Chap. 5 we use this theory to predict and describe different
effects that may be exploited in experiments, and, in the long term, in possible tech-
nological applications. Particularly, we describe the effect of collective suppression
in strong coupling, which leads to important rate reductions in excited-state pro-
cesses. Some recent studies have demonstrated experimentally that this mechanism
can significantly influence the intersystem crossing rates between singlet and triplet
states [15, 16]. In the triplet state, interactions with external triplet oxygen can lead
to bleaching of the molecule. Therefore, this suppression can help with stabilization
of highly reactive molecules, reducing photodegradation both in plasmonic systems
[15] and in planar cavities [16].

Additionally, in Chap. 5 we presented a proof-of-principle study showing the
possibility of triggering several photochemical reactions among many molecules
with a single external photon. This is possible for the molecular model treated, which
displays an energy landscape typical in organic molecules used for energy storage
in solar cells [17]. This energy is stored in a metastable nuclear configuration with
a very long lifetime, thus making this system good for storing energy, but not for
retrieving it. In our studywedemonstrate that, in strong coupling, this samemolecular
system can be good for retrieving energy and not for storing it, as photoabsorption of
a single photon can trigger multiple energy-releasing back-reactions. By reversibly
bringing the system in and out of resonance, by, e.g., moving amirror that changes the
photon frequency, it could be feasible to control whether the system stores energy or
releases it.

The nonadiabatic dynamics in organic polaritons that we explore in Chaps. 3
and 4 also offer awide range of possibilities. The nonadiabatic transitions and conical
intersections that are induced in strong coupling are closely related to the so-called
light-induced conical intersections in strong laser fields [18]. The use of light to
steer molecular dynamics is the main goal of the field of coherent control [19], in
which specifically tailored EMfields play the role of “photonic reagent” or “photonic
catalyst”. This approach accomplish strong interactionswith large number of photons
n, exploiting the enhancement of the laser electric field amplitude as ∼√

n. In strong
coupling, the basic properties of this phenomenon are instead achieved using the large
strength of a single photon. Therefore, polaritonic chemistry can considerably learn
from the field of coherent control, which has enabled manipulation of the dynamics
of several molecular reactions [20, 21] and control over dissociation in molecules
[18, 22]. Polaritonic chemistry can potentially offer similar chemical control, while
avoiding some of the drawbacks of strong laser physics, such as undesired multiple
photoabsorptions and ionizations that often limit the possible utility of coherent
control.
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In the next few years the potential of polaritonic chemistry will surely be further
explored. The possibility of manipulating the chemical and material properties of
organic systems offer plenty of opportunities. For example, it could offer the catal-
ysis of reactions for which no conventional catalytic method is known, or to do so
cheaper and more efficiently than in standard catalysis. This capability could also
lead to deeper understanding of many important processes in nature, such as the pho-
tophysics in photosynthesis and human vision. Nature often controls these systems
by manipulating the energy landscape of the molecules with a surrounding protein
[23]. Strong coupling could offer a novel alternative to manipulate these crucial pro-
cesses. Furthermore, the robustness of organic polaritons opens possibilities towards
room-temperature quantum technologies. Polaritonic chemistry would offer an addi-
tional tool to control and tune the properties of organic systems in order to optimize
its use in technological applications.

7.3 Ending Remarks

The field of polaritonic chemistry has demonstrated to be an interesting topic that
has attracted increasingly more interest in the past recent years. It offers a novel
approach for modifying the properties of organic systems by using cavities to alter
the electromagnetic vacuum that dresses and defines the molecules. This is still a
very young field where more experimental studies are required in order to verify and
challenge current theoretical predictions. At the same time, theory must provide the
necessary tools to understand these experiments, by allowing the treatment of more
complex descriptions of the system. In this context, this thesis has been focused on
addressing this problem, by providing a satisfactory theoretical method to describe
organic polaritons. We build on the foundations of chemistry and QED in order to
provide an initial step towards amore complete theory of polaritonic chemistry. In the
long term, a goal of the field will certainly be to investigate the use of cavity-modified
chemistry for practical applications.

The interdisciplinary aspect of polaritonic chemistry is oneof its greatest strengths.
Nanophotonics and quantum chemistry are combined in this emergent field with the
promise of great fundamental and technological development. As different scientific
communities notice this innovative concept, the influx of new ideas will ensure a
boost of our understanding of cavity-modified chemistry. A new generation of quan-
tum technologies and creative ways to manipulate complex chemical systems could
be possible by exploiting the characteristics of light in the dark.
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