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6.1  Introduction

Sustainability principles are essential to be respected when human beings interact 
with different environs; otherwise, anthropogenic actions can cause damage to liv-
ing forms and also pollute air, water, and soil with organic and/or inorganic pollut-
ants product of mine exploitation; industrial wastes from the production of fabrics, 
medicines, and paints; exploitation of offshore oil/petroleum; pesticides’ use; etc. 
(Jafari et al. 2013; Bhat et al. 2017; Barrios-Estrada et al. 2018; Carpenter 2018; 
Bilal et al. 2019; Mendes et al. 2019; Pesantes et al. 2019; Pu et al. 2019; Rosculete 
et al. 2019; Vázquez-Luna and Cuevas-Díaz 2019; Zhang et al. 2019).

Some of these contaminants, known as persistent contaminants, are even more 
damaging due to the fact that they may last for a very long time without transforma-
tions on contaminated environs, posing as threats for generations (Bhat et al. 2018; 
Mushtaq et  al. 2018). Aromatic molecules, for example, are hardly ever easily 
degraded, persisting on the polluted sites (Parrilli et al. 2010). Others can bioaccu-
mulate in some organisms, reaching high levels and presenting high risk of causing 
chronic poisoning to the organism or to an organism that eats the first one. 
Pharmaceuticals, for example, when thrown in water, such as in rivers, can bioac-
cumulate in zooplankton (Xie et  al. 2017), algae (Vannini et  al. 2011), mussels 
(Maruya et al. 2014), fish (Du et al. 2012), among others. There are also pollutants 
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that can do both. Heavy metals, for example, are highly toxic (being able to poison, 
induce cancer, cause death) and persistent contaminants that may accumulate in liv-
ing organisms, performing trophic level transfer in food chain (Jaishankar et  al. 
2014; Jacob et al. 2018; Ali et al. 2019; Rashid et al. 2019; Mehmood et al. 2019).

Therefore, it is necessary that strategies capable of restoring polluted environs be 
developed. Polluted water causes concern worldwide once it is essential that water 
of good quality can be offered to human beings to live healthy. However, conven-
tional methods of water treatment (such as reverse osmosis) might present some 
important disadvantages to be performed in large scale as elevated costs and genera-
tion of toxic waste (Dasgupta et al. 2015; Albering et al. 2016; Bilal et al. 2018).

Among the new strategies developed are the ones related to bioremediation: 
methods that use biological agents to clean up contaminated environs (Strong and 
Burgess 2008). The use of plants in these strategies originated the phytoremedia-
tion, and there are also researchers that consider the microbes associated to plants 
as part of this remediation’s concept (He et  al. 2020). Phytoremediation can be 
performed through different mechanisms, depending on plant, polluted environ, and 
contaminant characteristics (Panesar et al. 2019).

This chapter will address the phytoremediation as a strategic method to deal with 
polluted environs in an attempt to restore them, also highlighting the mechanisms 
by which plant species can remediate.

6.2  Phytoremediation of Polluted Environs

Phytoremediation is a remedial approach that allows in situ recovery of polluted 
environs in a sustained way, and some mechanisms (such as rhizofiltration) also 
allow ex situ remediation (Panesar et al. 2019; Bhat et al. 2018). There are some 
plant species that can remediate various types of pollutants, inorganic (such as 
radioactive isotopes, phosphates, heavy metals, nitrates) or organic (such as dyes, 
pesticides, fuels)  (Dushenkov 2000; Horne 2000; Nwoko and Egunjobi 2002; 
Nwoko et  al. 2004; Okeke et  al. 2004; Singh et  al. 2018); Eichhornia crassipes 
(water hyacinth), for example, can remediate dyes, phosphate, heavy metals, and 
radioactive isotopes (Jayaweera and Kasturiarachchi 2004; Nie et al. 2015; Thapa 
et al. 2016; Priya and Selvan 2017).

Phytoremediation can be performed through different mechanisms, depending 
on plant and contaminant characteristics. Phytostabilization, phytovolatilization, 
and mechanisms involving pollutant sequestration are commonly the ones used by 
plants to remediate inorganic pollutants, while organic ones are commonly phytore-
mediated by phyto- and rhizodegradation (Nwoko 2010).

Remediation promoted by plant species can suffer interference by the presence 
of other plant species and microorganism (especially in phytodegradation, a process 
in which microorganisms associated to plant’s roots take part). Eupatorium 
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odoratum extract at low concentration, for example, can attenuate formaldehyde 
toxic effects over E. crassipes, enhancing phytoremediation (Gong et  al. 2018). 
Especially when dealing with mixed pollutants, phytoremediation can also be 
improved by the participation of plant growth-promoting rhizobacteria and plant 
endophytes (including bacteria and fungi) in a process known as microbe-assisted 
phytoremediation (He et al. 2020).

It is also important to mention that not only microorganism and the presence of 
other plant species can affect the phytoremediation efficiency. The pH of the area to 
be remediated, the composition regarding pollutants (if it is mixed in contaminants 
that need to be remediated), the presence of fertilizers if it is related to soil remedia-
tion, and the presence of chelators can impact the results obtained (Rostami and 
Azhdarpoor 2019; Xu et al. 2019, Yu et al. 2019; He et al. 2020).

Especially when it comes to remediating heavy metals, biochar is an interesting 
tool. It is produced from various kinds of biomass through pyrolysis and carbon 
sequestration (Woolf et al. 2010), also regulating soil pH and reducing plants’ stress 
caused by contaminants  (Kiran and Prasad 2019). Biochars could, for example, 
increase Ricinus communis Pb tolerance to sustain phytoremediation, helping the 
plant to deal with oxidative stress (producing more antioxidant enzymes) and 
improve nutrient intake as same as plant growth (Kiran ans Prasad 2019).

Phytoremediation presents itself as an advantageous strategy to restore environs 
from pollution once it presents low initial investment requisition and is an auto- 
sustained process well accepted as a feasible and safe remediation strategy 
(Muthusaravanan et al. 2018).

There are various mechanisms of phytoremediation and various  plant species 
available to be used in this kind of procedure. Depending on the type of pollutant 
and the type of environment that is to be recovered through remediation, certain 
species and mechanisms are more suitable.

6.3  Mechanisms of Phytoremediation

Phytoremediation of contaminated environs can occur by different mechanisms 
(Fig. 6.1 and 6.2) and involving different plant species (Table 6.1). Each mechanism 
of phytoremediation possesses its peculiarities regarding the type of environment in 
which they can remedy more efficiently and which is the main type of pollutant they 
can deal with and involving different plant species that receive or not help from 
microorganisms during the process.

The main types of mechanisms of phytoremediation – phytohydraulic control, 
phytoaccumulation, phytodegradation, phytostabilization, phytovolatilization, rhi-
zofiltration, and rhizodegradation – are revisited in this chapter.

6 Mechanisms and Importance of Phytoremediation
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Fig. 6.1 Phytoremediation mechanisms: (a) phytohydraulic control; (b) phytoaccumulation; (c) 
phytodegradation; (d) phytostabilization
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6.4  Phytohydraulic Control

The hydraulic control is a kind of indirect phytoremediation strategy especially 
regarding to groundwater and involving tree species (Fig. 6.1a) (Khalifa and Alkhalf 
2018). It consists in a method by which plants act as natural pumps contributing to 
regulate groundwater’s cycle/movement: roots take up water from groundwater, 
plants can use this or return it into the environment (through transpiration), and then 
this water can be condensed to return to the groundwater after raining. If, however, 
the groundwater contains pollutants, the hydraulic control can help to control, limit, 
and diminish migration or even clean up the area, removing contaminants among 
the water mass taken up and sometimes phytotransforming them (Ahlfeld and 
Heidari 1994; Muthusaravanan et al. 2018). The most interesting species to perform 
this kind of remediation are plants with large root mass and that can release a con-
siderable part of the water taken up into the environment, in other words, species 

Fig. 6.2 Phytoremediation mechanisms: (a) phytovolatilization; (b) rhizodegradation; and (c) 
rhizofiltration
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Table 6.1 Examples of plant species suitable for phytoremediation

Plant species
Favorite remediation 
mechanism Pollutant Reference

Polygonum punctatum Hydraulic control Perchlorates Susarla et al. 
(2000)

Nymphaea odorata Hydraulic control Perchlorates Susarla et al. 
(2000)

Allenrolfea occidentalis Hydraulic control Perchlorates Susarla et al. 
(2000)

Vetiveria zizanioides Phytoaccumulation Polycyclic aromatic 
hydrocarbons

Un Nisa and 
Rashid (2015)

Cyperus rotundus Phytoaccumulation Cadmium and 
chromium

Subhasini and 
Swamy (2014)

Brassica juncea Phytoaccumulation Copper, lead, and 
nickel

Singh and Sinha 
(2005)

Centella asiatica Phytoaccumulation Copper Mokhtar et al. 
(2011)

Eichhornia crassipes Phytoaccumulation Copper Mokhtar et al. 
(2011)

Arabidopsis thaliana Phytoaccumulation Cesium Adams et al. 
(2017)

Chromolaena odorata Phytodegradation Sodium dodecyl 
sulfate

Gong et al. (2019)

Eichhornia crassipes Phytodegradation Malathion, ethion Xia and Ma 
(2006)

Scirpus grossus Phytodegradation Petroleum 
hydrocarbon

Al-Baldawi et al. 
(2015)

Myriophyllum aquaticum Phytodegradation Trinitrotoluene Rajakaruna et al. 
(2006)

Senna multijuga and peat Phytostabilization Copper De Marco et al. 
(2017)

Festuca rubra Phytostabilization Copper Radziemska et al. 
(2017)

Osmanthus fragrans, 
Ligustrum vicaryi, 
Cinnamomum camphora, 
Loropetalum chinense, and 
Euonymus japonicus

Phytostabilization Cadmium Zeng et al. (2018)

Typha latifolia Phytovolatilization Selenium LeDuc and Terry 
(2005)

Brassica juncea Phytovolatilization Mercury Moreno et al. 
(2008)

Populus deltoides and Populus 
nigra

Phytovolatilization Perchloroethylene James et al. (2009)

Pistia stratiotes Rhizofiltration Iron, chromium, 
lead, and copper

Galal et al. (2018)

Arundo donax Rhizofiltration Copper Oustriere et al. 
(2017)

(continued)
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that can transpire large volumes of water, influencing the existing water balance. 
These species remove a great amount of polluted groundwater and reduce infiltra-
tion/leaching of contaminants back to the water table (Etim 2012). In Populus gen-
der there are species that are considered high-transpiring ones (Hirsh et al. 2003). 
Some genotypes from the species Populus nigra L., for example, are suitable to 
perform this kind of remediation. The Spanish genotype can generate organisms 
with low water use efficiency and high capacity to use hydraulic control to remedi-
ate, possessing a high transpiration rate and a large root system (Bogeat-Triboulot 
et al. 2019).

6.5  Phytoaccumulation

This mechanism of phytoremediation is also called phytoextraction (Fig. 6.1b). It 
consists in removing contaminants, especially inorganic ones, without destroying 
them, from polluted spots, primarily from soil (Ahalya and Ramachandra 2006), 
and concentrating them in plant parts (commonly shoots or leaves) (Rashid et al. 
2014; Muthusaravanan et al. 2018). The pollutants, such as heavy metals (Kamal 
et al. 2004), are captured by the plant among water and nutrients from polluted spots 
and stored by plants. When it comes to heavy metals, for example, plants’ capacity 
to store them in a large amount depends upon the rate through which roots can 
uptake the metal, rate of its internal translocation to shoots, how well plant cells can 
tolerate increasing concentration of the pollutant without experiencing cytotoxicity, 
and bioavailability of the heavy metal in rhizosphere (Etim 2012). There are organ-
isms, known as hyperaccumulators, that store high amounts of pollutants, being 
suitable to be used to remediate environs. When it comes to copper, for example, 
these organisms can store more than 1000 μg from this metal to 1 g of dry plant. The 
hyperaccumulator Calendula officinalis could tolerate high soil concentrations of 
copper, and at 300  mg/kg of this metal in soil samples, the plant species could 

Table 6.1 (continued)

Plant species
Favorite remediation 
mechanism Pollutant Reference

Phragmites australis Rhizofiltration Uranium Wang and Dudel 
(2017) and Wang 
and Dudel (2018)

Phleum pratense Rhizofiltration 137 cesium Mikheev et al. 
(2017)

Sesbania cannabina Rhizodegradation Petroleum 
hydrocarbons

Maqbool et al. 
(2012)

Medicago sativa Rhizodegradation Hydrocarbons from 
oily sludge

Bano et al. (2015)

Sorghum x drummondii Rhizodegradation Polycyclic aromatic 
hydrocarbons

Dominguez et al. 
(2019)
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accumulate this pollutant in leaf at 4675 μg/g and in root at 3995 μg/g. Antioxidant 
enzymes such as superoxide dismutase and catalase helped the plant to deal with Cu 
stress, making high accumulation rates possible (Goswami and Das 2016).

6.6  Phytodegradation

Through this mechanism, also known as phytotransformation (Fig. 6.1c), plants can 
not only uptake especially organic pollutants but also promote their breakdown into 
less complex substances by plant’s metabolic pathways or by special enzymes pro-
duced by plants to perform this role (Newman and Reynolds 2004; Trap et al. 2005). 
Pollutant’s characteristics such as hydrophobicity influence on the remediation effi-
ciency once it interferes on uptake efficiency, as same as contaminants’ concentra-
tion on the spot and plant phytochemical properties (Etim 2012). Pharmaceuticals 
are an increasingly concerning problem when it comes to environs’ pollution by 
persistent and biologically active contaminants. In this way, phytoremediation strat-
egies are being developed to deal with this challenging issue. Phragmites australis, 
a wetland plant, could uptake and transform Ibuprofen using enzymes such as cyto-
chrome P450 monooxygenase; the pollutant was degraded in hydroxy-, 
1,2- dihydroxy-, carboxy-, and glucopyranosyloxy-hydroxy-Ibuprofen versions (He 
et al. 2017).

6.7  Phytostabilization

Contaminants can be immobilized, having their soil migration limited, by this reme-
diation mechanism, reducing their bioavailability and consequently their damaging 
risks. Through this strategy (Fig. 6.1d), the pollutants do not enter vegetative parts 
of plants, being kept in rhizosphere (Berti and Cunningham 2000; Mendez and 
Maier 2008; Muthusaravanan et al. 2018). It is a very useful remediation technique 
to ecological restoration of polluted spots such as mine areas. Erica australis could 
efficiently sequestrate in root cortex toxic elements such as Cd, Cu, Pb, and S 
and could also tolerate extreme acidic condition, being suitable for remediation of 
areas containing mine wastes. This plant species also presented interesting charac-
teristic of favoring the reestablishment of vegetation, improving the survival capac-
ity of plant species less tolerant, such as Nerium oleander (Monaci et al. 2019). If 
inorganic soil amendments are added to the sample to be remediated, it can improve 
the capacity of some plant species to promote remediation; limestone could improve 
Cu, Ni, and Cd phytostabilization performed by Festuca rubra (Radziemska et al. 
2019). The presence of organic matter such as manure-based compost or biomass 
product after pyrolysis (known as biochar) (Saletnik et  al. 2019) could help to 
immobilize the pollutants such as metallic ones (Cd and Zn) by corn plants (Sigua 
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et al. 2019). Microorganisms can also improve plants’ ability to promote phytosta-
bilization of pollutants. The fungi Funneliformis mosseae could improve Robinia 
pseudoacacia Pb phytostabilization by helping to immobilize the pollutant and 
could also attenuate its toxicity to roots (Huang et al. 2019).

6.8  Phytovolatilization

This mechanism of phytoremediation consists in plants uptaking contaminants from 
polluted areas, generally converting them to a less toxic form, and then releasing 
them to the atmosphere as volatile products from leaves or stems, in a process 
known as direct phytovolatilization (Fig. 6.2a), or from roots – the indirect type of 
phytovolatilization (Limmer and Burken 2016). However, it is also possible that the 
form released by plants to the atmosphere still possesses a concerning toxicity to 
living forms, so it is essential to first analyze if a certain pollutant would be suitable 
for phytovolatilization without provoking additional damage. This mechanism of 
phytoremediation should be avoided to remediate, for example, samples polluted 
with arsenic and mercury by Pteris vittata, once the final products (dimethyl sele-
nide and mercuric oxide) generated by the plant are also toxic (Sakakibara et al. 
2010). Species from Populus and Salix gender are commonly used in this kind of 
strategy due to their characteristic of uptaking contaminants very well and also 
Brassica juncea and Arabidopsis thaliana that possess the ability to convert heavy 
metal pollutants into volatile forms (Pulford and Watson, 2003; Ghosh and Singh 
2005). Trichloroethylene could be remediated by Eucalyptus sideroxylon through 
phytovolatilization from the leaves and roots (soil) in Travis and Fairchild Air Force 
Bases, California (Doucette et al. 2013).

6.9  Rhizodegradation

Through this mechanism (Fig. 6.2b), plant species can degrade organic contami-
nants working together with microorganisms associated to plant’s roots, which have 
their development/growth stimulated by metabolites (e.g., amino acids and growth 
factors) released by these plants in rhizosphere (Dominguez et  al. 2019). 
Hylotelephium spectabile could help to deal with petroleum hydrocarbons’ pollu-
tion mainly through rhizodegradation (maximum rate of 53.3%), which was opti-
mized by inducing the presence of microorganism with capacity to degrade these 
pollutants and with high salt tolerance (Alcanivorax and Bacteroidetes). Compared 
to the control group, the plants involved in promoting remediation increased their 
gene copy number of genes related to petroleum hydrocarbons’ degradation up to 
14.44 times (Cheng et al. 2019).

6 Mechanisms and Importance of Phytoremediation
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6.10  Rhizofiltration

This mechanism of phytoremediation (Fig. 6.2c) is similar to phytoaccumulation/
phytoextraction: pollutants, through biotic or abiotic process, are absorbed by 
plant’s roots or hold on tightly to this plant part (Panesar et al. 2019). However, 
rhizofiltration focus on remediating polluted groundwater (mainly with metallic 
contaminants), while phytoaccumulation/phytoextraction is applied mainly to pol-
luted soil (Ahalya and Ramachandra 2006). Plants that will be used to perform this 
type of remediation are grown hydroponically and not in soil and can perform in situ 
or ex situ remediation (Mikheev et  al. 2017; Tiwari et  al. 2019). Within 24 h of 
experiment, Helianthus annuus could remove, through rhizofiltration, 80% of the 
uranium present in contaminated water from groundwater and laboratory solution 
samples, offering final concentrations that were under the drinking water limit; 
Phaseolus vulgaris presented the capacity of removing 60–80% of the contaminant, 
and both species offered a root’s capacity of removing this contaminant superior 
than 500 mg/kg (Lee and Yang 2010).

6.11  GMPs and Phytoremediation

As previously discussed in this chapter, there are plant species naturally capable of 
promoting environs’ remediation. However, depending upon pollutant concentra-
tion and toxicity mechanism, the stress induced in the vegetal can limit the success 
of the phytoremediation or even induce plant’s death (Tiwari and Lata 2018).

Genetic manipulation arises as a tool to allow DNA manipulation, for example, 
to improve plant’s resistance to pollutants to phytoremediate them, to improve the 
efficiency of plants’ previous ability to remediate, and to convert a vegetal that was 
not able to remediate into an organism that can perform this process (Prasad 2019).

To generate a transgenic plant, the most popular methodology involves the use of 
organisms from Agrobacterium gender (Agrobacterium rhizogenes or more com-
monly Agrobacterium tumefaciens (Cunningham et al. 2018)).

It is common, for example, strategies that use genes from plants that possess a 
high capacity to deal well with pollutants, to generate a genetically modified plant 
(GMP) with an improved phytoremediation potential. The gene that codifies a sele-
nocysteine methyltransferase could be obtained from Astragalus bisulcatus (a plant 
species that can hyperaccumulate selenium) and inserted into Brassica juncea’s 
DNA to enable it to remediate the pollution caused by this element (LeDuc et al. 
2004). The MT2 coding sequence from Sedum alfredii could reprogram N. tabacum 
to tolerate better and accumulate larger amounts of the pollutant copper (Zhang 
et al. 2014).

Bacterial genes can also be used in the generation of a GMP. The atzA gene from 
Pseudomonas sp. after being inserted in Medicago sativa and N. tabacum (tobacco 
plant) could allow the production of the enzyme atrazine chlorohydrolase, allowing 
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the transgenic to efficiently remediate the pollution caused by the pesticide atrazine 
(Wang et  al. 2005). Enterobacter cloacae NfsI gene when inserted into tobacco 
plants’ DNA led to the production of a nitroreductase that allowed remediation of 
sample polluted with 2,4,6-trinitrotoluene (TNT) (Hannink et al. 2007). The gene of 
a nitroreductase from Escherichia coli allowed a similar effect on the genetically 
modified Arabidopsis thaliana (Kurumata et al. 2005). Other gene from E. cloacae 
(Onr gene) allowed nitroglycerin’s remediation to be performed by transgenic 
N. tabacum (French et al., 1999). Rhodococcus rhodochorus’ XplA and XplB genes 
allowed Arabidopsis thaliana to remediate 1,3,5-trinitro-1,3,5-triazine (Jackson 
et al. 2007). Transgenic tobacco plants expressing Pseudomonas putida genes CzcB 
or CzcA could efficiently accumulate more Cd in the roots than wild-type plants 
(Nesler et al., 2017). The gene copC from Pseudomonas fluorescens was used to 
generate transgenic tobacco hairy roots, converting these organisms into copper 
hyperaccumulators that could deal well with the stress induced by the heavy metal 
(Pérez-Palacios et  al. 2017). Genes nfsI, xplA, and xplB from bacteria allowed 
Pascopyrum smithii to remediate, respectively, the explosives 2, 4, 6-trinitrotoluene 
and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (xplA and xplB) (Zhang et al. 2018).

Human genes such as CYP2E1 could also be used to generate transgenic 
Arabidopsis thaliana, capable of remediating samples polluted with trichloroethyl-
ene and ethylene dibromide (Doty et al., 2000). CYP1A1, CYP2B6, and CYP2C19 
genes allowed Oryza sativa to phytoremediate the pesticides atrazine, metolachlor, 
and simazine (Kawahigashi et al. 2006).

The genes used to generate transgenic plants to perform phytoremediation can 
also be sequences from the same species to generate autotransgenic organisms that 
will overexpress the transgene. Autotransgenic potato designed to overexpress 
StDREB transcription factors could deal more efficiently with Cd pollution 
(Charfeddine et al. 2017).

6.12  Conclusion

Phytoremediation is an interesting strategy to remediate polluted environs contain-
ing pollutants from diverse chemical nature, organic or inorganic. It can be per-
formed through different mechanisms such as phytohydraulic control, 
phytoaccumulation, phytodegradation, phytostabilization, phytovolatilization, rhi-
zofiltration, and rhizodegradation. The process’ efficiency depends upon some 
plants characteristics, the area to be remediated, and the contaminant to be remedi-
ated. Strategies such as using biochar and microorganisms can favor the aimed 
results to be achieved. Besides presenting advantageous characteristics intrinsic to 
the remediation involving plants, phytoremediation may also benefit from genera-
tion of genetically modified plants with enhanced remediation capacity, converting 
even plants that normally cannot remediate in organisms able to clean up contami-
nated environments.

6 Mechanisms and Importance of Phytoremediation
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6.13  Futures Perspectives

It is expected that bioremediation protocols continue to be proposed involving the 
use of plant species and also strategies to improve the remediation capacity. 
However, when these strategies involve recombinant DNA technology, it is also 
expected a special concern regarding safety of these modified organisms’ use in 
the field.

It is also expected that phytoremediation limitations, such as incomplete reme-
diation; roots’ size that does not allow cleaning deep inside aquifers; species that 
can hyperaccumulate but do not degrade pollutants, presenting a risk of food chain 
contamination with high level of pollutants; the necessity of large areas under con-
trolled situation for field studies; and the risk of converting into air pollution the 
contaminants remediated through phytovolatilization, can be successfully surpassed.
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