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Abstract In thiswork,we develop efficient solvers for linear inverse problems based
on randomized singular value decomposition (RSVD). This is achieved by com-
bining RSVD with classical regularization methods, e.g., truncated singular value
decomposition, Tikhonov regularization, and general Tikhonov regularization with
a smoothness penalty. One distinct feature of the proposed approach is that it explic-
itly preserves the structure of the regularized solution in the sense that it always lies
in the range of a certain adjoint operator. We provide error estimates between the
approximation and the exact solution under canonical source condition, and inter-
pret the approach in the lens of convex duality. Extensive numerical experiments are
provided to illustrate the efficiency and accuracy of the approach.
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1 Introduction

This work is devoted to randomized singular value decomposition (RSVD) for the
efficient numerical solution of the following linear inverse problem

Ax = b, (1)

K. Ito
Department of Mathematics, North Carolina State University, Raleigh, NC 27607, USA
e-mail: kito@ncsu.edu

B. Jin (B)
Department of Computer Science, University College London, Gower Street, London WC1E
6BT, UK
e-mail: b.jin@ucl.ac.uk; bangti.jin@gmail.com

© Springer Nature Switzerland AG 2020
L. Beilina et al. (eds.), Mathematical and Numerical Approaches for Multi-Wave
Inverse Problems, Springer Proceedings in Mathematics & Statistics 328,
https://doi.org/10.1007/978-3-030-48634-1_5

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48634-1_5&domain=pdf
mailto:kito@ncsu.edu
mailto:b.jin@ucl.ac.uk
mailto:bangti.jin@gmail.com
https://doi.org/10.1007/978-3-030-48634-1_5


46 K. Ito and B. Jin

where A ∈ R
n×m , x ∈ R

m and b ∈ R
n denote the data formation mechanism,

unknown parameter and measured data, respectively. The data b is generated by
b = b† + e, where b† = Ax† is the exact data, and x† and e are the exact solution
and noise, respectively. We denote by δ = ‖e‖ the noise level.

Due to the ill-posed nature, regularization techniques are often applied to obtain
a stable numerical approximation. A large number of regularization methods have
been developed. The classical ones include Tikhonov regularization and its variant,
truncated singular value decomposition, and iterative regularization techniques, and
they are suitable for recovering smooth solutions. More recently, general variational
type regularization methods have been proposed to preserve distinct features, e.g.,
discontinuity, edge and sparsity. This work focuses on recovering a smooth solution
by Tikhonov regularization and truncated singular value decomposition, which are
still routinely applied in practice. However, with the advent of the ever increasing
data volume, their routine application remains challenging, especially in the context
of massive data and multi-query, e.g., Bayesian inversion or tuning multiple hyper-
parameters. Hence, it is still of great interest to develop fast inversion algorithms.

In this work, we develop efficient linear inversion techniques based on RSVD.
Over the last decade, a number of RSVD inversion algorithms have been developed
and analyzed [10, 11, 20, 26, 31]. RSVD exploits the intrinsic low-rank structure of
A for inverse problems to construct an accurate approximation efficiently. Our main
contribution lies in providing a unified framework for developing fast regularized
inversion techniques based on RSVD, for the following three popular regularization
methods: truncated SVD, standard Tikhonov regularization, and Tikhonov regular-
izationwith a smooth penalty. Themain novelty is that it explicitly preserves a certain
range condition of the regularized solution, which is analogous to source condition
in regularization theory [5, 13], and admits interpretation in the lens of convex dual-
ity. Further, we derive error bounds on the approximation with respect to the true
solution x† in Sect. 4, in the spirit of regularization theory for noisy operators. These
results provide guidelines on the low-rank approximation, and differ from existing
results [1, 14, 30, 32, 33], where the focus is on relative error estimates with respect
to the regularized solution.

Now we situate the work in the literature on RSVD for inverse problems. RSVD
has been applied to solving inverse problems efficiently [1, 30, 32, 33]. Xiang and
Zou [32] developed RSVD for standard Tikhonov regularization and provided rel-
ative error estimates between the approximate and exact Tikhonov minimizer, by
adapting the perturbation theory for least-squares problems. In the work [33], the
authors proposed two approaches based respectively on transformation to standard
form and randomized generalized SVD (RGSVD), and for the latter, RSVD is only
performed on the matrix A. There was no error estimate in [33]. Wei et al [30] pro-
posed different implementations, and derived some relative error estimates. Boutsidis
and Magdon [1] analyzed the relative error for truncated RSVD, and discussed the
sample complexity. Jia and Yang [14] presented a different way to perform truncated
RSVD via LSQR for general smooth penalty, and provided relative error estimates.
See also [16] for an evaluation within magnetic particle imaging. More generally,
the idea of randomization has been fruitfully employed to reduce the computational
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cost associated with regularized inversion in statistics and machine learning, under
the name of sketching in either primal or dual spaces [2, 22, 29, 34]. All these works
also essentially exploit the low-rank structure, but in a different manner. Our analysis
may also be extended to these approaches.

The rest of the paper is organized as follows. In Sect. 2, we recall preliminaries
on RSVD, especially implementation and error bound. Then in Sect. 3, under one
single guiding principle, we develop efficient inversion schemes based on RSVD for
three classical regularization methods, and give the error analysis in Sect. 4. Finally
we illustrate the approaches with some numerical results in Sect. 5. In the appendix,
we describe an iterative refinement scheme for (general) Tikhonov regularization.
Throughout, we denote by lower and capital letters for vectors and matrices, respec-
tively, by I an identity matrix of an appropriate size, by ‖ · ‖ the Euclidean norm
for vectors and spectral norm for matrices, and by (·, ·) for Euclidean inner prod-
uct for vectors. The superscript ∗ denotes the vector/matrix transpose. We use the
notationR(A) andN (A) to denote the range and kernel of a matrix A, and Ak and
Ãk denote the optimal and approximate rank-k approximations by SVD and RSVD,
respectively. The notation c denotes a generic constant which may change at each
occurrence, but is always independent of the condition number of A.

2 Preliminaries

Now we recall preliminaries on RSVD and technical lemmas.

2.1 SVD and Pseudoinverse

Singular value decomposition (SVD) is one of most powerful tools in numerical
linear algebra. For any matrix A ∈ R

n×m , SVD of A is given by

A = UΣV ∗,

where U = [u1, u2, . . . , un] ∈ R
n×n and V = [v1, v2, . . . , vm] ∈ R

m×m are col-
umn orthonormal matrices, with the vectors ui and vi being the left and right sin-
gular vectors, respectively, and V ∗ denotes the transpose of V . The diagonal matrix
Σ = diag(σi ) ∈ R

n×m has nonnegative diagonal entries σi , known as singular values
(SVs), ordered nonincreasingly:

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σmin(m,n) = 0,

where r = rank(A) is the rank of A. Let σi (A) be the i th SV of A. The complexity of
the standard Golub-Reinsch algorithm for computing SVD is 4n2m + 8m2n + 9m3

(for n ≥ m) [8, p. 254]. Thus, it is expensive for large-scale problems.
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Now we can give the optimal low-rank approximation to A. By Eckhardt-Young
theorem, the optimal rank-k approximation Ak of A (in spectral norm) is given by

‖A −UkΣkV
∗
k ‖ = σk+1,

where Uk ∈ R
n×k and Vk ∈ R

m×k are the submatrix formed by taking the first k
columns of the matrices U and V , and Σk = diag(σ1, . . . , σk) ∈ R

k×k . The pseu-
doinverse A† ∈ R

m×n of A ∈ R
n×m is given by

A† = VrΣ
−1
r U ∗

r .

We have the following properties of the pseudoinverse of matrix product.

Lemma 1 For any A ∈ R
m×n, B ∈ R

n×l , the identity (AB)† = B†A† holds, if one
of the following conditions is fulfilled: (i) A has orthonormal columns; (ii) B has
orthonormal rows; (iii) A has full column rank and B has full row rank.

The next result gives an estimate on matrix pseudoinverse.

Lemma 2 For symmetric semipositive definite A, B ∈ R
m×m, there holds

‖A† − B†‖ ≤ ‖A†‖‖B†‖‖B − A‖.

Proof Since A is symmetric semipositive definite, we have A† = limμ→0+(A +
μI )−1.By the identityC−1 − D−1 = C−1(D − C)D−1 for invertibleC, D ∈ R

m×m ,

A† − B† = lim
μ→0+

[(A + μI )−1 − (B + μI )−1]
= lim

μ→0+
[(A + μI )−1(B − A)(B + μI )−1] = A†(B − A)B†.

Now the estimate follows from the matrix spectral norm estimate. �

Remark 1 The estimate for general matrices is weaker than the one in Lemma 2:
for general A, B ∈ R

n×m with rank(A) = rank(B) < min(m, n), there holds [25]

‖A† − B†‖ ≤ 1+√
5

2 ‖A†‖‖B†‖‖B − A‖.

The rank condition is essential, and otherwise, the estimate may not hold.

Last, we recall the stability of SVs ([12, Corollary 7.3.8], [27, Sect. 1.3]).

Lemma 3 For A, B ∈ R
n×m, there holds

|σi (A + B) − σi (A)| ≤ ‖B‖, i = 1, . . . ,min(m, n).
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2.2 Randomized SVD

Traditional numerical methods to compute a rank-k SVD, e.g., Lanczos bidiago-
nalization and Krylov subspace method, are especially powerful for large sparse or
structured matrices. However, for many discrete inverse problems, there is no such
structure. The prototypical model in inverse problems is a Fredholm integral equa-
tion of the first kind, which gives rise to unstructured dense matrices. Over the past
decade, randomized algorithms for computing low-rank approximations have gained
popularity. Frieze et al. [6] developed a Monte Carlo SVD to efficiently compute an
approximate low-rank SVD based on non-uniform row and column sampling. Sarlos
[23] proposed an approach based on random projection, using properties of random
vectors to build a subspace capturing the matrix range. Below we describe briefly
the basic idea of RSVD, and refer readers to [11] for an overview and to [10, 20, 26]
for an incomplete list of recent works.

RSVD can be viewed as an iterative procedure based on SVDs of a sequence of
low-rank matrices to deliver a nearly optimal low-rank SVD. Given a matrix A ∈
R

n×m with n ≥ m, we aim at obtaining a rank-k approximation, with k 	 min(m, n).
Let Ω ∈ R

m×(k+p), with k + p ≤ m, be a random matrix, with its entries following
an i.i.d. Gaussian distribution N (0, 1), and the integer p ≥ 0 is an oversampling
parameter (with a default value p = 5 [11]). Then we form a random matrix Y by

Y = (AA∗)q AΩ, (2)

where the exponent q ∈ N ∪ {0}. By SVD of A, i.e., A = UΣV ∗, Y is given by

Y = UΣ2q+1V ∗Ω.

Thus Ω is used for probing R(A), and R(Y ) captures R(Uk) well. The accuracy
is determined by the decay of σi s, and the exponent q can greatly improve the
performance when σi s decay slowly. Let Q ∈ R

n×(k+p) be an orthonormal basis for
R(Y ), which can be computed efficiently via QR factorization or skinny SVD. Next
we form the (projected) matrix

B = Q∗A ∈ R
(k+p)×m .

Last, we compute SVD of B
B = WSV ∗,

withW ∈ R
(k+p)×(k+p), S ∈ R

(k+p)×(k+p) and V ∈ R
m×(k+p). This again can be car-

ried out efficiently by standard SVD, since the size of B is much smaller. With 1 : k
denoting the index set {1, . . . , k}, let Ũk = QW (1 : n, 1 : k) ∈ R

n×k , Σ̃k = S(1 :
k, 1 : k) ∈ R

k×k and Ṽk = V (1 : m, 1 : k) ∈ R
m×k . The triple (Ũk, Σ̃k, Ṽk) defines

a rank-k approximation Ãk :
Ãk = ŨkΣ̃k Ṽ

∗
k .
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The triple (Ũk, Σ̃k, Ṽk) is a nearly optimal rank-k approximation to A; see Theorem
1 below for a precise statement. The approximation is random due to range probing
by Ω . By its very construction, we have

Ãk = P̃k A, (3)

where P̃k = ŨkŨ ∗
k ∈ R

n×n is the orthogonal projection into R(Ũk). The procedure
for RSVD is given in Algorithm 1. The complexity of Algorithm 1 is about 4(q +
1)nmk, which can be much smaller than that of full SVD if k 	 min(m, n).

Algorithm 1 RSVD for A ∈ R
n×m , n ≥ m.

1: Input matrix A ∈ R
n×m , n ≥ m, and target rank k;

2: Set parameters p (default p = 5), and q (default q = 0);
3: Sample a random matrix Ω = (ωi j ) ∈ R

m×(k+p), with ωi j ∼ N (0, 1);
4: Compute the randomized matrix Y = (AA∗)q AΩ;
5: Find an orthonormal basis Q of range(Y ) by QR decomposition;
6: Form the matrix B = Q∗A;
7: Compute the SVD of B = WSV ∗;
8: Return the rank k approximation (Ũk , Σ̃k , Ṽk), cf. (3).

Remark 2 The SV σi can be characterized by [8, Theorem 8.6.1, p. 441]:

σi = max
u∈Rn ,u⊥span({u j }i−1

j=1)

‖A∗u‖
‖u‖ .

Thus, one may estimate σi (A) directly by σ̃i (A) = ‖A∗Ũ (:, i)‖, and refine the SV
estimate, similar to Rayleigh quotient acceleration for computing eigenvalues.

The following error estimates hold for RSVD (Ũk, Σ̃k, Ṽk) given by Algorithm
1 with q = 0 [11, Corollary 10.9, p. 275], where the second estimate shows how
the parameter p improves the accuracy. The exponent q is in the spirit of a power
method, and can significantly improve the accuracy in the absence of spectral gap;
see [11, Corollary 10.10, p. 277] for related discussions.

Theorem 1 For A ∈ R
n×m, n ≥ m, let Ω ∈ R

m×(k+p) be a standard Gaussian
matrix, k + p ≤ m and p ≥ 4, and Q an orthonormal basis forR(AΩ). Then with
probability at least 1 − 3p−p, there holds

‖A − QQ∗A‖ ≤ (1 + 6((k + p)p log p)
1
2 )σk+1 + 3

√
k + p

⎛

⎝
∑

j>k

σ 2
j

⎞

⎠

1
2

,
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and further with probability at least 1 − 3e−p, there holds

‖A − QQ∗A‖ ≤
(

1 + 16

(
1 + k

p + 1

) 1
2

)

σk+1 + 8(k + p)
1
2

p + 1

⎛

⎝
∑

j>k

σ 2
j

⎞

⎠

1
2

.

The next result is an immediate corollary of Theorem 1. Exponentially decaying
SVs arise in, e.g., backward heat conduction and elliptic Cauchy problem.

Corollary 1 Suppose that the SVs σi decay exponentially, i.e., σ j = c0c
j
1 , for some

c0 > 0 and c1 ∈ (0, 1). Then with probability at least 1 − 3p−p, there holds

‖A − QQ∗A‖ ≤
[

1 + 6((k + p)p log p)
1
2 + 3(k + p)

1
2

(1 − c21)
1
2

]

σk+1,

and further with probability at least 1 − 3e−p, there holds

‖A − QQ∗A‖ ≤
[(

1 + 16

(
1 + k

p + 1

) 1
2

)

+ 8(k + p)
1
2

(p + 1)(1 − c21)
1
2

]

σk+1.

So far we have assumed that A is tall, i.e., n ≥ m. For the case n < m, one may
apply RSVD to A∗, which gives rise to Algorithm 2.

Algorithm 2 RSVD for A ∈ R
n×m, n < m.

1: Input matrix A ∈ R
n×m , n < m, and target rank k;

2: Set parameters p (default p = 5), and q (default q = 0);
3: Sample a random matrix Ω = (ωi j ) ∈ R

(k+p)×n , with ωi j ∼ N (0, 1);
4: Compute the randomized matrix Y = ΩA(A∗A)q ;
5: Find an orthonormal basis Q of range(Y ∗) by QR decomposition;
6: Find the matrix B = AQ;
7: Compute the SVD of B = USV ∗;
8: Return the rank k approximation (Ũk , Σ̃k , Ṽk).

The efficiency of RSVD resides crucially on the truly low-rank nature of the
problem. The precise spectral decay is generally unknown for many practical inverse
problems, although there are known estimates for severalmodel problems, e.g., X-ray
transform [18] andmagnetic particle imaging [17]. The decay rates generally worsen
with the increase of the spatial dimension d, at least for integral operators [9], which
can potentially hinder the application of RSVD type techniques to high-dimensional
problems.
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3 Efficient Regularized Linear Inversion with RSVD

Now we develop efficient inversion techniques based on RSVD for problem (1) via
truncated SVD (TSVD), Tikhonov regularization and Tikhonov regularization with a
smoothness penalty [5, 13]. For large-scale inverse problems, this can be expensive,
since they either involve full SVD or large dense linear systems. We aim at reducing
the cost by exploiting the inherent low-rank structure for inverse problems, and
accurately constructing a low-rank approximation by RSVD. This idea has been
pursued recently [1, 14, 30, 32, 33]. Our work is along the same line in of research
but with a unified framework for deriving all three approaches and interpreting the
approach in the lens of convex duality.

The key observation is the range type condition on the approximation x̃ :

x̃ ∈ R(B), (4)

with the matrix B is given by

B =
{
A∗, truncated SVD, Tikhonov,
L†L∗†A∗, general Tikhonov,

where L is a regularizing matrix, typically chosen to the finite difference approxi-
mation of the first- or high-order derivatives [5]. Similar to (4), the approximation
x̃ is assumed to live in span({vi }ki=1) in [34] for Tikhonov regularization, which is
slightly more restrictive than (4). An analogous condition on the exact solution x†

reads
x† = Bw (5)

for some w ∈ R
n . In regularization theory [5, 13], (5) is known as source condition,

and can be viewed as the Lagrange multiplier for the equality constraint Ax† = b†,
whose existence is generally not ensured for infinite-dimensional problems. It is
often employed to bound the error ‖x̃ − x†‖ of the approximation x̃ in terms of the
noise level δ. The construction below explicitly maintains (4), thus preserving the
structure of the regularized solution x̃ . We will interpret the construction by convex
analysis. Below we develop three efficient computational schemes based on RSVD.

3.1 Truncated RSVD

Classical truncated SVD (TSVD) stabilizes problem (1) by looking for the least-
squares solution of

min ‖Akxk − b‖, with Ak = UkΣkV
∗
k .
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Then the regularized solution xk is given by

xk = A†
kb = VkΣ

−1
k U ∗

k b =
k∑

i=1

σ−1
i (ui , b)vi .

The truncated level k ≤ rank(A) plays the role of a regularization parameter, and
determines the strength of regularization. TSVD requires computing the (partial)
SVD of A, which is expensive for large-scale problems. Thus, one can substitute a
rank-k RSVD (Ũk, Σ̃k, Ṽk), leading to truncated RSVD (TRSVD):

x̂k = ṼkΣ̃
−1
k Ũ ∗

k b.

By Lemma 3, Ãk = ŨkΣ̃k Ṽ ∗
k is indeed of rank k, if ‖A − Ãk‖ < σk . This approach

was adopted in [1]. Based on RSVD, we propose an approximation x̃k defined by

x̃k = A∗( Ãk Ã
∗
k)

†b = A∗
k∑

i=1

(ũi , b)

σ̃ 2
i

ũi . (6)

By its construction, the range condition (4) holds for x̃k . To compute x̃k , one does
not need the complete RSVD (Ũk, Σ̃k, Ṽk) of rank k, but only (Ũk, Σ̃k), which
is advantageous for complexity reduction [8, p. 254]. Given the RSVD (Ũk, Σ̃k),
computing x̃k by (6) incurs only O(nk + nm) operations.

3.2 Tikhonov Regularization

Tikhonov regularization stabilizes (1) by minimizing the following functional

Jα(x) = 1
2‖Ax − b‖2 + α

2 ‖x‖2,

where α > 0 is the regularization parameter. The regularized solution xα is given by

xα = (A∗A + α I )−1A∗b = A∗(AA∗ + α I )−1b. (7)

The latter identity verifies (4). The cost of the step in (7) is about nm2 + m3

3 or

mn2 + n3

3 [8, p. 238], and thus it is expensive for large scale problems. One approach
to accelerate the computation is to apply the RSVD approximation Ãk = ŨkΣ̃k Ṽ ∗

k .
Then one obtains a regularized approximation [32]

x̂α = ( Ã∗
k Ãk + α I )−1 Ã∗

kb. (8)

To preserve the range property (4), we propose an alternative
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x̃α = A∗( Ãk Ã
∗
k + α I )−1b = A∗

k∑

i=1

(ũi , b)

σ̃ 2
i + α

ũi . (9)

For α → 0+, x̃α recovers the TRSVD x̃k in (6). Given RSVD (Ũk, Σ̃k), the com-
plexity of computing x̃α is nearly identical with the TRSVD x̃k .

3.3 General Tikhonov Regularization

Now we consider Tikhonov regularization with a general smoothness penalty:

Jα(x) = 1
2‖Ax − b‖2 + α

2 ‖Lx‖2, (10)

where L ∈ R
�×m is a regularizingmatrix enforcing smoothness. Typical choices of L

include first-order and second-order derivatives. We assume N (A) ∩ N (L) = {0}
so that Jα has a unique minimizer xα . By the identity

(A∗A + α I )−1A∗ = A∗(AA∗ + α I )−1, (11)

ifN (L) = {0}, the minimizer xα to Jα is given by (with Γ = L†L†∗)

xα = (A∗A + αL∗L)−1(A∗y)

= L†((AL†)∗AL† + α I )−1(AL†)∗b

= Γ A∗(AΓ A∗ + α I )−1b. (12)

TheΓ factor reflects the smoothingproperty of‖Lx‖2. Similar to (9),we approximate
B := AL† via RSVD: B̃k = UkΣkV ∗

k , and obtain a regularized solution x̃α by

x̃α = Γ A∗(B̃k B̃
∗
k + α I )−1b. (13)

It differs from [33] in that [33] uses only the RSVD approximation of A, thus it does
not maintain the range condition (19). The first step of Algorithm 1, i.e., AL−1Ω , is
to probe R(A) with colored Gaussian noise with covariance Γ .

Numerically, it also involves applying Γ , which can be carried out efficiently if
L is structured. If L is rectangular, we have the following decomposition [4, 32].
The A-weighted pseudoinverse L# [4] can be computed efficiently, if L† is easy to
compute and the dimensionality of W is small.

Lemma 4 Let W and Z be any matrices satisfying R(W ) = N (L), R(Z) =
R(L), Z∗Z = I , and L# = (I − W (AW )†A)L†. Then the solution xα to (10) is
given by

xα = L#Zξα + W (AW )†b, (14)
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where the variable ξα minimizes 1
2‖AL#Zξ − b‖2 + α

2 ‖ξ‖2.
Lemma 4 does not necessarily entail an efficient scheme, since it requires an

orthonormal basis Z for R(L). Hence, we restrict our discussion to the case:

L ∈ R
�×m with rank(L) = � < m. (15)

It arises most commonly in practice, e.g., first-order or second-order derivative, and
there are efficient ways to perform standard-form reduction. Then we can let Z = I�.
By slightly abusing the notation Γ = L#L#∗, by Lemma 4, we have

xα = L#((AL#)∗AL# + α I )−1(AL#)∗b + W (AW )†b

= Γ A∗(AΓ A∗ + α I )−1b + W (AW )†b.

The first term is nearly identical with (12), with L# in place of L†, and the extra term
W (AW )†b belongs toN (L). Thus, we obtain an approximation x̃α defined by

x̃α = Γ A∗(B̃k B̃k + α I )−1b + W (AW )†b, (16)

where B̃k is a rank-k RSVD to B ≡ AL#. Thematrix B can be implemented implicitly
via matrix-vector product to maintain the efficiency.

3.4 Dual Interpretation

Nowwe give an interpretation of (13) in the lens of Fenchel duality theory in Banach
spaces (see, e.g., [3, Chap. 2.4]). Recall that for a functional F : X → R := R ∪ {∞}
defined on a Banach space X , let F∗ : X∗ → R denote the Fenchel conjugate of F
given for x∗ ∈ X∗ by

F∗(x∗) = sup
x∈X

〈x∗, x〉X∗,X − F(x).

Further, let ∂F(x) := {x∗ ∈ X∗ : 〈x∗, x̃ − x〉X∗,X ≤ F(x̃) − F(x) ∀x̃ ∈ X} be the
subdifferential of the convex functional F at x , which coincides with Gâteaux deriva-
tive F ′(x) if it exists. The Fenchel duality theorem states that if F : X → R and
G : Y → R are proper, convex and lower semicontinuous functionals on the Banach
spaces X and Y , Λ : X → Y is a continuous linear operator, and there exists an
x0 ∈ W such that F(x0) < ∞, G(Λx0) < ∞, and G is continuous at Λx0, then

inf
x∈X F(x) + G(Λx) = sup

y∗∈Y ∗
−F∗(Λ∗y∗) − G∗(−y∗),

Further, the equality is attained at (x̄, ȳ∗) ∈ X × Y ∗ if and only if
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Λ∗ ȳ∗ ∈ ∂F(x̄) and − ȳ∗ ∈ ∂G(Λx̄), (17)

hold [3, Remark 3.4.2].
The next result indicates that the approach in Sects. 3.2–3.3 first applies RSVD

to the dual problem to obtain an approximate dual p̃α , and then recovers the optimal
primal x̃α via duality relation (17). This connection is in the same spirit of dual random
projection [29, 34], and it opens up the avenue to extend RSVD to functionals whose
conjugate is simple, e.g., nonsmooth fidelity.

Proposition 1 If N (L) = {0}, then x̃α in (13) is equivalent to RSVD for the dual
problem.

Proof For any symmetric positive semidefinite Q, the conjugate functional F∗ of
F(x) = α

2 x
∗Qx is given by F∗(ξ) = − 1

2α ξ ∗Q†ξ , with its domain being R(Q). By
SVD, we have (L∗L)† = L†L†∗, and thus F∗(ξ) = − 1

2α ‖L†∗ξ‖2. Hence, by Fenchel
duality theorem, the conjugate J ∗

α (ξ) of Jα(x) is given by

J ∗
α (ξ) := − 1

2α ‖L†∗A∗ξ‖2 − 1
2‖ξ − b‖2.

Further, by (17), the optimal primal and dual pair (xα, ξα) satisfies

αL∗Lxα = A∗ξα and ξα = b − Axα.

Since N (L) = {0}, L∗L is invertible, and thus xα = α−1(L∗L)−1A∗ξα = α−1

Γ A∗ξα . The optimal dual ξα is given by ξα = α(AL†L∗†A∗ + α I )−1b. To approxi-
mate ξα by ξ̃α , we employ the RSVD approximation B̃k to B = AL† and solve

ξ̃α = argmax
ξ∈Rn

{− 1
2α ‖B̃∗

k ξ‖2 − 1
2‖ξ − b‖2}.

We obtain an approximation via the relation x̃α = α−1Γ A∗ξ̃α , recovering (13). �

Remark 3 For a general regularizingmatrix L , one can appeal to the decomposition
in Lemma 4, by applying first the standard transformation and then approximating
the regularized part via convex duality.

4 Error Analysis

Now we derive error estimates for the approximation x̃ with respect to the true
solution x†, under sourcewise type conditions. In addition to bounding the error, the
estimates provide useful guidelines on constructing the approximation Ãk .
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4.1 Truncated RSVD

We derive an error estimate under the source condition (5). We use the projection
matrices Pk = UkU ∗

k and P̃k = ŨkŨ ∗
k frequently below.

Lemma 5 For any k ≤ r and ‖A − Ãk‖ ≤ σk/2, there holds ‖A∗( Ã∗
k)

†‖ ≤ 2.

Proof It follows from thedecomposition A = P̃k A + (I − P̃k)A = Ãk + (I − P̃k)A
that

‖A∗( Ã∗
k)

†‖ = ‖( Ãk + (I − P̃k)A)∗( Ã∗
k)

†‖ ≤ ‖ Ã∗
k( Ã

∗
k)

−1‖ + ‖A − Ãk‖‖ Ã−1
k ‖

≤ 1 + σ̃−1
k ‖A − Ãk‖.

Now the condition ‖A − Ãk‖ ≤ σk/2 and Lemma 3 imply σ̃k ≥ σk − ‖A − Ãk‖ ≥
σk/2, from which the desired estimate follows. �

Now we can state an error estimate for the approximation x̃k .

Theorem 2 If Condition (5) holds and ‖A − Ãk‖ ≤ σk/2, then for the estimate x̃k
in (6), there holds

‖x† − x̃k‖ ≤ 4δσ−1
k + 8σ1σ

−1
k ‖Ak − Ãk‖‖w‖ + σk+1‖w‖.

Proof By the decomposition b = b† + e, we have (with P⊥
k = I − Pk)

x̃k − x† = A∗( Ãk Ã
∗
k)

†b − A∗(AA∗)†b†

= A∗( Ãk Ã
∗
k)

†e + A∗[( Ãk Ã
∗
k)

† − (Ak A
∗
k)

†]b† − P⊥
k A∗(AA∗)†b†.

The source condition x† = A∗w in (5) implies

x̃k − x† = A∗( Ãk Ã
∗
k)

†e + A∗[( Ãk Ã
∗
k)

† − (Ak A
∗
k)

†]AA∗w − P⊥
k A∗(AA∗)†AA∗w.

By the triangle inequality, we have

‖x̃k − x†‖ ≤ ‖A∗( Ãk Ã
∗
k)

†e‖ + ‖A∗[( Ãk Ã
∗
k)

† − (Ak A
∗
k)

†]AA∗w‖
+ ‖P⊥

k A∗(AA∗)†AA∗w‖ := I1 + I2 + I3.

It suffices to bound the three terms separately. First, for the term I1, by the identity
( Ãk Ã∗

k)
† = ( Ã∗

k)
† Ã†

k and Lemma 5, we have

I1 ≤ ‖A∗( Ã∗
k)

†‖‖ Ã†
k‖‖e‖ ≤ 2σ̃−1

k δ.

Second, for I2, by Lemmas 5 and 2 and the identity ( Ãk Ã∗
k)

† = ( Ã∗
k)

† Ã†
k , we have
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I2 ≤ ‖A∗[( Ãk Ã
∗
k)

† − (Ak A
∗
k)

†]AA∗‖‖w‖
≤ ‖A∗( Ãk Ã

∗
k)

†( Ãk Ã
∗
k − Ak A

∗
k)(Ak A

∗
k)

†AA∗‖‖w‖
≤ ‖A∗( Ã∗

k)
†‖‖ Ã†

k‖‖ Ãk Ã
∗
k − Ak A

∗
k‖‖(Ak A

∗
k)

†AA∗‖‖w‖
≤ 4σ̃−1

k ‖A‖‖Ak − Ãk‖‖w‖,

since ‖ Ãk Ã∗
k − Ak A∗

k‖ ≤ ‖ Ãk − Ak‖(‖ Ãk‖ + ‖A∗
k‖) ≤ 2‖A‖‖ Ãk − Ak‖ and ‖(Ak

A∗
k)

†AA∗‖ ≤ 1. By Lemma 3, we can bound the term ‖( Ã∗
k)

†‖ by

‖( Ã∗
k)

†‖ = σ̃−1
k ≤ (σk − ‖A − Ãk‖)−1 ≤ 2σ−1

k .

Last, we can bound the third term I3 directly by I3 ≤ ‖P⊥
k A∗‖‖w‖ ≤ σk+1‖w‖. Com-

bining these estimates yields the desired assertion. �

Remark 4 The bound in Theorem 2 contains three terms: propagation error σ−1
k δ,

approximation error σk+1‖w‖, and perturbation error σ−1
k ‖A‖‖A − Ãk‖‖w‖. It is

of the worst-case scenario type and can be pessimistic. In particular, the error
‖A∗( Ãk Ã∗

k)
−1e‖ can be bounded more precisely by

‖A∗( Ãk Ã
∗
k)

†e‖ ≤ ‖A∗( Ã∗
k)

†‖‖ Ã†
ke‖,

and ‖ Ã†
ke‖ can be much smaller than σ̃−1

k ‖e‖, if e concentrates in the high-frequency
modes. By balancing the terms, it suffices for Ãk to have an accuracy O(δ). This is
consistent with the analysis for regularized solutions with perturbed operators.

Remark 5 The condition ‖A − Ãk‖ < σk/2 in Theorem 2 requires a sufficiently
accurate low-rank RSVD approximation (Ũk, Σ̃k, Ṽk) to A, i.e., the rank k is suffi-
ciently large. It enables one to define a TRSVD solution x̃k of truncation level k.

Next we give a relative error estimate for x̃k with respect to the TSVD approxi-
mation xk . Such an estimate was the focus of a few works [1, 30, 32, 33]. First, we
give a bound on ‖ Ãk Ã∗

k(A
∗
k)

† − Ak‖.
Lemma 6 The following error estimate holds

‖ Ãk Ã
∗
k(A

∗
k)

† − Ak‖ ≤ (
1 + σ1σ

−1
k

) ‖Ak − Ãk‖.

Proof This estimate follows by direct computation:

‖ Ãk Ã
∗
k(A

∗
k)

† − Ak‖ = ‖[ Ãk Ã
∗
k − Ak A

∗
k ](A∗

k)
†‖

≤ ‖ Ãk( Ã
∗
k − A∗

k)(A
∗
k)

†‖ + ‖( Ãk − Ak)A
∗
k(A

∗
k)

†‖
≤ ‖ Ãk‖‖ Ã∗

k − A∗
k‖‖(A∗

k)
†‖ + ‖ Ãk − Ak‖‖A∗

k(A
∗
k)

†‖
≤ (σ1σ

−1
k + 1)‖ Ãk − Ak‖,
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since ‖ Ãk‖ = ‖P̃k A‖ ≤ ‖A‖ = σ1. Then the desired assertion follows directly. �

Next we derive a relative error estimate between the approximations xk and x̃k .

Theorem 3 For any k < r , and ‖A − Ãk‖ < σk/2, there holds

‖xk − x̃k‖
‖xk‖ ≤ 4

(
1 + σ1

σk

)‖Ak − Ãk‖
σk

.

Proof We rewrite the TSVD solution xk as

xk = A∗(Ak A
∗
k)

†b = A∗
k(Ak A

∗
k)

†b. (18)

ByLemma3and the assumption‖A − Ãk‖ < σk/2,wehave σ̃k > 0.Then xk − x̃k =
A∗((Ak A∗

k)
† − ( Ãk Ã∗

k)
†)b. By Lemma 2,

(Ak A
∗
k)

† − ( Ãk Ã
∗
k)

† = ( Ãk Ã
∗
k)

†( Ãk Ã
∗
k − Ak A

∗
k)(Ak A

∗
k)

†.

It follows from the identity (Ak A∗
k)

† = (A∗
k)

†A†
k and (18) that

xk − x̃k = A∗( Ãk Ã
∗
k)

†( Ãk Ã
∗
k − Ak A

∗
k)(Ak A

∗
k)

†b

= A∗( Ãk Ã
∗
k)

†( Ãk Ã
∗
k(A

∗
k)

† − Ak)A
∗
k(Ak A

∗
k)

†b

= A∗( Ã∗
k)

† Ã†
k( Ãk Ã

∗
k(A

∗
k)

† − Ak)xk .

Thus, we obtain

‖xk − x̃k‖
‖xk‖ ≤ ‖A∗( Ã∗

k)
†‖‖ Ã†

k‖‖ Ãk Ã
∗
k(A

∗
k)

† − Ak‖.

By Lemma 3, we bound the term ‖ Ã†
k‖ by ‖ Ã†

k‖ ≤ 2σ−1
k . Combining the preceding

estimates with Lemmas 5 and 6 completes the proof. �

Remark 6 The relative error is determined by k (and in turn by δ etc). Due to
the presence of the factor σ−2

k , the estimate requires a highly accurate low-rank
approximation, i.e., ‖Ak − Ãk‖ 	 σk(A)−2, and hence it is more pessimistic than
Theorem 2. The estimate is comparable with the perturbation estimate for the TSVD

‖xk − x̄k‖
‖xk‖ ≤ σ1‖Ak − Ãk‖

σk − ‖Ak − Ãk‖
(

1

σ1
+ ‖Axk − b‖

σk‖b‖
)

+ ‖Ak − Ãk‖
σk

.

Modulo theα factor, the estimates in [30, 32] for Tikhonov regularization also depend
on σ−2

k (but can be much milder for a large α).
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4.2 Tikhonov Regularization

The following bounds are useful for deriving error estimate on x̃α in (9).

Lemma 7 The following estimates hold

‖(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I‖ ≤ 2α−1‖A‖‖A − Ãk‖,

‖[(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I ]AA∗‖ ≤ 2‖A‖(2α−1‖A‖‖A − Ãk‖ + 1)‖A − Ãk‖.

Proof It follows from the identity

(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I = (AA∗ − Ãk Ã

∗
k)( Ãk Ã

∗
k + α I )−1

and the inequality ‖ Ãk‖ = ‖P̃k A‖ ≤ ‖A‖ that

‖(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I‖ ≤ α−1(‖A‖ + ‖ Ãk‖)‖A − Ãk‖

≤ 2α−1‖A‖‖A − Ãk‖.

Next, by the triangle inequality,

‖[(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I ]AA∗‖

≤ ‖AA∗ − Ãk Ã
∗
k‖(‖( Ãk Ã

∗
k + α I )−1(AA∗ + α I )‖ + α‖( Ãk Ã

∗
k + α I )−1‖).

This, together with the identity AA∗ − Ãk Ã∗
k = A(A∗ − Ã∗

k) + (A − Ãk)A∗
k and the

first estimate, yields the second estimate, completing the proof of the lemma. �

Now we can give an error estimate on x̃α in (9) under condition (5).

Theorem 4 If condition (5) holds, then the estimate x̃α satisfies

‖x̃α − x†‖ ≤ α− 3
2 ‖A‖‖A − Ãk‖

(
δ + (2α−1‖A‖‖A − Ãk‖ + 1)α‖w‖

)
+ 2−1α

1
2 ‖w‖.

Proof First, with condition (5), x† can be rewritten as

x† = (A∗A + α I )−1(A∗A + α I )x† = (A∗A + α I )−1(A∗b† + αx†)

= (A∗A + α I )−1A∗(b† + αw).

The identity (11) implies x† = A∗(AA∗ + α I )−1(b† + αw). Consequently,

x̃α − x† = A∗[( Ãk Ã
∗
k + α I )−1b − (AA∗ + α I )−1(b† + αw)]

= A∗[( Ãk Ã
∗
k + α I )−1e + (( Ãk Ã

∗
k + α I )−1

− (AA∗ + α I )−1)b† − α(AA∗ + α I )−1w].
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Let Ĩ = (AA∗ + α I )( Ãk Ã∗
k + α I )−1. Then by the identity (11), there holds

(A∗A + α I )(x̃α − x†) = A∗[ Ĩ e + ( Ĩ − I )b† − αw],

and taking inner product with x̃α − x† yields

‖A(x̃α − x†)‖2 + α‖x̃α − x†‖2 ≤
(
‖ Ĩ e‖ + ‖( Ĩ − I )b†‖ + α‖w‖

)
‖A(x̃α − x†)‖.

By Young’s inequality ab ≤ 1
4a

2 + b2 for any a, b ∈ R, we deduce

α
1
2 ‖x̃α − x†‖ ≤ 2−1(‖ Ĩ e‖ + ‖( Ĩ − I )b†‖ + α‖w‖).

By Lemma 7 and the identity b† = AA∗w, we have

‖ Ĩ e‖ ≤ 2α−1‖A‖‖A − Ãk‖δ,
‖( Ĩ − I )b†‖ = ‖( Ĩ − I )AA∗w‖

≤ 2‖A‖(2α−1‖A‖‖A − Ãk‖ + 1)‖A − Ãk‖‖w‖.

Combining the preceding estimates yield the desired assertion. �

Remark 7 To maintain the error ‖x̃α − x†‖, the accuracy of Ãk should be of O(δ),
and α should be of O(δ), which gives an overall accuracy O(δ1/2). The tolerance on
‖A − Ãk‖ can be relaxed for high noise levels. It is consistent with existing theory
for Tikhonov regularization with noisy operators [19, 21, 28].

Remark 8 The following relative error estimate was shown [32, Theorem 1]:

‖xα − x̂α‖
‖xα‖ ≤ c(2 sec θκ + tan θκ2)σk+1 + O(σ 2

k+1),

with θ = sin−1 (‖b−Axα‖2+α‖xα‖2) 1
2

‖b‖ and κ = (σ 2
1 + α)( α

1
2

σ 2
n +α

+ max1≤i≤n
σi

σ 2
i +α

). κ is a

variant of condition number. Thus, Ãk should approximate accurately A in order not
to spoil the accuracy, and the estimate can be pessimistic for small α for which the
estimate tends to blow up.

4.3 General Tikhonov Regularization

Last, we give an error estimate for x̃α defined in (13) under the following condition

x† = Γ A∗w, (19)
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where N (L) = {0}, and Γ = L†L∗†. Also recall that B = AΓ †.

Theorem 5 If Condition (19) holds, then the regularized solution x̃α in (13) satisfies

‖L(x† − x̃α)‖ ≤ α− 3
2 ‖B‖‖B − B̃k‖

(
δ + (2α−1‖B‖‖B − B̃k‖ + 1)α‖w‖

)
+ 2−1α

1
2 ‖w‖.

Proof First, by the source condition (19), we rewrite x† as

x† = (A∗A + αL∗L)−1(A∗A + αL∗L)x†

= (A∗A + αL∗L)−1(A∗b† + αA∗w).

Now with the identity (A∗A + αL∗L)−1A∗ = Γ A∗(AΓ A∗ + α I )−1, we have

x† = Γ A∗(AΓ A∗ + α I )−1(b† + αw).

Thus, upon recalling B = AL†, we have

x̃α − x† = Γ A∗[(B̃k B̃
∗
k + α I )−1b − (BB∗ + α I )−1(b† + αw)]

= Γ A∗[(B̃k B̃
∗
k + α I )−1e + ((B̃k B̃

∗
k + α I )−1

− (BB∗ + α I )−1)b† − α(BB∗ + α I )−1w].

It follows from the identity

(A∗A + αL∗L)Γ A∗ = (A∗A + αL∗L)L†L†∗A∗ = A∗(BB∗ + α I ),

that
(A∗A + αL∗L)(x̃α − x†) = A∗[ Ĩ e + ( Ĩ − I )b† − αw],

with Ĩ = (BB∗ + α I )(B̃k B̃∗
k + α I )−1. Taking inner productwith xα − x† and apply-

ing Cauchy-Schwarz inequality yield

‖A(x̃α − x†)‖2 + α‖L(x̃α − x†)‖2 ≤ (‖ Ĩ e‖ + ‖( Ĩ − I )b†‖ + ‖αw‖)‖A(x̃α − x†)‖,

Young’s inequality implies α
1
2 ‖L(x̃α − x†)‖ ≤ 2−1(‖ Ĩ e‖ + ‖( Ĩ − I )b†‖ + α‖w‖).

The identity b† = Ax† = AL†L†∗A∗w = BB∗w from (19) and Lemma 7 complete
the proof. �

5 Numerical Experiments and Discussions

Now we present numerical experiments to illustrate our approach. The noisy data b
is generated from the exact data b† as follows
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bi = b†i + δmax
j

(|b†j |)ξi , i = 1, . . . , n,

where δ is the relative noise level, and the random variables ξi s follow the standard
Gaussian distribution. All the computations were carried out on a personal laptop
with 2.50 GHz CPU and 8.00G RAM by MATLAB 2015b. When implementing
Algorithm 1, the default choices p = 5 and q = 0 are adopted. Since the TSVD
and Tikhonov solutions are close for suitably chosen regularization parameters, we
present only results for Tikhonov regularization (and the general case with L given
by the first-order difference, which has a one-dimensional kernel N (L)).

Throughout, the regularization parameter α is determined by uniformly sampling
an interval on a logarithmic scale, and then taking the value attaining the smallest
reconstruction error, where approximate Tikhonov minimizers are found by either
(9) or (16) with a large k (k = 100 in all the experiments).

5.1 One-Dimensional Benchmark Inverse Problems

First, we illustrate the efficiency and accuracy of proposed approach, and compare it
with existing approaches [32, 33].Weconsider seven examples (i.e.,deriv2,heat,
phillips, baart, foxgood, gravity and shaw), taken from the popular
public-domain MATLAB package regutools (available from http://www.imm.dtu.
dk/~pcha/Regutools/, last accessed on January 8, 2019), which have been used in
existing studies (see, e.g., [30, 32, 33]). They are Fredholm integral equations of
the first kind, with the first three examples being mildly ill-posed (i.e., σi s decay
algebraically) and the rest severely ill-posed (i.e., σi s decay exponentially). Unless
otherwise stated, the examples are discretized with a dimension n = m = 5000. The
resulting matrices are dense and unstructured. The rank k of Ãk is fixed at k = 20,
which is sufficient to for all examples.

The numerical results by standard Tikhonov regularization and two randomized
variants, i.e., (8) and (9), for the examples are presented inTable1. The accuracy of the
approximations, i.e., the Tikhonov solution xα , and two randomized approximations
x̂α (cf. (8), proposed in [32]) and x̃α (cf. (9), the proposed in this work), is measured
in two different ways:

ẽxz = ‖x̂α − xα‖, ẽi j = ‖x̃α − xα‖,
e = ‖xα − x†‖, exz = ‖x̂α − x†‖, ei j = ‖x̃α − x†‖,

where the methods are indicated by the subscripts. That is, ẽxz and ẽi j measure the
accuracy with respect to the Tikhonov solution xα , and e, exz and ei j measure the
accuracy with respect to the exact one x†.

The following observations can be drawn fromTable1. For all examples, the three
approximations xα , x̃α and x̂α have comparable accuracy relative to the exact solution
x†, and the errors ei j and exz are fairly close to the error e of the Tikhonov solution

http://www.imm.dtu.dk/~pcha/Regutools/
http://www.imm.dtu.dk/~pcha/Regutools/
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Table 1 Numerical results by standard Tikhonov regularization at two noise levels

example δ ẽxz ẽi j e exz ei j

baart 1% 1.14e−9 1.14e−9 1.68e−1 1.68e−1 1.68e−1

5% 5.51e−11 6.32e−11 2.11e−1 2.11e−1 2.11e−1

deriv2 1% 2.19e−2 2.41e−2 1.18e−1 1.20e−1 1.13e−1

5% 1.88e−2 2.38e−2 1.59e−1 1.60e−1 1.62e−1

foxgood 1% 2.78e−7 2.79e−7 4.93e−1 4.93e−1 4.93e−1

5% 1.91e−7 1.96e−7 1.18e0 1.18e0 1.18e0

gravity 1% 1.38e−4 1.41e−4 7.86e−1 7.86e−1 7.86e−1

5% 1.83e−4 1.84e−4 2.63e0 2.63e0 2.63e0

heat 1% 1.33e0 1.13e0 9.56e−1 1.67e0 1.50e0

5% 9.41e−1 9.45e−1 2.02e0 1.70e0 1.99e0

phillips 1% 5.53e−3 4.09e−3 6.28e−2 6.19e−2 6.24e−2

5% 6.89e−3 7.53e−3 9.57e−2 9.53e−2 9.79e−2

shaw 1% 3.51e−9 3.49e−9 4.36e0 4.36e0 4.36e0

5% 1.34e−9 1.37e−9 8.23e0 8.23e0 8.23e0

xα . Thus, RSVD can maintain the reconstruction accuracy. For heat, despite the
apparent large magnitude of the errors ẽxz and ẽi j , the errors exz and ei j are not much
worse than e. A close inspection shows that the difference of the reconstructions
are mostly in the tail part, which requires more modes for a full resolution. The
computing time (in seconds) for obtaining xα and x̃α and x̂α is about 6.60, 0.220 and
0.220, where for the latter two, it includes also the time for computing RSVD. Thus,
for all the examples, with a rank k = 20, RSVD can accelerate standard Tikhonov
regularization by a factor of 30, while maintaining the accuracy, and the proposed
approach is competitive with the one in [32]. Note that the choice k = 20 can be
greatly reduced for severely ill-posed problems; see Sect. 5.2 below for discussions.

The preceding observations remain largely valid for general Tikhonov regular-
ization; see Table2. Since the construction of the approximation x̂α does not retain
the structure of the regularized solution xα , the error ẽxz can potentially be much
larger than ẽi j , which can indeed be observed. The errors e, exz and ei j are mostly
comparable, except for deriv2. For deriv2, the approximation x̂α suffers from
grave errors, since the projection of L intoR(Q) is very inaccurate for preserving L .
It is expected that the loss occurs whenever general Tikhonov penalty is much more
effective than the standard one. This shows the importance of structure preservation.
Note that, for a general L , x̃α takes only about 1.5 times the computing time of x̂α .
This cost can be further reduced since L is highly structured and admits fast inversion.
Thus preserving the range structure of xα in (4) does not incur much overhead.

Last, we present some results on the computing time for deriv2 versus the
problem dimension, and at two truncation levels for RSVD, i.e., k = 20 and k =
30. The numerical results are given in Fig. 1. The cubic scaling of the standard
approach and quadratic scaling of the approach based on RSVD are clearly observed,
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Table 2 Numerical results by general Tikhonov regularization (with the first-order derivative
penalty) for the examples at two noise levels

example δ ẽxz ẽi j e exz ei j

baart 1% 3.35e−10 2.87e−10 1.43e−1 1.43e−1 1.43e−1

5% 3.11e−10 8.24e−12 1.48e−1 1.48e−1 1.48e−1

deriv2 1% 1.36e−1 4.51e−4 1.79e−2 1.48e−1 1.78e−2

5% 1.57e−1 3.85e−4 2.40e−2 1.77e−1 2.40e−2

foxgood 1% 4.84e−2 2.26e−8 9.98e−1 1.02e0 9.98e−1

5% 1.90e−2 1.51e−9 2.27e0 2.28e0 2.27e0

gravity 1% 3.92e−2 2.33e−5 1.39e0 1.41e0 1.39e0

5% 1.96e−2 9.47e−6 3.10e0 3.10e0 3.10e0

heat 1% 5.54e−1 8.74e−1 8.95e−1 1.06e0 1.32e0

5% 8.90e−1 1.01e0 1.87e0 1.76e0 1.99e0

phillips 1% 3.25e−3 3.98e−4 6.14e−2 6.06e−2 6.14e−2

5% 5.64e−3 5.82e−4 8.37e−2 8.18e−2 8.34e−2

shaw 1% 3.79e−4 3.70e−8 3.32e0 3.32e0 3.32e0

5% 9.73e−4 2.17e−8 9.23e0 9.23e0 9.23e0
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Fig. 1 The computing time t (in seconds) for the example deriv2 at different dimension n
(m = n). The red, green and blue curves refer to Tikhonov regularization, existing approach [32,
33] and the new approach, respectively, and the sold and dashed curves denote k = 20 and k = 30,
respectively

confirming the complexity analysis in Sects. 2 and 3. In both (9) and (16), computing
RSVD represents the dominant part of the overall computational efforts, and thus the
increase of the rank k from 20 to 30 adds very little overheads (compare the dashed
and solid curves in Fig. 1). Further, for Tikhonov regularization, the two randomized
variants are equally efficient, and for the general one, the proposed approach is
slightly more expensive due to its direct use of L in constructing the approximation
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B̃k to B := AL#. Although not presented, we note that the results for other examples
are very similar.

5.2 Convergence of the Algorithm

There are several factors influencing the quality of x̃α the regularization parameter α,
the noise level δ and the rank k of the RSVD approximation. The optimal truncation
level k should depend on both α and δ. This part presents a study with deriv2 and
shaw, which are mildly and severely ill-posed, respectively.

First, we examine the influence of α on the optimal k. The numerical results for
three different levels of regularization are given in Fig. 2. In the figure, the notation α∗
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Fig. 2 The convergence of the error ei j with respect to the rank k for deriv2 (top) and shaw
(bottom) with δ = 1% and different regularization parameters
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refers to the value attaining the the smallest error for Tikhonov solution xα , and thus
10α∗ and α∗/10 represent respectively over- and under-regularization. The optimal
k value decreases with the increase of α when α � α∗. This may be explained by the
fact that a too large α causes large approximation error and thus can tolerate large
errors in the approximation Ãk (for a small k). The dependence can be sensitive for
mildly ill-posed problems, and also on the penalty. The penalty influences the singular
value spectra in the RSVD approximation implicitly by preconditioning: since L is a
discrete differential operator, the (weighted) pseudoinverse L# (or L†) is a smoothing
operator, and thus the singular values of B = AL# decay faster than that of A. In
all cases, the error ei j is nearly monotonically decreasing in k (and finally levels off
at e, as expected). In the under-regularized regime (i.e., α 	 α∗), the behavior is
slightly different: the error ei j first decreases, and then increases before eventually
leveling off at e. This is attributed to the fact that proper low-rank truncation of
A induces extra regularization, in a manner similar to TSVD in Sect. 3.1. Thus, an
approximation that is only close to xα (see e.g., [1, 30, 32, 33]) is not necessarily
close to x†, when α is not chosen properly.

Next we examine the influence of the noise level δ; see Fig. 3. With the optimal
choice ofα, the optimal k increases as δ decreases,which is especially pronounced for
mildly ill-posed problems. Thus, RSVD is especially efficient for the following two
cases: (a) highly noisy data (b) severely ill-posed problem. These observations agree
well with Theorem4: a low-rank approximation Ãk whose accuracy is commensurate
with δ is sufficient, and in either case, a small rank is sufficient for obtaining an
acceptable approximation. For a fixed k, the error ei j almost increases monotonically
with the noise level δ.

These empirical observations naturally motivate developing an adaptive strategy
for choosing the rank k on the fly so as to effect the optimal complexity. This requires
a careful analysis of the balance between k, δ, α, and suitable a posteriori estimators.
We leave this interesting topic to a future work.

5.3 Electrical Impedance Tomography

Last, we illustrate the approach on 2D electrical impedance tomography (EIT), a
diffusive imaging modality of recovering the electrical conductivity from boundary
voltage measurement. This is one canonical nonlinear inverse problem. We consider
the problemon a unit circlewith sixteen electrodes uniformly placed on the boundary,
and adopt the complete electrode model [24] as the forward model. It is discretized
by the standard Galerkin FEM with conforming piecewise linear basis functions, on
a quasi-uniform finite element mesh with 2129 nodes. For the inversion step, we
employ ten sinusoidal input currents, unit contact impedance and measure the volt-
age data (corrupted by δ = 0.1% noise). The reconstructions are obtained with an
H 1(Ω)-seminorm penalty. We refer to [7, 15] for details on numerical implementa-
tion. We test the RSVD algorithm with the linearized model. It can be implemented
efficiently without explicitly computing the linearized map. More precisely, let F
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Fig. 3 The convergence of the error ei j with respect to the rank k for deriv2 (top) and shaw
(bottom) at different noise levels

be the (nonlinear) forward operator, and σ0 be the background (fixed at 1). Then the
random probing of the range R(F ′(σ0)) of the linearized forward operator F ′(σ0)

(cf. Step 4 of Algorithm 1) can be approximated by

F ′(σ0)ωi ≈ F(σ0 + ωi ) − F(σ0), i = 1, . . . k + p,

and it can be made very accurate by choosing a small variance for the random vector
ωi . Step 6 of Algorithm 1 can be done efficiently via the adjoint technique.

The numerical results are presented in Fig. 4, where linearization refers to the
reconstruction by linearizing the nonlinear forward model at the background σ0.
This is one of the most classical reconstruction methods in EIT imaging. The rank
k is taken to be k = 30 for x̃α , which is sufficient given the severe ill-posed nature
of the EIT inverse problem. Visually, the RSVD reconstruction is indistinguishable
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exact linearization RSVD

Fig. 4 Numerical reconstructions for EIT with 0.1% noise

from the conventional approach. Note that contrast loss is often observed for EIT
reconstructions obtained by a smoothness penalty. The computing time (in seconds)
for RSVD is less than 8, whereas that for the conventional method is about 60. Hence,
RSVD can greatly accelerate EIT imaging.

6 Conclusion

In this work, we have provided a unified framework for developing efficient linear
inversion techniques via RSVD and classical regularization methods, building on a
certain range condition on the regularized solution. The construction is illustrated
on three popular linear inversion methods for finding smooth solutions, i.e., trun-
cated singular value decomposition, Tikhonov regularization and general Tikhonov
regularization with a smoothness penalty. We have provided a novel interpretation
of the approach via convex duality, i.e., it first approximates the dual variable via
randomized SVD and then recovers the primal variable via duality relation. Further,
we gave rigorous error bounds on the approximation under the canonical sourcewise
representation, which provide useful guidelines for constructing a low-rank approx-
imation. We have presented extensive numerical experiments, including nonlinear
tomography, to illustrate the efficiency and accuracy of the approach, and demon-
strated its competitiveness with existing methods.

Algorithm 3 Iterative refinement of RSVD-Tikhonov solution.
1: Give A, b and J , and initialize (x0, p0) = (0, 0).
2: Compute RSVD (Ũk , Σ̃k , Ṽk) to AL† by Algorithm 1.
3: for j = 1, . . . , J do
4: Compute the auxiliary variable z j by (21).
5: Update the dual variable p j+1 by (22).
6: Update the primal variable x j+1 by (23).
7: Check the stopping criterion.
8: end for
9: Output x J as an approximation to xα .
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Appendix A: Iterative refinement

Proposition 1 enables iteratively refining the inverse solution when RSVD is not
sufficiently accurate. This idea was proposed in [29, 34] for standard Tikhonov
regularization, and we describe the procedure in a slightly more general context.
SupposeN (L) = {0}. Given a current iterate x j , we define a functional J j

α (δx) for
the increment δx by

J j
α (δx) := ‖A(δx + x j ) − b‖2 + α‖L(δx + x j )‖2.

Thus the optimal correction δxα satisfies

(A∗A + αL∗L)δxα = A∗(b − Ax j ) − αL∗Lx j ,

i.e.,
(B∗B + α I )Lδxα = B∗(b − Ax j ) − αLx j , (20)

with B = AL†. However, its direct solution is expensive. We employ RSVD for a
low-dimensional space Ṽk (corresponding to B), parameterize the increment Lδx by
Lδx = Ṽ ∗

k z and update z only. That is, we minimize the following functional in z

J j
α (z) := ‖A(L†Ṽ ∗

k z + x j ) − b‖2 + α‖z + Ṽk Lx
j‖2.

Since k 	 m, the problem can be solved efficiently.More precisely, given the current
estimate x j , the optimal z solves

(Ṽk B
∗BṼ ∗

k + α I )z = Ṽk B
∗(b − Ax j ) − αṼk Lx

j . (21)

It is the Galerkin projection of (20) for δxα onto the subspace Ṽk . Then we update
the dual ξ and the primal x by the duality relation in Sect. 6:

ξ j+1 = b − Ax j − BṼ ∗
k z

j , (22)

x j+1 = α−1Γ A∗ξ j+1. (23)

Summarizing the steps gives Algorithm 3. Note that the duality relation (17) enables
A and A∗ to enter into the play, thereby allowing progressively improving the accu-
racy. The main extra cost lies in matrix-vector products by A and A∗.

The iterative refinement is a linear fixed-point iteration, with the solution xα being
a fixed point and the iteration matrix being independent of the iterate. Hence, if the
first iteration is contractive, i.e., ‖x1 − xα‖ ≤ c‖x0 − xα‖, for some c ∈ (0, 1), then
Algorithm 3 converges linearly to xα . It can be satisfied if the RSVD approximation
(Ũk, Σ̃k, Ṽk) is reasonably accurate to B.
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