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Preface

In this volume are collected some papers related to the conference Mathematical
and Numerical Approaches for Multi-Wave Inverse Problems which took place
from 1 to 5 April, 2019 at Centre International de Rencontres Math’ematiques,
CIRM (https://www.cirm-math.com/), Marseille, France. One of the main objec-
tives of this conference was exchange of ideas and tools between different scientific
communities, specially to favor the discussions between researchers more involved
in theoretical aspects of inverse problems with the ones more interested in
numerical implementation of these problems.

Inverse problems have been a topic of interdisciplinary interest for many years
for mathematicians, applied mathematicians, physical scientists or engineers.
Considerable progress has been achieved in recent years in the development of
innovative techniques, new theoretical tools, new approximations, as well as new
optimization techniques to improve solution of multi-wave inverse problems.

In the inverse problems community, the current scientific interests are focused
towards achieving better contrasted images, with higher spatial resolution and with
quantitative contents, such as functional imaging in biomedical applications.

As a consequence, more and more multi-modal, multi-wave or hybrid systems
are currently being proposed and/or being used routinely. Mathematically, solving
these inverse problems is even more complicated because they require a coupling,
that can be soft or hard, between a set of partial differential equations not neces-
sarily of the same nature (elliptic, hyperbolic or parabolic). This leads to problems
in terms of uniqueness, stability but also in terms of control which remain still little
explored. From numerical point of view, these systems of PDEs may lead to large
discretized domains, with large number of degrees of freedom, which must be
adapted according to the wavelength of the considered waves.

This book gathered scientific works from a number of researchers strongly
involved in multi-modal applications. The volume highlights new theoretical and
numerical tools for the solution of real-life problems as well as proposes new
systems for their solution on the basis of theoretical understanding.

v

https://www.cirm-math.com/


For most of papers of this book, the reader will find the complete description of a
new technique or numerical method for solution of some inverse problem which is
supported by numerical simulations. The intended audience of the book is under-
graduate and graduate university students, Ph.D. students specialized in applied
mathematics, electrical engineering and physics, researchers and university teachers
and R&D engineers with interest in applied mathematics.

Gothenburg, Sweden Larisa Beilina
Orleans, France Maïtine Bergounioux
Marseille, France Michel Cristofol
Marseille, France Anabela Da Silva
Marseille, France Amélie Litman
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Thermoacoustic Applications

S. K. Patch

Abstract This conference paper provides a cursory overview of thermoacoustic
phenomena and attempts to highlight aspects that may be unfamiliar to the mathe-
matical community or could benefit from more rigorous mathematical analysis. A
new clinical application, thermoacoustic range verification during particle therapy,
is presented. The goal is to ground expectations and generate further interest in
thermoacoustics within the mathematical community.

Keywords Thermoacoustic · Spherical radon transform · Time reversal

MSC: 62P10

1 Introduction and Overview

By 1881 Alexander Graham Bell noted the photoacoustic effect, by which electro-
magnetic energy in the optical regime is converted to mechanical energy [1]. More
generally, thermoacoustics refers to generation of acoustic signals by heating. In the
early 1960’s thermoacousticswas attributed to audible detectionofmicrowavepulses,
even by deaf study volunteers [2]. By the early 1980’s, photoacoustic spectroscopy
and pulse oximetry were used in commercial [3] and medical applications, respec-
tively. Image reconstruction was first considered by physicists who developed series
solutions [4]. Decades later, filtered backprojection type inversion formulaewere first
developed by mathematicians for specific measurement surfaces [5, 6]. Engineers
quickly improved upon these results and developed analytic inversion formulae for
arbitrary measurement surfaces [7]. These early results assumed ideal experimental
conditions, and mathematicians have since contributed many results to expand upon
them. For instance, too many results to cite have been published on image recon-
struction in the presence of acoustic heterogeneity. Rather than recite results that are
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2 S. K. Patch

well known to the mathematical community, this manuscript attempts to highlight
aspects that could benefit from more nuanced mathematical analysis. In particular,
different signal generation techniques, i.e. object heating, are discussed in Sect. 2.
A few experimental results that may impact approaches to image reconstruction are
presented in Sect. 3.

It is hardly surprising that thermoacoustic signals are generated during rapid
energy deposition, since the units of pressure and energy density are the same,
[p] = N/m2 = J/m3. The conversion factor is the dimensionless Grueneisen
parameter, Γ = Bβ/Cρ. Thermal expansion coefficient, β, and specific heat
capacity, C , are thermal parameters, whereas bulk modulus, B, and density are
mechanical parameters. Assuming instantaneous energy deposition pressure changes
according to

δp(x) = Γ (x, T )S(x) (1)

where T denotes temperature and S(x) represents the applied energy density.
Regardless of the type of energy used to heat the object under test, recovering

useful information can be challenging. A perfect reconstruction of thermoacoustic
pressure increase, δp(x), does not ensure perfect understanding of the applied energy
density, the Grüneisen, or for that matter, any of the parameters upon which the
Grüneisen depends. Parameters of interest vary depending upon application and
fortunately, assumptions can be made to reduce the number of unknowns. For
instance, in most soft tissues, B ∼ 2.2 GPa and ρ ∼ 1000 kg/m3.

2 Different Signal Generation Techniques

Signal generation parameters of three well-known versions of electromagnetically
induced thermoacoustics are compared and contrasted with ion-induced thermoa-
coustics in Table 1, where PAT, MITAT, and TCT refer to photoacoustic tomography
utilizing near-infrared radiation (NIR), microwave-induced thermoacoustic tomog-
raphy and very high frequency (VHF) thermoacoustic computerized tomography.
Ionoacoustics indicates that heating is due to energetic ions (positively or negatively
charged particles). For each of the tomographic techniques non-ionizing electro-
magnetic photons with insufficient energy to break a DNA strand are applied to
generate thermoacoustic signal. Ionoacoustic signal is created by charged particles
delivered with the goal of breaking DNA. Brief descriptions of the electromag-
netic heating modalities are followed by a more detailed description of ion-induced
thermoacoustics in Sect. 2.3.

The last row of Table 1 compares typical heating pulse durations. As a rule of
thumb, driving amplifier tubes from 0 to kW power levels in less than a dozen cycles
is challenging.We note that solid state amplifiers are fast, and prohibitively expensive
formost research groups. Therefore, typical pulse durations forVHFandMITAT tend
to be proportional to the period of the applied electromagnetic field. Additionally,
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Table 1 Thermoacoustic signal generation

TCT MITAT PAT Ionoacoustic

Energy type VHF Microwave NIR Energetic ion

Frequency
range

30–300 MHz 300
MHz–300 GHz

2-4 THz NA

Goal to
recover

Ionic content Relaxation +
absorption

Absorption Dosimetry
range verif.

Governing
Eq.

Maxwell/wave Maxwell/wave Transport/diffusion Bethe-Bloch

Energy
transport

Wave propagation Wave
propagation

Photon scattering Ion scattering

Polarization
important?

YES YES NO NA

Heating pulse
duration

O(1 μs) O(100 ns) 1–10 ns O (1 ns–10 μs)

different types of particle accelerators have pulse durations that vary by orders of
magnitude. This may be why experimentalists tend to model thermoacoustic wave
propagation using homogeneous initial conditions and place the source term in the
wave equation,

�p(x, t) = ∂

∂t

[
Γ (x, T )S(x)I ′(t)

]
(2)

where S(x) represents energy density, I (t) is a dimensionless approximate delta func-
tion. Representative values of full width at halfmaximum for I(t) are listed in Table 1.
S(x)I ′(t) is the rate of energy deposition in W/m3. Although Du Hamel showed the
equivalence of treating the source term as an initial condition, homogeneous initial
conditions simplifies analysis of heating pulse duration [8].

Signal generation by applying electromagnetic waves is discussed briefly in
Sect. 2.1, whereas heating due to photon migration is briefly mentioned in Sect. 2.2.
Finally, a new thermoacoustic application for particle therapy is described more fully
in Sect. 2.3.

2.1 Propagating Electric Fields Induce Thermoacoustic
Pulses

For electromagnetically induced heating, dielectric properties of the material govern
electromagnetic energy penetration into the object and loss within the object.
Following the notation used in reports on dielectric properties of tissue [9–11], we
express permittivity as a complex number.
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ε = ε′ − iε′′ (3)

where ε
′
is the relative permittivity of the material and ε′′ = σ

εoω
governs energy

loss. Here, σ is the total conductivity of the material which accounts for loss
due to frequency-dependent relaxation effects and also frequency-independent ionic
conductivity, σi . A few facts are listed below to provide intuition regarding ionic
content and thermoacoustic imaging:

– Deionized water nearly zero ionic content and σi = 5.5 μS/m whereas in blood
σi ∼ 1 S/m.

– Permittivity in a vacuum is very small, εo = 8.85e − 12 F/m, so the impact of
ionic loss becomes large at VHF frequencies. For instance, at the frequency of
modern MRI systems (128 MHz), σi

εoω
∼ 140σi whereas at the frequency of most

microwave ovens (2.45 GHz) σi
εoω

∼ 7σi . Most cell phones operate at intermediate
frequencies (0.9–2 GHz).

– Many organs are designed to secrete physiologic fluids with varying degrees
of ionic content. Furthermore, health of the organ may be reflected by the ionic
content of secreted fluid. For instance, ionic content of prostatic fluid is correlated
to disease state [12]. Ion content in prostatic fluid from healthy and cancerous
glands is qualitatively displayed in Fig. 1. For a more quantitative analysis, see
Fig. 3 in [13].

Components of a plane wave propagating along the z-axis in free space decay
according to

E(x, y, z, ω) = Eoe
−iεz = Eoe

−iε′ze
−σ
εoω

z (4)

Here heating is due primarily to the E field, and the specific absorption rate (SAR)
of nonionizing VHF and microwave energy is given by

SAR = σ/ρ|E |2 (5)

When low frequency electric fields are used, relaxation effects can be dominated
by ionic content and quantitative reconstructions can yield images with the potential
to differentiate healthy from diseased organs.

2.1.1 Very High Frequencies (VHF)

Very high frequency (30–300 MHz) electromagnetic fields are used by FM radio
stations and also MRI scanners. Therefore, SAR of VHF energy is strictly regulated
to avoid patient overheating [14]. In the VHF regime, loss due to ionic content is
at least as significant as relaxation effects. Therefore, the VHF-induced contrast
mechanism may show changes in ionic [15, 16] and/or fat content.
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Fig. 1 Qualitative Gamble
plots depicting ion
concentrations in prostatic
fluids

Maxwell’s equations arewell approximated bywave equations in theVHF regime,
with wavelengths ranging from 1 to 10 m in vacuum. Wavelengths in media are
reduced by a factor of 1/

√
εr , and εr is less than 10 in fatty tissue, 40–60 inmuscle and

fat, and close to 80 in water. At 100 MHz, λvac = 3 m and λwater = 33 cm < λorgan ,
so whole organs in adults can be heated without suffering hot or cold spots due to
standing waves.

Polarization [17] and diffraction of the applied electromagnetic field affect
energy deposition. Applying a variably polarized field will heat more uniformly.
For instance, circularly polarized fields are applied by MRI scanners.

2.1.2 Microwave Induced Thermoacoustic Imaging

Microwaves have become ubiquitous in our kitchens and next to our ears. SAR
of microwaves concentrated near a cell phone has come under close scrutiny and
is tightly regulated. Microwave ovens heat even deionized water due entirely to
relaxation effects, which are minimal in the VHF regime.
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The microwave band ranges from 300 MHz to 300 GHz, with wavelengths from
1m to 1mm in vacuum, respectively.AswithVHF,wavelengths are reduced in tissue.
The impact of polarization and diffraction [18] is even more pronounced than in the
VHF regime. Back of the envelope analysis for simple waveguides and chambers
yield standing waves. Indeed, early microwave ovens lacked turntables and mode
mixers and induced hot and cold spots in solid foods. Intuition for standing waves
can be developed easily using a cheap microwave oven that lacks a mode mixer
by disabling the rotation stage. Simply remove the glass plate and cover it with an
overturned flat-bottomed container. Place a large block of butter on the container and
observe where microwave heating melts the butter—and where it does not.

Although poor depth penetration and standing waves are disadvantageous
compared to VHF, microwaves have some advantages. Sub-microsecond pulse dura-
tions are more easily achieved by microwave than VHF amplifiers, and energy loss
and heating is greater in the imaging depth which is limited relative to VHF.

2.2 Photon Migration/Diffusion

Photoacoustic imaging is perhaps the best-known application of thermoacoustics, so
just a few sentences on photoacoustics follow.

Depth penetration of near infrared (NIR) photons limits imaging depth even more
severely than microwave and VHF. High photon fluence within a small volume
near the optical source and very short (<10 ns) pulse durations generate photoa-
coustic pulses with high SNR and bandwidth. The result can be exquisitely high-
resolution reconstructions, for instance of microvasculature. A photon transport
model is required in the NIR regime, but diffusion models are appropriate for large
numbers of photons and scattering events. Therefore, cold spots due to standing
waves are not a concern.

A strong advantage of photoacoustics over VHF andMITAT is thatmultiple wave-
lengths can be used to reconstruct oxygen saturation, much like a pulse oximeter.
Quantitative photoacoustics has been developed to handle non-uniform photon
fluence and extract the optical attenuation coefficient from the reconstructed image.
Photoacoustic imaging systems have been marketed by at least six vendors, and
a journal dedicated to the field attest to its success. For a mathematical review of
reconstruction techniques see [19], for a broader overview see the chapter devoted
to photoacoustics in [20] and review paper [21].

2.3 Thermoacoustic Signals Generated by Charged Particles

Thermoacoustic emissions generated by protons stopping in large water baths were
first detected in the 1970s [22, 23]. The results were recognized as potentially useful
for particle therapy by the mid-1990s [24]. A thorough approach dosimetry utilized
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a cylindrical measurement surface in a simulation study [25]. Progress on range
verification stalled, however, for several reasons. One of the limiting factors was
likely inadequate acoustic hardware.

The Bethe-Bloch equation models energy loss by energetic charged particles,

dE

dx
∝ − nz2

c2β2

[

ln

(
2mec2β2

10eV z
(
1 − β2

)

)

− β2

]

(6)

where n is electron density of the target material, z is charge of the particle, me is
electron mass, β = v/c, where v and c are speed of the particle in the target and
light in a vacuum, respectively. High energy particles travel fast and have little time
to interact with atoms near their trajectory. As they slow interaction times become
longer and more energy is lost per unit pathlength. Within nanoseconds high energy
particles decelerate from relativistic speeds and come to a stop.

2.3.1 Monte Carlo Simulation

Energy maps, S(x), are computed using Monte Carlo simulations. Figure 2a shows
proton trajectories through layered targets as computed using TRIM software [26].
Layers consisted of tissue mimicking gelatin, bone, water, and air. All protons had
the same initial conditions, starting at the origin with 50 MeV energy directed along
the vertical axis. Figure 2b. shows a dose map that more realistically mimics a high
energy pencil beam as delivered clinically. The point at which the dose map achieves
its maximum is referred to as the Bragg peak.

Fig. 2 Monte Carlo simulations of proton transport. a Tracks of 50 MeV protons through layered
phantoms. b–c Results from 90 k proton simulation mimicking a clinical beam in water. b Dose
map representing S(x). c Dose profile along the z-axis, i.e. center of the beam
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Rapid falloff of dose beyond the Bragg peak as shown in Fig. 2c allows for
precise treatment of a tumor while sparing radiosensitive tissue distal to the Bragg
peak. However, if the patient moves or is misaligned, then radiosensitive tissue could
receive the maximal dose while the tumor is underdosed. Accurate and fast range
verification is therefore needed to confirm that dose is being delivered to the intended
target.

90 k protonswere tracked in usingTRIMsoftware. Each proton had initial velocity
parallel to the horizontal axis, but initial energies had a normal distributionwithmean
230 MeV and standard deviation of 920 keV. Initial positions were also randomly
distributed so that the radially symmetric beam had FWHM of 7.6 mm upon entry
into the target. Viewed at low resolution the cross section of the dose map in Fig. 2b
appears smooth, but a plot along the central beam axis in Fig. 2c is not smooth.
The synchrocyclotron that this simulation was meant to model delivers O(1 pC) of
charge or O(107) protons per pulse. Increasing the number of particles in the Monte
Carlo simulation would smooth the dose map, but at prohibitive computational cost.
Simply filtering in the spatial domain smooths a dose map far more efficiently than
increasing the number of particles.

2.3.2 Synchrocyclotron Pulse Envelopes

Wemeasured temporal profiles, I (t), of proton pulses delivered by three synchrocy-
clotrons, two manufactured by IBA one by Mevion. In all cases, the pulse envelopes
were approximately Gaussian, but had varying pulse durations, with FWHM ranging
from 5 μs to nearly 10 μs.

2.3.3 Acoustic Simulation

Thermoacoustic pulses were simulated by taking the dose map as instantaneously
deposited, or equivalently using it to compute initial pressure. k-Wave software [27]
was run with receivers positioned 5 cm distal and lateral to the Bragg peak, indicated
by yellow squares in Fig. 2b. To account for ion pulse durations, k-Wave time series
were convolved by Gaussians with FWHM of 5 and 10 μs. Results are plotted in
Fig. 3. Instantaneous deposition resulted in thermoacoustic emissions bandlimited
below 150 kHz, simply because the dose maps are smooth. Convolving with I (t)
further reduced bandwidth below 100 kHz.

Applying the standard half-wavelength resolution limit of inverse scattering prob-
lems would yield unacceptable range errors. Fortunately, range verification requires
recovering only one number, location along the beamline, rather than a three-
dimensional array of voxel values. Therefore, we developed a method for leveraging
a priori information from the patient’s planning CT and treatment plan to improve
accuracy of range estimates and beat the diffraction limit [28].
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Fig. 3 Simulated thermoacoustic pulses (top) and spectra (bottom). Signals are measured by
receivers positioned 5 cm distal (right) and lateral (left) to the Bragg peak

2.3.4 Measurements

Custom acoustic hardware is required to develop a thermoacoustic range verification
system that provides clinical utility. Not only are pulses bandlimited well below the
sensitivity bands of ultrasound imaging arrays, but pulses are weak. Thermoacoustic
pressure induced by a dose map like that shown in Fig. 2b is on the order of 1 Pa/pC
of charge—if delivered instantaneously. Therefore, a clinical system that delivers 1
pC over 5 μs increases pressure at the Bragg peak by less than one Pascal. Pulses
attenuate as they travel to remotely positioned receivers, so measured pulses have
millipascal amplitudes.

Many groups have measured thermoacoustic emissions with hydrophones and
single element detectors, most recently using a therapeutic system [29] in research
mode. More recently, we collected thermoacoustic emissions during delivery of a
clinical treatment plan. For each treatment depth, or proton energy, required by the
plan, dose was delivered by an IBA S2C2 synchrocyclotron as it would be during
treatment. However, the system paused between initial energy levels as data was
downloaded.

A custom system with 4 thermoacoustic channels at the corners of a 34 × 52 cm
rectangle surrounding a wireless ultrasound array (Clarius L7) was positioned to
generate an ultrasound image of the lesion and detect thermoacoustic emissions.

Channels 1–2were located distal to the treatment volume andmeasured character-
istic (broadband) “N” shapes; laterally offset channels 3–4 oftenmeasured (bandlim-
ited) ringing (Fig. 4). Ringing is almost surely due to multiple reflections off of ribs,
lung and rigid sidewalls of the 10 cm thick abdominal phantom. Ringing in channels
3–4 confounds straightforward range estimation and a priori information from the
planning CT may be required to overlay the Bragg peak location onto the ultrasound
image [28].

For a more comprehensive overview of thermoacoustic range verification, the
reader is referred to the review article [30].
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Fig. 4 Layer 3 emissions. a–c Thermoacoustic and gamma emissions generated at three neigh-
boring spots. Gamma emissions represented –I(t), time intensity of the proton beam, are plotted
in black. Distal receivers 1–2 detected bandlimited “N” waves, plotted in cyan and red, respec-
tively. Laterally positioned receivers 3–4 (green and blue, respectively) detected ringing, first in
channel 4 (spot A), then moderate amplitude in both channels (spot B), and finally strong ringing in
channel 3 (spot C). d Spot locations are denoted by circles with radius and fill color corresponding
to average and total charges, respectively. Spots “A,” “B” and “C” received 30, 28 and 26 proton
pulses respectively

3 Experimental Observations that Impact Data
Analysis/Reconstruction

3.1 Co-locating Ultrasound Pulse-Echo and Thermoacoustic
Receive Elements

Ultrasound imaging is an inverse scattering problem, typically with a limited
measurement surface and resolution is far worse than the diffraction limit. Addi-
tionally, ultrasound image formation relies upon an assumed soundspeed throughout
the field of view. However, contrast in ultrasound images requires differences in
acoustic impedance so it is unlikely that soundspeed is constant in an interesting
ultrasound image. Even if soundspeed were constant, assuming the incorrect sound-
speed in reconstruction would dilate the image. Variable soundspeeds deform images
further.Nevertheless, ultrasound imaging is successful inmost soft tissues.Whenever
thermoacoustic receivers can be co-located with ultrasound arrays so that flight paths
from the Bragg peak are essentially the same, then errors in range estimates due to
acoustic heterogeneity will be almost identical to errors in the ultrasound image [31].
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Therefore, range estimates can be inherently—and very accurately—co-registered to
ultrasound images. Although range estimates may be inaccurate in absolute coordi-
nates, they are very accurate relative to ultrasound images of the underlying anatomy.
Commercial packages can quickly co-register ultrasound images to CT volumes
which have submillimeter geometric accuracy, and range estimates could be easily
carried along. The idea is depicted in Fig. 5, where a manual co-registration of CT
and ultrasound is displayed using 3D Slicer.

Fig. 5 a Photo of phantom and TA system with locations of channels 1, 2, 4 labeled. b Planning
CT displayed in 3D Slicer. c Multi-planar reformat of CT corresponding to ultrasound image in d.
e 8-channel prototype, with four-channel arrays on either side of the abdominal probe labeled “1”
and “2”
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3.2 Time Reversal

Reconstruction by time reversal has been well studied by mathematicians, primarily
to handle acoustic heterogeneity and reflecting boundary conditions. Recent results
by experimentalists in photoacoustics and ion-induced thermoacoustic range verifi-
cation use multiply reflected signals, sometimes acquired over times exceeding the
flight time across the field of view. These multiple reflections can effectively increase
the measurement surface [32, 33] and improve resolution derived from limited angle
measurements. For handheld probes this may prove important. Consider a wireless
ultrasound array onto which eight thermoacoustic receivers are mounted, as depicted
in Fig. 5e. Four thermoacoustic receivers on either side of the array prescribe a rect-
angle of 7 cm × 7 cm, and a solid angle of less than 2π(1 − cos θo) ∼ π/10 at an
imaging depth of 10 cm.

Acknowledgements Many thanks to Rutherford Cancer Centres for access to their proton therapy
equipment as well as Rutherford and IBA staff for support collecting data presented in Figs. 4, 5.
In particular, thanks to Dr. Rudi Labarbe of IBA for facilitating those experiments.
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∇ · D(x)∇u − σ(x)u = 0

in which we want to obtain the coefficients D and σ on a domain Ω when the
solutions u are known. One approach is to use two solutions u1 and u2 to obtain a
transport equation for the coefficient D, and then solve this equation inward from the
boundary along the integral curves of a vector field X defined by u1 and u2. Bal and
Ren have shown that for any nontrivial choices of u1 and u2, this method suffices to
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1 Introduction

Suppose Ω is a smooth bounded domain in R
n and f ∈ C∞(∂Ω). Let D be a

uniformly positive function on Ω , σ be a nonnegative function on Ω , and consider
the time-independent diffusion equation

∇ · D(x)∇u − σ(x)u = 0 on Ω

u|∂Ω = f.
(1)

For this paper we will take D ∈ C1(Ω) and σ ∈ C(Ω).
In several hybrid inverse problems, we can take advantage of physical phenomena

to recover the solution u to (1) for a given boundary condition f , without a priori
knowledge of D and σ [2–5, 8, 10]. To complete these problems, we need a method
of recovering D and σ from the solutions u.

One approach [3, 6, 11] is to note that the equation in (1) can be written out as

D�u + ∇D · ∇u − σu = 0. (2)

If u is known, this can be viewed as a transport equation for D with coefficients
determined by u. Indeed, if we have two known solutions u1 and u2 to (2), we can
multiply the equation for u1 by u2 and vice versa, and subtract the two to obtain

D (u2�u1 − u1�u2) + ∇D · (u2∇u1 − u1∇u2) = 0. (3)

This eliminates σ to provide a transport equation for D with known coefficients.
Assuming we can measure D|∂Ω , then it follows from the basic theory of transport
equations ([9], Ch. 3) that we can solve (3) to obtain D on all of the integral curves
of the vector field

X := u2∇u1 − u1∇u2 (4)

that intersect the boundary of Ω . Once D(x) is known, we can solve for σ(x) using
(2). Note that the maximum principle implies that if u is positive on the boundary,
then u must be positive inside the domain, eliminating the possibility of difficulties
if u(x) = 0.

The major potential problem with the transport method is the possibility that not
every point in Ω can be reached from the boundary by following an integral curve
of X . In [6], the authors use the existence of complex geometrical optics (CGO)
solutions to (2) to show that there exist boundary conditions f1 and f2 for which
the corresponding solutions u1 and u2 give rise to a vector field X whose boundary-
intersecting integral curves coverΩ . However, the rapid exponential decay of CGOs
can be difficult to work with in practice. Fortunately, it turns out that any non-trivial
positive boundary conditions yield a pair of solutions u1, u2 whose corresponding
vector field X lets us recover the coefficients on a dense set in Ω . This follows
from the argument given in the proof of Theorem 2.2 in [3]; a version of this same
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argument is used to analyze the stability of the reconstruction in [7]. This article
presents an alternate proof of this result by considering the flow on Ω generated by
X and applying a dynamical systems point of view. More precisely, we prove the
following.

Theorem 1 Suppose f1, f2 ∈ C(∂Ω) with f2 positive and f1/ f2 not constant. Let
u1 and u2 be the solutions to (2) with u1 = f1 and u2 = f2 on ∂Ω , and let X be the
vector field defined by (4). Then the union of the integral curves of X that intersect
the boundary of Ω is dense in Ω .

In other words, given continuous, positive, linearly independent boundary condi-
tions, we can get arbitrarily close to any point in Ω from the boundary by following
an integral curve of X . It follows that the transport method allows us to recover D
and σ on a dense set without special care in selecting the boundary conditions f1
and f2. Note that if D and σ are a priori continuous, then we can recover D and σ

on all of Ω by continuity.

2 Proof of Theorem 1

To begin, we will fix some notation. Let u1, u2, and X be as in the statement of
Theorem 1, and make the following definitions.

Definition 1 Let x, y ∈ Ω̄ . We say that x ∼ y if there exists an integral curve γ :
[0, b] → Ω̄ defined by γ̇ (t) = X (γ (t)) such that both x and y lie in the image of γ .

Definition 2 For a set A ⊂ Ω̄ , define

ΣA = {y ∈ Ω̄|y ∼ x for some x ∈ A}.

In other words, ΣA is the union of all integral curves of X that intersect A.

With this notation, the statement of Theorem 1 is that Σ∂Ω has full measure inΩ:

m(Ω \ Σ∂Ω) = 0.

Before beginning the proof of Theorem 1, wemake the following remark. Since D
is uniformly positive, we can replace X by DX in Definition 1. That is, the following
definition is equivalent to Definition 1.

Definition 3 Let x, y ∈ Ω̄ . We say that x ∼ y if there exists an integral curve γ :
[0, b] → Ω̄ defined by γ̇ (t) = DX (γ (t)) such that both x and y lie in the image of
γ .

Indeed, if we have an integral curve γ : [0, b] → Ω̄ defined by the equation
γ̇ (t) = X (γ (t)), we can define a function g by the ODE
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ġ(t) = D(γ (g(t))) and g(0) = 0.

Since D is uniformly positive, g is increasing, so there exists b′ such that g(b′) = b.
Then we can define a new curve γ̃ : [0, b′] → Ω̄ by reparameterizing γ with g:

γ̃ (t) = γ (g(t)).

Now γ̃ ([0, b′]) = γ ([0, b]) and
˙̃γ (t) = DX (γ̃ (t)).

Therefore if x ∼ y according to Definition 1 then x ∼ y according to Definition
3, and the converse follows similarly. With this in mind, we turn to the proof of
Theorem 1.

Proof (Proof of Theorem 1) Suppose thatΩ \ Σ∂Ω has positive measure. Then there
exists an open setU in Ω which is disjoint from Σ∂Ω . Since no integral curve of the
vector field DX joins any point of U to ∂Ω , it follows that ΣU is disjoint from ∂Ω ,
and therefore ΣU ⊂ Ω .

Now the vector field DX gives a flow on ΣU , defined for all time, that maps ΣU

to itself. Moreover,

∇ · DX = ∇ · D(u2∇u1 − u1∇u2) = 0,

so the vector field DX is divergence free. This means that the flow of DX preserves
volume, so the Poincaré Recurrence Theorem applies to maps defined by this flow.
This gives us the following result, (see e.g. [1], pp. 71–72).

Proposition 1 (Poincaré Recurrence Theorem) Let W ⊂ ΣU be open. For x ∈ W
and k ∈ N, define

xk = γx (k),

where γx is the integral curve defined by γ̇x (t) = DX (γx (t)), with the initial condi-
tion γx (0) = x. Then for almost every x ∈ W, xk ∈ W for infinitely many k.

The basic idea of the proof of Theorem 1 is as follows. A short calculation shows
that

X = u22∇u, (5)

where u = u1/u2. The maximum principle, together with the positivity of f2, guar-
antees that u2 is uniformly positive, so u is well defined.Moreover the integral curves
of X and DX are the same as the integral curves of∇u, by the same logic used in the
discussion of Definition 3. If any integral curve of X were closed, we could integrate
∇u along that curve and obtain two different values of u, which would be a contra-
diction. The main idea of the proof is to apply the Poincaré Recurrence Theorem to
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a well chosen subset W ⊂ ΣU , to provide us with a trajectory that approximates a
closed curve well enough to force a contradiction.

To obtain this subsetW , define u = u1/u2. Since u is not constant at the boundary,
unique continuation guarantees that u is not constant on ΣU . Therefore there exists
some point y in ΣU such that

|∇u(y)| > 0.

Then the regularity of u1 and u2 guarantees that there exists an open set V ⊂ ΣU

containing y and a positive constant c such that |∇u| > c on V .
Now consider an open set W which contains y and is compactly contained in V .

Applying the Poincaré Recurrence Theorem to W , we see that there exists x0 ∈ W
such that xk ∈ W for infinitely many k.

Let {xk j } denote the subsequence of {xk} such that xk j ∈ W , and let γ j :
[k j , k j+1] → Ω be the integral curve of DX joining xk j to xk j+1 . We can obtain
u(xk j+1) from u(xk j ) by integrating ∇u over γ j ; in other words

u(xk j+1) − u(xk j ) =
∫

γ j

∇u · dr. (6)

For each j , one of the following two things must happen:

Case I: the image of γ j is entirely contained in V .
Case II: the image of γ j contains points outside V .

In Case I, we can parametrize (6) to get

u(xk j+1) − u(xk j ) =
∫ k j+1

k j

∇u(γ j (t)) · γ̇ j (t) dt

=
∫ k j+1

k j

∇u(γ j (t)) · DX (γ j (t)) dt.

Then (5) implies that

u(xk j+1) − u(xk j ) =
∫ k j+1

k j

Du22(γ
j (t))|∇u(γ j (t))|2 dt.

Since the image of γ j is entirely contained in V , and k j+1 − k j ≥ 1, we have

u(xk j+1) − u(xk j ) ≥ min
Ω

Du22 · c2 > 0.

In Case II, the length of the portion of γ j contained in V must be at least twice
the distance from W to the exterior of V , so (6) tells us that

u(xk j+1) − u(xk j ) ≥ 2c dist(W, ext V ) > 0.
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In both cases, u(xk j+1) − u(xk j ) is bounded below uniformly in j . By setting q to
be the minimum of the bounds in both cases, we see that u(xk j+1) − u(xk j ) ≥ q for
each j ∈ N, and therefore u is unbounded in W . But this contradicts the continuity
of u, which is guaranteed by the continuity and positivity of u1 and u2, and so our
initial supposition is false. Therefore Ω \ Σ∂Ω has measure zero as claimed.

As a final remark, note that if σ ≡ 0, we can take u2 to be the identity function.
Then (5) implies that X = ∇u1, and Theorem 1 gives us a useful corollary:

Corollary 1 Suppose u ∈ C2(Ω) ∩ C1(Ω̄), and

∇ · D(x)∇u = 0

in Ω . Then the set of integral curves of ∇u that intersect the boundary of Ω is dense
in Ω .
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Layered Medium with Special
Anisotropy

Michele Di Cristo

Abstract In this notewe review some recent results concerning the inverse inclusion
problem. In particular we analyze the stability issue for defect contained in layered
medium where the conductivity is different in each layer. We consider conductivities
with special anisotropy. The modulus of continuity obtained is of logarithmic type,
which as shown in Di Cristo and Rondi (Inverse Prob 19:685–701 [13]) turns out to
be optimal.
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1 Introduction

In this note we review some recent results related to the inverse problem of determin-
ing an inclusion in a conductor body. This is a special instance of the well–known
Calderon’s inverse conductivity problem [5] and it has been studied by Isakov [15],
who shows that the defect can be uniquely recovered through a knowledge of all
possible boundary measurements. In this paper the author shows that the defect can
be uniquely recovered through a knowledge of all possible electrostatic boundary
measurements, making use of the Runge Approximation Theorem and solutions of
the governing equationwithGreen’s function type singularities. In 2005Alessandrini
and Di Cristo [2] have studied the stability issue, that is the continuous dependance
of the inclusion from the given data. The approach proposed by the authors is to
convert Isakov’s idea in a quantitative form. Under mild a priori assumptions on the
regularity and the topology of the inclusion, they show that the modulus of continuity
of the stability issue is of logarithmic type.
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Their result is proved for piecewise constant conductivities and for variable coef-
ficients conductivities [7]. The argument proposed turns out to be extremely flexible
and it has been extended to other physical situations governed by different differen-
tial equations. Logarithmic stability estimates hold true for the inverse problem of
locating a scattered object by a knowledge of the near field data [8], or an inclusion
in an elastic body by assuming the displacement and the traction on the boundary
[3]. These papers are based on an accurate use of the fundamental solution of the
differential operator involved and a precise and quantitative evaluation of unique
continuation.

These arguments work well in different frameworks with isotropic conductivi-
ties in homogeneous conductors but they become more delicate when the physical
phenomena take place in a layered medium with anisotropic conductivities. The key
items, that cause the main difficulties, are the presence of an unknown boundary
(the layer), when we apply the unique continuation technique, and the matrixes,
that model the anisotropic conductivities that create big difficulties in estimating the
fundamental solution. In several recent results [9–12, 14] these problems have been
considered and some preliminary results in this direction are now available. In this
paper we go through these results and summarize the situation showing the state of
the art.

The paper is organized as follow. In the next Sect. 2 we define our notation and
state the main theorem. Its proof is presented in Sect. 3 using some auxiliary results
that are proved in Sect. 4.

2 Notations and Main Result

To begin with, let us premise some notations and definitions, we will use throughout
the paper. LetΩ be a bounded open set inRn andΣ a layer contained in it. The layer
Σ will be a closed hyper-surface that separates Ω in to the union of three parts

Ω = Ω+ ∪ Σ ∪ Ω−,

whereΩ± are open subsets such that ∂Ω− = ∂Ω ∪ Σ and ∂Ω+ = Σ .We also denote
by D a subset of Ω such that D ⊂ Ω+ ⊂ Ω . We consider γ (x) the conductivity if
Ω of the form

γD(x) = c1A(x) + (c2 − c1)A(x)χΩ+ + (k − c2A(x))χD,

where A(x) is a known Lipischitz matrix valued function satisfying ‖A‖C0,1(Ω) ≤ A,
where with k we mean the identity matrix multiplied by k and ellipticity condition
with constant σ > 0, that is

σ−1|ξ |2 ≤ A(x)ξ · ξ ≤ σ |ξ |2, ∀x ∈ Ω, ξ ∈ R
n,

c1 and c2 are given constants and k is an unknown constant.
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For points x ∈ R
n , we will write x = (x ′, xn), where x ′ ∈ R

n−1 and x ∈ R. More-
over, denoted by dist(·, ·) the standard Euclidean distance, we define

Br (x) = {y ∈ R
n|dist(x, y) < r}, B ′

r (x
′) = {y′ ∈ R

n−1|dist(x ′, y′) < r}

as the open balls with radius r centered at x and x ′ respectively. We write Qr (x) =
B ′
r (x

′) × (xn − r, xn + r) for the cylinder in R
n . For simplicity, we use Br , B ′

r , Qr

instead of Br (0), B ′
r (0

′) and Qr (0) respectively. We shall also denote half domain,
as well as its associated ball and cylinder

R
n
+ = {(x ′, xn) ∈ R

n|xn > 0}; B+
r = Br ∩ R

n
+; Q+

r = Qr ∩ R
n
+.

Definition 1 LetΩ be the bounded domain inRn . Givenα ∈ (0, 1], we say a portion
S of ∂Ω is of C1,α class with constants r, L > 0 if for any point p ∈ S, there exists a
rigid transformation ϕ : Rn−1 
→ R of coordinates under which we have p = 0 and

Ω ∩ Br = {(x ′, xn) ∈ Br |xn > ϕ(x ′)},

where ϕ(·) is a C1,α function on B ′
r , which satisfies

ϕ(0) = |∇ϕ(0)| = 0

and
||ϕ||C1,α(B ′

r )
≤ Lr,

where the norm is defined as

||ϕ||C1,α(B ′
r )

:= ||ϕ||L∞(B ′
r )

+ r ||∇ϕ||L∞(B ′
r )

+ r1+α|∇ϕ|α,B ′
r

|∇ϕ|α,B ′
r
:= sup

x ′,y′∈B ′
r ,

x ′ �=y′

|∇ϕ(x ′) − ∇ϕ(y′)|
|x ′ − y′|α .

For f ∈ H 1/2(∂Ω), let u be the solution of the problem

{
div(γD(x)∇u) = 0 in Ω,

u = f on ∂Ω.
(1)

The inverse problem we addressed to is determine the anomalous region D when
the Dirichlet-to-Neumann map �D

�D : H 1/2(∂Ω) −→ H−1/2(∂Ω)

f −→ γ (x) ∂u
∂u ,
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is given for any f ∈ H 1/2(∂Ω). Here, ν denotes the outer unit normal to ∂Ω , and
∂u
∂ν |∂Ω

corresponds to the current density measured on ∂Ω . Thus, the Dirichlet–to–
Neumannmap represents the knowledge of infinitely many boundarymeasurements.

Given constants r1, M1, M2, δ1, δ2 > 0 and 0 < α < 1, we assume the domain
Ω ⊂ R

n is bounded
|Ω| ≤ M2r

n
1 ,

where | · | denotes the Lebesgue measure.
The interface Σ is C2 and assumed to stay away from the boundary of the

domain, as dist(Σ, ∂Ω) ≥ δ2, and the inclusion D is assumed to stay away from
Σ , as dist(D,Σ) ≥ δ1, and also Ω\D is connected. Both ∂D and ∂Ω are of C1,α

class with constants r1, M1.
We refer to n, r1, M1, M2, α, δ1, δ2 as the a priori data. To study the stability,

we denote by D1 and D2 two possible inclusions in Ω , which satisfy the above
properties. The associated Dirichlet-to-Neumann maps are �D1 and �D2 . We also
denote by dH the Housdorff distance between closed sets.

Theorem 1 Let Ω ⊂ R
n, n ≥ 2 and we have two known constants c1, c2 and one

unknown constant k, which are given. Let D1, D2 be two inclusions in Ω as above.
If for any ε > 0 we have

‖�D1 − �D2‖L (H 1/2,H−1/2) ≤ ε,

then
dH (∂D1, ∂D2) ≤ ω(ε),

where ω is an increasing function on [0,+∞), which satisfies

ω(t) ≤ C | log t |−η, ∀ t ∈ (0, 1)

and C > 0, 0 < η ≤ 1 are constants depending on the a priori data only.

3 Proof of the Main Result

The proof of Theorem 1 is based on some auxiliary propositions whose proofs are
collected in the next Sect. 4. We denote by G the connected component of Ω\(D1 ∪
D2), whose boundary contains ∂Ω .ΩD = Ω\G , S2r := {x ∈ R

n|r ≤ dist (x,Ω) ≤
2r}, Sr := {x ∈ CΩ|dist (x,Ω) ≤ r} and G h := {x ∈ G |dist (x,ΩD) ≥ h}, where
CΩ stands for the complement set of Ω . We recall that the layer Σ separates
the domain into two parts known as Ω− and Ω+. We also define F λ := {x ∈
Ω−|dist (x,Σ) ≥ λ}, and Σλ := {x ∈ Ω−|dist (x,Σ) = λ}
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We introduce a variation of the Hausdorff distance called the modified distance,
which simplifies our proof.

Definition 2 The modified distance between D1 and D2 is defined as

dm(D1, D2) := max

{
sup

x∈∂ΩD∩∂D1

dist (x, ∂D2), sup
x∈∂ΩD∩∂D2

dist (x, ∂D1)

}
.

With no loss of generality,we can assume that there exists a pointO ∈ ∂D1 ∩ ∂ΩD

such that the maximum of dm = dm(D1, D2) = dist(O, D2) is attainted. We remark
here that dm is not a metric, and in general, it does not dominate the Hausdorff
distance. However, under our a priori assumptions on the inclusion, the following
lemma holds.

Lemma 1 Under the assumptions of Theorem 1, there exists a constant c0 ≥ 1 only
depending on M1 and α such that

dH (∂D1, ∂D2) ≤ c0dm(D1, D2). (2)

Proof See [2, Proposition 3.3]
Another obstacle comes from the fact that the propagation of smallness arguments

are based on an iterated application of the three spheres inequality for solutions of the
equation over chains of balls contained in G . Therefore, it is crucial to control from
below the radii of these balls. In the following Lemma 2 we treat the case of points
of ∂ΩD that are not reachable by such chains of balls. This problem was originally
considered by [4] in the context of cracks detection in electrical conductors.

Let us premise some notations. Given O = (0, . . . , 0) the origin, v a unit vector,
H > 0 and ϑ ∈ (

0, π
2

)
, we denote

C(O, v, ϑ, H) = {
x ∈ R

n : |x − (x · v)v| ≤ sin ϑ |x |, 0 ≤ x · v ≤ H
}

the closed truncated cone with vertex at O , axis along the direction v, height H and
aperture 2ϑ . Given R, d, 0 < R < d and Q = −den , where en = (0, . . . , 0, 1), let

us consider the cone C
(
O,−en, arcsin R

d , d2−R2

d

)
.

From now on, without loss of generality, we assume that

dm(D1, D2) = max
x∈∂D1∩∂ΩD

dist(x, ∂D2)

and we write dm = dm(D1, D2).
We shall make use of paths connecting points in order that appropriate tubular

neighborhoods of such paths still remain within R
n \ ΩD . Let us pick a point P ∈

∂D1 ∩ ∂ΩD , let ν be the outer unit normal to ∂D1 at P and let d > 0 be such that
the segment [(P + dν), P] is contained in R

n \ ΩD . Given P0 ∈ R
n \ ΩD , let γ be

a path inRn \ ΩD joining P0 to P + dν. We consider the following neighborhood of
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γ ∪ [(P + dν), P] \ {P} formed by a tubular neighborhood of γ attached to a cone
with vertex at P and axis along ν

V (γ ) =
⋃
S∈γ

BR(S) ∪ C

(
P, ν, arcsin

R

d
,
d2 − R2

d

)
. (3)

Note that two significant parameters are associated to such a set, the radius R of
the tubular neighborhood of γ , ∪S∈γ BR(S), and the half-aperture arcsin R

d of the

cone C
(
P, ν, arcsin R

d , d2−R2

d

)
. In other terms, V (γ ) depends on γ and also on the

parameters R and d. At each of the following steps, such two parameters shall be
appropriately chosen and shall be accurately specified. For the sake of simplicity
we convene to maintain the notation V (γ ) also when different values of R, d are
introduced. Also we warn the reader that it will be convenient at various stages to
use a reference frame such that P = O = (0, . . . , 0) and ν = −en .

Lemma 2 Under the above notation, there exist positive constants d, c1, where
d
ρ0

only depends on M1 and α, and c1 only depends on M1, α, M2, and there exists a
point P ∈ ∂D1 satisfying

c1dm ≤ dist(P, D2),

and such that, giving any point P0 ∈ S2ρ0 , there exists a path γ ⊂ (Ωρ0 ∪ S2ρ0) \ ΩD

joining P0 to P + dν, where ν is the unit outer normal to D1 at P, such that, choosing
a coordinate system with origin O at P and axis en = −ν, the set V (γ ) introduced
in (3) satisfies

V (γ ) ⊂ R
n \ ΩD,

provided R = d√
1+L2

0

, where L0, 0 < L0 ≤ M1, is a constant only depending on M1

and α.

Proof See [3, Lamma 4.2].
A crucial tool to get the stability estimates is the so called Alessandrini identity [1]

the permits to relate the information provided by the boundarymeasurementswith the
unknown inclusion. Let ui ∈ H 1(∂Ω), i = 1, 2, solutions to (1) with conductivities

γDi (x) = c1A(x) + (c2 − c1)A(x)χΩ+ + (k − c2)χDi , i = 1, 2,

we have∫
Ω

(
γD1∇u1 · ∇u2

) −
∫

Ω

(
γD2∇u1 · ∇u2

) =
∫

∂Ω

c1A(x)u1[�D1 − �D2 ]u2. (4)

Therefore, applying (4) replacing ui = ΓDi , i = 1, 2, where ΓDi is the fundamental
solution of the operator div(γi∇·), we get
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D1

(k − c2)∇ΓD1(·, y) · ∇ΓD2(·, z) −
∫
D2

(k − c2)∇ΓD1(·, y) · ∇ΓD2(·, z)

=
∫

∂Ω

c1A(·)ΓD1(·, y)[�D1 − �D2 ]ΓD2(·, z). (5)

For y, z ∈ G ∩ CΩ , where CΩ is the complementary set of Ω , we define

SD1(y, z) = (k − c2)
∫
D1

∇ΓD1(·, y) · ∇ΓD2(·, z)

SD2(y, z) = (k − c2)
∫
D2

∇ΓD1(·, y) · ∇ΓD2(·, z)
f (y, z) = SD1(y, z) − SD2(y, z).

Therefore (5) can be written as

f (y, z) =
∫

∂Ω

c1A(·)ΓD1(·, y)[�D1 − �D2 ]ΓD2(·, z), ∀y, z ∈ CΩ. (6)

In what follows, we analyze the behavior of f and SDi as the singularities y and z
get close to the inclusion D.

Proposition 1 Let Ω, D1, D2 be open sets satisfying the above properties and let
y = hν(O). If, given ε > 0, we have

||�D1 − �D2 ||L(H 1/2,H−1/2) < ε, (7)

then for every h where 0 < h < cr, 0 < c < 1, and c depends on M1, we have

| f (y, y)| ≤ C0
εBhF

hT
. (8)

Here 0 < T < 1 and C0, B, F > 0 are constants that depend only on the a priori
data.

Proposition 2 Let Ω, D1, D2 be open sets satisfying the above properties and let
y = hν(O). Then for every 0 < h < r0/2

|SD1(y, y)| ≥ C1h
2−n − C2d

2−2n
m + C3, (9)

where r0 := r
2 min

[
1
2 (8M1)

−1/α, 1
2

]
, and C1,C2,C3 are positive constants depend-

ing only on the a priori data.

We can conclude this section proving our main theorem.

Proof (Proof of Theorem 1)We start from the origin of the coordinate system, point
O ∈ ∂D1 ∩ ∂ΩD , for which the maximum in Definition 2 is attainted
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dm := dm(D1, D2) = dist(O, D2).

By a transformation of coordinates, we can write y = hν(O) where 0 < h <

h1, h1 := min{dm, cr, r0/2}, 0 < c < 1, where c depends on M1. By applying [2]
Proposition 3.4 (i); i.e., |∇xΓDi (x, y)| ≤ d1|x − y|1−n , where d1 > 0 depending only
on k, n, α, M1; we have

|SD2(y, y)| =
∣∣∣∣(k − c2)

∫
D2

∇ΓD1(x, y)∇ΓD2(x, y)

∣∣∣∣
≤ d2(k − c2)

∫
D2

(d1|x − y|1−n)2 ≤ d1(k − c2)d
2
1

∫
D2

(|dm − h|1−n)2

≤ d1(k − c2)d
2
1 |dm − h|2−2n|D2| ≤ C4|dm − h|2−2n,

(10)
where d2,C4 are constants depending on the a priori data only. Here |D2| is the
measure of the inclusion D2 which is bounded by |D2| ≤ |Ω| ≤ M2rn1 . If we apply
the triangular inequality, we obtain

|SD1(y, y)| − |SD2(y, y)| ≤ |SD1(y, y) − SD2(y, y)| = | f (y, y)| ≤ C0
εBhF

hT
. (11)

Meanwhile, (9) gives us the lower bound of SD1(y, y). Therefore, together with (10)
and (11), we obtain

C1h
2−n − C2d

2−2n
m + C3 ≤ C4|dm − h|2−2n + C0

εBhF

hT

Rearranging terms we get

C1h
2−n ≤ C4|dm − h|2−2n + C0

εBhF

hT
.

By setting C5 = C4/C0 and C6 = C1/C0

C5|dm − h|2−2n ≥ C6h
2−n − εBhF

hT
= C6h

2−n(1 − εBhF
hK ),

where 0 < K = n − 2 − T . Now let h = h(ε) = min
{| ln ε|− 1

2F , dm
}
, for 0 < ε ≤

ε1, ε1 ∈ (0, 1) such that exp(−B| ln ε1|1/2) = 1/2. It is easy to see if dm ≤ | ln ε|− 1
2F ,

Theorem 1 is proved using Lemma 1. Indeed we can set η = 1
2F > 0, then

dH (∂D1, ∂D2) ≤ c0dm ≤ c0| ln ε|−η = ω(ε) (12)

In the other case if dm ≥ | ln ε|− 1
2F , it is easy to check
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(dm − h)2−2n ≥ C6

2C5
h2−n =⇒ dm ≤ C7| ln ε|− n−2

4F(n−1) .

Here we can solve dm because here h = h(ε) = | ln ε|− 1
2F , and C7 depends only on

the a priori data. Therefore we conclude the proof by setting η = n−2
4F(n−1)

dH (∂D1, ∂D2) ≤ c0dm ≤ c0C7| ln ε|−η = ω(ε) (13)

and for ε1 ≤ ε, we can also include the proof because dm ≤ |Ω| ≤ M2rn1 .

dH (∂D1, ∂D2) ≤ c0dm ≤ c0M2r
n
1 = ω(ε). (14)

We can conclude the proof Theorem 1 by (12), (13) and (14)

dH (∂D1, ∂D2) ≤ Cdm = ω(ε),

where C only depends on the a priori data.

4 Proof of Propositions 1 and 2

In this section we prove the auxiliary propositions needed to prove our main theorem.
The proofs are based on some quantitative estimates of unique continaution, which
for this special context has been developed in [9] (see also [14]).

Proof (Proposition 1) Let us consider f (y, ·) with a fixed y ∈ S2r then

divw(γD(x)∇ f (y,w)) = 0 in CΩD. (15)

For x ∈ S2r , by (6) and (7), we have the smallness quantity

| f (y, x)| ≤ C(r, M1, M2)||ΓD1 − ΓD2 || = ε. (16)

Also by y [Al-DC] Proposition 3.4, the uniform bound of f is given as

| f (y, x)| ≤ ch2−2n, in G h ∪ F λ. (17)

At this point the proposition can be obtained using iteratively the three sphere inequal-
ity derived in [12] for elliptic equation wtih coefficients with jump discontinuity (see
also [6] for similar results) along the line of the proof of [2, Proposition 3.5].

Proof (Proposition 2) We write the upper bound of SD1 as
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|SD1(y, y)| =
∣∣∣(k − c2)

∫
D1

∇ΓD1(x, y)∇ΓD2(x, y)dx
∣∣∣

≥ C
∣∣∣( ∫

D1∩Br (O)∩D2

+
∫
D1∩Bρ(O)∩C D2

)
∇ΓD1∇ΓD2

∣∣∣
− C

∣∣∣ ∫
D1∩Br (O)∩C Bρ(O)∩C D2

∇ΓD1∇ΓD2

∣∣∣
− C

∣∣∣ ∫
D1\Br (O)

∇ΓD1∇ΓD2

∣∣∣

(18)

where C depends on k, A only, r = |x − y|, 0 < r < r0, 0 < ρ < min{dm, r}. To
explain the formula, notice we separate the integrand

∫
D1∩Br (O)

∇ΓD1∇ΓD2 into
two parts, because we don’t have any information on x . So, either it can be
x ∈ D1 ∩ Br (O) ∩ D2 or x ∈ D1 ∩ Br (O) ∩ C D2. Then we separate the integrand
again with respect to an even smaller ball Bρ(O).

If x ∈ D1 ∩ Br (O) ∩ D2, By [1, Lemma 3.1] and [10, Theorem 4.1], we get

∇ΓD1(x, y) · ∇ΓD2(x, y) ≥ CA|x − y|2−2n = CAr
2−2n > 0 (19)

where CA depends on the a priori data. If x ∈ D1 ∩ Br (O) ∩ C D2, we consider in
a smaller ball Bρ(O). In this case, we actually have x ∈ D1 ∩ Bρ(O) ∩ C D2. By
definition of dm , Bρ(O) ∩ D2 = ∅, for x, y ∈ Bρ(O), we have

⎧⎨
⎩

Δ
(
ΓD2(x, y) − Γ (x, y)

)
= 0 in Bρ(O)(

ΓD2(x, y) − Γ (x, y)
)
|∂Bρ(O) ≤ CKρ2−n,

where Γ denotes the standard fundamental solution of the Laplace operator. By the
maximum principle, the value on interior is smaller than boundary

∣∣∣ΓD2(x, y) − Γ (x, y)
∣∣∣ ≤ CKρ2−n ∀x, y ∈ Bρ(O)

And by interior gradient bound, we have

∣∣∣∇ΓD2(x, y) − ∇Γ (x, y)
∣∣∣ ≤ CK0ρ

1−n ∀x ∈ Bρ/2(O); ∀y ∈ Bρ(O)

Applying [A] Lemma 3.1 in Bρ/2(O), we have (notice |x − y| = r > ρ)

∇ΓD1(x, y) · ∇ΓD2 (x, y) ≥ CA|x − y|2−2n − CK ρ2−2n = CAr
2−2n − CK ρ2−2n > 0

(20)
Now we can bound the first term of (18) thanks to (19) and (20)
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∣∣∣( ∫
D1∩Br (O)∩D2

+
∫
D1∩Bρ(O)∩C D2

)
∇ΓD1∇ΓD2

∣∣∣
≥

∣∣∣( ∫
D1∩Br (O)∩D2

+
∫
D1∩Bρ(O)∩C D2

)
(CAr

2−2n − CKρ2−2n)

∣∣∣
≥

∣∣∣( ∫
[D1∩Br (O)∩D2]∪[D1∩Bρ(O)∩C D2]

)
c1r

2−2n
∣∣∣ ≥ c1h

2−n

(21)

For the upper bounds of the second and third term, we can apply the natural bound
of ∇ΓDi , i = 1, 2. When x ∈ D1 ∩ Br (O) ∩ C Bρ(O) ∩ C D2, we have∣∣∣ ∫

D1∩Br (O)∩C Bρ (O)∩C D2

∇ΓD1∇ΓD2

∣∣∣ ≤
∣∣∣ ∫

D1∩Br (O)∩C Bρ (O)∩C D2

c1|x − y|1−n · c1|x − y|1−n
∣∣∣

≤
∣∣∣ ∫

D1∩Br (O)∩C Bρ (O)∩C D2

c1r
1−n · c1r1−n

∣∣∣ ≤ c2d
2−2n
m

(22)∣∣∣ ∫
D1\Br (O)

∇ΓD1∇ΓD2

∣∣∣ ≤
∣∣∣ ∫

D1\Br (O)

c1|x − y|1−n · c1|x − y|1−ndx
∣∣∣

=
∣∣∣ ∫

D1\Br (O)

c21r
2−2ndx

∣∣∣
= c3

(23)

Now we can plug (21), (22) and (23) into (18), we obtain the lower bound for
SD1(y, y)

|SD1 | ≥ c1h
2−n − c2d

2−2n
m − c3

where ci , i = 1, 2, 3 depends only on the a prior data.
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Convergence of Stabilized P1 Finite
Element Scheme for Time Harmonic
Maxwell’s Equations

M. Asadzadeh and Larisa Beilina

Abstract The paper considers the convergence study of the stabilized P1 finite
element method for the time harmonic Maxwell’s equations. The model problem is
for the particular case of the dielectric permittivity function which is assumed to be
constant in a boundary neighborhood. For the stabilized model a coercivity relation
is derived that guarantee’s the existence of a unique solution for the discrete problem.
The convergence is addressed both in a priori and a posteriori settings. Our numerical
examples validate obtained convergence results.

Keywords Time harmonic Maxwell’s equations · P1 finite elements · A priori
estimate · A posteriori estimate · Convergence
MSC: 65N12 · 65N15 · 78M10

1 Introduction

In implementing the finite element methods for the Maxwell system, the divergence-
free edge elements are the most advantageous from a theoretical point of view [12,
13]. On the other hand for the time-dependent problems, where a linear system
of equations need to be solved at each iteration step, the divergence-free approach
requires an unrealistic fine degree of time resolution. To circumvent this difficulty, it
has been suggested to use the continuous P1 finite elements which provides inexpen-
sive and reliable algorithms for the numerical simulations, in particular compared to
H(curl) conforming finite elements. Based on this fact, in this paper we consider
stabilized P1 finite element for the approximate solution of time harmonicMaxwell’s
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equations when the dielectric permittivity function is constant in a boundary neigh-
borhood. This converts the Maxwell’s equations into a set of time-independent wave
equations on the boundary neighborhood.

An outline of this paper is as follows. In Sect. 2 we introduce a model problem
for the time harmonic Maxwell’s equations obtained through Laplace transform of
the time-dependent equations. In Sect. 3 we introduce our finite element scheme,
prove its well-posedness. As well as a optimal a priori and a posteriori error bounds
which are derived in a, gradient dependent, triple norm. In the a posteriori case the
boundary residual is in the form of a normal derivative and therefore is balanced by
a multiplicative power of the mesh parameter h. Section4 is devoted to implemen-
tations and justify the robustness of the approximation procedure. Finally, in Sect. 5
we conclude the results of the paper.

Throughout the paper C will denote a generic constant, not necessarily the same
at each occurrence and independent of the mesh parameter and solution, unless
otherwise specifically specified.

2 The Mathematical Model

We study the time-harmonic Maxwell’s equations for electric field Ê (x, s), under
the assumption of the vanishing electric charges, given by

s2ε(x)Ê(x, s) + ∇ × ∇ × Ê(x, s) = sε(x) f0(x), x ∈ R
d , d = 2, 3

∇ · (ε(x)Ê(x, s)) = 0
(1)

where ε(x) = εr (x)ε0 is the dielectric permittivity, εr (x) is the dimensionless relative
dielectric permittivity and ε0 is the permittivity of the free space. Furthermore

∇ × ∇ × E = ∇(∇ · E) − ∇2E . (2)

Equation (1) is obtained through the Laplace transformation in time

̂E(x, s) :=
+∞
∫

0

E(x, t)e−st dt, s = const. > 0 (3)

where E (x, t) is the the solution of time-dependent Maxwell’s equations:

ε(x)
∂2E(x, t)

∂t2
+ ∇ × ∇ × E(x, t) = 0, x ∈ R

d , d = 2, 3, t ∈ (0, T ].
∇ · (εE)(x, t) = 0,

E(x, 0) = f0(x),
∂E

∂t
(x, 0) = 0, x ∈ R

d , d = 2, 3.

(4)
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Ω1

Ω2ε = 1

ε ∈ [1,d1]

Ω2ε = 1

a) Ω =Ω1 Ω2 b) Ω2

Fig. 1 Domain decomposition in Ω

Note that, since we have a non-zero initial condition: E(x, 0) = f0(x), the problem
(4) is adequate as a coefficient inverse problem to determine the function ε(x) in (4)
through a finite number of observations E at the boundary [6].

To solve the problem (4) numerically, we consider it in a bounded convex and
simply connected polygonal domainΩ ⊂ R

d , d = 2, 3 with boundary Γ : We define
Ω2 := Ω \ Ω1, where Ω1 ⊂ Ω has positive Lebesgue measure and ∂Ω ∩ ∂Ω1 = ∅.
In this setting cutting outΩ1 fromΩ , the new subdomainΩ2 shares the boundarywith
both Ω and Ω1: ∂Ω2 = ∂Ω ∪ ∂Ω1, Ω = Ω1 ∪ Ω2, Ω1 = Ω \ Ω2 and Ω̄1 ∩ Ω̄2 =
∂Ω1, (see Fig. 1).

To proceed we assume that ε(x) ∈ C2(Rd), d = 2, 3 satisfies

ε(x) ∈ [1, d1] , for x ∈ Ω1,

ε(x) = 1, for x ∈ Ω \ Ω1,

∂νε = 0, for x ∈ ∂Ω2.

(5)

Remark 1 Conditions (5) mean that, in the vicinity of the boundary of the compu-
tational domain Ω , the Eq. (4) transforms to a time-dependent wave equation.

At the boundary Γ := ∂Ω of Ω , we use the split Γ = Γ1 ∪ Γ2 ∪ Γ3, so that Γ1 and
Γ2 are the top and bottom sides, with respect to y- (in 2d) or z-axis (in 3d), of the
domain Ω , respectively, while Γ3 is the rest of the boundary. Further, ∂ν(·) denotes
the normal derivative on Γ and ν is the outward unit normal to Γ .

Remark 2 In most estimates below, it suffices to restrict the Neumann boundary
condition for the dielectric permittivity function to: ∂νε(x) = 0, on Γ1 ∪ Γ2.
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Now, using similar argument as in the studies in, e.g., [5] and by Remark 1, for the
time-dependent wave equation, we impose first order absorbing boundary condition
[11] at Γ1 ∪ Γ2:

∂νE + ∂t E = 0, (x, t) ∈ (Γ1 ∪ Γ2) × (0, T ]. (6)

To impose boundary conditions at Γ3 we can assume that the surface Γ3 is located far
from the domain Ω1. Hence, we can assume that E ≈ Einc in a vicinity of Γ3, where
Einc is the incident field. Thus, at Γ3 we may impose Neumann boundary condition

∂νE = 0, (x, t) ∈ Γ3 × (0, T ]. (7)

Finally, using the well known vector-analysis relation (2) and applying the Laplace
transform to the Eq. (4) and the boundary conditions (6)–(7) in the time domain, the
problem (1) will be transformed to the following model problem

s2ε(x)Ê(x, s) + ∇(∇ · Ê(x, s)) − 
Ê(x, s) = sε(x) f0(x), x ∈ R
d , d = 2, 3

∇ · (ε(x)Ê(x, s)) = 0,

∂ν Ê(x, s) = 0, x ∈ Γ3,

∂ν Ê(x, s) = f0(x) − s Ê(x, s), x ∈ Γ1 ∪ Γ2.

(8)

3 Finite Element Method

We have the usual notation of the inner product in [L2(Ω)]d : (·, ·), d ∈ {2, 3}, and
the corresponding norm ‖ · ‖, whereas 〈·, ·〉Γ is the inner product of [L2(Γ )]d−1 and
the associated L2(Γ )-norm is denoted by ‖ · ‖Γ . We define the L2 scalar products

(u, v) :=
∫

Ω

u · v dx, (u, v)ω :=
∫

Ω

u · v ωdx, 〈u, v〉Γ :=
∫

Γ

u · v dσ,

and the ω-weighted L2(Ω) norm

‖u‖ω :=
√

√

√

√

∫

Ω

|u|2 ωdx, ω > 0, ω ∈ L∞(Ω).
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3.1 Stabilized Model

The stabilized formulation of the problem (8), with d = 2, 3, reads as follows:

s2ε(x)Ê(x, s) − 
Ê(x, s) − ∇(∇ · ((ε − 1)Ê(x, s)) = sε(x) f0(x) x ∈ R
d ,

∂ν Ê(x, s) = 0, x ∈ Γ3,

∂ν Ê(x, s) = f0(x) − s Ê(x, s), x ∈ Γ1 ∪ Γ2,

(9)
where the second equation of (8) is hidden in the first one.

3.2 Finite Element Discretization

We consider a partition of Ω into elements K denoted by Th = {K }, satisfying the
minimal angle condition.Here, h = h(x) is themesh parameter defined as h|K = hK ,
representing the local diameter of the elements. We also denote by ∂Th = {∂K } a
partition of the boundary Γ into boundaries ∂K of the elements K such that vertices
of these elements lie on Γ .

To formulate the finite element method for (9) in Ω , we introduce the, piecewise
linear, finite element space WE

h (Ω) for every component of the electric field E :

WE
h (Ω) := {w ∈ H 1(Ω) : w|K ∈ P1(K ), ∀K ∈ Th},

where P1(K ) denote the set of piecewise-linear functions on K . SettingWE
h (Ω) :=

[WE
h (Ω)]3 we define f0h to be the WE

h -interpolant of f0 in (9). Then the finite
element method for the problem (9) is formulated as: Find Êh ∈ WE

h (Ω) such that
∀v ∈ WE

h (Ω)

(s2ε Êh, v) + (∇ Êh,∇v) + (∇ · (ε Êh),∇ · v) − (∇ · Êh,∇ · v)
+ 〈s Êh, v〉Γ1∪Γ2 = (sε f0h, v) + 〈 f0h, v〉Γ1∪Γ2 .

(10)

Theorem 1 (well-posedness) Under the condition

f0,h ∈ L2,ε ∩ L2,1/s(Γ1 ∪ Γ2), (11)

on the data, the problem (10) has a unique solution Êh ∈ WE
h (Ω).

Proof See [1].



38 M. Asadzadeh and L. Beilina

3.3 Error Analysis

In this subsection first we give a swift a priori error bound and then continue with
a posteriori error estimates. For the sake of completeness, we set up an adaptive
algorithm for the a posteriori setting. This, however, requires a thorough and lengthy
implementations procedure which is beyond the scope of the present paper and may
be considered in a future study.

3.3.1 A Priori Error Estimates

To derive a priori error estimates we consider the continuous variational formulation
and define linear and bilinear forms in the finite element space WE

h (Ω):

a(Ê, v) =(s2ε Ê, v) + (∇ Ê,∇v) + (∇ · (ε Ê),∇ · v)
− (∇ · Ê,∇ · v) + 〈s Ê, v〉Γ1∪Γ2 , ∀v ∈ H 1(Ω)

(12)

and
L c(v) := (sε f0, v) + 〈 f0, v〉Γ1∪Γ2 , ∀v ∈ H 1(Ω). (13)

Hence we have the concise form of the variational formulation

a(Ê, v) = L c(v), ∀v ∈ H 1(Ω). (14)

This yields the Galerkin orthogonality [7] by letting, in (12) and (13), v ∈ WE
h (Ω),

as well as replacing f0 by f0,h in (13). Subtracting from (14) its discrete version
and letting e(x, s) := Ê(x, s) − Êh(x, s) be the pointwise spatial error of the finite
element approximation (10), we get

a(Ê − Êh, v) = 0, ∀v ∈ WE
h (Ω), (Galerkin orthogonality). (15)

Now we are ready to derive the following theoretical error bound

Theorem 2 Let Ê and Êh be the solutions for the continuous problem (9) and
its finite element approximation, (10), respectively. Then, there is a constant C,
independent of Ê and h, such that

|||e||| ≤ C ‖ hÊ ‖H 2
w(Ω) .

where w = w(ε(x), s) is the weight function which depends on the dielectric permit-
tivity function ε(x) and the pseudo-frequency variable s.

Proof See the proof of Theorem 1 in [1].
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3.3.2 A Posteriori Error Estimates

For the approximate solution Êh = Êh(x, s)of the problem (9),wedefine the residual
errors

−R(Êh) :=s2ε(x)Êh − 
Êh − ∇(∇ · ((ε(x) − 1)Êh) − sε(x) f0,h(x), and

−RΓ (Êh) :=h−α
(

∂ν Êh + s Êh − f0,h(x)
)

, for x ∈ Γ1 ∪ Γ2, 0 < α ≤ 1.

(16)
By the Galerkin orthogonality we have thatR(Êh) ⊥ WE

h (Ω). Now the objective is
to bound the triple norm of the error e(x, s) := Ê(x, s) − Êh(x, s) by some adequate
norms ofR(Êh) andRΓ (Êh)with a relevant, fast, decay. This may be done in a few,
relatively similar,ways, e.g., one can use the variational formulation and interpolation
in the error combined with Galerkin orthogonality. Or one may use a dual problem
approach setting the source term (or initial data) on the right hand side as the error.

The proof of the main result relies on assuming a first order approximation for
the initial value of the original field f0(x) := E(x, t)|t=0− , for β ≈ 1, viz,

‖ f0 − f0,h ‖ε≈‖ f0 − f0,h ‖1/s,Γ ≈‖ f0 − f0,h ‖(ε−1)2/s,Γ = O(hβ). (17)

Theorem 3 Let Ê and Êh be the solutions for the continuous problem (9) and its
finite element approximation (10), respectively. Further we assume that we have
the error bound (17) for the initial field f0(x) := E(x, t)|t=0− . Then, there exist
interpolation constants C1 and C2, independent of h, and Ê, but may depend on ε

and s such that the following a posteriori error estimate holds true

|||e||| ≤ C1 h ‖ R ‖ +C2 h
α ‖ RΓ ‖1/s, Γ1∪Γ2 +O(hβ), (18)

where α ≈ β ≈ 1.

Proof See [1]

An adaptivity algorithm
Given an admissible small error tolerance T OL > 0, we outline formal adaptivity
steps to reach

|||e||| ≤ T OL . (19)

To this end we start with a course mesh with mesh size h and
Step 1. Compute the approximate solution Êh and its corresponding domain and

boundary residuals R and RΓ , respectively.
Step 2. Check whether

C1 h ‖ R ‖ +C2 h
α ‖ RΓ ‖1/s, Γ1∪Γ2 +O(hβ) ≤ T OL? (20)

for α ≈ β ≈ 1.
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Step 3. If (20) is valid stop and accept the current h-function. Otherwise, refine in
regions where the contribution to the right hand side in (18) is large (on each iteration
step you need to choose a criterion for this largeness). Replace the h-function by the
new refined one and go to Step 1.

4 Numerical Examples

We refer to [1] for complete description of numerical tests. Numerical tests are per-
formed in the computational domainΩ = [0, 1] × [0, 1]. The source data f (x), x ∈
R

2 (the right hand side) in the model problem (8) for the electric field Ê = (Ê1, Ê2)

is chosen such that the function

Ê1 = 2

s3ε
π sin2 πx cosπy sin πy,

Ê2 = − 2

s3ε
π sin2 πy cosπx sin πx .

(21)

is the exact solution of the model problem (8).
We define the function ε as

ε(x, y) =
{

1 + sinm π(2x − 0.5) · sinm π(2y − 0.5) in [0.25, 0.75] × [0.25, 0.75],
1 otherwise.

(22)

for an integer m > 1.
The computational domainΩ is discretized into triangles K of sizes hl = 2−l , l =

1, ..., 6. Numerical tests are performed for different m = 2, ..., 9 in (22), s = 20
in (8), and the relative errors e1l , e

2
l are measured in L2-norm and the H 1-norms,

respectively, which we compute as

e1l = ‖Ê − Êh‖L2

‖Ê‖L2

, (23)

e2l = ‖∇(Ê − Êh)‖L2

‖∇ Ê‖L2

. (24)

Here,

Ê :=
√

Ê2
1 + Ê2

2 Êh :=
√

Ê2
1h + Ê2

2h . (25)

Figure2 presents convergence of P1 finite element scheme for m = 2, 9 in (22).
Tables 1 and 2 present convergence rates q1, q2 for m = 2, 9 which we compute as

q1 =
log

(

e1l h
e1l 2h

)

log(0.5)
, q2 =

log
(

e2l h
e2l 2h

)

log(0.5)
, (26)
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Fig. 2 Relative errors for m = 2 (left) and m = 9 (right)

Table 1 Relative errors in the L2-norm and in the H1-norm for mesh sizes hl = 2−l , l = 1, ..., 6,
for m = 2 in (22). Here, nel is number of elements and nno is number of nodes in the mesh

l nel nno e1l q1 e2l q2

1 8 9 2.71 · 10−2 8.60 · 10−2

2 32 25 6.66 · 10−3 2.02 3.25 · 10−2 1.40

3 128 81 1.78 · 10−3 1.90 1.75 · 10−2 8.99 · 10−1

4 512 289 4.13 · 10−4 2.11 1.02 · 10−2 7.79 · 10−1

5 2048 1089 1.05 · 10−4 1.97 5.29 · 10−3 9.42 · 10−1

6 8192 4225 2.65 · 10−5 1.99 2.70 · 10−3 9.69 · 10−1

Table 2 Relative errors in the L2-norm and in the H1-norm for mesh sizes hl = 2−l , l = 1, ..., 6,
for m = 9 in (22). Here, nel is number of elements and nno is number of nodes in the mesh

l nel nno e1l q1 e2l q2

1 8 9 1.73 · 10−2 7.29 · 10−2

2 32 25 3.33 · 10−3 2.38 3.57 · 10−2 1.03

3 128 81 8.98 · 10−4 1.89 2.15 · 10−2 7.33 · 10−1

4 512 289 2.36 · 10−4 1.93 1.08 · 10−2 9.94 · 10−1

5 2048 1089 6.09 · 10−5 1.96 5.26 · 10−3 1.04

6 8192 4225 1.55 · 10−5 1.98 2.62 · 10−3 1.00

where eil h, e
i
l 2h, i = 1, 2, are computed relative norms eil , i = 1, 2, on the finite ele-

ment mesh with the mesh size h and 2h, respectively. Similar convergence rates are
obtained for m = 3, 4, 5, 8. Figure 3 shows computed and exact solutions on differ-
ent finite element meshes form = 2 andm = 9 in (22). We observe that our P1 finite
element scheme behaves like a first order method for H 1(Ω)-norm and second order
method for L2(Ω)-norm.
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|Eh|,m= 2

h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625
|E|,m= 2

h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625
|Eh|,m= 9

h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625
|E|,m= 9

h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

Fig. 3 Computed versus exact solution for different meshes taking m = 2 and m = 9 in (22)

5 Conclusion

We presented convergence analysis for the stabilized P1 finite element scheme
applied to the solution of time harmonicMaxwell’s equationswith constant dielectric
permittivity function ε(x) in a boundary neighborhood. For the convergence study
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of stabilized P1 finite element method for a time dependent problem for Maxwell’s
equations we refer to [2]. Optimal a priori and a posteriori error bounds are derived
in weighted energy norms and numerical results validate obtained theoretical error
bounds.

Proposed scheme can be applied for the solution of coefficient inverse problems
with constant dielectric permittivity function in a boundary neighborhood, see [3–5,
8–10, 14, 15] for a such problems.
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Regularized Linear Inversion with
Randomized Singular Value
Decomposition

Kazufumi Ito and Bangti Jin

Abstract In thiswork,we develop efficient solvers for linear inverse problems based
on randomized singular value decomposition (RSVD). This is achieved by com-
bining RSVD with classical regularization methods, e.g., truncated singular value
decomposition, Tikhonov regularization, and general Tikhonov regularization with
a smoothness penalty. One distinct feature of the proposed approach is that it explic-
itly preserves the structure of the regularized solution in the sense that it always lies
in the range of a certain adjoint operator. We provide error estimates between the
approximation and the exact solution under canonical source condition, and inter-
pret the approach in the lens of convex duality. Extensive numerical experiments are
provided to illustrate the efficiency and accuracy of the approach.

Keywords Linear inverse problmes · Randomized singular value decomposition ·
Tikhonov regularization

MSC: 65F22

1 Introduction

This work is devoted to randomized singular value decomposition (RSVD) for the
efficient numerical solution of the following linear inverse problem

Ax = b, (1)
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where A ∈ R
n×m , x ∈ R

m and b ∈ R
n denote the data formation mechanism,

unknown parameter and measured data, respectively. The data b is generated by
b = b† + e, where b† = Ax† is the exact data, and x† and e are the exact solution
and noise, respectively. We denote by δ = ‖e‖ the noise level.

Due to the ill-posed nature, regularization techniques are often applied to obtain
a stable numerical approximation. A large number of regularization methods have
been developed. The classical ones include Tikhonov regularization and its variant,
truncated singular value decomposition, and iterative regularization techniques, and
they are suitable for recovering smooth solutions. More recently, general variational
type regularization methods have been proposed to preserve distinct features, e.g.,
discontinuity, edge and sparsity. This work focuses on recovering a smooth solution
by Tikhonov regularization and truncated singular value decomposition, which are
still routinely applied in practice. However, with the advent of the ever increasing
data volume, their routine application remains challenging, especially in the context
of massive data and multi-query, e.g., Bayesian inversion or tuning multiple hyper-
parameters. Hence, it is still of great interest to develop fast inversion algorithms.

In this work, we develop efficient linear inversion techniques based on RSVD.
Over the last decade, a number of RSVD inversion algorithms have been developed
and analyzed [10, 11, 20, 26, 31]. RSVD exploits the intrinsic low-rank structure of
A for inverse problems to construct an accurate approximation efficiently. Our main
contribution lies in providing a unified framework for developing fast regularized
inversion techniques based on RSVD, for the following three popular regularization
methods: truncated SVD, standard Tikhonov regularization, and Tikhonov regular-
izationwith a smooth penalty. Themain novelty is that it explicitly preserves a certain
range condition of the regularized solution, which is analogous to source condition
in regularization theory [5, 13], and admits interpretation in the lens of convex dual-
ity. Further, we derive error bounds on the approximation with respect to the true
solution x† in Sect. 4, in the spirit of regularization theory for noisy operators. These
results provide guidelines on the low-rank approximation, and differ from existing
results [1, 14, 30, 32, 33], where the focus is on relative error estimates with respect
to the regularized solution.

Now we situate the work in the literature on RSVD for inverse problems. RSVD
has been applied to solving inverse problems efficiently [1, 30, 32, 33]. Xiang and
Zou [32] developed RSVD for standard Tikhonov regularization and provided rel-
ative error estimates between the approximate and exact Tikhonov minimizer, by
adapting the perturbation theory for least-squares problems. In the work [33], the
authors proposed two approaches based respectively on transformation to standard
form and randomized generalized SVD (RGSVD), and for the latter, RSVD is only
performed on the matrix A. There was no error estimate in [33]. Wei et al [30] pro-
posed different implementations, and derived some relative error estimates. Boutsidis
and Magdon [1] analyzed the relative error for truncated RSVD, and discussed the
sample complexity. Jia and Yang [14] presented a different way to perform truncated
RSVD via LSQR for general smooth penalty, and provided relative error estimates.
See also [16] for an evaluation within magnetic particle imaging. More generally,
the idea of randomization has been fruitfully employed to reduce the computational
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cost associated with regularized inversion in statistics and machine learning, under
the name of sketching in either primal or dual spaces [2, 22, 29, 34]. All these works
also essentially exploit the low-rank structure, but in a different manner. Our analysis
may also be extended to these approaches.

The rest of the paper is organized as follows. In Sect. 2, we recall preliminaries
on RSVD, especially implementation and error bound. Then in Sect. 3, under one
single guiding principle, we develop efficient inversion schemes based on RSVD for
three classical regularization methods, and give the error analysis in Sect. 4. Finally
we illustrate the approaches with some numerical results in Sect. 5. In the appendix,
we describe an iterative refinement scheme for (general) Tikhonov regularization.
Throughout, we denote by lower and capital letters for vectors and matrices, respec-
tively, by I an identity matrix of an appropriate size, by ‖ · ‖ the Euclidean norm
for vectors and spectral norm for matrices, and by (·, ·) for Euclidean inner prod-
uct for vectors. The superscript ∗ denotes the vector/matrix transpose. We use the
notationR(A) andN (A) to denote the range and kernel of a matrix A, and Ak and
Ãk denote the optimal and approximate rank-k approximations by SVD and RSVD,
respectively. The notation c denotes a generic constant which may change at each
occurrence, but is always independent of the condition number of A.

2 Preliminaries

Now we recall preliminaries on RSVD and technical lemmas.

2.1 SVD and Pseudoinverse

Singular value decomposition (SVD) is one of most powerful tools in numerical
linear algebra. For any matrix A ∈ R

n×m , SVD of A is given by

A = UΣV ∗,

where U = [u1, u2, . . . , un] ∈ R
n×n and V = [v1, v2, . . . , vm] ∈ R

m×m are col-
umn orthonormal matrices, with the vectors ui and vi being the left and right sin-
gular vectors, respectively, and V ∗ denotes the transpose of V . The diagonal matrix
Σ = diag(σi ) ∈ R

n×m has nonnegative diagonal entries σi , known as singular values
(SVs), ordered nonincreasingly:

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σmin(m,n) = 0,

where r = rank(A) is the rank of A. Let σi (A) be the i th SV of A. The complexity of
the standard Golub-Reinsch algorithm for computing SVD is 4n2m + 8m2n + 9m3

(for n ≥ m) [8, p. 254]. Thus, it is expensive for large-scale problems.
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Now we can give the optimal low-rank approximation to A. By Eckhardt-Young
theorem, the optimal rank-k approximation Ak of A (in spectral norm) is given by

‖A −UkΣkV
∗
k ‖ = σk+1,

where Uk ∈ R
n×k and Vk ∈ R

m×k are the submatrix formed by taking the first k
columns of the matrices U and V , and Σk = diag(σ1, . . . , σk) ∈ R

k×k . The pseu-
doinverse A† ∈ R

m×n of A ∈ R
n×m is given by

A† = VrΣ
−1
r U ∗

r .

We have the following properties of the pseudoinverse of matrix product.

Lemma 1 For any A ∈ R
m×n, B ∈ R

n×l , the identity (AB)† = B†A† holds, if one
of the following conditions is fulfilled: (i) A has orthonormal columns; (ii) B has
orthonormal rows; (iii) A has full column rank and B has full row rank.

The next result gives an estimate on matrix pseudoinverse.

Lemma 2 For symmetric semipositive definite A, B ∈ R
m×m, there holds

‖A† − B†‖ ≤ ‖A†‖‖B†‖‖B − A‖.

Proof Since A is symmetric semipositive definite, we have A† = limμ→0+(A +
μI )−1.By the identityC−1 − D−1 = C−1(D − C)D−1 for invertibleC, D ∈ R

m×m ,

A† − B† = lim
μ→0+

[(A + μI )−1 − (B + μI )−1]
= lim

μ→0+
[(A + μI )−1(B − A)(B + μI )−1] = A†(B − A)B†.

Now the estimate follows from the matrix spectral norm estimate. �

Remark 1 The estimate for general matrices is weaker than the one in Lemma 2:
for general A, B ∈ R

n×m with rank(A) = rank(B) < min(m, n), there holds [25]

‖A† − B†‖ ≤ 1+√
5

2 ‖A†‖‖B†‖‖B − A‖.

The rank condition is essential, and otherwise, the estimate may not hold.

Last, we recall the stability of SVs ([12, Corollary 7.3.8], [27, Sect. 1.3]).

Lemma 3 For A, B ∈ R
n×m, there holds

|σi (A + B) − σi (A)| ≤ ‖B‖, i = 1, . . . ,min(m, n).
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2.2 Randomized SVD

Traditional numerical methods to compute a rank-k SVD, e.g., Lanczos bidiago-
nalization and Krylov subspace method, are especially powerful for large sparse or
structured matrices. However, for many discrete inverse problems, there is no such
structure. The prototypical model in inverse problems is a Fredholm integral equa-
tion of the first kind, which gives rise to unstructured dense matrices. Over the past
decade, randomized algorithms for computing low-rank approximations have gained
popularity. Frieze et al. [6] developed a Monte Carlo SVD to efficiently compute an
approximate low-rank SVD based on non-uniform row and column sampling. Sarlos
[23] proposed an approach based on random projection, using properties of random
vectors to build a subspace capturing the matrix range. Below we describe briefly
the basic idea of RSVD, and refer readers to [11] for an overview and to [10, 20, 26]
for an incomplete list of recent works.

RSVD can be viewed as an iterative procedure based on SVDs of a sequence of
low-rank matrices to deliver a nearly optimal low-rank SVD. Given a matrix A ∈
R

n×m with n ≥ m, we aim at obtaining a rank-k approximation, with k 	 min(m, n).
Let Ω ∈ R

m×(k+p), with k + p ≤ m, be a random matrix, with its entries following
an i.i.d. Gaussian distribution N (0, 1), and the integer p ≥ 0 is an oversampling
parameter (with a default value p = 5 [11]). Then we form a random matrix Y by

Y = (AA∗)q AΩ, (2)

where the exponent q ∈ N ∪ {0}. By SVD of A, i.e., A = UΣV ∗, Y is given by

Y = UΣ2q+1V ∗Ω.

Thus Ω is used for probing R(A), and R(Y ) captures R(Uk) well. The accuracy
is determined by the decay of σi s, and the exponent q can greatly improve the
performance when σi s decay slowly. Let Q ∈ R

n×(k+p) be an orthonormal basis for
R(Y ), which can be computed efficiently via QR factorization or skinny SVD. Next
we form the (projected) matrix

B = Q∗A ∈ R
(k+p)×m .

Last, we compute SVD of B
B = WSV ∗,

withW ∈ R
(k+p)×(k+p), S ∈ R

(k+p)×(k+p) and V ∈ R
m×(k+p). This again can be car-

ried out efficiently by standard SVD, since the size of B is much smaller. With 1 : k
denoting the index set {1, . . . , k}, let Ũk = QW (1 : n, 1 : k) ∈ R

n×k , Σ̃k = S(1 :
k, 1 : k) ∈ R

k×k and Ṽk = V (1 : m, 1 : k) ∈ R
m×k . The triple (Ũk, Σ̃k, Ṽk) defines

a rank-k approximation Ãk :
Ãk = ŨkΣ̃k Ṽ

∗
k .
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The triple (Ũk, Σ̃k, Ṽk) is a nearly optimal rank-k approximation to A; see Theorem
1 below for a precise statement. The approximation is random due to range probing
by Ω . By its very construction, we have

Ãk = P̃k A, (3)

where P̃k = ŨkŨ ∗
k ∈ R

n×n is the orthogonal projection into R(Ũk). The procedure
for RSVD is given in Algorithm 1. The complexity of Algorithm 1 is about 4(q +
1)nmk, which can be much smaller than that of full SVD if k 	 min(m, n).

Algorithm 1 RSVD for A ∈ R
n×m , n ≥ m.

1: Input matrix A ∈ R
n×m , n ≥ m, and target rank k;

2: Set parameters p (default p = 5), and q (default q = 0);
3: Sample a random matrix Ω = (ωi j ) ∈ R

m×(k+p), with ωi j ∼ N (0, 1);
4: Compute the randomized matrix Y = (AA∗)q AΩ;
5: Find an orthonormal basis Q of range(Y ) by QR decomposition;
6: Form the matrix B = Q∗A;
7: Compute the SVD of B = WSV ∗;
8: Return the rank k approximation (Ũk , Σ̃k , Ṽk), cf. (3).

Remark 2 The SV σi can be characterized by [8, Theorem 8.6.1, p. 441]:

σi = max
u∈Rn ,u⊥span({u j }i−1

j=1)

‖A∗u‖
‖u‖ .

Thus, one may estimate σi (A) directly by σ̃i (A) = ‖A∗Ũ (:, i)‖, and refine the SV
estimate, similar to Rayleigh quotient acceleration for computing eigenvalues.

The following error estimates hold for RSVD (Ũk, Σ̃k, Ṽk) given by Algorithm
1 with q = 0 [11, Corollary 10.9, p. 275], where the second estimate shows how
the parameter p improves the accuracy. The exponent q is in the spirit of a power
method, and can significantly improve the accuracy in the absence of spectral gap;
see [11, Corollary 10.10, p. 277] for related discussions.

Theorem 1 For A ∈ R
n×m, n ≥ m, let Ω ∈ R

m×(k+p) be a standard Gaussian
matrix, k + p ≤ m and p ≥ 4, and Q an orthonormal basis forR(AΩ). Then with
probability at least 1 − 3p−p, there holds

‖A − QQ∗A‖ ≤ (1 + 6((k + p)p log p)
1
2 )σk+1 + 3

√
k + p

⎛

⎝
∑

j>k

σ 2
j

⎞

⎠

1
2

,
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and further with probability at least 1 − 3e−p, there holds

‖A − QQ∗A‖ ≤
(

1 + 16

(
1 + k

p + 1

) 1
2

)

σk+1 + 8(k + p)
1
2

p + 1

⎛

⎝
∑

j>k

σ 2
j

⎞

⎠

1
2

.

The next result is an immediate corollary of Theorem 1. Exponentially decaying
SVs arise in, e.g., backward heat conduction and elliptic Cauchy problem.

Corollary 1 Suppose that the SVs σi decay exponentially, i.e., σ j = c0c
j
1 , for some

c0 > 0 and c1 ∈ (0, 1). Then with probability at least 1 − 3p−p, there holds

‖A − QQ∗A‖ ≤
[

1 + 6((k + p)p log p)
1
2 + 3(k + p)

1
2

(1 − c21)
1
2

]

σk+1,

and further with probability at least 1 − 3e−p, there holds

‖A − QQ∗A‖ ≤
[(

1 + 16

(
1 + k

p + 1

) 1
2

)

+ 8(k + p)
1
2

(p + 1)(1 − c21)
1
2

]

σk+1.

So far we have assumed that A is tall, i.e., n ≥ m. For the case n < m, one may
apply RSVD to A∗, which gives rise to Algorithm 2.

Algorithm 2 RSVD for A ∈ R
n×m, n < m.

1: Input matrix A ∈ R
n×m , n < m, and target rank k;

2: Set parameters p (default p = 5), and q (default q = 0);
3: Sample a random matrix Ω = (ωi j ) ∈ R

(k+p)×n , with ωi j ∼ N (0, 1);
4: Compute the randomized matrix Y = ΩA(A∗A)q ;
5: Find an orthonormal basis Q of range(Y ∗) by QR decomposition;
6: Find the matrix B = AQ;
7: Compute the SVD of B = USV ∗;
8: Return the rank k approximation (Ũk , Σ̃k , Ṽk).

The efficiency of RSVD resides crucially on the truly low-rank nature of the
problem. The precise spectral decay is generally unknown for many practical inverse
problems, although there are known estimates for severalmodel problems, e.g., X-ray
transform [18] andmagnetic particle imaging [17]. The decay rates generally worsen
with the increase of the spatial dimension d, at least for integral operators [9], which
can potentially hinder the application of RSVD type techniques to high-dimensional
problems.
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3 Efficient Regularized Linear Inversion with RSVD

Now we develop efficient inversion techniques based on RSVD for problem (1) via
truncated SVD (TSVD), Tikhonov regularization and Tikhonov regularization with a
smoothness penalty [5, 13]. For large-scale inverse problems, this can be expensive,
since they either involve full SVD or large dense linear systems. We aim at reducing
the cost by exploiting the inherent low-rank structure for inverse problems, and
accurately constructing a low-rank approximation by RSVD. This idea has been
pursued recently [1, 14, 30, 32, 33]. Our work is along the same line in of research
but with a unified framework for deriving all three approaches and interpreting the
approach in the lens of convex duality.

The key observation is the range type condition on the approximation x̃ :

x̃ ∈ R(B), (4)

with the matrix B is given by

B =
{
A∗, truncated SVD, Tikhonov,
L†L∗†A∗, general Tikhonov,

where L is a regularizing matrix, typically chosen to the finite difference approxi-
mation of the first- or high-order derivatives [5]. Similar to (4), the approximation
x̃ is assumed to live in span({vi }ki=1) in [34] for Tikhonov regularization, which is
slightly more restrictive than (4). An analogous condition on the exact solution x†

reads
x† = Bw (5)

for some w ∈ R
n . In regularization theory [5, 13], (5) is known as source condition,

and can be viewed as the Lagrange multiplier for the equality constraint Ax† = b†,
whose existence is generally not ensured for infinite-dimensional problems. It is
often employed to bound the error ‖x̃ − x†‖ of the approximation x̃ in terms of the
noise level δ. The construction below explicitly maintains (4), thus preserving the
structure of the regularized solution x̃ . We will interpret the construction by convex
analysis. Below we develop three efficient computational schemes based on RSVD.

3.1 Truncated RSVD

Classical truncated SVD (TSVD) stabilizes problem (1) by looking for the least-
squares solution of

min ‖Akxk − b‖, with Ak = UkΣkV
∗
k .



Regularized Linear Inversion with Randomized Singular … 53

Then the regularized solution xk is given by

xk = A†
kb = VkΣ

−1
k U ∗

k b =
k∑

i=1

σ−1
i (ui , b)vi .

The truncated level k ≤ rank(A) plays the role of a regularization parameter, and
determines the strength of regularization. TSVD requires computing the (partial)
SVD of A, which is expensive for large-scale problems. Thus, one can substitute a
rank-k RSVD (Ũk, Σ̃k, Ṽk), leading to truncated RSVD (TRSVD):

x̂k = ṼkΣ̃
−1
k Ũ ∗

k b.

By Lemma 3, Ãk = ŨkΣ̃k Ṽ ∗
k is indeed of rank k, if ‖A − Ãk‖ < σk . This approach

was adopted in [1]. Based on RSVD, we propose an approximation x̃k defined by

x̃k = A∗( Ãk Ã
∗
k)

†b = A∗
k∑

i=1

(ũi , b)

σ̃ 2
i

ũi . (6)

By its construction, the range condition (4) holds for x̃k . To compute x̃k , one does
not need the complete RSVD (Ũk, Σ̃k, Ṽk) of rank k, but only (Ũk, Σ̃k), which
is advantageous for complexity reduction [8, p. 254]. Given the RSVD (Ũk, Σ̃k),
computing x̃k by (6) incurs only O(nk + nm) operations.

3.2 Tikhonov Regularization

Tikhonov regularization stabilizes (1) by minimizing the following functional

Jα(x) = 1
2‖Ax − b‖2 + α

2 ‖x‖2,

where α > 0 is the regularization parameter. The regularized solution xα is given by

xα = (A∗A + α I )−1A∗b = A∗(AA∗ + α I )−1b. (7)

The latter identity verifies (4). The cost of the step in (7) is about nm2 + m3

3 or

mn2 + n3

3 [8, p. 238], and thus it is expensive for large scale problems. One approach
to accelerate the computation is to apply the RSVD approximation Ãk = ŨkΣ̃k Ṽ ∗

k .
Then one obtains a regularized approximation [32]

x̂α = ( Ã∗
k Ãk + α I )−1 Ã∗

kb. (8)

To preserve the range property (4), we propose an alternative
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x̃α = A∗( Ãk Ã
∗
k + α I )−1b = A∗

k∑

i=1

(ũi , b)

σ̃ 2
i + α

ũi . (9)

For α → 0+, x̃α recovers the TRSVD x̃k in (6). Given RSVD (Ũk, Σ̃k), the com-
plexity of computing x̃α is nearly identical with the TRSVD x̃k .

3.3 General Tikhonov Regularization

Now we consider Tikhonov regularization with a general smoothness penalty:

Jα(x) = 1
2‖Ax − b‖2 + α

2 ‖Lx‖2, (10)

where L ∈ R
�×m is a regularizingmatrix enforcing smoothness. Typical choices of L

include first-order and second-order derivatives. We assume N (A) ∩ N (L) = {0}
so that Jα has a unique minimizer xα . By the identity

(A∗A + α I )−1A∗ = A∗(AA∗ + α I )−1, (11)

ifN (L) = {0}, the minimizer xα to Jα is given by (with Γ = L†L†∗)

xα = (A∗A + αL∗L)−1(A∗y)

= L†((AL†)∗AL† + α I )−1(AL†)∗b

= Γ A∗(AΓ A∗ + α I )−1b. (12)

TheΓ factor reflects the smoothingproperty of‖Lx‖2. Similar to (9),we approximate
B := AL† via RSVD: B̃k = UkΣkV ∗

k , and obtain a regularized solution x̃α by

x̃α = Γ A∗(B̃k B̃
∗
k + α I )−1b. (13)

It differs from [33] in that [33] uses only the RSVD approximation of A, thus it does
not maintain the range condition (19). The first step of Algorithm 1, i.e., AL−1Ω , is
to probe R(A) with colored Gaussian noise with covariance Γ .

Numerically, it also involves applying Γ , which can be carried out efficiently if
L is structured. If L is rectangular, we have the following decomposition [4, 32].
The A-weighted pseudoinverse L# [4] can be computed efficiently, if L† is easy to
compute and the dimensionality of W is small.

Lemma 4 Let W and Z be any matrices satisfying R(W ) = N (L), R(Z) =
R(L), Z∗Z = I , and L# = (I − W (AW )†A)L†. Then the solution xα to (10) is
given by

xα = L#Zξα + W (AW )†b, (14)
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where the variable ξα minimizes 1
2‖AL#Zξ − b‖2 + α

2 ‖ξ‖2.
Lemma 4 does not necessarily entail an efficient scheme, since it requires an

orthonormal basis Z for R(L). Hence, we restrict our discussion to the case:

L ∈ R
�×m with rank(L) = � < m. (15)

It arises most commonly in practice, e.g., first-order or second-order derivative, and
there are efficient ways to perform standard-form reduction. Then we can let Z = I�.
By slightly abusing the notation Γ = L#L#∗, by Lemma 4, we have

xα = L#((AL#)∗AL# + α I )−1(AL#)∗b + W (AW )†b

= Γ A∗(AΓ A∗ + α I )−1b + W (AW )†b.

The first term is nearly identical with (12), with L# in place of L†, and the extra term
W (AW )†b belongs toN (L). Thus, we obtain an approximation x̃α defined by

x̃α = Γ A∗(B̃k B̃k + α I )−1b + W (AW )†b, (16)

where B̃k is a rank-k RSVD to B ≡ AL#. Thematrix B can be implemented implicitly
via matrix-vector product to maintain the efficiency.

3.4 Dual Interpretation

Nowwe give an interpretation of (13) in the lens of Fenchel duality theory in Banach
spaces (see, e.g., [3, Chap. 2.4]). Recall that for a functional F : X → R := R ∪ {∞}
defined on a Banach space X , let F∗ : X∗ → R denote the Fenchel conjugate of F
given for x∗ ∈ X∗ by

F∗(x∗) = sup
x∈X

〈x∗, x〉X∗,X − F(x).

Further, let ∂F(x) := {x∗ ∈ X∗ : 〈x∗, x̃ − x〉X∗,X ≤ F(x̃) − F(x) ∀x̃ ∈ X} be the
subdifferential of the convex functional F at x , which coincides with Gâteaux deriva-
tive F ′(x) if it exists. The Fenchel duality theorem states that if F : X → R and
G : Y → R are proper, convex and lower semicontinuous functionals on the Banach
spaces X and Y , Λ : X → Y is a continuous linear operator, and there exists an
x0 ∈ W such that F(x0) < ∞, G(Λx0) < ∞, and G is continuous at Λx0, then

inf
x∈X F(x) + G(Λx) = sup

y∗∈Y ∗
−F∗(Λ∗y∗) − G∗(−y∗),

Further, the equality is attained at (x̄, ȳ∗) ∈ X × Y ∗ if and only if
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Λ∗ ȳ∗ ∈ ∂F(x̄) and − ȳ∗ ∈ ∂G(Λx̄), (17)

hold [3, Remark 3.4.2].
The next result indicates that the approach in Sects. 3.2–3.3 first applies RSVD

to the dual problem to obtain an approximate dual p̃α , and then recovers the optimal
primal x̃α via duality relation (17). This connection is in the same spirit of dual random
projection [29, 34], and it opens up the avenue to extend RSVD to functionals whose
conjugate is simple, e.g., nonsmooth fidelity.

Proposition 1 If N (L) = {0}, then x̃α in (13) is equivalent to RSVD for the dual
problem.

Proof For any symmetric positive semidefinite Q, the conjugate functional F∗ of
F(x) = α

2 x
∗Qx is given by F∗(ξ) = − 1

2α ξ ∗Q†ξ , with its domain being R(Q). By
SVD, we have (L∗L)† = L†L†∗, and thus F∗(ξ) = − 1

2α ‖L†∗ξ‖2. Hence, by Fenchel
duality theorem, the conjugate J ∗

α (ξ) of Jα(x) is given by

J ∗
α (ξ) := − 1

2α ‖L†∗A∗ξ‖2 − 1
2‖ξ − b‖2.

Further, by (17), the optimal primal and dual pair (xα, ξα) satisfies

αL∗Lxα = A∗ξα and ξα = b − Axα.

Since N (L) = {0}, L∗L is invertible, and thus xα = α−1(L∗L)−1A∗ξα = α−1

Γ A∗ξα . The optimal dual ξα is given by ξα = α(AL†L∗†A∗ + α I )−1b. To approxi-
mate ξα by ξ̃α , we employ the RSVD approximation B̃k to B = AL† and solve

ξ̃α = argmax
ξ∈Rn

{− 1
2α ‖B̃∗

k ξ‖2 − 1
2‖ξ − b‖2}.

We obtain an approximation via the relation x̃α = α−1Γ A∗ξ̃α , recovering (13). �

Remark 3 For a general regularizingmatrix L , one can appeal to the decomposition
in Lemma 4, by applying first the standard transformation and then approximating
the regularized part via convex duality.

4 Error Analysis

Now we derive error estimates for the approximation x̃ with respect to the true
solution x†, under sourcewise type conditions. In addition to bounding the error, the
estimates provide useful guidelines on constructing the approximation Ãk .
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4.1 Truncated RSVD

We derive an error estimate under the source condition (5). We use the projection
matrices Pk = UkU ∗

k and P̃k = ŨkŨ ∗
k frequently below.

Lemma 5 For any k ≤ r and ‖A − Ãk‖ ≤ σk/2, there holds ‖A∗( Ã∗
k)

†‖ ≤ 2.

Proof It follows from thedecomposition A = P̃k A + (I − P̃k)A = Ãk + (I − P̃k)A
that

‖A∗( Ã∗
k)

†‖ = ‖( Ãk + (I − P̃k)A)∗( Ã∗
k)

†‖ ≤ ‖ Ã∗
k( Ã

∗
k)

−1‖ + ‖A − Ãk‖‖ Ã−1
k ‖

≤ 1 + σ̃−1
k ‖A − Ãk‖.

Now the condition ‖A − Ãk‖ ≤ σk/2 and Lemma 3 imply σ̃k ≥ σk − ‖A − Ãk‖ ≥
σk/2, from which the desired estimate follows. �

Now we can state an error estimate for the approximation x̃k .

Theorem 2 If Condition (5) holds and ‖A − Ãk‖ ≤ σk/2, then for the estimate x̃k
in (6), there holds

‖x† − x̃k‖ ≤ 4δσ−1
k + 8σ1σ

−1
k ‖Ak − Ãk‖‖w‖ + σk+1‖w‖.

Proof By the decomposition b = b† + e, we have (with P⊥
k = I − Pk)

x̃k − x† = A∗( Ãk Ã
∗
k)

†b − A∗(AA∗)†b†

= A∗( Ãk Ã
∗
k)

†e + A∗[( Ãk Ã
∗
k)

† − (Ak A
∗
k)

†]b† − P⊥
k A∗(AA∗)†b†.

The source condition x† = A∗w in (5) implies

x̃k − x† = A∗( Ãk Ã
∗
k)

†e + A∗[( Ãk Ã
∗
k)

† − (Ak A
∗
k)

†]AA∗w − P⊥
k A∗(AA∗)†AA∗w.

By the triangle inequality, we have

‖x̃k − x†‖ ≤ ‖A∗( Ãk Ã
∗
k)

†e‖ + ‖A∗[( Ãk Ã
∗
k)

† − (Ak A
∗
k)

†]AA∗w‖
+ ‖P⊥

k A∗(AA∗)†AA∗w‖ := I1 + I2 + I3.

It suffices to bound the three terms separately. First, for the term I1, by the identity
( Ãk Ã∗

k)
† = ( Ã∗

k)
† Ã†

k and Lemma 5, we have

I1 ≤ ‖A∗( Ã∗
k)

†‖‖ Ã†
k‖‖e‖ ≤ 2σ̃−1

k δ.

Second, for I2, by Lemmas 5 and 2 and the identity ( Ãk Ã∗
k)

† = ( Ã∗
k)

† Ã†
k , we have
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I2 ≤ ‖A∗[( Ãk Ã
∗
k)

† − (Ak A
∗
k)

†]AA∗‖‖w‖
≤ ‖A∗( Ãk Ã

∗
k)

†( Ãk Ã
∗
k − Ak A

∗
k)(Ak A

∗
k)

†AA∗‖‖w‖
≤ ‖A∗( Ã∗

k)
†‖‖ Ã†

k‖‖ Ãk Ã
∗
k − Ak A

∗
k‖‖(Ak A

∗
k)

†AA∗‖‖w‖
≤ 4σ̃−1

k ‖A‖‖Ak − Ãk‖‖w‖,

since ‖ Ãk Ã∗
k − Ak A∗

k‖ ≤ ‖ Ãk − Ak‖(‖ Ãk‖ + ‖A∗
k‖) ≤ 2‖A‖‖ Ãk − Ak‖ and ‖(Ak

A∗
k)

†AA∗‖ ≤ 1. By Lemma 3, we can bound the term ‖( Ã∗
k)

†‖ by

‖( Ã∗
k)

†‖ = σ̃−1
k ≤ (σk − ‖A − Ãk‖)−1 ≤ 2σ−1

k .

Last, we can bound the third term I3 directly by I3 ≤ ‖P⊥
k A∗‖‖w‖ ≤ σk+1‖w‖. Com-

bining these estimates yields the desired assertion. �

Remark 4 The bound in Theorem 2 contains three terms: propagation error σ−1
k δ,

approximation error σk+1‖w‖, and perturbation error σ−1
k ‖A‖‖A − Ãk‖‖w‖. It is

of the worst-case scenario type and can be pessimistic. In particular, the error
‖A∗( Ãk Ã∗

k)
−1e‖ can be bounded more precisely by

‖A∗( Ãk Ã
∗
k)

†e‖ ≤ ‖A∗( Ã∗
k)

†‖‖ Ã†
ke‖,

and ‖ Ã†
ke‖ can be much smaller than σ̃−1

k ‖e‖, if e concentrates in the high-frequency
modes. By balancing the terms, it suffices for Ãk to have an accuracy O(δ). This is
consistent with the analysis for regularized solutions with perturbed operators.

Remark 5 The condition ‖A − Ãk‖ < σk/2 in Theorem 2 requires a sufficiently
accurate low-rank RSVD approximation (Ũk, Σ̃k, Ṽk) to A, i.e., the rank k is suffi-
ciently large. It enables one to define a TRSVD solution x̃k of truncation level k.

Next we give a relative error estimate for x̃k with respect to the TSVD approxi-
mation xk . Such an estimate was the focus of a few works [1, 30, 32, 33]. First, we
give a bound on ‖ Ãk Ã∗

k(A
∗
k)

† − Ak‖.
Lemma 6 The following error estimate holds

‖ Ãk Ã
∗
k(A

∗
k)

† − Ak‖ ≤ (
1 + σ1σ

−1
k

) ‖Ak − Ãk‖.

Proof This estimate follows by direct computation:

‖ Ãk Ã
∗
k(A

∗
k)

† − Ak‖ = ‖[ Ãk Ã
∗
k − Ak A

∗
k ](A∗

k)
†‖

≤ ‖ Ãk( Ã
∗
k − A∗

k)(A
∗
k)

†‖ + ‖( Ãk − Ak)A
∗
k(A

∗
k)

†‖
≤ ‖ Ãk‖‖ Ã∗

k − A∗
k‖‖(A∗

k)
†‖ + ‖ Ãk − Ak‖‖A∗

k(A
∗
k)

†‖
≤ (σ1σ

−1
k + 1)‖ Ãk − Ak‖,
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since ‖ Ãk‖ = ‖P̃k A‖ ≤ ‖A‖ = σ1. Then the desired assertion follows directly. �

Next we derive a relative error estimate between the approximations xk and x̃k .

Theorem 3 For any k < r , and ‖A − Ãk‖ < σk/2, there holds

‖xk − x̃k‖
‖xk‖ ≤ 4

(
1 + σ1

σk

)‖Ak − Ãk‖
σk

.

Proof We rewrite the TSVD solution xk as

xk = A∗(Ak A
∗
k)

†b = A∗
k(Ak A

∗
k)

†b. (18)

ByLemma3and the assumption‖A − Ãk‖ < σk/2,wehave σ̃k > 0.Then xk − x̃k =
A∗((Ak A∗

k)
† − ( Ãk Ã∗

k)
†)b. By Lemma 2,

(Ak A
∗
k)

† − ( Ãk Ã
∗
k)

† = ( Ãk Ã
∗
k)

†( Ãk Ã
∗
k − Ak A

∗
k)(Ak A

∗
k)

†.

It follows from the identity (Ak A∗
k)

† = (A∗
k)

†A†
k and (18) that

xk − x̃k = A∗( Ãk Ã
∗
k)

†( Ãk Ã
∗
k − Ak A

∗
k)(Ak A

∗
k)

†b

= A∗( Ãk Ã
∗
k)

†( Ãk Ã
∗
k(A

∗
k)

† − Ak)A
∗
k(Ak A

∗
k)

†b

= A∗( Ã∗
k)

† Ã†
k( Ãk Ã

∗
k(A

∗
k)

† − Ak)xk .

Thus, we obtain

‖xk − x̃k‖
‖xk‖ ≤ ‖A∗( Ã∗

k)
†‖‖ Ã†

k‖‖ Ãk Ã
∗
k(A

∗
k)

† − Ak‖.

By Lemma 3, we bound the term ‖ Ã†
k‖ by ‖ Ã†

k‖ ≤ 2σ−1
k . Combining the preceding

estimates with Lemmas 5 and 6 completes the proof. �

Remark 6 The relative error is determined by k (and in turn by δ etc). Due to
the presence of the factor σ−2

k , the estimate requires a highly accurate low-rank
approximation, i.e., ‖Ak − Ãk‖ 	 σk(A)−2, and hence it is more pessimistic than
Theorem 2. The estimate is comparable with the perturbation estimate for the TSVD

‖xk − x̄k‖
‖xk‖ ≤ σ1‖Ak − Ãk‖

σk − ‖Ak − Ãk‖
(

1

σ1
+ ‖Axk − b‖

σk‖b‖
)

+ ‖Ak − Ãk‖
σk

.

Modulo theα factor, the estimates in [30, 32] for Tikhonov regularization also depend
on σ−2

k (but can be much milder for a large α).
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4.2 Tikhonov Regularization

The following bounds are useful for deriving error estimate on x̃α in (9).

Lemma 7 The following estimates hold

‖(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I‖ ≤ 2α−1‖A‖‖A − Ãk‖,

‖[(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I ]AA∗‖ ≤ 2‖A‖(2α−1‖A‖‖A − Ãk‖ + 1)‖A − Ãk‖.

Proof It follows from the identity

(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I = (AA∗ − Ãk Ã

∗
k)( Ãk Ã

∗
k + α I )−1

and the inequality ‖ Ãk‖ = ‖P̃k A‖ ≤ ‖A‖ that

‖(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I‖ ≤ α−1(‖A‖ + ‖ Ãk‖)‖A − Ãk‖

≤ 2α−1‖A‖‖A − Ãk‖.

Next, by the triangle inequality,

‖[(AA∗ + α I )( Ãk Ã
∗
k + α I )−1 − I ]AA∗‖

≤ ‖AA∗ − Ãk Ã
∗
k‖(‖( Ãk Ã

∗
k + α I )−1(AA∗ + α I )‖ + α‖( Ãk Ã

∗
k + α I )−1‖).

This, together with the identity AA∗ − Ãk Ã∗
k = A(A∗ − Ã∗

k) + (A − Ãk)A∗
k and the

first estimate, yields the second estimate, completing the proof of the lemma. �

Now we can give an error estimate on x̃α in (9) under condition (5).

Theorem 4 If condition (5) holds, then the estimate x̃α satisfies

‖x̃α − x†‖ ≤ α− 3
2 ‖A‖‖A − Ãk‖

(
δ + (2α−1‖A‖‖A − Ãk‖ + 1)α‖w‖

)
+ 2−1α

1
2 ‖w‖.

Proof First, with condition (5), x† can be rewritten as

x† = (A∗A + α I )−1(A∗A + α I )x† = (A∗A + α I )−1(A∗b† + αx†)

= (A∗A + α I )−1A∗(b† + αw).

The identity (11) implies x† = A∗(AA∗ + α I )−1(b† + αw). Consequently,

x̃α − x† = A∗[( Ãk Ã
∗
k + α I )−1b − (AA∗ + α I )−1(b† + αw)]

= A∗[( Ãk Ã
∗
k + α I )−1e + (( Ãk Ã

∗
k + α I )−1

− (AA∗ + α I )−1)b† − α(AA∗ + α I )−1w].
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Let Ĩ = (AA∗ + α I )( Ãk Ã∗
k + α I )−1. Then by the identity (11), there holds

(A∗A + α I )(x̃α − x†) = A∗[ Ĩ e + ( Ĩ − I )b† − αw],

and taking inner product with x̃α − x† yields

‖A(x̃α − x†)‖2 + α‖x̃α − x†‖2 ≤
(
‖ Ĩ e‖ + ‖( Ĩ − I )b†‖ + α‖w‖

)
‖A(x̃α − x†)‖.

By Young’s inequality ab ≤ 1
4a

2 + b2 for any a, b ∈ R, we deduce

α
1
2 ‖x̃α − x†‖ ≤ 2−1(‖ Ĩ e‖ + ‖( Ĩ − I )b†‖ + α‖w‖).

By Lemma 7 and the identity b† = AA∗w, we have

‖ Ĩ e‖ ≤ 2α−1‖A‖‖A − Ãk‖δ,
‖( Ĩ − I )b†‖ = ‖( Ĩ − I )AA∗w‖

≤ 2‖A‖(2α−1‖A‖‖A − Ãk‖ + 1)‖A − Ãk‖‖w‖.

Combining the preceding estimates yield the desired assertion. �

Remark 7 To maintain the error ‖x̃α − x†‖, the accuracy of Ãk should be of O(δ),
and α should be of O(δ), which gives an overall accuracy O(δ1/2). The tolerance on
‖A − Ãk‖ can be relaxed for high noise levels. It is consistent with existing theory
for Tikhonov regularization with noisy operators [19, 21, 28].

Remark 8 The following relative error estimate was shown [32, Theorem 1]:

‖xα − x̂α‖
‖xα‖ ≤ c(2 sec θκ + tan θκ2)σk+1 + O(σ 2

k+1),

with θ = sin−1 (‖b−Axα‖2+α‖xα‖2) 1
2

‖b‖ and κ = (σ 2
1 + α)( α

1
2

σ 2
n +α

+ max1≤i≤n
σi

σ 2
i +α

). κ is a

variant of condition number. Thus, Ãk should approximate accurately A in order not
to spoil the accuracy, and the estimate can be pessimistic for small α for which the
estimate tends to blow up.

4.3 General Tikhonov Regularization

Last, we give an error estimate for x̃α defined in (13) under the following condition

x† = Γ A∗w, (19)
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where N (L) = {0}, and Γ = L†L∗†. Also recall that B = AΓ †.

Theorem 5 If Condition (19) holds, then the regularized solution x̃α in (13) satisfies

‖L(x† − x̃α)‖ ≤ α− 3
2 ‖B‖‖B − B̃k‖

(
δ + (2α−1‖B‖‖B − B̃k‖ + 1)α‖w‖

)
+ 2−1α

1
2 ‖w‖.

Proof First, by the source condition (19), we rewrite x† as

x† = (A∗A + αL∗L)−1(A∗A + αL∗L)x†

= (A∗A + αL∗L)−1(A∗b† + αA∗w).

Now with the identity (A∗A + αL∗L)−1A∗ = Γ A∗(AΓ A∗ + α I )−1, we have

x† = Γ A∗(AΓ A∗ + α I )−1(b† + αw).

Thus, upon recalling B = AL†, we have

x̃α − x† = Γ A∗[(B̃k B̃
∗
k + α I )−1b − (BB∗ + α I )−1(b† + αw)]

= Γ A∗[(B̃k B̃
∗
k + α I )−1e + ((B̃k B̃

∗
k + α I )−1

− (BB∗ + α I )−1)b† − α(BB∗ + α I )−1w].

It follows from the identity

(A∗A + αL∗L)Γ A∗ = (A∗A + αL∗L)L†L†∗A∗ = A∗(BB∗ + α I ),

that
(A∗A + αL∗L)(x̃α − x†) = A∗[ Ĩ e + ( Ĩ − I )b† − αw],

with Ĩ = (BB∗ + α I )(B̃k B̃∗
k + α I )−1. Taking inner productwith xα − x† and apply-

ing Cauchy-Schwarz inequality yield

‖A(x̃α − x†)‖2 + α‖L(x̃α − x†)‖2 ≤ (‖ Ĩ e‖ + ‖( Ĩ − I )b†‖ + ‖αw‖)‖A(x̃α − x†)‖,

Young’s inequality implies α
1
2 ‖L(x̃α − x†)‖ ≤ 2−1(‖ Ĩ e‖ + ‖( Ĩ − I )b†‖ + α‖w‖).

The identity b† = Ax† = AL†L†∗A∗w = BB∗w from (19) and Lemma 7 complete
the proof. �

5 Numerical Experiments and Discussions

Now we present numerical experiments to illustrate our approach. The noisy data b
is generated from the exact data b† as follows
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bi = b†i + δmax
j

(|b†j |)ξi , i = 1, . . . , n,

where δ is the relative noise level, and the random variables ξi s follow the standard
Gaussian distribution. All the computations were carried out on a personal laptop
with 2.50 GHz CPU and 8.00G RAM by MATLAB 2015b. When implementing
Algorithm 1, the default choices p = 5 and q = 0 are adopted. Since the TSVD
and Tikhonov solutions are close for suitably chosen regularization parameters, we
present only results for Tikhonov regularization (and the general case with L given
by the first-order difference, which has a one-dimensional kernel N (L)).

Throughout, the regularization parameter α is determined by uniformly sampling
an interval on a logarithmic scale, and then taking the value attaining the smallest
reconstruction error, where approximate Tikhonov minimizers are found by either
(9) or (16) with a large k (k = 100 in all the experiments).

5.1 One-Dimensional Benchmark Inverse Problems

First, we illustrate the efficiency and accuracy of proposed approach, and compare it
with existing approaches [32, 33].Weconsider seven examples (i.e.,deriv2,heat,
phillips, baart, foxgood, gravity and shaw), taken from the popular
public-domain MATLAB package regutools (available from http://www.imm.dtu.
dk/~pcha/Regutools/, last accessed on January 8, 2019), which have been used in
existing studies (see, e.g., [30, 32, 33]). They are Fredholm integral equations of
the first kind, with the first three examples being mildly ill-posed (i.e., σi s decay
algebraically) and the rest severely ill-posed (i.e., σi s decay exponentially). Unless
otherwise stated, the examples are discretized with a dimension n = m = 5000. The
resulting matrices are dense and unstructured. The rank k of Ãk is fixed at k = 20,
which is sufficient to for all examples.

The numerical results by standard Tikhonov regularization and two randomized
variants, i.e., (8) and (9), for the examples are presented inTable1. The accuracy of the
approximations, i.e., the Tikhonov solution xα , and two randomized approximations
x̂α (cf. (8), proposed in [32]) and x̃α (cf. (9), the proposed in this work), is measured
in two different ways:

ẽxz = ‖x̂α − xα‖, ẽi j = ‖x̃α − xα‖,
e = ‖xα − x†‖, exz = ‖x̂α − x†‖, ei j = ‖x̃α − x†‖,

where the methods are indicated by the subscripts. That is, ẽxz and ẽi j measure the
accuracy with respect to the Tikhonov solution xα , and e, exz and ei j measure the
accuracy with respect to the exact one x†.

The following observations can be drawn fromTable1. For all examples, the three
approximations xα , x̃α and x̂α have comparable accuracy relative to the exact solution
x†, and the errors ei j and exz are fairly close to the error e of the Tikhonov solution

http://www.imm.dtu.dk/~pcha/Regutools/
http://www.imm.dtu.dk/~pcha/Regutools/
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Table 1 Numerical results by standard Tikhonov regularization at two noise levels

example δ ẽxz ẽi j e exz ei j

baart 1% 1.14e−9 1.14e−9 1.68e−1 1.68e−1 1.68e−1

5% 5.51e−11 6.32e−11 2.11e−1 2.11e−1 2.11e−1

deriv2 1% 2.19e−2 2.41e−2 1.18e−1 1.20e−1 1.13e−1

5% 1.88e−2 2.38e−2 1.59e−1 1.60e−1 1.62e−1

foxgood 1% 2.78e−7 2.79e−7 4.93e−1 4.93e−1 4.93e−1

5% 1.91e−7 1.96e−7 1.18e0 1.18e0 1.18e0

gravity 1% 1.38e−4 1.41e−4 7.86e−1 7.86e−1 7.86e−1

5% 1.83e−4 1.84e−4 2.63e0 2.63e0 2.63e0

heat 1% 1.33e0 1.13e0 9.56e−1 1.67e0 1.50e0

5% 9.41e−1 9.45e−1 2.02e0 1.70e0 1.99e0

phillips 1% 5.53e−3 4.09e−3 6.28e−2 6.19e−2 6.24e−2

5% 6.89e−3 7.53e−3 9.57e−2 9.53e−2 9.79e−2

shaw 1% 3.51e−9 3.49e−9 4.36e0 4.36e0 4.36e0

5% 1.34e−9 1.37e−9 8.23e0 8.23e0 8.23e0

xα . Thus, RSVD can maintain the reconstruction accuracy. For heat, despite the
apparent large magnitude of the errors ẽxz and ẽi j , the errors exz and ei j are not much
worse than e. A close inspection shows that the difference of the reconstructions
are mostly in the tail part, which requires more modes for a full resolution. The
computing time (in seconds) for obtaining xα and x̃α and x̂α is about 6.60, 0.220 and
0.220, where for the latter two, it includes also the time for computing RSVD. Thus,
for all the examples, with a rank k = 20, RSVD can accelerate standard Tikhonov
regularization by a factor of 30, while maintaining the accuracy, and the proposed
approach is competitive with the one in [32]. Note that the choice k = 20 can be
greatly reduced for severely ill-posed problems; see Sect. 5.2 below for discussions.

The preceding observations remain largely valid for general Tikhonov regular-
ization; see Table2. Since the construction of the approximation x̂α does not retain
the structure of the regularized solution xα , the error ẽxz can potentially be much
larger than ẽi j , which can indeed be observed. The errors e, exz and ei j are mostly
comparable, except for deriv2. For deriv2, the approximation x̂α suffers from
grave errors, since the projection of L intoR(Q) is very inaccurate for preserving L .
It is expected that the loss occurs whenever general Tikhonov penalty is much more
effective than the standard one. This shows the importance of structure preservation.
Note that, for a general L , x̃α takes only about 1.5 times the computing time of x̂α .
This cost can be further reduced since L is highly structured and admits fast inversion.
Thus preserving the range structure of xα in (4) does not incur much overhead.

Last, we present some results on the computing time for deriv2 versus the
problem dimension, and at two truncation levels for RSVD, i.e., k = 20 and k =
30. The numerical results are given in Fig. 1. The cubic scaling of the standard
approach and quadratic scaling of the approach based on RSVD are clearly observed,
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Table 2 Numerical results by general Tikhonov regularization (with the first-order derivative
penalty) for the examples at two noise levels

example δ ẽxz ẽi j e exz ei j

baart 1% 3.35e−10 2.87e−10 1.43e−1 1.43e−1 1.43e−1

5% 3.11e−10 8.24e−12 1.48e−1 1.48e−1 1.48e−1

deriv2 1% 1.36e−1 4.51e−4 1.79e−2 1.48e−1 1.78e−2

5% 1.57e−1 3.85e−4 2.40e−2 1.77e−1 2.40e−2

foxgood 1% 4.84e−2 2.26e−8 9.98e−1 1.02e0 9.98e−1

5% 1.90e−2 1.51e−9 2.27e0 2.28e0 2.27e0

gravity 1% 3.92e−2 2.33e−5 1.39e0 1.41e0 1.39e0

5% 1.96e−2 9.47e−6 3.10e0 3.10e0 3.10e0

heat 1% 5.54e−1 8.74e−1 8.95e−1 1.06e0 1.32e0

5% 8.90e−1 1.01e0 1.87e0 1.76e0 1.99e0

phillips 1% 3.25e−3 3.98e−4 6.14e−2 6.06e−2 6.14e−2

5% 5.64e−3 5.82e−4 8.37e−2 8.18e−2 8.34e−2

shaw 1% 3.79e−4 3.70e−8 3.32e0 3.32e0 3.32e0

5% 9.73e−4 2.17e−8 9.23e0 9.23e0 9.23e0
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Fig. 1 The computing time t (in seconds) for the example deriv2 at different dimension n
(m = n). The red, green and blue curves refer to Tikhonov regularization, existing approach [32,
33] and the new approach, respectively, and the sold and dashed curves denote k = 20 and k = 30,
respectively

confirming the complexity analysis in Sects. 2 and 3. In both (9) and (16), computing
RSVD represents the dominant part of the overall computational efforts, and thus the
increase of the rank k from 20 to 30 adds very little overheads (compare the dashed
and solid curves in Fig. 1). Further, for Tikhonov regularization, the two randomized
variants are equally efficient, and for the general one, the proposed approach is
slightly more expensive due to its direct use of L in constructing the approximation
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B̃k to B := AL#. Although not presented, we note that the results for other examples
are very similar.

5.2 Convergence of the Algorithm

There are several factors influencing the quality of x̃α the regularization parameter α,
the noise level δ and the rank k of the RSVD approximation. The optimal truncation
level k should depend on both α and δ. This part presents a study with deriv2 and
shaw, which are mildly and severely ill-posed, respectively.

First, we examine the influence of α on the optimal k. The numerical results for
three different levels of regularization are given in Fig. 2. In the figure, the notation α∗
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j
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(a) standard Tikhonov (b) general Tikhonov

Fig. 2 The convergence of the error ei j with respect to the rank k for deriv2 (top) and shaw
(bottom) with δ = 1% and different regularization parameters
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refers to the value attaining the the smallest error for Tikhonov solution xα , and thus
10α∗ and α∗/10 represent respectively over- and under-regularization. The optimal
k value decreases with the increase of α when α � α∗. This may be explained by the
fact that a too large α causes large approximation error and thus can tolerate large
errors in the approximation Ãk (for a small k). The dependence can be sensitive for
mildly ill-posed problems, and also on the penalty. The penalty influences the singular
value spectra in the RSVD approximation implicitly by preconditioning: since L is a
discrete differential operator, the (weighted) pseudoinverse L# (or L†) is a smoothing
operator, and thus the singular values of B = AL# decay faster than that of A. In
all cases, the error ei j is nearly monotonically decreasing in k (and finally levels off
at e, as expected). In the under-regularized regime (i.e., α 	 α∗), the behavior is
slightly different: the error ei j first decreases, and then increases before eventually
leveling off at e. This is attributed to the fact that proper low-rank truncation of
A induces extra regularization, in a manner similar to TSVD in Sect. 3.1. Thus, an
approximation that is only close to xα (see e.g., [1, 30, 32, 33]) is not necessarily
close to x†, when α is not chosen properly.

Next we examine the influence of the noise level δ; see Fig. 3. With the optimal
choice ofα, the optimal k increases as δ decreases,which is especially pronounced for
mildly ill-posed problems. Thus, RSVD is especially efficient for the following two
cases: (a) highly noisy data (b) severely ill-posed problem. These observations agree
well with Theorem4: a low-rank approximation Ãk whose accuracy is commensurate
with δ is sufficient, and in either case, a small rank is sufficient for obtaining an
acceptable approximation. For a fixed k, the error ei j almost increases monotonically
with the noise level δ.

These empirical observations naturally motivate developing an adaptive strategy
for choosing the rank k on the fly so as to effect the optimal complexity. This requires
a careful analysis of the balance between k, δ, α, and suitable a posteriori estimators.
We leave this interesting topic to a future work.

5.3 Electrical Impedance Tomography

Last, we illustrate the approach on 2D electrical impedance tomography (EIT), a
diffusive imaging modality of recovering the electrical conductivity from boundary
voltage measurement. This is one canonical nonlinear inverse problem. We consider
the problemon a unit circlewith sixteen electrodes uniformly placed on the boundary,
and adopt the complete electrode model [24] as the forward model. It is discretized
by the standard Galerkin FEM with conforming piecewise linear basis functions, on
a quasi-uniform finite element mesh with 2129 nodes. For the inversion step, we
employ ten sinusoidal input currents, unit contact impedance and measure the volt-
age data (corrupted by δ = 0.1% noise). The reconstructions are obtained with an
H 1(Ω)-seminorm penalty. We refer to [7, 15] for details on numerical implementa-
tion. We test the RSVD algorithm with the linearized model. It can be implemented
efficiently without explicitly computing the linearized map. More precisely, let F
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Fig. 3 The convergence of the error ei j with respect to the rank k for deriv2 (top) and shaw
(bottom) at different noise levels

be the (nonlinear) forward operator, and σ0 be the background (fixed at 1). Then the
random probing of the range R(F ′(σ0)) of the linearized forward operator F ′(σ0)

(cf. Step 4 of Algorithm 1) can be approximated by

F ′(σ0)ωi ≈ F(σ0 + ωi ) − F(σ0), i = 1, . . . k + p,

and it can be made very accurate by choosing a small variance for the random vector
ωi . Step 6 of Algorithm 1 can be done efficiently via the adjoint technique.

The numerical results are presented in Fig. 4, where linearization refers to the
reconstruction by linearizing the nonlinear forward model at the background σ0.
This is one of the most classical reconstruction methods in EIT imaging. The rank
k is taken to be k = 30 for x̃α , which is sufficient given the severe ill-posed nature
of the EIT inverse problem. Visually, the RSVD reconstruction is indistinguishable
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exact linearization RSVD

Fig. 4 Numerical reconstructions for EIT with 0.1% noise

from the conventional approach. Note that contrast loss is often observed for EIT
reconstructions obtained by a smoothness penalty. The computing time (in seconds)
for RSVD is less than 8, whereas that for the conventional method is about 60. Hence,
RSVD can greatly accelerate EIT imaging.

6 Conclusion

In this work, we have provided a unified framework for developing efficient linear
inversion techniques via RSVD and classical regularization methods, building on a
certain range condition on the regularized solution. The construction is illustrated
on three popular linear inversion methods for finding smooth solutions, i.e., trun-
cated singular value decomposition, Tikhonov regularization and general Tikhonov
regularization with a smoothness penalty. We have provided a novel interpretation
of the approach via convex duality, i.e., it first approximates the dual variable via
randomized SVD and then recovers the primal variable via duality relation. Further,
we gave rigorous error bounds on the approximation under the canonical sourcewise
representation, which provide useful guidelines for constructing a low-rank approx-
imation. We have presented extensive numerical experiments, including nonlinear
tomography, to illustrate the efficiency and accuracy of the approach, and demon-
strated its competitiveness with existing methods.

Algorithm 3 Iterative refinement of RSVD-Tikhonov solution.
1: Give A, b and J , and initialize (x0, p0) = (0, 0).
2: Compute RSVD (Ũk , Σ̃k , Ṽk) to AL† by Algorithm 1.
3: for j = 1, . . . , J do
4: Compute the auxiliary variable z j by (21).
5: Update the dual variable p j+1 by (22).
6: Update the primal variable x j+1 by (23).
7: Check the stopping criterion.
8: end for
9: Output x J as an approximation to xα .
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Appendix A: Iterative refinement

Proposition 1 enables iteratively refining the inverse solution when RSVD is not
sufficiently accurate. This idea was proposed in [29, 34] for standard Tikhonov
regularization, and we describe the procedure in a slightly more general context.
SupposeN (L) = {0}. Given a current iterate x j , we define a functional J j

α (δx) for
the increment δx by

J j
α (δx) := ‖A(δx + x j ) − b‖2 + α‖L(δx + x j )‖2.

Thus the optimal correction δxα satisfies

(A∗A + αL∗L)δxα = A∗(b − Ax j ) − αL∗Lx j ,

i.e.,
(B∗B + α I )Lδxα = B∗(b − Ax j ) − αLx j , (20)

with B = AL†. However, its direct solution is expensive. We employ RSVD for a
low-dimensional space Ṽk (corresponding to B), parameterize the increment Lδx by
Lδx = Ṽ ∗

k z and update z only. That is, we minimize the following functional in z

J j
α (z) := ‖A(L†Ṽ ∗

k z + x j ) − b‖2 + α‖z + Ṽk Lx
j‖2.

Since k 	 m, the problem can be solved efficiently.More precisely, given the current
estimate x j , the optimal z solves

(Ṽk B
∗BṼ ∗

k + α I )z = Ṽk B
∗(b − Ax j ) − αṼk Lx

j . (21)

It is the Galerkin projection of (20) for δxα onto the subspace Ṽk . Then we update
the dual ξ and the primal x by the duality relation in Sect. 6:

ξ j+1 = b − Ax j − BṼ ∗
k z

j , (22)

x j+1 = α−1Γ A∗ξ j+1. (23)

Summarizing the steps gives Algorithm 3. Note that the duality relation (17) enables
A and A∗ to enter into the play, thereby allowing progressively improving the accu-
racy. The main extra cost lies in matrix-vector products by A and A∗.

The iterative refinement is a linear fixed-point iteration, with the solution xα being
a fixed point and the iteration matrix being independent of the iterate. Hence, if the
first iteration is contractive, i.e., ‖x1 − xα‖ ≤ c‖x0 − xα‖, for some c ∈ (0, 1), then
Algorithm 3 converges linearly to xα . It can be satisfied if the RSVD approximation
(Ũk, Σ̃k, Ṽk) is reasonably accurate to B.
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Parameter Selection in Dynamic
Contrast-Enhanced Magnetic Resonance
Tomography

Kati Niinimäki, M. Hanhela, and V. Kolehmainen

Abstract In this work we consider the image reconstruction problem of sparsely
sampled dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI).
DCE-MRI is a technique for acquiring a series of MR images before, during and
after intravenous contrast agent administration, and it is used to study microvascular
structure and perfusion. To overcome the ill-posedness of the related spatio-temporal
inverse problem, we use regularization. In regularization one of the main problems is
how to determine the regularization parameter which controls the balance between
data fitting term and regularization term. Most methods for selecting this parameter
require the computation of a large number of estimates even in stationary problems.
In dynamic imaging, the parameter selection is even more time consuming since sep-
arate regularization parameters are needed for the spatial and temporal regularization
functionals. In this work, we study the possibility of using the S-curve with DCE-MR
data. We select the spatial regularization parameter using the S-curve, leaving the
temporal regularization parameter as the only free parameter in the reconstruction
problem. In this work, the temporal regularization parameter is selected manually by
computing reconstructions with several values of the temporal regularization param-
eter.
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1 Introduction

Dynamic contrast-enhanced MRI (DCE-MRI) is an imaging method which is used
to study microvascular structure and tissue perfusion. The method has many applica-
tions including blood-brain-barrier assessment after acute ischemic stroke [20, 30]
and treatment monitoring of breast cancer [19, 24] and glioma [25]. The operation
principle of DCE-MRI is to inject a bolus of gadolinium based contrast agent into
the blood stream, and acquire a time series of MRI data with a suitable T1-weighting
to obtain a time series of 2D (or 3D) images which exhibit contrast changes induced
by concentration changes of the contrast agent in the tissues.

The analysis of the contrast agent dynamics during imaging requires high resolu-
tion in space and in time; the high temporal resolution is necessary to measure when
the contrast is passing through the artery and it is used for determining the subject
specific Arterial Input function (AIF), and the high spatial resolution is necessary
to adequately capture boundaries of perfused tissues. In many cases, sufficient time
resolution can only be obtained by utilizing an imaging protocol during which only
partial k-space sampling can be obtained for each image in the time series. However,
acquiring less samples than required by the Nyquist criterionmakes the image recon-
struction problem ill-posed (and non-unique), causing artifacts and deterioration of
the image quality when conventional reconstruction methods such as inverse Fourier
transform or re-gridding are employed.

According to the theory of compressed sensing (CS) [5–7], images that have
a sparse representation can be recovered from undersampled measurements of a
linear transform, i.e. sampling rate below Nyquist rate, using appropriate nonlinear
reconstruction algorithms and appropriate (random) sampling of the data space. The
compressibility of MR images and the fact that MR scanner measures samples of a
linear transform of the unknown image (the k-space samples can be mathematically
considered as Fourier coefficients) suggest that the idea of CS is applicable to MR
imaging, offering thus a potentially significant scan time reductionwithout sacrificing
the image quality. Since the seminal work of Candès, Romberg and Tao in 2006, CS
has been extensively applied to MRI. In 2007 CS was applied to MRI in [18] and in
2018 it received FDA approval for clinical use.

The undersampling of the k-space for speeding up the dynamic MRI data acqui-
sition can in principle be done in many different ways. However, for many appli-
cations, the low frequency features that are present in the center of the k-space are
of importance. In [33], for example, it was demonstrated that center weighted ran-
dom sampling patterns were preferable to purely random sampling of the k-space
within the CS approach. Radial sampling has the advantage that the center of the
k-space is sampled densely, even when the sampling (i.e., number of radial spokes)
is remarkably reduced.

In this paper, we consider image reconstruction problem of DCE-MRI with
sparsely sampled golden angle radial data, where the angle of subsequent spokes
is ∼111.25◦. The number of measurement spokes used for reconstructing a single
time frame is chosen to be a Fibonacci number, which was shown to be an opti-
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mal choice in [32]. This type of sparse sampling between the time frames results in
each time frame having different spokes, and eventually the spokes cover the whole
k-space.

We also combine the Golden Angle (GA) sampling with concentric squares sam-
pling. This sampling strategy resembles the linogrammethod [9] developed for com-
puted tomography imaging, but the angles of subsequent spokes were chosen accord-
ing to the golden angle method as opposed to the angles being equidistant in tan θ

in linogram sampling. Unlike the conventional radial sampling pattern with spokes
of equal length, the concentric squares sampling strategy also covers the corners of
the k-space. The sampling pattern therefore also collects information of the high
frequencies in the corners of the k-space, which leads to a reduction of artifacts
originating from the lack of sampling in the corners.

To overcome the ill-posedness of our image reconstruction problem, we use a
variational framework. Thus we solve the following optimization problem

f̂ = argmin D( f,m) + αS( f ) + βT ( f ), (1)

where f = { f1, f2, . . . , fNt } denotes the image sequence, m = {m1,m2, . . . ,mNt }
the data sequence, Nt the number of time frames, D the data-fitting term, S the
spatial regularization, T the temporal regularization and α and β are the spatial and
temporal regularization parameters, respectively. The selection of the regularization
parameters is crucial in termsof resulting imagequality. There exists several proposed
parameter selection methods, but most of them require the computation of a large
number of reconstructions with varying parameters. Having to fix two regularization
parameters makes the selection even more time consuming.

In this work, we propose to use the S-curve method [12, 15, 22, 23] for automatic
selection of the spatial regularization parameter α. The idea in the S-curve method is
to select the regularization parameter so that the reconstruction has a priori defined
level of sparsity in the chosen transformation domain. In DCE-MRI, a reliable a
priori estimate for the sparsity level can be extracted from an anatomical MRI image
which is based on full-sampling of the k-space and is always taken as part of the
MRI measurement protocol but is usually used only for visualization purposes. For
the selection of the spatial regularization parameter α, we employ one time frame of
the GA data from the baseline measurement before the contrast agent administration.
After fixing the spatial regularization parameter, we compute dynamic reconstruc-
tions with several values of parameter β and select a suitable temporal regularization
parametermanually. Furthermorewe study the performance of three different tempo-
ral regularization functionals, namely temporal smoothness, temporal total variation
and total generalized variation.

The proposed method is evaluated using simulated GA DCE-MRI data from
a rat brain phantom. The results are compared to re-gridding approach, which is
the most widely used non-iterative algorithm for reconstructing images from non-
Cartesian MRI data. Our re-gridding method was developed in IR4M UMR8081,
CNRS, Université Paris-Sud using Matlab®. This re-gridding approach does not
need additional density correction and it was first used in [16], see also [11].
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2 Image Reconstruction in Radial DCE-MRI

2.1 Forward Problem

The forward problem in 2D MRI can be modelled for most measurement protocols
by the Fourier transform

m(kx , ky) =
∫

Ω

f (x, y)e−i2π(kx x+ky y)dxdy, (2)

where Ω is the image domain f (x, y) is the unknown image, m(kx , ky) is the mea-
sured data, and kx , ky denotes the k-space trajectories. In the discrete framework, the
Fourier transform is typically approximated with the multidimensional FFT when
using cartesian k-space trajectories and with the non-uniform FFT when using non-
cartesian k-space trajectories.

In this work, we consider non-uniform k-space trajectories and approximate
the Fourier transform by the non-uniform fast Fourier transform (nuFFT) oper-
ator [10]. We discretize our functions as follows; temporal direction is divided
into a sequence of Nt (vectorized) images f = { f1, f2, . . . , fNt } and data vectors
m = {m1,m2, . . . ,mNt }, where each ft ∈ C

Np andmt ∈ C
M , respectively. The num-

ber of data per frame M is equal to the number of GA spokes per frame times the
number of samples per spoke. The number of image pixels is Np = N × N . Thus,
using nuFFT we re-write (2) in a discretized form at time t as

mt = At ft + εt , t = 1, . . . , Nt , (3)

At = PtF St , where Pt is an interpolation matrix between Cartesian k-space and
non-cartesian k-space, F is the 2D FFT operation and St is a scaling matrix.

2.2 Inverse Problem of Dynamic Image Reconstruction

The dynamic inverse problem related to the Eq. (3) is: givenmeasurement time series
m = {m1,m2, . . . ,mNt } and the associated k-space trajectories, solve the unknown
images f = { f1, f2, . . . , fNt }. To recover f from m, we define the inverse problem
as the optimization problem

f̂ = argmin

{
Nt∑
t=1

‖At ft − mt‖22 + αS( f ) + βT ( f )

}
, (4)
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where S( f ) denotes the spatial regularization functional, α the spatial regularization
parameter, β the temporal regularization parameter and T ( f ) the temporal regular-
ization functional.

In this work, we study the applicability of S-curve method for selecting the spa-
tial regularization parameter α. Once α has been fixed, the temporal regularization
parameter is then selected manually by computing estimates with different values of
β. Our minimization problem is based on L2-data fidelity term for the measurement
model and we use spatial total variation regularization for promoting sparsity of the
gradients of each image [27]. Furthermore we study the performance of three dif-
ferent temporal regularization functionals for promoting temporal regularity of the
image series. Our spatio-temporal image reconstruction problem thus writes

f̂ = argmin

{
Nt∑
t=1

(‖At ft − mt‖22 + α‖∇ ft‖2,1
) + βT ( f )

}
, (5)

where the isotropic 2D spatial total variation norm for complex valued image ft is
defined by

‖ · ‖2,1 =
N∑

k=1

√
(Re(Dx ft,k))2 + (Re(Dy ft,k))2 + (Im(Dx ft,k))2 + (Im(Dy ft,k))2,

(6)
where Re and Im denoting the real and imaginary parts of ft respectively and Dx

and Dy the discrete forward first differences in horizontal and vertical directions,
respectively.

2.2.1 Temporal Regularization 1: Temporal Smoothness (TS)

The temporal smoothness regularization (hereafter referred as TS) is defined as the
L2 norm of forward first differences in time:

T ( f ) =
Nt−1∑
t=1

‖ ft+1 − ft‖22. (7)

This model promotes smooth slowly changing signals, and it has been used in [3]
for radial DCE myocardial perfusion imaging. TS regularization was compared with
temporal TV regularization in the same application in [1].

2.2.2 Temporal Regularization 2: Temporal Total Variation (TV)

Temporal total variation (hereafter referred as TV) is defined by the L1 norm of the
forward first differences in time:
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T ( f ) =
Nt−1∑
t=1

‖ ft+1 − ft‖1. (8)

The temporal total variation model promotes sparsity of the time derivative of
the pixel signals, being a highly feasible regularization model for reconstruction of
piece-wise regular signals which may exhibit large jumps. The smoothed form of
temporal total variation was used in [2] for multislice myocardial perfusion imaging.

2.2.3 Temporal Regularization 3: Total Generalized Variation (TGV)

The total generalized variation model [4] is a total variation model that is generalized
to higher order differences. Here we use the second-order total generalized variation,
which in the discrete 1-dimensional form is of the form

T ( f ) =
Nt−1∑
t=1

min
v

‖ ft+1 − ft − vt‖1 + γ ‖vt+1 − vt‖1, (9)

where v is an auxiliary vector and γ is a parameter, which balances the first and
second order terms, and is set to

√
2 here.

This functional balances between minimizing the first-order and second-order
differences of the signal. The difference with TV regularization is most clear in
smooth regions where piecewise linear solutions are favored over the piecewise
constant solutions of TV. From hereafter this temporal regularization is referred as
TGV.

TGV was first used in MRI as a spatial prior in [14], and it has also been used in
DCE-MRI as a temporal prior in [31], where different temporal priorswere compared
in cartesian MRI of the breast.

2.3 Regularization Parameter Selection

2.3.1 Spatial Regularization Parameter Selection

The spatial regularization parameter is selected using the S-curve method, originally
proposed in [12, 15, 22, 23], but here modified for TV regularization.

Assume that we have an a priori estimate Ŝ for the total variation norm of the
unknown function. In practice we can use an anatomical image of the same slice
in order to obtain a reliable estimate for Ŝ. Such an anatomical image is practically
always acquired as part of theDCEMRI acquisition experiment but usually only used
for visualization purposes. However, if such an anatomical image was not acquired,
we could, in case of GA acquisition, estimate the expected sparsity level from a
conventional reconstruction of a long sequence of baseline data taken before the
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contrast agent injection. Or the anatomical image could be estimated from the entire
data-acquisition similarly as the composite image in [21].

Now, given the estimate Ŝ we select the regularization parameter α using the
S-curve method as follows

(1) Take a sequence of regularization parameters α ranging on the interval [0,∞]
such that

0 < α(1) < α(2) < · · · < α(L) < ∞.

(2) Compute the corresponding estimates f̂1(α(1)), . . . , f̂1(α(L)).
With DCE-MRI data, reconstructions f̂1(α(	)) are computed as follows; we take
the data that correspond to the first time frame, i.e. m1 which has number of
elements equal to the number of GA spokes per frame times the number of
points per spoke. We reconstruct f1 for given value α(	) by

f̂1(α
(	)) = argmin

f1
{‖A1 f1 − m1‖22 + α(	)‖∇ f1‖2,1}.

Here it is important that α(1) is taken to be so small that the problem is under
regularized and the corresponding reconstruction f̂1(α(1)) results to a very noisy
image with a big TV-norm value and α(L) is taken so large that the problem is
over regularized and TV norm of reconstruction f̂1(α(L)) is very close to zero.

(3) Compute the TV-norms of the recovered estimates f̂1(α(	)), 	 = 1, . . . , L .
(4) Fit a smooth interpolation curve to the data {α(	), S(α(	)), 	 = 1, . . . , L} and

use the interpolated sparsity curve to find the value of α for which S(α) =
Ŝ. For the interpolation we use Matlab’s® interp function and we interpo-
late our original S-curve to a more dense discretization of the regularization
parameter α.

2.4 Temporal Regularization Parameter Selection

Once the spatial regularization parameter α has been fixed using the S-curve, the
temporal regularization parameter β can be tuned by computing estimates with dif-
ferent values of β and selecting a suitable value manually, for example, by visual
assessment of the results.

In this work, we compute the results with three different temporal regularization
models using simulated measurement data. Since we consider a simulated test case
where a ground truth is available, we select an optimal value of β for each temporal
regularization model by selecting the value of β which produces the reconstruction
with the smallest root mean square error (RMSE). The RMSE values were calculated
separately for three regions; tumor, vascular region and the rest of the image domain.
The RMSEs of different ROIs were then used to define a joint RMSE as
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RMSE joint =
√
RMSE2

Ωroi1
+ RMSE2

Ωroi2
+ RMSE2

Ωroi3
, (10)

where Ωroi1 corresponds to pixels in the vascular region, Ωroi2 correspond to pixels
in the tumour region and Ωroi3 corresponds to pixels in rest of the image domain.
The RMSE was calculated this way to weigh the small tumour and vascular regions
appropriately. In estimating the pharmacokinetic parameters of tissues, obtaining
an accurate arterial input function (AIF) is required [28]. The AIF can be obtained
via population averaging, however, usage of patient specific AIF produces more
accurate estimates of the kinetic parameters [26]. The AIF is preferably extracted
from an artery feeding the tissues of interest, but it can also be estimated from a
venous sinus or vein when an artery is not visible [17]. Here the AIF is estimated
from the superior sagittal sinus.

3 Materials and Methods

A simulated test case modelling DCE-MRI measurements of a glioma in rat brain
was created. The rat brain phantom was based on the rat brain atlas in [29], and
scaled to a size of 128× 128. The rat brain image was divided into three subdomains
of different signal behaviour: vascular region (labelled ‘1’ and highlighted with red
in Fig. 1), tumour region (labelled ‘2’ and highlighted with blue in Fig. 1) and the
rest of the brain tissue. The vascular signal region corresponds to the location of the
superior sagittal sinus.

A time series of 2800 ground truth images was simulated by multiplying the
signal of each pixel with the template of the corresponding region and adding that
to the baseline value of the pixels. The tumour signal templates were based on an
experimental DCE-MRI measurement described in [13], where the three different
ROIs were identified. Figure1 shows the signal templates for each of the different
tissue regions.

One spoke of GA k-space data was simulated for each of the simulated images,
leading to a dynamic experiment with 2800 spokes of k-space data. The time scale
of the simulation was set to be similar to the in vivo measurements in [13] where the
measurement time between consecutive GA spokes was 38.5 ms. Gaussian complex
noise at 5%of themean of the absolute values of the signalwas added to the simulated
k-space signal. The simulated test case was carried out using a k-space trajectory
which combines the golden angle and the concentric squares sampling strategies.

In [13] it was found that reconstruction of the form (5) performed optimally with
segment length1 of 34 for a similar data set, thus we selected 34 as the segment length
for our reconstructions leading to a temporal resolution of ∼1.3 s.

All the regularized reconstructions in this work were computed using the
Chambolle-Pock primal-dual algorithm [8]. In the NUFFT implementation of the

1Segment length equals the number of radial spokes per image. The number of elements M in the
data vector mt is segment length times number of samples per spoke.
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Fig. 1 Template signals of different ROIs. Top left: the simulated image with vascular ROI labelled
‘1’ and marked with red and tumour ROI labelled ‘2’ and marked with blue. Top right: the template
signal of the vascular ROI. Bottom left: the template signal of the tumour ROI. Bottom right: the
template signal of tissue outside the two ROIs. The vertical axis in the three template signals is the
multiplier for the signal added to the base signal

forward model, the measurements were interpolated into a twice oversampled carte-
sian grid with min-max Kaiser-Bessel interpolation with a neighbourhood size of
4 [10]. The regridding reconstructions were computed using a Matlab code devel-
opped at Imagerie par résonance magnétique médicale et multi-modalités (IR4M)
UMR8081, Université Paris-Sud, France.

We remark that when computing the RMS error (10), the reconstructed time
signals of each pixel were linearly interpolated in the temporal direction to match
the temporal resolution of the ground truth phantom.
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4 Results

The selection of α was carried out using the first 34 spokes (i.e. the first frame m1)
of the DCE-MRI data and then the selected α was used for all the spatio-temporal
reconstructions with different temporal regularizations. The rat brain phantom of
Sect. 3 was used to compute the a priori level of sparsity, i.e. in our case we computed
theTVnormof thefirst time frameof the dynamic phantom.This resulted in a sparsity
level of Ŝ = 0.0259. The spatial regularization term α was selected using the S-curve
as described in Sect. 2.3.1 and resulted in spatial regularization parameter value of
α = 7.3e−4. The TV norms of the reconstructions for the S-curve were computed
with 15 values of alpha ranging on interval [10−7, 103]. These 15 values of TV norm
were then interpolated using Matlab’s® interp function to 405 values. The resulting
S-curve for the determination of α is presented in Fig. 2.

In many practical applications, the a priori information, which we use to estimate
the value of Ŝ, may come from a different modality or from acquisition with different
pulse sequence than the one used in the dynamic measurement. Therefore, in order to
compute meaningful estimate of Ŝ for the TV-regularized case, the reference image
has to be scaled such that it is compatible with the measured dynamic data. This
normalization of the reference image can be obtained by

fref = ‖mt‖
‖At fref‖ fref ,

where fref denotes the reference image, mt the frame of dynamic data that is used in
the S-curve and At the respective forward model.

10−7 103

0.01

Ŝ

0.06

Fig. 2 S-curve for selecting spatial regularization parameter for the simulated data case. Left: plot
of the interpolation curve used to determine the value of α such that S(α) = Ŝ = 0.0259. Right:
reconstruction (resolution 128 × 128) of the first time frame (t = 1) using the selected value of
α = 7.3e−4
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Fig. 3 L-surface for
selecting the spatial
regularization parameter and
the temporal regularization
parameter simultaneously,
resulting in α = 3.1623e−4
and β = 3.1623e−6. The
axes in the image are:
x1 = log(‖ ft+1 − ft‖),
x2 = log(‖∇ ft‖2,1) and
z = log(‖At ft − mt‖2)

z

x1
x2

The temporal regularization parameter β was selected by computing reconstruc-
tions (5) with different values of β and then selecting the values which had the
smallest joint RMSE error, see (10).

This selection resulted in smallest joint RMSE of 0.085 for TS model which
corresponded to β = 0.01, smallest joint RMSE of 0.058 for the TV model cor-
responding to β = 0.0017 and smallest joint RMSE of 0.063, corresponding to
β = 0.0022 for the TGV model. As a reference method we selected the regular-
ization parameters α and β using L-surface method for the case where we use spatial
total variation and temporal total variation as our regularization model. The resulted
L-surface is presented in Fig. 3. Application of L-surface on our data resulted param-
eters α = 3.1623e−4 and β = 3.1623e−6.

Figure4 shows slices of all reconstructions before, during and after contrast agent
administration. Figure5 shows the reconstructed images with different methods for
one time frame. The top row of Fig. 5 shows the phantom with a red square denoting
a domain that is presented as a closeup in Fig. 6 for all of the reconstructions.

As can be seen from Figs. 4, 5 and 6, the classical regridding method fails on
such high time resolution data as employed here, and thus we leave out the regridded
reconstruction from the figures of the temporal evolution of theROI signals. However
the L-surface method seems to work nicely on our data, so we include it in the
temporal evolution studies. The temporal evolutions in the vascular domain and in
the tumor region are averages of Ωroi1 and Ωroi2, respectively.

Figure7 shows the time signals of the reconstructions in the vascular region
(Ωroi1) with the different temporal regularization models. Corresponding signals of
the reconstructions in the tumor region (i.e. in Ωroi2) are shown in Fig. 8. The tumor
region is accurately reconstructed with all the methods, with only small differences
between the methods, L-surface method being the noisiest. In the vascular region,
the methods have some differences with TGV having the best reconstruction quality
and TS having the worst reconstruction quality. The TS method shows smoothing at
both the maximum and minimum signal levels whereas TGV reconstructs the fast
signal change of the vascular region most reliably. L-surface method is again more
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ftrue

TS

TV

TGV

Regrid

L-surface

Fig. 4 Reconstructions with different temporal regularizations at different time frames. From top
to bottom: true phantom, TS, TV, TGV, regrid and L-surface. From left to right time frames: before,
during and after CA administration
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Fig. 5 Reconstructions with different temporal regularizations after CA administration. Top row:
true phantom (left), TS reconstruction (middle) and TV reconstruction (right). Bottom row: TGV
reconstruction (left), regrid-reconstruction (middle) and L-surface reconstruction (right). The area
highlighted in red is presented as closeups in Fig. 6

noisy than the other reconstructions in the vascular region and its performance of
reconstructing the vascular signal falls between TS and TV most likely due to the
temporal regularization parameter being too small whereas the spatial regularization
parameter is on the same order of magnitude as the parameter obtained with S-curve.

5 Conclusions

Variational regularization based solutions for dynamicMRI problems usually include
two regularization parameters, one for the spatial and one for the temporal regular-
ization, that the user has to select. Typically, the selection of both of the parameters
is carried out manually based on visual assessment of the reconstructed images. In
this work we proposed to use the S-curve method for the automatic selection of the
spatial regularization parameter, leaving the time regularization parameter the only
free parameter. The S-curve method selects the regularization parameter based on
the expected sparsity of unknown images in domain of the regularization functional.
Furthermore, the method requires computation of the reconstructions with relatively
few values of the parameter, making it computationally efficient. The approach was
demonstrated to lead to a feasible choice of the spatial regularization parameter in
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Fig. 6 Closeups of reconstructions with different temporal regularizationmethods after CA admin-
istration. Top row: true phantom (left), TS reconstruction (middle) and TV reconstruction (right).
Bottom row: TGV reconstruction (left), regrid-reconstruction (middle) andL-surface reconstruction
(right)

Fig. 7 Reconstructions of vascular region (Ωroi1) with the different methods at their optimal
parameters according to the joint RMSE. Black line: true signal, blue line: TV reconstruction, green
line: TS reconstruction, red line: TGV reconstruction and light blue line: L-surface reconstruction.
Left: temporal evolution during all time frames. Right: closeup image during CA administration
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Fig. 8 Reconstructions of tumor region (Ωroi2) with the different methods at their optimal param-
eters according to the joint RMSE. Black line: true signal, blue line: TV reconstruction, green line:
TS reconstruction, red line: TGV reconstruction and light blue line: L-surface reconstruction. Left:
temporal evolution during all time frames. Right: closeup image during CA administration

a simulated DCE-MRI experiment of rat brain. The reconstructions were also com-
puted with three different temporal regularization models with the same fixed spatial
regularization parameter, demonstrating the robustness of the approachwith different
time regularization models.

While we proposed automatic selection of the spatial regularization parameter,
the temporal regularization parameter was still selected manually. In this work, we
selected the temporal regularizationparameter by computingRMSerrorswith respect
to a ground truth. If on the other hand the ground truth is unknown, the temporal reg-
ularization parameter could be selected based on visual assessment of reconstructed
images, leaving β to be the only free parameter. In the future work, we aim to study
methods for automatic selection of the time regularization parameter as well. One
possibility could be to extend the S-curve to select a parameter which leads to an
expected sparsity level in the domain of the temporal regularization. A feasible esti-
mate for the expected level of sparsity in the time direction could potentially be
extracted from the changes in the dynamic measurement data.
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Convergence of Explicit P1
Finite-Element Solutions to Maxwell’s
Equations

Larisa Beilina and V. Ruas

Abstract This paper is devoted to the numerical validation of an explicit finite-
difference scheme for the integration in time of Maxwell’s equations in terms of
the sole electric field. The space discretization is performed by the standard P1 finite
elementmethod assortedwith the treatment of the time-derivative termby a technique
of the mass-lumping type. The rigorous reliability analysis of this numerical model
was the subject of authors’ another paper [2]. More specifically such a study applies
to the particular case where the electric permittivity has a constant value outside a
sub-domain, whose closure does not intersect the boundary of the domain where the
problem is defined. Our numerical experiments in two-dimension space certify that
the convergence results previously derived for this approach are optimal, as long as
the underlying CFL condition is satisfied.
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1 Introduction

The purpose of this article is to provide a numerical validation of an explicit scheme
based on P1 finite-element space discretizations, to solve hyperbolicMaxwell’s equa-
tions for the electric field with constant dielectric permittivity in a neighborhood of
the boundary of the computational domain. This numerical model was thoroughly
studied in [2] from the theoretical point of view.

The standard continuous P1 FEM is a tempting possibility to solve Maxwell’s
equations, owing to its simplicity. It is well known however that, for different rea-
sons, this method is not always well suited for this purpose. The first reason is that
in general the natural function space for the electric field is not the Sobolev space
H1, but rather the space H(curl). Another issue difficult to overcome with contin-
uous Lagrange finite elements is the prescription of the zero tangential-component
boundary conditions for the electric field, which hold inmany important applications.
All this motivated the proposal by Nédélec about four decades ago of a family of
H(curl)-conforming methods to solve these equations (cf. [23]). These methods are
still widely in use, as much as other approaches well adapted to such specific condi-
tions (see e.g. [1, 13, 25]). A comprehensive description of finite element methods
for Maxwell’s equations can be found in [20].

There are situations however in which the P1 finite element method does pro-
vide an inexpensive and reliable way to solve the Maxwell’s equations. In this work
we address one of such cases, characterized by the fact that the electric permittiv-
ity is constant in a neighborhood of the whole boundary of the domain of interest.
This is because, at least in theory, whenever the electric permittivity is constant, the
Maxwell’s equations simplify into as many wave equations as the space dimension
under consideration. More precisely here we show by means of numerical exam-
ples that, in such a particular case, a space discretization with conforming linear
elements, combined with a straightforward explicit finite-difference scheme of the
mass-lumping type for the time integration, gives rise to optimal approximations of
the electric field, as long as a classical CFL condition is satisfied.

Actually this work is strongly connected with studies presented in [3, 4] for
a combination of a finite difference discretization in a sub-domain with constant
permittivity with a finite element discretization in the complementary sub-domain.
As pointed out above, the Maxwell’s equation reduces to the wave equation in the
former case. Since the study of finite-difference methods for this type of equation is
well established, only P1 finite element space discretizations of Maxwell’s equations
are considered in this paper.

In [3, 4] a stabilized domain-decomposition finite-element/finite-difference
approach for the solution of the time-dependent Maxwell’s system for the electric
field was proposed and numerically verified. In these works [3, 4] different manners
to handle the divergence-free condition in a finite-element formulation were consid-
ered. The main idea behind the domain decomposition methods in [3, 4] is that a
rectangular computational domain is decomposed into two sub-domains, in which
two different type of discretizations are employed, namely, the finite-element domain
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in which a classical P1 finite element approach is employed, and the finite-difference
domain, inwhich the standard five- or seven-point finite difference scheme is applied,
according to the space dimension. The finite-element domain lies strictly inside the
finite- difference domain, in such a way that both domains overlap in two layers of
structured nodes. First order absorbing boundary conditions [15] are enforced on
the boundary of the computational domain, i.e. on the outer boundary of the finite-
difference domain. In [3, 4] it was assumed that the dielectric permittivity function
is strictly positive and has a constant value in the overlapping nodes as well as in a
neighborhood of the boundary of the domain. An explicit time-integration scheme
was used both in the finite-element and in the finite-difference domain.

We recall that from the theoretical point of view, for a stable finite-element solution
of Maxwell’s equation, divergence-free edge elements are the most satisfactory [20,
23]. However the edge elements are less attractive for solving time-dependent prob-
lems, since a linear system of equations has to be solved at every time iteration. In
contrast, P1 elements with lumped mass matrix can be efficiently used in connection
with an explicit solution scheme [14, 19]. On the other hand it is also well known
that the numerical solution of Maxwell’s equations with nodal finite elements can
result in unstable spurious solutions [21, 24]. Nevertheless a number of techniques
are available to remove them, and in this respect we refer for example to [16–18,
22, 24]. In the current work, similar to [3, 4], the spurious solutions are removed
from the finite-element solution by adding the divergence-free term to the model
equation for the electric field. Numerical tests given in [4] demonstrate that spurious
solutions are removable indeed, in case an explicit scheme with P1 finite elements is
employed.

Efficient usage of an explicit scheme combined with P1 finite-element discretiza-
tions for the solution of coefficient inverse problems (CIPs), in the particular context
described above was made evident in [5]. In many algorithms aimed at solving elec-
tromagnetic CIPs, a qualitative collection of experimentalmeasurements is necessary
on the boundary of a computational domain, in order to determine the dielectric per-
mittivity function therein. In this case, in principle the numerical solution of the
time-dependent Maxwell’s equations is required in the entire space R

3 (see e.g.
[5–10], but instead it can be more efficient to consider Maxwell’s equations with
a constant dielectric permittivity in a neighborhood of the boundary of a computa-
tional domain. The explicit scheme with P1 finite elements considered in this work
was numerically tested in the solution of the time-dependent Maxwell’s system in
both two- and three-dimensional geometry (cf. [4]). It was also combined with a few
algorithms to solve different CIPs for determining the dielectric permittivity function
in connection with the time-dependent Maxwell’s equations, using both simulated
and experimentally generated data (see [6–10]). In short, the validation of our formal
reliability analysis for such amethod conducted in this work, confirms the previously
observed adequacy of this numerical approach.

An outline of this paper is as follows: In Sect. 2 we describe the model problem,
and give its equivalent variational form. In Sect. 3 we set up the discretizations of the
model problem in both space and time, and recall the main results of the reliability
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analysis conducted in [2] for the underlying numerical model. Section4 is devoted
to the numerical experiments that validate such results. We conclude in Sect. 5 with
a few comments.

2 The Model Problem

The particular form of Maxwell’s equations for the electric field e = (e1, e2) in a
bounded domain Ω of �2 with boundary ∂Ω that we deal with in this work is as
follows. First we consider that Ω = Ω̄in ∪ Ωout , where Ωin is an interior open set
whose boundary does not intersect ∂Ω andΩout is the complementary set of Ω̄in with
respect to Ω . Now in case e satisfies (homogeneous) Dirichlet boundary conditions,
we are given e0 ∈ [H 1(Ω)]2 and e1 ∈ H(div,Ω) satisfying∇ · (εe0) = ∇ · (εe1) =
0where ε is the electric permittivity. ε is assumed to belong toW 2,∞(Ω) and to fulfill
ε ≡ 1 in Ωout and ε ≥ 1 otherwise. Incidentally, throughout this article we denote
the standard semi-norm of Cm(Ω̄) by | · |m,∞ for m > 0 and the standard norm of
C0(Ω̄) by ‖ · ‖0,∞.

In doing so, the problem to solve is:

ε∂t te + ∇ × ∇ × e = 0 in Ω × (0, T ),

e(·, 0) = e0(·), and ∂te(·, 0) = e1(·) in Ω,

e = 0 on ∂Ω × (0, T ),

∇ · (εe) = 0 in Ω.

(1)

Remark 1 The analysis carried out in [2] extends in a rather straightforwardmanner
to absorbing conditions ∂ne = −∂te prescribed on the boundary,where ∂ne represents
the outer normal derivative of e on ∂Ω . This case is important for it corresponds
to practical situations considered in [6–10]. Details on such an extension will be
addressed in a forthcoming paper. �

Next, we set (1) in variational form. With this aim we denote the standard inner
product of [L2(Ω)]2 by (·, ·) and the corresponding norm by ‖ {·} ‖. Further, for a
given non-negative function ω ∈ L∞(Ω) we introduce the weighted L2(Ω)-semi-

norm ‖{·}‖ω :=
√∫

Ω
|ω||{·}|2dx, which is actually a norm if ω 
= 0 everywhere in

Ω̄ . We also introduce, the notation (a,b)ω := ∫
Ω

ωa · bdx for two fields a,b which
are square integrable in Ω . Notice that if ω is strictly positive this expression defines
an inner product associated with the norm ‖{·}‖ω.

Then requiring that e|t=0 = e0 and {∂te}|t=0 = e1 and e = 0 on ∂Ω × [0, T ], we
write for all v ∈ [H 1

0 (Ω)]2,

(∂t te, v)ε + (∇e,∇v) + (∇ · εe,∇ · v) − (∇ · e,∇ · v) = 0 ∀t ∈ (0, T ). (2)



Convergence of Explicit P1 Finite-Element Solutions to Maxwell’s Equations 95

3 The Numerical Model

Henceforth we restrict our studies to the case where Ω is a polygonal domain.

3.1 Space Semi-discretization

Let Vh be the usual P1 FE-space of continuous functions related to a meshTh fitting
Ω , consisting of triangleswithmaximumedge length h, belonging to a quasi-uniform
family of meshes (cf. [12]).

Setting Vh := [Vh ∩ H 1
0 (Ω)]2 we define e0h (resp. e1h) to be the usual Vh-

interpolate of e0 (resp. e1). Then the semi-discretized problem in space that we
wish to solve reads,

Find eh ∈ Vh such that ∀v ∈ Vh

(∂t teh, v)ε + (∇eh,∇v) + (∇ · [εeh],∇ · v) − (∇ · eh,∇ · v) = 0,

eh(·, 0) = e0h(·) and ∂teh(·, 0) = e1h(·) in Ω.

(3)

3.2 Full Discretization

To begin with we consider a natural centered time-discretization scheme to solve
(3), namely: Given a number N of time steps we define the time increment τ :=
T/N . Then we approximate eh(kτ) by ekh ∈ Vh for k = 1, 2, . . . , N according to the
following scheme for k = 1, 2, . . . , N − 1:

(
ek+1
h − 2ekh + ek−1

h

τ 2
, v

)

ε

+ (∇ekh,∇v) + (∇ · εekh,∇ · v) − (∇ · ekh,∇ · v) = 0 ∀v ∈ Vh,

e0h = e0h and e1h = e0h + τe1h in Ω.

(4)

Owing to its coupling with ekh and ek−1
h on the left hand side of (4), ek+1

h cannot
be determined explicitly by (4) at every time step. In order to enable an explicit
solution we resort to the classical mass-lumping technique. We recall that for a
constant ε this consists of replacing on the left hand side the inner product (u, v)ε by
a discrete inner product (u, v)ε.h , using the trapezoidal rule to compute the integral
of

∫
K εu|K · v|K dx (resp.

∫
K∩∂Ω

u|K · v|K dS), for every element K in Th , where u
stands for ek+1

h − 2ekh + ek−1
h . It is well-known that in this case the matrix associated

with (εek+1
h , v)h for v ∈ Vh , is a diagonal matrix. In our case ε is not constant, but

the same property will hold if we replace in each element K the integral of εu|K · v|K
in a triangle K ∈ Th as follows:
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∫

K
εu|K · v|K dx ≈ ε(GK )area(K )

3∑
i=1

u(SK ,i ) · v(SK ,i )

3
,

where SK ,i are the vertexes of K , i = 1, 2, 3, GK is the centroid of K .
Before pursuing we define the auxiliary function εh whose value in each K ∈ Th

is constant equal to ε(GK ). Then still denoting the approximation of eh(kτ) by ekh ,
for k = 1, 2, . . . , N we determine ek+1

h by,

(
ek+1
h − 2ekh + ek−1

h

τ 2
, v

)

εh ,h

+ (∇ekh,∇v) + (∇ · εekh,∇ · v) − (∇ · ekh,∇ · v) = 0 ∀v ∈ Vh,

e0h = e0h and e1h = e0h + τe1h in Ω.

(5)

3.3 Convergence Results

Recalling the assumption that ε ∈ W 2,∞(Ω) we first set

η := 2 + |ε|1,∞ + 2|ε|2,∞; (6)

Next we recall the classical inverse inequality (cf. [12]) together with a result in [11]
according to which,

‖∇v‖ ≤ Ch−1‖v‖εh ,h for all v ∈ Vh, (7)

where C is a mesh-independent constant.
Now we assume that τ satisfies the following CFL-condition:

τ ≤ h/ν with ν = C(1 + 3‖ε − 1‖∞)1/2. (8)

Further we assume that the solution e to Eq. (1) belongs to [H 4{Ω × (0, T )}]2.
Let us define a function eh in Ω̄ × [0, T ]whose value at t = kτ equals ekh for k =

1, 2, . . . , N and that varies linearlywith t in each time interval ([k − 1]τ, kτ), in such

a way that ∂teh(x, t) = ekh(x) − ek−1
h (x)

τ
for every x ∈ Ω̄ and t ∈ ([k − 1]τ, kτ). We

also define am+1/2(·) for any field a(·, t) to be a(·, [m + 1/2]τ).
Provided the CFL condition (8) is fulfilled and τ also satisfies τ ≤ 1/[2η], under

the above regularity assumption on e, there exists a constant C depending only on
Ω , ε and T such that,
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max
1≤m≤N−1

∥∥[∂t (eh − e)]m+1/2
∥∥ + max

2≤m≤N
‖∇(emh − em)‖

≤ C (τ + h + h2/τ)
{‖e‖H 4[Ω×(0,T )] + |e0|2 + |e1|2

}
.�

(9)

(9) means that, as long as τ varies linearly with h, first order convergence of scheme
(5) in terms of either τ or h holds in the sense of the norms on the left hand side
of (9).

4 Numerical Validation

We perform numerical tests in time (0, T ) = (0, 0.5) in the computational domain
Ω = [0, 1] × [0, 1] for the model problem in two space dimension, namely

ε∂t te − ∇2e − ∇∇ · (ε − 1)e = f in Ω × (0, T ),

e(·, 0) = 0 and ∂te(·, 0) = 0 in Ω,

e = 0 on ∂Ω × (0, T ).

(10)

for the electric field e = (e1, e2).
The source data f (the right hand side) is chosen such that the functions

e1 = 1

ε
2π sin2 πx cosπy sin πy

t2

2
,

e2 = −1

ε
2π sin2 πy cosπx sin πx

t2

2

(11)

are the components of the exact solution to the model problem (10). In (11) the
function ε is defined to be,

ε(x, y) =
{
1 + sinm π(2x − 0.5) · sinm π(2y − 0.5) in [0.25, 0.75] × [0.25, 0.75],
1 otherwise,

(12)
where m is an integer greater than one. In Fig. 1 the function ε is illustrated for
different values of m.

The solution given by (11) satisfies homogeneous initial conditions together with
homogeneous Dirichlet conditions on the boundary ∂Ω of the square Ω for every
time t . In our computations we used the software package WavES [26] only for the
finite element method applied to the solution of the model problem (10). We note
that this package was also used in [4] to solve the the same model problem (10) by
a domain decomposition FEM/FDM method.

We discretized the computational domain Ω × (0, T ) denoting by Khl = {K } a
partition of the spatial domain Ω into triangles K of sizes hl = 2−l , l = 1, . . . , 6.
We let Jτl be a partition of the time domain (0, T ) into time intervals J = (tk−1, tk]
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m= 2 m= 3 m= 4 m= 5

m= 6 m= 7 m= 8 m= 9

Fig. 1 Function ε(x, y) in the domain Ω = [0, 1] × [0, 1] for different values of m in (12)

of uniform length τl for a given number of time intervals N , l = 1, . . . , 6.We choose
the time step τl = 0.025 × 2−l , l = 1, . . . , 6, which provides numerical stability for
all meshes.

We performed numerical tests taking m = 2, . . . , 9 in (12) and computed the
maximum value over the time steps of the relative errors measured in the L2-norm,
the H 1-semi-norm and in the L2 norm for the time-derivative, respectively:

e1l =
max
1≤k≤N

‖ek − ekh‖
max
1≤k≤N

‖ek‖ ,

e2l =
max
1≤k≤N

‖∇(ek − ekh)‖
max
1≤k≤N

‖∇ek‖ ,

e3l =
max

1≤k≤N−1
‖{∂t (e − eh)}k+1/2‖

max
1≤k≤N−1

‖{∂te}k+1/2‖ .

(13)

Here e is the exact solution of (10) given by (11) and eh is the computed solution,
while N = T/τl .

In Tables1 and 2 method’s convergence in these three senses is observed for
m = 2, 7.

Figure2 shows convergence rates of our numerical scheme based on a P1 space
discretization, taking the function ε defined by (12) with m = 2 (on the left) and
m = 7 (on the right) for ε(x). Notice that we obtained similar convergence results
taking m = 3, 4, 6, 8, 9 in (12).

Observation from these tables and figures clearly indicates that our scheme
behaves like a first order method in the (semi-)norm of L∞[(0, T ); H 1(Ω)] for e
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Table 1 Maximum over the time steps of relative errors in the L2-norm, in the H1-seminorm and
in the L2-norm of the time derivative for mesh sizes hl = 2−l , l = 1, . . . , 6 taking m = 2 in (12)

l nel nno e1l e1l−1/e
1
l e2l e2l−1/e

2
l e3l e3l−1/e

3
l

1 8 9 0.054247 0.2767 1.0789

2 32 25 0.013902 3.902100 0.1216 2.2755 0.4811 2.2426

3 128 81 0.003706 3.751214 0.0532 2.2857 0.2544 1.8911

4 512 289 0.000852 4.349765 0.0234 2.2735 0.1279 1.9891

5 2048 1089 0.000229 3.720524 0.0121 1.9339 0.0641 1.9953

6 8192 4225 0.000059 3.881356 0.0061 1.9836 0.0321 1.9969

Table 2 Maximum over the time steps of relative errors in the L2-norm, in the H1-seminorm and
in the L2-norm of the time derivative for mesh sizes hl = 2−l , l = 1, . . . , 6 taking m = 7 in (12)

l nel nno e1l e1l−1/e
1
l e2l e2l−1/e

2
l e3l e3l−1/e

3
l

1 8 9 0.054224 0.5710 1.1208

2 32 25 0.012483 4.343828 0.1505 3.7940 0.5024 2.2309

3 128 81 0.002751 4.537623 0.0686 2.1939 0.2688 1.8690

4 512 289 0.000627 4.387559 0.0240 2.8583 0.1339 2.0075

5 2048 1089 0.000158 3.968354 0.0114 2.1053 0.0669 2.0015

6 8192 4225 0.000040 3.949999 0.0057 2 0.0334 2.0030

Fig. 2 Maximum in time of relative errors for m = 2 (left) and m = 7 (right)

and in the norm of L∞[(0, T ); L2(Ω)] for ∂te for the chosen values of m. As far as
the value m = 7 is concerned this perfectly conforms to the a priori error estimates
given in [2] under the assumption that e ∈ {H 4[Ω × (0, T )]}2. On the other hand
Table2 and Fig. 2 also show that the theoretical predictions of [2] extend to the cases
not considered therein such asm = 2, in which the regularity of the exact solution is
lower than assumed. Otherwise stating some of our assumptions seem to be of aca-
demic interest only and a lower regularity of the solution such as H 2[Ω × (0, T )]
should be sufficient to attain optimal first order convergence in both senses.
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|eh|
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

|e|
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

e1h
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

e1
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

e2h
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

e2
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

Fig. 3 Computed versus exact solution at t = 0.25 for different meshes taking m = 2 in (12)
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|eh|
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

|e|
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

e1h
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

e1
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

e2h
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

e2
h= 0.125 h= 0.0625 h= 0.03125 h= 0.015625

Fig. 4 Computed versus exact solution at t = 0.25 for different meshes taking m = 7 in (12)
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Finally we observe that second-order convergence can be expected from our
scheme in the norm L∞[(0, T ); L2(Ω)] for e, according to Tables1, 2 and Fig. 2.

The above representations of the numerical results are enriched by Figs. 3 and 4, in
which a graphic comparisonbetween the exact solution and the approximate solutions
at time t = 0.25 generated by our scheme with different meshes and corresponding
time steps are supplied.

5 Conclusions

In this work we validated the reliability analysis conducted in [2] for a numerical
scheme to solve Maxwell’s equations of electromagnetism, combining an explicit
finite difference time discretization with a lumped-mass P1 finite element space
discretization. The scheme is effective in the particular case where the dielectric
permittivity is constant in a neighborhood of the boundary of the spatial domain.
After presenting the problem under consideration for the electric field we supplied
the detailed description of such a scheme and recalled the a priori error estimates
that hold for the latter under suitable regularity assumptions specified in [2]. Then
we showed by means of numerical experiments performed for a test-problem in two-
dimension space with known exact solution, that the convergence results given in
[2] are confirmed in practice. Furthermore we presented convincing evidence that
such theoretical predictions extend to solutions with much lower regularity than the
one assumed in our analysis. Similar optimal second-order convergence is observed
in a norm other than those in which convergence was formally established. In short
we undoubtedly indicated that Maxwell’s equations can be efficiently solved with
classical conforming linear finite elements in some relevant particular cases, among
those is the model problem stated in (10).
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Reconstructing the Optical Parameters
of a Layered Medium with Optical
Coherence Elastography

Peter Elbau, Leonidas Mindrinos, and Leopold Veselka

Abstract In this work we consider the inverse problem of reconstructing the optical
properties of a layered medium from an elastography measurement where optical
coherence tomography is used as the imaging method. We hereby model the sample
as a linear dielectric medium so that the imaging parameter is given by its electric
susceptibility, which is a frequency- and depth-dependent parameter. Additionally
to the layered structure (assumed to be valid at least in the small illuminated region),
we allow for small scatterers which we consider to be randomly distributed, a situ-
ation which seems more realistic compared to purely homogeneous layers. We then
show that a unique reconstruction of the susceptibility of the medium (after averag-
ing over the small scatterers) can be achieved from optical coherence tomography
measurements for different compression states of the medium.

Keywords Optical coherence tomography · Optical coherence elastography ·
Inverse problem · Parameter identification

MSC: 65J22 · 65M32 · 78A46

1 Introduction

Optical Coherence Tomography is an imaging modality producing high resolution
images of biological tissues. It measures the magnitude of the back-scattered light
of a focused laser illumination from a sample as a function of depth and provides
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cross-sectional or volumetric data by performing a series of multiple axial scans
at different positions. Initially, it used to operate in time where a movable mirror
was giving the depth information. Later on, frequency-domain optical coherence
tomography was introduced where the detector is replaced by a spectrometer and no
mechanical movement is needed. We refer to [3, 4] for an overview of the physics
of the experiment and to [6] for a mathematical description of the problem.

Only lately, the inverse problems arising in optical coherence tomography have
attracted the interest from the mathematical community, see, for example, [2, 7, 11,
13]. For many years, the proposed and commonly used reconstruction method was
just the inverse Fourier transform. This approach is valid only if the properties of the
medium are assumed to be frequency-independent in the spectrum of the light source.
However, the less assumptions one takes, the more mathematically interesting but
also difficult the problem becomes.

The main assumption, we want to make is that the medium can be (at least locally
in the region where the laser beam illuminates the object) well described by a lay-
ered structure. Since there are in real measurement images typically multiple small
particles visible inside these layers, we will additionally include small, randomly
distributed scatterers into the model and calculate the averaged contribution of these
particles to the measured fields.

To obtain a reconstruction of the medium, that is, of its electric susceptibility, we
consider an elastography setup where optical coherence tomography is used as the
imaging system. This so-called optical coherence elastography is done by recording
optical coherence tomography data for different compression states of the medium,
see [1, 5, 9, 12] for some recent works dealing with this interesting problem.

Under the assumption that the sample can be described as a linear elastic medium,
we show that these measurements can be used to achieve a unique reconstruction of
the electric susceptibility of the layered medium.

The paper is organised as follows: In Sect. 2we review themain equations describ-
ing mathematically how the data in optical coherence tomography is collected and
its relation to the optical properties of the medium. In Sect. 3, we show that the cal-
culation of the back-scattered field can be decomposed into the corresponding sub-
problems for the single layers, for which we derive the resulting formulæ in Sect. 4.
Finally, we present in Sect. 5 that from the measurements at different compression
states a unique reconstruction of the susceptibility becomes feasible.

2 Modelling the Optical Coherence Tomography
Measurement

We model the sample by a dispersive, isotropic, non-magnetic, linear dielectric
medium characterised by its scalar electric susceptibility. To include randomly dis-
tributed scatterers in the model, we introduce the susceptibility as a random variable;
so let (X ,A , P) be a probability space and write
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χ : X × R × R3 → R, (σ, t, x) �→ χσ (t, x)

for the electric susceptibility of the medium in the state σ . (Hereby, to have a causal
model, we require an electric susceptibility χ : R × R3 → R to be a function ful-
filling χ(t, x) = 0 for all t < 0.)

The object (in a certain realisation state σ ∈ X ) is then probed with a laser beam,
described by an incident electric field E (0) : R × R3 → R3 characterised by the
following properties.

Definition 1 We call E (0) : R × R3 → R3 an incident wave for a given susceptibil-
ity χ : R × R3 → R in a homogeneous background χ0 : R → R if it is a solution
of Maxwell’s equations for χ0, that is,

ΔE (0)(t, x) = 1

c2
∂t t D

(0)(t, x),

where c denotes the speed of light in vacuum and

D(0)(t, x) = E (0)(t, x) +
∫
R

χ0(τ )E (0)(t − τ, x)dτ,

and E (0) does not interact with the inhomogeneity for negative times, meaning that

E (0)(t, x) = 0 for all t ∈ (−∞, 0), x ∈ Ω (1)

with Ω = {x ∈ R3 | χ(·, x) �= χ0}.
We then measure the resulting electric field Eσ : R × R3 → R3 induced by the

incident field E (0) in the presence of the dielectric medium described by the suscep-
tibility χσ .

Definition 2 Let χ : R × R3 → R be a susceptibility and E (0) : R × R3 → R3 be
an incident wave for χ . Then, we call E the electric field induced by E (0) in the
presence of χ if E is a solution of the equation system

curl curl E(t, x) + 1

c2
∂t t D(t, x) = 0 for all t ∈ R, x ∈ R3, (2)

E(t, x) − E (0)(t, x) = 0 for all t ∈ (−∞, 0), x ∈ R3 (3)

with c being the speed of light in vacuum and with the electric displacement field
D : R × R3 → R3 being related to the electric field via

D(t, x) = E(t, x) +
∫
R

χ(τ, x)E(t − τ, x)dτ.
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Remark 1 The fact that E (0) does not interact with the object before time t = 0,
see (1), guarantees that E (0) is a solution of (2) and thus the initial condition in (3)
is compatible with (2).

Remark 2 Wedo not want to specify the solution concept for solving (2) here (since
we are going for a layered and therefore discontinuous susceptibility, there exists only
a weak solution), but will silently assume that the susceptibility and the incident field
are such that they induce an electric field with sufficient regularity and the appearing
integrals and Fourier transforms are well-defined.

Equation (2) is more conveniently written in Fourier space, where we use the
convention

F [ f ](k) = 1

(2π)
n
2

∫
Rn

f (x)e−i〈k,x〉dx

for the Fourier transform of an integrable function f : Rn → R. For convenience,
we also use the shorter notation

F̌(ω, x) = √
2π F−1[t �→ F(t, x)](ω) =

∫
R

F(t, x)eiωtdt

for this rescaled inverse Fourier transformation of a sufficiently regular function of
the form F : R × Rm → Rn with respect to the time variable.

Lemma 1 Let χ : R × R3 → R be a susceptibility, E (0) : R × R3 → R3 be an
incident wave for χ , and E be the induced electric field. Then, Ě solves the vector
Helmholtz equation

curl curl Ě(ω, x) − ω2

c2
(1 + χ̌(ω, x))Ě(ω, x) = 0 for all ω ∈ R, x ∈ R3, (4)

with the constraint
Ě ∈ H (Ě (0)), (5)

whereH (Ě (0)) is the space of all functions F : R × R3 → R3 so that the mapω �→
(F − Ě (0))(ω, x) can be holomorphically extended to the space H × R3, where
H = {z ∈ C | 
m z > 0} denotes the upper half complex plane, and the extension
fulfils

sup
λ>0

∫
R

|(F − Ě (0))(ω + iλ, x)|2dω < ∞

for every x ∈ R3.

Proof Equation (4) is obtained directly from the application of the Fourier trans-
form to (2). The condition (5) is according to the Paley–Wiener theorem, see,
for example, [10, Theorem 9.2], equivalent to the condition (3), which states that
t �→ (E − E (0))(t, x) has for every x ∈ R3 only support in [0,∞).



Reconstructing the Optical Parameters of a Layered Medium … 109

In frequency-domain optical coherence tomography, we detect with a spectrome-
ter at a position x0 ∈ R3 outside the medium the intensity of the Fourier components
of the superposition of the back-scattered light from the sample and the reference
beam, which is the reflection of the incident laser beam from a mirror at some fixed
position.

Here, we consider two independent measurements for two different positions of
the mirror in order to overcome the problem of phase-less data, see [8]. Thus, we
record for some realisation σ ∈ X and all ω ∈ R the data

m0,σ (ω) = |Ěσ (ω, x0)| and mi,σ (ω) = |Ěσ (ω, x0) + Ě (r)
i (ω, x0)|, i ∈ {1, 2},

where E (r)
1 : R × R3 → R3 and E (r)

2 : R × R3 → R3 denote the two known refer-
ence waves, which are solutions of Maxwell’s equations in the homogeneous back-
ground medium (usually well approximated by the vacuum).

We can uniquely recover from this data the (complex-valued) Fourier transform
Ě(ω, x0) of the electric field for every ω ∈ R by intersecting the three circles

∂Bm0,σ (ω)(0) ∩ ∂Bm1,σ (ω)(−Ě (r)
1 (ω, x0)) ∩ ∂Bm2,σ (ω)(−Ě (r)

2 (ω, x0))

provided that the points 0, Ě (r)
1 (ω, x0), and Ě (r)

2 (ω, x0) in the complex plane do not
lie on a single straight line. In the following, we assume that the fields E (r)

1 and E (r)
2

are chosen such that this condition is satisfied and we can recover the function

mσ (ω) = Ěσ (ω, x0) for all ω ∈ R.

However, this information is still not enough for reconstructing the material
parameter χσ , see, for example, [6]. Thus, we make the a priori assumption that the
illuminated region of the medium can be well approximated by a layered medium.
Since the layers are typically not completely homogeneous, we also allow for ran-
domly distributed small inclusions in every layer.

Thus, we describe χ to be of the form

χσ (t, x) = χ j (t) + ψ j,σ j (t, x) (6)

in the j th layer {x ∈ R3 | z j+1 < x3 < z j }, j ∈ {1, . . . , J }, where we write the mea-
sure space as a productX = ∏J

j=1 X j with each factor representing the state of one
layer. Here, χ j is the homogeneous background susceptibility of the layer and ψ j is
the random contribution caused by some small particles in the layer. Outside these
layers, we set χσ (t, x) = χ0(t) for some homogeneous background susceptibility
χ0.

To simplify the analysis, we will assume that the scatterers in the j th layer only
occur at some distance to the layer boundaries z j and z j+1, say between Z j and ζ j ,
where z j+1 < Z j < ζ j < z j . Moreover, we choose the particles independently, iden-
tically, uniformly distributed on the part Uj,L j = [− 1

2 L j ,
1
2 L j ] × [− 1

2 L j ,
1
2 L j ] ×
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[Z j , ζ j ] of the layer for some width L j > 0. Concretely, we assume that we have in
the j th layer for some number N j of particles the probability measure Pj,N j ,L j on
the probability space X j = (Uj,L j )

N j given by

Pj,N j ,L j (
∏N j


=1A
) =
N j∏


=1

|A
|
L2

j (ζ j − Z j )
(7)

for all measurable subsets A
 ⊂ Uj,L j , where |A
| denotes the three dimensional
Lebesgue measure of the set A
.

The full probabilitymeasure P = PN ,L is consistently chosen as the direct product
PN ,L = ∏J

j=1 Pj,N j ,L j onX = ∏J
j=1 X j .

The particles themselves, we model in each layer as identical balls with a suf-
ficiently small radius R and a homogeneous susceptibility χ

(p)
j . Thus, we define

for a realisation σ j ∈ X j of the j th layer the contribution of the particles to the
susceptibility by

ψ j,σ j (t, x) =
N j∑


=1

χ BR(σ j,
)
(x) (χ

(p)
j (t) − χ j (t)), (8)

where we ignore the problem of overlapping particles. Here, we denote by χ A the
characteristic function of a set A and by Br (y) the open ball with radius r around a
point y.

3 Domain Decomposition of the Solution

The layered structure of themediumallows us to decompose the solution as a series of
solution operators for the single layers. To do so, we split the medium at a horizontal
stripe where the medium is homogeneous and consider the two subproblems where
once the region above and once the region below is replaced by the homogeneous
susceptibility X0 : R → R in the stripe. We write the stripe as the set {x ∈ R3 |
z − ε < x3 < z + ε} for some z ∈ R and some height ε > 0 and parametrise the
electric susceptibility in the form

χ(t, x) =
{
X1(t, x) if x ∈ Ω1 = {y ∈ R3 | y3 > z − ε},
X2(t, x) if x ∈ Ω2 = {y ∈ R3 | y3 < z + ε}. (9)

with the necessary compatibility condition that X1 and X2 coincide in the intersection
Ω1 ∩ Ω2, where they should both be equal to the homogeneous susceptibility X0.
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Additionally, we have the assumption that the medium is bounded in vertical
direction. We can therefore assume that for some z− < z+, the susceptibilities X1

and X2 are homogeneous in Ω+ = {x ∈ R3 | x3 > z+} ⊂ Ω1 and Ω− = {x ∈ R3 |
x3 < z−} ⊂ Ω2, respectively. We set

X1(t, x) = X+(t) for all x ∈ Ω+ and X2(t, x) = X−(t) for all x ∈ Ω−.

Since we are solving Maxwell’s equations on the whole space, we extend X1 and
X2 by the homogeneous susceptibility X0:

X1(t, x) = X0(t) for all x ∈ Ω2 and X2(t, x) = X0(t) for all x ∈ Ω1,

see Picture (a) in Fig. 1 for an illustration of the notation.
The aim is then to reduce the calculation of the electric field in the presence of χ

to the subproblems of determining the electric fields in the presence of X1 and X2,
independently. To do so, we consider the solution in the intersection Ω1 ∩ Ω2 and
split it there into waves moving in the positive and negative e3 direction.

Lemma 2 Let a homogeneous susceptibility χ : R → R be given on a stripe Ω0 =
{x ∈ R3 | x3 ∈ (z0 − ε, z0 + ε)}. Then, every solution Ě : R × Ω0 → C3 of

curl curl Ě(ω, x) − ω2

c2
(1 + χ̌(ω))Ě(ω, x) = 0 for all ω ∈ R, x ∈ Ω0, (10)

admits the form

Ě(ω, x) =
∫
R2

e1(k1, k2)e
−ix3

√
ω2

c2
(1+χ̌ (ω))−k21−k22 ei(k1x1+k2x2)d(k1, k2)

+
∫
R2

e2(k1, k2)e
ix3

√
ω2

c2
(1+χ̌ (ω))−k21−k22 ei(k1x1+k2x2)d(k1, k2) (11)

for all ω ∈ R and x ∈ Ω0 with some coefficients e1, e2 : R2 → C3.

Proof Taking the divergence of (10), we see that we have div Ě = 0 on the stripeΩ0

with homogeneous susceptibility. Then, Eq. (10) reduces to the three independent
Helmholtz equations

ΔĚ(ω, x) + ω2

c2
(1 + χ̌ (ω))Ě(ω, x) = 0 for all ω ∈ R, x ∈ Ω0.

Applying the Fourier transform with respect to x1 and x2 and solving the resulting
ordinary differential equation in x3 gives us (11).

Definition 3 Let Ě be a solution of the Eq. (10) on some stripe Ω0, written in the
form (11). We then call Ě a downwards moving solution if e2 = 0 and an upwards
moving solution if e1 = 0.
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Moreover, we define the solution operators G1 and G2. To avoid having to define
an incident wave on the whole space, we replace the condition (5) by radiation
conditions of the form that we specify the upwards moving part on a stripe below
the region and the downwards moving part on a stripe above the region.

Definition 4 Let χ be given as in (9) and Ě0 be an upwards moving solution in
Ω1 ∩ Ω2. Then, we define G1 Ě0 as a solution Ě of the equation

curl curl Ě(ω, x) − ω2

c2
(1 + X̌1(ω, x))Ě(ω, x) = 0

fulfilling the radiation condition that Ě − Ě0 is a downwards moving solution in
Ω1 ∩ Ω2 and that Ě is an upwards moving solution in Ω+, see Picture (b) in Fig. 1.

Analogously, we define G2 Ě0 for a downwards moving solution Ě0 in Ω1 ∩ Ω2

as a solution Ě of the equation

curl curl Ě(ω, x) − ω2

c2
(1 + X̌2(ω, x))Ě(ω, x) = 0

fulfilling the radiation condition that Ě − Ě0 is an upwards moving solution inΩ1 ∩
Ω2 and that Ě is a downwards moving solution in Ω−, see Picture (c) in Fig. 1.

Remark 3 We do not consider the uniqueness of these solutions at this point since
we will only need the result for particular, simplified problems where the verification
that this gives the desired solution can be done directly.

z+

X+(t) Ω+

z + ε

X+(t) Ω+

X1(t, x) Ω1

X0(t) Ω1 ∩ Ω2
z − ε

zX0(t) Ω1 ∩ Ω2

X2(t, x) Ω2

z−

X−(t) Ω−

x3

x1, x2

Ω+ ĚΩ+ Ě

Ω1

Ω1 ∩ Ω2Ω1 ∩ Ω2 Ě0 Ě − Ě0
x3

x1, x2

Ω1 ∩ Ω2 Ě0 Ě − Ě0Ω1 ∩ Ω2 Ě0 Ě −−

Ω2

Ω−Ω− Ě
x3

x1, x2
(a) The subdomains and the corre-
sponding optical parameters

(b) The fields related to the operator G1

(c) The fields related to the operator G2

Fig. 1 The geometry and the notation used in this section



Reconstructing the Optical Parameters of a Layered Medium … 113

Instead we will simply assume that the susceptibilities χ , X1, and X2 are such
that the only solution Ě in the presence of this susceptibility for which Ě is upwards
moving onΩ+ and downwards moving onΩ− is the trivial solution Ě = 0, meaning
that there is only the trivial solution in the absence of an incident wave.

Lemma 3 Let χ be given by (9) and denote by G1, G2 the solution operators as in
Definition 4. Let further E (0) be an incident wave on χ which is moving downwards
and E1 be the induced electric fields in the presence of X1.

Then, provided the following series converge, we have that the function E defined
by

Ě(ω, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ě1(ω, x) +
∞∑
j=0

G1(G̃2G̃1)
j G̃2 Ě1(ω, x) if x ∈ Ω1,

∞∑
j=0

G2(G̃1G̃2)
j Ě1(ω, x) if x ∈ Ω2,

where we set G̃i = Gi − id, i ∈ {1, 2}, is an electric field in the presence ofχ fulfilling
the radiation conditions that Ě − Ě (0) is an upwards moving wave in Ω+ and Ě is
a downwards moving wave in Ω−.

Proof First, we remark that the composition of the operators is well defined, since
Ě1 ∈ H (Ě (0)) is a downwards moving solution in Ω1 ∩ Ω2, see Lemma 1, the
range of G̃2 consists of upwards moving solutions, and the range of G̃1 consists of
downwards moving solutions.

The field Ě is seen to satisfy (4) in Ω1 by using the definitions of E1 and the
solution operator G1 on Ω1. Similarly, using the definition of G2, we get that the
function Ě satisfies (4) in Ω2.

Therefore, it only remains to check that the two formulas coincide in the inter-
section Ω1 ∩ Ω2. Using that Gi = G̃i + id, i ∈ {1, 2}, we find that

Ě1 +
∞∑
j=0

G1(G̃2G̃1)
j G̃2 Ě1 = Ě1 +

∞∑
j=0

G̃1(G̃2G̃1)
j G̃2 Ě1 +

∞∑
j=0

(G̃2G̃1)
j G̃2 Ě1

=
∞∑
j=0

(G̃1G̃2)
j Ě1 +

∞∑
j=0

G̃2(G̃1G̃2)
j Ě1 =

∞∑
j=0

G2(G̃1G̃2)
j Ě1.

Moreover, we have that Ě − Ě1 is by construction an upwards moving wave in
Ω+, and therefore so is Ě − Ě (0). Similarly, the wave Ě is a downwards moving
wave in Ω−.

If we are in a case where our uniqueness assumption mentioned in Remark 3
holds, then Lemma 3 allows us to iteratively reduce the problem of determining the
electric field in the presence of the susceptibility χσ , defined in (6), to problems of
simpler susceptibilities. To this end, we could, for example, successively apply the
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result to values z ∈ (ζ j , z j ) and z ∈ (z j+1, Z j ), j = 1, . . . , J , where each successive
step is only used to further simplify the operator G2 from the previous step. This then
leads to a sort of layer stripping algorithm, see, for example, [8], where a similar
argument was presented.

4 Wave Propagation Through a Scattering Layer

Using the above analysis, we can calculate the electric field in the presence of a
layered medium of the form (6) as a combination of the solutions of the following
two subproblems.

Problem 1 Let j ∈ {0, . . . , J − 1}. Find the electric field induced by some incident
field in the presence of the piecewise homogeneous susceptibility χ given by

χ(t, x) =
{

χ j (t) if x3 > z j+1,

χ j+1(t) if x3 < z j+1.
(12)

Problem 2 Let σ ∈ X and j ∈ {1, . . . , J }. Find the electric field induced by some
incident field in the presence of the susceptibility χ given by

χ(t, x) = χ j (t) + ψ j,σ (t, x), (13)

where the function ψ j is described by (8).

We thus fix a layer j ∈ {0, . . . , J }, and to simplify the calculations, we restrict
ourselves in both subproblems to an illumination by a downwards moving plane
wave of the form

Ě (0)(ω, x) = f̌ (ω)e−i ω
c n j (ω)x3η (14)

for some function f : R → R and a polarisation vector η ∈ S1 × {0}. Herewe define
the complex-valued refractive indices for all j ∈ {0, . . . , J } by

n j : R → H, n j (ω) =
√
1 + χ̌ j (ω). (15)

Then, the solution of Problem 1 can be explicitly written down.

Lemma 4 Let j ∈ {0, . . . , J − 1} and E (0) be the incident wave given in (14). Then,
the electric field E inducedby E (0) in the presence of a susceptibilityχ of the form (12)
is given by

Ě(ω, x) = f̌ (ω)

(
e−i ω

c n j (ω)x3 − n j+1(ω) − n j (ω)

n j+1(ω) + n j (ω)
e−i ω

c n j (ω)z j+1ei
ω
c n j (ω)(x3−z j+1)

)
η
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for x3 > z j+1, and by

Ě(ω, x) = f̌ (ω)
2n j (ω)

n j+1(ω) + n j (ω)
e−i ω

c n j (ω)z j+1e−i ω
c n j+1(ω)(x3−z j+1)η

for x3 < z j+1, where the refractive indices n j and n j+1 are defined by (15).

Proof Clearly, Ě satisfies the differential equation (4) in both regions x3 > z j+1

and x3 < z j+1. Moreover, Ě (0) is the only incoming wave in Ě . Therefore, it only
remains to check that Ě has sufficient regularity to be the weak solution along the
discontinuity of the susceptibility at x3 = z j+1, meaning that

lim
x3↑z j+1

Ě(ω, x) = lim
x3↓z j+1

Ě(ω, x),

lim
x3↑z j+1

n j+1(ω)∂x3 Ě(ω, x) = lim
x3↓z j+1

n j (ω)∂x3 Ě(ω, x).

Both identities are readily verified.

For Problem 2, the situation is more complicated and we settle for an approximate
solution for the electric field. For that, we assume (using the same notation as in (8))
that the susceptibility χ

(p)
j of the random particles does not differ much from the

background χ j , so that the difference between the induced field and the incident field
becomes small, and we do a first order approximation in the difference χ

(p)
j − χ j .

For that purpose, we write the differential Eq. (4) in the form

curl curl Ě(ω, x) − ω2

c2
n2j (ω)(1 + φ̄ j,σ j (ω, x))Ě(ω, x) = 0,

where, according to (8),

φ̄ j,σ j (ω, x) =
N j∑


=1

χ BR(σ j,
)
(x) φ j (ω),

and we abbreviate

φ j (ω) = χ̌
(p)
j (ω) − χ̌ j (ω)

1 + χ̌ j (ω)
. (16)

In first order in φ̄, we then approximate the field by the solution Ě (1)
N j ,σ j

of the
equation

curl curl Ě (1)(ω, x) − ω2

c2
n2j (ω)Ě (1)(ω, x) = ω2

c2
n2j (ω)φ̄ j,σ j (ω, x)Ě (0)(ω, x),
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the so called Born approximation. Using that the fundamental solution G of the
Helmholtz equation, which by definition fulfils

ΔG(κ, x) + κ2G(κ, x) = −δ(x),

is given by

G(κ, x) = eiκ|x |

4π |x | ,

we obtain the expression

E (1)
N j ,σ j

(ω, x) = E (0)(ω, x)

+
(

ω2

c2
n2j (ω) + grad div

) N j∑

=1

∫
BR(σ j,
)

G(ω
c n j (ω), x − y)φ j (ω)E (0)(ω, y)dy

(17)

for the Born approximation of the induced field, see, for example, [6, Proposition 4].
We now want to determine the expected value of E (1)

N j ,σ j
in the limit where the

number of particles N j and the width L j of the region where the particles are hori-
zontally distributed tend to infinity, while keeping the ratio ρ j = N j

L2
j
of particles per

surface area constant, that is, we want to calculate the expression

Ē (1)(ω, x) = lim
N j→∞

∫
X j

Ě (1)
N j ,σ j

(ω, x)dPj,N j ,L j (N j )(σ j ), (18)

where L j (N j ) =
√

N j

ρ j
and P denotes the probability measure introduced in (7).

Lemma 5 Let j ∈ {1, . . . , J } and ρ j > 0 be fixed, E (0) be an incident field of the
form (14), and χ be the susceptibility specified in (13).

Then, the expected value Ē (1) of the Born approximation of the field induced
by E (0) in the presence of the susceptibility χ in the limit N j → ∞ with L2

jρ j = N j ,
as introduced in (18), is given by

Ē (1)(ω, x) = Ě (0)(ω, x) + (2π)4ρ jφ j (ω) f̌ (ω)

× h(2R ω
c n j (ω))

(
e−i ω

c n j (ω)Z j − e−i ω
c n j (ω)ζ j

)
ei

ω
c n j (ω)(x3−μ j )η (19)

for x3 > ζ j + R and by

Ē (1)(ω, x) = Ě (0)(ω, x) + (2π)4

3
ρ jφ j (ω) f̌ (ω)

× (
e−i ω

c n j (ω)Z j − e−i ω
c n j (ω)ζ j

)
e−i ω

c n j (ω)(x3−μ j )η (20)
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for x3 < Z j − R, where μ j = 1
2 (ζ j + Z j ) and

h(ξ) = sin(ξ) − ξ cos(ξ)

ξ 3
. (21)

Proof Inserting the expression (17) for the Born approximation of the electric field
into the formula (18) for the expected value, we obtain the equation

Ē (1)(ω, x) = Ě (0)(ω, x)

+ lim
N j→∞ N jφ j (ω) f̌ (ω)

(
ω2

c2
n2j (ω) + grad div

)
KL j (N j )(ω, x)η,

(22)

where

KL(ω, x) =
∫
Uj,L

∫
BR(σ j,1)

G(ω
c n j (ω), x − y)e−i ω

c n j (ω)x3dy dσ j,1.

We recall thatUj,L = [− 1
2 L , 1

2 L] × [− 1
2 L , 1

2 L] × [Z j , ζ j ] is for L = L j the region
in which the particles in the j th layer are lying. To symmetrise the expression, we
set

μ j = 1

2
(ζ j + Z j ) and d j = 1

2
(ζ j − Z j )

and shift Uj,L to the origin, by defining Ũ j,L = Uj,L − μ j e3 with e3 = (0, 0, 1).
Introducing the probability density

pL(ξ) = 1

|Uj,L |χUj,L
(μ j e3 + ξ) = 1

2L2d j
χ Ũ j,L

(ξ)

for the variable ξ = σ j,1 − μ j e3, we rewrite KL in the form

KL (ω, x) =
∫
R3

pL (ξ)e−i ωc n j (ω)(μ j+ξ3)

×
∫
R3

χ BR(0)(y)G(ω
c n j (ω), x − μ j e3 − ξ − y)e−i ωc n j (ω)y3dy dξ

= (2π)
3
2

∫
R3

pL (ξ)e−i ωc n j (ω)(μ j+ξ3)

× F [y �→ χ BR(0)(y)G(ω
c n j (ω), x − μ j e3 − ξ − y)](ω

c n j (ω)e3)dξ

= (2π)3
∫
R3

pL (ξ)e−i ωc n j (ω)(μ j+ξ3)

× (
F [χ BR(0)] ∗ F [y �→ G(ω

c n j (ω), x − μ j e3 − ξ − y)])(ω
c n j (ω)e3)dξ.
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The shift in the function G now translates in Fourier space to a multiplication by a
phase factor; explicitly, we find (using the symmetry G(κ, y) = G(κ,−y) and the
notation Ĝ(κ, k) = F [y �→ G(κ, y)](k)) that

F [y �→ G(κ, x − μ j e3 − ξ − y)](k) = e−i〈k,x−μ j e3−ξ〉Ĝ(κ, k).

Therefore, we can write KL (again using the shorter notation χ̂ BR(0) = F [χ BR(0)]
and p̂L = F [pL ]) as

KL(ω, x) = (2π)3e−i ω
c n j (ω)μ j

∫
R3

χ̂ BR(0)(
ω
c n j (ω)e3 − k)Ĝ(ω

c n j (ω), k)

× e−i〈k,x−μ j e3〉
∫
R3

pL(ξ)e−i〈 ω
c n j (ω)e3−k),ξ〉dξ dk

= (2π)
9
2 e−i ω

c n j (ω)μ j

∫
R3

χ̂ BR(0)(
ω
c n j (ω)e3 − k)

× p̂L(
ω
c n j (ω)e3 − k)Ĝ(ω

c n j (ω), k)e−i〈k,x−μ j e3〉dk.

(23)

Remarking that the Fourier transform of pL is explicitly given by

p̂L(k) = 1

(2π)
3
2 L2

∫ L
2

− L
2

e−ik1ξ1dξ1

∫ L
2

− L
2

e−ik2ξ2dξ2

∫
R

χ [−d j ,d j ](ξ3)e
−ik3ξ3dξ3

= 1

(2π)
3
2 L2

2 sin( 12 Lk1)

k1

2 sin( 12 Lk2)

k2

∫
R

χ [−d j ,d j ](ξ3)e
−ik3ξ3dξ3,

we find with the abbreviation χ̂ [−d j ,d j ] = F [χ [−d j ,d j ]] in the limit N j → ∞ that

N j p̂L j (N j )(k) → 2πρ jδ(k1)δ(k2)χ̂ [−d j ,d j ](k3) (N j → ∞). (24)

Using (23) in (24), we can calculate the behaviour of KL in this limit to be

lim
N j→∞ N j KL j (N j )(ω, x) = (2π)

11
2 e−i ω

c n j (ω)μ j ρ j

×
∫
R

χ̂ BR(0)((
ω
c n j (ω) − k3)e3)Ĝ(ω

c n j (ω), k3e3)χ̂ [−d j ,d j ](k3)e
−ik3(x3−μ j )dk3.

Using further that Ĝ can be computed by taking the Fourier transform of the
Helmholtz equation, giving us

Ĝ(κ, k) = 1

(2π)
3
2

1

|k|2 − κ2
,
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and calculating the Fourier transform of the characteristic function of a sphere to be

χ̂ BR (0)(k) = 1√
2π

∫ R

0

∫ π

0
r2 sin θe−ir |k| cos θdθdr = 1√

2π

∫ R

0

r

i|k| (e
ir |k| − e−ir |k|)dr

= 1

|k|3
√

2

π

∫ R|k|
0

α sin(α)dα = 1

|k|3
√

2

π
(sin(R|k|) − R|k| cos(R|k|));

we are left with

lim
N j→∞N j KL j (N j )(ω, x) = (2π)4e−i ω

c n j (ω)μ j ρ j

√
2

π

×
∫
R

h(R(ω
c n j (ω) − k3))

1

k23 − ω2

c2 n
2
j (ω)

χ̂ [−d j ,d j ](k3)e
−ik3(x3−μ j )dk3, (25)

where we used the abbreviation h from (21).
Inserting finally

χ̂ [−d j ,d j ](k3) = 1√
2π

∫ d j

−d j

e−ik3x3dx3 = 1√
2π

1

ik3

(
eik3d j − e−ik3d j

)
,

we see that the integrand in (25) can for x3 − μ j > d j + R (that is, for x3 > ζ j + R)
be meromorphically extended to a function of k3 in the lower half complex plane
which decays sufficiently fast at infinity, so that the residue theorem yields

lim
N j→∞ N j KL j (N j )(ω, x) = (2π)4e−i ω

c n j (ω)μ j ρ j
h(2R ω

c n j (ω))

ω2

c2 n
2
j (ω)

× (
ei

ω
c n j (ω)d j − e−i ω

c n j (ω)d j
)
ei

ω
c n j (ω)(x3−μ j ).

Putting this into (22), we obtain with μ j + d j = ζ j and μ j − d j = Z j the formula
(19).

Similarly, we extend the integrand for x3 − μ j < −d j − R (that is, for x3 <

Z j − R) meromorphically to a function of k3 in the upper half plane and find with
the residue theorem that

lim
N j→∞ N j KL j (N j )(ω, x) = (2π)4ρ j

h(0)
ω2

c2 n
2
j (ω)

× (
ei

ω
c n j (ω)d j − e−i ω

c n j (ω)d j
)
e−i ω

c n j (ω)x3 ,

which gives us with (22) and with h(0) = 1
3 the formula (20).
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5 Recovering the Susceptibility with Optical Coherence
Elastography

So far, we have presented a way to model the measurements of an optical coherence
tomography setup for a layered medium of the form (6). The question we are really
interested in, however, is how to reconstruct the properties of the medium from this
data.

Let us first consider one of the layer stripping steps for a susceptibility χ of the
form (9) with X1 being either of the form (12) of Problem 1 or of the form (13) of
Problem2.Wemake the additional assumption that suppχ j ⊂ [0, T ] and suppχ

(p)
j ⊂

[0, T ] for a sufficiently small T > 0.Then,we see that by choosing a sufficiently short
pulse as incidentwave, that is, E (0)(t, x) = f (t + x3

c )η (assuming for the background
medium χ0 = 0) with f having a sufficiently narrow support (this ability is of course
limited by the available frequencies), we can arrange it such that the field E in the
presence of χ and the field E1 in the presence of X1 (where we are content with the
averaged Born approximation of the electric field, see (18), in the case of Problem
2) are such that E1(t, x0) = E(t, x0) for all t < t0 and E1(t, x0) = 0 for t ≥ t0 at
the detector x0 ∈ R3 for some time t0 ∈ R. This allows us to split the reconstruction
of the electric susceptibility by a layer stripping method and reconstruct each layer
separately.

We will therefore only describe the inductive steps, in which we independently
consider the subproblems described in Sect. 4.

We want to start with measurements from an optical coherence elastography
setup, that is, we have optical coherence tomography data for different elastic states
of the medium. Concretely, we apply a force proportional to some parameter δ ∈
R perpendicular to the layers of the medium, which causes under the assumption
of a linear elastic medium a linear displacement of the position z j of the layer.
Correspondingly, the refractive indices in the medium, defined by (15), will change,
which we assume to be linear as well. Thus, each layer at the compression state
corresponding to δ will be characterised by a refractive index n̄ j and a vertical
position z̄ j of the beginning of the layer of the form

n̄ j (ω, δ) = n j (ω) + δn′
j (ω) and z̄ j (δ) = z j + δz′

j

for some functions n′
j : R → C and some slopes z′

j ∈ R.
In the first reconstruction step, we have that the first layer is the background in

which themedium resides,whichwe assume to bewell described by the vacuum n0 =
1 and not to be affected by the compression, that is, n′

0 = 0. Moreover, the distance
between the detector and the medium shall be kept fixed during the compression so
that z′

1 = 0 as well.
According to Lemma 4, the measurements at the detector x0 ∈ R3 with x0,3 > z1

then allow us to extract (knowing n̄0 = 1, the incident field E (0), and the vertical
position x0,3 of the detector explicitly) the information
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m0[n1, n′
1, z](ω, δ) = n̄1(ω, δ) − 1

n̄1(ω, δ) + 1
e−2i

ω
c z1 . (26)

From this data, we can uniquely compute the functions n1, n′
1, and z1.

Lemma 6 Let I ⊂ R be a set which contains at least two incommensurable
points ω1, ω2 ∈ I \ {0} (that is, ω1

ω2
∈ R \ Q). Assume that we have (n1, n′

1, z1) and
(ñ1, ñ′

1, z̃1) with n
′
1(ω) �= 0, ñ′

1(ω) �= 0, and

m0[n1, n′
1, z1](ω, δ) = m0[ñ1, ñ′

1, z̃1](ω, δ) for all ω ∈ I, δ ∈ R. (27)

Then, we have

n1(ω) = ñ1(ω), n′
1(ω) = ñ′

1(ω), and z1 = z̃1 for all ω ∈ I.

Proof Expanding the fractions in (27), the equation reduces to the zeroes of a
quadratic polynomial in δ. Comparing the coefficients of second order of δ, we
find that

n′
1(ω)ñ′

1(ω)
(
e−2i

ω
c z1 − e−2i

ω
c z̃1

)
= 0.

Thus, we get
e−2i ω

c z1 = e−2i ω
c z̃1 for all ω ∈ I.

Evaluating this at ω1 and ω2, we have that there exist two integers λ1, λ2 ∈ Z with

z1 − z̃1 = πc

ω1
λ1 = πc

ω2
λ2.

If λ2 �= 0, then we would get the contradiction λ1
λ2

= ω1
ω2

∈ R \ Q. Therefore, λ2 = 0,
which means that z1 = z̃1.

With this, (27) evaluated at δ = 0 simplifies to

n1(ω) = ñ1(ω) for all ω ∈ I.

Finally, looking at the terms of first order in δ in the expanded version of (27),
we find that they have been reduced to give the equation

n′
1(ω) = ñ′

1(ω).

After having recovered the parameters up to the j th layer, j ∈ {1, . . . , J }, we
can clean our measurement data from all effects caused by the previous layers and
consider the next subproblem, namely the signal originating from the region of the
randomly distributed particles. Here, the unknown parameters consist of
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• the radius R of the particles, which we will assume to be so small that the approx-
imation R = 0 is reasonable and that the particles can also after compression be
considered to have a round shape;

• the ratio ρ j > 0 of particles per surface area, which we assume to be invariant
under the compression;

• the refractive index ν̄ j of the particles, whichwe assume to deform linearly accord-
ing to

ν̄ j (ω, δ) = ν j (ω) + δν ′
j (ω), where ν j (ω) =

√
1 + χ̌

(p)
j (ω),

under compression; and
• the vertical positions ζ̄ j and Z̄ j of the beginning and the end of the randommedium
inside the j th layer, which are also assumed to change linearly according to

ζ̄ j (δ) = ζ j + δζ ′
j and Z̄ j (δ) = Z j + δZ ′

j .

We collect these unknowns in the tuple Sj = (ρ j , ν j , ν
′
j , ζ j , ζ

′
j , Z j , Z ′

j ). The (cor-
rected) incident wave E (0) and the refractive index n j and its rate n′

j of change under
compression are presumed to be already calculated.

From the measurements of the electric field for this subproblem, provided that
it can be well approximated by the expected value of the Born approximation as
calculated in Lemma 5, we can extract the data (rewriting the expression (16) for φ j

in (19) in terms of the refractive indices)

Mj [Sj ](ω, δ) = ρ j (ν̄
2
j (ω, δ) − n̄2j (ω, δ))

×
(
e−i ω

2c n̄ j (ω,δ)(ζ̄ j (δ)+3Z̄ j (δ)) − e−i ω
2c n̄ j (ω,δ)(3ζ̄ j (δ)+Z̄ j (δ))

)
,

Lemma 7 Let j ∈ {1, . . . , J } be fixed, I ⊂ R be an arbitrary subset and n j , n′
j be

given such that n j (ω) �= 0 for every ω ∈ I and that there exists a value ω0 ∈ I \ {0}
with 
m(n′

j (ω0)) > 0. Assume that we have Sj = (ρ j , ν j , ν
′
j , ζ j , ζ

′
j , Z j , Z ′

j ) and

S̃ j = (ρ̃ j , ν̃ j , ν̃
′
j , ζ̃ j , ζ̃

′
j , Z̃ j , Z̃ ′

j ) with

Mj [Sj ](ω, δ) = Mj [S̃ j ](ω, δ) for all ω ∈ I, δ ∈ R. (28)

Additionally, we enforce the ordering Z j < ζ j and Z̃ j < ζ̃ j about the beginning and
the end of the random layer andmake the assumptions Z ′

j > ζ ′
j > 0 and Z̃ ′

j > ζ̃ ′
j > 0

that the layer shrinks when being compressed.
Moreover, we assume the existence of an element ω1 ∈ I so that

n′
j (ω1)

n j (ω1)
�= ν ′

j (ω1)

ν j (ω1)
. (29)
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Then, we have
Sj = S̃ j .

Proof Considering the different orders of decay in δ in the exponents in (28), we
require that all of them match, which yields the equation system

δ2
ω

2c

m(n′

j (ω))(ζ ′
j + 3Z ′

j ) = δ2
ω

c

m(n′

j (ω))(ζ̃ ′
j + 3Z̃ ′

j ) and

δ2
ω

2c

m(n′

j (ω))(3ζ ′
j + Z ′

j ) = δ2
ω

c

m(n′

j (ω))(3ζ̃ ′
j + Z̃ ′

j )

for the exponents quadratic in δ, which implies for the frequency ω = ω0 for which

m(n′

j (ω0)) > 0 that ζ ′
j = ζ̃ ′

j and Z
′
j = Z̃ ′

j , and, using this result, the equation system

δ
ω

2c

m(n′

j (ω))(3ζ j + Z j ) = δ
ω

2c

m(n′

j (ω))(3ζ̃ j + Z̃ j ) and

δ
ω

2c

m(n′

j (ω))(ζ j + 3Z j ) = δ
ω

2c

m(n′

j (ω))(ζ̃ j + 3Z̃ j )

for the exponents linear in δ, which further implies ζ j = ζ̃ j and Z j = Z̃ j .
At this point, (28) is reduced to

ρ j
(
(ν j + δν ′

j )
2 − (n j + δn′

j )
2
) = ρ̃ j

(
(ν̃ j + δν̃ ′

j )
2 − (n j + δn′

j )
2
)
.

Comparing coefficients with respect to δ gives us the equation system

ρ j
(
ν ′
j
2 − n′

j
2
) = ρ̃ j

(
ν̃ ′
j
2 − n′

j
2
)
, (30)

ρ j
(
ν jν

′
j − n jn

′
j

) = ρ̃ j
(
ν̃ j ν̃

′
j − n jn

′
j

)
, (31)

ρ j
(
ν2
j − n2j

) = ρ̃ j
(
ν̃2
j − n2j

)
. (32)

We use Eqs. (32) in (30) and (31) to eliminate of the variables ρ j and ρ̃ j , and
interpret the result as an equation system for the variables ν̃ j and ν̃ ′

j . Solving these
equations then for ν̃ ′

j , gives us

(ν2
j − n2j )ν̃

′
j
2 = (ν̃2

j − n2j )ν
′
j
2 + (ν2

j − ν̃2
j )n

′
j
2,

(ν2
j − n2j )ν̃ j ν̃

′
j = (ν̃2

j − n2j )ν jν
′
j + (ν2

j − ν̃2
j )n jn

′
j .

Eliminating further ν̃ ′
j by multiplying the first equation with ν̃ j and subtracting the

squared second equation, we find after some algebraic manipulations

(ν̃2
j − n2j )(ν

2
j − ν̃2

j )(ν
′
j n j − ν j n

′
j )
2 = 0.

Evaluating this at the value ω1, we see that the last factor is by assumption (29)
not zero. Thus, there are only two cases.
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1. Either we have ν̃ j (ω1) = ν j (ω1) �= n j (ω1) and therefore by (32) that ρ̃ j = ρ j ;
then we get with (32) and (30) that ν̃ j = ν j and ν̃ ′

j = ν ′
j holds on the whole set

I , which means that we have shown S̃ j = Sj .
2. Or we have that ν̃ j (ω1) = n j (ω1). Then, (32) tells us that also ν j (ω1) = n j (ω1)

and thus, by combining (30) and (31), that ν̃ ′
j (ω1) = ν ′

j (ω1). Furthermore, we
know from assumption (29) that in this case ν ′

j (ω1) �= n′
j (ω1), and therefore (30)

implies ρ̃ j = ρ j from which we again conclude that S̃ j = Sj .

As last type of subproblem, we encounter then the interface between the layer j
and the layer j + 1. Similarly to the case of the initial layer, we obtain here from
Lemma 4 the data

m j [n j+1, n
′
j+1, z j+1, z

′
j+1](ω, δ) = n̄ j+1(ω, δ) − n̄ j (ω, δ)

n̄ j+1(ω, δ) + n̄ j (ω, δ)
e−2i ω

c n̄ j (ω,δ)z̄ j+1(δ).

Again, this data allows us to uniquely obtain the variables n j+1, n′
j+1, z j+1, and

z′
j+1 from the already reconstructed values n j and n′

j .

Lemma 8 Let j ∈ {1, . . . , J − 1} be fixed, I ⊂ R be an arbitrary subset and n j ,
n′
j be given such that n j (ω) �= 0 for every ω ∈ I and that there exists a value

ω0 ∈ I \ {0} with 
m(n′
j (ω0)) > 0. Assume that we have (n j+1, n′

j+1, z j+1, z′
j+1)

and (ñ j+1, ñ′
j+1, z̃ j+1, z̃′

j+1) with

m j [n j+1, n
′
j+1, z j+1, z

′
j+1](ω, δ) = m j [ñ j+1, ñ

′
j+1, z̃ j+1, z̃

′
j+1](ω, δ) (33)

for all ω ∈ I and δ ∈ R.
Then, we have

n j+1(ω) = ñ j+1(ω), n′
j+1(ω) = ñ′

j+1(ω), z j+1 = z̃ j+1, and z′
j+1 = z̃′

j+1

for all ω ∈ I .

Proof Comparing again the different orders of decay in δ in the exponents in (33),
we require that the coefficients on both sides coincide:

2δ2
ω

c

m(n′

j (ω))(z′
j+1 − z̃′

j+1) = 0 and

4δ
ω

c

(
m(n j (ω))(z′
j+1 − z̃′

j+1) + 
m(n′
j (ω))(z j+1 − z̃ j+1)

) = 0.

Because of the assumption that 
m(n′
j (ω0)) > 0, this is equivalent to

z′
j+1 = z̃′

j+1 and z j+1 = z̃ j+1.
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As in the proof of Lemma 6, Eq. (33) for δ = 0 then gives us

2n j (ω)(n j+1(ω) − ñ j+1(ω)) = 0,

resulting in n j+1(ω) = ñ j+1(ω).
Finally, dividing both sides of (33) by the exponential factors (which we already

know to be the same), we get a quadratic equation for δ and equating the first order
terms in δ, we obtain

2n j (ω)(n′
j+1(ω) − ñ′

j+1(ω)) = 0,

which yields n′
j+1(ω) = ñ′

j+1(ω).

Conclusion

We have thus shown that by analysing a layered medium endued with independently
uniformly distributed scatterers in each layer with optical coherence tomography,
we can reduce the inverse problem of reconstructing the electric susceptibility of
the medium to subproblems for each layer separately by a layer stripping argument,
provided the homogeneous parts between the different regions are not too small.

Then by combining this imaging method with an elastography setup by recording
measurements for different compression states (normal to the layered structure), we
find out that this allows for the reconstruction of the optical parameters and leads to
a unique reconstructability of all the optical parameters: the electric susceptibilities
and positions of the layers, the electric susceptibilities of the randomly distributed
particles, their particle density, and the locations of the regions of these particles (at
every compression state). Of course, the recovered shifts of the layer boundaries for
the different compression states could then be used in a next step to determine elastic
parameters of the medium.
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The Finite Element Method and
Balancing Principle for Magnetic
Resonance Imaging

Larisa Beilina, Geneviève Guillot, and Kati Niinimäki

Abstract This work considers a finite element method in combination with
balancing principle for a posteriori choice of the regularization parameter for image
reconstruction problem appearing in magnetic resonance imaging (MRI). The fixed
point iterative algorithm is formulated and it’s performance is demonstrated on the
image reconstruction from experimental MR data.

Keywords MRI · Fredholm integral equation of the first kind · Finite element
method · Regularization · Balancing principle

MSC: 65R20 · 65R32

1 Introduction

In this work is studiedMRI problem described by a Fredholm integral equation of the
first kind, via applying finite elementmethod (FEM) to its solution. Fredholm integral
equation of the first kind is an ill-posed problem and to approach it, a minimization
of the Tikhonov functional [15–17] is usually used.
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The paper is focused on the efficiency of applying of FEM for image reconstruc-
tion inmagnetic resonance imaging. A FEM for integral equation of the first kindwas
elaborated in [5] and an adaptive FEMwith a posteriori error estimates for Tikhonov
functional and the regularized solution of this functional was developed in [10]. The
present work employs the finite element method for minimization of the regularized
Tikhonov functionalwhere the regularized term is performed in the H 1 norm. Further,
we derive the Fréchet derivative of the regularized Tikhonov functional and formu-
late the finite element method to find optimal solution of this functional. Balancing
principle [6] is then used for a posteriori choice of the regularization parameter.
Finally, a fixed point iterative algorithm, which combined the finite element method
and balancing principle, is formulated and applied to the reconstruction of images
from experimental MR data acquired at IR4M laboratory in Paris-Sud University,
France.

The outline of this paper is as follows. The statements of forward and inverse
MRI problems are presented in Sect. 2. In Sect. 3, the finite element method for
minimization of the Tikhonov functional is formulated. In Sect. 4, the balancing
principle for choosing of the regularization parameter in the Tikhonov functional
is briefly presented and in Sect. 4.1, the fixed point iterative algorithm for solution
of MRI problem is formulated. Section4.2 presents convergence analysis of the
algorithm of Sect. 4.1. Finally, Sect. 5 presents numerical results of reconstruction
from experimental MR data using proposed finite element method.

2 Statement of the Forward and Inverse MRI Problem

Throught the paper, by Hk(Ω) denotes the Hilbert space of all L2-functions ω(x)
defined in the domain Ω which are k times continuously differentiable in Ω and
with all partial derivatives of the order |α| ≤ k : Dαw ∈ L2(Ω). The inner product
in Hk (Ω) is defined as

(w, v)Hk (Ω) =
∑

|α|≤k

∫

Ω

Dαw Dαv dx .

We denote the domain of image reconstruction by Ω ⊂ C
2 with the boundary

∂Ω , and the domain where MR data are collected, by Ωκ ⊂ C
2 with the boundary

∂Ωκ , and call them as image-space and k-space, respectively.
The goal of this work is to solve a two-dimensional Fredholm integral equation

of the first kind

u(kx , ky) =
∫

Ω

f (x, y)G(x, y, kx , ky) dxdy, (1)
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where f (x, y) ∈ H(Ω) denotes the unknown image functionwhich should be recon-
structed from the experimental MR data u(kx , ky) ∈ L2(Ωκ). In (1) the kernel func-
tion is defined by

G(x, y, kx , ky) = e−2π i(kx x+ky y) ∈ Ck, k > 0 (2)

where i is an imaginary unit. In Eqs. (1)–(2) (kx , ky) denote the k-space trajectories
which correspond to the coordinates of measured data u ∈ Ωκ and are defined in
time t as

kx(t) = γ

2π

∫ t

0
Gx (τ )dτ = γ

2π
Gxt, (3)

ky(t) = γ

2π

∫ t

0
Gy(τ )dτ = γ

2π
Gyt, (4)

where Gx ,Gy are the known magnetic field gradients which prescribe how the k-
space data in Ωκ is acquired. For more details about the statement of MRI problem
we refer to [4].

The Eq. (1) can be written as an operator equation

A f = u, (5)

with a bounded linear operator A : H 1(Ω) → L2(Ωκ) defined as

A f :=
∫

Ω

f (x, y)e−2π i(kx x+ky y) dxdy. (6)

Further we will consider the following ill-posed problem

Ill-posed problem (IP)
Find f (x, y) in (1) when the measured MR data u(kx , ky) ∈ Ωκ , the k-space coor-
dinates (kx , ky) and the kernel G(x, y, kx , ky) are known.

IP needs regularization [1, 2, 9, 13, 15–17]. Thus, to find a solution for IP we
construct the Tikhonov regularization functional

Mα( f ) = 1

2
‖A f − u‖2L2(Ωκ ) + α

2
‖ f ‖2H 1(Ω) , (7)

Mα( f ) : H 1(Ω) → C, u ∈ L2(Ωκ).

In (7) α = α (δ) > 0 is a regularization parameter depending on the noise δ in data
such that

‖u − u∗‖L2(Ωκ ) ≤ δ,

where u∗ denote perfect noiseless data corresponding to the exact solution f ∗ of (5)
such that
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A f ∗ = u∗. (8)

Our goal is to find minimum of (7)

inf
f ∈H 1(Ω)

Mα( f ) = inf
f ∈H 1(Ω)

{1
2

‖A f − u‖2L2(Ωκ ) + α

2
‖ f ‖2H 1(Ω)

}
(9)

such that for all b ∈ H 1(Ω)

M ′
α( f )(b) = 0, (10)

where M ′
α( f ) denotes the Fréchet derivative of the functional (7).

The following lemma is well-known for the operator A : L2(Ω) → L2(Ωκ), see
[2].

Lemma 1 Let A : L2(Ω) → L2(Ωκ) be a bounded linear operator. Then the
Fréchet derivative of the functional (7) is

M ′
α( f )(b) = (A∗A f − A∗u, b) + α( f, b), ∀b ∈ L2(Ω). (11)

In the casewhen the operator A : H 1(Ω) → L2(Ωκ) the derivation of the Fréchet
derivative is more complicated because of the presence a H 1 norm in the regular-
ization term. Below we formulate a lemma concerning the Fréchet derivative of the
operator A : H 1(Ω) → L2(Ωκ).

Lemma 2 Let A : H 1(Ω) → L2(Ωκ) be a bounded linear operator. Then the
Fréchet derivative of the functional

Mα( f ) = 1

2
‖A f − u‖2L2(Ωκ ) + α

2
‖|∇ f |‖2L2(Ω) , (12)

is
M ′

α( f )(b) = (A∗A f − A∗u, b) + α(|∇ f |, |∇b|), ∀b ∈ H 1(Ω), (13)

with a convex growth factor b, i.e., |∇b| < b.

Proof We have

Mα( f ) = 1

2
‖A f − u‖2L2(Ωκ ) + α

2
‖|∇ f |‖2L2(Ω)

= 1

2

∫

Ωk

[ ∫

Ω

f (x, y)G(x, y, kx , ky)dxdy − u(kx , ky)
]2
dkxdky

+ α

2

∫

Ω

|∇ f |2dxdy.

(14)

To find the Fréchet derivative (13) of the functional (12) we consider Mα( f +
b) − Mα( f ) ∀b ∈ H 1(Ω):
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Mα( f + b) − Mα( f ) = 1

2

∫

Ωk

[ ∫

Ω

( f + b)Gdxdy − u(kx , ky)
]2
dkxdky

+ α

2

∫

Ω

|∇( f + b)|2dxdy

− 1

2

∫

Ωk

[ ∫

Ω

f Gdxdy − u(kx , ky)
]2
dkxdky

− α

2

∫

Ω

|∇ f |2dxdy = I1 + I2,

(15)

where

I1 := 1

2

∫

Ωk

[ ∫

Ω

( f + b)Gdxdy − u(kx , ky)
]2
dkxdky

− 1

2

∫

Ωk

[ ∫

Ω

f Gdxdy − u(kx , ky)
]2
dkxdky,

I2 := α

2

∫

Ω

|∇( f + b)|2dxdy − α

2

∫

Ω

|∇ f |2dxdy.

(16)

We consider separately terms I1 and I2. As for the term I1

I1 = 1

2

∫

Ωk

[ ∫

Ω
f Gdxdy − u +

∫

Ω
bGdxdy

]2
dkxdky − 1

2

∫

Ωk

[ ∫

Ω
f Gdxdy − u

]2
dkxdky

= 1

2

∫

Ωk

{
(

∫

Ω
f Gdxdy − u)2 + 2(

∫

Ω
f Gdxdy − u) ·

∫

Ω
bGdxdy + (

∫

Ω
bGdxdy)2

−
∫

Ω
( f Gdxdy − u)2

}
dkxdky =

∫

Ωk

[ ∫

Ω
f Gdxdy − u) ·

∫

Ω
bGdxdy

]
dkxdky

+ 1

2

∫

Ωk

[ ∫

Ω
bGdxdy

]2
dkxdky .

(17)
Similarly we rewrite the term I2 as:

I2 = α

2

∫

Ω

(|∇ f + ∇b|2 − |∇ f |2)dxdy ≤ α

2

∫

Ω

(2|∇ f ||∇b| + |∇b|2)dxdy.
(18)

Taking limits in I1 and I2 in the definition of Fréchet derivative we get

0 = lim‖b‖→0

I1
‖b‖2

= lim‖b‖→0

∫
Ωk

[ ∫
Ω

f Gdxdy − u) · ∫
Ω
bGdxdy

]
dkxdky + 1

2

∫
Ωk

[ ∫
Ω
bGdxdy

]2
dkxdky

||b||2 ,

0 = lim‖b‖→0

I2
‖b‖2 ≤ lim‖b‖→0

α[∫
Ω

|∇ f ||∇b|dxdy + 1
2

∫
Ω

|∇b|2dxdy]
‖b‖2 .

(19)
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The second terms in limits for I1 and I2 in (19) are satisfying

lim‖b‖→0

1
2

∫
Ωk

[ ∫
Ω
bGdxdy

]2
dkxdky

||b||2 → 0,

lim‖b‖→0

α
2

∫
Ω

|∇b|2dxdy
‖b‖2 ≤ α

2
lim‖b‖→0

C(b)
||b||22
||b||2 → 0, C(b) = const.

(20)

Thus, the factors in the first terms for I1 and I2 of (19) should be also zero, from
which (13) follows. �

Similarly can be proven the following Lemma.

Lemma 3 Let A : H 1(Ω) → L2(Ωκ) be a bounded linear operator. Then the
Fréchet derivative of the functional

Mα( f ) = 1

2
‖A f − u‖2L2(Ωκ ) + α

2
‖ f + |∇ f |‖2L2(Ω)

= 1

2
‖A f − u‖2L2(Ωκ ) + α

2
‖ f ‖2H1(Ω)

,

(21)
is given by

M ′
α( f )(b) = (A∗A f − A∗u, b) + α[( f, b) + ( f, |∇b|) + (|∇ f |, b) + (|∇ f |, |∇b|)], ∀b ∈ H1(Ω),

(22)
with a convex growth factor b, i.e., |∇b| < b.

Proof Once again, we consider Mα( f + b) − Mα( f ) ∀b ∈ H 1(Ω):

Mα( f + b) − Mα( f ) = 1

2

∫

Ωk

[ ∫

Ω

( f + b)Gdxdy − u(kx , ky)
]2
dkxdky

+ α

2

∫

Ω

( f + b + |∇( f + b)|)2dxdy

− 1

2

∫

Ωk

[ ∫

Ω

f Gdxdy − u(kx , ky)
]2
dkxdky

− α

2

∫

Ω

( f + |∇ f |)2dxdy = I1 + I2,

(23)

where I1 is given in (16) and

I2 := α

2

∫

Ω

( f + |∇ f + ∇b| + b)2dxdy − α

2

∫

Ω

( f + |∇ f |)2dxdy. (24)

The term I1 is estimated in Lemma 2. Thus, it remains to consider only the term I2.
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I2 = α

2

∫

Ω

( f + |∇ f + ∇b| + b)2dxdy − α

2

∫

Ω

( f + |∇ f |)2dxdy

≤ α

2

∫

Ω

([
( f + |∇ f |) + (b + |∇b|)

]2 − ( f + |∇ f |)2
)
dxdy

= α

2

∫

Ω

(
2( f + |∇ f |)(b + |∇b|) + (b + |∇b|)2

)
dxdy.

(25)

Taking limit in I2 in the definition of Fréchet derivative we get:

0 = lim‖b‖→0

I2
‖b‖2 ≤ lim‖b‖→0

α
[ ∫

Ω
( f + |∇ f |)(b + |∇b|)dxdy + 1

2

∫
Ω

(b + |∇b|)2dxdy
]

‖b‖2 .

(26)

The second term in limit for I2 in (26) can be written as

lim‖b‖→0

α
2

∫
Ω

(b + |∇b|)2dxdy
‖b‖2 ≤ α

2
lim‖b‖→0

D(b)
||b||22
||b||2 → 0, D(b) = const. (27)

which approaches zero when b goes to zero. Thus, the factors in the first terms for
I1 in (19) and I2 in (26) should be also zero, from which (22) follows.

3 The Finite Element Method for Minimization of the
Tikhonov Functional

To formulate the finite element method for (13) we discretize the domains Ω ⊂
R

2,Ωκ ⊂ R
2 by the meshes Kh , Khκ

, respectively, consisting of non-overlapping
triangles K such that

Ω = ∪K∈Kh K = K1 ∪ K2... ∪ Ks, Kh = {K1, ..., Ks},
Ωκ = ∪K∈Khκ

K = Kk1 ∪ Kk2 ... ∪ Kks , Khκ
= {Kk1, ..., Kks }.

with the standard mesh regularity assumption [7]. We note that the number of ele-
ments s in both meshes is the same.

We define the finite element space Vh ⊂ V as

Vh = {
v ∈ L2(Ω) : v ∈ C(Ω), v|∂Ω = 0, v|K ∈ P1(K ) ∀K ∈ Kh

}
. (28)

The finite element method for (13) reads: find fh ∈ Vh such that for all v ∈ Vh

M ′
α( fh)(v) = (A∗A fh − A∗u, v) + α(∇ fh,∇v) = 0. (29)

The function f is approximated by fh ∈ Vh , such that
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fh =
N∑

i=1

fiϕi , (30)

where {ϕi }Ni=1 are the standard continuous piecewise linear functions and fi denote
the unknown discrete function-values at the mesh point xi ∈ Kh .

Substituting (30) into (29) with v = ϕ j and taking discrete function values of ui
at the mesh point xi ∈ Khk we get the discrete system of equations

N∑

i, j=1

(Aϕi , Aϕ j ) fi −
N∑

i, j=1

(ui , Aϕ j ) + α

N∑

i, j=1

(∇ϕi ,∇ϕ j ) fi = 0. (31)

This system can be rewritten as

N∑

i, j=1

(Aϕi , Aϕ j ) fi + α

N∑

i, j=1

(∇ϕi ,∇ϕ j ) fi =
N∑

i, j=1

(ui , Aϕ j ), (32)

which is equivalent to the following linear system of equations

(C + αK )f = b. (33)

In system (33), matrices C, K are the finally assembled block matrices, correspond-
ing to the first two terms in the left hand side of (32), f denotes the vector of nodal
values of finite element approximation fh , b is the finally assembled right hand side
of (32), see details in [3].

4 Balancing Principle

In this section, we briefly describe the balancing principle for finding the regulariza-
tion parameter α in the functional (7) according to [6]. For this purpose the functional
(7) is rewritten here as

Mα( f ) = 1

2
‖A f − u‖2L2(Ωk )

+ α
1

2
‖ f ‖2H 1(Ω) = ϕ( f ) + αψ( f ). (34)

For the functional (34) the value function F(α) : C → C is defined according to [14]
as

F(α) = inf
f
Mα( f ). (35)

If there exists derivative F ′(α) at α > 0 then from (34) and (35) follows that

F(α) = inf
f
Mα( f ) = ϕ′( f )︸ ︷︷ ︸

ϕ̄(α)

+α ψ ′( f )︸ ︷︷ ︸
ψ̄(α)

. (36)
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Since F ′
α(α) = ψ ′( f ) = ψ̄(α) then from (36) we get

ψ̄(α) = F ′(α), ϕ̄(α) = F(α) − αF ′(α). (37)

For the functional (34) balancing principle (or Lepskii, see [11, 12]) finds α > 0
such that the following expression is fulfilled

ϕ̄(α) = γαψ̄(α), (38)

where γ is determined by the statistical a priori knowledge from shape parameters in
Gamma distributions. When γ = 1 the method is called zero crossing method, see
details in [8].

Let us show that the balancing rule (38) finds optimal α > 0 minimizing the
balancing function

Φγ (α) = F1+γ (α)

α
. (39)

From conditions (37) it follows that

0 = ϕ̄(α) − γαψ̄(α) = F(α) − αF ′(α) − γαF ′(α) = F(α) − αF ′(α)(1 + γ ),

which can be rewritten as

F(α) = αF ′(α)(1 + γ ). (40)

Dividing both sides of (40) by αF(α) we get

1

α
= F ′(α)

F(α)
(1 + γ ) = dF/dα

F(α)
(1 + γ )

or
dα

α
= dF

F(α)
(1 + γ ).

Integrating with respect to α both sides of the above equation we obtain

ln α + C1 = (1 + γ ) ln F(α) + C2.

Now choosing C1 = C2 = const. the above equation is rewritten as

α = exp(1+γ ) ln F(α) = F(α)1+γ

which in turn can be rewritten as the balancing function (39) to be minimized in the
balancing principle.

We can check that the minimum of Φγ (α) is achieved at
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0 = (Φγ (α))′α = (1 + γ )F ′(α)Fγ (α)α − F1+γ (α)

α2
.

From the above equation we get

(1 + γ )F ′(α)Fγ (α)α = F1+γ (α) → (1 + γ )F ′(α)α = F(α).

This equation is the same as the Eq. (40) which gives the balancing principle

ϕ̄(α) = γαψ̄(α). (41)

Thus, the balancing principle computes optimal value of α where (Φγ (α))′α = 0.

4.1 Fixed Point Algorithm for Finding Optimal α

For the Tikhonov functional (34) the following fixed point algorithm for computing
α is proposed.

• Step1. Startwith the initial approximation ofα0, for example, chooseα0 = δμ, μ ∈
(0, 2), and compute the sequence of αk in the following steps.

• Step 2. Compute the value function F(αk) = inf f Mαk ( f ) and get fαk via solving
(33)

• Step 3. Update the regularization parameter α := αk+1 as

αk+1 = 1

γ

ϕ( fαk )

ψ( fαk )

• Step 4. For the tolerance 0 < θ < 1 chosen by the user, stop computing regulariza-
tion parameters αk if computed αk are stabilized, or |αk − αk−1| ≤ θ . Otherwise,
set k := k + 1 and go to Step 2.

4.2 Study of Convergence of Fixed Point Algorithm

The local convergence of the fixed point algorithm is developed under the following
assumptions for the functional (34). Let the interval for finding optimal α be defined
as [αl, αr ] and it is such that

• 1. ψ̄(αr ) > 0 → ψ̄(α) > 0 for ∀α ∈ [0, αr ].
• 2. Then ∃αb ∈ [αl, αr ] : D±Φγ (α) < 0 for α ∈ [αl, αb] and D±Φγ (α) > 0 for

α ∈ [αb, αr ], where
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D+F(α) = lim
h→0−

F(α) − F(α − h)

h
,

D−F(α) = lim
h→0+

F(α + h) − F(α)

h
.

The first assumption guarantees well-posedness of the algorithm which is valid
for a broad class of ill-posed problems with different regularization terms like L2 −
l1 and L2-TV. The second assumption guarantees that there exists only one local
minimizer αb for Φγ on [αl, αr ].

Let us define the residual

r(α) = ϕ̄(α) − γαψ̄(α). (42)

The following Lemma will be used in the convergence theorem.
Lemma [6]
Under the above assumptions and with α0 = [αl , αr ] the sequence {αk} generated

by the fixed point algorithm is such that

• It is either finite or infinite and strictly monotone, and increasing if r(α) > 0 and
decreasing if r(α) < 0.

• If r(α) > 0, then the sequence {αk} ∈ [αl, αb]
• if r(α) < 0, then the sequence {αk} ∈ [αb, αr ].

Theorem [6]
Under above assumptions with α0 = [αl, αr ] the sequence {αk} generated by the

fixed point algorithm is such that

• The sequence {Φγ (αk)} generated by the function

Φγ (α) = F1+γ (α)

α

is monotonically decreasing.
• The sequence {αk} converges to the local minimizer αb.

Sketch of the proof
Let us consider the case r(α0) > 0, then the sequence {αk} is increasing and we

have αk < αk+1. The function F is concave, thus Lipschitz continuous. Thus Φγ (α)

is locally Lipschitz continuous and there exists Φ ′
γ (α) such that

Φ ′
γ (α) = (1 + γ )Fγ (α)F ′(α)α − F1+γ (α)

α2
,

= Fγ (α)

α2
((1 + γ )F ′(α)α − F(α)) = Fγ (α)

α2
(−r(α)) < 0.

(43)

In (43) we have used the fact that
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− r(α) = (1 + γ )F ′(α)α − F(α). (44)

Let us check (44). Since

ψ̄(α) = F ′(α), ϕ̄(α) = F(α) − αF ′(α), (45)

then using the balancing principle we get

r(α) = ϕ̄(α) − γαψ̄(α) = F(α) − αF ′(α) − γαF ′(α) = F(α) − αF ′(α)(1 + γ ),

and thus, (44) holds.
Next, the function Φ ′

γ (α) is locally integrable and

Φγ (αk+1) = Φγ (αk) +
∫ αk+1

αk

Φ ′
γ (α) dα. (46)

Since by (43) we haveΦ ′
γ (α) < 0 then from (46) it follows thatΦγ (αk+1) < Φγ (αk).

Thus, the sequence {Φγ (αk)} is monotonically decreasing.
By Lemma [6] there exists a limit α∗ ∈ [αl, αr ] of the sequence {αk}. If αk <

αk+1, Φγ (αk+1) < Φγ (αk) we have for the finite sequence {αk}k0k=1

lim
k→k0

D+Φγ (αk) ≤ lim
k→k0

Fγ (αk)

α2
k

(−r(αk)) ≤ lim
k→k0

D−Φγ (αk), (47)

then D±Φγ (αk0) = 0 since −r(αk0) = 0. By our assumption, this local minimizer
αk0 = αb. Now from iterations in the fixed point algorithm we have

1

γ

F(αk) − αk D−F(αk)

D−F(αk)
≤ αk+1 = 1

γ

ϕ̄(αk)

ψ̄(αk)
≤ 1

γ

F(αk) − αk D+F(αk)

D+F(αk)
. (48)

Since limk→∞ D±F(αk) = D−F(α∗) then the local minimizer is αb = α∗ given by

α∗ = 1

γ

F(α∗) − α∗D−F(α∗)
D−F(α∗)

. (49)

�

5 Numerical Experiment

In this section, the performance of the algorithm in Sect. 4.1 on the reconstruction of
phantoms from experimentally measured MR data is presented. The MR data acqui-
sition is described in details in the recent paper by authors [3] where the performance
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Fig. 1 Two-dimensional slice of data |u| used in tests 1 and 2. Left figure: visualized data |u| on
rectangular mesh in matlab. Right figure: visualized data |u| on the finite element mesh Khk

of applying different interpolation techniques for obtaining the reconstructed images
was discussed. For the MR data, a cylindrical plastic phantom of 10mm diameter is
used. This cylindrical phantom contained 8 small cylinders of hardened polymeric
bone cement (Osteopal®). The diameters of the 8 small cylinders were all equal to
2mm. The plastic cylinder was filled with 0.4 mMol/L MnCl2 water solution. Using
this cylindrical phantom, a three-dimensional experimental dataset was acquired in
Ωκ . Next, 2D slice of this datasetwas selected for for the computations of the function
u in (12) in Ωκ , see Fig. 1.

The 2D computational domain Ω is set of discrete elements nx × ny defined by

Fig. 2 Reconstructions | fh | obtained without using regularization parameter in the functional (12):
via inverse Fourier transform (IDFT), left figure, and using the finite element method, right figure
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Ω = {(x, y) ∈ (−37, 36) × (−37, 36)} ,

and the domain Ωk is a set of discrete elements nkx × nky defined by

Ωk = {
(kx , ky) ∈ (−0.5, 0.5) × (−0.5, 0.5)

}
.

We choose themesh size h = 1 inΩ and h = 1/73 inΩk . In bothmeshes the number
of points in x and y direction is the same, nx = ny = nkx = nky = n = 74.

Results of reconstructions without using the regularization term (α = 0) are pre-
sented in the Fig. 2. Using this figure, we observe that the reconstruction obtained via
inverse discrete Fourier transform (IDFT) (Matlab®’s FFT routines), see left Fig. 2,
is less sharp than the result obtained using the finite element method.

Fig. 3 Reconstructions | fh |obtainedusing thefinite elementmethod forminimizationof functional
(12) (left) and functional (21) (right)
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Table 1 The optimal values of the computed regularization parameter αb = α∗ using the fixed
point algorithm of Sect. 4.1, and corresponding computed residuals ‖|A fh − u|‖2 for different
regularization functions ψ( fh)

‖|∇ fh |‖L1 ‖|∇ fh |‖2L2
‖| fh +
|∇ fh ||‖L1

‖| fh +
|∇ fh ||‖2L2

No reg.

α∗ 0.59 4.73 0.41 3.52 0

‖|A fh − u|‖2 6.44 6.52 6.43 6.48 6.43

Results of reconstruction using finite elementmethod forminimizing of functional
(12) (Test 1) and (21) (Test 2), are presented in Fig. 3 and Table1. For choosing the
regularization parameter α, the fixed point algorithm of Sect. 4.1 on the interval
[αl, αr ] = [0.01, 1] with tolerance � = 10−7 was used. The optimal values of the
computed regularization parameter αb = α∗ are presented in Table1. Convergence
in fixed point algorithm was achieved after 9 and 11 iterations in Tests 1 and 2,
respectively.

6 Conclusions

The finite element method for image reconstruction problem in magnetic resonance
imaging (MRI) was developed. The balancing principle for a posteriori choice of the
regularization parameter was also presented and analyzed. The fixed point iterative
algorithm was formulated and tested on the image reconstruction from experimental
MR data.

Numerical results compare reconstruction obtained via usual inverse discrete
Fourier transform (IDFT) (Matlab®’s FFT routines) and via the finite elementmethod
with and without using the regularization terms in the functional to be minimized.
Numerical results show effectiveness of using the finite element method to get qual-
itative MR image reconstruction compared with standard techniques.
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