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1 Introduction

Approval Voting (AV ) is the method of election according to which a voter can vote
for as many candidates as he wishes, the elected candidate(s) being the one(s) who
receive(s) the most votes. This simple voting rule has attracted interest from scholars
in political science and economics (see Laslier 2010) due to its flexibility: voters
approve of each candidate independently of the rest of the candidates. As far as
preference aggregation is concerned (on which we focus), one of the main features
of equilibria is presented in Laslier (2009). It provides a strong argument for the use
of AV in a model of large elections: AV selects the Condorcet Winner (CW ) as long
as the voters expect that no pair of candidates gets exactly the same number of votes.

Our main contribution is to fully characterize the set of equilibriumwinners under
Approval voting following Myerson (1993) model. This characterization is stated
provided that the electorate is “large enough”. By “large enough”, we consider the
benchmark for the study of large elections in which: (i) each voter does not affect the
pivotal probabilities since his influence becomes negligible and (ii) yet his probability
of affecting the outcome is strictly positive so that a rational voter selects the ballot
that gives him the highest expected utility. Our results contrast with the previous ones
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in the strategic voting literature in its generality.1 Most of the previousworks focus on
precise examples (for somegiven preference profile) and compute the set of equilibria
under some voting rules. Few general results (that is that apply to any preference
profile) are available. Among these results, one deals with Plurality and the other with
Approval Voting. Under Plurality voting, one can construct equilibria in which any
candidate who is not the Condorcet loser can win the election [see Myerson (2002)
for instance]. Under Approval voting, the existence of an equilibrium in which the
Condorcet winner wins, as previously described, is a salient feature. Yet, little is
known about the rest of equilibria in elections with this rule. Informally, one might
expect that Approval voting should reduce, when compared with other voting rules,
the set of voting equilibria (and of equilibrium winners) and hence be more robust
to the concept of focal manipulation as described by Myerson (1993). However, the
previous results do not focus on the whole set of equilibriumwinners under Approval
as we do. Moreover, note that Brams (2016) perform a related analysis assuming that
voters are sincere. Our work can hence be thought as an extension of their work to
a strategic environment. Our approach is based on the candidates who are viable
and unviable. A candidate a is unviable if, in the election, the number of voters
who do not rank a last is smaller than the number of voters who rank some other
candidate first. A viable candidate is one who is not unviable; as will be shown, only
viable candidates can win when voters play best responses. Our notion of viability is
somewhat related to the underlying idea of critical strategies as presented by Brams
(2016). The equilibrium winners are as follows.

If there are at most two viable candidates, then the unique equilibrium winner
is the Condorcet Winner (Theorem 1). Furthermore, we prove that if the unique
equilibrium winner is the Condorcet winner for every utility representation of an
ordinal preference profile, then there are at most two viable candidates. We hence
derive necessary and sufficient conditions for implementing the Condorcet Winner
as the unique equilibrium winner in terms of the number of viable candidates. To
prove such a result, we need to impose twomild restrictions in the preference profile:
the Simple Asymmetry (SA) and the Inverse Asymmetry (IA). According to SA, for
any pair of candidates x, y the number of voters who prefer x to y are different from
the number of voters who prefer y to x. The role of SA is simple: it removes equilibria
with two winners. IA states that for any triple of candidates x, y, z, the number of
voters who prefer x to y and y to z is different from the number of voters who prefer
z to y and y to x. The role of IA is subtler as will be shown by Example2, which
proves that the Condorcet loser can be the only winner in equilibrium when IA fails
to hold.

1In a recent computer science literature the use of probabilistic models in contexts with human
participants has received quite a lot of criticism. Especially, they argue that the common approach
to handle uncertainty is by maximizing expected utility, which requires a cardinal utility function as
well as detailed probabilistic information. However, often such probabilities are not easy to estimate
or apply. Therefore a number of alternative frameworks for modelling uncertainty (including for
voting settings) have been proposed. For an up-to-date coverage of this literature, see Meir (2014)
and Lev (2019).
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On the contrary with at least three viable candidates, the situation is much more
nuanced.Weprove that for any such preference profile,we can build an equilibrium in
which all viable candidates are tied for victory (Theorem2).Note that this equilibrium
exists for some set of cardinal utilities but need not exist for all utility profiles
representing an ordinal preference profile.

We then go on to derive some implications of the previous results.
The first consequence is that whenmany candidates are viable, taking into account

equilibria with more than one winner seems unavoidable. We believe that these equi-
libria are not degenerate but, on the contrary, are inherent to the voting system. One
possible interpretation is that, unless the electorate is polarized over two candidates
(there are at most two viable candidates included), the rule is unable to make a clear
choice.

Secondly, we obtain a description of equilibrium winners in elections with three
candidates. In these elections (on which most of the literature focus), we prove that
either theCW wins or the three candidates are tied in any equilibrium. This reinforces
our claim according to which equilibria with ties cannot be ignored. Indeed, doing
so, leads us to conclude that some elections do not admit an equilibrium at all. For
instance, any election without a CW only admits equilibria with ties (Theorem 1).

This work is structured as follows. After briefly reviewing the literature onmodels
of large elections, Sect. 2 introduces the general framework and Sect. 3 describes the
strategic behavior of the voters. Section4 analyzes the relation between AV and the
Condorcet Winner whereas Sect. 5 focus on elections with many viable candidates.
Section 6 concludes the paper.

1.1 Related Literature

One common feature of the models dealing with the study of large elections with
strategic voters are the pivotal probabilities. It is often assumed that a voter anticipates
that with some small probability (even though strictly positive) his vote is relevant to
modify the outcome of the election. Determining and comparing the magnitude of
these probabilities is hence key to describe the voters’ strategic behavior. Our model
is no exception.

Yet, there are different approaches that have been taken to incorporate this assump-
tion. One may either, as in the present model or as in Myerson (1993), make some
simple assumptions about the pivotal probabilities, without explicitly incorporat-
ing a mechanism that actually leads to positive pivotal probabilities. Or one may
add a certain uncertainty to the model that generates positive pivotal probabilities.
Myerson (2000, 2002), among others, assumes that the actual number of voters is
uncertain and follows a Poisson distribution (Poisson voting game). Laslier (2009)
assumes that the actual number of voters is given, but that each voter’s vote has a
certain small probability of being wrongly recorded (“Florida-tremble”). Other than
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implicit versus explicit mechanism generating pivotal probabilities, Laslier (2009)
and the present model are essentially the same.2

The previously discussed modelling approaches can be divided into two groups:
those in which the voters’ anticipations follow some intuitive behavioral assumption
and those who do not. Our work belongs to the first group together with Myerson
(1993) andLaslier (2009),whereas, in general, preference aggregationPoissongames
belong to the second group.3 Informally intuitive behavioral assumption entails that
a voter believes that in case of being pivotal, it is way more probable to break a tie
in which (at least) one of the winners is involved than a tie in which no winner is
involved. In Laslier (2009), they prove that situation arises endogenously when the
scores of the candidates are treated as independent random variables and the number
of voters is large enough. In our model, we follow this behavioral assumption.

Two remarks can be made on this behavioral assumption. First, it is true that
Myerson (2002) finds that a Poisson voting game is inconsistent with the model of
“reduced form””: due to Myerson (1993). Moreover, Nunez (2010) has an example
in which preferences satisfy the Simple Asymmetry and the Inverse Asymmetry,
there exists a Condorcet winner, but it is not selected in an equilibrium with a unique
winner. This is a mathematical objection to the current model. However, when using
the ordering condition (which is quite intuitive), we interpret it as a behavioral one.
We do not claim that it can be derived under very general conditions from amodel. On
the contrary, our claim is that, when the condition fails, the strategic reasoning might
be highly unreasonable. For instance, in the example in Nunez (2010), the voters
anticipate that the most probable pivot event takes place between the first and the
third ranked candidate rather than between the two candidates with the most votes.
This seems to be hardly sustainable with experimental data [see Forsythe (1993)
among others]. Moreover, Lachat (2019) test one model of strategic voting in which
the ordering condition holds on data of an AV election in the Zurich cantons (with
several winners). They find substantial evidence that these models correctly predict
strategic behavioral both at the individual and at the aggregate level.

2 Elections

The finite set of voters and candidates are respectively denoted by N = {1, . . . , n}
and X = {a, b, . . . , k}. Note that n is supposed to be large. The strict preferences
of a voter are defined by a utility function u : X → R, in which u(x) denotes the
utility a voter gets if candidate x wins the election. In other words, for each i ∈ N
and for any pair of candidates x, y ∈ X , x is strictly preferred to y, denoted x �i y, if

2In these models when the size of the electorate becomes large, the voter becomes almost certain
of the distribution of the voters’ preferences. In order to tackle this features, a recent strand of the
literature is focusing on models of aggregate uncertainty such as the works of Fisher (2014) and
Bouton (2016).
3So is the case if one focuses on classic equilibrium refinements such as perfection or Mertens’
stability as proved by De Sinopoli (2006, 2014).
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and only if ui(x) > ui(y). Given that our focus is on whether the Condorcet Winner
is selected, we consider exclusively strict preferences over alternatives under which
this concept is unambigously defined.

Election E := (X ,N , u) is then characterized by its set of candidatesX , its set of
voters N and the utility vector u = (ui)i∈N that depicts the utility function of each
voter.

For any pair of candidates x, y ∈ X , the majority relation M is defined as follows.
We say that x is M -preferred to y, denoted xMy, if and only if N (x, y) > N (y, x),
with N (x, y) = #{i ∈ N | x �i y}. The majority relation allows us to introduce the
notion of Condorcet Winner (CW ), that is a candidate who is majority preferred in
any pairwise comparison. This concept will be of special importance in this work
and its formal definition is as follows.

Definition 1 An electionE admits a Condorcet winner if there exists some candidate
x ∈ X such that:

xMy for any y ∈ X \ {x}.

Throughout the work, we make two (slight) assumptions that ensure that social
preferences are asymmetric: Simple and Inverse Asymmetry. Note that both condi-
tions are quite mild.

The first one concerns the preferences of the electorate over any pair of candidates,
as follows.

Definition 2 An election E satisfies Simple Asymmetry (SA) if:

for any x, y ∈ X , N (x, y) �= N (y, x).

The assumption SA is rather weak. Its role is to remove knife-edge cases in which
the electorate is divided in two exact halves: the ones who prefer x to y and the ones
who prefer y to x. When the population is large, the probability of these knife-edge
cases is typically very small.

The second one concerns preferences over triples of candidates and is defined as
follows. For any triple of candidates x, y, z ∈ X , we let N (x, y, z) denote the number
of voters who prefer x to y and y to z; formally, N (x, y, z) = #{i ∈ N | x �i y �i z}.
Definition 3 An election E satisfies Inverse Asymmetry (IA) if:

for any x, y, z ∈ X , N (x, y, z) �= N (z, y, x).

The role of IA and SA is to avoid non-generic situations in which the number of
players of certain type exactly coincide with the number of players of a different type.
This goes in line with many models of incomplete information where the number of
voters of each of the different types are drawn from a common distribution. Indeed,
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in such models, when the number of voters goes to infinity, the probability that
two types have exactly the same number of voters becomes negligible. Both our
assumptions, IA and SA mimic these vanishingly small probabilities, in a setting
where (i) there is a large number of voters and (ii) voters have complete information
over the preferences of the rest of voters.

The next definition concerns some sort of candidates in an election. A candidate
y in election E is unviable if and only if there exists some other candidate x such that
the number of voters who rank x first (denoted N (x, . . .)) is higher than the number
of voters who do not rank y last (denoted n − N (. . . , y)) so that

Definition 4 A candidate y in election E is unviable if:

∃ x ∈ X with N (x, . . .) > n − N (. . . , y).

with N (. . . , y) the number of voters who rank y last.

Any candidate who is not unviable is viable. The set of viable and unviable
candidates are respectively denoted by X v and X uv so that

X = X v ∪ X uv.

Note that (Courtin, 2017) show that if an election E is such that X v ≤ 2 and SA
holds, then E admits a Condorcet Winner.

3 The Electoral Game

As previously discussed, we assume that the voters are strategic and vote simultane-
ously through the Approval voting method. In other words, each voter can approve
of as many candidates as he wishes by choosing a ballot v = (va, . . . , vk) where
vx ∈ {0, 1} denotes the number of points given to candidate x by a voter. In the fol-
lowing the set of all possible ballots will be denoted V . We follow Myerson (1993)
by assuming that each voter maximizes his expected utility to determine which bal-
lot in the set V he will cast. In this model, his vote has an impact in his payoff if
it changes the winner of the election. Therefore, a voter needs to estimate the prob-
ability of these situations: the pivot events. We say that two candidates are tied if
their vote totals are equal. Furthermore, let H denote the set of all unordered pairs
of candidates. We denote a pair {x, y} in H as xy with xy = yx.

For each pair of candidates x and y, the xy-pivot probability pxy is the probability
of the outcome perceived by the voters that candidates x and y will be tied for first
place in the election. A voter perceives that the probability that he will change the
winner of the election from candidate x to candidate y by casting ballot v with vx ≥ vy
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to be linearly proportional to | vx − vy |. Moreover, the perceived chance of changing
the winner from y to x is identical to the one of changing the winner from x to y. 4

A pivot vector p is a vector listing the pivot probabilities for all pairs of candidates
is denoted by p = (pxy)xy∈H .

This vector p is assumed to be identical and common knowledge for all voters
in the election. A voter with xy-pivot probability pxy anticipates that submitting the
ballot v can change the winner of the election from candidate x to candidate y with
a probability of pxy × max{vx − vy, 0}.

We let Ui(v; p) denote the expected utility gain of voter i from casting ballot v
given the pivot vector p with:

Ui(v; p) =
∑

xy∈H

(vx − vy) · pxy · [ui(x) − ui(y)]. (U )

A strategy profile σ = (σi, σ−i) is any mapping fromN into the set of probability
distributions over V . That is, each σi describes the probability with which voter i
chooses each ballot v in the set V . The expected utility gain of a voter when he plays
the strategy σi equals Ui(σi; p) = ∑

v∈V σi(v)Ui(v; p).
Given the strategy profile σ , the size of the electorate who casts ballot v is
denoted by τ(v) = ∑

i∈N σi(v). Therefore, the score of candidate x equals S(x; σ) =∑
v∈V vxτ(v) given the strategy profile σ .

Definition 5 For any strategy profile σ , the set ofwinners at σ , W (σ ) ⊆ X , contains
the candidates whose score S(x; σ) is maximal given σ .

Given a pivot vector p, the set of pure best responses of a voter equals BRi(p) =
{v ∈ V | v ∈ argmaxv′∈V Ui(v′; p)}. Given the strategy σi of a voter i, its support
denotes the set of pure strategies played with positive probability according to σi:
Supp(σi) = {v ∈ V | σi(v) > 0};

For any candidate y, let vy = (vy
x)x∈X represent the ballot that assigns 1 point to

candidate y and zero to the rest of them (vy
y = 1 and vy

x = 0 if x �= y). The following
lemma will simplify the voter’s expected utility and hence helps to understand his
best responses.

Lemma 1 For any ballot v ∈ V , any pivot vector p and any voter i ∈ N ,

Ui(v ; p) =
∑

{y: vy=1}
Ui(v

y ; p),

4This is roughly equivalent to assume that the probability of candidates x and y being tied for
first place is the same as the probability of candidate x being in first place one point ahead of
candidate y (and both candidates above the rest of the candidates), which is in turn the same one as
the probability of candidate y being in first place one vote ahead of candidate x. (Myerson, 1993)
justify this assumption by arguing that it seems reasonable when the electorate is large enough.



324 S. Courtin and M. Núñez

To seewhyLemma 1 is correct, for any ballot v = (vx)x∈X which assigns no points
to candidate x (i.e. vx = 0), we let v ∪ {x} denote the ballot that assigns one point to
x and vy points to any candidate y �= x. The linear expected utility of the voters given
by (U ) implies that for any ballot v ∈ V ,Ui(v ∪ {x} ; p) − Ui(v ; p) = Ui(vx; p). In
other words, Ui(v ∪ {x} ; p) = Ui(v ; p) + Ui(vx ; p) which implies the claim.

This lemma says that the expected utility of approving of a set of candidates
equals the sum of the expected utilities of voting independently for each of them.
Thus, any best response consists on approving of the candidates for which approving
them marginally improves the voter’s expected utility. Those candidates with null
expected utility might be included but need not. The following lemma presents the
structure of voters’ best responses.

Lemma 2 (Best Responses) For any pivot vector p and any voter i ∈ N , the voter’s
set of best responses is as follows:

(i) if Ui(vx ; p) > 0 then vx = 1 for any v ∈ BRi(p).
(ii) if Ui(vx ; p) < 0 then vx = 0 for any v ∈ BRi(p).

(iii) if Ui(vx ; p) = 0, then there is some v ∈ BRi(p) with vx = 1.

As depicted by the above lemma, the structure of voters’ best responses is particularly
simple since one only needs to compute the expected utility of each of the different
candidates that are to be included in the ballot. Moreover, one can easily check that,
in any best response, a voter always approves his most preferred candidate and never
approves his least preferred one if the pivot vector p is such that pxy > 0 for some
xy ∈ H .

Given the pivot vector p, one can choose a best response σ such that the score of
each candidate x can take any value in [min S(x; σ),max S(x; σ)] with:

min S(x; σ) = #{i ∈ N | Ui(v
x; p) > 0}

and
max S(x; σ) = #{i ∈ N | Ui(v

x; p) ≥ 0}.

Note that the minimal score of candidate x corresponds to the situation in which
only the voters who get a strictly positive expected utility of voting x do vote for him.
On the contrary, the maximal score is reached when every voter with a non-negative
expected utility of voting x votes for x.

Proposition 1 In any election E and any strategy profile σ in which voters use best
responses, this defines an equilibrium state in which the set of winners only contains
viable candidates.

Proof Assume by contradiction that there is some unviable candidate y in some
election E such that y ∈ W (σ ) for some strategy profile σ . By definition, since y is
unviable in E then ∃ x ∈ X with N (x, . . .) > n − N (. . . , y). Moreover, if the voters
play a best response, they always vote for their preferred candidate and never for
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their worst preferred one as shown by Lemma 2. Hence, min S(x; σ) > max S(y; σ)

so that y /∈ W (σ ), as required. �
We nowmove to the equilibrium concept that we will follow. Following Myerson

(1993), we assume that voters expect candidates with lower scores to be less likely
serious contenders for first place than candidates with higher scores. In other words,
if the score for some candidate x is strictly higher than the score for some candidate
y, then the voters would perceive that candidate x’s being tied for winning with any
third candidate z is much more likely than candidate y’s being tied for first place with
candidate z.

Definition 6 Given any strategy profile σ and any candidate z, the pivot vector
satisfies the ordering condition with respect to any ε ∈ (0, 1) if

S(x; σ) > S(y; σ) =⇒ εpxz ≥ pyz,

for any two candidates x, y.

This implies that pivot probabilities involving candidates with low vote shares
are zero in a similar fashion to the definition of proper equilibrium. We follow this
assumption.5

Moreover, we also assume that the probability of three (or more) candidates being
tied for first place is very small in comparison to the probability of a two-candidate
tie.

As will be shown, as long as the election does not admit a Condorcet winner,
the model prescribes that in any equilibrium, there are at least three winners. This
might, at first glance, seem counterintuitive with the previous assumption according
to which ties with more than two candidates are negligible, which is not the case of
pivotswith exactly two candidates. However, note that in Poisson games inwhich this
assumption does not hold, Myerson (2002) writes that “[j]ust because all candidates
have equal expected scores per voter in the limit does not imply that they have equal
chance of winning in large equilibria” . Myerson (2002) then proves that the strategic
reasoning in an equilibrium with three tied winners deals just with the two-candidate
pivots. Our assumption is hence not unduly restrictive.

Given any strategy profile σ , a sequence of pivot vectors {pε}ε→0 satisfies the
ordering condition if, for each ε > 0, pε is a positive pivot vector that satisfies the
ordering condition.

Definition 7 The strategy profile σ is an equilibrium of election E if and only if,
there exists a sequence of pivot vectors pε with pε

xy > 0 for every xy ∈ H that satisfies
the ordering condition given σ and such that, for each ballot v and for each voter i,

v ∈ Suppi(σ ) =⇒ v ∈ BRi(p
ε) for each ε > 0.

5The reader also can refer to the recent contribution byKavai (2013) for an empirical test of strategic
voting in a model in which different weakening of the ordering condition is proposed. See also the
recent experimental work by Bouton (2016).
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As shown by Myerson (1993), an equilibrium exists for any possible distribution
of the voters’ utilities which makes the model very attractive for the study of voting
rules. It should be stressed that, in this definition, the pivot probabilities pxy are
supposed to be constant when the voter contemplates casting one ballot or the other.
More specifically, these pivot probabilities, from each voter’s perspective, should
be the probabilities of ties or 1-vote differences among all other voters’ ballots,
before his own ballot is counted. But then the independence of pivot probability
on the perceiving voter can be justified if the true stochastic model treats all voters
symmetrically. This is why the literature tends to use models where voters have
independent identically-distributed types.

The focus of the paper is on the equilibrium winners under Approval voting. For
any election E, the set of equilibrium winners is denoted by WE(σ ).

In order to illustrate the model, we conclude this section by an example of an
election E that gives an excellent description of the equilibria with ties that we
describe throughout.

Example 1 Consider an election E with three alternatives X = {a, b, c} and three
groups of voters. The first one is endowed with the utility profile6 uA = (10, x, 0),
the second one with uB = (0, 10, y) and the final one with uC = (z, 0, 10) with
0 < x, y, z < 10. The shares of the different groups are, respectively, 40%, 35% and
25%.Hence, this election does not admit aCondorcetWinner. Therefore, at first sight,
one can imagine that a will be the winner in some equilibrium. Indeed, the voters
focus on the pair {a, b} in the sense that these candidates are the ones with the two
highest expected scores. This implies that the most likely pivot event occurs between
a andb so that the voters in groups 1 and3 approveofa and the ones in group2 approve
of b so that, a gets a higher score than b, namely S(a; σ) = 65% > S(b; σ) = 35%,
and a is the winner. However, the logic of the model is more complex. Indeed,
one still needs to consider the pivot events in which alternative c is involved since
every possible pivot event occurs with positive probability. However, since a has
a higher score than b, then it is infinitely more likely that c is involved in a pivot
with a than with b (as described by the ordering condition). Hence, the voters in
groups 2 and 3 approve of c since they all prefer c to a. However, this implies that
S(a; σ)=65%>S(c; σ)=60%>S(b; σ)=35% so that it is not anymore rational that
voters focus on the pair {a, b} but rather on the pair {a, c}; in other words, there is
no equilibrium in which the voters focus on the pair {a, b}. This reasoning applies
to any pair of candidates so that there is no equilibrium σ in which the voters just
focus on a pair of candidates in the sense that these candidates are the ones with the
two highest expected scores. Moreover, one can prove that any equilibrium in this
election leads to a tie among the three candidates so that WE(σ ) = {a, b, c} for any
equilibrium σ in E. As we will see in the next section, this inevitably generates ties
in equilibrium.

6The utility values in each vector are the utilities of alternative a, b and c respectively.
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4 Approval Voting and the Condorcet Winner

This section describes the conditions that ensure that the unique equilibrium winner
is the Condorcet Winner under Approval voting. Moreover, it shows that when the
election admits no Condorcet Winner, there are at least three equilibrium winners
at any equilibrium. These results make more precise the relation between Approval
voting and the Condorcet Winner.

The main characteristic of these results is that they do not depend explicitly on
the voters’ best responses. In other words, we do not need to completely define
how the voters vote in order to predict who the equilibrium winners are. The main
logic is driven by the voters’ anticipations to the possible scores of the candidates,
greatly simplifying the task at hand. As far as scenarios with a few number of viable
candidates are considered, the main implication is summarized in the following
theorem: the Condorcet Winner is the unique winner in equilibrium.

Within the proofs, we write S(x) rather than S(x; σ) to simplify notations. That
is, we remove the explicit reference to the strategy profile.

Theorem 1 If the election E satisfies both IA and SA, then:

1. If there are at most two viable candidates, then the unique equilibrium winner is
the Condorcet Winner.

2. If there is no Condorcet winner, the set of equilibrium winners WE(σ ) contains
at least three candidates for any equilibrium σ .

Theorem 1 is the main result of this section.
The two assumptions about the society, IA and SA, play a key role in the proof,

although they do not have the same role.

Proposition 2 If the election E satisfies SA, then there is no equilibrium with two
winners.

Proof Assume, by contradiction, that there is an equilibrium with two winners.
W.l.o.g. we let x and y be this pair of candidates. Due to the ordering condition, the
most probable pivot outcome in which x (resp. y) is involved is against y (resp. x).
Therefore, the voters who strictly prefer x over y vote for x and the ones who strictly
prefer y over x vote for y. Hence, the score of x equals N (x, y) whereas the one of y
equals N (y, x). However, since SA holds, the scores of such candidates are different,
contradicting the assumption that both x and y are both equilibrium winners. �

Consider now the role of IA.While the role of SA in selecting equilibria is intuitive,
the role of IA is subtler. We first prove that it ensures that if there is an equilibrium
with a unique winner, then this candidate is the CondorcetWinner. However, in order
to see that this condition is necessary and important, Example 2 demonstrates that
the Condorcet Loser (a candidate who is never M -preferred to any other candidate
in the election) might be the unique winner when IA does not hold.
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Example 2 LetX = {a, b, c}, and consider a society with four possible utility func-
tions: uA = (10, μ, 0), uB = (10, 0, μ), uC = (μ, 10, 0) and uD = (0, μ, 10) with
10 > μ > 5. The proportion of voters with each utility profile equals respectively
0.2, 0.35, 0.25 and 0.2. Therefore, b is the Condorcet Loser since aMb and cMb.
Moreover IA does not hold since there is the same number of voters with utility
vectors uA and uD so that N (a, b, c) = N (c, b, a).

It is easy to see that the strategy profile σ with

σA → {a, b}, σB → {a, c}, σC → {b} and σD → {b, c},

leads to the victory of b. Moreover, the strategy profile σ is justified by the pivot vec-
tor pε = (pε

ab, pε
ac, pε

bc) = (1/2 − ε, 2ε, 1/2 − ε) and hence is an equilibrium. There-
fore, the Condorcet loser b is the unique equilibrium winner at σ . As the next result
shows, this bad outcome does not occur when the election satisfies IA.

Proposition 3 If the election E satisfies IA and there is an equilibrium with a unique
winner, then this candidate is the Condorcet Winner.

Proof Assume that there is a unique winner in equilibrium, denoted a. Due to the
ordering condition, every voter knows that, when ε → 0, the pivot outcome in which
any candidate x �= a is involved against a becomes infinitely more likely than the
rest of pivot events.

We have two cases: either there is a tie in the scores of two candidates (who are
not the winners) or there is no tie.
Case 1: Assume first that, given σ , there is a tie in the score of two candidates who
are not the winners.We denote them b and c w.l.o.g. As themost likely pivot outcome
in which both are involved is against a, we know that the unique voters who vote for
b (resp. c) are the ones who prefer b (resp. c) to a.

Therefore, the scores of both candidates are the following ones:

S(b) = N (b, a, c) + N (b, c, a) + N (c, b, a),

and
S(c) = N (c, a, b) + N (c, b, a) + N (b, c, a).

Since the condition IA holds, it follows that the scores of b and c cannot be equal, a
contradiction.

In other words, when IA holds, there is not an equilibrium with a unique winner
in which two candidates have the same score. So that, if there is a unique winner in
equilibrium, the only possible case is that there is no tie in the scores, to be analyzed
in the Case 2.

Case 2: Assume now that there are no ties in the scores. Note first that N (x, a) �=
N (y, a) for any pair x, y ∈ X . To prove this, it suffices to see that N (x, a) =
N (x, a, y) + N (x, y, a) + N (y, x, a) and N (y, a) = N (y, a, x) + N (y, x, a) + N (x,
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y, a). The condition IA implies that N (x, a, y) �= N (y, a, x). Therefore, N (x, a) �=
N (y, a) for any pair x, y ∈ X .

W.l.o.g. we assume that N (b, a) > N (c, a) > · · · > N (k, a) ∀ b, c, . . . , k ∈ X .
Since every voter anticipates that the most likely pivot outcome involving any

candidate x �= a is against a, it follows that the score of each candidate x �= a equals
N (x, a) the share of voters who strictly prefer x to a whereas the one of a equals
N (a, b). Hence, the scores of the candidates satisfy S(a) > S(b) > · · · > S(k).

Assume that a is not the CW so that there is some candidate y with yMa. If
y = b, then N (b, a) > N (a, b) so that the score of b is higher than the score of
a, a contradiction with a being the winner. If y �= b, then N (y, a) > 1/2 so that
S(y) = N (y, a) > 1/2 > N (b, a) = S(b). Therefore, y is ranked second. In this case,
the score of a equals N (a, y) < 1/2, a contradiction with a being the winner. Hence,
it can only be the case that a is M -preferred to the rest of the candidates: for any
x ∈ X \ {a}, aMx. In other words, a is the Condorcet winner. �

Finally, IA entails that if there is a CW in the profile, there exists an equilibrium
in which this candidate is the unique winner.

Proposition 4 If the election E satisfies IA and admits a Condorcet winner, then
there exists an equilibrium that uniquely selects this candidate.

Proof Take a society inwhich there is aCW (denoted a) and inwhich IA holds. Since
IA holds, we can assume w.l.o.g. that N (b, a) > N (c, a) > · · · > N (k, a). Indeed,
as shown in the proof of Proposition 3 (case 2), if IA holds, then N (x, a) �= N (y, a)

∀x, y ∈ X . Assume that the scores satisfy S(a) > S(b) > · · · > S(k). Due to the
ordering condition, it follows that the most likely pivot in which a is involved is
against b whereas the most likely pivot outcome in which any other candidate x is
against a. Thus, the score of a equals N (a, b) whereas the score of x (x �= a) equals
N (x, a). As a is theCW , it follows thatN (a, b) > 1/2 and thatN (x, a) < 1/2 for any
x �= a. Finally, since N (b, a) > N (c, a) > · · · > N (k, a), the scores satisfy S(a) >

S(b) > · · · > S(k) as wanted. Thus we have proved that there exists an equilibrium
in which the CW is the unique winner, concluding the proof. �

Proof of Theorem 1 As previously mentioned, if #X v ≤ 2, then the election admits
a CW . By Proposition 4 we have shown that if there is a CW , there exists an equi-
librium in which he is the unique winner. Moreover, there is no other equilibrium
with a unique winner as ensured by Proposition 3. As shown by Proposition 2, there
is no equilibrium with two winners since SA is satisfied. Therefore, the only type
of equilibrium that might exist is the one in which at least three candidates are tied.
However, the candidates who are unviable cannot be in the set of winners. Hence,
when #X v ≤ 2, there is no equilibrium in which at least three candidates wins, which
concludes the proof of part 1 of the Theorem 1. The part 2 of the Theorem 1 is a
direct implication of the different results of this section. �

One main implication of Theorem 1 is that in elections with three candidates, the
equilibrium winners are as follows.
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Corollary 1 If the election E satisfies both IA and SA and there are three candidates
in the election, there are at most two sets of equilibrium winners:

1. the Condorcet Winner,
2. the three candidates belong to the winning set.

5 On the Indeterminacy of Approval Voting

We now focus on the elections that admit at least three viable candidates.
We first focus on elections with three candidates and then explain how to extend

the results to elections with at least four candidates.

5.1 Three Candidates

The next theorem gives a simple condition for the existence of a tie among viable
candidates: if three candidates are viable, such an equilibrium exists. Let U a set of
utilities, then we have

Theorem 2 Assume that the election has three candidates. If all candidates are
viable, then there is a closed set of utilities Û ⊆ U such that for any election with
utility vector u ∈ Û , there is an equilibrium in which all viable candidates are tied
for victory.

This subsection presents the proof of Theorem 2. In the second part of this subsec-
tion, we prove that the equilibrium described by Theorem 2 need not exist for every
utility representation. Indeed, Example 3 discusses an election with three candidates
that admits no tie among equilibrium winners for some set of utilities.

We first present one proposition and one technical lemmata that will be useful for
proving Theorem 2.

Proposition 5 For each election E, there exists some m ∈ N
+ such that

n − N (. . . , a) ≥ m ⇐⇒ a ∈ X v.

Proof of Theorem 1 Take any election E with X uv = ∅. Thus the result trivially
follows. Consider now any election thatX uv �= ∅ and let a, b be two candidates such
that a = argminx∈X v n − N (. . . , x) and b = argmaxx∈X uv n − N (. . . , x). Note that
if we prove that n − N (. . . , a) > n − N (. . . , b), then the result follows.

Thus, let us assume by contradiction that n − N (. . . , a) ≤ n − N (. . . , b). It fol-
lows that a ∈ X v and b ∈ X uv. Thus, there exists some y ∈ X with N (y, . . .) >

n − N (. . . , b). Since we have assumed that n − N (. . . , a) ≤ n − N (. . . , b), it fol-
lows that N (y, . . .) > n − N (. . . , a) and hence a ∈ X uv, showing the desired con-
tradiction. �
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Lemma 3 For any candidate a, there exists some sequence of pivot probabilities pε

that induces when ε → 0, the following boundaries for the score of candidate a:

min S(a) = N (a, . . .) and max S(a) = n − N (. . . , a).

Proof of Theorem 1 Consider any candidate d and assume that

lim
ε→0

pε
ad

pε
ab

= lim
ε→0

pε
ad

pε
ac

= 0 for any ad �= ab, ac (g).

Note that, given (g), when ε → 0, the voter’s decision concerning whether to
cast a vote for a only depends on the pivotal events in which candidates b and c are
involved, the rest of them becoming infinitely less likely.

We divide the voters into the usual six groups according their ordinal preference
over a, b and c (as described in the primer of the proof).

Note that the N1 and N2 voters always vote for a and the N4 and N6 voters never
vote for a independently of the pivot vector.

Moreover, we let R3R5 = 1 and we assume that U3(a) = 0 and U5(a) = 0.
It follows that given pε,

min S(a) = N (a, . . .), and max S(a) = n − N (. . . , a)

Note that the proof is done with homogenous cardinal utilities but a similar argument
applies with heterogeneous cardinal utilities. �

We can now present the proof of Theorem 2.

Proof of Theorem 1 Voters’ preferences are strict so that we divide the voters into
six groups as follows:

N1 N2 N3 N4 N5 N6

a a b b c c
b c a c a b
c b c a b a

n1 n2 n3 n4 n5 n6

with for exampleN1 being the set of voters i with preference ordering a �i b �i c,
with #N1 = n1. A set of voters sharing the same preference ordering is denoted Nl

with l = 1, . . . , 6.
We first assume that the voters in the same group (i.e. sharing the same ordinal

preferences) have the same cardinal utilities. This assumption simplifies the proof
and will be relaxed in the second part of the proof.
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Part 1. Homogenous cardinal utilities within each group

The proof proceeds as follows. It builds for any type distribution in which X uv

is empty (i.e. #X v = 3), a set of utilities and a strategy profile such that the three
candidates are tied. Moreover, it builds a pivot vector that justifies the strategy profile
proving that in equilibrium the three candidates are tied.

W.l.o.g. we let n − N (. . . , a) ≥ n − N (. . . , b) ≥ n − N (. . . , c).
For each voter i, we let ti, mi and bi respectively denote his top, middle and

bottom-ranked candidate over a, b, c. Moreover, for each i ∈ N we let Ri denote the
following ratio ui(ti)−ui(mi)

ui(mi)−ui(bi)
. Since all the voters sharing the same ordinal preferences

have the same cardinal utilities, it follows that for any i, j ∈ Nl , Ri = Rj.
Therefore w.l.o.g. Rl stands for the ratio Ri for each i ∈ Nl .
We consider the set of utilities Û defined as follows:

Û = {uN ∈ U | R1R6 = 1, R3R5 = 1, R1 = R2R3 and R3 = R1R4}.
The set Û is closed with an empty interior since it is the intersection of lower

dimensional hyperplanes. Note that this set is not empty since we can independently
choose each Rl . Moreover, we implicitly assume that nl > 0 for each l = 1, . . . , 6.
A similar argument applies if nl ≥ 0 for l = 1, . . . , 6.

We set pε = (εpab, εpac, εpbc) with

pab = 1

1 + R1 + R3
, pac = R3

1 + R1 + R3
and pbc = R1

1 + R1 + R3
.

One can check that the previous pivot probabilities imply that:

pmibi = Riptimi for each i ∈ N ,

which is equivalent to

Ui(v
mi ; pε) = 0 for each i ∈ N ,

where vmi stands for the ballot that assigns one point to mi (the middle-ranked can-
didate of voter i) and zero points to the rest of the candidates.

Given the description of the best responses given by Lemma 2, we know that
the previous equality implies that every voter i is indifferent between voting for his
top candidate (ti) and for his top-two candidates (ti, mi). Hence, given pε one can
choose a best response σ such that the score of each candidate x can take any value
in [N (x, . . .), n − N (. . . , x)].

Since X uv is empty, it follows that n − N (. . . , c) > N (a, . . .), N (b, . . .). More-
over, by assumption,n − N (. . . , a) ≥ n − N (. . . , b) ≥ n − N (. . . , c). Thus, one can
choose the three scores equal to n − N (. . . , c).

So far we have proved that for each vector u ∈ Û and given pε, there exists a best
response σ that leads to three tied winners. Moreover the pivot probability vector pε

satisfies the ordering condition since the three candidates are tied given σ . Therefore,
σ is an equilibrium, concluding the proof with homogeneous utilities.
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Part 2. Heterogenous cardinal utilities within each group

We now allow the voters to have different cardinal utilities while having the same
ordinal preferences. Therefore, there is not anymore a unique Ri for each voter i in
each group Nl .

For each pivot vector p, we can divide the voters in each group Nl in three possible
categories: those forwhichUi(vmi ; p) > 0, those forwhichUi(vmi ; p) = 0 and finally
those for which Ui(vmi ; p) < 0.

For each group Nl , we denote by N ∗
l the group of voters such that for each i ∈ N ∗

l ,
Ui(mi) = 0. We let R∗

l = Ri for each i ∈ N ∗
l and for each l.

Consider a voter i in N ∗
1 with middle-ranked candidate b. Therefore,

Ui(v
b; p) = 0 ⇐⇒ pbc = R∗

1pab.

Any voter j in N1 with Rj > R∗
1 is such that Uj(vb; p) < 0, whereas if Rj < R∗

1, it
is the case that Uj(vb; p) > 0. The same reasoning applies for each voter in any of
the Nl groups. Therefore, R∗

l determines the best responses of the other voters in the
group Nl . Moreover, the number of voters in Nl who vote for their middle-ranked
candidate can vary from 0 to nl , since one can set R∗

l to be equal to any Ri for each
i ∈ Nl .

We consider the set of utilities Û∗ defined as follows:

Û∗ = {u ∈ U | R∗
1R∗

6 = 1, R∗
3R∗

5 = 1, R∗
1 = R∗

2R∗
3 and R∗

3 = R∗
1R∗

4},

and pε = (εpab, εpac, εpbc) with

pab = 1

1 + R∗
1 + R∗

3

, pac = R∗
3

1 + R∗
1 + R∗

3

and pbc = R∗
1

1 + R∗
1 + R∗

3

.

Given pε, a similar reasoning to the one in Part 1 proves that each N ∗
l is non-

empty. It follows that given pε one can choose a best response σ such that the score
of each candidate x can take any value in [N (x, . . .), n − N (. . . , x)]. Therefore, since
pε satisfies the ordering condition, this proves that σ is an equilibrium, concluding
the proof for heterogenous preferences. �

Theorem 2 proves that for some set of utilities, there is an equilibrium in which
all the candidates in the race are tied. However, it should be noted that this sort of
equilibria need not exist for every utility representation of the election. The following
example illustrates this point with just three candidates.

Example 3 Let X = {a, b, c} and consider a society with the following proportions
with 0 < μ < 10: 1

9 of the voters with uA = (10, μ, 0); 2
9 of the voters with uB =

(10, 0, μ); 4
9 of the voters with uC = (10 − μ, 10, 0) and 2

9 of the voters with uD =
(10 − μ, 0, 10). The candidate a is the CW and X uv = ∅. Note that both SA and IA
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hold. SinceX uv = ∅, every candidate is viable.Hence, there is a strategy profile under
which the candidate wins with positive probability. However, whether this occurs in
equilibrium depends on the intensity of the voters’ utilities as will be shown in the
next lines.

Indeed, Proposition 2 implies that there is no equilibriumwith twowinners.More-
over, since there is a CW , Proposition 4 ensures that there exists an equilibrium in
which a is the unique winner. Finally, there is no other equilibrium with a unique
winner as ensured by Proposition 3. In other words, neither b or c can win alone.

One question remains to be answered: is there an equilibrium with the three
candidates tied for victory? These equilibria might or not exist as a function of the
voters’ intensities of preferences.

There is no equilibrium in this election in which the three candidates have the
same score with no voter being indifferent between single and double voting. Indeed,
when no voter is indifferent between single and double voting, it follows that all the
voters with the same utility vector vote in the same way. One can check that in any
strategy profile in which the voters play best responses (each voter voting for his top
candidate or for his two top candidates), there is no equality between the scores of
the candidates. Hence, there is no such equilibrium with a three-way tie.

Thus, in order to have such anoutcome, some typeof voters are indifferent between
single and double voting. In equilibrium, voters always approve of their most pre-
ferred candidate and never approve of their worst preferred one.

If just one type of voters play a mixed strategy, then it is not possible to obtain a
three-way tie. If at least two types play in mixed strategies, then either C or D voters
vote also for their middle ranked candidate so that a has the highest score.

Indeed, assume first that a C voter plays a mixed strategy over his two best
responses so that UC(0, 1, 0) = UC(1, 1, 0). Due to (U ), the previous equality is
equivalent to UC(1, 0, 0) = 0 so that

pε
13(10 − μ) − pε

12μ = 0. (∗)

However, when (∗) holds, we have that UD(1, 0, 1) > UD(0, 0, 1). To see why,
note first that UD(1, 0, 1) > UD(0, 0, 1) ⇐⇒ UD(1, 0, 0) > 0. Moreover, remark
that UD(1, 0, 0) = (10 − μ)pε

12 − μpε
13 so that, when (∗) holds,

UD(1, 0, 0) = 10(10 − 2μ)

μ
pε
13 > 0.

which holds since μ < 5.
Therefore, if a C voter plays a mixed strategy, D voters vote for their second

ranked candidate a, leading to its victory. A symmetric argument applies when a D
voter plays a mixed strategy. Therefore, in any mixed strategy profile in which either
C or D voters play a mixed strategy between their two best responses, a is the sole
winner of the election.
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Hence, the only possibility for the existence of an equilibrium in which the three
candidates get the same score is to assume that A and B voters both play a mixed
strategy. However, this implies that

UA(0, 1, 0) = 0 ⇐⇒ −pε
12(10 − μ) + pε

23μ = 0,

and
UB(0, 0, 1) = 0 ⇐⇒ −pε

13(10 − μ) + pε
23μ = 0.

The previous two equalities imply that the unique pivot probability vector justify-
ing such best responses equals pε = (

μ

10+μ
ε,

μ

10+μ
ε,

10−μ

10+μ
ε). However, as previously

noted, UC(1, 0, 0) = pε
13(10 − μ) − pε

12μ which is strictly positive given pε since
μ < 5. Hence, as in the previous case, if both A and B voters play a mixed strategy,
C voters give one point to a, leading to its victory. Therefore, there is no equilib-
rium with three winners. Moreover, by Proposition 4, we know that there exists an
equilibrium in which a is the unique winner. Furthermore, Proposition 2 implies that
there is no equilibrium with two winners. Hence, in any equilibrium, a is the unique
winner as long as μ < 5. Hence, the CW is the unique equilibrium winner.

This example illustrates then that that for some set of utilities, when there is a
CW andX uv = ∅, the unique equilibriumwinner is theCW . However, for a different
utility representation, we can find an equilibrium inwhich the three candidates get the
same score. For example, if we set μ = 6, there is an equilibrium in which the three
candidates are tied for victory with a score of 4/9 as long as pε = (pε

ab, pε
ac, pε

bc) =
(3/7ε, 2/7ε, 2/7ε).

5.2 Viable* Candidates and Many Candidates

We nowmove on to describe elections with at least four candidates and the sufficient
conditions for the presence of ties among viable candidates.

To see why Theorem 2 does not hold with more candidates, we present now the
following example.

Example 4 Let X = {a, b, c, d} and consider an election with 6
10 of the voters with

uA = (10, 9, 8, 0) and 4
10 of the voters with uB = (9, 10, 0, 8). This election has 3

viable candidates: a, b, and c. In particular, the latter is viable because the number of
voters who rank a first is equal to the number of candidates who do not rank c last.
Candidate c cannot win in any equilibrium. This is because c only receives approval
votes if there is a high enough probability pivot event where it is facing d . But d
always receives fewer approval votes than a as long as voters use best responses.
So, by the ordering condition, no voter approves of c. In fact, the only equilibrium
winner in this election is the CW .

The previous example shows that one needs to introduce a stronger condition
than viability to ensure the existence of ties among viable candidates. In particular,
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this condition takes into account the iterative reasoning described in the previous
example. The rest of this section described the notion of k−viable and k−unviable
which are needed to derive a version of Theorem 2 with at least four candidates.

Wefirst introduce some notation thatwill be useful throughout concerning degrees
of viability and thenprovehow these definitions help to describe the strategic behavior
under the Approval rule.

For notational purposes, we respectively relabel the set of viable and unviable
candidates by X v

0 and X uv
0 (rather than X v and X uv). Indeed, we say that a candidate

in X v
0 (resp. in X uv

0 ) is 0−viable (res. 0−unviable). It follows that

X = X v
0 ∪ X uv

0 .

The main reason for this relabelling is the introduction of viability degrees for the
different candidates as follows.

Definition 8 For any integer k ≥ 1, a candidate y in election E is k−unviable if:

∃ x ∈ X v
k−1 with N (x, . . .) > n − N k(. . . , y).

with
N k(. . . , y) := #{i ∈ N | x �i y for any x ∈ X v

k−1},

whereX uv
k stands for the set of k− unviable candidates andX v

k = X \ ⋃k
j=1 X uv

j
the set of k−viable candidates.

Definition 8 is hence defining, recursively, the sets of k−viable and k−unviable
candidates. It should be remarked that, for any integer k ≥ 0,

X v
k ⊂ X v

k−1 since X \
k⋃

j=1

X uv
j ⊂ X \

k−1⋃

j=1

X uv
j

so that any k−viable candidate is also (k − 1)−viable. The converse does not hold.
Building on the previous set inclusion, it is easy to see that for any non-negative
integer k such that X v

k �= ∅, N k(. . . , z) > N k−1(. . . , z).
The next definition deals with the candidates which are viable for every degree.

Definition 9 A candidate x in election E is viable∗ if x is k−viable for any positive
integer k.

The set of viable∗ candidates is denotedX ∗. Such a set is non-empty by construc-
tion.

Theorem 3 For any non-negative integer k, any election E and any equilibrium σ ,

1. a voter never approves of his least preferred k−viable candidate.
2. no k−unviable candidate belongs to the set of equilibrium winners W (σ ).
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3. the set of equilibrium winners W (σ ) contains only viable∗ candidates.

Proof of Theorem 1 The proof proceeds by induction. Steps A and B prove that (1)
and (2) hold. Step A proves the claim for k = 0 and Step B proves how to iterate the
same reasoning. The result (3) is an immediate consequence of both (1) and (2).

Step A: k = 0.

Step A. is divided in two parts. We first prove that no voter approves of his least
preferred 0−viable candidate (in A.1) and then show that this implies no 1−unviable
candidate belongs to the set of equilibrium winners for any equilibrium (in A.2).
Step A. 1.

Assume that there is some equilibrium σ in which some voter approves of his
least preferred 0−viable candidate z. It follows that, there exists a sequence of pivot
vectors pε with

Ui(v
z ; pε) ≥ 0 for any ε ∈ (0, 1),

whereUi(vz; pε) = ∑
xy∈H (vz

x − vz
y) · pxy · [ui(x) − ui(y)],with vz

x = 0 for any x �= z
and vz

z = 1. Note that that for any pair xy in which z is not involved, vz
x − vz

y = 0.
Hence the expected utility for voter i can be rewritten as:

Ui(v
z; pε) =

∑

x �=z

(0 − 1) · pxz · [ui(x) − ui(z)].

Take some equilibrium σ . The ordering condition implies that for any ε ∈ (0, 1),
any x ∈ W (σ ) and y /∈ W (σ ), εpε

xz ≥ pε
yz. Therefore,

lim
ε→0

pε
yz

pε
xz

= 0. (a)

Moreover, Proposition 1 implies that only 0−viable candidates are in W (σ ).
Therefore, since z is the least preferred 0−viable candidate for voter i, this implies
that

ui(x) − ui(z) > 0 for any x ∈ W (σ ) ⊂ X v
0 . (b)

Combining (a) with (b), it follows that

lim
ε→0

Ui(v
z ; pε) < 0,

which proves that voter i does not approve of z in equilibrium. This concludes the
proof of Step A.1.

Step A. 2. Assume that there is some 1−unviable candidate y so that ∃ x ∈ X with
N (x, . . .) > n − N 1(. . . , y). Step A.1 proves that no voter votes for his least pre-
ferred 0−viable candidate in equilibrium. Moreover, Lemma 2 proves that no vote
for his least preferred candidate in equilibrium. It follows that for any equilibrium
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σ , S(y; σ) ≤ n − N 1(. . . , y) since N 1(. . . , y) denotes the number of voters who
rank y last among all candidates and last among the 0−viable candidates. Since, in
equilibrium, all voters vote for their most preferred candidate, it follows that:

S(x; σ) ≥ N (x, . . .) > n − N 1(. . . , y) > S(y; σ),

so that y is not in the winning set. Hence, no 1−unviable candidate is in the set of
equilibrium winners, as wanted.

Hence, Step A. has proved that no voter votes for his least preferred 0−viable
candidate and that this implies that no 1−unviable candidate is among the winners
in equilibrium. We now move to Step B. that proves the induction argument.

Step B: Induction Argument.

Assume now that no voter approves of his least preferred j−viable candidate
with j ∈ {0, . . . , k − 1} and an h−unviable candidate does not belong to the set
of equilibrium winners for any h ∈ {0, . . . , k}. This Step proves that this implies
that no voter approves of his least preferred k−viable candidate and that that an
(k + 1)−unviable candidate does not belong to the set of equilibrium winners.

Step B.1. We first prove that a voter never approves of his least preferred k−viable
candidate.

Since no j−unviable candidate belongs to the set of equilibrium winners for any
j ∈ {0, . . . , k}, it follows that just k−viable candidates are in W (σ ) since X v

k =
X \ ⋃k

j=1 X uv
j .

Denote by z the least preferred k−viable candidate of some voter i. This implies
that just k−viable candidates are in W (σ ), it follows that limε→0 Ui(vz ; pε) < 0 for
any sequence of pivot vectors pε satisfying the ordering condition. Hence, it is not a
best response to approve of z, as wanted.

Step B.2. We now prove that no (k + 1)−unviable candidate belongs to the set of
equilibrium winners. Assume, by contradiction that there is some (k + 1)−unviable
candidate y in some set W (σ ) of equilibrium winners. Since y is (k + 1)−unviable,
it follows that:

∃ x ∈ X with N (x, . . .) > n − N k(. . . , y).

However, in Step B.1., we have proved that no voter approves his least preferred
k−viable candidate y. Moreover, we have assumed that no voter approves of his least
preferred j−viable candidate with j ∈ {0, . . . , k − 1}.

It follows that for any equilibrium σ , S(y; σ) ≤ n − N k(. . . , y) since N k(. . . , y)
denotes the number of voters who rank y last among the set of candidates and the set
of j−viable candidates for any j = 0, . . . , k.

Furthermore, in equilibrium, all voters approve of their first ranked candidate
which implies that:

S(x; σ) ≥ N (x, . . .) > n − N k(. . . , y) > S(y; σ),
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so that y is not in the winning set. Hence, no (k + 1)−unviable candidate belongs to
the set of equilibrium winners, entailing a contradiction and finishing the proof. �

Theorem 4 Assume that the election has at least four candidates. If there are at
least three viable∗ candidates, then there is a closed set of utilities Û ⊆ U such that
for any election with utility vector u ∈ Û , there is an equilibrium in which all viable∗
candidates are tied for victory.

Proof of Theorem 1 We prove that, for any profile with at least three viable∗ can-
didates, there exists some strategy profile σ and some sequence of pivot vectors
pε = (pε

xy)xy∈H that constitutes an equilibrium in which all candidates in X ∗ are tied
for victory so that W (σ ) = X ∗.

The proof is divided in three sections: the preferences, the pivot probabilities and
the conclusion.

Section I : The voters’ preferences

Take a preference profile with #X ∗ ≥ 3. Moreover, take some candidate c ∈ X ∗
and such that n − N (. . . , c) = minx∈X ∗ n − N (. . . , x).

Due to Lemma 5, any d ∈ X ∗ satisfies n − N (. . . , d) ≥ n − N (. . . , c) whereas
if d ∈ X \ X ∗ then n − N (. . . , d) < n − N (. . . , c).

Moreover, let a, b ∈ X ∗ with

a = argmax
x∈X ∗ n − N (. . . , x) and

b = arg max
x∈X ∗\{a}

n − N (. . . , x).

Consider the voters’ preferences restricted to the set of candidates M = {a, b, c}.
Moreover, for each i ∈ N we recall that Ri = ui(ti)−ui(mi)

ui(mi)−ui(bi)
.

Section II : The Pivot Probabilities

We assume that the sequence of pivot probabilities pε satisfies for any xy �=
ab, ac, bc,

lim
ε→0

pε
xy

pε
xa

= 0, lim
ε→0

pε
xy

pε
xb

= 0 and lim
ε→0

pε
xy

pε
xc

= 0. (f )

The condition (g) implies that when ε → 0, the voter’s decision concerning
whether to cast a vote for x �= a, b, c, only depends on the pivotal events in which
candidates b and c are involved, the rest of them becoming infinitely less likely.

Given these assumptions, we have two implications concerning the voters’ deci-
sions. These implications are different if one considers the decision over a, b and c
or a different candidate.
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Section II .1: Votes for a,b,c.

Consider the expected utility for a voter i of casting ballot va which consists of a
vote just for candidate a (and no points for the rest of the candidates):

Ui(v
a; pε) =

∑

ax∈H

pε
ax(ui(a) − ui(x)).

However, since (f ) applies, it follows that

lim
ε→0

pε
xy

pε
ab + pε

ac + pε
bc

= 0,

whenever xy �= ab, ac, bc. Therefore, the following limit equality holds

lim
ε→0

Ui(va; pε)

pε
ab + pε

ac + pε
bc

= pε
ab

pε
ab + pε

ac + pε
bc

(ui(a) − ui(b)) + pε
ac

pε
ab + pε

ac + pε
bc

(ui(a) − ui(c)).

Hence, writing qε
xy = pε

xy

pε
ab+pε

ac+pε
bc
, it follows that

lim
ε→0

Sign(Ui(v
a; pε)) = Sign

(
qε

ab(ui(a) − ui(b)) + qε
ac(ui(a) − ui(c))

)
.

Note that the sign of the utility is the only information needed to determine the
voter’s best response (since under AV , no constraints are given on the number of
dis/approved candidates). Therefore, following a similar reasoning, it can be deduced
that:

lim
ε→0

Sign(Ui(v
b; pε)) = Sign

(−qε
ab(ui(a) − ui(b)) + qε

bc(ui(b) − ui(c))
)
,

and

lim
ε→0

Sign(Ui(v
c; pε)) = Sign

(−qε
ac(ui(a) − ui(c)) − qε

bc(ui(b) − ui(c))
)
.

Therefore, the decision of the voters over these candidates is equivalent to the
one with just three candidates (a, b and c). As discussed in the primer of the proof,
we can choose a set of utilities and conditions on pε

ab, pε
ac and pε

bc such that the
three candidates are tied for victory for some best response σ . The score of the three
candidates equals n − N (. . . , c).

Section II .2: Votes for the rest of the viable candidates.

Consider any candidate d ∈ X v. By assumption, note that n − N (. . . , c) ≤ n −
N (. . . , d).
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Moreover, it is the case that N (d , . . .) < n − N (. . . , c). Indeed, assume by con-
tradiction that N (d , . . .) > n − N (. . . , c). Then, c is unviable, a contradiction since
c in X in.

As proved by Lemma 3, we can choose a best response σ such that the score of
candidate d can take any value in [N (d , . . .), n − N (. . . , d)].

Moreover, since N (d , . . .) < n − N (. . . , c) ≤ n − N (. . . , d), we can set S(d) =
n − N (. . . , c).

In otherwords, for each candidate d ∈ X v, we canfindpivot probabilities, cardinal
utilities and voters’ best responses such that S(d) = n − N (. . . , c).

Section II .3: Votes for the rest of the unviable candidates.

The votes for these candidates do not affect the pivot probabilities. Indeed, since
an unviable candidate cannot win (by definition), this candidate is not in the winning
set of the equilibrium.

Section III : Conclusion.

It follows that given pε we can choose a strategy profile σ such that every voter
chooses among his best responses and W (σ ) = X v. Since pε follows the order-
ing condition, σ is an equilibrium in which all the viable candidates are tied as
wanted. �

6 Concluding Comments

This work focuses on the implications of allowing strategic voters to vote for as
many candidates as they want. We divide the elections into two categories: the ones
in which at most two candidates are viable (a) and the ones in which at least there
are three viable candidates (b). Our work fully characterizes the set of equilibrium
winners for each election.

The results are surprisingly different in both scenarios. It can be argued that
the first scenario is much more plausible than the second one at an empirical level.
However, note that this intuition holds for plurality elections in which the Duverger’s
law tends to hold. Within the model, the election takes place under approval voting
so that defining a priori what is more plausible seems elusive.

In scenario (a), our model uniquely predicts that the unique equilibrium winner
is the Condorcet Winner. Moreover, note that the existence of two viable candidates
is a necessary and sufficient condition for the uniqueness of this equilibrium. This is
a strong argument for the use of this rule since it coincides with the recommendation
made by different fairness theories (i.e. tournament solutions) that entitle that such
a candidate should win if it exists.

In contrast, in scenario (b), we prove that there is some equilibrium inwhich the set
of viable candidate coincides with the set of equilibrium winners. More specifically,
we show that for any preference profile that admits at least three viable candidates,
we can build an equilibrium in which all these candidates are tied for victory. More
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precisely, our result states that, given the ordinal preferences, there are some cardinal
preferences that would admit a voting equilibrium in which every viable candidate
is a likely winner. Note that the set of cardinal preferences that admit such large sets
of winners may be very small. Finally, our result suggests that this rule may exhibit
some indecisiveness when many candidates might win.

A potentially interesting venue for the current model would be to test our model of
strategic voting on experimental data or real data. Clearly, themain testable prediction
that can be derived from our contribution is the presence of ties among winners with
Approval voting when (i) there is no Condorcet Winner or (ii) when there are at least
three viable candidates. Moreover, pushing further the notion of viable candidate and
understanding how this concept can be adapted to other theoretical and empirical
models seems also very pertinent.
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