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Foreword

The history of social choice theory is mainly a history of negative results. The
rebirth of this theory in modern times is essentially due to Kenneth J. Arrow. In
1948, he demonstrated the inconsistency of several properties of procedures of
aggregation of individual preferences into a ‘social’ preference. Some of these
properties are generally considered as basic elements of democratic procedures,
such as the absence of a dictator and the respect of unanimity (this property is being
associated with Pareto and the so-called Pareto optimality, a major concept of
microeconomic theory). Other properties have been called into question such as the
so-called independence of irrelevant alternatives and the transitivity of the social
preference. Arrow’s independence condition amounts to limit the information that
can be used in the aggregation procedure to pairwise preference considerations.

A second negative result, due to Amartya Sen, concerns an inconsistency
between collective rationality (for instance, some kind of transitivity property of the
social preference), unanimity, and a degree of freedom conferred to individuals.

A third major negative result due to Alan Gibbard, Prasanta Pattanaik, and Mark
Satterthwaite concerns a property of strategyproofness: Aggregation procedures
should be immune to a strategic behavior of individuals (in the case of voters, this,
in consequence, concerns ‘useful or tactical’ voting—it can advantageous for a
voter to misrepresent her preference so that the voting rule generates an outcome—
for instance, a candidate—that this voter prefers to the outcome that would have
prevailed if she had not misrepresented her preference).

Long before these results were obtained (in 1948 and in the 1970s), Condorcet in
1785 had shown that majority rule, a procedure that obviously satisfies Arrow’s
properties, could generate a cycle of the social preference. A very simple example
(a lot simpler than Condorcet’s example!) could be the following. Consider three
persons who want to have dinner together and have a choice between three
restaurants a, b, and c. Person 1 prefers a to b and b to c, and since she is a rational
person she prefers a to c. Persons 2 and 3 are also rational persons, and person 2
prefers b to c and c to a while person 3 prefers c to a and a to b. They agree that the
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choice of the restaurant will be made by using majority rule: If the number of
persons who prefer say a to b is greater than the number of persons who prefer b to
a, then a will be ‘socially’ preferred to b. But given the individual preferences just
mentioned, one can see that a is socially preferred to b which is socially preferred to
c which is socially to a. So there is no restaurant which is socially preferred to the
other two, and the choice is problematic.

However, this outcome is based on a specific configuration of individual pref-
erences. A natural question arises regarding the probability that such situations
occur. For instance, given three options (the three restaurants), there are six possible
rational preference orderings (excluding ties). If each person has one of these six
preferences with probability 1/6, what is the probability to obtain a cyclic outcome
or a situation where there is no option defeating the other two. The French math-
ematician G. Th. Guilbaud indicated in 1952 that for our example a cycle will be
obtained in less than 6% of the situations. In a rather enigmatic (enigmatic at the
time of its publication) footnote, Guilbaud gave a limit for a ‘large’ number of
individuals, limit being less than 9%. Although Guilbaud’s work was largely
ignored in the English-speaking world, this kind of analysis took off at the end
of the 1960s as indicated by Sen in his book of 1970 and by Peter Fishburn in his
1973 treatise on social choice theory.

The works of Fishburn and William Gehrlein in the 1970s establish a new
sub-domain of the theory of social choice where various paradoxical situations
generated by various voting rules under various combinatorial/probabilistic
assumptions were studied. William Gehrlein has been the most prolific and most
influential author in this sub-domain over the last decades, and he published a
wonderful book in 2006 on Condorcet’s paradox.

At the University of Caen, under the leadership of Dominique Lepelley, this
sub-domain was eagerly developed (in particular by several of the contributors to
this volume). I must outline that Dominique Lepelley and Boniface Mbih were, to
the best of my knowledge, the pioneers regarding exact calculations related to the
manipulation of voting rules (previous works were based on simulations and Monte
Carlo techniques).

What should happen did happen: A collaboration between Gehrlein and Lepelley
began (a collaboration which was extended to a few others). The result of this
collaboration is the publication of many joint papers and of two exceptional books.
Another outcome of this collaboration is the present volume partially based on a
conference which took place at the University of Caen-Normandy in 2018.
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Introduction

Mostapha Diss and Vincent Merlin

The use of probability arguments to assess the qualities and flaws of decision proce-
dures has a long history. The first book on the mathematics of democracy, Essai
sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité
des voix, was published by the Marquis de Condorcet (1785). In his famous essay,
he exposes for the first time what is now known as the Condorcet’s jury theorem:
When a jury has to take a decision, if each juror has a probability to discern the truth
superior to one half, the likelihood that this jury takes the right decision using the
majority rule tends to one as the number of jurors increases.

In contemporary times, the birth of game theory and social choice theory in the
1940s saw the development of new mathematical tools and techniques to analyze
voting rules and decision-making. It is needless to say that some of these arguments
are based on the notion of probabilities. The next paragraphs will present several
contributions that are worth mentioning.

The statistician Penrose (1946, 1952) is now considered as the pioneer of the
literature on power indices, whose aim is to evaluate a priori influence a delegate
could enjoy in a committee, an assembly or a parliament. Here, power is defined
as the a priori probability for a voter to influence the outcome. His work, largely
ignored at his time, nevertheless contains many results and intuitions that will be
rediscovered in the next decades. In particular, similar concepts will become popular
after the publication of Banzhaf’s paper (1965). He proposes to evaluate the power
of different cities in the Nassau County council, by counting the number of times a
city could swing the council election divided by the total number of possible voting
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2 M. Diss and V. Merlin

situations. Shapley and Shubik (1954) also define power as a probability, here as the
number of times a voter is pivotal dividedby the total number of possible permutations
among the voters. Later, Rae (1969) will define and measure the notion of success in
the game theoretical framework as the probability of being on the winning side in a
vote. Coleman (1971) played also a significant role in popularizing these concepts.

In voting theory, one of the earliest papers is due to themathematicianMay (1948).
In a short note published in Mathematics Magazine, he derives the probability for a
two-tier voting system (such as the US Electoral College or the House of Commons)
to give a majority of delegates for one party, while the other party would get more
votes overall. Just after the publication of Social Choice and Individual Values, by
Arrow (1951), a French mathematician, Guilbaud (1952), gave the first estimation
of the probability of a cycle among three candidates while using the majority rule.1

In the 1960s, several authors also tackled this issue (Campbell and Tullock 1965;
Garman and Kamien 1968; Niemi and Weisberg 1968).

Clearly, these pioneers were excited by the new possibilities that the use of formal
mathematical models in social sciences could open. In addition, at that time, precise
electoral data were rare and the treatment software did not exist yet, so assessing the
probability of an event with a reasonable a priori probability distribution was clearly
a first step forward. Even if nowadays it is clear to everyone that a priori probabilistic
models do not describe the reality, they enable us to evaluate and compare the decision
processes on a normative basis, “before the player(s) enter the room”. As such, the
probabilistic approach is a distinguished member of the family of the formal tools
one can mobilize to analyze decision procedures.

Even if probabilistic arguments were from time to time mobilized in the 1960s,
we had to wait till the 1970s to get a well-defined set of assumptions, terminology,
tools, andmethods; this developmentwas concomitant to the “boom” of social choice
theory and game theory applications that occurred at that time. Let us mention a few
seminal contributions. Departing from the Impartial Culture (IC) model that was
dominant in early works, Gehrlein and Fishburn (1976) developed a new proba-
bility assumption, the Impartial Anonymous Culture (IAC), to estimate the likeli-
hood of various paradoxical events in voting. Berg (1985) showed that both assump-
tions belong to a larger family of probability models, the Polya-Eggenberger urn
models. Straffin (1977) put the emphasis on the probabilistic foundations of the
major voting power index, that is, the Penrose-Banzhaf index and the Shapley-
Shubik index. Lepelley and Mbih (1994) extended the range of applications of
probabilistic approaches in social choice by computing the vulnerability of famous
voting rules to coalitionalmanipulations.More recently, these probability approaches
were even borrowed by computer scientists, to understand whether NP-complexity
is really a barrier against manipulation of voting schemes (Walsh 2010). In addition,
several scholars proposed new original probability models to describe the behavior
of individuals, models who can be of particular interest in terms of tractability and

1Surprisingly, his result is just stated in a footnote without any proof, andWilliamGehrlein admitted
that it took him some time in the 1970s to understand how he proceeded. Fortunately, Guilbaud’s
computation was right.



Introduction 3

predictability for the resolution of certain issues. In this vein, Theil (1970) andMerrill
(1977) built models based on the realization of a latent Gaussian variable, to capture
phenomena that are regularly observed in political science (in a wave year, a party
progresses more in its weakest territories than in its strongholds). In game theory,
Feddersen and Pesendorfer (1997) introduced game theoretic arguments to revisit
the literature on juries; Myerson (2000) proposed the large Poisson games as a way
to model large elections with an unknown number of participants and examined the
equilibria of the associated voting games.

This list of examples is of course a partial one, but they all clearly demonstrate
that the notion of probability is a central one as we need to model the behavior of
the voters for a better understanding of collective decision-making.

The aim of this volume is to present up to date contributions on the domain of
probabilistic analysis of voting rules and decision mechanisms, broadly defined. The
origin this book is to be found in the 8thMurat SertelWorkshop onEconomicDesign,
Decision, Institutions, that was held in Caen, France, on the 22nd and 23rd of May
2018. As this workshop was dedicated to our colleague Dominique Lepelley, who
had retired earlier in autumn 2017, his co-author, Bill Gehrlein kindly, accepted to
come and present the plenary lecture. It became obvious for many colleagues during
this event that the social choice community should pay a tribute to both of them, for
their influence on the development of the probability approaches in voting theory.We
find no better way than to gather a selection of recent papers, which clearly display
the different facets of this field and illustrate their influence.

The volume contains 16 contributions by 32 authors. The chapters are organized
into 6 parts.

1 Part I: The Condorcet Efficiency of Voting Rules
and Related Paradoxes

In his book, Condorcet (1785) suggested that, when a society faces a choice among
several candidates, the best choice would be to select the candidate who is able to
defeat any other candidate in majority comparisons. Such a candidate is nowadays
called a Condorcet Winner. Symmetrically, a candidate who is defeated by all his
opponents is called a Condorcet Loser. As Condorcet (1785) noticed, the Condorcet
winner may not exist for some preference patterns due to the existence of cycles in
the majority relationships, a voting rule may not select a Condorcet winner even if
it exists, and even worse, some voting rules may pick a Condorcet loser as a winner.
This last phenomenon is called a Borda Paradox, in the honor of the scientist who
first mentioned it (de Borda 1781). Evaluating the likelihood of the existence of a
Condorcet winner and computing theCondorcet Efficiency, that is, the probability for
a voting rule to select the Condorcet winner whenever it exists, became central issues
in social choice theory. These issues triggered the development of computational
techniques for the evaluation of the probabilities of voting outcomes. Gehrlein (2006)
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and Gehrlein and Lepelley (2011, 2017) have presented in recent books the state of
the art in the domain. Obviously, the first four chapters of this volume concern recent
contributions on these iconic issues.

In the second chapter of this volume, Gehrlein and Lepelley revisit the known
results on the probability of electing the Condorcet winner and on the probability
of the Borda paradox, for three-weighted scoring rules, the plurality rule (PR), the
negative plurality rule (NPR), the Borda rule (BR), and their two-stage versions,
the plurality elimination rule (PER), the negative plurality elimination rule (NPER),
and the Borda elimination rule (BER). Their studies introduce an element that has
been seldom examined in the literature, the possibility of abstention, and they provide
precise formulas in the three-candidate case, both under the IC and IAC assumptions.
When the participation rate is low, the behavior of the voting rules is almost random,
as very few voters show up. When it reaches 100%, we recover the values that have
been already derived in the literature. For each voting rule, they are able to show
at which rate does the likelihood of these voting paradoxes converge to their 100%
participation value.

The next two chapters also concern the evaluation of the Condorcet efficiency of
weighted scoring rules. Diss, Kamwa, Moyouwou, and Smaoui study the effects of
various scenarios under the IAC model for three candidates: the effect of indifferent
voters, the effect of global abstention (voters from all possible types may abstain),
the effect of self-confident abstention (voters who support the potential winner tend
not to go to the pools), and the effect of pessimistic abstention (voters who support a
potential loser tend not to go the pools). By focusing on the limit case of an infinite
population, they are able to derive formulas for all the weighted scoring rules and
checkwhich rule has the highest Condorcet efficiency in each case. The authors show
that in general, the Condorcet efficiency of the considered voting rules may change
significantly when indifference or abstention is possible. This change depends on
the voting rule under consideration and on the probability distribution on the set of
observable voting situations in each case.

Diss, Pérez-Asurmendi, andTlidi have another objective: Theywant to understand
the effect of a close election on the Condorcet efficiency of PR, NPR, BR, PER, and
NPER. Election closeness is measured in this chapter by an index calculated as a
proportion of points obtained by the last ranked candidate divided by the aggregated
scores of all competing candidates under the considered voting rule. The authors show
that the Condorcet efficiency of some voting rules may significantly decrease as the
results of elections become very close. However, such a reduction varies depending
on the considered voting rule. They show, for instance, that the Condorcet efficiency
of PR and NPR is more sensitive to the closeness of the election than the Condorcet
efficiency of BR. One can also notice that this chapter and the previous ones are
based on the geometrical techniques that were developed by Cervone et al. (2005)
more than fifteen years ago, techniques that are now fully operational due to the
development of computer computations.

In Chap. 5, together with the Borda paradox, Brandt, Geist, and Strobel consider
another paradox, the Agenda Contraction Paradox (ACP). The ACP occurs when
removing losing alternatives changes the set of winners. Together with the BR, they
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also consider six other rules, which respect the Condorcet Principle: themaximin rule
(MMR), Young’s rule (YR), Dodgson’s rule (DR), Tideman’s rule (TR), Copeland’s
rule (CR), and the essential set (ES). None of them satisfies the ACP condition,
and four of them suffer from the Borda paradox (BR, MMR, YR, and DR). The
contribution is particularly notable by the number of assumptions and the variety of
techniques that the authorsmobilize.On the assumption side, they use not only classic
models such as IC and IAC, but also the Mallows-ϕ model, the Polya-Eggenberger
urn model, and the spatial model. From the technical viewpoint, they use precise
evaluations relying on Ehrhart techniques (which they are for the first time able to
use in the four-candidate case), massive simulations (from 3 up to 10 candidates, 3 to
1001 voters), and analysis of elections collected from different database (PrefLib,
Netflix prize library). While the Borda paradox seems a very unlikely event for all
the rules studied, this is not the case for the ACP. For example, the ACP probability
for Copeland’s rule is 44% with 6 candidates and 50 voters. All the results depend
heavily on the tested scenarios, but for no rule, we can neglect the ACP.

2 Part II: Other Voting Paradoxes

Chapters 6 and 7 consider other voting paradoxes, namely the Ostrogorski paradox
and the violation of reversal symmetry.

Gehrlein and Merlin consider another well-known voting paradox, described for
the first time by the political scientist Ostrogorski (1902). Consider a set of citizens,
who have to vote “yes” or “no” on a series of issues via referendums. In a direct
democracy, the policies implemented will be the ones which have received amajority
of votes on each issue. However, in representative democracy, voters have to choose
between parties and the winner will implement its electoral platform. Hence, a voter
cannot vote anymore issue by issue, but he has to select the party which is the closest
to his views. In two-party competitions, a Strict Ostrogorski Paradox (SOP) occurs
each time the platform of the winning party would gather a minority of votes on
each issue. An Ostrogorski paradox occurs if the winning party has a minority of the
votes on a majority of issues. Gehrlein and Merlin evaluate the likelihood of these
paradoxes when there are 3 to 5 issues and a large number of voters under the IC
model. They conclude that the strict form of the paradox is extremely unlikely to
happen.

The violation of reversal symmetry occurs when all voters reverse their pref-
erences. One would guess that in that case, the collective result is reversed too:
The candidate who was previously ranked last is the new winner, and the old winner
should nowbe ranked last.Unfortunately, except for theBorda rule, no otherweighted
scoring rule satisfies this property. Belayadi and Mbih evaluate the likelihood of this
paradox for three alternatives under the IAC model. They consider the whole class
of weighted scoring rules and their two-stage counterparts. The lack of reversal
symmetry cannot be neglected for weighted scoring rules: It can be as high as 20.3%



6 M. Diss and V. Merlin

for NPR and almost reach 10% for the PR. Its impact is much more limited for two-
stage scoring rules: It is less than 3% for PER, peaks above 4% for the rule which
gives 1 point for a first place, 0.45 point for a second place, and 0 for a third place,
and then decreases to 1.2% for NPER.

3 Part III: Binary Voting in Federations

The use of probabilistic arguments has been extremely successful and widespread
in one particular context, the analysis of the decision procedure for federal unions.
Typically, several states (elsewhere countries, cities, regions, etc.) have decided to
form a political union to govern their common affairs. Each state is represented by
a certain number of delegates at the council of the federal union. To name a few
examples, the election of the US president by the Electoral College, the governance
of the EU by its council of ministers, the board of governors of the International
Monetary Fund, etc. follow this logic. Hence, the questions are: Howmany delegates
shouldwe allocate to each state?Which quota shouldwe use to pass a decision?These
issues have triggered many debates in political science. A vast number of solutions
to the problem have been proposed in game theory and social choice theory.

The criteria used by Feix, Lepelley, Merlin, Rouet, and Vidu are inspired by the
Condorcet efficiency literature. In a two-party competition, they say that a two-tier
voting is majority efficient if the party which obtains a majority of votes in the
federation is also the party which has a majority of delegates. In other terms, we
wish to avoid situations similar to the election of George W. Bush in 2000 or Donald
Trump in 2016. If we assume that the party, which obtains a majority of votes in one
state, controls all its delegates, how should we allocate the delegates among the states
in order to maximize the majority efficiency? The authors explore this issue when
the number of delegates is proportional to nα

t , where nt is the population of state t
and α is a positive parameter. Pure federalism is obtained, with one delegate per state
independently of its population for α = 0. Pure proportionality is recovered with the
value α = 1. For any value in between 0 and 1, there is degressive proportionality.
Through simulations performed from 3 to 50 states, the authors show that the square
root rule (α = 0.5) seems to be optimal under the IC assumption. However, when
they use the model initially proposed by May (1948), that is, when they use the IAC
assumptionwithin a state, but assume independence across the states, the proportional
rule α = 1 emerges as the optimal rule.

In their chapter, de Mouzon, Laurent, Le Breton, and Moyouwou revisit a classic
theme, the fairness of the apportionment of delegates in the US Electoral College.
Each American state is represented by a number of delegates which is equal to
its number of representatives in the House (which is apportioned according to the
Huntington-Hill rule after each census), plus its number of senators. This procedure
is supposed to favor small states, as the smallest state controls at least 3 delegates
(out of 535). A completely different picture emerges if we use a measure of fairness
borrowed from game theory: A voter is supposed to be decisive, if, by changing his
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vote, he can modify the outcome of the voting procedure. Hence, fairness among the
voters is achieved only if all the votes have the same probability of being decisive.
Using the 2010 apportionment of the delegates among the American states, the
authors evaluate the inequality among US citizens in the Electoral College by using
different power indices. Again, the role of the underlying probabilistic models is
crucial. Using the IC model, that is, the Banzhaf index, or the IAC model, that is,
the Shapley-Shubik index, favors the larger states. In contrast, using a probabilistic
model similar to May’s one, where the IAC assumption holds within each state but
the behaviors of the voters of the different states are independent, suggests that the
citizens living in small states are favored by the Electoral College voting scheme.

4 Part IV: Resistance to Manipulations

In the 1990s, the tools and techniques from the literature on the evaluation of para-
doxes started to be applied to a new theme, the resistance to manipulation. The
Gibbard-Satterthwaite (Gibbard 1973; Satterthwaite 1975) theorem is a milestone in
social choice theory: It asserts that as soon as there are at least three alternatives, all
voting rules are manipulable, unless they are the constant rule or dictatorship. Said
differently, for all the voting rules we use in everyday life, there always exist voting
situations where a voter is better off by reporting a preference, which is different
from his sincere ballot. Given that all the common voting rules are manipulable, can
we say that some of them are less manipulable than other ones? The first contribu-
tions on the propensity to be manipulated dealt only with individual manipulations
(Nitzan 1985; Chamberlin 1985; Kelly 1993). The papers by Lepelley and Mbih
(1987, 1994) were a milestone in this literature. Lepelley and Mbih were the first
authors who proposed to study the vulnerability to coalitional manipulations, and
they derive precise formulas under the IAC assumption in evaluating this issue,
rather than relying on computer simulations. Since then, many contributions have
tackled these issues, and the volume gathers three chapters on this topic.

Aleskerov, Karabekyan, Ivanov, and Yakuba examine the vulnerability to indi-
vidual manipulation of 12 different voting rules, namely PR, BR, q-approval, Black,
Copeland (with three different versions), Threshold, Nanson, BER, and PER. Their
results complement a previous study by Favardin and Lepelley (2006), in the sense
that they do not use an a priori tie-breaking rule in case of multiple winners. Instead,
they assume that voters are able to compare different subsets of tied outcomes with
extra criteria (Leximin, Leximax, PreferenceWorst, and Preference Best extensions).
In addition, as in Favardin andLepelley (2006), they take into consideration the possi-
bility of counter manipulations: A voter successfully manipulates the outcome if no
other voter can use a counterthreat to reverse the effects of the initial manipulation.
The authors obtain their results by computer simulations for 3, 4, and 5 alternatives
and up to 30 voters. The main result is quite surprising: When counterthreats are
considered, the Borda count fares very well compared to other voting rules.
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Chapters 11 and 12 consider other ways to manipulate the elections. The so-called
No-Show Paradox (NSP) occurs when a voter is better off by abstaining from the
election instead of casting his sincere ballot. It is well known that scoring elimi-
nation rules, such as PER, NPER, and BER, suffer from this paradox, as well as
Condorcet consistent rules. However, the extent to which this paradox is of practical
concern needs to be assessed. In Chap. 11, Brandt, Hofbauer, and Strobel evaluate
the vulnerability of six voting rules (Black’s rule, Baldwin’s rule, Nanson’s rule,
maximin rule, Tideman’s rule, and Copeland’s rule) to the NSP under a large variety
of assumptions: IC, IAC, Mallow’s model, and the spatial model. To get their results,
they either derived exact formulas using Ehrhart theory, or rely on massive simula-
tions. The key message is that, while it is very unlikely that a single voter can alter
the outcome by abstaining when the number of alternatives is small, there are few
scenarios where it may matter. For example, with 30 alternatives, Copeland’s rule,
Baldwin’s rule, and Nanson’s rule are manipulable by abstention for more than 30%
of the voting situations.

Chapter 12 deals with another type of manipulation, the manipulation by trunca-
tion of preferences.Here, voters are not obliged to report their full preference andmay
choose to report only their top choice in order to manipulate the outcome. Almost all
the voting rules are sensitive to the truncation paradox,with the exception of PR, PER,
and Approval Voting. For three alternatives, Kamwa andMoyouwou characterize all
the voting situations vulnerable to the truncation paradox by groups of voters for all
the weighted scoring rules and the weighted scoring elimination rules. Next, they
compute the corresponding limit probabilities under the IAC assumption. In partic-
ular, they show that these values can be very high for NPR and NPER. However,
the probability of the truncation paradox is much lower when we concentrate on the
single-peaked domain.

5 Part V: Game Theory

Aspects of weighted quota games and power indices are already studied in Chap. 9
when analyzing voting in federations. Typically, each player is endowedwith aweight
and a coalition of players is able to pass a decision if the sum of their weights is over
some predefined threshold, called the quota. A power index will then indicate how
frequently a player is pivotal, given some underlying probability distribution on the
formation of the coalitions. Sometimes, even if a player is endowed with a positive
weight in the weighted quota game, his power is null. Indeed, he is never in situation
of altering the outcome. Such a player is called a dummy player. A famous example
is given by the first decision scheme in the European Union, where Luxembourg,
with one vote, was never a necessary player to reach the quota. How frequent are
these situations? Barthélemy andMartin explore this issue, by giving some analytical
results for games with 3, 4, and 5 players and also running computer simulations on
randomly generated games. In particular, they show that the value of the quota has a
strong influence on the probability of observing dummy players in a game.
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Probabilistic considerations are also extremely important when one wants to
predict the outcomes of a voting game. The concept of Nash equilibrium is often
useless when one wants to describe the strategic behavior of the voters: Too many
profiles are an equilibrium, as it is unlikely for a unique voter to affect the outcome
as the number of electors grows. This phenomenon has been observed quite clearly
in Chap. 10. Hence, the literature, which analyzes the voting rules as a game form,
has to make stronger assumptions on the behavior of the voters, and on the way,
they perceive the information. In this line of research, Courtin and Nuñez propose
an extended analysis of the Approval Voting game. In particular, in three-candidate
elections, when there are only two viable candidates, they show that the unique
equilibrium winner is the Condorcet winner.

6 Part VI: Techniques for Probability Computations

The previous chapters have clearly displayed the large range of applications of the
probabilistic approach in voting theory. The reader may also notice that these results
were obtained by a variety of tools and techniques. In the three last chapters of this
volume, we will focus on more computational aspects of the literature.

Indeed, the choice of a voting model is based on some specific probabilistic
assumptions on the set of preference profiles. The IC model assumes that each voter
picks randomly and independently his preference from a uniform distribution on the
set of all possible preferences. The IAC model considers anonymous profiles. Two
profiles are identical if one of them is obtained from another one by a permutation on
the names of the voters. Hence, these two profiles belong to the same (anonymous)
equivalent class, and each class should just count once for the probabilistic evaluation
of the voting rule. We can even go further. Egecioglu and Giritligil (2013) suggested
that two profiles are equivalent if one of them is obtained from another one via a
permutation on the names of the candidates. Hence, two profiles belong to the same
class if they are equivalent up to a permutation of the names of voters (anonymity
condition) and up to a permutation of the names of candidates (neutrality condition).
These symmetries partition the set of all the profiles in Anonymous and Neutral
Equivalent Classes (ANECs). By considering that eachANECcounts for one and that
they are equally likely, it is possible to define the Impartial Anonymous and Neutral
Condition, IANC. This condition is of particular interest when one has to design
laboratory experiments in voting, where the names of the candidates and the names
the voters should not count (Sertel and Giritligil 2003; Giritligil and Sertel 2005).
In Chap. 15, Karpov goes a step further, by considering two profiles as equivalent if
one is the reversed version of the other. He defines the Self-Symmetric Anonymous
and Neutral Equivalent Class, SSANEC (i.e., a set of profiles, which is invariant by
reverse symmetry). Similarly, a pair of ANECs is reverse symmetric, if every profile
in one class is the reverse profile of another profile in the other class. Considering
reverse symmetric ANECs as equivalent, a set of Reverse Invariant Anonymous and
Neutral Equivalent Classes (RIANECs) is defined. The chapter first presents new
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representations for preference profiles, which enable to compute the numbers of
RIANECs and SSANECs for three alternatives, as a function of n, the number of
voters. Next, Karpov partitions again the number of ANECs so that each ANEC in
one class selects the same winner for a given voting rule. By comparing the number
of classes obtained for PR, BR, and Kemeny rule for three alternatives, he evaluates
the quantity of information needed to compute the output for each rule.

The subsequent chapter comes back to the tools and techniques susceptible to
be used to derive the probabilities of events under the IAC assumptions. Indeed,
the evaluation of such probabilities is equivalent to the following question: What is
the exact number of integer solutions to a finite set of linear inequalities involving
integer coefficients of bounded integer free variables and integer parameters as a
function of the parameters? A French mathematician, Ehrhart (1962), has conducted
the first study of this problem in the case of a unique parameter. He found that
the solution of the problem was pseudo-polynomials functions, that is, a piecewise-
defined function with polynomial expressions (modulo a positive integer period).
Moreover, Ehrhart suggested that pseudo-polynomials still model the case of several
parameters. Andjiga, Mbih, and Moyouwou propose here a direct proof of Ehrhart’s
conjecture, together with a companion algorithm. Next, they apply the algorithm to
give exact formulas for the likelihood of some voting paradoxes.

The last chapter, by El Ouafdi, Moyouwou, and Smaoui, is a progress report on
the techniques that have been used in voting theory to compute the likelihood of
events under the IAC assumption, and it tells the story of almost 50 years of research
in the domain. Gehrlein and Fishburn (1976) obtained the first representations of
the probabilities of voting events under IAC by polynomials functions. Their simple
algebraic techniques have been used until the early 2000s, when two new methods
emerged.Observing that the number of voting situations satisfying certain constraints
was described by a series of periodic polynomial, Huang and Chua (2000) were
the first authors to systematically search the coefficients in these formulas. They
provided a simple algorithm based on the interpolation techniques. Later, Cervone
et al. (2005) developed a geometric approach in the limit case where the number
of voters tends to infinity. An important breakthrough occurred when Wilson and
Pritchard (2007) and Lepelley et al. (2008) drew attention to the existence of a
well-established mathematical approach for performing the calculations under the
IAC assumption, based on Ehrhart (1962) work. Since then, several mathematicians
and economists have proposed more and more sophisticated algorithms to perform
efficiently such computations.

Mostapha Diss and Vincent Merlin, editors.
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The Condorcet Efficiency of Voting Rules
and Related Paradoxes



Analyzing the Probability of Election
Outcomes with Abstentions

William V. Gehrlein and Dominique Lepelley

1 Introduction

We presented some preliminary results at the Eighth Murat Sertel Workshop
on Economic Design, Decision, Institutions, and Organization: In the honor of
Dominique Lepelley at University of Caen in May 2018 that were very discon-
certing. Those results considered the very negative impact that was observed when
dependence among voters’ preferences was added to scenarios in which voters could
abstain. The results were so disconcerting that the closing comment of the presen-
tation was: “So, we leave you with chaos”. There were comments suggesting that
something had to bewrongwith themodels being used, given that pollswith relatively
small sample sizes, reflecting the case of high abstention rates, can quite accurately
predict outcomes. This was all quite bewildering, to make it difficult for us to walk
away from that meeting to settle into states of happy and content retirement. The
objective of this current paper is to fully develop the preliminary results that were
presented at that meeting, and then to explain with further analysis why those results
are indeed correct and why they are not as shocking as they were initially thought to
be. In fact, these results quite possibly should have been expected.

To begin, we consider the impact that voter abstention can have on elections with
three candidates {A, B, C} when there are n possible voters in the electorate. Define
the preferences of these voters by using A � B to denote the fact that any given voter
prefers Candidate A to Candidate B. There are six possible linear voter preference
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A A B C B C
B C A A C B
C B C B A A

  1   2    3    4   5   6

Fig. 1 Six possible linear preference rankings on three candidates

rankings on these candidates that are transitive andhavenovoter indifferencebetween
candidates, as shown in Fig. 1.

Here, for example, n1 represents the number of possible voters with the preference
ranking A � B � C , with A � C being required by transitivity. The total number
of possible voters is n with n = ∑6

i=1 ni , and an actual voting situation defines any
particular combination of these ni terms. It is inherently assumed in the following
analysis that any actual voting situation reflects the true preference rankings from
informed voters, and that no loosely formed preferences are included from initially
disengaged voters who might later be quite surprised and become very engaged as
a result of the consequences that ultimately follow from their uninformed choices.
More will be said about difficulties that can arise from considering such disengaged
voters later in this study.

Much of what follows is based on the notion of using the preference rankings of all
possible voters in an actual voting situation to perform majority rule comparisons on
pairs of candidates, such that Candidate A beats B by PairwiseMajority Rule [AMB]
if A � B more frequently than B � A in the preference rankings of the possible
voters. We assume throughout that n is odd to avoid the possibility of Pairwise
Majority Rule ties. Candidate A is defined as the Actual Condorcet Winner (ACW )
if both AMB and AMC , with:

n1 + n2 + n4 > n3 + n5 + n6[AMB] (1)

n1 + n2 + n3 > n4 + n5 + n6[AMC]. (2)

It is well known that an ACW does not necessarily exist (Condorcet 1785), but
such a candidate would clearly be a very good choice for selection as the winner
of an election whenever there is one, since a majority of the possible voters would
oppose the choice of either of the other two candidates. The Actual Condorcet Loser
(ACL) is then defined in the obvious manner, and such a candidate would be a terrible
choice for selection as the winner.

We proceed to consider election outcomes when abstentions are allowed, so that
some of the possible voters can choose not to participate for any reason. Let n∗

i denote
the number of voters with the associated preference ranking in Fig. 1 who actually
choose to participate in the election, with 0 ≤ n∗

i ≤ ni , for i = {1, 2, 3, 4, 5, 6}.
The total number of voters who participate is defined by n∗ = ∑6

i=1 n
∗
i , so that the

voter participation rate is n∗
n . An observed voting situation from an actual voting

situation is then defined by any feasible combination of n∗
i terms that sum to n∗.
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Candidate A is the Observed Condorcet Winner (OCW ) based on the preference
rankings of the participating voters if AM∗B and AM∗C , with:

n∗
1 + n∗

2 + n∗
4 > n∗

3 + n∗
5 + n∗

6

[
AM∗B

]
(3)

n∗
1 + n∗

2 + n∗
3 > n∗

4 + n∗
5 + n∗

6

[
AM∗C

]
. (4)

TheObserved Condorcet Loser (OCL) is similarly defined in the obvious manner.
Gehrlein and Lepelley (2017a) perform an analysis to conclude that the likelihood

that some very bad election outcomes might be observed is significantly increased
when voter participation rates are low. For example, depending upon which voters
choose to abstain in any particular case, the ACW and the OCW do not necessarily
have to coincide, and this current study begins by considering the probability that the
ACWandOCWwill be the same candidate as a function of the voter participation rate
(Sect. 2). We then proceed to significantly extend the analysis of just how serious
the impact of abstentions might be on a number of other very negative election
outcomes. That phase of our study begins with an evaluation of some commonly
considered voting rules on the basis of their Condorcet Efficiency, which measures
the conditional probability that each of these rules will elect the ACW given that one
exists, based on the available results from observed voting situations after abstention
takes place. The voting rules that we initially consider in Sect. 3 are the single-stage
voting rules: Plurality Rule (PR), Negative Plurality Rule (NPR) and Borda Rule
(BR). The potentially extreme negative impact of voter abstention is obvious in this
case, since all voting rules effectively become random choosers for the winner of an
election, with Condorcet Efficiencies of 33.3%, when voter participation rates are
near zero! The point of particular interest is how quickly these voting rules recover to
achieve acceptable Condorcet Efficiency values as voter participation rates increase
from near-zero.

After the initial Condorcet Efficiency component of this analysis is completed,
the probability that these voting rules will perform in a very poor manner to exhibit
a Borda Paradox by electing the ACL is considered as a function of the voter partic-
ipation rate in Sect. 4. We then proceed to extend in Sect. 5 this same overall evalua-
tion to consider common two-stage voting rules: Plurality Elimination Rule (PER),
Negative Plurality Elimination Rule (NPER) and Borda Elimination Rule (BER). We
consider in Sect. 6 the case where indifference is allowed and this context allows us
to investigate the impact of abstention on the performances of two additional voting
rules: Approval Voting (AV ) and Approval Elimination Voting (AEV ). We limit our
attention to cases in which the number of possible voters is very large as n → ∞, and
the overall results of our analysis typically present a somewhat pessimistic outlook
for the performance of voting rules for scenarios in which voter participation rates
are as low as those that can be observed in actual elections. But the most disturbing
conclusion is the following: for each of the voting rules that we consider, the addi-
tion of dependence among voters’ preferences leads to a decrease in the Condorcet
Efficiency and an increase in the probability of observing a Borda Paradox with low
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participation rates. The penultimate section of the current study (Sect. 7) offers a
discussion and an explanation of these disconcerting results. Section 8 concludes
our study.

2 Probability of ACW and OCW Coincidence

Candidate A will be both the ACW and OCW whenever the actual and observed
voting situations have preference rankings for voters that are simultaneously consis-
tent with (1), (2), (3) and (4). The coincidence probability for the ACW and OCW
is obviously driven both by the probability that various actual voting situations will
occur and by the mechanism that determines the subset of the possible voters who
choose to participate in the election. Two standard assumptions from the literature
are used as a basis for models to consider these two components, and each will be
seen to have its own interpretation of how the voter participation rate is defined. The
first of these models is IC(α), with voter participation rate α, which is based on
the Impartial Culture Condition (IC) that assumes complete independence between
voters’ preferences. The second model is I AC(α∗), with voter participation rate α∗,
which is based on the Impartial Anonymous Culture Condition (IAC) that inherently
assumes some degree of dependence among voters’ preferences. Probability repre-
sentations for the coincidence of the ACW and OCWwill be considered in turn with
these two models.

2.1 ACW and OCW Coincidence Results with IC

The basic form of IC uses pi to denote the probability that a randomly selected
possible voter will have the associated preference ranking in Fig. 1, with pi = 1

6
for all i = {1, 2, . . . , 6}, so that each possible voter is equally likely to have any of
the six linear rankings. Then, Gehrlein and Fishburn (1978) developed an extension
of IC, such that IC(α) further assumes that each possible voter will independently
have a probability α of participating in the election. In the limit n → ∞, the Law of
Large Numbers requires that the proportion of participating voters will have n∗

n → α

with IC(α).
The basic IC assumption without abstention being allowed was used by Guilbaud

(1952) to develop a representation for the limiting probability PACW(IC,∞) that an
ACW exists to begin with as n → ∞, and

PACW(IC,∞) = 3

4
+ 3

2π
Sin−1

(
1

3

)

≈ .91226. (5)

The development of a representation for the limiting probability that theACWand
OCW coincide begins with the definitions of four variables {X1, X2, X3, X4} that
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Table 1 Definitions of X1, X2, X3 and X4

Ranking X1[AMB] X2[AMC] X3
[
AM∗B

]
X4

[
AM∗C

]

A � B � C(p1) +1 +1 +1 +1

A � C � B(p2) +1 +1 +1 +1

B � A � C(p3) −1 +1 −1. +1

C � A � B(p4) +1 −1 +1 −1

B � C � A(p5) −1 −1 −1 −1

C � B � A(p6) −1 −1 −1 −1

Abstention – – 0 0

have different values that are based on the linear preference ranking that is associated
with a randomly selected voter and on whether, or not, that voter participates in the
election. These variables are defined in Table 1, where the entries show that the value
of X1 for the linear preference ranking of a randomly selected voter is +1 whenever
A � B and it is -1 if B � A, so that AMB for n voters if the average value of X1 has
X1 > 0. In the same fashion AMC if X2 > 0, so Candidate A is the ACW whenever
both X1 > 0 and X2 > 0. It then follows from the same logic that A will be the
OCW for participating voters when both X3 > 0 and X4 > 0.

The expected values of these four variables with IC(α) are given by:

E(X1) = +1p1 + 1p2 − 1p3 + 1p4 − 1p5 − 1p6

E(X2) = +1p1 + 1p2 + 1p3 − 1p4 − 1p5 − 1p6

E(X3) = +1p1α + 1p2α − 1p3α + 1p4α − 1p5α − 1p6α + 0(1 − α)

E(X4) = +1p1α + 1p2α + 1p3α − 1p4α − 1p5α − 1p6α + 0(1 − α).

With the restriction that pi = 1
6 for all i = {1, 2, . . . , 6}, E(X j

) = 0 for j =
{1, 2, 3, 4}, so that all E

(
X j

) = 0 also. The probability that Candidate A is both
the ACW and OCW is therefore given by the joint probability that X j > E

(
X j

)
,

or X j
√
n > E

(
X j

√
n
)
, for j = {1, 2, 3, 4}. The Central Limit Theorem requires

that the distribution of the X j
√
n variables is multivariate normal in the limit as

n → ∞, where the correlation matrix for the X j
√
n terms is obtained directly from

the correlations between the original X j variables.
The variance and covariance terms of the X j variables in Table 1 with IC(α)

follow from:

E
(
X2
1

) = E
(
X2
2

) = 1 and E
(
X2
3

) = E
(
X2
4

) = α
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E(X1X2) = (+1)(+1)p1 + (+1)(+1)p2 + (−1)(+1)p3 + (+1)(−1)p4

+ (−1)(−1)p5 + (−1)(−1)p6 = 1

3

E(X1X3) = (+1)(+1)p1α + (+1)(+1)p2α + (−1)(−1)p3α + (+1)(+1)p4α

+ (−1)(−1)p5α + (−1)(−1)p6α + 0(1 − α) = α

E(X1X4) = (+1)(+1)p1α + (+1)(+1)p2α + (−1)(+1)p3α + (+1)(−1)p4α

+ (−1)(−1)p5α + (−1)(−1)p6α + 0(1 − α) = α

3

E(X2X3) = (+1)(+1)p1α + (+1)(+1)p2α + (+1)(−1)p3α + (−1)(+1)p4α

+ (−1)(−1)p5α + (−1)(−1)p6α + 0(1 − α) = α

3

E(X2X4) = (+1)(+1)p1α + (+1)(+1)p2α + (+1)(+1)p3α + (−1)(−1)p4α

+ (−1)(−1)p5α + (−1)(−1)p6α + 0(1 − α) = α

E(X3X4) = (+1)(+1)p1α + (+1)(+1)p2α + (−1)(+1)p3α + (+1)(−1)p4α

+ (−1)(−1)p5α + (−1)(−1)p6α + 0(1 − α) = α

3
.

The resulting correlation matrix for these four variables is then given by R1, with:

R1 =

⎡

⎢
⎢
⎢
⎣

1 1
3

√
α

√
α

3

1
√

α

3

√
α

1 1
3
1

⎤

⎥
⎥
⎥
⎦

.

The probability that any X j
√
n takes on a specific value, including E

(
X j

√
n
)
,

is zero in any continuous distribution. So, the limiting probability that Candidate
A is both the ACW and OCW is given by the multivariate normal positive orthant
probability �4(R1) that X j

√
n ≥ E

(
X j

√
n
)
, for j = {1, 2, 3, 4}. The symmetry of

IC(α)with respect to the three candidates leads to the conclusion that the conditional
limiting probability POCW

ACW (IC(α),∞) that an OCW exists that coincides with the
ACW, given that an ACW exists, is then directly obtained from

POCW
ACW (IC(α),∞) = 3�4(R1)

PACW(IC,∞)
. (6)
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Fig. 2 Probability of ACW and OCW coincidence with IC(α) and IAC(α∗)

Closed form representations for these positive orthant probabilities only exist for
special cases, and R1 is one such case from Cheng (1969). Using that result with (5)
and (6) leads to

POCW
ACW (IC(α),∞) =

[
3
16+ 3

4π

{
Sin−1( 1

3 )+Sin−1(
√

α)+Sin−1
(√

α

3

)}]

+ 3
4π2

{

(Sin−1( 1
3 ))

2+(Sin−1(
√

α))
2−

(
Sin−1

(√
α

3

))2
}

3
4 + 3

2π Sin
−1
(
1
3

) . (7)

This representation corresponds to the result in Gehrlein and Fishburn (1978), and
the derivation has been developed in detail here as an example, since the same basic
procedure will be used later to develop additional new probability representations
for other election outcomes.

There is no election output to evaluatewithout any voter participationwhenα = 0,
so Fig. 2 shows plotted values of POCW

ACW (IC(α),∞) from (7) for α → 0 and for each
α = .1(.1)1.0.

Some results from the POCW
ACW (IC(α),∞) values in Fig. 2 are predictable. In partic-

ular, the coincidence probability is one when all voters participate with α = 1, and
the coincidence probability decreases as this participation rate declines.When almost
all voters independently abstain as α → 0, the candidate that becomes the OCW
is effectively selected at random if there is an OCW, so the coincidence proba-
bility goes to 1

3 PACW(IC,∞). What is surprising is the very steep rate of decline in
POCW
ACW (IC(α),∞) values as α decreases, with only about a 62% chance of coinci-

dence when α = 0.5. Low voter participation rates can clearly have a huge negative
impact on election outcomes with the independent voter IC(α) scenario.
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2.2 ACW and OCW Coincidence Results with IAC

It is well known that the introduction of a degree of dependence among voters’ pref-
erences generally reduces the probability that most paradoxical election outcomes
will be observed, relative to the case of complete independence with IC [see for
example Gehrlein and Lepelley (2011)]. Gehrlein and Lepelley (2017b) investigated
this impact on the conditional probability for ACW and OCW coincidence with the
assumption of IAC(α∗), such that all actual voting situations with all of their associ-
ated possible observed voting situations are equally likely to be observed, given that
the voter participation rate is fixed at α∗ = n∗

n .
To begin developing this representation for the coincidence probability of ACW

and OCW with IAC(α∗), we note that this requires that (1), (2), (3) and (4) must
hold, along with

n1 + n2 + n3 + n4 + n5 + n6 = n (8)

n∗
1 + n∗

2 + n∗
3 + n∗

4 + n∗
5 + n∗

6 = n∗ (9)

0 ≤ n∗
i ≤ ni , for i = 1, 2, 3, 4, 5, 6. (10)

We would start by obtaining a representation for the total number of voting situ-
ations for which the restrictions (1), (2), (3), (4), (8), (9) and (10) simultaneously
apply as a function of n and n∗, and then divide that by the total number of voting
situations for which (1), (2), (8), (9) and (10) simultaneously apply as a function of
n and n∗. The final representation could then be expressed as a function of n and α∗.

In the limit as n → ∞, this process of developing representations to count the
number of voting situations that meet the specified restrictions reduces to computing
volumes of subspaces. All observed voting situations with the same value of α∗
are then assumed to be equally likely to be observed with IAC(α∗), but it is not
assumed that all α∗ are equally likely to be observed. This general procedure has
been used many times to develop limiting IAC-based probability representations in
the literature, and we rely throughout this study on a particular method for doing
this that uses the multi-parameter version of Barvinok’s Algorithm that is described
in detail in Lepelley et al. (2008). The resulting representation for the limiting
conditional probability that the ACW and OCW coincide with IAC(α∗) is denoted
PACW
OCW (IAC(α∗),∞), and it is given by:

PACW
OCW (IAC(α∗),∞) = 444α5∗ − 4376α4∗ + 11817α3∗ − 15576α2∗ + 10080α∗ − 2520

128
(
42α5∗ − 274α4∗ + 603α3∗ − 624α2∗ + 315α∗ − 63

) , 0 ≤ α∗ ≤ 1

2
,

= 10812α5∗ − 364α4∗ − 3947α3∗ + 1761α2∗ − 185α∗ − 13

128
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
1

2
≤ α∗ ≤ 1. (11)
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Table 2 Probability values of
ACW and OCW coincidence
with IC(α) and IAC(α∗)

Participation rate IC(α) IAC(α∗)
0.0 0.3041 00.3125

0.1 0.4236 0.3482

0.2 0.4806 0.3949

0.3 0.5290 0.4564

0.4 0.5742 0.5357

0.5 0.6186 0.6310

0.6 0.6640 0.7291

0.7 0.7126 0.8160

0.8 0.7675 0.8887

0.9 0.8365 0.9492

1.0 1.0000 1.0000

Computed values of PACW
OCW (IAC(α∗),∞) from (11) are plotted in Fig. 2 for

α∗ → 0 and for each α∗ = 0.1(0.1)1.0, to show some very surprising results.
The introduction of a degree of dependence with IAC(α∗) can indeed increase the
probability ofACWandOCWcoincidence relative to the case of complete voter inde-
pendence with IC(α). But, this only occurs for α∗ ≥ .5, and the coincidence prob-
ability is actually reduced by introducing dependence for most cases with α∗ ≤ .5!
When a large proportion of voters choose not to participate in an election, it is
now quite evident that very bad things really can happen with the resulting election
outcomes. And, adding a degree of dependence, which was expected to improve the
very negative impact of abstentions, can make things even worse. We now proceed
to investigate this phenomenon further to see just how bad things can get in such
cases, but we first list in Table 2 the numerical values for the probabilities of ACW
and OCW coincidence that are shown graphically in Fig. 2. These probability values
are included here, and in the following sections of this study, to give more precision
to these probability values for others who might wish to attempt to reproduce them
by other techniques.

3 Actual Condorcet Efficiency of Single-Stage Voting Rules

As mentioned above, the Condorcet Efficiency of a voting rule measures the condi-
tional probability that the voting rule will elect the ACW, given that an ACW exists,
based on the results of an observed voting situation. A single-stage voting rule deter-
mines the winner of an election in a single step from the information on the voters’
ballots. A weighted scoring ruleWSR(λ) requires voters to rank the three candidates
and a weight of one is assigned to each voter’s most preferred candidate, a weight of
zero to the least preferred candidate and aweight of λ to themiddle-ranked candidate.
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The candidate who receives the greatest total score from the observed voting situa-
tion is then declared as the winner. Such a voting rule reduces to PR when λ = 0, so
that voters must only report their most preferred candidate on a ballot. When λ = 1,
voters must only report their two more-preferred candidates, which defines NPR
since it is the same as having each voter cast a ballot against their least-preferred
candidate. Voters obviously do not really have to report a complete ranking on the
candidates when either PR or NPR is employed, but they must do so for BR which
uses λ = 1/2.

3.1 Actual Single-Stage Rule Efficiency with IC

The development of a representation for the Condorcet Efficiency
CEWSR(λ)(IC(α),∞) of WSR(λ) as n → ∞ with the assumption of IC(α)

begins by defining four variables that are based on the likelihood that given voter
preference rankings are observed, as shown in Table 3.

Following the logic of development of the representation for POCW
ACW (IC(α),∞),

Y1 and Y2 are identical to X1 and X2 respectively, so that Candidate A is the ACW
if Y1 > 0 and Y2 > 0. Variables Y3 and Y4 define the difference in scores obtained
by Candidate A over each of B and C respectively in voter preference rankings, so
that A will be the winner by WSR(λ) in an observed voting situation whenever both
Y3 > 0 and Y4 > 0.

By utilizing the methodology that led to (6), it follows that

CEWSR(λ)(IC(α),∞) = 3�4(R2)

PACW(IC,∞)
. (12)

Based on the representation in (12), computations with the Yi definitions from
Table 3 lead to:

Table 3 Definitions of Y1, Y2, Y3 and Y4

Ranking Y1[AMB] Y2[AMC] Y3[AW B] Y4[AWC]

A � B � C(p1) +1 +1 1 − λ +1

A � C � B(p2) +1 +1 +1 1 − λ

B � A � C(p3) −1 +1 λ − 1 +λ

C � A � B(p4) +1 −1 +λ λ − 1

B � C � A(p5) −1 −1 −1 −λ

C � B � A(p6) −1 −1 −λ −1

Abstention – – 0 0
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Fig. 3 Condorcet Efficiency of PR, NPR and BR with IC(α) and IAC(α∗)

R2 =

⎡

⎢
⎢
⎢
⎢
⎣

1 1
3

√
2
3z

√
1
6z

1
√

1
6z

√
2
3z

1 1
2
1

⎤

⎥
⎥
⎥
⎥
⎦

,with z = 1 − λ(1 − λ)

α
.

Since z is symmetric about λ = 1/2 for all α, it follows that PR and NPR must
have the same limiting Condorcet Efficiency as n → ∞ for any given α. The form
of R2 unfortunately does not meet the conditions for any special case with a closed
form representation for�4(R2), aswe observed above for�4(R1) in the development
of (7). Gehrlein and Fishburn (1979) therefore used a representation from Gehrlein
(1979) to obtain values of �4(R2) by using numerical integration over a single
variable. Resulting values of CEWSR(λ)(IC(α),∞) for PR, NPR and BR from (12)
are plotted in Fig. 3 for the case that α → 0 and for each α = .1(.1)1.0.

We see the expected result in Fig. 3 that Condorcet Efficiency values approach 1/3
to make all voting rules equivalent to random selection procedures when α → 0. We
also note that BR dominates PR and NPR for all non-zero participation rates. The
efficiencies decrease rapidly as voter participation rates decreasewith the assumption
of IC(α), andwhen this rate is 40%or less, all voting rules haveCondorcet Efficiency
values less than 61%. This level of efficiency is very disappointing, since voter
participation rates as low as 40% are definitely observed in practice. For example,
voter participation rates in the 2014 US elections [see McDonald (2018)] range from
28.7% in Indiana to 58.7% in Maine, with an overall national participation rate of
only 36.7%. While these participation rates do increase for elections during years
when a president is being chosen, they are even lower during the primary elections
that select the final candidates for political parties. So, we certainly hope that the
introduction of a degree of dependence among voters’ preferences will improve this
situation, just as it has typically done in previous studies.
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3.2 Actual Single-Stage Rule Efficiency with IAC

The impact that the inclusion of some degree of dependence among voters’ prefer-
encesmight have on this dreary expected result is considered by using the assumption
of IAC(α∗) to obtain representations for CERule(IAC(α∗),∞). It is not feasible to
obtain such a representation for a generalizedWSR(λ)with a reasonable effort, as we
did withCEWSR(λ)(IC(α),∞), but we can obtain a representation for each specified
voting rule Rule ∈ {PR, N PR, BR}.

Based on the definitions of PR, NPR and BR that were given above, the following
restrictions on observed voting situations apply:

Candidate A is the PR winner if

n∗
1 + n∗

2 > n∗
3 + n∗

5 [APB] (13)

n∗
1 + n∗

2 > n∗
4 + n∗

6 [APC]. (14)

Candidate A is the NPR winner if

n∗
5 + n∗

6 < n∗
2 + n∗

4 [AN B] (15)

n∗
5 + n∗

6 < n∗
1 + n∗

3 [ANC]. (16)

Candidate A is the BR winner if

2
(
n∗
1 + n∗

2

) + n∗
3 + n∗

4 > 2
(
n∗
3 + n∗

5

) + n∗
1 + n∗

6 [ABB] (17)

2
(
n∗
1 + n∗

2

) + n∗
3 + n∗

4 > 2
(
n∗
4 + n∗

6

) + n∗
2 + n∗

5 [ABC]. (18)

The same procedure that was used to obtain the limiting representation for
PACW
OCW (IAC(α∗),∞) in (11) from the restrictions in (1), (2), (3), (4), (8), (9) and

(10) is used to obtain representations for each CERule(IAC(α∗),∞). This is done by
replacing (3) and (4) with (13) and (14) for PR to obtain:

CEPR (IAC(α∗),∞) =

1517527α5∗ − 13088244α4∗ + 33868125α3∗
−43056360α2∗ + 27051003α∗ − 6613488

31492828
(
42α5∗ − 274α4∗ + 603α3∗ − 624α2∗ + 315α∗ − 63

) , 0 ≤ α∗ ≤ 1

2

=

⎡

⎢
⎢
⎢
⎣

18667651456α10∗ − 94540776960α9∗ + 187428504960α8∗
−169349253120α7∗ + 37682184960α6∗ + 57987062784α5∗
−55553299200α4∗ + 21238744320α3∗ − 3741344640α2∗

+158644980α∗ + 21907179

⎤

⎥
⎥
⎥
⎦

201553920(α∗ − 1)5
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
1

2
≤ α∗ ≤ 3

4
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=
−
(
13661α5∗ − 72995α4 + 68740α3 − 26460α2 + 3735α∗ − 9

)

128
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
3

4
≤ α∗ ≤ 1. (19)

A limiting representation is then obtained for the Condorcet Efficiency of NPR
by replacing (3) and (4) with (15) and (16):

CEN PR (I AC(α∗),∞) =
−
⎛

⎝
33037α5∗ + 3096510α4∗ − 10408905α3∗
+14029200α2∗ − 8726130α∗ + 2066715

⎞

⎠

98415
(
42α5∗ − 274α4∗ + 603α3∗ − 624α2∗ + 315α∗ − 63

) , 0 ≤ α∗ ≤ 1

2

=

⎡

⎢
⎢
⎢
⎣

677320000α10∗ − 5117808000α9∗ + 16793438400α8∗
−31338161280α7∗ + 36609330240α6∗ − 27803103552α5∗
+13822189920α4∗ − 4419227160α3∗ + 862705890α2∗

−90246555α∗ + 3562623

⎤

⎥
⎥
⎥
⎦

6298560(1 − α∗)5
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
1

2
≤ α∗ ≤ 3

4

= 459α5∗ + 365α4∗ − 400α3∗ + 270α2∗ − 120α∗ + 21

15
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
3

4
≤ α∗ ≤ 1. (20)

A limiting representation for the Condorcet Efficiency of BR is obtained in the
same fashion by replacing (3) and (4) with (17) and (18):

CEBR (IAC(α∗), ∞) =

931991α5∗ − 11823930α4∗ + 33929685α3∗
−45596520α2∗ + 29546370α∗ − 7348320

349920
(
42α5∗ − 274α4∗ + 603α3∗ − 624α2∗ + 315α∗ − 63

) , 0 ≤ α∗ ≤ 1

2
,

=

−

⎡

⎢
⎢
⎢
⎣

971901664α10∗ − 4826652480α9∗ + 9189897120α8∗
−7389999360α7∗ + 1632960α6∗ + 4616051328α5∗
−3672527040α4∗ + 1323475200α3∗ − 223482240α2∗

+8281440α∗ + 1422603

⎤

⎥
⎥
⎥
⎦

11197440(1 − α∗)5
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
1

2
≤ α∗ ≤ 3

4
,

=
−
(
187353α5∗ − 987625α4∗ + 527980α3∗ + 221880α2∗ − 253805α∗ + 56249

)

4320
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
3

4
≤ α∗ ≤ 1.

(21)

The representations in (19), (20) and (21) are then used to obtain the
CERule(IAC(α∗),∞) valueswith eachRule=PR,NPR andBR for values ofα∗ → 0
and for each α∗ = 0.1(0.1)1. The results are displayed graphically in Fig. 3, to show
that the addition of dependence does improve efficiency results for PR and BR with
voter participation of 50% or more. However, the addition of dependence has a nega-
tive impact on NPR efficiency at all non-zero levels of participation. The overall
efficiency results for IAC(α∗) in Fig. 3 are even more discouraging for the case of
lower voter participation rates for all voting rules than the results for IC(α). BR
still outperforms PR and NPR for all non-zero participation rates with IAC(α∗), but
the addition of a degree of dependence among voters’ preferences has led to even
lower efficiencies for the voting rules when voter participation rates are small. The
efficiencies of all voting rules are now less than 56% when participation rates are
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Table 4 Condorcet Efficiency values of PR, NPR and BR with IC(α) and IAC(α∗)
Participation PR&NPR-IC BR-IC PR-IAC NPR-IAC BR-IAC

0.0 0.3333 0.3333 0.3333 0.3333 0.3333

0.1 0.4399 0.4576 0.3679 0.3621 0.3704

0.2 0.4882 0.5151 0.4131 0.3975 0.4184

0.3 0.5277 0.5630 0.4723 0.4411 0.4807

0.4 0.5630 0.6068 0.5481 0.4928 0.5600

0.5 0.5961 0.6490 0.6378 0.5475 0.6533

0.6 0.6280 0.6911 0.7267 0.5912 0.7457

0.7 0.6595 0.7345 0.7988 0.6153 0.8212

0.8 0.6911 0.7810 0.8476 0.6255 0.8737

0.9 0.7234 0.8337 0.8738 0.6289 0.9026

1.0 0.7572 0.9012 0.8815 0.6296 0.9111

40% or less with IAC(α∗). Adding dependence among voters’ preferences has made
things worse when participation rates are less than 50%!

Table 4 lists the numerical values for the Condorcet Efficiency values of PR, NPR
and BR that are shown graphically in Fig. 3.

4 Borda Paradox Probabilities

The occurrence of a Borda Paradox is much more disconcerting than having a voting
rule fail to elect the ACW. The worst possible outcome occurs when a Borda Paradox
is observed, such that a voting rule elects the ACL. Given the potentially significant
negative impact that voter abstentions have been seen to have on the Condorcet
Efficiency of voting rules, it is natural to wonder how serious the impact of voter
abstentions might be for observing examples of this even more dramatic Borda
Paradox.

4.1 Borda Paradox Probabilities for Single-Stage Rules
with IC

It is easy to develop a representation for the limiting probability
BPWSR(λ)(IC(α),∞) that a Borda Paradox is observed when using WSR(λ)

as n → ∞ with the assumption of IC(α) by mirroring the development of the
representation for CEWSR(λ)(IC(α),∞) in (12). All that has to be done is to reverse
the signs of the Y1 and Y2 values in Table 3 to make Candidate A the ACL and the
winner by WSR(λ). It obviously follows from the logic that led to (12) and the
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definition of R2 that

BPWSR(λ)(IC(α),∞) = 3�4(R3)

PACW(IC,∞)
, (22)

where

R3 =
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2
1

⎤

⎥
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⎦

,with z = 1 − λ(1 − λ)

α
.

Since z remains symmetric about λ = 1/2 for all α, it follows as in the case
of Condorcet Efficiencies, that PR and NPR have the same limiting probability of
exhibiting aBordaParadox for any specified value ofα. The formof R3 is not a special
case for which �4(R3) has a closed form representation, so the representation from
Gehrlein (1979) is used to obtain values of�4(R3). Computed BPWSR(λ)(IC(α),∞)

values from (22) are displayed graphically in Fig. 4 for PR, NPR and BRwith α → 0
and for each α = 0.1(0.1)1.0.

The expected result in Fig. 4 is that the Borda Paradox Probabilities approach 1/3
as α → 0, since all voting rules are equivalent to random selection procedures in this
particular case, and that BR has a lower Borda Paradox probability than PR and NPR
for all non-zero participation rates. A well-known result is that BR cannot elect the
OCL Fishburn and Gehrlein (1976), so that the ACL cannot be elected by BR if all
voters participate. However, this result is not true when some voters abstain so that
the OCL and ACL do not necessarily coincide. The probability of observing a Borda
Paradox consistently increases as voter participation rates decrease with IC(α), and
when this rate is 40% or less, all voting rules have a Borda Paradox probability of

Fig. 4 Borda Paradox Probabilities for PR, NPR and BR with IC(α) and IAC(α∗)
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greater than 11%! That is a shockingly large probability for such a very negative
outcome, given that voter participation rates as low as 40% are actually observed in
practice.

4.2 Borda Paradox Probabilities for Single-Stage Rules
with IAC

We consider the impact that the introduction of some degree of dependence among
voters’ preferenceswill have on the probability that Borda’s Paradoxwill be observed
by extending this analysis with the assumption of IAC(α∗). This begins by noting
that Candidate A is the ACL whenever:

n3 + n5 + n6 > n1 + n2 + n4[BMA] (23)

n4 + n5 + n6 > n1 + n2 + n3[CMA]. (24)

The representation for CEPR(IAC(α∗),∞) in (19) was obtained by considering
actual and observed voting situations for which (1), (2), (13), (14), (8), (9) and (10)
held simultaneously. The definitions for (1) and (2) respectively required that AMB
andAMC tomakeCandidateA theACW.This process is now repeated after replacing
(1) and (2) with (23) and (24) to obtain a representation for BPPR(IAC(α∗),∞), with

BPPR (I AC(α∗),∞) =

58215686α5∗ − 284362350α4∗ + 519458670α3∗
−455939280α2∗ + 195419385α∗ − 33067440

1574640
(
42α5∗ − 274α4∗ + 603α3∗ − 624α2∗ + 315α∗ − 63

) , 0 ≤ α∗ ≤ 1

2
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⎤
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⎥
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201553920(α∗ − 1)5
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
1

2
≤ α∗ ≤ 3

4

=
−
(
1989α5∗ − 9340α4∗ + 14390α3∗ − 9900α2∗ + 2925α∗ − 288

)

120
(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

) ,
3

4
≤ α∗ ≤ 1. (25)

This process is then repeated for both NPR and BR, and the resulting limiting
representations for observing Borda’s Paradox are given by:

BPNPR(IAC(α∗), ∞) =

2571059α5∗ − 14546670α4∗ + 28993545α3∗
−26888760α2∗ + 11941020α∗ − 2066715

98415
(
42α5∗ − 274α4∗ + 603α3∗ − 624α2∗ + 315α∗ − 63

) , 0 ≤ α∗ ≤ 1

2
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60
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) ,
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4
≤ α∗ ≤ 1. (26)

BPBR (IAC(α∗),∞) =

2603797α5∗ − 12826098α4∗ + 23528961α3∗
−20631672α2∗ + 8787366α∗ − 1469664
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(
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) ,
3
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≤ α∗ ≤ 1. (27)

Values of BPPR(IAC(α∗),∞) from (25), BPNPR(IAC(α∗),∞) from (26) and
BPBR(IAC(α∗),∞) from (27) are displayed graphically in Fig. 4 for α∗ → 0
and for each α∗ = .1(.1)1.0. An analysis of the results in Fig. 4 shows the same
general outcome that was observed when the Condorcet Efficiency of voting rules
was analyzed earlier with IC(α) and IAC(α∗). That is, the addition of a degree of
dependence among voters’ preferences with IAC(α∗) actually makes things worse
for lower levels of voter participation. We now see that the probability of observing
a Borda Paradox is now greater than 15% for all levels of voter participation at 40%
or less! The results for BR are uniformly the best of these options for all positive
levels of voter participation, but BR still performs very poorly for lower levels of
voter participation. If this very poor overall performance of single-stage voting rules
at lower levels of voter participation is to be improved, the likely approach would be
to consider the use of some other forms of voting rules.

Table 5 lists the numerical values for the Borda Paradox Probability values of PR,
NPR and BR that are shown graphically in Fig. 4.

5 Two-Stage Voting Rules

Two-stage voting rules are sequential elimination procedures that utilize two steps. In
the first stage, a voting rule determines the candidate that is ranked as the worst of the
three candidates. That candidate is eliminated from consideration in the second stage,
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Table 5 Borda Paradox Probability values for PR, NPR and BR

Participation PR&NPR-IC BR-IC PR-IAC NPR-IAC BR-IAC

0.0 0.3333 0.3333 0.3333 0.3333 0.3333

0.1 0.2355 0.2208 0.3006 0.3046 0.2980

0.2 0.1965 0.1761 0.2626 0.2691 0.2564

0.3 0.1670 0.1423 0.2186 0.2257 0.2077

0.4 0.1423 0.1140 0.1693 0.1745 0.1526

0.5 0.1207 0.0892 0.1192 0.1207 0.0962

0.6 0.1012 0.0669 0.0778 0.0773 0.0497

0.7 0.0834 0.0466 0.0508 0.0512 0.0202

0.8 0.0669 0.0280 0.0366 0.0383 0.0055

0.9 0.0515 0.0115 0.0309 0.0328 0.0006

1.0 0.0371 0.0000 0.0296 0.0315 0.0000

where majority rule is used to determine the ultimate winner from the remaining two
candidates. All that changes with the two-stage rules is the voting rule that is used to
eliminate the loser in the first stage. We consider Plurality Elimination Rule (PER),
Negative Plurality Elimination Rule (NPER) and Borda Elimination Rule (BER). It
is definitely of interest to determine if these two-stage voting rules can exhibit better
performance than the single-stage rules on the basis of Condorcet Efficiency and the
probability that Borda’s Paradox is observed with lower participation rates.

5.1 Condorcet Efficiency of Two-Stage Voting Rules with IC

Thedevelopment of the representation forCEWSR(λ)(IC(α),∞) in (12)was based on
the definitions of the four Y j variables in Table 3 that had Y j > 0 for j = {1, 2, 3, 4}.
When we consider instead the more complex two-stage elimination rules WSER(λ),
the resulting development of a representation forCEWSER(λ)(IC(α),∞) requires the
use of five variables that are denoted as Zi for i = {1, 2, 3, 4, 5} in Table 6.

By comparing Table 6 to Table 3, we see that Z1 and Z2 are identical to Y1 and
Y2, so that Candidate A will be the ACW if Z1 > 0 and Z2 > 0. It is also true that
Z3 is identical to Y3, so that A beats B by WSR(λ) if Z3 > 0. Variable Z4 defines
the relative margin by which C beats B in each ranking under WSR(λ). So, B will
be the lowest ranked candidate by WSR(λ) when both Z3 > 0 and Z4 > 0, and it
therefore will be eliminated under WSER(λ). Variable Z5 accounts for the fact that
the ACW Candidate A will then be the majority rule winner over C for participating
voters in the second stage of WSER(λ) if Z5 > 0. Candidate A will therefore be the
ACW and the winner by WSER(λ) when Zi > 0 for i = {1, 2, 3, 4, 5}.

The correlation matrix between these five variables is found to be given by R5:
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Table 6 Definitions of Z1, Z2, Z3, Z4 and Z5

Ranking Z1[AMB] Z2[AMC] Z3[AW B] Z4[CW B] Z5
[
AM∗C

]

A � B � C(p1) +1 +1 1 − λ −λ +1

A � C � B(p2) +1 +1 +1 λ +1

B � A � C(p3) −1 +1 λ − 1 −1 +1

C � A � B(p4) +1 −1 λ +1 −1

B � C � A(p5) −1 −1 −1 λ − 1 −1

C � B � A(p6) −1 −1 −λ 1 − λ −1

Abstention --- --- 0 0 0
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,with z = 1 − λ(1 − λ)

α
.

There are three candidates that could be the ACW and there are two remaining
candidates that could be eliminated when proceeding to the second stage of
WSER(λ), so a representation for limiting Condorcet Efficiency is obtained from

CEWSER(λ)(IC(α),∞) = 6�5
(
R5

)

PACW (IC, ∞)
. (28)

As we have observed before, z is symmetric about z = 1/2, so the Condorcet Effi-
ciency values of PER and NPER are identical for IC(α) for any given α. The process
of obtaining values of multivariate-normal positive orthant probabilities becomes
muchmore complicated for the case of five variables, but they can still be obtained by
using numerical techniques over a series of integrals on a single variable, as described
in Gehrlein (2017). That procedure is used here to obtain values of �5(R5) for use
in (28), to obtain values of CEWSER(λ)(IC(α),∞) for PER, NPER and BER that are
displayed graphically in Fig. 5 for α → 0 and for each α = .1(.1)1.0.

The results in Fig. 5 produce some interesting outcomes. First of all, it is well
known from Daunou (1803) that BR cannot rank the OCW in last place, so that it
cannot be eliminated in the first stage with BER, and the OCWmust then win in the
second stage. The Actual Condorcet Efficiency of BER is therefore 100% when all
voters participate so that the OCW and ACW must coincide. However, this is not
true when some voters abstain so that the OCW and ACW are not necessarily the
same.

When we compare the Condorcet Efficiency results for the two-stage rules with
IC(α) in Fig. 5 to their counterpart single-stage rules in Fig. 3, BER dominates PER
and NPER for all non-zero voter participation rates, just as BR dominated PR and
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Fig. 5 Condorcet Efficiency of PER, NPER and BER with IC(α) and IAC(α∗)

NPR.However, the degree of this domination is significantly dampenedwith the two-
stage rules, and BER has a less than 1% advantage over PER and NPER for voter
participation rates of 60% or less. It seems logical to expect increased Condorcet
Efficiency results with two-stage rules, and this is true for PER and NPER. But, it
is a very surprising outcome to observe that computed BER efficiencies are actually
marginally smaller than BR efficiencies for 0.1 ≤ α ≤ 0.5 and the Condorcet
Efficiency values for two-stage rules remain less than 61% for voter participation
rates that are 40% or less.

5.2 Condorcet Efficiency of Two-Stage Voting Rules with IAC

The same type of two-stage voting rule Condorcet Efficiency analysis is extended
with the assumption of IAC(α∗) and the resulting representations for PER, NPER
and BER are shown respectively in (29), (30) and (31).

CEPER (I AC(α∗), ∞) =

3823792093α5∗ − 32968107660α4∗
+85500757710α3∗ − 109197460800α2∗
+68946837120α∗ − 16930529280
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Computed values of CERule(IAC(α∗),∞) for PER, NPER and BER from (29),
(30) and (31) are displayed graphically in Fig. 5 for α∗ → 0 and for each
α∗ = 0.1(0.1)1.0. A comparison of the IAC(α∗) Condorcet Efficiency values in
Fig. 5 to their counterpart single-stage rules in Fig. 3 produces very similar results
to those observed immediately above with IC(α). BER typically dominates PER
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Table 7 Condorcet Efficiency of PER, NPER and BER

Participation PER&NPER-IC BER-IC PER-IAC NPER-IAC BER-IAC

0.0 0.3333 0.3333 0.3333 0.3333 0.3333

0.1 0.4516 0.4537 0.3687 0.3693 0.3692

0.2 0.5075 0.5109 0.4148 0.4163 0.4162

0.3 0.5546 0.5593 0.4755 0.4779 0.4779

0.4 0.5982 0.6043 0.5534 0.5571 0.5574

0.5 0.6407 0.6484 0.6465 0.6514 0.6527

0.6 0.6836 0.6934 0.7407 0.7470 0.7501

0.7 0.7288 0.7411 0.8213 0.8286 0.8354

0.8 0.7786 0.7944 0.8844 0.8914 0.9045

0.9 0.8387 0.8597 0.9323 0.9372 0.9584

1.0 0.9629 1.0000 0.9685 0.9704 1.0000

and NPER for all non-zero voter participation rates, but computed values give NPER
a very small advantage over BER for α∗ values of 0.1 and 0.2. All differences in
efficiencies are significantly dampened with the two-stage rules, with a less than
1% difference between the efficiencies for voter participation rates of 50% or less.
Increased Condorcet Efficiency results are observed for PER and NPER compared
to PR and NPR over the range of non-zero voter participation rates, but BER effi-
ciencies are marginally smaller than BR efficiencies for 0.1 ≤ α∗ ≤ 0.5. Condorcet
Efficiency values for the two-stage rules with dependence among voters’ preferences
are now less than 56% for voter participation rates that are 40%or less, tomake things
worse than we observed for the independent voter case with IC(α) with two-stage
voting rules in Fig. 5.

Table 7 lists the numerical values for the Condorcet Efficiency of PER, NPER
and BER that are shown graphically in Fig. 5.

5.3 Borda Paradox Probability for Two-Stage Voting Rules
with IC

The development of a representation for the limiting probability that Borda’s Paradox
will be observed for two-stage voting rules with IC(α) directly follows the process
that led to the representation for CEWSER(λ)(IC(α),∞) in (28). The only difference
is that the signs for the variables Z1 and Z2 in Table 6 are reversed to make Candidate
A the ACL, which is then elected as the ultimate winner by WSER(λ). It follows
directly that

BPWSER(λ)(IC(α),∞) = 6�5(R6)

PACW (IC,∞)
,where (32)
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Fig. 6 Borda Paradox Probabilities for PER, NPER and BER with IC(α) and IAC(α∗)
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Computed values of BPWSER(λ)(IC(α),∞) from (32) for each PER, NPER and
BER as α → 0 and for each α = .1(.1)1.0 are displayed graphically in Fig. 6.

It follows from the definition of two-stage elimination rules that the OCL cannot
win with any of these rules, so that Borda’s Paradox cannot be observed if all voters
participate, so that the ACL and OCL coincide. However, this observation is not true
when some voters abstain, so that the ACL and OCL might not be the same.

Very different behaviors are observed for the two-stage voting rules in Fig. 6 when
they are compared to their single-stage rule counterparts in Fig. 4. TheBorda Paradox
probabilities with IC(α) are reduced at all levels of non-zero voter participation
for PER and NPER compared to PR and NPR. However, the BER Borda Paradox
probabilities all increase from their corresponding BR values for all 0 < α < 1.
BER still has lower Borda Paradox probabilities than PER and NPER over the range
of voter participation rates, but the differences are less than 0.3% in all cases. The
particularly disturbing result from Fig. 6 is that when the voter participation rates
is 40% or less, all two-stage voting rules now have a Borda Paradox probability of
greater than about 13%, compared to the 11% that was observed in Fig. 4 for the
single-stage rules!
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5.4 Borda Paradox Probabilities for Two-Stage Rules
with IAC

Representations are also obtained for the limiting probabilities BPPER(IAC(α∗),∞),
BPNPER(IAC(α∗),∞) and BPBER(I AC(α∗),∞)byusing the sameprocess that lead
respectively to the Condorcet Efficiency results in (29), (30) and (31). These resulting
limiting probability representations are given by:

BPPER (I AC(α∗), ∞) =

30368797609α5∗ − 147521223660α4∗
+268423789950α3∗ − 234843935040α2∗
+100358455680α∗ − 16930529280

806215680
(
42α5∗ − 274α4∗ + 603α3∗ − 624α2∗ + 315α∗ − 63

) , 0 ≤ α∗ ≤ 1

2

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

8600974249α10∗ − 56418851820α9∗
+150514746750α8∗ − 197354905920α7∗
+95067665280α6∗ + 81478172160α5∗

−161633646720α4∗ + 115641561600α3∗
−43875768960α2∗ + 8692012800α∗ − 711737280

⎤

⎥
⎥
⎥
⎥
⎥
⎦

806215680(α∗ − 1)5

(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

)

,
1

2
≤ α∗ ≤ 2

3

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1484308489α10∗ − 10365275280α9∗
+32356702665α8∗ − 59403130380α7∗
+70958056995α6∗ − 57586120074α5∗
+32164285545α4∗ − 12237314760α3∗
+3052242810α2∗ − 454677300α∗
+30921993

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

12597120(α∗ − 1)5

(
42α5∗ + 64α4∗ − 73α3∗ + 39α2∗ − 10α∗ + 1

)

,
2

3
≤ α∗ ≤ 3

4

=
(1 − α∗)

⎛

⎝
25239α4∗ − 36326α3∗
+28314α2∗ − 6546α∗ − 6

⎞

⎠

1920

⎛

⎝
42α5∗ + 64α4∗
−73α3∗ + 39α2∗ − 10α∗ + 1

⎞

⎠

,
3

4
≤ α∗ ≤ 1. (33)

BPN PER (I AC(α∗), ∞) =

238551113α5∗ − 1159474830α4∗
+2109732075α3∗ − 1844208000α2∗
+786576420α∗ − 132269760

6298560

⎛

⎝
42α5∗ − 274α4∗ + 603α3∗
−624α2∗ + 315α∗ − 63

⎞

⎠

, 0 ≤ α∗ ≤ 1

2

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

388210400α10∗ − 3308366400α9∗
+14344659360α8∗ − 39847541760α7∗
+74031874560α6∗ − 92271384576α5∗
+76451921280α4∗ − 41116999680α3∗
+13647404880α2∗ − 2517455700α∗
+197676369

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

201553920(1 − α∗)5

⎛

⎝
42α5∗ + 64α4∗
−73α3∗ + 39α2∗ − 10α∗ + 1

⎞

⎠

,
1

2
≤ α∗ ≤ 3

4
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=
(1 − α∗)

⎛

⎝
24471α4∗ − 66184α3∗
+66276α2∗ − 25284 α∗ + 3171

⎞

⎠

960

⎛

⎝
42α5∗ + 64α4∗
−73α3∗ + 39α2∗ − 10α∗ + 1

⎞

⎠

,
3

4
≤ α∗ ≤ 1. (34)

BPBER(I AC(α∗),∞) =

10663043α5
∗ − 51663168α4

∗
+93817521α3

∗ − 81924048α2
∗

+34935138α∗ − 5878656

279936

(
42α5

∗ − 274α4
∗ + 603α3

∗
−624α2

∗ + 315α∗ − 63

) , 0 ≤ α∗ ≤ 1

2

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3104771α10
∗ − 20030400α9

∗
+52876881α8

∗ − 68907024α7
∗

+33098058α6
∗ + 28291032α5

∗
−56122794α4

∗ + 40153320α3
∗

−15234642α2
∗ + 3018060α∗

−247131

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

279936(α∗ − 1)5
(
42α5

∗ + 64α4
∗ − 73α3

∗
+39α2

∗ − 10α∗ + 1

) ,
1

2
≤ α∗ ≤ 3

5

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

794736α10
∗ − 7818275α9

∗
+33936246α8

∗ − 86024484α7
∗

+140947128α6
V R − 155365938α5

∗
+116001396α4

∗ − 57518100α3
∗

+17990262α2
∗ − 3186459α∗

+243486

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

186624(1 − α∗)5
(
42α5

∗ + 64α4
∗ − 73α3

∗
+39α2

∗ − 10α∗ + 1

) ,
3

5
≤ α∗ ≤ 3

4

=
(α∗ − 1)

(
528α4

∗ − 581α3
∗

−1524α2
∗ + 855α∗ − 118

)

256

(
42α5

∗ + 64α4
∗

−73α3
∗ + 39α2

∗ − 10α∗ + 1

) ,
3

4
≤ α∗ ≤ 1.

(35)

Computed values for the Borda Paradox probabilities in (33), (34) and (35) for
each PER, NPER and BER respectively are displayed graphically in Fig. 6 with
α∗ → 0 and for each α∗ = 0.1(0.1)1.0. When we compare the results of Fig. 6
to those in Fig. 4, the PER and NPER Borda Paradox probabilities with IAC(α∗)
are smaller than the counterpart PR and NPR probabilities over the range of voter
participation rates with 0 < α∗ < 1, while the BER probabilities increase compared
to BR. The end result is that the Borda Paradox probabilities in Fig. 6 display only a
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Table 8 Borda Paradox Probability values for PER, NPER and BER

Participation PER&NPER-IC BER-IC PER-IAC NPER-IAC BER-IAC

0.0 0.3333 0.3333 0.3333 0.3333 0.3333

0.1 0.2291 0.2278 0.3000 0.2993 0.2995

0.2 0.1883 0.1866 0.2613 0.2596 0.2601

0.3 0.1575 0.1556 0.2166 0.2137 0.2147

0.4 0.1318 0.1297 0.1665 0.1620 0.1638

0.5 0.1091 0.1070 0.1155 0.1089 0.1118

0.6 0.0885 0.0863 0.0727 0.0641 0.0681

0.7 0.0691 0.0668 0.0430 0.0334 0.0378

0.8 0.0503 0.0481 0.0234 0.0152 0.0186

0.9 0.0310 0.0288 0.0100 0.0053 0.0069

1.0 0.0000 0.0000 0.0000 0.0000 0.0000

small degree of variability across the voting rules within each of IC(α) and IAC(α∗),
but the addition of voter dependence with IAC(α∗) again causes an increase in the
probability of observing a Borda Paradox for lower levels of voter participation rates
of 40% or less.

Table 8 lists the numerical values for the Borda Paradox Probability values of PR,
NPR and BR that are shown graphically in Fig. 6.

6 Results for Other Voting Rules When Indifference
Between Candidates is Permitted

A companion study of this phenomenon is performed by Gehrlein and Lepelley
(2018) to investigate the impact that is observed on these results when we relax the
requirement that voters must have complete linear preference rankings on candidates
like those in Fig. 1. Voters are instead permitted the additional option of having some
indifference between candidates, to have dichotomous preferences on candidates.
There are six such possible dichotomous preference rankings on candidates, as shown
in Fig. 7.

The notation (B,C) denotes that a voter is indifferent between Candidates B and
C, and the case of complete indifference between all three candidates is ignored, since

Fig. 7 Six possible dichotomous preference rankings for eligible voters’ preferences
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any such voter would have absolutely no impact on the evaluation of any election
outcomes.

The very important impact of this addition of possible dichotomous preferences
is that it allows for a consideration of Approval Voting (AV ), which is in some sense
simpler for voters to respond to than the voting rules that have been considered above,
since AV only requires voters to cast a ballot for as many candidates as they approve
of. The winner is then determined as the candidate that receives the greatest total
number of approvals from voters. This particular analysis is important since AV has
been shown to have many very positive qualities when all voters have dichotomous
preferences [see for example Brams and Fishburn (1978, 1983)]. As a result, AV
has many strong advocates supporting its use, with the staunchest support coming
from Steven Brams and Peter Fishburn. However, there are also individuals who are
strongly opposed to the use of AV, with the strongest opposition coming fromDonald
Saari [see for example Saari and Van Newenhizen (1988)].

Laslier and Sanver (2010) present a thorough survey of work that is related to
AV, and it contains many interesting remarks that are made in evaluating the more
negative views of AV that are presented in the work of Saari relative to the more
positive views of Brams and Fishburn. The primary argument that is used against AV
is based on the general perception that it might tend to select mediocre candidates,
only because most voters do not find them to be objectionable. Gehrlein and Lepelley
(2017a) analyze some results that are available from elections to conclude that this
overall objection does not appear to be valid, but that AV does appear to have a
tendency to elect candidates that are political centrists.

It is not possible to ignore some of the very positive qualities of AV, but it is
also not possible to ignore some of the strong opposition that exists to using it. So,
Gehrlein and Lepelley (2018) suggest the use of a hybrid approach that uses AV to
reduce the set of available candidates down to a smaller set of candidates that the
overall electorate views as being the most generally acceptable candidates. After the
elimination of the least acceptable candidates is performed by AV, some other voting
rule would be used to select the ultimate winner from the reduced set. Such a voting
rule might be considered to be an acceptable compromise between proponents and
opponents of AV, by simultaneously retaining some of the known benefits of AV and
eliminating the primary criticism of its use. This would be an effective mechanism
to show the true level of support for all candidates in the first round of voting, while
significantly reducing the possibility that fringe candidates with strong levels of
support from small groups of voters might unduly influence the final outcome in the
second stage of the election. However, the primary consideration is that the Approval
Elimination Voting (AEV ) procedure would eliminate the possibility of electing a
candidates that is widely viewed as being unacceptable to the electorate.

Brams and Sanver (2009) consider two related election procedures that both
require voters to report approval-disapproval results on all candidates, along with
preference rankings on some subset of candidates. Their Preference Approval Voting
requires voters to provide a ranking on all candidates, while Fallback Voting only
requires each voter to rank those candidates that are in the approval set. Both of
these voting rules employ a sequence of rather complex mechanisms to determine
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the winner from the reported results from voters, if a winner is not determined in the
first step. The AEV procedure that is described above from Gehrlein and Lepelley
(2018) does have the drawback of requiring two separate elections, but it has the
great advantage of being much more understandable to the electorate, to lead to
more confidence among voters in the end result of the election. The expense of using
such a two-stage procedure might not be justifiable for low-level elections, but it
would certainly be acceptable for situations like the determining the president of a
country, or for other high-level positions.

For the case of three candidate elections, AEV is used in the first stage to remove
one candidate from consideration, and the winner in the second stage is then deter-
mined by majority rule on the two remaining candidates. Gehrlein and Lepelley
(2018) analyzed a number of different voting rules for the limiting case of voters
with n → ∞ when dichotomous preferences are allowable and voter abstention is
an option, but the results for comparing AV to AEV are most relevant to our current
discussion. Extensions of two different models based on IC(α) and IAC(α∗) served
as the basis of this analysis. In both models, k defines the proportion of voters in an
actual voting situation with complete linear preference rankings.

The IWOC(k) assumption from Fishburn and Gehrlein (1980) is IC-like, since
it considers the scenario of independent voter preferences with pi = k

6 for i =
{1, 2, 3, 4, 5, 6} and with p j = 1−k

6 for j = {7, 8, 9, 10, 11, 12}. These p j proba-
bilities follow from Fig. 7 in the same fashion as the pi terms followed from Fig. 1.
Then, IWOCA(k, α) is an extension of IWOC(k) that further assumes that that each
voter independently chooses to participate in the election with probability α.

The IAWOC(k) model from Gehrlein and Lepelley (2015) is IAC-like, such
that voters’ preferences have some dependence when all voting situations with
n = ∑12

h=1 nh potential voters and k = ∑6
i=1 ni voters with complete linear pref-

erences are equally likely to be observed for a specified k. Then, the assumption
of IAWOCA(k, α∗) is a natural extension of IAWOC(k), where all possible actual
voting situations that account for n potential voters, where k of them have complete
linear preference rankings, and n∗ of them participate are assumed to be equally
likely to be observed. As before, the proportion of participating voters is defined by
α∗ = n∗/n for each voting situation. The development of probability representations
for which both k and α∗ are allowed to vary becomes extraordinarily complicated,
so only specific cases for which one of the two terms is fixed is considered. Since it
was mentioned above that AV is known to have many very positive features when
all voters have dichotomous preferences, we focus on the results in Gehrlein and
Lepelley (2018) with k = 0.

It was found that CEAV (IWOCA(0, α),∞) = CEAEV (IWOCA(0, α),∞) for
all α. The CEAEV (IAWOCA(0, α),∞) results meet expectations by consistently
increasing as α increases, and the Condorcet Efficiency of AEV does show a marked
improvement with the addition of dependence among voters’ preferences for partic-
ipation rates of 60% or more. However, the addition of dependence again leads to
a marked reduction in AEV efficiency for participation rates of 50% or less. The
addition of dependence among voters’ preferences is also found to lead to a marked



Analyzing the Probability of Election Outcomes with Abstentions 43

increase in the probability of observing a Borda Paradox for AEV with participation
rates of 40% or less, so these results are very consistent with the disturbing trends
that were observed for all other voting rules considered above.

7 Discussion and Explanation of These Disconcerting
Results

7.1 A Further Evaluation

Earlier analysis above considered the probability that theACWandOCWwould coin-
cide for the limiting case of voters with independent voters’ preferences when voters
have the option to abstain. This indicated that the probability of non-coincidence
becomes relatively high as voter participation rates decline. Rather pessimistic results
were also found for theCondorcet Efficiency and the probability that aBorda Paradox
is observed with PR, NPR and BR under the same independent voter scenario. Two
options were considered to improve this negative result. The first added a degree of
dependence among voters’ preferences. The second used more complex versions of
these three voting rules by considering each as the basis for a two-stage elimination
election procedure. The end result is that both of these options tended to make things
better for both Condorcet Efficiency and the probability that a Borda Paradox is
observed for larger values of voter participation rates. However, both options tended
to make things worse for all voting rules with voter participation rates of 40% or less.

These results for lower participation rates are extraordinarily disconcerting, since
earlier research strongly supports the notion that the addition of some dependence
among voters’ preferences will typically significantly reduce the expected high like-
lihood of observing bad election outcomes that occurs when independence among
voters’ preferences is assumed. The behavior of IAC-based probabilities is also crit-
ical since patterns of changes in such IAC-based probabilities as various parameters
change typically mirror the patterns that are observed in empirically-based results
[See for example Gehrlein et al. (2016a, b, 2018)]. It must also be pointed out that a
possible resolution of this problem is not as simple as using mandatory voting. The
disengaged voterswhowere discussed earliermost likely represent thosewho abstain
from voting due to their having an initial lack of interest in the election outcome.
Milner et al. (2007) perform an empirical analysis to find that mandatory voting
will typically induce these disengaged voters to participate, but it is also found to
be unlikely that such voters would be motivated to seriously evaluate the candidates
before doing so. As a result, little would be accomplished in establishing the true
ACW. It looks at this point like we really do have chaos based on these results.
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7.2 An Explanation of the Results: Hindsight is 20–20

As things turn out, these results probably should have been anticipated from the
onset. One explanation for these results is that the IAC-based models that are being
used in this current study are introducing some statistical dependence among the
preferences of the voters who choose to abstain. To explain this, the event outcomes
have been defined above in terms of the six ni terms for possible voters and the six
n∗
i terms for participating voters. We know that the use of an IAC-like assumption

will result in a scenario in which there is dependence among these twelve terms
that identify possible voters and participating voters. It would be quite possible to
instead redefine all of these same event outcomes in terms of the six ni terms and
six terms for non-participating voters. By using the same IAC-like assumptions,
there would then be dependence between preferences of the possible voters and
the preferences of non-participating voters. The resulting dependence among the
preferences of non-participating voters could result in a situation in which their
preference rankings are not necessarily being withheld from the election results in
relative proportions that are consistent with the distribution of voters’ preferences in
the actual voting situation. This could then lead to having observed voting situations
with very different properties than the actual voting situations, particularly with high
rates of voter abstention.

From a practical perspective, an example of this could occur if some coalitions
of voters with similar (dependent) preference rankings perceive that their preferred
candidates have no chance to win, and they therefore choose not to participate in
relatively large numbers, which therefore also removes their preference rankings
on all other candidates from consideration. Any results from the observed voting
situation could then be quite different than results from the actual voting situation.

It is possible to obtain an indication of how much of an influence such depen-
dence among non-participating voters has on the disconcerting results that have
been observed. We shall ultimately see that it is only feasible to do this analysis
by considering computed probabilities with a finite n. Three different probability
models are considered in this analysis, and the first two are IAC(α∗) and IC(α)

that were developed above. The analysis starts by developing representations for
POCW
ACW (I AC(α∗), n) and a minor variation of POCW

ACW (IC(α), n) as an example to
indicate the significant impact that dependence among non-participating voters’
preferences can have on election outcomes.

7.2.1 A Representation for POCW
ACW (I AC(α∗), n)

We begin by noting the very simple limits that identify the bounds on the six ni
terms that are associated with the six possible voters’ preference rankings on three
candidates from Fig. 1.
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0 ≤ n6 ≤ n
0 ≤ n5 ≤ n − n6

0 ≤ n4 ≤ n − n6 − n5
0 ≤ n3 ≤ n − n6 − n5 − n4

0 ≤ n2 ≤ n − n6 − n5 − n4 − n3
n1 = n − n6 − n5 − n4 − n3 − n2.

(36)

The total number N (n) of possible voting situations for n voters can then be
obtained directly from the relationship

N (n) =
∑

1

1 =
n∑

n6=0

n−n6∑

n5=0

n−n6−n5∑

n4=0

n−n6−n5−n4∑

n3=0

n−n6−n5−n4−n3∑

n2=0

1 (37)

where �1 denotes the five summation function with indices n6, n5, n4, n3, n2 and
index bounds from (36). We know from Feller (1957) that (37) reduces to

N (n) =
∏5

i=1 (n + i)

120
. (38)

The additional restrictions that must be placed on the bounds on ni values in (36)
to make Candidate A the ACW are identified in Gehrlein and Fishburn (1976) for
odd n as:

0 ≤ n6 ≤ (n−1)
2

0 ≤ n5 ≤ (n−1)
2 − n6

0 ≤ n4 ≤ (n−1)
2 − n6 − n5

0 ≤ n3 ≤ (n−1)
2 − n6 − n5

0 ≤ n2 ≤ n − n6 − n5 − n4 − n3
n1 = n − n6 − n5 − n4 − n3 − n2.

(39)

The total number of voting situations such that A is the ACW with n possible
voters is denoted by N A(n), and it can be obtained directly from the bounds in
(39) by N A(n) = �21, where �2 denotes the five summation function with indices
n6, n5, n4, n3, n2 and index bounds from (39). This representation is algebraically
reduced to obtain

N A(n) = (n + 1)(n + 3)3(n + 5)

384
. (40)

Since all voting situations are equally likely to be observed with IAC, the
probability PA(IAC, n) that Candidate A is the ACW follows directly from

PA(IAC, n) = N A(n)

N (n)
= 5(n + 3)2

16(n + 2)(n + 4)
. (41)
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We now expand on this by considering the additional bounds on (39) that will
restrict voting situations with n possible voters when Candidate A is the ACW to the
condition that only n∗ voters participate in the election. The bounds on n∗

i values for
participating voters are defined for each of the N A(n) voting situations, with:

Max{0, n∗ − (n − n6)} ≤ n∗
6 ≤ Min{n6, n∗}

Max
{
0, n∗ − n∗

6 − (n − n6 − n5)
} ≤ n∗

5 ≤ Min
{
n5, n∗ − n∗

6

}

Max
{
0, n∗ − n∗

6 − n∗
5 − (n − n6 − n5 − n4)

} ≤ n∗
4 ≤ Min

{
n4, n∗ − n∗

6 − n∗
5

}

Max
{
0, n∗ − n∗

6 − n∗
5 − n∗

4 − (n − n6 − n5 − n4 − n3)
} ≤ n∗

3

≤ Min
{
n3, n∗ − n∗

6 − n∗
5 − n∗

4

}

Max
{
0, n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3 − (n − n6 − n5 − n4 − n3 − n2)

} ≤ n∗
2

≤ Min
{
n2, n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3

}

n∗
1 = n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3 − n∗

2.

(42)

The upper bounds for all participating voters’ preference rankings simultaneously
require that n∗

i ≤ ni while maintaining
∑6

i=1 n
∗
i = n∗. The lower bounds for each

n∗
i simultaneously require that n∗

i ≥ 0, while it also makes certain that a sufficient
number of participating voters are assigned to each associated ranking. In particular,
we require that the number of unassigned participating voters that will remain after
establishing n∗

i , which is n
∗−∑6

j=i n
∗
j , does not exceed the number of possible voters,

n − ∑6
j=i ni , that have the preference rankings that these remaining participating

voters must be assigned to.
The number N A(n, n∗) of possible combined voting situations that exist for n

possible voters where Candidate A as the ACW from (37), and concurrently where
there are n∗ participating voters from (42) is obtained with a 10 summation function
by following the same procedure that was used to obtain N (n) in (37), with

N A
(
n, n∗) =

∑

2

∑

3

1. (43)

Here, �3 is a five summation function with indices n∗
6, n

∗
5, n

∗
4, n

∗
3, n

∗
2 and index

bounds from (42). No simple closed form representation is available for N A(n, n∗)
like the one for N A(n) in (40). However, the IAC(α∗) assumption that was used above
for the limiting case as n → ∞ can be extended to the case of finite n and n∗. This
is done by assuming that all actual voting situations with n possible voters that have
Candidate A as the ACW are combined with all of their associated feasible observed
voting situations with n∗ participating voters, to have an equally likely probability

1
N A(n,n∗) of being observed. As before, the voter participation rate is α∗ = n∗

n , but it
is obvious that not all values of α∗ can be observed for any given finite n.

As a next step we introduce the restriction that Candidate A is also the OCW for
the set of participating voters, so that there will be coincidence between the ACW
and OCW. Following the format of the process leading to the bounds in (39), the
bounds on observed voting situations in (42) are further restricted to make Candidate
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A the OCW for odd n∗:

Max{0, n∗ − (n − n6)} ≤ n∗
6 ≤ Min

{
n6,

n∗−1
2

}

Max
{
0, n∗ − n∗

6 − (n − n6 − n5)
} ≤ n∗

5 ≤ Min
{
n5,

n∗−1
2 − n∗

6

}

Max
{
0, n∗ − n∗

6 − n∗
5 − (n − n6 − n5 − n4)

} ≤ n∗
4 ≤ Min

{
n4,

n∗−1
2 − n∗

6 − n∗
5

}

Max
{
0, n∗ − n∗

6 − n∗
5 − n∗

4 − (n − n6 − n5 − n4 − n3)
} ≤ n∗

3

≤ Min
{
n3,

n∗−1
2 − n∗

6 − n∗
5

}

Max
{
0, n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3 − (n − n6 − n5 − n4 − n3 − n2)

} ≤ n∗
2

≤ Min
{
n2, n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3

}

n∗
1 = n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3 − n∗

2.

(44)

These modifications to the upper bounds in (44) unfortunately create a new set
of problems for the bounds on some of the indices. We see that this modification for
the upper bound on n∗

3 now creates the necessary requirement that n∗−1
2 − n∗

6 − n∗
5 ≥

n∗ − n∗
6 − n∗

5 − n∗
4 −(n − n6 − n5 − n4 − n3), so that we must have an additional

restriction that n∗
4 ≥ n∗+1

2 − (n − n6 − n5 − n4 − n3). This, in turn, creates another
problem, since this leads to the further restriction that n∗−1

2 − n∗
6 − n∗

5 ≥ n∗+1
2 −

(n − n6 − n5 − n4 − n3), so that we must add n∗
5 ≤ n− n6 − n5 − n4 − n3 − n∗

6 − 1.
It is easily shown that this addition does not create any conflicts with the lower
bounds for n∗

5.
The resulting restrictions on (44) that are imposed for consistency to create the

additional condition that Candidate A is also the OCW for the set of participating
voters, so that there will be coincidence between the ACW and OCW, are given by

Max
{
0, n∗ − (n − n6)

} ≤ n∗
6 ≤ Min

{

n6,
n∗ − 1

2

}

(45)

Max
{
0, n∗ − n∗

6 − (n − n6 − n5)
}

≤ n∗
5 ≤ Min

{
n5,

n∗−1
2 − n∗

6, n − n6 − n5 − n4 − n3 − n∗
6 − 1

}

Max
{
0, n∗ − n∗

6 − n∗
5 − (n − n6 − n5 − n4),

n∗+1
2 − (n − n6 − n5 − n4 − n3)

}

≤ n∗
4 ≤ Min

{
n4,

n∗−1
2 − n∗

6 − n∗
5

}

Max
{
0, n∗ − n∗

6 − n∗
5 − n∗

4 − (n − n6 − n5 − n4 − n3)
}

≤ n∗
3 ≤ Min

{
n3,

n∗−1
2 − n∗

6 − n∗
5

}

Max
{
0, n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3 − (n − n6 − n5 − n4 − n3 − n2)

}

≤ n∗
2 ≤ Min

{
n2, n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3

}

n∗
1 = n∗ − n∗

6 − n∗
5 − n∗

4 − n∗
3 − n∗

2.

It directly follows that the number of voting situations N A
MA(n, n∗) with n

possible voters with n∗ participating voters for which there is mutual agreement
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with Candidate A being both the ACW and OCW is obtained from

N A
MA

(
n, n∗) =

∑

2

∑

4

1. (46)

Here, �4 is a five summation function with indices n∗
6, n

∗
5, n

∗
4, n

∗
3, n

∗
2 and index

bounds from (45).
The symmetry of IAC-based assumptions with respect to candidates leads to the

determination of the conditional probability POCW
ACW (IAC(α∗), n) that ACWandOCW

coincide, given that an ACW exists, with the assumption of IAC(α∗) for finite n and
n∗ with α∗ = n∗

n is given by

POCW
ACW (IAC(α∗), n) = N A

MA(n, n∗)
N A(n, n∗)

. (47)

While it is theoretically possible to develop closed representations for each of
these 10-summation functions, it is not practically possible, or even worthwhile,
to do so. As a result, we consider numerical evaluations for POCW

ACW (IAC(α∗), n),
which become extremely time consuming to obtain for large n. The largest practical
limit that we find is to use n = 31 for each odd n∗ = 1(2)31, and the computed
results are displayed in Fig. 8, which also shows the corresponding limiting values
for POCW

ACW (IAC(α∗),∞) from (11) with α∗ = n∗
n .

The computed probability values in Fig. 8 indicate that the rate of convergence of
POCW
ACW (IAC(α∗), n) to the limiting case is slow as n increases, most noticeably so for

smalln∗. But,wefind that an additional computation shows that POCW
ACW (I AC(α∗), 51)

is equal to 0.3525 for n∗ = 1, so the actual convergence is evident.

Fig. 8 ACW and OCW coincidence with IC(α), IAC(α∗) and IACIA(α∗)
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7.2.2 A Representation for POCW
ACW (IC(α∗), n)

Obtaining a probability model that is equivalent to IC(α) for finite n and n∗ requires
some additional development. The first step is to consider the probability that a given
actual voting situation with n possible voters will be observed with IC with indepen-
dent voters. Many studies have noted that this follows from a standard multinomial
probability model as n!

∏6
i=1 ni !

1
6n for the six ni terms that are associated with the actual

voting situation.
In the next step, each voter in this actual voting situation independently chooses

to participate with probability α with the limiting IC(α)model. With finite n and n∗,

there are

(
n
n∗

)

combinations of ways that an assignment of n∗ participating voters

can be obtained from the n possible voters. Moreover, each of these combinations is
equally likely to be observed with probability αn∗

(1 − α)n−n∗
with the assumption

of independence for voter participation. The number of different ways that a given
assignment of six n∗

i values for participating voters can be obtained from the specified

set of ni values of possible voters in the actual voting situation is
∏6

i=1

(
ni
n∗
i

)
, and

each of them is equally likely to be observed with probability αn∗
(1 − α)n−n∗

. As
a result, the probability of observing a given assignment of six n∗

i values for the

specified the ni values reduces to

∏6
i=1

(
ni
n∗
i

)

(
n
n∗

) for any α. However, these probabilities

will change as the given participation rate n∗
n changes, so we use the notation IC(α∗)

when we are extending the limiting case IC(α) model to this scenario with finite n.
When all of this is accounted for, the probability PA

ACW(IC(α∗), n, n∗) that Candi-
dateA is theACWwith n possible voterswhen n∗ voters choose to participate reduces
to

PA
ACW

(
IC(α∗), n, n∗) =

∑

2

∑

3

n!
6n

[∏6
i=2

(
ni − n∗

i

)
!
][
n − ∑6

i=2 ni −
(
n∗ − ∑6

i=2 n
∗
i

)]
!
. (48)

We note that PA
ACW(IC(α∗), n, n∗) does not actually change as n∗ changes in (48),

but our primary interest here is in the preliminary development of the probability
representation for the likelihood for observing a particular assignment of six n∗

i
values for specified ni values.

When all of this is used with the basic discussion that led to (47), the conditional
probability that the ACW and OCW coincide for n voters with the assumption of
IC(α∗), given that an ACW exists, is given by:

POCW
ACW (IC(α∗), n) =

∑
2

∑
4

n!
6n

[∏6
i=2(ni−n∗

i )!
][
n−∑6

i=2 ni−
(
n∗−∑6

i=2 n
∗
i

)]
!

PA
ACW (IC(α∗), n, n∗)

. (49)
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Computed values of POCW
ACW (IC(α∗), 31) from (49) for each odd n∗ =

1(2)31 are displayed in Fig. 8, along with corresponding limiting values for
POCW
ACW (I AC(α∗),∞) from (11) with α∗ = n∗

n .
Just as we observed with IAC(α∗) probabilities, the rate of convergence of

POCW
ACW (IC(α∗), n) to the limiting case is slow as n increases, most noticeably so

for small n∗. An additional computation indicates that POCW
ACW (IC(α∗), 51) is equal

to 0.3972 for n∗ = 1, so that convergence is definitely occurring as n increases.
It is definitely not at all surprising to find that the same disconcerting phenomenon

is now observed in Fig. 8 with n = 31 that we previously saw with limiting
results in Fig. 2, where I AC(α∗) coincidence probabilities are lower than the asso-
ciated IC(α∗) probabilities for α∗ less than about 0.5. However, things will now
become much more interesting when we proceed to consider a third model that
considers dependence among possible voters’ preferences, while there is complete
independence for each voter’s choice to participate.

7.2.3 A Representation for POCW
ACW (I AC I A(α∗), n) with Independent

Abstention

This thirdmodel starts with the standard IACmodel to create actual voting situations,
so that some dependence exists among the possible voters’ preferences. Each of the
N A(n) possible actual voting situations from (40) for which Candidate A is the ACW
is assumed to be equally likely to be observed when we now consider the additional
requirement that A is also the OCW. For each of these possible actual voting situa-
tions for n possible voters, we now assume that each individual voter will choose to
participate independently with probability α, just as we did above in the development
of the IC(α∗) model. We refer to this as the IAC-based Independent Abstention,
or IACIA(α∗), model. Since this hybrid model simultaneously uses aspects of the
IC-based and IAC-based models, neither of the two solution techniques that are used
above for the limiting case as n → ∞ can be used for this case. So, that is why it
was stated above that the direct computation of probabilities for finite n is our only
option for this stage of our analysis.

All of our earlier discussion leads directly to a representation for the conditional
probability POCW

ACW (IACIA(α∗), n) that theACWandOCWcoincidewith IACIA(α∗),
given that an ACW exists, that is given by:

POCW
ACW (IACIA(α∗), n) =

∑

2

∑

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎝

n2!n3!n4!n5!n6!
(
n − n2 − n3 − n4 − n5 − n6

)!
[

6∏

i=2

(
ni − n∗

i

)
!
][

n −
6∑

i=2
ni −

(

n∗ −
6∑

i=2
n∗
i

)]

!

⎞

⎟
⎟
⎟
⎟
⎠

(
n∗!(n − n∗)!

n!

)(
384

(n + 1)(n + 3)3(n + 5)

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (50)

Computed values of POCW
ACW (IACIA(α∗), 31) from (50) for each odd n∗ = 1(2)31

are displayed in Fig. 8, where it is very evident that these IACIA(α∗) probabilities
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Table 9 Probability of ACW and OCW coincidence for 31 voters with independent abstentions

n* IAC (n = 31) IAC-Limit IC (n = 31) IC-Limit IACIA (n = 31)

1 0.3645 0.3230 0.4163 0.3694 0.5522

3 0.3793 0.3469 0.4432 0.4215 0.6246

5 0.4047 0.3753 0.4752 0.4601 0.6758

7 0.4364 0.4092 0.5058 0.4936 0.7152

9 0.4739 0.4497 0.5351 0.5245 0.7471

11 0.5173 0.4976 0.5636 0.5540 0.7741

13 0.5664 0.5531 0.5918 0.5827 0.7977

15 0.6199 0.6150 0.6200 0.6114 0.8190

17 0.6753 0.6793 0.6488 0.6403 0.8385

19 0.7292 0.7411 0.6786 0.6701 0.8569

21 0.7797 0.7976 0.7099 0.7012 0.8747

23 0.8262 0.8482 0.7437 0.7346 0.8924

25 0.8688 0.8930 0.7813 0.7714 0.9106

27 0.9086 0.9327 0.8255 0.8141 0.9305

29 0.9477 0.9682 0.8837 0.8687 0.9549

31 1.0000 1.0000 1.0000 1.0000 1.0000

are remarkably greater than their associated IC(α∗) probabilities, so the very discon-
certing results that were observed before now vanish with this model. The value of
POCW
ACW (IACIA(α∗), 51) is found to be 0.5449 when n∗ = 1.
Table 9 lists the numerical values for probability of ACW and OCW coincidence

for 31 voters with independent abstentions that are shown graphically in Fig. 8.

8 Conclusion

Preliminary results were very disturbing regarding the extremely negative impact
that adding dependence among voters’ preferences with the IAC(α∗) model could
have on election outcomes with low voter participation rates, relative to the case
of complete independence among voters’ preferences with IC(α). This concern
followed from the fact that the introduction of dependence among voters’ prefer-
ences almost always dampens the probabilities that negative election outcomes will
be observed. However, it is now quite evident that these earlier unexpected results
with IAC(α∗) must result from the dependence that it creates among preferences of
voters who choose not to participate in the election. If a model requires that voters are
restricted to abstain independently, then the addition of dependence among the pref-
erences of possible voters actually vastly improves the very negative outcomes that
were initially observed when the possible voters had independent preferences. The
preliminary results were correct, and they were actually showing that extremely bad
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results can be expected to follow from the existence of dependence among abstaining
voters’ preferences for all voting rules, particularly for low voter participation rates.

As a result, we do not leave you with chaos, but we instead leave you with a very
complex problem that calls for significant further investigation. This outcome now
makes it much easier for us to settle into states of happy and content retirement.

It is also important to note that there were many insightful comments from the
participants at the Eighth Murat Sertel Workshop on Economic Design, Decision,
Institutions, and Organization: In the honor of Dominique Lepelleywhen the prelim-
inary version of this work was presented. Those comments motivated us to continue
working on this project and they were extremely beneficial to the presentation of the
results in this final version of the paper.
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Condorcet Efficiency of General
Weighted Scoring Rules Under IAC:
Indifference and Abstention

Mostapha Diss, Eric Kamwa, Issofa Moyouwou, and Hatem Smaoui

1 Introduction

The simplest representation of a voting environment includes a set of voters, a set of
candidates, a list of admissible individual preferences and a rule that aggregates each
possible configuration of voters’ preferences, into a social outcome. In this context, a
profile is defined as a sequence of preferences of all the individuals taking part in the
vote. The performance of a voting rule is then measured by its propensity to avoid
counterintuitive results or to producedesirable electoral outcomes. For example, there
may exist a candidate that is preferred to any other candidate by amajority of voters, a
Condorcet winner; Condorcet (1875) advocated thatwhen aCondorcetwinner exists,
he/she should be the outcome of any reasonable rule. But undertaking in practice
all pairwise majority comparisons for a given profile of individual preferences is
very demanding as the total number of voters or of candidates increases. An earlier
alternative suggested by Borda (1781) consists of assigning an amount of points to
each candidate each time he/she is ranked at a given position by a voter. For example
with three candidates, 1 point is awarded to each candidate for each first place in an
individual ranking, λ points for each second-place where 0 ≤ λ ≤ 1 and no point for
last position. The winner is then the candidate with the highest total score. However,
all such weighted scoring rules may fail to select a Condorcet winner. Since then, the
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ability of a weighted scoring rule to select a Condorcet winner has been the subject
of abundant literature that aims at measuring the desirability of a voting rule with
respect to its Condorcet efficiency; that is, the conditional probability that the rule
will select a Condorcet winner assuming that one exists.

Cervone et al. (2005) investigated in three-candidate elections which (one-shot)
weighted scoring rule exhibits themaximumCondorcet efficiencyunder the Impartial
Anonymous Culture (IAC) assumption. First explored by Gehrlein and Fishburn
(1976), the IAC assumption amounts to assuming that all anonymous profiles of
individual preferences are equally probable. Cervone et al. (2005) showed that when
individual preferences are linear orders, the weighted scoring rule that performs the
best in selecting a Condorcet winner is a rule that lies between the Plurality rule
(λ = 0) and the Borda rule (λ = 0.5). In this paper, we address a similar question
when individual preferences areweakorders (somevotersmaybe indifferent between
two or more candidates); or when some voters may abstain (they freely decide to not
participate in the election).

The possibility that voter indifference may be observable has already been con-
sidered by some other authors; see for example Diss et al. (2010), Gehrlein and
Lepelley (2015), Kamwa (2019b), or Merlin and Valognes (2004) among others.
More precisely, we propose an IAC counterpart of Gehrlein and Valognes (2001),
who considered the same topic, when we assume that each voter uniformly picks
his/her preference out of a predefined set of weak orders. This is known as an Impar-
tial Culture (IC)-like probability distribution over the set of all configurations of
voters’ preferences. Here, two extreme cases are explored. We first consider only
concerned voters, i.e., voters with strict preferences on at least a pair of candidates.
We determine the exact Condorcet efficiency of each possible weighted scoring rule
under the IAC assumption in three-candidate elections when the total number of
voters tends to infinity. It appears that when we move from a weighted scoring rule
with linear orders to its extended version on weak orders, the Condorcet efficiency
increases for all weights λ ranged from 0 up to approximately 0.3765; but decreases
for all weights ranged from 0.3765 to 1. Another salient point is that the maximum
Condorcet efficiency in three-candidate elections under the IAC assumption is now
observed for a new weight, approximately 0.4139, which is distinct from the optimal
one provided by Cervone et al. (2005) which is approximately 0.3723. Finally, the
maximumCondorcet efficiency is now equal to 0.9265, which is slightly greater than
0.9255, the one obtained with linear orders.

The possibility that some voters will abstain is also explored, and here we follow
the recent framework of Gehrlein and Lepelley (2020, 2017). The authors mea-
sured the impact of indifference on voting rules with respect to the participation
rate under both IC and IAC assumptions. We explore some new and extreme cases
assuming that the participation rate is unknown and may be of any size. Three cases
are considered: global abstention when voters from all possible types may abstain;
self-confident abstention when only voters who prefer a Condorcet winner by self-
confidence abstain—this may presumably be the case when a Condorcet winner
exists and is acclaimed by almost all polls; and pessimistic abstention when only
voters who prefer any other candidate to a Condorcet winner by discouragement
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abstain—this may be the case when some voters think their favorite candidate is lag-
ging behind their less preferred candidate. In the global abstention setting, we would
have expected a very low Condorcet efficiency for every weighted scoring rule; but
in fact, we observe an honorable performance since some weighted scoring rules still
record more than 60% of voting situations in which the Condorcet winner is selected
after some voters abstain. The two other cases of abstention impact differently on
the performances of weighted scoring rules. All those aspects are commented upon
and discussed later in the chapter.

The rest of the paper is organized as follows: Sect. 2 underlines some key points
of our investigations that differ from previous works. In Sect. 3, for a three-candidate
election we provide the exact Condorcet efficiency of any weighted scoring rule as
the total number of voters tends to infinity. Section 4 highlights some abstention
patterns and the Condorcet efficiency of weighted scoring rules on those restricted
domains. Section 5 concludes with a general comment on our investigations.

2 The Scope

Consider a three-candidate election with n voters (n ≥ 2) and assume that each
individual preference is a weak order (complete and transitive binary relations) over
candidates A, B and C. In addition, each voter is assumed to act according to his/her
true preferences, which means that strategic voting is not taken into consideration
in our paper. There are thirteen possible types of preferences according to how
candidates are ranked with or without indifference:

A � B � C (x1)
A � C � B (x2)
B � A � C (x3)
B � C � A (x4)
C � A � B (x5)
C � B � A (x6)

A � (B ∼ C) (x7)
B � (A ∼ C ) (x8)
C � (A ∼ B) (x9)
(A ∼ B) � C (x10)
(A ∼ C) � B (x11)
(B ∼ C) � A (x12)

(A ∼ B ∼ C) (x13)

In the notation A � B � C (x1), A � B � C refers to the preference type of all voters
who prefer A to B, A to C , and B to C; and x1 is the proportion of such voters; that is
the ratio n1

n where n1 is the total number of voters who report A � B � C. Similarly,
a voter endowed with the preference type A � (B ∼ C) prefers A to B, A to C and is
indifferent between B and C. The proportion of all such voters is x7. The collection
x = (x1, x2, . . . , x13)will be called a voting situationwhen the thirteen terms xj sum to
1. Voters having the preference type (A ∼ B ∼ C)will be called unconcerned voters
since each such voter is indifferent to the election of any of the three candidates.
In case there is some evidence that allows each voter to have a strict ranking of
the three competing candidates, only the first six preference types are observable. A
voting situation will then be reduced to the 6-tuple x = (x1, x2, . . . , x6) by setting
x7 = x8 = · · · = x13 = 0. This is the assumption taken into account by Cervone et al.
(2005).
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Indifference or abstention are possible factors that may justify alternative inves-
tigations. Given indifference, we carry out our investigations under two different
but common settings. When all voters are concerned voters who may still be indif-
ferent between at most two candidates, we identify a voting situation as the 12
-tuple x = (x1, x2, . . . , x12) assuming that x13 = 0. This is also the setting taken into
consideration by Gehrlein (1983). We also consider the mixed case where uncon-
cerned and concerned voters are involved. In this latter case, only voting situations
x = (x1, x2, . . . , x12, x13) such that 0 ≤ x13 < 1 are considered (the extreme case
x13 = 1 removes the possibility of any objective differentiation among the three can-
didates). This is the setting developed by Gehrlein and Valognes (2001).

When indifference vanishes, some voters may abstain and a voting scenario is
now a twofold vector (x, y) where x = (x1, x2, . . . , x6) is the initial voting situation
and y = (y1, y2, . . . , y6) indicates the proportion yj of voters who abstain among the
voters having preference of type j. Note that 0 ≤ yj ≤ xj and y1 + y2 + · · · + y6 < 1
(the extreme case y1 + y2 + · · · + y6 = 1 is of no interest). The impact of abstention
on voting procedures was also studied in Gehrlein and Fishburn (1978, 1979) and
recently by Gehrlein and Lepelley (2020, 2017). We provide two extreme cases: (i)
when all voters who abstain have the same top-ranked candidate (who is perceived
as having no chance to win); and (ii) when all voters who abstain have the same
bottom-ranked candidate.

In each of the preference settings we consider, our analysis is restricted to the
set of voting situations that capture all the possible configurations of individual
preferences. We denote this set by D and we assume for each case the uniform
probability distribution over D: all voting situations in D are equally probable to
be observed. This is known as an Impartial Anonymous Culture assumption over D
and will be referred to as IACD. Given λ ∈ [0, 1], the vector w = (1,λ, 0) will
be called the scoring vector. The weighted scoring rule on D is denoted by Fλ

and assigns xjw (j, k) points to a candidate, say C, each time voters having type
j rank C at the kth position given a voting situation x; where w (j, k) = wk in case
preference of type j corresponds to a linear order (j = 1, 2, . . . , 6 and k = 1, 2, 3);
w (j, 1) = (1+λ)

2 and w (j, 2) = 0 if voters of type j are indifferent between their two
first-ranked candidates (j = 7, 8, 9); w (j, 1) = 1 and w (j, 2) = λ

2 if voters of type
j are indifferent between their two bottom-ranked candidates (j = 9, 10, 11); and
w (j, 1) = (1+λ)

3 if j = 13. Obviously, the candidate who records the maximum sum
of points wins.

A candidate X majority defeats another candidate Y in a pairwise comparison if
there are more voters who strictly prefer X to Y than voters who strictly prefer Y to
X . A Condorcet winner is a candidate who defeats any other candidate in pairwise
majority voting. When a Condorcet winner exists, he/she is clearly a desirable elec-
tion winner since he/she is immune to rejection by any majority of voters. It is well
known that for a given weighted scoring rule Fλ, we may find some voting situation
x in which a candidate, say C, is a Condorcet winner while Fλ (x) �= C. Courtin
et al. (2015a) show that this failure may be overcome in three-candidate elections
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by strengthening the size of the majority in favor of the Condorcet winner up to a
threshold; see also Courtin et al. (2015b) for a more general framework.

In general, the Condorcet efficiency of the ruleFλ, given a domainD of observable
voting situations with n voters and a probability distribution PD overD, is the condi-
tional probabilityCE (λ,PD, n) that the rulewill select a Condorcet winner assuming
that one exists. In particular, under the IAC assumption, the limit CE (λ, IACD,∞)

of CE (λ, IACD, n) as n tends to infinity is the ratio
vol(DCW,λ)
vol(DCW )

where DCW denotes

the polytope of all voting situations in D in which a Condorcet winner exists1 while
DCW,λ is the polytope of all voting situations inD at which a Condorcet winner exists
and is the winner for rule Fλ; for more details and a rich panel of related topics, inter-
ested readers are referred to Gehrlein (2006) or Gehrlein and Lepelley (2017, 2011).
By symmetry, to evaluate CE (λ, IACD,∞), we can replaceDCW byDCW,A, the sub-
set of DCW in which A is the Condorcet winner, and DCW,λ by DCW,λ,A, the subset
of DCW,λ in which A is the Condorcet winner and is selected by the voting rule Fλ.

3 Condorcet Efficiency of Weighted Scoring Rules When
Indifference Is Observable

Giving a weight λ ∈ [0, 1], we determine here the Condorcet efficiency of the
weighted scoring rule associatedwithλwhen somevotersmaybe indifferent between
two candidates.

3.1 With No Unconcerned Voters

When no voter is unconcerned and none of them abstains, the corresponding domain
of observable voting situations is denoted by D and consists of all 12-tuples x =
(x1, x2, . . . , x12) such that

12∑

j=1

xj = 1 and xj ≥ 0 for all j ∈ {1, 2, . . . , 12} . (1)

In this case, candidate A is a Condorcet winner in x if A beats B and A beats C in
pairwise majority voting:

x3 + x4 + x6 + x8 + x12 − x1 − x2 − x5 − x7 − x11 < 0 (2)

x4 + x5 + x6 + x9 + x12 − x1 − x2 − x3 − x7 − x10 < 0 (3)

1i.e., the polytope defined by the linear system characterizing these voting situations.
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Therefore, the set DCW,A of all voting situations in D at which A is the Condorcet
winner is the 11-dimensional polytope defined by (1), (2), and (3). The volume of
DCW,A as well as all other subsequent volumes in this chapter will be computed using
the method presented in Moyouwou and Tchantcho (2017). Alternative methods are
also available from Cervone et al. (2005) or Lepelley et al. (2008). We may also
combine available packages such as Convex for convex geometry by Franz (2017)
for a Maple implementation or well-established algorithms such as Normaliz by
Bruns et al. (2017, 2019) and Bruns and Ichim (2010). These techniques have also
recently been used under different forms byBubboloni et al. (2019),Diss andDoghmi
(2016), Diss et al. (2018), Diss and Gehrlein (2012, 2015), Kamwa (2019a), Kamwa
andMoyouwou (2020), El Ouafdi et al. (2019); Lepelley et al. (2018b), and Lepelley
and Smaoui (2019), among others. Up to a scaling constant that depends only on the
dimension of D,

vol (D) = 1

11! and vol (DCW ) = 3vol
(DCW,A

) = 8821

367873 228 800
(4)

Then, the probability that a Condorcet winner exists under the assumption IACD
is vol(DCW )

vol(D)
≈ 0.95714. As compared to the probability 0.9375 from Gehrlein and

Fishburn (1976) of observing a Condorcet winner when individual preferences are
linear orders, this confirms the observation by Gehrlein and Valognes (2001) that the
possibility of indifference increases the probability that a Condorcet winner exists.
Now candidate A is the winner for rule Fλ at x when the score of A is greater than
both the score of B and the score of C; that is

(λ − 1) (x1 − x3) − x2 + x4 − λ (x5 − x6) + λ − 2

2
(x7 − x8)

− 1 + λ

2
(x11 − x12) < 0

(5)

− x1 + x6 + (λ − 1) (x2 − x5) − λ (x3 − x4) + λ − 2

2
(x7 − x9)

− 1 + λ

2
(x10 − x12) < 0

(6)

The subsetDCW,A,λ ofDCW,A that consists of all voting situations in whichA is the
Condorcet winner and at the same time is selected byFλ at x is the polytope described
by the constraints at (1), (2), (3), (5), and (6). Its volume is computed as a function of

λ in order to derive the Condorcet efficiency CE (λ, IACD,∞) = vol(DCW,A,λ)
vol(DCW,A)

when

the total number of voters tends to infinity. The corresponding formula is completely
unreadable and is relegated to the Appendix. Numerical values of this function are
reported in Table 1 and its graph appears in Fig. 1. The value of CE (λ, IACD,∞)

provided in Table 1 corresponds to some values of λ = d1 + d2, the first decimal (d1)
of which is indicated in the first column and the second decimal (d2) in the first row.
Moreover, the maximum of CE (λ, IACD,∞) is for a unique value λ∗ of λ between
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Table 1 IAC-based Condorcet efficiency of weighted scoring rules when indifference is observable

λ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.8575 0.8596 0.8618 0.8640 0.8662 0.8683 0.8705 0.8727 0.8749 0.8770

0.1 0.8792 0.8814 0.8835 0.8856 0.8878 0.8899 0.8920 0.8941 0.8961 0.8981

0.2 0.9001 0.9021 0.9040 0.9059 0.9078 0.9095 0.9113 0.9130 0.9146 0.9161

0.3 0.9176 0.9190 0.9202 0.9214 0.9225 0.9235 0.9243 0.9251 0.9256 0.9261

0.4 0.9264 0.9265 0.9265 0.9263 0.9260 0.9254 0.9247 0.9238 0.9227 0.9214

0.5 0.9199 0.9182 0.9163 0.9143 0.9121 0.9097 0.9071 0.9044 0.9016 0.8986

0.6 0.8955 0.8923 0.8889 0.8855 0.8819 0.8783 0.8746 0.8708 0.8669 0.8630

0.7 0.8590 0.8549 0.8508 0.8466 0.8424 0.8382 0.8338 0.8295 0.8251 0.8207

0.8 0.8163 0.8119 0.8074 0.8029 0.7984 0.7939 0.7894 0.7849 0.7803 0.7758

0.9 0.7713 0.7668 0.7622 0.7577 0.7532 0.7487 0.7442 0.7397 0.7353 0.7308

1 0.7264 − − − − − − − − −

Fig. 1 IAC-based Condorcet efficiency of weighted scoring rules with and without indifference

1
3 and 1

2 . The exact value of λ∗ is unreachable due to the intractable expressions of
CE (λ, IACD,∞) and of its first derivative. An approximation up to four decimal
places gives λ∗ ≈ 0.4139 with CE (λ∗, IACD,∞) ≈ 0.9265.

When no voter is indifferent between any pair of candidates, the function of the
Condorcet efficiency of all weighted scoring rules with three candidates under the
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IAC assumption comes from Cervone et al. (2005, Theorem 2). Its graph is also
represented in Fig. 1. From this result, it appears that the rule that maximizes the
Condorcet efficiency among weighted scoring rules corresponds to a value λ0 of the
weight λ such that 2λ0 − 1 ≈ −0.25544; that is λ0 ≈ 0.37228. It follows that if we
are looking for the optimalweighted scoring rulewith respect to Condorcet efficiency
under the IAC assumptions described above, the appropriate value of the weight λ

differs when we admit indifference or only consider linear orders. With indifference,
our results show that the optimal rule is nearer to the Borda rule (λ = 0.5) than it is
with only linear orders. Finally, it is worth noting from our results that the maximal
Condorcet efficiency among weighted scoring rules is approximately 0.9265. This
value is greater than themaximal Condorcet efficiency amongweighted scoring rules
with only linear orders,which is approximately 0.9255 (Cervone et al. 2005, Theorem
2). Again, this is in accordance with earlier observations. However, the Condorcet
efficiency of someweighted scoring rules decreases from linear orders toweak orders
as shown in Fig. 1. More exactly, the Condorcet efficiency is greater for linear orders
than for weak orders for all weighted scoring rules from λ = 0 (the Plurality rule)
up to λ ≈ 0.3765. Globally, the extensions of classical weighted scoring rules that
permit us to handle the possible indifference of voters result in improvements of
the Condorcet efficiency of weighted scoring rules for 1 ≥ λ > 0.3765 but not for
0 ≤ λ < 0.3765.

3.2 With Possibly Unconcerned Voters

When some voters are completely indifferent about the selection of one of the three
candidates, the corresponding domain of observable voting situations is denoted by
D̃ and consists of all 13-tuples x = (x1, x2, . . . , x13) such that

13∑

j=1

xj = 1 and xj ≥ 0 for all j ∈ {1, 2, . . . , 13} . (7)

Such a voting situation is completely determined by the 12-tuple (x1, x2, . . . , x12)
which satisfies

12∑

j=1

xj = t with t = 1 − x13 > 0. (8)

More interestingly, the conditions that candidate A is the Condorcet winner or the
winner for the weighted scoring rule Fλ do not change, since an unconcerned voter
does not favor any of the three candidates. By setting xj = tyj for j = 1, 2, . . . , 12,
it follows that A is the Condorcet winner at x if and only if y = (y1, y2, . . . , y12)
lies in DCW,A characterized by (1), (2) and (3). Similarly A is the winner at x for
Fλ if and only if y = (y1, y2, . . . , y12) belongs to DCW,λ,A. Due to this homothetic
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transformation, we can recover the volumes of D̃CW,A and D̃CW,λ,A from the volumes
of DCW,A and DCW,λ,A by noting that t varies from 0 to 1. That is

vol
(D̃CW,A

) =
1∫

0

t11vol
(DCW,A

)
dt = vol

(DCW,A
)

12
(9)

and

vol
(D̃CW,λ,A

) =
1∫

0

t11vol
(DCW,λ,A

)
dt = vol

(DCW,λ,A
)

12
. (10)

Since the Condorcet efficiency of the weighted scoring rule Fλ over D̃ is the ratio
vol(D̃CW,λ,A)
vol(D̃CW,A)

, the Eqs. (9) and (10) imply the following result.

Proposition 1 For all λ ∈ [0, 1], the IAC-based Condorcet efficiencies of the
weighted scoring rule associatedwithλwith orwithout unconcerned voters coincide.

In other words, Proposition 1 shows that the presence of unconcerned voters
does not affect the Condorcet efficiency of weighted scoring rules under the IAC
assumption as the total number of voters tends to infinity. It is clear that this is also the
case for all other similar voting events that can be described by linear constraints with
null constant terms. However, this is not necessarily the case with other probability
distributions, such as the Impartial Culture assumption; see Gehrlein and Valognes
(2001) where the authors include the possibility of having unconcerned voters.

4 Condorcet Efficiency with Abstention Allowed

In this section, we assume that all voters are concerned voters, individual preferences
are linear orders and some votersmay abstain. Out of the initial proportion xj of voters
of type j, we are now expecting that yj voters will effectively take part in the election.
Then, the participation rate can be calculated as the number of voters who will
effectively take part in the election divided by the total number of voters. A voting
scenario is a twofold vector (x, y) where x = (x1, x2, . . . , x6) is a voting situation on
linear orders and y = (y1, y2, . . . , y6) satisfies

0 ≤ yj ≤ xj for j = 1, 2, . . . , 6. (11)

The question is, assuming that a candidate X is a Condorcet winner at x, some voters
abstain and y describes the proportion of voters from each typewho finally participate
in the election, what is the probability that X will be selected by a given weighted
scoring rule? We evaluate this conditional probability over three distinct domains.
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Without loss of generality, we assume that A is the Condorcet winner (or the
popular candidate). We refer to the first domain as the global abstention: voters
from any type may abstain. The second domain is called self-confident abstention:
only voters who top-ranked the popular candidate may abstain. The third domain
is called pessimistic abstention: only voters who prefer all other candidates to the
popular candidate may abstain.

4.1 Global Abstention

In this setting, the set of voting scenarios is the set denoted by S that consists of all
couples (x, y) such that

(S) :

⎧
⎪⎪⎨

⎪⎪⎩

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0
x1 + x2 + x3 + x4 + x5 + x6 = 1

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0, y5 ≥ 0, y6 ≥ 0
x1 ≥ y1, x2 ≥ y2, x3 ≥ y3, x4 ≥ y4, x5 ≥ y5, x6 ≥ y6

(12)

This domain is an 11-dimensional polytope. We assume that all voting scenarios in
S are equally probable and we refer to this probability distribution as IACS . Now
the subset SCW,A of S, that consists of all voting scenarios (x, y) in which A is the
Condorcet winner at x, is the polytope characterized by the constraints at (12) and
the following {

x3 + x4 + x6 − x1 − x2 − x5 < 0
x5 + x6 + x4 − x1 − x2 − x3 < 0

(13)

Its volume is vol
(SCW,A

) = 79
10218700800 . Since the volume of S is 1

11! , it follows that
the probability that a Condorcet winner exists in S under the IACS assumption is
vol(SCW,A)

vol(S)
= 0.30859, which gives the proportion of voting situations (x, y) having

candidateA as aCondorcet winnerwhen the number of voters tends to infinity. Notice
that using the symmetry of IAC-like assumptions with regards to candidates means
that 0.30859 × 3 = 0.92578 is the proportion of voting situations (x, y) having a
Condorcet winner when the number of voters tends to infinity. Finally, A is selected
by the weighted scoring rule associated with λ at y if and only if

{
(λ − 1)y1 − y2 + (1 − λ)y3 − λy5 + y4 + λy6 < 0

−y1 + (λ − 1)y2 − λy3 + λy4 + (1 − λ)y5 + y6 < 0
(14)

The subset SCW,A,λ of S that consists of all voting scenarios (x, y) in which
A is the Condorcet winner at x and is selected in y is the polytope described by
the constraints at (12), (13), and (14). Its volume is computed in order to derive

the Condorcet efficiency CE (λ, IACS ,∞) = vol(SCW,A,λ)
vol(SCW,A)

when the total number of

voters tends to infinity. The results of our calculations are given as follows:
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For 0 ≤ λ ≤ 1
2 ,CE (λ, IACS ,∞) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

218700λ21 − 1174320λ20 − 4535142λ19 + 18714908λ18 + 151671536λ17

− 508196052λ16 − 1757330525λ15 + 9181808848λ14 − 2416926066λ13

− 55062774610λ12 + 116439091808λ11 − 3497495094λ10 − 342404967208λ9

+ 608347988900λ8 − 430343075808λ7 − 70310632700λ6 + 424083710296λ5

− 414925509984λ4 + 222950616032λ3 − 72115069504λ2 + 13241739264λ

− 1067873280

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

204768(1−λ)3(3λ−2)2(λ−2)4(−4+5λ)2(λ2+2λ−2)
3
(1+λ)

For 1
2 ≤ λ ≤ 1, CE (λ, IACS ,∞) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

72900λ24 − 38460λ23 + 12014686λ22 − 284507414λ21 + 2137697548λ20

− 7182774684λ19 + 9390687357λ18 + 4929800229λ17 − 18153355218λ16

− 26293402260λ15 + 109425128388λ14 − 115472223994λ13 + 32683701680λ12

+ 26299843928λ11 − 23324433021λ10 + 2405339031λ9 + 6496354764λ8

− 5222096538λ7 + 2209396698λ6 − 610438788λ5 + 115276342λ4

− 14795282λ3 + 1234756λ2 − 60264λ + 1296

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

204768λ5(5λ−1)2(2−λ)3(1+λ)4(−4λ+1+λ2)
3
(−1+3λ)

Numerical results of CE (λ, IACS ,∞) are reported in Table 2 and sketched in
Fig. 2.

4.2 Self-confident Abstention

Assume now that individual preferences are linear orders and that only voters of
type ABC or ACB may abstain: due to some signals such as polls surveys, some of

Table 2 Condorcet efficiency of weighted scoring rules with distinct abstention scenarios

λ Self-confident Global Pessimistic

abstention abstention abstention

0 0.4979 0.6366 0.9722

0.1 0.5001 0.6427 0.9801

0.2 0.5018 0.6481 0.9865

0.3 0.5028 0.6522 0.9905

0.4 0.5029 0.6541 0.9906

0.5 0.5013 0.6521 0.9841

0.6 0.4970 0.6435 0.9662

0.7 0.4888 0.6268 0.9304

0.8 0.4765 0.6023 0.8744

0.9 0.4612 0.5718 0.8021

1 0.4443 0.5384 0.7209
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Fig. 2 Condorcet efficiency of weighted scoring rules with distinct abstention scenarios

these voters may be (erroneously or not) thinking that their favorite candidate A is
sufficiently popular and does not especially need their votes to defeatB andC. With a
similar notation as above, the corresponding set of voting scenarios (x, y) is denoted
by S∗ and is now 7-dimensional since we should have yj = 0 for j = 3, 4, 5, 6. In
the same way, the set S∗

CW,A and S∗
CW,A,λ are simply obtained, respectively, from

SCW,A and SCW,A,λ by setting yj = 0 for j = 3, 4, 5, 6. Finally CE (λ, IACS∗ ,∞) =
vol(S∗

CW,A,λ)
vol(S∗

CW,A)
is obtained by performing a volume computation as before. Our results

are described as follows:

For 0 ≤ λ ≤ 1
2 , CE (λ, IACS∗ ,∞) =

⎛

⎜⎜⎝

34λ13 − 913λ12 − 3554λ11 + 36150λ10 + 15318λ9

−384783λ8 + 458022λ7 + 1030506λ6 − 2830398λ5

+1799251λ4 + 1181642λ3 − 2266676λ2 + 1182216λ − 216816

⎞

⎟⎟⎠

13608(−1+λ)3(λ2+2λ−2)
2
(2−λ)3(1+λ)
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For 1
2 ≤ λ ≤ 1, CE (λ, IACS∗ ,∞) =

⎛

⎜⎜⎜⎜⎜⎝

31350λ16 + 424085λ15 − 5998520λ14 + 19077007λ13

−5835650λ12 − 52134452λ11 + 46525702λ10 + 55349687λ9

−78736170λ8 + 26324586λ7 + 8272256λ6 − 10772558λ5

+4654654λ4 − 1146839λ3 + 169090λ2 − 13868λ + 488

⎞

⎟⎟⎟⎟⎟⎠

13608(−1+3λ)(−4λ+1+λ2)
2
(1+λ)3(5λ−1)2λ3(2−λ)

Numerical results of CE (λ, IACS∗ ,∞) are also reported in Table 2 and sketched
in Fig. 2.

4.3 Pessimistic Abstention

Finally, assume that individual preferences are linear orders and that only voters
of type BCA or CBA may abstain: they may be (erroneously or not) feeling that B
and C are lagging behind A, and that their votes for both B and C would be of no
use. The corresponding set of voting scenarios (x, y) is denoted by S ′ and is now
7-dimensional since we should have yj = 0 for j = 1, 2, 3, 5. The sets S ′

CW,A and
S ′
CW,A,λ are simply obtained, respectively, from SCW,A and SCW,A,λ by setting yj = 0

for j = 1, 2, 3, 5. We then get CE (λ, IACS ′ ,∞) = vol(S ′
CW,A,λ)

vol(S ′
CW,A)

which is obtained by

performing the same volume computations as before.Our results are given as follows:

For 0 ≤ λ ≤ 1
2 , CE (λ, IACS ′ ,∞) =

⎛

⎜⎜⎝

4950λ13 − 52095λ12 + 196780λ11 + 220080λ10 − 3901650λ9 + 12926745λ8

−20918022λ7 + 15291690λ6 + 4004808λ5 − 19395021λ4

+18835758λ3 − 9447272λ2 + 2515488λ − 282240

⎞

⎟⎟⎠

567(−1+λ)3(2−λ)3(−4+5λ)2(3λ−2)2(1+λ)

For 1
2 ≤ λ ≤ 1, CE (λ, IACS ′ ,∞) =

⎛

⎜⎜⎝

1416λ11 + 27740λ10 − 30728λ9 − 73976λ8

+29112λ7 + 162704λ6 − 113362λ5 + 12585λ4

+19471λ3 − 10835λ2 + 2195λ − 162

⎞

⎟⎟⎠

2268λ4(1+λ)3(2−λ)(−1+3λ)

Numerical results of CE (λ, IACS ′ ,∞) are also displayed in Table 2 and Fig. 2.
Several lessons may be drawn from the probabilities corresponding to the three

scenarios taken into account. First, it can be seen clearly that the Condorcet efficiency
of the three considered scenarios exhibits the samebehavior since the three curvesfirst
increase and then decrease. Every Condorcet efficiency stops rising and starts falling
for a unique value λ∗ of λ that maximizes the associated probability. An approxi-
mation up to four decimal places of the value of λ∗ maximizing the Condorcet effi-
ciency gives λ∗ ≈ 0.4074 with CE (λ∗, IACS ,∞) ≈ 0.6542 for the global absten-
tion domain, λ∗ ≈ 0.3567 with CE (λ∗, IACS ′ ,∞) ≈ 0.5030 for the self-confident
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abstention scenario, andλ∗ ≈ 0.3541withCE (λ∗, IACS∗ ,∞) ≈ 0.9912 for the pes-
simistic abstention case. Third, it can be noted that on the one hand, the Condorcet
efficiency remains approximately stable with regards to the value of λ when the
setting of self-confident abstention is assumed. On the other hand, the change in the
Condorcet efficiency is more pronounced when the pessimistic abstention domain
is considered; its value steady declines, particularly when the value of λ exceeds
0.6. Finally, it is worth noting that all weighted scoring rules in three-candidate elec-
tions have highest performance with respect to the Condorcet criterion when the
pessimistic abstention domain is assumed, the self-confident abstention domain is
the worst scenario.

5 Conclusion

Given an arbitrary weighted scoring rule for three-candidate elections, the aim of this
paper has been to provide the exact limit of its Condorcet efficiency as the total num-
ber of voters tends to infinity under some IAC-like assumptions over some domains
of voting situations. More exactly, we have explored the impact of observing ties and
abstention on the Condorcet efficiency of the whole class of weighted scoring rules
in three-candidate elections under IAC-like assumptions. Some instructive observa-
tions have emerged. First, it appears that the weighted scoring rule that maximizes
the Condorcet efficiency under IAC-type assumptions depends not only on the set of
observable individual preferences, but also on the behavior of voters in the election
such as abstention. Second, and more importantly, the scoring rule which tends to
maximize the probability of selecting the Condorcet winner, when there is one, is
not the well-known Borda rule. This result has also been shown in previous studies
that have been conducted in other frameworks (see, for instance, Cervone et al. 2005;
Lepelley et al. 2000, among others).

Many questions still remain unanswered. First, since ties and abstention have
been treated separately in our framework, we believe that studying the weighted
scoring rules that maximize the Condorcet efficiency, when both ties and abstention
can be expressed at the same time by voters, remains a fruitful open line of research.
Second, the extension of our results to multistage elimination scoring rules is also
an important research direction. Under those voting rules, candidates are assigned
scores according to their rank in the preferences of voters and then the candidate(s)
with the lowest number of points are eliminated in each round. In this connection,
other well-known voting rules widely studied in the literature can also be considered.
Third, it is important to stress that the assumptions of IC and IAC have some subtle
differences. For instance, results under many frameworks in the literature suggest
that the Borda rule will maximize the limiting Condorcet efficiency with IC, but
we have seen that it did not under IAC. As a consequence, it seems that the ways
under which the voters’ preferences are generated and their impact on the Condorcet
efficiency of weighted scoring rules in all the scenarios considered in our paper is
an important research direction to follow. Notice finally that analogous calculations
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would need to be done with more than three candidates, and it seems that certain new
research techniques will make this possible. Results for more than three candidates
will allow us to draw more accurate conclusions.

Throughout our analysis, we have assumed that voters abstain because they think
they have no chance of changing the outcome. One might as well consider the case
of a strategic behavior where they would try to change the result in their favor: such
a work would join the recent analysis of Felsenthal and Nurmi (2019) and Kamwa
et al. (2018) among others, which deal with the No-show paradox under various
restrictions of domains like that of the existence of the Condorcet winner.
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Appendix: Condorcet Efficiency of Standard Weighted
Scoring Rules for the Case of Indifference
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For 2 − √
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The Effect of Closeness on the Election
of a Pairwise Majority Rule Winner

Mostapha Diss, Patrizia Pérez-Asurmendi, and Abdelmonaim Tlidi

1 Introduction

In the literature of social choice theory, a wide variety of voting rules are proposed
in order to determine the winner of an election with more than two competing can-
didates. Plurality rule (voting only for top choice candidate) is the most widely used
voting procedure in practice when the aim is the selection of a single winner. How-
ever, it is well known that Plurality rule can produce election results that do not
reflect the whole preferences of the electorate. Condorcet (1785) and Borda (1781)
are the first authors who exhibited these difficulties through many configurations of
individual preferences that could create noncoherent social outcomes when we use
Plurality rule. Much of the debate between Borda and Condorcet surrounds the dis-
cussion of which voting rule should be implemented as a replacement for Plurality
rule in order to select the members of the French Academy of Sciences, of which
Borda and Condorcet were members. On the one hand, the voting rule suggested by
Borda (1781) consists in assigning an amount of points to each candidate each time
she is ranked at a given position by a voter and then choose as a winner the candidate
with the highest total number of points. On the other hand, according to Condorcet
(1785), it seems essential to use pairwise majority comparisons between all of the

M. Diss (B)
CRESE EA3190, Université Bourgogne Franche-Comt, 25000 Besançon, France
e-mail: mostapha.diss@univ-fcomte.fr

P. Pérez-Asurmendi
PRESAD Research Group and IMUVA, Department of Economic Analysis, UCM, Madrid, Spain
e-mail: patrizip@ucm.es

ICAE, UCM, Madrid, Spain

A. Tlidi
National School of Applied Science-Safi, University Cadi Ayyad of Marrakesh, LMPEQ, Route
Sidi Bouzid, 63, 46000 Safi, Morocco
e-mail: mtlidi2010@gmail.com

© Springer Nature Switzerland AG 2021
M. Diss and V. Merlin (eds.), Evaluating Voting Systems with Probability Models,
Studies in Choice and Welfare, https://doi.org/10.1007/978-3-030-48598-6_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48598-6_4&domain=pdf
mailto:mostapha.diss@univ-fcomte.fr
mailto:patrizip@ucm.es
mailto:mtlidi2010@gmail.com
https://doi.org/10.1007/978-3-030-48598-6_4


76 M. Diss et al.

candidates. More precisely, if a candidate wins a simple majority election over every
other candidate, then this candidate should be the winner of an election involving all
candidates. A winner of these pairwise majority comparisons is called theCondorcet
winner and any voting method conforming to the Condorcet criterion is known as
a Condorcet method. After more than two centuries, the Borda-Condorcet debate is
still well documented in the social choice literature (see, e.g., Gehrlein and Lepelley
2011, 2017).

The results presented in this chapter belong to the long tradition, issue from the
Borda-Condorcet debate, which consists of evaluating voting rules on their propen-
sity to select the Condorcet winner.1 Indeed, it is well known that the existence of the
Condorcet winner is not always guaranteed. Therefore, it is now common to consider
the Condorcet efficiency (CE) as a measure of partial fulfillment of the Condorcet
criterion. Note that the CE of a voting rule is defined as the conditional probability
that the voting rule selects the Condorcet winner, given that such a candidate exists.
As the CE involves the computation of probabilities of electoral events, it is usually
required to make some assumptions on the likelihood of the different possible indi-
vidual votes that could be observed. One of the most widespread used assumptions
in the literature is the Impartial Anonymous Culture (IAC) introduced by Kuga and
Nagatani (1974) and later developed by Gehrlein and Fishburn (1976).

The CE was extensively studied under the IAC assumption. In particular, a whole
body of literature can be found regarding the CE of the Weighted Scoring Rules
(WSRs). Under those rules, each candidate is awarded with a number of points
according to her relative position within each individual voter’s preference ranking
and the winner is the candidate with the highest total score. The Plurality Rule (PR),
the Negative Plurality Rule (NPR), and the Borda Rule (BR) are well-known exam-
ples of WSRs. Those three WSRs will be formally defined later in the chapter. It is
also usual to find the IAC assumption in many papers dealing with the CE of the
Weighted Scoring Elimination Rules (WSERs) which also constitute an important
class of voting rules. Those rules also give points to the candidates according to their
rank in voters’ preference orders and eliminate the candidate(s) with the lowest num-
ber of points. The number of rounds is determined by the number of candidates and
the implemented method. The elected candidate is the majority winner between the
two remaining candidates in the last round.2 The scoring rules that follow this process
are calledWeighted Scoring Elimination Rules (WSERs). The Plurality Elimination

1It is worth to note that there is a debate about the election (or not) of the Condorcet winner. For
some authors, this can matter while for others it does not. However, there is a clear consensus, at
all, that the candidate who is defeated by every other candidate in pairwise majority comparisons
(Condorcet loser) is not a good outcome for an election.
2Notice that we only deal in this chapter with the classical form of eliminations before the choice of
the overall winner of the election. Other ways of eliminations can be found in the literature such as
the one developed by Kim and Roush (1996) when we eliminate all candidates who obtain strictly
less than the average score. We also refer the reader to Favardin and Lepelley (2006) and Lepelley
and Valognes (2003).
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Rule (PER), the Negative Plurality Elimination Rule (NPER) and the Borda Elimi-
nation Rule (BER) are widely known examples of WSERs. Those voting rules will
also be formally defined later in the chapter.

1.1 Related Literature

Many research papers already analyzed the CE on various voting rules taking into
account different assumptions on individuals’ preferences. Taking into account the
aim of this chapter, wewill only recall some relating results. The interested reader can
find an exhaustive review of this topic in the recent books by Gehrlein and Lepelley
(2011, 2017). First of all, Gehrlein (1982, 1992) calculated the CE values of BR,
PR, PER, NPR, and NPER in three-candidate elections under the IAC assumption
for large electorates (Table 1).

Also in the context of three-candidate elections under the IAC hypothesis,
Gehrlein and Lepelley (2001) obtained a closed - form representation of the CE
of BR as a function of the number of voters, and Cervone et al. (2005) developed a
representation for the CE of every WSR. As a quite natural extension, many studies
were carried out to deal with the effect of some additional assumptions on the CE
of several voting rules. For instance, Lepelley (1995) provided an exact representa-
tion for the CE of WSRs when voters are endowed with single-peaked preferences.
Intuitively, voters are said to have single-peaked preferences if there is an ideal out-
come that they prefer the most, and alternatives that are further away from this ideal
outcome (according to some linear ordering) are less preferred (see, for instance,
Black 1948). Gehrlein et al. (2012) and Gehrlein and Lepelley (2015) dealt with
the CE in the presence of degrees of group mutual coherence which measures a
voting situation’s propensity to specific underlying rational behavior models that
may govern voter preferences. Finally, notice that many researchers reconsidered
the CE of voting rules by using IAC-like models. For instance, Diss et al. (2020) and
Gehrlein and Lepelley (2020) consider IAC assumptions that capture all the possible
configurations of individual preferences in the presence of abstention among voters.
Diss and Gehrlein (2015), for their part, consider a different IAC-like assumption
by removing from consideration the subset of individual preferences for which all
WSRs elect the same winner.

Table 1 Condorcet efficiency values under the IAC assumption for large electorates

Voting rules Condorcet efficiency

PR 0.8815a

BR 0.9111b

NPR 0.6296a

PER 0.9685a

NPER 0.9704a

aGehrlein (1982); bGehrlein (1992)
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It is important to mention that many studies focused on other assumptions on the
individuals’ preferences when calculating the CE of several voting rules. For more
information on the research papers related to those assumptions and their refinements,
we refer the reader to Diss and Merlin (2010), Diss et al. (2010), Gehrlein (1999),
Gehrlein and Fishburn (1978a, b), Gehrlein and Lepelley (2014, 1999), Gehrlein and
Roy (2014), and Gehrlein and Valognes (2001), among others.

1.2 Our Contribution

The central concern of this chapter is to deal with the problem of the CE of some
common voting rules when the results of an election are closely contested. Specif-
ically, we focus on the following WSRs and WSERs voting rules: PR, PER, NPR,
NPER, and BR. Up to our knowledge, only a little attention was paid to this issue in
the literature. Recently, Miller (2017) studied, in the context of three-candidate elec-
tions, the effect of closeness on the occurrence of the monotonicity paradox that is,
getting more points from voters can make a candidate a loser or getting fewer points
can make a candidate a winner. The main results obtained by Miller (2017) reveal
that the probability of this paradox can be very high under PER when the results of
the elections become very close. Lepelley et al. (2018) extended the previous study
to otherWSERs and showed that the probability of occurrence of monotonicity para-
dox remains also very high for BER and NPER. To measure the election closeness,
Miller (2017) and Lepelley et al. (2018) considered the ratio between the lowest
score and the sum of the scores of all competing candidates. It seems from these
research papers that closeness deserves more consideration in social choice theory.

In what follows, we derive an exact representation for the CE as a function of the
same closeness index that was used by Miller (2017) and Lepelley et al. (2018). Our
results show that closeness also matters in our context since it affects negatively the
CE of the five considered voting rules. However, the effect of the closeness varies
through the considered voting rules. Specifically, the CE of BR remains relatively
stable with the range of the closeness index when compared to the one of PR, PER,
NPR, and NPER.

The chapter is organized as follows. In Sect. 2, we introduce the basic notation
and definitions. In Sect. 3, we derive the analytical representations for the CE of the
five considered WSRs and WSERs and discuss our results. Section 4 summarizes
our findings, and to end, the proofs are presented in the Appendix.

2 Preliminaries

Throughout this chapter, we consider n ≥ 2 voters in three-candidate elections and
denote by C = {a, b, c} the set of candidates. Each voter is endowed with a linear
preference ordering on the candidates, i.e., she is able to rank the set of candidates
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from the most desirable one to the least desirable one. We also assume that voters
vote according to their true preferences, which means that the strategic behaviors are
not allowed in this chapter. In this setting, there are six possible linear preference
rankings that voters might have on C:

Ranking # Ranking # Ranking #
a � b � c n1 a � c � b n2 b � a � c n3
b � c � a n4 c � a � b n5 c � b � a n6

(1)

The notation a � b � c in (1) means that themost preferred candidate of a voter is
a, themiddle-ranked candidate is b, and the least preferred one is c. A voting situation
can be defined by the 6-tuple ñ = (n1, n2, . . . , n6), where ni denotes the number of
voters endowed with the associated ith preference ranking, such that

∑6
i=1 ni = n.

Let us denote by aMb the event that candidate a defeats b in a pairwise majority
comparison, i.e., when more voters are endowed with a � b in their preference
rankings than with b � a. A Condorcet winner exists in a voting situation if there
is a candidate who would be able to defeat any other opponent in pairwise majority
comparisons. For instance, candidate a is a Condorcet winner if both aMb and aMc
hold, which is equivalent to respectively n1 + n2 + n5 > n3 + n4 + n6 and n1 + n2 +
n3 > n4 + n5 + n6 following our notation in (1). It iswell known that such a candidate
does not necessarily exist which means that cycles of types aMb, bMc and cMa or
bMa, aMc and cMb can be observed in our framework. The Condorcet efficiency
of any given voting rule is the conditional probability that such a voting rule selects
the Condorcet winner, given that such a candidate exists.

In our setting of three-candidate elections, Weighted Scoring Rules (WSRs) can
be represented by the vector of weights (1, λ, 0) such that 0 ≤ λ ≤ 1. In other words,
each of the n voters assigns 1 point to her most preferred candidate, λ points to her
middle-ranked candidate, and 0 points to her least preferred candidate. A candidate’s
score is the total number of points summed over all voters, and the winner is the
candidate with the highest total score from the voters. Let S(a), S(b) and S(c) be the
scores of candidates a, b, and c, respectively, under the WSR with weights (1, λ, 0).
Taking into account our notation in (1), the scores of the candidates a, b, and c are
the following:

S(a) = n1 + n2 + λ (n3 + n5) (2)

S(b) = n3 + n4 + λ (n1 + n6) (3)

S(c) = n5 + n6 + λ (n2 + n4) (4)

To illustrate how a WSR works, let us assume that candidate a is the win-
ner under the WSR with weights (1, λ, 0). In such a case, S(a) has to be greater
than both S(b) and S(c), i.e., n1 + n2 + λ (n3 + n5) > n3 + n4 + λ(n1 + n6) and
n1 + n2 + λ (n3 + n5) > n5 + n6 + λ (n2 + n4), respectively. Moreover, Weighted
Scoring Elimination Rules (WSERs) can also be represented by the vector of weights
(1, λ, 0) in three-candidate elections. The two-stage election process works as fol-
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lows: at the first step, the lowest scored candidate under the corresponding WSR
is eliminated; in the second step, the candidate, with the highest number of votes
between the two remaining candidates, wins. For instance, assuming that candi-
date c is the last ranked one under the WSR with weights (1, λ, 0), the candidate a
will be the winner under the corresponding WSER if the three following inequal-
ities hold: n1 + n2 + λ (n3 + n5) > n5 + n6 + λ (n2 + n4), n3 + n4 + λ (n1 + n6) >

n5 + n6 + λ (n2 + n4) and n1 + n2 + n5 > n3 + n4 + n6.
In this chapter, we focus on the following well-known WSRs and WSERs:

1. Plurality Rule (PR) which is theWSRwith λ = 0. PR counts the number of times
that each candidate is first ranked, and the winner is the candidate that gets the
highest number of first ranks.

2. Plurality Elimination Rule (PER) which is the WSER with λ = 0. In the first
step, the candidate with the fewest number of votes under PR is eliminated; in the
second step, the winner is the candidate with the highest number of votes between
the two remaining candidates.

3. Negative Plurality Rule (NPR) which is the WSR with λ = 1. NPR counts the
number of times that each candidate is ranked last, and the winner is the candidate
that gets the fewest number of last ranks.

4. Negative Plurality Elimination Rule (NPER) which is the WSER with λ = 1.
This two - stage voting rule operates in the same fashion as PER, with NPR
being used in the first step to determine the candidate to be excluded from further
consideration.

5. Borda Rule (BR) which is the WSR with λ = 1
2 . Under this voting rule, voters

assign one point to their most preferred candidate, one-half point to their middle-
ranked candidate, and zero points to their least preferred candidate. The winner
is the candidate who receives the greatest total number of points from the voters.

As mentioned before, BER is another well-known WSER. More precisely, in a
three-candidate election, BER is defined as a two-step voting rulewith BR being used
in the first stage following the same reasoning as PER and NPER. However, as it is
shown in Gehrlein and Lepelley (2015), this rule is the only WSER that guarantees
the selection of the Condorcet winner when such a candidate exists. Consequently,
the study of this rule is out of the scope of this chapter.

In order tomeasure the closeness of an election, recall that the closeness index that
we consider is the ratio between the score of the last ranked candidate and the sum
of the scores of all competing candidates. Notice that the considered index increases
when elections become closer, reaching the value of 1

3 when the three candidates
obtain approximately the same score. Clearly, PR and PER share the same closeness
index since the two voting rules use the same weight, λ = 0. This is also true when
considering NPR and NPER where λ = 1.

Without loss of generality, assume that candidate c is last ranked under the con-
sidered voting rule and let α1, α2, and α3 denote the closeness indices of PR/PER,
NPR/NPER, and BR, respectively. Taking into account our notation in (1), the close-
ness indices α1, α2, and α3 are computed as follows:
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α1 = n5 + n6
n

(5)

α2 = n2 + n4 + n5 + n6
2 n

(6)

α3 = 2 (n5 + n6) + n2 + n4
3 n

(7)

It is easy to check that 0 ≤ αi ≤ 1
3 , with i = 1, 2, 3, and recall that the objective

of this chapter is to derive the effect of closeness on the CE of PR, PER, NPR, NPER,
and BR. To find our probabilities, we need to assume a probability distribution that
underlies how individual preferences are considered. The probabilities that we inves-
tigate are driven by the well-known Impartial Anonymous Culture (IAC) condition
(Gehrlein and Fishburn 1976). In our three-candidate setting, it states that all vot-
ing situations ñ = (n1, n2, . . . , n6), such that

∑6
i=1 ni = n, for a specified number

of voters n are equally likely to be observed. As long as we take into account only
voting events where elections are supposed to be closely contested, we define the
αi-IAC assumption, where α is the closeness index and i = 1, 2, 3, based on the
IAC condition as follows: all possible voting situations ñ = (n1, n2, . . . , n6) having
a concrete value of αi are equally likely to be observed. To derive our probabilities,
we use the parameterized Barvinok’s algorithm (see, for instance, Verdoolaege et al.
2004; Bruynooghe et al. 2005; Lepelley et al. 2008). This algorithm allows us to
compute the number of integer solutions for systems of inequalities with parame-
ters. The representation of this number is given by quasi-polynomials with periodic
coefficients (see, for instance, Ehrhart 1962, 1967). Further results based on this
algorithm are provided by Bubboloni et al. (2020), Diss (2015), Diss et al. (2018),
Diss et al. (2012), Diss and Pérez-Asurmendi (2016), Kamwa (2013, 2017), Kamwa
and Valognes (2017), among others. For our concern of large electorates, it is possi-
ble to obtain the representation of the CE of the considered WSRs and WSERs as a
function of the corresponding closeness index αi, with i = 1, 2, 3.

3 Results and Discussions

Proposition 1 provides the CE of PR under the α1-IAC assumption as a function of
its closeness index α1.

Proposition 1 Consider a three-candidate election with large electorates and α1 the
proportion of points obtained by the last ranked candidate over the total number of
points under PR. Then, theCEof PRunder theα1-IACassumption is given as follows:

CE∞
PR(α1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

72 α1
3 − 22 α1

2 − 27α1 + 8

8(11α1
3 − 4α1

2 − 3α1 + 1)
for 0 ≤ α1 <

1

4

(2 α1 − 1)
(
12 α1

2 − 15α1 + 5
)

4(18α1
3 − 18α1

2 + 6α1 − 1)
for

1

4
≤ α1 ≤ 1

3
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The proof of Proposition 1 is presented in the Appendix. Proposition 2 provides
the CE of PER under the α1-IAC assumption as a function of its closeness index α1.

Proposition 2 Consider a three-candidate election with large electorates and α1

the proportion of points obtained by the last ranked candidate over the total number
of points under PR. Then, the CE of PER under the α1-IAC assumption is given as
follows:

CE∞
PER(α1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

10 α1
3 − 4α1

2 − 3α1 + 1

11α1
3 − 4α1

2 − 3α1 + 1
for 0 ≤ α1 <

1

4

(2 α1 − 1)
(
6α1

2 − 3α1 + 1
)

18α1
3 − 18α1

2 + 6α1 − 1
for

1

4
≤ α1 ≤ 1

3

Notice that CEn
PR(0) = 1 for all n. To show this, let us assume, without loss of

generality, that a is the Condorcet winner and c is the last ranked candidate under
PR. If α1 = 0, then n5 = n6 = 0. Therefore, the scores of the candidates a and b
under PR are S(a) = n1 + n2 and S(b) = n3 + n4, respectively. Since a beats b in
pairwise majority comparisons (n1 + n2 > n3 + n4), we have S(a) > S(b). In such a
case, candidate awill be elected under PRwith absolute certainty. Similarly, it is also
possible to show that CEn

PER(0) = 1 for any given number of voters n. In Fig. 1, we
represent graphically the results from Propositions 1 and 2. Specifically, we illustrate
the CE of PR and PER according to their closeness index α1. Clearly, closeness
significantly affects the CE of both voting rules. The CEs of PR and PER tend to
dramatically decline as the election becomes closely contested. Notice that, in both
cases, the decrease is stronger when α1 belongs to the interval [ 14 , 1

3 ]. Nevertheless,
the decrease is larger for PR than for PER. In the case of PR, the CE tends to a value
of 1

3 whereas in the case of PER, the CE tends to a value of 2
3 . In other words, PER

remains more Condorcet consistent than PR over all the range of the closeness index
α1.

Proposition 3 provides the CE of NPR under the α2-IAC as a function of the
closeness index α2.

Proposition 3 Consider a three-candidate election with large electorates and α2

the proportion of points obtained by the last ranked candidate over the total number
of points under NPR. Then, the CE of NPR under the α2-IAC assumption is given as
follows:

CE∞
NPR(α2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5α2 − 4

8 (2 α2 − 1)
for 0 ≤ α2 <

1

4

510 α2
3 − 510 α2

2 + 165α2 − 17

2 (144α2
3 − 144α2

2 + 48α2 − 5)
for

1

4
≤ α2 ≤ 1

3

Proposition 4 gives the CE of NPER under the α2-IAC as a function of the close-
ness index α2.
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Fig. 1 Condorcet efficiencyofPRandPERas a functionof their closeness index for large electorates

Proposition 4 Consider a three-candidate election with large electorates and α2

the proportion of points obtained by the last ranked candidate over the total number
of points under NPR. Then, the CE of NPER under the α2-IAC assumption is given
as follows:

CE∞
NPER(α2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for 0 ≤ α2 <
1

4

2 (120 α2
3 − 120 α2

2 + 39α2 − 4)

144α2
3 − 144α2

2 + 48α2 − 5
for

1

4
≤ α2 ≤ 1

3

Notice that for any given number of voters n,CEn
NPR(0) = 1

2 . Indeed, when α2 = 0
(i.e., n2 = n4 = n5 = n6 = 0) and λ = 1, the scores of candidates a, b, and c are
given by S(a) = S(b) = n1 + n3 and S(c) = 0. Thus, NPR will elect a and b with
the same probability due to the symmetry of IAC-like assumptions with respect to
candidates. This means that CEn

NPR(0) = 1
2 . Notice also that for any given number

of voters n, CEn
NPER(α2) = 1 for 0 ≤ α2 < 1

4 . To prove this statement, suppose that
the Condorcet winner, say a, is not elected under NPER. This implies that a is
eliminated in the first round under NPR; otherwise, she would win the election
since she is supposed to be the Condorcet winner. In addition, α2 is supposed to be
less than 1

4 , which implies that n1 + n2 + n3 + n5 < n4 + n6 (i). Since aMb, then
we can show that n3 + n4 + n6 + n3 < n1 + n2 + n3 + n5 (ii). From (i) and (ii), we
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Fig. 2 Condorcet efficiency of NPR and NPER as a function of their closeness index for large
electorates

deduce that n3 + n4 + n6 + n3 < n4 + n6, which implies that n3 < 0. Because of this
contradiction, candidate a will be elected with absolute certainty under NPER.

We plot the results from Propositions 3 and 4 in Fig. 2 supplying a graphical
representation of the CE of NPR and NPER as a function of the closeness index
α2. From Fig. 2, it is clear that the performance of NPER in terms of the CE is
significantly better than the one of NPR independently on the value of α2. More
specifically, the CE of NPER takes values in the interval ] 23 , 1] whereas in the case
of NPR the CE values are located in the range ] 13 , 0.6875]. Indeed, we note that the
maximum of the CE for NPR over all range of the closeness index is 0.6875 = 11

16 .
This value is reached when the closeness index takes the value α2 = 0.2500. Recall
that in the case of NPER the CE reaches the value of 1 over the range 0 ≤ α2 ≤ 1

4 ;
for values of α2 greater than 1

4 , that is, as elections are very close, we found that
the CE decreases until the value of 2

3 . In the case of NPR, the behavior of the CE is
slightly different for lower values of α2. To be more concrete, it increases from 0 to
0.2500 and decreases from 0.2500 to 1

3 .
Finally, Proposition 5 provides the CE of BR under the α3-IAC assumption as a

function of the closeness index α3.

Proposition 5 Consider a three-candidate election with large electorates and α3
the proportion of points obtained by the last ranked candidate over the total number
of points under BR. Then, the CE of BR under the α3-IAC assumption is given as
follows:
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CE∞
BR(α3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21α3 − 8

2 (9α3 − 4)
for 0 ≤ α3 <

1

9

243α3
4 + 324α3

3 − 486α3
2 + 36α3 − 1

648α3
3 (9α3 − 4)

for
1

9
≤ α3 <

1

6

70227α3
4 − 46332 α3

3 + 11178α3
2 − 1260 α3 + 53

75816α3
4 − 49248α3

3 + 11664α3
2 − 1296α3 + 54

for
2

9
≤ α3 <

5

18

20331α3
4 − 23436α3

3 + 9234α3
2 − 1500 α3 + 89

2 (13608α3
4 − 15120 α3

3 + 5832 α3
2 − 936α3 + 55)

for
5

18
≤ α3 <

2

9

25587α3
2 − 11466α3 + 1339

16 (1647α3
2 − 732 α3 + 85)

for
2

9
≤ α3 ≤ 1

3

It can be noticed that CEn
BR(0) = 1 for any given number of voters n. To show this

statement, let us assume, without loss of generality, that candidate a is the Condorcet
winner while c is the last ranked candidate under BR. If α3 = 0, it follows that
n2 = n4 = n5 = n6 = 0. In such a case, S(a) − S(b) = n1−n3

3 > 0 because a beats c
in pairwise majority comparisons (n1 > n3). Since candidate c is supposed to receive
zero points, candidate a is elected under BR with absolute certainty. It is also worth
to note that the minimum value of the CE under BR over all range of the closeness
index is 0.8983. This value is reached when the closeness index takes the value
α3 = 0.2103. We represent graphically the results from Proposition 5 in Fig. 3. As it
can be seen, the CE of BR ranges within the interval [0.8983, 1]. The CE decreases
when the closeness index takes values from 0 to 0.2103 whereas it increases when
the closeness index ranges from 0.2103 to 1

3 .
Finally, Table 2 shows computed values of CE∞

PR(α1), CE∞
PER(α1), CE∞

NPR(α2),
CE∞

NPER(α2), and CE∞
BR(α3) for various values of the closeness index αi, with i =

1, 2, 3. Aswe can see from the previous graphical representations, the results in Table
2 show very different behaviors of the Condorcet efficiency of the five considered
WSRs andWSERs with respect to their closeness index. For instance, the Condorcet
efficiency of BR seems to be stable over all range of the closeness index α3: Their
values decrease from 1 to 0.9375. However, the Condorcet efficiency of the other
studied rules tends to decrease substantially especially when the election results
became very close: Their values decrease from 1 to 0.3333 for PR and from 0.5
to 0.3333 for NPR while the Condorcet efficiency of PER and NPER decreases
from 1 to 0.6667 as the correspondent closeness index tends to 1

3 . Recall that BER
always selects the CW when such a candidate exists for all range of the closeness
index α3 which means that the Condorcet efficiency of BER is equal to 1. Taking
into consideration this remark, it is clear that the Condorcet efficiencies of the two-
stage rules studied in this chapter are substantially greater than those of single-stage
voting rules. This result remains true when the closeness assumption is not taken
into consideration as it was previously shown by Gehrlein (1982).
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Fig. 3 Condorcet efficiency of BR as a function of its closeness index for large electorates

Table 2 Computed values of the CE of PR, BR, NPR, PER, and NPER for large electorates

αi CE∞
PR(α1) CE∞

PER(α1) CE∞
NPR(α2) CE∞

NPER(α2) CE∞
BR(α3)

0 1 1 0.5 1 1

0.02 0.9925 1.0000 0.5078 1 0.9921

0.04 0.9850 0.9999 0.5163 1 0.9835

0.06 0.9772 0.9997 0.5256 1 0.9740

0.08 0.9689 0.9993 0.5357 1 0.9634

0.10 0.9598 0.9985 0.5469 1 0.9516

0.12 0.9494 0.9971 0.5592 1 0.9384

0.14 0.9370 0.9948 0.5729 1 0.9243

0.16 0.9218 0.9911 0.5882 1 0.9118

0.18 0.9020 0.9852 0.6055 1 0.9030

0.20 0.8750 0.9756 0.6250 1 0.8988

0.22 0.8357 0.9596 0.6473 1 0.8987

0.24 0.7736 0.9315 0.6731 1 0.9021

0.25 0.7273 0.9091 0.6875 1 0.9050

0.26 0.6737 0.8821 0.7011 0.9917 0.9087

0.28 0.5698 0.8254 0.6606 0.9390 0.9175

0.3 0.4731 0.7665 0.5640 0.8537 0.9264

0.32 0.3857 0.7067 0.4320 0.7457 0.9336

( 13 )− 0.3333 0.6667 0.3333 0.6667 0.9375
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4 Conclusion

The main purpose of this study was to provide new evidence of the effect of election
closeness on the theoretical probability of electoral events.We considered the impact
of election closeness on the probability of selecting the Condorcet winner, when such
a candidate exists, under several well-known voting rules. In other words, the main
objective of our study is to measure at which extend the CE of a given voting rule
changes when the elections becomemore closely contested. To that end, we focussed
on five popular WSRs and WSERs in the context of three-candidate elections. The
first three rules, PR, NPR, and BR, choose the winner in one step while the last
two rules, PER and NPER, do in a two-step iterative process. Election closeness is
measured in our chapter by an index calculated as a proportion of points obtained by
the last ranked candidate divided by the aggregated scores of all competing candidates
under the given WSR/WSER. We followed an IAC-like assumption, by considering
that every voting situation, with a given value of election closeness index, is equally
likely to occur. As a result, we calculate the CE of the consideredWSRs andWSERs
for large electorates as a function of the corresponding closeness index. We show
that the CE of some WSRs and WSERs may significantly decrease as the results
of elections become very close. However, such a reduction varies depending on the
considered voting rule; the CE does not substantially decrease under BR as it does
in the case of the other analyzed WSRs and WSERs.

Finally, many open questions still remain unanswered given that we only studied
the CE of some common WSRs and WSERs. For instance, the extension of our
results to other voting rules remains open. In addition, we analyzed in this chapter
the performance of several voting rules according to their CE but it is worthy to
analyze the impact of election closeness on other interesting voting paradoxes. The
reader can find an overview of different voting paradoxes that can be considered for
this topic in Gehrlein and Lepelley (2011, 2017) and Nurmi (1999).

Acknowledgements The authors thank two anonymous reviewers for their valuable comments
and suggestions. Mostapha Diss gratefully acknowledges the financial support of IDEXLYON from
Université de Lyon (project INDEPTH) within the Programme Investissements d’Avenir (ANR-
16-IDEX-0005). Patrizia Pérez-Asurmendi gratefully acknowledges the financial support of the
Spanish Ministerio de Economía y Competitividad (project ECO2016-77900-P).

5 Appendix

We only provide the proof of Proposition 1 which will allow the reader to understand
the steps followed to derive the analytical representations for the CE under the αi-
IAC assumption. Complete proofs for the other considered voting rules are available
upon request.

Let us assume, without loss of generality, that candidate c is the last ranked one
under PR. In such a case, the closeness index is given by α1 = n5+n6

n = k
n where
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k = n5 + n6 is the score of candidate c under PR. Recall that the CE of a giving
voting rule is a conditional probability. In order to compute the CE of PR under the
α1-IAC assumption, we first need to count the number of voting situations for which
the Condorcet winner exists under the α1-IAC assumption when candidate c is the
last ranked one under PR. In order to accomplish this goal, we need to consider the
three following independent events:

X1 = “a is the Condorcet winner, and c is last ranked under PR”.

X2 = “b is the Condorcet winner, and c is last ranked under PR”.

X3 = “c is the Condorcet winner, and c is last ranked under PR”.

Let us denote by |DXj (k, n)| the number of voting situations for which event Xj

is observed under the α1-IAC assumption, i.e., when α1 = k
n takes a given value.

The number |DXj (k, n)| depends on the number of voters n and the score k of the
candidate c under PR. Using those notations, the number of voting situations for
which the Condorcet winner exists under the α1-IAC assumption when candidate c
is the last ranked one under PR can be written as follows:

|DX1(k, n)| + |DX2(k, n)| + |DX3(k, n)| (8)

Due to the symmetry of IAC-like assumptions with respect to candidates, we can
easily show that |DX1(k, n)| = |DX2(k, n)|. This means that the number of voting
situations in (8) can also be written as follows:

2 |DX1(k, n)| + |DX3(k, n)| (9)

Thus, all that we have to do is to calculate |DX1(k, n)| and |DX3(k, n)|. Notice
first that |DX1(k, n)| corresponds to the number of voting situations satisfying the
following system of (in)equalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 + n2 − n5 − n6 > 0
n3 + n4 − n5 − n6 > 0
n5 + n6 = k
n1 + n2 − n3 − n4 + n5 − n6 > 0
n1 + n2 + n3 − n4 − n5 − n6 > 0
n > 3k
n1 + n2 + n3 + n4 + n5 + n6 = n
ni ≥ 0 for i ∈ {1, . . . , 6}
k ≥ 0

(10)

As noticed before, we compute the number of voting situations that fulfill these
conditions using the Parametrized Barvinok’s algorithm. This algorithm allows us to
quantify the number of integer solutions for systemsof (in)equalitieswith parameters.
In our study, given the two parameters n and k, the number of voting situations for
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the system (10) is provided by bivariate quasi-polynomials in n and k with 2-periodic
coefficients meaning that such coefficients depend on the parity of the parameters n
and k. We represent these coefficients by a list of two-rational numbers enclosed in
square brackets. To illustrate, the coefficient [a, b]n will be either a when n is even
or b when n is odd. The program indicates that the corresponding quasi-polynomial
for the system (10) is given as follows:

1. If n
4 ≤ k ≤ n−2

3 :

|DX1(k, n)| = 3

2
k4 + f1 k

3 + f2 k
2 + f3 k + f4

where,

f1 = −2 n +
[
7

2
, 2

]

n

f2 = 9

8
n2 +

[

−7

2
,−3

2

]

n
+

[

1,
7

8

]

n

f3 = −1

3
n3 +

[
9

8
,
1

8

]

n
n2 +

[

−2

3
,−7

6

]

n
n +

[

0,−5

8

]

n

f4 = 1

24
n4 +

[

−1

8
,
1

24

]

n
n3 +

[
1

12
,
5

24

]

n
n2 +

[

0,− 1

24

]

n
n +

[

0,−1

4

]

n

2. If 0 ≤ k ≤ n−4
4 :

|DX1(k, n)| = 5

6
k4 + g1 k

3 + g2 k
2 + g3 k + g4

where,

g1 = −1

3
n +

[
19

6
,
10

3

]

n

g2 = −1

4
n2 +

[

−11

4
,−3

]

n
n +

[
5

3
,
17

12

]

n

g3 = 1

12
n3 +

[
1

8
,
1

4

]

n
n2 +

[

−3,−11

4

]

n
n +

[

−5

3
,−19

12

]

n

g4 = 1

12
n3 +

[
3

8
,
1

2

]

n
n2 +

[

− 7

12
,− 1

12

]

n
n +

[

−1,−1

2

]

n

|DX3(k, n)| corresponds to the number of voting situations satisfying the following
system of (in)equalities:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 + n2 − n5 − n6 > 0
n3 + n4 − n5 − n6 > 0
n5 + n6 = k
−n1 + n2 − n3 − n4 + n5 + n6 > 0
−n1 − n2 − n3 + n4 + n5 + n6 > 0
n > 3k
n1 + n2 + n3 + n4 + n5 + n6 = n
ni ≥ 0 for i ∈ {1, . . . , 6}
k ≥ 0

(11)

Using again the Parametrized Barvinok’s algorithm, the program indicates that
the corresponding quasi-polynomial for the system (11) is given as follows:

1. If n−1
4 ≤ k ≤ n−2

3 :

|DX3(k, n)| = 3

2
k4 + h1 k

3 + h2 k
2 + h3 k + h4

where,

h1 = −2 n +
[
7

2
, 2

]

n

h2 = 3

4
n2 +

[

−7

2
,−3

]

n
n +

[
5

2
,−1

4

]

n

h3 = − 1

12
n3 + n2 +

[

−5

3
,−11

12

]

n
n +

[
1

2
,−1

]

n

h4 = − 1

12
n3 + 1

4
n2 +

[

−1

6
,
1

12

]

n
n +

[

0,−1

4

]

n

2. If 0 ≤ k ≤ n−2
4 :

|DX3(k, n)| = 1

6
k4 +

[
1

6
,
2

3

]

n

k3 +
[

−1

6
,
5

6

]

n

k2 +
[

−1

6
,
1

3

]

n

k

In order to calculate the CE of PR under the α1-IAC assumption, the three fol-
lowing independent events have to be taken into consideration:

Y1 = “a is the Condorcet winner, a is chosen under PR, and c is last ranked under PR”.

Y2 = “b is the Condorcet winner, b is chosen under PR, and c is last ranked under PR”.

Y3 = “c is the Condorcet winner, c is chosen under PR, and c is last ranked under PR”.

It follows that the CE of PR under the α1-IAC assumption is given in general by
the following function in n and k:

|DY1(k, n)| + |DY2(k, n)| + |DY3(k, n)|
2 |DX1(k, n)| + |DX3(k, n)|

(12)
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We can show that |DY3(k, n)| = 0 because when candidate c is chosen under PR
it cannot be last ranked by this voting rule. Again, due to the symmetry of IAC-
like assumptions with respect to candidates, we can also show that |DY1(k, n)| =
|DY2(k, n)|. It follows that the CE of PR under the α1-IAC assumption in (12) can
also be calculated as follows:

2 |DY1(k, n)|
2 |DX1(k, n)| + |DX3(k, n)|

(13)

|DY1(k, n)| corresponds to the number of voting situations satisfying the following
system of (in)equalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 + n2 − n5 − n6 > 0
n3 + n4 − n5 − n6 > 0
n1 + n2 − n3 − n4 > 0
n5 + n6 = k
n1 + n2 − n3 − n4 + n5 − n6 > 0
n1 + n2 + n3 − n4 − n5 − n6 > 0
n > 3k
n1 + n2 + n3 + n4 + n5 + n6 = n
ni ≥ 0 for i ∈ {1, . . . , 6}
k ≥ 0

(14)

The program indicates that the corresponding quasi-polynomial of the system
(14) is given as follows:

1. If k ≤ (n − 4)/4:

|DY1(k, n)| = 3

4
k4 + F1 k

3 + F2 k
2 + F3 k + F4

where,

F1 = −11

48
n +

[[
19

6
,
53

16

]

n
,

[
79

24
,
51

16

]

n

]

k

F2 = − 9

32
n2 +

[[

−21

8
, −23

8

]

n
,

[

−45

16
, −43

16 n

]

k

]

n +
[[

2,
53

32

]

n
,

[
7

4
,
59

32

]

n

]

k

F3 = 1

12
n3 +

[[
1

16
,
3

16

]

n
,

[
1

8
,
1

8

]

n

]

k
n2 +

[[

−19

6
, −35

12

]

n
,

[

−149

48
, −137

48

]

n

]

k
n

+
[[

−5/3, −27

16

]

n
,

[

−43

24
, −21

16

]

n

]

k

F4 = 1

12
n3 +

[[
3

8
,
1

2

]

n
,

[
13

32
,
13

32

]

n

]

k
n2 +

[[

− 7

12
, − 1

12

]

n
,

[

−25

48
,−19

48

]

n

]

k
n

+
[[

−1, −1

2

]

n
,

[

−1, −23

32

]

n

]

k
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2. If n−3
4 ≤ k ≤ n−3

3 :

|DY1(k, n)| = 3

4
k4 + G1 k

3 + G2 k
2 + G3 k + G4

where,

G1 = − 25

16
n +

[[
1

2
, − 11

16

]

n
,

[
5

8
, − 13

16

]

n

]

k

G2 = 39

32
n2 +

[[

− 5

8
,
9

8

]

n
,

[

− 13

16
,
21

16

]

n

]

kn
+

[[

0,
5

32

]

n
,

[

− 1

4
,
11

32

]

n

]

k

G3 = − 5

12
n3 +

[[
5

16
, − 9

16

]

n
,

[
3

8
, − 5

8

]

n

]

k
n2 +

[[
1

6
,− 1

12

]

n
,

[
11

48
, − 1

48

]

n

]

k
n

+
[[

0,
1

16

]

n
,

[

− 1

8
,
7

16

]

n

]

k

G4 = 5

96
n4 +

[

− 1

16
,
1

12

]

n
n3 +

[[

− 1

12
,− 1

48

]

n
,

[

− 5

96
, − 11

96

]

n

]

k
n2 +

[[

0,− 1

12

]

n
,

[
1

16
, − 19

48

]

n

]

k
n

+
[[

0, − 1

32

]

n
,

[

0, − 1

4

]

n

]

k

3. Otherwise, |DY1(k, n)| = 0.

Notice that it is possible to represent the above results as functions of the closeness
index α1. If we assume large electorates and replace k by α1 n in the above results,
we obtain functions in α1 by only considering the terms of higher degree in each
function. Let us then denote by |D∞

Xj
(α1)| the number of voting situations for which

event Xj is observed under the α1-IAC assumption with large electorates. It follows
that:

|D∞
X1

(α1)| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1
(
10 α1

3 − 4α1
2 − 3α1 + 1

)
n4

12
for 0 ≤ α1 ≤ 1

4

(3α1 − 1) (2α1 − 1)
(
6α1

2 − 3α1 + 1
)
n4

24
for

1

4
≤ α1 ≤ 1

3
(15)

|D∞
X3

(α1)| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α4
1 n

4

6
for 0 ≤ α1 ≤ 1

4

α1 (3α1 − 1)
(
6α1

2 − 6α1 + 1
)
n4

12
for

1

4
≤ α1 ≤ 1

3

(16)
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|D∞
Y1 (α1)| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1
(
72 α1

3 − 22 α1
2 − 27α1 + 8

)
n4

96
for 0 ≤ α1 ≤ 1

4

(3α1 − 1) (2α1 − 1) n4

96
for

1

4
≤ α1 ≤ 1

3

(17)

By replacing (15), (16), and (17) in (13) we derive the CE of PR as a function of
the closeness index α1 for large electorates as follows:

CE∞
PR(α1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

72 α1
3 − 22 α1

2 − 27α1 + 8

8(11α1
3 − 4α1

2 − 3α1 + 1)
for 0 ≤ α1 <

1

4

(2α1 − 1)
(
12 α1

2 − 15α1 + 5
)

4(18α1
3 − 18α1

2 + 6α1 − 1)
for

1

4
≤ α1 ≤ 1

3

References

Black D (1948) On the rationale of group decision-making. J Polit Econ 56:23–34
Borda JC de (1785) Mémoire sur les élections au scrutin. Paris, Histoire de l’Académie Royale des
Sciences

Bruynooghe M, Cools R, Verdoolaege S, Woods K (2005) Computation and manipulation of enu-
merators of integer projections of parametric polytopes. Technical report CW 392. Katholieke
Universiteit Leuven, Department of Computer Sciences

Bubboloni D, Diss M, Gori M (2019) Extensions of the Simpson voting rule to the committee
selection setting. Publ Choice 169:97.11

CervoneDP,GehrleinWV, ZwickerWS (2005)Which scoring rulemaximizes Condorcet efficiency
under IAC? Theory Decis 58:145–185

Condorcet, Marquis de (1785) Éssai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. Paris, l’Imprimerie Royale

Diss M (2015) Strategic manipulability of self-selective social choice rules. Annals Oper Res
229:347–376

DissM, GehrleinWV (2015) The true impact of voting rule selection on Condorcet efficiency. Econ
Bulletin 35(4):2418–2426

DissM,KamwaE,Moyouwou I, SmaouiH (2020)Condorcet efficiency of generalweighted scoring
rules under IAC: indifference and abstention. In:DissM,MerlinV (eds)Evaluatingvoting systems
with probability models, essays by and in honor of William Gehrlein and Dominique Lepelley.
Springer, Berlin

Diss M, Kamwa E, Tlidi A (2018) A note on the likelihood of the absolute majority paradoxes.
Econ Bulletin 38(4):1727–1734

Diss M, Louichi A, Merlin V, Smaoui H (2012) An example of probability computations under the
IAC assumption: the stability of scoring rules. Math Social Sci 64:57–66

Diss M, Merlin V (2010) On the stability of a triplet of scoring rules. Theory Decis 69(2):289–316
Diss M, Merlin V, Valognes F (2010) On the Condorcet efficiency of approval voting and extended
scoring rules for three alternatives. In: Laslier J-F, Sanver RM (eds) Handbook on approval voting.
Springer, Berlin, pp 255–283

Diss M, Pérez-Asurmendi P (2016) Consistent collective decisions under majorities based on dif-
ference of votes. Theory Decis 80(3):473–494



94 M. Diss et al.

Ehrhart E (1962) Sur les polyèdres rationnels homothétiques à n dimensions. Comptes Rendus de
l’Academie des Sciences 254:616–618

Ehrhart E (1967) Sur un problème de géométrie diophantienne linéaire. PhD thesis. Journal für die
Reine und Angewandte Mathematik 226:1–49

Favardin P, Lepelley D (2006) Some further results on the manipulability of social choice rules.
Social Choice Welf 26:485–509

Gehrlein WV (1982) Condorcet efficiency and constant scoring rules. Math Social Sci 2:123–130
Gehrlein WV (1992) Condorcet efficiency of simple voting rules for large electorates. Econ Lett
40(1):61–66

Gehrlein WV (1999) Condorcet efficiency of Borda rule under the dual culture condition. Social
Sci Res 28(1):36–44

Gehrlein WV, Fishburn PC (1976) Condorcet’s paradox and anonymous preference profiles. Publ
Choice 26(1):1–18

Gehrlein WV, Fishburn PC (1978) Coincidence probabilities for simple majority and positional
voting rules. Social Sci Res 7(3):272–283

Gehrlein WV, Fishburn PC (1978) Probabilities of election outcomes for large electorates. J Econ
Theory 19:38–49

GehrleinWV, LepelleyD (1999) Condorcet efficiencies under themaximal culture condition. Social
Choice Welf 16:471–490

Gehrlein WV, Lepelley D (2001) The Condorcet efficiency of Borda rule with anonymous voters.
Math Social Sci 41:39–50

Gehrlein WV, Lepelley D (2011) Voting paradoxes and group coherence. Springer,
Berlin/Heidelberg

Gehrlein WV, Lepelley D (2014) The Condorcet efficiency advantage that voter indifference gives
to approval voting over some other voting rules. Group Decis Negot 24(2):243–269

Gehrlein WV, Lepelley D (2016) Refining measures of group mutual coherence. Qual Quant
50(4):1845–1870

Gehrlein WV, Lepelley D (2017) Elections. Voting Rules and paradoxical outcomes. Studies in
choice and welfare, Springer, Berlin/Heidelberg

Gehrlein WV, Lepelley D (2020) Analyzing the probability of election outcomes with abstentions.
In: Diss M, Merlin V (eds) Evaluating voting systems with probability models, essays by and in
honor of William Gehrlein and Dominique Lepelley. Springer, Berlin

GehrleinWV, Lepelley D, Smaoui H (2012) The Condorcet efficiency of voting rules with mutually
coherent voter preferences: a Borda compromise. Annals Econ Stat 101(102):107–125

Gehrlein WV, Roy S (2014) The structure of voters’ preferences induced by the Dual Culture
condition. In: Fara, Leech, Salles (eds) Voting power and paradoxes: essays in honour of Dan
Felsenthal and Moshé Machover. Berlin, Springer Publishers, pp 347–361

GehrleinWV, Valognes F (2001) Condorcet efficiency: a preference for indifference. Social Choice
Welf 18:193–205

Kamwa E (2013) The increasing committee size paradox with small number of candidates. Econ
Bulletin 33(2):967–972

Kamwa E (2017) Stable rules for electing committees and divergence on outcomes. Group Decis
Negot 26(3):547–564

Kamwa E, Valognes F (2017) Scoring rules and preference restrictions: the strong Borda paradox
revisited. Revue d’Economie Politique 127(3):375–395

KimKH,Roush FW (1996) Statisticalmanipulability of social choice functions. GroupDecis Negot
5:262–282

KugaK, Nagatani H (1974) Voter antagonism and the paradox of voting. Econometrica 42(6):1045–
1067

Lepelley D (1995) Condorcet efficiency of positional voting rules with single-peaked preferences.
Econ Design 1:289–299

Lepelley D, Louichi A, Smaoui H (2008) On Ehrhart polynomials and probability calculations in
voting theory. Social Choice Welf 30(3):363–383



The Effect of Closeness on the Election … 95

Lepelley D, Moyouwou I, Smaoui H (2018) Monotonicity paradoxes in three-candidate elections
using scoring elimination rules. Social Choice Welf 50(1):1–33

Lepelley D, Valognes F (2003) Voting rules, manipulability and social homogeneity. Publ Choice
116:165–184

Miller NR (2017) Closeness matters: monotonicity failure in IRV elections with three candidates.
Publ Choice 173(1):91–108

Nurmi H (1999) Voting paradoxes and how to deal with them. Springer, Berlin, Heidelberg
Verdoolaege S, Seghir R, Beyls K, Loechner V, Bruynooghe M (2004) Analytical computation of
Ehrhart polynomials: enabling more compiler analysis and optimizations. In: Proceedings of the
2004 international conference on Compilers, architecture, and synthesis for embedded systems.
Washington DC, pp 248–258



Analyzing the Practical Relevance
of the Condorcet Loser Paradox
and the Agenda Contraction Paradox

Felix Brandt, Christian Geist, and Martin Strobel

Abstract A large part of the social choice literature studies voting paradoxes in
which seeminglymild properties are violated by commonvoting rules. In this chapter,
we investigate the likelihood of the Condorcet Loser Paradox (CLP) and the Agenda
Contraction Paradox (ACP) using Ehrhart theory, computer simulations, and empir-
ical data. We present the first analytical results for the CLP on four alternatives
and show that our experimental results, which go well beyond four alternatives, are
in almost perfect congruence with the analytical results. It turns out that the CLP—
which is often cited as a major flaw of some Condorcet extensions such as Dodgson’s
rule, Young’s rule, andMaxiMin—is of no practical relevance. The ACP, on the other
hand, frequently occurs under various distributional assumptions about the voters’
preferences. The extent to which it is real threat, however, strongly depends on the
voting rule, the underlying distribution of preferences, and, somewhat surprisingly,
the parity of the number of voters.

1 Introduction

A large part of the social choice literature studies voting paradoxes in which seem-
ingly mild properties are violated by common voting rules. Moreover, there are a
number of sweeping impossibilities, which entail that there exists no “optimal” vot-
ing rule that avoids all paradoxes. As a consequence, much of the research in social
choice theory is concerned with whether a paradox can appear for a given voting rule
or not. However, it turns out that some paradoxes—while possible in principle—will
almost never appear in practice.
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An extreme example of this phenomenon occurred for the voting rule TEQ
(Schwartz 1990). Due to its unwieldy recursive definition, it was unknown for more
than 20years whether TEQ satisfies any of a number of very basic desirable proper-
ties. In 2013, Brandt et al. (2013) have shown thatTEQ violates all of these properties.
However, their proof is non-constructive and only shows the existence of astro-
nomically large counterexamples requiring about 10136 alternatives. While smaller
computer-generated counterexamples exist, extensive simulations have shown that
these counterexamples are extremely rare and that TEQ satisfies the desirable prop-
erties for all practical purposes (Brandt et al. 2010). These findings motivated us to
provide analytical, experimental, and empirical justifications for such statements.

In this chapter, we study two voting paradoxes. The first is the well-known Con-
dorcet loser paradox (CLP), which occurs when a voting rule selects the Condorcet
loser, an alternative that loses against every other alternative in pairwise majority
contests. Perhaps surprisingly, this paradox affects some Condorcet extensions, i.e.,
voting rules that are guaranteed to select an alternative that wins against every other
alternative in pairwisemajority contests. Common affected Condorcet extensions are
Dodgson’s rule, Young’s rule, and MaxiMin (Fishburn 1977). The second paradox,
called agenda contraction paradox (ACP), occurs when removing losing alternatives
changes the set of winners. There are only few voting rules that do not suffer from
this paradox, one of them being the essential set (Dutta and Laslier 1999). In fact,
all common voting rules that violate the CLP also violate the ACP.

In principle, quantitative results on voting paradoxes can be obtained via three
different approaches. The analytical approach uses theoretical models to quantify
paradoxes based on certain assumptions about the voters’ preferences. Analytical
results usually tend to be quite hard to obtain and are limited to simple—and often
unrealistic—assumptions. The experimental approach uses computer simulations
based on underlying stochastic models of how the preference profiles are distributed.
Experimental results have less general validity than analytical results, but can be
obtained for arbitrary distributions of preferences. Finally, the empirical approach
is based on evaluating real-world data to analyze how frequently paradoxes actually
occur or how frequently they would have occurred if certain voting rules had been
used for the given preferences. Unfortunately, only very limited real-world data for
elections is available.

Our main results are as follows.
Using Ehrhart theory, we compute upper bounds for the CLP as well as the exact

probabilities under which the CLP occurs for MaxiMin when there are four alterna-
tives and preferences are distributed according to the Impartial Anonymous Culture
(IAC) distribution. This approach also yields the exact limit probabilities (for the
CLP and the ACP) when the number of voters goes to infinity. To the best of our
knowledge, these are the first analytical results for the CLP on four alternatives
(which is the minimal number of alternatives for which the voting rules we consider
exhibit the CLP).
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For both theCLPand theACP,we throughly analyze a variety of other settingswith
more alternatives andother stochastic preferencemodels using computer simulations.
For those settings in which the analytical approach is also feasible, our results are in
almost perfect congruence with the analytical results. This is strong evidence for the
accuracy of our simulation results.

It turns out that the CLP—which is often cited as a major flaw of some Con-
dorcet extensions —is of no practical relevance. The maximum probability under all
preference models we studied is 2.2% (for MaxiMin, three voters, four alternatives,
and IAC). In more realistic settings, it is much lower. For Dodgson’s rule, it never
exceeds 0.01%. We did not find any occurrence of the paradox in real-world data,
neither in the PrefLib library (Mattei and Walsh 2013) nor in millions of elections
based on data from the Netflix Prize (Bennett and Lanning 2007).

The ACP, on the other hand, frequently occurs under various distributional
assumptions about the voters’ preferences. The extent to which it is real threat,
however, strongly depends on the voting rule, the underlying distribution of prefer-
ences, and the parity of the number of voters. If the number of voters is much larger
than the number of alternatives, less discriminating voting rules seem to fare better
than more discriminating ones. For example, when there are 1,000 voters and four
alternatives, the probability for the ACP under Copeland’s rule and IAC is 9% while
it occurs with a probability of 33% for Borda’s rule. When there are fewer voters, the
parity of the number of voters plays a surprisingly strong role. For example, if there
are 6 alternatives, the ACP probability for Copeland’s rule is 44% for 50 voters, but
only 26% for 51 voters. These results are in line with the empirical data we analyzed.

2 Related Work

There is a huge body of research on the quantitive study of voting paradoxes. Gehrlein
(2006) focusses on the non-existence of Condorcet winners, arguably the most stud-
ied voting paradox. An overview of many paradoxes with an analysis of group coher-
ence is provided by Gehrlein and Lepelley (2011). On top of that, Gehrlein and Lep-
elley (2011, 2017) survey different tools and techniques that have been applied over
the years for the quantitive study of voting paradoxes.

The analytical study of voting paradoxes under the assumption of IAC is most
effectively done via Ehrhart theory, which goes back to the year 1962 and the French
mathematician Eugène Ehrhart (Ehrhart 1962). Interestingly, parts of these results
have been reinvented (in the context of social choice) by Huang and Chua (2000),
before Ehrhart’s original work was independently rediscovered for social choice by
Wilson and Pritchard (2007) and Lepelley et al. (2008) more than forty years later.

Current research on the probability of voting paradoxes under IAC is based on
algorithms that build upon Ehrhart’s results, such as the algorithm developed by
Barvinok (1994). For many years, these approaches were limited to cases with three
or fewer alternatives. Recent advances in software tools and mathematical model-
ing enabled the study of elections with four alternatives. Bruns and Söger (2015)
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and Schürmann (2013) provide such results for Condorcet’s paradox, the Condorcet
efficiency of plurality and the similarity between plurality and plurality with runoff.
Schürmann (2013) further shows how symmetries in the formulation of the paradoxes
can be exploited to facilitate the corresponding computations. Finally, Bruns et al.
(2019b) study Condorcet and Borda paradoxes, as well as the Condorcet efficiency
of plurality voting with runoff.

For the CLP (sometimes also referred to as “Borda’s paradox”) many quantitive
results are known (Gehrlein and Lepelley 2011; Diss and Gehrlein 2012), which are,
however, limited to simple voting rules and scoring rules in particular. These results
also include some empirical evidence for the paradox under plurality (Gehrlein and
Lepelley 2011, p. 15) and suggest that it is an unlikely yet possible problem in
practice. Interestingly, the CLP for Condorcet extensions has—to the best of our
knowledge—only been considered by Plassmann and Tideman (2014). However,
they restrict their analysis to the 3-alternative case and find that the CLP never occurs,
which is unsurprising since provably four alternatives are required for the Condorcet
extensions they considered. In a more recent work, Bubboloni et al. (2019) consider
the probability of the CLP for extensions of MaxiMin to the committee selection
setting.

The ACP appears to have received less attention in the quantitative literature
on voting paradoxes. Some limit probabilities for scoring rules were obtained by
Gehrlein and Fishburn (see Gehrlein and Lepelley 2011, pp. 282–284). Fishburn
(1974) experimentally studied a variant of this paradox called “winner turns loser
paradox” for Borda’s rule under Impartial Culture. For Condorcet extensions, Plass-
mann and Tideman (2014) considered another variant of the ACP under a spatial
model, but again limit their experiments to three alternatives. These few results
already seem to indicate that the ACP might occur even under realistic assumptions.
However, there are no results for more than three alternatives, Condorcet extensions,
and the ACP in its full generality.

3 Models and Definitions

Let A be a set of m alternatives and N = {1, . . . , n} a set of voters. Each voter
is equipped with a (strict) preference relation �i , i.e., a complete, transitive, and
asymmetric binary relation on A. We read x �i y as voter i (strictly) preferring
alternative x to alternative y.

A (preference) profile (or an election) is an n-tuple of preference relations and
will be denoted by R := (�1, . . . ,�n). We will sometimes consider the restriction
of �i to a subset of alternatives B ⊆ A, called an agenda. Such a restriction will be
denoted by R|B := (�1|B, . . . ,�n|B).
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3.1 Stochastic Preference Models

In this chapter we consider five of the most common stochastic preference models.
These models vary in their degree of realism. Impartial culture (IC) and impartial
anonymous culture (IAC), for example, are usually considered as rather unrealistic.
However, the simplicity of thesemodels enables the use of analytical tools that cannot
be applied to the other models. IC and IAC typically yield higher probabilities for
paradoxes than other preference models and can therefore be seen as worst-case
estimates (see, e.g., Regenwetter et al. 2006). We only give informal definitions
here; for more extensive treatments see, e.g., Critchlow et al. (1991) and Marden
(1995).

Impartial culture. The most widely-studied distribution is the so-called impartial
culture (IC), under which every possible preference relation has the same probability
of 1

m! . Thus, every preference profile is equally likely to occur.

Impartial anonymous culture. In contrast to IC the impartial anonymous culture
(IAC) is not based on the probabilities of individual preferences but on the prob-
abilities of whole profiles. Under IAC one assumes that each possible anonymous
preference profile on n voters is equally likely to occur. A more formal definition is
given in Sect. 4.1.

Mallows-φ model. In Mallows-φ model, the distance to a reference ranking (or
ground truth) is measured by means of the Kendall-tau distance1 and a parameter
φ is used to indicate the dispersion. The case of φ = 1 means absolute dispersion
and coincides with IC, the case φ = 0 corresponds to no dispersion and every voter
always picks the “true” ranking. We chose φ = 0.8 to simulate voters with relatively
bad estimates, which leads to situations in which paradoxes are more likely to occur.

Pólya-Eggenberger urnmodel. In the Pólya-Eggenberger urn model, each possible
preference relation is represented by a ball in an urn from which individual prefer-
ences are drawn. After each draw, the chosen ball is put back and α ∈ N0 new balls
of the same kind are added to the urn. While the urn model subsumes both impartial
culture (α = 0) and impartial anonymous culture (α = 1), we set α = 10 to obtain
a reasonably realistic interdependence of individual preferences.

Spatial model. In the spatial model alternatives and agents are placed in a multi-
dimensional space uniformly at random and the agents’ preferences are then deter-
mined by the Euclidean distances to the alternatives (closer alternatives are preferred
tomore distant ones). The spatialmodel is considered particularly realistic in political
science where the dimensions are interpreted as different aspects of the alternatives
(Tideman and Plassmann 2012). We chose the simple case of two dimensions for
our analysis.2

1The Kendall-tau distance counts the number of pairwise disagreements.
2In a related study, Brandt and Seedig (2016) have found that the number of dimensions does not
seem to have a large impact on the results as long as it is at least two.
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3.2 Voting Rules

A voting rule is a function f that maps a preference profile to a non-empty set of
winners. For a preference profile R, let gxy := |{i ∈ N : x �i y}| − |{i ∈ N : y �i

x}| denote the majority margin of x against y. A very influential concept in social
choice is the notion of a Condorcet winner, an alternative that wins against any other
alternative in a pairwise majority contest. Alternative x is a Condorcet winner (CW)
of a profile R if gxy > 0 for all y ∈ A \ {x}. Conversely, alternative x is a Condorcet
loser (CL) if gyx > 0 for all y ∈ A \ {x}. Neither CWs nor CLs necessarily exist, but
whenever they do they are unique. A voting rule f is called a Condorcet extension
if f (R) = {x} whenever x is the CW in R.

In the following paragraphs we briefly introduce the voting rules considered in
this chapter.

Borda’s Rule. Under Borda’s rule each alternative receives from 0 to |A| − 1 points
from each voter (depending on the position the alternative is ranked in). The alter-
natives with highest accumulated score win.

MaxiMin. The MaxiMin rule is only concerned with the highest defeat of each
alternative in a pairwise majority contest. It yields all alternatives x which have the
maximal value of miny∈A gxy .

Young’s Rule. Young’s rule yields all alternatives that can be made a CW by remov-
ing a minimal number of voters.

Dodgson’s Rule. Dodgson’s rule selects all alternatives that can be made a CW
by a minimal number of pairwise swaps of adjacent alternatives in the individual
preference relations.

Tideman’s Rule. Tideman’s rulewas introduced as an approximation of Dodgson’s
rule by Tideman (1987). It yields all alternatives x for which the sum of pairwise
majority defeats

∑
y∈A max(0, gyx ) is minimal.

Copeland’s Rule. Copelands’s rule selects all alternatives where the number of
majority wins plus half the number of majority draws is maximal.

Essential Set. Consider the symmetric two-player zero-sum game G given by the
skew-symmetricmatrixwith entries gxy for all pairs of alternatives x, y. The essential
set is the set of all alternatives that are playedwith positive probability in somemixed
Nash equilibrium of G.3

Except forBorda’s rule, all presented voting rules are in factCondorcet extensions.
While Borda’s rule, MaxiMin, and the essential set can be computed efficiently,
Young’s rule and Dodgson’s rule have been shown to be computationally intractable.
The essential set is one of the few voting rules that do suffer from neither the CLP
nor the ACP, and is merely included as a reference. For more formal definitions and
computational properties of these rules, we refer to Brandt et al. (2016).

3These mixed equilibria are also known as maximal lotteries in probabilistic social choice.
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3.3 Voting Paradoxes

In this chapterwe focus on twovoting paradoxeswhose occurrence can be determined
given a voting rule f and a preference profile R.

Let f be a voting rule. Formally, a (voting) paradox is a characteristic function
that maps a preference profile to 0 or 1. In the latter case, we say the paradox occurs
for voting rule f at profile R.

The Condorcet Loser Paradox (CLP) occurs when a voting rule selects the CL as
a winner.

Definition 1 Given a voting rule f the Condorcet loser paradox CLP f is defined as

CLP f (R) =
{
1 if f (R) contains a CL

0 otherwise.

The agenda contraction paradox (ACP) occurs when reducing the set of alterna-
tives, by eliminating unchosen alternatives, influences the outcome of an election.

Definition 2 Given a voting rule f the agenda contraction paradox ACP f is a
paradox defined as

ACP f (R) =
{
1 if f (R|B) �= f (R) for some B ⊇ f (R)

0 otherwise.

4 Quantifying Voting Paradoxes

In this section we present the three general approaches for quantifying voting para-
doxes: the analytical approach via Ehrhart theory, the experimental approach via
computer simulations, and the empirical approach via real-world data.

4.1 Exact Analysis via Ehrhart Theory

Anonymous preference profiles only count the number of voters for each of the m!
possible rankings on m alternatives. An anonymous preference profile can hence be
viewed as an integer point in a space of d := m! dimensions. Formally, the set Sm,n

of anonymous preference profiles on m alternatives with n voters can be identified
with the set of all integer points z = (z1, . . . , zm!) ∈ Z

m! which satisfy
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zi ≥ 0 for all i ∈ {1, . . . ,m!}, and
m!∑

i=1

zi = n.

Under IAC each anonymous preference profile is assumed to be equally likely to
occur. Hence, in order to determine the probability of a paradox under IAC it is
enough to compute the number of points belonging to preference profiles in which
the paradox occurs and compare them to the total number of points in Sm,n , which is
known to be |Sm,n| = (m!+n−1

m!−1

)
.4

In this framework, many paradoxes X can be described with the help of linear
constraints, i.e., the set of points belonging to the event can be described with the
help of (in)equalities, a polytope. For variable n, this approach then describes a
dilated polytope Pn = nP := {nx : x ∈ P}. Hence, we know that the probability of
a paradox Xn under IAC is given by:

P(Xn) = |nP ∩ Z
d |

|Sm,n| .

and we can determine the probability of (many) voting paradoxes under IAC by
evaluating the function L(P, n) := |nP ∩ Z

d |, which describes the number of integer
points inside the dilationnP . This can be donewith the help ofEhrhart theory. Ehrhart
(1962) was the first to show that L(P, n) can be described by special functions,
called quasi- or Ehrhart-polynomials. A function f : Z → Q is a quasi-polynomial
of degree d and periodq if there exists a list ofq polynomials fi : Z → Q (0 ≤ i < q)

of degree d such that f (n) = fi (n) if n ≡ i mod q.
Quasi-polynomials can be determinedwith the help of computer programs such as

LattE (De Loera et al. (2004)) or Normaliz (Bruns et al. (2019a)). Unfortunately,
the computation of our quasi-polynomials is computationally very demanding, espe-
cially because the dimension of the polytopes grows super-exponentially in the num-
ber of alternatives. This limits analytical results under IAC to rather small numbers
of alternatives. To the best of our knowledge, Normaliz is the only program which
is able to compute polytopes corresponding to elections with up to four alternatives.
And even Normaliz is not always able to compute the whole quasi-polynomial, but
sometimes we had to resort to computing the leading coefficients only of the poly-
nomial, which fortunately suffices for determining the limit probability of a paradox
when the number of voters goes to infinity. The problem of calculating the limit
probability is equivalent to computing the volume of polytopes, for which there are
also other software solutions (e.g., Convex by Franz (2016))

An overview of our analytical findings obtained in this way is provided in Table 1.

4For most preference models other than IAC this approach does not work. While for specific com-
binations of (simple) distributions and voting rules there are some highly tailor-made computations
in the literature (cf. Sect. 2), these have to be redesigned for each individual setting.
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Table 1 Theoretical results obtained via Ehrhart theory (for four alternatives and under IAC)

Paradox Voting rule(s) Result

CLP Condorcet extensions upper bound (∀n ∈ N)

MaxiMin probability (∀n ∈ N)

Tideman’s rule limit prob. (n → ∞)

ACP MaxiMin limit prob. (n → ∞)

4.2 Finding a Quasi-polynomial for MaxiMin

As an example for the method just described, we consider the CLPMaxiMin in 4-
alternative elections under IAC, the probabilities of which can be computed from a
quasi-polynomial with degree 23 and a period of 5,040.5

In order to determine the polynomial, we first need to describe the corresponding
polytope with equalities and inequalities. Recall the definition of MaxiMin from
Sect. 3.2:

fMaxiMin(R) := argmax
x∈A

min
y∈A

gxy .

For CLPMaxiMin(R) = 1 the CL of R has to have the lowest highest defeat. Formally,
there is x ∈ A such that for all y ∈ A\{x},

gyx > 0, and (1)

max
z∈A\{x} gzx ≤ max

z∈A\{y} gzy . (2)

Now let A = {a, b, c, d} and assume x = d. We then have that gad , gbd , gcd > 0,
which implies maxz∈A\{d} gzd > 0. Furthermore,

max
z∈A\{y} gzy > 0 for all y ∈ {a, b, c},

from which it follows that either gab, gbc, gca > 0 or gba, gcb, gac > 0. In both cases
there is a majority cycle between a, b, and c. Due to symmetry we can choose one
direction of the cycle arbitrarily and assume gab, gbc, gca > 0. Then,

max
z∈A\{a} gza = gca , max

z∈A\{b} gzb = gab, and max
x∈A\{c} gzc = gac.

Condition (1) is already represented in the form of linear inequalities. In order to
model condition (2) we determine maxz∈A\{d} gzd and distinguish cases for the seven
possible outcomes. The inequalities for the case maxz∈A\{d} gzd = {gad} are

5In theory, the analysis can be adapted to also cover more complex rules (e.g., Dodgson’s and
Young’s rule, which involve solving an integer linear program). It is unclear, however, how one
would translate their definitions to linear inequalities.
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gad − gbd > 0 and gad − gcd > 0.

Condition (2) furthermore yields

gca − gad ≥ 0, gab − gad ≥ 0, and gbc − gad ≥ 0.

Each case belongs to a different polytope and the polytopes are pairwise distinct,
so we can compute each quasi-polynomial separately and later combine them to
one. To get the final polynomial we have to multiply by eight for the four different
possible choices of a CL and the two possible directions of the majority cycle. This
then enables us to efficiently evaluate the exact probabilities for any number of voters.
The results are depicted in Fig. 2. The leading coefficient of the quasi-polynomial
can also be used to determine the limit probability which is given by

P(CLPMaxiMin = 1 | m = 4, n → ∞) = 8 · 485052253637930099

6443662124777472000000
≈ 0.06%.

4.3 Experimental Analysis

As we will see, simulating elections with the help of computers is a viable way of
achieving very good approximations for the probabilities we are looking for. It even
turns out that the results of our simulations are almost indistinguishable from the
theoretical result obtained via Ehrhart theory (with the exception of the limit case,
which cannot be realized via simulations).

More specifically, the experimental approach works as follows: a profile source
creates random preference profiles according to a specific preference model. The
profiles are then used to compute the winner(s) according to a given voting rule and
to determine if the paradox occurs. Any such experiment is carried out for each pair
of n andm and repeated frequently. In many cases in which we covered a wide range
of voters, we did not consider every possible value of n but, more economically, only
simulated the values: 1–30, 49–51, 99–101, 199–201, 499–501, 999–1,001.

Since we are particularly concerned about the statistical significance of our exper-
imental results, we also computed 99%-confidence intervals for each data point we
generated. To this end, we used the binofit function in Matlab which is based
on the standard approach by Clopper and Pearson (1934). It shows that, based on our
sampling rate of 105 and 106, respectively, the 99%-confidence intervals are pleas-
antly small. Hence, even though they are depicted in all of the figures throughout
this chapter, sometimes it can be difficult to recognize them.
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4.4 Empirical Analysis

Themost valuable quantification of voting paradoxes would be their actual frequency
in real-world elections. As mentioned before, real-world election data is generally
relatively sparse, incomplete, and inaccurate. This makes empirical research on this
topic rather difficult. Otherwise, the empirical approach strongly resembles the exper-
imental approach.

For this chapter we used two sources of empirical data. First, we used the 314
profiles with strict order preferences from the PrefLib library (Mattei and Walsh
2013). Second, we had access to the 54,650 preference profiles over four alternatives
without a CW which belong to the roughly 11 million 4-alternative elections which
Mattei et al. (2012) derived from the Netflix Prize data (Bennett and Lanning 2007).
Non-existence of Condorcet winners is a prerequisite for the paradoxes we study.

5 Condorcet Loser Paradox

In this section we present our findings on the CLP. We conclude that—even though
the CLP is possible in principle—it is so unlikely that it cannot be used as a serious
argument against any of the Condorcet extensions we considered.

5.1 An Upper Bound

Before analyzing the CLP for concrete voting rules, we discuss an upper bound valid
for all Condorcet extensions. For a Condorcet extension to choose the CL a profile
obviously has to satisfy two conditions. First, there has to exist a CL in the profile.
Second, no CW may exist in the profile. In the case of 4-alternative elections—
which is the first interesting case—we can compute the quasi-polynomial via Ehrhart
theory and hence know the exact probabilities for any number of voters. Similar to
the example in Sect. 4.1, we can assume that alternative d is the CL and obtain the
inequalities gad , gbd , gcd > 0. The event that none of the remaining alternatives is
the CW can be formalized as

(gba ≥ 0 ∨ gca ≥ 0) ∧ (gab ≥ 0 ∨ gcb ≥ 0) ∧ (gac ≥ 0 ∨ gbc ≥ 0).

This leads to 27 satisfiable cases all belonging to disjoint polytopes, since gxy ≥ 0
and ¬(gxy ≥ 0) are exclusive. Each quasi-polynomial can be computed separately
and (attributing for the four different possible CLs) they can be combined to a single
quasi-polynomial,which has degree 23 and contains 24 polynomials. The coefficients
take up several pages and we omit them here. The resulting probabilities for up to
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Fig. 1 Probability of the event that a Condorcet extension could choose a CL in 4-alternative
elections under IAC

1, 000 voters—and a comparison with the results of an experimental analysis—can
be obtained from Fig. 1. The value of the limit probability is approximately 8%.

Especially for small even numbers of voters, where the probability is around 20%,
the upper bound is too high to discard the CLP for Condorcet extensions altogether,
and even the limit probability of 8% is relatively large. Also, for an increasing number
of alternatives this problem does not vanish (for elections with 50 and 51 one voters
and up to 100 alternatives the probabilities range between 5 and 25%).6

Note that differences between odd and even number of voters were to be expected
since even numbers allow for majority ties, which have significant consequences for
the paradoxes; this effect decreases for larger electorates. In the specific case under
consideration, the upper bound is generally higher for an even number of voters
because the much higher likelihood of not having a CW more than counterbalances
the lower likelihood of having a CL.

5.2 Results Under IAC

Despite the high upper bounds from the previous section, the picture is quite clear for
concrete Condorcet extensions: even under IAC, the risk of the considered Condorcet
extensions selecting the CL is very low, as shown in Fig. 2 for 4-alternative elec-
tions. The highest probability was found for CLPMaxiMin with 2.2% for three voters
(CLPYoung with about 0.9%). The limit probability of CLPMaxiMin, with 0.06% is so
low that for sufficiently large electorates it would occur in only one out of 10,000
elections. The same seems to hold for the limit probability for CLPYoung. The proba-
bility of CLPDodgson is even significantly lower, with a maximum of about 0.01% in

6These upper bounds turn out to be relatively independent from the underlying preference distribu-
tion (among the models we considered, cf. Sect. 5.3).
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Fig. 2 Comparison between CLP probabilities for MaxiMin, Young’s rule (left) and Dodgson’s
rule (right) under IAC in 4-alternative elections

elections with 9,999 voters. We could determine the limit probability of 0.01% only
for an approximation of Dodgson’s rule by Tideman (1987), which seems to be close
to that for Dodgson’s rule, based on our experimental data.

When increasing the number of alternatives the probabilities drop even further.
For elections with more than ten alternatives they reach a negligibly small level of
less than 0.005% for all considered rules and in no simulations with twelve or more
alternatives we could find any occurrence of the paradox.

5.3 Results Under Other Preference Models

Figure 3, as one would expect, shows that under more realistic assumptions the
probability of the CLP decreases further in 4-alternative elections with 50/51 voters,
with the highest probability occurring under the unrealistic assumption of IC and the
lowest probability under what may be the most realistic model in many settings, the
spatial model. In our experiments, Dodgson’s rule never selected a CL in the spatial
model.

Similarly, we could not find any occurrence of the CLP in real-world data, which
may be considered the strongest evidence that the CLP virtually never materializes
in practice.7

7We tested 314 preference profiles with strict orders from the PrefLib library as well as the roughly
11 million 4-alternative elections which Mattei et al. (2012) derived from the Netflix Prize data.
While about 54,000 of those elections were susceptible to the CLP, it never occurred under the rules
we considered in this chapter. In contrast, under plurality it already occurred in twelve out of the
314 PrefLib-instances.
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Fig. 3 CLP probabilities in
4-alternative elections for
varying preference models
and MaxiMin

6 Agenda Contraction Paradox

Recall that the agenda contraction paradox (ACP) occurs when a reduced set of alter-
natives (created by the unavailability of losing alternatives) influences the outcome
of an election. For many cases, it may be considered a generalization of the CLP as
the following argument shows. Suppose the CL x is uniquely selected by a voting
rule which implements majority rule on 2-alternative choice sets. Then restricting A
to {x, y} for some alternative y �= x yields the new winner y (since gxy > 0).

As we will see, the ACP is much more of a practical problem than the CLP. The
picture, however, is not black and white. Whether or not it is a serious threat depends
on the voting rule, the underlying preference distribution, and on the parity of the
number of voters.

6.1 Varying Voting Rules

The ACP probability strongly varies for different voting rules (see Fig. 4). Borda’s
rule generally exhibits the worst behavior of the rules studied, with probabilities
of up to 56%, and with 34% for large electorates with 1, 000 voters. In contrast,
Copeland’s rule is quite robust to the ACP for large electorates (with only about 8%
occurrence probability for 1, 000 voters).8

The reason for this gap between Borda’s and Copeland’s rule appears to be two-
fold: First, Condorcet extensions are safe from this paradox as long as a CW exists;
Borda’s rule, by contrast, is not. Second, the discriminatory power of voting rules
(i.e., their ability to select small winning sets) strongly supports the paradox. As
soon as a single majority-dominated alternative is selected, the ACP has to occur.
For large numbers of voters, this is in line with Copeland’s rule being least discrim-
inating among those evaluated. The essential set is among the most discriminating

8For small even numbers of voters, Copeland’s rule also frequently fails agenda contraction, which
is also visible in Fig. 5 and explains the seemingly high values in Table 2.
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Fig. 4 Comparison between ACP probabilities for different voting rules under IAC

known voting rules immune to the ACP, but presumably less discriminating than
Copeland’s rule.

The behavior of MaxiMin is almost identical to that of Young’s and Dodgson’s
rule. Confirming our approximate “limit” results of 1, 000 voters, we were able
to analytically compute the limit probability for MaxiMin as 331

2048 ≈ 16%. This is
in perfect congruence with the (rounded) values for MaxiMin, Young’s rule, and
Dodgson’s rule.

It should also be noted that with fewer than 100 voters, the parity of the number of
voters plays a major role. For even numbers, significantly higher probabilities arise
(which is particularly true for Copeland’s rule, see above). At least part of this can
be explained by a reduced probability for CWs in these cases.

For more alternatives (see the right-hand side of Fig. 4), the relative behavior
remains vastly unchanged with probabilities further increasing to values larger than
40–80% (mostly since the likelihood of a CW decreases roughly at the same rate).

6.2 Varying Preference Models

Figure 5 extends the analysis of the previous section by additionally considering
preference models beyond IAC. The overall picture regarding the different rules
remains the same. For large electorates Copeland’s rule outperforms the other rules,
whereas Borda’s rule performs worst. Regarding the different preference models,
three classes emerge from Fig. 5.
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Fig. 5 Comparison between ACPBorda, ACPCopeland, ACPMaxiMin, and ACPDodgson for varying
preference models in 4-alternative elections; the values of ACPYoung are omitted since they strongly
resemble the ones of ACPMaxiMin and ACPDodgson

First, for Mallows-φ we observe probabilities that are vanishing with increased
numbers of voters. Under the spatial model this is true as well, with the surprising
exception of Borda’s rule, for which the picture looks completely different and the
probability does not go below 20% in the spatial model. Presumably, this can be
explained by Borda’s inability to select the CW in this setting, a hypothesis that
deserves further study, however. On the contrary, the other rules appear to be bene-
fitting from the fact that the existence of a CW becomes very likely under models
with high voter interdependence.

Second, as expected, the assumption of IC serves as an upper bound for all other
preference models. The results for IAC are not much lower, fostering the impression
that IAC could also be an unrealistic upper bound.
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Table 2 Rounded maximal CLP and ACP probabilities which occurred during our simulations

Third, the urn model yields much lower values compared to IAC and IC. The
absolute numbers, however, are still beyond acceptable levels (between 4 and 23%
for 1,000 voters).

The findings in the empirical data corroborate our experimental findings. In Pref-
Lib the ACP occurs 17 times for Borda, three times for Copeland and exactly once
for MaxiMin as well as Young’s and Dodgson’s rule. In the Netflix data set, where
the number of voters is at least 350, Copeland performs much better than the other
Condorcet extensions (4, 400 compared to 18, 470 occurrences for the other Con-
dorcet extensions). Borda’s rule virtually always suffers from the ACP on this data
set: there are 54, 620 instances of ACPs already when considering profiles that do
not have a CW (there are 54, 650 of such).

7 Conclusion

We investigated the likelihood of the CLP and the ACP using Ehrhart theory, com-
puter simulations, and empirical data. The CLP is often cited as a major flaw of some
Condorcet extensions such asDodgson’s rule, Young’s rule, andMaxiMin. For exam-
ple, Fishburn regards Condorcet extensions that suffer from the CLP (specifically
referring to the three rules mentioned above) as “‘dubious’ extensions of the basic
Condorcet criterion” (Fishburn 1977, p. 480).9 While this is intelligible from a theo-
retical point of view, our results have shown that the CLP is of virtually no practical
concern. The ACP, on the other hand, frequently occurs under various distributional
assumptions about the voters’ preferences. The extent to which it is real threat, how-
ever, strongly depends on the voting rule, the underlying distribution of preferences,
and, surprisingly, the parity of the number of voters. Our main quantitative results
for the worst case are summarized in Table 2.

9Fishburn (1977) actually analyzes violations of “Smith’s Condorcet principle”, which are weaker
than the CLP.
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Other Voting Paradoxes



On the Probability of the Ostrogorski
Paradox

William V. Gehrlein and Vincent Merlin

1 Introduction

Suppose that there are two parties {R, L} that have opposing positions on each of
m different issues that are being considered. Each of n voters has preferences on the
individual issues that are in agreement with the position of either Party R or of Party
L, but a given voter does not necessarily agree with the position of the same party on
every issue. However, a given voter will be considered to have an overall alignment
with a particular party whenever that voter is in agreement with that party’s positions
over a majority of the issues that are being considered. If a voter has preferences
that agree with both Party R and Party L on m/2 issues each when m is even, then
there is a tie and that voter is not considered to be aligned with either party. The
majority party is the one with which the greater number of voters has an overall
alignment, excluding voters that are not aligned with either party. Each issue is voted
on individually, and the outcome of the vote will be in agreement with the position
of either Party R or Party L, based on the outcome of majority rule voting on the
issue. Voters are assumed to vote sincerely on each of the individual issues.

We are interested in developing representations for the probability, PAk
m , that the

voting results on the m different issues produce exactly k outcomes on issues that
are in agreement with the positions of the majority party. PAm

m is the probability that
there is complete agreement between voting outcomes on issues and the majority
party positions. PA0

m is the probability that there is complete disagreement between
voting outcomes on issues and the positions of the majority party. The situation
of complete disagreement is referred to as an occurrence of a Strict Ostrogorski
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Paradox, loosely following some terminology that is introduced in Deb and Kelsey
(1987). The general problem of such disagreement was originally presented in Ostro-
gorski (1902), and it was discussed in Daudt and Rae (1976). This phenomenon is
often referred to in research that is related to paradoxical outcomes that can produce
problems in group decision making. For example, see Brams et al. (1998), Nurmi
(1999), Saari and Sieberg (2001), List (2005) andGehrlein (2006). Laffond andLaine
(2006) consider restrictions on voters’ preferences that preclude the existence of an
occurrence of Ostrogorski’s Paradox. Mbih and Valeu (2016) derive the likelihood
of related paradoxes, Ostrogorski’s Paradox and Anscombe’s Paradox, under the
impartial anonymous culture assumption for m = 3 issues, as a function of n. They
also provide estimations for these paradoxes under the impartial culture assumption
via Monte-Carlo simulations for small values of n.

Values of PAk
m for 0 < k < m represent probabilities of increasingly less para-

doxical outcomes as k increases, with partial agreement between voting outcomes
and the positions of the majority party. Attention is focused on developing these
representations for the limiting case in voters, with n → ∞, when voters form their
preferences on each of the issues independently of the preferences of other voters.
The study begins by considering specific cases with a small number of issues and
then considers general results.

2 The Case of Three Issues

There are 23 =8different possible combinations of voters’ preference agreementwith
party positions on issues with m = 3. Let qi denote the probability that a randomly
selected voter will have the associated ith such combination for 1 ≤ i ≤ 8, as shown
in Table 1.

The probability of complete voter agreement with the positions of Party R (L) for a
randomly selected voter is q1 (q8) in Table 1. Let a= q1 + q8 measure the probability
that a randomly selected voter shows complete agreement with the issue positions
of one of the parties. Such voters can be viewed as staunch supporters of one party’s
positions. There is greater degree of complete voter agreement with party positions
as a increases, but the preferences of the voters will also reflect an increasing degree
of polarization as a increases, since we further assume that q1 = q8 = a/2 so that
neither party has any advantage over the other party. The motivation behind this

Table 1 Feasible voter preferences for sequential elections on three issues

q1 q2 q3 q4 q5 q6 q7 q8

Issue 1 R R R R L L L L

Issue 2 R R L L R R L L

Issue 3 R L R L R L R L

Overall R R R L R L L L
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party parity assumption will be explained in detail later. The remaining six rankings
represent more moderate voters who show less than complete agreement with any
party, with position agreement with some party on two issues and disagreement on
one issue. The parity concept is also used here, since it is assumed that qi = (1 −
a)/6 for 2 ≤ i ≤ 7.

We start the development of a representation for the limiting probability of
complete agreement, PA3

3(a), as n → ∞ for a specified value of a by defining
a binary variable Y j

i for the jth voter, to denote the party association of that voter’s
preference on the ith issue. For Issue 1:

Y j
1 = +1 : q1 + q2 + q3 + q4

− 1 : q5 + q6 + q7 + q8. (1)

This definition of Y j
1 requires that Issue 1 must have an outcome that is in agree-

ment with Party R by majority rule for n voters whenever
∑n

j=1 Y
j
1 > 0 or when the

average value Y j
1 > 0. The definitions of the qi probabilities also lead to the expected

values E
(
Y j
1

)
= 0 and E

(
Y j
1

2
)

= 1 with party parity.

Issues 2 and 3 have corresponding binary variables Y j
2 and Y j

3 with

Y j
2 = +1 : q1 + q2 + q5 + q6

− 1 : q3 + q4 + q7 + q8

Y j
3 = +1 : q1 + q3 + q5 + q7

− 1 : q2 + q4 + q6 + q8. (2)

As above, E
(
Y j
2

)
= E

(
Y j
3

)
= 0 and E

(
Y j
2

2
)

= E
(
Y j
3

2
)

= 1.

Variable Y j
4 is then defined to account for the party alignment of voter j, with

Y j
4 = +1 : q1 + q2 + q3 + q5

− 1 : q4 + q6 + q7 + q8. (3)

Party R will be the majority party if
∑n

j=1 Y
j
4 > 0, or Y j

4 > 0. We also note that

E
(
Y j
4

)
= 0 and that E

(
Y j
4

2
)

= 1 with the adopted definition of the qi probabilities.

Issues 1, 2 and 3 will then each have outcomes that are in majority rule agreement

with Party R,while Party R is themajority partywith the joint probability that Y j
i > 0

for each 1 ≤ i ≤ 4. The qi definitions make this equivalent to the joint probability

that Y j
i

√
n > E

(
Y j
i

√
n
)
for 1 ≤ i ≤ 4 since E

(
Y j
i

)
= E

(
Y j
i

)
= 0 for 1 ≤ i ≤

4. The central limit theorem requires that the distribution of the Y j
i

√
n variables is

multivariate normal as n → ∞, and the corresponding correlation terms for these
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variables are obtained directly from the E
(
Y j
i Y

j
k

)
of the original variables, since

E
(
Y j
i

)
= 0 and E

(
Y j
i

2
)

= 1 for all 1 ≤ i ≤ 4, with:

E
(
Y j
1 Y

j
2

)
= q1 + q2 − q3 − q4 − q5 − q6 + q7 + q8 = (4a − 1)/3

E
(
Y j
1 Y

j
3

)
= q1 − q2 + q3 − q4 − q5 + q6 − q7 + q8 = (4a − 1)/3

E
(
Y j
2 Y

j
3

)
= q1 − q2 − q3 + q4 + q5 − q6 − q7 + q8 = (4a − 1)/3

E
(
Y j
1 Y

j
4

)
= q1 + q2 + q3 − q4 − q5 + q6 + q7 + q8 = (2a + 1)/3

E
(
Y j
2 Y

j
4

)
= q1 + q2 − q3 + q4 + q5 − q6 + q7 + q8 = (2a + 1)/3

E
(
Y j
3 Y

j
4

)
= q1 − q2 + q3 + q4 + q5 + q6 − q7 + q8 = (2a + 1)/3.

(4)

Since the probability of observing any specific value, including zero, in a contin-
uous distribution is equal to zero, the limiting probability as n → ∞ that Issues
1, 2 and 3 have outcomes that are in majority rule agreement with Party R, while
Party R is the majority party is equivalent to the four-variate normal positive orthant

probability, �4(R1), that Y
j
i

√
n ≥ E

(
Y j
i

√
n
)
for 1 ≤ i ≤ 4 with correlation matrix

R1:

R1 =

⎡

⎢
⎢
⎣

1 4a−1
3

4a−1
3

2a+1
3

− 1 4a−1
3

2a+1
3

− − 1 2a+1
3

− − − 1

⎤

⎥
⎥
⎦. (5)

The probability of having complete agreement for the case of three issues with
two parties and a given a is therefore obtained from PA3

3(a) = 2�4(R1), and some
results follow immediately. Since all correlation terms in R1 increase as a increases,
a result from Slepian (1962) can be used to show that PA3

3(a) does not decrease as
a increases. The correlation terms in R1 fit the special case for four-variate normal
positive orthant probabilities in Gehrlein (1979), and it leads to a representation for
PA3

3(a), with

PA3
3(a) = 1

8
+ 3

4π

{

sin−1

(
2a + 1

3

)

+ sin−1

(
4a − 1

3

)}

+ 3

2π2

2a+1
3∫

0

√
1

1 − z2
sin−1

(
4a − 1 − 3z2

4a + 2 − 6z2

)

dz. (6)

For the specific case with a= 1, an exact result is obtained from direct integration
of (6), with PA3

3(1) = 1. Table 2 lists values of PA3
3(a) for each value of a =

0.00(0.10)1.00 that were obtained by numerical integration from (6). The computed
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Table 2 Computed values of PA3
3(a), PA2

3(a), PA1
3(a) and PA0

3(a)

A PA3
3(a) PA2

3(a) PA1
3(a) PA0

3(a)

0.00 0.0877 0.6491 0.2632 0.0000

0.10 0.1499 0.5971 0.2490 0.0040

0.20 0.2097 0.5527 0.2291 0.0085

0.25 0.2396 0.5312 0.2187 0.0104

0.30 0.2697 0.5098 0.2083 0.0121

0.40 0.3314 0.4665 0.1873 0.0148

0.50 0.3959 0.4215 0.1662 0.0164

0.60 0.4648 0.3735 0.1446 0.0170

0.70 0.5407 0.3207 0.1220 0.0166

0.80 0.6282 0.2598 0.0971 0.0149

0.90 0.7392 0.1823 0.0671 0.0114

1.00 1.0000 0.0000 0.0000 0.0000

value for a= 0.25 is also included since this corresponds to the situation in which all
voter preference combinations are equally likely to be observed, which is referred to
as the impartial culture condition (IC) in the general literature.

The voting outcomes on all three issues agree with the position of Party R under

simple majority rule if Y j
i

√
n ≥ E

(
Y j
i

√
n
)
for all i = 1, 2, 3, and Party L is the

majority party if Y j
4

√
n ≤ E

(
Y j
4

√
n
)
. A representation for this probability of the

Strict Ostrogorski Paradox with three issues, PA0
3(a), can be obtained quite easily

by going through the analysis that was presented above while replacing variable Y j
4

with −Y j
4 , which leads to

PA0
3(a) = 1

8
− 3

4π

{

sin−1

(
2a + 1

3

)

− sin−1

(
4a − 1

3

)}

− 3

2π2

2a+1
3∫

0

√
1

1 − z2
sin−1

(
4a − 1 − 3z2

4a + 2 − 6z2

)

dz. (7)

Anexact solution of (7) canbeobtained for the special case ofa = 1,with P0
3 (1) =

0. Computed values of P0
3 (a) are listed in Table 2 for each a = 0.00(0.10)1.00 that

were obtained from numerical integration from (7), alongwith the value for a= 0.25.
These results indicate that the probability of observing a Strict Ostrogorski Paradox
is quite small over the range of all possible values of a.

An alternative representation for P0
3 (a) is found by using a different approach

to the problem that follows Merlin and Tataru (1997), Saari and Tataru (1999) and
Merlin et al. (2000, 2002), with
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PA0
3(a) = 3

2π2

a∫

0

⎧
⎪⎨

⎪⎩

2cos−1
(√

2t+1
8t+1

)

√
2 + 2t − 4t2

− cos−1
(
t+1
2t+1

)

√
2 − t − t2

⎫
⎪⎬

⎪⎭
dt. (8)

This particular representation for P0
3 (a) is useful, since it can be used to find

that the maximum value of P0
3 (a) exists at P0

3 (0.60976) ≈ 0.01702., which is not
equivalent to the IC scenario.

For any a, the sum PA3
3(a) + PA0

3(a) is simply obtained as two times the joint

probability that Y j
i

√
n ≥ E

(
Y j
i

√
n
)
for all i = 1, 2, 3. This joint probability is

the orthant probability of the multivariate normal distribution �3(R2) where all
correlation terms in R2 are obtainable from R1 and are equal to (4a − 1)/3.Using the
three-variate extension of Sheppard’s Theorem of Median Dichotomy (see Johnson
and Kotz 1972, p. 92), it is simple to show that

PA3
3(a) + PA0

3(a) = 2�3(R2) = 1

4
+ 3

2π
sin−1

(
4a − 1

3

)

. (9)

3 The Case of Partial Agreement on Three Issues

Party R will be the majority party, and Issue 1 will have the only election outcome

that is in agreement with the position of Party L if Y j
1

√
n ≤ E

(
Y j
1

√
n
)
and if

Y j
i

√
n ≥ E

(
Y j
i

√
n
)
for 2 ≤ i ≤ 4. This is the same as the joint probability that

Y j
i

√
n ≥ E

(
Y j
i

√
n
)
for 2 ≤ i ≤ 4 minus the probability that Y j

i

√
n ≥ E

(
Y j
i

√
n
)

for 2 ≤ i ≤ 4. The first probability can be obtained directly from the three-variate
extension of Sheppard’s Theorem, and the second probability is �4(R1). We must
also account for the fact that there are three issues that could be the single issue that
is not in agreement with the majority party and for the fact that there are two parties
that could be the majority party. After algebraic reduction, we get a representation
for PA2

3(a) as

PA2
3(a) = 3

8
+ 3

4π

{

sin−1

(
2a + 1

3

)

− sin−1

(
4a − 1

3

)}

− 9

2π2

2a+1
3∫

0

√
1

1 − z2
sin−1

(
4a − 1 − 3z2

4a + 2 − 6z2

)

dz. (10)

An exact integral solution of (10) can be found for the special case of a = 1
with PA2

3(1) = 0. Computed values of PA2
3(a) are listed in Table 2 for each a =
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0.00(0.10)1.00 that were obtained from numerical integration of (10), along with the
value for a= 0.25. A representation for PA1

3(a) is obtained from the identity relation
PA1

3(a) = 1− PA3
3(a) − PA2

3(a) − PA0
3(a). After substituting the representations

from (9) and (10) into this identity relation, algebraic reduction leads to

PA1
3(a) = 3

8
− 3

4π

{

sin−1

(
2a + 1

3

)

+ sin−1

(
4a − 1

3

)}

+ 9

2π2

2a+1
3∫

0

√
1

1 − z2
sin−1

(
4a − 1 − 3z2

4a + 2 − 6z2

)

dz. (11)

An exact integral solution of (11) can be found for the special case of a = 1,
with PA1

3(1) = 0. Computed values of PA1
3(a) are listed in Table 2 for each a =

0.00(0.10)1.00 that were obtained from numerical integration from (11), along with
the value for a = 0.25.

4 The Impact of the Party Parity Assumption

Some discussion is in order regarding the impact of the party parity assumption that
q1 – q8 = a/2 and qi = (1 − a)/6 for 2 ≤ i ≤ 7. The possible voters’ preferences
on party positions on issues in Table 1 indicate that this assumption is equivalent
to saying that the probability that any voter has a given set of preferences on issues
is identical to the probability that the voter has preferences on issues with all of
the R and L entries reversed. This leads to parity in voters’ preferences for issues
positions of Parties R and L such that voters are equally likely to have an overall
party alignment with either party and the majority party is equally likely to be either
party. Situations of this nature with a complete balance of outcome possibilities will
obviously tend to exaggerate the probability that paradoxical events are observed for
large electorates, since the introduction of any consistent bias that favors the position
of either party on the issues will typically lead to a very high probability of complete
agreement with the majority party position on issues as n → ∞. However, such a
parity situation is not a completely implausible scenario, despite the fact that it does
represent an extreme case.

Other more extreme theoretical models can be developed to obtain significantly
greater probabilities that a Strict Ostrogorski’s Paradox is observed. For example,
consider a scenario in which the qi probabilities are obtained with the following
process. Randomly generate two variables, δ and ε, from some probability distri-
bution on the interval [0, 1/8], and let δ(ε) denote the propensity of voters to lean
toward Party R (L) partisanship. Thus, voters are generally more disposed to favor
the issue positions of Party R than Party L whenever δ > ε. The qi probabilities for
a partisanship model can then defined on the basis of δ and ε, as shown in Table 3.
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Table 3 Feasible voter preferences with a partisanship model
1
8 + 3δ 1

8 − δ 1
8 − δ 1

8 − ε 1
8 − δ 1

8 − ε 1
8 − ε 1

8 + 3ε

Issue 1 R R R R L L L L

Issue 2 R R L L R R L L

Issue 3 R L R L R L R L

Overall R R R L R L L L

The definitions from Table 2 lead to E
(
Y j
i

)
= 2(δ − ε) for i = 1, 2, 3 and

E
(
Y j
4

)
= 0. If we suppose without a loss of generality that δ > ε as n → ∞, then

Party R will be the majority rule winner on all issues with probability approaching
one. However, Party R will only be the majority party with probability 0.5 with this

model since E
(
Y j
4

)
= 0, so there is a very significant chance that a Strict Ostrogorski

Paradox will be observed. However, the impact of this striking observation must
be weighed against the relative degree of rationality that this partisanship model
associates with the electorate.

Suppose that δ is significantly greater than ε so that we have a population that
has a strong bias toward adopting the issue positions that are taken by Party R. A
randomly selected voter is very predictably most likely to have preferences that are
in complete agreement with Party R on all issues, which is quite a rational outcome
for this model. Unfortunately, Table 3 then tells us that a randomly selected voter is
least likely to have agreement with Party R on two out of three issues, suggesting an
electorate that displays very odd behavior for a group that is supposedly predisposed
to be highly favorable toward the issue positions of Party R. So, while it is possible
to define such a theoretical model, it falls out of the realm of plausibility.

In the same vein, it is possible to develop other models that give a significantly
large probability of observing other forms of an Ostrogorski Paradox by making
assumptions about different intensities of importance that parties might place on
the passage of the various issues that are being considered. While these models can
indeed fall into the realm of plausibility, they typically rely on the assumption that
the majority party has some subset of issues for which it takes a position, but where
it has a low intensity of concern about the ultimate vote outcome. However, it would
not be particularly paradoxical or disconcerting for the majority party if the minority
party position won on such issues that are considered to be of little importance.

The party parity model that we use in the current study attempts to give an upper
bound on the estimate of the paradox probabilities with a not implausible model
that assumes that the parties take issue positions with a real concern about the voting
outcome on the issues, without making any a priori assumptions that are intentionally
creating a specific situation that is tailored to produce the paradoxical outcome that
is being studied.
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5 The Case of Two Issues

When there are only two issues that are being considered, there are four possible
sets of preferences that each voter might have on issues, as listed in Table 4. The
possibility of ties in determining the party alignment of voters exists with even m,
and no designation for party alignment is made for the voter in such cases.

Let b denote the probability that there is complete agreement between a randomly
selected voter’s preference and the position of the same party on each issue. The
party parity assumption is then applied with t1 = t4 = b/2 and t2 = t3 = (1 − b)/2,
and the special case with b = 1/2 is equivalent to IC.

Following the same general logic that led to the development of the representation
for PA3

3(a), the probability PA2
2(b) is given by 2�3(R3), where

R3 =
⎡

⎣
1 2b − 1

√
b

− 1
√
b

− − 1

⎤

⎦. (12)

As a result of Slepian (1962), PA2
2(b) does not decrease as b increases, and the

three-variate extension of Sheppard’s Theorem leads to

PA2
2(b) = 1

4
+ 1

2π
sin−1(2b − 1) + 1

π
sin−1

(√
b
)
. (13)

We note from identities for special cases that PA2
2(0) = 0, PA2

2(1) = 1 and
PA2

2(1/4) = 1/3. Computed values of PA2
2(b) from (13) are listed in Table 5 for

each value of b = 0.00(0.10)1.00.
The results in Table 5 clearly show that the probability of complete agreement

increases dramatically as b increases for the case of two issues.
Using the logic from earlier arguments, we obtain a representation for the

probability, PA0
2(b), that the Strict Ostrogorski Paradox occurs with two items

PA0
2(b) = 1

4
+ 1

2π
sin−1(2b − 1) − 1

π
sin−1

(√
b
)
. (14)

Direct integration of (14) shows that PA0
2(0) = 0, PA0

2(1) = 0, and PA2
2(1/4) =

0, which suggests that a Strict Ostrogorski Paradox cannot be observed when m =
2. This general result is proved rigorously in Corollary 1 of Deb and Kelsey (1980).

Table 4 Feasible voter preferences for sequential elections on two issues

t1 t2 t3 t4

Issue 1 R R L L

Issue 2 R L R L

Overall R – – L
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Table 5 Computed values of

PA2
2(b) and PA1

2(b)
b P A2

2(b) PA1
2(b)

0.00 0.0000 1.0000

0.10 0.2048 0.7952

0.20 0.2952 0.7048

0.30 0.3690 0.6310

0.40 0.4359 0.5641

0.50 0.5000 0.5000

0.60 0.5641 0.4359

0.70 0.6310 0.3690

0.80 0.7048 0.2952

0.90 0.7952 0.2048

1.00 1.0000 0.0000

We can use this observation with (13) and (14) to obtain a simpler representation
for PA2

2(b) as

PA2
2(b) = 1

2
+ 1

π
sin−1(2b − 1). (15)

It then follows directly from earlier discussion that

PA1
2(b) = 1

2
− 1

π
sin−1(2b − 1). (16)

Then, (15) and (16) require that PA2
2(b) = PA1

2(1 − b), as shown in Table 5.

6 The General Case ofM Issues

The development of these types of representations becomes significantly more
complex as the number of issues increases, since the number of possible combina-
tions of voter agreements with party positions increases as 2m. Attention is therefore
restricted to the IC assumption when we consider m ≥ 4. The initial analysis that
was presented above for the two- and three-issue cases is generalized by defining
m binary variables to determine if the position of Party R is the winner by majority
rule on each issue. Variable Z j

i takes a value of +1 (−1) when the jth voter is in
agreement with the position of Party R (L) on the ith issue. The m variables are
formally defined as

Z j
i = +1 : For j th voter agreement with the position of Party R on Issue i.

− 1 : For j th voter agreement with the position of Party L on Issue i. (17)
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There are an equal number of possible voters’ party position agreement combi-
nations in both the +1 and −1 categories in the variable definitions in (17). Since
each possible combination is equally likely with IC, it then follows directly that

E
(
Z j
i

)
= 0 and E

(
Z j
i

2
)

= 1 for all 1 ≤ i ≤ m.

In order to determine E
(
Z j
i Z

j
k

)
for 1 ≤ I < k ≤ m, we partition the set of all

possible combinations of voter agreements with party positions on issues into 2m−2

subsets of cardinality four such that each of Z j
i and Z j

k can have values of +1 or −1
in each subset, while the party agreements on issues on the remaining m − 2 issues

are identical within each of the subsets. Obviously, E
(
Z j
i Z

j
k

)
= 0 within each of

these subsets with IC, so it follows that E
(
Z j
i Z

j
k

)
= 0 over the entire set of all

possible combinations of voter agreements with party positions. Let ωi,k denote the

correlation between variables Z j
i and Z j

k , and the fact that E
(
Z j
i

)
= 0 for all 1 ≤ i

≤ m coupled with earlier discussion leads to the observation that ωi,k = 0 for all 1
≤ i ≤ k ≤ m.

Variable Z j
m+1 is then defined to denote the contribution that the party alignment

of the jth voter makes toward Party R being the majority party, with

Z j
m+1 = +1 : If j th voter is aligned with Party R

0 : If j th has no party alignment

− 1 : If j th voter is aligned with Party L. (18)

Each of the possible combination of a voter’s party agreement on issues can be
paired with the equally likely combination in which the Party R and L positions are
interchanged. Then, either both members of this pair do not have a party alignment
or one is aligned with Party R while the other is aligned with Party L. It is therefore

obvious that E
(
Z j
m+1

)
= 0 with IC.

If m is odd, ties for party alignment of a voter cannot exist, so it must be true that

E
(
Z j
m+1

2
)

= 1, for odd m. (19)

When m is even, there are exactly Cm
m/2 different combinations of the 2m possible

voter agreements on the m issues for which a voter has no party alignment, with
Z j
m+1 = 0. Since IC assigns an equally likely probability of 1/2m to each possible

combination,

E
(
Z j
m+1

2
)

= 2m − Cm
m/2

2m
, for even m. (20)

Consider the voters’ party agreement on Issue h in the 2m different possible combi-

nations of voter agreements to obtain E
(
Z j
h Z

j
m+1

)
. Half of these combinations have
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an alignment with Party R on Issue h, and this subset is denoted as S(R). There are
Cm−1
i combinations of voter agreements on the remaining m − 1 party positions for

issues in S(R) that will have exactly i issues in agreement with the position of Party
L, and then Party R will then be the majority party if 0 ≤ i ≤ m/2. The total number
of combinations in S(R) for which Party R is the majority party is therefore given by
#S(R), with

#S(R) =
(m−1)/2∑

i=0

Cm−1
i ,for odd m (21)

#S(R) =
(m−2)/2∑

i=0

Cm−1
i , for even m. (22)

The remaining half of the possible combinations have agreement with Party L on
Issue h, and we denote this subset as S(L). There are Cm−1

i combinations that have
exactly i issues in agreement with the position of Party L in the remaining m − 1
issues, and each such combination will have Party R as the majority party if 0 ≤ i
≤ (m − 2)/2. The total number of combinations in S(L) for which Party R is the
majority party is therefore given by #S(L), with

#S(L) =
(m−3)/2∑

i=0

Cm−1
i , for odd m (23)

#S(L) =
(m−4)/2∑

i=0

Cm−1
i , for even m. (24)

The value of variable Z j
h will then be +1 [−1] for each combination of possible

voter agreements in S(R)[S(L)]. The expected value E
(
Z j
h Z

j
m+1

)
with IC is then

obtained from

E
(
Z j
h Z

j
m+1

)
= [(+1)#S(R) + (−1)#S(L)]/2m . (25)

The correlation between Z j
h and Z j

m+1 for all 1 ≤ h ≤ m follows from all of the
above as

ωh,m+1 = Cm−1
(m−1)/2

2m−1
, for all 1 ≤ h ≤ m(odd) (26)

ωh,m+1 = Cm−1
(m−2)/2

√

2m−2
(
2m − Cm

m/2

) , for all 1 ≤ h ≤ m(even). (27)
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Let Wm+1 denote the correlation matrix for the m + 1 variables that are defined
in (17) and (18), with components ωi, j . The neutrality of IC toward the two parties
gives the limiting probability of complete agreement with the majority party when
n → ∞ as PAm

m(IC) = 2�m+1(Wm+1).

7 The General Case ofM Issues—Partial Agreement

Suppose that we are interested in the probability that there is nearly complete agree-
ment, in the sense that only Issue 1 has a majority rule outcome for a party position
that is in disagreement with the majority party. This would be determined by finding
the resulting correlation matrix W 1

m+1 where the signs of the variable values for

Z j
1 are reversed, which would reverse the sign on all correlation terms in Wm+1

that involve Z j
1 . As a result, it is still true that ω1

h,k = ωh,k = 0 for all 1 ≤ h
< k ≤ m and ω1

g,m+1 = ωg,m+1 for all 1 < g ≤ m. The only difference between
W 1

m+1 and Wm+1 is that ω1
1,m+1 = −ω1,m+1. With the neutrality of IC toward the

two parties and the symmetry of IC with respect to the m possible issues that could
be the single issue in disagreement with the majority party position, it follows that
PAm−1

m (IC) = 2m�m+1
(
V 1

m+1

)
.

This logic can easily be extended to the general case in which exactly k issues
have majority rule agreement with party positions that are in disagreement with the
majority party positions. The correlation matrix that is applicable to the associated
probability is W k

m+1, which comes from Wm+1 simply by negating the ωi,m+1 corre-
lation values for 1≤ i ≤ k. The same probability value will be obtained, regardless of
which specific set of k issues are selected to have their ωi,m+1 terms negated in order
to obtain the ω1

i,m+1 values. There are C
m
k different sets of k issues, and there are two

parties that could be the majority party, so PAm−k
m (IC) = 2Cm

k �m+1
(
W k

m+1

)
.

This observation can be extended to produce some interesting results.

Theorem 1 PAm−k
m (IC) ≥ PAk

m(IC), for 0 ≤ k ≤ m/2.

Proof Given the definition ofW k
m+1,ω

k
i, j ≥ ωk∗

i, j for all 1≤ i < j≤m+ 1when k < k*.
This observation is contingent upon the requirement that ωi,m+1 > 0, which is true
from (26) and (27). It then follows from Slepian (1962) that�

(
W k

m+1

) ≥ �
(
W k∗

m+1

)
.

Given thatCm
k = Cm

m−k , 2C
m
k �

(
W k

m+1

) ≥ 2Cm
m−k�

(
Wm−k

m+1

)
if k ≤ m/2. QED.

Theorem 2 PAm−k
m (IC) + PAk

m(IC) = Cm
k

(
1
2

)m−1
for m ≥ 2 with 0 ≤ k ≤ m.

Proof The limit probability PAm−k
m (IC) is obtained from the positive orthant prob-

ability �m+1
(
W k

m+1

)
, which is the probability that Party R is the majority party and

that there are exactly k majority rule outcomes on issues that are in disagreement
with the position of Party R. This orthant probability can alternatively be obtained
as the difference in two probabilities. The first of these probabilities represents the
situation in which there are exactly k majority rule outcomes on issues that are in
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disagreement with the position of Party R. This situation makes no determination of
the majority party, and the associated correlation matrix Zm on this joint distribution
is obtained from W k

m+1 by removing all correlation terms that are related to Z j
m+1.

Given the definition of W k
m+1, all correlations in Zm are equal to zero, which gives

�m(Zm) = (
1
2

)m
.

We then subtract the second probability that there are exactly k majority rule
outcomes on issues that are in disagreement with the position of Party R, when Party
L is the majority party. This second probability is obtained by using the assumptions
that led to the development of �m+1

(
W k

m+1

)
, except that the signs on variable Z j

m+1

are reversed. This reverses the signs on all correlation terms that involve Z j
m+1 and

leads to an associated positive orthant probability that is equivalent to�m+1
(
Wm−k

m+1

)
.

As a result, we find that

�m+1
(
W k

m+1

) =
(
1

2

)m

− �m+1
(
Wm−k

m+1

)

2Cm
k �m+1

(
W k

m+1

) = Cm
k

(
1

2

)m−1

− 2Cm
k �m+1

(
Wm−k

m+1

)

2Cm
k �m+1

(
W k

m+1

) + 2Cm
m−k�m+1

(
Wm−k

m+1

) = Cm
k

(
1

2

)m−1

. QED

A related observation then follows directly from the proof of Theorem 2.

Corollary 1 PAm/2
m (IC) = Cm

m/2

(
1
2

)m
for all even m ≥ 2.

8 The Case of Four Issues with IC

Some results can be obtained for Pk
m(IC) in the special case of four issues. Corollary

1 directly leads to P2
4 (IC) = 3/8. A representation can be obtained the for limit

probability PA4
4(IC) from the identity PA4

4(IC) = 2�5(W 5). Representations
for multivariate normal positive orthant probabilities generally become extremely
complex in cases with more than four variables, except for special cases in which
very restrictive conditions can be placed on the associated correlation matrix for the
distribution.

A reasonable representation is obtained for �5(W 5) by appealing to Boole’s
equation (see Johnson and Kotz 1972, p. 52), which describes a procedure that can
be used to express positive orthant probabilities with an odd number of dimensions in
terms of a linear combination of positive orthant probabilities with fewer dimensions.
With the correlation matrix W 5, Boole’s equation results in
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�5(W5) = 1

2

[

1 − 5

(
1

2

)

+ {6�2(Z2) + 4�2(U2)}
−{4�3(Z3) + 6�3(U3)} + {�4(Z4) + 4�4(U4)}] (28)

Here, Z j denotes a correlation matrix for a distribution on j variables with all
correlation terms are equal to zero, as above. The correlation matrix U j is defined

on j variables with terms ui,h = 0 for all 1 ≤ i < h < j and ui, j =
√

9
40 for all 1 ≤ i

≤ j − 1. The term
√

9
40 is obtained from (27).

Sheppard’s Theorem can be used to obtain simple representations for �2(U2)

and �3(U3), while �4(U4) is a special case of a representation that is considered in
Gehrlein (1979). After substitution and algebraic reduction, (28) reduces to

�5(W 5) = 1

32
+ 1

4π
sin−1

(√
9
40

)

+ 3

2π2

√
9
40∫

0

√
1

1 − z2
sin−1

( −z2

1 − 2z2

)

dz. (29)

Using the fact that PA4
4(IC) = 2�5(W 5) with (29) yields

PA4
4(IC) = 1

16
+ 1

2π
sin−1

(√
9
40

)

− 3

π2

√
9
40∫

0

√
1

1 − z2
sin−1

(
z2

1 − 2z2

)

dz ≈ 0.1245.

(30)

Numerical integration is used to obtain the value of 0.1245 for PA4
4(IC) from

(30).
Theorem 2 can then be used in conjunction with (30) to obtain a representation

for PA0
4(IC), with

PA0
4(IC) = 1

16
− 1

2π
sin−1

(√
9
40

)

+ 3

π2

√
9
40∫

0

√
1

1 − z2
sin−1

(
z2

1 − 2z2

)

dz ≈ 0.0005.

(31)

Attention is turned to the situation in which there is only partial agreement with
four issues, with the development of a representation for PA3

4(IC). Issue 1 will have
the only majority rule outcome that is in disagreement with the issue position of the

majority party, Party R, when both Z j
1

√
n ≤ E

(
Z j
1

√
n
)
and Z j

i

√
n ≥ E

(
Z j
i

√
n
)

for each 2 ≤ i ≤ 5. This probability is equivalent to the probability that Z j
i

√
n ≥
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E
(
Z j
i

√
n
)
for each 2≤ i≤ 5minus the probability that Z j

i

√
n ≥ E

(
Z j
i

√
n
)
for each

1 ≤ i ≤ 5, which is �4(U4)−�5(W 5). There are four issues that could be the single
issue that is in disagreement with the issue position of the majority party, and there
are two parties that could be the majority party. The symmetry of IC with respect to
issues and parties leads to the conclusion that PA3

4(IC) = 8{�4(U4) − �5(W 5)}.
After performing all necessary substitution and algebraic reduction,

PA3
4(IC) = 1

4
+ 1

π
sin−1

(√
9
40

)

+ 6

π2

√
9
40∫

0

√
1

1 − z2
sin−1

(
z2

1 − 2z2

)

dz ≈ 0.4406.

(32)

A representation for the remaining probability PA1
4(IC) can be obtained from

the identity relationship
∑4

i=0 PAi
4(IC) = 1, which leads to

PA1
4(IC) = 1

4
− 1

π
sin−1

(√
9
40

)

− 6

π2

√
9
40∫

0

√
1

1 − z2
sin−1

(
z2

1 − 2z2

)

dz ≈ 0.0594.

(33)

9 Conclusion

The possibility of the existence of a Strict Ostrogorski Paradox presents a very inter-
esting phenomenon that could lead to very unsettling outcomes in group decision-
making situations. However, this phenomenon cannot exist in two-issue voting situ-
ations for any n. When three-issue situations are considered, the results of Table
2 indicate that the probability of such an outcome never reaches as much as a two
percent for large electorates, regardless of the propensity of voters to align their views
with the standards of political parties. The results of (31) indicate that the probability
of observing a Strict Ostrogorski Paradox in four-issue situations is nearly zero with
IC for large electorates.

Given our discussion regarding the propensity of models with the assumption
of part parity to exaggerate the likelihood that such paradoxical outcomes will be
observed, we can conclude that it is very unlikely that a Strict Ostrogorski Paradox,
or any other extreme form of Ostrogorski’s Paradox, would ever be observed in any
real situation with large electorates over the range of the number of issues that we
have been considering.

An alternative approach to the problem of deriving these probability representa-
tions in the limit as n → ∞ that was mentioned previously has been used to obtain
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alternative forms to verify numerical results from all of the representations that are
given above form= 2, 3, 4. Details of these derivations are available from the authors
upon request.
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Violations of Reversal Symmetry Under
Simple and Runoff Scoring Rules

Raouia Belayadi and Boniface Mbih

1 Introduction

A story reported by Donald Saari (1995) is about a situation that once happened in
his department: when asked to give a preference ordering on a set of alternatives,
every member of the department misunderstood the instructions given by the chair,
and ranked their top-ranked alternative first, the second-ranked second and so forth,
while the chair expected the opposite. Saari concludes the story with the following
words : “Instead of holding still another election (whichwe did), it was suggested that
we reverse the original election outcome. After all, if everyone reverses their rank-
ing, then surely the outcome also should be reversed”. As another example, consider
the following situation: Suppose the inhabitants of a municipality are enthusiastic
after they have been informed of an entrepreneur′s desire to set up an activity in
their region (for example because this will provide jobs to unemployed persons).
They are then asked by the mayor to vote on one location for the installation of the
activity, among three possibilities, a, b, and c. Initially believing that the activity is a
commercial mall, each inhabitant ranks the proposed sites in favor of those closest to
her place of residence. One site, say a, is selected. Then, suppose the inhabitants are
later informed that the activity is in fact a plant susceptible to emit pollution. They
still accept the activity (for the same reason as above), but they now rank the sites
in favor of those farthest from their place of residence. By so doing each individual
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reverses her ranking of the sites and if a is again selected, then reversal symmetry is
violated. To put it another way, reversal symmetry requires that if some candidate is
elected and then each voter reverses her preference order, then that same candidate
must not be elected.
This notion was first introduced by Saari (1995). He presents it as a natural extension
of neutrality; neutrality means that when all individual preferences concerning two
alternatives are reversed, then the social ranking of those two alternatives also should
be reversed. Saari and Barney (2003) focus on scoring rules; these are voting rules in
which voters give each alternative a score from a given list, the scores are then added
for each alternative and the alternative with the highest total is elected. In particular,
they provide an example showing that in three-candidate elections, the only scoring
rule that does not violate reversal symmetry is the Borda rule. A formal proof of this
statement in the general case of m alternatives can be found in Llamazares and Peña
(2015). Now, since all scoring rules, except Borda rule, violate reversal symmetry,
does this violation often occur ? This is the problem tackled by Guèye (2014), for
two specific rules, namely plurality and plurality with runoff ; he computes, under
a specific probabilistic assumption (see IAC below), the frequency of violation of
reversal symmetry for these two rules. In the context of committee selection Bub-
boloni et al. (2019) compare two extensions of the Simpson voting rule according to
their ability to satisfy a set of social choice axioms, among which reversal symmetry,
which they call “reversal bias”; they provide frequencies of violations of reversal
symmetry by those extensions rules, both in the single winner and multi winner
frameworks, under the IAC hypothesis. In this paper, we consider scoring rules,
especially plurality and plurality with runoff, anti-plurality and anti-plurality with
runoff, and the runoff version of the Borda rule; moreover, we provide frequencies
of violation of reversal symmetry for all possible scoring rules for large electorates,
and more precisely when the number of voters tends to infinity,

This work is organized as follows. The next section introduces some notations
and presents the main definitions. Section 3 is devoted to the study of violations
of reversal symmetry in universal domain, that is when individuals are allowed to
report any possible preference order; Sect. 4 studies reversal symmetry in bipolar
domain, a restricted domain where alternatives can be divided into two groups and
each individual prefers all alternatives of one group to each alternative of the other
group; finally, Sect. 5 concludes the paper.

2 Preliminaries

We consider a finite set N of n, n ≥ 2, individuals, or voters. Each voter i is assumed
to report a linear order, that is a complete, anti-symmetric and transitive binary
relation Ri on a finite set A of alternatives, or candidates. A profile is an n−tuple
(R1, . . . ,Rn) of individual preferences. A voting rule is a mapping the domain of
which is the set of all possible profiles, and the range of which is the set A of
alternatives. A scoring voting rule assigns a vector of weights or a scoring vector
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w = (w1,w2, . . . ,wm) to each voter’s first, second, …and mth ranked alternative in
a profile, with wh ≥ wh+1 for all h = 1, . . . ,m − 1, w1 > wm, and then the winning
alternative is the one with the greatest sum of weights over the set of voters. For
scoring rules with runoff, the two alternatives with the greatest scores are selected
for a second round, where a simple majority rule determines the winner. In the sequel
we will use the standard notation where w1 = 1 and wm = 0. Then, plurality rule
(also known as the widely used first-past-the-post voting system) is the scoring rule
where w1 = 1 and wh = 0 for all h = 2, . . . ,m, the anti-plurality rule is defined by
wh = 1 for all h = 1, . . . ,m − 1, and wm = 0 and the Borda rule by wh = m−h

m−1 for
all h = 1, . . . ,m; clearly, for m = 3, all possible scoring rules are based on scoring
vectors (1, λ, 0), with λ ∈ [0, 1], and for instance plurality, anti-plurality and Borda
rules are based on scoring vectors (1, 0, 0), (1, 1, 0), and (1, 1

2 , 0), respectively. The
reverse of a linear order R is the linear order R′ such that for all x, y ∈ A, xR′y if
and only if yRx. Given some original profile π , we shall denote its reverse by the
profile π−1 where all individual preferences in π have been reversed. A voting rule F
satisfies reversal symmetry if for all possible profiles π and π−1 such that π �= π−1,
F(π) �= F(π−1). Example 1 below illustrates violations of reversal symmetry by
scoring rules.

Example 1 Consider 100 voters, 3 alternatives a, b, and c, a profile π and its
reverse π−1. For these two profiles, we can determine the winner under all possible
scoring voting rules.

π :
score number of voters

9 22 21 21 20 10
1 a a b b c c
λ b c a c a b
0 c b c a b a

We then compute the total score of each alternative:

number of voters→ 9 22 21 21 20 10 total score

score of a 9 22 21λ 20λ 31 + 41λ
score of b 9λ 21 21 10λ 42 + 19λ
score of c 22λ 21λ 20 10 30 + 43λ

π−1:
score number of voters

10 21 20 22 21 9
1 a a b b c c
λ b c a c a b
0 c b c a b a
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Again, the total scores are given below:

total score
nb of voters→ 10 21 20 22 21 9

score of a 10 21 20λ 21λ 31 + 41λ
score of b 10λ 20 22 9λ 42 + 19λ
score of c 21λ 22λ 21 9 30 + 43λ

First note that in our example, for each alternative the total score is the same in
π and in π−1, which means that the winning candidate is the same in both profiles.
The reader can easily check that for all λ < 1

2 , alternative b is the winner in both
profiles. Similarly, with λ > 1

2 , c is the winner in both profiles. And this shows that
reversal symmetry is violated for all λ �= 1

2 . In other terms, every scoring rule other
than the Borda rule violates reversal symmetry. Also note that the social ranking in
both profiles is bac if λ < 1

2 and cab if λ > 1
2 , which illustrates the violation of the

axiom not only in single-seat elections, but also if the goal is to determine the social
ranking from individual preferences.

Now, admitting that reversal symmetry is a good property for a voting rule (since as
explained by Schulze (2011) its violation means that voting to determine the socially
best as well as the socially worst alternatives produces the same outcome), should we
be so much worried by the possibility of violation of this property by a voting rule ?
Indeed, if cases of violation are not so frequent, there is no real reason to care about
that; but on the contrary maybe should we be careful about the outcome of voting if
this often occurs. That is the main concern of this paper.We evaluate the frequency of
violation of reversal symmetry by scoring rules. More precisely, for each rule under
consideration we compute the proportion of preference profiles at which reversal
symmetry is violated. Notice that no strategic behavior is taken into account in our
analysis since we are only interested in reported preferences, and for intuition, the
reader can consider those preferences as sincere ones. We consider two alternative
usual assumptions: impartial culture (IC) and impartial anonymous culture (IAC).
Under the former assumption, profiles are defined as above, that is, two profiles are
different as soon as two individuals interchange their preferences, which means that
the names of the voters matter. Under the latter assumption, profiles are anonymous,
in the sense that we do not care about which voter reports some given preference
relation, the sole criterionwe use to distinguish two anonymous profiles is the number
of voters who report every preference relation. To distinguish anonymous profiles
from usual profiles, we shall call the former voting situations. It is also worth noting
that, as a difference with IC, IAC entails some dependence between voters’ opinions.
These two models are commonly used to evaluate the frequency of paradoxes, and
their properties have been extensively studied in the literature, see for example (Berg
1985; Lepelley et al. 2008; Regenwetter et al. 2006; Gehrlein and Lepelley 2011,
2017, among others). In both cases, we assume equiprobability of profiles (under IC)
and of voting situations (under IAC). Then, the frequency of violation of reversal
symmetry is given by the following ratio:
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number of profiles (resp. of voting situations)

Frequency =
at which reversal symmetry is violated

total number of profiles (resp. of voting situations)

We shall come back to computation techniques in the next section.

3 Reversal Symmetry in Universal Domain

In universal domain we consider all logically possible profiles and voting situations.
With m alternatives, the total number of preference relations (linear orders) is m!,
and the total number of profiles is (m!)n. Then, under the IC assumption, in order to
compute the value of the frequency, we have to determine the value of the numerator,
that is the number of profiles at which the voting rule under study violates reversal
symmetry. That number is obtained by complete computer enumeration, and fre-
quencies are computed as the ratio of that number and the total number of profiles.
Under the IAC assumption, every preference relation is numbered, from 1 tom!, and
every voting situation describes the number of voters reporting each preference rela-
tion; it can be written as anm!−tuple s = (n1, n2, . . . , nm!),

∑k=m!
k=1 nk = n, where for

all k = 1, . . . ,m!, nk is the number of voters who report preference relation number
k. Considering voting situations instead of profiles amounts to ranking profiles into
equivalence classes in which every type of preference relation is reported by exactly
the same number of voters for all distinct profiles in the class. Let S be the set of all
possible voting situations for a given number n of voters and a given number m of
candidates. The cardinality of S, denoted |S|, is the total number of voting situations,
given by the formula:

|S| =
(
n + m! − 1
m! − 1

)

The first subsection of this section is devoted to the computation of the frequency of
violation of reversal symmetry for the five voting rules mentioned in the introduction
of this paper. Then in Sect. 3.2 we consider the infinite electorate in the three-
candidate case.

3.1 Violations of Reversal Symmetry According to the
Number of Voters

With A = {a, b, c} we have m = 3, and the following six linear orders:

R1 = abc; R2 = acb; R3 = bac;
R4 = bca; R5 = cab; R6 = cba.
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Every possible voting situation can then be written as (n1, n2, n3, n4, n5, n6), and its
reverse as (n6, n4, n5, n2, n3, n1). Then, our first task is to determine, for each of the
scoring rules under consideration, the set of all voting situations (and all profiles)
that lead to the same outcome as their reverses. And from this set—and the sets of
all possible profiles and situations as well—we remove the set of situations that are
identical to their reverses, since in such cases having the same outcome is clearly
not surprising, and this is an additional difference with Guèye (2014), who does not
take this difficulty into consideration. For a scoring rule based on the scoring vector
(1, λ, 0), let Sa

λ be the subset of S at which alternative a is elected at some situation
and its reverse, and Sλ the subset of S at which the same candidate is elected at some
situation and its reverse; clearly, Sλ can be written as the union of the three following
disjoint sets:

1. a is the winner (Sa
λ) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n1 + n2 + λn3 + λn5 > λn1 + n3 + n4 + λn6 (a.1)

n1 + n2 + λn3 + λn5 > λn2 + λn4 + n5 + n6 (a.2)

λn3 + n4 + λn5 + n6 > λn1 + n2 + n5 + λn6 (a.3)

λn3 + n4 + λn5 + n6 > n1 + λn2 + n3 + λn4 (a.4)

n1 + n2 + n3 + n4 + n5 + n6 = n

2.b is the winner (Sb
λ) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λn1 + n3 + n4 + λn6 > n1 + n2 + λn3 + λn5 (b.1)

λn1 + n3 + n4 + λn6 > λn2 + λn4 + n5 + n6 (b.2)

λn1 + n2 + n5 + λn6 > λn3 + n4 + λn5 + n6 (b.3)

λn1 + n2 + n5 + λn6 > n1 + λn2 + n3 + λn4 (b.4)

n1 + n2 + n3 + n4 + n5 + n6 = n

3. cis the winner (Sc
λ) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λn2 + λn4 + n5 + n6 > n1 + n2 + λn3 + λn5 (c.1)

λn2 + λn4 + n5 + n6 > λn1 + n3 + n4 + λn6 (c.2)

n1 + λn2 + n3 + λn4 > λn3 + n4 + λn5 + n6 (c.3)

n1 + λn2 + n3 + λn4 > λn1 + n2 + n5 + λn6 (c.4)

n1 + n2 + n3 + n4 + n5 + n6 = n

Inequality (a.1) says that a beats b, that is, the score of alternative a is strictly
greater than the score of alternative b; this means that, for the sake of simplicity,
we ignore all voting situations (and profiles) at which there are ties between candi-
dates: we only consider voting situations where there are unambiguous winners; and
every other inequality can be interpreted similarly. From the set of all those voting
situations (resp. profiles), we remove the situations (resp. profiles) that are identical
to their reverses. These latter voting situations are described by the following set of
equalities:
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S ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n1 = n6
n2 = n4
n3 = n5
n1 + n2 + n3 + n4 + n5 + n6 = n

It remains to compute the cardinalities of all these sets. Note that, clearly,∣
∣Sa

λ

∣
∣=

∣
∣Sb

λ

∣
∣=

∣
∣Sc

λ

∣
∣. It then suffices to compute

∣
∣Sa

λ

∣
∣ and to multiply the result by 3.

∣
∣Sa

λ

∣
∣

is equal to the number of solutions of the corresponding system of linear inequalities.
We use the same techniques as inmany previous works (Gehrlein and Fishburn 1976;
Lepelley and Mbih 1994; Regenwetter et al. 2006, among others). These techniques
allow to compute the number of solutions of a system of linear inequalities. A system
of linear inequalities defines a combination of convex polytopes in a lattice of ratio-
nal points. Then, computing the cardinality of Sh

λ, h ∈ {a, b, c} amounts to counting
the number of integer solutions of the corresponding system of inequalities; such a
computation yields pseudo-polynomials, that is polynomials in which constant coef-
ficients vary according to the modulos of the size parameters. Further, our results are
checked by complete computer enumeration, for small values of n.
We begin with the set of all situations that are identical to their reverses. The number
of all such situations is given in Proposition 1. Notice that such situations occur only
when n is even. Further, the results given in all propositions in this text are obtained
under the IAC assumption. The results under IC given in the tables are all obtained
by complete computer enumeration.

Proposition 1 For all strictly positive even values of n, the number of voting situa-
tions identical to their reverses is

∣
∣S ′∣∣ = (n + 4)(n + 2)

8
.

It follows that, subtracting this number from the total number of situations gives
the denominator we will use in universal domain for all even values of n and for all
voting rules, that is:

|S| − ∣
∣S ′∣∣ = n(n + 2)(n + 4)(n2 + 9n + 23)

120

while the total number |S| of situations will be used for all odd values of n.
With λ = 0, that is under plurality rule, the number of situations at which reversal

symmetry is violated when alternative a is the winner is obtained from system Sa
λ

above; that number is then multiplied by 3, and the result is given in Proposition 2.
A very similar approach is used for all other rules for the subsequent propositions.
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Proposition 2 Suppose n is the number of voters in the society. Then, under the
plurality rule the number of voting situations leading to the same outcome as their
reverses is given by

|S0| =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(n+5)(n+3)(2n2−n+17)
2592 if n ≡ 1 mod 6

(n−2)(n+4)(2n3+9n2−42n−292)
2592 if n ≡ 2 mod 6

(n−3)(n+5)(n+3)(2n2+3n+27)
2592 if n ≡ 3 mod 6

(n+2)(2n4+9n3+6n2−92n+480)
2592 if n ≡ 4 mod 6

(n−5)(2n+5)(n+7)(n+1)2

2592 if n ≡ 5 mod 6
n(2n4+13n3+24n2−144n−216)

2592 if n ≡ 6 mod 6

Note that in Proposition 2, for all n ∈ {0, 1, 2, 3, 5}, |S0| = 0. Thus, for all those
values of n, under plurality, there is no voting situation leading to the same outcome
as its reverse; but this does not mean that for all those values and more precisely
for the only even value n = 2 there is no voting situation identical to its reverse; for
example, the reader can easily check that for n = 2 there are three voting situations
s1 = (0, 0, 1, 0, 1, 0), s2 = (0, 1, 0, 1, 0, 0), and s3 = (1, 0, 0, 0, 0, 1) such that s1 =
s−1
1 , s2 = s−1

2 and s3 = s−1
3 . Thus, removing these three voting situations from the set

of voting situations at which reversal symmetry is violated would lead to a negative
number. This is so because all those voting situations—where there are ties—are ab
initio out of the range of our analysis because we only consider voting situations
at which there are strict winners. But for none of these voting situations is reversal
symmetry violated since according to the three systems of inequalities Sa

λ , S
b
λ and Sc

λ

we rule out voting situations like s1, s2 and s3 where there is no unambiguous winner.
As a consequence and more generally, removing them from the set Sλ, 0 ≤ λ ≤ 1,
would amount to a double-counting. It follows that the set (and the number) of
voting situations identical to their reverses when some candidate, say a, is elected,
will depend on the voting rule under use; to illustrate, when n = 2 and candidate a is
elected, the reader can check that the set of all such situations is empty under plurality
rule as noted above, but is the singleton {(0, 0, 1, 0, 1, 0)} under anti-plurality rule.

More generally, for any possible simple scoring voting rule, the set S
′a
λ of all voting

situations identical to their reverses when alternative a is the winner is given by

S
′a
λ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 + n2 + λn3 + λn5 > λn1 + n3 + n4 + λn6
n1 + n2 + λn3 + λn5 > λn2 + λn4 + n5 + n6
λn3 + n4 + λn5 + n6 > λn1 + n2 + n5 + λn6
λn3 + n4 + λn5 + n6 > n1 + λn2 + n3 + λn4
n1 = n6, n2 = n4, n3 = n5
n1 + n2 + n3 + n4 + n5 + n6 = n

For plurality rule, when n is even and a, b, or c are elected, the number of all voting
situations similar to those described by the preceding set of linear inequalities is
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∣
∣S ′

0

∣
∣ = 3|S ′a

0 | =
{

(n−2)(n+4)
8 if n ≡ 2 mod 6

n(n+2)
8 otherwise

and for anti-plurality

∣
∣S ′

1

∣
∣ = 3|S ′a

1 | =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2+4n+12
8 if n ≡ 2 mod 12

n2+4n−8
8 if n ≡ 4 mod 12

n2+4n+12
8 if n ≡ 6 mod 12

n(n+4)
8 if n ≡ 8 mod 12

(n+2)2

8 if n ≡ 10 mod 12
n(n+4)

8 if n ≡ 12 mod 12

And after removing all situations identical to their reverses when a, b or c are
elected, we obtain the number of voting situations at which reversal symmetry is
violated:

|S0| − ∣
∣S ′

0

∣
∣ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(n+5)(n+3)(2n2−n+17)
2592 if n ≡ 1 mod 6

(n−2)(n+4)(2n3+9n2−42n−616)
2592 if n ≡ 2 mod 6

(n−3)(n+5)(n+3)(2n2+3n+27)
2592 if n ≡ 3 mod 6

(n+2)(n−4)(2n3+17n2+74n−120)
2592 if n ≡ 4 mod 6

(2n+5)(n+7)(n−5)(n+1)2

2592 if n ≡ 5 mod 6
n(2n4+13n3+24n2−468n−864)

2592 if n ≡ 6 mod 6

for plurality, and

|S1| − ∣
∣S ′

1

∣
∣ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(n+2)(n+5)(11n2+44n−7)
6480 if n ≡ 1 mod 12

(n−2)(n+4)(2n3+9n2−42n−616)
6480 if n ≡ 2 mod 12

(n+3)(11n4+77n3+219n2+243n+810)
6480 if n ≡ 3 mod 12

(11n5+110n4+290n3−830n2−3280n−7360)
6480 if n ≡ 4 mod 12

(n+1)(11n4+99n3+351n2+629n+1230)
6480 if n ≡ 5 mod 12

11n5+110n4+450n3+90n2−1296n−3240
6480 if n ≡ 6 mod 12

(n+5)(n−1)(n+2)(11n2+44n−7)
6480 if n ≡ 7 mod 12

(n+4)(11n4+66n3+186n2−574n+1320)
6480 if n ≡ 8 mod 12

(n+3)(11n4+77n3+219n2+243n+810)
6480 if n ≡ 9 mod 12

(n+2)(11n4+88n3+114n2−1058n−1180)
6480 if n ≡ 10 mod 12

(n+1)(11n4+99n3+351n2+629n+1230)
6480 if n ≡ 11 mod 12

n(11n4+110n3+450n2+90n−1296))
6480 if n ≡ 12 mod 12

for anti-plurality.
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It clearly appears that for all n < 6, |S0| − ∣
∣S ′

0

∣
∣ = 0, while |S1| − ∣

∣S ′
1

∣
∣ = 0 for all

n < 3. Also note that for anti-plurality, the periodicity of polynomials is equal to 6
for odd values of n, but is equal to 12 for even values. The frequencies of violation
of reversal symmetry for these two rules are given in Propositions 3 and 4. For
every scoring vector (1, λ, 0), fλ(n) will denote the frequency of violation of the
corresponding simple scoring rule.
We start with the plurality rule.

Proposition 3 Suppose n is the number of voters in the society. Then, the frequency
of violation of reversal symmetry by plurality rule under IAC is given by

f0(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5(n−1)(2n2−n+17)
108(n+4)(n+2)(n+1) if n ≡ 1 mod 6

5(n−2)(2n3+9n2−42n−616)
108n(n+2)(n2+9n+23) if n ≡ 2 mod 6
5(n−3)(2n2+3n+27)
108(n+4)(n+2)(n+1) if n ≡ 3 mod 6

5(n−4)(2n3+17n2+74n−120)
108n(n+4)(n2+9n+23) if n ≡ 4 mod 6

5(n−5)(n+1)(2n+5)(n+7)
108(n+5)(n+4)(n+3)(n+2) if n ≡ 5 mod 6

5(2n4+13n3+24n2−468n−864)
108(n+2)(n+4)(n2+9n+23) if n ≡ 6 mod 6

The formulas in Proposition 3 clearly indicate that for all n such that 1 ≤ n ≤ 5,
the plurality rule does not violate reversal symmetry; this fact appears in Table 1
with values of frequencies equal to 0. By contrast, as soon as the number of voters
is equal to at least six, then violation of that property is susceptible to occur, up to
10
108 ≈ 9.26%, as the number of voters tends to infinity. The next step is about anti-
plurality rule, and then about scoring rules with runoff. Proposition 4 summarizes
the frequencies for anti-plurality rule.

Proposition 4 Suppose n is the number of voters in the society. Then, the frequency
of violation of reversal symmetry by anti-plurality rule under IAC is given by

f1(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(11n2+44n−7)
54(n+4)(n+3)(n+1) if n ≡ 1 mod 12

(n−2)(11n4+132n3+714n2+1598n+2220)
54n(n+2)(n+4)(n2+9n+23) if n ≡ 2 mod 12

11n4+77n3+219n2+243n+810
54(n+5)(n+4)(n+2)(n+1) if n ≡ 3 mod 12

11n5+110n4+290n3−830n2−3296n+7360
54n(n+2)(n+4)(n2+9n+23) if n ≡ 4 mod 12

11n4+99n3+351n2+629n+1230
54(n+5)(n+4)(n+3)(n+2) if n ≡ 5 mod 12

11n5+110n4+450n3+90n2−1296n−9720
54n(n+2)(n+4)(n2+9n+23) if n ≡ 6 mod 12

(n−1)(11n2+44n−7)
54(n+4)(n+3)(n+1) if n ≡ 7 mod 12

11n4+66n3+186n2−574n+1320
54n(n+2)(n2+9n+23) if n ≡ 8 mod 12

11n4+77n3+219n2+243n+810
54(n+5)(n+4)(n+2)(n+1) if n ≡ 9 mod 12

11n4+88n3+114n2−1058n−1180
54n(n2+9n+23)(n+4) if n ≡ 10 mod 12

11n4+99n3+351n2+629n+1230
54(n+5)(n+4)(n+3)(n+2) if n ≡ 11 mod 12

11n4+110n3+450n2+90n−1296
54(n+2)(n+4)(n2+9n+23) if n ≡ 12 mod 12
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For n < 3, f1(n) = 0, but as soon as there are at least 3 candidates, the probability
of violation of reversal symmetry is greater than 10%, and tends to 11

54 ≈ 20.37%
as n tends to infinity: for every value of n, the probability of violation of reversal
symmetry is significantly greater for anti-plurality than for plurality.

We now turn to scoring rules with runoff. Voting situations leading to the same
alternative, say a, as their reverses are described by the following system of inequal-
ities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 + n2 + λn3 + λn5 > λn2 + λn4 + n5 + n6
λn1 + n3 + n4 + λn6 > λn2 + λn4 + n5 + n6
n1 + n2 + n5 > n3 + n4 + n6
λn3 + n4 + λn5 + n6 > n1 + λn2 + n3 + λn4
λn1 + n2 + n5 + λn6 > n1 + λn2 + n3 + λn4
n3 + n4 + n5 > n1 + n2 + n6
n1 + n2 + n3 + n4 + n5 + n6 = n

or⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 + n2 + λn3 + λn5 > λn1 + n3 + n4 + λn6
λn2 + λn4 + n5 + n6 > λn1 + n3 + n4 + λn6
n1 + n2 + n3 > n4 + n5 + n6
λn3 + n4 + λn5 + n6 > λn1 + n2 + n5 + λn6
n1 + λn2 + n3 + λn4 > λn1 + n2 + n5 + λn6
n3 + n4 + n6 > n1 + n2 + n5
n1 + n2 + n3 + n4 + n5 + n6 = n

Let Fλ(n) be the frequency of violation of reversal symmetry by the scoring
rule with runoff based on the scoring vector (1, λ, 0). As for simple scoring rules,
replacing λ by any real value between 0 and 1, we get a specific scoring rule with
runoff. With the same tools as above, we obtain the following propositions, for
plurality, Borda, and anti-plurality rules with runoff.

We begin with plurality with runoff.

Proposition 5 Suppose n is the number of voters in the society. Then, the frequency
of violation of reversal symmetry by plurality rule with runoff under IAC is given by
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F0(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(49n4+539n3+849n2+2969n+33610)
1728(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 1 mod 12

(n−2)(49n4−147n3−174n2−8468n+21480)
1728(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 2 mod 12

(n−3)(49n4+637n3+3501n2+4743n+5670)
1728(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 3 mod 12

(n−4)(49n4−49n3−1356n2+7136n+21760)
1728(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 4 mod 12

(n+7)(49n4+147n3+561n2+5233n+14490)
1728(n+5(n+4)(n+3)(n+2)(n+1) if n ≡ 5 mod 12

(n−6)(49n4+49n3+414n2−4356n+9720)
1728(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 6 mod 12
49n4+245n3−915n2−9505n+13366

1728(n+4)(n+3(n+2)(n+1) if n ≡ 7 mod 12
49n4−441n3+1884n2+544n+3840

1728(n+5)(n+3)(n+2)(n+1) if n ≡ 8 mod 12
49n4+343n3+561n2+8757n+29970

1728(n+5)(n+4)(n+2)(n+1) if n ≡ 9 mod 12
49n4−343n3−474n2−2692n+31000

1728(n+5)(n+4)(n+3)(n+1) if n ≡ 10 mod 12
49n4+441n3+1149n2−8189n−5490

1728(n+2)(n+3)(n+4)(n+5) if n ≡ 11 mod 12
n(49n4−245n3+120n2+9360n+3456)
1728(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 12 mod 12

Then for anti-plurality with runoff we have:

Proposition 6 Suppose n is the number of voters in the society. Then, the frequency
of violation of reversal symmetry by anti-plurality rule with runoff under IAC is given
by

F1(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(11n4+66n3+216n2+766n+12765)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 1 mod 12

(n−2)(11n4−88n3−336n2+2048n+11600)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 2 mod 12

(n−3)(11n4+88n3+414n2+1152n+20655)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 3 mod 12

(n−4)(11n4−66n3+216n2+64n+11520)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 4 mod 12

(n−5)(n+7)(n+1)(11n2+22n−193)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 5 mod 12

(n−6)(11n4−44n3+216n2−144n+19440)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 6 mod 12
(n+5)(11n4+150n2−200n+19479)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 7 mod 12

(n+4)(n−2)(n−8)(11n2−44n−160)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 8 mod 12

(n+3)(11n4+22n3+84n2−342n+11745)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 9 mod 12

(n+2)(11n4−132n3+744n2−2288n+22320)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 10 mod 12

(n+1)(11n4+44n3−534n2−1156n+13235)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 11 mod 12

n(11n4−110n3+480n2−1440n+13824)
864(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 12 mod 12

And for Borda rule with runoff:

Proposition 7 Suppose n is the number of voters in the society. Then, the frequency
of violation of reversal symmetry by Borda rule with runoff under IAC is given by
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F 1
2
(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(3n2+12n+89)
72(n+4)(n+3)(n+1) if n ≡ 1 mod 6

(n−2)(3n3−21n2+146n−640)
72(n+5)(n+3)(n+2)(n+1) if n ≡ 2 mod 6

(n−3)(3n3+30n2+197n+810)
72(n+5)(n+4)(n+2)(n+1) if n ≡ 3 mod 6
(n−1)(n−4)(3n2−6n+80)
72(n+5)(n+4)(n+3)(n+1) if n ≡ 4 mod 6

(n+7)(3n3+6n2+101n−310)
72(n+2)(n+3)(n+4)(n+5) if n ≡ 5 mod 6
n(n−6)(3n3+3n2+98n+408)

72(n+5)(n+4)(n+3)(n+2)(n+1) if n ≡ 6 mod 6

As a differencewith simple scoring rules, for scoring ruleswith runoff situations in
whichπ = π−1 correspond to caseswhere the twoalternatives selected for the second
round are necessarily ties. As a consequence, removing them from the set of voting
situationswould lead to a double-counting, exactly like for somecases indicated in the
comments of Proposition 2. Comparing the limit values of frequencies when n tends
to infinity, we observe that F0(∞) = 49

1728 ≈ 2.83%, F1(∞) = 11
864 ≈ 1.27%, and

F 1
2
(∞) = 3

72 ≈ 4.17%, which means that, at least for large electorates, the hierarchy
between the three rules is completely reversed.

Table 1 summarizes the results in the propositions of this subsection. It clearly
appears that for all rules in the table frequencies rise as the number of voters rises; it is
also noticeable that the dependence among voters’ opinions by the move from IC to
IAC increases the difference in the violation of reversal symmetry, between plurality
and anti-plurality for their simple versions, while it reduces this difference for their
runoff versions. Moreover, except for the Borda rule, runoff versions of the scoring
rules are strongly less susceptible to violate reversal symmetry than the corresponding
simple versions. It can also be noted that anti-plurality rule is susceptible to violate
reversal symmetry as soon as there are three voters in the society.

3.2 Infinite Electorate and Three Candidates

In this subsection, we provide a more general view of the vulnerability of scoring
rules to reversal symmetry. The infinite electorate case is the usual framework for
the evaluation of frequencies of a phenomenon for all possible rules within a class
of voting rules. Here, we first consider simple, and then runoff scoring rules.

Let fλ(∞) = f (λ) (resp. Fλ(∞) = F(λ)) denote the frequencies of violation of
reversal symmetry by a simple scoring rule (resp. a scoring rule with runoff) based
on a scoring vector (1, λ, 0) when the number n of voters tends to infinity. The
propositions and figures below summarize the result of our computations.

Proposition 8 Under IAC, the frequency of violation of reversal symmetry by every
simple scoring rule based on the scoring vector (1, λ, 0) when the number of voters
tends to infinity is given by

f (λ) =
{

− 1
27

(5λ3−9λ+5)(2λ−1)2

(λ−2)(λ−1)2 if λ ∈ [0, 1
2 ]

− 1
54

(λ2−16λ+4)(2λ−1)2

λ2 if λ ∈ [ 12 , 1]
.
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The reader can check that for λ = 0 and λ = 1, we obtain exactly the same values
as for f0(n) and f1(n), respectively, when n tends to infinity. From these formulas we
obtain the curve in Fig. 1.

Proposition 9 Under IAC, the frequency of violation of reversal symmetry by every
scoring rule with runoff based on the scoring vector (1, λ, 0) when the number of
voters tends to infinity is given by

F(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 6λ5+16λ4−146λ3+273λ2−197λ+49
432(λ−2)(3λ−2)(λ−1)3 if λ ∈ [0, 1

2 ]

324λ9−2187λ8+5835λ7−8013λ6+6007λ5

216(λ−2)(3λ−1)2(3λ2−5λ+1)λ3

+ −2332λ4+367λ3+22λ2−13λ+1
216(λ−2)(3λ−1)2(3λ2−5λ+1)λ3 if λ ∈ [ 12 , 1]

.

Comparing the previous propositionwithPropositions 5, 6 and7, it is easy to check
that F(0) = limn→∞ F0(n), F( 12 ) = limn→∞ F 1

2
(n) and F(1) = limn→∞ F1(n),

respectively. From these formulas we obtain the curve depicted in Fig. 2.
Figures 1 and 2 illustrate in the three-alternative case how frequent reversal sym-

metry is violated by all possible simple and runoff scoring rules, respectively, as the
number of voters tends to infinity. In the simple scoring voting rules case, the curve
is U-shaped; frequencies decrease from plurality to the Borda rule, where with no
surprise F(λ) = 0, the minimum value. They then rise from the Borda rule up to
anti-plurality. The curve also shows that the limit frequency for plurality is smaller
than the limit value for anti-plurality. On the contrary, for scoring rules with runoff
we have a bell-shaped curve, and the maximum value is reached at λ ≈ 0.45. And
the limit value of plurality is greater than that of anti-plurality.

Fig. 1 Frequencies, under
the IAC assumption, of
violation of reversal
symmetry in the
three-candidate case by all
simple scoring rules in
universal domain when
n → ∞
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Fig. 2 Frequencies, under
the IAC assumption, of
violation of reversal
symmetry in the
three-candidate case by
scoring rules with runoff in
universal domain when
n → ∞

4 Restricted Domain: Bipolar Preferences

Remember that according to our definition of reversal symmetry, for this axiom to
be violated in a domain by some voting rule, there must exist some profile π in the
domain whose inverted profile π−1 is (i) different from the original one and (ii) leads
to the same outcome as the original one. Now, consider for example the restriction
consisting in only taking into account single-peaked1 preferences with the left-right
order abc; it is clear that the only profilesπ such thatπ−1 is in the domain are those in
which only extreme preferences abc and cba can be reported both in the original and
the reversed profiles. But, then, in such a domain, there is no possibility of violation
of reversal symmetry. In this section, we consider a specific domain restriction whose
intuition is as follows: voters are not always able to have a precise idea (or the same
perception) of a complete pairwise ranking of candidates according to the left-right
ideological axis. Here, we only suppose that voters have the same perception of
which candidates are on the left-wing and which ones are on the right-wing. Then,
with p left-wing and q right-wing candidates we have only (p! × q!) × 2 (instead of
m! = (p + q)!) preference orders. We shall study violations of reversal symmetry in
such a domain, successively for three and for four candidates.

1Preferences over a set A = {a, b, c} of candidates are said to be single-peaked according to the
left-right ideological axis abc if no voter ranks the centrist candidate b last, so that the only possible
preference orders are abc, bac, bca and cba.
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4.1 Three Candidates

With a single left-wing candidate, say a, and two candidates, b and c, as right-wing
candidates, voters will have the choice between four preference relations:

P1 : abc;P2 : acb;P3 : bca;P4 : cba

Let us denote by pk the number of individuals reporting preference relation Pk ; all
voting situations at which reversal symmetry is violated under simple scoring rules,
when candidate a is the winner in bipolar domain are described by the following
system of linear inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

p1 + p2 > λp1 + p3 + λp4
p1 + p2 > λp2 + λp3 + p4
p3 + p4 > λp1 + p2 + λp4
p3 + p4 > p1 + λp2 + λp3
p1 + p2 + p3 + p4 = n

The reader can easily check that under plurality rule (λ = 0) reversal symmetry
is violated only when a is the winner. Similarly, it is easy to check that under anti-
plurality rule reversal symmetry can be violated when the winner is b or c, but not
when a is the winner.

As for universal domain, when the number n of individuals is even, we exclude
situations whose reverses are identical to the original ones, that is situations such
that p1 = p4 and p2 = p3. The total number of all such situations is

(n + 2)

2

. Consequently, subtracting this number from the total number of situations gives
the denominator we will use in restricted domain for all even values of n and for all
voting rules, that is:

(
n + 3
3

)

− (n + 2)

2
= n(n + 2)(n + 4)

6

Let gλ(n) be the frequency of violation of reversal symmetry under simple scoring
rule based on scoring vector (1, λ, 0). We obtain the propositions below.

Proposition 10 Suppose n is the number of voters in the society. Then, under IAC
the frequency of violation of reversal symmetry by plurality rule in bipolar domain
is given by
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g0(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(2n2−n−19)
9(n+3)(n+2)(n+1) if n ≡ 1 mod 6
2n3−3n2−84n+56
9n(n+4)(n+2) if n ≡ 2 mod 6
(n−3)(2n−3)
9(n2+3n+2) if n ≡ 3 mod 6

2n3−3n2−72n+100
9n(n+4)(n+2) if n ≡ 4 mod 6
(2n+5)(−5+n)
9(n2+5n+6) if n ≡ 5 mod 6

(n+6)(n−6)(2n−3)
9n(n+4)(n+2) if n ≡ 6 mod 6

Proposition 11 Suppose n is the number of voters in the society. Then, under IAC the
frequency of violation of reversal symmetry by anti-plurality rule in bipolar domain
is given by

g1(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)(7n2+22n+7)
18(n3+6n2+11n+6) if n ≡ 1 mod 6
7n3+15n2−69n−115

18n(n+4)(n+2) if n ≡ 2 mod 6
7n2−6n+27
18(n2+3n+2) if n ≡ 3 mod 6
7n2+n−62
18n(n+4) if n ≡ 4 mod 6

(n+1)(7n+1)
18(n2+5n+6) if n ≡ 5 mod 6

7n3+15n2−36n−108
18n(n+4)(n+2) if n ≡ 6 mod 6

Next, we consider scoring rules with runoff. A scoring rule with runoff based
on the scoring vector (1, λ, 0) violates reversal symmetry at a voting situation
(p1, p2, p3, p4) when alternative a is elected in bipolar domain if and only if:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 + p2 > p4 + λp2 + p3
p3 + λ(p1 + p4) > p4 + λ(p2 + p3)

p1 + p2 > p3 + p4
p3 + p4 > p2 + λ(p1 + p4)

p1 > p2 + λ(p1 + p4)

p3 + p4 > p1 + p2
p1 + p2 + p3 + p4 = n

.

It however appears that the previous system contains two incompatible inequali-
ties, the third and the sixth, which means that candidate a cannot be simultaneously
selected in the corresponding profilesπ andπ−1. In other words, violation of reversal
symmetry is not possible in that case.

A scoring rule with runoff defined by the scoring vector (1, λ, 0) violates reversal
symmetry at a voting situation (p1, p2, p3, p4)when alternative b is elected in bipolar
domain if and only if:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p3 + λ(p1 + p4) > p1 + p2
p4 + λ(p2 + p3) > p1 + p2
p3 + p1 > p2 + p4
p2 + λ(p1 + p4) > p1 + λ(p2 + p3)

p3 + p4 > p1 + λ(p2 + p3)

p1 + p2 > p3 + p4
p1 + p2 + p3 + p4 = n

The system of inequalities above characterizes situations at which reversal sym-
metry is violated under scoring rules with runoff, when candidate b is elected. We
obtain a contradiction for all values of λ. This conclusion is also true for candidate c.
The system therefore satisfies reversal symmetry for all three candidates in bipolar
domain.
Table 2 below provides frequencies for plurality and anti-plurality rules in bipolar
domain; the table shows the effect of homogeneity on the violation of reversal sym-
metry. Not only the hierarchy in the violation of the property is reversed when we
move from dependence (IAC) to independence (IC), but furthermore, under plurality
rule almost all profiles tend to violate reversal symmetry as soon as the number of
voters is greater than 75, while less than half of profiles violate the property under
anti-plurality.

Table 2 Frequencies of violation of reversal symmetry under simple scoring rules in bipolar domain
(3 candidates)

IAC model IC model

n Plurality Anti-plurality n Plurality Anti-plurality

3 0 0.200000 3 0 0.0.187500

5 0 0.214285 5 0 0.175781

7 0.066666 0.233333 7 0.205078 0.203369

9 0.090909 0.272727 9 0.307617 0.271133

11 0.098901 0.285714 11 0.352478 0.279622

13 0.121428 0.121428 13 0.452493 0.289735

15 0.132352 0.308823 15 0.515499 0.323222

21 0.154150 0.328063 21 0.653124 0.355805

27 0.167487 0.339901 27 0.748367 0.377460

75 0.200956 0.369788 75 0.976952 0.434376

∞ 0.222222 0.388889 – – –
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4.2 Large Electorates and Three Candidates

In this subsection we come back to the three-candidate case but we consider all
possible simple scoring rules in bipolar domain. We provide formulas and graphs
showing how the frequencies of violation of reversal symmetry by scoring rules
change in bipolar domain as n tends to ∞.
Let g(λ) = limn→∞ gλ(n) be the frequency of violation of reversal symmetry under
simple scoring rule based on scoring vector (1, λ, 0). We obtain the propositions
below.

Proposition 12 Given a simple scoring rule defined by a scoring vector (1, λ, 0),
under IAC the frequency of violation of reversal symmetry g(λ,∞) in bipolar domain
when n → ∞ is given by the following polynomials:

g(λ) =
{

− (λ+1)(5λ−4)(2λ−1)2

9(λ−2)(λ−1) if λ ∈ [0, 1
2 ]

− (λ−8)(2λ−1)2

18λ if λ ∈ [ 12 , 1]
.

Again, the reader can check that for λ = 0, λ = 1
2 and λ = 1, we obtain exactly

the same values as for g0(n), g 1
2
(n) and g1(n), respectively, when n tends to infinity.

From these formulas we obtain the curve in Fig. 3.
The curve in Fig. 3 is U-shaped, as for Fig. 1, but limit values are greater than

for universal domain; in other terms, restricting the domain to bipolar preferences
in the three-alternative case increases the limit frequencies of violation of reversal
symmetry.

Fig. 3 Frequencies, under
the IAC assumption, of
violation of reversal
symmetry in the
three-candidate case by
simple scoring rules in
bipolar domain when
n → ∞
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4.3 Four Candidates

With four candidates scoring rules are now defined according to scoring vectors
(1, λ1, λ2, 0) with λ1, λ2 ∈ [0, 1] and λ2 ≤ λ1. The number of possible individual
preferences depends on how we distribute the candidates along the bipolar domain;
we can distinguish two cases: (i) we first assume that we have two candidates on
the left-wing and two candidates on the right-wing, resulting in (2! × 2!) × 2 = 8
eight possible preference orders, and (ii) we then consider the case where there is a
single candidate in one ideological camp and all others are in the other camp; this
ultimately results in (1! × 3!) × 2 = 12 possible preference orders.
We first consider case (i). With A = {a, b, c, d} we have m = 4, and the following
eight linear orders:

T1 = abcd; R2 = abdc; T3 = bacd; T4 = badc;
T5 = cdab; T6 = cdba; T7 = dcab; T8 = dcba;

Let tk be the number of individuals reporting preference orderTk . A simple scoring
rule defined by a scoring vector (1, λ1, λ2, 0), violates reversal symmetry at voting
situation (t1, . . . , t8) when alternative a is elected in bipolar domain if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 + t2 + λ1(t3 + t4) + λ2(t5 + t7) > t3 + t4 + λ1(t1 + t2) + λ2(t6 + t8)

t1 + t2 + λ1(t3 + t4) + λ2(t5 + t7) > t7 + t8 + λ1(t5 + t6) + λ2(t2 + t4)

t1 + t2 + λ1(t3 + t4) + λ2(t5 + t7) > t5 + t6 + λ1(t7 + t8) + λ2(t1 + t3)

t6 + t8 + λ1(t5 + t7) + λ2(t3 + t4) > t5 + t7 + λ1(t6 + t8) + λ2(t1 + t2)

t6 + t8 + λ1(t5 + t7) + λ2(t3 + t4) > t1 + t3 + λ1(t2 + t4) + λ2(t5 + t6)

t6 + t8 + λ1(t5 + t7) + λ2(t3 + t4) > t2 + t4 + λ1(t1 + t3) + λ2(t7 + t8)

t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 = n

All violation voting situations for specific scoring rules can be deduced by assign-
ing precise values to λ1 and λ2. Since the approach used to evaluate the frequency
of violation of reversal symmetry is very similar to the one used for three alterna-
tives in Sect. 3 and in Subsection 4.2, we will then simply give numerical values of
frequencies in Table 3, obtained by complete computer enumeration.

The next step is the examination of violations of reversal symmetry by scoring
rules with runoff for four candidates, in bipolar domain. Violation of reversal symme-
try will depend on scenarios described by a system of inequalities. For each scenario,
it is possible to know whether the corresponding system contains or not a contradic-
tion, implying that the property is satisfied.
These different scenarios are obtained by successively assuming that a candidate
from an ideological group, say a, is selected at the first round, and is at the second
round in a contest against the other candidate of the same ideological group, b, or
against one of the ideological group {c, d}. In order to avoid repetition, and since all
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four scenarios are based on the same reasoning, we give some details for only one
of these scenarios.

Scenario: Consider a profile π , with four candidates {a, b, c, d} in a bipolar
domain. A candidate, say a, from the first pole {a, b} is facedwith another candidate,
say c, from the second pole {c, d} in the second round in profile π ; these same two
candidates will face each other in the second round in the reversed profile. The
question is then as follows: will it be possible to have the same winner in both
profiles π and π−1?

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 + t2 + λ1(t3 + t4) + λ2(t5 + t7) > t3 + t4 + λ1(t1 + t2) + λ2(t6 + t8)

t1 + t2 + λ1(t3 + t4) + λ2(t5 + t7) > t7 + t8 + λ1(t5 + t6) + λ2(t2 + t4)

t5 + t6 + λ1(t7 + t8) + λ2(t1 + t3) > t3 + t4 + λ1(t1 + t2) + λ2(t5 + t7)

t5 + t6 + λ1(t7 + t8) + λ2(t1 + t3) > t7 + t8 + λ1(t5 + t6) + λ2(t2 + t4)

t1 + t2 + t3 + t4 > t5 + t6 + t7 + t8
t6 + t8 + λ1(t5 + t7) + λ2(t3 + t4) > t5 + t7 + λ1(t6 + t8) + λ2(t1 + t2)

t6 + t8 + λ1(t5 + t7) + λ2(t3 + t4) > t1 + t3 + λ1(t2 + t4) + λ2(t5 + t6)

t2 + t4 + λ1(t1 + t3) + λ2(t7 + t8) > t5 + t7 + λ1(t6 + t8) + λ2(t1 + t2)

t2 + t4 + λ1(t1 + t3) + λ2(t7 + t8) > t1 + t3 + λ1(t2 + t4) + λ2(t5 + t6)

t5 + t6 + t7 + t8 > t1 + t2 + t3 + t4
t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 = n

It is worth noting that independently of the values of λ1 and λ2 the fifth and the
tenth inequalities are incompatible, which means that the system has no solution,
and establishes the fact that reversal symmetry is satisfied in this case by all scoring
rules with runoff.
The same remark is true for all other scenarios: a contradiction appears between two
inequalities, which excludes any possible solution, for all values of λ1 and λ2. It
follows that for four alternatives in bipolar, all scoring rules with runoff, satisfy the
axiom of reversal symmetry.

Table 3 sheds additional light on the effect of opinions dependence in bipolar
domain: when the number of candidates increases from 3 to 4 the frequencies
decrease, and the difference is much less pronounced between the IC and IAC
assumptions. This is particularly true under equal distribution of candidates between
the two poles. Unequal distribution between poles leads to higher violation frequen-
cies. For the a(bcd) distribution, our techniques and computer program have been
inefficient to deliver results under the IC assumption.
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Table 3 Frequencies of violation of reversal symmetry under simple scoring rules in bipolar domain
(4 candidates)

(ab)(cd) distribution (a)(bcd) distribution

IAC model IC model IAC model

n Plurality Anti-
plurality

Plurality Anti-
plurality

n Plurality Anti-
plurality

4 0 0.012121 0 0.023437 4 0.123076 0.023443

5 0 0.020020 0 0.029296 5 0.134615 0.065934

7 0.018648 0.032634 0.025634 0.030441 7 0.249874 0.103318

9 0.019580 0.047552 0.021929 0.043258 9 0.310073 0.133960

11 0.024635 0.055806 0.033044 0.043868 11 0.362943 0.153948

15 0.032554 0.070925 0.039887 0.052071 15 0.433227 0.184548

21 0.039444 0.086037 0.046227 0.062367 21 0.496694 0.215491

27 0.044565 0.095156 0.053791 0.065718 27 0.535646 0.235180

75 0.057948 0.121524 – – 75 0.633391 0.290180

5 Conclusion

The main contribution of this chapter is the evaluation of scoring rules vis-à-vis
the axiom of reversal symmetry. We know from Saari’s work that Borda rule is the
only scoring rule satisfying reversal symmetry. Our results show that: (i) for three
alternatives, in universal domain the anti-plurality rule is more sensitive to violation
of reversal symmetry than the plurality rule; (ii) the hierarchy between these two
rules in terms of their vulnerability to this property is however reversed under runoff
scoring rules, that is, plurality with runoff becomes more sensitive to violation of
reversal symmetry than anti-plurality with runoff; (iii) the introduction of a second
round in universal domain reduces frequencies of violation for plurality and anti-
plurality, but does not completely solve the problem; (iv) furthermore, the Borda
rule, the only scoring rule that in its simple version is immune to violation of reversal
symmetry now becomes one of the most vulnerable rules when there is a second
round; (v) in bipolar domain, the frequencies of violation of reversal symmetry rise,
especially when there is an asymmetry between the two poles (one candidate on one
pole and two or three on the other pole); it then appears that restricting individual
preference in a bipolar domain is clearly not the good solution if we look for a
way to escape from the violation of reversal symmetry for simple scoring rules; (vi)
nevertheless, the introduction of a second round on a bipolar domain eliminates all
the cases of violation of reversal symmetry; (vii) with three alternatives and large
electorates - more precisely in situations where the number of voters is so high than
it can be considered to tend to infinity - it is possible to compare all possible scoring
rules and to observe that for simple scoring rules we obtain a U-shaped curve and
for scoring rules with runoff a bell-shaped curve as the value of λ changes from 0
to 1. Many Condorcet voting rules also violate reversal symmetry, and it would be
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interesting to contribute to the comparison of the two families of voting rules by
evaluating also Condorcet voting rules relative performances vis-à-vis this property.
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Binary Voting in Federations



Majority Efficient Representation
of the Citizens in a Federal Union

Marc Feix, Dominique Lepelley, Vincent Merlin, Jean-Louis Rouet,
and Laurent Vidu

1 Introduction

In federal unions, a decision (or an election) often involves two steps, either because
it is impossible to call the electors (e.g. the decisions in the European Union, where
a minister represents his country and holds a certain number of mandates in the
decision process) or for historical reasons (e.g. the US presidential election case, as
the states did not want to lose their sovereignty in the early years of the union). In
both cases, a crucial question is the choice of the “best” two tier voting system. More
specifically, howmany weights (or mandates, delegates, representatives, etc.) should
be given to countries or states in a two tier voting system? And what quota should
be required for a decision to be passed?
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Very different answers to these questions have been adopted by the different
federal structures. When we look at the American and European cases, we find
systems that try to navigate in between the pure federal system of “one state-one
vote” (the threshold of 65% of the states in the European constitution and the +2
premium per state component in the US Electoral College) and the more democratic
representation of the states proportionally to their population. Clearly, for all these
schemes, the outcome was the result of a political bargain between the small states
and the big states.

The purpose of this paper is to study a precise criterion to evaluate different two-
tier votingmethods and to study its impact on the analysis of two tier voting rules. Our
criterion, themajority efficiency, requires the method tominimize the probability that
a decision is takenwith amajority of weights at the federal level though it is supported
byaminority of voters over thewhole union. Thismajority efficiency is inspired by the
concept of Condorcet efficiency that has been developed in Social Choice Theory in
order to discriminate between voting rules on their capacity to pick out the Condorcet
winner whenever it exists. The main difference being that the majority winner is
always well defined in a two candidate election.1 More specifically, we will look for
the best two-tier voting systems, using this normative criterion, in the particular case
where all of the decisions are made with majority voting between two candidates.
In doing so, we connect our study to the study of the so called referendum paradox
(Nurmi 1999) and try tominimize its likelihood of occurrence.A referendumparadox
occurs whenever a decision taken by representatives elected in local jurisdictions
conflicts with the decision that would have been adopted if the voters had directly
given their opinion through a referendum. In political science, Miller (2012) calls
this phenomena an election inversion but also notices that public commentary uses
terms such as “reversal winner”, “wrong winner”, “divided verdict”, etc.

Majority efficiency is not merely a theoretical object but a fairly natural criterion
and a very significant issue. Indeed, such paradoxical situations occurred in past
elections. For instance, with the election of George W. Bush against Al Gore in
2000 and the more recent victory of Donald Trump against Hilary Clinton in 2016.2

Moreover, the existence of a federal union may be put in danger if it is plagued
too often by these situations: A majority of the citizens would lose confidence in
the institutions, leading to a political crisis. We also believe that, as the referendum
paradox has been popularized by the media since year 2000, the criterion of majority
efficiency could be more easily accepted by the public opinion than other normative
criteria that have been presented in the social choice literature. We will review this
literature and present some related definitions and concepts in Sect. 2.

Though the criterion ofmajority efficiency is simple to identify and popularize, the
search of the apportionment rule which minimizes the occurrence of the referendum
paradox is not that simple. An analytical solution of the problem remains out of
reach. The situation is similar to the one we encounter in Social Choice Theory
for the evaluation of the Condorcet efficiency of different voting rules: Unless the

1For more on this literature, see Gehrlein (2006) and Gehrlein and Lepelley (2011).
2For other examples in US, United Kingdom and France, see Feix et al. (2004).
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number of parameters (voters, alternatives, and here states) is very small, we have to
rely on computer simulations. Since we cannot test all of the possible apportionment
methods, we will focus our analysis on the particular class of δ-rules. Let ni be
the population in the state i . Through simulations, we will try to identify which
parameter δ minimizes the probability of the paradox if we allocate ai seats for state
i according to the law ai = nδ

i . Although this formula does not take into account
all of the possibilities, it covers the pure federal case (δ = 0), the square-root rule
(δ = 1/2,), the proportional case (δ = 1), and even the dictatorship of the biggest
state (δ → ∞). Notice that we shall not study the question of the best threshold
required to pass a decision. Throughout the paper, we will only consider the 50%
quota.

In order to compute the probability of the referendum paradox, we need to set
some a priori assumptions regarding the behavior of the voters. We will focus our
analysis on two models previously introduced in the voting theory, the Penrose-
Banzhaf model (Penrose 1946, 1952; Banzhaf 1965) and May’s model (May 1948).
These models, the probability assumptions regarding the actions of the voters and the
methodology concerning simulations will be presented in detail in Sect. 3. Section
4 is devoted to the study of the δ-rules. In particular, we test some conjectures on
what should be the best voting rule according to the probabilistic assumptions, based
upon the results of the numerous simulations we have carried on. We first prove
that the square root rule is not exactly the optimal rule under the Penrose-Banzhaf
assumptions, the optimal values of δ always being slightly less than 0.5. On the
other hand, the proportional rule always emerges as the optimal rule for the model
proposed by May. Section 5 concludes.

2 Normative Criteria for Two-Tier Voting Rules

In this section, we present the different normative criteria that have been proposed to
evaluate two-tier voting systems. An extensive survey has been recently published in
French (Le Breton et al. 2017). We will just outline some major contributions in this
section. They can be gathered in two categories. Historically, the first contributions
were linked to the literature on power indices with the purpose to give to each
voter the same influence on the decision process. At the turn of the millennium, the
election of George W. Bush and the debates about the European constitution have
seen a renewed interest in the economic literature for this issue. New criteria were
proposed, all based on various utility principles.
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2.1 Equalizing Power and Influence: The Penrose-Banzhaf
Model

The most widely publicized normative claim about two-tier systems comes from the
voting power literature, where many scholars endorse the so called Penrose square
root law (Penrose 1946, 1952; Banzhaf 1965). In this literature, the key concept is the
notion of a decisive player. A voter is decisive each time he can modify the outcome
by changing his vote. Thus, the voting power or influence of a voter is defined as
his a priori probability of being decisive, given some probability assumptions on the
actions of the voters.

In the Penrose-Banzhaf model,3 we assume that n voters have to choose between
two exclusive proposals A and B. Abstention is not allowed, and there is no bias in
favor of either alternative (such as a statu quo alternative). We assume that each vote
is determined by independently flipping a fair coin randomly; In game theory, this
hypothesis has been called the Independence assumption (Straffin 1977), and it is
equivalent to the Impartial Culture (IC) model used in social choice literature for the
computation of voting paradox probabilities (Gehrlein 2006; Gehrlein and Lepelley
2011). A vote configuration is the list of the ballots chosen by the voters. Under the
Penrose-Banzhaf random voting model, all of the 2n vote configurations are equally
likely, and the power of voter j is simply the proportion of the configurations of the
other n − 1 votes for which voter j is decisive.4 The power of voter j is then given
by the number of situations in which he is decisive divided by the total number of
vote configurations, 2n . This is exactly the well-known (non normalized) Banzhaf
Power index:

Banzhaf power of voter j = Number of configurations for which voter j is decisive

Total number of voting configurations
(1)

Howcanwe extend this power index to the framework of two tier decisionmodels?
In a federal union, a voter casts his vote in his home state for party A or B. Thewinner
in state i is the party which obtains a majority of votes (abstention is not allowed)
among the ni citizens. Each state i is represented at the federal level by ai weights,5

and the winner in state i catches all these weights. Then, the position that is officially
adopted by the union is the one which obtains a majority of weights at the federal
level. Since the voters cast their ballots independently, the probability that a voter
will be decisive is the product of the probability that he is decisive in his home state
times the probability his state is decisive at the federal level.

3The reader can find very nice introductions to these concepts in a series of papers (Gelman et al.,
2002, 2004).
4If the number of weights is even, ties may occur with majority rule. A way to avoid such situation
is to assume that the number of weights is odd, or to flip a fair coin to take a decision in case of a
draw, or to ask for a new election until a clear decision is obtained, etc.
5Or, equivalently, ai representatives are elected to seat at the federal level (European assembly).
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Probability that j is decisive in the union =
Probability that state i is decisive × Probability that voter j is decisive in state i

(2)
Penrose’s limit theorem (Penrose 1952) says that, in a weighted majority game,6

if the number of voters increases indefinitely and the relative quota is pegged, then,
under certain conditions, the ratio between the voting power of any two voters con-
verges to the ratio between their weights. However, this result is only implicit in
Penrose’s work, and the result is only valid “most of the time”, as counter examples
exist.7 However, when we draw randomly the populations of the different states of
the union, it has been proven that in 99% of the cases (Chuang et al. 2006) that

Banzhaf power of state i in the union

Banzhaf power of state i ′ in the union
≈ ai

ai ′
(3)

But in two-tier voting, we also have to estimate the power of voter j in state i . If
ni is odd, voter j is decisive for

(
ni − 1

(ni − 1)/2

)
(4)

configurations among the 2ni−1 possible vote configurations of the other citizens of

state i . For ni large, this can be approximated as
√

2
πni

. When the behavior of the

voters is governed by the Penrose-Banzhaf assumptions, we immediately deduce
from Eqs. (2), (3) and (4) that

Probability that voter j from state i is decisive in the union

Probability that voter j ′ from state i ′ is decisive in the union
≈ ai

ai ′

√
ni ′√
ni

(5)

and that equal treatment in term of power is, approximately achieved if ai is propor-
tional to

√
ni .

Admittedly, in real life, voters seldom flip coins independently before casting
their vote. The analysis of electoral data for a fifty years period, has showed that
Straffin’s Independence assumption had to be rejected for the elections of senators,
representatives and president in the United States (Gelman et al. 2004). Similar

6In a weighted majority game, each player is endowed with a positive weights ai . A coalition is
winning if the sum of the weights of its members exceeds some predefined quota q.
7A formal version of Penrose’s statement has been proposed recently (Lindner and Machover
2004). Using simulations, the validity of the approximation for numerous partition of the population
among states has been tested; It has been shown that it is valid with a probability close to one for
the non normalized Banzhaf index and a quota of 50% (Chang et al. 2006). The proportionality
between the weight and the Banzhaf index is even better for some super majority rules (Feix et al.
2007; Słomiczyǹski and Życzkowski 2007). To give an example, the proportionality between the
mandantes and the Banzhaf power is almost perfectly met for the enlarged European Union if we
attribute to each state a number of weight in proportion to the square root of its population and
use a quota of 61.5% (Feix et al. 2007). Recent works with applications to the European Union are
perfect examples of this tradition (Felsenthal and Machover 1998, 2001, 2004).
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conclusions are drawn from the electoral data collected over Europe. A way out of
this problem is to recognize that the probability of being decisive depends on the
probability distribution of the configurations for which a voter is decisive. That is to
say that different probability assumptions, modeling different versions of the veil of
ignorance, can be used.

2.2 Alternative Models

An immediate alternative to the Penrose-Banzhaf model (and the Independence
assumption) is proposed by the Shapley-Shubik index (Shapley and Shubik 1954).
Its probabilistic interpretation is slightly different: before casting their vote, all the
voters choose a common probability p to vote for A from the uniform distribution
on [0, 1]. This probabilistic interpretation is known as the Homogeneity assumption
(Straffin 1977). As a consequence, each partition of the votes between A and B is
equally likely. That is, the probability that A gets 0% of the vote is equal to the
probability that he gets 15%, 51% or 89% of the vote. Hence, the probability that is
attached to a configuration with t votes for A and (n − t) votes for B is no longer
1/2n , but it is now given by:

1

(n + 1)
(n
t

) (6)

One should notice that the Impartial AnonymousCulture (IAC) used in Social Choice
theory to compute the likelihood of the Condorcet paradox gives the same probability
when used in binary elections (Berg 1999). However, switching from the Penrose-
Banzhaf model to the Shapley-Shubik model does not modify the normative recom-
mendation when we wish to equalize the influence of the different voters. Though
Eq. (2) is no longer valid as the votes of the different states are now correlated, it
can be proved that the square root principle still applies as a first approximation in
order to equalize power (Owen 1975). However, using the Shapley-Shubick index
still leaves us unsatisfied, as the same common prior p will be used over the whole
Union. That is, different opinions cannot emerge from state to state.

Thus, we chose to use another model as a second benchmark model in this paper.
We will assume that the probability of voting for A in state i , pi , is drawn inde-
pendently from state to state from a uniform distribution on [0, 1]. In other words,
we assume homogeneity within each state and independence across the states. This
model was used as early as 1948, in a contribution that had been ignored for a long
time (May 1948).8 May considers N states with n voters each. He presents his model
in very simple terms, as a statistical problem. In each state, there are n + 1 balls, each
one marked with a number from 0 to n. They correspond to all the possible results
for party A. Then, an election consists of drawing one of these balls independently

8We are indebted to John Roemer and Hannu Nurmi, who mentioned this reference to us ten years
ago.



Majority Efficient Representation of the Citizens in a Federal Union 169

in each state. Candidate Amay win a majority of votes in a majority of states, but the
sum of the numbers may be less than (nN )/2, meaning that candidate B gets more
votes on average. This is a referendum paradox in modern terms, and May, using
several central limit theorems, proves that its probability tends to 1/6 as n and N
tend to infinity.These results were rediscovered much later in the literature (Feix et
al. 2004). Notice that, as soon as ni is large enough, the probabilistic interpretation
of an independent pi drawn from [0, 1] is equivalent to independent draws inm urns,
with each urn having ni + 1 balls marked from 0 to ni .

Hence, under May’s assumption (revisited to cope with unequal populations),
Eq. (2) still holds and the power of a voter inside his state is given by the Shapley-
Shubik index. Given a voter j , there are

( ni−1
(ni−1)/2

)
configurations of the other voters

which split equally between A and B in state i , so that voter j is pivotal whether he
votes for A or B. Thus:

Shapley-Shubick power for player j in state i = 2
( ni−1
(ni−1)/2

)
(ni + 1)

( ni
(ni−1)/2

) = 1

ni
. (7)

As each state will cast its vote for A or B with probability 1/2 due to the inde-
pendence of the draws across the states, we can still use the non normalized Banzhaf
index to evaluate the power of state i . Penrose’s approximation still applies and:

Probability that j from state i is decisive in the union

Probability that j ′ from state i ′ is decisive in the union
≈ ai

ni

ni ′

ai ′
(8)

Contrary to Eq. (7), equal treatment is now obtained when the number of weights is
proportional to the population.

It should be clear by now that the objective of equalizing the probability of being
decisive in two-tier systems has no clear answer. For example the square root rule law
has been rediscovered in a model with a continuum of options (Napel and Maaser
2007), but a generalized version of the model proved that this result is fragile (Kurz
et al. 2017). Similarly a completely different picture emerges by using a variation
of the Shapley Shubik index that copes with the US electoral data (Owen et al.
2006). In this volume, de Mouzon et al. (2020) find the same diverse conclusions
when they evaluate the power of the citizens in theUSElectoral Collegewith different
probability assumptions.More than 70years after the first contributions, it is clear that
the choice of the right apportionment rule is completely driven by the characteristics
of the underlying probability model governing the behavior of the voters, which in
turn defines a particular measure of the influence.

2.3 Utility Based Arguments

The argument that the citizens of the different states should be given equal power, that
is equal probability to bedecisive,was for a long time the onlymathematical argument
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to evaluate themerits of a federal constitution. Nevertheless, the literature based upon
the notion of decisive voters has been often criticized: a classical argument against the
power indices approach is that the influence of a single voter is in any case extremely
low in federal bodies like the USA or the EU, of magnitude ai/

√
ni or ai/ni ! Thus,

it is unlikely that citizens would fight for some fairer representation based upon the
notion of power. As a consequence, alternative concepts such as equal satisfaction or
equal opportunity of success were introduced. Using the independence assumption,
Rae defines his index of success as the probability of being in the winning side (Rae
1969). It is well known that the Rae index can be linked to the Penrose-Banzhaf
index and should then give equivalent normative recommendation (Felsenthal and
Machover 1998; Laruelle and Valenciano 2005). Again, the same criticism applies:
formany voting rules, the differences in term of success are so thin among the citizens
that this concept does not bite either (Laruelle and Valenciano 2008).

More recently, new criteria have been proposed. These developments consist of
a shift in focus to criteria based upon the sum of the utilities of the members of the
society.

Felsenthal and Machover (1999) suggest that, for a federal union, the average
difference between the size of the majority camp among all of the citizens and
the number of citizens who agree with the decision made by the majority of the
representatives in the states should be minimized. This criterion can be considered as
an utilitarian one, in the sense that a satisfied (dissatisfied) voter gets a+1(−1) utility
level. It gives an estimation for the loss of utility of the society when the decision
is not supported by a majority of voters. They prove that, under the independence
assumption, the Penrose square root rule still applies as a solution to the problem of
the choice of the best two tier voting rule.

Barberà and Jackson (2006) generalize the same idea. They assume that in a two
party election, candidate A’s partisans obtain a utility u j = 1 if he is elected (and 0
in the other case), whereas the partisans of B obtain a utility u j = v, v ∈ [0,+∞[ if
their preferred candidate is elected (and 0 in the other case). They also assume, that,
at the federal level, a motion passes if it is supported by q%of the sum of the weights,
with q possibly different from 1/2. Then, the optimal voting rule for two-tier election
systems is the one that maximizes the expected total utility of voters. Barberà and
Jackson call their criterion the efficient utility principle. Their first results are very
general in the sense that they do not depend on a particular model of probability. They
retrieve the square root rule (proportional rule) when they use a voting model similar
to Penrose’s one (May’s one). More recently, two extensions of this model support
the degressive proportionality principle in apportionment problems. In the first one,
the voters face a series of binary choice, and their utility function is concave in the
number of votes they won (Koriyama et al. 2013). In the second one, it is shown
that accounting for participation constraints before entering the federal union entails
overweighting the smallest states (Macé and Treibich 2019).

Beisbart et al. (2005) compared seven various possible decision rules for the
European Union with respect to their capacity to choose motions which will have a
positive total utility for its citizens, while rejecting the bad policies. But the prob-
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abilistic foundations of their model are different, in the sense that each country is
modeled by a unique representative agent.

As noted in the introduction, for two candidate elections, maximizing themajority
efficiency is tantamount to reducing the probability of the referendum paradox. The
main difference between the utilitarian criterion discussed above and the majority
criterion is that the latter ignores the importance of the paradox. It only attempts to
estimate the number of situations where a majority of voters are frustrated, but does
not evaluate the magnitude of the paradox, either by counting unhappy voters, as in
Felsenthal and Machover (1999) or by summing-up the utilities, as in Barberà and
Jackson (2006) and Beisbart et al. (2005). Moreover, since the referendum paradox
has been popularized by the media after the U.S. elections of 2000 and 2016, this
criterion could be accepted by public opinion more easily than any other criteria.

Another important conclusion can be drawn from this review of the literature.
Whatever the criteria (equalizing power or success, maximizing the utility), the
choice of the optimal apportionment rule seems to be driven by the underlying prob-
ability assumptions. The independence assumption seems to always point toward the
square root rule, while models which assume that the variance of the results grows as
ni favor weights proportional to the size of the population. Thus, it is clear that one
of the questions at stake in this paper is to know whether the square root rule ( resp.
the proportional rule) will be the optimal apportionment rule in terms of majority
efficiency when the Penrose-Banzhaf’s (resp. May’s) assumption is used.

3 Methodology

3.1 The Model

Consider a finite set I = {1, . . . , i, . . . , N } of states (or regions, districts, etc.) which
have tomake decisions altogether in a political union.We assume that ni voters live in
state i , and

∑N
i=1 ni = n. The vector ñ = (n1, . . . , ni , . . . , nN ) describes the partition

of the population among the N states. Without loss of generality, we will assume
throughout the paper that n1 ≥ n2 . . . ≥ nN > 0. Two parties, A and B, compete in
all the states; the winner in state i is the party that obtains a majority of voters on its
side (abstention is not allowed). Each state is represented by ai weights in the union,
and the winner in state i gets all the weights. For the sake of simplicity, we set that
a1 ≥ a2 ≥ . . . ≥ aN ≥ 0, with at least a1 strictly positive. Thus, the position that is
officially adopted by the union is the one which obtains a majority of weights at the
federal level. Notice that we always use throughout the paper the quota of 50% for all
the decisions (votes in the states, vote of the delegates and popular vote nationwide).

In our search of the apportionment rules that minimize the probability of the ref-
erendum paradox, we have decided to focus our study on the family of δ-rules. That
is, we assume that the vector of weights, ã = (a1, a2, . . . , aN ), is entirely charac-
terized by the parameter δ ∈ [0,∞[ as ai = nδ

i ∀i = 1, . . . , N . As already stated,
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we will recover the most famous apportionment rules (pure federalism, square root,
proportionality and dictatorship) by changing the value of δ. But clearly, our main
objective is to check whether the recommendations we should adopt when we wish
to minimize the likelihood of the referendum paradox are compatible with solutions
that have been put forward when one wishes to equalize the power of the citizens,
by setting δ ≈ 1 for May’s model and δ ≈ 0.5 for Penrose-Banzhaf.

3.2 On Probability Assumptions

As seen in Sect. 2, there are several ways to theoretically model the behavior of the
citizens; we present here these assumptions withmore details.Wemodel the peoples’
vote inside each state and we assume that their behavior is described by the same
probability distribution in every state. Furthermore, we assume that the votes from
state to state are always drawn independently. Thus, the probabilistic behavior of a
given state at the federal level is totally driven by the behavior of its own voters.

In the Penrose-Banzhaf model, each citizen votes independently of the others
and selects among the two issues with equal probability. Due to the law of large
numbers, the scale of the mean difference of ballots between the two issues will vary
in n1/2i . The other classical model is the one proposed by May. It assumes that every
partition of the votes between A and B is equally likely. Many interpretations of this
model have been given (going from Polya urns to quantum Bose-Einstein statistics),
a good one being a probabilistic interpretation (Straffin 1977; Berg 1999). The idea
is the following: In state i , for a given election, a “public opinion” emerges, i.e. an
individual probability pi for selecting one of the issue is drawn from the uniform
distribution on [0, 1]. Thus, the probability of picking A may be 0.1, 0.5, 0.7 or
whatever you want in [0,1], with equal probability. Of course, pi varies from one
election to the other, but on average, there is no bias in favor of any alternative.

It is possible to generalize Berg’s and Straffin’s reasoning by assuming that the
choice of a probability p is itself of probabilistic nature through the introduction of a
probability distribution function f (p). The choice of f (p) is a first step for a better
description of the electorate behavior. In particular, it could be determined from the
study of real data. The distribution f (p) is defined on 0 ≤ p ≤ 1, with f (p) ≥ 0
and

∫ 1
0 f (p)dp = 1. The probability of a given configuration of n identifiable voters

with t votes for A and (n − t) votes for B is pt (1 − p)n−t , and for a large number
of elections it reads ∫ 1

0
f (p)pt (1 − p)n−t dp. (9)

Following the social choice terminology, we will call this model the Generalized
Impartial Anonymous Culture (GIAC) assumption.

If f (p) = δ(p − 1/2), where δ is the Dirac distribution function, that is if p
is equal to 1/2 for all elections, then the Penrose-Banzhaf model (IC in social
choice terminology) is recovered with a probability of 1/2n for all configurations.
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For f (p) = 1, we getMay’smodel (IAC in social choice terminology) andwe obtain

1

(n + 1)

(
n
t

) (10)

for the probability of a configuration with t votes for A and n − t votes for B. As
there are n!

t !(n−t)! voting configurations with t A’s and (n − t) B’s, we recover the fact
that any result is equally likely, as in May’s paper.

The Rescaled IAC assumption (RIAC) for which the pi are independent and are
drawn from the distribution

fi (pi ) =
{ 1

2�i
if 1

2 − �i < pi < 1
2 + �i

0 elsewhere
(11)

for i = 1, . . . , N is also of special interest. Here, �i is a strictly positive value less
than 1/2. It has been introduced under the nameofBiased andRescaled IAC (BRIAC)
(Feix et al. 2004), with the possibility of a bias in favor of one candidate that we omit
in this paper. If �i = 1/2, for all i , then May’s model is recovered, while in the limit
�i → 0, for all i , the RIAC model tends toward the Penrose-Banzhaf model if the
population is finite according to Berg’s interpretation.

RIAC can be interpreted as follows: It means that a percentage 1/2 − �i of the
population of state i always votes for A, while the same percentage always votes for
B; only a fraction 2�i of the population hesitates between both alternatives. Thus, the
RIACmodel can be used to overcome the limitations of both the IC model (elections
are too close) and the IAC model (the range of the results is too spread out). For
example, �i = 0.2 means that the results vary from 30% of the votes for A to 70%
of the votes for A from election to election, quite a realistic pattern!

3.3 Simulation Techniques

The probability of observing the referendum paradox has been studied analytically,
and through Monte Carlo simulations as soon as N is greater than 5, when all the
states were assumed to have the same population and consequently the same number
of weights (Feix et al. 2004). Only small differences were found between IC and IAC
models: with 101 states, the probabilities of the referendum paradox seem to stabilize
around 16.5% for IAC and around 21.5% for IC. The results of these simulations
are confirmed with approximations based upon the law of large numbers (Lepelley
et al. 2011). The value under IAC is consistent with the 1

6 asymptotic result (May
1948). Here we study the conflict frequency between the direct (popular) vote and
the two-tier decision when the size of the population can differ from state to state, for
a given apportionment of the weights, and under different probability assumptions;
we denote this probability by P(N , ñ, ã, I (A)C). Here, N is the number of states,
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ñ the distribution of the population among the N states, ã the apportionment rule
we study and I(A)C is either IC or (R)IAC. When ai = nδ

i , we will simply write the
probability P(N , ñ, δ,GI AC). Notice that all of the probabilities will be estimated
for such large ni ’s so that the discrete nature of the population size does not play any
role. Thus, �i → 0 does not mean that the RIAC model converges to the IC case, as
it would be if the populations were finite.

For the IC model, each voter selects a party with equal probability. When ni is
sufficiently large, the distribution of the votes follows a normal distribution. In each
state, the excess of ballots for A or B is then given by

εi
√
ni (12)

where εi is drawn randomly according to the Gauss distribution:

(2π)−1/2 exp(−ε2/2). (13)

The popular vote over the whole union is given by

sgn

(∑
i

εi
√
ni

)
, (14)

while the decision taken by the representatives is given by

sgn

(∑
i

ai sgn(εi )

)
(15)

The sgn function is defined by

sgn(x) =
{

1 si x ≥ 0
−1 si x < 0

(16)

By convention, a value of one (minus one) results in the selection of candidate A
(B). A difference in sign between (14) and (15) means that we observe a paradox.

Next, we will study the RIAC models, defined by Eq. (11). Thus, the excess
of ballots for A (or B) is given by εi2�i ni where εi is drawn from the uniform
distribution on [−1, 1]. Notice that we can assume different �i �= 0 for the different
states. Then, we have to compare:

sgn

(∑
i

εi2�i ni

)
(17)

for the popular vote with the vote of the representatives
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sgn

(∑
i

ai sgn(εi )

)
(18)

We can reinterpret the RIAC model with the ni ’s as an IAC model with new
populations given by n′

i = 2�i ni . Let us draw εi from an uniform distribution on
[−1, 1]. Thus, we have to compare the total excess ballots, given by:

sgn

(∑
i

ε′
i n

′
i

)
(19)

with the vote of the representatives, given by

sgn

(∑
i

a′
i sgn(ε

′
i )

)
(20)

Equations (17)–(18) describe the same problem as Eqs. (19)–(20) and the two
interpretations are equivalent. In words, the probability of the paradox for a RIAC
model with respective populations n1 = 4, n2 = 3 and n3 = 3while�1 = 0.1,�2 =
0.2 and�3 = 0.3, is given by a simulation with the IACmodel with new populations
n′
1 = 0.8, n′

2 = 1.2 and n′
3 = 1.8. Moreover, when �i = � for all the states, the

results are directly given by an IAC simulation.
Thus, we can focus on the two models IC and IAC to test the optimality of the

different apportionment rules in various scenarios using Monte Carlo techniques to
simulate a large number of votes for a large number of states. Also, exact formulas
for the three state case with unequal populations have been obtained for both the
IC case (Lepelley et al. 2014) and the IAC case (Kaniovski and Zaigraev 2018).
The simulations results we will obtain are in perfect agreement with their theoretical
results.

4 The General Study of the δ-Rules Via Simulations

4.1 Staircase Curves

We assume that ai = nα
i for the IC case and ai = (2�i ni )β for the RIAC case. Our

objective is to checkwhether the recommendations we should adopt whenwewish to
minimize the likelihood of the referendum paradox are compatible with approximate
solutions that have been suggested in the power index literature (β = 1 for (R)IAC,
α = 0.5 for IC). But before getting to the heart of the matter, we first study two cases
of unequal populations in detail, to highlight several facts about the shapes of the
curves we obtain.
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Fig. 1 IC model :
Percentage of conflicts
between states and
population decision for
N = 5 states of population
ñ� = (10.24, 5.29, 3.24,
1.96, 1) respectively

Fig. 2 RIAC model : same
as figure 1. 2�i ni =3.2, 2.3,
1.8, 1.4,1, for i = 1, . . . , 5
(that is the square root of the
values taken for Fig. 1)

Let us consider first the populations (2�i ni ) = ñ′ = (3.2, 2.3, 1.8, 1.4, 1) for a
RIAC simulation, and the populations equal to the square of the previous ones for
an IC simulation (i.e. (ni ) = ñ� = (10.24, 5.29, 3.24, 1.96, 1)).

For each value of α and β, represented by a point, 1,000,000 elections were
generated randomly. Then, α (resp β) is incremented by step of 0.005 (resp 0.01) on
the range [0, 1.5] (resp [0, 3]). Figures 1 and 2 display the results of a Monte Carlo
simulation, with all of the points being connected for clarity.

First, the δ-rules canonly be associated to a limited number of underlyingweighted
majority games.9 We immediately recognize on the Figs. 1 and 2 six plateaus, with
each one corresponding to an underlying weighted majority game. These plateaus
give to the curve a “staircase” shape.

More surprising is the fact that we obtain very similar shapes for both cases,
though the magnitudes along the horizontal and vertical axis are different. As we

9Recall that different weights can lead to the same set of winning coalitions (Taylor and Zwicker
1999).
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have chosen ñ� such that n�
i = (n′

i )
2, if we assume furthermore that α = β/2, Eqs.

(14) and (15) become equivalent to Eqs. (21) and (22).

sgn

(∑
i

εi

√
(n�

i )

)
= sgn

(∑
i

εi

√
(n′

i )
2

)
= sgn

(∑
i

εi (n
′
i )

)
(21)

sgn

(∑
i

ai sgn(εi )

)
= sgn

(∑
i

(n�
i )

α sgn(εi )

)
= sgn

(∑
i

(n′
i )

β sgn(εi )

)

(22)
In other words, the games that we will encounter for an IAC simulation with a

population (ni ) as β varies are the same ones that will encounter for an IC simulation
with α = β/2 and populations (ni )2. This explain why we recover a very similar
staircase structure in both cases. However, one difference remains: on the one hand
the εi are drawn from a normal distribution, and on the other hand, they are drawn
from a uniform distribution. As a consequence, the minimal values of the paradox
may not appear for the same plateau.

Let us now comment more precisely regarding Fig. 2. For the RIAC case, we
encounter 6 plateaus. Easy computation shows they correspond to 6 of the 7 pos-
sible 5-person weighted majority games with an odd number of weights.10 The
vectors of weights are ã1 = (1, 1, 1, 1, 1), ã2 = (2, 2, 1, 1, 1), ã3 = (3, 2, 2, 1, 1),
ã4 = (4, 2, 2, 2, 1), ã5 = (5, 2, 2, 2, 2) and ã6 = (1, 0, 0, 0, 0). We first meet a
majority game with equal weights, and then, progressively move toward the dic-
tatorship of state 1. The optimal value, which leads to a probability of about 16%, is
obtained for values of β in between 0.9 and 1.3. It is superior to the exact value of
14.32 % that Feix et al. (2004) derived for five state with equal population. The pure
federal case leads to a paradox in about 19% of the simulations, and the dictatorial
case in about 24%.

It is also possible to encounter games with an even number of weights. For exam-
ple, in between ã1 and ã2, the δ-rule is equivalent to the extra game ã7 = (3, 3, 2, 2, 2)
for a unique value of δ ≈ 0.595420. The reader will immediately realize that such
games exist in between games with an odd number of weights, but that they are only
realized at specific values of δ ≈ 0.862767, 1.307213, 1.822085, 2.209592. Then,
the computer simulations, with finite steps for α or β, will never be able to catch
them.

The picture for the IC case is very similar as we assumed n�
i = n′

i and 2α = β.
We recover the six plateaus, corresponding to the same six different voting games.
However, the magnitudes are different. We start with a value of 21.5% in the federal
case, and next obtain a minimum slightly lower than 20% for α in between 0.43 and
0.65 approximately, and then progressively go up to 25.5% for the dictatorial case.

Figures 3 and 4 present a much more complicated situation with 20 states. Due
to the large number of possible majority weighted games with 20 players, the curves
become almost continuous. The pattern of the two curves are similar: first a plateau

10The only “missing” game is defined by ã = (3, 3, 3, 0, 0).
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Fig. 3 IC model : same as
Fig. 1 but for N = 20 states
of population n�

i = 35.88,
32.72, 30.69, 23.52, 18.84,
17.72, 17.31, 15.44, 14.06,
11.83, 11.49, 9.92, 8.82,
6.45, 5.81, 4.49, 3.13, 2.34,
1.72, 1, for i = 1, . . . , 20

Fig. 4 RIAC model: same as
Fig. 2 but for N = 20 states
with n′

i =5.99, 5.72, 5.54,
4.85, 4.34, 4.21, 4.16, 3.93,
3.75, 3.44, 3.39, 3.15, 2.97,
2.54, 2.41, 2.12, 1.77, 1.53,
1.31, 1.,for i = 1, . . . , 20

around the federal case, then a decline till the optimal value (around β = 1 in the
IAC case, and around α = 0.5 in the IC model) and then a regular increase, at least
in the range of values of α and β shown Figs. 3 and 4. Notice that we do not reach
the dictatorial case for both simulations.11

4.2 Toward a General Result Under IAC

Until now,wehaveobservedwith the formulas for N = 3 states and two specific cases
of unequal population (one for N = 5 states and one for N = 20) that β = 1 seems
to be the optimal choice for a δ-rule under IAC in order to minimize the occurrence

11Some simulations, not presented in this paper, have shown that a second local minima, above the
first one, may exist for higher values of α and β, before reaching the dictatorial case.
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of the referendum paradox. In this section, we try to obtain general conclusions by
systematically drawing several distributions ñ for a given number of states.

Conjecture For the RIACmodel, the minimum probability of conflicts between the
popular and states among the class of δ-rules is obtained by taking ai = �i ni , that
is, β = 1. �

We will systematically test the conjecture by simulations for N = 3 to N = 33,
with an extra simulation for N = 50. For each value of N , wewill first draw randomly
1,000 different federations from the uniform distribution on the unit simplex. Next,
we will consider 100,000 elections for each federation12 in order to estimate the
likelihood of the paradox for different values of β, as explained in Sect. 3.3. β will
vary from 0 to 2, with a step of 0.05, and an increased precision of 0.01 in between
0.9 and 1.1.

In Table 1, we summarize the results of these simulations. First, for each feder-
ation, we will check whether β = 1 leads to the minimal value of the paradox. Let
F(N , β, I AC) be the percentage of federations of size N for which β gives the mini-
mal probability of the paradox. Column 2 gives the value of this frequency for β = 1.
Column 3 and 4 gives the optimal β� and the corresponding value F(N , β�, I AC).
We observe that β = 1 is almost all the time the value that maximizes the probability
of getting the minimal occurrence of the referendum paradox, and when it is not
the case, the optimal value is either β = 0.99 or β = 1.01 ! For N = 3, we observe
4 cases out of 1,000 where β = 1 is not optimal. Indeed, theoretical results have
proven that β = 1 is the optimal value (Kaniovski and Zaigraev 2018). These value
less than one are just a consequence of the fluctuations of the simulations. However,
as N grows, F(N , 1, I AC) plunges. But in fact, the number of possible underlying
weighted majority games also increases with N , and now each value of β around 1
leads to a specific game; due to fluctuations of the random trials, values of β close
to 1 can also frequently be designated as the optimal game. Thus, to check the opti-
mality of β = 1, we consider column 5, which reports the maximal deviation for the
optimal value of the paradox for the 1,000 federations of size N . With the exception
of N = 3, this maximal deviation is always less than 0.15%.

At last, at the aggregated level, we will report in column 6 P(N , β, I AC) for
β = 1, the mean value of the P(N , ñ, β, I AC) among the 1,000 federations. β = 1
has always produced the minimal value of the paradox, except for N = 3 where we
observe a value of P(N , ñ, 1.01, I AC) = 11.8738%, which can hardly be consid-
ered as significatively different from P(N , ñ, 1, I AC).

To give a broader perspective on the behavior of P(N , β, I AC), we display it for
several values of N as β varies on Fig. 5. All the curves display the same pattern. We
encounter the maximal value of the paradox for the pure federalism case (β = 0),
and, after a plateau, the probabilities decline to their optimal values obtained for

12Ideally, we should have drawn a new set of elections for each value of β, as we did in the previous
section. This would have allowed us to define a clear statistical test about the optimality of β = 1
compared to other values of β. However, one immediately realizes that drawing a new batch of data
for each β would have enormously increased the computation time.
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Table 1 Testing the optimality of β = 1 under the IAC assumption

N F(N , 1, I AC) β� F(N , β�, I AC) Max Dev P(N , 1, I AC)

(in %) (in %) (in %) (in %)

3 99.6 1.00 99.6 0.252 11.8740

4 99.3 1.00 99.3 0.103 13.4914

5 97.4 1.00 97.4 0.113 14.2053

6 91.0 0.99 91.0 0.148 14.4684

7 78.8 1.00 78.8 0.104 14.9255

8 60.7 1.01 61.5 0.122 15.0010

9 37.0 1.00 37.0 0.106 15.3418

10 22.9 1.01 23.1 0.094 15.3632

11 18.8 1.00 18.8 0.111 15.5899

12 15.3 1.00 15.3 0.150 15.6656

13 12.6 1.00 12.6 0.088 15.8195

14 14.6 1.00 14.6 0.078 15.8253

15 14.1 1.00 14.1 0.094 15.8624

16 14.2 1.00 14.2 0.080 15.9419

17 13.0 0.99 13.5 0.096 15.9763

18 12.2 1.01 12.2 0.102 15.9965

19 14.8 1.00 14.8 0.080 16.0845

20 14.7 1.00 14.7 0.110 16.0911

21 13.0 1.00 13.0 0.079 16.1345

22 14.0 1.00 14.0 0.096 16.1118

23 13.4 1.00 13.4 0.106 16.1944

24 13.3 1.00 13.3 0.086 16.1965

25 12.5 1.00 12.5 0.091 16.2290

26 13.0 0.99 14.3 0.092 16.2487

27 14.9 1.00 14.9 0.108 16.2221

28 13.3 1.00 13.3 0.087 16.2842

29 15.5 1.00 15.5 0.093 16.2781

30 15.6 1.00 15.6 0.092 16.2790

31 14.0 1.00 14.0 0.093 16.3033

32 15.0 1.00 15.0 0.086 16.2947

33 12.7 0.99 13.6 0.092 16.3364

50 15.1 1.00 15.1 0.092 16.4370



Majority Efficient Representation of the Citizens in a Federal Union 181

Fig. 5 The Probability of
the referendum paradox as a
function of β under the IAC
assumption for an odd
number of states
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β = 1. After this point, the occurrence of the referendum paradox increases again.
As N grows, the curves move up progressively and seem to reach a limit. In fact, in
Table 1, the values of P(N , 1, I AC) appear to converge to 16.5%, the limit value of
the paradox for equally populated states that has been already observed (May 1948;
Feix et al. 2004, Lepelley et al. 2011).

4.3 How Far from Optimality Is the Square Root Rule?

The method we use to simulate results under IC is similar to the one we use for
the IAC assumption. For N = 3 to N = 33, we still draw 1,000 population vectors
from the simplex, and then generate randomly 100,000 voting situations. We will
add a simulation at N = 50 to have a glance at the large federation case. The only
difference is that now εi is drawn from the Gaussian:

(2π)−1/2 exp(−ε2/2).

Different values of α are tested in between 0 and 1, with an increment 0.05, reduced
to 0.005 in between 0.4 and 0.6.

Table 2 summarizes our findings. Let F(N , α, IC) be the percentage of federa-
tions of size N for which α gives the minimal probability of the paradox. Columns 2
and 3 display the optimal α� and the corresponding value, while Columns 4 gives the
value of F(N , 0.5, IC). The optimal α tends to be slightly smaller than 0.5, ranging
from 0.435 to 0.505 according to N . This is consistent with the theoretical finding,
which also suggested that the optimal value should be slightly below 0.5 (Lepelley
et al. 2014). Again, the values for F(N , α, IC) decline quickly as N grows, as each
specific value of α becomes associated with a specific game. Contrary to the IAC
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Table 2 Testing the optimality of α = 0.5 under the IC assumption
N α� F(N , α�, IC) F(N , 0.5, IC) Max Dev α� P(N , α�, IC) P(N , 0.5, IC)

(in %) (in %) (in %) (in %) (in %)

3 0.435; 0.445 98.9 91.8 1.750 0.440 17.1220 17.1925

4 0.440; 0.445 97.9 92.8 1.130 0.440 18.2866 18.3132

5 0.465 94.0 85.4 0.736 0.465 18.7005 18.7189

6 0.465; 0.470 86.0 76.4 0.509 0.470 19.0435 19.0569

7 0.47 67.7 59.3 0.338 0.475 19.2775 19.2858

8 0.48 50.5 44.4 0.220 0.480 19.4480 19.4544

9 0.475; 0.490 27.8 22.4 0.183 0.480 19.5767 19.5830

10 0.485 18.6 15.1 0.158 0.480 19.6675 19.6733

11 0.475 11.8 6.7 0.145 0.480 19.7516 19.7565

12 0.495 9.6 7.5 0.124 0.480 19.8325 19.8363

13 0.48 8.6 6.7 0.119 0.485 19.8877 19.8912

14 0.475 8.6 5.8 0.130 0.490 19.9342 19.9357

15 0.485 8.5 5.9 0.144 0.485 19.9679 19.9707

16 0.475 7.7 6.4 0.100 0.485 20.0278 20.0303

17 0.48 8.5 6.4 0.088 0.490 20.0554 20.0572

18 0.49 8.9 7.3 0.092 0.490 20.0839 20.0859

19 0.485 7.9 6.2 0.106 0.490 20.1099 20.1130

20 0.5 8.5 8.5 0.111 0.490 20.1395 20.1409

21 0.485 8.3 7.4 0.104 0.495 20.1523 20.1537

22 0.485; 0.495 8.1 6.2 0.101 0.495 20.1795 20.1803

23 0.5 8.1 8.1 0.097 0.490 20.2019 20.2026

24 0.5 8.4 8.4 0.107 0.490 20.2195 20.2209

25 0.495 8.5 6.2 0.084 0.495 20.2241 20.2245

26 0.49 9.0 7.3 0.109 0.490 20.2360 20.2368

27 0.505 8.5 7.3 0.091 0.500 20.2616 20.2616

28 0.49 8.3 7.8 0.096 0.490 20.2590 20.2598

29 0.49 7.9 7.0 0.098 0.490 20.2758 20.2766

30 0.475 8.9 8.5 0.111 0.490 20.2909 20.2919

31 0.485 8.3 7.3 0.084 0.490 20.2958 20.2964

32 0.485 8.9 8.1 0.098 0.495 20.3062 20.3065

33 0.48 8.4 7.7 0.108 0.495 20.3163 20.3165

50 0.49 8.7 7.8 0.094 0.495 20.4046 20.4053

case, we really observe in column 5 deviations from the optimum which are quite
significant for small values of N .13 However, the maximal deviations stay below 0.15
from N = 10.

At the aggregated level, we study the mean value of the paradox over the 1,000
federations, P(N , α, IC). Values for P(N , 0.5, IC) are displayed on column8. They
are almost never the optimal values P(N , α�, IC) for small values of N , though the

13Again, we cannot propose a proper test as we use the same batch of elections to compute the
P(N , ñ, α, IC) for different values of α.
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Fig. 6 The Probability of
the referendum paradox as a
function of α under the IC
assumption for an odd
number of states
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Fig. 7 Comparing different
voting rules on their ability
to avoid the referendum
paradox under the IAC
assumption
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differences are tiny. The optimal value is α� = 0.44 for N = 3, and it seems to
converge toward 0.5. Thus, the statement that the square root rule is “on average”
the optimal two-tier voting rule under the ICassumptionmaybe true for N sufficiently
large (Fig. 6).

As we did for the IAC case, we display in Fig. 6 the evolution of the paradox as α

varies for different values of N . The curves exhibit a similar pattern: after a plateau
around the value α = 0, they decline continuously to their minimal value reached
just before α = 0.5. Then, the values of the paradox increase again as α increases.
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5 Conclusion

In this paper, we have first discussed the literature about the optimal weight that
a state should receive in a two-tier majority voting rule. We emphasized the fact
that most of the criteria which are used to compare voting rules are all based upon
abstract concepts like “pivotal players” or “utility”. A simpler concept, like “equal
opportunity of success” is more appealing but does not really discriminate among
the voting rules as long as they treat the candidates equally. The concept of majority
efficiency that we proposed in this paper is, in our opinion, easier to defend. First,
it is just the application of the well known Condorcet criterion to a two candidate
election. Secondly, a referendum paradox can be observed by all the citizens when
it occurs, as show the 2000 and 2016 US presidential elections. As a consequence, it
can be studied not only from a theoretical point of view, as we did in this paper, but
could also be the subject of empirical studies, as soon as one possesses a sufficiently
large and consistent electoral database. To some extent, studying this paradox would
be a good way to build a bridge between formal a priori models used in game
theory, economics and social choice theory, and empirical facts described in political
sciences.

One of the conclusion of the paper is that the square root rule, which stood for a
long time as the only normative recommendation for voting in federations, can be
seriously contested. We have seen in Sect. 2 that other normative criteria that the
idea of equalizing power can be used. In Sect. 3, we put forward May’s model as an
alternative to the classical Penrose-Banzhaf model. Section 4 clearly demonstrated
that even under the Independence assumption, the square root rule could only hold for
sufficiently large values of the number of states, N . In contrast, the proportional rule
has always emerged as the uncontested apportionment method under May’s model.

At last, onemaywonder what happens whenwe consider rules which are different
from the δ-rules.At this stage,we cannot guarantee that other two-tier voting schemes

Fig. 8 Comparing different
voting rules on their ability
to avoid the referendum
paradox under the IC
assumption
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may beat the proportional rule or the square root rule. But, we can already directly
compare three famous voting rules, the federal rule (δ = 0), the square root (δ = 0.5)
and the proportional rule (δ = 1). The results, for the IC assumption, are displayed
on Fig. 8.We recover that the square root rule does better than the proportional rule or
the federal rule, but the margins are not impressive: As N grows, its advantage over
the proportional rule (resp. the federal rule) stabilizes around 2.5% (resp. 4%). Such
differences may not be perceived empirically unless someone gathers a huge set of
data. Moreover, as it has been noticed that the IC model does not fit with electoral
data (Gelman et al. 2004), it seems imprudent to set normative recommendations on
this sole basis. On the other hand, by describing more homogeneous societies, the
IAC could be more reliable. The results, displayed in Fig. 7 are quite shocking for
the federalism.14 With 33 states, the probability of paradoxes reaches 28% with the
federal rule, while it stays below 16.5% for the proportional rule. Even the cube rule
(β = 2) performs better! Over a long series of elections, such a difference could be
detected, and unless the “one state – one weight” principle enjoys strong support in
the society, our study suggests it should be abandoned in federations.
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“One Man, One Vote” Part 1: Electoral
Justice in the U.S. Electoral College:
Banzhaf and Shapley/Shubik Versus May

Olivier de Mouzon, Thibault Laurent, Michel Le Breton,
and Issofa Moyouwou

1 Introduction

While there are controversies about the appropriate precise definition of a perfect
democratic electoral system, it is fair to say that a consensus exists among scholars
and commentators on two properties that any such system should possess. These two
properties, typically referred to as anonymity and neutrality in the jargon of social
choice theory, are the two main pillars of any democratic electoral system.

Anonymity calls for an equal treatment of voters1 and neutrality calls for an equal
treatment of candidates. If an electoral system is described in full mathematical gen-
erality as a mapping from the profiles of ballots into the set of candidates describing
both the set of ballots available to each person and the selection of the winner for each
profile of individual choices, anonymity implies first that all the persons have access
to the same set of ballots and second that two profiles of votes which can deduced
from each other through a permutation of names lead to the same electoral outcome.

1It requires that the “votes” of any two persons should have the same influence.
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The second part of the definition amounts to an axiom of invariance to permuta-
tions of the names of the persons. Neutrality is an axiom of invariance to permuta-
tions of the names of the candidates. In this paper, we will focus exclusively on the
anonymity property to which we will refer to alternatively as the “one person, one
vote’s” principle2 or electoral justice.3

Let us discuss briefly the first component of the anonymity axiom. For a mean-
ingful discussion of that dimension, we need first the definition of a reference popu-
lation listing all the persons who are considered to be part of the process on objective
grounds. In practice, this set is a proper subset of the all population since for instance
persons who are considered too young may not be listed in the reference population.
Anonymity imposes as a necessary condition that all the persons in the reference
population have access to the same set of ballots.

Themost extremeviolation of that principle appearswhen somepersons are totally
excluded from the process (i.e., their set of ballots is empty) on the basis of one or
several observable criteria like for instance gender, age, race, wealth, or education.
Most existing democracies went through a long period of time during which this
basic version of anonymity has been violated. Even often, democracies have added
temporarily an extra layer of departure from anonymity. Instead of having two classes
of citizens: those (the non- citizens) who do not vote at all and those (the voters)
who do vote on equal grounds, the electoral system subdivides the second class into
several classes defined by different ballot structures.

Three examples from the European electoral history illustrate the second depar-
ture from anonymity: the law of double vote which was used from 1820 to 1830 in
France,4 the three-class franchise system5 used from 1848 to 1918 in the Kingdom of
Prussia and the “university constituency”6 electoral system (university constituen-
cies represent the members of one or more universities rather than residents of a

2One man, one vote (or one person, one vote) is a slogan used by advocates of political equality
through various electoral reforms such as universal suffrage, proportional representation, or the
elimination of plural voting, malapportionment, or gerrymandering.
3For deep discussions of the notions of equity and justice, see Balinski (2005) and Young (1994).
4For an analysis, see Le Breton and Lepelley (2014), Newman (1974) and Spitzer (1983).
5This indirect election system (In German: Dreiklassenwahlrecht) has also been used for shorter
intervals in other German states. Voters were grouped into three classes such that those who paid
most tax formed the first class, thosewho paid least formed the third, and the aggregate tax revenue of
each class was equal. Voters in each class separately elected one-third of the electors (Wahlmänner)
who in turn voted for the representatives in Prussia from 1849 to 1909 and the law of sieges(called
the law of double vote) created among the voters (only old enough males paying a critical amount
of taxes were voters). For more on this electoral law, see Droz (1963) and Schilfert (1963).
6University constituencies originated in Scotland, where the representatives of the ancient univer-
sities of Scotland sat in the unicameral Estates of Parliament. When James VI inherited the English
throne in 1603, the system was adopted by the Parliament of England. It was also used in the Par-
liament of Ireland, in the Kingdom of Ireland, from 1613 to 1800, and in the Irish Free State from
1922 to 1936. It is still used in elections to Irish “senate”. For more on this electoral law, see Beloff
(1952).
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geographical area) which has been used in the Parliament of Great Britain (from
1707 to 1800) and the United Kingdom Parliament, until 1950.7

Having access to the same ballots is necessary but not sufficient to obtain
anonymity. A third and more subtle departure from anonymity arises when the bal-
lots are the same but do not have the same influence on the final electoral outcome.
The mathematical definition of anonymity is that for any given profile of ballots, the
electoral outcome remains the same for all possible permutations of these ballots
across voters. This condition is violated in two-tier electoral systems. A (single-seat)
two-tier electoral system is a systemwhere the population is partitioned into areas. In
each area, the citizens elect a number of representatives who then meet in the upper
tier to elect the winner. In such system, the final outcome is sensitive to the geography
of the votes, i.e., to the distribution of the votes across the units composing the first
tier.

Two identical ballots will not have the same influence and the crucial question
becomes: How to measure the differences across voters and the departure of the
electoral system from perfect anonymity? In this paper, we will follow a popular
approach pioneered by Banzhaf (1964) and Shapley and Shubik (1954) which con-
sists in evaluating the power of a voter as the probability of this voter being pivotal
where probability refers to a probability model where the profiles of preferences or
utilities of the voters are the elementary events of the state space.8

Precisely, our methodology to evaluate the degree of electoral justice will
consist in the computation of the values of these power indices (there is one
value per class of voters) and then the ratios of the numbers with respect to the
smallest one.

An alternative and equivalent way to present the same information would be to
compute the relative shares of power. In this paper, we do not attempt to end up with
a one-dimensional uncontroversial measure of electoral inequity as we will con-
sider several probability models. This concern together with some related statistical
developments is the main topic addressed in our companion paper (DeMouzon et al.
2020a).

This paper will focus on an extremely popular and important two-tier electoral
mechanism, namely the US Electoral College which is the electoral mechanism used
by the United States of America to elect their president. In his pioneering and must

7These may or may not involve plural voting, in which voters are eligible to vote in or as part of
this entity and their home area’s geographical constituency.
8We refer the readers to Felsenthal and Machover (1998) and Laruelle and Valenciano (2011) for
overviews of the theory and its main applications. An alternative measurement approach could be
based upon utilities. From the Penrose’s formula (see for instance, Penrose 1946, 1952; Felsenthal
andMachover 1998), under IC, utility is an affine function of power. This simple relationship ceases
to hold true for other probabilistic models (see, e.g., Laruelle and Valenciano 2011; Le Breton and
Van Der Straeten 2015). We have not explored the conclusions in terms of electoral justice drawn
from utilities.
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read paper on the Electoral College, Miller (2012) offers a very clear presentation of
the issue of unequal representation in the context of this specific electoral institution.
He writes:

Does the transformed Electoral College system give voters in different states unequal voting
power? If so, are voters in large or small states favored and by howmuch?With respect to this
question, directly contradictory claims are commonly expressed as a result of the failure by
commentators to make two related distinctions: the theoretical distinction between ‘voting
weight’ and ‘voting power’, and the practical distinction between how electoral votes are
apportioned among the states (which determines their voting weights), and how electoral
votes are cast by states (which influences their voting power).

Those claiming that the Electoral College system favors voters in small states point to the
advantage small states have with respect to the apportionment of electoral votes. States
have electoral votes equal to their total representation in Congress. Since every state is
guaranteed at least one seat in House and has two Senators, every state is entitled to at least
three electors regardless of population. Approximate proportionality to population takes
effect only beyond this three-electoral-vote floor, and this creates a substantial small-state
advantage in the apportionment of electoral votes.

However, other commentators (startingwith like LutherMartin) emphasize that voting power
is not proportional to voting weight (e.g., electoral voters), for two reasons. First, the voting
power of a state depends not only on its share of electoral votes but on how the remaining
electoral votes are distributed among the other states. Second, the voting power of a state
depends on whether it casts its electoral votes as a bloc for a single candidate or splits them
among two or more candidates, as well as how other states cast their votes. Intuition seems to
tell us that the fact that elector slates are elected on a general ticket and therefore cast as bloc
produces a large-state advantage—but intuition doesn’t tell us how big this advantage may
be. Moreover, we saw earlier that this intuition is only weakly supported in the state voting
power calculations. The large-state advantage in the 51-state weighted voting game resulting
from winner-take-all is not great enough to counterbalance the small-state advantage with
respect to apportionment except in the case of the megastate of California, so those claiming
a (modest) small-state advantage may appear to be correct. However, the top-tier 51-state
weighted voting game entailed by the transformed Electoral College is a chimera, and the
picture changes dramatically when we consider the more realistic 130-million-voter two-tier
popular election.

The literature on the qualities and weaknesses of the Electoral College is vast. We
will here focus our attention on two questions:

1. How to compare the voters from the different states in the Electoral College?
2. Is there an advantage to small states or large states?

To address, these questions we will follow the vast area of research based on the
use several distinct a priori probability models on top of which the two most popular
ones: theBanzhaf/IC probabilitymodel (Banzhaf 1964) and the Shapley-Shubik/IAC
probability model (Shapley and Shubik 1954).

These a priori models have been criticized on several grounds among which
the lack of empirical support in favor of these models.9 We think that theoretical
and empirical probability models serve different purposes. It depends whether10 the

9See Gelman et al. (2004), Gelman et al. (2002a), Gelman et al. (2002b), Gelman et al. (1998). See
also the empirical analysis of pivotality conducted by Mulligan and Hunter (2003).
10We refer to Miller (2009) and De Mouzon et al. (2019) for a defense of the a priori approach.
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emphasis of the analysis is either positive, i.e., on predicting the power of the citizens
on the basis of the current electoral data or normative, i.e., on evaluating on a priori
neutral grounds the current electoral system and its potential contenders.

In this paper, we revisit and complement the pioneering work of Owen (1975)
who writes:

Discussion has frequently centered on the excessive power which this system seems to give
to one group or another (the large states, the small states, organized minorities within one
or another of the kinds of states, etc.), though there is also frequent disagreement about the
identity of these favored groups.

Owen computes for both the 1960 and 1970 apportionments and census, the
51−dimensional vector of power indices of US citizens (as a function of the US
state where they vote) for the two most popular probability models to which we
have already alluded: the Banzhaf/IC model and the Shapley-Shubik/IAC prob-
ability model. From these calculations, he derives both for 1960 and 1970, the
50−dimensional ratios of the power of the citizen of any given state by the smallest
power (which corresponds to the District of Columbia). In 1960, the highest ratio is
obtained for NewYork with a value equal to 3.312 for IC and 3.287 for IAC followed
by California with a value of 3.162 for IC and 3.143 for IAC. In 1970, the situation
is reversed with California on top with a value of 3.177 for IC and 3.166 for IAC
followed by NewYork with a value of 3.004 for IC and 2.976 for IAC. Between 1960
and 1970, California gained 5 electoral votes (from 40 to 45) while New York lost 2
electoral votes (from 43 to 41). More precisely, Owen obtains for the two probability
models a complete numerical ranking of the states according to these ratios. Two
conclusions emerge from his work:

1. For the twomodels and the two periods, citizens from large states havemore
influence on the electoral process than citizens from small states (around
three times more for citizens in California and New York State).

2. The numerical rankings (and de facto their ordinal implications) attached
to IC and IAC are almost the same.

The first conclusion has been widely commented and criticized by many authors.
This conclusion seems at odds with the conventional wisdom asserting that the con-
clusion should be opposite since the small states are endowed with at least three
electoral votes irrespective of their populations. This conclusion is shared by politi-
cal scientists.

For instance, by calculating an advantage ratio for each state by simply dividing
its share of the total electoral vote by its share of the national population, Shugart
(2004) obtains that “these ratios range from 0.85 for California and Texas to 3.18 for
Wyoming. In other words, California’s weight in electing a president is only 85%
of its contribution to the national population, while Wyoming’s is more than three
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times as great as its population”. On a figure, he plots each state’s advantage ratio
against its population and claims that “it shows very clearly how the smallest states
are significantly overrepresented... There are 13 states with an advantage ratio greater
than 1.5...”.11

Our paper revisits the two conclusions and elucidates the difference between
Owen’s conclusions that large states are overrepresented and traditional views about
overrepresentation of small states.

First, to the best of our knowledge, the second result in Owen’s paper has not
received any attention. This result, that we suggest to callOwen’s coincidence result,
is first mathematically intriguing. How could it be the case that twomodels which are
very different12 lead both to overrepresentation of large states. The IC model postu-
lates complete independence among voters while the IAC model displays correlation
among voters within and across states.

This coincidence is not obvious at all and is not empathized as such inOwen’swork
who derives his results through ingenious and sophisticated numerical approxima-
tion arguments. Our paper will revisit this coincidence as without any mathematical
general result, we could indeed speculate that it may just well be the case that this
coincidence is specific to the 1960 and 1970 data. Our first main result is that this
coincidence extends to more recent data as well.

Besides the mathematical curiosity, this coincidence also obliges to have a differ-
ent view about the so-called Banzhaf’s fallacy (Margolis 1983). Conclusions derived
from Banzhaf are often disregarded as the IC model is very special. It is very special
indeed, and it is fair to say that the square root law often attached to it should be con-
sidered with caution. With the IAC model, the order of magnitude of the probability
of influence for any voter in any state is 1

n instead of 1√
n
.

But the surprise is that when we compute the ratios for any pair of different states,
they are the same for the two models. This means that the conclusions in terms of
electoral justice do not depend exclusively upon the choice of IC.

The second contribution of the paper is to point out that the statement that small
states are overrepresented can be obtained as the result of the methodology adopted
here for a third probability model which has been invented first by May (1948)
and used by several authors and that we will call the May’s probability model.13

This probability model is identical to IAC within states and IC across states, i.e.,
correlations exist between voters from the same state and are absent between voters
from different states.

11In the same vein, see also Durran (2017).
12Among the differences, note in particular that, as demonstrated by De Mouzon et al. (2020b), the
probability of an election inversion (that is an Electoral College winner different from the popular
winner) in the Electoral College tends to 0 with the population size for the IAC model while the
limit is positive for the IC model.
13It is sometimes called the IAC* probability model (Le Breton et al. 2016).
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The ranking of the states according to influence is now almost a complete reversal
of the ranking attached to the IC and IAC models. Further the largest ratio is now
about three times the smallest one. The mathematical side of this result is easy but
it is quite surprising to observe that the ordering of the states depends very much
on whether the preferences of the voters are correlated or not across states. With no
correlation across states, electoral justice is against small states while with enough
correlation electoral justice is against large states. There is likely a critical level of
interstate correlation separating the two conclusions!

The paper is organized as follows. In Sect. 2, we present the main notations and
definitions. Then in Sect. 3, we present the main results of the paper. They are all
based on simulated elections based upon the 2010 apportionment and census for
the three a priori probability models which are considered. Our two main results on
electoral justice (identical overrepresentation of large states for both Banzhaf and
Shapley-Shubik and over representation of small states for May) are presented in
that section.14

2 Notations and Definitions

The purpose of this section is twofold. First, we introduce the main notations and
definitionswith a special emphasis on the notion of two-tier weightedmajoritymech-
anism. Second, we present the measure of influence of a voter which is used in this
paper and the three main probability models that are considered to conduct the com-
putations.

2.1 Two-Tier Weighted Majority Mechanisms

We consider a society N of n voters which must chose among two alternatives15:
D versus R. Each member i of N is described by his/her preference Pi. There
are two possible preferences: D or R. We assume that N is partitioned into K
states: N = ∪1≤k≤KNk . The nk voters of state k are endowed with wk electoral
votes. The electoral outcome F(P) ∈ {D,R} attached to the profile of preferences

14In addition, the working paper version contains an appendix that does two things. First, we discuss
the issue of their asymptotic coincidence in the case of discrete versions of the May and Shapley-
Shubik models, and we sketch an explanation of their coincidence/difference in the case of the
continuous version. Second, we examine the validity of Penrose’s approximation in the second tier
of the Electoral College by comparing the exact ratios of power indices of the states with the ratio
of weights.
15In our simplified setting, like Owen (1975), we neglect the spoiler effects due to the existence of
candidates in addition to the two main ones.
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P = (P1, . . . ,Pn) ∈ {D,R}n is determined by the following16 two-tier weighted
majority mechanism.17 Let Fk(Pk) be the majority winner in state k, i.e.,18

Fk(Pk) =
{
D if

∣∣{i ∈ Nk : DPiR
}∣∣ ≥ |{i ∈ N : RPiD}|

R if
∣∣{i ∈ Nk : DPiR

}∣∣ < |{i ∈ N : RPiD}|

Then:

F(P) =
{
D if

∑
1≤k≤K :Fk (Pk )=Dwk ≥ ∑

1≤k≤K :Fk (Pk )=Rw
k

R if
∑

1≤k≤K :Fk (Pk )=Dwk <
∑

1≤k≤K :Fk (Pk )=Rw
k

Candidate D or R wins the election if the total number of electoral votes attached
to the states where he/she wins a majority of the votes is larger than the total number
of electoral votes attached to the states where his/her opponent wins a majority of
the votes.

The simple game attached to a two-tier weighted majority mechanism is called
a compound simple game19 (Owen 2001; Shapley 1962). From that perspective, the
ingredients of the two-tier electoral mechanism consist of K + 1 simple games:

• K ordinary majority games (Nk ,Wk
maj) k = 1, . . . ,K : In each state, the allocation

of the totality of the wk electoral votes of the state is decided by ordinary majority
voting within the state.

• The weighted majority game ({1, . . . ,K} ,W(q, w)) where w = (
w1, . . . , wK

)
and q =

∑
1≤k≤K wk

2 : In the second tier, the representatives of each state (voting as a
block) elect the president through majority voting.

This mechanism can receive two interpretations: either, it describes the election of
a president through anElectoral College or it describes the election of a parliamentary
house through a plurality formula.

In the presidential interpretation, the states represent the (geographical) states in
the Federal Union. The majority winner in state k wins all20 the electoral votes in

16A general electoral mechanism F is defined as a monotonic mapping from {0, 1}n into {0, 1}
where D ≡ 1 and R ≡ 0.
17Alternatively and equivalently, any electoral mechanism F can be described in terms of winning
coalitions. A coalition of voters S ⊆ N is winning, denoted S ∈ W, iffF(P) = DwheneverPi = D
for all i ∈ S. It is straightforward to check that the familyW ofwinning coalitions ismonotonic with
respect to inclusion. The pair (N ,W) is called a simple game (Owen, 2001). Among those, weighted
majority games are central. A weighted majority game on N is described by a vector of weights
w = (

w1, . . . , wn
)
and a quota q: S ⊆ N is winning, denoted S ∈ W(q, w), iff

∑
i∈S wi ≥ q.When

w = (1, . . . , 1) and q = n
2 ,, we obtain the ordinary majority game.

18In this definition, in both tiers, ties are broken in favor ofD. The details of the tie-breaking rule do
not impact our results. In fact, our simulations are conducted under the assumption that in both tiers,
and ties are broken through a fair random choice between D and R. We will offer further comments
on that, later in the paper.
19The notion of composition is quite general and can be applied to very abstract simple games.
20 This is the “winner takes all” feature of the mechanism. In our paper, we ignore the fact that
for Maine and Nebraska“winner takes all” does not fully apply. Strictly speaking, congressional
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state k. The upper tier, called the Electoral College, is composed of
∑

1≤k≤K wk

electors who are either on theD side or on the R side. It is assumed that they elect the
president through an ordinary majority vote. In the parliamentary interpretation, the
states represent the electoral districts of the country and wk is the district magnitude
of district k. If all the seats of district k go to the majority winner21 in district k,
then F(P) denotes the majority “color” of the parliament while

∑
1≤k≤K :Fk (Pk )=D wk

and
∑

1≤k≤K :Fk (Pk )=R wk denote the number of seats won, respectively, by D and R.
In the main real-world applications of this second interpretation (U.S.; U.K.,...), the
district magnitude of all the districts is equal to 1.

In this paper, we will focus on the first interpretation. The above formal definition
calls for a comment as, strictly speaking, it deviates at the margin from the real one.
Indeed, since we cannot exclude a priori the cases where there is a tie either within a
state (this may happen if nk is even) or more seriously within the Electoral College
(this may happen if

∑
1≤k≤K :Fk (Pk )=D wk = ∑

1≤k≤K :Fk (Pk )=R wk ), we need to define
how these ties are broken. In this event, to make our presentation simple, we have
broken deterministically the tie in favor of the candidate D. Instead, we could have
decided to break the tie in favor of the candidate R or to use a probabilistic device
like flipping a fair coin. In our simulations, to make the rule as neutral as possible,
we opted for the random draw but in this general presentation, we decided not to
do so as this calls for some cumbersome notational adjustments in the definition of
pivotality that we wanted to avoid.

For the unbiased probabilistic models on preferences that will be introduced in the
next section, all three tie-breaking rules lead to the same computations and conclu-
sions. The US Electoral College uses a different rule in the case of such a contingent
presidential election. The TwelfthAmendment requires theHouse of Representatives
to go into session immediately to vote for a president if no candidate for president
receives a majority of the electoral votes. In this event, the House of Representa-
tives is limited to choosing from among the three candidates who received the most
electoral votes for president. Each state delegation votes “en bloc”: each delegation
having a single vote; the District of Columbia does not receive a vote. A candidate
must receive an absolute majority of state delegation votes (i.e., at present, a mini-
mum of 26 votes) in order for that candidate to become the president-elected. The
House continues balloting until it elects a president.22 Like Owen (1975), we depart
from the “real” tie-breaking rule. In Sect. 4, we speculate that the results that we will
obtain for the three equivalent and simple theoretical breaking rules defined above
are identical to those that would be obtained for the Twelfth Amendment rule.

districts should be treated as additional states for the purpose of the modeling. We conjecture that
our results are not significantly impacted by this simplification.
21In the real-world electoral systems which are used to elect the representatives, when the district
magnitude is larger than 1, it is often the case that the “winner takes all” principle is replaced by
a proportional principle. In such a case, the formal description of the electoral mechanism differs
from the one considered here. For a general approach, when the district magnitude is equal to 2,
the reader is referred to Le Breton et al. (2017).
22The House of Representatives has chosen the president only once in 1825 under the Twelfth
Amendment. Senate is involved along similar principles in the election of the vice president.
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2.2 Probability Models

To evaluate the power and utilities of voters and the properties of a votingmechanism
F , we introduce a probability model π on the set of profiles {D,R}n: π (P) denotes
the probability (frequency, ...) of profile P. Let us examine the situation from the
perspective of voter i.

To evaluate how often i is influential, we consider the frequency of profiles P such
that F(D,P−i) 	= F(R,P−i) or equivalently the frequency of coalitions S, such that
S ∈ W and S\ {i} /∈ W or S /∈ W and S ∪ {i} ∈ W. In such situation , we say that
voter i is pivotal. The probability Pivi(i,F, π, n)23 of such an event is

∑
T /∈W and T∪{i}∈W

π (T ) +
∑

T∈W and T\{i}/∈W
π (T ) =

∑
T⊆N\{i}:T /∈W and T∪{i}∈W

π−i (T )

where π−i denotes the (marginal) probability induced by π on the product subspace
{D,R}N\{i}. This formula24 makes clear that the evaluation depends upon the proba-
bility π which is considered. Two popular specifications have attracted most of the
attention and dominate the literature.

The first (known under the heading Impartial Culture (IC)) leads to the Banzhaf’s
index.25 It corresponds to the setting where all the preferences Pi proceed from
independent Bernoulli draws with parameter 1

2 . In this case, for all T ⊆ N\ {i}:
π−i (T ) = 1

2n−1 . The Banzhaf power B(i,F, n) of voter i is equal to

ηi (W)

2n−1
,

where ηi (W) denotes the number of coalitions T ⊆ N\ {i} such that T /∈ W and
T ∪ {i} ∈ W (in the literature, any such coalition T is referred to as a “swing” for
voter i).

23Piv(i,F, π, n) contains a little abuse in notation since π and n cannot be separated as π is defined
on {D,R}n. Piv(i,F, π, n) could also be denoted Piv(i,W, π, n), and it is often called the power
of voter i for the voting rule F/W according to the probability model π . When the reference to F/W
will be clear, we will drop it from the notation.
24This definition needs to be adjusted when the voting mechanism and when ties are not broken
deterministically. Let us denote by T (T for ties) the set of profiles P ∈ {D,R}n such that D is
elected with probability 0 < χ(P) < 1. Assuming that a tie is broken as soon as a single voter
changes her mind, then the probability of pivotality is the probability over subprofiles P−i of
havingF(P−i,D) 	= F(P−i,R).Whenbothoutcomes are deterministic, then this happens onlywhen
F(P−i,D) = D and F(P−i,R) = R. But with ties, this may also happen when : F(P−i,D) = T and
F(P−i,R) = R or when F(P−i,R) = T and F(P−i,D) = D. In the last two cases, the probability
of having different outcomes is not equal to 1 anymore but to χ(P).
25Here, we have only two candidates. The wording IC is used more generally to define the situation
of independent and identically draws of preferences over an arbitrary number of candidates. Here,
we use the terms Banzhaf and IC equivalently.
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The secondmodel (known under the heading Impartial Anonymous Culture (IAC)
Assumption) leads to the Shapley-Shubik’s index.26 It is defined as follows. Condi-
tionally to a draw of the parameter p in the interval [0, 1], according to the uni-
form distribution,27 the preferences Pi proceed from independent Bernoulli draws
with parameter p. In such a case, for all T ⊆ N\ {i} : π−i (T ) = ∫ 1

0 pt(1 − p)n−1−tdp
where t ≡ #T . The Shapley-Shubik power Sh(i,F, n) of voter i is equal to

∫ 1

0

⎛
⎝ ∑

T /∈W and T∪{i}∈W
pt(1 − p)n−1−t

⎞
⎠ dp.

In addition to these two models, we consider a third one, called here IAC∗, which
is intermediate between IC and IAC. It was first introduced by May (1948) in his
analysis of election inversions and pivotality was studied recently by Le Breton et al.
(2016) when F is popular majority. This model is defined as follows.

Assume from now that N is partitioned intoK states:N = ∪1≤k≤KNk . Condition-
ally on K independent and identically distributed, draws p1, . . . , pK in the interval
[0, 1], according to the uniformdistribution, the preferences in groupNk proceed from
independent Bernoulli draws with parameter pk . In such a case, for all T ⊆ N\ {i}
such that i belongs to state k(i):

π−i (T ) =
⎛
⎝ ∏

1≤k≤K :k 	=k(i)

∫ 1

0
pt

k

k (1 − pk )
nk−tk dpk

⎞
⎠ ×

∫ 1

0
pt

k(i)

k(i) (1 − pk(i))
nk(i)−1−tk(i)dpk(i),

where tk ≡ ∣∣Nk ∩ T
∣∣ for all k = 1, . . . ,K . The May power M (i,F, n) of voter i is

then equal to

∑
T /∈W and T∪{i}∈W

⎛
⎝ ∏

1≤k≤K :k 	=k(i)

∫ 1

0
pt

k

k (1 − pk )
nk−tk dpk

⎞
⎠ ×

∫ 1

0
pt

k(i)

k(i) (1 − pk(i))
nk(i)−1−tk(i)dpk(i).

In the case where F is the direct/popular (i.e., one tier) majority mechanism, all
the voters have the same influence. In such case, we can drop the reference to i.
When n, the number of voters, is large, it is well known that the Banzhaf power of a

26It can be proved that the Shapley-Shubik model amounts drawing uniformly the number of voters
who prefer D to R. It can also be showed that for the IAC model the preferences display some
correlation. Here we have only two feasible preferences. For an arbitrary number of candidates, the
wording IAC is usedmore generally to define the situation where the draws of the vectors describing
the numbers of preferences of each type are uniform. Here, we use the terms Shapley-Shubik and
IAC equivalently.
27If we take an arbitrary absolutely continuous distribution, we obtain a generalized version of
the Shapley-Shubik’s probability model which has been analyzed by Chamberlain and Rothschild
(1981) and Good and Mayer (1975).
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voter is28 approximatively equal to
√

2
πn while the Shapley-Shubik index of a voter

is equal to 1
n . The combinatorics of the May’s index are more involved and explored

in Le Breton et al. (2016).
In the case where F is the two-tier weighted majority mechanism considered in

this paper, note first that we cannot drop the reference to i anymore but all voters from
the same state will have the same power as long as the probability model displays
symmetry across players. As this is the case for the Banzhaf, Shapley-Shubik, and
May probability models, we will have to compute K different values for these three
models.

From now on, we will focus on the two-tier electoral mechanism F defined in
Sect. 2.1, and we drop the reference to F in the coming computations of pivotality.29

For any i ∈ N , we will denote by Piv (i, π, n) the probability that voter i is pivotal
according to the probability model π . We denote by Piv(i, π, n) the probability
that i is pivotal according to π in his/her state k(i).30 When k is a representative in
the upper tier, we will denote by Piv(k, π) the probability that k is pivotal in the
upper tier. Note that when we examine per se the upper tier, we do not need the
full knowledge of π but the probability induced by π on the set of representative
preference profiles {D,R}K . Let us illustrate that point for IC, IAC∗, and IAC when
K = 2. When π = IC, the probability that both representatives vote D, i.e., the
probability that there is a majority of representatives voting D in both states is equal
to 1

4 . In such a case, the probability induced by π on the upper tier is simply IC on the
set of representatives {1, 2}. By the same token, we obtain that when π = IAC∗, the
probability induced by π on the upper tier is simply IC on the set of representatives
{1, 2}. In contrast, when π is IAC, things get far more subtle. Under the assumption
that the two states are equipopulated with n1 = n2 ≡ m (m odd), the probability that
both states vote democrat is equal to

m∑
k= m+1

2

m∑
r= m+1

2

m!
k!(m − k)! × m!

r!(m − r)! × (k + r)!(2m − k − r)!
(2m + 1)! .

We do not know any closed form. When m = 11 and therefore n = 22, this prob-
ability is equal to 0.42107 which is much larger than the value 0.25 obtained for

28If n is odd, then for all i, Bi = (n−1
n−1
2

)
/2n−1. If n is even, Bi =

[(n−1
n
2

)
/2n−1 + (n−1

n−2
2

)
/2n−1

]
× 1

2 .

The assertion follows from Stirling’s formula.
29This means also that we will not explicitly refer to the division n1, ..., nK of the n voters into the
K states and to the electoral votes w1, ..., wK of the states.
30Truly only the restrictions of F and π on the subset Nk(i) matter. Since the restriction of F onto
Nk(i) is the ordinary majority mechanism with nk(i) voters, the computation of Piv(i, π, n) amounts
to the computation of the pivotality according to π for the ordinary majority mechanism.
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IC and IAC∗. Note that the probability induced by IAC on {1, 2} is not IAC on
{1, 2}. Indeed, if we consider IAC on {1, 2}, the probability of the profile (D,D) is∫ 1
0 p2dp = 1

3 = 0.3333...
Let us consider the computation of Piv (i, π, n) for π = IC, IAC and IAC∗. From

the description of F as a compound simple, it is straightforward that for a voter to
be influential/pivotal, we need the combination of two events: The voter must be
pivotal in his state, and the representatives of his state must be themselves pivotal in
the electoral college. In general, unfortunately the two events are not independent. If
the two events are independent for some probability model π , then the computation
of the pivotality Pi of voter i proceeds from a simple multiplicative formula:

Piv (i, π, n) = Piv
(
i, π, nk(i)

) × Piv (k(i), π) ,

where Piv
(
i, π, nk(i)

)
denotes the pivotality power of voter i in his state k(i) and

Piv (k(i), π) denotes the pivotality power of the representative(s) of state k(i) in
the second tier. For the Banzhaf and May probability models, the two events are
independent. Further given the neutrality of these two probability models between
the candidates and the neutrality of the ordinary majority mechanism between the
two candidates, the pivotality power of representative k in the second tier is simply
his Banzhaf power in the second tier. Therefore, when the number of voters in each
state is large

B(i, n) = B(i, nk(i)) × B(k(i)) �
√

2

πnk(i)
B(k(i))

and

M (i, n) = Sh(i, nk(i)) × B(k(i)) = 1

nk(i)
B(k(i)).

In such case, we are left with the computation of B(k) for k = 1, . . . ,K . This
can be done in several ways. Either by using existing software which works well as
long as K is not too large. Another road is to use (if possible) Penrose’s theorem
which asserts that under some conditions, the Banzhaf power of player k in the
weighted majority game ({1, . . . ,K} ,W(q, w)) is proportional to wk .31 Under the
presumption that the Penrose’s approximation is valid, we obtain for all i, j ∈ N :

B(i, n)

B(j, n)
=

√
nk(j)√
nk(i)

× wk(i)

wk(j)
(1)

31The exact computation of these values as well as the validity of the Penrose’s approximation is
presented and discussed in appendix 3 of the working paper version.
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and

M (i, n)

M (j, n)
= nk(j)

nk(i)
× wk(i)

wk(j)
(2)

Unfortunately, we cannot proceed similarly for the Shapley-Shubik model.
Remember that the preferences of the voters within and across states are correlated.
This means that for that probability model, we cannot in principle separate the two
computations on pivotality.32 Owen (1975, 2001) presents developments on how to
calculate the Shapley value of a compound simple game.33 There is no easy way to
proceed, and Owen states some results on the relationships of the multilinear exten-
sion of a compound simple game to the multilinear extensions of the simple games
used in the composition. He uses these results to conduct his numerical computations
and to obtain estimates of

Sh(i, n)

Sh(j, n)

for all i, j ∈ N .

3 Electoral Justice in the Electoral College

The main purpose of this section is to present our computational results on electoral
justice in theElectoralCollege for the three probabilitymodels that havebeendefined.
For reproducingfigures and tables presented in that chapter, the codes of our computer
program are available at http://www.thibault.laurent.free.fr/code/DL_issue/. In the
first section, we present the 2010 apportionment and census data which is used in our
analysis. Then, in three distinct subsections, we present and comment separately our
results for Banzhaf, Shapley-Shubik, and May. All these computations are derived
through a simulator that works as follows:

32When K = 2, and n1 = n2 ≡ m, the probability that any player is pivotal for IAC is equal to
(m−1)!

( m−1
2 )!( m−1

2 )! × ∑m
r= m+1

2

m!
r!(m−r)! × ( m−1

2 +r)!(2m− m−1
2 −r)!

(2m+1)! , while it equals to 1
m × 1

2 for IAC∗ and to

(
m−1
m−1
2

)

2m−1 × 1
2 for IC. When m = 11, we obtain the values 0.019, 0.05 and 0.123.

33There is the place to remind to the reader that Shi is also the Shapley value of the TU simple game
(N , VW) where VW(S) = 1 iff S ∈ W and 0 otherwise.

http://www.thibault.laurent.free.fr/code/DL_issue/
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Algorithm 1: Main steps of our algorithm

Initialization of program constants
K = number of states (51)
B = number of simulations (1012)
∀k ∈ {1, . . . ,K}, Seatsk denotes the number of votes of State k for the
presidential election and nk denotes the number of voters in State k.
Computation
for Model in {IC, IAC, IAC∗} do

Initialize the number of pivotal voters (at the presidential level):
∀k ∈ {1, . . . ,K},Pivk := 0.
for b in 1 to B do

Initialize the total number of seats for D or R: SeatsD := 0 and SeatR := 0.
for k in 1 to K do

Simulate the choice of each voter in State k between D and R, following
the chosen Model distribution (IC, IAC or IAC∗)
Compute PivState

k , the number of pivotal voters in State k, considering
only State k choice.
Compute State k choice for the presidential election: Ck ∈ {D,R}.
Update the total number of seats for D or R: ∀P ∈ {D,R}, if Ck = P,
then SeatsP := SeatsP + Seatsk .

for k in 1 to K do
If State k has pivotal voters (PivState

k > 0) and Seats of State k are
pivotal, then update the number of Pivotal voters:
Pivk := Pivk + PivState

k .

Compute the estimated probability of a voter to be pivotal at the
presidential election:
∀k ∈ {1, . . . ,K}, the probability for a voter in State k to be pivotal at the
presidential election is: Pivk

B∗nk .
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Table 1 US Electoral College and population data per state

State Population in 2010 Electoral College in 2012

Alabama 4,802,982 9

Alaska 721,523 3

Arizona 6,412,700 11

Arkansas 2,926,229 6

California 37,341,989 55

Colorado 5,044,930 9

Connecticut 3,581,628 7

Delaware 900,877 3

District of Columbia 601,766 3

Florida 18,900,773 29

Georgia 9,727,566 16

Hawaii 1,366,862 4

Idaho 1,573,499 4

Illinois 12,864,380 20

Indiana 6,501,582 11

Iowa 3,053,787 6

Kansas 2,863,813 6

Kentucky 4,350,606 8

Louisiana 4,553,962 8

Maine 1,333,074 4

Maryland 5,789,929 10

Massachusetts 6,559,644 11

Michigan 9,911,626 16

Minnesota 5,314,879 10

Mississippi 2,978,240 6

Missouri 6,011,478 10

Montana 994,416 3

Nebraska 1,831,825 5

Nevada 2,709,432 6

New Hampshire 1,321,445 4

New Jersey 8,807,501 14

New Mexico 2,067,273 5

New York 19,421,055 29

North Carolina 9,565,781 15

North Dakota 675,905 3

Ohio 11,568,495 18

Oklahoma 3,764,882 7

Oregon 3,848,606 7

Pennsylvania 12,734,905 20

(continued)
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Table 1 (continued)

State Population in 2010 Electoral College in 2012

Rhode Island 1,055,247 4

South Carolina 4,645,975 9

South Dakota 819,761 3

Tennessee 6,375,431 11

Texas 2,5268,418 38

Utah 2,770,765 6

Vermont 630,337 3

Virginia 8,037,736 13

Washington 6,753,369 12

West Virginia 1,859,815 5

Wisconsin 5,698,230 10

Wyoming 568,300 3

Source http://www.thegreenpapers.com/Census10/HouseAndElectors.phtml

3.1 The 2010 US Electoral College and Population Data

Table 1 presents34 the35 number of voters and seats36 which have been used in our
simulator. It corresponds to the 2010 population census and 2012 Electoral College
(which holds also for 2016 and 2020).

Figure 1 shows that a number of representatives are allocated proportionally to
the population of the state (census 2010).37 The exact distribution is derived from
the Huntington–Hill method. The average is around 1.4 representative per million of
inhabitants (see red-dashed line). Due to integer rounding effects, the actual number
of representatives per million of inhabitants varies from one state to another between
1.0 (Montana) and 1.9 (Rhode Island). Due to the distribution rule, the variability is
higher among states with small number of representatives.

Although the distribution seems as fair as possible among states, it is clear that
some voters have more representatives than others. Hence, a voter in Rhode Island
has almost twice as many representatives than a voter in Montana.

34This number is often 0. Considering, on the one hand, a State k with an odd number of voters,
nk , there are either no pivotal voters or

nk+1
2 (when there is almost a tie). Considering, on the other

hand, a State k with an even number of voters, either there is a tie and half of the voters are pivotal
or there is almost a tie and nk+2

2 voters are pivotal in half of the cases. In all other cases, there are
no pivotal voters.
35Seats of State k are pivotal if SeatsCk − Seatsk <= Seats−Ck + Seatsk , −Ck denoting the non-
chosen party by State k. In presence of a tie (SeatsCk = Seats−Ck or SeatsCk − Seatsk = Seats−Ck +
Seatsk ), only half of the cases are pivotal.
36The number of electoral votes (called hereafter “seats”) of a state is the sum of its number of
representatives and number of senators (which is 2 for all states). The District of Columbia is
allocated three seats.
37To be consistent, we have assumed that District of Columbia has 1 representative.

http://www.thegreenpapers.com/Census10/HouseAndElectors.phtml
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Fig. 1 Electoral representatives per inhabitant ratio in each state in years 2012, 2016, and 2020
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Fig. 2 Electoral seats per inhabitant ratio in each state in years 2012, 2016, and 2020

Moreover, the number of seats in the presidential election is the number of rep-
resentatives added to the two senator votes. Hence, the distribution of seats per
inhabitants is even more distorted, as shown on Fig. 2. The red-dashed line repre-
sents the average of 1.7 seats per million of inhabitants in the USA. Depending on
the state, this number goes from 1.5 (California) to 5.3 (Wyoming). Hence, a voter
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from Wyoming seems to have around 3.6 more representation than a voter from
California. Again, the variability in Fig. 2 is higher for small number of seats. Yet, it
seems that the average number of seats per inhabitants is almost always decreasing
in population!

In the end, the question is whether this distortion biases the outcome of the presi-
dential election or if it corrects another distortion as a big state might be more often
pivotal than a small one.

The aim of our simulator is exactly to study this question in the case of different
standard probability models.

3.2 Electoral Justice with Respect to Banzhaf

In this section, the simulations have been made by keeping the exact population per
state. We have done 1012 simulations, and the computation time was around 5days,
using 40 cores on a server of 58 logical cores at 3.07 GHz.

As shown in Table 2, the obtained probabilities to be pivotal are between
1.810 × 10−5 (Montana) and 6.153 × 10−5 (California). According to Bienaymé–
Tchebychev, those results are significant and accurate (±3.5 × 10−8) at a confidence
level better than 95%.

Unsurprisingly, the results derived from our simulations are consistent with the
theoretical ones (available for Banzhaf). Note that the maximal difference between
the two values is less than +/ − 10−8. So the significance and accuracy of our
simulations are even better than what could be guaranteed according to Bienaymé–
Tchebychev.

From Bienaymé–Tchebychev, we know that the ranking of states according to the
probability for a voter to be pivotal is significant and accurate at a confidence level
better than 95%, except for four groups of states:

• pivotality around 2.09 × 10−5 for New Mexico < Mississippi < New Hampshire
• pivotality around 2.17 × 10−5 for Utah < Oklahoma (the confidence level in this
ranking is of 83.2%)

• pivotality around 2.19 × 10−5 for Nevada < North Dakota
• pivotality around 2.22 × 10−5 for Nebraska < Connecticut (the confidence level
in this ranking is of 93.5%)

Yet, we know that the ranking obtained through the simulations matches perfectly
the theoretical one, even in those four groups. Hence, the ranking presented in Fig. 3
is not debatable.

Figure 3 presents for each state the ratio of pivotality ordered from the maximum
to the minimum. Colors correspond to the number of electoral seats in the states. It
seems that the ratio of pivotality is higher for states with larger number of seats.

Hence, in the case of Banzhaf’s vote distribution model, the distortion of seats
in favor of small populated states does not compensate the electoral advantage of a
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Table 2 Probability for a voter to be pivotal at the presidential election in each state, with respect
to Banzhaf model

State Theoretical Simulation results (IC)

value Prob to be pivot Advantage ratio

Alabama 2.476e−05 2.475e−05 1.368

Alaska 2.125e−05 2.124e−05 1.174

Arizona 2.622e−05 2.622e−05 1.449

Arkansas 2.112e−05 2.113e−05 1.167

California 6.152e−05 6.153e−05 3.399

Colorado 2.416e−05 2.415e−05 1.334

Connecticut 2.228e−05 2.228e−05 1.231

Delaware 1.902e−05 1.901e−05 1.050

District of Columbia 2.327e−05 2.327e−05 1.286

Florida 4.111e−05 4.111e−05 2.272

Georgia 3.108e−05 3.107e−05 1.717

Hawaii 2.059e−05 2.059e−05 1.138

Idaho 1.919e−05 1.919e−05 1.060

Illinois 3.392e−05 3.392e−05 1.874

Indiana 2.604e−05 2.603e−05 1.438

Iowa 2.067e−05 2.067e−05 1.142

Kansas 2.135e−05 2.135e−05 1.180

Kentucky 2.311e−05 2.311e−05 1.277

Louisiana 2.259e−05 2.259e−05 1.248

Maine 2.085e−05 2.085e−05 1.152

Maryland 2.507e−05 2.506e−05 1.385

Massachusetts 2.592e−05 2.592e−05 1.432

Michigan 3.079e−05 3.079e−05 1.701

Minnesota 2.616e−05 2.616e−05 1.445

Mississippi 2.093e−05 2.094e−05 1.157

Missouri 2.460e−05 2.460e−05 1.359

Montana 1.810e−05 1.810e−05 1.000

Nebraska 2.224e−05 2.224e−05 1.229

Nevada 2.195e−05 2.195e−05 1.212

New Hampshire 2.094e−05 2.093e−05 1.157

New Jersey 2.853e−05 2.853e−05 1.576

New Mexico 2.093e−05 2.093e−05 1.156

New York 4.055e−05 4.055e−05 2.240

North Carolina 2.935e−05 2.935e−05 1.622

North Dakota 2.195e−05 2.196e−05 1.213

Ohio 3.212e−05 3.212e−05 1.775

Oklahoma 2.173e−05 2.173e−05 1.201

(continued)
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Table 2 (continued)

State Theoretical Simulation results (IC)

value Prob to be pivot Advantage ratio

Oregon 2.149e−05 2.149e−05 1.187

Pennsylvania 3.409e−05 3.408e−05 1.883

Rhode Island 2.343e−05 2.343e−05 1.295

South Carolina 2.517e−05 2.517e−05 1.391

South Dakota 1.994e−05 1.994e−05 1.102

Tennessee 2.629e−05 2.629e−05 1.453

Texas 4.744e−05 4.744e−05 2.621

Utah 2.170e−05 2.171e−05 1.199

Vermont 2.273e−05 2.273e−05 1.256

Virginia 2.771e−05 2.771e−05 1.531

Washington 2.789e−05 2.789e−05 1.541

West Virginia 2.207e−05 2.206e−05 1.219

Wisconsin 2.527e−05 2.527e−05 1.396

Wyoming 2.394e−05 2.394e−05 1.323

voter living in a high populated state. This is very clear on Fig. 4.38 For instance, a
voter from California has more than two and a half more chances to be pivotal than a
voter fromWyoming, although the one fromWyoming accounts for more than three
and a half more seats than the one from California.

Of course, for a given number of seats, the order between states seen on Fig. 2
still holds on Fig. 3. For instance, for three seats, Wyoming is better off than District
of Columbia, then Vermont, North Dakota, Alaska, South Dakota, Delaware, and
finally Montana (where a voter has minimal power, in the case of Banzhaf, in all the
USA, for the presidential election). But the comparison does not hold between states
with different number of seats. For instance, Rhode Island is in between Alaska and
South Dakota on Fig. 2, but much higher on Fig. 3, where it is in between Wyoming
and District of Columbia.

In order to better understand the mechanisms at stake, Fig. 5 decomposes the
pivotality part due to being a pivotal voter in his state (middle figure) and the part due
to pivotality in the second tier (bottom figure). In Banzhaf’s case, the total pivotality
(top figure) is computed as the product of the two parts. For instance, for California
(the sole pink dot corresponding to the state with 55 electoral votes): (1.3 × 10−4) ×
0.47 ≈ 6.15 × 10−5. It is obvious that the second part plays the biggest role in the
probability of being pivotal. Indeed, the second part is increasing with respect to the
size of the population as well as the probability of being pivotal; whereas, the first

38We have also drawn figures with the same y-axis but with the number of electoral votes on the
x-axis. These three figures should be compared to the one derived by Gelman et al. (2012) for an
econometric model of elections.
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Fig. 3 Pivotality ratio by state and number of seats in the case of Banzhaf, ordered by decreasing
pivotality ratio

part is decreasing proportionally to 1/
√
nk(i). Besides, for the states which have an

equal number of seats, the second part is constant; in that configuration, this is the
first part which differentiates the probability of being pivotal, and the states with a
lower size of population are advantaged. This can be seen in the top figure by the
linear shapes which appear by group of states with the same number of seats. Finally,
we have plotted in pink (resp. blue) -dashed line the average mean for a voter to be
pivotal in the Electoral College (resp. the popular vote) case. Most states are below
the two lines which confirms in the case of Banzhaf model an inequality between
citizens belonging to small states and citizens belonging to large states. Only the two
biggest states (California and Texas) are above the blue line, and twomore additional
states (New York and Florida) are above the pink line.
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Fig. 4 Pivotality ratio and number of seats per 1,000,000 inhabitants in the case of Banzhaf,
depending on the state

3.3 Electoral Justice with Respect to Shapley-Shubik

In this section, the simulations have been made by keeping the exact population per
state. Again, we have done 1012 simulations, and the computation time was around
5days, using 40 cores on a server of 58 logical cores at 3.07 GHz.

As shown in Table 3, the obtained probabilities to be pivotal are between 1.73 ×
10−9 (Montana) and 5.72 × 10−9 (California). According toBienaymé–Tchebychev,
those results are significant and accurate (±2 × 10−10) at a confidence level better
than 85%. As the probabilities to be pivotal are much smaller in the Shapley-Shubik
case than in the Banzhaf case, with the same setting the results are not as precise as
in the Banzhaf case.

If we had wanted a precision of the same order (±3.5 × 10−12 at a confidence
level better than 95%), we should have done 1016 simulations. But this would take
more than a century to obtain the results!

Yet, as the actual precision in the Banzhaf case was proven (from theoretical
values) much better than what was guaranteed fromBienaymé–Tchebychev, it might
also be the case in the Shapley-Shubik case. So we decided to use the results, even
though they certainly are less precise.

The same problem occurs for the ranking of states according to the probability
for a voter to be pivotal. In fact, the ranking of the top four states is known with
confidence level better than 95% (according to Bienaymé–Tchebychev), except for
third and fourth which could be reversed. But for the other states, the ranking is
known only up to +/ − 15 positions in average (more precise for top states and less
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seats in the case of Banzhaf
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Table 3 Probability for a voter to be pivot at the presidential election in each state, with respect to
Shapley-Shubik model

State Simulation results (IAC)

Probability to be pivot Advantage ratio

Alabama 2.311e−09 1.336

Alaska 1.905e−09 1.101

Arizona 2.465e−09 1.425

Arkansas 1.941e−09 1.122

California 5.721e−09 3.307

Colorado 2.263e−09 1.308

Connecticut 2.098e−09 1.213

Delaware 1.823e−09 1.054

District of Columbia 2.169e−09 1.253

Florida 3.873e−09 2.239

Georgia 2.990e−09 1.728

Hawaii 1.929e−09 1.115

Idaho 1.842e−09 1.065

Illinois 3.182e−09 1.839

Indiana 2.469e−09 1.427

Iowa 1.942e−09 1.123

Kansas 2.055e−09 1.188

Kentucky 2.178e−09 1.259

Louisiana 2.066e−09 1.194

Maine 1.955e−09 1.130

Maryland 2.377e−09 1.374

Massachusetts 2.448e−09 1.415

Michigan 2.851e−09 1.648

Minnesota 2.490e−09 1.439

Mississippi 1.951e−09 1.128

Missouri 2.306e−09 1.333

Montana 1.730e−09 1.000

Nebraska 2.061e−09 1.191

Nevada 2.091e−09 1.209

New Hampshire 1.955e−09 1.130

New Jersey 2.601e−09 1.503

New Mexico 2.036e−09 1.177

New York 3.882e−09 2.244

North Carolina 2.694e−09 1.557

North Dakota 2.061e−09 1.191

Ohio 3.029e−09 1.751

Oklahoma 2.050e−09 1.185

(continued)
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Table 3 (continued)

State Simulation results (IAC)

Probability to be pivot Advantage ratio

Oregon 2.072e−09 1.197

Pennsylvania 3.227e−09 1.865

Rhode Island 2.250e−09 1.301

South Carolina 2.391e−09 1.382

South Dakota 1.896e−09 1.096

Tennessee 2.530e−09 1.463

Texas 4.491e−09 2.596

Utah 2.071e−09 1.197

Vermont 2.161e−09 1.249

Virginia 2.565e−09 1.482

Washington 2.568e−09 1.484

West Virginia 2.081e−09 1.203

Wisconsin 2.389e−09 1.381

Wyoming 2.226e−09 1.287

precise for bottom states) if we want to maintain a 95% confidence level (but it is
still +/ − 10 positions with a lower confidence level of 85%).

Hence, as the results for Banzhaf case were better than the minimum guaranteed,
it is likely that the situation of Shapley-Shubik case is also better than the minimum
guaranteed, but the ranking presented in Fig. 6 can be debatable.

Figure 6 presents for each state the ratio of pivotality ordered from themaximum to
the minimum. Note that, as in the Banzhaf setting, California andMontana are found
in the top and bottom positions, with the same ratio (around 3.4). More generally,
it seems that the Shapley-Shubik and Banzhaf ratios of pivotality behave similarly:
Figures 3 and 6 are almost indistinguishable. The biggest states are advantaged over
others.

In order to highlight the small differences between the two figures, we have
represented in Fig. 7 the ranking of the states according to each probability model.
It appears that the ranks are indeed very similar (particularly for the biggest states).
The small differences concern essentially the states which have less than ten seats.
These states have very close values of probability of being pivotal, and the differences
of ranking could be attributed to the precision of our simulations, as explained in
introduction of this section.

Indeed, we have seen, in the case of Shapley-Shubik, that the top four states were
known (confidence level of 95%) except that it was not sure between the third and
fourth which actually came firstk; whereas, in the case of Banzhaf, the order was
known for sure. Figure 7 shows that both models rank identically the top four states,
except that third and fourth are in reverse order, which could absolutely be due to the
lack of precision between which state is third or fourth in the case of Shapley-Shubik.
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Fig. 6 Pivotality ratio by state and number of seats in the case of Shapley-Shubik, ordered by
decreasing pivotality ratio

So this “inversion”-like shape does not necessarily mean that both models disagree.
With more simulations, Shapley-Shubik’s ranking could be the same as Banzhaf’s.

The same applies for all other “inversion”-like shapes. For instance, the difference
in ranking between the two models is at most of seven positions (Alaska), which is
far below the 17 that would still be nonsignificant (confidence level of 85% or even
25 positions with confidence level of 95%).

The fact that the two models give similar results is also confirmed in Fig. 8 which
represents the probability for being pivotal with respect to the number of seats per
100,000 inhabitants: This figure is almost indistinguishable from equivalent Fig. 4
for the Banzhaf setting. It clearly appears that the biggest states have the highest
probabilities for being pivotal. It is also interesting to notice that for the states with
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Fig. 7 Comparison of the ranking between Banzhaf and Shapley-Shubik

less than nine seats, the differences of pivotality are very weak. Still, for the states
which have the same number of seats, the size of population has a negative effect
on the probability of being pivotal, as it can be seen for the lowest states with three
seats. Thus, the smaller state of the USA (Wyoming) in terms of population has a
probability of being pivotal nearly equivalent to the states which have around ten
seats.
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Fig. 8 Pivotality ratio and number of seats per 100,000 inhabitants in the case of Shapley-Shubik,
depending on the state

To summarize the findings of this section, we believe that Banzhaf and Shapley-
Shubik cases lead to identical ratio differences in the probability for a voter of being
pivotal in a given state. The mathematical proof of this is beyond the scope of this
paper, and the number of simulations (leading to 5 + 5 = 10 days of computations)
does not give empirical certainty of this,39 but it also does prove that our belief is
not ruled out.40 Hence, although it might seem puzzling, as the two models behave
very differently in many other ways, we still believe that they lead to identical ratio
differences in the probability for a voter of being pivotal in a given state.

39To achieve this certainty, we have seen that more than a century of computations would be
necessary. Another idea, which was not fully implemented here, would be to test the hypothesis
with a lower number of voters: for example, dividing state population by 1000. The expected
probabilities should be around 10−6 instead of 10−9, so we could obtain accurate and more precise
results with the same number of simulations (1012, and so again in 5 days). Of course, for the sake
of comparison, we should do the same with the Banzhaf case. In a former, less efficient version of
our simulator, we tested for Shapley-Schubik a population divide factor of 5683, leading to states
with population in the interval (100; 6571). But we were able to perform only 108 simulations,
at that time, and so ended with the same type of conclusion as here. The obtained probabilities
to be pivotal were between 3.284 × 10−5 (California) and 9.680 × 10−6 (Montana). According to
Bienaymé–Tchebychev, those results were significant and accurate (±3 × 10−6) at a confidence
level better than 95%..
40We call the attention of the reader on the fact that appendices 1 and 2 in the working paper version
shed some light on these questions.
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3.4 Electoral Justice with Respect to May

In this section, the simulations have been made by keeping the exact population per
state. Once again, we have done 1012 simulations, and the computation time was
around 5days, using 40 cores on a server of 58 logical cores at 3.07 GHz.

As shown in Table 4, the obtained probabilities to be pivotal are between
1.158 × 10−8 (New York) and 3.977 × 10−8 (Wyoming). According to Bienaymé–
Tchebychev, those results are significant and accurate (5 × ±10−10) at a confidence
level better than 85%. As the probabilities to be pivotal are much smaller in the May
case than in the Banzhaf case, but higher than in the Shapley-Schubik case, with the
same setting the results precision will also be in between those of the two previous
cases.

If we had wanted a precision of the same order of Banzhaf case (±3.5 × 10−11 at
a confidence level better than 95%), we should have done close to 1015 simulations.
But this would take more than a decade to obtain the results!

Yet, as the actual precision in the Banzhaf case was proven (from theoretical
values) much better than what was guaranteed fromBienaymé–Tchebychev, it might
also be the case in the May case.

Indeed, and unsurprisingly, the results derived from our simulations are consis-
tent with the theoretical ones (available for May). Note that the maximal difference
between the two values is less than ±2.4 × 10−10. Hence, the observed accuracy is
twice better as the guaranteed one and for all of the 51 states.

The same question arises for the ranking of states according to the probability for
a voter to be pivotal. In fact, the ranking of the top 16 states is known with confidence
level better than 95% (according to Bienaymé–Tchebychev), except for a few group
of states for which there are still some uncertainties. For instance, between states
15 and 16, the order could be reversed (but not if we allow for a 90.9% confidence
level). Same situation with states 2 and 3 (but not if we allow for a 93.3% confidence
level). But then there are still 3 groups of states (in the top 16) for which the inside
group ranking is debatable (even at confidence level of 80%):

• pivotality around 2.0 × 10−8 for states 13 and 14
• pivotality around 2.2 × 10−8 for states 9 to 12
• pivotality around 2.8 × 10−8 for states 6 and 7.

Yet, we know that the ranking obtained through the simulations matches almost
perfectly the theoretical one, even in those three groups, except for states 9 and 10:
NewHampshire should be ranked just beforeMontana (and not the otherway around,
as found by the simulations, but the difference found between the two States is very
small: around 3 × 10−11 only).

As for the other states (ranked 17 or below), the ranking, according to Bienaymé–
Tchebychev, is known only up to +/ − 7 positions in average (more precise for top
states and less precise for bottom states) if we want to maintain a 95% confidence
level (but it is still +/ − 4 positions with a lower confidence level of 85%). Yet, the
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Table 4 Probability for a voter to be pivotal at the presidential election in each state, with respect
to May model

State Theoretical Simulation results (May)

value Prob to be pivot Advantage ratio

Alabama 1.416e−08 1.415e−08 1.222

Alaska 3.135e−08 3.116e−08 2.691

Arizona 1.297e−08 1.304e−08 1.126

Arkansas 1.547e−08 1.541e−08 1.331

California 1.262e−08 1.271e−08 1.098

Colorado 1.348e−08 1.338e−08 1.155

Connecticut 1.475e−08 1.475e−08 1.273

Delaware 2.511e−08 2.530e−08 2.185

District of Columbia 3.759e−08 3.748e−08 3.236

Florida 1.185e−08 1.202e−08 1.038

Georgia 1.249e−08 1.245e−08 1.075

Hawaii 2.207e−08 2.210e−08 1.908

Idaho 1.917e−08 1.893e−08 1.635

Illinois 1.185e−08 1.187e−08 1.025

Indiana 1.280e−08 1.272e−08 1.099

Iowa 1.483e−08 1.477e−08 1.275

Kansas 1.581e−08 1.588e−08 1.372

Kentucky 1.389e−08 1.384e−08 1.195

Louisiana 1.327e−08 1.319e−08 1.139

Maine 2.263e−08 2.259e−08 1.951

Maryland 1.306e−08 1.307e−08 1.128

Massachusetts 1.268e−08 1.256e−08 1.085

Michigan 1.226e−08 1.227e−08 1.059

Minnesota 1.422e−08 1.421e−08 1.227

Mississippi 1.520e−08 1.531e−08 1.322

Missouri 1.257e−08 1.259e−08 1.087

Montana 2.275e−08 2.283e−08 1.971

Nebraska 2.059e−08 2.062e−08 1.781

Nevada 1.671e−08 1.671e−08 1.443

New Hampshire 2.283e−08 2.279e−08 1.968

New Jersey 1.205e−08 1.224e−08 1.057

New Mexico 1.825e−08 1.803e−08 1.557

New York 1.153e−08 1.158e−08 1.000

North Carolina 1.189e−08 1.201e−08 1.037

North Dakota 3.347e−08 3.342e−08 2.886

Ohio 1.184e−08 1.198e−08 1.034

Oklahoma 1.404e−08 1.406e−08 1.214

(continued)
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Table 4 (continued)

State Theoretical Simulation results (May)

value Prob to be pivot Advantage ratio

Oregon 1.373e−08 1.370e−08 1.183

Pennsylvania 1.197e−08 1.195e−08 1.032

Rhode Island 2.859e−08 2.837e−08 2.450

South Carolina 1.464e−08 1.463e−08 1.263

South Dakota 2.760e−08 2.764e−08 2.387

Tennessee 1.305e−08 1.296e−08 1.119

Texas 1.183e−08 1.185e−08 1.023

Utah 1.634e−08 1.633e−08 1.410

Vermont 3.589e−08 3.599e−08 3.108

Virginia 1.225e−08 1.226e−08 1.059

Washington 1.345e−08 1.339e−08 1.156

West Virginia 2.028e−08 2.039e−08 1.761

Wisconsin 1.327e−08 1.328e−08 1.146

Wyoming 3.981e−08 3.977e−08 3.434

simulated ranking ismuch closer to the theoretical one. In fact, there are only 5 groups
of states where the inside group ranking would be different with more simulations

• pivotality around 1.19 × 10−8 for states 45 to 49: The real order should be Penn-
sylvania (45), North Carolina, Illinois, Florida, and Ohio (49)

• pivotality around 1.26 × 10−8 for states 38 to 40: The real order should be Mas-
sachusetts (38), Missouri, and California (40)

• pivotality around 1.29 × 10−8 for states 35 and 36: The real order should be Ten-
nessee (35), and Arizona (36)

• pivotality around 1.32 × 10−8 for states 32 and 33: The real order should be
Louisiana (32), and Wisconsin (33)

• pivotality around1.33 × 10−8 for states 30 to 31:The real order should beColorado
(30), and Washington (31).

Each time, the difference to obtain the correct order is quite small (between 5 ×
10−12 only and 1.5 × 10−10). Hence, the ranking presented in Fig. 3 is not perfect,
but not so bad either.

Figure 9 presents for each state the ratio of pivotality ordered from the maximum
to the minimum. Interestingly, the results seem somewhat opposite of those derived
in the Banzhaf and Shapley-Shubik settings. For instance, California flipped from
upper position to one of the smallest ratios (1.1), while Wyoming (previously with a
ratio of 1.3) is now on the top (with a ratio of 3.4). Notice also that the highest ratio
in the three models is 3.4.
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Fig. 9 Pivotality ratio by state and number of seats in the case of May, ordered by decreasing
pivotality ratio

Hence, with May’s model, the states with the highest probability of being pivotal
are those with the smallest number of seats. This is in line with the common popular
wisdom concerning the current representation of states in the Electoral College.

Figure 10 shows the ranking difference between the states according to Shapley-
Shubik and May. It appears that the ranks have been drastically changed. The states
with high (resp. low) probability of being pivotal in the Shapley-Shubik case are
often those which have low (resp. high) probabilities in the May case.

Figure 11 decomposes the pivotality part due to being a pivotal voter in his state
(middle figure) and the part due to pivotality in the second tier (bottom figure). In
May’s case, the total pivotality (top figure) is computed as the product of the two
parts. The first part of the equation is decreasing proportionally to 1/nk(i). It appears
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Fig. 10 Comparison of the ranking between Shapley-Shubik and May

that this part has a higher effect on the pivotality compared to the Banzhaf case. This
explains why the small states have such a high probability of being pivotal.

Another way to understand the phenomenon is to represent the probability of
being pivotal with respect to the number of seats per 100,000 inhabitants, as shown
in Fig. 12. It appears that the trend is linear and increasing.

To summarize the findings of this section, we believe that May case can lead to
almost opposite rankings to the two other cases, concerning the ratio differences in
the probability for a voter of being pivotal in a given state.When states have the same
number of seats, the order is maintained, but when they have a different number of
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on the state

seats, the order is reversed. Themathematical proof of this is beyond the scope of this
paper, and the number of simulations (leading to 5 + 5 = 10 days of computations)
does not give empirical certainty of this,41 but already give some insights into this
almost reverse ranking. It is important to stress that not all models agree on the
ranking. So conclusions on whether big or small states take most advantage of the
current electoral system are not straightforward.

4 The Twelve Amendment

As already pointed out several times in Sect. 2, our description of the Electoral
College departs slightly from the real one. First, two states (Maine and Nebraska)
do not allocate their electoral votes according to the “winner take all” rule but use
instead the following rule : The two “senators” electoral votes go to the state winner
while the congressional electoral votes go the congressional district winners. We do
not think that this difference has a great impact on our analysis but we have not done
any estimations of the differences. The second and seeminglymore serious difference
has to do with our treatment of ties. In our simulations, we have assumed that in case

41To achieve this certainty, we have seen that more than a decade of computations would be nec-
essary. Another idea, which was not fully implemented here, would be to test the hypothesis with
a lower number of voters, as suggested in footnote 39.
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of a tie in either a state election and/or in the Electoral College,42 and the winner was
determined through the random draw of fair coin. In reality, a new simple game with
a different set of players (the members of the house of representatives43 at the time
of the presidential election with each state represented by a single voter with only
one vote) with preferences possibly different from those of the voters (the members
of the house have been elected few years before the presidential election).44

To speculate on the effects of this tie-breaking rule, consider the IC probability
model and assume first that the preferences of the representatives are independent
from those of the voters today and second that there is a clear majority in each state
and a clear majority in the second tier. In such case, note that if a tie occurs in the
electoral college, then the two candidates are elected both with a probability 1

2 . So
under the above assumptions, there are no differences between the version of the
Electoral College considered in this paper and the true one.

5 Concluding Remarks

In this paper, dedicated to the measurement of electoral justice (or lack of) in the
2010 Electoral College, we have obtained several results. First, we have seen that the
results obtained byOwen in the case of the 1960 and 1970Electoral College, on top of
which the coincidence between the conclusions drawn, respectively, from Banzhaf
and Shapley-Shubik’s probability models, remain valid in 2010. Both probability
models conclude to a violation of electoral justice at the expense of small states.
Second, we have also shown that this conclusion has completely flipped upside
down when we use instead May’s probability model: This model concludes to a
violation of electoral justice at the expense of large states. Besides unifying through
a common measurement methodology disparate approaches, one main lesson is that
the conclusion on electoral justice is sensitive to the probability models which are
used and to the type and magnitude of correlation between voters that they carry.
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Resistance to Manipulations



Further Results on the Manipulability
of Social Choice Rules—A Comparison
of Standard and Favardin–Lepelley
Types of Individual Manipulation

Fuad Aleskerov, Daniel Karabekyan, Alexander Ivanov,
and Vyacheslav Yakuba

1 Introduction

The problemofmanipulation in voting is inevitable for all non-dictatorial voting rules
as was shown by Gibbard (1973) and Satterthwaite (1975). In other words, a voter or
a group of voters can get better results for themselves by purposely stating insincere
preferences. This very problemwaswidely studied in the literature (see, e.g., Barbera
et al. (2004), Benoît (2002), Chamberlin (1985), Ching andZhou (2002), Duggan and
Schwartz (2000), Durand et al. (2016), Favardin and Lepelley (2006), Favardin et al.
(2002), Kim and Roush (1996), Lepelley and Mbih (1994), Lepelley and Valognes
(2003), Pritchard and Wilson (2007), Slinko (2004)). All those papers estimate the
degree of manipulability for different setups: different rules, number of alternatives,
probabilistic structures, tie-breaking rules, and types of manipulability.

One of the most important papers in this field is “Some Further Results on the
Manipulability of Social Choice Rules” by Favardin and Lepelley (2006). They
considered not only many voting rules but also new type of manipulation: possibility
of reactions and counterthreats. In other words, when voter decides to manipulate,
she does not take preferences of others as given but considers the possible reaction,
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when other voters can either return sincere voting outcome or even make it worse to
the manipulator.

In this paper, we consider the case of individual manipulation with and without
reactions (Type I and Type IV in terms of Favardin and Lepelley (2006)) and try
to extend their results in several ways. First, we study the influence of tie-breaking
rule on the results by introducing extended preferences over the sets of alternatives.
Second, we also look at impartial culture model in addition to impartial anony-
mous culture. Third, we extend results for 4 alternatives and, for some cases, for 5
alternatives.

Next section gives a detailed overview of the manipulation model and rules under
study.

2 Social Choice Rules

The manipulability is evaluated for the following procedures (Aleskerov et al. (2011,
2012), Aleskerov and Kurbanov (1999)): Plurality (Pl), q-Approval Rule, q = 2
(A2), Borda (Bo), Black (Bl), Copeland I (C1), Copeland II (C2), Copeland III (C3),
Threshold (T), Nanson (N), Inverse Borda (IvBo), and Hare (H).

Let P = (P1 . . . Pn) be a profile of linear preferences of n agents for the set of
alternatives A, |A| = m. The majority relation µ is defined as a binary relation in
which an alternative a dominates an alternative b if the number of agents for whom
a is more preferable than b is greater than the number of agents for whom b is more
preferable than a. C(P) denotes the choice made by the rules.

PluralityRule (Pl) chooses alternatives that are on the first place by themaximum
number of agents, i.e., a ∈ C(P) ⇔ [∀x ∈ A n+(a, P) ≥ n+(x, P)],

where n+(a, P) = card{i ∈ N |∀y ∈ A aPi y}
q-Approval Rule, q= 2, (A2) chooses alternatives which are on the first or second

places of the preferences of the maximum number of agents.

Borda’s Rule (Bo). First, the Borda’s score r(a, P) =
n∑

i=1
ri (a, Pi ) is constructed,

where ri (x, P) is the cardinality of the lower contour set of alternative x for agent i ,
i.e., ri (x, P) = |Li (x)| = |{b ∈ A : x Pib}|.

The alternatives with maximum Borda’s score are chosen

a ∈ C(P) ⇔ [∀b ∈ A, r(a, P) ≥ r(b, P)].

Black’s Procedure (Bl). An alternative is said to be a Condorcet winner CW , if
it is undominated by any other alternative in the majority relation µ,

CW = [a|¬∃x ∈ A, xµa]

If theCondorcetwinner exists, then it is chosen; otherwise, Borda’s rule is applied.
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Copeland’s Rule I (C1). Alternatives with the maximum value of the function
u(x) are chosen. The function u(x) is defined to be the cardinality of lower contour
set minus cardinality of upper contour set of the alternative x in the majority relation
µ, i.e., u(x) is defined as the number of alternatives, which are dominated by the
alternative x in the majority relation µ, minus the number of alternatives, which
dominate the alternative x in the majority relation µ.

Copeland’s Rule II (C2). Alternatives with the maximum value of the function
u(x) are chosen, and the function u(x) is defined by the cardinality of lower contour
set of alternative x in the majority relation µ.

Copeland’s Rule III (C3). Alternatives with the minimum value of the function
u(x) are chosen. The function u(x) is constructed as a cardinality of upper contour
set of alternative x in the majority relation µ.

Threshold Rule (T). First, the number of worst places of the alternatives among
agents is compared. If these numbers for 2 alternatives are equal, then the number of
second worst places is compared and so on. If on any step of comparison the number
of places is not equal, then the alternative with less number of such places dominates
the other. The alternatives which are not dominated by others are chosen.

Nanson’s Procedure (N). For each alternative, Borda’s count is calculated, and
alternatives, for which Borda’s count is less than the mean value, are omitted. The
procedure repeats on the rest of the alternatives until choice will not be empty.

Inverse Borda’s Procedure (InvBo). For each alternative, Borda’s count is calcu-
lated, the alternative with the minimum Borda’s count is omitted, and the procedure
is repeated until the choice is not empty.

Hare’s Procedure (H). First, a simple majority rule is applied. If none of the
alternatives gets simple majority of votes, then the alternative with the minimum
number of votes is omitted, and the procedure is applied to the rest of alternatives
until the simple majority choice is found or the choice is empty.

In Favardin and Lepelley (2006), scoring rules and scoring elimination rules were
considered for 3 alternatives. In order to connect our results with those of that paper,
we point out the correspondence between our voting rules and ones used in it. In
Favardin and Lepelley (2006), the Plurality rule is called scoring rule SR(0), where
“0” refers to the number of points, assigned to the secondplace in the agent’s ordering.
The two-approval rule, which is identical to the inverse Plurality for 3 alternatives,
is denoted as the SR(1) procedure and Borda’s rule as SR(0.5). From the iterative
scoring procedures, or procedures in which the alternatives are excluded succes-
sively, having the minimum number of first votes, Hare rule is called I SR(0) in their
notation, and the Nanson rule, which for any alternative evaluates the sum of points,
assigned for each place, and excludes those, for which this sum is less than average,
is called I SR1(0.5). One of the three Copeland procedures, which are based on the
majority relation, Copeland I is called in Favardin and Lepelley (2006) as the COP
procedure. The rest of the considered procedures, Black, Copeland II, III, Threshold,
and Inverse Borda’s procedures do not have counterparts in their notation.
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3 Extended Preferences and Manipulation

For the case of multiple choice, the extended preferences are constructed. For 3
alternatives, themanipulability is evaluated forLeximin,Leximax, PWorst, andPBest
extensions defined below. For 4 and 5 alternatives, only Leximin and Leximax are
considered. For these and other extensions, one can see the definitions and discussion
in Aleskerov et al. (2011).

For 3 alternatives, the Leximin extension for the agent with preferences a � b � c
looks as follows {a} � {a, b} � {b} � {a, c} � {a, b, c} � {b, c} � {c}. For
the Leximax extension, the ordering of the sets is different: {a} � {a, b} �
{a, b, c} � {a, c} � {b} � {b, c} � {c}. PWorst extension for 3 alternatives is
different in underlined part and looks like {a} � {a, b} � {b} � {a, b, c} � {a, c} �
{b, c} � {c}. PBest extension is defined as {a} � {a, b} � {a, c} � {a, b, c} � {b} �
{b, c} � {c}.

Leximin for 4 alternatives looks like:

{a} � {a, b} � {b} � {a, c} � {a, b, c} � {b, c} � {c} � {a, d} �
� {a, b, d} � {b, d} � {a, c, d} � {a, b, c, d} � {b, c, d} � {c, d} � {d}

Leximax for 4 alternatives looks as follows.

{a} � {a, b} � {a, b, c} � {a, b, c, d} � {a, b, d} � {a, c} � {a, c, d} �
� {a, d} � {b} � {b, c} � {b, c, d} � {b, d} � {c} � {c, d} � {d}

For 5 alternatives, we present the extension ordering for Leximin:

{a} � {a, b} � {b} � {a, c} � {a, b, c} � {b, c} � {c} � {a, d} � {a, b, d}
� {b, d} � {a, c, d} � {a, b, c, d} � {b, c, d} � {c, d} � {d} � {a, e}
� {a, b, e} � {b, e} � {a, c, e} � {a, b, c, e} � {b, c, e}
� {c, e} � {a, d, e} � {a, b, d, e} � {b, d, e} � {a, c, d, e}
� {a, b, c, d, e} � {b, c, d, e} � {c, d, e} � {d, e} � {e}

for Leximax:

{a} � {a, b} � {b} � {a, c} � {a, b, c} � {b, c} � {c} � {a, d} � {a, b, d} �
� {b, d} � {a, c, d} � {a, b, c, d} � {b, c, d} � {c, d} � {d} � {a, e} �
� {a, b, e} � {b, e} � {a, c, e} � {a, b, c, e} � {b, c, e} � {c, e} �
� {a, b, d, e} � {b, d, e} � {a, c, d, e} � {a, b, c, d, e} �
� {b, c, d, e} � {c, d, e} � {d, e} � {e}

For 3 alternatives, we also consider alphabetical tie-breaking rule used in Favardin
and Lepelley (2006). For the alphabetical tie-breaking rule, the first alternative in
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alphabetical ordering of the choice set is taken, no matter what the orderings of the
agents are. This means, for example, that if the multiple choice of some rule is {a, b},
then the alphabetical tie-breaking rule makes the choice to be {a}, no matter if some
of the agents have the preferences b � c � a or c � a � b, etc.

For the individual manipulability (Type I), only one agent in the considered profile
manipulates. Themanipulating agent thus does not collaborate with other agents, and
she does not take into account possible response of other agents. The manipulating
agent takes the others’ preferences for granted and considers them fixed. Type IV
manipulabilitymodel implies possible countermeasures fromother agents. The social
choice for a profile is calculated (call it SC1). For each agent, we try all possible ways
of misrepresentation of her preferences. After each attempt, a new social choice is
calculated (SC2). If given the preferences of the agent, the new social choice is better
than the initial one, this situation is temporarily called manipulation, but we try all
possible countermeasures. For each of the remaining agents, we generate all possible
reactions. For each reaction, we calculate the updated social choice (SC3). If for the
reacting agent the choice SC3 is better or the same as SC2, and for the manipulating
agent the choice SC3 is worse than or equal to SC1, then the profile is considered to
be a non-manipulable one (due to the counterthreat). Thus, in Type IV manipulation,
a profile is considered non-manipulable if no agent can manipulate, or if for every
manipulation attempt that leads to a better social choice for the manipulating agent,
there exists at least one other agent with a counterthreat (i.e., if there exists SC2,
which is better than SC1 for the manipulating agents, then there exists SC3 that is
better than SC2 for some other reacting agent, and, at the same time, SC3 is worse or
equal thanSC1 for themanipulating agent).We calculateNitzan–Kelly index, defined
below, as the share of manipulable profiles (excluding non-manipulable profiles) in
the set of all generated profiles.

Let us provide an example for 3 alternatives, 5 agents, and Approval q = 2 rule.
Let us assume that the initial sincere preferences are

Agent 1: c � b � a

Agent 2: b � a � c

Agent 3: b � c � a

Agent 4: b � c � a

Agent 5: b � c � a

The social choice under Approval q = 2 rule will be {b}.
In the individual manipulability (Type I), we assume that it is possible that the first

agent may manipulate. Currently, she has her second choice as a result of voting.
Let us assume that she misrepresents her preferences by putting in the ballot not
c � b � a, but c � a � b. The profile with misrepresented preferences will look as
the following one

Agent 1: c � a � b



236 F. Aleskerov et al.

Agent 2: b � a � c

Agent 3: b � c � a

Agent 4: b � c � a

Agent 5: b � c � a

Now the result under Approval q = 2 rule will be different, and there is a tie
between {b} and {c}, so the result will be {b, c} which is better for Agent 1. This
profile will be marked as manipulable under Type I, because we found at least one
case when an agent maymisrepresent her preferences to obtain a better social choice.

In the counterthreat model (Type IV), we additionally check whether any counter-
measures from other agents are possible. Let us assume that seeing Agent 1 manip-
ulating, Agent 3 will also misrepresent her preferences and present not sincere pref-
erence b � c � a, but insincere one b � a � c. In this case, the profile will
be

Agent 1: c � a � b

Agent 2: b � a � c

Agent 3: b � a � c

Agent 4: b � c � a

Agent 5: b � c � a

The social choice under Approval q = 2 will be {b}, and this choice is the same
as initial choice in the profile. Because we found a way, how another agent may
misrepresent her preferences in response to the manipulation attempt of the first
agent, this profile will not be marked as manipulable in this case (but we need to
check further to make sure that for every manipulation attempt, there is at least one
way of response that will ruin the manipulation attempt).

To evaluate the degree of manipulability, the Nitzan–Kelly index (NK) is used.
The evaluation is performed for both impartial culture (IC) and impartial anony-

mous culture (IAC)models.While in impartial culturemodel all profiles are assumed
to be equally likely, in impartial anonymous culture all voting situations are equally
likely. In this model, profiles obtained by permutation of agents are indistinguishable
and treated as one. For the considered models, the share of manipulable profiles (or
voting situations) is calculated.

This index is defined as the share of the manipulable profiles in the total number
of the profiles under consideration, i.e.,

NK = d0
dtotal

where d0 is the number of manipulable profiles (or voting situations), dtotal is the total
number of profiles (voting situations).
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4 Results

The results are estimates obtained via computer simulations. At least, ten thou-
sands of random profiles are generated for each combination of alternatives and
agents. Then for each profile, the degrees of manipulability and non-manipulability
are calculated. A profile is considered as manipulable if there is at least one agent
who can misrepresent her preferences in order to obtain a better choice. A profile
is considered to be non-manipulable if all possible changes of preferences lead to
either the same social choice or to a worse social choice, according to the notion
of the upper bound of manipulability. The calculated numbers of manipulable and
non-manipulable profiles are normed to the total number of considered profiles. An
ensemble average is taken for each rule, for each number of alternatives and number
of agents, and for IC and IAC cultures.

In Tables 1 and 2, we present results of the estimation of NK index for 3 alter-
natives and 25 agents, both IC and IAC models and both manipulation types. From
this table, we can observe that the values of NK index for IC are higher than the ones
for IAC for Type I manipulability. This happens because in IAC more unanimous
profiles have higher probability. In other words, in the profile, the more agents have
same preferences, the more probable the profile is in IAC, comparing to IC. At the
same time, individual manipulation is less possible in those profiles. However, this
is no longer true for Type IV manipulability. It seems that while the more diverse
profiles aremore vulnerable to individualmanipulation, counterthreats are not always
possible in those profiles. That is why for some rules, Type IV manipulability under

Table 1 NK values for 3 alternatives, 25 agents, Leximin, Leximax

Leximin Leximax

IC IAC IC IAC

I IV I IV I IV I IV

Plurality 0.36 0.01 0.13 0.041 0.36 0.01 0.132 0.041

Appr. 2 0.3 0.1482 0.2 0.046 0.3 0.1482 0.202 0.046

Borda 0.24 0.0002 0.11 0.002 0.23 0.0291 0.108 0.008

Black 0.13 0.0014 0.06 0.006 0.15 0.0573 0.057 0.014

Copl. I 0.08 0.0761 0.04 0.043 0.18 0.1845 0.057 0.057

Copl. II 0.08 0.0761 0.04 0.043 0.18 0.1845 0.057 0.057

Copl. III 0.08 0.0761 0.04 0.043 0.18 0.1845 0.057 0.057

Threshold 0.24 0.0498 0.14 0.021 0.24 0.0462 0.137 0.021

Nanson 0.07 0.0031 0.03 0.005 0.13 0.0002 0.039 0.005

Inv. Borda 0.07 0.0031 0.03 0.003 0.13 0.0002 0.04 0.003

Hare 0.11 0.049 0.05 0.013 0.11 0.049 0.046 0.013

Minimal values are highlighted with bold
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Table 2 NK values for 3 alternatives, 25 agents, alphabet

Alphabet

IC IAC

I IV I IV

Plurality 0.256 0.005 0.083 0.02

Appr. 2 0.221 0.08 0.135 0.02

Borda 0.162 0.00004 0.072 0.001

Black 0.131 0.0001 0.051 0.005

Copl. I 0.103 0.0004 0.038 0.004

Copl. II 0.103 0.0004 0.038 0.004

Copl. III 0.103 0.0004 0.038 0.004

Threshold 0.222 0.05 0.134 0.02

Nanson 0.09 0.0003 0.033 0.004

Inv. Borda 0.091 0.0002 0.034 0.002

Hare 0.097 0.05 0.046 0.01

IAC is higher than under IC. This can be seen from Fig. 1a, b. More detailed pictures
of the least manipulable rules are given in Fig. 1c, d.

As one can see from Fig. 1a, c, for Type IVmanipulability, for IC, the Borda’s rule
reaches the minimal manipulability. However, Black, Copeland II (for odd number
of agents), Nanson, and Inverse Borda’s rules are quite close to the minimum.

For the IAC, Borda and Inverse Borda are minimal ones, and Black and Nanson
are close to minimal manipulability.

Consider also the alphabet extension for 3 alternatives, as in Favardin andLepelley
(2006). The counterparts of some of the rules are presented in Fig. 1e.

Note, that Borda’s rule, or SR(0.5), is minimally manipulable, along with some
close tominimum rules, likeBlack, Copeland I,II,III, Threshold, Nanson, and Inverse
Borda.

Results, in general, are consistent with the findings of Favardin and Lepelley
(2006), but not for all preferences extensions. For the cases, considered in it, there
is the same trend in the manipulability and the same dominating rules. For example,
they consider the case of IAC, alphabetical tie-breaking rule, Type I and Type IV
manipulability and found that for a higher number of agents, Nanson rule is least
manipulable for Type I case and Borda’s rule—for Type IV. In our case, results vary
with the extension axiom. For Leximin extension, the results are the same, but for
Leximax extension, the Hare rule and the Inverse Borda’s rule are among the least
manipulable ones. This can be seen in Fig. 2.

At Fig. 3a, b, there is a difference between Type IV and Type I indices for IC
and IAC. It demonstrates the percentage of profiles where manipulation is no longer
possible if we consider reactions. One can see that Borda’s rule is among rules where
this percentage is higher. This is based on the nature of the manipulable situations
for those rules. Profiles which score of top alternatives are very close manipulable,
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Fig. 1 a Manipulability of Type IV for IC, 3 alternatives, Leximin, b manipulability of Type IV
for IAC, 3 alternatives, Leximin, cmanipulability of Type IV for IC, 3 alternatives, from 10 agents,
Leximin, selected procedures, close to minimum manipulability, d manipulability of Type IV for
IAC, 3 alternatives, from 10 agents, Leximin, selected procedures, close to minimal manipulability,
e manipulability of Type IV for IAC, 3 alternatives, alphabet
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Fig. 1 (continued)

but in many cases, if someone can change her vote to change social choice, the
others can react and at least get the situation back. Borda’s rule gives a lot of options
for all voters, for example, changing your second and third alternatives in declared
preferences can lower score of your second best alternative without influencing on
first best one.

For IC, the highest difference between Type IV and Type I manipulability show
the Borda’s and Inverse Borda’s rules.

For IAC, the difference is high for Borda’s, Inverse Borda’s, and Nanson rules.
From Tables 3 and 4, we can see the least manipulable rules for each case. For

Type I manipulability, Nanson and Hares rules are among the least manipulable in
most cases. For Type IV, Inverse Borda’s and Borda’s rules are among the most
stable. Those results are consistent with Favardin and Lepelley (2006), but we have
more rules as the least manipulable ones for some cases.



Further Results on the Manipulability of Social Choice … 241

Fig. 2 Manipulability of Type IV for IC, 3 alternatives, Leximax

At Figs. 4a–c, 5a, b, results for 4 alternatives are presented. Least manipulable
rules are pointed out in Tables 5 and 6. As one can see, while for Type Imanipulability
still the best rules are Nanson and Hare ones, for Type IV Borda’s rule seems to be
better than any other rule even for Leximax extension.

For 5 alternatives (Fig. 6a, b and Tables 7 and 8), results are even closer to the
one of Favardin and Lepelley (2006).

We notice that Borda’s rule for Leximin and Leximax extensions, being among
minimally manipulable ones for both IC and IAC, also reaches the high difference
in relative values in NK index between Type IV and Type I manipulability for 3, 4,
and 5 alternatives.

For 4 alternatives for Type IVmanipulability, Borda’s rule is the least manipulable
one starting from 4 agents. For 3 agents, for Leximin and alphabet extensions, despite
the fact that the Black rule is the least manipulable one for IC, and Inverse Borda for
IAC, both these two rules have low values of manipulability for both cultures.

For 5 alternatives, Leximin extension along with minimally manipulated Borda’s
rule, quite close to the minimum, is Inverse Borda’s, Black, and all three Copeland
rules.

For Leximax extension, the Borda’s rule is minimally manipulated, while the
manipulability of InverseBorda’s,Black, andCopeland I, II, III rules is quite scattered
being close to minimum.

Contrary to Type I manipulability, for Type IV manipulability for 5 alternatives,
Borda’s rule is minimally manipulable for all extensions starting from 4 agents; only
for 3 agents, the Plurality and Hare rules are minimally manipulable for Leximax
extension.
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Fig. 3 a Difference between Type IV and Type I manipulability, IC, 3 alternatives, Leximax,
b difference between Type IV and Type I manipulability, IAC, 3 alternatives, Leximax

5 Conclusion

We considered several extensions for manipulation model proposed in Favardin and
Lepelley (2006). We considered multi-valued choice, both impartial and impartial
anonymous culture, and the cases of 3, 4, and 5 alternatives. One can see that for Type
I manipulability, the manipulation index for IC is higher, then for IAC. However,
for Type IV manipulability the results are opposite, and the manipulation under
IAC is higher. While for multi-valued choice and 3 alternatives results are even
less certain than for alphabetical tie-breaking rule (more rules are among the least
manipulable ones), for 4 and 5 alternatives Borda is the least manipulable one for
Type IV manipulability even for multiple choice. The main reason behind it is that
Borda’s rule is the most “flexible” scoring rule allowing one to influence scores of
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Table 3 Minimally manipulated procedures for Type I manipulability for 3 alternatives for several
number of agents

Culture Extensions 8 11 22 25

IC Leximin H N, IvBo C3, N N

IC Leximax H H C3, N H

IC PWorst H N, IvBo C3, N N

IC PBest H H C3, N H

IC Alphabet H H H N

IAC Leximin H N N N

IAC Leximax H H N N

IAC PWorst H N N N

IAC PBest H H N N

IAC Alphabet C3, N N N N

Table 4 Minimallymanipulated procedures for Type IVmanipulability for 3 alternatives for several
number of agents

Culture Extensions 8 11 22 25

IC Leximin IvBo Bo Bo Bo

IC Leximax IvBo N, IvBo N, IvBo N, IvBo

IC PWorst Bo Bo Bo Bo

IC PBest IvBo N, IvBo IvBo N, IvBo

IC Alphabet Bo Bo Bo Bo

IAC Leximin IvBo IvBo Bo Bo

IAC Leximax IvBo IvBo IvBo IvBo

IAC PWorst Bo IvBo Bo Bo

IAC PBest IvBo IvBo IvBo IvBo

IAC Alphabet Bo Bo Bo Bo

several alternatives in the most diverse way. For 4 and 5 alternatives, this flexibility
becomes even more important. For the general case of Type I manipulability, more
options to influence scores give more options to manipulate, so the Borda is never
one of the least manipulable rules, but for Type IV manipulability, this flexibility
gives opportunity to others to react and, as we can see from Fig. 5a, b, it quickly
reduces manipulability options. These results for Borda’s rule are in accordance with
the conclusions made in Gehrlein and Lepelley (2017). For Type I manipulability,
the Nanson rule is also between the least manipulable rules.
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Fig. 4 a Manipulability of Type IV for IC, 4 alternatives, Leximax, b manipulability of Type IV
for IAC, 4 alternatives, Leximax, c manipulability of Type IV for IAC, 4 alternatives, Leximin
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Fig. 5 a Difference between Type IV and Type I manipulability, IC, 4 alternatives, Leximax,
b Difference between Type IV and Type I manipulability, IAC, 4 alternatives, Leximax
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Table 5 Minimally manipulated procedures for Type I manipulability for 4 alternatives for several
number of agents

Culture Extensions 7 12 19 20

IC Leximin IvBo H IvBo N

IC Leximax H C3, S, N H H

IC PWorst IvBo C3, N IvBo N

IC PBest H H H H

IC Alphabet H H N, IvBo IvBo

IAC Leximin IvBo N, H IvBo N

IAC Leximax H N N H

IAC PWorst IvBo N IvBo N

IAC PBest H H N H

IAC Alphabet N N N N

Table 6 Minimally
manipulated procedures for
Type IV manipulability for 4
alternatives and several
number of agents

Culture Extensions 3 4–25

IC Leximin Bl Bo

IC Leximax Pl, H Bo

IC Alphabet Bl Bo

IAC Leximin IvBo Bo

IAC Leximax Pl, H Bo

IAC Alphabet IvBo Bo
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Fig. 6 a Manipulability of Type IV for IAC, 5 alternatives, Leximin, b manipulability of Type IV
for IAC, 5 alternatives, Leximax

Table 7 Minimally manipulated procedures for Type I manipulability for 5 alternatives for several
number of agents

Culture Extensions 7 12 19 20

IC Leximin N C3, N N, IvBo N

IC Leximax H Bl, N H N

IC PWorst N C3, N N, IvBo N

IC PBest H H H H

IC Alphabet H H IvBo IvBo

IAC Leximin N N N, IvBo N

IAC Leximax H Bl, N H N

IAC PWorst N N N, IvBo N

IAC PBest H H H H

IAC Alphabet H N N N
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Table 8 Minimally
manipulated procedures for
Type IV manipulability for
alternatives for several
number of agents

Culture Extensions 3 4–6

IC Leximin Bo Bo

IC Leximax Pl, H Bo

IC Alphabet Bo Bo

IAC Leximin Bo Bo

IAC Leximax Pl, H Bo

IAC Alphabet Bo Bo
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Exploring the No-Show Paradox for
Condorcet Extensions

Felix Brandt, Johannes Hofbauer, and Martin Strobel

Abstract An important and surprising phenomenon in voting theory is theNo-Show
Paradox (NSP), which occurs if a voter is better off by abstaining from an election.
While it is known that certain voting rules suffer from this paradox in principle, the
extent to which it is of practical concern is not well understood. We aim at filling this
gap by analyzing the likelihood of the NSP for six Condorcet extensions (Black’s
rule, Baldwin’s rule, Nanson’s rule, Max-Min, Tideman’s rule, and Copeland’s rule)
under various preference models using Ehrhart theory as well as extensive computer
simulations. We find that, for few alternatives, the probability of the NSP is rather
small (less than 4% for four alternatives and all considered preferencemodels, except
for Copeland’s rule). As the number of alternatives increases, theNSP becomesmuch
more likely and which rule is most susceptible to abstention strongly depends on the
underlying distribution of preferences.

1 Introduction

Voting theory has shown that every voting rule can result in outcomes that seem
undesirable. An important research question is how often these phenomena—known
as voting paradoxes—occur and how relevant they are for real-world elections. In
this chapter, we employ sophisticated analytical and experimental methods to assess
the frequency of the No-Show Paradox (NSP), which occurs if a voter is better off
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by abstaining from an election (Fishburn and Brams 1983). The question we address
goes back to Fishburn and Brams (1983), who write that “although probabilities of
paradoxes have been estimated in other settings, we know of no attempts to assess
the likelihoods of the paradoxes of preferential voting discussed above, and would
propose this as an interesting possibility for investigation. Is it indeed true that serious
flaws in preferential voting such as the No-Show Paradox […] are sufficiently rare
as to cause no practical concern?” It is well-known that all Condorcet extensions,
a large class of attractive voting rules, suffer from the NSP and this is often used
as an argument against Condorcet extensions. Our analysis covers six Condorcet
extensions: Black’s rule, Baldwin’s rule, Nanson’s rule, MaxiMin, Tideman’s rule,
and Copeland’s rule.

In principle, quantitative results on voting paradoxes can be obtained via three
different approaches. The analytical approach uses theoretical models to quantify
paradoxes based on certain assumptions about the voters’ preferences such as the
impartial anonymous culture (IAC) model, in which every anonymous preference
profile is equally likely. Analytical results usually tend to be quite hard to obtain
and are limited to simple—and often unrealistic—assumptions. The experimental
approach uses computer simulations based on underlying stochastic models of how
the preference profiles are distributed. Experimental results have less general validity
than analytical results, but can be obtained for arbitrary distributions of preferences.
Finally, the empirical approach is based on evaluating real-world data to analyze how
frequently paradoxes actually occur or how frequently they would have occurred if
certain voting rules had been used for the given preferences. Unfortunately, only very
limited real-world data for elections is available.

We analytically study the NSP under the assumption of IAC via Ehrhart theory,
which goes back to the French mathematician Eugène Ehrhart (Ehrhart 1962). The
idea of Ehrhart theory is to model the space of all preference profiles as a discrete
simplex and then count the number of integer points inside of the polytope defined
by the paradox in question. The number of these integer points can be described
by so-called quasi- or Ehrhart-polynomials, which can be computed with the help
of computers. The computation of the quasi-polynomials that arise in our context
is computationally very demanding, because the dimension of the polytopes grows
super-exponentially in the number of alternatives and was only made possible by
recent advances of the computer algebra system Normaliz (Bruns et al. 2019a).
We complement these results by very elaborate simulations using four common
preference models in addition to IAC (IC, urn, spatial, and Mallows). In contrast to
existing results, our analysis goes well beyond three alternatives.

2 Related Work

The NSP was first observed by Fishburn and Brams (1983) for a voting rule called
single-transferrable vote (STV). Moulin (1988) later proved that all Condorcet exten-
sions are prone to the NSP; the corresponding bound on the number of voters was
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recently tightened by Brandl et al. (2017). Similar results were obtained for weak
preferences and stronger versions of the paradox (Pérez 2001; Duddy 2014). The
NSP was also transferred to other settings including set-valued voting rules (see,
e.g., Jimeno et al. (2009); Pérez et al. (2010, 2015); Brandl et al. (2019a)), proba-
bilistic voting rules (see, e.g., Brandl et al. (2015, 2019b)) and random assignment
rules (Brandl et al. 2017).1

The frequency of the NSP was first studied by Ray (1986), who, in line with
Fishburn and Brams’s classic paper, analyzed situations where STV can be manip-
ulated in elections with three alternatives. A similar goal was pursued by Lepelley
and Merlin (2000) who quantified occurrences of the NSP assuming preferences are
distributed according to IC or IAC. However, in contrast to the present approach,
Lepelley and Merlin employed different statistical techniques to estimate the like-
lihood of multiple variants of the paradox and focused on score-based runoff rules
in elections with three alternatives. In a recent paper, this setting was revisited by
Kamwa et al. (2018) who focused on single-peaked preferences, where alternatives
can be ordered on a one-dimensional axis and voters’ preferences are determined by
proximity to their optimal point on this axis. Under this assumption, they found that
multiple scoring runoff rules do not suffer from any variant of the NSP while for
others, e.g., plurality runoff, the probabilities of a paradox to occur are significantly
lower compared to the unrestricted domain.

The general idea to quantify voting paradoxes via IAC has been around since the
formal introduction of this preference model by Gehrlein and Fishburn (1976) (see,
e.g., Lepelley et al. (1996); LeBreton et al. (2016); Lepelley et al. (2018)). Still, it took
a good 30years until the connection to Ehrhart theory (Ehrhart 1962) was established
by Lepelley et al. (2008). We refer to Gehrlein and Lepelley (2011, 2017) for a more
profound explanation of all details and an overview of results subsequently achieved
(see also, e.g., Wilson and Pritchard (2007); Schürmann (2013); Le Breton et al.
(2016)). The step from three to four alternatives, i.e., from six to 24 dimensions,
was only made possible through recent advances in computer algebra systems by
De Loera et al. (2012) and Bruns and Söger (2015). Brandl et al. (2016b) used a
framework similar to ours to study the frequency of two single-profile paradoxes
(the Condorcet Loser Paradox and the Agenda Contraction Paradox). In a recent
paper, Bruns et al. (2019b) also made use of the possibility to analyze situations with
four alternatives and looked at the Condorcet efficiency of plurality and plurality
with runoff as well as the structure of majority graphs and varying Borda paradoxes.

Plassmann and Tideman (2014) conducted computer simulations for various vot-
ing rules and paradoxes under a modified spatial model in the three-alternative case.
To the best of our knowledge, this is—apart from Brandl et al. (2016b) and Bruns
et al. (2019b)—the only study of Condorcet extensions from a quantitative angle.

1Interestingly, when considering set-valued or probabilistic voting rules, there are Condorcet exten-
sions immune to the NSP under suitable assumptions (Brandl et al. 2019a, b).
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3 Preliminaries

Let A be a set of m alternatives and N = {1, . . . , n} a set of voters. We assume
that every agent i ∈ N is endowed with a preference relation �i over the alterna-
tives A. More formally, �i is a complete, asymmetric and transitive binary relation,
�i ∈ A × A, which gives a strict ranking over the alternatives. If x �i y, we say that
i prefers x to y.

A preference profile � is a tuple consisting of one preference relation per voter,
i.e., � = (�1, . . . ,�n). By �−i we denote the preference profile resulting of voter
i abstaining the election, �−i = (�1, . . . ,�i−1,�i+1, . . . ,�n). For most purposes,
however, the ordering within the tuple of preference relations is irrelevant and one
can alternatively consider multisets of preference relations, so-called anonymous
preference profiles.

For two alternatives x, y ∈ A and a preference profile � we define the majority
margin gxy(�) as

gxy(�) = |{i ∈ N : x �i y}| − |{i ∈ N : y �i x}|.

Whenever� is clear from the context we only write gxy. A voting rule is a function
f mapping a preference profile � to a single alternative, f (�) ∈ A.

3.1 Condorcet Extensions

Alternative x ∈ A is a Condorcet winner if it beats all other alternatives in pairwise
majority comparisons, i.e., gxy > 0 for all y ∈ A \ {x}. Similarly, x is a weak Con-
dorcet winner if it beats or ties all other alternatives, i.e., gxy ≥ 0 for all y ∈ A. If a
voting rule always selects the Condorcet winner whenever one exists, it is called a
Condorcet extension. A weak Condorcet extension returns a weak Condorcet win-
ner whenever (at least) one exists. Clearly, every weak Condorcet extension is a
Condorcet extension. A wide variety of Condorcet extensions has been studied in
the literature (see, e.g., Fishburn (1977); Brandl et al. (2016a)). In this chapter,
we consider six Condorcet extensions: Black’s rule, Baldwin’s rule, Nanson’s rule,
MaxiMin, Tideman’s rule, and Copeland’s rule. The main criteria for selecting these
rules were discriminability (in order to minimize the influence of lexicographic tie-
breaking), simplicity (to allow for Ehrhart analysis and because voters generally
prefer ‘simpler’ rules), and efficient computability (to enable rigorous and compre-
hensive simulations).2 In the following, we briefly define the rules.

Black’s rule (Black 1958) selects the Condorcet winner whenever one exists and
otherwise returns a winner according to Borda’s rule, where each voter assignsm − 1
points to his most preferred alternatives, m − 2 points to his second most preferred

2Note that other discriminating Condorcet extensions such as Kemeny’s rule, Dodgson’s rule, and
Young’s rule are NP-hard to compute see, e.g., Brandl et al. (2016a).
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alternative, etc., and an alternative with highest accumulated score wins (Borda’s rule
itself is no Condorcet extension). For the formal definition below, we use affinely
equivalent Borda scores based on majority margins.

fBlack(�) ∈
{
x if x is a Condorcet winner in �
argmaxx∈A

∑
y∈A gxy otherwise.

Baldwin’s rule (Baldwin 1926) proceeds in multiple rounds. In each round, we
drop all alternatives with the lowest Borda score and then continue with the reduced
preference profile, which is used to calculate updated scores. If multiple—but not
all—alternatives are tied last, we delete all of them. Baldwin’s rule chooses one of
the alternatives that remains when no more alternative can be removed.

Nanson’s rule (Nanson 1883; Niou 1987) is similar to Baldwin’s rule in so far as
it also focuses on the Borda scores and gradually eliminates alternatives. However,
in contrast to before, we now remove all alternatives with average or below-average
Borda score in every round. Nanson’s rule returns an alternative out of those that
remain when all alternatives have identical score.

The MaxiMin rule (Black 1958), which is also known as the Simpson-Kramer
method (Simpson 1969; Kramer 1977), looks at the worst pairwise majority com-
parison for each alternative. It then returns an alternative with maximal such score,
formally

fMaxiMin(�) ∈ argmaxx∈A min
y∈A\{x}

gxy.

Tideman’s rule (Tideman 1987) focuses on the sum of all pairwise majority
defeats. It yields an alternative where this sum is closest to zero in terms of absolute
value,3 i.e.,

fTideman(�) ∈ argmaxx∈A
∑
y∈A

min(0, gxy).

Copeland’s rule (Copeland 1951) only relies on the signs of the majority margins.
It chooses an alternative where the number of majority wins plus half the number of
majority draws is maximal:

fCopeland(�) ∈ argmaxx∈A|{y ∈ A : gxy > 0}| + 1/2 |{y ∈ A : gxy = 0}|

In order to obtain well-defined voting rules we employ alphabetic tie-breaking for
all rules defined above. Note that the actual tie-breaking ordering does not influence
our results as long as this ordering is fixed. This is not the case if we would allow for
tie-breaking based on the preference profile or the choice set. All presented voting
rules can be computed in polynomial time and do not rely on the exact preference

3Tideman’s rule is arguably the least well-known voting rule presented here. It was proposed
to efficiently approximate Dodgson’s rule and is not to be confused with ranked pairs which is
sometimes also called Tideman’s rule. Also note that the ‘dual’ rule returning alternatives for which
the sum of weighted pairwise majority wins is maximal is not a Condorcet extension.
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profile � but only on the majority margins that can conveniently be represented by
a skew-symmetric matrix or a weighted directed graph.

In order to illustrate these definitions, consider an example with seven voters and
four alternatives given by the preference profile and the matrix of pairwise majority
margins below. The preference profile is given as a table where a column with header
k represents a group of k voters with preferences given in decreasing order.

3 3 1
a d b
c c d
b b a
d a c

(gxy)x,y∈A =

a b c d⎛
⎜⎝

⎞
⎟⎠

a 0 −1 1 −1
b 1 0 −5 1
c −1 5 0 −1
d 1 −1 1 0

In the absence of aCondorcetwinner, Black’s rule relies on theBorda scoreswhich
can be computed to be s(�) = (10, 9, 12, 11) or, affinely equivalent, (−1,−3, 3, 1)
when determining them based on the majority margins only. Hence, fBlack(�) = c.

Having the lowest Borda score, b consequently is the first alternative to be elimi-
nated when applying Baldwin’s rule. After dropping c next, we have a strict majority
in favor of d against a and thus fBaldwin(�) = d .

In the first round of Nanson’s rule, we eliminate a and b since both alternatives
have a Borda score which is below average. Thereafter, we obtain a strict majority
for d against c, meaning d has higher Borda score and it follows fNanson(�) = d .

For MaxiMin, we analyze all alternatives’ worst pairwise majority comparison
and see that a, c, and d are tied with −1. Due to alphabetic tie-breaking we have
fMaxiMin(�) = a.

Tideman’s rule counts the sum of all pairwise majority defeats, which we find to
be 2, 5, 2, and 1 for a, b, c, and d , respectively. The alternative with minimal sum is
chosen, hence, fTideman(�) = d .

Lastly, Copeland’s rule selects an alternative based on the number of pairwise
majority wins and here breaks the tie between b and d alphabetically leading to
fCopeland(�) = b.

3.2 Strategic Abstention

A voting rule f ismanipulable by strategic abstention if there exist someN , A, and�
such that for some i ∈ N , f (�−i) �i f (�). Given an occurrence of manipulability by
strategic abstention, f is said to suffer from the No-Show Paradox (NSP) (for N , A,
�). Slightly abusing notation, we also say that � is prone to the NSPwhenever f , N ,
and A are clear from the context. All rules defined here are Condorcet extensions and
therefore manipulable by strategic abstention. Occurrences of the NSP for Black’s,
Baldwin’s, and Copeland’s rule require three alternatives while four alternatives are
needed for MaxiMin as well as Nanson’s and Tideman’s rule.
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It is interesting to note that whenever a Condorcet winner exists, no weak Con-
dorcet extension allows for manipulation by strategic abstention by a single voter.
To see this, assume alternative x is the Condorcet winner, i.e., x wins in a pair-
wise majority comparison against all other alternatives. While some of these strict
majority preferences might turn to indifferences if voter i abstains from the election
procedure, this can only happen for comparisons to alternatives less preferred than x
according to �i. Hence, every alternative strictly more preferred than x still loses at
least the pairwise majority comparison against x, which remains a weak Condorcet
winner. We deduce that irrespective of other possible weak Condorcet winners and
the underlying tie-breaking, no alternative preferred to x can be chosen. Of the rules
defined above, MaxiMin and Tideman’s rule are weak Condorcet extensions.4

3.3 Stochastic Preference Models

When analyzing properties of voting rules, it is a common approach to sample pref-
erences according to some underlying model. Various concepts to model preferences
have been introduced over the years; we refer to Critchlow et al. (1991) and Marden
(1995) for a detailed discussion. We focus on three parameter-free models, impar-
tial culture (IC) where each voter’s preferences are drawn uniformly at random,
impartial anonymous culture (IAC) where anonymous preference profiles are drawn
uniformly at random, and the two-dimensional spatial model where we uniformly
sample points in the unit square and their proximity determines the voters’ prefer-
ences. Furthermore, we consider two model families that allow to simulate different
degrees of voter correlation. These are the urn model (Berg 1985) with parameter
10 (i.e., whenever a preference relation is drawn, 10 copies of the same relation are
added to the urn) andMallows’ model (Mallows 1957) with φ = 0.8. These param-
eters induce stronger voter correlation than IC and IAC, which is widely considered
to be more realistic.

4 Quantifying the No-Show Paradox

The goal in this chapter is to quantify the frequency of the NSP, i.e., to investigate
for how many preference profiles a voter is incentivized to abstain from an election.
In order to achieve this goal, we employ an exact analysis via Ehrhart Theory and
experimental analysis via sampled preference profiles.

4For bothMaxiMin and Tideman’s rule, this holds by the observation that a weak Condorcet winner
does not lose any pairwise majority comparison. Black’s rule fails to be a weak Condorcet extension
by definition; a counterexample for Baldwin’s, Nanson’s, and Copeland’s rule is given by Fishburn
(1977).
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4.1 Exact Analysis via Ehrhart Theory

The imminent strength of exact analysis is that it gives reliable theoretical results.
On the downside, precise computation is only feasible for very simple preference
models and for small values of m. We focus on IAC and make use of Ehrhart theory.

First, note that an anonymous preference profile is completely specified by the
number of voters sharing each of the m! possible rankings on m alternatives. Hence,
we can uniquely represent an anonymous profile by an integer point x in a space of
m! dimensions. We interpret xi as the number of voters who share ranking i, where
rankings are ordered lexicographically. For example, when there are three voters, an
anonymous profile is of the following type.

x1 x2 x3 x4 x5 x6
a a b b c c
b c a c a b
c b c a b a

For fixed m, our goal is to describe all profiles that are prone to the NSP by using
linear (in)equalities that describe a polytope Pn.5 Given that this is possible, the
fraction of profiles prone to the NSP can be computed by dividing the number of
integer points contained in Pn by the total number of profiles for n voters, i.e., the
number of integer points x satisfying xi ≥ 0 for all 1 ≤ i ≤ m! and ∑

1≤i≤m! xi = n.

While the latter number is known to be
(m!+n−1

m!−1

)
, the former can be determined

using Ehrhart theory. Ehrhart (1962) shows that it can be found by so-called Ehrhart-
or quasi-polynomials f—a collection of q polynomials fi of degree d such that
f (n) = fi(n) if n ≡ i mod q. Obtaining f is possible via computer programs like
LattE (De Loera et al. 2004) or Normaliz (Bruns et al. 2019a).

4.1.1 Copeland’s Rule

In order to illustrate this method, first consider Copeland’s rule in elections with
three alternatives under IAC. For the modeling we need to give linear constraints
in terms of voter types—or equivalently majority margins—that describe polytopes
containing all profiles prone to the NSP.

We first distinguish between the six possible manipulations from x to y, x �= y ∈ A
= {a, b, c}. A case-by-case analysis shows that, due to alphabetic tie-breaking, only
manipulations from a to b or c and from either b or c to a are possible. In particular,
for each of these cases, there is exactly one voting situation admitting an occurrence
of the NSP. We find that we can specify the respective profiles using one polytope
each:

5More precisely, Pn is a dilated polytope depending on n, Pn = nP = {nx : x ∈ P}.
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gba ≥ 2, gac ≥ 1, gcb = 1, x6 ≥ 1 (P1)

gca ≥ 2, gab ≥ 1, gbc = 1, x4 ≥ 1 (P2)

gac ≥ 2, gba ≥ 1, gbc = 0, x1 ≥ 1 (P3)

gab ≥ 1, gca ≥ 1, gbc = 0, x2 ≥ 1 (P4)

For the sake of readability we here omit but implicitly assume that the total
number of voters present is n and there is a nonnegative number of voters per voter
type. Polytope P1, for example, describes a manipulation from a to b. The first three
(in)equalities ensure that there is no Condorcet winner in the current profile and
that a wins by tie-breaking. The first inequality ensures that b beats a even after the
manipulator leaves, while the equality in the third column ensures that bwill become
a Condorcet winner. The last column demands the presence of a voter of type x6, the
only type able to manipulate. Note that P1 and P2 require n to be odd while every
profile contained in P3 or P4 contains an even number of voters. The total number of
anonymous preference profiles admitting a manipulation by abstention is given by
the number of integer points contained in polytopes P1 to P4.

4.1.2 Black’s Rule

When considering different rules or a larger number of alternatives, we find that
the number of polytopes as well as the number of linear constraints defining them
grows rapidly. Black’s rule, for instance, can only be manipulated from a Condorcet
winner to a Borda winner or vice versa. This distinction is also one of voter parity:
a manipulation away from a Condorcet winner is possible for odd n, while n is
required to be even in the converse case. In contrast to before, Black’s rule allows
for a manipulation between any pair of alternatives regardless of n. Hence, we obtain
a total of 12 polytopes, one for every possible manipulation and parity of n. The
polytopes for even n look as follows.

gab + gac ≥ gba + gbc, gba ≥ 1, x6 ≥ 1,

gab + gac ≥ gca + gcb, gbc = 0 (P1)

gab + gac ≥ gba + gbc, gca ≥ 1, x4 ≥ 1,

gab + gac ≥ gca + gcb, gcb = 0 (P2)

gba + gbc ≥ gab + gac + 1, gab ≥ 1, x5 ≥ 1,

gba + gbc ≥ gca + gcb, gac = 0 (P3)
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gba + gbc ≥ gab + gac + 1, gcb ≥ 1, x2 ≥ 1,

gba + gbc ≥ gca + gcb, gca = 0 (P4)

gca + gcb ≥ gab + gac + 1, gac ≥ 1, x3 ≥ 1,

gca + gcb ≥ gba + gbc + 1, gab = 0 (P5)

gca + gcb ≥ gab + gac + 1, gbc ≥ 1, x1 ≥ 1,

gca + gcb ≥ gba + gbc + 1, gba = 0 (P6)

Polytope P1, for example, describes a manipulation from a to b (when n is even).
The inequalities in the left column model that a currently is the Borda winner. The
(in)equalities in the second column guarantee that a manipulator can make b Con-
dorcet winner by abstaining as well as that with him being present, there is no
Condorcet winner. The last column demands the presence of a voter of type x6, the
only type able to manipulate.

4.1.3 MaxiMin

Whenmoving toMaxiMin and four alternatives, determining the necessary polytopes
becomes tedious. Since alphabetic tie-breaking rules out most symmetries, we need
168 disjoint polytopes of varying sizes to encompass all profiles prone to the NSP.
Each of these is defined by 8–10 constraints, not counting the total number of voters
and nonnegative number per type.

Recall the definition of MaxiMin from Sect. 3 and assume fMaxiMin = x. For the
NSP to occur, two intrinsic conditions have to be satisfied: (i) There is a voter i
such that fMaxiMin(�−i) = y �= x and (ii) for voter i, we have y �i x. We find that for
A = {a, b, c, d}, conditions (i) and (ii) entail that manipulation from a to b is only
possible for �i: c, b, a, d and �j: d , b, a, c. It can be shown that no instance exists
in which both voter types can influence the outcome in their favor. For the sake of
this example, let us focus on �i.

A first analysis shows that a’s highest defeat has to be against d while b’s highest
defeat necessarily is against c with gad = gbc,6 and any other defeat of b lower by at
least two. This gives rise to a first set of essential constraints.7

gad = gbc, gad ≤ 0,

gab ≥ gad , gba ≥ gad + 2 (basis)

xi ≥ 1

6Theoretically, we only require gad − 1 ≤ gbc ≤ gad . As either all gxy are even or all gxy are odd,
this collapses to gad = gbc.
7Some inequalities are omitted to remove redundancies when taken together with later constraints.
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At this point, we distinguish between gcd = 0, gcd ≤ −1, and gcd ≥ 1. In case
gcd = 0, we trivially only need bounds on the defeats of c against a and d against b:

gcd = 0, gca ≤ gad , gdb ≤ gad (A)

If gcd ≤ −1, c’s highest defeat could be against a, d , or both. We consequently need
a case distinction to accommodate for these possibilities.

gcd ≤ −1, gdb ≤ gab (B)

gcd ≤ gad , gca ≤ gad (B.1)

gcd ≤ gad , gca ≥ gad + 1, gac ≥ gad (B.2)

gcd ≥ gad + 1, gca ≤ gad (B.3)

For gcd ≥ 1 and an almost symmetric reasoning with reversed arguments for c and
d we obtain (C), (C.1), (C.2), and (C.3).

Finally, the total set of profiles admitting a manipulation from a to b by i can be
described by seven polytopes making use of the constraints developed above. We
obtain

• P1 = (basis) + (A),
• P2 = (basis) + (B) + (B.1), P3 = (basis) + (B) + (B.2), P4 = (basis) + (B) +
(B.3),

• P5 = (basis) + (C) + (C.1), P6 = (basis) + (C) + (C.2), and P7 = (basis) + (C)
+ (C.3).8

Aswe are interested in not only voter type�i but also�j and equivalently not only
manipulations from a to b but also all different combinations, we need to undergo
a similar reasoning 24 times. This amounts to a total of 168 disjoint polytopes to
encompass all profiles prone to the NSP. We remark that even though manipulation
instances are roughly in line for all 24 types of voters, there are no exact symmetries
that allow for reducing the number of polytopes. This is duemostly to lexicographic—
i.e., non-symmetric—tie-breaking and the required presence of a certain voter type in
the electorate. Both effects diminish as n grows but discrepancies between different
types of manipulators are significant up to lower three-digit n.

This approachofmodelingprofiles prone to theNSP is substantiallymore involved
than using Ehrhart theory for single-profile paradoxes such as the Condorcet Loser
Paradox because of three reasons.

(i) An occurrence of the NSP requires the presence of a certain type of voter.
(ii) Preference profiles for which different types of voters are able to manipulate

must be counted only once.9

8We choose this informal notation for the sake of readability. It is to be understood in a way that P1
is the polytope described by (in)equalities labelled (basis) as well as (A). We additionally assume
for all polytopes that the sum of voters per type adds up to n and each type consists of a nonnegative
number of voters.
9This effect is only relevant when there are at least four alternatives.
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(iii) Possible manipulations not only rely on the winning alternative itself but on all
majority margins that have to adhere to different constraints.

4.2 Experimental Analysis

In contrast to exact analysis, the experimental approach relies on simulations to
grasp the development of different phenomena under varying conditions. On the
upside, this usually allows for results for more complex problems or a larger scale of
parameters, both of which might be prohibitive for exact calculations. At the same
time, however, we find that we need a huge number of simulations per setting to get
sound estimates which in turn often requires a high-performance computer and a lot
of time. Also, there remains the risk that even a vast amount of simulations fails to
capture one specific, possibly crucial, effect.

Regarding the pivotal question of our chapter, the frequency of theNSP for various
voting rules, we sample preference profiles for different combinations of n and m
using themodeling assumptions explained inSect. 3.Our simulationswere conducted
on XeonE5-2697 v3 multi-core processors with 2 GB memory per job. The total
runtime easily accumulates to thirty years on a single-core processor.

5 Results and Discussion

In this section we present our results obtained by both exact analysis and computer
simulations.

5.1 Analytical Results Under IAC

We first focus on Copeland’s rule with three alternatives, as our modeling in Sect.
4.1 allows for an exact analysis of the NSP. In particular, we compute the following
Ehrhart-polynomial f (n) with period q = 2:

f0(n) = 1/192 n4 − 1/48 n3 − 1/48 n2 + 1/12 n

f1(n) = 1/192 n4 − 5

96
n2 + 3

64

Recall that f (n) = fi(n) if n ≡ i mod q. Consequently, the fraction of profiles that
admit a manipulation by strategic abstention is given by

f0(n)

(n+5
5 )

if n is even and f1(n)

(n+5
5 )

if n is odd.
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Fig. 1 Fraction of profiles
prone to the NSP for
Copeland’s rule and m = 3.
The alternating parity of the
number of voters has a
significant effect on the
occurrence of the paradox
and gives the appearance of
two separate curves

This frequency of theNSP for Copeland’s rule andm = 3 is plotted in Fig. 1, together
with results obtained by computer simulations.

With respect to Black’s rule and m = 3, we obtain an Ehrhart-polynomial with
slightly larger period q = 6. Once more, we can explicitly give f (n) which looks as
follows:

f0(n) = 1/192 n4 − 5/48 n2

f1(n) = 1/192 n4 − 1/48 n3 − 7/96 n2 + 3/16 n − 19/192

f2(n) = 1/192 n4 − 5/48 n2 + 1/3

f3(n) = 1/192 n4 − 1/48 n3 − 7/96 n2 + 3/16 n + 15/64

f4(n) = 1/192 n4 − 5/48 n2 + 1/3

f5(n) = 1/192 n4 − 1/48 n3 − 7/96 n2 + 3/16 n + 15/64

The fraction of profiles prone to the NSP for Black’s rule andm = 3 is visualized
in Fig. 2.

Similar connections between analytical and experimental results forMaxiMin can
be observed in Fig. 3. Note that, while we are able to explicitly give the Ehrhart-
polynomials for Copeland’s and Black’s rule and m = 3 here, this is not possible
for MaxiMin and m = 4 due to space constraints. The corresponding polynomial
f (n) has a period of q = 55 440, i.e., it consists of 55440 different polynomials. We
deduce that no two points in the MaxiMin chart of Fig. 3 are computed via the same
polynomial, which makes the regularity of the curve even more remarkable.

Acouple of points come tomindwhen closely studying these graphs. First,wenote
that the results obtained by simulation almost perfectly match the exact calculations,
which can be seen as strong evidence for the correctness of both. On the one hand,
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Fig. 2 Fraction of profiles
prone to the NSP for Black’s
rule and m = 3

Fig. 3 Fraction of profiles
prone to the NSP for
MaxiMin and m = 4

it confirms our modeling via polytopes, and at the same time highlights that we are
running a sufficiently large number of simulations. While this does not bear definite
testimony to the correctness for largerm, we highlight that our implementation is both
generic (with respect tom and n) and not particularly complex, which minimizes the
risk of errors. We additionally believe that the perfect smoothness of Fig. 4 together
with the fact that the NSP is independent of n, m, and the underlying voting rule
strongly suggests that our experimental results are sound and reliable.

We see that for Black’s rule the maximum is attained at 14 and 16 voters with
1.55% of all profiles, for Copeland’s rule the maximum is at 13 voters with 1.63%
of all profiles, while for MaxiMin and m = 4 it is at 14 voters with 0.55% of all
profiles. Hence, we can argue that for elections with very few alternatives, the NSP
seems to hardly cause a problem, independent of the number of voters or the voting
rule considered. Strikingly, the maxima occur at roughly the same number of voters,
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Fig. 4 Fraction of profiles prone to the NSP for different rules and increasing n and m

with this number varying between being even or odd. Also observe that Black’s and
Copeland’s rule are more sensitive to the parity of n than MaxiMin.

Furthermore, we note that the probability for theNSP to occur converges to zero as
n goes to∞; this holds true for all voting rules considered and all fixedm. Intuitively,
this is to be expected as for larger electorates, a single voter’s power to sway the result
diminishes. This first idea can be confirmed by considering the respective modeling
via polytopes. Each modeling will contain at least one equality constraint, e.g., in
the third column of our modeling of Copeland’s rule in Sect. 4.1. Consequently, the
polytopes describing profiles for which a manipulation is possible are of dimension
at most m! − 1. By Ehrhart (1962), this means that the number of those profiles
can be described by a polynomial of n of degree at most m! − 1. The total number
of profiles, on the other hand, can equivalently be determined via a polynomial of
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degree m!. Hence, the fraction of profiles prone to the NSP is upper-bounded by
O(1/n). Following the intuitive argument, similar behavior is to be expected for all
reasonable preference models and voting rules.

Form = 4, determining the Ehrhart polynomials for both Black’s as well as Tide-
man’s rule proved to be infeasible, even when using a custom-tailored version of
Normaliz and employing a high-performance cluster.10 Copeland’s rule unfortu-
nately causes problems even earlier: for four alternatives the modeling via linear
(in)equalities quickly becomes very challenging due to the rule only caring about
unweighted majority comparisons. For all rules, m ≥ 5 appears to be out of scope
for years to come.

5.2 Experimental Results Under IAC

In this section, we rely on simulations to grasp how often the NSP can occur for
different combinations of n and m up to 50 voters and 30 alternatives. Our results
can be found in Fig. 4 and allow for the following observations to be made.

To begin with, the relatively low fraction of profiles prone to the NSP for
Copeland’s rule, Black’s rule, and MaxiMin with a small number of alternatives
increases as m grows. This increase is quite dramatic for Copeland’s rule and Max-
iMin. In particular, for only 20 alternatives and both rules, a rough quarter of all
profiles admit manipulation by abstention for a medium count of voters. This num-
ber is too large to discard the NSP as merely a theoretical problem. Black’s rule,
on the other hand, remains stable on a comparatively moderate level. Felsenthal and
Nurmi (2018) argue in favor of Nanson’s rule as it is—in contrast to the related
Baldwin’s rule—not prone to the NSP for three alternatives. We show that this dif-
ference between the two rules becomes moot for larger numbers of alternatives: the
fractions of profiles allowing for a manipulation are on a roughly identical, severely
high level.11 This shows that voting rules based on Borda scores do not necessarily
fare better with respect to the NSP.

When examining Baldwin’s rule in Fig. 4, the ridge at n = 3 immediately catches
the observer’s eye.

We conjecture this unique behavior of Baldwin’s rule is due to preference profiles
similar in structure to the one depicted below. In case voter 3 places sufficiently many
alternatives over x, x is going to be eliminated on the way causing y to eventually be
chosen. Then again, if voter 3 abstains, x is always going to be selected as long as it
beats y in the tie-breaking order. Note that x and y can be chosen almost freely, all
other alternatives placed virtually arbitrarily,

10For Black’s rule, we find that the polynomial would be of period q ≈ 2.7 × 107 corresponding to
a mid two-digit GB file size.
11Felsenthal and Nurmi (2018) also show that none of the two rules fares strictly better than the
other. Indeed, there are profiles where a manipulation is possible according to Baldwin’s rule but
not using Nanson’s rule and vice versa.
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Especially when considering Black’s, Tideman’s, and Copeland’s rule, we see
that the parity of n crucially influences the results. However, the parity of n does
not affect the fractions in a consistent way: higher fractions occur for Black’s and
Copeland’s rule when n is even, in contrast to Tideman’s rule where this happens
when n is odd. For Black’s rule, this is most probably due to the fact that there
are more suitable profiles close to having a Condorcet winner (gxy = 0) than profiles
close to not having one (gxy = 1).12 Copeland score’s are integerswhen the number of
voters is odd and half-integers when the number of voters is even. Hence, differences
between alternatives are potentially more distinct for an odd number of voters which
we assume makes manipulations harder to achieve. For Tideman’s rule, we currently
lack a convincing explanation for the observed behavior, mostly because it is hard to
intuitively grasp when exactly a preference profile is manipulable.

Regarding Baldwin’s and Nanson’s rule as well asMaxiMin, the parity of n seems
to have little effect on the numbers. More detailed analysis shows that at least for
MaxiMin this appearance is deceptive: whenmanipulating towards an alphabetically
preferred alternative, fractions are higher for even n, while the contrary holds for
manipulations towards an alphabetically less preferred alternative. In sum, these two
effects approximately cancel each other out.

The flawless smoothness and regularity of all plots in Fig. 4 are due to 106 runs per
data point. This large number allows for all 95% confidence intervals to be smaller
than 0.2%. Our simulations took 35–48 single-core hours for each data point and
there are 1500 data points per plot.

5.3 Comparing Different Preference Models

In order to get an impression of the frequency of the NSP under different preference
models, we fix the number of alternatives to be m = 4 or m = 30 and sample 106

12For Black’s rule, manipulation is only possible either towards or away from a Condorcet winner
since Borda’s rule is immune to strategic abstention andmanipulation is impossible fromCondorcet
winner to Condorcet winner.
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profiles for increasing n up to 1000 or 200, respectively.13 Fig. 5 gives the fraction
of profiles prone to the NSP.

A close inspection of these graphs allows for multiple conclusions. First, we see
that in particular Black’s rule shows a severe dependency on the parity of n. For better
illustration, we depict two lines per preference model to highlight this effect; which
line stands for odd and which for even n is easiest checked using their corresponding
point of intersection with the x-axis, which is either 1, 2, or 3 throughout. Apart
from explanations given earlier, it is not completely clear why differences are more
prominent for some voting rules, why we sometimes see higher percentages for odd
n and other times for even n, or why for some instances there is a large discrepancy
for one preference model but hardly any for another.

IC and IAC are often criticized for being unrealistic and only giving worst-case
estimates (see, e.g., Tsetlin et al. (2003); Regenwetter et al. (2006)). This criticism
is generally confirmed by our experiments, which show that the highest fractions of
profiles is prone to the NSP when the sampling is done according to IC or IAC. A
notable exception is Black’s rule for 30 alternatives, where a different effect prevails:
for many alternatives and comparably few voters, situations in which a Condorcet
winner (almost) exists appear less frequently under IC or IAC than under the other
preference models. In absence thereof, Black’s rule collapses to Borda’s rule, which
is immune to the NSP. Note that were we to conduct a dual experiment with fixed
n and increasing m, the fraction of profiles prone to the NSP using Black’s rule and
IC or IAC would converge to zero for similar reasons.

We moreover see that IC, IAC, and the urn model exhibit identical behavior for
m = 30. The second and fourth column of Fig. 5 therefore seem to only feature
three preference models, even though all five are depicted. This may be surprising
at first but is to be expected since IC and IAC can equivalently be seen as urn
models with parameters 0 and 1, respectively. For 30! ≈ 2.7 × 1032 voter types and
a comparatively small n the difference between parameters 0, 1, and 10 is simply too
small for a visible difference.

The large conceptual similarities between Baldwin’s and Nanson’s rule are also
reflected in the corresponding charts. Apart from the peak at n = 3 for Baldwin’s
rule, both look almost identical for all preference models with the small difference
being that Nanson’s rule appears to feature a slightly lower manipulability. Fewer
rounds for winner determination thus do not seem to come at a cost with respect to
the NSP.

Finally, Copeland’s, Baldwin’s, and Nanson’s rule as well as MaxiMin to a lesser
extent appear to fare exceptionally bad with respect to the NSP and IC, IAC, and
the urn model. At the same time, none of these rules exhibits overly conspicuous
behavior for the spatial and Mallows’ model. This suggests that the risk of a possi-
ble manipulation is reduced by structural similarities in the individual preferences
compared to a greater likelihood for very diverse rankings. Though generally in line

13For increasing m the computations quickly become very demanding. The values for m = 30 and
n ≥ 99 are determined with 50000 runs each only. The size of all 95% confidence intervals is,
however, still within 0.5%.
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Fig. 5 Profiles prone to the NSP for different rules, fixed m, and increasing n on the x-axis; two
lines per preference model depending on the parity of n; IC, IAC and the urn model collapse for
m = 30, resulting in a bluish grey line
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Table 1 Maximal percentage of total profiles prone to theNSP for different combinations of voting
rules and preference models withm = 4 orm = 30; the number of voters n for which the maximum
occurs attached in parentheses

m IC IAC Spatial Urn Mallows

Black 4 3.92 (29) 3.73 (18) 1.62 (15) 2.30 (10) 3.23 (17)

30 5.12 (22) 5.12 (22) 7.70 (17) 5.14 (20) 9.90 (13)

Baldwin 4 3.92 (27) 3.07 (23) 0.40 (15) 0.84 (12) 2.14 (13)

30 35.4 (49) 35.4 (51) 2.54 (21) 35.7 (49) 5.73 (3)

Nanson 4 3.64 (27) 2.76 (24) 0.44 (13) 0.68 (16) 2.20 (14)

30 34.9 (51) 34.8 (51) 2.38 (21) 34.7 (99) 3.40 (12)

MaxiMin 4 1.00 (30) 0.56 (14) 0.14 (3) 0.13 (3) 0.50 (10)

30 28.0 (30) 28.0 (30) 2.31 (3) 28.0 (30) 3.01 (6)

Tideman 4 0.80 (26) 0.67 (5) 0.19 (5) 0.32 (5) 0.62 (3)

30 15.6 (51) 15.6 (49) 2.42 (7) 15.6 (49) 4.12 (3)

Copeland 4 6.96 (29) 5.54 (20) 0.91 (14) 2.07 (13) 4.13 (16)

30 31.2 (50) 31.0 (50) 4.28 (21) 31.1 (50) 6.33 (16)

with expectations, we currently do not have a profound explanation for the magni-
tude of this effect. For Copeland’s rule, it is plausible to assume that its particularly
bad performance results from using less information, i.e., among all considered rules,
Copeland’s rule is the only onewhose outcome only depends on unweightedmajority
comparisons.

The maximal fraction of total profiles prone to the NSP for m = 4, m = 30,
different voting rules, preference models, and varying values of n is given in Table
1. Among other things, we for instance note that the maxima constantly occur for
a higher number of voters for IC (26–51 voters) than for Mallows’ model (3–17
voters), a fact probably due to an increasing (expected) structure under Mallows’
model and larger n.

5.4 Empirical Analysis

Wehave also analyzed theNSP for empirical data obtained from real-world elections.
Unfortunately, such data is generally relatively sparse and imprecise and often only
fragmentarily available. A check of all 315 strict profiles contained in the PrefLib
library (Mattei and Walsh 2013) for occurrences of the NSP shows that two profiles
admit a manipulation by abstention when Black’s rule is used, one profile for each
Copeland’s, Baldwin’s, and Nanson’s rule, and that no manipulation is possible for
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MaxiMin as well as Tideman’s rule.14 While this suggests a low susceptibility to
the NSP in real-world elections, much more data would be required to allow for
meaningful conclusions.

6 Conclusion

We analyzed the likelihood of the NSP for six Condorcet extensions (Black’s, Bald-
win’s, and Nanson’s rule, MaxiMin, and Tideman’s as well as Copeland’s rule) under
various preference models using Ehrhart theory as well as extensive computer sim-
ulations and some empirical data. Our main results are as follows.

• When there are few alternatives, the probability of the NSP is almost negligible
(when m = 4, less than 1% for MaxiMin and Tideman’s rule, less than 4% for
Black’s, Baldwin’s, and Nanson’s rule, and less than 7% for Copeland’s rule under
all considered preference models).

• When there are 30 alternatives and preferences are modeled using IC, IAC, and
the urn model, Black’s rule is least susceptible to the NSP (<6%), followed by
Tideman’s rule (<16%), MaxiMin (<29%), Copeland’s rule (<32%) Nanson’s
rule (<35%) , and Baldwin’s rule (<36%).

• For 30 alternatives and the spatial and Mallows’ model, this ordering is roughly
reversed. MaxiMin and Nanson’s rule are least susceptible (<4%), followed by
Tideman’s rule (<5%), Baldwin’s rule (<6%), Copeland’s rule (<7%), and
Black’s rule (<10%).

• The parity of the number of voters significantly influences the manipulability of
Black’s, Tideman’s, and Copeland’s rule. Black’s and Copeland’s rule are more
manipulable for an even number of voters whereas MaxiMin is more manipulable
for an odd number of voters (under the IAC assumption).

• Whenever analysis via Ehrhart theory is feasible, the results are perfectly aligned
with our simulation results, highlighting the accuracy of the experimental setup.

• Only four (out of 315) strict preference profiles in the PrefLib database aremanip-
ulable by strategic abstention (manipulations only occur for Black’s, Baldwin’s,
Nanson’s, and Copeland’s rule, but not for MaxiMin and Tideman’s rule).

Acknowledgements Preliminary results of this chapter were presented at the 14th Meeting of
the Society for Social Choice and Welfare (Seoul, June 2018), the 7th International Workshop on
Computational Social Choice (Troy, June 2018), the AAMAS-IJCAI Workshop on Agents and
Incentives in Artificial Intelligence (Stockholm, July 2018), and the 18th International Conference
on Autonomous Agents and Multiagent Systems (Montréal, May 2019).

14For instance the profile allowing for a manipulation under Copeland’s rule is immune to the NSP
for all other rules. It features 10 alternatives and 30 voters. Baldwin’s and Nanson’s rule exhibit the
NSP for the same profile.
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Susceptibility to Manipulation by Sincere
Truncation: The Case of Scoring Rules
and Scoring Runoff Systems

Eric Kamwa and Issofa Moyouwou

1 Introduction

During an election or a referendum, some people may choose not to vote. In case
of a high level of abstention, the legitimacy of the results of an election may be
challenged.Themotivations of an abstainermaybedictatedbyvarious considerations
among which strategic behavior plays a central role. It has been known since Doron
and Kronick (1977) and Fishburn and Brams (1983) that a voter may do better to
abstain than to vote since abstaining may result in the victory of a more preferable
or desirable candidate. This counterintuitive voting event is known in the literature
as the No-Show paradox. Following Nurmi (1999) and Felsenthal (2012), the few
voting rules that are not vulnerable to the No-Show paradox include the Plurality
rule, the Borda rule and Approval voting.1 According to Smith (1973), all the scoring
runoff systems are sensitive to the No-show paradox. With at least four candidates,
Moulin (1988) showed that all the Condorcet consistent rules are also vulnerable to
the No-Show paradox (see also Brandt et al. (2018); Duddy (2013); Jimeno et al.
(2009)).ACondorcet consistent voting rule always elects theCondorcetwinnerwhen

1Under the Plurality rule, every voter casts one vote for only one candidate, and the one with
the greatest number of votes wins. With m ≥ 3 candidates, the Borda rule gives m − j points to
a candidate each time he is ranked j-th in a voter’s ranking; the winner is the candidate with the
largest total number of points. Under Approval voting, each voter can approve as many candidates
as he wants. The winner is the candidate with the greatest number of approvals.
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she exists. A Condorcet winner is a candidate who beats all the others in pairwise
majority contests.

For voting situations with three candidates, Lepelley andMerlin (2001) computed
the likelihood of theNo-showparadox for threewell-known scoring runoff rules; they
concluded that when the electorate tends to infinity, the likelihood2 of the No-show
paradox is equal to 2.14% for the Borda runoff, 5.40% for the Plurality runoff and
4.25% for the Antiplurality runoff.3 For their part, Kamwa et al. (2018) analyzed the
No-show paradox for three-candidate elections with single-peaked preferences and
found: (i) in three-candidate elections with single-peaked preferences, all the scoring
runoff rules located between theBorda runoff and theAntiplurality runoff are not sen-
sitive to the No-show paradox; (ii) single-peakedness of preferences greatly reduces
the likelihood of the No-show paradox which nevertheless remains considerable.

It is perhaps to counter abstention behavior that several states (for instance,
Bolivia, Belgium, Luxembourg, and Romania) have decided to render voting com-
pulsory. Notwithstanding compulsory voting, some voters may still manipulate the
vote by using a weak version of abstention behavior called “sincere truncation”.
The sincere truncation of preferences, also called the truncation paradox, was first
introduced in the social choice literature by Brams (1982). Let us assume a group of
voters who are asked to rank (sincerely) a list of candidates from the most preferred
to the least preferred and that voters are allowed to submit incomplete rankings; all
the candidates not ranked or listed on a ballot are assumed to be less preferred than
all those who are ranked (Fishburn and Brams 1983, 1984). A voting rule is said to
be vulnerable to sincere truncation if there are some configurations of ballots such
that there is at least one voter who prefers the outcome obtained when he submits
a sincere but incomplete ranking (truncated ranking) to the outcome obtained when
he casts a complete sincere ranking.

A voting rule that is vulnerable to the No-Show paradox is also vulnerable to the
truncation paradox, but the reverse is not necessarily true (see Nurmi 1999). Almost
all the well-known voting rules are vulnerable to the truncation paradox. Fishburn
and Brams (1984, p. 402) showed that, as a consequence of Moulin’s theorem, that
all the Condorcet consistent rules are sensitive to the truncation paradox. For a non-
exhaustive list of the voting rules vulnerable to the truncation paradox, the reader
may refer to Felsenthal (2012); Nurmi (1999) and Fishburn and Brams (1984). The
few exceptions are the Plurality rule, Plurality runoff and Approval voting.

Is the truncation paradox a rare oddity or a generalized behavior? To our knowl-
edge, the only work that has tried to evaluate the likelihood of the truncation paradox
is that of Plassmann and Tideman (1999); for three-candidate elections, they focused
on certain voting rules that include, amongst others, someCondorcet consistent rules,
some scoring rules (Borda, Antiplurality) and some iterative scoring rules (iterative
Plurality, iterative Antiplurality). They based their calculations on the spatial model
for drawing voting situations. In this paper, we do the same job for the whole fam-
ily of scoring rules and scoring runoff rules in three-candidate elections both under

2Under the assumption of Impartial and Anonymous Culture (defined later).
3The Plurality runoff, the Borda runoff, and the Antiplurality runoff will be defined later.
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the universal and the single-peaked domains. Thus, we characterize all the para-
doxical voting situations and then compute the exact likelihood of the paradox. We
perform our analysis under the assumption of Impartial Anonymous Culture (IAC),
which is one of the well-known assumptions often used for such a study. Under
IAC, first introduced by Kuga and Hiroaki (1974) and later developed by Gehrlein
and Fishburn (1976), each voting situation is assumed to be equally likely to occur.
The likelihood of a given event is calculated with respect to the ratio between the
number of voting situations in which the event is likely and the total number of
possible voting situations. The number of voting situations associated with a given
event can be reduced to the solutions of a finite system of linear constraints with (or
without) rational coefficients. As recently pointed out in the social choice literature,
when one is dealing with rational coefficients, the appropriate mathematical tools to
find these solutions are Ehrhart polynomials. The background to this notion and its
connection with the polytope theory can be found in (Gehrlein and Lepelley 2011,
2017; Lepelley et al. 2008). This technique has beenwidely used in numerous studies
analyzing the probability of electoral events in the case of three-candidate elections
under the IAC assumption. In this chapter, we will follow the technique initiated by
Cervone et al. (2005) for our computations. We say few words on this technique in
the appendices.

The rest of the chapter is organized as follows: Sect. 2 is devoted to basic defini-
tions. In Sect. 3, given a three-candidate election where voters have strict rankings,
for all the one-shot and runoff scoring rules, we characterize all the voting situations
vulnerable to the truncation paradox and then we compute the limiting probabilities.
We do the same job in Sect. 4 by assuming that voters’ preferences are single-peaked.
Section 5 concludes.

2 Notation and Definitions

2.1 Preferences

Let N be a set of n voters (n ≥ 2) and A a set of m candidates (m ≥ 3). Individual
preferences are linear orders, these are complete, asymmetric and transitive binary
relations on A. Withm candidates, there are exactlym! linear orders P1, P2, . . . ,Pm!
on A. A voting situation is an m!-tuple π = (n1, n2, . . . , nt, . . . , nm!) that indicates
the total number nt of voters casting each complete linear order Pt, t = 1, 2, . . . ,m!
in such a way that

∑m!
t=1 nt = n. In the sequel, we consider three candidates a, b and

c. In this case, we will simply write abc to denote the linear order on A according
to which a is strictly preferred to b, b is strictly preferred to c; and by transitivity a
is strictly preferred to c. Table 1 describes a voting situation with three candidates:
there are six preference types and for t = 1, 2, . . . , 6, nt is the total number of voters
of type t.
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Table 1 Voting situation and possible preference types with three candidates

Type 1: abc (n1) Type 3: bac (n3) Type 5: cab (n5)

Type 2: acb (n2) Type 4: bca (n4) Type 6: cba (n6)

Given a, b ∈ A and a voting situation π , we denote by nab(π) (simply nab) the
total number of voters who strictly prefer a to b. If nab > nba, we say that a majority
dominates candidate b; or equivalently, a beats b in a pairwise majority voting. In
such a case, we will simply write aM (π)b.

Possible actions of a voter include (i) ranking all candidates from the top-ranked
candidate to the least preferred one; (ii) abstaining: no ranking is provided; or (iii)
truncating: an incomplete ranking is provided. With the last action, it is assumed
that all the candidates not ranked on a ballot are less preferred to all those who are
ranked.With three candidates,when a voter truncates, he just states hismost preferred
candidate. For example with Table 1, if some voters of type 1 truncate, this leads to a
new voting situation π ′ in which these voters only state a − − as their ranking. Note
that when some voters truncate, this does not alter the size of the electorate as is the
case when some voters abstain.

2.2 Voting Rules

Scoring rules are voting systems that give points to candidates according to the
position they have in voters’ rankings. For a given scoring rule, the total number
of points received by a candidate defines her score for this rule. The winner is the
candidate with the highest score. In general, withm ≥ 3 and complete strict rankings,
a scoring vector is an m-tuple w = (w1,w2, . . . ,wk , . . . ,wm) of real numbers such
thatw1 ≥ w2 ≥ · · · ≥ wk ≥ · · · ≥ wm andw1 > wm. Given a voting situationπ , each
candidate receives wk each time she is ranked kth by a voter. The score of a candidate
x ∈ A is the sum S(π,w, x) = ∑m!

t=1 ntwr(t,x) where r(t, x) is the rank of candidate x
according to voters of type t.

For uniqueness, we use the normalized form (1, w2−wm
w1−wm

, . . . , wk−wm
w1−wm

, . . . , 0) of each
scoring vector w. With three candidates, a normalized scoring vector has the shape
wλ = (1,λ, 0) with 0 ≤ λ ≤ 1. For λ = 0, we obtain the Plurality rule; for λ = 1,
we have the Antiplurality rule and for λ = 1

2 , we get the Borda rule. From now
on, we will denote by S(π,λ, x), the score of candidate x when the scoring vector is
wλ = (1,λ, 0) and the voting situation is π . Table 2 gives the score of each candidate
in A = {a, b, c} given the voting situation of Table 1.

Table 2 Scores with three
candidates

S(π,λ, a) = n1 + n2 + λ(n3 + n5)

S(π,λ, b) = n3 + n4 + λ(n1 + n6)

S(π,λ, c) = n5 + n6 + λ(n2 + n4)
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In one-shot voting, the winner is just the candidate with the largest score. Runoff
systems involve two rounds of voting: at the first round, the candidate with the
smallest score is eliminated; at the second round, a majority contest determines who
is the winner.

With three candidates, when a voter of type 1 with the ranking abc truncates and
submits a − −, candidate a receives 1 point in the new voting situation while both
b and c receive zero points. Similar considerations hold for other types. Note that
when some voters truncate, only the scores of candidates ranked second by some of
these voters are affected and diminish. Moreover, truncation is only possible at the
first round under runoff systems.

In our setting, we assume that ties among candidates will be broken alphabetically,
e.g. a wins all ties against other candidates; while b wins all ties against c. Note that
this special tie-breaking rule does not affect our results as we only deal with voting
situations where the total number of voters tends to infinity. Let us now use an
example in order to illustrate the truncation paradox for the voting rules we focus
on.

2.3 Illustrating the Truncation Paradox

As stated above, among the scoring and the scoring runoff rules we focus on, only the
Plurality rule and the Plurality runoff are not vulnerable to the truncation paradox.
So, in our analysis of three-candidate elections, we will focus on λ ∈ ]0 1].

Now consider the following sincere voting situation π with three candidates and
45 voters:

11 : abc 4 : acb 7 : bac 8 : bca 10 : cab 5 : cba

According to Table 2, the scores are as follows:

S(π,λ, a) = 15 + 17λ; S(π,λ, b) = 15 + 16λ; S(π,λ, c) = 15 + 12λ

It comes out that for all λ ∈ ]0 1], we get S(π,λ, a) > S(π,λ, b) > S(π,λ, c).

• The case of one-shot scoring rules.

As S(π,λ, a) > S(π,λ, b) > S(π,λ, c) for all λ ∈ ]0 1], candidate a is the winner.
Assume that two voters with bac (type 3) truncate. Then, the new scores are:

S(π ′,λ, a) = 15 + 15λ; S(π ′,λ, b) = 15 + 16λ; S(π ′, λ, c) = S(π,λ, c) = 15 + 12λ

Candidate a is no longer the winner since S(π ′,λ, b) > S(π ′,λ, a) > S(π ′,λ, c);
the new winner is candidate b. Since the two voters of type 3 benefit from the
truncation, the truncation paradox can occur for all λ ∈ ]0 1].
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• The case of runoff scoring rules.

Given that S(π,λ, a) > S(π,λ, b) > S(π,λ, c), candidate c is eliminated in the first
round. At the second round, candidate a wins with nab = 25 favorable votes against
nba = 20 votes in favor of b.

Assume that all the 5 voters with cba (type 6) truncate: they just state c − −. In
this case, the new scores are:

S(π ′,λ, a) = 15 + 17λ; S(π ′,λ, b) = 15 + 11λ; S(π ′,λ, c) = 15 + 12λ

For allλ ∈ ]0 1], we get S(π ′,λ, a) > S(π ′,λ, c) > S(π ′,λ, b): candidate b is elim-
inated in the first round. Since nac = 22 and nca = 23, c wins the second round. So,
by truncating their true preferences, the five voters of type 6 obtain a better outcome:
the truncation paradox occurs.

3 The Vulnerability of Scoring Runoff Rules
to the Truncation Paradox in Three-Candidate Elections

Prior to the determination of the likelihood of the truncation paradox, we need to
characterize all the voting situations under which this paradox is liable to occur.

3.1 The Case of One-Shot Scoring Rules

Consider a voting situation π = (n1, n2, n3, n4, n5, n6) on A = {a, b, c} and the one-
shot rule with 0 < λ ≤ 1. Let π

([
Rj1 ,Rj2 , . . .

])
stands for the voting situation

obtained from π when all type Rj1 ,Rj2 , . . . voters truncate their preferences. For
example, π [abc] differs from π only in the fact that at π [abc], candidate a receives
1 point from each type 1 voter while the two others receive 0 points. Similarly, from
π to π [abc, acb] the only change that occurs is that all type 1 voters and all type
2 voters now truncate their preferences to report a . . .. For one-shot scoring rules,
the following result identifies all voting situations in which the truncation paradox
is possible.

Proposition 1 Consider a voting situationπ = (n1, n2, n3, n4, n5, n6) on A = {a, b,
c}, the one-shot rule associated with 0 < λ ≤ 1 and a pair {x, y} of candidates with
A \ {x, y} = {z}.

If x is the election winner at π , then the truncation paradox is liable to occur at
π in favor of y if and only if y is the election winner at π

([
yxz, yzx

])
.

Proof See Appendix A. �
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Remark 1 Given a voting situation with three candidates, only voters having the
same top-ranked candidate can effectively benefit from truncating preferences by
truly reporting their best candidate. For example, if a is the winning outcome, it
appears from Proposition 1 that truncating preferences may benefit either voters of
type 3 and type 4 with bac and bca respectively; or else voters of type 5 and type 6
with the orderings cab and cba respectively. This is in contrast with other strategic
misrepresentations of preferences which allow successful coordination among voters
who may report a fake ranking with possibly a false best candidate—see Lepelley
and Mbih (1996); Pritchard and Wilson (2007) or Mbih et al. (1996).

Proposition 2 Consider a one-shot scoring rule Fλ, 0 < λ ≤ 1. As the total number
n of voters tends to infinity, the limit probability of observing a voting situation in
which the truncation paradox may occur is given by:

If 0 < λ ≤ 1
2 ,

PTP (Fλ) =

⎛

⎝
10λ14 − 37λ13 − 179λ12 + 1310λ11 − 1778λ10 − 6319λ9

+26773λ8 − 25735λ7 − 67880λ6 + 259941λ5 − 408078λ4

+356643λ3 − 166536λ2 + 31833λ

⎞

⎠

6 (3 + λ)2
(
3 − 2λ + λ2

)2
(λ − 2)2 (2λ − 3)2 (λ − 1) (−3 + 5λ)

If 1
2 ≤ λ ≤ 1,

PTP (Fλ) =

⎛

⎝
2λ13 + 50λ12 − 194λ11 − 190λ10 + 2548λ9 − 5560λ8

−662λ7 + 26915λ6 − 62174λ5 + 73636λ4 − 48132λ3

+16425λ2 − 3564λ + 324

⎞

⎠

12 (3 + λ)2
(
3 − 2λ + λ2

)2
(λ − 2)2 λ2 (2λ − 3)

Proof See Appendix B for details of computations. �

As the total number n of voters tends to infinity, it appears from Proposition 2 that
the limit probability, under the IAC assumption, of observing a voting situation in
which the truncation paradox may occur given a one-shot scoring rule Fλ increases
from 0 to 3

4 as the weight λ increases from 0 (the Plurality rule) to 1 (the Antiplurality
rule); for an overview of the behavior of PTP (Fλ), see Fig. 1 or Table 3 where we
report some numerical evaluations.

3.2 The Case of Scoring Runoff Rules

Consider the voting situation π = (n1, n2, n3, n4, n5, n6) and a runoff rule with 0 <

λ ≤ 1. Assume that at π , z is eliminated at the first round and that x wins against y at
the second round. For simplicity, we say that x is the winner, y is the challenger and
z is the (first-round) loser. To see how the truncation paradox arises under a runoff
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Fig. 1 Vulnerability of scoring rules to the truncation paradox

Table 3 Values of PTP(Fλ) and PTP(F ′
λ)

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PTP (Fλ) − 0.06334 0.1322 0.2067 0.2866 0.3710 0.4575 0.5423 0.6215 0.6916 0.7500

PTP(F ′
λ) − 0.0499 0.1032 0.1593 0.2172 0.2750 0.3300 0.3806 0.4257 0.4652 0.5000

rule, recall that this paradox can be seen as a strategic behavior by some voters.
Taking into account the specificity of runoff rules that combine both counting points
at the first round and majority voting at the second round, successful truncations of
preferences are either (i) in favor of the challenger when, by truncating their rankings,
some voters make x lose at the first round and cause the loser to be beaten by the
challenger at the second round; or (ii) in favor of the loser who defeats the winner
or the challenger in the second round.

Proposition 3 Consider a voting situation π = (n1, n2, n3, n4, n5, n6) on
A = {a, b, c} and a runoff rule with 0 < λ ≤ 1. Assume that x is the winner, y is
the challenger and z is the first-round loser.

1. The truncation paradox is liable to occur at π in favor of y if and only if y wins
the majority duel against z and x is the first-round loser at π

([
yxz

])
.

2. The truncation paradox is liable to occur at π in favor of z if and only if z wins
the majority duel against y and x is the first-round loser at π

([
zxy

])
; or if z wins

the majority duel against x and y is the first-round loser at π
([
zyx

])
.

Proof See Appendix C. �

In contrast with one-shot scoring rules, when the truncation paradox occurs under
a runoff rule with three candidates, it is always reachable by a coalition of voters
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of the same type. Proposition 3 completely describes all the possible scenarios that
support possible occurrence of the truncation paradox given a voting situation. These
conditions lead us to some sets of linear constraints that characterize all possible
occurrences of the truncation paradox under a runoff rule. Details are available in
Appendix D. Computing the volume of all the corresponding polytopes leads to
Proposition 4.

Proposition 4 Consider the scoring runoff rule F ′
λ associated with the scoring vec-

tor wλ = (1,λ, 0) with 0 < λ ≤ 1. As the total number n of voters tends to infinity,
the limit probability PTP

(
F ′

λ

)
of observing a voting situation in which the truncation

paradox may occur is given by : If 0 ≤ λ ≤ 1
2 ,

PTP
(
F ′

λ

) = −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

996 096λ20 − 25 010 368λ19 + 286 101 152λ18 − 2000 804 220λ17

+9664 972 152λ16 − 34 453 144 125λ15 + 94 322 255 778λ14

−203 353 434 975λ13 + 350 716 379 871λ12 − 488 312 722 095λ11

+551 142 449 552λ10 − 504 159 008 281λ9 + 372 136 194 567λ8

−219 653 377 992λ7 + 102 140 474 607λ6 − 36 558 733 185λ5

+9711 109 602λ4 − 1801 641 852λ3 + 208 222 083λ2 − 11 278 359λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

96 (λ − 1)2 (λ − 2)2 (2λ − 3)2 (4λ − 3)2 (5λ − 3)2
(−2λ + λ2 + 3

) (−5λ + λ2 + 3
)2 (−4λ + 2λ2 + 3

) (−7λ + 3λ2 + 3
)

If 1
2 ≤ λ ≤ 1,

PTP
(
F ′

λ

) =

⎛

⎝
132λ + 9346λ2 − 55 961λ3 + 161 587λ4 − 283 660λ5

+330 502λ6 − 265 921λ7 + 149 437λ8 − 57 766λ9

+14 560λ10 − 2112λ11 + 128λ12 − 180

⎞

⎠

288λ3 (λ − 2)2 (3 − 2λ)
(−2λ + λ2 + 3

) (−4λ + 2λ2 + 3
)

Proof See Appendix D for further details on the computation. �

The limit, as the total number n of voters tends to infinity, and under the IAC
assumption, of the probability of observing a voting situation in which the truncation
paradox may occur given the runoff scoring rule F ′

λ increases from 0 to 0.5 as the
weight λ increases from 0 (the Plurality runoff rule) to 1 (the Antiplurality runoff
rule). Moreover, each one-shot scoring rule is more vulnerable to the truncation
paradox than its corresponding runoff version. For an overview of the behavior of
PTP

(
F ′

λ

)
, see Fig. 1 or Table 3 where some numerical evaluations are reported.

Finally, while the Plurality rule is not vulnerable to the truncation paradox as a one-
shot rule or a runoff rule, the Antiplurality rule appears to be the most vulnerable
rule among both the one-shot and runoff scoring rules with three candidates.

An analysis of the vulnerability of runoff scoring rules to profitable abstention in
three-candidate elections is available from Lepelley and Merlin (2001) for the main
scoring runoff rules, and from Kamwa et al. (2018) for the whole family of scoring
runoff rules. In Table 4, we report the limiting probabilities of the no-show paradox
obtained by Lepelley andMerlin (2001) for the universal and by Kamwa et al. (2018)
for the single-peaked domain.
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Table 4 Limiting probabilities of the no-show paradox under the universal and the single-peaked
domains for scoring runoff rules

λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Universal 0.0408 0.0382 0.0351 0.0313 0.0272 0.0243 0.0263 0.0299 0.0341 0.0383 0.0425

Single-peaked 0.0278 0.0208 0.0136 0.0067 0.0016 0 0 0 0 0 0

Comparing the probabilities by Lepelley and Merlin (2001) and Kamwa et al.
(2018) on the No-show paradox with those we obtain on the truncation paradox, it
emerges that the truncation paradox is always more likely to occur than the No-show
paradox for all 0 < λ ≤ 1. This is consistent with the fact that the truncation paradox
is a weak version of the No-show paradox.

4 The Impact of Single-Peaked Preferences

Kamwa et al. (2018) showed that when preferences are single-peaked in three-
candidate elections, the No-show paradox never occurs with all the scoring runoff
rules located between the Borda runoff and the Antiplurality runoff, i.e., for all
λ ∈ [ 12 1]. It emerges from their probability computations that the likelihood of
the No-show paradox is drastically reduced with single-peaked preferences. In this
section, we also want to check what happens with the truncation paradox when
preferences are single-peaked.

With three candidates, when preferences are single-peaked, there is one candidate
that is not bottom-ranked. On A = {a, b, c}, we assume without loss of generality
that candidate c is never bottom-ranked. Table 5 describes a voting situation with
three candidates and single-peaked preferences.

In the sequel, we assume that only the four preference types in Table 5 are observ-
able. Note that when candidate a wins in a voting situation, only voters of type 4 and
6 who strictly prefer b to a may truncate their rankings in order to favor the election

Table 5 Single-peaked preferences and scores on A = {a, b, c}
Preference types

n2 : acb n4 : bca
n5 : cab n6 : cba
Scores at the first round

S(π,λ, a) = n2 + λn5
S(π,λ, b) = n4 + λn6
S(π,λ, c) = n5 + n6 + λ(n2 + n4)
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of b. Since candidate a is bottom-ranked by all those voters, there is no way left to
favor candidate b by preference truncation. Similarly, when candidate b wins under
a one-shot scoring rule, there is no opportunity to favor candidate a by preference
truncation. The conditions of Proposition 1 for one-shot scoring rules still apply for
viable sincere truncation of preference when preferences are single-peaked, except
for the restriction just outlined and reported in Proposition 5.

Proposition 5 Consider a voting situation on A = {a, b, c}with single-peaked pref-
erences such that candidate c is never bottom-ranked in the individual preferences.
Assume that the voting rule is a one-shot scoring rule.

• When candidate a (or candidate b) is the election winner in π for λ ∈ ]0 1[, then
the truncation paradox is liable to occur only in favor of c.

• When candidate c is the election winner in π for λ ∈ ]0 1], it is possible to favor
a candidate in A \ {c} by sincere truncation of preferences.

Proof See Appendix E. �

In the same way, the conditions of Proposition 3 also identify all the scenar-
ios in which a runoff rule is vulnerable to the truncation paradox when individual
preferences are single-peaked except for the restriction provided in Proposition 6.

Proposition 6 Consider a voting situation on A = {a, b, c}with single-peaked pref-
erences such that candidate c is never bottom-ranked in individual preferences.

(i) Assume that candidate c is eliminated after the first run. In this case, the trunca-
tion paradox can occur only in favor of candidate c; and only for all the scoring
runoff rules associated with λ ∈ ]0, 1

2 [.
(ii) Assume that candidate a or b wins the second run versus candidate c. The

truncation paradox never occurs for all the scoring runoff rules with λ ∈ ]0, 1].
(iii) Assume that candidate cwins the second run versus candidate a or b. The trunca-

tion paradox can occur for all the scoring runoff rules such that
λ ∈ ]0, 1[.

Proof See Appendix F. �

What emerges from Proposition 6 is that single-peaked preferences do not vitiate
the truncation paradox in the same manner as they do with the No-show paradox;
as with the No-show paradox, they totally obviate the truncation paradox for voting
situations under which the never-bottom-ranked candidate loses at the second stage.
For three-candidate elections with single-peaked preferences, Table 6 gives all the
scoring runoff rules vulnerable to the truncation paradox and to the No-show paradox
for all the possible configurations: (i) a wins the second stage versus b; (ii) a or b
wins the second stage versus c; and (iii) c wins the second stage versus a or b. The
reader can then see from Table 6 that the impact of single-peaked preferences on the
truncation paradox is not the same as on the Abstention paradox although the first
paradox is the weaker version of the second.
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Table 6 Vulnerable scoring runoff rules with three candidates and single-peaked preferences

Second-round
opponents

a versus b a or b wins versus c c wins versus a or b

Abstention∗ λ ∈ [0 1
2 [ – λ ∈ ]0 1

2 [
Truncation λ ∈ ]0 1

2 [ – λ ∈ ]0 1[
∗From Kamwa et al. (2018)

Fig. 2 Single-peakedness: vulnerability of one-shot rules to the truncation paradox

Further aspects of the behavior of one-shot scoring rules are perhaps more inter-
esting. Note that in the general case, the probability that a one-shot scoring rule
exhibits the truncation paradox, given that the winner is a given candidate, is the
same from one candidate to another. But when preferences are single-peaked, results
from computations provided for the next proposition and sketched in Fig. 2 show that
a one-shot scoring rule is more vulnerable to the truncation paradox when the centrist
candidate c is elected than when the leftist candidate a or the rightist candidate b is
elected.

In the next propositions, we report global probabilities we obtained by performing
the probability computation over all the possible scenarios for the truncation paradox
on the single-peaked domain.As expected, these probabilities are lower than thosewe
observe on the universal domain. However, these probabilities remain significantly
high.

Proposition 7 Consider the one-shot rule associated with the scoring vector wλ =
(1,λ, 0) with 0 < λ ≤ 1 . As the total number n of voters tends to infinity, the limit
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probability PTP (Fλ, SP) of observing a voting situation in which the truncation
paradox may occur is as follows:

If 0 ≤ λ ≤ 1

2
,PTP (Fλ, SP) = λ

(−94λ5 − 441λ4 − 30λ7 + 108λ6 + 1602λ3 − 2456λ2 + 1812λ − 513 + 4λ8
)

9 (2λ − 3) (λ − 1)2 (−2 + λ)2
(
3 + λ2 − 2λ

)
(λ + 3)

If
1

2
≤ λ ≤ 1,PTP (Fλ, SP) = −65λ2 − 6λ4 + 38λ3 + 43λ − 4λ5 + 2λ6 − 4

(λ − 2)2 (λ + 3)
(
λ2 − 2λ + 3

)

Proposition 8 Consider the runoff rule associated with the scoring vector wλ =
(1,λ, 0) with 0 < λ ≤ 1. As the total number n of voters tends to infinity, the limit
probability PTP

(
F ′

λ, SP
)
of observing a voting situation in which the truncation

paradox may occur is as follows:

If0 ≤ λ ≤ 1

2
,PTP

(
F ′

λ, SP
) = λ

(−110λ6 + 322λ5 − 64λ7 + 4374λ2 + 365λ4 + 22λ8 + 657 − 2684λ3 − 2850λ
)

24 (2 − λ) (−3 + λ) (−3 + 2λ) (λ − 1)2
(
3 + λ2 − 2λ

)
(λ + 3)

If
1

2
≤ λ ≤ 1,PTP

(
F ′

λ, SP
) = (λ − 1)2

(−λ3 + 2λ2 + 7λ − 15 + λ4
)

4 (2 − λ)
(
λ2 − 2λ + 3

)
(−3 + 2λ) (λ + 3)

The vulnerabilities to the truncation paradox reported in Propositions 7 and 8 are
computed using very similar arguments to the proofs of Proposition 3 and Proposition
4 respectively. One simply needs to consider the possible scenarios described in
Propositions 5 and 6; the details are omitted.

Table 7 reports the figures we get from Propositions 7 and 8.
With runoff scoring rules the effect of single-peaked preferences is indeed remark-

able: it reduces the probability of truncation to less than0.035 for all the runoff scoring
rules. Moreover, when the centrist candidate c is the winner, the probability that a
runoff scoring rule is very low and even null when the weight λ lies between 0.5 and
1. What is also surprising is that the runoff version of the Antiplurality rule is now
immune to the truncation paradox. To see this, note that when λ = 1 and candidate c
is ranked last by no voter, candidate is always qualified for the second round whether
preferences are truncated by voters of type 2 (or type 4) or not. Figure 3 shows how
single-peakedness imposes a downwards curve on the vulnerability of runoff scoring
rules to the truncation paradox.

Figure 4 is a comparative visualization of the vulnerability of both one-shot scor-
ing rules and runoff scoring rules to the truncation paradox when preferences are
single-peaked. It obviously highlights the fact that each one-shot scoring rule is
still more vulnerable to the truncation paradox than its runoff version, even with
single-peaked preferences.

Table 7 Values of PTP (Fλ, SP) and PTP(F ′
λ, SP)

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PTP (Fλ, SP) − 0.0553 0.1155 0.1801 0.2472 0.3122 0.3683 0.4137 0.4489 0.4762 0.5000

PTP(F ′
λ, SP) 0 0.0158 0.0284 0.0357 0.0361 0.0293 0.0207 0.0129 0.0063 0.0017 0
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Fig. 3 Single-peakedness: vulnerability of runoff rules to the truncation paradox

Fig. 4 Single-peakedness: vulnerability of one-shot rules and runoff rules to the truncation paradox
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5 Concluding Remarks

Since Fishburn and Brams (1984), we have known that almost all the well-known
voting rules are vulnerable to the truncation paradox except the Plurality rule, Plu-
rality runoff, and Approval voting. In this paper, we have characterized all the three-
candidate voting situations under which the truncation paradox can occur for scor-
ing rules and scoring runoff rules under both the universal and the single-peaked
domains. Then we computed the limiting probability of the truncation paradox. By
comparing our results to those obtained by Lepelley and Merlin (2001) and Kamwa
et al. (2018) concerning the likelihood of the Abstention paradox, we concluded that
the Abstention paradox is less likely to occur than the truncation paradox. Hence,
making voting compulsory in order to counter the paradoxical outcomes caused by
abstention behavior seems not to be a good choice at all.

With single-peaked preferences, we found that the occurrence of the truncation
paradox depends on the configuration of the second run: if the never-bottom-ranked
candidate loses the second run versus one of the other candidates, the truncation
paradox never occurs; if this candidate is rushed out at the first stage, the truncation
paradox never occurs with all the scoring runoff rules located between the Borda
runoff and the Antiplurality runoff.

Acknowledgements The authors are grateful to two anonymous reviewers for their helpful remarks
and comments.

Appendices

A. Proof of Proposition

Consider a voting situation π = (n1, n2, n3, n4, n5, n6) on A = {a, b, c}, the one-
shot rule associated with 0 < λ ≤ 1 and a pair {x, y} of candidates. Let z be the third
candidate.

Necessity. Assume that x is the election winner at π , and that the truncation
paradox is liable to occur in π in favor of y. Then by truncating their true preferences,
a coalition of voters, say S , favors the election of y. Moreover each voter in S
strictly prefers y to x. Since the truncation operation only affects the second-ranked
candidates of each voter in S, then the preferences of each voter in S is yxz or yzx. At
the new voting situation π ′, y wins. Without loss of generality, we denote by nxyz(π)

the total number of voters in π who rank x first, y second and z last at π . Note that
|S| ≤ nyxz(π) + nyzx(π). Then from π ′ to π

([
yxz

])
, the score of y increases, the

scores of both x and z decrease. Hence y also wins in π
([
yxz, yzx

])
.

Sufficiency.Assume that x is the electionwinner atπ while ywins inπ
([
yxz, yzx

])
.

Clearly, the truncation paradox is liable to occur in π in favor of y since all voters
who truncate their preferences in π

([
yxz, yzx

])
prefers y to x.
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B. Computation Details for Proposition

Let Tx denote the set of all voting situations in which x is the election winner while
the truncation paradox is liable to occur; and Txy the subset of Tx that consists of all
voting situations in which truncating preferences may favor the election of y. Note
for example that

Ta = Tab ∪ Tac and |Ta| = |Tab| + |Tac| − |Tab ∩ Tac| .

By Proposition 1, π ∈ Tab if and only if S(π,λ, a) ≥ S(π,λ, b), S(π,λ, a) ≥
S(π,λ, c), S(π [bac, bca] ,λ, b) > S(π [bac, bca] ,λ, a) and S(π [bac, bca] ,λ, b)
≥ S(π [bac, bca] ,λ, c). Equivalently,

π ∈ Tab ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

(λ − 1)n1 − n2 + (1 − λ)n3 + n4 − λn5 + λn6 ≤ 0
−n1 + (λ − 1)n2 − λn3 + λn4 + (1 − λ)n5 + n6 ≤ 0
(1 − λ)n1 + n2 − n3 − n4 + λn5 − λn6 < 0
−λn1 + λn2 − n3 − n4 + n5 + (1 − λ) n6 ≤ 0

Clearly, each of the six possible sets Txy with x, y ∈ A can be similarly described
by a set of four linear constraints as with Tab above. As n tends to infinity, vol

(
Pxy

)
is

the 5-dimensional volume of the polytope Pxy obtained from the characterization of
Txy by replacing each nj by pj = nj

n . Note that some inequalities in the characterization
of Pxy may be strict. We simply ignore this while evaluating vol

(
Pxy

)
by considering

the closure of Pxy obtained from the characterization of Pxy by turning each strict
inequality (<) to its larger form (≤); by doing so, we simply move from Pxy to its
closure without changing the volume. Taking into account that Ta, Tb and Tc are
disjoint sets of voting situations, and since by symmetries, all the six possible Txy
generates polytopes of equal volume, the limit probability P (Fλ,TP, IAC) under
the IAC assumption, of observing a voting situation in which the truncation paradox
may occur is

PTP(F) = vol(Pa) + vol(Pb) + vol(Pc)

vol(P)
= 720vol (Pab) − 360vol (Pab ∩ Pac)

where P is the simplex P = {(p1, p2, . . . , p6) : ∑6
t=1 pj = 1 with pj ≥ 0, j = 1, 2,

. . . , 6}. Given 0 < λ ≤ 1, computing vol (Pab) and vol (Pab ∩ Pac), one obtains the
result of Proposition 1. All volume computations performed in this paper use the
same technique as in Cervone et al. (2005).4 Roughly, one needs for example to
determine all vertices of the given polytope and then triangulate the set of those ver-
tices into simplices. More details are presented in Moyouwou and Tchantcho (2015)
and Gehrlein and Lepelley (2011); further illustrations are available in Gehrlein et

4This technique has recently been used in many research papers, such as Diss and Gehrlein (2015;
2012), Gehrlein et al. (2015), Moyouwou and Tchantcho (2015), Kamwa and Valognes (2017),
Kamwa et al. (2018) and Kamwa (2019) among others.
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al. (2015) or more recently in Lepelley et al. (2018). A Maple procedure is also
available from authors upon request. Of course, there is an abundant literature on
volume computations with very efficient algorithms and packages such as Büeler
et al. (2000) and Lawrence (1991) for Maple users or Bruns and Ichim (2010) and
Bruns et al. (2018, 2019).

C. Proof of Proposition

Consider a voting situationπ = (n1, n2, n3, n4, n5, n6)onA = {a, b, c} and the runoff
rule associated with 0 < λ ≤ 1. Assume that x is the winner, y is the challenger and
z is the first-round loser.

1. Necessity. First assume that the truncation paradox is liable to occur at π in
favor of y. Then by truncating their true preferences, a coalition of voters, say S,
diminishes the score of x in such a way that x is now ruled out in the first round
and y wins against z at the second round. Each voter in S strictly prefers y to x.
The truncation operation by such a voter is only intended to diminish the score
of x in the first round. Thus the preferences of each voter in S is yxz. In the new
voting situation π ′, y wins. Since from π ′ to π

([
yxz

])
, the score of y does not

decrease, the score of x does not increase, the score of z is unchanged and the
second round duel is not affected by the truncation operation, then y also wins
in π

([
yxz

])
against z in the second round. Sufficiency. Assume that y wins the

majority duel against z and x is the first-round loser at π
([
yxz

])
. Then under

the corresponding runoff rule, y wins in π
([
yxz

])
against z at the second round.

Hence, the truncation paradox occurs.
2. Necessity.Assume that the truncation paradox is liable to occur at π in favor of z.

By truncating their true preferences, members of some coalition, say S, favor the
election of z whom they strictly prefer to x. In the new voting situation π ′, z wins
the majority duel against x or against y. First suppose that z wins in π ′ against x
at the second round. Then y is the first-round loser at π ′. Moreover, voters in S
all strictly prefer z to x; and the truncation operation is intended, at the first round
in π ′, to diminish the score of y. Thus the preference of each voter in S is zyx.
Hence |S| ≤ nzyx(π). Therefore, in π

([
zyx

])
, z also wins against x and y is the

first round loser. Finally, suppose that z wins in π ′ against y at the second round.
Then x is the first-round loser at π ′. Voters in S all strictly prefer z to y; and the
truncation operation is intended, at the first round in π ′, to diminish the score of
x. The preference of each voter in S is then zxy. This implies that |S| ≤ nzxy(π). In
π

([
zyx

])
, z also wins against y and x is the first-round loser. Sufficiency. Assume

that z wins the majority duel against y and x is the first-round loser in π
([
zxy

])
.

Then under the corresponding runoff rule, z wins in π
([
zxy

])
against y at the

second round. In the same way, suppose that z wins the majority duel against x
and y is the first-round loser in π

([
zyx

])
. Then under the corresponding runoff

rule, zwins inπ
([
zyx

])
against x at the second round. In both cases, the truncation

paradox occurs.
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D. Computations Details for Proposition

Given 0 < λ ≤ 1, letRxy denote the set of all voting situations inwhich the truncation
paradox is liable to occur in favor of some candidate u under the runoff rule associated
with theweightλwhile x and y are respectively the electionwinner and the challenger.
Let z be the first-round loser in each voting situation in Rxy. Denote by Rxyy the subset
of Rxy that consists of all voting situations in which truncating preferences may favor
the election of y; by Rxyz the subset of Rxy that consists of all voting situations in
which truncating preferences may favor the election of z against x at the second
round; and by R′

xyz the subset of Rxy that consists of all voting situations at which
truncating preferences may favor the election of z against y at the second round. Then
by Proposition 3

Rab = Rabb ∪ Rabc ∪ R′
abc.

Note that Rabb and Rabc are disjoint sets of voting situations since y wins the
majority duel against z in each voting situation in Rabb while the converse holds in
each voting situation in Rabc. Therefore

|Rab| = |Rabb| + |Rabc| + ∣
∣R′

abc

∣
∣ − ∣

∣Rabb ∩ R′
abc

∣
∣ − ∣

∣Rabc ∩ R′
abc

∣
∣ .

Note that by Proposition 3, Rabb, Rabc and R′
abc are each defined by some set

of linear constraints. Therefore the probability that the corresponding runoff rule
exhibits the truncation paradox is derived by computing the volume of the polytopes
Pabb, Pabc and P′

abc associated to Rabb, Rabc and R′
abc respectively. More precisely, by

considering the six possible sets Rxy for all two ordered pairs (x, y) from {a, b, c}
and taking into account possible symmetries, the limit probability P (Fλ,TP, IAC),
under the IAC assumption, of observing a voting situation with three candidates in
which the truncation paradox may occur is

PTP(F ′) = 720

[

vol (Pabb) + vol (Pabc) + vol
(
P′
abc

) − vol
(
Pabb ∩ P′

abc
) − vol

(
Pabc ∩ P′

abc
)
]

E. Proof of Proposition

Assume that preferences are single-peaked in such a way that candidate c is bottom-
ranked by no voters. When candidate a is elected, voters who prefer b to a are
of type 4 or type 6. But these voters do not affect the score of candidate a by a
sincere truncation of their preferences. Thus candidate b cannot be elected by sincere
truncation of preferences. Similarly, when candidate b is elected, there is no way for
voters who strictly prefer a to b to favor the election of a by simply truncating their
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rankings. Therefore, the truncation paradox may only occur in favor of c when a (or
b) is the winner of a one-shot scoring rule and preferences are single-peaked.

F. Proof of Proposition

(i) Let us assume that candidate a wins versus candidate b 5 with λ ∈ [ 12 , 1]. Note
we should have S(π,λ, c) ≤ S(π,λ, a) and S(π,λ, c) ≤ S(π,λ, b). It follows
that

S(π,λ, c) − S(π,λ, a) + S(π,λ, a)

2
= 2 − λ

2
(x5 + x6) + 2λ − 1

2
(x4 + x2) ≤ 0.

This occurs if andonly ifλ = 1
2 and x5 = x6 = 0. In this case, the three candidates

all tie and there is no route for the profitable truncation of preferences.
Now suppose that λ ∈]0, 1

2 [ and show that the paradox can occur for all
λ in this interval. Let us assume a voting situation where n2 = n5 = α and
n3 = n4 + 1 = z with z = � 2

λ
− 3� + 1 and α =  2z−1

1−2λ� − 1 for λ ∈ ]0, 1
2 [. The

scores are: S(π,λ, a) = α + λz, S(π,λ, b) = α + λ(z − 1) and S(π,λ, c) =
2z − 1 + 2λα. It follows that S(π,λ, a) > S(π,λ, b), S(π,λ, b) > S(π,λ, c).
Candidate c is eliminated and candidate a wins the second run since aM (π)b.
Assume that all the voters of type 3 truncate. The new scores are:S(π ′,λ, a) = α,
S(π ′,λ, b) = S(π,λ, b) andS(π ′,λ, c) = S(π,λ, c).We still haveS(π,λ, b) >

S(π,λ, c). Let us show that S(π,λ, c) − S(π ′,λ, a).

S(π,λ, c) − S(π ′,λ, a) = 2z − 1 − (1 − 2λ)x

= 2z − 1 − (1 − 2λ)

(⌊
2z − 1

1 − 2λ

⌋

− 1

)

= 2z − 1 − (1 − 2λ)

⌊
2z − 1

1 − 2λ

⌋

+ (1 − 2λ)

For allλ ∈ ]0, 1
2 [, we have z > 1; so, 2z > 1 and 2z − 1 > 0.Also, (1 − 2λ) > 0

and we know that (1 − 2λ) 2z−1
1−2λ� ≤ 2z − 1. Thus, S(π,λ, c) − S(π ′,λ, a) >

0. So, candidate a is eliminated. Since x + 2z − 1 > α, cM (π ′)b: candidate c is
the new winner. Thus, by sincere truncation of their rankings, voters of type 3
have favored their best candidate.

(ii) Assume that candidate a wins the second stage versus c.6 This means that aMc
through x2 ≥ x4 + x5 + x6 and thus x2 ≥ 1

2 . Note that only voters of type 5 have
an incentive to manipulate and the possibility to affect the score of a by sincere
truncation of their rankings in favor of c. But by any truncation from π to a new

5The symmetric to the case “candidate b wins the second stage versus a” is handled in a similar
way.
6This is symmetric to the case “candidate b wins the second stage versus c”.
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voting situation π ′, we still have S(π ′,λ, a) ≥ 1
2 and S(π,λ, b) = x4 + λx6 ≤

x4 + x5 + x6 ≤ 1
2 . Therefore candidate c still gets through to the second round

and wins the election against c.
(iii) Let us assume that candidate c wins the second stage versus a. Let us first

consider λ = 1. Evidently, candidate c wins. If she wins versus candidate a,
this means that S(π,λ, a) > S(π,λ, b) which is equivalent to (i) n2 + n5 >

n4 + n6. Candidate b will become the new winner after voters of type 4 truncate
if (ii) S(π,λ, b) > S(π ′,λ, c); and that (iii) bM (π ′)a. This last requirement is
equivalent to n4 + n6 > n2 + n5 which contradicts (i): voters of type 4 cannot
manipulate for λ = 1. If voters of type 2 truncate, nothing will happen since
the new score of candidate c, although diminished by λn2, will still be greater
than that of candidate b: voters of type 2 cannot manipulate for λ = 1. Thus,
the truncation paradox is not possible for λ = 1. To prove that it can happen for
λ ∈]0 1[, one can consider a profile such that n2 = 3, n4 = 2 n5 = 1 and n6 = 1.
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Dummy Players and the Quota
in Weighted Voting Games:
Some Further Results

Fabrice Barthélémy and Mathieu Martin

1 Introduction

In this chapter, we compute the probability of having a dummy player in a weighted
voting game. A dummy player is a player who has no power or no influence in a
collective decision. The most famous example is probably the well-known case of
Luxembourg in the Council of Ministers of the EU between 1958 and 1973. It proves
that it is possible to have a weight different from 0 (Luxembourg had one vote) and
absolutely no power in the decisions.Of course, such decisions are undesirable butwe
should not worry about them if it could be shown that their occurrence is rare. In the
classical case of majority games, Barthélémy et al. (2013) show that the probability
of having a dummy player is unfortunately far from 0. To illustrate, this probability
can reach about 50% for 4, 5 or 6 players; for more than 6 players, the probability
decreases but we have to consider more than 15 players for obtaining results lower
than 1%. Do these negative results hold when other quotas are considered?

Our goal is to determine the quota values which minimize this probability and
then to answer to the previous question.

We know that under unanimity rule, each player has a veto power and hence is not
a dummy. Can we find other quotas for which the risk of having a dummy player is
zero?We give a negative answer to this question. Consequently, the major part of this
study is devoted to the determination of quota values that minimize (ormaximize) the
probability of having a dummy player. To the best of our knowledge, this issue has
never been tackled in the literature, with the exception of Barthélémy et al. (2019),
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a companion paper. The results we obtain in the second part of the current paper
complete their results, where some analytical results are given for 3, 4 and 5 players.
Some general formulas are proposed typically in the spirit of a huge literature on
this subject (see, for example Gerhlein and Lepelley 2017). Even if this approach
is the most interesting, it is limited because the calculus are too complicated when
the number of players increases. Moreover, for 4 and 5 players, contrary to the case
with only 3 players, only limiting representations are obtained, when the sum of the
weights (the number of seats for example) tends to infinity. It is why we proceed here
by computer enumeration or simulations, in function of the size of the variables.

The chapter is organized as follows: in the Sect. 2, our notation, definitions and
assumptions are introduced. In the Sect. 3, we present general preliminary results
which show that, from a theoretical point of view, avoiding a dummy player seems
to be complicated. Of course, it does not mean that the probability of such an event is
high, it onlymeans that it is very easy to find a game such that there is a dummyplayer.
Some numerical results for the probability of having at least one dummy player are
then obtained in Sect. 4. The main conclusions of our study are summarized and
discussed in the Sect. 5.

2 Notation, Definitions and Assumptions

The formal framework of this study is the same as in Barthélémy et al. (2019). The
reader is referred to this companion paper for further (but here unnecessary) details
on this framework.

A voting game is a pair (N ,W ) where N = {1, 2, . . . , n} is the set of n players
(or voters) and W the set of winning coalitions, that is the set of groups of players
which can enforce their decision. We consider the class of weighted voting games
[q;w1,w2, . . . ,wn], where q is the quota needed to form a winning coalition and
wi is the number of votes (weight) of the ith player; we assume that q and wi are
integers. A coalition S is winning if and only if

∑
i∈S wi ≥ q. The total number

of votes,
∑

i∈N wi, is denoted by w. A particular case is the majority game where
qmaj = w

2 + 1 if w is even and qmaj = w+1
2 if w is odd. We assume that the game is

proper, that is q ≥ qmaj. When q = w, we get the unanimity rule: each player has a
veto power and is not a dummy. Our study will focus on the weighted voting games
such that q ≤ w − 1. The relative quota, denoted Q with Q = q/w, is used in the
tables. We assume, without loss of generality, that w1 ≥ w2 ≥ · · · ≥ wn ≥ 0.

A player i is a dummy player in a voting game (N ,W ) if S ∈ W implies S\{i} ∈ W
for every S ∈ W . In words, player i is never decisive in every winning coalition:
the coalition wins with or without him (her). To illustrate, player 3 is a dummy in
the weighted voting game [5; 3, 2, 1]. In voting power theory (see Straffin 1994;
Felsenthal and Machover 1998 for a presentation), it means that this player has no
power.

Aweighted voting game is said to be admissible if each player has at least one vote
(wn ≥ 1) and never more than q − 1 votes (there is no dictator). Of course, if player
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j is a dummy player, then player k with k > j is also a dummy. Also notice that, as
w1 ≤ q − 1 in an admissible weighted voting game, player 2 is never a dummy and,
consequently, the maximum number of dummy players is equal to n − 2.1

The purpose of this paper is to compute the probability of obtaining a dummy
player, given n, w and q (or Q), and to derive the quota which minimizes this prob-
ability (denoted by Q) and the quota which maximizes this probability (denoted by

Q). The probability of having at least one dummy player is denoted by P(w, n, q) or
P(w, n,Q) when w is finite and P(n,Q) when w is infinite.

In order to computeP(w, n, q) (orP(w, n,Q) orP(n,Q)), we consider a particular
probabilistic model called IAC (Impartial Anonymous Culture) which is one of the
most often used in such problems where the likelihood of a voting event is to be
calculated (see, for instance, Lepelley et al. 2008, Diss et al. 2012, or Courtin et al.
2014).

In the current context, using this model is tantamount to assume that, n, w and
q being given, all the admissible distributions of the wi’s, i.e. all the distributions
such that (q − 1 ≥ w1 ≥ w2 ≥ · · · ≥ wn ≥ 1 and

∑
i∈N wi = w) are equally likely to

occur.

3 Preliminary Results

We present preliminary results concerning the general possibility of obtaining a
dummy player in a weighted voting game. We know that there is no dummy player
when q = w. We also know from Leech (2002) (see also Barthélémy et al. 2013)
that, in the three-player case, there is no dummy player when q = qmaj. Can we find
some other values of q and n (the number of players) for which the “dummy paradox”
never occurs? The following propositions give a negative answer to this question (as
soon as w, the total number of votes, is not very small).

Proposition 1 For all n, q and w such that n ≥ 4, qmaj ≤ q ≤ w − 1 and w ≥ 6n −
12, there exists a game [q;w1,w2, . . . ,wn] where player n is a dummy player.

This result is a consequence of the four following lemmas:

Lemma 1 For all n and w such that n ≥ 4, w ≥ 6n − 12 and q = w
2 + 1, there exists

a game [w2 + 1;w1,w2, . . . ,wn] where player n is a dummy.
Proof of Lemma 1 Consider the following game: [w2 + 1; w

2 − 2, w−6n+26+a
4 ,

w−6n+26−a
4 , 3, 3, . . . , 3, 1] with a = 0 if n is odd (even) and w

2 is even (odd) and
a = 2 if n is odd (even) and w

2 is odd (even). Furthermore, the number of individuals
whose weight is 3 is equal to n − 4.

1In the particular case where q = qmaj , not only player 2 but also player 3 cannot be a dummy; see
Proposition 1 in Barthélémy et al. (2013). In this case, the maximum number of dummy players is
n − 3.
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We have to show that (1) q > w1 ≥ w2 ≥ · · · ≥ wn and, since wn = 1, we have
to show that (2) there is no coalition S ⊆ N\{n} such that ∑i∈S wi = q − 1. Indeed,
this is the only situation for which player n, with one vote, is not a dummy player.

(1) Clearly q > w1 andw2 ≥ w3, thus we have just to show thatw1 ≥ w2 andw3 ≥ 3
(if n = 4 we have to show that w3 ≥ 1 which is obvous). Assume that w2 > w1

then we obtain w < 34 − 6n + a. By hypothesis, we have w ≥ 6n − 12 thus
w2 > w1 if 34 − 6n + a > 6n − 12 or n < 46+a

12 ≤ 4, a contradiction of n ≥ 4.
QED Assume now that w3 < 3, it means that w−6n+26−a

4 < 3 or w < 6n − 14 +
a. By hypothesis,w ≥ 6n − 12 thus 6n − 14 + a > w ≥ 6n − 12 and thena > 2
which is impossible. Thus w3 ≥ 3.

(2) Consider a coalition S ⊆ N\{n} with 1 ∈ S. Since w3 ≥ 3 we have
∑

i∈S wi ≥ q
except if S = {1}. Since w1 = q − 3, it is never possible to obtain a total weight
equal to q − 1 with player 1 belonging to S. Assume now that player 1 does not
belong to S: we have

∑n−1
i=2 wi = q. Since wi ≥ 3, i = 2, 3, . . . , n − 1, it is not

possible to obtain a total weight equal to q − 1 in S. QED

Lemma 2 For all n, q and w such that n ≥ 4, w > 4n − 8, w
2 + 1 < q ≤ w − 2n +

5, there exists a game [q;w1,w2, . . . ,wn] where player n is a dummy.

Proof of Lemma 2 Consider the following game: [q; q − 2,w − q − 2n + 7, 2, 2,
. . . , 2, 1]. We have to show that (1) q > w1 ≥ w2 ≥ · · · ≥ wn and, since wn = 1, we
have to show that (2) there is no coalition S ⊆ N\{n} such that

∑
i∈S wi = q − 1.

(1) We have just to show that w1 ≥ w2 and w2 ≥ 2. Assume that w2 > w1. Thus
w − q − 2n + 7 > q − 2 or n <

w−2q+9
2 . Since n ≥ 4,we have 4 ≤ n <

w−2q+9
2

and then q ≤ w+1
2 , a contradiction. QED Furthermore, w2 ≥ 2 if w − q − 2n +

7 ≥ 2 or q ≤ w − 2n + 5, which is true by hypothesis.
(2) Consider a coalition S ⊆ N\{n} with 1 ∈ S. Since w2 ≥ 2 we have

∑
i∈S wi ≥

q except if S = {1}. Since w1 = q − 2, it is never possible to obtain a total
weight equal to q − 1 with player 1 belonging to S. Assume now that 1 /∈ S, thus
we have

∑n−1
i=2 wi = w − q + 1. But w − q + 1 = q − 1 implies q = w

2 + 1, a
contradiction. Therefore there is no S̄ ⊂ S such that

∑
i∈S̄ wi = q − 1. QED

Remark that the condition w > 4n − 8 guarantees that w − 2n + 5 > w
2 + 1.

Lemma 3 For all n, q and w such that n ≥ 4, w ≥ 5n − 12 and w − 2n + 6 ≤ q ≤
w − n + 2, there exists a game [q;w1,w2, . . . ,wn] where player n is a dummy.

Proof of Lemma 3 Consider the following game: [q; q − n + 1,w − q + 1, 1, . . . ,
1]. We have to show that (1) q > w1 ≥ w2 ≥ · · · ≥ wn and, since wn = 1, we have
to show that (2) there is no coalition S ⊆ N\{n} such that

∑
i∈S wi = q − 1.

(1) We have just to show that w1 ≥ w2 and w2 ≥ 1. Assume that w2 > w1, thus
q − n + 1 < w − q + 1 or q < w+n

2 . We know that q ≥ w − 2n + 6 thus w+n
2 >

q ≥ w − 2n + 6, that is to say w < 5n − 12, a contradiction. It is obvious that
w2 ≥ 1. QED
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(2) Remark that w1 + w3 + w4 + · · · + wn−1 = q − 2. Thus players 1 and 2 must
belong to the coalition S ⊆ N\{n} if we want ∑

i∈S wi ≥ q − 1. We have w1 +
w2 = w − n + 2 and by hypothesis, q ≤ w − n + 2, thus w1 + w2 ≥ q. It is not
possible to obtain a total weight equal to q − 1. QED

Lemma 4 For all n, q and w such that n ≥ 4, w ≥ 4n − 9 and w − n + 3 ≤ q ≤
w − 1, there exists a game [q;w1,w2, . . . ,wn] where player n is a dummy.
Proof of Lemma 4 Consider the game [q; q − (n − w + q − 1)(w − q + 1),w −
q + 1, ...,w − q + 1, 1 . . . , 1], knowing that the number of players with a weight
equal tow − q + 1 is equal to n − w + q − 1 and the number of players with aweight
equal to 1 is equal to w − q. We have to show that (1) q > w1 ≥ w2 ≥ · · · ≥ wn and,
since wn = 1, we have to show that (2) there is no coalition S ⊆ N\{n} such that∑

i∈S wi = q − 1.

(1) Assume w1 ≥ q. Thus we have q − (n − w + q − 1)(w − q + 1) ≥ q or (n −
w + q − 1)(w − q + 1) ≤ 0which is impossible since (n − w + q − 1) > 0 and
(w − q + 1) > 0. QED Let us show now that w1 ≥ w2. w2 is maximized when
q is minimized, that is to say when q = w − n + 3. Thus w̄2 = n − 2 (w̄2 is the
highest value ofw2). We then obtain the lowest value ofw1, denotedw1 such that
w1 = w − 3n + 7 (q is replaced by w − n + 3 in w1). We have always w1 ≥ w2

if w1 ≥ w̄2 that is to say w − 3n + 7 ≥ n − 2 or w ≥ 4n − 9 which is true by
hypothesis.

(2) Assume that there exists a coalition S such that
∑

i∈S wi = q − 1 knowing that
player n does not belong to S. Let S1 = {1, 2, . . . , n − w + q} be a coalition
in which any player i is such that wi �= 1. We have

∑
i∈S1 wi = q �= q − 1

thus S1 �= S. It means that player 1 or player 2 (w.l.o.g) does not belong to
S. Let S2 = {1, 3, . . . , n − 1} be the coalition with all the players except 2
and n. We have

∑
i∈S2 wi = w − (w − q + 1) − 1 or

∑
i∈S2 wi = q − 2 �= q − 1.

Thus S2 �= S which implies that 2 belongs to S. Therefore any i such that
wi = w − q + 1 belongs to S and since w1 ≥ w2, 1 belongs to S as well. It
means that

∑
i∈S wi ≥ q, a contradiction. QED

Proof of proposition 1 The different constraints given by the Lemmas 1–4 are the
following: w ≥ 6n − 12 and q = w

2 + 1 (Lemma 1), w > 4n − 8 and w
2 + 1 < q ≤

w − 2n + 5 (Lemma 2), w ≥ 5n − 12 and w − 2n + 6 ≤ q ≤ w − n + 2 (lemma 3)
and w ≥ 4n − 9 and w − n + 3 ≤ q ≤ w − 1 (Lemma 4). It is easy to verify that
all possible quotas for admissible games (from w

2 + 1 to w − 1) are considered.
Furthermore, a very simple calculus shows that the more restrictive constraint is
w ≥ 6n − 12. QED

Proposition 1 only deals with at least 4 players. Proposition 2 presents a similar
result for the 3-player case for q > qmaj.

Proposition 2 In the three-player case, there exists a game [q;w1,w2,w3] such that
player 3 is a dummy for each value of q, q ≤ w − 1 and q �= qmaj.
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Proof of proposition 2 Consider the game [q; q − 2,w − q + 1, 1]. We have to
show that (1)w1 ≥ w2 ≥ w3 and (2) player 3 is a dummyplayer i.e. w1 + w2 �= q − 1.

(1) w2 ≥ w3 ifw − q + 1 ≥ 1 orw ≥ qwhich is always true. Furthermore,w1 ≥ w2

if q − 2 ≥ w − q + 1 or q ≥ w+3
2 which is always true since q �= qmaj. QED

(2) We have w1 + w2 = w − 1 which is different from q − 1 since q < w. QED

4 Numerical Results

From Barthélémy et al. (2019), we know that, in weighed voting games with 3, 4 or
5 players, the probability of having a dummy player is very sensitive to the choice of
the quota and can be very high; in addition, it turns out that, except for quotas very
close to 1, increasing the quota does not decrease the probability of dummy players.
To what extent can we generalize these conclusions to voting games with a larger
number of players? It is the question we investigate in this section.

Our results, presented in tables and graphs, are obtained with one of the two fol-
lowing approaches. The first one gives exact results whereas the second one is based
on simulations and provides estimated probabilities. Note that for small numbers of
players, these results corroborate what we have obtained analytically in Barthélémy
et al. (2019).

Exact computations are done by considering the exhaustive list of all possible vec-
tors of weights for a given number w of votes. For all these vectors (w1, . . . ,wn), we
checkwhether or not the last player is decisive (remember thatw1 ≥ w2 ≥ . . . ≥ wn).
To do this, we use the classical Banzhaf power index2 since a player, by construc-
tion, is a dummy if his (her) index is equal to zero. We compute this index using a
generating functions approach which leads to exact values (this point is fundamental
because we are looking for an index with a zero value, which prohibits the use of
approximation methods). Finally, the exact probability of having at least one dummy
player is the ratio between the number of times the last player is never decisive and
the number of vectors (w1, . . . ,wn) considered as admissible (in accordance with
the assumed uniform distribution of weight vectors). Unfortunately, enumerating
all these distributions is highly time consuming when the number of players and w
become large (see, for example, Barthélémy et al. (2011) ). It is the reason why we
also resort to simulations.

Our simulations are based on random vectors of weights. The estimated proba-
bility of having at least one dummy player is then obtained by dividing the number
of times the last player is never decisive by the number of vectors (w1, . . . ,wn) ran-
domly generated. In order to simulate the probability of a dummy player, two steps
have to be considered. First, we have to simulate a vector of weights for a given w
and a given number of players n. This can be done by using for instance the Rancom

2For a clear and simple presentation, see Straffin (1994).
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algorithm proposed byNijenhuis andWilf (1978). Second, we have to check whether
there is at least one dummy player in the weighted game associated to these weights.
This is done as mentioned above by using the Banzhaf power index. Then repeating
these two steps k times gives the estimated probability which corresponds to the
proportion of weighted games leading to a dummy player.

We analyze first the results for a finite total number of votes w. In a second step,
we will extend our study to the case where this total number of votes tends to infinity.

4.1 Finite Case

We compute both exact and simulated probabilities. Tables 1, 2 and 3 give the prob-
ability of having at least one dummy player according to given values of the quota
Q, for weighted games with 3, 5 and 10 players.3

The probabilities P(n,w,Q) are not monotonic with respect to parameters Q, w
and n. However, we observe that the probability tends to 0 when n increases, which
is a particular illustration of the so-called Penrose’s law (or Penrose’s limit theorem).
Penrose (1946, 1952) argues (without rigorous proof) that, if the number of players
is large while the quota is fixed at half of the total weight, then the ratio between
the voting powers of any two players, measured by their Banzhaf index, tends to
the ratio between their weights. Lindner and Machover (2003) have shown that, if
the Penrose’s law is not always true, “experience suggests that counter-examples are
atypical” and they conjecture that the theorem holds under rather general conditions,
for large classes of weighted voting games, other values of the quota and other
measures of voting power. Using simulations, Chang et al. (2006) conclude that if
the result holds only for a quota of 50% when the Banzhaf index is considered, the
Penrose’s law remains valid for all values of the quota when power is measured by
the Shapley-Shubik index.4 Let us notice that a dummy player with the Banzhaf
index is a dummy player with the Shapley-Shubik index as well (and reciprocally).
As there are no weights equal to zero by construction in our study, each player
tends to get a positive power when n tends to infinity and the probability of having
a dummy player tends to zero. Figure 1 illustrates this result for w = 60 and Q =
2/3, 0.75, 0.90, 0.95.5

Tables 1, 2 and 3 report as well the optimal probabilities P(n,w,Q), P(n,w,Q)

(denoted Pmin and Pmax) and the corresponding quotas Q and Q. For a given w,
we compute all the quotas Q running from majority to unanimity. More precisely,
we consider all the quotas from Q = 0.50 (corresponding to either q = w/2 + 1 or
q = (w + 1)/2), to Q = (w − 1)/w (the closest quota to unanimity, q = w − 1).

3This is an arbitrary choice. Any number of players, reasonably large, can be studied.
4See Straffin (1994) for a presentation of this power index.
5Obviously, other values of w or Q lead to the same kind of curves.
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Fig. 1 Illustration of the Penrose’s law for w = 60

For instance, for w = 10, we calculate the probability of having at least one
dummy player for q = 6, 7, 8 and 9, leading to relative quotas equal to 0.5, 0.6, 0.7,
0.8 and 0.9.6 In this case, we get unanimity as soon as q is greater than 9 and this
implies that for all Q > 0.9, P(10, n,Q) = 0%.

Similarly, when considering w = 20, the unanimity case is obtained as soon as
Q > 0.95 (corresponding to q > 19). In Tables 1, 2 and 3, the symbol ‘–’ is rep-
resented for cases where the relative quota Q is equivalent to the unanimity case
(q = w). Remark that we do not take into account the unanimity case in the compu-
tation of Pmin (as mentioned above, unanimity leads to a zero probability).

As the number of different quotas may be high (49 possible quotas for w =
100), only selected values of Q are reported in Tables 1, 2 and 3, with Q ∈
{0.5, 2/3, 0.75, 0.8, 5/6, 0.9, 0.95, 0.98, 0.99}. But Pmin and Pmax are computed
using all the possible quotas. For instance, with w = 15 and n = 5, Pmin = 7.69%
with a quota Q = 0.60 (not reported in Table 2). If more than one quota q lead to the
smallest probability Pmin, q is the smallest value, andQ is the corresponding relative
value. For the above example, eachQ ∈ [0.60, 2/3[ (corresponding to [9/15, 10/15[)
leads to the same probability Pmin = 7.69%, and our convention gives Q = 0.60.

Concerning Q, a strange phenomenon is worth noticing. For small values of w,
Q is close to the majority and when w increases, Q suddenly tends to unanimity.
Figure 2 illustrates this phenomenon in the 5-player case. The value w̃ of the total
number of votes for whichQ becomes (almost) the unanimity instead of (almost) the
majority increases with n, n ≥ 4, the number of players. For instance w̃ = 35 in the

6Note that Q = 0.5 and Q = 0.6 correspond to the same quota q = 6.
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Fig. 2 5-player case, smallest and highest probabilities of a dummy player according to w

4-player case, w̃ = 53 in the 5-player case, w̃ = 87 in the 6-player case and w̃ > 100
when n ≥ 6.

4.2 Infinite Case

Limiting probabilities are simulated probabilities computed with high values of the
total number of votes w.

Table 4 reports the estimated limiting probabilities from 3 to 15 players. Each row
illustrates the Penrose’s law: the probabilities tend to decrease when n increases, as
previously mentioned for the finite case.7 Figure 3 is given as an illustration of this
remark with four values of Q.

7Note however that for high values of Q, the convergence is not clear and more players are needed
in order to recover Penrose’s law.
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Fig. 3 Penrose’s law when w tends to infinity

Figure 4 presents the limiting probabilities plotted for 4, 6, 8, 10 and 15 players as
a function of the quota Q. This Figure illustrates that fixing the quota at values higher
than 50% (as 2/3 or even 3/4) does not lead to a smaller probability of having at least
one dummy player. Moreover, in general, increasing the quota tends to increase this
probability, except for values of Q very close to 1. This is particularly clear when
the number of players is high.

5 Conclusion and Final Remarks

The main conclusions of our study can be summarized as follows.

(1) Barthélémy et al. (2019) have shown that the probability of having a dummy
player can be surprisingly high and is very sensitive to the choice of the quota in
voting gameswith a small number of players. Our results confirm this conclusion
for voting games with a larger number of players.

(2) As suggested in Barthélémy et al. (2019), we conclude that the choice of a quota
close to 1 (e.g. 0.95), that could be suggested by the observation that there is no
dummy player for Q = 1, would be a serious mistake: for Q close to 1, the risk
of a dummy player would be more likely maximized rather than minimized.

(3) In order to minimize the probability of having dummy players, it is advisable to
choose a quota between 0.50 and 0.55.
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Fig. 4 Limiting probability of having at least one dummy player for 4–15 players

(4) The probability of having a dummyfirst increases then decreaseswith the number
of players, whatever the quota value, suggesting that the Penrose’s law holds for
Q > 1/2. It is worth noticing, however, that this convergence towards 0 is much
slowerwith high values ofQ thanwith small values. To illustrate,with 15 players,
the probability of a dummy player is less than 0.25% for 0.5 < Q < 0.66 and is
still about 43% for Q = 0.98.

(5) Our conclusions have been obtained by assuming that the weighted voting games
are generated via the IAC probabilistic model. Of course, this model does not
constitute the only possibility for generating randomgames. It is therefore logical
to ask whether the main phenomena we have observed arise with other distribu-
tions of the weighted voting games. To obtain some insights on this issue, we
have run some further simulations based on an alternative probabilistic model.
With this model, that we call NORM, the weight vectors (w1,w2, . . . ,wn) are
generated by picking n numbers in a uniform distribution on [0, 1] and then nor-
malizing these numbers. We then proceed exactly as we did with the IACmodel.
The results we obtain via this method for the “infinite” case (w = 9 999)8 are
displayed in Table 5.We obtain the same qualitative conclusions as before, which
suggests that our conclusions could be relatively robust.

8The results we have obtained for smaller values of w are available from the authors upon request.
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Who Wins and Loses Under Approval
Voting? An Analysis of Large Elections

Sébastien Courtin and Matías Núñez

1 Introduction

Approval Voting (AV ) is the method of election according to which a voter can vote
for as many candidates as he wishes, the elected candidate(s) being the one(s) who
receive(s) the most votes. This simple voting rule has attracted interest from scholars
in political science and economics (see Laslier 2010) due to its flexibility: voters
approve of each candidate independently of the rest of the candidates. As far as
preference aggregation is concerned (on which we focus), one of the main features
of equilibria is presented in Laslier (2009). It provides a strong argument for the use
of AV in a model of large elections: AV selects the Condorcet Winner (CW ) as long
as the voters expect that no pair of candidates gets exactly the same number of votes.

Our main contribution is to fully characterize the set of equilibriumwinners under
Approval voting following Myerson (1993) model. This characterization is stated
provided that the electorate is “large enough”. By “large enough”, we consider the
benchmark for the study of large elections in which: (i) each voter does not affect the
pivotal probabilities since his influence becomes negligible and (ii) yet his probability
of affecting the outcome is strictly positive so that a rational voter selects the ballot
that gives him the highest expected utility. Our results contrast with the previous ones
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in the strategic voting literature in its generality.1 Most of the previousworks focus on
precise examples (for somegiven preference profile) and compute the set of equilibria
under some voting rules. Few general results (that is that apply to any preference
profile) are available. Among these results, one deals with Plurality and the other with
Approval Voting. Under Plurality voting, one can construct equilibria in which any
candidate who is not the Condorcet loser can win the election [see Myerson (2002)
for instance]. Under Approval voting, the existence of an equilibrium in which the
Condorcet winner wins, as previously described, is a salient feature. Yet, little is
known about the rest of equilibria in elections with this rule. Informally, one might
expect that Approval voting should reduce, when compared with other voting rules,
the set of voting equilibria (and of equilibrium winners) and hence be more robust
to the concept of focal manipulation as described by Myerson (1993). However, the
previous results do not focus on the whole set of equilibriumwinners under Approval
as we do. Moreover, note that Brams (2016) perform a related analysis assuming that
voters are sincere. Our work can hence be thought as an extension of their work to
a strategic environment. Our approach is based on the candidates who are viable
and unviable. A candidate a is unviable if, in the election, the number of voters
who do not rank a last is smaller than the number of voters who rank some other
candidate first. A viable candidate is one who is not unviable; as will be shown, only
viable candidates can win when voters play best responses. Our notion of viability is
somewhat related to the underlying idea of critical strategies as presented by Brams
(2016). The equilibrium winners are as follows.

If there are at most two viable candidates, then the unique equilibrium winner
is the Condorcet Winner (Theorem 1). Furthermore, we prove that if the unique
equilibrium winner is the Condorcet winner for every utility representation of an
ordinal preference profile, then there are at most two viable candidates. We hence
derive necessary and sufficient conditions for implementing the Condorcet Winner
as the unique equilibrium winner in terms of the number of viable candidates. To
prove such a result, we need to impose twomild restrictions in the preference profile:
the Simple Asymmetry (SA) and the Inverse Asymmetry (IA). According to SA, for
any pair of candidates x, y the number of voters who prefer x to y are different from
the number of voters who prefer y to x. The role of SA is simple: it removes equilibria
with two winners. IA states that for any triple of candidates x, y, z, the number of
voters who prefer x to y and y to z is different from the number of voters who prefer
z to y and y to x. The role of IA is subtler as will be shown by Example2, which
proves that the Condorcet loser can be the only winner in equilibrium when IA fails
to hold.

1In a recent computer science literature the use of probabilistic models in contexts with human
participants has received quite a lot of criticism. Especially, they argue that the common approach
to handle uncertainty is by maximizing expected utility, which requires a cardinal utility function as
well as detailed probabilistic information. However, often such probabilities are not easy to estimate
or apply. Therefore a number of alternative frameworks for modelling uncertainty (including for
voting settings) have been proposed. For an up-to-date coverage of this literature, see Meir (2014)
and Lev (2019).
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On the contrary with at least three viable candidates, the situation is much more
nuanced.Weprove that for any such preference profile,we can build an equilibrium in
which all viable candidates are tied for victory (Theorem2).Note that this equilibrium
exists for some set of cardinal utilities but need not exist for all utility profiles
representing an ordinal preference profile.

We then go on to derive some implications of the previous results.
The first consequence is that whenmany candidates are viable, taking into account

equilibria with more than one winner seems unavoidable. We believe that these equi-
libria are not degenerate but, on the contrary, are inherent to the voting system. One
possible interpretation is that, unless the electorate is polarized over two candidates
(there are at most two viable candidates included), the rule is unable to make a clear
choice.

Secondly, we obtain a description of equilibrium winners in elections with three
candidates. In these elections (on which most of the literature focus), we prove that
either theCW wins or the three candidates are tied in any equilibrium. This reinforces
our claim according to which equilibria with ties cannot be ignored. Indeed, doing
so, leads us to conclude that some elections do not admit an equilibrium at all. For
instance, any election without a CW only admits equilibria with ties (Theorem 1).

This work is structured as follows. After briefly reviewing the literature onmodels
of large elections, Sect. 2 introduces the general framework and Sect. 3 describes the
strategic behavior of the voters. Section4 analyzes the relation between AV and the
Condorcet Winner whereas Sect. 5 focus on elections with many viable candidates.
Section 6 concludes the paper.

1.1 Related Literature

One common feature of the models dealing with the study of large elections with
strategic voters are the pivotal probabilities. It is often assumed that a voter anticipates
that with some small probability (even though strictly positive) his vote is relevant to
modify the outcome of the election. Determining and comparing the magnitude of
these probabilities is hence key to describe the voters’ strategic behavior. Our model
is no exception.

Yet, there are different approaches that have been taken to incorporate this assump-
tion. One may either, as in the present model or as in Myerson (1993), make some
simple assumptions about the pivotal probabilities, without explicitly incorporat-
ing a mechanism that actually leads to positive pivotal probabilities. Or one may
add a certain uncertainty to the model that generates positive pivotal probabilities.
Myerson (2000, 2002), among others, assumes that the actual number of voters is
uncertain and follows a Poisson distribution (Poisson voting game). Laslier (2009)
assumes that the actual number of voters is given, but that each voter’s vote has a
certain small probability of being wrongly recorded (“Florida-tremble”). Other than
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implicit versus explicit mechanism generating pivotal probabilities, Laslier (2009)
and the present model are essentially the same.2

The previously discussed modelling approaches can be divided into two groups:
those in which the voters’ anticipations follow some intuitive behavioral assumption
and those who do not. Our work belongs to the first group together with Myerson
(1993) andLaslier (2009),whereas, in general, preference aggregationPoissongames
belong to the second group.3 Informally intuitive behavioral assumption entails that
a voter believes that in case of being pivotal, it is way more probable to break a tie
in which (at least) one of the winners is involved than a tie in which no winner is
involved. In Laslier (2009), they prove that situation arises endogenously when the
scores of the candidates are treated as independent random variables and the number
of voters is large enough. In our model, we follow this behavioral assumption.

Two remarks can be made on this behavioral assumption. First, it is true that
Myerson (2002) finds that a Poisson voting game is inconsistent with the model of
“reduced form””: due to Myerson (1993). Moreover, Nunez (2010) has an example
in which preferences satisfy the Simple Asymmetry and the Inverse Asymmetry,
there exists a Condorcet winner, but it is not selected in an equilibrium with a unique
winner. This is a mathematical objection to the current model. However, when using
the ordering condition (which is quite intuitive), we interpret it as a behavioral one.
We do not claim that it can be derived under very general conditions from amodel. On
the contrary, our claim is that, when the condition fails, the strategic reasoning might
be highly unreasonable. For instance, in the example in Nunez (2010), the voters
anticipate that the most probable pivot event takes place between the first and the
third ranked candidate rather than between the two candidates with the most votes.
This seems to be hardly sustainable with experimental data [see Forsythe (1993)
among others]. Moreover, Lachat (2019) test one model of strategic voting in which
the ordering condition holds on data of an AV election in the Zurich cantons (with
several winners). They find substantial evidence that these models correctly predict
strategic behavioral both at the individual and at the aggregate level.

2 Elections

The finite set of voters and candidates are respectively denoted by N = {1, . . . , n}
and X = {a, b, . . . , k}. Note that n is supposed to be large. The strict preferences
of a voter are defined by a utility function u : X → R, in which u(x) denotes the
utility a voter gets if candidate x wins the election. In other words, for each i ∈ N
and for any pair of candidates x, y ∈ X , x is strictly preferred to y, denoted x �i y, if

2In these models when the size of the electorate becomes large, the voter becomes almost certain
of the distribution of the voters’ preferences. In order to tackle this features, a recent strand of the
literature is focusing on models of aggregate uncertainty such as the works of Fisher (2014) and
Bouton (2016).
3So is the case if one focuses on classic equilibrium refinements such as perfection or Mertens’
stability as proved by De Sinopoli (2006, 2014).
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and only if ui(x) > ui(y). Given that our focus is on whether the Condorcet Winner
is selected, we consider exclusively strict preferences over alternatives under which
this concept is unambigously defined.

Election E := (X ,N , u) is then characterized by its set of candidatesX , its set of
voters N and the utility vector u = (ui)i∈N that depicts the utility function of each
voter.

For any pair of candidates x, y ∈ X , the majority relation M is defined as follows.
We say that x is M -preferred to y, denoted xMy, if and only if N (x, y) > N (y, x),
with N (x, y) = #{i ∈ N | x �i y}. The majority relation allows us to introduce the
notion of Condorcet Winner (CW ), that is a candidate who is majority preferred in
any pairwise comparison. This concept will be of special importance in this work
and its formal definition is as follows.

Definition 1 An electionE admits a Condorcet winner if there exists some candidate
x ∈ X such that:

xMy for any y ∈ X \ {x}.

Throughout the work, we make two (slight) assumptions that ensure that social
preferences are asymmetric: Simple and Inverse Asymmetry. Note that both condi-
tions are quite mild.

The first one concerns the preferences of the electorate over any pair of candidates,
as follows.

Definition 2 An election E satisfies Simple Asymmetry (SA) if:

for any x, y ∈ X , N (x, y) �= N (y, x).

The assumption SA is rather weak. Its role is to remove knife-edge cases in which
the electorate is divided in two exact halves: the ones who prefer x to y and the ones
who prefer y to x. When the population is large, the probability of these knife-edge
cases is typically very small.

The second one concerns preferences over triples of candidates and is defined as
follows. For any triple of candidates x, y, z ∈ X , we let N (x, y, z) denote the number
of voters who prefer x to y and y to z; formally, N (x, y, z) = #{i ∈ N | x �i y �i z}.
Definition 3 An election E satisfies Inverse Asymmetry (IA) if:

for any x, y, z ∈ X , N (x, y, z) �= N (z, y, x).

The role of IA and SA is to avoid non-generic situations in which the number of
players of certain type exactly coincide with the number of players of a different type.
This goes in line with many models of incomplete information where the number of
voters of each of the different types are drawn from a common distribution. Indeed,
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in such models, when the number of voters goes to infinity, the probability that
two types have exactly the same number of voters becomes negligible. Both our
assumptions, IA and SA mimic these vanishingly small probabilities, in a setting
where (i) there is a large number of voters and (ii) voters have complete information
over the preferences of the rest of voters.

The next definition concerns some sort of candidates in an election. A candidate
y in election E is unviable if and only if there exists some other candidate x such that
the number of voters who rank x first (denoted N (x, . . .)) is higher than the number
of voters who do not rank y last (denoted n − N (. . . , y)) so that

Definition 4 A candidate y in election E is unviable if:

∃ x ∈ X with N (x, . . .) > n − N (. . . , y).

with N (. . . , y) the number of voters who rank y last.

Any candidate who is not unviable is viable. The set of viable and unviable
candidates are respectively denoted by X v and X uv so that

X = X v ∪ X uv.

Note that (Courtin, 2017) show that if an election E is such that X v ≤ 2 and SA
holds, then E admits a Condorcet Winner.

3 The Electoral Game

As previously discussed, we assume that the voters are strategic and vote simultane-
ously through the Approval voting method. In other words, each voter can approve
of as many candidates as he wishes by choosing a ballot v = (va, . . . , vk) where
vx ∈ {0, 1} denotes the number of points given to candidate x by a voter. In the fol-
lowing the set of all possible ballots will be denoted V . We follow Myerson (1993)
by assuming that each voter maximizes his expected utility to determine which bal-
lot in the set V he will cast. In this model, his vote has an impact in his payoff if
it changes the winner of the election. Therefore, a voter needs to estimate the prob-
ability of these situations: the pivot events. We say that two candidates are tied if
their vote totals are equal. Furthermore, let H denote the set of all unordered pairs
of candidates. We denote a pair {x, y} in H as xy with xy = yx.

For each pair of candidates x and y, the xy-pivot probability pxy is the probability
of the outcome perceived by the voters that candidates x and y will be tied for first
place in the election. A voter perceives that the probability that he will change the
winner of the election from candidate x to candidate y by casting ballot v with vx ≥ vy
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to be linearly proportional to | vx − vy |. Moreover, the perceived chance of changing
the winner from y to x is identical to the one of changing the winner from x to y. 4

A pivot vector p is a vector listing the pivot probabilities for all pairs of candidates
is denoted by p = (pxy)xy∈H .

This vector p is assumed to be identical and common knowledge for all voters
in the election. A voter with xy-pivot probability pxy anticipates that submitting the
ballot v can change the winner of the election from candidate x to candidate y with
a probability of pxy × max{vx − vy, 0}.

We let Ui(v; p) denote the expected utility gain of voter i from casting ballot v
given the pivot vector p with:

Ui(v; p) =
∑

xy∈H

(vx − vy) · pxy · [ui(x) − ui(y)]. (U )

A strategy profile σ = (σi, σ−i) is any mapping fromN into the set of probability
distributions over V . That is, each σi describes the probability with which voter i
chooses each ballot v in the set V . The expected utility gain of a voter when he plays
the strategy σi equals Ui(σi; p) = ∑

v∈V σi(v)Ui(v; p).
Given the strategy profile σ , the size of the electorate who casts ballot v is
denoted by τ(v) = ∑

i∈N σi(v). Therefore, the score of candidate x equals S(x; σ) =∑
v∈V vxτ(v) given the strategy profile σ .

Definition 5 For any strategy profile σ , the set ofwinners at σ , W (σ ) ⊆ X , contains
the candidates whose score S(x; σ) is maximal given σ .

Given a pivot vector p, the set of pure best responses of a voter equals BRi(p) =
{v ∈ V | v ∈ argmaxv′∈V Ui(v′; p)}. Given the strategy σi of a voter i, its support
denotes the set of pure strategies played with positive probability according to σi:
Supp(σi) = {v ∈ V | σi(v) > 0};

For any candidate y, let vy = (vy
x)x∈X represent the ballot that assigns 1 point to

candidate y and zero to the rest of them (vy
y = 1 and vy

x = 0 if x �= y). The following
lemma will simplify the voter’s expected utility and hence helps to understand his
best responses.

Lemma 1 For any ballot v ∈ V , any pivot vector p and any voter i ∈ N ,

Ui(v ; p) =
∑

{y: vy=1}
Ui(v

y ; p),

4This is roughly equivalent to assume that the probability of candidates x and y being tied for
first place is the same as the probability of candidate x being in first place one point ahead of
candidate y (and both candidates above the rest of the candidates), which is in turn the same one as
the probability of candidate y being in first place one vote ahead of candidate x. (Myerson, 1993)
justify this assumption by arguing that it seems reasonable when the electorate is large enough.
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To seewhyLemma 1 is correct, for any ballot v = (vx)x∈X which assigns no points
to candidate x (i.e. vx = 0), we let v ∪ {x} denote the ballot that assigns one point to
x and vy points to any candidate y �= x. The linear expected utility of the voters given
by (U ) implies that for any ballot v ∈ V ,Ui(v ∪ {x} ; p) − Ui(v ; p) = Ui(vx; p). In
other words, Ui(v ∪ {x} ; p) = Ui(v ; p) + Ui(vx ; p) which implies the claim.

This lemma says that the expected utility of approving of a set of candidates
equals the sum of the expected utilities of voting independently for each of them.
Thus, any best response consists on approving of the candidates for which approving
them marginally improves the voter’s expected utility. Those candidates with null
expected utility might be included but need not. The following lemma presents the
structure of voters’ best responses.

Lemma 2 (Best Responses) For any pivot vector p and any voter i ∈ N , the voter’s
set of best responses is as follows:

(i) if Ui(vx ; p) > 0 then vx = 1 for any v ∈ BRi(p).
(ii) if Ui(vx ; p) < 0 then vx = 0 for any v ∈ BRi(p).

(iii) if Ui(vx ; p) = 0, then there is some v ∈ BRi(p) with vx = 1.

As depicted by the above lemma, the structure of voters’ best responses is particularly
simple since one only needs to compute the expected utility of each of the different
candidates that are to be included in the ballot. Moreover, one can easily check that,
in any best response, a voter always approves his most preferred candidate and never
approves his least preferred one if the pivot vector p is such that pxy > 0 for some
xy ∈ H .

Given the pivot vector p, one can choose a best response σ such that the score of
each candidate x can take any value in [min S(x; σ),max S(x; σ)] with:

min S(x; σ) = #{i ∈ N | Ui(v
x; p) > 0}

and
max S(x; σ) = #{i ∈ N | Ui(v

x; p) ≥ 0}.

Note that the minimal score of candidate x corresponds to the situation in which
only the voters who get a strictly positive expected utility of voting x do vote for him.
On the contrary, the maximal score is reached when every voter with a non-negative
expected utility of voting x votes for x.

Proposition 1 In any election E and any strategy profile σ in which voters use best
responses, this defines an equilibrium state in which the set of winners only contains
viable candidates.

Proof Assume by contradiction that there is some unviable candidate y in some
election E such that y ∈ W (σ ) for some strategy profile σ . By definition, since y is
unviable in E then ∃ x ∈ X with N (x, . . .) > n − N (. . . , y). Moreover, if the voters
play a best response, they always vote for their preferred candidate and never for
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their worst preferred one as shown by Lemma 2. Hence, min S(x; σ) > max S(y; σ)

so that y /∈ W (σ ), as required. �
We nowmove to the equilibrium concept that we will follow. Following Myerson

(1993), we assume that voters expect candidates with lower scores to be less likely
serious contenders for first place than candidates with higher scores. In other words,
if the score for some candidate x is strictly higher than the score for some candidate
y, then the voters would perceive that candidate x’s being tied for winning with any
third candidate z is much more likely than candidate y’s being tied for first place with
candidate z.

Definition 6 Given any strategy profile σ and any candidate z, the pivot vector
satisfies the ordering condition with respect to any ε ∈ (0, 1) if

S(x; σ) > S(y; σ) =⇒ εpxz ≥ pyz,

for any two candidates x, y.

This implies that pivot probabilities involving candidates with low vote shares
are zero in a similar fashion to the definition of proper equilibrium. We follow this
assumption.5

Moreover, we also assume that the probability of three (or more) candidates being
tied for first place is very small in comparison to the probability of a two-candidate
tie.

As will be shown, as long as the election does not admit a Condorcet winner,
the model prescribes that in any equilibrium, there are at least three winners. This
might, at first glance, seem counterintuitive with the previous assumption according
to which ties with more than two candidates are negligible, which is not the case of
pivotswith exactly two candidates. However, note that in Poisson games inwhich this
assumption does not hold, Myerson (2002) writes that “[j]ust because all candidates
have equal expected scores per voter in the limit does not imply that they have equal
chance of winning in large equilibria” . Myerson (2002) then proves that the strategic
reasoning in an equilibrium with three tied winners deals just with the two-candidate
pivots. Our assumption is hence not unduly restrictive.

Given any strategy profile σ , a sequence of pivot vectors {pε}ε→0 satisfies the
ordering condition if, for each ε > 0, pε is a positive pivot vector that satisfies the
ordering condition.

Definition 7 The strategy profile σ is an equilibrium of election E if and only if,
there exists a sequence of pivot vectors pε with pε

xy > 0 for every xy ∈ H that satisfies
the ordering condition given σ and such that, for each ballot v and for each voter i,

v ∈ Suppi(σ ) =⇒ v ∈ BRi(p
ε) for each ε > 0.

5The reader also can refer to the recent contribution byKavai (2013) for an empirical test of strategic
voting in a model in which different weakening of the ordering condition is proposed. See also the
recent experimental work by Bouton (2016).
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As shown by Myerson (1993), an equilibrium exists for any possible distribution
of the voters’ utilities which makes the model very attractive for the study of voting
rules. It should be stressed that, in this definition, the pivot probabilities pxy are
supposed to be constant when the voter contemplates casting one ballot or the other.
More specifically, these pivot probabilities, from each voter’s perspective, should
be the probabilities of ties or 1-vote differences among all other voters’ ballots,
before his own ballot is counted. But then the independence of pivot probability
on the perceiving voter can be justified if the true stochastic model treats all voters
symmetrically. This is why the literature tends to use models where voters have
independent identically-distributed types.

The focus of the paper is on the equilibrium winners under Approval voting. For
any election E, the set of equilibrium winners is denoted by WE(σ ).

In order to illustrate the model, we conclude this section by an example of an
election E that gives an excellent description of the equilibria with ties that we
describe throughout.

Example 1 Consider an election E with three alternatives X = {a, b, c} and three
groups of voters. The first one is endowed with the utility profile6 uA = (10, x, 0),
the second one with uB = (0, 10, y) and the final one with uC = (z, 0, 10) with
0 < x, y, z < 10. The shares of the different groups are, respectively, 40%, 35% and
25%.Hence, this election does not admit aCondorcetWinner. Therefore, at first sight,
one can imagine that a will be the winner in some equilibrium. Indeed, the voters
focus on the pair {a, b} in the sense that these candidates are the ones with the two
highest expected scores. This implies that the most likely pivot event occurs between
a andb so that the voters in groups 1 and3 approveofa and the ones in group2 approve
of b so that, a gets a higher score than b, namely S(a; σ) = 65% > S(b; σ) = 35%,
and a is the winner. However, the logic of the model is more complex. Indeed,
one still needs to consider the pivot events in which alternative c is involved since
every possible pivot event occurs with positive probability. However, since a has
a higher score than b, then it is infinitely more likely that c is involved in a pivot
with a than with b (as described by the ordering condition). Hence, the voters in
groups 2 and 3 approve of c since they all prefer c to a. However, this implies that
S(a; σ)=65%>S(c; σ)=60%>S(b; σ)=35% so that it is not anymore rational that
voters focus on the pair {a, b} but rather on the pair {a, c}; in other words, there is
no equilibrium in which the voters focus on the pair {a, b}. This reasoning applies
to any pair of candidates so that there is no equilibrium σ in which the voters just
focus on a pair of candidates in the sense that these candidates are the ones with the
two highest expected scores. Moreover, one can prove that any equilibrium in this
election leads to a tie among the three candidates so that WE(σ ) = {a, b, c} for any
equilibrium σ in E. As we will see in the next section, this inevitably generates ties
in equilibrium.

6The utility values in each vector are the utilities of alternative a, b and c respectively.
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4 Approval Voting and the Condorcet Winner

This section describes the conditions that ensure that the unique equilibrium winner
is the Condorcet Winner under Approval voting. Moreover, it shows that when the
election admits no Condorcet Winner, there are at least three equilibrium winners
at any equilibrium. These results make more precise the relation between Approval
voting and the Condorcet Winner.

The main characteristic of these results is that they do not depend explicitly on
the voters’ best responses. In other words, we do not need to completely define
how the voters vote in order to predict who the equilibrium winners are. The main
logic is driven by the voters’ anticipations to the possible scores of the candidates,
greatly simplifying the task at hand. As far as scenarios with a few number of viable
candidates are considered, the main implication is summarized in the following
theorem: the Condorcet Winner is the unique winner in equilibrium.

Within the proofs, we write S(x) rather than S(x; σ) to simplify notations. That
is, we remove the explicit reference to the strategy profile.

Theorem 1 If the election E satisfies both IA and SA, then:

1. If there are at most two viable candidates, then the unique equilibrium winner is
the Condorcet Winner.

2. If there is no Condorcet winner, the set of equilibrium winners WE(σ ) contains
at least three candidates for any equilibrium σ .

Theorem 1 is the main result of this section.
The two assumptions about the society, IA and SA, play a key role in the proof,

although they do not have the same role.

Proposition 2 If the election E satisfies SA, then there is no equilibrium with two
winners.

Proof Assume, by contradiction, that there is an equilibrium with two winners.
W.l.o.g. we let x and y be this pair of candidates. Due to the ordering condition, the
most probable pivot outcome in which x (resp. y) is involved is against y (resp. x).
Therefore, the voters who strictly prefer x over y vote for x and the ones who strictly
prefer y over x vote for y. Hence, the score of x equals N (x, y) whereas the one of y
equals N (y, x). However, since SA holds, the scores of such candidates are different,
contradicting the assumption that both x and y are both equilibrium winners. �

Consider now the role of IA.While the role of SA in selecting equilibria is intuitive,
the role of IA is subtler. We first prove that it ensures that if there is an equilibrium
with a unique winner, then this candidate is the CondorcetWinner. However, in order
to see that this condition is necessary and important, Example 2 demonstrates that
the Condorcet Loser (a candidate who is never M -preferred to any other candidate
in the election) might be the unique winner when IA does not hold.
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Example 2 LetX = {a, b, c}, and consider a society with four possible utility func-
tions: uA = (10, μ, 0), uB = (10, 0, μ), uC = (μ, 10, 0) and uD = (0, μ, 10) with
10 > μ > 5. The proportion of voters with each utility profile equals respectively
0.2, 0.35, 0.25 and 0.2. Therefore, b is the Condorcet Loser since aMb and cMb.
Moreover IA does not hold since there is the same number of voters with utility
vectors uA and uD so that N (a, b, c) = N (c, b, a).

It is easy to see that the strategy profile σ with

σA → {a, b}, σB → {a, c}, σC → {b} and σD → {b, c},

leads to the victory of b. Moreover, the strategy profile σ is justified by the pivot vec-
tor pε = (pε

ab, pε
ac, pε

bc) = (1/2 − ε, 2ε, 1/2 − ε) and hence is an equilibrium. There-
fore, the Condorcet loser b is the unique equilibrium winner at σ . As the next result
shows, this bad outcome does not occur when the election satisfies IA.

Proposition 3 If the election E satisfies IA and there is an equilibrium with a unique
winner, then this candidate is the Condorcet Winner.

Proof Assume that there is a unique winner in equilibrium, denoted a. Due to the
ordering condition, every voter knows that, when ε → 0, the pivot outcome in which
any candidate x �= a is involved against a becomes infinitely more likely than the
rest of pivot events.

We have two cases: either there is a tie in the scores of two candidates (who are
not the winners) or there is no tie.
Case 1: Assume first that, given σ , there is a tie in the score of two candidates who
are not the winners.We denote them b and c w.l.o.g. As themost likely pivot outcome
in which both are involved is against a, we know that the unique voters who vote for
b (resp. c) are the ones who prefer b (resp. c) to a.

Therefore, the scores of both candidates are the following ones:

S(b) = N (b, a, c) + N (b, c, a) + N (c, b, a),

and
S(c) = N (c, a, b) + N (c, b, a) + N (b, c, a).

Since the condition IA holds, it follows that the scores of b and c cannot be equal, a
contradiction.

In other words, when IA holds, there is not an equilibrium with a unique winner
in which two candidates have the same score. So that, if there is a unique winner in
equilibrium, the only possible case is that there is no tie in the scores, to be analyzed
in the Case 2.

Case 2: Assume now that there are no ties in the scores. Note first that N (x, a) �=
N (y, a) for any pair x, y ∈ X . To prove this, it suffices to see that N (x, a) =
N (x, a, y) + N (x, y, a) + N (y, x, a) and N (y, a) = N (y, a, x) + N (y, x, a) + N (x,
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y, a). The condition IA implies that N (x, a, y) �= N (y, a, x). Therefore, N (x, a) �=
N (y, a) for any pair x, y ∈ X .

W.l.o.g. we assume that N (b, a) > N (c, a) > · · · > N (k, a) ∀ b, c, . . . , k ∈ X .
Since every voter anticipates that the most likely pivot outcome involving any

candidate x �= a is against a, it follows that the score of each candidate x �= a equals
N (x, a) the share of voters who strictly prefer x to a whereas the one of a equals
N (a, b). Hence, the scores of the candidates satisfy S(a) > S(b) > · · · > S(k).

Assume that a is not the CW so that there is some candidate y with yMa. If
y = b, then N (b, a) > N (a, b) so that the score of b is higher than the score of
a, a contradiction with a being the winner. If y �= b, then N (y, a) > 1/2 so that
S(y) = N (y, a) > 1/2 > N (b, a) = S(b). Therefore, y is ranked second. In this case,
the score of a equals N (a, y) < 1/2, a contradiction with a being the winner. Hence,
it can only be the case that a is M -preferred to the rest of the candidates: for any
x ∈ X \ {a}, aMx. In other words, a is the Condorcet winner. �

Finally, IA entails that if there is a CW in the profile, there exists an equilibrium
in which this candidate is the unique winner.

Proposition 4 If the election E satisfies IA and admits a Condorcet winner, then
there exists an equilibrium that uniquely selects this candidate.

Proof Take a society inwhich there is aCW (denoted a) and inwhich IA holds. Since
IA holds, we can assume w.l.o.g. that N (b, a) > N (c, a) > · · · > N (k, a). Indeed,
as shown in the proof of Proposition 3 (case 2), if IA holds, then N (x, a) �= N (y, a)

∀x, y ∈ X . Assume that the scores satisfy S(a) > S(b) > · · · > S(k). Due to the
ordering condition, it follows that the most likely pivot in which a is involved is
against b whereas the most likely pivot outcome in which any other candidate x is
against a. Thus, the score of a equals N (a, b) whereas the score of x (x �= a) equals
N (x, a). As a is theCW , it follows thatN (a, b) > 1/2 and thatN (x, a) < 1/2 for any
x �= a. Finally, since N (b, a) > N (c, a) > · · · > N (k, a), the scores satisfy S(a) >

S(b) > · · · > S(k) as wanted. Thus we have proved that there exists an equilibrium
in which the CW is the unique winner, concluding the proof. �

Proof of Theorem 1 As previously mentioned, if #X v ≤ 2, then the election admits
a CW . By Proposition 4 we have shown that if there is a CW , there exists an equi-
librium in which he is the unique winner. Moreover, there is no other equilibrium
with a unique winner as ensured by Proposition 3. As shown by Proposition 2, there
is no equilibrium with two winners since SA is satisfied. Therefore, the only type
of equilibrium that might exist is the one in which at least three candidates are tied.
However, the candidates who are unviable cannot be in the set of winners. Hence,
when #X v ≤ 2, there is no equilibrium in which at least three candidates wins, which
concludes the proof of part 1 of the Theorem 1. The part 2 of the Theorem 1 is a
direct implication of the different results of this section. �

One main implication of Theorem 1 is that in elections with three candidates, the
equilibrium winners are as follows.
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Corollary 1 If the election E satisfies both IA and SA and there are three candidates
in the election, there are at most two sets of equilibrium winners:

1. the Condorcet Winner,
2. the three candidates belong to the winning set.

5 On the Indeterminacy of Approval Voting

We now focus on the elections that admit at least three viable candidates.
We first focus on elections with three candidates and then explain how to extend

the results to elections with at least four candidates.

5.1 Three Candidates

The next theorem gives a simple condition for the existence of a tie among viable
candidates: if three candidates are viable, such an equilibrium exists. Let U a set of
utilities, then we have

Theorem 2 Assume that the election has three candidates. If all candidates are
viable, then there is a closed set of utilities Û ⊆ U such that for any election with
utility vector u ∈ Û , there is an equilibrium in which all viable candidates are tied
for victory.

This subsection presents the proof of Theorem 2. In the second part of this subsec-
tion, we prove that the equilibrium described by Theorem 2 need not exist for every
utility representation. Indeed, Example 3 discusses an election with three candidates
that admits no tie among equilibrium winners for some set of utilities.

We first present one proposition and one technical lemmata that will be useful for
proving Theorem 2.

Proposition 5 For each election E, there exists some m ∈ N
+ such that

n − N (. . . , a) ≥ m ⇐⇒ a ∈ X v.

Proof of Theorem 1 Take any election E with X uv = ∅. Thus the result trivially
follows. Consider now any election thatX uv �= ∅ and let a, b be two candidates such
that a = argminx∈X v n − N (. . . , x) and b = argmaxx∈X uv n − N (. . . , x). Note that
if we prove that n − N (. . . , a) > n − N (. . . , b), then the result follows.

Thus, let us assume by contradiction that n − N (. . . , a) ≤ n − N (. . . , b). It fol-
lows that a ∈ X v and b ∈ X uv. Thus, there exists some y ∈ X with N (y, . . .) >

n − N (. . . , b). Since we have assumed that n − N (. . . , a) ≤ n − N (. . . , b), it fol-
lows that N (y, . . .) > n − N (. . . , a) and hence a ∈ X uv, showing the desired con-
tradiction. �
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Lemma 3 For any candidate a, there exists some sequence of pivot probabilities pε

that induces when ε → 0, the following boundaries for the score of candidate a:

min S(a) = N (a, . . .) and max S(a) = n − N (. . . , a).

Proof of Theorem 1 Consider any candidate d and assume that

lim
ε→0

pε
ad

pε
ab

= lim
ε→0

pε
ad

pε
ac

= 0 for any ad �= ab, ac (g).

Note that, given (g), when ε → 0, the voter’s decision concerning whether to
cast a vote for a only depends on the pivotal events in which candidates b and c are
involved, the rest of them becoming infinitely less likely.

We divide the voters into the usual six groups according their ordinal preference
over a, b and c (as described in the primer of the proof).

Note that the N1 and N2 voters always vote for a and the N4 and N6 voters never
vote for a independently of the pivot vector.

Moreover, we let R3R5 = 1 and we assume that U3(a) = 0 and U5(a) = 0.
It follows that given pε,

min S(a) = N (a, . . .), and max S(a) = n − N (. . . , a)

Note that the proof is done with homogenous cardinal utilities but a similar argument
applies with heterogeneous cardinal utilities. �

We can now present the proof of Theorem 2.

Proof of Theorem 1 Voters’ preferences are strict so that we divide the voters into
six groups as follows:

N1 N2 N3 N4 N5 N6

a a b b c c
b c a c a b
c b c a b a

n1 n2 n3 n4 n5 n6

with for exampleN1 being the set of voters i with preference ordering a �i b �i c,
with #N1 = n1. A set of voters sharing the same preference ordering is denoted Nl

with l = 1, . . . , 6.
We first assume that the voters in the same group (i.e. sharing the same ordinal

preferences) have the same cardinal utilities. This assumption simplifies the proof
and will be relaxed in the second part of the proof.
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Part 1. Homogenous cardinal utilities within each group

The proof proceeds as follows. It builds for any type distribution in which X uv

is empty (i.e. #X v = 3), a set of utilities and a strategy profile such that the three
candidates are tied. Moreover, it builds a pivot vector that justifies the strategy profile
proving that in equilibrium the three candidates are tied.

W.l.o.g. we let n − N (. . . , a) ≥ n − N (. . . , b) ≥ n − N (. . . , c).
For each voter i, we let ti, mi and bi respectively denote his top, middle and

bottom-ranked candidate over a, b, c. Moreover, for each i ∈ N we let Ri denote the
following ratio ui(ti)−ui(mi)

ui(mi)−ui(bi)
. Since all the voters sharing the same ordinal preferences

have the same cardinal utilities, it follows that for any i, j ∈ Nl , Ri = Rj.
Therefore w.l.o.g. Rl stands for the ratio Ri for each i ∈ Nl .
We consider the set of utilities Û defined as follows:

Û = {uN ∈ U | R1R6 = 1, R3R5 = 1, R1 = R2R3 and R3 = R1R4}.
The set Û is closed with an empty interior since it is the intersection of lower

dimensional hyperplanes. Note that this set is not empty since we can independently
choose each Rl . Moreover, we implicitly assume that nl > 0 for each l = 1, . . . , 6.
A similar argument applies if nl ≥ 0 for l = 1, . . . , 6.

We set pε = (εpab, εpac, εpbc) with

pab = 1

1 + R1 + R3
, pac = R3

1 + R1 + R3
and pbc = R1

1 + R1 + R3
.

One can check that the previous pivot probabilities imply that:

pmibi = Riptimi for each i ∈ N ,

which is equivalent to

Ui(v
mi ; pε) = 0 for each i ∈ N ,

where vmi stands for the ballot that assigns one point to mi (the middle-ranked can-
didate of voter i) and zero points to the rest of the candidates.

Given the description of the best responses given by Lemma 2, we know that
the previous equality implies that every voter i is indifferent between voting for his
top candidate (ti) and for his top-two candidates (ti, mi). Hence, given pε one can
choose a best response σ such that the score of each candidate x can take any value
in [N (x, . . .), n − N (. . . , x)].

Since X uv is empty, it follows that n − N (. . . , c) > N (a, . . .), N (b, . . .). More-
over, by assumption,n − N (. . . , a) ≥ n − N (. . . , b) ≥ n − N (. . . , c). Thus, one can
choose the three scores equal to n − N (. . . , c).

So far we have proved that for each vector u ∈ Û and given pε, there exists a best
response σ that leads to three tied winners. Moreover the pivot probability vector pε

satisfies the ordering condition since the three candidates are tied given σ . Therefore,
σ is an equilibrium, concluding the proof with homogeneous utilities.
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Part 2. Heterogenous cardinal utilities within each group

We now allow the voters to have different cardinal utilities while having the same
ordinal preferences. Therefore, there is not anymore a unique Ri for each voter i in
each group Nl .

For each pivot vector p, we can divide the voters in each group Nl in three possible
categories: those forwhichUi(vmi ; p) > 0, those forwhichUi(vmi ; p) = 0 and finally
those for which Ui(vmi ; p) < 0.

For each group Nl , we denote by N ∗
l the group of voters such that for each i ∈ N ∗

l ,
Ui(mi) = 0. We let R∗

l = Ri for each i ∈ N ∗
l and for each l.

Consider a voter i in N ∗
1 with middle-ranked candidate b. Therefore,

Ui(v
b; p) = 0 ⇐⇒ pbc = R∗

1pab.

Any voter j in N1 with Rj > R∗
1 is such that Uj(vb; p) < 0, whereas if Rj < R∗

1, it
is the case that Uj(vb; p) > 0. The same reasoning applies for each voter in any of
the Nl groups. Therefore, R∗

l determines the best responses of the other voters in the
group Nl . Moreover, the number of voters in Nl who vote for their middle-ranked
candidate can vary from 0 to nl , since one can set R∗

l to be equal to any Ri for each
i ∈ Nl .

We consider the set of utilities Û∗ defined as follows:

Û∗ = {u ∈ U | R∗
1R∗

6 = 1, R∗
3R∗

5 = 1, R∗
1 = R∗

2R∗
3 and R∗

3 = R∗
1R∗

4},

and pε = (εpab, εpac, εpbc) with

pab = 1

1 + R∗
1 + R∗

3

, pac = R∗
3

1 + R∗
1 + R∗

3

and pbc = R∗
1

1 + R∗
1 + R∗

3

.

Given pε, a similar reasoning to the one in Part 1 proves that each N ∗
l is non-

empty. It follows that given pε one can choose a best response σ such that the score
of each candidate x can take any value in [N (x, . . .), n − N (. . . , x)]. Therefore, since
pε satisfies the ordering condition, this proves that σ is an equilibrium, concluding
the proof for heterogenous preferences. �

Theorem 2 proves that for some set of utilities, there is an equilibrium in which
all the candidates in the race are tied. However, it should be noted that this sort of
equilibria need not exist for every utility representation of the election. The following
example illustrates this point with just three candidates.

Example 3 Let X = {a, b, c} and consider a society with the following proportions
with 0 < μ < 10: 1

9 of the voters with uA = (10, μ, 0); 2
9 of the voters with uB =

(10, 0, μ); 4
9 of the voters with uC = (10 − μ, 10, 0) and 2

9 of the voters with uD =
(10 − μ, 0, 10). The candidate a is the CW and X uv = ∅. Note that both SA and IA
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hold. SinceX uv = ∅, every candidate is viable.Hence, there is a strategy profile under
which the candidate wins with positive probability. However, whether this occurs in
equilibrium depends on the intensity of the voters’ utilities as will be shown in the
next lines.

Indeed, Proposition 2 implies that there is no equilibriumwith twowinners.More-
over, since there is a CW , Proposition 4 ensures that there exists an equilibrium in
which a is the unique winner. Finally, there is no other equilibrium with a unique
winner as ensured by Proposition 3. In other words, neither b or c can win alone.

One question remains to be answered: is there an equilibrium with the three
candidates tied for victory? These equilibria might or not exist as a function of the
voters’ intensities of preferences.

There is no equilibrium in this election in which the three candidates have the
same score with no voter being indifferent between single and double voting. Indeed,
when no voter is indifferent between single and double voting, it follows that all the
voters with the same utility vector vote in the same way. One can check that in any
strategy profile in which the voters play best responses (each voter voting for his top
candidate or for his two top candidates), there is no equality between the scores of
the candidates. Hence, there is no such equilibrium with a three-way tie.

Thus, in order to have such anoutcome, some typeof voters are indifferent between
single and double voting. In equilibrium, voters always approve of their most pre-
ferred candidate and never approve of their worst preferred one.

If just one type of voters play a mixed strategy, then it is not possible to obtain a
three-way tie. If at least two types play in mixed strategies, then either C or D voters
vote also for their middle ranked candidate so that a has the highest score.

Indeed, assume first that a C voter plays a mixed strategy over his two best
responses so that UC(0, 1, 0) = UC(1, 1, 0). Due to (U ), the previous equality is
equivalent to UC(1, 0, 0) = 0 so that

pε
13(10 − μ) − pε

12μ = 0. (∗)

However, when (∗) holds, we have that UD(1, 0, 1) > UD(0, 0, 1). To see why,
note first that UD(1, 0, 1) > UD(0, 0, 1) ⇐⇒ UD(1, 0, 0) > 0. Moreover, remark
that UD(1, 0, 0) = (10 − μ)pε

12 − μpε
13 so that, when (∗) holds,

UD(1, 0, 0) = 10(10 − 2μ)

μ
pε
13 > 0.

which holds since μ < 5.
Therefore, if a C voter plays a mixed strategy, D voters vote for their second

ranked candidate a, leading to its victory. A symmetric argument applies when a D
voter plays a mixed strategy. Therefore, in any mixed strategy profile in which either
C or D voters play a mixed strategy between their two best responses, a is the sole
winner of the election.
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Hence, the only possibility for the existence of an equilibrium in which the three
candidates get the same score is to assume that A and B voters both play a mixed
strategy. However, this implies that

UA(0, 1, 0) = 0 ⇐⇒ −pε
12(10 − μ) + pε

23μ = 0,

and
UB(0, 0, 1) = 0 ⇐⇒ −pε

13(10 − μ) + pε
23μ = 0.

The previous two equalities imply that the unique pivot probability vector justify-
ing such best responses equals pε = (

μ

10+μ
ε,

μ

10+μ
ε,

10−μ

10+μ
ε). However, as previously

noted, UC(1, 0, 0) = pε
13(10 − μ) − pε

12μ which is strictly positive given pε since
μ < 5. Hence, as in the previous case, if both A and B voters play a mixed strategy,
C voters give one point to a, leading to its victory. Therefore, there is no equilib-
rium with three winners. Moreover, by Proposition 4, we know that there exists an
equilibrium in which a is the unique winner. Furthermore, Proposition 2 implies that
there is no equilibrium with two winners. Hence, in any equilibrium, a is the unique
winner as long as μ < 5. Hence, the CW is the unique equilibrium winner.

This example illustrates then that that for some set of utilities, when there is a
CW andX uv = ∅, the unique equilibriumwinner is theCW . However, for a different
utility representation, we can find an equilibrium inwhich the three candidates get the
same score. For example, if we set μ = 6, there is an equilibrium in which the three
candidates are tied for victory with a score of 4/9 as long as pε = (pε

ab, pε
ac, pε

bc) =
(3/7ε, 2/7ε, 2/7ε).

5.2 Viable* Candidates and Many Candidates

We nowmove on to describe elections with at least four candidates and the sufficient
conditions for the presence of ties among viable candidates.

To see why Theorem 2 does not hold with more candidates, we present now the
following example.

Example 4 Let X = {a, b, c, d} and consider an election with 6
10 of the voters with

uA = (10, 9, 8, 0) and 4
10 of the voters with uB = (9, 10, 0, 8). This election has 3

viable candidates: a, b, and c. In particular, the latter is viable because the number of
voters who rank a first is equal to the number of candidates who do not rank c last.
Candidate c cannot win in any equilibrium. This is because c only receives approval
votes if there is a high enough probability pivot event where it is facing d . But d
always receives fewer approval votes than a as long as voters use best responses.
So, by the ordering condition, no voter approves of c. In fact, the only equilibrium
winner in this election is the CW .

The previous example shows that one needs to introduce a stronger condition
than viability to ensure the existence of ties among viable candidates. In particular,
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this condition takes into account the iterative reasoning described in the previous
example. The rest of this section described the notion of k−viable and k−unviable
which are needed to derive a version of Theorem 2 with at least four candidates.

Wefirst introduce some notation thatwill be useful throughout concerning degrees
of viability and thenprovehow these definitions help to describe the strategic behavior
under the Approval rule.

For notational purposes, we respectively relabel the set of viable and unviable
candidates by X v

0 and X uv
0 (rather than X v and X uv). Indeed, we say that a candidate

in X v
0 (resp. in X uv

0 ) is 0−viable (res. 0−unviable). It follows that

X = X v
0 ∪ X uv

0 .

The main reason for this relabelling is the introduction of viability degrees for the
different candidates as follows.

Definition 8 For any integer k ≥ 1, a candidate y in election E is k−unviable if:

∃ x ∈ X v
k−1 with N (x, . . .) > n − N k(. . . , y).

with
N k(. . . , y) := #{i ∈ N | x �i y for any x ∈ X v

k−1},

whereX uv
k stands for the set of k− unviable candidates andX v

k = X \ ⋃k
j=1 X uv

j
the set of k−viable candidates.

Definition 8 is hence defining, recursively, the sets of k−viable and k−unviable
candidates. It should be remarked that, for any integer k ≥ 0,

X v
k ⊂ X v

k−1 since X \
k⋃

j=1

X uv
j ⊂ X \

k−1⋃

j=1

X uv
j

so that any k−viable candidate is also (k − 1)−viable. The converse does not hold.
Building on the previous set inclusion, it is easy to see that for any non-negative
integer k such that X v

k �= ∅, N k(. . . , z) > N k−1(. . . , z).
The next definition deals with the candidates which are viable for every degree.

Definition 9 A candidate x in election E is viable∗ if x is k−viable for any positive
integer k.

The set of viable∗ candidates is denotedX ∗. Such a set is non-empty by construc-
tion.

Theorem 3 For any non-negative integer k, any election E and any equilibrium σ ,

1. a voter never approves of his least preferred k−viable candidate.
2. no k−unviable candidate belongs to the set of equilibrium winners W (σ ).
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3. the set of equilibrium winners W (σ ) contains only viable∗ candidates.

Proof of Theorem 1 The proof proceeds by induction. Steps A and B prove that (1)
and (2) hold. Step A proves the claim for k = 0 and Step B proves how to iterate the
same reasoning. The result (3) is an immediate consequence of both (1) and (2).

Step A: k = 0.

Step A. is divided in two parts. We first prove that no voter approves of his least
preferred 0−viable candidate (in A.1) and then show that this implies no 1−unviable
candidate belongs to the set of equilibrium winners for any equilibrium (in A.2).
Step A. 1.

Assume that there is some equilibrium σ in which some voter approves of his
least preferred 0−viable candidate z. It follows that, there exists a sequence of pivot
vectors pε with

Ui(v
z ; pε) ≥ 0 for any ε ∈ (0, 1),

whereUi(vz; pε) = ∑
xy∈H (vz

x − vz
y) · pxy · [ui(x) − ui(y)],with vz

x = 0 for any x �= z
and vz

z = 1. Note that that for any pair xy in which z is not involved, vz
x − vz

y = 0.
Hence the expected utility for voter i can be rewritten as:

Ui(v
z; pε) =

∑

x �=z

(0 − 1) · pxz · [ui(x) − ui(z)].

Take some equilibrium σ . The ordering condition implies that for any ε ∈ (0, 1),
any x ∈ W (σ ) and y /∈ W (σ ), εpε

xz ≥ pε
yz. Therefore,

lim
ε→0

pε
yz

pε
xz

= 0. (a)

Moreover, Proposition 1 implies that only 0−viable candidates are in W (σ ).
Therefore, since z is the least preferred 0−viable candidate for voter i, this implies
that

ui(x) − ui(z) > 0 for any x ∈ W (σ ) ⊂ X v
0 . (b)

Combining (a) with (b), it follows that

lim
ε→0

Ui(v
z ; pε) < 0,

which proves that voter i does not approve of z in equilibrium. This concludes the
proof of Step A.1.

Step A. 2. Assume that there is some 1−unviable candidate y so that ∃ x ∈ X with
N (x, . . .) > n − N 1(. . . , y). Step A.1 proves that no voter votes for his least pre-
ferred 0−viable candidate in equilibrium. Moreover, Lemma 2 proves that no vote
for his least preferred candidate in equilibrium. It follows that for any equilibrium
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σ , S(y; σ) ≤ n − N 1(. . . , y) since N 1(. . . , y) denotes the number of voters who
rank y last among all candidates and last among the 0−viable candidates. Since, in
equilibrium, all voters vote for their most preferred candidate, it follows that:

S(x; σ) ≥ N (x, . . .) > n − N 1(. . . , y) > S(y; σ),

so that y is not in the winning set. Hence, no 1−unviable candidate is in the set of
equilibrium winners, as wanted.

Hence, Step A. has proved that no voter votes for his least preferred 0−viable
candidate and that this implies that no 1−unviable candidate is among the winners
in equilibrium. We now move to Step B. that proves the induction argument.

Step B: Induction Argument.

Assume now that no voter approves of his least preferred j−viable candidate
with j ∈ {0, . . . , k − 1} and an h−unviable candidate does not belong to the set
of equilibrium winners for any h ∈ {0, . . . , k}. This Step proves that this implies
that no voter approves of his least preferred k−viable candidate and that that an
(k + 1)−unviable candidate does not belong to the set of equilibrium winners.

Step B.1. We first prove that a voter never approves of his least preferred k−viable
candidate.

Since no j−unviable candidate belongs to the set of equilibrium winners for any
j ∈ {0, . . . , k}, it follows that just k−viable candidates are in W (σ ) since X v

k =
X \ ⋃k

j=1 X uv
j .

Denote by z the least preferred k−viable candidate of some voter i. This implies
that just k−viable candidates are in W (σ ), it follows that limε→0 Ui(vz ; pε) < 0 for
any sequence of pivot vectors pε satisfying the ordering condition. Hence, it is not a
best response to approve of z, as wanted.

Step B.2. We now prove that no (k + 1)−unviable candidate belongs to the set of
equilibrium winners. Assume, by contradiction that there is some (k + 1)−unviable
candidate y in some set W (σ ) of equilibrium winners. Since y is (k + 1)−unviable,
it follows that:

∃ x ∈ X with N (x, . . .) > n − N k(. . . , y).

However, in Step B.1., we have proved that no voter approves his least preferred
k−viable candidate y. Moreover, we have assumed that no voter approves of his least
preferred j−viable candidate with j ∈ {0, . . . , k − 1}.

It follows that for any equilibrium σ , S(y; σ) ≤ n − N k(. . . , y) since N k(. . . , y)
denotes the number of voters who rank y last among the set of candidates and the set
of j−viable candidates for any j = 0, . . . , k.

Furthermore, in equilibrium, all voters approve of their first ranked candidate
which implies that:

S(x; σ) ≥ N (x, . . .) > n − N k(. . . , y) > S(y; σ),
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so that y is not in the winning set. Hence, no (k + 1)−unviable candidate belongs to
the set of equilibrium winners, entailing a contradiction and finishing the proof. �

Theorem 4 Assume that the election has at least four candidates. If there are at
least three viable∗ candidates, then there is a closed set of utilities Û ⊆ U such that
for any election with utility vector u ∈ Û , there is an equilibrium in which all viable∗
candidates are tied for victory.

Proof of Theorem 1 We prove that, for any profile with at least three viable∗ can-
didates, there exists some strategy profile σ and some sequence of pivot vectors
pε = (pε

xy)xy∈H that constitutes an equilibrium in which all candidates in X ∗ are tied
for victory so that W (σ ) = X ∗.

The proof is divided in three sections: the preferences, the pivot probabilities and
the conclusion.

Section I : The voters’ preferences

Take a preference profile with #X ∗ ≥ 3. Moreover, take some candidate c ∈ X ∗
and such that n − N (. . . , c) = minx∈X ∗ n − N (. . . , x).

Due to Lemma 5, any d ∈ X ∗ satisfies n − N (. . . , d) ≥ n − N (. . . , c) whereas
if d ∈ X \ X ∗ then n − N (. . . , d) < n − N (. . . , c).

Moreover, let a, b ∈ X ∗ with

a = argmax
x∈X ∗ n − N (. . . , x) and

b = arg max
x∈X ∗\{a}

n − N (. . . , x).

Consider the voters’ preferences restricted to the set of candidates M = {a, b, c}.
Moreover, for each i ∈ N we recall that Ri = ui(ti)−ui(mi)

ui(mi)−ui(bi)
.

Section II : The Pivot Probabilities

We assume that the sequence of pivot probabilities pε satisfies for any xy �=
ab, ac, bc,

lim
ε→0

pε
xy

pε
xa

= 0, lim
ε→0

pε
xy

pε
xb

= 0 and lim
ε→0

pε
xy

pε
xc

= 0. (f )

The condition (g) implies that when ε → 0, the voter’s decision concerning
whether to cast a vote for x �= a, b, c, only depends on the pivotal events in which
candidates b and c are involved, the rest of them becoming infinitely less likely.

Given these assumptions, we have two implications concerning the voters’ deci-
sions. These implications are different if one considers the decision over a, b and c
or a different candidate.
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Section II .1: Votes for a,b,c.

Consider the expected utility for a voter i of casting ballot va which consists of a
vote just for candidate a (and no points for the rest of the candidates):

Ui(v
a; pε) =

∑

ax∈H

pε
ax(ui(a) − ui(x)).

However, since (f ) applies, it follows that

lim
ε→0

pε
xy

pε
ab + pε

ac + pε
bc

= 0,

whenever xy �= ab, ac, bc. Therefore, the following limit equality holds

lim
ε→0

Ui(va; pε)

pε
ab + pε

ac + pε
bc

= pε
ab

pε
ab + pε

ac + pε
bc

(ui(a) − ui(b)) + pε
ac

pε
ab + pε

ac + pε
bc

(ui(a) − ui(c)).

Hence, writing qε
xy = pε

xy

pε
ab+pε

ac+pε
bc
, it follows that

lim
ε→0

Sign(Ui(v
a; pε)) = Sign

(
qε

ab(ui(a) − ui(b)) + qε
ac(ui(a) − ui(c))

)
.

Note that the sign of the utility is the only information needed to determine the
voter’s best response (since under AV , no constraints are given on the number of
dis/approved candidates). Therefore, following a similar reasoning, it can be deduced
that:

lim
ε→0

Sign(Ui(v
b; pε)) = Sign

(−qε
ab(ui(a) − ui(b)) + qε

bc(ui(b) − ui(c))
)
,

and

lim
ε→0

Sign(Ui(v
c; pε)) = Sign

(−qε
ac(ui(a) − ui(c)) − qε

bc(ui(b) − ui(c))
)
.

Therefore, the decision of the voters over these candidates is equivalent to the
one with just three candidates (a, b and c). As discussed in the primer of the proof,
we can choose a set of utilities and conditions on pε

ab, pε
ac and pε

bc such that the
three candidates are tied for victory for some best response σ . The score of the three
candidates equals n − N (. . . , c).

Section II .2: Votes for the rest of the viable candidates.

Consider any candidate d ∈ X v. By assumption, note that n − N (. . . , c) ≤ n −
N (. . . , d).
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Moreover, it is the case that N (d , . . .) < n − N (. . . , c). Indeed, assume by con-
tradiction that N (d , . . .) > n − N (. . . , c). Then, c is unviable, a contradiction since
c in X in.

As proved by Lemma 3, we can choose a best response σ such that the score of
candidate d can take any value in [N (d , . . .), n − N (. . . , d)].

Moreover, since N (d , . . .) < n − N (. . . , c) ≤ n − N (. . . , d), we can set S(d) =
n − N (. . . , c).

In otherwords, for each candidate d ∈ X v, we canfindpivot probabilities, cardinal
utilities and voters’ best responses such that S(d) = n − N (. . . , c).

Section II .3: Votes for the rest of the unviable candidates.

The votes for these candidates do not affect the pivot probabilities. Indeed, since
an unviable candidate cannot win (by definition), this candidate is not in the winning
set of the equilibrium.

Section III : Conclusion.

It follows that given pε we can choose a strategy profile σ such that every voter
chooses among his best responses and W (σ ) = X v. Since pε follows the order-
ing condition, σ is an equilibrium in which all the viable candidates are tied as
wanted. �

6 Concluding Comments

This work focuses on the implications of allowing strategic voters to vote for as
many candidates as they want. We divide the elections into two categories: the ones
in which at most two candidates are viable (a) and the ones in which at least there
are three viable candidates (b). Our work fully characterizes the set of equilibrium
winners for each election.

The results are surprisingly different in both scenarios. It can be argued that
the first scenario is much more plausible than the second one at an empirical level.
However, note that this intuition holds for plurality elections in which the Duverger’s
law tends to hold. Within the model, the election takes place under approval voting
so that defining a priori what is more plausible seems elusive.

In scenario (a), our model uniquely predicts that the unique equilibrium winner
is the Condorcet Winner. Moreover, note that the existence of two viable candidates
is a necessary and sufficient condition for the uniqueness of this equilibrium. This is
a strong argument for the use of this rule since it coincides with the recommendation
made by different fairness theories (i.e. tournament solutions) that entitle that such
a candidate should win if it exists.

In contrast, in scenario (b), we prove that there is some equilibrium inwhich the set
of viable candidate coincides with the set of equilibrium winners. More specifically,
we show that for any preference profile that admits at least three viable candidates,
we can build an equilibrium in which all these candidates are tied for victory. More
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precisely, our result states that, given the ordinal preferences, there are some cardinal
preferences that would admit a voting equilibrium in which every viable candidate
is a likely winner. Note that the set of cardinal preferences that admit such large sets
of winners may be very small. Finally, our result suggests that this rule may exhibit
some indecisiveness when many candidates might win.

A potentially interesting venue for the current model would be to test our model of
strategic voting on experimental data or real data. Clearly, themain testable prediction
that can be derived from our contribution is the presence of ties among winners with
Approval voting when (i) there is no Condorcet Winner or (ii) when there are at least
three viable candidates. Moreover, pushing further the notion of viable candidate and
understanding how this concept can be adapted to other theoretical and empirical
models seems also very pertinent.
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Combinatorics of Election Scores

Alexander Karpov

1 Introduction

There are many electoral systems that determine the winner by computing a score
of each candidate and a candidate with the best score is declared elected. Positional
scoring rules, the Young rule, and theDodgson rule are among these rules. A problem
of calculating a score of a candidate (election score problem) is of special interest
in computational social choice. Election score problem can be harder than winner
determination problem (Fitzsimmons and Hemaspaandra 2018).

Some ranking aggregation methods determine the winner ranking by computing
a score of each ranking and a ranking with the best score becomes a winner. The
Kemeny rule is the most important example of such methods.

Election scores vector contains some information about preference profile. In
general, preference profiles cannot be reconstructed from election scores vector, but
it is possible to find a class of preference profiles, which lead to the same election
scores vector. The higher the number of possible election scores vectors, the more
information election score vector possibly contains.

Intuitively, the plurality scores contain less information about preference profile
than the Borda scores. In some sense, the plurality rule needs less information form
preference profile, than the Borda rule. The celebrated Fishburn (1977) classification
of voting rules does not represent this relation. According to Fishburn’s classification,
the Borda rule belongs to C2—voting rules that only depend on weighted pairwise
majority comparisons (De 2000); but the plurality rule belongs to C3—voting rules
that require more information than weighted pairwise majority comparisons.
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The aim of our study is to find the number of different election scores, generated
by the most popular rules. If a particular scoring rule (in the most general sense)
leads to a higher number of election scores, then it utilizes more information from
preference profiles.

Starting from an impartial, anonymous, and neutral culture (IANC) model (Ege-
cioglu and Giritgil 2013) and enumerative combinatorics of anonymous and neutral
equivalence classes of preference profiles (ANECs), we introduce reverse invari-
ant ANECs (RIANECs) and self-symmetric ANECs (SSANECs). These classes of
ANECs exploit the reversal symmetry of preference profiles. Note that we do not
introduce any probability distribution over preference profiles.We consider the IANC
model only as a combinatorial object. For a three-alternatives case, we design amulti-
graph representation of ANECs and a bracelet representation of RIANECs. These
objects are well-studied in combinatorics.

An election scores vector may not allow for all preference profiles to be separately
identified. Some preference profiles from different ANECs are indiscernible (they
lead to the same election scores vector), e.g., preference profiles with the same
structure of the top alternatives under the plurality rule. The class of preference
profiles that lead to the same election scores vector under a voting rule is called a
voting situation.

Voting situations induce a partition of the set of ANECs. A finer partition means
that a rule in some sense utilizes more information from preference profile. For a
perfectly discernible voting rule, which distinguishes all ANECs, the number of
voting situations equals the number of ANECs.

To illustrate the general framework, we analyze three rules with candidates scores:
the plurality rule, the Borda rule, and the scoring rules in the extreme case, and the
Kemeny rule as an example of rankings scores. The main results are obtained for the
case of three alternatives. Our framework can be applied to other rules and a higher
number of alternatives.

There are two close approaches for evaluation of information complexity in social
choice literature [see Boutilier and Rosenschein (2016) for survey of related litera-
ture]. The first one is the communication complexity theory of Conitzer and Sand-
holm (2005). They found bounds of communication required to elicit election results.
They studied the worst-case number of bits that must be communicated to execute a
given voting rule, when nothing is known in advance about the voters’ preferences.
The second approach is informational requirements of social choice rules of Sato
(2009, 2016). In these papers complexity is studied in terms of message functions
and message profile, i.e., each preference order is translated to the message space
according to a voting rule. Our model differs from both approaches presented in the
literature. There is no concept of the worst-case scenario in our paper. In contrast
to Sato (2009, 2016) we have information derived from preference profile, but not
from preference orders. Surely our approach is more general.

Combinatorics of preference profiles has a long tradition in social choice the-
ory. May (1948), Guilbaud (1952) were the first who estimated the likelihood of
Condorcet cycle and related events. Gehrlein and Fishburn (1976, 1979) further
developed this field. It became important area of research with own problems and
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own line of development. The latest papers in this direction contain counting results
related to single-peaked domain (Lackner and Lackner 2017) and group-separable
domain (Karpov 2019).

The structure of the paper is as follows: Sect. 2 describes a mathematical model
of IANC and the basic combinatorial theory; Sect. 3 presents the main result about
voting rules; and Sect. 4 compares voting rules and concludes the paper. Proofs of
propositions are given in Appendix.

2 Framework

Let a finite set X = {1, . . . ,m}, m ≥ 2 be the set of alternatives and a finite set
N = {1, . . . , n}, n ≥ 2 be the set of agents (voters). Each agent i ∈ N has a strict
preference order Pi over X (linear order). Let L(X ) be the set of all possible linear
orders over X . An n-tuple of preference orders generates a preference profile P =
(P1, . . . ,Pn) ∈ L(X )n.

Within this model, the names of voters (anonymity) and names of alternatives
(neutrality) do not matter. An anonymous and neutral equivalence class (ANEC) is
a set of preference profiles that can be obtained from each other by permuting pref-
erence orders and renaming alternatives. Let a set Sk be the set of all permutation
of k-elements set. The permutation of voters is denoted by σ ∈ Sn, and the permu-
tation of alternatives is denoted by τ ∈ Sm. Performing a change of the names of
alternatives and a change on the names of individuals leads to an action of the group
Sn × Sm on the set of preference profiles. The image of profileP under permutations
σ ,τ is denoted by P (σ,τ ). Preference profiles P ,P ′ belong to the same ANEC if and
only if there are permutations σ ∈ Sn,τ ∈ Sm, such that P (σ,τ ) = P ′. This relation,
which is symmetric, is denoted as P ∼ANEC P ′. The complementary binary rela-
tion is denoted as �ANEC . The function pos(Pi, j) = |{x ∈ X |xPij}| + 1 indicates the
position of candidate j in preference profile Pi.

We use the following rounding functions: �x� is rounding down to the nearest
integer �x	 is rounding up to the nearest integer, and Round [x] is rounding down if
the fractional part is less than 0.5 and rounding up if the fractional part is greater
than or equal to 0.5.

2.1 ANEC Enumeration Problem

The ANEC enumeration problem is a starting point of the paper. It was solved
(Egecioglu and Giritgil, 2013). To state the authors’ results, we need some notation
from their papers. A partition λ of an integer n is a weakly decreasing sequence of
nonnegative integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) with n = λ1 + λ2 + · · · + λk . Each
of the integers λi > 0 is called a part of n. For example, λ = (3, 2, 2) is a partition of
n = 7 into three parts. It has two parts of size two and one part of size three. If λ is a
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partition of n, then this is denoted by λ 
 n. Each partition of n has a type denoted by
the symbol 1α12α2 . . . nαn , which signifies that λ = (3, 2, 2) is 10223140506070. We
can omit the zeros that appear as exponents and write the type of λ as 2231.

Let pk(n) be the number of partitions of nwith exactly k parts. It is also the number
of partitions of n in which the largest part has size k (Stanley 2012). Let pk,l(n) be
the number of partitions with k parts, each of which does not exceed l. Separating
the greatest part, we obtain

pk,l(n) =
� n
k �∑

i=1

pk−1,min{l,n−2i}(n − i).

For k = 2 and n − 1 ≥ l ≥ n
2 , we have:

p2,l = l − �n − 1

2
�.

A permutation σ of n defines a partition of n where the parts of the partition are
the cycle lengths in the cycle decomposition of σ . The cycle type of σ is defined as
the type of the resulting partition. For example, σ = (142)(35)(67) has cycle type
2231. For any λ 
 n of type 1α12α2 . . . nαn , define a number:

Zλ = 1α12α2 . . . nαnα1!α2! . . . αn!.

The number of permutations of cycle type 1α12α2 . . . nαn is given by z−1
λ n! where

λ is the partition of cycle lengths of σ .

Proposition 1 (Egecioglu and Giritgil 2013) For n voters and m alternatives, the
number of ANECs is equal to

#ANEC(m, n) =
∑

λ
m
z−1
λ

(
n
d + m!

d − 1
m!
d − 1

)
,

where d = d(λ) = Least common multiple of λ; zλ is is defined above and

(
x
k

)
=

{ x!
k!(x−k)! if x is integer,

0 otherwise.

#ANEC(m, n) is a polynomial in n of degree m! − 1.

Veselova (2016) compared #ANEC(m, n) with #AEC(m, n) (anonymous equiv-
alence classes) and #EC(m, n) (equivalence classes) and explored their asymptotic
properties. Asymptotically, the IANC, IAC, and IC models lead to the same results.
IAC and IC models are applicable for the equiprobable generation of preference
profiles and simulation studies (Gehrlein and Lepelley 2011, 2017). In our model,
we do not make simulations. The neutrality property is needed for defining voting
situations. Neutrality also clarifies combinatorial structures, which arise in this paper.
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A preference profileP ′ is the reversal of preference profileP if∀x ∈ X ,∀i ∈ N ,
pos(Pi, x) = m + 1 − pos(P′

i, x). This type of symmetry was studied by Saari and
Barney (2003), Crisman (2014), Bubboloni and Gori (2015, 2016).

An ANEC is self-symmetric (SSANEC) if for every P from the ANEC, the
reverse profileP ′ belongs to the sameANEC.Apair ofANECs is reverse symmetric
if for every P from one ANEC, the reverse profile P ′ belongs to the other ANEC.

Considering reverse symmetric ANECs as equivalent, we obtain a set of reverse
invariant ANECs (RIANECs) and binary relation∼RIANEC , which contains relation
∼ANEC .

2.2 Three Alternatives Case

This section introduces two new representations of preference profiles. These repre-
sentations reveal the internal structure of preference profiles and enable us to calculate
the number of RIANECs and SSANECs.

Definition 1 Multigraph representation of preference profile. Having 3 alterna-
tives as vertices of a graph, for each preference order in the profile, we define an arc
from the best alternative to the worst alternative.

Multigraph representation is anonymous and neutral. The renaming of alterna-
tives leads to graph isomorphism. The correspondingmultigraph uniquely represents
a preference profile. Table 1 contains several examples of the multigraph represen-
tation of preference profiles. #ANEC(3, n) is also the number of multigraphs with
3 nodes and n arcs (it is the A037240 sequence in the on-line encyclopedia of inte-
ger sequences, published electronically at http://oeis.org; henceforth OEIS). In the
3-alternatives case, formula from Proposition1 leads to:

#ANEC(3, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

(
n + 5

5

)
+ 1

16 (n + 4)(n + 2) + 1
9 (n + 3), if n ≡ 0 (mod 6);

1
6

(
n + 5

5

)
, if n ≡ (1or 5) (mod 6);

1
6

(
n + 5

5

)
+ 1

16 (n + 4)(n + 2), if n ≡ (2or 4) (mod 6);

1
6

(
n + 5

5

)
+ 1

9 (n + 3), if n ≡ 3 (mod 6).

http://oeis.org
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Table 1 3 agents and 3 alternatives case. List of ANECs. Multigraph and bracelet representations
of preference profiles

Number ANEC Multigraph representation Bracelet representation

1

a a a
b b b
c c c

2

a a a
b b c
c c b

3

a a b
b b a
c c c

4

a a c
b b a
c c b

5

a a c
b b c
c c a

6

a a c
b b b
c c a

7

a a b
b c a
c b c

8

a a b
b c c
c b a

9

a b c
b a a
c c b

10

a b c
b c a
c a b



Combinatorics of Election Scores 353

Fig. 1 Circle representation
of preference orders

For m = 3, there are six different preference orders. Defining residues modulo 6,
we numerate preference orders from 0 to 5 in the clockwise manner:

P0 =
⎛

⎝
a
b
c

⎞

⎠ ,P1 =
⎛

⎝
a
c
b

⎞

⎠ ,P2 =
⎛

⎝
c
a
b

⎞

⎠ ,P3 =
⎛

⎝
c
b
a

⎞

⎠ ,P4 =
⎛

⎝
b
c
a

⎞

⎠ ,P5 =
⎛

⎝
b
a
c

⎞

⎠ .

Each subsequent preference order is obtained from the previous preference order
by one pairwise swap of consecutive alternatives. The next nearest preference order
is obtained by two swaps. The highest number of swaps is three, which leads to
preference order reversal. Putting preference orders on a loop we obtain a circle
representation of preference orders, which is presented in Fig. 1.

A preference profile is a string of n preference orders, each of 6 possible types
P0, P1, P2, P3, P4, P5. By anonymity, the order of preference orders does not matter.
Only the number of different preference orders matters. Neutrality links different
preference orders in the cycle structure depicted in Fig. 1. Circle from Fig. 1 is also a
permutahedron. For m = 4, the corresponding permutahedron becomes much more
complicated and does not have all symmetries, which are observed in case ofm = 3.

Permutating (renaming) one pair of alternatives (one or three swaps in a preference
order) leads to a preference order circle turnover. There are 3 possible pairs and 3
axes that divide the circle into halves. Two possibilities of permutating (renaming)
three alternatives (two swaps in a preference order) lead to the preference order circle
rotating on 2 preference orders in a clockwise or counterclockwisemanner. The circle
representation of preference orders is applied for the Kemeny rule analysis further
in the paper.
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Neutrality, anonymity, and reverse invariance lead to a simpler representation
of preference profiles. Instead of using 6 types of preference orders (letters) in the
standard representation of preference profiles, we can use only 2 types of letters.
Because we apply the cycle structure of a string, taking all rotations and turnovers as
equivalent, we call the new object a bracelet (term is borrowed from combinatorics
theory). For demonstration purposes, we provide a definition using beads of two
colors. It is possible to rewrite definition in terms of string with two types of letters.

Definition 2 Bracelet representation of preference profiles.According to the cir-
cle representation of preference orders (Fig. 1), we numerate preference orders from
0 to 5 in a clockwise manner. Every preference order in a profile is represented by
a black bead. The space between preference orders in the circle representation of
preference orders is represented by a white bead. A preference profile is a bracelet
with n + 6 beads, where exactly 6 beads are white. We take n0 black beads, where
n0 is the number of type 0 preference orders, then one white bead, then n1 black
beads, where n1 is the number of type 1 preference orders, etc. Adding a white bead
between n5 black beads, where n5 is the number of type 5 preference orders, and n0
black beads, where n0 is the number of type 0 preference orders, we complete the
bracelet.

Table1 contains examples of the bracelet representation of preference profiles.
The starting point of the circle representation of preference orders and the way of
numbering (clockwise or counter-clockwise) do not matter. Bracelets are equivalent
up to rotating and turnover. The bracelet representation of preference profiles is
anonymous, neutral, and reverse invariant.

Permutating one pair of alternatives (one or three swaps in a preference order)
leads to bracelet turnover. Two possibilities of permutating three alternatives (two
swaps in a preference order) leads to preference order bracelet rotation. Reversing
a preference profile leads to a rotation on three preference orders in a clockwise
manner.

For n = m = 3, we have #ANEC(3, 3) = 10. According to Table1, in the case
of 3 alternatives and 3 agents, there are 10 different multigraphs and 7 different
bracelets representing 10 ANECs [(preference profiles represented different ANECS
and numbering of ANECs are borrowed from (Karpov 2017)]. Some ANECs have
equivalent bracelet representations. These ANECs belong to the same RIANEC. For
example, Table1 presents preference profilesP2 andP3, which are reverse symmetric
and bracelets generated by these preference profiles are equivalent.

Every (n + 6)—beads bracelet (turnover invariant) with 6 white beads corre-
sponds to a RIANEC. Shevelev (A005513 in OEIS) proved the formula for the
number of such bracelets. Thus, we have Proposition 2.

Proposition 2 (Shevelev, A005513 in OEIS). For m = 3, the number of reverse
invariant ANECs is equal to



Combinatorics of Election Scores 355

#RIANEC(3, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12

(
n + 5

5

)
+ 1

96 (n + 7)(n + 4)(n + 2) + 1
18 (n + 6), if n ≡ 0 (mod 6);

1
12

(
n + 5

5

)
+ 1

96 (n + 5)(n + 3)(n + 1), if n ≡ (1 or 5) (mod 6);

1
12

(
n + 5

5

)
+ 1

96 (n + 7)(n + 4)(n + 2), if n ≡ (2 or 4) (mod 6);

� 1
12

(
n + 5

5

)
+ 1

96 (n + 5)(n + 3)(n + 1) + 1
18 (n + 6)�, if n ≡ 3 (mod 6).

This sequence arises in several enumeration problems. To the best of the author’s
knowledge, Hoskins and Penfold (1982), who studied the geometry of fabrics, were
the first with this sequence.

All ANECs are either self-symmetric or have reverse symmetric ANECs. Thus,
we have #ANEC(3, n) = 2#RIANEC(3, n) − #SSANEC(3, n). From this, we obtain
the number of SSANECs, which leads to proposition 3.

Proposition 3 For m = 3, the number of self-symmetric ANECs is equal to

#SSANEC(3, n) =
{

� 1
48 (n + 4)2(n + 2), if n is even;
1
48 (n + 5)(n + 3)(n + 1), if n is odd.

The number of SSANECs is relatively small, with lim
n→∞

#SSANEC(3,n)
#ANEC(3,n) = 0 and

lim
n→∞

#RIANEC(3,n)
#ANEC(3,n) = 1

2 . Almost all ANECs have their own symmetric ANEC.

Appendix 2 contains a tablewith #ANEC(3, n), #RIANEC(3, n) and#SSANEC(3, n).

3 Voting Situations Induced by Voting Rules

We consider voting rules, which can be represented as a procedure of finding the
highest/lowest score in some vector. Here, we consider positional scoring rules and
the Kemeny rule. In the anonymous and neutral model election results are equivalent
if one can be obtained from another by renaming alternatives.

A voting situation is a set of all ANECs, which lead to the same anonymous and
neutral election results.

Let a voting rule α : L(X )n → 2X has the following representation:

α = argmax
i∈X

csi,

where cs ∈ R
m is a candidates scores vector. Preference profiles P ,P ′ belong to the

same voting situation if and only if there are permutations σ ∈ Sn,τ ∈ Sm, such that
cs((Pσ )τ ) = cs(P ′).
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Let a ranking rule α : L(X )n → 2X has the following representation:

β = argmax
i∈X

csi,

where cs ∈ R
m! is a candidates scores vector. Preference profiles P ,P ′ belong to the

same voting situation if and only if there are permutations σ ∈ Sn,τ ∈ Sm, such that
cs((Pσ )τ ) = cs(P ′).

It is important to note that we do not distinguish preference profiles and voting
rules by the final choice.

For example, for the plurality rule, only the top alternative in each preference
order is elicited. For the case of 3 agents and 3 alternatives, we have only three
types of voting situations described by the top alternatives up to renaming voters and
alternatives: (a, a, a), (a, a, b), and (a, b, c). By neutrality, we do not distinguish
(a, a, a) and (b, b, b). For the plurality rule we have the same problem for the both
situations: What is the winner in unanimous case? From information that is utilized
by the plurality rule, we do not distinguish preference profiles P1 and P2. For the
case of 3 agents and 3 alternatives, the plurality rule partitions the set of ANECs into
three parts:(P1,P2),(P3,P4,P5,P6,P7,P8), and (P9,P10). We have three voting
situations generated by the plurality rule. For the case of 4 agents and 3 alternatives,
we have only four types of voting situations described by top alternatives: (a, a, a, a),
(a, a, a, b), (a, a, b, b), and (a, a, b, c).

#Rule(m, n) is the number of voting situations induced by a rule. For the case of 3
agents and 3 alternatives, we have #Plurality(3, 3) = 3. #Rule(m, n) does not exceed
#ANEC(m, n). In the case of #Rule(m, n) = #ANEC(m, n), we can unambiguously
reconstruct the ANEC from a voting situation (this property is called strong discerni-
bility). In other cases, that reconstruction is impossible. Strong discernibility is an
important property in preference diversity measurement. It has‘ been proven that in
some classes of preference diversity indices, there is no function that satisfies strong
discernibility (Hashemi and Endriss 2014) and reverse invariant discernibility (Kar-
pov 2017). Some voting rules utilize the same information as preference diversity
indices and fail to achieve strong or reverse invariant discernibility.

In the following subsections, the number of voting situations induced by the
plurality rule, the Kemeny rule, the Borda rule, and the scoring rules in extreme
cases are calculated.

3.1 The Plurality Rule

The plurality rule compares alternatives by the number of preference orders where
an alternative occupies the top position. The plurality rule utilizes information about
the partition of top choices. This partition has from 1 to m parts, which leads to
proposition 4.
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Proposition 4 The number of voting situations induced by the plurality rule is equal
to

#Plurality(m, n) =
m∑

i=1

pi(n).

Because for all k > n, we have pk(n) = 0, then for each n the sequence #Plurality
(3, n) has an upper bound.

#Plurality(3, n) is also the number of multigraphs with 3 nodes and n edges. The
corresponding multigraph is defined in the following way. For each preference order
in the profile,we define an edge connecting theworst alternative and the second-worst
alternative.

Corollary 1 (A001399, OEIS). For m = 3, the number of equivalent classes gen-
erated by the plurality rule is equal to

#Plurality(3, n) = round

[
1

12
(n + 3)2

]
.

Note that ties in rounding in this formula never arise.

The values of #Plurality(3, n) and the number of voting situations induced by
other rules are given in conclusion.

3.2 The Borda Rule

The Borda rule is a scoring rule in which the worst alternative has a score of 0, and
the best alternative has a score of m-1. The Borda rule utilizes information only about
the sum of scores for each alternative.

For the 3 alternatives and 3 agents case, we have the following voting situations
(ANECs and corresponding sums of scores vector in decreasing order):

P1 :
⎛

⎝
6
3
0

⎞

⎠ ;P2 :
⎛

⎝
6
2
1

⎞

⎠ ;P3 :
⎛

⎝
5
4
0

⎞

⎠ ;P4 :
⎛

⎝
5
2
2

⎞

⎠ ;P5 :
⎛

⎝
4
4
1

⎞

⎠ ;P6,8,9 :
⎛

⎝
4
3
2

⎞

⎠ ;P7 :
⎛

⎝
5
3
1

⎞

⎠ ;P10 :
⎛

⎝
3
3
3

⎞

⎠ .

Voting situations correspond to different partitions of the sum of the scores.

Proposition 5 For m = 3 and n ≥ 2, the number of voting situations induced by the
Borda rule is equal to

#Borda(3, n) = �1
2
(n + 1)2	.

The proof for Proposition5, and subsequent propositions are given in Appendix.
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3.3 The Discernibility Potential of the Scoring Rules

The scoring rules utilize information only about the sum of scores for each alter-
native. In an extreme case of irrational scores (e.g., for m = 3 scores 0,1,

√
2), each

combination of the scores (e.g., for m = 3, n = 5 scores 0,0,1,
√
2,

√
2) leads to a

unique sum of scores (1 + 2
√
2 in our example). In this case, we can unambiguously

derive the combination of scores from the sum of the score vector. In other words, we
can derive the scoring matrix [(the scorix in the terminology of Perez-Fernandez and
De Baets (2017)]. The element at the ith row and jth column of this matrix equals
the number of times that the i-th candidate is ranked at the j-th position

aij = |{k|pos(Pk , i) = j}|.

The scoringmatrix is used not only for scoring rules but also for other voting rules,
e.g., for the threshold rule (Aleskerovetal 2010), and the rank-dependent scoring
rules (Goldsmith et al. 2016). This matrix was investigated in pure mathematics in
MacMahon (1918), where we find 10 scoring matrices for the 3 alternatives and 3
agents case, which corresponds to the voting situations (ANECs and corresponding
scoring matrices):

P1:
⎛

⎝
3 0 0
0 3 0
0 0 3

⎞

⎠ ;P2:
⎛

⎝
3 0 0
0 2 1
0 1 2

⎞

⎠ ;P3:
⎛

⎝
2 1 0
1 2 0
0 0 3

⎞

⎠ ;P4:
⎛

⎝
2 1 0
0 2 1
1 0 2

⎞

⎠ ;P5:
⎛

⎝
2 0 1
1 2 0
0 1 2

⎞

⎠ ;

P6:
⎛

⎝
2 0 1
0 3 0
1 0 2

⎞

⎠ ;P7:
⎛

⎝
2 1 0
1 1 1
0 1 2

⎞

⎠ ;P8:
⎛

⎝
2 0 1
1 1 1
0 2 1

⎞

⎠ ;P9:
⎛

⎝
1 2 0
1 1 1
1 0 2

⎞

⎠ ;P10:
⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ .

From the generating function in (A257464 in OEIS) and the author’s calculations,
we derive Proposition 6.

Proposition 6 For m = 3, the number of voting situations induced by the scoring
rules in the extreme case is equal to

#Scor(3, n) =
{

� 1
48 (n

4 + 6n3 + 18n2 + 36n + 32), if n is even;
1
48 (n

4 + 6n3 + 18n2 + 18n + 5)	, if n is odd.

MacMahon (1918) contains series for a higher m. In the extreme case, the scoring
rule has a higher degree polynomial on n than the other scoring rules considered in
this paper (the plurality rule and the Borda rule). For m = 3, the simplest example
of indiscernibility is:
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P̂ =
⎛

⎝
a a b c
b b c a
c c a b

⎞

⎠ ; P̃ =
⎛

⎝
a a b c
b c a b
c b c a

⎞

⎠ .

P̂ and P̃ belong to different ANECs. The last three preference orders are different
in different preference profiles, but they have the same scoring matrix. These prefer-
ence orders represent different versions of the Condorcet cycle. Having the scoring
matrix, it is impossible to reconstruct ANEC. For small n, there is a small number of
such situations, but for big n the vast majority of ANECs have such indiscernibility.

3.4 The Kemeny Rule

The Kemeny rule uses the swap distance between preference orders (the number
of pairwise swaps of consecutive alternatives that is needed to transform one order
into another). Having the bracelet representation of preference profiles (Fig. 1), we
obtain a circle of distances from order P0 (Fig. 2). The circles of distances from other
preference orders can be obtained by rotating the circle of distances from Fig. 2.

Permutating one pair of alternatives (one or three swaps in a preference order)
lead to the turnover of the circle in Fig. 2. Two possibilities of permutating three
alternatives (two swaps in the preference order) leads to the circle rotating. Reversing
the preference profile leads to the circle rotating on 3 preference orders in a clock-
wise manner.

The Kemeny rule finds the order with the lowest sum of swap distances from the
order to all orders in the preference profile. The Kemeny rule utilizes information
only about the sums of swap distances between the preference profile and different
preference orders.

For the 3 alternatives and 3 agents case, we have the following voting situations
(ANECs and the corresponding sumsof distances in the circle form,which is invariant
up to rotating and turnover):

Fig. 2 Circle of distances
from order P0
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P1: − 0 − 3 − 6 − 9 − 6 − 3−;

P2,P3: − 1 − 2 − 5 − 8 − 7 − 4−;

P4,P5: − 2 − 3 − 4 − 7 − 6 − 5−;

P6,P8,P9: − 3 − 4 − 5 − 6 − 5 − 4−;

P7: − 2 − 3 − 6 − 8 − 6 − 3−;

P10: − 4 − 5 − 4 − 5 − 4 − 5 − .

Proposition 7 For m = 3, the number of voting situations induced by the Kemeny
rule is equal to

#Kemeny(3, n) =
{

� 1
72 (4n

3 + 21n2 + 54n + 45)	, if n is even;
� 1
72 (4n

3 + 21n2 + 36n + 11)	, if n is odd.

The Kemeny rule is more complicated and has a higher number of voting situations
than the rules above.

4 Conclusion

In this paper, we found the number of voting situations associated with voting rules.
Table 2 contains a table with the number of ANECs, the number of voting situations,
the polynomial degree for the above-mentioned rules for the 3 alternatives case

Table 2 Number of voting situations, m = 3

The number of voters Polynomial
degree

2 3 4 5 6 7 8

#ANEC 5 10 24 42 83 132 222 5

#RIANEC 4 7 16 26 50 76 126 5

#SSANEC 3 4 8 10 17 20 30 3

Plurality 2 3 4 5 7 8 10 2

Borda 5 8 13 18 25 32 41 2

Scoring 5 10 23 40 73 114 180 4

Kemeny 4 6 12 17 28 37 54 3
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The plurality rule has the lowest number of voting situations. The scoring rules
in the extreme case have the highest number of voting situations.

The number of voting situations induced by the plurality and Borda rules is repre-
sented by a polynomial in n of degree 2. At the limit, the number of voting situations
induced by the Borda rule is 6 times higher than the number of voting situations
induced by the plurality rule. The number of voting situations induced by Kemeny
rule is represented by a polynomial in n of degree 3.

Strongdiscernibility arises only three times in the class of scoring rules: I(Scoring,
3, 2) = I(Scoring, 3, 3) = I(Borda, 3, 2) = 1. In other cases, it is impossible to
reconstruct the ANEC from the voting situation. A general comparison of a higher
number of voting rules is the goal for the future research.

Acknowledgements The authorwould like to thankVincentMerlin,Dominik Peters, StefanNapel,
Fuad Aleskerov, Aleksei Kondratev, Yuliya Veselova, Daniel Karabekyan, and two anonymous
reviewers for their valuable comments, and Zaruhi Hakobyan for Latex text processing. The author
is also thankful to the seminar audience of the 8th Murat Sertel Workshop (held at the Université
de Caen Normandie, during May 22–23, 2018), the 14th Meeting of the Society for Social Choice
and Welfare (held at Seoul, Korea during June 14-17, 2018). An earlier version of this paper
circulated under the title “An Informational Basis for Voting Rules”. The paper was prepared
within the framework of the Basic Research Program at the National Research University Higher
School of Economics (HSE) and supported within the framework of a subsidy by the Russian
Academic Excellence Project “5–100”. The work was conducted by the International Laboratory
of Decision Choice and Analysis (DeCAn Lab) of the National Research University Higher School
of Economics.

5 Appendix

Proof of proposition 5. For m = 3, a homogenous preference profile (n preference

orders P0) has vector of rank sums

⎛

⎝
2n
n
0

⎞

⎠.Any preference profile has vector of ranks

sums either

⎛

⎝
2n
n
0

⎞

⎠ or vectors α,β,γ ,δ,ε, defined here:

α =
⎛

⎝
2n − x
n + x
0

⎞

⎠ ; β =
⎛

⎝
2n

n − x
x

⎞

⎠ ; γ =
⎛

⎝
2n − y

n − (x − y)
x

⎞

⎠ ; δ =
⎛

⎝
2n − x
n + y
x − y

⎞

⎠ ; ε =
⎛

⎝
2n − x

n
x

⎞

⎠ .

For all vectors α,β,γ ,δ,ε, we have that the first component is not less than the
second; the second component is not less than the third. Substituting x preference
orders from P0 to P5, we obtain type α preference profile. There are � n

2� preference
profiles of type α.Similarly, we have � n

2� voting situations of type β.
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Substituting y
2 preference orders from P0 to P3 and x − y preference orders from

P0 to P1, we obtain type γ voting situations with even y.Substituting (y−1)
2 preference

orders from P0 to P3, x − y − 1 preference orders from P0 to P1, and one preference
order from P0 to P2, we obtain type γ voting situations with odd y.

We can construct all possible type γ voting situations using these two design
methods. There are two natural restrictions on x,y for saving the order of alternatives:

2x − y ≤ n,

2y − x ≤ n.

From this, we find the number of type γ voting situations (if n ≥ 4):

for y ≤ x
2 , it is

∑� n
2 �

i=2 p2(i) + ∑� 2n
3 �

i=� n
2 �+1 p2,n−i(i);

for y ≥ x
2 , it is

∑� 2n
3 �

i=2 p2(i) + ∑n−1
i=� 2n

3 �+1

[
p2(i) − p2,2i−n−1(i)

]
;

for y = x
2 , it is � � 2n

3 �
2 �.

Thus, the number of type γ voting situations is equal to

� n
2 �∑

i=2

p2(i) +
� 2n

3 �∑

i=� n
2 �+1

p2,n−i(i) +
� 2n

3 �∑

i=2

p2(i) +
n−1∑

i=� 2n
3 �+1

[
p2(i) − p2,2i−n−1(i)

] − �� 2n
3 �
2

�

It is also the number of type δ voting situations.
Substituting x

2 preference orders from P0 to P3, we obtain type ε voting situations
with even x. Substituting (x−1)

2 preference orders from P0 to P3, one preference order
from P0 to P1, and one preference order from P0 to P5, we obtain type γ voting
situations with odd x.

We can construct all possible type ε voting situations using these two design
methods. There is one restriction on x for saving the order of alternatives:

x ≤ n.

If n ≥ 2 then the number of type ε voting situations is equal to n.
Summing over all types, we have (if n ≥ 4)

1 + 2

⎛

⎝�n
2
� +

� n
2 �∑

i=2

p2(i) +
� 2n

3 �∑

i=� n
2 �+1

p2,n−i(i) +
n−1∑

i=2

p2(i)

−
n−1∑

i=� 2n
3 �+1

p2,2i−n−1(i) − �� 2n
3 �
2

�
⎞

⎠ + n
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Modifying this, we obtain

3n − 1 + �2n
3

�2 − �2n
3

� + �n
2
�
(
�n
2
� + 3 − 2n

)

+ 2

⎛

⎝
� n
2 �∑

i=2

� i
2
� +

n−1∑

i=2

� i
2
� −

� 2n
3 �∑

i=� n
2 �+1

� i − 1

2
�

+
n−1∑

i=� 2n
3 +1�+1

[
� i − 1

2
�
]

− �� 2n
3 �
2

�
⎞

⎠ .

Calculating the sums, we obtain the result, which is also correct for n = 2, and
n = 3.

Proof of proposition 7 Let f0(k): N0 → N0 be the sum of distances between pref-
erence order P0 and preference order Pi, where i ≡ k (mod 6). Let g0(k) = f0(k) +
f0(k + 2) and h0(k) = (2g0(k) − g0(k + 3))/6 = (2f0(k) + 2f0(k + 2) − f0(k + 3)
− f0(k + 5))/6. This transformation is presented in Fig. 3a. The first circle is the cir-
cle of distances from order P0 to all six preference orders. After transformation, each
preference order is presented by three subsequent ones. This transformation has the
inversion presented in Fig. 3b. We design one-to-one correspondence between f0(k)
and h0(k).

In the same fashion, we define functions fj(k),gj(k),hj(k), j = ¯0, 5. Instead of
summing distances from preference orders

∑5
j=0 fj(k)nj, we sum transformed values

∑5
j=0 hj(k)nj.We have bisection between these sums. Any sumof transformed values

∑5
j=0 hj(k)nj can be represented by the circle presented in Fig. 4.
Permutating one pair of alternatives (one or three swaps in a preference order)

leads to Fig. 4 circle turnover. Two possibilities of permutating three alternatives
(two swaps in a preference order) lead to the circle rotating. Reversing the preference
profile leads to a rotating on 3 preference orders in a clockwise manner. By these
operations we can always construct a circle, such that x + y + z ≤ 3n − x − y − z
and x ≥ y ≥ z. From this definition, we have the following additional restrictions on
x,y,z

x + y ≥ n − z;

n − y + n − z ≥ x;

z + n − y + n − z + y ≥ 2x + 2(n − x).
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Fig. 3 Correspondence between f0(k) and h0(k)

Fig. 4 Circular partition of
preference orders

From these inequalities, we have n ≤ x + y + z ≤ � 3n
2 �. We will calculate the

number of partitions of i = ¯n, � 3n
2 � with 1,2, or 3 parts, such that each part does not

exceed n (and the special case of i = 3n
2 ).A complementary partition has sum 3n − i.

If x + y + z = 3n
2 , then the partitions of i = 3n

2 and 3n − i = 3n
2 can be the same.

Partitionswith y = n
2 are are symmetric (n − x = z, n − z = x, n − y = y). The num-

ber of such partitions is equal to
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1

2

(
p2,n

(
3

2

)
+ p3,n

(
3

2

)
+ n

2
+ 1

)
=

= 1

2

⎛

⎝1 + n − �n
4
�
(n
2

− 1
)

+ n2

2
+ �n

4
�2 − �3n − 2

4
� −

n
2∑

j=1

�3n − 2j − 2

4
�
⎞

⎠ . (∗)

For all other i, we have

1 +
� 3n−1

2 �∑

i=n

p2,n(i) +
� 3n−1

2 �∑

i=n

p3,n(i).

For n ≥ 3, we have

1 + �n
2
� +

� 3n−1
2 �∑

i=n+1

(
n − � i − 1

2
�
)

+
� 3n−1

2 �∑

i=n

� i
3 �∑

j=1

(
min i − 2j, n − � i − j − 1

2
�
)

. (∗∗)

Summing (*) for even n and (**) for all n, we obtain the result, which is also
correct for n = 1 and n = 2.
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From Gehrlein-Fishburn’s Method
on Frequency Representation to a Direct
Proof of Ehrhart’s extended Conjecture

Issofa Moyouwou, Nicolas Gabriel Andjiga, and Boniface Mbih

1 Introduction

Many authors from various fields have been interested in a theoretical or an event-
specific analysis of the following question: what is the exact number of integer to
a finite set of linear inequalities involving integer coefficients of bounded integer
free variables and integer parameters as a function of the parameters (a closed-
form representation)? This is exactly the challenge in social choice theory when one
aims at evaluating how frequent a voting event is. Ehrhart (1962, 1967, 1977) has
conducted the first study of this problem in the case of a unique parameter. Com-
bining some geometric considerations on the set of vertices of a polytope and peri-
odic numbers, Ehrhart described closed-form representations by pseudo-polynomial
functions, these are piecewise defined functions with polynomial expressions over
each parameter class modulo a positive integer period. Moreover, Ehrhart (1962, p.
139) suggested that pseudo-polynomials still model the case of several parameters
as follows:
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Conjecture 1 (Ehrhart’s conjecture) For any significant diophantine linear system
of any dimension, linearly dependent on several positive integral parameters, the
symbolic number of integer solutions as a function of those parameters is expressed
at different subdomains of the parameter space by different pseudo-polynomials.

Proofs have been provided to Ehrhart’s conjecture. For instance, Clauss et al.
(1997) established an inductive proof assuming the result for a unique parameter.
Moreover with additional works on the set of vertices of a parameterized polyhe-
dron by Loechner and Wilde (1996), the authors provided an algorithmic method
for computing the closed-form formula for the exact number of integer solutions to
a finite set of linear constraints depending linearly on a set of parameters. Another
important contribution to this problem comes from Barvinok (1993) and Barvinok
and Pommersheim (1999) who develop a polynomial time algorithm for counting
integral points in polyhedra. The Barvinok’s algorithm allows powerful implemen-
tations as in Verdoolaege et al. (2004). More recent implementations and software
packages are available from Bruns et al. (2017, 2019). The common aspect of those
approaches is the intensive connection of computations with geometric properties of
polyhedra and rational generating functions.

In the field of social choice theory, Gehrlein and Fishburn (1976) when investigat-
ing the issue of transitivity in majority voting in three-alternative elections, came out
with a set of linear inequalities that depend on the one hand on a collection of integer
variables each corresponding to the number of voters with the same preferences; and
on the other hand on an integer parameter n which is the size of the electorate. By
an appropriate rearrangement of the constraints instead of geometric considerations,
Gehrlein and Fishburn (1976) found, through known relations for sums of powers
of integers, the closed-form representation as a polynomial according to even and
odd values of n. Following this pioneering example, many authors have applied this
case-by-case analysis to evaluate how frequent some voting phenomena are; for a
very short selection, see Lepelley and Merlin (2001), Gehrlein and Lepelley (1999),
Lepelley (1993), Lepelley and Mbih (1987), or Gehrlein (1982). Roughly speaking,
Gehrlein–Fishburn’s method consists in an appropriate rearrangement of variables
according to a judicious partition of the parameter domain in order to bring out
summation index limits ready for summation tools.

Huang et al. (2000) attempted to generalize Gehrlein-Fishburn’s method, but
their suggested algorithm (Huang et al. 2000, p. 152) failed to be general even in the
case of a unique parameter. Gehrlein (2002,2005) enriches the work of Huang and
Chua with two computer programs, namely EUPIA and EUPIA2, to compute quasi-
polynomials for the specific case of one or two parameters using interpolation to
find out coefficients. In this paper, our main contribution is to give a straightforward
proof of Ehrhart’s conjecture by using only basic rearrangements of variables and
known relations for sums of powers of integers as pioneered byGehrlein andFishburn
(1976).We even state and prove amore general version as follows: for any significant
diophantine linear system of any dimension, linearly dependent on several positive
integer parameters, the sum of any multivariate polynomial over the set of the integer
solutions as a function of those parameters is expressed at different subdomains of the
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parameter space by different pseudo-polynomials. Clearly, the Ehrhart’s conjecture
follows as the particular case of a constant polynomial. All these are achieved using
a systematic way to split a given domain in terms of parameters and to bring out
feasible summation index limits, which then allow direct computerized evaluations
instead of manual partitioning of spaces that has been used frequently in the above
mentioned contributions.

The remainder of this paper is organized as follows. In Sect. 2, we first give some
illustrations of the Gehrlein-Fishburn procedure and then, give a more formal state-
ment of the results together with proofs. Algorithms for computerized evaluations
are described in Sect. 3 with the compact form of each algorithm relegated to the
appendix. Section 4 contains some further illustrations and applications. In Sect. 5,
we consider the continuous case; that is when variables and parameters are real
numbers. Sect. 6 concludes the paper.

2 A Direct Proof of the Ehrhart’s Conjecture

2.1 How Does the Gehrlein–Fishburn’s Method Work?

Our overview of the Gehrlein–Fishburn’s method to compute the total number of
integer solutions to a system of linear inequalities consists of three major steps as
follows :

• Step 1. Choose a variable and fit its constraints in such a way that its values are
those of a fixed interval, by so doing the initial system is split in many subsystems.
Reiterate the same procedure on each subsystem in the process as many times as
there are variables, constraints only on parameters prescribe the validity domain
of the corresponding subsystem.

• Step 2. For each subsystem fromStep 1, verify that lower bounds and upper bounds
of variables are both integers; otherwise judicious congruences on variables or
parameters are to be considered in order to rule out non integer bounds. Thereafter
use summation tools to derive the number of integer solutions to each subsystem
as a polynomial on parameters.

• Step 3. Partition the parameter domain relatively to the collection of validity
conditions associated with subdomains from Step 1 and add polynomials from
Step 2 defined on the same domain.

Before general technicalities presented through proofs in the next section, let us
consider an example to outline the main stages of the procedure.
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Example 1 Given two non negative integers n and m, let us consider the following
system of linear constraints

⎧
⎪⎪⎨

⎪⎪⎩

2x + y ≤ n
x + y ≥ m
x ≥ 0, y ≥ 0
x, y integers

(1)

Question: given two integers n and m,what is the total number of ordered pairs (x, y)
of integers that satisfy (1)? The three steps below show how to derive this result.

Step 1. We first choose to reorganize constraints on y as follows1

⎧
⎨

⎩

2x + y ≤ n
x + y ≥ m
x ≥ 0, y ≥ 0

⇔
⎧
⎨

⎩

y ≤ n − 2x
y ≥ m − x
y ≥ 0, x ≥ 0

⇔
{
max(0,m − x) ≤ y ≤ n − 2x

x ≥ 0

Now we must rewrite our constraints without the predicate ‘max’. This simply
amounts to finding conditions which lead to max(0,m − x) = 0 or to
max(0,m − x) = m − x otherwise. Two disjoint cases arise as follows:

{
max(0,m − x) = 0
with m − x ≤ 0

or

{
max(0,m − x) = m − x
with m − x ≥ 1

As a consequence, integer solutions to (1) are collected from

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ y ≤ n − 2x

with

⎧
⎨

⎩

0 ≤ n − 2x
m − x ≤ 0
x ≥ 0

or

⎧
⎪⎪⎨

⎪⎪⎩

m − x ≤ y ≤ n − 2x

with

⎧
⎨

⎩

m − x ≤ n − 2x
m − x ≥ 1
x ≥ 0

(2)

In each of the two subsystems above and in addition to constraints that precise the
interval of y’s variations, the remaining inequalities involved x and parameters only.
Attention is then turned on x’s constraints. From the first system at (2), constraints
that involved only x can be rearranged as follows

⎧
⎨

⎩

0 ≤ n − 2x
m − x ≤ 0
x ≥ 0

⇔
⎧
⎨

⎩

2x ≤ n
x ≥ m
x ≥ 0

⇔
{
2m ≤ 2x ≤ n
m ≤ n

1Given two numbers a and b, max(a, b) andmin(a, b) refer to the greatest and the smallest numbers
between a and b, respectively.
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and from the second system at (2), a similar basic operation leads to

⎧
⎨

⎩

m − x ≤ n − 2x
m − x ≥ 1
x ≥ 0

⇔ 0 ≤ x ≤ min(n − m,m − 1)

⇔
⎧
⎨

⎩

0 ≤ x ≤ n − m
n − m ≤ m − 1
0 ≤ n − m

or

⎧
⎨

⎩

0 ≤ x ≤ m − 1
n − m ≥ m
0 ≤ m − 1

Thus the system at (1) has been split into three disjoint subsystems labeled below

(S1) (S2) (S3)⎧
⎨

⎩

m − x ≤ y ≤ n − 2x
0 ≤ x ≤ n − m
m ≤ n ≤ 2m − 1

⎧
⎨

⎩

m − x ≤ y ≤ n − 2x
0 ≤ x ≤ m − 1
n ≥ 2m,m ≥ 1

⎧
⎨

⎩

0 ≤ y ≤ n − 2x
2m ≤ 2x ≤ n

2m ≤ n

(3)

Step 2. In (S1) and (S2), variables have integer bounds; but the right bound of x in
(S3) depends on n mod 2 to be integer. Clearly (S3) becomes

⎧
⎨

⎩

0 ≤ y ≤ n − 2x
m ≤ x ≤ n

2
2m ≤ n, n even

or

⎧
⎨

⎩

0 ≤ y ≤ n − 2x
m ≤ x ≤ n−1

2
2m ≤ n, n odd

Let Fi(n,m) be the total number of integer solutions to (Si), i = 1, 2, 3.

F1(n,m) =
⎧
⎨

⎩

n−m∑

x=0

n−2x∑

y=m−x
1 if m ≤ n ≤ 2m − 1

0 otherwise

=
{

(n−m+1)(n−m+2)
2 if m ≤ n ≤ 2m − 1

0 otherwise

F2(n,m) =
⎧
⎨

⎩

m−1∑

x=0

n−2x∑

y=m−x
1 if n ≥ 2m,m ≥ 1

0 otherwise

=
{

m(2n−3m+3)
2 if n ≥ 2m

0 otherwise
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F3(n,m) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n/2∑

x=m

∑n−2x
y=0 1 if n ≥ 2m, n even

(n−1)/2∑

x=m

∑n−2x
y=0 1 if n ≥ 2m, n even

0 otherwise

=
⎧
⎨

⎩

(n−2m+2)2

4 if n ≥ 2m, n even
(n−2m+1)(n−2m+3)

4 if n ≥ 2m, n odd
0 otherwise

Step 3. Let F(n,m) be the number of integer solutions to the system at (1).

F(n,m) =
⎧
⎨

⎩

F1(n,m) if m ≤ n ≤ 2m − 1
F2(n,m) + F3(n,m) if n ≥ 2m
0 otherwise

=

⎧
⎪⎪⎨

⎪⎪⎩

(n−m+1)(n−m+2)
2 if m ≤ n ≤ 2m − 1

4n−2m−2m2+n2+4
4 if n ≥ 2m, n even

4n−2m−2m2+n2+3
4 if n ≥ 2m, n odd

0 otherwise

In summary F(n,m) is a piecewise defined polynomial in n andm. Especially, for
n andm such that n ≥ 2m,F(n,m) is a polynomial according to even or odd values of
n. Such polynomials are sometimes called pseudo-polynomials, quasi-polynomials
or Ehrhart polynomials; those are polynomials whose coefficients depend on some
congruences defined on arguments.

2.2 General Framework

Consider a system (S) of linear inequalities

(S): αi +
q+h∑

j=1

αijxj ≤ 0; i ∈ {1, . . . , I} (4)

whereαij, xj andαi are integers; xj with 1 ≤ j ≤ q are variables; xj with q < j ≤ q + h
are given parameters. Given parameters xq+1, . . . , xq+h, an integer solution to (4) is
any q-tuple (x1, . . . , xq) of integers such that (x1, . . . , xq+h) simultaneously satis-
fies each of the I constraints at (4). The set of all such solutions or lattice points is
denoted by LP(S, xq+1, . . . , xq+h) while the set of all (q + h)-tuples (x1, . . . , xq+h)

that meet all constraints from (S) is denoted by LP(S). Gehrlein–Fishburn’s pro-
cedure of computing the total number

∣
∣LP(S, xq+1, . . . , xq+h)

∣
∣ of lattice points in

LP(S, xq+1, . . . , xq+h) uses known relations for sums of powers of integers after
partitioning LP(S) in terms of subsets, each one defined by a system of hierarchical
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linear inequalities which suggest summation index limits, that is a system of linear
inequalities fit in the form

(H ): aj +
q+h∑

k=j+1

ajkxk ≤ cjxj ≤ bj +
q+h∑

k=j+1

bjkxk; j ∈ {1, . . . , q} (5)

where ajk , bjk , xj, aj, bj and cj are integers; cj > 0; xj with 1 ≤ j ≤ q are variables;
xj with q < j ≤ q + h are given parameters. The system (H ) of hierarchical linear
inequalities defined by (5) is feasible (or has feasible bounds) if it happens that

aq +
q+h∑

k=q+1

aqkxk ≤ bq +
q+h∑

k=q+1

bqkxk (6)

and for all p in {1, . . . , q − 1} and for all integers xp+1, . . . , xq

if aj +
q+h∑

k=j+1
ajkxk ≤ cjxj ≤ bj +

q+h∑

k=j+1
bjkxk , . . . j = p + 1, . . . , q

then ap +
q+h∑

k=p+1
apkxk ≤ bp +

q+h∑

k=p+1
bpkxk

(7)

To illustrate these, one can observe that the system at (1) is not hierarchical and
that each of the three systems at (3 ) is a feasible hierarchical system. Now let us
consider the example below:

Example 2 Consider (S) :
⎧
⎨

⎩

n ≤ y ≤ 2x
1 ≤ x ≤ n
x, y, n integers

This system is a hierarchical system. Now suppose that x and n are such that
1 ≤ x < n

2 . Then 1 ≤ x ≤ n holds but n ≤ 2x is false. Therefore the condition n ≤ 2x
cannot be seen as a consequence of 1 ≤ x ≤ n and (S) is not feasible.2

For finiteness, we consider only bounded sets LP(S, xq+1, . . . , xq+h) of lattice
points, meaning that there are two integers M1 and M2, depending on parameters,
such that ,

M1 ≤ xj ≤ M2, for all (x1, . . . , xq) ∈ LP(S) and for all j = 1, 2, . . . , q.

Remark 1 Note that an inequality of the formα +∑p
J=1 αjxj < 0,α +∑p

J=1 αjxj >

0 or α +∑p
J=1 αjxj ≥ 0 with rational coefficients α and αj and integer variables xj is

equivalent to an inequality α′ +∑p
J=1 α′

jxj ≤ 0 with integer coefficients α′ and α′
j .

2Feasibility refers here to a specific relation between bounds in a hierarchical system rather than to
the existence of a solution as normally.
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Lemma 1 The set LP(E) of all integers x, solutions to the following system

(E): max{αi, i = 1, 2, . . . , α} ≤ x ≤ min{βj, j = 1, 2, . . . , β}

with αi, α, βj and β integers, can be split into α × β subsets LP(Euv), possibly empty,
defined by

(Euv) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αu ≤ x ≤ βv

αu ≤ βv

αi + 1 ≤ αu for i < u
αi ≤ αu for i > u
βv + 1 ≤ βj for j < v
βv ≤ βj for j > v

Proof Since max{αi, i = 1, 2, . . . , α} picks up its value from {αi, i = 1, 2, . . . , α}
and min{βj, j = 1, 2, . . . , β} its value from {βj, j = 1, 2, . . . , β}, there are exactly
α × β disjoint possible cases to describe (E) as follows

(Euv):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αu ≤ x ≤ βv

max (αi, i = 1, 2, . . . , α) �= αi if i < u
max (αi, i = 1, 2, . . . , α) = αu

min
(
βj, j = 1, 2, . . . , β

) �= βj if j < v
min

(
βj, j = 1, 2, . . . , β

) = βv

which are equivalent to

(Euv) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αu ≤ x ≤ βv

αi < αu if i < u
αi ≤ αu if i > u
βj > βv if j < v
βj ≥ βv if j > v

Asαu − βv ≤ 0 is a consequence ofαu ≤ x ≤ βv, the result follows after replacing
αi < αu by αi + 1 ≤ αu and βj > βv by βj ≥ 1 + βv. �

Theorem 1 A bounded set of lattice points defined by a system of linear inequalities
with integer variables, integer parameters and integer coefficients can be partitioned
in subsets defined by systems of hierarchical linear inequalities feasible under linear
constraints on parameters.

Proof Consider a system (S) of linear inequalities as stated in (4 ) with bounded set
of lattice points LP(S). We focus our attention on x1. By reorganizing inequalities
in terms of positive, negative and null coefficients of x1 respectively, (S) can be
rewritten as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi1x1 ≤ −αi +
q+h∑

j=2
(−αij)xj, i ∈ I1

−αi1x1 ≥ αi +
q+h∑

j=2
αijxj, i ∈ I2

αi +
q+h∑

j=2
αijxj ≤ 0, i ∈ I3

(8)

where αi1 > 0, i ∈ I1, αi1 < 0, i ∈ I2 and αi1 = 0, i ∈ I3. As we assume LP(S) to be
bounded, I1 and I2 are nonempty. By relabeling subscripts and adjusting coefficients,
we can now write (S) as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1x1 ≤ min

{

bi +
q+1∑

j=2
bijxj, i = 1, . . . , b

}

c1x1 ≥ max

{

ai +
q+1∑

j=2
aijxj, i = 1, . . . , a

}

αi +
q+1∑

j=2
αijxj ≤ 0, i ∈ I3

(9)

Note that a = |I1|, b = |I2|, c1 = lcm {αi1, i ∈ I1 ∪ I2} and c1 = tiαi1, i ∈ I1 ∪ I2 have
been used to introduce new coefficients. By Lemma 1 and according to the latest
system above, LP(S) can be partitioned into a × b subsets LP(Suv) below

(Suv):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

au +
q+h∑

j=2
aujxj ≤ c1x1 ≤ bv +

q+1∑

j=2
bvjxj

(au − bv) +
q+h∑

j=2
(auj − bvj)xj ≤ 0

(ai − au) + εi +
q+h∑

j=2
(aij − auj)xj ≤ 0, i = 1, . . . , a

(bv − bi) + δi +
q+h∑

j=2
(bvj − bij)xj ≤ 0, i = 1, . . . , b

αi +
q+h∑

j=2
αijxj ≤ 0, i ∈ I3

(10)

where εi = 1 if i < u and εi = 0 if i > u; δi = 1 if i < v and δi = 0 if i > v. Inequal-
ities involving x1 in each subsystem (Suv) have been fit in the hierarchical form; and
the remaining inequalities on variables x2, . . . , xq are defined on integers variables
and parameters with integer coefficients. The same procedure, we use to partition
(S) into subsystems with inequalities on x1 fit in the hierarchical form, can be reit-
erated on each subsystem to fit inequalities on x2 in the hierarchical form. After q
iterations, (S) will be split in terms of subsystems of hierarchical linear inequalities;
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the possibly remaining inequalities on parameters are feasibility constraints for each
subsystem. �

There exists an abundant literature on sums of powers of integers. Among other
related topics in this field, the problem is the following one: given an integer k ≥ 0,
what is the closed-form representation of the sum of the kth powers of the first n
positive integers? It is well-known from Hardy et al. (1979), or Nunemacher and
Young (1987) that this sum is a polynomial Pk of degree k + 1 in n. Very simple
ways of getting Pk are available; see for example Bloom (1993).

Computing
∣
∣LP(S, xq+1, . . . , xq+h)

∣
∣ using known relations for sums of powers

of integers requires summation index limits which are not straightforward with a
system (S) that fit form (4); but they are only suggested with a system in form (5).
For example, the total number of lattice points for a feasible system (H ) in form (5)
with cj = 1 for j = 1, . . . , q, is clearly a q-summation of the unit which then yields
a polynomial function of the parameters xq+1, . . . , xq+h by using known sums of
powers of integers. But coming out with only such particular feasible systems after
partitioning a system is not assured through Theorem 1. Huang and Chua (2000)
have provided a way to split a system of hierarchical linear inequalities in order to
have only integer bounds of variables. But additional conditions are required to make
those bounds ready for summation tools as shown in the following examples.

Example 3 Consider (H ) and (H ′) below with integers variables x and y :

(H ):
{
1 + y ≤ x ≤ 3 + y
1 ≤ y ≤ 2

and (H ′):
{
1 + y ≤ x ≤ 3 − y
1 ≤ y ≤ 2

Clearly |LP(H )| = 6 and
∣
∣LP(H ′)

∣
∣ = 1. But through an abusive summation

2∑

y=1

3+y∑

x=1+y

(1) =
2∑

y=1

3 = 6 and
2∑

y=1

3−y∑

x=1+y

(1) =
2∑

y=1

(3 − 2y) = 0.

The second summation fails because (S ′) lacks feasibility conditions.

To circumvent erroneous summations due to non feasible bounds, feasibility con-
ditions should be included together with some appropriate congruence relations on
parameters as those provided byHuang andChua (2000, p. 148).We extend here such
congruence relations to the case of multiple parameters with further considerations
on summations of polynomials.

Consider a multivariate polynomial u

u
(
x1, x2, . . . , xq+h

) =
∑

k1≤d1,...,kq+h≤dq+h

Ck1,...,kq+hx
k1 . . . xkq+h

on x1, x2,…, xq+h of degree dj in xj for j = 1, . . . , q + h. Given parameters xq, . . . ,
xq+h, denote by LP (S, u) the sum of polynomial u over the set LP

(
S, xq, . . . , xq+h

)
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of all integer solutions to the set (S) of linear constraints; that is

LP (S, u) =
∑

(x1,x2,...,xq)∈LP(S,xq,...,xq+h)

u (x) .

The following lemma is useful for the upcoming proofs.

Lemma 2 Consider a polynomial P in x of degree m, some integer parameters
xq+1, . . . , xq+h, two affine transformations a = a0 + aq+1xq+1 + · · · + aq+hxq+h and
b = b0 + bq+1xq+1 + · · · + bq+hxq+h of the parameters such that a and b are two
integers and a ≤ b. Then the sum

b∑

n=a

P(n)

is a multivariate polynomial of degree at most m + 1 in each parameter xj, j =
q + 1, . . . , q + h.

Proof Noting that P and Pk , k = 0, 1, . . . ,m can be set in the form

P(x) =
m∑

k=0

ckx
k and nk = Pk(n) − Pk(n − 1),

it follows that
b∑

n=a

P(n) =
m∑

k=0

ck (Pk(b) − Pk(a − 1))

Since Pk for k = 0, 1, . . . ,m, is of degree k + 1 ≤ m + 1, the term Pk(a) − Pk(b −
1) is of degree at most m + 1 in each parameter.

Remark 2 Note in the previous proof that

b∑

n=a

P(n) = P∗(b) − P∗(a − 1) with P∗ =
m∑

k=0

ckPk .

This will be useful in computations.

Theorem 2 Let u be a multivariate polynomial on x1, x2, …, xq+h of degree dj in
xj for j = 1, . . . , q + h and (H) a feasible hierarchical system as defined by (5), (6)
and (7). Let d = d1 + · · · + dq, d1=1 and

dt = lcm

{
cjdj

gcd(cjdj, ajt)
,

cjdj
gcd(cjdj, bjt)

, j = 1, . . . ,min(q, t − 1)

}

for t=2,…,q+h and choose rt in {0, 1, . . . , dt − 1}, t = q + 1, . . . , q + h.
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Then for all integer parameters xq+1, . . . , xq+h such that

xq+1 ≡ rq+1 mod dq+1, . . . , xq+h ≡ rq+h mod dq+h

the sum LP(H , u, xq+1, . . . , xq+h) of u over LP(H , xq+1, . . . , xq+h) is a multivari-
ate polynomial function on xq+1, . . . , xq+h with at most degree d + dj + q in each
parameter xj, j = q + 1, . . . , q + h.

Proof Given parameters xq+1, . . . , xq+h such xk ≡ rt mod dt, t = q + 1, . . . , q + h,
pose

f (xq+1, . . . , xq+h) = LP(H , u) and
g(r1, . . . , rq, xq+1, . . . , xq+h)

= f (xq+1, . . . , xq+h|assuming x1 ≡ r1 mod d1, . . . , xq ≡ rq mod dq)

Then it is clear that

f (xq+1, . . . , xq+h) =
∑

r∈�(d)

g(r1, . . . , rq, xq+1, . . . , xq+h)

where
�(d) = {

(r1, . . . , rq)|rj ∈ {0, 1, . . . , dj − 1}, j = 1, . . . , q
}
. (11)

Since d1 = 1, then r1 = 0 ( r1 has been maintained just for uniformity reasons).
By definition, f (xq+1, . . . , xq+h) is a finite sum of g(r1, . . . , rq, xq+1, . . . , xq+h) over
(r1, . . . , rq). Thus, we only have to show that g(r1, . . . , rq, xq+1, . . . , xq+h) is, for
each r = (r1, . . . , rq) in �, a multivariate polynomial function on xq+1, . . . , xq+h

with at most degree d + dt + q in each parameter xt . For this purpose, consider yj
such that xj = djyj + rj, j = 1, . . . , q + h. After replacing each xj by djyj + rj per
inequality in (5) and after collecting terms with yj variables, we obtain

(Hr): Aj +
q+h∑

t=j+1

Ajtyt ≤ yj ≤ Bj +
q+h∑

t=j+1

Bjtyt; j ∈ {1, . . . , q} (12)

where3

Ajt = ajtdt
cjdj

, Bjt = bjtdt
cjdj

,

Aj =
⎡

⎢
⎢
⎢

⎛

⎝
q∑

t=j+1

rt
cjdj

⎞

⎠+
(

aj
cjdj

− rj
dj

)
⎤

⎥
⎥
⎥

and

3Given a real number x, �x� is the smallest integer greater than or equal to x while x� is the greatest
integer less than or equal to x.
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Bj =
⎢
⎢
⎢
⎣

⎛

⎝
q∑

t=j+1

rt
cjdj

⎞

⎠+
(

bj
cjdj

− rj
dj

)
⎥
⎥
⎥
⎦

By definition of coefficients dk , the new coefficients Ajt and Bjt are both inte-
gers. Moreover, feasibility constraints (6) and (7) make relations (12) ready for
summation. Therefore g(r1, . . . , rq, xq+1, . . . , xq+h) = LP(Hr, u) is a q-summation
over variables y1, . . . , yq. The bounds of each summation are affine transforma-
tions of the parameters and the remaining variables at each step. Thus by Lemma 2,
g(r1, . . . , rq, xq+1, . . . , xq+h) is a multivariate polynomial function in yq+1, . . . , yq+h

of degree at most d + dj + q in yj = xj − rj
dj

, j = q + 1 . . . , q + h. Hence g(r1, . . . ,

rq, xq+1, . . . , xq+h) is a multivariate polynomial function on xq+1, . . . , xq+h with at
most degreed + dj + q in each xj. �

Definition 1 A function F defined on Z
h is a pseudo-polynomial if there exists a

h-tuple d = (d1, d2, . . . , dh) of positive integers such that for all rj ∈ {0, 1, . . . , dj −
1}, j = 1, . . . , h,

F(y1, . . . , yh|assuming y1 ≡ r1 mod d1, . . . , yh ≡ rh mod dh)

is a polynomial function on y1, . . . , yh. In this case, the h-tuple d is a pseudo-period of
F. The degree of F with respect to yj is the maximal degree of F(y1, . . . , yh|assuming
y1 ≡ r1 modd1, . . . , yh ≡ rhmoddh)with respect to yh over (r1, . . . , rh) ∈ {0, 1, . . . , d1 −
1} × · · · × {0, 1, . . . , dh − 1}.

The following result is a restatement ofTheorem2 in termsof pseudo-polynomials.

Theorem 3 The sum LP(H , u) of a multivariate polynomial u(y1, . . . , yq+h) of
degree dj in yj over the set LP(H , yq+1, . . . , yq+h) of all lattice points (y1, . . . , yq)
defined by a feasible hierarchical system (H) of linear inequalities with q inte-
ger variables y1, . . . , yq, h integer parameters yq+1, . . . , yq+h with integer coeffi-
cients is a pseudo-polynomial on parameters yq+1, . . . , yq+h with degree at most
q + dj + d1 + · · · + dq in yj.

From Theorem 1, all bounded sets LP(S) of lattice points defined by a finite set
of linear inequalities can be partitioned into a finite number of subsets LP(Hk), each
defined by a system of hierarchical linear inequalities feasible under some (linear)
constraints Ck , on parameters. By Theorem 3, |LP(Hk , u)| is a pseudo-polynomial
on parameters . Therefore the following results hold.

Corollary 1 Given a bounded set LP(S, yq+1, . . . , yq+h) of lattice points defined
by a finite set of linear inequalities with q integer variables y1, . . . , yq, h integer
parameters yq+1, . . . , yq+h with integer coefficients, and a multivariate polynomial
u(y1, . . . , yq+h) of degree dj in yj, there exist some linear constraints C1, …, CK on
parameters, some pseudo-polynomials F1, …, FK on parameters with at most degree
q + dj + d1 + · · · + dq on yj such that
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LP(S, u) =
K∑

k=1

1Ck (y1, . . . , yh)Fk(y1, . . . , yh)

where 1Ck (yq+1, . . . , yq+h) = 1 if the collection of parameters (yq+1, . . . , yq+h) sat-
isfies Ck; and 1Ck (yq+1, . . . , yq+h) = 0 otherwise.

In Corollary 1, constraints C1, . . . ,CK do not necessarily define disjoint domains
on parameters yq+1, . . . , yq+h. Since there exists a finite number of those constraints,
one can split them into a finite partition. As consequence, the following holds.

Corollary 2 Given a bounded set LP(S, yq+1, . . . , yq+h) of lattice points defined
by a finite set of linear inequalities with q integer variables y1, . . . , yq, h integer
parameters yq+1, . . . , yq+h with integer coefficients; and a multivariate polynomial
u(y1, . . . , yq+h) of degree dj in yj, there exists a finite partition D1, . . . ,Dm of param-
eters such that on each domain Dj, LP(S, u) is a pseudo-polynomial on parameters
with degree at most q + dj + d1 + · · · + dq in yj.

When u(y1, . . . , yq+h) = 1, it follows that LP(S, u) = |LP(S)| is the total number
of lattice points in LP(S, yq+1, . . . , yq+h). Thus |LP(S)| is a pseudo-polynomial on
parameters. Ehrhart’s conjecture then follows by observing that dj + d1 + · · · + dq =
0 for u(y1, . . . , yq+h) = 1.

3 Algorithms

Proofs of Theorem 1 and Theorem 2 guideline the procedure in three stages.

3.1 The Subdomain-Search Procedure

At this stage, consider a system (S) of linear constraints

(S): αi +
q+h∑

j=1

αijxj ≤ 0; i ∈ {1, . . . , I} (13)

where αij, xj and αi are integers; xj with 1 ≤ j ≤ q are integer variables; xj with
q < j ≤ q + h are integer parameters. For computations, the system (S), as input, is
the list

cst = [αi +
q+h∑

j=1

αijxj; i ∈ {1, . . . , I}]

of all left-hand-side expressions obtained from (S) by omitting “≤ 0” for each con-
straint. The aim is to split these constraints into hierarchical subsystems. The overall
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functioning is as follows. Choose a variable and fit its constraints in hierarchical
form as suggested in (8), (9) and (10). By so doing the initial system is split into
many subsystems. Reiterate the same procedure on each subsystem in the process to
obtain only hierarchical subsystems with feasibility constraints on parameters. All
these can be handled by some procedures.

First, the routine, called MoveOne (see Algorithm 1), splits the system cst into
subsystems where a given variable var has constraints of the form (10). In each
algorithm, nops(L) denotes the number of elements in list L; and given two distinct
integers x and y, ε(x, y) = 1 if x < y and ε(x, y) = 0 otherwise.A list fromMoveOne
has the format

[lb, c, ub, cond ] (14)

which means that variable var satisfies lb ≤ c ∗ var ≤ ub; both lb and ub do not
depend on var; and the variables in cst other than var satisfy each constraints in
cond . To summarize, note that the inputs in MoveOne are a list of constraints cst and
a variable var in cst; and the output is a collection of lists each being of form (14).

Now, the subdomain-search procedure used to find subdomains is called MoveAll
(see Algorithm 2) and simply iterates MoveOne over all variables to split the initial
domain cst into hierarchical and disjoint subdomains. The final result is a set rescst
of tables and a congruence list dd for parameters. Each table, which represents a sub-
domain, has five columns and 1 + q rows; q is the number of variables x1, x2, . . . , xq
other than the h parameters xq+1, xq+2, . . . , xh. Each of the q first rows corresponds
to a variable xt in the format

[lbt, ct, ubt, xt, dt]

which, means that, in the corresponding subdomain, the variable xt satisfies lbt ≤
ct ∗ xt ≤ ubt ; dt is the congruence on xt provided by Theorem 2.

In the last row, the first cell contains feasibility conditions; the fourth cell con-
tains the list of parameters and the fifth cell contains the list of congruences for the
parameters. A typical subdomain, say subdo, is a table in the form (15).

lb1(x2, . . . , xq) c1 ub1(x2, . . . , xq) x1 d1
lb2(x3, . . . , xq) c2 ub2(x3, . . . , xq) x2 d2

. . . . . . . . . . . . . . .

lbq−1
(
xq
)

cq−1 ubq−1(xq) xq−1 dq−1

lbq cq ubq xq dq
feasibility q xq+1, . . . , xq+h dq+1, . . . , dq+h

(15)

In the algorithm MoveAll, ajt and bjt , j = 1, . . . , t − 1, are the coefficients of xt in
lbj and ubj respectively. Briefly, the inputs in MoveAll are a list of constraints cst, a
list of variable x1, . . . , xq and a list of parameters xq+1, . . . , xq+h; and the outputs are a
collectionof tables eachbeenof the form (15) and a congruence list dd for parameters.
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3.2 Summing a Polynomial over a Feasible Hierarchical
System

Each table subdo in the output of MoveAll has format (15) where all functions lbt
and ubt that give bounds are affine functions of their variables. Summing a multivari-
ate polynomial u(x1, . . . , xq+h) over subdo, is done using appropriate congruences
provided in Theorem 2 and computed in MoveAll. The routine called SubdoCom
(see Algorithm 3) is used for this purpose and is based on the procedure in the
proof of Theorem 2 to obtain (12). The inputs in SubdoCom are a feasible hier-
archical system subdo in format (15), a multivariate polynomial u(x1, . . . , xq+h),
the congruence list dd for parameters and an h-tuple θ = (θ1, . . . , θh) ∈ �(dd) that
defines a class of parameters such that xq+j ≡ θj mod ddj for all j = 1, . . . , h; that
is xq+j = ddjyq+j + θj for some integer yq+j ≥ 0. The outputs of SubdoCom is a
polynomial Poly that gives the sum of u(x1, . . . , xq+h) over subdo assuming that
xq+j ≡ θj;mod ddj for all j = 1, . . . , h.

3.3 The Sum of a Polynomial over a Polytope

Note that the set of lattice points that satisfy a given set cst of linear constraints can be
split, usingMoveAll, into disjoint subsystems. Each such subsystem is a hierarchical
system feasible under some constraints on the parameters. Denote by S1, S2, . . . , Sp
all the subsystems obtained from MoveAll and stored all as distinct tables in format
(15). The feasibility condition Cj for the subsystem Sj is stored in the first cell of the
last rowofSj. As itwas the case inExample 1, see (3), twodistinct domains of parame-
ters associatedwith two distinct feasibility constraintsCk andCl mayoverlap.Denote
by D the set of all h-tuples

(
xq+1, . . . , xq+h

)
that satisfy at least one feasibility con-

dition Cj, j = 1, . . . , p. Let {D1, . . . ,Dm} be a partition of D. Given j ∈ {1, . . . ,m},
let

(
Cj
)

j∈Ik , with Ik ⊆ {1, 2, . . . , p}, be the collection of all feasibility constraints Cj

satisfied by each
(
xq+1, . . . , xq+h

) ∈ Dk . Given j ∈ Ik , θ ∈ �(dd) and a multivari-
ate polynomial u(x1, . . . , xq+h), denote by LP(Sj, u, θ, xq+1, . . . , xq+h) the sum of
u
(
x1, . . . , xq+h

)
over the set of all lattice points (x1, . . . , xq) in Sj assuming that the

parameters (xq+1, . . . , xq+h) satisfy Cj with xq+j ≡ θj;mod ddj for all j = 1, . . . , h.
Note that LP(Sj, u, θ, xq+1, . . . , xq+h) is a polynomial that can be computed using
SubdoCom. Therefore the sum LP(Dk , u, xq+1, . . . , xq+h) of u

(
x1, . . . , xq+h

)
over

the set of all lattice points (x1, . . . , xq) ∈ ∪j∈Ik Sj assuming that the parameters belongs
to Dk is a pseudo-polynomial completely determined for all

(
xq+1, . . . , xq+h

) ∈ Dk

and for all θ ∈ �(dd) by the sum

LP(Dk , u, θ, xq+1, . . . , xq+h) =
∑

j∈Ik
LP(Sj, u, θ, xq+1, . . . , xq+h) (16)
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where LP(Dk , u, θ, xq+1, . . . , xq+h) is the value of LP(Dk , u, xq+1, . . . , xq+h) assum-
ing that xq+j ≡ θj;mod ddj for all j = 1, . . . , h. Clearly, to fully determine LP(Dk , u,
θ, xq+1, . . . , xq+h), we only combine in a routine called Reparti (see Algorithm 4)
the three previous routines as soon as a partition of the parameters is obtained from
the collection of feasibility constraints.

Remark 3 Note that the ordering of variables x1, . . . , xq does not matter, but judi-
cious choices lead to less number of subsystems. For instance, one can order vari-
ables with respect to their respective frequencies (total number of occurrences in
constraints). A test of compatibility among constraints is useful to cancel subsys-
tems with no solution. Also note that out of feasibility conditions attached to each
subsystem, no solution to the initial system exists.

4 Further Illustrations and Applications

4.1 Further Illustrations

We provide here some further illustrations to the attention of the readers who are
interested in the algorithms provided in this paper. The first example is about the
importance of the feasibility of a hierarchical system: not all hierarchical systems,
even with integer bounds, are ready for summation using known sums of powers of
integers.

Example 4 Consider the example below due to Clauss et al. (1997)

1 ≤ i ≤ n and i ≤ j ≤ m (17)

where i and j are integer variables, n and m are integer parameters.What is the total
number f (n,m) of solutions (i, j) to (17) as a function of the parameters n and m?

Stage 1. We first fit j’s constraints in a hierarchical (17) form

⇔ i ≤ j ≤ m, 1 ≤ i ≤ n and i ≤ m

The same action is reiterated on constraints involving only variable (17) i:

⇔ i ≤ j ≤ m and 1 ≤ i ≤ min(n,m)

⇔
{
i ≤ j ≤ m and 1 ≤ i ≤ n
1 ≤ n ≤ m

or

{
i ≤ j ≤ m and 1 ≤ i ≤ m
n > m ≥ 1

Stage 2. Each coefficient dk is equal to 1 and there is no need to split each of the
two subsystems.

Stage 3. The parameter domain has already been partitioned into two subdomains
defined by 1 ≤ n ≤ m and n > m ≥ 1. Hence the total number of solutions to (17) is
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f (n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n
i=1

m∑

j=i
1 = n(2m−n+1)

2 if 1 ≤ n ≤ m

∑m
i=1

m∑

j=i
1 = m(m+1)

2 if n > m ≥ 1

Note that the system at (17) is hierarchical with integer bounds; but not ready
for summation without feasibility constraints on parameters n and m. One would
have wrongly obtained a single polynomial by a direct summation

∑n
i=1

∑m
j=i 1 =

n(2m−n+1)
2 without looking for feasibility constraints.

The next example is about a step by step illustration of the functioning of our routines:
how inputs and outputs look like.

Example 5 Consider the following system reported by Clauss et al. (1997):

1 ≤ i, j ≤ n and 2i ≤ 3j (n is the unique parameter) (18)

where i and j are integer variables, n is an integer parameter. What is the total
number f (n) of solutions (i, j) to (18) as a function of parameter n?

Stage 1. We first fit the system in feasible hierarchical form(18) as follows :

⇔ 2 ≤ 2i ≤ 3j, 2 ≤ 3j and j ≤ n

⇔ 2 ≤ 2i ≤ 3j, 2 ≤ 3j ≤ 3n and 2 ≤ 3n

Stage 2. To simplify i′s and j′s coefficients, we compute a pseudo-period as stated
in Theorem 2 as follow d1 = 1 for i, d2 = 2 for j and d3 = 2 for n. Now solutions of
(18) are collected from appropriate subsystems as follows :

for n = 2n′ for n = 2n′ + 1⎧
⎨

⎩

1 ≤ i ≤ 3j′
1 ≤ j′≤ n′
j = 2j′

or

⎧
⎨

⎩

1 ≤ i ≤ 3j′+1
0 ≤ j′≤ n′−1
j = 2j′+1

⎧
⎨

⎩

1 ≤ i ≤ 3j′
1 ≤ j′≤ n′
j = 2j′

or

⎧
⎨

⎩

1 ≤ i ≤ 3j′+1
0 ≤ j′≤ n′
j = 2j′+1

(19)

These two stages are covered by MoveAll. The inputs are the list
[
i − j, j − n, 2 ∗

i − 3 ∗ j
]
of constraints, the list

[
j, i
]
of variables and the list [n] containing the single

parameter n. The outputs are a list of a single domain and the congruence list (with
only one element) for the parameter n, represented as

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

2 2 3 j i 1

2 3 3 n j 2

[2 − 3 n] [ ] 2 [n] [2]

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ , [2]
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Stage 3. The result, according to the two disjoint domains (19), is :

f (n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n
2∑

j′=1

3j′∑

i=1
1 +

n
2∑

j′=0

3j′+1∑

i=1
1 = 1

2n + 3
4n

2 if n ≡ 0 mod 2

n−1
2∑

j′=1

3j′∑

i=1
1 +

n−1
2∑

j′=0

3j′+1∑

i=1
1 = 3

4n
2 + 1

2n − 1
4 if n ≡ 1 mod 2

This result is obtained by using the procedure Reparti. The inputs are the list[
i − j, j − n, 2 ∗ i − 3 ∗ j

]
of constraints, the polynomial u(n) = 1, the list

[
j, i
]
of

variables and the list [n]. The procedure Reparti then outputs the pseudo-polynomial
f (n) above assuming that n ≡ a mod 2 for each a ∈ �(2) = {0, 1}. The result is
printed on the screen. An alternative consists in storing all in a single table as fol-
lows: [ [0] [1/4 n (3 n + 2)]

[1] [(1/4 n + 1/4) (3 n − 1)]

]

4.2 Some Applications

In the next examples, some applications of an implementation4 of the algorithms we
built usingMaple are presented. The aim is to point out some advantages the current
algorithmsoffer, and someof their limits. In thefirst application,we consider a system
due to Gehrlein and Lepelley (1999) who were studying the Condorcet efficiency
of the negative plurality rule under the Maximal Culture assumption (a probability
distribution on voting situations). The example illustrates how tedious it was to
perform all the calculations manually. It also tells us that the way the procedure
MoveAll splits a given set of constraints may not be optimal; the pseudo periods for
parameters may also be a strict multiple of the actual period. Although duplications
(that appearwith a strictmultiple of the period on a parameter) can be easily canceled,
higher periods are time consuming. We add to the work by Gehrlein and Lepelley
(1999), the missing part of the pseudo-polynomial for odd L.

Example 6 Let g(L) be total number of solutions to the following system :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n1 + n2 + n3 > n4 + n5 + n6
n1 + n2 + n4 > n3 + n5 + n6
n1 + n3 > n5 + n6
n2 + n4 > n5 + n6
ni ≤ L, i = 1, . . . , 6

(20)

4A copie is available at https://github.com/imoyouwou/EhrhartPolynome.

https://github.com/imoyouwou/EhrhartPolynome


386 I. Moyouwou et al.

Gehrlein and Lepelley (1999) reorganized constraints at (20) into 36 subsystems to
compute g(L) for even values of L. Our Maple procedure returns 101 subdomains
and a period of 24 in L; canceling all duplications gives5:

g(L) =
⎧
⎨

⎩

L(661L5+3216L4+6640L3+7200L2+4264L+1104)
2880 if L is even and L > 4

(L+1)2(661L4+1894L3+2191L2+924L+90)
2880 if L is odd and L > 4

Example 7 (Application 1) We revisit in this application the probability that a Con-
dorcet winner exists in a three-candidate election with n voters. We assume that each
ranking of candidates is the preferences of at least m voters. This may be the case
when each candidate is acclaimed by some unwavering supporters who disagree on
the ranking of the two other candidates. Without ties, there are six types of individual
rankings over the set {a1, a2, a3} of candidates, each defined by one of the following
rankings of candidates :

Type 1 a1 � a2 � a3 Type 4 a2 � a3 � a1
Type 2 a1 � a3 � a2 Type 5 a3 � a1 � a2
Type 3 a2 � a1 � a3 Type 6 a3 � a2 � a1

(21)

For j = 1, . . . , 6, denote by nj the total number of voters of Type j. A voting situation
is any 6-tuple (n1, n2, . . . , n6) of non negative integers that sum to n.

The following system gives a complete characterization of voting situations n =
(n1, n2, n3, n4, n5, n6) at which a1 is the Condorcet winner (a1 receives more votes
in a pairwise majority voting than any of the two other candidates) assuming that
there are at least m voters of each type:

⎧
⎪⎪⎨

⎪⎪⎩

n1 + n2 + n3 > n4 + n5 + n6
n1 + n2 + n4 > n3 + n5 + n6
n1 + n2 + n3 + n4 + n5 + n6 = n
ni ≥ m, i = 1, . . . , 6

(22)

The domain defined by (22) is split using MoveAll into four subdomains with
respect to parameters n and m to obtain, via Reparti, the total number of voting
situations that meet (22); and by multiplying the corresponding result by 3, one gets
the total number h(n,m) of voting situations at which a Condorcet winner exists:

5Compared to the 36 subdomains presented in Gehrlein and Lepelley (1999), the decomposition
in the procedure we use with an arbitrary ordering of variables was obviously not optimal. But
one may still recover the optimal ordering by performing the decomposition for all the 6! = 120
possible orderings of variables. But finding the optimal decomposition may be time consuming and
remains an exciting topic.
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h(n,m) =

⎧
⎪⎪⎨

⎪⎪⎩

(n−6m)(n−6m+4)2(n−6m+2)2

128 if n is even and 0 ≤ m ≤ n
6

(n−6m+5)(n−6m+1)(n−6m+3)3

128 if n is odd and 0 ≤ m ≤ n
6

0 otherwise

The set of all voting situations in our voting context is characterized by

{
n1 + n2 + n3 + n4 + n5 + n6 = n
nj ≥ m, j = 1, 2, . . . , 6

and therefore contains h0(n,m) voting situations with

h0(n,m) =
{

(n−6m+5)(n−6m+4)(n−6m+3)(n−6m+2)(n−6m+1)
120 if 0 ≤ m ≤ n

6

0 otherwise

Now assume that all voting situations are equally likely to be observed. This prob-
ability distribution known as the Impartial Anonymous Culture (IAC) assumption
was presented in Kuga and Nagatani (1974) and popularized in social choice theory
by Gehrlein and Fishburn (1976). Combining the results on h(n,m) and h0(n,m),
one gets the following result,

Proposition 1 Consider a three-candidate election with n voters and assume that
there are at least m voters with each of the six types of preferences listed at (21). Then,
under the IAC assumption, the conditional probability Prob(n,m) that a Condorcet
winner exists assuming that each ranking is reported by at least m voters, is

Prob(n,m) =

⎧
⎪⎨

⎪⎩

15(n−6m)(n−6m+2)(n−6m+4)
16(n−6m+3)(n−6m+5)(n−6m+1) if n is even and 0 ≤ m ≤ n

6

15(n−6m+3)2

16(n−6m+2)(n−6m+4) if n is odd and 0 ≤ m ≤ n
6

Given a value of n, as m increases from 0 to n/6, Prob(n,m) decreases if n is odd
but increases if n is even. Thus the classical

Prob(n, 0) =

⎧
⎪⎨

⎪⎩

15(n)(n+2)(n+4)
16(n+3)(n+5)(n+1) if n is even

15(n+3)2

16(n+2)(n+4) if n is odd

respectively underestimates and overestimates Prob(n,m) for even n and odd n.
Moreover let Prob(α) be the limit of Prob(n, αn) as n tends to infinity. Intuitively
Prob(α) is the limit of Prob(n,m) as n tends to infinity assuming that the ratio m/n
of voters with each type of preferences is at least equal to α. Then the following is a
direct consequence of Proposition 1.

Corollary 3 Consider a three-candidate election and assume that there are at least
a ratio α of the electorate with each of the six types of preferences listed at (21).
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Then, as the total number of voters tends o infinity, the probability Prob(α) that a
Condorcet winner exists is

Prob(α) =
{

15
16 if 0 ≤ α < 1

6

0 otherwise

Clearly, Prob(α) is exactly the limit probability that a Condorcet winner exists
as n tends to infinity. Thus the assumption that each possible type of preferences is
reported by at least a given ratio of the electorate does not at all alter the probability
that a Condorcet winner exists (as the total number of voters tends to infinity); see
Gehrlein et al. (2013) for further analysis of voting events when one assumes that
not all preference types are represented.

Example 8 (Application 2) All the examples provided above deal only with count-
ing lattice points. As stated in Theorem 3, the full strength of the Gehrlein-Fishburn
method allows to address further problems with even polynomial summand. This is
the case in this application. The question is, what is the impact of the existence of a
Condorcet winner on the Kendall’s coefficient of concordance? Since the Kendall’s
coefficient of concordance is a multivariate polynomial, this question is out of the
scope of almost all existing procedures. Still with the notation of Example 7, the
Kendall’s coefficient of concordance in a voting situation (n1, n2, . . . , n6) with three
candidates and n voters is denoted by C (n1, . . . , n6) and is equal to

(n1 + n2 − n4 − n6)
2 + (n3 + n4 − n2 − n5)

2 + (n5 + n6 − n1 − n3)
2

2n2

The Kendall’s coefficient of concordance in a voting situation is a measure of agree-
ment in the n rankings of the three candidates; see Kendall and Smith (1939) or
Gehrlein et al. (2015). The higher C (n1, . . . , n6), the stronger the agreement in indi-
vidual rankings is. Put another way, our question is, what is the expected degree
of concordance C(n) across all voting situations? Note that the set S of all voting
situations with n voters is characterized by

(S) :
{
n1 + n2 + n3 + n4 + n5 + n6 = n

nj ≥ 0, j = 1, 2, . . . , 6

and the expected degree of concordance over S is C(n) = LP (S,C) / |S|. Compu-
tations via Reparti with u(n1, . . . , n6) = C(n1, . . . , n6) give

LP (S,C) = (n + 1) (n + 2) (n + 3) (n + 4) (n + 5) (n + 6)

840n

Since |S| = (n + 5) (n + 4) (n + 3) (n + 2) (n + 1) /120, it follows that the expected
degree of concordance over all voting situations with n voters is
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C(n) = n + 6

7n
.

To measure the impact of the existence of a Condorcet winner on the Kendall’s
degree of concordance, we simply compute the conditional expected degree of con-
cordanceC (n|CW ) assuming that a1 is a Condorcet winner. This is LP (S1,C) / |S1|
where S1 is the set of all voting situations at which a1 is the Condorcet winner:

(S1) :

⎧
⎪⎪⎨

⎪⎪⎩

n1 + n2 + n5 > n3 + n4 + n6
n1 + n2 + n3 > n4 + n5 + n6

n1 + n2 + n3 + n4 + n5 + n6 = n
nj ≥ 0, j = 1, 2, . . . , 6

Note that |S1| = h(n, 0) as in Example 7; computing LP (S1,C) as outlined above
gives

LP (S1,C) =

⎧
⎪⎨

⎪⎩

(n+4)(n+2)(n+6)(127 n3+968 n2+1892 n+568)
322560n if n is even

(n+5)(n+3)(n+1)(127 n4+1524 n3+5630 n2+6348 n−189)
322560n2 if n is odd

Therefore,

C (n|CW ) =

⎧
⎪⎨

⎪⎩

C (n) + (n+6)(7n3+248n2+932n+568)
840n2(n+4)(n+2) if n is even

C (n) + (n−1)(n+7)(7n2+42n+27)
840n2(n+3)2

ifn is odd

Clearly the existence of a Condorcet winner increases the degree of concordance
among individual preferences. However the corresponding increment is relatively
small and tends to 1/120 as n tends to infinity.

5 The Continuous Case

Due to large periods that may induce a considerable number of congruence classes to
be explored or possible non integer parameters, there are numerous investigations in
social choice that deal with continuous variables and parameters. This is for exam-
ple the case in Cervone et al. (2005) or Moyouwou and Tchantcho (2017); a rich
panorama on both the finite and the continuous cases are remarkably expounded in
Gehrlein and Lepelley (2017), Gehrlein and Lepelley (2010) and Gehrlein (2006).
The problem of counting lattice points is now replaced by the problem of computing
the volume of a given polytope (on a nonempty and bounded subset of Rd defined
by a finite set of linear constraints). Again the Gehrlein-Fishburn’s method can also
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be applied to compute the volumes of polytopes as illustrated in Lepelley andMerlin
(2001). Moreover, the flexibility of real numbers vanishes all problems related to
periodicity and replaces summations by integrations.

Lemma 3 The set P(E) of real number x, solutions to the following system

(E): max{αi, i = 1, 2, . . . , α} ≤ x ≤ min{βj, j = 1, 2, . . . , β}

whereαi, α, βj andβ are real numbers, can be split intoα × β subsets P(E′
uv) defined

by

(E′
uv) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αu ≤ x ≤ βv

αu ≤ βv

αi < αu if i < u
αi ≤ αu if i > u
βv < βj if j < v
βv ≤ βj if j > v

Proof Very similar to the one of Lemma 1. �

Definition 2 A feasible hierarchical polytope is a set of points in R
d which can be

described by a set of constraints of type (5) with feasibility constraints (6) and (7);
real variables x1, . . . , xq, real coefficients ajk and bjk ; real constants aj, bj and cj and
real parameters xq+1, . . . , xq+h.

Theorem 4 (i) A polytope in R
q can be partitioned into a finite number of feasible

hierarchical polytopes over the set of parameters.
(ii) The integral P(H , u) of a multivariate polynomial u(x1, . . . xq+h) of degree dj

in xj over a polytope P(H , yq+1, . . . , yq+h) of all solutions (y1, . . . , yq) to a feasible
hierarchical system (H) of linear inequalities with q variables y1, . . . , yq, h parame-
ters yq+1, . . . , yq+h is a piecewise defined polynomial on parameters yq+1, . . . , yq+h

with degree at most q + dj + d1 + · · · + dq in xj.

Proof (i) Very similar to the one in Theorem 1.
(ii) Note that the integral P(H , u) of the polynomial u over a feasible hierarchical

polytope P in Rq as defined by (5), (6) and (7 ), is a q-integration

P(H , u) =
g(q)∫

f (q)

. . .

∫ g(2)

f (2)

g(1)∫

f (1)

u(x1, . . . xq+h)dx1dx2 . . . dxq

where bounds have the form

f (j) = aj +
q+h∑

k=j+1

ajkxk and g(j) = bj +
q+h∑

k=j+1

bjkxk .

Part (i) above concludes the proof since the integration over the polytope can be
transformed into a finite number of integrations over feasible hierarchical polytopes.
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Remark 4 (i) Note that in the case of continuous variables, inequalities of types ≤
and ≥ can respectively be replaced without any changes in the result by inequalities
of types < and >.

(ii) For continuous computations,
(iia) at Stage 1, systems and subsystems are split as in Lemma 3;
(iib) at Stage 2, summations are simply replaced by integrations;
(iic) Stage 3 remains unchanged.

Remark 5 Ong et al. (2003) have presented a way to compute the exact volume of
a non parameterized polyhedron. The previous algorithm for continuous cases can
be viewed as a version of this method for parameterized polytopes and polynomial
integrands.

Example 9 (Application 3) In this application, we re-evaluate the probability that
a Condorcet winner exists assuming that each candidate is supported by a fraction λ

of the electorate in any pairwise confrontation. Consider a three-candidate election.
There are six types of voters’ preferences as described at (21). Now suppose that each
of the three candidates has an electoral fief in such a way that each candidate involved
in a pairwise majority voting collects at least a proportion of λ favorable votes.
Let xj = nj/n, j = 1, 2, . . . , 6. The supporting polytope for all voting situations is
described by

(P) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + x3 + x4 + x5 + x6 = 1
x1 + x2 + x5 ≥ λ

x1 + x2 + x5 ≤ 1 − λ

x1 + x2 + x3 ≥ λ

x1 + x2 + x3 ≤ 1 − λ

x1 + x3 + x4 ≥ λ

x1 + x3 + x4 ≤ 1 − λ

xj ≥ 0, j = 1, 2, . . . , 6

The volume v0(λ) of this polytope is the following piecewise defined polynomial
in λ :

v0(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−60λ3+150λ4−90λ5

120 if λ ∈ [
0, 1

3

]

(24λ2−4λ+1)(1−2λ)3

40 if λ ∈ [
1
3 ,

1
2

]

0 otherwise

Under these assumptions, the polytope of all voting situations at which a1 is the
Condorcet winner is described by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + x3 + x4 + x5 + x6 = 1
x1 + x2 + x5 ≥ λ

x1 + x2 + x5 ≤ 1 − λ

x1 + x2 + x3 ≥ λ

x1 + x2 + x3 ≤ 1 − λ

x1 + x3 + x4 ≥ λ

x1 + x3 + x4 ≤ 1 − λ

x1 + x2 + x5 > 1
2

x1 + x2 + x3 > 1
2

xj ≥ 0, j = 1, 2, . . . , 6

the volume v1(λ) of which is given by

v1(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

800λ4−320λ3−448λ5+5
1920 if λ ∈ [

0, 1
4

]

(8λ+92λ2+3)(1−2λ)3

960 if λ ∈ [
1
4 ,

1
2

]

0 otherwise

Under the IAC assumption, the probability of observing a voting event described
by some linear constraints tends to the ratio vol(P)/vol(S) as the the total number
of voters tends to infinity; where P and S are respectively the polytopes that support
all occurrences of the corresponding voting event and the polytope of all voting
situations.

Proposition 2 Consider a three-candidate election and assume that a ratio λ ∈
[0, 1

2 [ of the electorate supports each candidate involved in a pairwise majority vot-
ing. Under the IAC assumption, the limit Prob∗(λ), as the total number of voters
tends to infinity, of the conditional probability that a Condorcet winner exists assum-
ing that each candidate involved in a pairwise majority voting receives at least a
proportion of λ favorable votes, is

Prob∗(λ) =

⎧
⎪⎪⎨

⎪⎪⎩

3(5−448λ5+800λ4−320λ3)
16−1440λ5+2400λ4−960λ3 if λ ∈ [

0, 1
4

]

3(3−10λ+80λ2−480λ3+1040λ4−736λ5)
8−480λ3+1200λ4−720λ5 if λ ∈ [

1
4 ,

1
3

]

3(3+8λ+92λ2)
24−96λ+576λ2 if λ ∈ [

1
3 ,

1
2

[

Note that the classical Prob∗(0) = 15
16 maximizes Prob∗(λ) and then is an overes-

timated value in some real election contests where candidates have non negligible
electoral fiefs. This is presumably the case in a society with an established political
divide. Nevertheless, one can observe that Prob∗(λ) tends to 3

4 as λ tends to 1
2 assum-

ing λ < 1
2 . This confirms a relatively large probability that a Condorcet winner exists

even in the particular case we describe here.
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6 Discussion and Conclusion

We have provided a direct proof of Ehrhart’s extended conjecture by giving a case
independent description ofGehrlein–Fishburn’smethod. This was themain objective
of the paper. The second achievement consists in showing that this approach also
allows computerized evaluations with one or more variables and parameters together
with polynomial summands.

Because of tedious but elementary summations, applying theGehrlein–Fishburn’s
method may sometimes lead to infeasible instances. That is also the case when other
techniques based on algebraic and geometric tools are used with a large number of
variables and constraints. But only efficient implementations and recent contributions
facilitate some hard actions like to find out vertices of a polytope, to count integer
points in polyhedra, to factorize or decompose some expressions or solving a system
of linear inequalities with several variables. What was important was to present how
does Gehrlein–Fishburn method works using basic eliminations of variables. Even in
continuous (and parameterized) cases, the method remarkably remains operational.
Further investigations are to be made discussing how improvements of some steps
are to be achieved, what algebraic or geometric properties do decompositions we
have used, etc.

The main difficulty observed is that the number of subspaces generated increases
exponentially with the number of variables and parameters. But in some examples,
the choice of the ordering of variables when rearrangements are executed reduces or
increases drastically the number of subspaces. An open question is then to find the
optimal ordering of variables that leads to the smallest number of subspaces. Another
observation concerns the periodicity. In somecases, the collectionof periods provided
in Huang et al. (2000) or in Theorem 2 in this paper may be reduced. How to obtain
the smallest period is then another open issue.

Finally, Schürmann (2013) provides a formal approach of how symmetries
between variables can be exploited to ease computations. Using symmetries to reduce
the total number of variables was in use by social choice theorists as in Gehrlein and
Lepelley (1999), Gehrlein (1990), or Lepelley and Mbih (1987). The use of sym-
metries reduces the total number of subdomains in the Gehrlein–Fishburn procedure
and turns the summand into a polynomial. We hope that combining symmetries with
sums of polynomials over polytopes will emerge to new procedures, as powerful as
those of Bruns et al. (2017, 2019).



394 I. Moyouwou et al.

7 Appendix

Input: cst:: a list of linear constraints; var:: a variable in cst
Output: rescst:: A set of (ordered) lists with four terms each
rescst ←{};lbound ←[];ubound ←[]; cstnull ←[];
j ←lcm ([coeff (cst [i],var),i = 1..nops(cst)]);
for i ← 1 to nops (cst) do # this loop finds integer bounds of j*var

if coeff(cst[i], var) > 0 then

ubound ←
[ −cst[i] ∗ j

coeff(cst [i] , var)
+ j ∗ var, op(curcst)

]

;

else if coeff(cst[i], var) < 0 then

lbound ←
[

cst[i] ∗ j

coeff(cst [i] , var)
− j ∗ var, op(curcst)

]

else
cstnull ← [cst [i],op(curcst)]

end
end
foreach (u, v) ∈ {1, . . . , nops(lbound)} × {1, . . . , nops(ubound)} do

varcst ←[lbound [u] − ubound [v],op(cstnull)] ; /* start a domain

*/
forall the i ∈ {1, . . . , nops(lbound)}\{u} do # write constraints to rule out
max

varcst ←[lbound [i] + ε(i, u) − lbound [u],op(varcst)] ;
end
forall the i ∈ {1, . . . , nops(lbound)}\{v} do # write constraints to rule out
min

varcst ←[ubound [i] + 1 − ε(i, v) − ubound [v],op(varcst)] ;
end
subdo ←[lbound[u],j*var,ubound[v],varcst ]; rescst
←[subdo, op(rescst)];

end
rescst;

Algorithm 1: Procedure MoveOne
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Input: cst:: list of linear constraints; q variables x1, . . . , xq; h parameters xq+1, . . . , xq+h
Output: rescst:: set of subdomains; dd:: congruence list for parameters
subdos ←MoveOne (cst,x1) ; /* bounds of the first variable */
for i ← 1 to nops (subdos) do # store each subdomain as a table

subdo:=table[1 + q, 5];
subdo [1,1..4]←[subdos[i][1, 1], subdos[i][1, 2], subdos[i][1, 3], x1];
subdo [1 + q, 1]←subdos[i][4]; /* constraints on x2, . . . , xq+h */
subdo [1 + q, 3]←1; /* this is level 1 */
subdo [1, 5]←1; /* the congruence term for x1 */
subdos [i]←subdo;

end
rescst ← []; dd ← [1, . . . , 1] ; /* dd has h terms */
while subdos �= ∅ do

subdo ←subdos [1];
move:=MoveOne (subdo [1 + nvar, 1],var);
if subdo[[q + 1, 3] = q − 1 then

for i ← 1 to nops (move) do
subdoo ←subdo;
t←subdoo [1 + q, 3] + 1; subdo [1 + q, 3]← t; /* level updated */
subdoo [t,1..4]←[move[i][1, 1], move[i][1, 2], move[i][1, 3], xt];
subdoo [1 + q, 1]←move[i][4];
subdoo [q, 5]←lcm

{
cjdj

gcd(cjdj, ajq)
,

cjdj
gcd(cjdj, bjq)

, j = 1, . . . , q − 1

}

;

for t ← q + 1 to q + h do

ddt ←lcm

{

ddt−q,
cjdj

gcd(cjdj, ajt)
,

cjdj
gcd(cjdj, bjt)

, j = 1, . . . , q

}

;

end
subdoo [1 + q, 5]← dd ; /* congruences for parameters */
rescst ← [subdoo, op(rescst)];

end
else

subdoss ← [];
for i ← 1 to nops (move) do

subdoo ←subdo;
t ←subdoo [1 + q, 3] + 1; subdoo [1 + q, 3]←t;
subdoo[t, 1..4] ←[move[i][1, 1], move[i][1, 2], move[i][1, 3], xt];
subdoo [t, 1]←move[i][4];
subdoo [t, 5]←lcm

{
cjdj

gcd(cjdj, ajt)
,

cjdj
gcd(cjdj, bjt)

, j = 1, . . . , t − 1

}

;

subdoss ←[subdoo,op(subdoss)];
subdos ←subsop(1=op(subdoss),subdos); /* replace the current
subdomain in subdos by the collection of new subdomains
from MoveOne */

end
end

end
rescst;dd;

Algorithm 2: Procedure MoveAll
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Input: subdo::a table of format (15); dd:: the congruence list; θ such that
θ ∈ �(dd); u(x1, . . . , xq+h):: a multivariate polynomial

Output: Poly:: a polynomial in the parameters xt, t = q + 1, . . . , q + h
q ← −1 + total number of rows in subdo;
h ← number of parameters from subdo[q + 1, 4];
Poly ← 0 ; /* initialization */
d ← [subdo[1, 5], . . . , subdo[q, 5], dd1, . . . , ddh]; /* congruence list

*/
foreach (r1, . . . , rq) ∈ θ(d) do

r ← [r1, . . . , rq, θ1, . . . , θh];
subdoo ← subs(x1 = dd1 ∗ y1 + r1, . . . , xq+h = ddq+h ∗ yq+h + rq+h, subdo) ;
/* substitute dt ∗ yt + rt to xt in subdo to obtain
subdoo */
poly ← u(d1 ∗ y1 + r1, . . . , dq+h ∗ yq+h + rq+h);
for t ← 1 to q do

lbt ← subdoo[t, 1] − subdoo[t, 2] ∗ rt
dt ∗ subdoo[t, 2] ; lbt ← lbt − const(lbt) + �const(lbt)�;

/* const(x) =constant in x */

ubt ← subdoo[t, 3] − subdoo[t, 2] ∗ rt
dt ∗ subdoo[t, 2] ; lbt ← ubt − const(ubt) + const(ubt)�;

poly ← poly∗(ubt) − poly∗(lbt − 1); /* a summation; see Remark 2 */

end
Poly ← Poly + poly;

end

Poly ← subs(yt = xr − rt
ddt

, t = q + 1, . . . , q + h, Poly);

Poly;
Algorithm 3: Procedure SubdoCom
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Input: cst:: list of linear constraints; q variables x1, . . . , xq; h parameters
xq+1, . . . , xq+h; u(x1, . . . , xq+h):: a multivariate polynomial

Output: Poly:: a polynomial in the parameters xt, t = q + 1, . . . , q + h
subdos ← MoveAll(cst, (x1, . . . , xq), (xq+1, . . . , xq+h));
Store the first output of subdos as a list S1, . . . , Sp of tables;
dd ← congruence list for parameters; /* second output of subdos */
q ← total number of variables ; h ← total number of parameters ;
C ← [] ; /* empty list */
foreach j = 1, . . . , p do

Cj ← Sj[1 + q, 1]; /* store feasibility constraints from Sj */
end
Partition C1, . . . ,Cp into disjoint subdomains of parameters D1, . . . ,Dm such
that for each k = 1, . . . ,m, all (xq+1, . . . , xq+h) ∈ Dk satisfy Cj, j ∈ Ik for a
given Ik ⊆ {1, . . . , p};
foreach k = 1, . . . ,m do

print( "for (xq+1, . . . , xq+h ∈ Dk");
foreach θ ∈ �(dd) do

Poly ← 0;
foreach j ∈ Ik do

Poly ← Poly + SubdoCom(Sj, dd, θ, u(x1, . . . , xq+h));
print(Poly); /* simplifying or factorizing are
options */

end
end

end
Algorithm 4: Procedure Reparti
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IAC Probability Calculations in Voting
Theory: Progress Report

Abdelhalim El Ouafdi, Issofa Moyouwou, and Hatem Smaoui

1 Introduction

In voting theory, probabilistic analysis aims to assess the frequency with which
various electoral outcomes can be observed. The primary motivation is, in one hand,
to quantify the potential impact of voting paradoxes on real-world elections and, on
the other hand, to compare the alternative voting rules on the basis of their ability to
meet certain normative criteria. These quantitative results can of course be obtained,
in the form of estimates, by empirical and experimental methods (via actual election
data and computer simulations).1 However, themost significant part of the researchon
this topic makes use of analytical methods in order to obtain exact results describing
the theoretical probabilities of the voting events under investigation. The book by
Gehrlein (2006), entirely devoted to the famous Condorcet paradox, and the two
books by Gehrlein and Lepelley (2011, 2017), in addition to containing the most
complete and essential literature reviews on the subject, constitute an excellent illus-
tration of the richness and dynamism of this line of research. William Gehrlein and
Dominique Lepelley are certainly the two most eminent and most prolific authors
in this field, and one of the main objectives of this paper is also to pay tribute to

1A good summary of empirical and experimental studies can be found in Gehrlein (2006) and
Gehrlein and Lepelley (2011). See also Regenwetter et al. (2006), Tideman and Plassmann (2012,
2014), Gehrlein et al. (2016, 2018) and Brandt et al. (2016, 2020).

A. El Ouafdi
University of Lyon, UJM Saint-Etienne, GATE UMR 5824, Saint-Etienne, France
e-mail: abdelhalim.el.ouafdi@univ-st-etienne.fr

I. Moyouwou
ENS-University of Yaounde I, Yaounde, Cameroon
e-mail: imoyouwou2@yahoo.fr

H. Smaoui (B)
Université de La Réunion, CEMOI EA13, Saint Denis, La Réunion, France
e-mail: hatem.smaoui@univ-reunion.fr

© Springer Nature Switzerland AG 2021
M. Diss and V. Merlin (eds.), Evaluating Voting Systems with Probability Models,
Studies in Choice and Welfare, https://doi.org/10.1007/978-3-030-48598-6_17

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48598-6_17&domain=pdf
mailto:abdelhalim.el.ouafdi@univ-st-etienne.fr
mailto:imoyouwou2@yahoo.fr
mailto:hatem.smaoui@univ-reunion.fr
https://doi.org/10.1007/978-3-030-48598-6_17


400 A. El Ouafdi et al.

their fundamental contribution to the probabilistic analysis of voting paradoxes and
voting rules.

The analytical approach uses theoretical models based on certain assumptions
about the voters’ preferences. In the literature, the most often used probabilistic
models are the impartial culture condition (IC), introduced by Guilbaud (1952), and
the impartial anonymous culture condition (IAC), described initially by Kuga and
Nagatani (1974) and formalized by Gehrlein and Fishburn (1976).2 Over the past
two decades, IAC probability calculation techniques have made substantial progress,
particularly through methodological studies that have linked these calculations to
their appropriate mathematical framework (Huang and Chua 2000; Cervone et al.
2005; Wilson and Pritchard 2007; Lepelley et al. 2008). In this paper, we wish to
report on this progress, by a brief description of the methods of calculation used in
this field and by reviewing some of the results that the application of these methods
made it possible to obtain. For the sake of simplicity, we have chosen to restrict
the themes of these representative results to four issues that are among the most
often addressed by the probabilistic analysis of electoral outcomes: the election of
the Condorcet winner, the election of the Condorcet loser, the (non)monotonicity of
voting rules, and finally their manipulability.

In general, these specific voting events are described and studied in a very simple
formal framework where individual preferences are represented by linear orderings
on the set of candidates. For example, with three candidates (a, b, and c), there are
six possible individual preference rankings: abc, acb, bac, bca, cab, and cba (the
notation abc means that a is preferred to b, b is preferred to c, and, by transitivity,
a is preferred to c). With n voters and m candidates, a profile is an ordered list of
n individual preferences chosen from the m! possible rankings; a voting situation
is an anonymous profile. IC model assumes that each individual preference ranking
(and so each profile) is equally likely to be observed. IAC assumes that each possible
voting situation is equally likely to be observed. An (anonymous) voting rule is
defined as a function that associates a winning candidate with each voting situation.

Most of the studies that will be presented in this brief report deal with voting rules
that belong to the class of weighted scoring rules (WSR s) or to the class of scoring
elimination rules (SER s). Withm candidates, aWSR is defined by a scoring vector
(λ1, λ2, . . . , λm), λ1 ≥ λ2 ≥ · · · ≥ λm , and λ1 > λm such that each candidate
receives λk points each time he/she is ranked kth by a voter. The candidate with the
most total points wins. The most common WSR s are plurality rule, PR (λ1 = 1
and λk = 0 for k > 1), negative plurality rule, N PR (λm = 0 and λk = 1 for
k < m), and Borda rule, BR (λk = (m − k)/(m − 1)). In three-candidate election,
the scoring vector is of the form (1, λ, 0), 0 ≤ λ ≤ 1, and we have λ = 0 for PR,
λ = 1 for N PR, and λ = 1/2 for BR. Scoring elimination rules use WSR s in a
multi-stage process of sequential elimination: In each stage, the candidate with the
lowest total points is eliminated. With three candidates, a WSR is used in a first
round to eliminate the candidate with the lowest total points, and in a second round,
the two remaining candidates are confronted and the one who obtains the majority

2For a justification of research based on these assumptions, see Gehrlein and Lepelley (2004).
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of votes wins. Plurality elimination rule (PER), negative plurality elimination rule
(N PER), and Borda elimination rule (BER) are the sequential versions of PR,
N PR, and BR, respectively.3

Given a voting situation, a Condorcet winner (CW ) is a candidate who beats each
other candidate in pairwisemajority comparisons. In the sameway, a Condorcet loser
(CL) is a candidate who loses against every other candidate in pairwise majority
contests. It is well known that the CW and the CL do not always exist. However,
it is generally accepted that a “good” voting rule should select the CW when such
a candidate exists (CW condition). Voting rules that satisfy this property are called
Condorcet consistent.4 In the same way, it seems reasonable to require the non-
election of the CL , when such a candidate exists (CL condition). In this sense, the
non-selection of the CW or the selection of the CL can be considered as voting
paradoxes (the selection of the CL is known as (strong) Borda paradox). Failure
of a given voting rule to meet the CW condition or the CL condition is viewed
as a flaw of this rule. The other two imperfections that can affect the voting rules
and that we focus on in this paper, are monotonicity failure and vulnerability to
strategic manipulation. A monotonicity paradox occurs when an increased support
of a candidate who won an election makes him or her a loser (More is Less Paradox,
MLP), or when a decreased support of a candidate who lost an election makes him
or her a winner (Less is More Paradox, LMP).5 A strategic manipulation of a voting
rule occurs in an election when some voters express insincere preferences in order to
obtain a final winner that they prefer to the candidate that would have been elected
if they had voted in a sincere way.

In the remainder of this paper,we focus on the exact probabilistic results describing
the theoretical frequency of these four voting events under each of the following
six voting rules: PR, N PR, BR, PER, N PER, and BER (we also mention the
results obtained for the entire class of WSR s and for that of SER s). Our main
objective being to give a general idea on the evolution of the techniques of proba-
bilities calculation in voting theory, we will not review here the results obtained by
assuming IC hypothesis because computation methods used under this model are
(almost) the same for twenty years. We therefore begin with a brief description of
the general framework of probability calculations under IAC condition and introduce
some useful notations (Sect. 2). We then present the different methods used in these
calculations, summing up the basic idea of each method and illustrating its scope
by a short review of the results it has allowed to obtain (Sects. 3–6). Finally, we
conclude with a few remarks on the progress made so far and on the orientations to
be considered to push even further the limits of the probabilistic analysis of voting
rules.

3Note that the paper only deals with the classical form of elimination process. It is worth noting
that other methods of elimination are studied in the literature (see, e.g., Kim and Roush 1996).
4Black’s procedure, Copeland’s rule, and Dodgson’s method are examples of methods belonging
to this important class of voting rules (see, e.g., Fishburn 1977).
5Here, MLP and LMP are defined for a fixed electorate. These two paradoxes can also be defined
with a variable electorate (see Lepelley and Merlin 2001).
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2 Probabilities Calculations Under the IAC Condition

In an election with n voters and m candidates, we denote by R1, …, Rm! the m!
possible individual preference rankings. A voting situation is then represented by
an m!-tuple of integers, ni , that sums to n, where ni denotes the number of voters
having the individual preference Ri . For m = 3, voting situations are 6-tuples,
(n1, . . . , n6), with the six possible individual rankings labeled as follows: abc(R1),
acb(R2), bac(R3), cab(R4), bca(R5), and cba(R6). Note that voting situations are
24-tuples for m = 4, 120-tuples for m = 5, etc. We denote by V (n,m) the set of all
possible voting situationswith n voters andm candidates. Under the IAC assumption,
the elementary events are the voting situations. Thus, for a voting event E , and for a
fixed m, if we denote by E(n,m) the set of elements of V (n,m) in which E occurs,
the probability of E is a function of n that is given by:

Pr(E, n,m) = |E(n,m)|/|V (n,m)| (1)

In this identity, |V (n,m)| and |E(n,m)| denote the cardinalities of sets V (n,m)

and E(n,m), respectively. The expression of |V (n,m)| is well known and is given
by:

|V (n,m)| =
(
n + m! − 1
m! − 1

)
(2)

In general, E(n,m) is described by a parametric system, S(n), of linear
(in)equalities with integer (or rational) coefficients on the variables ni and on the
parameter n. Therefore, the computation of Pr(E, n,m) is reduced to the enumer-
ation of all the integer solutions of S(n). Note that this is a combinatorial problem
that is not always easy to solve and that the transition from three options (m = 3)
to four options (m = 4) is actually a move from a calculation with 6 variables to a
calculation with 24 variables (with m = 5, we move to much more complex compu-
tations, involving 120 variables). Often, especially when the probability of an event
is difficult to obtain as a function of n, or when this expression is too cumbersome,
one is satisfied to calculate the limiting probability of E , defined by:

Pr(E,∞,m) = lim
n→∞ Pr(E, n,m) (3)

One of the very first events examined by probabilistic studies is the event CW :
“there exists a Condorcet winner”. Consider the event CWa : “candidate a is the
Condorcet winner”. By formula (1), and using the symmetry of IAC with respect to
the m candidates, we have:

Pr(CW, n,m) = m
∣∣CWa(n,m)

∣∣/|V (n,m)| (4)
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With three candidates (m= 3), the setCWa(n, 3) is characterized by the following
parametric linear system:

Sa(n) :

⎧⎪⎪⎨
⎪⎪⎩

n1, n2, n3, n4, n5, n6 ≥ 0
n1 + n2 + n3 + n4 + n5 + n6 = n
n1 + n2 + n4 > n/2
n1 + n2 + n3 > n/2

The two first conditions (the six sign inequalities and the equality) characterize the
set of all voting situations with three candidates and n voters, V (n, 3). The two last
conditions describe the fact that a is the Condorcet winner (a beats b by a majority
of votes and a beats c by a majority of votes).

Knowing the probability that a CW exists, one can consider calculating the
Condorcet efficiency of a voting rule F , denoted by CE(F, n,m), and defined as
the conditional probability that F elects the CW , given that such a candidate exists.
Some studies have also investigated the probability of electing the CL , when such a
candidate exists, Pr(CL − F, n,m). The other notations that will be useful later in
this paper are the following. For a monotonicity paradox M (MLP or LMP), we
denote by Pr(M − F, n,m) the vulnerability of F to M (i.e., the probability that
M occurs when using F). The global vulnerability of F to monotonicity paradoxes
(i.e., the probability that a voting situation gives rise to MLP or LMP under F)
is denoted by Pr(GMP − F, n,m). Finally, the vulnerability of F to coalitional
manipulability is denoted by V M(F, n,m).

We close this section with three brief remarks on the IC and IAC models and on
the relevance of the theoretical results obtained under these conditions:

• The two models are based on a hypothesis of equiprobability. In both cases,
this hypothesis can be justified by the absence of information a priori on the voter
preferences.Note thatwith IC, individual preferences are completely independent.
By contrast, IAC implicitly introduces a certain degree of interaction between
individuals, which induces less heterogeneous preferences than with IC.

• The probabilities obtained under IAC are in general (slightly) lower than those
obtained with IC. As pointed by Berg and Lepelley (1992), this can be explained
intuitively by the fact that the homogeneity introduced by IAC makes the occur-
rence of voting paradoxes less likely (for a paradox to occur, a certain antagonism
of individual preferences is required).

• In general, IC and IAC represent scenarios that exaggerate the probability of
voting events. Thus, the probabilities computed with these two models should be
perceived, not as estimates of the likelihood of these events in real situations, but
rather as upper bounds. In particular, when the theoretical probability of a voting
event is very small, this event is assuredly very unlikely to be observed in reality
(Gehrlein and Lepelley 2004).
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3 The Algebraic Approach

The first method for probabilities computation under IACwas developed byGehrlein
and Fishburn (1976). This simple algebraic counting technique, which was used
until the early 2000s (and beyond in some cases), is based on the use of multiple
summations and their reduction by the formulas on sums of powers of integers (Selby
1965). Let us go back to the example of eventCWa : “a is theCondorcetwinner”,with
three candidates (m = 3). If we assume that n is odd, then the last two inequalities
in the parametric system Sa(n) can be written as n3 + n5 + n6 ≤ (n − 1)/2 and
n4 + n5 + n6 ≤ (n − 1)/2, respectively. As the variables ni are inter-related, the
first step in Gehrlein–Fishburn procedure is to transform Sa(n) into a form that will
facilitate the enumeration. From the equality in the second condition in Sa(n), we
can replace n1 by n − (n2 + n3 + n4 + n5 + n6). It is then easy to show that the
number of integer solutions of Sa(n) is equal to the number of 5-tuples of integers,
(n2, n3, n4, n5, n6), that meet the following five restrictions:

0 ≤ n2 ≤ n − n6 − n5 − n4 − n3, 0 ≤ n3 ≤ n − 1

2
− n6 − n5,

0 ≤ n4 ≤ n − 1

2
− n6 − n5, 0 ≤ n5 ≤ n − 1

2
− n6, 0 ≤ n6 ≤ n − 1

2

With this rearrangement of the conditions on the ni’s, the cardinality of the set
CWa(n, 3) can be computed as:

∣∣CWa(n, 3)
∣∣ =

n−1
2∑

n6=0

n−1
2 −n6∑
n5=0

n−1
2 −n6−n5∑
n4=0

n−1
2 −n6−n5∑
n3=0

n−n6−n5−n4−n3∑
n2=0

1 (5)

The second step is to algebraically reduce this multiple summation by sequen-
tially using known relations for sums of powers of integers. The process starts

by the evaluation of the last summation,
n−n6−n5−n4−n3∑

n2=0
1, which can be obvi-

ously replaced by (n − n6 − n5 − n4 − n3 + 1). Then, the n3 summation in (5)

becomes

n−1
2 −n6−n5∑
n3=0

[(n − n6 − n5 − n4 + 1) − n3] and can be easily calculated (using

the formula
k∑

t=0
t = k(k + 1)/2). Continuing this way, it can be showed that

|CWa(n, 3)| = (n + 1)(n + 3)3(n + 5)/384. Using formulas (1), (2), and (4) for
m = 3, the analytic representation of the probability of the event CW (n, 3), for odd
n, is obtained as (Gehrlein and Fishburn 1976):

Pr(CW, n, 3) = 15(n + 1)2

16(n + 2)(n + 4)
(6)
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The representation for even n, calculated by Lepelley (1989), is given by:

Pr(CW, n, 3) = 15n(n + 2)(n + 3)

16(n + 1)(n + 3)(n + 5)
(7)

As we can see, the two formulas (for odd n and for even n) give the same limit
as n → ∞; thus, the value of the limiting probability is given by Pr(CW,∞, 3) =
15/16.

Despite of its apparent simplicity, this algebraic method has made it possible to
produce a very large number of results that have significantly contributed to advance
the probabilistic analysis of voting rules. It is not an exaggeration to say that, until
the early 2000s, almost all the analytical representations of the likelihood of voting
events, under IAC, were achieved by using this method. With a few exceptions, all
these results deal with the case of three-candidate elections.6 We limit ourselves here
to mentioning only a small part of this abundant bibliography, the one that gives the
first results on the probabilities of the four voting events and the six voting rules
under consideration.

Representations for the Condorcet efficiency, as a function of n, were obtained
by Gehrlein (1982) and Gehrlein and Lepelley (2001), for PR, N PR, BR, PER,
and N PER (BER is known to always select the CW when such a candi-
date exists). The limiting probabilities are given by CE(PR,∞, 3) = 88.15%,
CE(N PR,∞, 3) = 62.96%, CE(BR,∞, 3) = 91.11%, CE(PER,∞, 3) =
95.85%, and CE(N PER,∞, 3) = 97.04%. The probability of electing the
Condorcet loser (when such a candidate exists), with n voters, was calculated by
Lepelley (1993) for PR and N PR (the other four voting rules never select the CL).
The limiting probabilities are respectively given by Pr(CL − PR,∞, 3) = 2.96%
and Pr(CL − N PR,∞, 3) = 3.15%. The first analytical results on the frequency
of monotonicity paradoxes were obtained by Lepelley et al. (1996), for PER and
N PER. The associated limiting values are Pr(MLP − PER,∞, 3) = 4.51%,
Pr(MLP − N PER,∞, 3) = 5.56%, Pr(LMP − PER,∞, 3) = 1.97%, and
Pr(LMP − N PER,∞, 3) = 6.48%. Other results, dealing with variable elec-
torate versions of MLP and LMP , were proposed by Lepelley and Merlin (2001).
Finally, the exact formulas (as a function of n), describing the vulnerability of
PR, N PR, and PER to strategic manipulation (by a coalition of voters) were
provided by Lepelley and Mbih (1987, 1994). For a large number of voters, the
obtained formulas give: V M(PR,∞, 3) = 29.16%, V M(N PR,∞, 3) = 51.85%,
and V M(PER,∞, 3) = 11.11%. For N PER, only the limiting probability was
possible to compute in Lepelley and Mbih (1994): V M(N PER,∞, 3) = 43.05%.

This sample of results shows the importance of Gehrlein–Fishburn procedure in
probability calculations under the IAC hypothesis. However, the implementation of
this method often faces a number of difficulties. First, we must start by rearranging
the inequalities in S(n) in a way that allows the use of multiple summations, which

6A description of the few studies dealing with the case of four (and more) candidates can be found
in (Gehrlein 2006, pp. 107–152).
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is not always easy to do, especially because there is no mechanical procedure to
accomplish this operation. Second, it often happens that the Min and Max functions
appear in certain lower and upper summation bounds, which leads to partitioning
the set E(n,m) into several sub-spaces and to further complicate the calculations
(see, e.g., Gehrlein and Lepelley 2001). Finally, in the expression of these bounds,
when some of the ni ’s coefficients are not integer, the Gehrlein–Fishburn proce-
dure may fail to produce the desired result. The scope of this method is therefore
rather limited to simple voting events in three-candidate elections. For example, it
does not allow to compute the analytical representations of Pr(MLP − BR, n, 3),
Pr(LMP − BR, n, 3), V M(N PER, n, 3), and V M(BR, n, 3). As for the results
for m = 4 and the results depending on a second parameter (other than n) with
m = 3, these representations seem to be (in general) inaccessible until now with this
approach.

4 The Geometric Approach for Limiting Probabilities

Saari (1994) is the first author to introduce tools of geometric analysis in the study
of voting rules. His extensive work has significantly contributed to a more complete
and deeper understanding of most voting paradoxes and impossibility theorems. His
geometric approach has also made it possible to develop a probability calculation
technique in the limit case where the number of voters tends to infinity (Saari and
Tataru 1994, 1999). This method, based on volume calculations and on results from
Schl`̀afli (1950), was later used, in Merlin and Tataru (1997), Saari and Valognes
(1999), and Merlin et al. (2000, 2002), among other studies, to obtain a number of
interesting asymptotic results under the IC hypothesis.

With the assumption of IAC, Cervone et al. (2005) developed a very similar
method that allows to reduce the problem of computing limiting probabilities, in
three-candidate elections, to a problem of pure geometry. They start by transforming
eachvoting situation (n1, . . . , n6) into a normalized (anonymous) profile (x1, . . . , x6)
where xi = ni/n represents the fraction of voters who favor the preference ranking
Ri . Since xi ≥ 0, for each i , and

∑
xi = 1, the normalized profiles correspond to

points (with rational coordinates) in �5, the 5-simplex in R
6. In the same way, for

a voting event, E , described by a linear system S(n), we can associate the convex
region R described by the linear system S(1) (where the ni ’s are replaced by the
xi ’s and n is replaced by 1). If we respectively denote by Vol

(
�5

)
and Vol(R) the

5-volume of�5 and the 5-volume of R, then the limiting probability of E is obtained
as:

Pr(E, 3,∞) = Vol(R)/Vol
(
�5

)
(8)

Vol
(
�5

)
is easy to obtain and is known to be equal to

√
6/120. To computeVol(R),

the authors apply a procedure based on the general formula giving the volume of
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a pyramid and on a recursive technique of triangulation. The volume of a pyramid
in dimension d is equal to Vh/d, where V is the (d − 1)-dimensional volume of
the base, and h is the height of the apex above the base. The method begins by
determining all the vertices of R and then uses one of them to decompose R into a
collection of pyramids having the chosen vertex as their apex and the various faces
of R as their bases. The faces of R are 4-dimensional convex regions and are in turn
broken in pyramids and so forth. This generates a recursive procedure for computing
the volume of the region R; the base case for the recursion is the 2-dimensional case
where the “pyramid” is simply a triangle.

With this method, the calculation of the limit probabilities, Pr(E,∞,m), is
reduced to the calculation of the volumes of convex regions (in general, of dimen-
sion 5 for m = 3). It is no longer necessary to obtain the exact expressions of
Pr(E, n,m) as a function of n and then calculate their limit when n tends to infinity
(this is a significant simplification when Pr(E, n,m) is difficult to obtain). For
example, to compute Pr(CW,∞, 3), it suffices to introduce the convex region Ra

associated withCWa(n, 3)when n → ∞; then (using formulas (4) and (8)), we have
Pr(CW,∞, 3) = 3Vol(Ra)/Vol

(
�5

)
. We know that Vol

(
�5

) = √
6/120 and it can

be showed, applying the technique we have just outlined, that Vol(Ra) = √
6/384

(Cervone et al. 2005). We thus recover the result of Gehrlein and Fishburn (1976)
and Lepelley (1989), Pr(CW,∞, 3) = 15/16.

Thanks to their geometric approach, Cervone et al. (2005) have been able to
provide a complete answer to amuchmore complex problem.They obtained the exact
analytical representation of the limiting Condorcet efficiency, CE(λ,∞, 3), of all
weighted scoring rulesWSR(λ), λ ∈ [0, 1]. In particular, they showed that the Borda
rule (λ = 0.5) does not maximize CE(λ,∞, 3) (the maximum is reached for λ =
0.37228). Other asymptotic results in the form of general formulas (in λ) for allWSR
s were obtained by applying the technique of Cervone et al. (2005). For example,
Diss andGehrlein (2012) developed limiting representations for the probability that a
Borda paradox will be observed under eachWSR. The main conclusion of this paper
is that, in realistic voting scenarios, it is very unlikely that a strict Borda paradox7

would ever be observed for anyWSR and that occurrences of a strong Borda paradox
(electing theCondorcet loser) should be relatively rare, but not impossible to observe.

Moyouwou (2012) made it more systematic to obtain this type of results (general
exact formulas for the whole class of WSR s or SER s), by using the triangulation
algorithm of Cohen and Hickey (1979) and by introducing routines using MAPLE
codes to undertake the operations involved in this algorithm.8 Thismethod of calcula-
tionwas used in a series of articles, includingGehrlein et al. (2013, 2015),Moyouwou
and Tchantcho (2017), and Lepelley et al. (2018). In the last article, the authors
offer some new exact results describing the vulnerability to monotonicity paradoxes
(MLP , LMP ,GMP) of thewhole class of SER s. In particular, they show thatwhen

7A strict Borda paradox occurs when a voting rule completely reverses the rankings (on the set of
candidates) that are obtained by the pairwise majority comparisons (in particular, the CW becomes
the loser and the CL becomes the winner under the considered voting rule).
8See also Moyouwou and Tchantcho (2017).
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three-candidate elections are close, the risk of monotonicity failure is high for PER,
N PER, and BER (this is especially true under PER, for which the probability of
GMP is higher than 32%). In Gehrlein et al. (2013), analytical formulas in term of
λ are provided for V M(λ,∞, 3), the asymptotic vulnerability of SER(λ) to coali-
tional manipulation. These analyses were extended by Moyouwou and Tchantcho
(2017) who notably showed that the plurality rule minimizes V M(λ,∞, 3) (when
the size of the manipulating coalition is unrestricted).

It appears from the studies just cited that the geometric approach developed by
Cervone et al. (2005) is very useful when analyzing an entire class of voting rules
(typically the WSR s and the SER s) and comparing the rules belonging to this
class on the basis of their asymptotic probabilities to meet certain normative criteria.
However, this type of simultaneous analysis remains limited to the case of three
candidates, and it seems difficult, for the moment, to envisage similar investiga-
tions for four-candidate elections with this calculation technique. In fact, the scope
of this method essentially depends on the efficiency of the procedure used to find
the vertices and perform the triangulations; it is therefore not excluded that future
improvements in triangulation algorithms will make it possible to deal with the case
of four candidates.

5 Huang–Chua Method and EUPIA Procedure

In the results obtained in the literature applying the Gehrlein–Fishburn procedure, it
has been observed that the analytical representations of the probabilities of the voting
events always appear in the form of a quotient of two polynomials in n and that these
representations are periodic in n (with, in general, a period equal to 2, 6, 9 or 12).
Huang andChua (2000) transformed this observation into a general result that for any
voting event E such that E(n,m) is described by a system of linear constraints S(n),
the number |E(n,m)|, for fixedm, can be described by a periodic polynomial (i.e., a
polynomial, f (n), with coefficients depending on a certain period q). Consider, for
example, the event CWa : “a is the Condorcet winner”, characterized by the system
Sa(n). We have seen in Sect. 3 that |CWa(n, 3)| = (n + 1)(n + 3)3(n + 5)/384, for
odd n. And, using formulas (1), (2) (4), and (7), we can also see that for even n, we
have |CWa(n, 3)| = (n + 2)3(n + 3)(n + 4)/384. Thus, |CWa(n, 3)| is described
by a five-degree periodic polynomial with periodicity q = 2.

TheHuang–Chua result leads to fundamental simplification in probabilistic calcu-
lations under the IAC condition, avoiding in particular to go through the cumber-
some (manual) partitioning of the set E(n,m), as it is frequently the case with the
Gehrlein–Fishburn procedure. Indeed, knowing the degree of the periodic polynomial
expression f (n), it is enough to find the period q and to process by interpolation
to determine the periodic coefficients of f (n). Huang and Chua (2000) suggest a
simple algorithm that allows to simultaneously identify these unknown values. This
algorithm is based on the interpolation technique and an iterative process of computer
enumeration of the elements of E(n,m) for initial values of the parameter n. Gehrlein
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(2002) has improved this approach by developing EUPIA procedure,9 which applies
to both IAC and MCmodels,10 and overcomes a number of technical difficulties that
may be encountered when using the Huang–Chua algorithm. An extension of this
procedure (EUPIA 2), proposed by Gehrlein (2005), allows to obtain representations
for the conditional probability that voting outcomes are observed, given that voting
situations are constrained to have some specified values of a measurable parameter
(describing, in general, the degree of homogeneity of individual preferences).

The use of these new computational tools has generated a number of results
that would have been difficult to obtain with the algebraic approach of Gehrlein
and Fishburn. The Huang and Chua algorithm was mainly used in the study of the
manipulability of voting rules. Huang and Chua (2000) completed the results of
Lepelley and Mbih (1987, 1994), especially by providing the exact expression of
V M(N PER, n, 3) as a function of n. Favardin et al. (2002) obtained representa-
tions for the vulnerability of the Borda rule to individual manipulation. Favardin and
Lepelley (2006) consider various electoral environments in which strategic manip-
ulation can occur and derive some analytical representations for the manipulability
of a large number of voting rules. EUPIA was used by Gehrlein (2002) to develop
probability representations for a number of different voting outcomes, which are
considered to be intractable to obtain with the use of standard algebraic techniques
(as, e.g., the probability that all weighted scoring rules on three candidates give the
same winner). This procedure was also applied by Gehrlein and Lepelley (2003) to
compare the median voting rule with other voting rules, notably on the basis of their
manipulability and their Condorcet efficiency. Finally, the two-parameter algorithm
EUPIA 2 has been very useful in a number of studies on the impact that different
degrees of mutual coherence of individual preferences may have on the probability
of certain voting electoral outcomes, such as the existence of the Condorcet winner
(Gehrlein 2005), the election of the Condorcet winner (Gehrlein and Lepelley 2009;
Gehrlein et al. 2011), and the occurrence of Borda paradox (Gehrlein and Lepelley
2010).

As we have already pointed out, the result of Huang and Chua (2000) corre-
sponds to a crucial change in the methods of calculating probabilities of voting
events under IAC. As a consequence of this result, the technical efforts focused on
the development of a procedure for the systematic computation of the period and
the coefficients of the periodic polynomial representing |E(n,m)|. This goal has
been partially achieved with the Huang–Chua, EUPIA, and EUPIA 2 algorithms that
have been successfully applied to solve problems that lead to calculations involving
small periodicities. Unfortunately, the execution time of the interpolation procedure
increases exponentially depending on the periodicity, and these algorithms become
inoperative when the (unknown) periods are too large. This is the problem encoun-
tered, for example, by Favardin and Lepelley (2006) who could not obtain the exact
expression of V M(BR, n, 3) and the exact value of V M(BR,∞, 3). This difficulty

9EUPIA: Effectively Unlimited Precision Integer Arithmetic.
10Under the maximal culture assumption (MC), all voting situations with at most n voters are
assumed to be equally likely to be observed.
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severely reduces the efficiency of the Huang–Chua algorithm, the EUPIA procedure,
and all methods based on an interpolation technique and prevents them from being
used to analyze a large number of voting events with three candidates and (almost)
all voting events with four candidates.

6 Ehrhart Theory-Based Methods

Wehave seen in Sect. 4 that the calculation of the limiting probability of a voting event
E can be formulated as a geometric problem. This is also true for the calculation of the
probability of E as a function ofn (the number of voters). Indeed,whenm (the number
of candidates) is fixed, the parametric linear system S(n), describing the set E(n,m),
defines a (rational) parametric polytope Pn (with a single parameter, n).11 Computing
Pr(E, n,m), i.e., counting the number of integer solutions of S(n), is equivalent to
the geometric problem of counting the number of integer points belonging to Pn .
Wilson and Pritchard (2007) and Lepelley et al. (2008) drew the attention of voting
theorists to the existence of awell-establishedmathematical approach for performing
such a calculation, based on Ehrhart’s theory (Ehrhart 1962) and efficient counting
algorithms. The basic result of this theory concerns a particular type of parametric
polytopes, that of the dilatation of a rational polytope P by a positive integer factor
n, denoted by nP . In this case, the number of integer points of nP is a quasi-
polynomial on n (i.e., a polynomial on n with periodic coefficients), of degree equal
to the dimension of P . For example, in the event CWa : “a is the Condorcet winner”,
with m = 3, the system Sa(n) defines the dilatation nP where P is the (semi-open)
rational polytope, of dimension 5, defined by the system Sa(1) (obtained when n is
replaced by 1). We can therefore deduce from Ehrhart’s theorem that |CWa(n, 3)| is
a quasi-polynomial on n of degree 5.

As it can be seen, the theoretical result proposed byHuang and Chua (2000) corre-
sponds to the algebraic version of the basic result of Ehrhart theory. However, this
theory is more general and more advanced and continues to be enriched by numerous
studies in mathematics and computer science. For instance, Ehrhart’s theorem has
been extended to the general class of parametric polytopes, with one or more param-
eters (Clauss and Loechner 1998), and algorithms have been proposed to compute
the coefficients of the quasi-polynomial describing the number of integer points in
parametric polytopes.

The first algorithms, based on Ehrhart theory, that have been introduced in
probability calculations under IAC condition are Clauss’s method (Clauss 1996),
Barvinok’s algorithm (Barvinok 1994; [Barvinok]) and LattE (De Loera et al. 2004;

11A rational polytope P of dimension d is a bounded subset of Rd , defined by a system of integer
linear inequalities. P is said to be semi-open when some of these inequalities are strict. A parametric
polytope of dimension d (with a single parameter n) is a d-dimensional rational polytope Pn of the
form Pn = {

x ∈ R
d : MX ≥ bn + c

}
, where M is a t × d integer matrix, b and c are two integer

vectors with t components.
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[LattE]). The use of these powerful tools greatly facilitates the derivation of prob-
ability representations for voting outcomes. In particular, for the four voting events
that interest us here, and in the case of three candidates, they made it possible
to compute all the probabilities (as a function of n and when n → ∞) that the
previous methods failed to obtain. The limiting value of the vulnerability of Borda
rule to coalitional manipulation was obtained (separately) by Wilson and Pritchard
(2007) and Lepelley et al. (2008): V M(BR,∞, 3) = 132, 953/264, 600. It is worth
noticing that this exact result (50.247%) is very close to the approximation given in
Favardin and Lepelley (2006), 50.25%. Note also that the quasi-polynomial involved
in the expression of V M(BR, n, 3) is of period 210, which explains why this result
was not possible to obtain with the Huang–Chua algorithm. For monotonicity para-
doxes, the five missing analytical representations were provided by Smaoui et al.
(2016): Pr(MLP − BER,∞, 3) = 1.12%, Pr(LMP − BER,∞, 3) = 0.28%,
Pr(GMP − PER,∞, 3) = 1.05%, Pr(GMP − N PER,∞, 3) = 6.02%, and
Pr(GMP − BER,∞, 3) = 1.40%.

Among the three algorithms cited above, Barvinok algorithm is the most used in
IAC calculations, in the case of three candidates. Since 2008, the use of the program
[Barvinok] has led to many analytical results describing the frequency of various
voting events and should allow us to solve most of the probabilistic problems that we
could consider in voting theory for three-candidate elections. Recall that in this case
(m = 3), there are only 6 variables and the quasi-polynomials describing |E(n, 3)|
are generally of degree 5. With four candidates (m = 4), there are 24 variables, and
the quasi-polynomials are of degree 23. In this case, [Barvinok], as well as the other
two programs cited, fails to produce the desired quasi-polynomials (the maximum
number of variables that they can deal with seems to be about 20). Consequently, it is
not possible to analyze four-candidate elections with these three programs. However,
we know that for m = 4, the periods of the quasi-polynomials can be very large and
that the exact formulas for Pr(E, n, 4) can be far too heavy for meaningful analysis.
Therefore, the probabilistic calculations, for m = 4, must focus on obtaining the
limiting probabilities, Pr(E,∞, 4). This amounts, as we have already seen, to the
computation of the volumeof the polytope associatedwith the system S(n)describing
the set E(n,m).

The volume of a rational polytope P can be obtained either by a direct use of a
volume computation algorithm, or as the leading coefficient of the quasi-polynomial
associated with the dilated polytope nP (it is well known that this coefficient is
equal to the (normalized) volume of P). Until 2015, computational algorithms (for
volumes or quasi-polynomials) could not handle the case of 23-dimentional poly-
topes. Nevertheless, exact probabilistic results dealing with the casem = 4 could be
obtained from 2013. Schürmann (2013) proposed amethod that enables to reduce the
number of variables involved in the volume calculation, by exploiting the possible
symmetries in the linear systems describing voting events. Applying this method,
and using a new version of LattE (lattE integral, De Loera et al. 2013), he was able
to obtain the first exact results (after Gehrlein 2001) giving the exact limiting prob-
ability of voting events with four candidates. The Condorcet efficiency of plurality
rule is one of three limiting values computed in Schürmann (2013):
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CE(PR,∞, 4) = 10658098255011916449318509

14352135440302080000000000
(74.26%)

This value was recovered by Bruns and Söger (2015) and El Ouafdi et al. (2019).
It should be noted that Bruns and Söger performed their calculations by an improved
version of Normaliz (Bruns and Söger 2015, [Normaliz]) which became the first
algorithm to be able to calculate (most) volumes and quasi-polynomials in dimension
23. For their part, El Ouafdi et al. (2019) have developed a method that combines the
use of LattE and Lrs, a program for computing the coordinates of the vertices of a
rational polytope (see [Lrs]). The limitingvalues for theCondorcet efficiencyof PER
and for the probability of electing theCL for PR and N PR were calculated byBruns
et al. (2019): CE(PER,∞, 4) = 91.16%, Pr(CL − PR,∞, 4) = 2.27% and
Pr(CL − N PR,∞, 4) = 2.38%.12 These values were also found independently
by El Ouafdi et al. (2019), who also calculated the Condorcet efficiency for N PR,
BR, N PER, and BER : CE(N PR,∞, 4) = 55.16%, CE(BR,∞, 4) = 87.06%,
CE(N PER,∞, 4) = 84.50%, and CE(BER,∞, 4) = 99.66%. By using the
LattE-Lrs method (and the latest version of Normaliz, based on a new computation
technique called “Descent”, see Bruns and Ichim 2018), the last authors were able
to obtain the first results on the vulnerability to coalitional manipulation in four-
candidate elections: V M(PR,∞, 4) = 87.28% and V M(PER,∞, 4) = 38.63%.
The number of digits in the fraction giving the exact value of V M(PER,∞, 4) gives
an indication on the complexity of calculations. We show it here as a comparison
with one of the first probabilities calculated under IAC (Pr(CW,∞, 3) = 15/16):

2789407566080353053037581459785742662134938536492206505121233415246691931

7221170963210711706178813462890519530799725914619904000000000000000000000

We have limited ourselves here to the results concerning the four election
outcomes and the six voting procedures that interest us. To our knowledge, the only
other studies offering analytical representations for probabilities in four-candidate
elections are Brandt et al. (2016, 2020)which dealwith certainCondorcet extensions,
and Diss and Doghmi (2016), Bubboloni et al. (2018), Diss andMahajne (2019), and
Diss et al. (2019) which analyze multi-winner voting rules in committee elections.
It should be mentioned that all analytical findings in Brandt et al. (2016, 2020) were
obtained by applying Normaliz and that (almost) all volume computations in Diss
and Mahajne (2019) and Diss et al. (2019) were performed by Convex, the second
software, after Normaliz, capable of processing 23-dimensional polytopes (see Franz
2016, [Convex]).

12It is important to mention that, in Bruns et al. (2019) as well as in El Ouafdi et al. (2019), all results
concerning PER, NPER, and BER deal with a truncated version of these three iterative procedures,
in which in a first step, the two candidates obtaining the lowest scores are eliminated and the second
(and final) step is a majority contest between the two remaining candidates (in this case, PER
coincides with the so-called plurality runoff rule, often used in political elections).
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It is clear from the studies presented in this section, and more generally all the
recent literature, that the methods based on Ehrhart theory and on volume compu-
tation techniques are today the natural tools for probabilities calculation under IAC
condition. The connection with these mathematical themes also made it possible
to use specialized software to analyze voting events previously considered as very
difficult to tackle. The first results obtained in the case of four candidates are a good
illustration of the power and the efficiency of these new tools. They seem to us to
be able to answer most of the problems that we may consider in the case m = 4, to
begin with that of determining the limiting probabilities, not yet calculated, for the
four voting events and the six voting rules considered in this paper.

7 Concluding Remarks

We can now consider that computing IAC probabilities for three-candidate elections
with linear preferences (implying calculations with 6 variables) has become easy:
We can obtain not only a wide variety of probability representations depending
on the number of voters (and, of course, the corresponding limiting probabilities),
but also some limiting representations depending on other parameters such as the
degree of homogeneity of preferences or the value of λ in an election using a scoring
rule. A lot of results have been obtained, but we believe that some further studies
remain to be conducted: For example, analyzing the impact of group coherence on
the manipulability of various voting rules would be of great interest. The most recent
software also allows to consider three-candidate elections with preferences that are
not necessarily linear, with calculations implyingmore than 6 variables. For instance,
some studies exist that consider dichotomous or trichotomous preferences (implying
calculations with 12 or 24 variables).

The case of four-candidate elections can now be addressed (24 variables when
preferences are supposed to be linear). About ten papers have already studied this
case, and we think that some other papers analyzing four-candidate elections will be
published in the next few years. Note however that representations as a function of
n, the number of voters, although possible, is too complicated to be useful in this
framework. But limiting representations depending on some other parameter can
certainly be obtained.

If we except some easy problems where symmetries exist (e.g., the probability
of having a Condorcet winner), the move from four to five candidate elections (120
variables) seems to be out of reach with the current techniques. Progress in software
(and inmathematics) has to bemade if wewant to deal with five-alternative elections.
Observe however that in this case, for most of the probabilities of interest, the exact
fractions associated with the probabilities could be too large to be exhibited! Finally,
if we want to know what happens when the number m of candidates increases, a
way of doing (in addition to simulations studies) could be to investigate analytically
the IAC probabilities of various electoral outcomes as a function on m for a given
number of voters.
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