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3.1  �Introductory Remarks

Cough is a very complex motor act that can be voluntary, behavioral, or simply 
reflex aimed at defending airway integrity. In awake mammals, especially in 
humans, the contribution of the higher brain structures is prominent, not only when 
coughing is voluntarily initiated for different purposes (vocal fold clearing, psycho-
logical behaviors, etc.) but also when triggered by nociceptive airway stimulation 
either under physiological or pathological conditions. As it is usual for nociceptive 
stimulation leading under certain circumstances to pain sensation (the highest level 
of body defense), airway stimulation causes in awake subjects specific sensations 
(“urge-to-cough”) that may trigger irrepressible coughing. Thus, it is very difficult 
to differentiate between reflex cough and cough produced under cognitive and emo-
tional influences. Actually, nociception (especially when associated with pain) dis-
plays various components, such as those sensory-discriminative, cognitive, 
emotional, and reflex [1–3]. Cough and associated sensations are obviously defen-
sive responses to nociceptive stimulation; thus, it is not surprising that cough and 
pain share similar features at both peripheral and central levels. This notion has 
been recently incorporated into the current knowledge of physiology and patho-
physiology of cough [4]. Here we deal in particular with the cough reflex as pro-
duced in decerebrate or anesthetized animals as well as in anesthetized humans. 
Cough-related afferents terminate in the nucleus tractus solitarii (NTS) and have 
extensive projections both to the brainstem to generate reflex actions and to the 
higher brain structures to produce cough associated with the other nociception-
related components. Interestingly, like pain sensation, it seems that also the 
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“urge-to-cough” and consequent coughing displays placebo/nocebo responses (see, 
e.g., [1, 3, 5, 6]). Cough-related afferents generate the cough reflex by involving 
both respiration-related and non-respiration-related brainstem areas in a fairly com-
plex way, although the prominent role is played by the neural structures containing 
respiration-related neurons and constituting the brainstem respiratory network. The 
central action of neuromodulators or neurotransmitters at the level of the various 
brainstem structures could help to understand the neural circuitry underlying 
this reflex.

3.2  �Central Terminations of Cough-Related Afferents

The central projections of airway vagal afferents terminate in the brainstem where 
they innervate second-order neurons that in turn project to other brainstem nuclei 
and contribute to both reflex and higher circuits encoding various involuntary and 
voluntary motor responses as well as perceivable sensations. Neuroanatomical and 
electrophysiological studies in both cats and rats have demonstrated that the main 
central termination sites of primary afferents of rapidly adapting stretch receptors 
(RARs) that mediate cough-related inputs are the medial subnucleus of the NTS and 
the caudal aspects of the NTS (cNTS), especially the lateral portion of the commis-
sural subnucleus. RAR second-order neurons (RAR cells) are located in these NTS 
regions. On the other hand, also bronchopulmonary C-fiber afferents convey tussi-
genic inputs and have their central terminations mainly in the medial portion of the 
commissural subnucleus, although a certain degree of overlapping exists between 
termination sites of RARs and C-fiber afferents ([7–11]; see for review [12]). 
Interestingly, RAR cells are excited by ammonia inhalation (a well-known tussi-
genic stimulus) and display monosynaptic EPSP in response to vagal stimulation. 
Studies in the rabbit [13, 14] using excitatory amino acid (EAA) receptor antago-
nists implicate that cough-related afferents activated by the stimulation of the tra-
cheobronchial tree terminate in the cNTS consistently with previous findings. The 
results of investigations in guinea pigs both by anatomical tracing studies and by 
microinjections of EAA receptor antagonists [15, 16] led to the suggestion that 
afferent fibers activated in response to the stimulation of “cough-receptors” located 
in the tracheal mucosa terminate mainly in slightly more rostral and lateral NTS 
sites (lateral to the commissural subnucleus and, perhaps, in the medial subnuclei). 
The difference with previous findings in the cat, rat, and rabbit was attributed chiefly 
to the different site of tussigenic stimulation (trachea vs. tracheobronchial tree).

A permissive role of slowly adapting stretch receptors (SARs) in the cough reflex 
(see also Chap. 1 in this book) has been shown in some animal models, but not in 
others [16–19]. The importance of volume-related feedback in the regulation of the 
cough reflex is controversial, although both RARs and SARs may provide a signifi-
cant contribution [20–24]. It has been shown that lung inflation [25] inhibits RAR 
cells and that SARs are responsible for inhibitory inputs to RAR cells via NTS 
second-order neurons, the so-called P cells. Really, two types of SAR second-order 
neurons exist. The first is represented by P cells, which receive virtually only SAR 
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(or pulmonary stretch receptors) afferent input, discharge during lung inflation and 
become silent if lung inflation is prevented (no-inflation test). The second is repre-
sented by Iβ (or Rβ) cells, which receive both central inspiratory drive and SAR 
afferent input and reduce their inspiratory discharge, but do not become silent, dur-
ing the no-inflation test. SAR afferents project to the NTS subnuclei from the level 
of the obex to almost 1.5 mm rostral to it (cat). SAR second-order neurons have 
been found in the ventrolateral NTS, but also in other NTS regions, such as medial, 
dorsolateral, intermediate, and interstitial subnuclei [10, 26–29]. P cells are 
GABAergic or may corelease GABA and glycine ([8, 30]; see also [31]). Second-
order neurons in the cough afferent pathway have been shown to project to brain-
stem neural structures involved in breathing pattern formation (see below), such as 
pontine and medullary respiratory groups [7, 10, 12, 32–36].

A schematic representation of more prominent synaptic inputs to RAR cells, 
originating especially from airway afferent fibers, is reported in Fig. 3.1 (for Refs. 
related to this illustration see [4]). Interestingly, several afferent inputs to the NTS 
imply the release of substance P. These sensory fibers include baro- and chemore-
ceptor afferents conveyed by vagus and glossopharyngeal nerves, trigeminal 
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Fig. 3.1  Schematic representation of synaptic inputs to RAR relay neurons (RAR cells, red), a 
nonhomogenous NTS population of second-order neurons in the RAR afferent pathway which 
conveys also cough-related inputs. SAR, RAR, and bronchopulmonary C-fiber inputs modulate 
RAR cell activity through excitatory and inhibitory connections. P cells (largely localized in the 
medial and ventrolateral NTS regions, blue) are a subset of the entire population of second-order 
neurons in the SAR afferent pathway. C cells (yellow) are relay neurons of the bronchopulmonary 
C afferents located primarily in the medial portion of the commissural subnucleus. Convergence of 
C-fibers onto RAR relay neurons has also been reported. Abbreviations: CGRP calcitonin gene-
related peptide; GABA γ-aminobutyric acid; GLU glutamate; Gly glycine; LI local interneuron; 
NKA neurokinin A; NKB neurokinin B; RAR rapidly adapting receptor; SAR slowly adapting recep-
tor; SP substance P; (?) unknown sources that may include also vagal and glossopharyngeal affer-
ents. (Modified from Mutolo [4])
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afferents, skeletal muscle afferents, and projections from raphe nuclei (e.g., [37–
41]; see also [42]). In addition, bronchopulmonary C-fibers have been suggested to 
converge onto RAR cells [43–45]. Indeed, the effects of substance P on NTS neu-
rons are fairly complex since it displays not only postsynaptic excitatory effects but 
also presynaptic depressant effects on glutamatergic transmission between broncho-
pulmonary afferent fibers and second-order NTS neurons [12, 46, 47]. In addition, 
local interneurons may release substance P in response to glutamatergic inputs 
([48], see also [47] for further Refs.). A comprehensive review on vagal afferent 
innervation of the airways and related central pathways under healthy or pathologi-
cal conditions has recently been reported by Mazzone and Undem [49].

3.3  �Brainstem Respiratory Network

Since cough is a modified respiratory act, it is appropriate to recall that the respira-
tory cycle is divided into three phases, i.e., inspiration, postinspiration or E1 phase, 
and expiration or E2 phase (active expiration) on the basis of the activity of the 
diaphragm and vocal fold adduction muscles (for details see Chap. 1 in this book). 
This triphasic organization is mirrored in the functional properties of the brainstem 
neural network underlying respiratory rhythm generation and pattern formation 
(see below).

Respiratory rhythm in adult mammals probably results from synaptic interac-
tions between respiratory neurons located in the lower brainstem, particularly in the 
medulla oblongata (see e.g. [29, 50–54]). Several brainstem structures have been 
found to have a respiratory function. Respiratory neurons have been reported to be 
present in the rostral pons at the level of the parabrachial and Kölliker-Fuse nuclei, 
a region designated as the pontine respiratory group (PRG). Medullary respiratory 
neurons appear to be concentrated in two main aggregates, the dorsal respiratory 
group (DRG) and the ventral respiratory column (VRC). The DRG is closely asso-
ciated with the NTS and contains mainly bulbospinal inspiratory premotoneurons. 
The VRC is located in the ventrolateral medulla and corresponds to a longitudinal 
column of neurons extending from the cervical spinal cord to the facial nucleus and 
comprises several rostro-caudally arranged compartments. The more rostrally 
located portion has been recently described and includes the retrotrapezoid nucleus 
(RTN) with the closely related parafacial respiratory group (pFRG), and the 
“Postinspiratory Complex” (PiCo).

Caudad there is a section of the column, initially named ventral respiratory group 
(VRG), which includes the Bötzinger complex (BötC), the pre-Bötzinger complex 
(preBötC), the inspiratory portion of the ventral respiratory group (iVRG), and the 
caudal expiratory component of the ventral respiratory group (cVRG). In the cervi-
cal spinal cord, two respiration-related regions have been described called the upper 
cervical inspiratory group (intermediolateral substance gray; [55]) and the high cer-
vical respiratory group (close to the ventral surface; [56]). Both these two respira-
tory groups have not been reported to have any major role in the generation of 
respiratory activity and reflex cough.
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The rostral VRG that comprises the BötC and the preBötC has a pivotal role in 
respiratory rhythm generation, while the iVRG and the cVRG are chiefly consid-
ered output systems. The iVRG compartment contains bulbospinal inspiratory 
neurons that project to spinal phrenic and intercostal inspiratory motoneurons. 
These neurons receive an excitatory input from preBötC excitatory neurons and an 
inhibitory input during expiration from BötC expiratory neurons. Both these inputs 
(along with other modulatory drives) shape and control the characteristic ramp-like 
pattern of inspiratory activity [57, 58]. Expiratory neurons are mainly concentrated 
in the cVRG and the BötC. Most of the cVRG expiratory neurons are bulbospinal 
neurons that project to spinal thoracic and lumbar expiratory motoneurons and 
receive their excitatory input from more rostral regions of the medulla ([29, 50, 
59]; see also [52]). The BötC, which contains especially augmenting expiratory 
neurons, exerts extensive inhibition on medullary respiratory neurons. Convergent 
inputs from the BötC to the cVRG contribute to shape the pattern of discharge of 
expiratory cVRG neurons that drive expiratory motoneurons during eupneic 
breathing [29, 50]. The preBötC is located between the BötC and the iVRG and 
comprises several types of respiratory propriobulbar neurons. It has been proved to 
be the core circuit responsible for the generation of the inspiratory rhythm ([60]; 
for review see [52]).

Rostral to the BötC, the region located ventrolateral to the facial nucleus, i.e., 
the pFRG, contains pre-inspiratory neurons that usually discharge both prior to 
and after the phrenic nerve activity. This region was found to be activated in the 
respiratory cycle before any other respiration-related regions of the brainstem 
[61] and was first considered the source of both inspiratory and expiratory rhyth-
mic activity. Successively, other studies proposed that this region is essential for 
expiratory rhythm generation in newborn, juvenile, and adult rats [62–66] since it 
contains many neurons silent under control conditions, but rhythmically active 
during the expiratory phase in response to pharmacological disinhibition or opto-
genetic excitation. When activated, the pFRG sends rhythmic excitatory drive 
inputs to cVRG expiratory neurons and, hence, to abdominal muscles (active 
expiration). However, at least in adult rodents, active expiration requires an ongo-
ing rhythmic preBötC activity sufficient to drive inspiratory motor output [63, 
66]. Expiratory muscle activation is also caused by neurons of this area under 
hypercapnic conditions [58, 64, 66, 67] or following peripheral chemoreceptor 
stimulation [68]. Moreover, the activation of serotoninergic or cholinergic musca-
rinic mechanisms within this region contributes to the appearance of neuronal 
expiratory activity and promotes the recruitment of expiratory motoneurons and 
active expiration [69, 70].

The pFRG partially overlaps with the adjacent chemosensitive RTN region 
located in a more ventromedial position (for review see [52, 71–74]). Since the 
pFRG and the RTN share some common features, they are often reported as 
RTN/pFRG. Neurons located within the RTN detect signals related to CO2 and/
or pH levels and transmit them to the preBötC and other brainstem sites. During 
the perinatal period its neurons also spontaneously generate late-expira-
tory bursts that raise preBötC excitability and may entrain preBötC rhythm 
activity. Then, the RTN loses its rhythmogenic role and functions only as a 
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chemosensitive center that detects environmental CO2 and expresses a paired-
like homeobox 2b gene (Phox2b). Interestingly, Phox2b mutations have been 
described in most human cases of congenital central hypoventilation syndrome 
([75]; for review see [76]).

Recently, the brainstem region named PiCo, located rostral to the preBötC, dor-
sal to the BötC, and caudal to the facial nucleus, has been found to be characterized 
by rhythm-generating properties and has been considered necessary and sufficient 
for generating postinspiratory activity in both neonatal and adult mice [52, 77, see 
also 78]. On the basis of these results, a “triple oscillator model” has been proposed 
in which inspiration, postinspiration, and active expiration are generated by three 
distinct excitatory rhythmogenic microcircuits, i.e., preBötC, PiCo, and pFRG, 
respectively. The localization of the structures involved in the generation of the 
breathing pattern is illustrated in Fig. 3.2.
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Fig. 3.2  Schematic illustration of the main brainstem neural structures involved in the breathing 
control. (a) Respiration-related regions have been projected on a dorsal view of the mammalian 
brainstem. VII facial motor nucleus; AP area postrema; BötC Bötzinger complex; CI mesence-
phalic colliculus inferior; cVRG caudal expiratory component of the ventral respiratory group; 
DRG dorsal respiratory group; K-F Kölliker-Fuse nucleus; iVRG intermediate or inspiratory por-
tion of the ventral respiratory group; NTS nucleus tractus solitarii; PB parabrachial nucleus; pFRG 
parafacial respiratory group; PiCo Postinspiratory Complex; preBötC preBötzinger complex; PRG 
pontine respiratory group; RTN retrotrapezoid nucleus. (b) Parasagittal view of the brainstem con-
taining the mammalian respiratory network. V trigeminal motor nucleus; nVII VII facial nerve and 
its nucleus; BötC Bötzinger complex; cVRG caudal expiratory component of the ventral respira-
tory group; iVRG intermediate or inspiratory portion of the ventral respiratory group; LRN lateral 
reticular nucleus; NA nucleus ambiguus; pFRG parafacial respiratory group; PiCo Postinspiratory 
Complex; preBötC preBötzinger complex; RTN retrotrapezoid nucleus; scp superior cerebellar 
peduncle; SO superior olive
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3.4  �Role of Brainstem Structures in the Generation 
of the Cough Reflex

Transection and lesion experiments in the cat have shown that the rostral pons and 
the cerebellum have modulatory effects on the motor pattern of the cough reflex, but 
the fundamental structures responsible for this reflex appear to reside in the medulla 
oblongata [79, 80]. For some previous reviews on the central neural mechanisms 
involved in the generation and/or regulation of the cough reflex, see, e.g., Fontana 
et al. [81], Pantaleo et al. [34], and Mutolo [4]. Former attempts to localize a medul-
lary “cough center” within the NTS by using electrical microstimulation or lesion 
experiments have been reported (see, e.g., [34, 82]). However, these techniques do 
not allow to differentiate the role of neuronal structures and cough-related afferent 
fibers. In the light of the results of subsequent investigations on brainstem structures 
involved in the cough reflex, we can infer that the NTS is primarily the relay station 
of cough-related afferent inputs that are transmitted to the central neural network 
responsible for the generation of the cough motor pattern.

An interesting approach aimed at understanding the central mechanisms under-
lying the generation of the cough reflex has been that of investigating the behavior 
of medullary respiratory neurons during coughing in animal models, mainly cats. 
Earlier studies investigated the behavior of cVRG expiratory neurons in response to 
mechanical stimulation of the tracheobronchial tree or electrical stimulation of the 
superior laryngeal nerve [83, 84]. Expiratory neurons display excitatory responses 
during the expiratory phase of coughing. Furthermore, “latent” or almost quiescent 
neurons under normal breathing conditions can be recruited during coughing. Later 
studies reported that iVRG inspiratory and cVRG expiratory neurons are activated 
during the inspiratory and expiratory phases of coughing, respectively [85–87]. The 
same caudal expiratory neurons are activated during different types of expiratory 
efforts such as cough, sneeze, and expiration reflex.

All these studies mainly deal with the output system of the medullary respiratory 
network. More recent studies have investigated the behavior of different types of 
neurons located in more rostral rhythmogenic VRG regions during fictive coughing 
induced by superior laryngeal nerve stimulation in decerebrate, paralyzed, artifi-
cially ventilated cats. They have demonstrated that different types of inspiratory and 
expiratory neurons are activated during the appropriate phases of coughing [88]. 
Other studies carried out in similar preparations [89] revealed that a few inspiratory 
bulbospinal and propriobulbar neurons of the DRG are involved in cough response, 
thus suggesting that inspiratory premotoneurons responsible for the activity of 
phrenic motoneurons during the inspiratory phase of coughing are located else-
where, possibly in the iVRG, in agreement with previous results [85–88]. Further 
studies have investigated the central mechanisms involved in the cough response 
evoked by mechanical stimulation of the tracheobronchial tree in anesthetized, 
spontaneously breathing cats focusing the attention on BötC expiratory neurons 
[90]. The majority of neurons encountered within this region display excitatory 
responses during the expulsive phase of coughing, in parallel with the main compo-
nents of the abdominal electromyographic bursts and the corresponding increases in 
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tracheal pressure. The important role of the BötC neurons not only in providing the 
synaptic drive to cVRG expiratory neurons but also in determining the overall char-
acteristics of the cough motor pattern has been corroborated by the suppression of 
both the inspiratory and expiratory components of the cough motor pattern observed 
during lignocaine blockades or following kainic acid lesions within this region in 
anesthetized, spontaneously breathing rabbits [91]. An important advance has been 
obtained by Shannon and collaborators that have extensively studied the behavior of 
rostral VRG respiratory neurons, including those located in the BötC and the pre-
BötC, during fictive cough induced by mechanical stimulation of the intrathoracic 
trachea in decerebrate, paralyzed, artificially ventilated cats [36, 92–94]. Multi-site 
recordings employing microelectrode arrays and cross-correlational methods were 
used to functionally characterize respiratory neurons. They presented a model of the 
cough network and related synaptic interactions based on the behavior of respira-
tory neurons. The general conclusion of all these studies is that the rostral VRG 
neurons involved in the generation of the eupneic pattern of breathing also partici-
pate in the production of the cough motor pattern and that during coughing the drive 
to spinal motoneurons is transmitted via the same bulbospinal neurons that provide 
the descending drive during eupnea. These findings support the existence of multi-
functional neural networks in the mammalian brainstem (e.g., [4, 34, 90] also for 
further Refs.) and, accordingly, of neurons that contribute to different functions, 
such as respiration, coughing, vomiting, and sneezing (see Fig. 3.3). When triggered 
by cough-related inputs to the NTS, the respiratory network appears to change con-
figuration to generate the cough motor pattern. This hypothesis was advanced by 
Shannon et al. [94] who devised a neuronal respiratory network that undergoes a 
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Fig. 3.3  Discharge pattern of one E-Aug neuron of the Bötzinger complex (BötC) displaying 
excitatory responses during coughing and sneezing induced by mechanical stimulation of the tra-
cheobronchial tree and nasal mucosa, respectively. Pentobarbitone-anesthetized, spontaneously 
breathing cat. (a) Control discharge pattern. (b) Discharge pattern during coughing. (c) Discharge 
pattern during sneezing. PhrN phrenic neurogram; BötC IF instantaneous frequency of Bötzinger 
complex neuronal discharge; BötC NA Bötzinger complex neuronal activity; Abd EMG abdominal 
electromyogram. (Modified from Pantaleo et al. [34])
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process of “reconfiguration” to produce coughing. A tentative computational model 
of coughing has more recently been described by Pitts et al. [95].

Interestingly, recordings from respiration-related neurons have been performed 
also in the RTN/pFRG region of guinea pigs during coughing and swallowing [96]. 
The majority of recorded neurons change activity in synchrony with coughing and 
swallowing. However, on the basis of brainstem transection experiments, it was 
concluded that RTN/pFRG neurons may modulate expiratory activity during eucap-
nic breathing, but are not essential components of the neural circuit underlying 
coughing and swallowing.

The results of recording experiments have been confirmed by studies on the 
expression of the immediate early gene c-fos during coughing [97, 98] and by lesion 
experiments ([91, 99–104] also for further Refs.). It has been shown that several 
brainstem regions either with or without respiration-related neuronal activities may 
contribute to generate or modulate the cough motor pattern. These regions include 
the BötC, the raphe nuclei and other midline structures, the periaqueductal gray, the 
lateral tegmental field, the PRG, and the reticular nuclei. The periaqueductal gray 
and the nucleus raphe magnus have also been reported to have suppressive influ-
ences on both coughing and swallowing ([105]; see also [106]).

3.5  �Additional Neural Mechanisms Controlling or Modulating 
the Cough Reflex

Modulation or, in some instances, even generation of the cough reflex depend on the 
cerebellar nucleus interpositus [80], nasal mucosa trigeminal afferents [107, 108], 
esophageal vagal afferents [109], afferents from the external acoustic meatus (auric-
ular branch of the vagus nerve, Arnold’s or Alderman’s nerve) that mediates the 
Arnold’s ear-cough reflex (e.g., [110–112]), pharyngeal afferents (for review see 
[110]), chemoreceptors [18, 113–115] and baroreceptor [116] afferents. Of note, 
pharyngeal afferents from receptors probably traveling in vagal and glossopharyn-
geal nerves or in trigeminal branches can activate the gag reflex [117] and may also 
evoke coughing or the “urge-to-cough” [110].

Experiments performed in rodents (a species that lacks the cough reflex; see also 
[49]) have identified subcircuits in the brainstem and forebrain that receive relayed 
airway sensory inputs not only via the NTS but also via the paratrigeminal nucleus 
[118]. The NTS projects to several neural structures of the brainstem as well as to 
hypothalamic nuclei, well known components of autonomic and limbic/paralimbic 
central pathways. The central projections of the paratrigeminal nucleus are charac-
terized by substantial input to the ventrobasal and submedius thalamus, which are 
important components subserving somatosensations, including those related to noci-
ception. Interestingly, the paratrigeminal nucleus receives primary afferent projec-
tions from the pharynx, larynx, and tracheobronchial tree. In addition, visceral and 
somatic primary afferent inputs may converge in the paratrigeminal nucleus that has 
been suggested to be involved in the mediation of viscerovisceral and somatovisceral 
reflexes through efferent connections with autonomic centers in the brainstem. The 
paratrigeminal nucleus is certainly involved in some respiratory reflexes, but its pos-
sible role in cough production remains to be ascertained (see, e.g., [49, 119]).
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Central and peripheral mechanisms involved in exercise and voluntary isocapnic 
hyperventilation may downregulate cough reflex responses [120, 121]. However, 
exercise (electrically induced hind limb muscular contractions) in ovalbumin-
sensitized rabbits fails to produce similar effects [122]. An important characteristic 
of the cough reflex is its very strong dependency on the sleep-wakefulness state as 
well as on anesthesia ([123, 124]; see also Chap. 1 in this book). This reflex, in addi-
tion to a potent voluntary control, has also sensory, affective, and cognitive compo-
nents. In fact, as revealed mainly by functional imaging studies, cough afferent 
pathways extend beyond a simple pontomedullary reflex to impinge on neuronal 
networks widely distributed throughout subcortical and cortical brain areas. The 
involvement of higher brain areas in the generation or modulation of coughing has 
been the subject of recent reviews (see e.g. [49, 125–128]). The main central and 
peripheral neural mechanisms that generate or modulate the cough reflex are sche-
matically summarized in Fig. 3.4.

MIDBRAIN AND FOREBRAIN
Sleep, wakefulness, anesthesia, voluntary control, etc.

Central processing of cough-related inputs

CEREBELLUM
Nucleus interpositus

TRIGEMINUS NERVE
Nasal mucosa

Pharyngeal afferents

VAGUS NERVE
Cough-related afferents
(RARs, C-fibers, SARs)
Ad nociceptive afferents
Esophagus afferents
Ear afferents
(Arnold’s reflex)

RRG
NPBL – K-F

OTHER BRAINSTEM
AREAS
Reticular nuclei,
midline structures,
raphe nuclei
lateral tegmental field

PAG

Laryngeal motoneurons
(nucleus ambiguus)

COUGH MOTOR ACT

Pump inspiratory and
expiratory motoneurons

cVRG
NRA

NTS
cNTS

DRG

VRC
RTN/pFRG
BötC/PiCo
preBötC

iVRG

Chemoreceptors

Baroreceptors

Exercise
and hyperventilation

Fig. 3.4  Block diagram summarizing the main central and peripheral neural mechanisms involved 
in the production and modulation of the cough reflex. Possible connections between brainstem 
structures subserving this reflex have also been reported. Abbreviations: BötC Bötzinger complex; 
cNTS caudal aspect of the nucleus tractus solitarii; cVRG caudal ventral respiratory group; DRG 
dorsal respiratory group; iVRG inspiratory portion of the ventral respiratory group; K-F Kölliker-
Fuse nucleus; NPBL nucleus parabrachialis lateralis; NRA nucleus retroambigualis; NTS nucleus 
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complex; PRG pontine respiratory group; RARs rapidly adapting receptors; SARs slowly adapting 
receptors; RTN/pFRG retrotrapezoid nucleus/parafacial respiratory group; VRC ventral respiratory 
column. (Derived from Mutolo [4])

D. Mutolo et al.

https://doi.org/10.1007/978-3-030-48571-9_1


55

3.6  �Insights into the Brainstem Mechanisms by the Action 
of Antitussive or Protussive Drugs

Centrally acting antitussive drugs have already been extensively reviewed (e.g., [4, 
129–134]). Although the possibility exists that, following systemic administration, 
centrally acting antitussive drugs have sites of action at suprapontine and/or spinal 
levels, different lines of evidence have led to the general assumption that they act in 
the brainstem to suppress the cough reflex (see, e.g., [130]). According to earlier 
suggestions [14, 135], at least two medullary structures proved to play a prominent 
role in cough production and in the mediation of the central action of cough-related 
drugs, i.e., the first relay medullary station of the reflex pathway and the medullary 
neuronal aggregate responsible for the expiratory drive component of the reflex. 
These two neural substrates are the cNTS and the cVRG, respectively (see Fig. 3.5). 
This latter region corresponds, to a great extent, to the nucleus retroambigualis 
(NRA). Intracerebroventricular or intravertebral artery administration of antitussive 
drugs have demonstrated the central activity of some drugs. However, the main 
drawback of these methods is that they lack anatomical specificity. For antitussive 
drugs that may act in the brainstem, the specific site of action and the receptors 
involved are important issues. Microinjection techniques may well localize the drug 
into a given brain region, although with some limits (see, e.g., [138–140]). The 
interpretation of studies performed with these techniques has some difficulties since 
the employed drugs may act pre- or postsynaptically as well as on multiple sub-
populations of neurons within the injected area. Furthermore, with these methods it 
is somewhat difficult to relate the dose of a given drug microinjected to the actual 
concentration reached when the drug is systematically administered.

The following presentation is mainly focused on the cNTS and the cVRG and 
deals largely with results obtained by our research group making use of bilateral 
microinjections of neuroactive agents in pentobarbitone anesthetized, spontane-
ously breathing rabbits. The localization of injections sites is diagrammatically rep-
resented in Fig. 3.5. Cough was induced either by mechanical or chemical (citric 
acid inhalation) stimulation of the tracheobronchial tree. Investigations on the role 
of drugs and, particularly, neurotransmitters or neuromodulators within different 
cough-related brainstem regions may primarily provide insights into the basic neu-
ral mechanisms subserving the genesis of the cough motor pattern and, in addition, 
hints for further studies on antitussive or protussive agents and for novel therapeutic 
approaches.

3.6.1	 �Caudal Nucleus Tractus Solitarii

Codeine and dextromethorphan, microinjected in large amounts and volumes into 
the NTS and the nucleus reticularis parvocellularis (lateral tegmental field), have 
been shown (see e.g. [129, 130]) to cause suppressant effects on cough in cats and 
guinea pigs. Recently, it has been reported that microinjections of relatively small 
amounts of codeine into the rostral NTS and the lateral tegmental field, but not in 
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the cNTS, reduce cough in the cat [141]. In this connection, it seems appropriate to 
mention that codeine inhibits glutamatergic excitatory neurotransmission from pri-
mary cough-related afferents to second-order neurons of the NTS [142].

Blockade of non-N-methyl-D-aspartate (NMDA) receptors within the rabbit 
cNTS abolishes the cough reflex in response to mechanical or chemical stimulation, 
while only cough-depressant effects are induced by NMDA receptor blockade [13, 
14]. An essential contribution of EAA receptors in the mediation of cough afferent 
inputs within the NTS has been observed in guinea pigs, but in regions more rostral 
and lateral to the cNTS and with a predominant role of NMDA receptors [16]. 
Recently, Poliacek et al. [143] have reported that in the cat bilateral microinjections 
of kynurenic acid, a broad spectrum EAA antagonist, into the cNTS are without 
effects, while similar microinjections into the rostral NTS cause marked alterations 
in both baseline respiratory activity and cough motor pattern. They have suggested 
the existence of important cough control mechanisms within the rostral NTS dis-
tinct from those processing the primary cough afferent signals located, according to 
the bulk of available literature, in caudal aspects of the NTS. Further investigations 
are needed to elucidate the involvement of different NTS subnuclei in the cough 
reflex. Interestingly, in accordance with previous findings by Mazzone et al. [45], 
the local application of substance P (NK1 receptor agonist) to the rabbit cNTS [14] 
potentiates or sensitizes cough responses by increasing both the amplitude of expi-
ratory thrusts and the cough number, i.e., the number of coughs following each 
stimulation. The effects of C-fiber activation could be mimicked by microinjections 
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DRG
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NOI

NXII
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NTS
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a b

Fig. 3.5  Localization of injection sites. (a) A diagrammatic representation of a dorsal view of the 
medulla oblongata of the rabbit showing where bilateral microinjections of neuroactive agents 
have been performed into the cNTS (▲) and the cVRG (●), respectively. Abbreviations: AP area 
postrema; BötC Bötzinger complex; cVRG caudal ventral respiratory group; DRG dorsal respira-
tory group; iVRG inspiratory portion of the ventral respiratory group; preBötC preBötzinger com-
plex. (b) Diagram of a coronal section of the medulla oblongata at the levels indicated in panel a 
(dashed lines) showing the location of representative sites where the microinjections have been 
performed. NAC nucleus ambiguous caudalis; NDV nucleus dorsalis nervi vagi; NOI nucleus oli-
varis inferior; NTS nucleus tractus solitarii; NV nucleus tractus spinalis nervi trigemini; NXII 
nucleus nervi hypoglossi; P tractus pyramidalis. (Outlines of some relevant structures derived from 
the atlas of Meessen and Olszewski [136] and the atlas of Shek et al. [137])
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of capsaicin or substance P into the commissural NTS, and could be reversed by 
centrally administered NK receptor antagonists ([45]; see also [16]).

Local applications of the μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-
enkephalin (DAMGO) and the GABAB receptor agonist baclofen downregulate 
(decreases in the cough number and peak abdominal activity) or completely sup-
press the cough reflex [42]. Microinjections of the NK1 receptor antagonist 
CP-99,994 abolish cough responses while those of the NK2 receptor antagonist 
MEN 10376 are without effects [42]. These results are consistent with previous 
findings showing that tachykinin NK1 antagonists delivered to the brainstem circu-
lation depress cough [144]. The antitussive action of baclofen microinjected into the 
NTS has been confirmed by Canning and Mori [16] in anesthetized guinea pigs. 
Furthermore, recently Kotmanova et al. [145] have reported that GABA, muscimol, 
and baclofen microinjected into the rostral NTS cause suppressant effects on the 
cough reflex, while at the cNTS level only GABA can suppress cough reflex 
responses. The reasons of the discrepancy with previous experiments are unknown 
and further comparative studies in different animal species are necessary to clarify 
the role of NTS subnuclei in the cough reflex.

Since cough can be considered a defensive response to nociceptive stimulation, 
it is not surprising that peripheral and central mechanisms underlying nociception 
and cough share similar features, including central stations in the afferent pathways 
and descending control mechanisms (e.g., [1–3, 49, 106, 131, 146–153]). Some 
important similarities between cough and pain have been reported in Table 3.1.

In humans, hypersensitivity in response to inhaled capsaicin has been found to 
coincide with elevated neural activity in the midbrain (nucleus cuneiformis and 

Table 3.1  Some of the main 
similarities between cough 
and pain

Afferent fibers

 � Aδ, C Cough, pain

Receptors on sensory afferents
 � TRPV1,TRPA1, ASICs Cough, pain
 � ATP and adenosine receptors Cough, pain
 � Bradykinin and prostaglandin 

receptors
Cough, pain

 � Histamine receptors Cough, pain
 � Serotonin receptors Cough, pain
Peripheral sensitization Cough, pain
Central sensitization Cough, pain
Corresponding clinical features
 � Upper airway tickling sensation Pain
 � Paresthesia Cough
 � Hypertussia Pain
 � Hyperalgesia Cough
 � Allotussia Pain
 � Allodynia Cough

Derived from Mutolo [4]
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periaqueductal gray). This enhanced activity in the midbrain is similar to that occur-
ring in patients with chronic pain, thus supporting the notion that cough and pain 
share neurobiological similarities [106]. Of note, the periaqueductal gray is the 
source of one of the major descending pain controlling pathways (see, e.g., [149]). 
Since itch closely recalls the tickling sensation in the upper airways that leads to the 
“urge-to-cough” (e.g., [154, 155]), it seems relevant to recall that an interesting 
parallel has been made between pain and itch as well as between itch and cough 
[148, 156, 157]. Cough, pain, and itch obviously have important protective func-
tions, but also characterize debilitating diseases under chronic pathological condi-
tions ([147, 152, 153, 156, 157]; for further details and Refs. see [4]). Conceivably, 
neuroactive agents involved in the central control of reflex responses to nociceptive 
stimuli and associated pain sensation may also be relevant to the regulation of the 
cough reflex. Accordingly, attempts to downregulate the cough reflex have been 
made by using drugs suitable for pain control. Local applications of U0126, an 
inhibitor of ERK1/2 activation, have shown for the first time that the mitogen-
activated protein kinase (MAPK) contributes to the processing of tussive inputs 
[150]. Bilateral microinjections of U0126 into the cNTS suppress cough responses 
without affecting the Breuer-Hering inflation reflex, the pulmonary chemoreflex, 
and the sneeze reflex. These results are coherent with those of previous studies 
showing that ERK1/2 has central effects on both acute pain behavior and neuronal 
plasticity underlying pain hypersensitivity (e.g., [158–161]). Similarly, the activa-
tion of α2-adrenergic receptors by microinjections of clonidine and tizanidine, two 
agonists that may have analgesic effects (for review see [162–164]), has strong sup-
pressant effects on cough reflex responses [165]. These α2-adrenergic receptor ago-
nists mainly act through the presynaptic inhibition of glutamate release, but also 
other mechanisms could be involved (see [165]). Another study [151] has been 
devoted to investigate the regulation of the cough reflex by galanin (a neuropeptide 
implicated in pain control) at the level of the NTS, where galanin receptors are 
known to be present [166]. Bilateral microinjections of galanin or galnon (a nonpep-
tide agonist at galanin receptors) into the cNTS markedly affect cough responses 
not only by decreasing the cough number and peak abdominal activity, but also by 
increasing the duration of the entire cycle of cough motor response. Galanin antitus-
sive effects are possibly related to its interaction with substance P, opioids, and 
NMDA receptors [151]. Acetylcholine (ACh) applied to the cNTS has recently been 
shown to have depressant effects on the cough reflex mediated by muscarinic ACh 
receptors [167]. On the other hand, ACh is widely distributed in NTS and is a neu-
rotransmitter profoundly involved in pain perception through both nicotinic and 
muscarinic receptors [168].

RAR cells located in the cNTS receive both phasic glycinergic and tonic GABAA 
receptor-mediated inhibitory inputs ([8, 25, 30, 169]; see also Fig. 3.1). Accordingly, 
evidence has been provided [31] that both GABAA and glycine receptors mediate a 
potent inhibitory control of the pattern of breathing and cough reflex responses. 
Bilateral microinjections of bicuculline and strychnine cause strong decreases in 
expiratory activity, marked increases in respiratory frequency, and potentiate the 
cough reflex mainly via increases in the cough number. Muscimol and glycine cause 
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opposite effects. Of note, an impairment of the activation of GABAA and glycine 
receptors can be the neural substrate of neuropathic pain ([170]; for review see [171, 
172]). Taken together, these results strongly suggest that inhibition and disinhibition 
are prominent regulatory mechanisms of ongoing respiratory activity and cough 
reflex responses.

Noticeably, some drugs display a central protussive action. We have already 
mentioned that substance P potentiates the cough reflex by increasing expiratory 
drive and cough number. Consistently with the hypothesis of a central action of 
angiotensin-converting enzyme (ACE) inhibitors, that are known to cross the blood-
brain barrier, microinjections of the ACE inhibitor lisinopril into the cNTS cause 
changes in the cough motor pattern characterized by increases in the cough number 
([173] also for further Refs.). The complete blockade of lisinopril-induced cough 
potentiation was obtained either by bradykinin B2 or NK1 receptor antagonism, thus 
suggesting a lisinopril-induced central accumulation of bradykinin and substance 
P. Accordingly, bradykinin microinjections into the cNTS induce a clear cough sen-
sitization (increase in cough number), which is completely abolished by preceding 
microinjections of the NK1 receptor antagonist CP-99,994. In conclusion, the pro-
tussive effect of ACE inhibitors appears to be related to an action on NTS sensory 
neurons due to a bradykinin-induced release of substance P (see [173]).

Bolser and colleagues ([174, 175]; see also [15]) have proposed that in the 
brainstem is present a cough-gating mechanism. Their hypothesis is based on 
evidence derived from studies on the differential effects of antitussive drugs on 
the cough reflex and the breathing pattern. A cough-gating mechanism (probably 
constituted by a neural circuit including the population of second-order neurons 
in the cough-related pathways) may account for the fact that antitussive drugs 
generally do not alter breathing at doses that inhibit cough, thus implying that 
there exists a neural component important for cough that does not participate in 
breathing pattern generation. Furthermore, the finding that most antitussive drugs 
do not exert a generalized cough suppression, but specifically affect some compo-
nents of the cough motor pattern, i.e., the cough number and the intensity of 
expiratory thrusts, is consistent with this hypothesis. The above reported results 
obtained in rabbits agree, to a large extent, with the assumptions of Bolser et al. 
[174, 175]. However, at variance with their hypothesis, some antitussive drugs 
have been found to change the timing component of cough probably affecting 
NTS neurons unrelated to vagal tussigenic inputs, but implicated in the control of 
respiratory timing and intensity [29, 50, 176] probably through ascending projec-
tions to neural circuits responsible for respiratory pattern formation (see [177] 
also for further Refs.). It seems possible that the cNTS is not a simple relay sta-
tion, but plays more extensive functions in cough motor pattern generation and, in 
addition, that it may be an important location of the cough-gating neurons. At 
present, it cannot be excluded that different NTS subnuclei or other brainstem 
respiration-related regions may contribute to the cough-gating mechanism. On the 
other hand, species differences should be also taken into consideration (see [82, 
95, 178], also for further Refs.). Examples of antitussive and protussive effects of 
some selected drugs have been reported in Fig. 3.6.
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3.6.2	 �Caudal Ventral Respiratory Group 
(Nucleus Retroambigualis)

The cVRG is the region where bulbospinal expiratory neurons are located inter-
mingled with other types of respiratory and non-respiratory neurons (e.g. [59, 179]) 
and, therefore, is strongly involved in the control of the cough reflex since the expul-
sive expiratory phase probably represents its most important component (see [177] 
also for further Refs.). Morphological and electrophysiological lines of evidence 
suggest that cVRG expiratory neurons probably are not involved in the respiratory 
rhythmogenesis since they seem to lack axon collaterals and therefore connections 
with other medullary respiratory neurons [29, 50, 59, 180, 181]. However, the acti-
vation of cVRG neurons causes transient inhibition of inspiratory activity in cats 
[182], rats [183, 184], and rabbits [135]. For instance, microinjections of the broad-
spectrum EAA receptor agonist D,L-homocysteic acid (DLH) into the cVRG of the 
cat cause the activation of expiratory motoneurons and a corresponding silent period 
in phrenic nerve activity ([182]; see also [185]). Respiratory modulation triggered 
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Fig. 3.6  Antitussive and protussive effects of selected drugs into the cNTS in anesthetized, spon-
taneously breathing rabbits. (a) Changes induced by bilateral microinjections (30 nl) of 1 mM 
baclofen into the cNTS. (b) Changes induced by bilateral microinjections (30 nl) of 0.05 mM 
bradykinin into the cNTS. Cough was induced by mechanical stimulation of the tracheobronchial 
tree (arrows). Traces are: Phr IN integrated phrenic neurogram; Phr N phrenic neurogram; Abd 
IEMG abdominal integrated electromyographic activity; Abd EMG abdominal electromyographic 
activity. (Modified from Mutolo et al. [42] and Cinelli et al. [173])
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by EAA receptor stimulation of the NRA region, comprising the cVRG, has been 
confirmed and analyzed in more detail by more recent studies [177, 186]. Available 
data support the possibility that caudal expiratory neurons can alter or shape the 
pattern of breathing via axon collaterals when strongly activated and that this could 
be relevant to some physiological conditions, such as airway defensive reflexes 
including coughing and sneezing [59, 182]. Anatomical studies showing cVRG pro-
jections to other brainstem respiration-related regions, such as the rostral VRG, the 
parabrachialis medialis/Kölliker-Fuse nuclei, and the NTS, are consistent with this 
view ([59, 177, 187–189]; for review see [4]).

The afferent drive inputs to the NRA are not completely unraveled. They may 
arise from more rostral expiration-related regions such as the BötC ([90, 93]; for 
review see also [34, 36, 59]) or the RTN/pFRG (e.g., [54, 61, 64, 66, 190–192]) as 
well as from the limbic system and the periaqueductal gray [177, 186].

Excitatory drive transmission to cVRG expiratory neurons appears to be medi-
ated by glutamate with a major involvement of non-NMDA receptors. Bilateral 
microinjections of the non-NMDA receptor antagonist CNQX completely suppress 
spontaneous rhythmic and reflex abdominal activity [135]. More interestingly, they 
also suppress both the inspiratory and expiratory components of the cough reflex. 
This shows that neurons located in the cVRG are not merely elements of the expira-
tory output system, but are crucial for the production of all the components of the 
cough motor pattern. In fact, CNQX-induced effects on the inspiratory component 
of the cough reflex cannot be justified by the suppression of the excitatory output 
from cVRG bulbospinal neurons since Newsom Davis and Plum [193] have demon-
strated that bilateral lesions of descending bulbospinal expiratory pathways deterio-
rate spontaneous rhythmic abdominal activity and block only the expiratory 
components of the cough reflex. It is worth noting that the existence of a cough-
suppressant neuronal circuit within the cVRG has been shown by using DLH micro-
injections [185]. At variance with the suggestions arising from previous studies [90, 
91], a cough-suppressant neuronal circuit has also been found within the BötC of 
the cat by means of similar microinjections [194]. The reasons for the discrepancy 
with previous findings are not clear and could, in part, be ascribed to differences in 
the preparation and microinjection procedures as well as to the nonhomogeneous 
composition of the BötC neuronal population.

Some antitussive drugs, already tested at the cNTS level, are active also within 
the cVRG mainly affecting cough number and expiratory thrusts. DAMGO and 
baclofen display inhibitory effects on the cough reflex [195]. Similar effects are also 
shown by the NK1 receptor antagonist CP-99,994, while the NK2 receptor antago-
nist MEN 10376 is ineffective. Furthermore, the cough reflex is reduced by tizani-
dine and completely suppressed by clonidine, thus supporting the notion of the 
essential role of this region in the production of the cough motor pattern [165].

Caudal expiratory neurons receive a potent bicuculline-sensitive GABAergic 
inhibitory input [196–198]. Accordingly, bilateral microinjections of bicuculline into 
the cVRG affect the ongoing pattern of breathing by increasing abdominal bursts and 
respiratory frequency, with a concomitant upregulation of the cough reflex. On the 
contrary, muscimol not only abolishes expiratory activity and decreases respiratory 
frequency, but also, like clonidine, induces the complete suppression of the cough 
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reflex [199]. These results show that GABAA receptors within the cVRG exert a very 
strong inhibitory control not only on the pattern of breathing, but also on airway 
defensive reflexes involving intense expiratory efforts. They further underline the 
role of inhibition and disinhibition phenomena in the central regulation of both 
breathing and coughing. Codeine and nicotine microinjected into the cVRG also 
cause depressant effects on cough responses in cats [200, 201].

3.7  �Concluding Remarks

The central organization of the cough reflex is fairly complex and involves the 
brainstem respiratory network (“reconfiguration” hypothesis) and many modulatory 
influences that may contribute to the cough motor pattern formation. Several brain-
stem structures contribute to the regulation of this reflex, but at least two of them, 
i.e., the cNTS and the cVRG, are important sites of action of antitussive or protus-
sive drugs. Interestingly, the results of drug microinjections suggest an essential role 
not only of the cNTS but also of the cVRG in the genesis of the overall cough motor 
pattern. Further investigations on the basic physiological and pathophysiological 
mechanisms underlying cough, pain, and itch, and the analysis of their similarities 
and differences, could suggest novel therapeutic strategies. Other studies are needed 
on the different brainstem areas subserving cough motor pattern formation and par-
ticularly on the RTN/pFRG that may be important in the generation of the expira-
tory thrusts, and on the PiCo that may have an essential role in the generation of 
postinspiratory behaviors which include coughing and swallowing. Moreover, the 
periaqueductal gray appears to be relevant to cough researches as indicated by some 
already mentioned lines of evidence (see [105, 106, 149]) and by the finding that it 
is the source of one of the major afferent input to the cVRG (e.g., [59, 177, 186]). 
Interestingly, also reciprocal connections between the periaqueductal gray and the 
preBötC have been reported [54, 202]. Although the preBötC is the core of the cen-
tral mechanism generating the inspiratory rhythm, its contribution to the production 
of the cough motor pattern has not yet been completely unraveled. A recent aspect 
of the physiology of the central nervous system is the great contribution of glial 
cells, especially astrocytes, to the functional characteristics of neuronal activities 
(e.g., [203]). It has been proposed that astrocytes in the respiratory network may 
contribute to the characteristics of inspiratory activity [204–207] and play a crucial 
role in central chemoreception within the RTN [190, 208]. The finding that ozone-
induced pulmonary inflammation results in a specific activation of vagal afferents 
that induces astroglial cellular alterations in the NTS ([209] also for further Refs.) 
suggests a possible involvement of astrocytes in cough regulation. However, the 
contribution of astrocytes to the modulation of the motor pattern of reflex cough 
remains to be investigated. Finally, it should be also remembered that many neuro-
immune interactions can occur at different sites of the peripheral and central ner-
vous systems in the development and maintenance of chronic cough, and that they 
could be interesting targets for studies aimed at developing novel effective antitus-
sive therapies [210].
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