
Chapter 6
Statistical Data Mining of Clinical Data

Ilya Lipkovich, Bohdana Ratitch, and Cristina Ivanescu

6.1 Introduction

6.1.1 What Is Data Mining?

Data mining is understood broadly as a set of analytical tools and methods for
extracting nontrivial information from the data so that it can be transformed into
useful knowledge and practical tools. Data mining has been evolving and applied in
multidisciplinary contexts, and its definitions vary depending on the viewpoint. The
following definition reflects the view of the Knowledge Discovery in Databases
(KDD):

• Data mining is the nontrivial extraction of implicit, previously unknown, and
potentially useful information from large data sets or databases.

A typical statistician’s view of data mining expressed succinctly in a textbook by
Hand et al. (2001) places more emphasis on the interpretability of discovered
“relationships” for decision-makers:

• “Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data owner.”
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In Pharma there is no established definition of what data mining is; however,
summarizing our experience and observations of the current practices across the
industry, we can formulate it broadly as any post hoc analyses:

• “Data mining is any post-hoc analysis of existing clinical data to provide answers
to relevant scientific, clinical, and business questions to internal and external
stakeholders.”

In this review chapter, we take a broad view on data mining in clinical settings as
a valuable and principled element in a large cycle of knowledge discovery and
confirmation from healthcare data that facilitates a full and efficient use of vast
amounts of available data. It is a type of data analytics for problems that have the
following common features:

• A large amount of available data in terms of the number of records (patients)
and/or the number of features (variables) that has at least some of the following
properties:

– Typically arising from observational studies, or representing “observational
elements” embedded within randomized trials

– Collected for a different purpose than the intended “data mining” analyses
– Dispersed over different databases

• The relationships that need to be learned from the data may be obscured by

– Both random and systematic errors
– Various inconsistencies in data collection and variable construction
– Missing data (likely “not completely at random”)
– The presence of irrelevant data (noise features) that need to be filtered out
– Redundancy in relevant data (“overlapping” variables)
– Time-dependent causal mechanisms with unknown lags
– The presence of both short-lived and long-term time effects
– Dynamic dependencies between variables that may change over time
– Unknown causal relationships among variables
– Unmeasured confounders and spurious associations between variables

This chapter is organized as follows. In the rest of the introduction section, we
present the framework for data mining and machine learning (DMML) and try to
connect it with important tasks in drug development. Section 6.2 lays out the key
concepts of DMML. Section 6.3 contains a brief overview of selected methods with
more emphasis on those that will be featured in our case studies. Section 6.4
summarizes the principles of data mining with clinical data and suggests some
elements of the statistical plans for DM. Section 6.5 contains three case studies.
Finally, in Sect. 6.6, we provide a brief discussion of the key points of the chapter.
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6.1.2 Machine Learning and Data Mining Framework

The fields of data mining and machine learning emerged as a combination of
computer science and statistics methods with some additional unique objectives
and emphases. As in computer science, one goal of machine learning is to build
algorithmic solutions and machines to solve problems; as in statistics, another goal is
to do reliable inference from data. The unique objectives of machine learning include
the emphasis on how computers can “program themselves” (learning) and how to
most effectively capture, store, and retrieve patterns and regularities in data. Data
mining is a closely related field, which employs many machine learning and statistics
methods. Data mining activities are typically focused on discovering new insights
from databases that are often big, heterogeneous, and/or unstructured and which are
presumed to contain interesting patterns not known or not sufficiently understood a
priori. To name just a few sources, excellent introductions and textbooks in machine
learning and data mining are provided by Mitchell (1997), Hand et al. (2001), Hastie
et al. (2009), Clarke et al. (2009), Witten et al. (2011), Domingos (2012), and
Goodfellow et al. (2016).

Although statistical modeling and machine learning have been developing as
separate disciplines, the similarities between the two abound, and they can be used in
synergetic ways (Friedman 1997; Hand 1998; Vapnik 2006). Statistical modeling
approaches often formulate some assumptions regarding the data distribution and the
relationship between the dependent and independent variables and place emphasis
on the interpretability of the model and the ability to do inference about the
underlying data generation mechanism including the effect of individual predictors
on the response.

Somewhat simplifying matters, we can describe classical statistical modeling as
largely focusing on estimating a model from which the data arose: Y ¼ f(X) + ε,
where ε represents a random error induced either by an experimental procedure,
random sampling, or other sources of uncertainty. The error term is modeled with
some parametric family of distributions, often with a common assumption that the
random errors have the expected value of zero, E(ε) ¼ 0, and is independent of X. In
statistics, it is common to refer to X as a set of independent or predictor variables and
to Y as a response, outcome, or dependent variable. For a continuous outcome
variable Y, f(X) is the conditional mean f(x) ¼ E(Y|X ¼ x) and is referred to as a
regression function. For a categorical outcome Y ¼ {j : j ¼ 1, .., k}, the same
representation gives rise to a classification function, where E(Y ¼ j|X ¼ x) models
the probability of group membership.

For example, in clinical studies, one of the central objectives is to assess whether
treatment has a statistically significant effect on a response variable and to estimate
the magnitude of the treatment effect. This is often done by estimating a fairly simple
statistical model with treatment represented by one of the independent variables and
then performing statistical tests about the treatment effect and estimating mean
treatment effect based on that model. For example, in the context of continuous
outcome variable, it is the mean difference in response under the experimental
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treatment versus control, possibly adjusted for other independent (pretreatment)
variables included in the model, such as baseline patient characteristics. In this
case, the goal is to do inference from the data collected so far, without a further
objective of predicting responses for future individual patients. As can be further
illustrated with this and other applications in healthcare, the classical view focuses
on hypothesis testing applied to a single test or a small number of pre-specified tests
with clearly defined multiplicity adjustment strategy.

This framework can be contrasted with that of data mining and machine learning
(DMML) where the “learning” aspect refers to the ability of a computational system
to acquire new knowledge from its environment and data or to organize existing
knowledge in a way that facilitates its use. The “machine” aspect emphasizes the
automated and algorithmic fashion of the learning, not involving “human interven-
tion.” In machine learning, often there is also an objective of creating a “machine”
(computational system or tool), which, once trained, can be deployed for future use
with new data. This is reflected in a ubiquitous use of the term “training data set” or
“training sample” in DMML to designate the data that are available at the learning
stage and implying that there will be more data to come.

The differences between classical statistics and machine learning have been a
subject of lively debates (see, e.g., Breiman 2001a, b on two modeling cultures
within statistics). Unlike classical statistics, DMML methods tend to rely less on
formal distributional assumptions and often work with “black box” representations
of the target unknown function f(x), where the interpretability of the effect of the
individual input variables on the output may be limited and not of primary interest
and the emphasis is rather on the quality of prediction for future cases.

Classical examples of machine learning for prediction is speech and character
(e.g., handwriting) recognition and (more recently) email spam detection where
arguably the interpretability of the prediction rules does not play a key role (see,
e.g., email spam Example 1 in Hastie et al. 2009). However, the situation is quite
different in applications of machine learning in the healthcare such as automated
diagnosis of patients where both healthcare providers and patients are not only
interested in accurate prediction but would also like to know which features are
primarily responsible for discriminating the “events” from “non-events.” Here
relying on pure “black box” solutions may be less desirable: although a black box
model may be entertained as the prediction tool, it then should be followed by
various visualizations facilitating the interpretability, such as a decision tree, a
variable importance graph, a partial dependence plot, or a low-dimensional projec-
tion. This shift from a “black box” to a more transparent and interpretable data
mining, reminding us of the exploratory data analysis (EDA, Tukey 1977) with its
emphasis on “looking at the data,” differentiates the outlook of modern “data
miners” from that of “machine learners.”

Another distinction can be made between the role of modeling assumptions and
model selection in the classical statistics and DMML. In the former, analysis often
relies on “standard assumptions” and pre-specified models, while in practical situ-
ations the analyst is discouraged from “looking at the data” (even for validating the
analysis assumptions) in fear of data dredging, as multiple “looks” may arguably
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inflate the false positive rates. This outlook is at odds with the discovery nature of the
statistical science. Sometimes analysts may act under implicit assumptions that “pre-
specified” means “valid,” resulting in suboptimal models entertained at “confirma-
tory stage.” While these are not examples of the best application of classical
statistics, they often occur in practice, especially in the healthcare settings where
pre-specification of analyses required by regulatory agencies played a key role and
became a part of the culture. Data visualizations historically did not play an
important role in this “traditional” view of data analysis, perhaps because of the
fear of “looking at the data” when implementing pre-specified confirmatory ana-
lyses. Nevertheless, things are gradually changing, and most large pharmaceutical
companies have been creating data mining and visualization groups to facilitate data
analysis and presentation in all phases of drug development.

DMML by its nature relies on model selection using data-driven methods with an
emphasis on discovery rather than confirmatory analysis. Unlike classical statistics,
the emphasis in DMML is not on hypotheses testing but on generating plausible
hypotheses that are data-driven (“random”), rather than pre-specified. On the other
hand, data-driven model selection inherent in data mining methods may often occur
“behind the scenes,” and the statistical uncertainty associated with model selection is
left unaccounted for in the final analyses and decision-making based on these
analyses. Again, perhaps reflecting not the best practices of data mining, the final
inference is sometimes based on the findings of a last stage of a complex multistage
data mining procedure ignoring the uncertainty associated with all the previous
stages. Model validation and incorporation of the uncertainty associated with the
entire DMML strategy in the prediction and inference is extremely important for
generating useful insights and tools but may be very challenging to implement. Like
EDA, data mining (somewhat in contrast with machine learning, having an emphasis
on fully automated analysis strategies) encourages various graphical displays and
low-dimensional data representations facilitating model selection and
interpretability.

Table 6.1 summarizes the above discussion points on the differences and com-
monalties between data mining/machine learning and traditional statistics.

We conclude this discussion by observing that the distinctions made may over-
simplify and overdramatize the situation, and a trend has been emerging for conver-
gence between the “classical” statistics and DMML under a unifying framework
where both elements are considered from a common modeling perspective of
“statistical learning” emphasizing some general principles such as achieving a
trade-off between bias and variance (see Hastie et al. 2009). Many ideas and
approaches developed in the two disciplines independently and use different termi-
nologies but share similar concepts and properties. One indication of convergence
between the two domains is an increasing interest in developing “classical” inferen-
tial procedures for machine learning techniques, such as for inference “after model
selection.” For example, see Wager et al. (2014) on bagging and random forest,
and (Meinshausen et al. 2009, Lockhart et al. 2014, Tian et al. 2016) on post-
selection inference in the context of L1 (lasso) penalized regression and related
methods. Another example of such blending is procedures that combine classical
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multiplicity control in hypothesis testing with model averaging for design and
analysis of dose-finding studies introduced in (Bretz et al. 2005) and implemented
in R package MCPMod (Bornkamp et al. 2009).

6.1.3 Machine Learning Tasks for Solving Clinical Problems

For decades, healthcare data have traditionally been analyzed using statistical
methods, but the applications of machine learning and data mining have been
constantly growing in all areas of health informatics, from molecular biology and
genetics, to clinical research, to epidemiology. There are a few major areas in health

Table 6.1 Data mining/machine learning versus “classical” statistics

Classical statistics Data mining/machine learning

Typically uses relatively small data sets col-
lected from designed experiments or by sam-
pling from well-defined populations

Large and often dispersed and heterogeneous
data sets, often collected for (business) pur-
poses other than the data mining

Assumes a data generation mechanism:
y ¼ f(X) + ε, where f(X) has relatively simple
structure (e.g., a linear model) and the error
term(s) are represented by parametric
distributions

Often poses its task as recovering unknown
function f(X) which may be a “black box” (i.e.,
fairly complex nonlinear relationship) while
the presence of statistical uncertainty (noise) is
often ignored

The objective is to estimate parameters for the
entire population from available sample(s)

The objective is to obtain predictions for new
(future) cases or extract useful features that
reveal underlying (unknown) structure. The
analysis data often represent the entire
population

Focus on hypothesis testing applied to a single
test or a small number of pre-specified tests with
clearly defined multiplicity adjustment strategy

Hypothesis generation (knowledge discovery)
rather than formal hypothesis testing, less
emphasis on statistical significance (often
rather focusing on controlling the false dis-
covery rate)

Interpretability is an important element of
modeling culture where the structure of f(X) is
driven by few pre-selected variables, mainly
based on existing domain knowledge or factors
of a designed experiment

The “black box” modeling makes interpret-
ability neither important nor easily attainable;
however, in data mining applications, the
decision-makers often desire to have the deci-
sion rules expressed in interpretable form

Modeling relies on “standard assumptions,”
often discouraging “looking at the data” in fear
of data dredging. Underutilizes the discovery
element of statistical science

Relies on model selection using data-driven
methods with emphasis on discovery rather
than confirmatory analysis; incorporation of
uncertainty associated with model selection
however may be challenging to implement for
multistage data mining strategies

Visualization does not play important role,
perhaps because of the fear of data dredging
when implementing pre-specified confirmatory
analyses

Data mining (like EDA and in contrast with
machine learning) encourages graphical dis-
plays facilitating model selection and
interpretability
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informatics (Herland et al. 2014): bioinformatics typically focuses on the molecular-
level data; neuro-informatics concentrates on analysis of brain imaging data; clinical
informatics involves analysis of patient data; public health informatics applies data
mining and analytics to population-level data; and translational bioinformatics is an
interdisciplinary field that develops techniques for integrating biological and clinical
data. In this chapter, we focus on clinical informatics.

Traditional view of the scope of data mining and machine learning in drug
development is that its place is primarily in preclinical and early-phase drug discov-
ery (e.g., using machine learning for gene expression analysis). Using data mining in
later stages of drug development (Phases 3, 4) is often considered with suspicion as a
euphemism of data dredging that sponsors may use to promote favorable views of
their products and make unsubstantiated claims (e.g., of enhanced efficacy in sub-
populations identified through data mining). Many consider complete
pre-specification of analyses in late stages of drug development as the necessary
condition of their validity. However, learning from data is a continuous process that
does not stop at the beginning of Phase 3. Clearly, not everything is known at the
time of new study design, and so not all meaningful analyses can be preplanned;
therefore, extracting as much evidence from data as possible, even post hoc,
maximizes good use of patient data and resources allocated to a clinical trial.
There is indeed a striking contrast between the vast amount of patient-level data
(on efficacy and safety) collected in the course of a clinical trial and reporting trial
results with a few summaries (ultimately, a single P-value for the primary analysis),
which suggests large amounts of data collected may be underutilized in the drug
development process.

Contrary to this view, we believe that data mining is an integral part on all stages
of the drug development process. However, we promote principled data mining
(as opposed to “data dredging”) and to this end outline some principles and good
practices of clinical data mining.

In our review of data mining methodologies, we focus on methods most useful for
clinical trial data analysis; however, most of the methodologies equally apply to
observational studies where treatment assignments are driven by prescribers’ deci-
sions and not by chance. In fact, as we argue, observational studies and randomized
clinical trials (RCTs) have much in common, and this is exactly why data mining
(and model selection as its integral element) is needed in both. Often, we can
consider clinical trial data as observational study embedded in an RCT. Even in
the perfectly designed and conducted RCT, post-randomization events, such as
dropouts, effectively break the randomization and make comparison of simple
summaries by treatment arm biased and therefore require model-based analysis,
even for the assessment of treatment effect under the intention-to-treat (ITT)
principle.

Here, we list some general analytic tasks that arise with clinical data (whether
originated from a randomized trial or not) that lend themselves to applications of
data mining methods, and we group these tasks under more traditional headings of
supervised, semi-supervised, or unsupervised learning. Specific examples for some
of these tasks will be provided in Sect. 6.5 using case studies.
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6.1.3.1 Supervised Learning

Supervised learning occurs when the DMML system is provided both the input and
the correct output for a set of training cases and is tasked with learning a function that
maps input to output, with the goal of being able to predict the output for future,
unlabeled input instances. The initial, labeled set (xi, yi), i ¼ 1, . . ., N, of inputs xi
(a p-dimentional vector) and outputs yi is referred to as a training set, and the learning
algorithm adapts its internal representation of the input-output relationship bf xið Þ to
minimize some measure of differences between the observed and predicted outputs:

yi and bf xið Þ , e.g., residual sum of squares RSS ¼PN
i¼1

yi �bf xið Þ
� �2

. Supervised

learning problems are further grouped into classification when the output variable
is a category (e.g., mild, moderate, severe) and regression when the output variable is
a real value (e.g., blood pressure or weight).

Some common tasks in the healthcare setting include:

Patient diagnostics. Applications of building diagnostic models informed by various
patient-level covariates (symptoms) started to appear decades ago, for example, a
simple diagnostic tool was constructed using tree-based decision rules that allowed
clinicians of an emergency unit to make a quick assessment whether a patient with
non-traumatic chest pain can be diagnosed with a myocardial infraction using ECG
and other available markers (Mair et al. 1995). An example of increasing use of
diagnostic tools incorporating AI algorithms is a recent approval by FDA of
OsteoDetect, an image processing device that “analyzes wrist radiographs using
machine learning techniques to identify and highlight distal radius fractures during
the review of posterior-anterior (PA) and lateral (LAT) radiographs of adult wrists”
(FDA 2018).

Building predictive models for patients’ future outcomes. Models may be built to
predict safety or efficacy outcomes, informed by assigned treatment, biomarkers
available prior to treatment initiation, and evolving (early) patient outcomes. Exam-
ples of such clinical applications of supervised learning are predicting mortality and
readmission after a discharge from an intensive care unit in order to avoid premature
discharges from the unit for future patients (Ouanes et al. 2012) and predicting
cancer susceptibility, cancer recurrence, and cancer survival (Konstantina et al.
2015).

Modeling intermediate outcomes as part of a treatment evaluation strategy. Super-
vised learning often arises in clinical applications not as a goal in itself but rather as
an intermediate step for obtaining more accurate estimates of treatment effects. This
is especially true for evaluating treatment effect in observational trials but also
applies to RCTs. For example, to account for missing data, methods of inverse
probability weighting can be employed that require modeling the probability of a
patient remaining in the trial through specific time. Here the goal is not to predict
patient’s dropout as such but rather to correct for selection bias in the primary
analyses caused by the fact the dropouts may have occurred not completely at
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random but were associated with patients’ covariates and early outcomes. As another
example, imputation methods are often used for the same purpose of accounting for
selection bias due to dropouts. Constructing an imputation model or a model for
inverse probability weighting can often be successfully done using “black box”
methods of supervised learning that have an advantage over simple regression
methods in that they utilize all available data and do not require preselection of
key predictor variables nor assume any specific form of their relationship with the
probability of dropout which are typically unknown to the investigators. See Tang
and Ishwaran (2017) for comparison of various strategies for imputing missing data
via random forest algorithms. In our case study in Sect. 6.5, we will provide an
example of using machine learning method to estimate treatment effect under
informative treatment switching via inverse probability weighting.

6.1.3.2 Unsupervised Learning

In unsupervised learning, the DMML system is not provided with any “correct
answer” such as a training sample where all cases are correctly labeled into target
categories or values but rather is designed to discover and model the underlying
structure and patterns in the data with the goal of acquiring a better understanding of
the data. Unsupervised learning problems are broadly grouped into clustering, where
the objective is to discover inherent groupings of similar units described by data
(e.g., groups of patients with similar treatment outcomes), and association, where the
goal is to discover interesting relations between variables (e.g., co-occurrence of
certain diseases or events) which can be also thought of as clustering, although in the
variable/feature space.

Some common tasks and examples include:

Clustering to identify patients with similar efficacy outcomes in the absence of a
definite single outcome measure determining patient’s response to treatment. This is
especially relevant for diseases where the patients’well-being is described by a set of
variables representing complementary and sometimes conflicting clinical criteria and
scales, which is often the case in neuroscience and some other areas. Example of this
is clustering patients in treatment of fibromyalgia, as such patients often show great
variability in symptoms domains for which a given treatment may be beneficial
(Lipkovich et al. 2014; Abtroun et al. 2016). Clustering of patients in the multivar-
iate space of disease symptoms may lead to construction of better criteria for clinical
response as well as understating what patient characteristics are driving response in
different domains of symptoms.

Identifying patients with distinct response profiles (or trajectories) over time.
Response profiles may represent different types of patients, e.g., “early responders
who later fail,” “relapsers,” “gradual responders,” “sustained responders,” etc.
Clustering can be done using traditional statistical methods of analysis of growth
curves via finite mixture random effects with categorical latent variables
representing class membership (Muthén et al. 2002), as well as by application of
multivariate clustering methods, e.g., Lipkovich et al. (2008).
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Use of methods for association learning. This objective has been explored in
pharmacovigilance to uncover drug-adverse event relationships and drug-drug inter-
actions in spontaneous reporting systems and large healthcare databases such as
electronic health records and administrative claims (Harpaz et al. 2012).

Detecting outliers and unusual patterns, often in the context of fraudulent assess-
ment of outcomes. See, e.g., O’Kelly (2004) for a case study illustrating the use of
statistical multivariate techniques to identify fraudulent clinical data.

6.1.3.3 Semi-supervised Learning

Note that in many situations learning may need to proceed in an unsupervised
manner even in a prediction setting for regression or classification problem where
the target variable is entirely missing in the observed (training) data. An interesting
case that falls somewhere in between the supervised and unsupervised learning is
predicting differences in outcomes for a patient under different treatment regimes
(treatment effects) given his/her characteristics. This is not a supervised learning
problem because in a typical parallel arm clinical trial, a patient is assigned only to
one treatment (experimental or control), and therefore the patient-level treatment
differences are unobserved, similar to class labels in the clustering problem. How-
ever, because one of the treatment outcomes is observed for every patient, these
hypothetical differences can be predicted using methods of traditional supervised
learning as building blocks. Here we provide examples of such tasks under the
heading of semi-supervised learning:

Subgroup identification. Heterogeneity of treatment effect has been recognized in
many therapeutic areas leading to a growing interest in precision medicine (also
referred to as personalized medicine) so that therapies can be tailored to character-
istics of the patients as well as their environment and lifestyle (Ashley 2015). Much
research has been dedicated to identifying genetic traits that are responsible for
variations in disease susceptibility and response to treatments, but subgroup identi-
fication also extends to other demographic and clinical characteristics that may be
predictive of the treatment effect (often referred to as biomarkers). In this setting, the
researchers may be presented with a large set of potential biomarkers, and the
objective is to determine a small subset that can be used to reliably describe patient
profiles with the most beneficial treatment effect or a favorable benefit-risk balance
(see Lipkovich et al. 2017). We provide a review of various methods for subgroup
identification in Sect. 6.3.3 and illustrate with a case study in Sect. 6.5.1.

Estimating optimal treatment regimes. Another clinical problem closely related to
precision medicine which also falls under the semi-supervised learning framework is
construction of optimal dynamic treatment regimes (DTRs) utilizing information on
patient’s characteristics and accumulated patient’s outcomes at each decision point.
In many health disorders, especially chronic conditions, sequential decision-making
is necessary to adapt treatment over time in response to the evolving health status of
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the patient. This is especially important if there is a high degree of heterogeneity in
individual long-term responses to treatment and when treatment may need to be
adjusted as a result of emerging side effects. DTRs thus extend the concept of
precision medicine to time-varying treatment regimes where therapy (type, dose,
and/or timing) may be adjusted over time based on the up-to-date patient information
and may be influenced by earlier treatment choices (Murphy 2003, 2005;
Chakraborty and Murphy 2014). Development of evidence-based dynamic treatment
regimes, just like evidence-based recommendations for the initial choice of treat-
ment, is part of building clinical decision support systems for the entire treatment
cycle. Several methods for estimation of optimal DTRs, e.g., Q-learning and
A-learning, originate in a subfield of machine learning known as reinforcement
learning (Sutton and Barto 1998) where the focus is on decision-making in stochastic
dynamic environments. We review the problem and methods of estimation of
optimal DTRs in Sect. 6.3.3 and present a case study in Sect. 6.5.2. Although the
problem of identifying optimal regimes is a semi-supervised learning problem
(in absence of explicit information of what is the optimal regime in training data),
it often uses supervised learning approaches as integral components. For example,
methods of outcome-weighted learning construct DTRs by casting it in as a series of
classification problems (Zhao et al. 2015).

6.1.3.4 Feature Selection and Dimensionality Reduction

A cornerstone of machine learning and data mining methods (whether supervised or
unsupervised) is feature selection and dimensionality reduction. Databases often
contain a multitude of variables which are potentially related to the problem at hand,
but it may not be known in advance which attributes are in fact useful and which are
irrelevant or redundant given other attributes. The challenge is compounded by the
fact that machine learning often starts with “feature expansion” resulting in
transforming the initial set of covariates into a broader set of “features” (e.g., adding
variables capturing information on two- and three-way covariate interactions or
using feature expansion via radial basis functions). Given this enriched set of
features, the DMML system needs to extract useful information to reduce model
complexity, improve accuracy, and facilitate interpretation. Feature selection refers
to an automatic selection of data attributes that are most useful and relevant for
predictive modeling (supervised learning) or identifying patterns in data
(unsupervised learning). Examples of such methods for supervised learning range
from traditional stepwise model selection techniques to more sophisticated methods
of penalized estimation (e.g., lasso method a.k.a. L1 penalty) and ensemble learning
(see Sects. 6.2 and 6.3 for more details). Often feature expansion and selection can
be done within a single analytic strategy (e.g., as in support vector machines (SVMs)
with a kernel-based feature expansion and an L1 penalty).

Dimensionality reduction also aims at reducing the number of attributes in a data
set, but unlike feature selection, it does so by creating new, fewer combinations of
attributes that nevertheless capture the key information in the data (e.g., using
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methods based on principal components and singular value decomposition). These
methods can be used in the context of both supervised and unsupervised learning.

In this chapter we will provide case studies covering some of the above tasks.
Clearly, it would be impossible to cover all applications of data mining in clinical
research in a single chapter. While we provide some reference to a broader set of
applications, we would like to explicitly mention some areas that will not be covered
here: applications of data mining/machine learning in molecular biology, genomics,
proteomics, microarray data, and medical imaging. While some of case studies will
use methods that are applicable to analysis of epidemiological studies and real-world
databases (such as claims/electronic medical records), we will not have specific
examples here.

6.2 Overview of Key Concepts

The power of machine learning algorithms is in their ability to provide solutions to
difficult problems by generalizing from a limited set of examples observed in real life
(a training set). This is not unlike statistical inference where, in order for the results
to be of practical utility, the inference performed from a finite set of data samples
must be generalizable to a population of interest (e.g., finite population as in survey
sampling or hypothetical population as in making inference for “future” patients).
Therefore, good accuracy/performance on the training data set is typically not the
ultimate goal, and performance on new data not included in the training set is of
greater importance. In supervised learning, it is a common practice to divide the
available data into a training set and a test set so that the solution can be developed
on the training set and its performance evaluated on the test set, representing new
data not used for learning. In this context, the performance metric applied to the
training set while the learning is taking place (e.g., the R-square) often serves as a
surrogate for the ultimate performance measure—generalization ability. However,
focusing on this surrogate measure, especially when fitting complex models (i.e.,
with a large number of parameters), may lead to overfitting, so that the model
“describes” the random error (noise) in the training data rather than the underlying
relationship. Avoiding overfitting and improving generalization performance
requires careful consideration, which we review in this section.

6.2.1 Bias-Variance Trade-Off

One important aspect of a machine learning algorithm’s performance is the bias-
variance trade-off. The generalization error can be decomposed into two main
components: bias and variance. For example, as discussed in the previous section,
in supervised learning (for continuous outcome), the objective is to find a mapping
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for the input-output relationship bf xð Þwhich minimizes the expected prediction error

E y�bf xð Þ
� �2

which can be decomposed as

E y�bf xð Þ
� �2

¼ Bias bf xð Þ
h i� �2

þ Variance bf xð Þ
h i

þ σ2,

where σ2 is an irreducible error (e.g., due to noise in inputs and outputs).

Bias bf xð Þ
h i

¼ E bf xð Þ � f xð Þ
h i

is the method’s tendency to consistently produce

solutions bf xð Þ that deviate from the truth f(x). Systematic bias can be introduced,
for example, by using an inappropriate model, e.g., using a linear model when the
true function is nonlinear, or using optimization algorithms that tend to converge at a

local optimum (e.g., greedy search). Variance bf xð Þ
h i

¼ E bf xð Þ2
h i

� E bf xð Þ
h i2

is the

method’s tendency to produce different solutions (move around its mean) as a result
of changes in the training set (even though different training sets are generated by the
same underlying process) or randomness that is part of the learning algorithm (e.g.,
Monte Carlo methods).

There is a trade-off between bias and variance: typically bias decreases as the
model complexity increases, while variance increases with model complexity. An
increasingly complex model will reach a point where its prediction error on the
training set is very small but it overfits the training data and leads to an increase in the
error on the test data. This is illustrated in Fig. 6.1 where the training set error,
depicted by the light gray line, decreases steadily as the size of the model (a tree-
based model in this example) increases, whereas increase in complexity leads to no
further gains in the test set error after a certain point (tree size of 5) as depicted by the
black solid line. This is why, perhaps counterintuitively at a first thought, a more
complex learner (model) is not necessarily better than a more parsimonious one, and
there is typically some intermediate model complexity that provides the best perfor-
mance on the test (and future) data. In Fig. 6.1, the dotted line represents one
standard deviation above the best test error, which may be a good target to select
model complexity. This leads us to the next topic—model selection.

6.2.2 Model Selection

For reasons discussed above, model selection is thus an integral part of the machine
learning process with the ultimate goal of choosing the model that provides the best
generalization performance on new data. One aspect in terms of choosing the right
model is related to the choice of model class, for example, using a
linear vs. nonlinear model. Another aspect relates to choosing which predictor
variables to include in the model as this also directly determines model complexity.
The squared bias component of the prediction error discussed above can itself be
decomposed into two parts: average model (specification) bias and average
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estimation bias. Model bias represents the error between the best-fitting approxima-
tion within the chosen class (e.g., a linear model based on a set of chosen predictors)
and the true function. The estimation bias is the error between the average estimate
of the model parameters and the best-fitting approximation in the class.

For example, for linear models bf Xð Þ ¼ XTβ using a vector of predictor variables
X and parameter vector β, the best-fitting approximation corresponds to the param-
eter settings β� ¼ argminβ E[( f(X)� XTβ)2]. The average squared bias of a specific
approximation bf d xð Þ is then decomposed as follows:

Ex E bf d xð Þ
h i

� f xð Þ
h i� �2

¼ Ex xTβ� � f xð Þ� �� �2 þ Ex xTβ� � E xTbβdh ih i� �2
,

where the first term on the right-hand side is the model bias and the second term is
the estimation bias.

The expectation over the estimated linear predictor E xTbβdh i
is equal to that from

the ideal best-fitting linear predictor xTβ� for linear models estimated using the
ordinary least squares method, and in this case the estimation bias is zero. For
other estimation methods, for example, penalized or ridge regression, the average
estimation bias is positive, but then the models obtained with this approach typically
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Fig. 6.1 Illustration of bias-variance trade-off using a classification tree example. The x-axis shows
the tree size (model complexity); the y-axis shows the relative classification error. The black line is
the generalization error (here estimated via tenfold cross-validation), and the gray line is the error
estimated from the training set. The error bars are estimates of standard error associated with the
cross-validation estimates. The graph suggests that the tree model starts picking up noise when the
number of leaves (terminal nodes) exceeds 5
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reduce the variance component and thus can be used to achieve a desired bias-
variance trade-off.

Model selection in terms of choosing the most relevant subset of predictors can be
done in many ways. One traditional approach often described in statistics textbooks
is based on stepwise variable selection (e.g., forward, backward, or hybrid stepwise
selection), where statistical significance of effects associated with each variable are
tested in some sequential way and variables are dropped or added to the model one at
a time depending on their significance. This approach uses a locally greedy strategy
and suffers from several other important drawbacks (e.g., multiple statistical hypoth-
esis testing performed without proper Type I error control, unstable performance,
and low prediction accuracy).

In general, data analysis involving a model selection step can be broken down
into the following tasks:

1. Choosing a general form of the model (e.g., logistic or linear regression).
2. Specifying the model space (e.g., as defined by original variables X, expanding

them into main effects and interactions, expanding them using spline basis
functions, etc.).

3. Specifying a model search strategy, i.e., a strategy for obtaining a path or multiple
paths through the model space that are likely to capture “promising”models (e.g.,
stepwise model selection produces a sequence of the best models for the number
of predictors k ¼ 1, 2, 3, . . .; coefficient paths obtained by varying the amount of
penalty in lasso/elastic net; stochastic model search).

4. Specifying model selection criteria in order to identify the final best model(s).
5. Estimating parameters of the final model(s) while taking into account the uncer-

tainty associated with the model selection step (estimation aftermodel selection).
6. Predicting outcomes for new data using the selected model(s).

Typically, the general form of the model (task 1) is chosen by the researcher given
domain knowledge. Some common approaches to model selection that take into
account model selection uncertainly are highlighted below:

• Strategies that build a sequence of possibly overfitted models (e.g., using step-
wise selection algorithms or other heuristic methods) and select from that
sequence the best model using goodness-of-fit measures (based on penalized
likelihood such as AIC (Akaike information criterion), BIC (Bayesian informa-
tion criterion), cross-validation, or multiple testing procedures).

• An important special case is strategies based on penalized estimation procedures
(e.g., lasso, elastic net) produce sparse coefficient paths corresponding to increas-
ing model dimensionality by varying values of the tuning parameter(s) that
control the amount of penalty placed on model complexity; the final model is
selected by choosing the optimal tuning settings, e.g., by cross-validation
(described further below in this section).

• Bayesian and frequentist model averaging where the “final model” is a weighted
average over many models that fit data reasonably well (see review papers,
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Hoeting et al. 1999; Wang et al. 2009); and other methods of ensemble learning
such as random forest and boosting (see further in this section).

Although many analytical tools are packaged as “all-in-one”with specific choices
for tasks 2 to 6 outlined above, it is useful to evaluate them on individual compo-
nents. Sometimes a procedure may be reasonable for one aspect but very unsatis-
factory for others, and an improved one can be constructed by borrowing approaches
from different procedures and recombining their elements.

6.2.3 Variable Importance

A concept closely related to the problem of model selection is that of variable
importance (VI)—an integral measure of the relative importance or contribution of
a variable in predicting the response. Variable importance is used in many machine
learning approaches where a single variable may contribute multiple times in
different parts of the model, hence the need to obtain a single score presenting its
overall importance. It can be defined in different ways that suit or reflect the
construction of specific types of learners. For example, in classification and regres-
sion trees (CART, Breiman et al. 1984), variable importance can reflect improve-
ments in the classification error achieved by using this variable to define splitting
criteria across all the tree nodes where it is used as a splitter. Another way of
determining variable importance (as was first introduced in random forests by
Breiman 2001a, b) is to evaluate the reduction in predictive accuracy after a random
permutation of the values of a given variable across all training samples. If the
variable is strongly associated with response, then after randomly permuting its
values, substantial decreases in prediction accuracy can be expected. Other versions
of the permutation-based variable importance have been suggested in the literature,
e.g., Sandri and Zuccolotto (2008); Strobl (2008); Altmann et al. (2010); and
Lipkovich et al. (2017). A recently developed alternative approach to variable
importance is based on SHAP values inspired by the Shapley interaction index
from game theory (Lundberg and Lee 2017; 2018). The importance of each feature
is defined at the level of individual observations by posing an additive feature
attribution model that decomposes the fitted value into a sum of contributions
from each feature (when present in the model). The importance score for a feature
reflects its contribution into conditional expectation of the outcome averaged over all
possible subsets of other features conditioned upon. Therefore, this approach is
different from others in that it summarizes the contributions of a feature into a fitted
model (a “black box”) irrespective of how good or poor the fit may be. We will
discuss several approaches to variable importance in more detail in the context of
subgroup identification in Sect. 6.3.3 and in an application of random forest for
computing inverse probability of censoring weights in Sect. 6.5.3.
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6.2.4 Multiple Testing

The problem of multiple hypothesis testing is well recognized in statistics and relates
to the probability of rejecting a null hypothesis when it is in fact true (referred to as
Type I error). In machine learning and data mining applications where analysis tends
to be more exploratory, it is not uncommon that tens or hundreds of hypothesis tests
are performed by the learning algorithm, and thus care must be taken in this context
as well. Some methods, both from classical statistics and machine learning, may
have some sort of multiple hypothesis testing performed as part of the internal
workings of their algorithm. This is true, for example, of model selection methods
that rely on significance findings to select predictor variables. But multiple testing
can occur in many other contexts as well, e.g., in medical applications in analyses of
genomics data to discover genes, among thousands considered, exhibiting signifi-
cant expression patterns of interest, or in evaluation of clinical safety data based on a
multitude of safety tests and types of adverse events. Today there are many
approaches for multiplicity control, some being more conservative or powerful
than others while being well disciplined, and so some methods may be more
appropriate than others in the context of machine learning.

It has been argued that especially in machine learning, where the number of tests
can be very large, it is useful to distinguish between the false positive rate and false
discovery rate (Glickman et al. 2014). The false positive rate is the probability of
rejecting a null hypothesis given that it is true. The false discovery rate (FDR,
introduced by Benjamini and Hochberg 1995) is the probability that a null hypoth-
esis is true given that the null hypothesis has been rejected by a test.

A classical Bonferroni procedure that safeguards against any false positive
findings is very conservative and has a consequence that the power to reject truly
false null hypotheses is greatly reduced as the number of hypotheses tested increases.
In the context of exploratory analysis where a large number of hypotheses are tested
with an intent to generate promising hypotheses for further investigation and con-
firmation, it may be more relevant to accept a possibility that some discoveries will
be false as long as their proportion among all significant findings is acceptably low.
This point of view is taken by approaches that control the FDR. Multiplicity control
involves establishing an appropriate adjusted significance level against which the P-
values should be compared or conversely adjusting the raw P-values directly. This
can also be achieved by resampling/permutation approaches (e.g., Westfall and
Young 1993; Westfall and Troendle 2008; Vsevolozhskaya et al. 2015) which can
provide empirical distribution of P-values. Resampling/permutation-based methods
are particularly useful for multiple testing with high-dimensional data as they do not
require specific distributional assumptions and utilize the data-based correlation
structure among variables which can provide important power advantages. Efron
(2010) provided an extensive discussion of issues in large-scale inference, including
a novel interpretation of Benjamini and Hochberg’s procedure from the empirical
Bayes perspective, and introduced the local FDR which is defined as posterior
probability of false discovery for a single hypothesis given test statistics for tested
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hypotheses. Another recent advance is developing a very general class of variable
selection procedures that control FDR via so-called knockoff variables—a special
type of irrelevant or “dummy” variables that mimic the correlation structure in the
original variables (Barber and Candès 2015).

6.2.5 Cross-Validation

Cross-validation (Allen 1974; Stone 1974; Geisser 1975) is a method widely used in
machine learning for estimation of the true error rate a.k.a. generalization error
(model assessment) as well as for variable selection and for estimating tuning
parameters that control the complexity of the model and machine learning algo-
rithms. In a nutshell, the motivation and general idea behind the cross-validation is as
follows. If we had a sufficiently large data set, we could partition it into a training
data set, to which a model can be fit, and a validation set, on which performance of
the model could be assessed. However, if the size of the available data set is not
large, a more efficient use of data, which also would lead to more stable estimates of
the model performance, can be achieved using K-fold cross-validation. In this case,
the original data set is split into K nonoverlapping data sets (folds) of equal size,
typically in a random fashion. For each fold k ¼ 1, . . ., K, a model is fit to a training
data set comprised of all data except the kth fold. We will denote such models asbf�k

xð Þ, k ¼ 1, . . . ,K. For each observation i ¼ 1, . . ., N in the original full data set,
let’s denote by k(i) the fold index to which the ith observation was assigned. The
cross-validation estimate of the prediction error can be obtained as follows, based on

some measure of error or loss L y,bf xð Þ
� �

defined for any given pair of predictors x

and response y:

dErrorCV ¼ 1
N

XN
i¼1

L yi,bf�k ið Þ
xið Þ

� �
:

The choice of the number of folds K influences a potential bias of the error
estimate (smaller K can result in a larger bias due to smaller sizes of the training data
sets) and its variance (larger K leading to higher variance as the training data sets will
tend to be more similar, i.e., having more observations in common). A special case
when K ¼ N is referred to as leave-one-out (LOO) cross-validation, in which case
N different models are fit, each to all data excluding only the ith observation. This
estimator is approximately unbiased but can have a high variance. In general, the
bias will depend on the size of the original data set and a slope of the error curve
versus the size of the training data set. Frequently used choices of the number of
folds K are 5 or 10 which attain a good balance between bias and variance in practice
(Breiman and Spector 1992; Kohavi 1995).
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Cross-validation can be used not only to obtain an estimate of the generalization
error of a chosen type of model but also to tune parameters of the fitting method, e.g.,
the size of the model or the amount of penalty placed on the magnitude of the
regression coefficients.

If modeling is carried out using several model selection steps, e.g., variable
selection and parameter tuning, cross-validation must be applied across the entire
sequence of steps: dividing data into k folds at the very beginning, carrying out all
modeling steps on all k-1 training sets (leaving the kth fold out), and estimating
model performance on the kth test fold. Otherwise, steps performed outside of the
cross-validation procedure (e.g., variable selection) may have an unfair “advantage”
in terms of basing their criteria on all available data, including those that would later
be used as new, test examples (see, e.g., Ambroise and McLachlan 2002). While
model selection and model assessment tasks both require cross-validation, it may be
done using different cross-validation approaches applied in a nested manner (Varma
and Simon 2006). One exception to the rule of subjecting the whole learning
procedure to cross-validation is that the steps based on unsupervised learning (not
involving outcomes) may be performed based on all available data, before creating
the folds.

Recent research (Krstajic et al. 2014) also investigated some variants on the basic
idea of K-fold cross-validation, e.g., with repeated random splits of the data and/or
stratification on the outcome variable.

6.2.6 Bootstrap

The bootstrap method was introduced by Efron (1979) and has been used exten-
sively ever since both in statistics and machine learning. In the course of any
analysis, some kinds of summaries (statistics) are typically generated to describe
the data set, the patterns, characteristics, and relationships underlying its variables. It
is useful to characterize the variability and distribution of the estimated statistic
induced by the sampling variability, but to do it through gathering many data sets
from the population is rarely feasible, and we have to content with having only one
data set for analysis. The basic idea of bootstrap is to use the data set at hand as a
“surrogate population” and to generate multiple data sets, called bootstrap samples,
by resampling with replacement from the original data for the purpose of approxi-
mating the distribution of the estimated statistic, which is referred to as the empirical
distribution. In the most generic application of bootstrap, one needs to estimate the
statistic of interest from each of these bootstrap samples, and these multiple esti-
mates serve as samples from the statistic’s distribution. Using these values, one can
estimate different characteristics of the underlying sampling distribution, for exam-
ple, bias, standard error and associated confidence interval, and P-values for testing
statistical hypotheses, which were the primary goals of bootstrap when it was
invented. However, later bootstrap found other “unintended” uses within the realm
of machine learning, most notably a bootstrap-based point estimate also known as
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bagging estimator that plays a key role in algorithms of bagging and random forest.
The motivation for bootstrap averaging was that it reduces variability at the expense
of small amount of bias for unstable estimation processes where small perturbations
in the data may incur substantial differences in estimated models. We will further
discuss the application of bootstrap by “bagging” methods in Sect. 6.3.1. Many
machine learning procedures belong to this class owing to their inherent instability.

One type of instability is caused by model (variable) selection where bootstrap
can be very useful to evaluate model selection uncertainty, as we can fit a model of
the same type, such as stepwise selection or lasso, to multiple bootstrap training data
sets and obtain different characteristics such as the proportion of times a given
variable was selected across all samples which can be plotted against some tuning
parameters that control the selection process.

Another use of bootstrap is that it can also help to address the challenge with
estimation of the generalization error. Recall the earlier discussion that when
constructing a regression or classification model, we are mostly interested in model’s
predictive accuracy on test data not included in the training data set. Remarkably,
bootstrap can be used as a source for generating “test samples,” as when we create
bootstrap training data sets by resampling with replacement from the original data
set, naturally every bootstrap sample will include some observations multiple times,
whereas some will not be selected. In fact, it is easy to verify that the probability of
an observation to be included in any given bootstrap data set is 1� 1� 1

N

� �N
,

approximately 0.632. In order to estimate the generalization error on samples that

were not included in the training data, we can use the leave-one-out bootstrap
approach, similar to the LOO cross-validation approach discussed above. To esti-
mate the LOO generalization error on test data using some error or loss function

L y,bf xð Þ
� �

, for each of the N observations (xi, yi) in the original full data set, we only

look at the predictions from the models that were built with bootstrap training
samples where the ith observation was not included, indicated as a subset of indices
J(�i) ⊂ {1, ..,B}, and thus can be designated as a new, test example for this model:

dErrorLOOB ¼ 1
N

XN
i¼1

1

j J �ið Þ j
X
b2J �ið Þ

L yi,bf b xið Þ
� �

:

Observations that appear in all B bootstrap samples can be omitted from the error
calculation.

One drawback of the LOO bootstrap estimator of the generalization error is that
the average number of distinct observations in each bootstrap sample is about 0.632
of the original full data set size N and the quality of the model can decline with the
reduction of the training set size. In this case, the LOO bootstrap estimate will tend to
overestimate the true generalization error. The so-called .632 estimator addresses
this issue by estimating the generalization error as a weighted average:
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dError:632 ¼ 0:632� dErrorLOOB þ 0:368� dErrortrain,
where the dErrortrain is the training error calculated as the average prediction error
over all original training examples when the model is fitted to the full original
data set.

The “.632 estimator” corrects bias due to the reduction of the bootstrap training
set size, but the second bias-correcting term may be inappropriate if the amount of
overfitting is very large and the training error is close to zero, in which case the bias
of LOO estimator may be considerable. The “.632+ estimator” (Efron and Tibshirani
1997) improves on this estimator by adjusting the 0.632 and 0.368 weights to reflect
the amount of overfitting through the “no-information error rate” estimated as the
error rate of the model fit to a data set with no true association between the predictors
and outcome. This estimator was shown to outperform the LOO bootstrap and five-
and tenfold cross-validation in Efron and Tibshirani (1997), providing low variance
and moderate bias.

6.2.7 Ensemble Learning

Several approaches for supervised learning that emerged over the years share a
similar basic idea and can be considered as ensemble learning. The general principle
of ensemble learning is to build multiple, relatively simple prediction models
(referred to as base models or learners, often weak learners, i.e., capable of predic-
tion accuracy at least slightly above random guessing) and combine them into one
overall model, which can combine their strengths. As such, ensemble learning
consists of two tasks: estimation of a population of base learners from the training
data and combining them to produce overall predictions, e.g., by (weighted) voting
or averaging. One of the influential works in this area which propelled further
research and applications of these methods was done by Hansen and Salamon
(1990), who showed that predictions made by a combination of classifiers can be
more accurate than predictions from a single classifier as long as each base learner is
accurate and the classifiers are diverse. In this context, a classifier is considered
accurate if it is better than random guessing. Diversity means that different classifiers
make different errors on new data, so that if their errors are uncorrelated, the majority
vote or averaging will likely lead to a correct overall classification. We further
discuss these ideas in the context of bagging, random forests, and boosting
approaches in Sect. 6.3.1.

It should be mentioned that Bayesian model averaging approaches can also be
regarded in the framework of ensemble learning, for example, as a large number of
models are averaged according to their “credibility”—the posterior distribution of
their parameters (see, e.g., Madigan and Raftery 1994; Neal and Zhang 2006). At the
same time as pointed out, for example, by Domingos (2000) and Minka (2002),
ensemble methods and Bayesian model averaging differ fundamentally in that
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ensembles change the hypothesis space (e.g., from single decision trees to linear
combinations of them), while Bayesian methods weight hypotheses in the original
space according to a fixed formula. Bayesian model averaging is implicitly geared
towards model selection rather than model combination, so that weights attributed to
individual models can get extremely skewed due to overfitting, as too much weight
is placed on the maximum likelihood model, to the point where the single highest-
weight model usually dominates. In this case, performance of the Bayesian strategies
can be worse than that of bagging or boosting. However, if Bayesian method is
modified to integrate over combinations of models rather than over individual
learners, it can achieve much better results (Monteith et al. 2011; Kim and
Ghahramani 2012). These findings also lend support to the view that the power of
ensembles lies primarily in the changes in representational and preferential bias
inherent in the process of combining several different models.

6.3 Overview of Selected Methods

6.3.1 Supervised Learning

In Sect. 6.1, we discussed supervised machine learning as a counterpart of statistical
modeling for regression and classification, where the goal is to approximate a relation-
ship between the dependent variable (outcome) and one or more independent variables
(predictors). Regression analysis typically aims at estimating a regression function—
the conditional expectation of the outcome Y given the predictors X, E(Y|X). For
classification problems, where the outcome variable represents class labels k ¼ 1, . . .,
K, the objective may be to estimate a model of the posterior probabilities P(Y¼ k|X) or
define a rule that would assign to each case a class label. Linear regression and logistic
regression as well as modeling of other types of outcomes and underlying distributions
via generalized linear models and models of time to event are examples of classical
approaches widely used in statistics.

6.3.1.1 Penalized Regression

Penalized regression methods have been developed to provide a better prediction
accuracy while being computationally efficient and feasible to use even with a large
number of predictors. They had been independently proposed by different researches
for solving somewhat different tasks: (1) incorporating in the same model a large
number of potentially relevant but jointly redundant (“overlapping”) predictors
(sometimes exceeding the number of observations) without incurring instability in
estimated coefficients (multicollinearity) and (2) dealing with a large number of
irrelevant (noise) covariates among candidate predictors whose impact on estimation
should be minimized (sparsity). These methods estimate model parameters by
minimizing the residual sum of squares (more generally, some appropriate loss
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function, e.g., likelihood-based), but add a constraint (penalty) on the magnitude of
the parameters. While this penalty causes the parameter estimates to be biased, it also
decreases their variance that may achieve better performance via variance-bias trade-
off. Penalized methods work by shrinking estimated model coefficients to zero.
Some methods can shrink a coefficient exactly to zero (effectively eliminating the
variable from the model), whereas others shrink all coefficients to some non-zero
values. These methods are also referred to as shrinkage or regularization methods. In
penalized regression, chosen parameters satisfy the following constrained minimi-
zation condition, based on a set of N training samples:

eβ ¼ argmin β

XN
i¼1

yi � xTi β
� �2 !

,

subject to Penalty(β) < k.
Various penalized regression methods differ in terms of the penalty Penalty(β)

that they impose. The most popular methods are the ridge regression (Hoerl and
Kennard 1970), lasso (Tibshirani 1996), adaptive lasso (Zou 2006), and elastic net
(Zou and Hastie 2005).

These methods rely on one or more tuning parameters that determine the amount
of shrinkage. Thus, a penalized regression method can produce a set of models, each
associated with a specific setting of its tuning parameter(s). For the final model
selection, the analyst must employ a tuning method to choose the optimal setting of
these parameters. Among widely used approaches are model fit criteria, such as the
Mallow’s Cp statistic (Gilmour 1996) or Akaike information criterion (AIC) (Akaike
1974), Bayesian information criterion (BIC) (Schwarz 1978), average squared error
on the validation data, and cross-validation.

Penalized regression is implemented in commercial statistical packages, includ-
ing SAS®, as well as in R packages such as lasso2 (L1 constrained regression), lars
(Least Angle Regression [LARS], lasso, and forward stepwise selection), grplasso
(Group lasso), glmpath (L1 Regularization Path for Generalized Linear Models and
Cox Proportional Hazards Model), stepPlr (L2 penalized logistic regression with a
stepwise variable selection), elasticnet (elastic net regularization), glmnet (lasso and
elastic net regularized generalized linear models), and penalized (lasso and ridge
penalized estimation in generalized linear models and Cox regression model).

6.3.1.2 Classification and Regression Trees

Tree-based models became very popular in data mining solutions since the
mid-1980s of the last century and later made their way as building blocks in many
modern procedures (e.g., ensemble learning). Therefore, we describe them with
more details than others in this review.

Tree-based models can be used both for regression and classification. These
models are easily visualized as decision graphs resembling upside-down trees (see
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example in Fig. 6.2): with a single node at the top, called a root node, and where each
node can branch out into several (typically, two) child nodes. The nodes at the end of
each branch, i.e., nodes that do not have any children, are referred to as terminal or
leaf nodes. Each internal (non-leaf) node represents a split of the input space along
the axis of one predictor, e.g., Age � 18 vs. Age < 18. Each branch culminating at a
leaf node—a sequence of internal nodes—specifies a set of conditions with respect
to input variables involved in the splits along the branch which define a region in the
p-dimentional input space. Therefore, at the end of each branch, a leaf node
represents a corresponding region and is assigned a predicted outcome associated
with that region—either a numeric constant in the case of regression or a class label
in the case of classification. Hence tree-based models are often called piecewise
constant.

More specifically, a prediction model represented by a tree with M leaf nodes
where each region is denoted as Rm, m ¼ 1, . . ., M can be described as follows:

bf xð Þ ¼
XM
m¼1

bcmI x 2 Rmf g,

where I{x 2 Rm} is an indicator function for whether the values of input vector x
belong to the region Rm or not and cm are numerical constants or class labels
associated with the regions. For regression, one choice of cm is the average of
outcome values corresponding to training input samples that fall into the
corresponding region:

bcm ¼ average yijxi 2 Rmf g:

For classification, a class representing majority of yi values can be chosen as the
one determining the prediction in the leaf node:

 Nb_Previous_Premature_Labors = 1

 Nb_Physician_Visits = 0  Weight_Mother_lb < 106

 Age >= 18  Hypertension_History = Yes

Low Normal wLo Normal Low Normal

yes no

yes no yes no

yes no yes no

Fig. 6.2 Example of a classification tree for prediction of low/normal birth weight based on
mother’s characteristics (produced using R package rpart.plot)
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bcm ¼ argmax k
1
Nm

X
xi2Rm

I yi ¼ kf g,

where Nm is the number of training samples that fall into region Rm.
Fitting a tree-based model typically involves a recursive procedure which,

starting with the root note, looks for a beneficial split to associate with that node,
where a split creates two child nodes (here we focus on binary trees, although
procedures with multi-way splits have also been developed, see, e.g., Kim and
Loh 2001 and references therein), and so forth until some stopping criterion is
satisfied. This construction process includes a number of steps or tasks, and a
multitude of procedures have been developed that differ in how they go about them:

• How to choose splits at each node.
• How to decide whether splitting should stop.
• How to choose the optimal size of the tree (model complexity).
• How to assign a prediction value at each leaf (e.g., by averaging/voting as

described above).

Each split corresponding to a node in the tree is typically defined based on a
single predictor variable (although procedures that form splits based on
low-dimensional functions of data have also been proposed). If the variable is
quantitative (ordinal), the split condition is of the form “Xj � s” where s can be
any number and is typically chosen among the values of Xj that actually occur in the
training data. If the variable is categorical, the split condition is of the form “Xj 2 A”
where A is any subset of classes that can be assumed by Xj. If the condition is
satisfied, the branch from that node leads to the left child, otherwise to the right child.
The same variable can be used for a split in multiple nodes of the tree.

During the recursive tree-fitting procedure, at each node, the algorithm has to
choose the best split across all input variables and their values. This decision is made
based on some measure of goodness of split, which is a measure of reduction in node
“impurity” due to the split. The most common measures (for classification trees) are
the Gini index and entropy (or information gain), while the misclassification error is
less frequently used although available in software implementations. Gini impurity
index measures how often a randomly chosen element from the set would be
incorrectly labeled if it were randomly labeled according to the distribution of labels
in the tree node, being the sum of pk (1� pk) across all categorical outcomes (labels)
k ¼ 1, . . , K, where pk is the probability of kth outcome, estimated by the proportion
of values {yi ¼ k} in a given node. Statistically, each component is the variance of a
Bernoulli random variate associated with the kth outcome category.

Information gain is defined as the reduction in entropy (an information theory
measure of uncertainty) due to the split. The entropy associated with each node is a
measure of “expected surprise” of the node’s outcome and is defined as the sum of
�pk log2( pk) across k ¼ 1, . . , K, which from the statistical perspective is simply
related to the negative multinomial log-likelihood. Gini and entropy measures,
unlike the classification error measure, are sensitive to class proportions in a node
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and can lead to more “pure” splits where one class is largely predominant. Thus, for
the node splitting decisions during the tree construction, the former two measures are
preferred. Nevertheless, all three measures can be useful for another aspect of the
tree optimization—pruning—which we briefly discuss further below.

For regression trees, a popular measure of impurity is variance, and the best split
is selected as the one that maximizes the reduction of the total corrected sum of
squares due to the split. It is equivalent to choosing the split that maximized the
between-group sum of squares in analysis of variance with the candidate split as an
independent variable.

Other splitting criteria based on statistical tests have also been developed. For
example, the CHAID algorithm (Kass 1980) for classification trees is based on a
chi-square statistic that tests for a chance difference of the observed distribution of
the categorical outcome across child regions. Similarly, the CHAID method for
regression trees uses the F-test from ANOVA models to test the null hypothesis of
equality of means between the child regions.

It should be noted that the splitting procedure outlined above tends to suffer from
a variable selection bias in that the input variables with more distinct values are
favored: the more choices are available for a given variable, the more likely it is to
find a good split using that variable for a training set at hand. This may amplify a
problem with noise variables if they have more unique values than strong predictors.
Several approaches have been developed to alleviate this problem, e.g., FACT (Loh
and Vanichsetakul 1988), QUEST (Loh and Shih 1997), CRUISE (Kim and Loh
2001), GUIDE (Loh 2002), and linear discriminant-based approach (Kim and Loh
2003). Another tree-based approach that selects variables in an unbiased way is
designed in a conditional inference framework—conditional trees (CTree) by
Hothorn et al. (2006). The latter approaches are also based on recursive procedures,
but when a split is being selected at a tree node, a splitting variable is selected first,
independently of the splitting value (and without an exhaustive search over all splits
for all candidate variables).

When values of some predictor variables are missing for some training observa-
tions, a question arises how to handle this in the splitting process. In the case of
categorical predictors, one can treat missing values as a separate category, which
may be beneficial if missingness itself is predictive of outcome. Another approach is
based on the use of surrogate variables. This strategy provides trees with a built-in
mechanism to deal with missing predictor values in a way that exploits correlations
between predictors.

When the best split is identified at the current node, two child nodes are created,
and the splitting process is repeated from each of these children, as well as all other
leaf nodes. There are several ways to decide when the splitting should stop. One can
impose a limit on the minimum number of training samples that fall into a region
associated with a leaf node, and when that limit is reached, splitting that node should
be stopped. Another possibility is to continue splitting until the reduction of node
impurity becomes smaller than some threshold. Yet another option is to stop when
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the best split is not statistically significant at a pre-specified level. This approach is
referred to as “forward selection” and is implemented in the CHAID algorithm.
These approaches will likely result in large trees, susceptible to overfitting, so the
initial large tree construction can be followed by pruning—reducing the size of the
tree—with the goal of optimizing some cost-complexity criterion involving a penalty
parameter interpreted as costs associated with each additional split that determines a
trade-off between the goodness of fit to the data and the size of the tree. Tree pruning
is considered a “backward elimination” strategy, and one popular approach is known
as the weakest link pruning. An appropriate value of the penalty parameter can be
found, for example, by cross-validation.

Table 6.2 provides a summary of different approaches available for classification,
regression, and survival trees across the three main steps of the tree building
procedure.

The key reference for the modern approach to tree-based machine learning is that
of Breiman et al. (1984). Books on statistical learning, e.g., by Ripley (1996) and
Hastie et al. (2009), and a recent comprehensive review by Loh (2014) can provide
further reading.

An early example of applications of tree-based models for clinical data predictive
modeling was construction of a diagnostic tool to identify patients with acute
myocardial infarction in non-traumatic chest pain patients on admission to the
emergency department (Mair et al. 1995). Other notable examples include classifi-
cation (diagnosis and prognosis) of pulmonary hypertension in mixed connective

Table 6.2 Summary of approaches for tree-based modeling

Step
Classification trees
(categorical response)

Regression trees
(quantitative response)

Survival trees
(time-to-event
response)

Variable
selection

Exhaustive search based on
splitting criteria (CART)

Exhaustive search based on
splitting criteria (CART)

Exhaustive search
based on splitting
criteria (LeBlanc and
Crowley 1992)

Pre-selection by F-test or χ2-
test (FACT, CHAID,
QUEST, GUIDE), associa-
tion measures (CTree)

Pre-selection by F-test
(CHAID) or χ2 test for sign
of residuals vs. predictors
(GUIDE), association mea-
sures (CTree)

Pre-selection by
association measures
(CTree)

Splitting
criteria

Reduction in Gini index
(CART), information gain
(CART, C.4.5), change in
log-likelihood due to split
(test statistic or adjusted P-
value, JMP), χ2 test of inde-
pendence (CHAID)

Reduction in total sum of
squares (CART, JMP),
adjusted P-value from F-test
(CHAID, JMP)

Reduction in devi-
ance residual
(LeBlanc and
Crowley 1993)

Stopping
criteria/
pruning

Pruning based on cost-complexity (CART, QUEST, GUIDE), pessimistic pruning
(C4.5), reduction in test error; stopping rules based on (adjusted) P-values (CHAID,
CTree), direct stopping rules (FACT), limits on minimum size of the leaf, number of
levels, etc.
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tissue disease (Kotajima et al. 1997); study of the effects of risk factors on time to hip
fracture using tree structures survival analysis (Lu et al. 2003); use of CART as
alternatives to logistic regression for the estimation of propensity scores in the
context of observational data analysis (Lee et al. 2010); determination of baseline
predictors of remission with placebo for patients with major depressive disorder
(Nelson et al. 2012); and tools for cancer prognosis and prediction (Konstantina et al.
2015).

The discussion above focused mainly on methods pertaining to the CART
(classification and regression tree) methodology. Other tree-based methods devel-
oped over the years include ID3, C4.5, and C5.0 (Quinlan 1986, 1993, 2004). The
latter, in particular, includes a scheme for deriving rule sets—simplifications of
conditions along a tree branch without altering the subset of observations that fall
in the branch leaf, which makes them easier to interpret. The multivariate adaptive
regression splines (MARS) method (Friedman 1991) can be viewed as a modifica-
tion of CART designed to improve smoothness of resulting models, the lack of
which is inherent in piecewise constant models realized by the trees, as well as to
allow fitting additive models, which are difficult to fit with trees. Hierarchical
mixture of experts (HME) (Jordan and Jacobs 1994) can also be viewed as a variant
of tree-based strategies, where splits are probabilistic functions of a linear combina-
tion of multiple inputs. Tree-based models can also be built for survival outcomes
(Gordon and Olshen 1985). For example, Therneau et al. (1990) suggested using
regression trees with null martingale residuals from a Cox proportional hazards
model as the outcome variable. Various splitting criteria for survival trees have
been proposed, e.g., a measure of within-node homogeneity based on the negative
log-likelihood of the exponential model within a node (Davis and Anderson 1989),
deviance residual (LeBlanc and Crowley 1992), weighted impurity based on the
observed times and proportions of censored and uncensored subjects in a node
(Zhang 1995), and two-sample log-rank statistics for the separation in survival
times between child nodes (Segal 1988). Approaches have also been developed to
extend the tree-based models to piecewise linear Poisson and logistic regression
(e.g., Chaudhuri et al. 1995; Loh 2006) and longitudinal and multi-response vari-
ables (e.g., Loh and Zheng 2013) including in a context of identification of subgroup
with differential treatment effect (Loh et al. 2016).

One issue with trees is their notorious instability, which is difficult to reduce even
with tree pruning strategies. Small changes in the training data set may lead to trees
with very different splits. Due to a hierarchical process of tree fitting, any errors in
the top layers of the tree propagate all the way down. One way of dealing with this
problem is bagging and random forests discussed below. These methods are based
on averaging over a collection of trees fitted to different random samples of the data,
which substantially reduces variability inherent in individual trees and typically
results in improved prediction accuracy.

There are several R packages that implement decision tree methods, for example,
the rpart (essentially implementing the CART algorithm), party (based on condi-
tional tree platform), and RWeka packages. Other R packages such as rattle, rpart.
plot, and RColorBrewer (a general-purpose color palette package) provide
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additional functions for visualizing the trees. Other examples of CART commercial
implementations include SAS® Enterprise Miner, IBM® SPSS® Decision Trees, and
a package by the Salford Systems. The non-R-based package GUIDE implements a
number of methods developed by W-Y Loh and colleagues over the last 20 years
with a common thread of unbiased variable selection (signified by the “U” letter in
the acronym).

6.3.1.3 Bagging

We have mentioned earlier the general idea of ensemble learning as a way to reduce
inherent variability in predictive models. Tree-based models, for example, can
benefit greatly from this approach as they are flexible enough to represent complex
functions (low bias), yet suffer from the high variance. One type of ensemble
learning is bagging (Breiman 1996)—a term that is a contraction of bootstrap
aggregation. As the component terms suggest, the idea is to form B bootstrap data

sets from the original data and fit a separate prediction model bf b xð Þ, b ¼ 1, . . . ,B to
each of them. Then an aggregated (bagged) prediction is obtained as

bf bag xð Þ ¼ 1
B

XB
b¼1

bf b xð Þ:

Bagging reduces the variance component of the generalization error, especially
when used with highly unstable models, such as regression trees. Because averaging
leaves the bias component unchanged, it improves the predictive accuracy in
general. Typically, to ensure the low bias, averaging is applied to full-sized
(unpruned) trees.

Analyses using bagging can be carried out using R packages ipred and adabag.

6.3.1.4 Random Forests

Random forest (Breiman 2001a, b) is another ensemble learning approach that adds
to bagging yet another stochastic element: for each candidate split in the learning
process, only a random subset of variables is considered (r � p of input variables).
This is done to reduce the correlation in the base trees leading to enhancing variance-
lowering advantages of bagging. When a collection of B trees is obtained on
bootstrap samples as in bagging, the trees can exhibit high correlation if there are
variables that are strong predictors of outcome, as these same predictors are very
likely to be selected as primary splitters in many trees. For bagging to be effective,
the base learners should be less dependent (ensuring larger diversity). This is
because the average of B identically distributed random variables has the variance of
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ρσ2 þ 1� ρ
B

σ2,

where ρ is a pairwise correlation and σ2 is a variance of each variable. The trees
estimated from bootstrap samples are identically distributed, and so the second term
diminishes with increasing number of bootstrap samples B, but the first term
becomes a bottleneck for variance decrease if the correlation ρ is high.

Selecting the best split from a random subset of variables increases the diversity
of the ensemble and prevents few “winners” to dominate all the trees. A discussion
of how bagging and random subspace projection together improve accuracy can be
found in Ho (2002). The smaller the number of variables used to select each split is,
the more reduction in correlation could be achieved (thus reduction in variance). At
the same time, as the total number of variables grows, and the fraction of relevant
variables decreases, the performance of random forests will degrade with a small
number of variables sampled for each split because the bias of each tree will increase.
A general recommendation is to use

ffiffiffi
p

p
variables to choose each split in classifica-

tion problems and p/3 (with a minimum of 5) variables in regression problems. This
number can also be treated as one of the tuning parameters of the algorithm. The
number of trees in the random forest, B, is another tuning parameter, and both can be
optimized, for example, using cross-validation. In principle, the depth of the indi-
vidual trees could also be a tuning parameter, but Segal (2004) demonstrated that
only small gains in performance could be achieved by optimizing this aspect, and so
full-grown trees are typically used.

After B full-sized (unpruned) trees are constructed using the random forest
algorithm, the overall predictor is determined in the same way as in bagging, e.g.,
as the average of all trees’ predictions for regression, and a majority vote across
predictions from all trees for classification.

The performance of random forests is often very similar to boosting—another
powerful approach that we summarize below—and it often requires relatively little
tuning (offer a more “automated” approach compared to boosting).

One of the bonus features of the random forest algorithm is that it provides an
estimate of the generalization accuracy based on the out-of-bag (OOB) samples. As
previously discussed (Sect. 6.2), test samples not included in the training data play a
key role in estimating the generalization error. In the context of random forests, it can
be achieved by constructing the overall prediction for each observation xi in the
original full training set by using predictions only from those trees that were
estimated from the bootstrap samples where the observation (xi, yi) was not included.
Although the OOB error estimates are very similar to those produced by cross-
validation, with random forests, generalization error estimation can utilize the same
bootstrap replicates that were used for model fitting and thus does not create a
computational overhead. Wager et al. (2014) extended an earlier work on estimation
of the variance for bagged predictors and proposed an efficient approach to variance
estimation based on jackknife and infinitesimal jackknife estimators. In this work,
Wager et al. addressed potential upward bias in bagged variance estimates due to the
Monte Carlo noise resulting from a finite number of bootstrap replicates. They
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developed bias-corrected versions of the jackknife and infinitesimal jackknife
estimators.

The random forest method also provides variable importance scores to rank
predictive strengths of all input variables. Variable importance is naturally defined
in the context of tree-based models. Any input variable Xj, j ¼ 1, . . ., p can be
involved in multiple splits across the tree and thus contribute to the reduction of node
impurity. One way of defining the relative importance of variable Xj in a tree T is as
follows:

I j,Tð Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
τ2T

a s j, τ
� �

ΔQ τð Þ
s

,

where the sum is over nodes τ in the tree T, function a(sj, τ) reflects whether variable
Xj is involved in a main or surrogate splitting rule sj in node τ, and ΔQ(τ) is a
reduction in node impurity due to a split of this node. Variable importance scores
estimated within each individual tree are then accumulated over all trees for each
variable. Additionally, permutation-based variable importance is also computed by
random forests utilizing the OOB samples. This is done by first estimating prediction
accuracy on the OOB samples for each tree separately. Then, to estimate the variable
importance of variable Xj, values of this variable are randomly permuted across OOB
samples, and prediction accuracy is again estimated in those permuted observations
for each tree (i.e., without refitting the trees). The decrease in prediction accuracy as
a result of permutation is then calculated and averaged across all trees. Although the
ranking of variables according to their variable importance scores tends to agree for
these two methods, there are some differences in the distribution of the scores.

Other useful features of random forests include computation of proximities
between observations that can be used for clustering and locating outliers. Marginal
effects of the individual variables on the outcome can also be estimated, which we
will illustrate in a case study in Sect. 6.5.3.

The elements of the random forest method as discussed here were introduced by
Breiman (2001a, b) following his development of bagging (1996); of note, the term
“random forest” was introduced earlier by Ho (1995) in the context of a method
based on a consensus of trees estimated in random subspaces of input features.
Research and improvement of the random forest methodology continue, e.g., by Xu
(2013). Random forests have had many uses in large applications in genomics and
proteomics as well as in the analysis of clinical data. The following are just some
examples of the latter applications: predicting disease risk from medical diagnosis
history using Healthcare Cost and Utilization Project data set (Khalilia et al. 2011),
detection and prediction of Alzheimer’s disease (Lebedev et al. 2014),
multidimensional clinical phenotyping of an adult cystic fibrosis patient population
(Conrad and Bailey 2015), and clustering of patients based on tissue marker data
(Shi et al. 2005).

Several variants, extensions, and methods related to the random forest method-
ology have been introduced over the years. A relationship between random forests
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and the adaptive nearest neighbor algorithm was pointed out by Lin and Jeon
(2006)—both approaches can be viewed as so-called weighted neighborhoods
schemes. Friedman and Hall (2007) suggested that subsampling without replace-
ment can be used as an alternative to bagging and demonstrated that fitting trees on
samples of size N/2 achieves approximately the same performance as bagging, and
using smaller fractions of N can reduce the variance even further. The “extremely
randomized forest” is an extension of the random forest method where both a subset
of input variables and their possible split values are selected randomly when
considering candidates for each split (Geurts et al. 2006).

Instead of fitting decision trees as base learners in the random forest, other
alternatives have been proposed, e.g., multinomial logistic regression and naive
Bayes classifiers (Prinzie and Van den Poel 2008) and naïve Bayes models (Aridas
et al. 2016). Other variants of random forests include multivariate random forests
(Segal and Xiao 2011), enriched random forests (Amaratunga et al. 2008), quantile
regression forests (Meinshausen 2006), and random survival forests (Ishwaran et al.
2008).

Random forest software maintained by a collaborator of Leo Breiman, Adele
Cutler, is publicly available online (http://www.math.usu.edu/~adele/forests/). There
are also several R packages, such as randomForest, randomSurvivalForest,
extraTrees (extreme random forest), and varSelRF (variable selection using ran-
dom forest) implementing this methodology.

6.3.1.5 Boosting

Boosting represents another family of ensemble learning algorithms. It was origi-
nally introduced for classification as a way to combine many weak learners to
produce a powerful “committee.” One of the most popular boosting algorithms
introduced by Freund and Schapire (1997), called AdaBoost, relies on a set of
weak classifiers whose error rate is only slightly better than random guessing. The
weak classification algorithm is applied M times to modified—weighted—training
data sets. At the first iteration, weights of all data samples are equal wi ¼ 1/N, and a
classifier bf 1 xð Þ is estimated based on a data set with such weights. At subsequent
iterations, m ¼ 2, 3, . . ., M, weights are increased for those observations that were
misclassified by the classifier from the previous iteration, bf m�1 xð Þ, and decreased for
observations that were classified correctly. As the algorithm progresses, successive
classifiers are compelled to focus on “difficult” cases missed by previous classifiers.
The overall classification at the end is obtained as

bf AdaBoost xð Þ ¼ sign
XM
m¼1

αm bf m xð Þ
" #

,

where αm are the weights determining the contribution of each learner based on its
weighted training error. Boosting can dramatically increase the accuracy of very
weak single classifiers (those that are just slightly better than random guessing) and
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outperform large single classification trees. Breiman called AdaBoost as the “best
off-the-shelf classifier in the world,” and the ideas have since been extended to
regression as well.

As it was shown later (Friedman et al. 2000), the AdaBoost is a special case of a
general class of forward stagewise additive modeling, where the overall predictor
consists of an additive model in some basis functions (base learners) h(x, β), with
each function fitted and added sequentially without changing parameters of the
previously fitted functions so that the overall prediction can be improved. After
fitting an initial model, at each subsequent stage, m ¼ 2, 3, . . ., M, the overall

additive model from the previous stage is expanded asbf m xð Þ ¼ bf m�1 xð Þ þ hm x,bβ� �
,

so that the additional component hm x,bβ� �
improves the performance of the previous

model. Least Angle Regression is a computationally efficient version of the
stagewise approach. Its details and connections to the lasso regression can be
found in Efron et al. (2004).

The base learner h(x, β) can be selected from a variety of choices: a linear model
(e.g., ordinary linear regression with few best selected predictors), a smooth model
(e.g., spline), or a shallow tree (perhaps the most common choice). The complexity
of the base learner (e.g., the number of terminal nodes of the tree) is controlled by
the user.

Gradient boosting (Friedman 2001; Mason et al. 2000) is a generalization of the
stagewise modeling approach that allows the optimization of any differentiable loss
function and applies to both regression and classification. Stochastic gradient
boosting proposed by Friedman (1999) also incorporated some “elements” of bag-
ging, where each successive base learner is fitted on a subset of the training data set
drawn at random without replacement. Friedman reported significant improvements
with the stochastic gradient boosting when the size of the subsample is between 50%
and 80% of the original data set size. The subsampling strategy also allows for
estimation of the generalization error using “out-of-sample” observations, similar to
as it was described for bootstrap.

Another element that may help prevent overfitting and improve the accuracy of
boosting is introduction of regularization (shrinkage) parameter 0 < ν � 1, so that
instead of adding the “full fit” for each successive learner, only a portion of the fit

νhm x,bβ� �
is added. The meta-parameter ν is also called “learning rate” parameter

because it controls how much is learned from the training data at each step. To
summarize, gradient boosting implements several elements of “slow learning” that
prevents adapting to the random features of the training data and ensures its ability to
generalize well to the “new” data (prediction performance):

• Forward stagewise strategy (not updating previously fitted components of the
ensemble when adding new fit)

• Subsampling (fitting a subsequent learner to a random fraction of the training
data)

• Shrinkage (adding only a portion of the new fit)
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The two most important complexity parameters that control gradient boosting are
the number of iterations (fitted models, M ) and learning rate (ν), and they are
selected by cross-validation. Typically, the smaller the learning rate, the larger is
the number of iterations required to achieve a good fit (i.e., until the model starts
overfitting training data).

Both random forest and gradient boosting are ensemble methods and have shown
comparable performance on a variety of benchmark data sets. However, as boosting
is connected with forward stagewise modeling, its theoretical properties are more
amenable to analyses compared to random forest that appears more as a “black box”
and a highly heuristic method. In particular, the fact that model complexity of the
base learner is controlled by the analyst and kept at relatively low level makes
boosting a useful tool for understanding the underlying structure of the data. By
fitting different boosting models with a tree as the base learner and having varying
depths (the number of terminal nodes, K), one can assess the presence of k-order
interaction effects in the data. For example, if K ¼ 2, only main effects can be
captured by a boosting model, as each fitted tree is a “stump” (split on a single
variable) capturing only the main effect of that variable; if K ¼ 3, two-way
interactions can be captured, etc. Friedman and Popescu (1999) developed a proce-
dure based on parametric bootstrap for conducting formal significance testing for the
presence of interaction effects.

An excellent discussion of boosting from a statistical perspective for estimating
complex parametric and nonparametric models, including generalized linear, addi-
tive, and survival analysis models, as well as its application to variable selection, can
be found in Bühlmann and Horthorn (2007).

Analyses using boosting approaches can be carried out using various R packages:
adabag (AdaBoost and bagging), ada (AdaBoost with some Friedman’s modifica-
tions), gbm (tree-based gradient boosting), GAMBoost (boosting with penalized
B-splines), mboost (boosting with high-dimensional (generalized) linear or smooth
additive models and a possibility to supply own implementation of any negative
gradient for general surrogate loss functions), and xgboost (Extreme Gradient
Boosting, which can automatically do parallel computation on a single machine
and includes many common objective functions with the flexibility of allowing for
customized objective functions). Two recent additions worth noting are bujar
(implementing boosting for survival data) and bst (implementing a method called
twin boosting; Bühlmann and Hothorn 2010).

6.3.1.6 Support Vector Machines

A support vector machine (SVM) is a supervised learning method which was
originally developed for classification and later extended to regression. In the context
of classification, it is based on a concept of decision boundary or a hyperplane that
separates a set of objects in the space of their attributes belonging to different classes.
The algorithm tries to learn a parameterized hyperplane that maximizes the margin
between the hyperplane and the closest training examples in each class. For example,
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in a p-dimensional input space and a binary classification problem, a linear SVM
classifier is the one that can separate two response classes using a ( p � 1)-dimen-
sional hyperplane. If data cannot be perfectly separated and classes overlap in the
input space, one can define a hinge loss function that allows some samples to fall on
the wrong side of the margin (giving zero penalty to samples inside the margin and
linearly increasing penalty for those on the wrong side), thus introducing a cost of
each misclassification. This leads to a constrained optimization problem, and a
classifier of this type can be estimated using a quadratic programming solution
with Lagrange multipliers. An extension of this idea is that if a satisfactory linear
classifier cannot be obtained, then the input space can be mapped/transformed to a
higher-dimensional feature space and then a linear classifier can be built in that
feature space. This is reminiscent of other linear methods that expand the model
complexity by using, for example, basis expansions such as polynomials or splines.
In the case of SVMs, the feature space is allowed to have a very high dimensionality,
but the learning algorithm deals with this efficiently by using a hinge loss function
and a form of regularization. Indeed, it can be shown (Hastie et al. 2009) that the
solution to the constrained optimization posed by SVM is equivalent to estimating a
classification model with the hinge loss function and quadratic (ridge) penalty on the
coefficients.

The elements that form the foundation of SVMs have been introduced by Vapnik
(1996). Other references for introductory reading include a tutorial by Burges (1998)
and Evgeniou et al. (2000). Examples of SVM use for clinical data analysis include
applications in diabetes research (Kavakiotis et al. 2017), classification of major
depressive disorder (Sacchet et al. 2015), breast cancer diagnosis (Zheng et al.
2014), predicting Alzheimer’s disease using linguistic deficits and biomarkers
(Orimaye et al. 2017), etc.

SVMs are a member of a more general class of kernel methods (Shawe-Taylor
and Cristianini 2004) based on the use of kernel functions that operate in a high-
dimensional feature space by computing inner products between mappings of data
pairs in the feature space. This approach is sometimes referred to as a “kernel trick”
because the operations involving inner products in the feature space are computa-
tionally cheaper than the ones in the original space. Kernel-based algorithms include
Gaussian processes, principal components analysis (PCA), canonical correlation
analysis, ridge regression, spectral clustering, and others.

SVM implementations are available in R in the SVM and svmpath packages,
SAS® Enterprise Miner®, a C-based SVMlight package from Cornell University
(available at http://svmlight.joachims.org/), and many other packages publicly avail-
able online.

6.3.1.7 Artificial Neural Networks

The roots of neural networks can be traced back both to statistics and machine
learning. The basic principle is to create features as linear combinations of inputs and
then to fit a predictive function as a nonlinear function of these derived features. In
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statistics, this idea was used, for example, in the projection pursuit regression, which
is based on an additive model of a collection of nonlinear nonparametric functions of
the linear combination of the original predictors. The richness of such models in
terms of their capacity to represent arbitrary complex functions increases as the
number of these feature functions grows, but this also comes at the cost of low
interpretability—resulting in a so-called “black box” method.

The term artificial neural network emerged in the fields of artificial intelligence
and machine learning, where parallels between the underlying computational model
and brain functioning were drawn. A basic artificial neural network model is often
represented in the form of a directed graph consisting of several layers of units, the
first layer representing the original predictor variables and the last layer the outcome
for regression or classification. Values (signals) from one layer are fed into units of
the subsequent layer, where units are thought of as representing neurons. Signals
pass through the connections representing synapses, which can “weight” the input
signals upon entry to the neuron. Each unit then represents a weighted linear
combination of its inputs and produces an output signal when the weighted combi-
nation exceeds some threshold (i.e., the neuron fires). The outputs from the units in
one layer can then be fed as inputs to the units of the subsequent layer. The function
regulating “firing” of each neuron can be a step function or a smoother alternative
such as the sigmoid function. Fitting such models can be done using a gradient
descent approach, referred to in the neural network literature as back-propagation, as
it relies on the chain rule for differentiation. Neural networks can be prone to
overfitting, and approaches similar to regularization have been developed to deal
with the issue. Performance can be sensitive to the initial values of the synaptic
weights and to the scale of the input values. The number of units and inner layers
typically also needs to be tuned, for example, using cross-validation. The gradient
descent-based learning is prone to converge to local optima and benefits from
introducing randomness into the starting values of synaptic weights as well as
from the use of bagging. Some researches consider artificial neural networks to be
a foundation for advances in large-scale machine learning due to their ability to
produce highly accurate predictive models in a wide range of applications, including
image and sound recognition, text processing, time series analysis, etc. Recently
neural networks experienced a revival under the name of “deep learning,” to a large
extent due to the availability of increased computational power allowing building
networks with a larger number of layers than before and some additional improve-
ments in the network architecture (Efron and Hastie 2016). The black box nature of
neural networks and the fact that they can be difficult to tune represent some of their
disadvantages, which may be particularly important in the context of clinical data
mining where the focus is often on generating new, interpretable insights about the
data patterns.

Projection pursuit method is due to Friedman and Tukey (1974) and Friedman
and Stuetzle (1981). Modern approaches to neural networks are developed by
Werbos (1975) and Rumelhart et al. (1986). The book by Ripley (1996) provides
an excellent further reading. Applications of neural networks in the clinical data
analysis are numerous. Recent examples include a cardiac health prognostic system
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(Sunkaria et al. 2014), cancer prognosis and prediction (Konstantina et al. 2015),
applications in prostate cancer (Cosma et al. 2017), prediction of pregnancy out-
comes in women with systemic lupus erythematous (Paydar et al. 2017), etc.

The original neural networks algorithm has been extended in many ways over the
years, giving rise to feed-forward, recurrent, probabilistic, modular, and neuro-fuzzy
neural networks and many other variations.

Several R packages offer neural networks learning, such as nnet, neuralnet,
H2O, DARCH, deepnet, and mxnet; SAS® Enterprise Miner® provides neural
networks functionality, and there are many publicly and commercially available
software packages online.

6.3.2 Unsupervised Learning

6.3.2.1 Clustering

Clustering is one of the major applications of unsupervised machine learning. The
goal of clustering is to find a grouping (a set of clusters) of a collection of objects,
described by their input attributes so that the objects assigned to the same cluster are
more similar to each other than to objects in other clusters. Sometimes clusters may
need to be arranged in a hierarchy to reflect some natural structures in the data. Once
clusters are learned from the data, some descriptive summary attributes may be of
interest to describe specific properties of objects within each cluster.

A key concept in clustering is a definition of similarity measure, or conversely
dissimilarity measure, based on which the relationship between objects can be
evaluated. There are several frequently used measures, but an appropriate choice is
often dictated by domain knowledge. In general, the choice of the dissimilarity
measure is very important and can have a crucial effect on the resulting clustering
(some say that even more so than the choice of the clustering algorithm).

The classical K-means algorithm can be used, for example, when all input vari-
ables are quantitative, and the dissimilarity measure is based on the average squared
distance—the Euclidean distance. When the Euclidian distance is used as a measure
of dissimilarity, the algorithm may be sensitive to outliers, as the observations with
the largest distance will have a significant influence on the loss function. For this
reason as well as to allow non-quantitative input attributes, the algorithm can be
generalized to use other appropriate dissimilarity measures. This more general
approach is often referred to as K-medoids method.

The term K-means clustering was first used in MacQueen (1967) although the
underlying ideas were introduced by Lloyd (1957) and basically the same algorithm
was published by Forgy (1965). The more general K-medoid procedure was
described in Kaufman and Rousseeuw (1990). Description of this algorithm can be
found in many machine learning textbooks, e.g., Hastie et al. (2009). Some recent
examples of applications of K-means clustering in the analysis of clinical data
include identifying subgroups of fibromyalgia patients with different forms of
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disease and outcomes (Docampo et al. 2013; Lipkovich et al. 2014), identifying
clinical phenotypes in chronic obstructive pulmonary disease patients with multiple
comorbidities (Burgel et al. 2014), phenotyping of severe asthma patients (Wu et al.
2014) and bipolar disorder patients (Wu et al. 2017).

K-means clustering is closely related to the Expectation-Maximization
(EM) algorithm. Parallels between the two can be drawn in that the K-means
clustering approach, for example, in the case of continuous variables, models each
cluster by a spherical Gaussian distribution, but assigns each data sample to a single
cluster and uses equal weights to mix cluster distributions. Both algorithms are
special cases of modeling with Gaussian mixtures. Another approach that can be
viewed as a generalization of the K-means clustering is the K-SVD algorithm
(Aharon et al. 2006). It uses a set of K so-called dictionary functions (e.g., wavelets,
curvelets, etc.) to create sparse representations of high-dimensional data as linear
combinations of dictionary functions. The algorithm then iterates by alternating
between sparse coding of the data samples based on the current dictionary and
updating the dictionary to fit the data better. Self-organizing maps (Kohonen
1989) is a related method that can be viewed as a constrained variant of K-means
clustering where cluster centers are placed on one- or two-dimensional manifolds in
a feature space constructed from original variables.

K-means clustering is readily available in R stats package through the kmeans
function. The R package cluster implements the algorithm for partitioning around
medoids. This package also implements a CLARA algorithm specifically designed
to work with large data sets. The R package clustMixType implements an extension
of K-means to mixed data types and package kml to longitudinal data. SAS® offers
multiple procedures for clustering, including FASTCLUS implementing the K-
means algorithm.

Hierarchical clustering is another approach which produces a hierarchical repre-
sentation of data groupings, often graphically depicted by a tree-like structure known
as dendrogram: individual observations are associated with the lowest level of the
hierarchy (leaves), and the entire data set is represented by the highest level—single
cluster (root). There are two approaches for hierarchical clustering: agglomerative
and divisive based on either recursive merging or partitioning of the data from the
previous level of the hierarchy. Hierarchical algorithms work with a measure of
dissimilarity between disjoint groups of observations represented by nodes in the
hierarchy, which in turn is based on a measure of dissimilarity between individual
observations. In agglomerative strategies, the dissimilarity between clusters that are
merged from one level to the next is monotone increasing, and the dendrogram is
typically drawn such that the height of each node is proportional to the dissimilarity
between its two child nodes. Dendrograms provide a graphical summary of the data,
but not an obvious description of the clusters, and represent the structure imposed by
the algorithm as applied to a particular training sample, which may not necessarily
reflect any natural hierarchy in the domain.

Early approaches to agglomerative hierarchical clustering are due to Ward
(1963), Macnaughton Smith et al. (1965), Sibson (1973), and Defays (1977). The
books by Kaufman and Rousseeuw (1990) and Hastie et al. (2009) provide a good
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discussion of various clustering algorithms, including hierarchical approaches. Some
recent applications of hierarchical clustering in clinical data analysis include finding
groups of fibromyalgia patients with similar efficacy outcomes across multiple
symptom scales (Abtroun et al. 2016), identification of biomarkers for tuberculosis
susceptibility (Luo et al. 2014), identifying distinct hemostatic responses to trauma
and key components of the hemostatic system that vary between responses (White
et al. 2015), etc.

In the R stats package, hierarchical clustering can be carried out using the hclust
function. Other R packages implementing hierarchical approaches include cluster,
fastcluster, fastClust, genie, and pvclust. SAS® procedure CLUSTER provides an
implementation of hierarchical clustering. Open-source Cluster 3.0 software is
available for most operating systems. Most commercial statistical software packages
provide hierarchical clustering functionality.

6.3.2.2 Principal Components and Related Methods

Principal component analysis is a dimensionality reduction method where the goal is
to find a low-dimensional representation of the data that captures most of the
information (variability) of interest in the data. The classical approach relies on the
orthogonal linear transformation of the data to a new coordinate system where the
principal components are linear manifolds approximating a set of N p-dimensional
data points. Some nonlinear generalizations of PCA have also been developed where
the principal components are curved manifold approximations. In the linear case,
each component is a linear combination of the p original variables. Principal
components are constructed as a sequence of components that are mutually
uncorrelated and ordered by variance, so that the first principal component accounts
for the largest amount of variability in the data, and each subsequent component has
the highest variance subject to a constraint that it is orthogonal to the preceding
components.

Principal components are typically constructed by eigenvalue decomposition of a
data covariance or correlation matrix or a singular value decomposition of a data
matrix usually after applying appropriate standardization of variables (e.g., to have
0 mean and standard deviation of 1, corresponding to PCA on the correlation
matrix). The decision of whether PCA should be applied to raw or transformed
data and the selection of appropriate transformation depends on various subject-
matter considerations. For example, PCA on data covariance allows one to capture
nontrivial differences in variances among variables, whereas applying PCA to
correlations effectively standardizes the data to have the same (unit) variances.
The former makes sense when variables are commensurate: for example, reflecting
similar rating scales or the same outcomes measured at different time points.
However, if the variables are incommensurate, the differences in variance are not
meaningful and may reflect trivial differences in measurement scales. As an
“extreme case,” consider difference in the variance of two variables representing
the same variable “body weight” measured first in pounds and then in kilograms. In
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such cases, of course, data should be standardized before applying PCA. However,
one may consider standardizing to unit variances too radical, as it completely washes
away any differences in variability among variables, and prefer other standardization
procedures, such as transforming data to vary within a unit range. It is also a
common practice to remove outliers from the data before applying the PCA if they
can be identified, as the results may be quite sensitive to them. Some variants, such
as weighted PCA, have been proposed to improve robustness in this respect.

It is a common practice to visualize multivariate data sets by low-dimensional
scatter plots using the first 2–3 principal components. This is a special case of a
broad class of multidimensional scaling procedures (MDS, Kruskal and Wish 1978).
A related visualization technique is the biplot display, based on singular value
decomposition of (appropriately transformed) data matrix (Gower and Hand 1996;
Lipkovich and Smith 2002). In biplots, both data columns and rows are represented
graphically: as rays and dots, respectively. The cosines of angles between rays
roughly reflect the correlations between variables, and the projections of data points
onto the rays reflect the data coordinates (values) in the underlying multidimensional
space.

The founding ideas behind the PCA date back to 1901 due to Pearson and 1933
due to Hotelling. PCA is covered in many textbooks, e.g., Jolliffe (2002) is devoted
entirely to this method, its applications, and many of its variants. PCA was used to
identify distinct patterns of coagulopathy after trauma in Kutcher et al. (2013), to
uncover important differences in how patients and informants perceive and report
Alzheimer’s disease symptoms using the Clinical Meaningfulness in Alzheimer
Disease Treatment scale (Jacova et al. 2013), and to explore the association between
anemia (hepcidin and hemoglobin levels) and clinical disease activity and acute
phase response in patients with rheumatoid arthritis (Padjen et al. 2016).

A counterpart of PCA for analysis of nominal categorical data is a multiple
correspondence analysis (MCA) (Greenacre 1984). PCA forms principal compo-
nents as linear combinations of all input variables which may be problematic in
sparse domains where p > N. Sparse PCA (Zou et al. 2006) addresses this challenge
by looking for linear combinations that involve a subset of just a few input variables.
PCA is related to the factor analysis (FA, Cattell 1952) and the independent
component analysis (Hyvärinen and Oja 2000) that aim to explain joint variations
in input variables by unobserved latent variables. Probabilistic PCA (Tipping and
Bishop 1999) is a closely related method where principal axes are determined
through maximum likelihood estimations of parameters in a latent variable model.
Kernel PCA (Schölkopf et al. 1997) uses a “kernel trick” that forms the basis of
support vector machines, where data is first nonlinearly mapped into a high-
dimensional feature space, and then the PCA is performed in that space, thus
generalizing the PCA to a nonlinear setting.

PCA is implemented in many publicly and commercially available packages. In
the R’s stats package, the functions princomp and prcomp provide the PCA
functionality, as well as such packages as FactoMineR and ade4. In SAS®, pro-
cedures PRINCOMP and FACTOR implement the PCA.
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6.3.3 Semi-supervised Learning

6.3.3.1 Methods for Biomarker and Subgroup Identification from
Clinical Trial Data

Various methods for subgroup and biomarker identification have been proposed
during the last decade in statistical literature as a response to the need for precision/
personalized medicine: to provide the best treatment for a patient with specific
characteristics at a particular time. A comprehensive review can be found in
Lipkovich et al. (2017). See also recent review papers focusing on special types of
modeling by Lamont et al. (2016), Henderson et al. (2016), Ondra et al. (2016), and
Janes et al. (2013).

Broadly, these methods fall within the class of semi-supervised learning, as the
goal is predicting treatment contrast for a patient given his or her biomarker profile.
Here a biomarker is understood as any patient-specific measure (covariate) taken
prior to assigning a treatment. Unlike patient’s outcomes, treatment contrasts are not
fully observed in the training sample when patients are exposed to only one of the set
of possible treatment options (which is typically the case unless a crossover design is
entertained). In the literature on the analysis of medical data, biomarkers that are
predictive of treatment contrast are called predictive, and biomarkers that are
predictive of patient’s outcomes if left untreated are called prognostic. This is
somewhat confusing and inconsistent with the general statistical and machine
learning terminology where prediction and predictive covariates/variables (predic-
tors) are understood in a broader sense. Nevertheless, we will adopt the above
distinction between predictive and prognostic biomarkers that has been accepted
by researchers in the area of subgroup analysis. A biomarker can be predictive and
prognostic, only prognostic, and only predictive. The latter case corresponds to rare
occasions when a biomarker is not predictive of outcomes for the untreated (more
broadly, “control”) population but is predictive of outcomes in patients who
underwent experimental treatment. The distinction depends on the definition of the
estimand for measuring treatment contrast: for example, a biomarker may be pre-
dictive when measuring the treatment effect in a binary outcome as the difference in
proportions but not predictive when using odds ratios and vice versa. Figure 6.3
depicts several situations: when a biomarker is (a) prognostic but not predictive,
(b) both prognostic and predictive, (c) predictive but not prognostic, and (d) neither
predictive nor prognostic.

A plethora of methods for identifying predictive biomarkers and subgroups
(defined in terms of underlying predictive biomarkers) emerged in the recent liter-
ature from diverse research areas: machine learning, causal inference, multiple
testing, and design and analysis of clinical trials (see Lipkovich et al. 2017). To
facilitate our review, we will introduce some minimal notation that will help us in
describing common features and differences across subgroup identification methods.

Define a vector of p measurements for candidate biomarkers X1, . . ., Xp on the i
th

subject as xi ¼ (xi1, . . ., xip) and (for the sake of simplicity) two treatment arms
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(control and experimental treatment) indexed by variable T ¼ {0, 1} and the
outcome variable Y (for simplicity, assume Y is continuous or binary).

Assume the true response function has the following simple representation:
f(x, t) ¼ h(x) + (t � p) � z(x), where f(x, t) � E(Y|X ¼ x,T ¼ t); therefore,
z(x) ¼ f(x, 1) � f(x, 0) is the “personalized” treatment contrast, and h(x) is an
unspecified “baseline” function. The constant p is often conveniently used to
represent the probability of treatment, p¼ Pr (T ¼ 1).

Adopting potential outcomes framework (see a review paper by Little and
Rubin (2000) and references therein), for each subject we define two potential
(hypothetical) outcomes Y(1) and Y(0) with only one being observed. These out-
comes are connected with the observed data via the consistency assumption as
Y ¼ Y(1)T + Y(0)(1 � T ) and with the above quantities as f(x, t) ¼ E(Y(t)|X ¼ x),
t ¼ 0, 1 and z(x) ¼ E(Y(1) � Y(0)|X ¼ x).

Treatment regime is a function, g(x), that maps x to treatment 1 or 0. Optimal
treatment regime is defined as gopt(x)¼ I( f(x, 1)> f(x, 0)), where I(a) is an indicator
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Fig. 6.3 Schematics of predictive and prognostic markers: (a) prognostic but not predictive, (b)
both prognostic and predictive, (c) predictive but not prognostic, and (d) neither predictive nor
prognostic

266 I. Lipkovich et al.



function that assumes values 1 or 0 when its argument a is true or false, respectively.
In terms of potential outcomes, it is the regime that maximizes the expected potential
outcomes assuming everyone follows the regime.

Subgroup S(X) is defined by a rule that assigns a subject to the subgroup based on
a biomarker vector x. For example, S(X) ¼ {x : X1 � a, X2 > b}. The subgroup
definition is also referred to as subgroup signature. Then treatment effect in the
subgroup S(X) is defined as E(z(X)|X 2 S(X)), where the expectation is computed
with respect to the distribution of X. A measure of how interesting a subgroup may
be is the excess of treatment effect in the subgroup over that in the overall popula-
tion: E(z(X)|X 2 S(X)) � E(z(X)).

The distinction between predictive and prognostic biomarkers can be formalized
as follows: prognostic biomarkers are those that contribute only to h(x) (the “main
effects”), whereas predictive biomarkers are those that also contribute to z(x) (and
perhaps to h(x) as well).

Based on the above definitions, we can classify different methods that have been
proposed recently for selection of predictive biomarkers (and choosing biomarker
cutoffs to define subgroups of patients) in terms of what estimands (functions or
components of these functions) they aim to estimate.

• Global outcome modeling: estimating the underlying outcome function f(x, t)
• Global treatment effect modeling: directly estimating the underlying treatment

effect z(x)
• Global modeling of treatment regimes: identifying an optimal treatment assign-

ment rule that produces positive treatment contrast given patients’ covariates
gopt(x) ¼ I(z(x) > 0)

• Local modeling: direct search for subgroups with a beneficial treatment effect,
i.e., identifying subgroups S(X) in the covariate space with large values of
treatment effect, such that z(x) > δ, for all x 2 S(X)

As a by-product or an intermediate step of many of these approaches, predictive
biomarkers can be identified and ranked; also, optimal cut points associated with
biomarkers are often evaluated.

This typology is meant to facilitate the discussion of different methods for
subgroup modeling and search and show connections between them. Clearly, these
classes are not mutually exclusive as the quantities that different methods estimate
are interconnected.

In what follows, we provide a brief description of existing approaches within each
class.

Global outcome modeling. Many approaches within this class estimate a single
response model that incorporates both main effects (prognostic effects) and treat-
ment by covariate interactions (predictive effects). Alternatively, separate regression
models for estimating outcomes within each treatment arm can be entertained.
Constructing subgroups typically requires multistage procedures: for example, at
the first stage of the Virtual Twins method of Foster et al. (2011), f(x, t), t ¼ 0, 1 is
estimated using a black box model (random forests) fitted to the observed data,
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which is used to compute hypothetical individual treatment differences bz xð Þ ¼bf x, 1ð Þ �bf x, 0ð Þ for each subject with an observed covariate vector x. These
differences are modeled at the second stage as outcomes via CART procedure.
Some researchers advocate for more traditional parametric regression approaches.
Since fitting parametric models with a large number of interaction terms poses a lot
of problems, methods of penalized regression and their extensions have been
proposed to mitigate some of these issues. One challenge in modeling outcomes
via penalized regression is that it may fail to detect important treatment-by-bio-
marker interactions that may be obscured by much stronger main effects (i.e., the
effects of prognostic biomarkers), which may require using different penalties for the
main and interaction terms (as in FindIt, approach by Imai and Ratkovic 2013).
Some methods use a combination of parametric and nonparametric modeling. For
instance, Cai et al. (2011) use a combination of a proportional hazards Cox regres-
sion at the first stage and nonparametric smoothing at the second; and Dusseldorp
et al. (2010) fit simultaneously an additive model (STIMA) for prognostic effects
and a tree-based regression model for predictive effects. Bayesian hierarchical
modeling of the response function with prognostic and predictive effects includes
an early proposal by Dixon and Simon (1991), Smoothing ANOVA by Hodges et al.
(2007), and methods based on Bayesian lasso (Gu et al. 2013). Recently, Henderson
et al. (2017) have proposed a fully nonparametric Bayesian approach to subgroup
evaluation in the context of accelerated failure time models (AFTM) for survival
outcomes where the regression function is modeled using Bayesian additive regres-
sion trees (BART) and the error function—via a flexible location mixture of normal
densities.

Global treatment effect modeling. Approaches in this class obviate the need to
model prognostic or “main effects”which “cancel out” in the course of modeling. As
a result, procedures in this class may be more robust compared to the global outcome
modeling, as they would not be so prone to model misspecification inevitable in
global outcome models. For example, in trees, pricewise constant estimates of z(x)
are obtained simply as treatment effect statistics computed within each terminal node
of a tree. The key contributions are Interaction Trees (IT) of Su et al. (2008, 2009)
and several new tree-based procedures proposed in Loh et al. (2015, 2016) within the
GUIDE recursive partitioning platform. Similarly, Seibold et al. (2015) illustrated
how the model-based recursive partitioning (MOB) platform could be adopted for
the purpose of subgroup identification by incorporating treatment effect in the
models considered within each leaf of the tree. Dusseldorp and Van Mechelen
(2014) introduced a tree-based algorithm (QUINT) for subgroup identification that
specifically aims at recovering qualitative interactions.

Individualized treatment regimes modeling. Note that the optimal regime can be
determined based on the estimated treatment contrast (as in the previous
approaches): gopt(x) ¼ I(z(x) > 0)). This approach, however, obviates the need of
estimating z(x) and directly targets the sign of z(x) as a binary outcome; it aims at
identifying qualitative interaction effects. If z(x) > 0 for all x (i.e., the drug has
beneficial effect for all patients), the potential outcome Y(1) can often be redefined
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by taking into account a fixed “treatment burden” or “cost.” δ > 0. For example,
defining eY 1ð Þ ¼ Y 1ð Þ � δ results in shifting the treatment contrast downward:ez xð Þ ¼ z xð Þ � δ, so that values become negative for some x and nontrivial optimal
regimes can be identified.

Broadly, this class includes any approach that matches patients to one set of
candidate treatments, based on available patient-level data. For example, Qian and
Murphy (2011) formulated the problem of finding an optimal individual treatment
regime (ITR) using traditional outcome modeling (“global outcome modeling,”
using our terms). They proposed a two-step procedure that first estimates the
conditional mean response using penalized regression (with lasso penalty) allowing
the inclusion of a large number of candidate biomarkers and associated treatment
interactions and at the second stage derives the optimal treatment assignment rule by
inverting the model for the conditional mean.

It became apparent, however, that determining optimal treatment regimes does
not require estimating the entire mean response function (which is driven by both
prognostic and predictive biomarker effects) but critically depends on identifying
only predictive biomarkers associated with qualitative (as opposed to quantitative)
treatment-by-covariate interactions. Gunter et al. (2011) proposed some methods for
identifying only biomarkers contributing to qualitative interactions with treatment
(and therefore to personalized rules) using resampling procedures that ensure family-
wise error rate control. Zhang et al. (2012) and Zhao et al. (2012) showed that
estimating optimal individualized treatment policies could be cast as a classification
problem. For example, in the weighted outcome learning (OWL) methodology of
Zhao et al. (2012), the optimal treatment regime gopt(x) is found as the one that
minimizes the weighted misclassification loss: E{I(T 6¼ g(X))w(Y,X)}, where the
expectation is taken with respect to the triple of random variables {Y,X,T}, and the
subject weights w(Y,X) are proportional to the outcome Y (here assuming larger
values are desirable) and inversely proportional to the probability of patients fol-
lowing the regime prescribed by the rule g(X). Then the optimal rule can be found by
standard methods of predictive learning aiming at minimizing misclassification loss
via appropriate smooth “surrogate” loss functions (e.g., hinge loss resulting in the
SVM classifier, well-known in the machine learning community, or negative bino-
mial log-likelihood, familiar to statisticians, resulting in the penalized logistic
regression). Intuitively, minimizing the above weighted loss would tend to recover
the optimal rule gopt(x) that would recommend the actually received treatment for
those patients who achieved good outcomes while suggesting switching the treat-
ment for those who failed the treatment they were assigned to in the trial. This
method applies to observational trials as well as randomized clinical trials. In the
latter case, the inverse weighting by the probability of treatment assignment is trivial
and determined by the randomization ratios; in the former case, estimating propen-
sity of the treatment as a function of baseline covariates X needs to be done as a
separate modeling step. Other key references include tree-based approaches by
Zhang et al. (2015) and Fu et al. (2016) and penalized regression methods by
Huang and Fong (2014) and Xu et al. (2015).
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We note that from the perspective of optimal treatment regimes, identified sub-
groups are the two subpopulations based on the sign of the estimated individual
treatment difference, sign(z(x)). Some researchers would argue that it may be not
sufficient to adequately describe the optimal treatment strategy by considering only
two subpopulations of patients (“treat” vs. “non-treat”). For example, Dusseldorp
and Van Mechelen (2014) consider three groups: patients who benefit from treat-
ment A vs. B, patients who benefit from B vs. A, and the rest allocated to “indiffer-
ence” zone comprised of patients for whom either treatment may work equally well
or not work. On the other hand, the perspective of subgroups defined by the optimal
treatment regime may be different from the idea of identifying “natural subgroups,”
say, as rectangular regions or “bumps,” which brings us to the last category in our
classification of subgroup methods.

Local modeling. The last class of subgroup search methods focuses on the direct
search for treatment-by-covariate interactions and selecting subgroups with desirable
characteristics, for example, subgroups with enhanced treatment effect. This
approach obviates the need to estimate the response function over the entire covar-
iate space and focuses on identifying specific regions with large differential treat-
ment effect. Some of the approaches under this heading (Kehl and Ulm 2006; Chen
et al. 2015) were inspired by bump hunting (also known as PRIM, Patient Rule
Induction Methods) by Friedman and Fisher (1999) which is a method of predictive
modeling that aims at estimating only regions where a target function (here, the
treatment contrast, z(x)) is large. They argued that it may be better to search directly
for such “interesting” regions in the covariate space rather than estimating z(x) first
in the entire space and then discarding the regions that are “uninteresting.” The main
goal of bump hunting methods such as PRIM is to define sets of multivariate
rectangular regions based on the candidate covariates X1, X2, . . ., Xp. The limits of
the region are determined in a data-driven manner using a peeling technique.
Specifically, extreme values of continuous/ordinal covariates or individual levels
of nominal covariates are removed. The peeling algorithm is sequentially applied to
single covariates, one at a time, and the order of the covariates is determined by the
value of an appropriate objective function.

Another strategy for direct subgroup search was first implemented via a recursive
partitioning process in the SIDES method (Subgroup Identification based on Differ-
ential Effect Search, Lipkovich et al. 2011) and later extended to the SIDEScreen
method (Lipkovich and Dmitrienko 2014). In Sect. 6.5.1 of this chapter, we will
apply these methods to a case study and provide additional technical details.

Another member of this group of algorithms is Activity Region Finder (ARF), by
Amaratunga and Cabrera (2004), that combines algorithms of CART and the bump
hunting to search for high or low response (activity) subgroups. Bayesian methods
for local modeling were inspired by the idea to treat each subgroup as a model and
apply model averaging to a collection of generated subgroups (Berger et al. 2014;
Bornkamp et al. 2016). Schnell et al. (2016) implemented a procedure for identifying
subgroups as credible sets which comprise points in the covariate space with the
sufficiently high posterior probability of associated treatment effect z(x) exceeding a
pre-specified threshold.
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Any method within the four groups can be further characterized with respect to
the following features, forming a checklist that a user of any subgroup identification
method should bear in mind when evaluating whether the method may be appropri-
ate for the problem at hand (Lipkovich et al. 2017).

• Modeling type: frequentist/Bayesian and within either subtype, parametric, semi-
parametric, or nonparametric

• Dimensionality of the covariate space that the method can handle: low (1–5),
medium (6–15), or high (>15)

• Results produced by the method: selected biomarkers or biomarker ranking that
can be used for tailoring, predictive scores for individual treatment effects,
optimal treatment assignment, or identified subgroup(s) as biomarker signatures

• Application of complexity control to prevent data overfitting and selection bias
when evaluating candidate subgroups

• Evaluation of the Type I error rates/false discovery rates for the entire subgroup
search strategy

• Availability of “honest” (bias-corrected) estimates of treatment effects in the
identified subgroups

The dimensionality of covariate space that can be handled by a proposed method
may vary dramatically. Some methods were originally developed for evaluating
treatment by covariate interaction in the context of a single continuous covariate and
later extended to a small number of pre-selected biomarkers (e.g., the method of
fractional polynomials by Royston and Sauerbrei (2004, 2013); the STEPP method
by Bonetti and Gelber (2000, 2004); Jones et al. (2011)). These can be contrasted
with methods developed with the idea of handling high-dimensional covariate
vectors and incorporated variable selection as part of the model building strategy
(e.g., Virtual Twins by Foster et al. (2011) and many others referenced below). The
middle grounds are occupied by methods assuming that a medium-sized set of
candidate biomarkers has been specified, e.g., in the statistical analysis plan
(SIDES by Lipkovich et al. 2011; Gi method by Loh et al. 2015). Mayer et al.
(2015) describe some findings from a survey with respect to the dimensionality of
covariate space and other features of subgroup analysis tasks routinely dealt with by
Pharma statisticians.

Depending on the method, different results may be produced. For example, some
methods are searching for “biomarker signatures.” These are often defined as
rectangles in covariate space (requiring predictive biomarkers and associated cutoff
points), which is motivated by the desire to base clinical decisions on simple and
easily interpretable rules, e.g., Foster et al. (2015). Other approaches look for
arbitrary biomarker signatures (e.g., additive scoring functions) that would allow
ranking all patients by a score reflecting predicted individual treatment effect; and
some methods provide selection or scoring for predictive biomarkers (such as
variable importance scores) that can be used for tailoring in subsequent clinical
development programs.

All subgroup selection methods considered here have data-driven elements.
However, the scope of search may vary dramatically from selecting a subgroup
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based on estimated patient’s predictive score as a linear combination of, say,
3 pre-specified continuous biomarkers to identifying a subgroup as a “region”
formed by selecting 2 out of 1000 candidate biomarkers with an optimal cut point
determined within each of these in a data-driven fashion. Depending on the scope of
search in the “covariate space” induced by a specific method, different types of
complexity control may be needed. The idea is to ensure that the finally selected
biomarker signatures defining subgroups are not unnecessarily “complex” (e.g., by
including irrelevant or noise covariates), resulting in spurious findings with little
chance to be replicated in the future trials. Such situations occur when the set of
candidate subgroups/biomarker signatures includes the elements of different “com-
plexity.” For example, of two candidate subgroups, one defined by a single bio-
marker as {Age � 20} and the other defined by two biomarkers, {Age < 20} and
{Gender ¼ “Female”}, the latter is more “complex.” When using a greedy search
over possible signatures, it may appear to fit the observed data better and therefore
will look more promising than the former simpler subgroup. As in other applications
of machine learning, the chance of spurious findings (“overfitting”) increases with
model complexity, and to offset that, some forms of complexity penalty are required.

Different approaches of complexity control to prevent data overfitting have been
proposed in the context of subgroup/biomarker search including:

• Frequentist penalized regression (e.g., Imai and Ratkovic 2013) and Bayesian
shrinkage (e.g., Jones et al. 2011)

• Frequentist ensemble learning methods (e.g., Foster et al. 2011) and Bayesian
model averaging (Berger et al. 2014; Bornkamp et al. 2016) that aggregate results
over a large number of “learners” (here, subgroups or signatures) to shrink the
contribution of noise covariates to zero

• Using “indirect” or less direct criteria for variable/subgroup selection that avoid
the exhaustive search for subgroups with desired features (Loh et al. 2015, 2016)

Another example of data overfitting (often called biomarker selection bias) arises
when making a choice between subgroups based on biomarkers with widely differ-
ent sets of candidate cutoff points. For example, a subgroup based on patient’s age as
a continuous variable with a data-driven cutoff, e.g., {Age � 20}, has a higher
potential for overfitting than a subgroup of seemingly equal complexity based on
gender, e.g., {Gender ¼ “Female”}. This is because variable Age has a much larger
number of candidate splitting points (basically, all values of Age realized in the
database except the extreme ones leading to subgroups not passing the minimal
sample size requirement), whereas only two subgroups can be selected based on
patient’s gender. Therefore, if both biomarkers Age and Gender are irrelevant (noise
variables), we would have a higher chance of selecting Age as a promising marker if
our selection is based on exhaustive evaluation of all possible subgroups based on
Age and Gender. Several approaches were proposed in the literature to deal with
variable selection bias (Loh et al. 2015; Seibold et al. 2015).

One may think that “complexity control” would be unnecessary if at the end of
the subgroup search, we can correctly evaluate the Type I error or false positive rate
associated with the selected subgroups. This would be the case if all candidate
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subgroups in the covariate space were of the same complexity; then it is straightfor-
ward to select the one having the largest apparent treatment effect while controlling
for multiplicity (selection bias, winner’s curse, etc.) by computing an adjusted P-
value and a bias-corrected treatment effect. However, as was discussed, the fact that
different subgroups may have very different “complexity” requires imposing a
penalty for complexity during the process of selection, thus preventing us from
“chasing noise.” Adjusting the finally selected subgroups which may be purely
driven by noise after selection would be too late, as it would merely suggest that
our selected subgroup (after appropriate adjustment) has a very large associated P-
value and therefore would have little reproducibility in future trials. Indeed, the goal
is to avoid making such an unfortunate selection by putting a “constraint jacket” on
the selection process.

Of course, even with complexity control, we need to account for multiplicity
inherent in subgroup identification by computing adjusted P-values associated with
treatment effects in the selected subgroups. However, procedures that are less
“greedy” would require less adjustment of P-values than the “greedier” procedures.
This is because a less greedy procedure induces a smaller search space by restricting
search to models satisfying complexity constraint, hence less multiplicity burden.
For example, the multiplicity adjustment for P-values in subgroups selected using a
very greedy stepwise selection method (in the context of a linear regression with the
main effects and treatment by covariate interactions) would be much harsher than the
adjustment of P-values when the selection is made using much less greedy methods
of penalized regression (e.g., lasso). The analytical expressions for multiplicity-
adjusted P-values in subgroup search methods are typically not available, and
researchers have to resort to approximate P-values based on various resampling
methods (permutations or bootstrap under null scenarios).

Finally, once the subgroup(s) have been identified, the sponsor would need to
make a decision based on anticipated treatment effects in these subgroups (e.g., by
computing probabilities of success for different designs involving enriched
populations versus the overall population). It is important to understand that even
if the identified subgroup may be very close to the true one, the apparent treatment
effect computed using the same data that was used for subgroup search (a naive
method of data “resubstitution”) is likely to overestimate the true treatment effect
contained in that subgroup. Like with multiplicity-adjusted P-values, the size of the
treatment effect can be estimated using resampling methods such as bootstrap or
cross-validation (see Foster et al. 2011; Faye et al. 2011; Simon et al. 2011; Loh et al.
2016; Rosenkranz 2016); Bayesian methods implementing shrinkage such as an
empirical Bayes correction (Ferguson et al. 2013) or model averaging (Bornkamp
et al. 2016) can also be used (see Thomas and Bornkamp 2017 for comparison of
several methods for estimating treatment effect in data-driven subgroups). The
amount of over-optimism in the naïve estimates of treatment effect computed by
resubstitution depends on the richness of the search space and the “greediness” of the
search algorithm.

Many applications of subgroup identification to real data sets can be found in the
original papers introducing the discussed methods. Here, we provide additional
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references for applications of existing methods to clinical or observational data.
Hardin et al. (2013) applied SIDES to conduct an exploratory analysis of a large
multinational, randomized, open-label trial in patients with type 2 diabetes to
identify subgroups where the effect of an insulin lispro mix versus insulin glargine
was substantially different from that in the overall population. Dmitrienko et al.
(2015) applied SIDES methods to the ATTAIN program based on two Phase III
multinational trials to evaluate the safety and efficacy of telavancin (test antibiotic)
compared to vancomycin (active control antibiotic) for treatment of adults with
nosocomial pneumonia. Hou et al. (2015) compared the results of several tree-
based subgroup identification methods including Interaction Trees and Virtual
Twins to the data from an alcohol dependence pharmacogenetic trial of ondansetron.
Patel et al. (2016) analyzed patients with low back pain using data pooled from
19 randomized clinical trials applying Interaction Trees, SIDES, and Indirect Net-
work Meta-analysis to identify subgroups defined by multiple parameters. Double-
day (2016) adopted recursive partitioning methods to evaluate individualized
treatment assignment rules from both randomized and observational data and applied
it to diabetes data from electronic medical records (see also Fu et al. 2016). Seibold
et al. (2016) adopted methods of model-based recursive partitioning to construct
individual treatment effect predictions for patients with amyotrophic lateral sclerosis
pooled from several randomized clinical trials.

Links to several packages that implemented popular subgroup identification
methods could be found at the site maintained by the QSPI (Quantitative Sciences
in the Pharmaceutical Industry) Subgroup Analysis Working Group: http://
biopharmnet.com/subgroup-analysis-software/. These methods include both R pack-
ages available in CRAN (aVirtualTwins, SIDES, quint, FindIt, partykit,
model4you, personalized) and implementations with R and other software provided
by the developers for public dissemination: an R package RSIDES implementing
SIDES and SIDEScreen methods (Lipkovich and Dmitrienko 2014), R code for
ROWSi (Regularized Outcome Weighted Subgroup identification) by Xu et al.
(2015), the GUIDE package implementing methods by Loh et al. (2015), and
BLASSO by Gu et al. (2013).

The above packages focus on the problem of biomarker/subgroup identification.
For situations when one or two markers are pre-selected, Janes et al. (2014) propose
a statistical framework for evaluating a candidate treatment selection marker and
comparing two continuous markers; an R package developed by the authors
implementing these methods is available at http://labs.fhcrc.org/janes/index.html.

6.3.3.2 Q-Learning for Dynamic Treatment Regimes

Q-learning is an approximate dynamic programming algorithm for estimation of
optimal dynamic treatment regimes (DTRs). DTRs are the sequences of decision
rules, one per decision/intervention stage, that map up-to-date patient information to
a recommended treatment. The key is that a patient’s treatment at each stage is not
known at the start of the treatment sequence, as it depends on time-varying variables
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that may be influenced by earlier treatment choices. In many health disorders,
especially chronic conditions, the sequential decision-making is necessary to adapt
treatment over time in response to the evolving health status of the patient. This is
especially important if there is a high degree of heterogeneity in an individual
response to treatment and when treatment may need to be adjusted as a result of
emerging side effects. In such cases, the treatment that appears optimal in the short
term may not be best in the long term. Thus, the goal is to optimize a long-term
outcome of interest which may be measured at the end of the last treatment stage or
may encompass intermediate outcomes, e.g., represent a (weighted) average of
clinical outcomes across all intervention stages.

Q-learning can be viewed as an extension of regression to multistage decision
problems based on backward induction. It starts with an estimation of the optimal
treatment rule at the last stage of treatment based on patient-level data up to the last
treatment decision, which may include baseline characteristics, treatment decisions,
and intermediate outcomes up to that point. This information is used as “independent
variables” for a regression model of the long-term outcome measured after the last
treatment decision. Based on this regression model, the last stage optimal treatment
is estimated for each patient so that it optimizes the expected long-term outcome.
Subsequently, Q-learning performs a similar regression and optimization step for a
preceding decision stage to find a treatment that would result in optimal long-term
outcome assuming that subsequent, last stage treatment will be determined by the
optimal rule constructed in step 1 of the procedure. This backward re-estimation and
optimization are performed iteratively until the first decision point, allowing the
method to account for future decisions when making treatment choices at earlier
stages.

Ideally, DTRs should be estimated from trials with a Sequential Multiple Assign-
ment Randomized Trial (SMART) design (Collins et al. 2007; Almirall et al. 2014),
where subjects are randomized multiple times during the course of the trial. At each
randomization stage, the set of available treatments may depend on subject-specific
characteristics and evolving health status. SMART would be a “gold standard” for
determining optimal DTRs as they remove any confounding of treatment assignment
with subject characteristics, just like randomized controlled trials are a gold standard
for confirmatory clinical trials. For ethical and logistical reasons, SMART are rare in
the pharmaceutical industry practice. DTRs can also be constructed using observa-
tional data from trials with flexible dosing or evolving treatment assignment, e.g.,
long-term open-label trials in chronic pain or dynamic second, third, etc. line of
treatment selection in cancer. Such studies are more common in practice; however,
care must be taken to account for potential confounding.

Maintaining a balance between treatment efficacy and limiting undesirable side
effects is an important aspect of successful dynamic treatment regimes, but is a
relatively open area of research. Composite scores that integrate measures of treat-
ment efficacy and safety could be used. For example, in Wang et al. (2012), a
composite score was constructed by eliciting from the Principal Investigator of the
trial subjective numerical values to quantify the clinical desirability of efficacy,
toxicity, and progressive disease response to a prostate cancer treatment. In many
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circumstances, it may be difficult to obtain a single composite measure that encom-
passes patient and physician preferences across several competing and potentially
time-varying outcomes. Laber et al. (2014a) proposed an approach to deal with such
challenges by using set-valued functions and recommending a set of possible
treatments which are non-inferior across outcomes at each decision point and
which can then be considered by individual patients and physicians. Another
approach, which avoids using subjective composite measures and works directly
with the original efficacy and safety outcomes, is to optimize treatment efficacy
using Q-learning under constraints of the risk of adverse events so that DTRs can be
designed to achieve specific levels of efficacy tailored to patient’s adverse event
tolerance limit.

Original ideas behind Q-learning can be found in Watkin (1989) and Watkin and
Dayan (1992). These ideas have been further developed and adapted to the context
of estimation of dynamic multistage treatment strategies, e.g., by Murphy (2005),
Schulte et al. (2014), and Laber et al. (2014b). They have also been extended to
survival outcomes by Goldberg and Kosorok (2012) and to discrete utilities (long-
term outcomes) and to nonlinear relationships between covariates and outcomes by
Moodie et al. (2014). A general overview of SMART design considerations can be
found, for example, in Almirall et al. (2014).

Examples of clinical applications of Q-learning for estimation of optimal treat-
ment regimes can be found in a number of recent publications. For example, Wu
et al. (2015) applied DTR for treatment of acute bipolar depression; Chakraborty
et al. (2013) and Chakraborty and Moodie (2013) for chronic illnesses including
major depressive disorder; Laber et al. (2014b) and Nahum-Shani et al. (2012) for
attention deficit hyperactivity disorder; Laber et al. (2014a) and Shortreed et al.
(2011) for schizophrenia; Moodie et al. (2007) and Sterne et al. (2009) for
HIV/AIDS; Strecher et al. (2006) for cigarette addiction; and Lei et al. (2012) for
prevention of alcoholism relapse.

The term Q-learning refers to the estimation of a Q-function, which stands for the
“quality” associated with a specific treatment choice at each stage given the patient’s
history up to that point and following the optimal regime thereafter. Having an
estimate of the “quality” of each possible treatment decision, we can select the best
one at each stage. The challenge, in this case, is to obtain a good unbiased estimate of
the Q-function over the entire space of histories and possible treatment choices,
which may be difficult to achieve, especially over high-dimensional spaces and with
relatively sparse data. A-learning (Blatt et al. 2004) is an alternative method, which
estimates an “advantage” for each treatment, i.e., the difference between the quality
of a given treatment choice and the optimal treatment at each stage. This approach
may be less sensitive to bias introduced by the mismodeling of the Q-function.
However, A-learning may have a disadvantage of high variability and require
variance reduction techniques, such as bagging or random forests, for successful
implementations, and its complexity increases with the number of possible treatment
choices.

Both Q-learning and A-learning use regression to estimate some function
representing the value of the treatment choice and then obtain the optimal decisions
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by inverting that function. On the other hand, outcome-weighted learning (OWL)
uses a different paradigm by attempting to estimate the optimal DTR directly,
casting it as a weighted classification problem. Treatments actually received by
patients with good observed outcomes are considered to be “correctly classified,”
i.e., corresponding to the optimal treatment assignment, whereas treatments actually
received by patients with poor outcomes are considered to be “misclassified.” The
method tries to minimize a weighted misclassification error where the weights are
proportional to the observed outcome and inversely proportional to the probability of
receiving a given treatment given patient history. Powerful classification methods
from machine learning, e.g., support vector machines, can be applied in this context.
Two variants of this approach, backward outcome weighted learning (BOWL) and
simultaneous outcome weighted learning (SOWL), applicable to multistage treat-
ment regimes were proposed by Zhao et al. (2015).

Publicly available tools for Q-learning applicable to DTRs are limited. The
iqLearn package in R (Linn et al. 2015) can be used for estimating optimal DTRs
from data obtained from a two-stage trial with two treatments at each stage. The
DTRlearn package in R implements both single- and multiple-stage Q-learning
OWL approaches. Proc QLEARN developed for SAS v9.1 or higher for Windows
by Ertefaie et al. (2012) at the University of Michigan and the Pennsylvania State
University (https://methodology.psu.edu/downloads/procqlearn) can be used with
data from a sequential, multiple assignments, randomized trial (SMART) but is
limited to situations where the outcome is continuous; there are two decision stages
and up to two treatment options at each decision.

6.4 Principles of Data Mining with Clinical Data

Here, we focus on data mining in randomized clinical trials (RCTs). As RCTs are
conducted in a highly regulated environment, the interpretation of data mining
activities with such data may be considered particularly controversial and therefore
calls for clearly defined principles to ensure their validity. It is often argued that data
mining with clinical data has limited validity since by its nature it cannot be
pre-specified and therefore occupies the lowest rank in the Statistical Analysis Plan.

The relative ranking of the importance of analyses undertaken in a Phase 3 trial
can be loosely described as follows: the primary analysis of primary outcome, the
primary analysis of secondary outcomes, the secondary analyses of primary out-
come, the secondary analyses of secondary outcomes, supportive analyses and
sensitivity analyses, and exploratory analyses. We note the striking contrast between
the wealth of (often underutilized) data collected in the course of clinical trials and
the “minimalistic” focus on the primary analysis as the basis for major study
conclusions.

On the other hand, in exploratory Phase 2 studies, it is often felt by the sponsor
that any data exploration is allowed as long as it is used only for “internal decision-
making.” However, when the drug development program is driven by unprincipled
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and unconstrained data exploration in Phase 2, it often results in a failed Phase
3 study, further contributing to a lack of respect for data mining.

As a result of the described mind-set, the exploratory analysis is felt as belonging
to the lowest category of analysis on the above scale and is typically described in the
section “Exploratory analysis” which is often a polite word for a “garbage collector”
to store various poorly conceived data analysis strategies. This practice blurs the
subtler distinction of and the relationship between exploratory and confirmatory data
analyses (as originally proposed by J. Tukey in his famous “exploratory data
analysis”) where the former paves the road to the latter. The exploratory analysis
in this framework is a well-thought activity that forms a continuous process of
learning from the data that requires flexible methods of model selection and model
fitting (robust to model misspecification) combined with various ways of looking at
the data and graphical display. Findings from exploratory analyses may be con-
firmed in the future trials.

The key idea is that data mining should be understood as a flexible data analytic
strategy with various data-driven elements. While “data-driven” means that some
elements are not specified in advance, the strategy itself can be pre-specified. This is
similar to adaptive clinical trial designs, where the exact trial parameters (e.g., the
final sample size or doses that remain under investigation) are not fixed at the design
stage, but the adaptation strategy is nevertheless fully pre-specified. Here we list
some principles for conducting data mining activities in the context of clinical data
mining.

6.4.1 Documenting Business Need and Scientific Rationale
for Data Mining

This document may include the following components:

• Statement of hypothesis(es) of interest based on the current understanding of the
phenomena (based on relevant literature).

• Scientific assumptions and current relevant scientific theories.
• Relationships of interest and type of research: association/causation/prediction/

search for patterns.
• Anticipated findings based on current knowledge (e.g., of biological mecha-

nisms) and a priori considerations of how “unanticipated” findings, if happen,
could be further explored. It is not uncommon that when findings are not in line
with the current understanding of biologically plausible mechanisms, the
researchers come up all too quickly with ad hoc “explanations” of the results. If
variables with no a priori-known relationships to the outcome are included in
analysis, there should be some plan as to how any potential findings on these
predictors can be further explored/investigated/confirmed.

• Definition of “success” and “failure” for the data mining application. Here
“success” does not necessarily mean obtaining findings “favorable” to
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experimental treatment but rather a success in modeling the data that leads to new
insights (e.g., identifying biomarkers predictive of treatment effect). It is impor-
tant, however, that “failed” analyses are also reported. For example, data mining
of an integrated database in depression indicating a lack of reliable predictors of
placebo response in itself constitutes an important (negative) finding.

• “Stopping rules” for data mining activity should be specified here (or in the
analytics plan section), which helps avoid endless search for “a significant effect.”

6.4.2 Developing a Data Mining Analytic Plan

As model selection is an integral component of DM, it is impossible within a DM
process to “pre-specify” exactly what statistical models will be used. However, it is
important that the analytic strategy is outlined in sufficient detail prior to the
beginning of the data analysis.

The scope of data used should be clearly identified; specifically, the following
should be defined:

• The target population of interest
• Studies/data sources to be included
• Clinically defined outcomes: e.g., response/relapse/remission criteria
• Outcome variable(s)
• Covariates that potentially may affect the outcome of interest

It is a good practice to list all “data-driven” components and “tuning parameters”
of the analytic strategy upfront and explain how they will be identified in the course
of the study.

The possibility of replicating findings with additional data sets that were not used
in model fitting and selection (test data) should be addressed. If this is not possible
due to limited data, other approaches should be used, e.g., bootstrap and cross-
validation.

If hypothesis testing is the primary objective, all adjustments for multiplicity and
control of Type I error rates should be explained.

If the model selection is a part of the DM strategy (which is almost always the
case), the DM Analytic Plan should explain how potential data overfitting would be
handled (e.g., via cross-validation, using separate validation data sets).

If inference about causal parameters is the primary objective, all non-randomized
covariates that may potentially cause selection bias should be listed and methodol-
ogy that will be used to overcome it outlined.

If the analytic strategy involves a multistage data analysis (i.e., when selection of
an analytic procedure at a later stage may depend on the results at previous stages),
the DM plan should contain a discussion on how uncertainty in the multistage
process could be accounted for (e.g., via bootstrapping the entiremultistage analysis
sequence, or model averaging). It is often the case that only uncertainty associated
with the final stages of such complex analytic strategies is taken into account, while
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the steps leading to final analyses are left undocumented and obliterated from the
“collective memory” of the research team. Also in many exploratory analyses, some
stages of analysis involve “human intervention” where decisions are made subjec-
tively which makes it challenging to automate the entire analytic strategy by
implementing it in a programming code and prevents the use of resampling methods
for evaluating such strategies. When implementing multistage procedures and
applying them to resampled data, it is important to account for the fact that on
some samples the result may be negative or null, for example, when an empty set is
returned for a subgroup search or when no predictive bookmakers are found. In such
situation it is important that the analysis strategy should be well-defined in the sense
that it is applicable for any data, not only for the specifically observed data set on
which it was used.

The DM analysis plan should include “sensitivity analyses” to validate the
robustness of the findings to various departures from (often untestable) assumptions.
This may relate to assumptions about missing data mechanisms, unmeasured con-
founders, or possible “structural” changes (e.g., in the relationship between out-
comes and predictors) in the future populations that may affect the generalizability of
findings. As part of sensitivity analyses, sensitivity to methodology (e.g.,
frequentist vs. Bayesian) could be explored as well. Visualization tools should be
used at all stages of analyses, primarily to investigate potential issues such as
outliers, influential observations, etc.

Many data mining techniques are simulation based (e.g., cross-validation, boot-
strap); therefore, retaining seed values is recommended to ensure the reproducibility
of findings.

Finally, we emphasize the importance of proper quality control and validation of
analyses, just like in the standard stat analysis of clinical trial data.

6.4.3 Ensuring Data Integrity

Integrating and aggregating information from multiple studies may pose challenges
such as:

• Using different clinical outcomes (e.g., rating scales) and different definitions for
the same outcomes across multiple data sources.

• The extent of and approach to data cleaning may not be the same across multiple
studies. DM often utilizes various patient characteristics and time-dependent
covariates that may not be fully cleaned and validated even in locked databases,
as they might not have been a focus for analyses intended for clinical study report
(e.g., the time of occurrence of certain events or concomitant treatments).

• Many challenges of data aggregation (e.g., using combined regional, ethnic, etc.
groups; grouping adverse events, concomitant medications; alignment across
common time points) require careful consideration and close collaboration
between the statistician and medical team and may require a substantial amount
of time in the absence of integrated databases.

280 I. Lipkovich et al.



When integrated databases are available, it is tempting and often seems reason-
able to form initial analysis plan around variables available in the integrated data-
base; however, the absence of important potential predictors in the integrated
database cannot serve as a justification for not considering them as potential pre-
dictors in the DM analysis plan.

Further, study populations may be somewhat different and/or recruited at signif-
icantly different times, and this heterogeneity may need to be accounted for in the
model/analysis. This should be done keeping in mind the target population the
findings need to be generalized for, possibly leading to re-weighing current data so
as to better match the target population.

6.5 Case Studies

In this section, we present three case studies that illustrate several data mining/
machine learning methods as applied to clinical trial data. While some of them are
taken to a greater level of detail, others are presented in a briefer manner.

6.5.1 Evaluation of Subpopulations Using SIDES
Methodology

In this subsection, we illustrate some of the methods introduced in Sect. 6.3.3,
specifically variants of the SIDES methodology by applying them to a data set
simulated to mimic a realistic data from a Phase 3 study.

6.5.1.1 SIDES Methodology

Here, we provide a brief outline of SIDES method. An interested reader may refer to
Lipkovich et al. (2011) and Lipkovich and Dmitrienko (2014) for further details. In
our example, SIDES is applied to a binary outcome, and the description is tailored to
this type of outcome, although the approach is not limited to it. Also for simplicity,
we assume that all covariates are continuous as is the case for our data set, but this is
not a requirement.

First, we apply to the data set the SIDES subgroup generation procedure that
starts with evaluating a differential splitting criterion at every allowable split of every
candidate covariate, which is defined as follows:

D ¼ 2 1�Φ
Zleft � Zright
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Here Φ(�) is the normal CDF; the statistics Zleft and Zright are scaled by the pooled
standard error of treatment differences between proportions evaluated for the exper-
imental treatment and control in two child groups resulting from splitting a contin-
uous variable X into the left {X� x0} and the right child groups {X> x0}, based on a
provisional cutoff x0. Note that the criterion is on the probability scale with smaller
values indicating larger differentials.

For each candidate covariate, the best cutoff associated with the smallest value of
D is determined. Based on this value, the covariates are ordered from best to worst,
and the first M covariates (the width parameter) are selected. For any covariate, we
have two child groups resulting from splitting at the optimal cutoff, and the child
with the largest treatment effect is retained as “promising.” Therefore, from M top
covariates, M promising subgroups are retained. These are called promising sub-
groups of level 1. Depending on the maximal number of levels L (the depth
parameter), the process continues recursively by applying the same splitting process
to each of the promising groups. The resulting terminal groups are considered as
final promising subgroups. For example, if L ¼ 1, the process stops with theM level
1 groups which will be the terminal groups, whereas if L ¼ 3, the process is
recursively applied two more times resulting in up to M3 terminal subgroups. The
size of the candidate subgroups is controlled by the user-specified minimal required
subgroup size, nmin. Only subgroups of size at least nmin are considered as allowable
splits, and the recursion might stop even before achieving the specified depth once
no subgroups of required size can be formed.

The above process, which we refer to as base SIDES, results in generating a
potentially large pool of subgroups. A greedy approach to subgroup selection would
be to simply choose the subgroup from the pool with the largest observed treatment
effect (or few subgroups with largest effects). Of course, the observed effect(s) and
the associated P-value(s) would be highly overoptimistic. These can be adjusted by
using resampling methods. For example, the multiplicity adjusted P-value can be
obtained by randomly permuting treatment labels, reapplying the same subgroup
search procedure to each null (permuted) set, and computing the smallest P-value
over all promising subgroups for each null data set. Based on a large number of null
sets, the adjusted P-value can be computed as the proportion of such sets where the
minimum P-value is as small as or smaller than the one found in the best subgroup of
the actual data set.

However, this greedy process is likely to generate the top subgroups that will be
subsequently penalized very severely in terms of having very large adjusted P-values
(suggesting that the findings are driven by chance and are not likely to generalize to
the future data).

To develop more sensible subgroup search procedures, several methods of
restraining the greediness of the search have been proposed. One approach is to
introduce a complexity parameter that constrains the search by placing a requirement
on how much better the treatment effect in a child group should be compared to that
in the parent group at each split. The split is made only if the candidate child group
exceeds that threshold.
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The second approach, called “SIDEScreen” (pursued in this example), uses a
variant of model averaging. From the harvesting process, a variable importance
index is evaluated for each covariate that reflects its overall predictive worth. This is
defined as the average contribution of a covariate across all generated promising
subgroups (counting only terminal subgroups of the harvesting process). Specifically

VI Xð Þ ¼ K�1
XK
i¼1

νi,

where νi ¼ �log di(X), if the ith subgroup contains biomarker X, and νi ¼ 0
otherwise; K is the number of promising subgroups; and di(X) is the splitting
criterion evaluated for biomarker X for the selected split.

Thus, computed variable importance scores are screened by applying a screening
rule

VI Xð Þ > bE0 þ k
ffiffiffiffiffiffibV0

q
,

where bE0 and bV0 are the mean and variance of the maximal (over all biomarkers), VI
score under the null distribution obtained by permuting the treatment labels. These
mean and variance are estimated from a large number of such samples. The multi-
plier k is a free parameter that can be calibrated as k ¼ Φ�1(1 � κ), where κ is
interpreted as the probability of selecting at least one noise biomarker in the absence
of predictive biomarkers in the data set.

At the second stage, the basic SIDES is applied only to biomarkers selected at the
first stage. The final adjusted p-values are computed by replicating the entire
two-stage procedure on a large number of additional null sets. Note that the same
multiplier k is applied to each null set; therefore, regardless of the value of multiplier
at the first stage, the overall Type I error rate of the final subgroup(s) can be
controlled at any desired level.

6.5.1.2 Analysis Data

Our example data set sepsis_ex.csv is available at QSPI working group site along
with the RSIDES package: http://biopharmnet.com/subgroup-analysis-software/.
The data set is based on a Phase 3 trial conducted to examine the efficacy and safety
profiles of a novel treatment for severe sepsis. There are 470 patients (317 patients in
the experimental treatment arm and 153 patients in the control arm) with a binary
outcome variable mortality (the primary endpoint) that represents the survival status
of patients after 28 days of treatment: the value of 1 for subjects who died within
28 days and 0 for those who survived. There are eight candidate covariates,
including demographic and clinical characteristics listed in Table 6.3, all of which
are numerical variables. Note that the results for baseline serum concentration (il6)
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exhibit some extreme values which are not uncommon for this lab measure. We
comment that with parametric regression methods, this would be a problem requir-
ing special treatment (e.g., variable transformation), but the tree-based methods are
immune to that as they essentially treat a numerical covariate as ordinal and are
invariant to any monotone transformation of a covariate.

6.5.1.3 Results

Table 6.4 shows the results of applying base SIDES with parameters

• Width ¼ 3
• Depth ¼ 2
• nmin ¼ 30

To illustrate the subgroup generation process, the three intermediate subgroups of
the first level (based on variables time, age, and il6 with optimal cutoffs 30.67,
59.871, and 519.4) are highlighted in bold. The associated splitting criterion (on the
�log scale, with larger values being better) is shown in the third column. The
terminal subgroups are obtained after splitting the above three level 1 groups by
the best three variables selected from the candidate list excluding the one selected at
the first level. There are eight rather than nine groups because one group based on
time and age occurred twice with the same cutoffs for both variables and was
removed as a duplicate. The penultimate column contains the P-value for the overall
treatment effect (one-tailed) and unadjusted P-values for promising subgroups. Note
that the overall treatment effect is negative while some subgroups show apparently
large treatment effect with subgroup time � 30.67 and age > 59.871 appearing best
with an unadjusted P-value of 0.00196. However, the adjusted P-values based on
10,000 sets of randomly permuted treatment labels are hopelessly large. In particu-
lar, the adjusted P-value for the above subgroup is 0.5.

Table 6.3 Candidate covariates in the severe sepsis data example

Candidate
covariates Description

Median
(range)

Time Time from first sepsis-organ failure to start of treatment (hours) 30.67
(10, 3775.9)

Age Patient age (years) 59.871 (33.2,
93.3)

Platelets Baseline local platelets (1000/mm3) 153 (45, 650)

Sofa Sum of baseline SOFA scores (cardiovascular, hematologic,
hepatic, renal, neurological, and respiratory scores)

8 (3, 17)

Creatinine Baseline creatinine (mg/dL) 1.5 (1, 20)

Apache Pre-infusion APACHE-II score 23 (19, 48)

IL6 Baseline serum IL-6 concentration (pg/mL) 406.6 (37.1,
296,550)

Bilirubin Baseline bilirubin (mg/dL) 1 (0.4, 20.4)
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Next, we evaluate subgroups using a less greedy and more powerful Adaptive
SIDEScreen approach. First, we apply base SIDES with even less restrictive param-
eters on generated subgroups than for the first run, specifically setting width ¼ 5 and
depth¼ 3 resulting in up to 53¼ 125 subgroups based on three covariates. While the
resulting subgroups may be picking up a lot of noise and would likely not generalize
to the future data, we are not using these subgroups as candidates for the final
selection but rather use them as an intermediate step for computing variable impor-
tance scores used for covariate screening. Averaging over a broader set of subgroups
(models) in general helps to obtain more reliable variable importance scores.

Figure 6.4 contains variable importance and an associated benchmark from 1000

null sets. The threshold rule is VI Xð Þ > bE0 þ
ffiffiffiffiffiffibV0

q
with the multiplier k ¼ 1. As we

can see, two variables, time and age, stand out having larger scores. Also, they both
exceed the threshold based on 1 standard deviation from the null mean.

Table 6.5 shows the results of the second-stage analysis where base SIDES is
applied only to variables that passed the screening stage. Predictably, the subgroup is
the same as the best one that was found by a greedy base SIDES. However, the
adjusted P-value is very different from the one computed for the base SIDES.

To understand this seemingly contradictory result, first recall that the adjusted P-
values are computed for the SIDEScreen procedure by applying to each null set the
two-stage procedure, including computing anew the variable importance scores
based on subgroups generated from each null set and comparing them with the
same null threshold as was applied to the observed data. Of the null sets where some
covariates pass the threshold, we identify those having subgroups with P-values such
as or smaller than the one found in the observed data. Naturally, many null sets
would not have any covariates that pass the screening threshold (about 84%,
assuming the normal distribution for VI scores under the null and the threshold
with k ¼ 1). Even if each of the remaining 	16% of the null sets produced a

Table 6.4 Subgroups generated using base SIDES for sepsis data (width ¼ 3, depth ¼ 2,
nmin ¼ 30)

Subgroup Size
Splitting criterion
(�log scale)

P-value
(unadjusted)

P-value
(adjusted)

Overall population 470 0.8301

Time � 30.67 253 5.29 0.0588 0.99

Time � 30.67 and age > 59.871 123 3.37 0.00196 0.50

Time � 30.67 and IL6 > 162.65 171 1.09 0.0136 0.88

Time � 30.67 and bilirubin � 2.5 199 0.74 0.0496 0.99

Age > 59.871 217 4.25 0.0718 0.99

Age > 59.871 and IL6 > 92.8 169 2.29 0.0362 0.97

Age > 59.871 and sofa > 5 183 1.98 0.0172 0.91

IL6 > 519.4 180 2.55 0.1800 1.00

IL6 > 519.4 and age > 56.098 99 4.68 0.0076 0.78

IL6 > 519.4 and creatinine > 1.4 104 1.85 0.0168 0.91

IL6 > 519.4 and time � 30.67 117 1.60 0.0328 0.97
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subgroup better than the one found on the observed data, the adjusted P-value would
be no larger than about 0.16. One might consider the application of this “shrinkage
factor” to compute adjusted P-values as a kind of cheating. However, note that the
selection rules are the same whether we apply them to the observed or null data. Only
in the case when at least one covariate will pass the threshold on the observed data
would we have the opportunity to adjust an associated P-value, which under the true
null will amount to the same 0.16. As a result, data with no real predictive marker
would likely not proceed to the second stage, thus reducing the probability of
spurious findings.

Variable importance

0 1 2

time

age

il6

creatinine

platelets

bilirubin

sofa

apache

Fig. 6.4 Variable importance scores (shown as filled circles) and the threshold based on null
distribution (shown as the dashed line)

Table 6.5 Subgroups generated using Adaptive SIDEScreen for sepsis data

Subgroup Size
Splitting criterion
(–log scale)

P-value
(unadjusted)

P-value
(adjusted)

Overall population 470 0.8301

Time � 30.67 253 5.29 0.0588 0.112

Time � 30.67 and age > 59.871 123 3.37 0.00196 0.036

Age > 59.871 217 4.25 0.0718 0.116
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6.5.2 Evaluating Optimal Dynamic Treatment Regimes via
Q-Learning

This case study is a brief summary of recently reported analyses of a STEP-BD trial
by Wu et al. (2015).

6.5.2.1 The STEP-BD Trial, Analysis Objectives, and Available Data

STEP-BD (Systematic Treatment Enhancement Program for Bipolar Disorder) is a
long-term study of bipolar disorder funded by the National Institute of Mental Health
(NIMH), the results of which were reported in Sachs et al. (2003). The study enrolled
more than 4000 patients from the United States and lasted about 7 years including
options for several treatment pathways: an observational trial (standard care path-
way, SCP) and several randomized trials (randomized care pathway, RCP). First, all
patients entered SCP and then some were eligible to follow one of the RCPs. Within
the latter, there were several options (pathways) depending on the depression
features. The Wu et al. (2015) analysis is focusing on one of them: acute depression
randomized pathway (RAD).

The purpose of RAD was to explore the effectiveness of two antidepressant
treatments (bupropion or paroxetine) versus placebo, in addition to a number of
mood stabilizers (lithium, valproate, and others) that were used in combination with
the two drugs or placebo. Initially, patients were randomly assigned to one antide-
pressant (150 mg of a sustained release formulation of bupropion or 10 mg of
paroxetine) or placebo. After 6 weeks, patients with non-response on the placebo
were randomized to either paroxetine or bupropion; patients with non-response on
the antidepressant would have the dose of their current antidepressant increased. The
schematic of the RAD sub-trial is presented in Fig. 6.5. The reader should bear in
mind that patients under active treatments or placebo received mood stabilizers at
physician’s discretion, which is not reflected in the labels of the figures.

The objective of the analyses in Wu et al. (2015) was estimating optimal DTRs
for both stages 1 and 2 to minimize the expected depression score at week
12 (SUMD), based on all available data at the decision time. Note that our ability
to search for optimal treatment options is naturally limited by the available
(or feasible) treatment options restricted by design. Specifically, as we see from
Fig. 6.5, the second-stage randomization was only applied to patients who failed on
placebo during stage 1. Therefore, the Q-learning algorithm would not be able to
“learn” from the data a regime that recommends, for example, to treat with
bupropion (at stage 2) those patients who had previously failed on paroxetine
(at stage 1).

Patient covariates and intermediate outcomes available for analysis are listed in
Table 6.6.
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6.5.2.2 Q-Learning Methodology for the RAD Trial

Here we briefly outline the Q-learning method adapted for estimating optimal
regimes in the RAD trial of the STEP-BD design. Although the Q-learning applies
for a more general m-sage learning, our exposition is tailored to the two-stage
decision setting and a terminal continuous outcome (here, depression score at
week 12).

As described in Sect. 6.3.3, Q-learning is an approximate dynamic programing
algorithm that can be viewed as an extension of regression to multistage decision
problems. In our case, this amounts to sequentially fitting regressions for the
outcome, with pretreatment covariates, earlier treatments, and outcomes fitted as
predictors. Starting from the last (i.e., the second stage) decision, Q-learning first
finds an optimal decision rule at the second stage as the one maximizing expected
outcome after stage 2, given earlier patient outcomes and covariates available prior
to treatment decision for stage 2 as well as the treatment choice that has been made at
decision stage 1. Then going backward, it regresses the (expected) outcome (that
would have resulted if optimal treatment rules at stage 2 were applied) on treatment

Stage
1

(365)

Bupropion
(85)

placebo
(187)

Paroxetine
(93)

Opt out
(28)

Response
(39)

Opt out
(49)

Response
(86)

Opt out
(30)

Response
(30)

Yes
(22)

No
(17)

Stage
2

Bupropion
increase
dose

Yes
(43)

No
(43)

Stage
2

Bupropion
(22)

Paroxetine
(18)

Yes
(12)

No
(18)

Stage
2

Paroxetine
increase
dose

Fig. 6.5 Schematics of the RAD trial
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assigned at stage 1 and covariates available at the decision stage 1. The optimal
regime for stage 1 is found as the one maximizing the response of this second
regression. The key element is that covariate-by-treatment interactions have to be
included in the regressions; otherwise, the estimated optimal regime will be
assigning the same treatment to all patients regardless of their covariate values.

The backward induction allows Q-learning to factor in future decisions when
making treatment decisions at earlier stages. This can be contrasted with a “myopic”
strategy that only looks at intermediate (proximal) outcomes of a current treatment
assignment. For example, treatments at stage 1 may lead to temporary alleviation of
symptoms and therefore appear beneficial; however, the long-term benefits may
become questionable after a later (e.g., second)-stage decisions are factored in.

Several challenges are encountered when applying the Q-learning algorithm to
this data, including the need to make model selection given a large number of
candidate covariates (Table 6.6) and handling a substantial number of missing data
on the outcomes and covariates. These problems, typical of data mining/machine
learning applications to clinical data, need to be integrated within estimating the
optimal DTR.

Another challenge that appears unique for DTRs (although, more broadly, is
present in any “estimation after model selection”) is obtaining confidence intervals
for outcomes under an estimated DTR. Because the DTR estimator is irregular
(non-smooth), the standard bootstrap theory may not apply and other methods
(such as m-out-of-n bootstrap (Chakraborty et al. 2013)) need to be used.

Finally, even relatively simple rules based on linear regressions with a few
selected covariates may appear rather unwieldy for decision-makers (such as pre-
scribing physicians); therefore, more visual and easy-to-use presentation of the rules
is desired. This can be accomplished by approximating the estimated DTR with
classification trees, in an additional step.

Following Wu et al. (2015), we first describe how the Q-learning would proceed
for this case, assuming the correct (e.g., linear) models for Q-functions have been
pre-specified, and no data are missing; then we explain how missing data imputation
and model selection were integrated within the Q-learning strategy.

First, we define stage 1 and stage 2 Q-functions in terms of available treatment
choices, patent-level covariates, and outcomes. Specifically, the ith patient in a
hypothetical complete data set can be characterized with a trajectory(X1i,T1i,X2i,
T2i,Yi), i ¼ 1, . . ., n, where X1 denotes a vector of baseline covariates available at
decision stage 1, X2 comprises post-baseline outcomes collected during stage 1 and
potentially informing treatment choice at stage 2, and T1 and T2 indicate randomized
treatment choices at stages 1 and 2, respectively. That is T1 ¼ {Bupropion,
Paraxetime, placebo} and T2 ¼ {Bupropion,Paraxetime}; Y is the SUMD score at
the end of stage 2, with lower values indicating clinically desirable outcome (low
depression score).

The Q-functions are essentially the response functions that map patients with
particular treatment choices and covariate profiles to expected outcomes, similar to
our response functions f(x, t) introduced in Sect. 6.3.3 (in the context of subgroup
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identification). The stage-specific Q-functions are defined recursively, starting with
the last stage function. In our case

• Q2(x1, t1, x2, t2) ¼ E(Y|X1 ¼ x1, T1 ¼ t1,X2 ¼ x2, T2 ¼ t2),
• Q1 x1, t1ð Þ ¼ E min t2 Q2 X1,T1,X2, t2ð ÞjX1 ¼ x1,T1 ¼ t1ð Þ:

The Q2 is a usual regression, here estimating the “quality” of treatment assign-
ment t2 for a patient presented with his or her “history” up to that point. Similarly, the
function Q1 measures the quality of assigning treatment t1 for a patient presented
with his/her pretreatment covariates and assuming optimal decision at subsequent
stage 2, defined by minimizing Q2 (SUMD score) over t2.

We assume that Q1(�, θ1) and Q2(�, θ2) are parametrized as linear functions of
patient covariate history and prior treatments with vector θ1 containing regression
coefficients associated with X1, T1, and X1 by T1 interactions and θ2 containing
coefficients for X1, X2, T1, T2, and (X1, X2) by T2 interactions. The parameters of Q-
functions are estimated in three steps:

1. Estimate parameters in θ2 using only data on placebo non-responders who were
randomized at the second stage to bupropion or paroxetine, by regressing Y on X1,
X2, T1, T2.

2. Compute new “response” vector eY to be used for estimating the first stage
Q-function, defined as

eY ¼
bQ2 topt2

� �
, for placebo nonresponders

Y , for the rest of patients

(
,

where bQ2 topt2

� �
is the predicted response from the regression model at the

previous step with treatment T2 set for each patient at the optimal value topt2

corresponding to the minimum of estimated bQ2.

3. Estimate parameters in θ1 using all patients by regressing eY on X1, T1, and

compute the optimal first-stage treatment topt1 by minimizing the estimated bQ1.

The variables for modeling Q1 and Q2 are selected from 24 potential predictors
listed in Table 6.6 using stepwise forward variable selection with the entry and
stopping conditions determined by the Bayes information criterion (BIC). This was
combined with multiple imputation procedures for missing values. The imputation
was done using Fully Conditional Specification (chained equations) procedure
available in the R package mice (van Buuren 2018). This method imputes missing
values using sampling from posterior distributions and does not require explicit
specification of joint likelihood. Instead, conditional models are defined for each
variable given all the rest. This is especially convenient for data sets of mixed type,
combining numerical and categorical variables, where joint distributions are hard to
specify. In our case, for continuous variables, Predictive Mean Matching was used,
and logistic regression models were used for binary variables.

6 Statistical Data Mining of Clinical Data 291



The stepwise forward selection was conducted in such a way that each candidate
variable to be added was evaluated using the BIC averaged across m generated
complete data sets. The final model was then selected based on the best average BIC
across all models in the list formed by the stepwise selection. First, the optimal
model for estimating θ2 in step 1 of the outlined three-step Q-learning procedure was
selected in this fashion. Then the optimal model for Q1 was selected by applying the
same stepwise selection (based on average BIC) to estimating θ1 (step 3) given bθ2
estimated with the model selected for Q2. For details of the procedure, see Wu
et al. (2015).

Once models for Q1 and Q2 have been selected, they were applied to each of the
m completed data sets, the resulting m estimates of Q-functions averaged, and
optimal treatment regimes found as the minimizers of the averaged Q-functions.

Finally, the optimal treatment assignments topt1 and topt2 for each patient were
approximated with classification trees using R package rpart to provide more easily
interpretable rules. To achieve that, classification tree algorithm was applied sepa-
rately to new variables capturing estimated topt1 and topt2 as categorical response
variables with covariates, selected for modeling Q1 and Q2, as candidate splitting
variables. The resulting trees are presented in the left and right panel of Fig. 6.2.

6.5.2.3 Results of Q-Learning

Details of estimated Q-functions and associated regression coefficients can be found
in Wu et al. (2015). Here we will briefly discuss the tree representation of the optimal
DTR shown in Fig. 6.6. The tree on the left shows assignment rules at the first stage.
Interestingly, patients who experienced a (hypo) manic episode immediately pre-
ceding the current major depressive episode are not recommended any of the two
available antidepressant treatments but rather using only mood stabilizers (note that
“placebo” actually refers to treating with mood stabilizers only). For the rest of the
patients, bupropion is recommended to younger patients, and paroxetine is
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AGE ≤ 57

Mixed

Placebo

(Hypo)manic

Paroxetine

No

Bupropion
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Paroxetine
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Bupropion
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SUMM1 ≤ 1.53
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Paroxetine

Yes

Paroxetine

No

Bupropion
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Fig. 6.6 Estimated optimal regimes at stages 1 (left) and 2 (right). Note that the optimal regime at
the second stage is evaluated only for those patients who are assigned to placebo at the first stage
and fail to show response
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recommended to older patients. The tree on the right illustrates the assignment of the
second-stage treatment for patients who had failed on placebo during the first stage:
variables SUMM1 (mood severity after stage 1) and SIDE3 (presence of sedation
side effect) dictate treatment selection; subjects with no sedation side effects and low
mood severity are recommended to bupropion, and all others are recommended to
paroxetine.

It is also instructive to compare the expected outcomes assuming patients undergo
the optimal treatment to outcomes expected under some pre-specified fixed (static)
regimes. To estimate expected outcomes under static regimes, an inverse probability
weighted estimator was used (Zhang et al. 2013; see also our last case study in Sect.
6.5.3), and confidence intervals were computed using nonparametric bootstrap. The
confidence intervals for the optimal DTR estimator were computed using the
m-out-of-n bootstrap. Table 6.7 summarizes the results, suggesting some advantages
of the estimated dynamic regime.

6.5.3 Estimating Treatment Effect in an Oncology Trial
Using Inverse Probability of Censoring Weights

6.5.3.1 Introduction

Demonstrating statistically significant and clinically meaningful gains in overall
survival (OS) remains the gold standard to provide evidence of the benefits of new
anticancer drugs (Johnson et al. 2015). In clinical trials, in patients with advanced or
metastatic cancer, however, it is very common for participants to switch from the
treatment to which they were initially randomized to other therapies (Latimer and
Abrams 2014), typically after disease progresses on the initially randomized treat-
ment. For both ethical and practical reasons, this option may be built into oncology
trial protocols. Switching may also be allowed from the study control treatment to
experimental treatment, which is not part of the standard treatment pathway, if no
other non-palliative treatments are available.

When patients switch to and benefit from active post-progression therapies, a
standard ITT analysis may inaccurately estimate the “true” OS benefit associated

Table 6.7 Point estimates and confidence intervals for the expected depression score SUMD at
week 12 under estimated DTR and some static regimes (labeled by a pre-specified combination of a
first-stage and a second-stage treatment)

Regime Estimated SUMD Estimated 90% confidence interval

Estimated optimal DTR 2.13 (1.34, 2.86)

(Bupropion, high-dose bupropion) 6.91 (6.27, 7.71)

(Paroxetine, high-dose paroxetine) 8.25 (7.39, 9.07)

(Placebo, bupropion) 3.71 (3.38, 4.04)

(Placebo, paroxetine) 4.51 (4.10, 4.90)

The lower scores indicate clinically preferred outcome (based on Table 4 from Wu et al. 2015)
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with the investigational product the patients were initially randomized to and will
affect the cost-effectiveness analyses in the context of economic evaluations that
make use of the OS evidence. In general, switching to active post-progression
therapies that do not form part of the standard treatment pathway should be adjusted
for (Latimer and Abrams 2014).

Several switching adjustment methods that seek to estimate the true treatment
effect are available, ranging from simple to complex techniques. Simple or naïve
methods such as simple censoring (when data from patients who switched are
censored at the point of switching) or exclusion techniques (patients who switched
are excluded entirely from the analysis) are highly prone to selection bias and should
be avoided (Latimer and Abrams 2014). More complex statistical techniques are
classified as randomization based (e.g., the rank-preserving structural failure time
model or iterative parameter estimation algorithm) or observational based (e.g., the
two-stage accelerated failure time model [two-stage method] or inverse probability
of censoring weights [IPCW]) (Latimer and Abrams 2014). Different switching
adjustment methods may be appropriate under certain scenarios, and none is optimal
in all circumstances. All of them involve untestable assumptions, as is always the
case with causal inference from observational data. Here, for illustration, we will
focus on IPCW.

In the IPCW approach, patients are artificially censored at the time of switching,
and the weight/influence of uncensored patients with similar prognostic character-
istics is increased based on covariate values and a model of the probability of being
censored. The key assumption made by the IPCW method is the “no unmeasured
confounders” assumption; that is, data must be available for all baseline and time-
dependent prognostic factors for mortality that independently predict informative
censoring (switching) (Latimer et al. 2014; Robins and Finkelstein 2000). This
assumption cannot be tested using the observed data (Robins and Finkelstein
2000). In practice, this is unlikely to be perfectly true, but the method is likely to
work adequately if the “no unmeasured confounders” assumption is approximately
true; that is, there are no important independent predictors missing (Latimer et al.
2014). Additionally, the method assumes that the model for computing weights is
correctly specified and that the probabilities of treatment switching conditional on
given covariates are bounded away from zero. The latter would not be the case if
physicians were switching patients based on deterministic rules (e.g., all female
patients are switched to treatment A and male patients switched to treatment B). As
correct model specification plays an important role in implementing the IPCW
analysis strategy, modern methods of statistical learning that are free of parametric
model assumptions can be very useful because they allow automating the strategy,
making it less prone to misspecification error.

6.5.3.2 Example Data Set in Prostate Cancer

The data set used to illustrate the IPCW in this section represents a randomized,
double-blind trial with 800 subjects with prostate cancer in each of the two arms—
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experimental and placebo. The endpoint of interest for this analysis is overall
survival. All subjects were followed up for OS after discontinuing study treatment.

Treatment switching is defined as the switch from the control treatment to the
experimental treatment for those subjects randomized to the control arm or from
either treatment group to other post-study treatments that are not part of the standard
treatment pathway. Treatment switching often occurs upon disease progression or
when conclusive evidence accrues about the benefit of the experimental treatment
and therefore the study is stopped and unblinded. We assume this typical scenario for
our case study.

In our example data set, all subjects in the control group and 27.5% (220/800) of
subjects in the experimental arm discontinued the treatment they were randomized to
by the data cutoff. In this case study, we are concerned with one type of switch
only—when the subject switches from the randomized treatment to another therapy
that was not part of the standard treatment pathway, e.g., as per the NICE clinical
guideline for prostate cancer (NICE 2014), and we are not concerned with possible
multiple switches thereafter. The data set contains a total of 376 switchers, with a
larger proportion of switchers in the placebo arm: 18.0% (144/800) and 29.0%
(232/800) of subjects in the experimental and placebo groups, respectively.

6.5.3.3 IPCW Methodology

We illustrate herein the IPCW approach for adjusting estimates of a treatment effect
in the presence of informative censoring. Censoring is informative when a subject
with specific characteristics is more likely to be censored than another (e.g., a subject
who has poor prognosis discontinues treatment and is censored because of this). In
this case study, we consider treatment switching as the only informative censoring
mechanism. All other censoring reasons are modeled as non-informative (as part of
the proportional hazard partial likelihood of the Cox regression).

The IPCWmethod represents a type of Marginal Structural Model (MSM), which
was originally developed for use with observational data (Hernán et al. 2001). The
IPCW method involves censoring subjects at the time of treatment switch and then
controlling for this potentially informative censoring by weighting. Specifically, the
follow-up information for subjects who remain at risk for the event is weighted, so
that they account not only for themselves but also for subjects with similar charac-
teristics (both baseline and time-dependent) whose follow-up was censored by
informative censoring (Robins and Finkelstein 2000).

The IPCW method entails the following general steps. First, for all subjects,
follow-up time from randomization until failure (e.g., death) or censoring (informa-
tive or otherwise) is partitioned into intervals. At the beginning of each interval,
time-dependent variables that may be predictive of informative censoring
(switching) or failure are calculated and updated. For each subject and interval,
so-called stabilized weights (SW) are then calculated as described by Hernán et al.
(2001). The numerator of each weight is the cumulative probability of remaining
uncensored by informative censoring from the beginning of follow-up to the end of
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the interval given only baseline covariates. The denominator of the weight is the
cumulative probability of remaining uncensored by informative censoring to the end
of the interval given both baseline and time-dependent covariates. In the original
formulation of Hernán et al. (2001), an individual’s treatment history up until the end
of the previous interval is included in both the numerator and denominator. Given
that in our case study the cause of informative censoring is the first switch from the
randomized treatment to another antineoplastic therapy, “past treatment history” is
reduced to the initial randomized treatment that is conditioned upon simply by
performing computations of weights separately by treatment arms.

Specifically, patient-specific estimates of the stabilized weights at the jth interval,
SWi( j), are obtained as follows (here we drop the patient index from all terms to
simplify notation):

SW jð Þ �
Q j

k¼0P C kð Þ ¼ 0jC k � 1ð Þ ¼ 0,X 0ð Þ½ 
Q j
k¼0P C kð Þ ¼ 0jC k � 1ð Þ ¼ 0,X 0ð Þ,Y kð Þ½ 
 ,

where

• C(k) is an indicator function representing censoring/treatment switch status at the
end of interval k (1, censored due to switching, 0, uncensored).

• X(0) is a vector of subject characteristics measured at baseline (see Table 6.8).
• Y(k) is a vector of time-dependent subject characteristics measured at or prior to

the beginning of interval k (see Table 6.8).
• P[C(k) ¼ 0|C(k � 1) ¼ 0,X(0)] is the probability of remaining uncensored (not

switched) at the end of interval k given uncensored at the end of interval k� 1 and
conditioned on baseline characteristics X(0).

• P[C(k) ¼ 0|C(k � 1) ¼ 0,X(0), Y(k)] is the probability of remaining uncensored
(not switched) at the end of interval k given uncensored at the end of interval
k� 1 and conditioned on baseline characteristics X(0) and time-dependent patient
characteristics Y(k).

Probabilities of remaining uncensored by informative censoring are unknown and
therefore need to be estimated. Here, we use two approaches to illustrate the
difference between traditional parametric modeling and methods of machine learn-
ing: logistic regression and random forest models (see Sect. 6.3.1). In each case, we
fit one model for the denominator and one model for the numerator, with informative
censoring (switching) as the dependent variable. Details on how these methods were
applied in this case study are provided further below. Both the logistic regression and
the random forest models are estimated within each treatment arm separately, to
account for potential differences in the reasons that led to switching treatment in each
arm. Covariates included in these models represent measurements typically collected
in the studies of prostate cancer and are presented in Table 6.8.

A hazard ratio (HR) for the outcome of interest is then estimated using a weighted
Cox proportional hazards regression model that includes only baseline variables and
the treatment arm indicator (i.e., the indicator of the initial randomized treatment) as
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covariates. The weights are the subject- and interval-specific stabilized weights as
described above.

Because the standard errors for the HRs obtained from the Cox regression
analysis do not account for the variability associated with the estimation of the
stabilized weights, 95% confidence intervals for HR estimates are obtained by
bootstrapping (Hernán et al. 2001; see also Sect. 6.2). This method involves
resampling with replacement from the experimental and placebo arms to obtain
B (here B ¼ 100 for illustration, but we would recommend 2000) bootstrap samples
of the original data and repeating all the steps above for each of these samples to
calculate B bootstrap estimates of the HR. A 95% CI for the HR is estimated based
on the 2.5 and 97.5 percentiles of B bootstrap replicates.

6.5.3.4 Estimating Stabilized Weights with Logistic Regression

To estimate the numerator of the stabilized weights, a logistic regression (model 1)
was fitted to the “stacked data” (i.e., with multiple records per patient) from all

Table 6.8 Covariates for modeling weights in IPCW estimators

Covariates

Baseline covariates:

Age (years, continuous)

Time since diagnosis (categorical; <5 years vs. �5 years)

Number of bone metastases at screening (categorical; �5 vs. >5)

Presence of visceral disease at baseline (categorical; yes vs. no)

Type of disease progression at study entry (categorical; PSA progression only vs. radiographic
progression with or without PSA vs. no disease progression at study entry)

Baseline EQ-5D utility index (continuous)

Baseline FACT-P total score (continuous)

Time-dependent covariates:

ECOG Performance Status (categorical; 0 vs. >0)

History of grade 3/4/5 adverse events (categorical; yes vs. no)

Occurrence of grade 3/4/5 adverse events since last visit (categorical; yes vs. no)

Corticosteroid use (categorical; yes vs. no)

PSA level (continuous)

Laboratory tests: LDH level (categorical; �240 IU/mL vs. >240 IU/mL)

EQ-5D utility index (continuous)

FACT-P total score (continuous)

Time since treatment discontinuation (continuous)

Time to treatment discontinuation (continuous)a

Disease progression (categorical; yes vs. no)a

ECOG Eastern Cooperative Oncology Group, FACT-P Functional Assessment of Cancer Therapy-
Prostate, LDH lactate dehydrogenase, PSA prostate-specific antigen
aAlthough disease progression and time to treatment discontinuation do not vary with time, they
could be important covariates to be accounted for in the estimation of the weights
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patient intervals from randomization until treatment switch or failure or censoring,
defined as death, withdrawal of consent, or end of study, whichever occurred first.
The probability of remaining uncensored was modeled conditional on patient base-
line factors listed in Table 6.8 and a time-dependent intercept. The time-dependent
intercept was estimated by including a variable indicating the number of days
elapsed since randomization at the start of the interval and its quadratic term. The
dependent variable in the logistic model was a binary variable (1/0) indicating
whether the patient had switched treatment or not during the interval.

To estimate the denominator of the stabilized weights, a similar logistic regres-
sion (model 2) was fitted in which the probability of remaining uncensored was
modeled conditional on the same baseline factors as above plus patient time-
dependent covariates measured at the start of each interval, as listed in Table 6.8.
Upon randomized study drug discontinuation, patients are typically followed mainly
in terms of their survival status and initiation of new therapies, while other regular
study assessments, e.g., ECOG, LDH, SPA, etc., are no longer performed. There-
fore, only data as observed at the time of study treatment discontinuation (fixed) and
time since treatment discontinuation (time-varying) are used as predictors of treat-
ment switching in our models for the denominator of the weights. In a typical study,
the probability of treatment switching prior to study treatment discontinuation is zero
by trial design (alternatively, the probability of remaining uncensored is 1). There-
fore, the probability of being uncensored was set to 1 for patient intervals prior to
study treatment discontinuation, and these observations were not used in the esti-
mation of this logistic model.

For all patient intervals prior to the date at which patients were assumed to be at
risk of informative censoring (treatment switching, i.e., the date of study treatment
discontinuation), stabilized weights were calculated. The numerator of SW( j) was
obtained using the estimates of the first model as described above, and the denom-
inator of SW( j) was set to 1.0 (i.e., the time-dependent probability of switch set equal
to zero). Thus, these weights are always less than 1.0. For subsequent intervals, the
numerator of SW( j) was calculated using model 1, and the denominator was
calculated using model 2. These weights may be greater than 1.0.

6.5.3.5 Estimating Stabilized Weights Using Random Forests

Stabilized weights were also estimated using random forests, in a manner similar as
described above for the logistic regression, i.e., fitting separate models within each
treatment arm as well as for the numerator and denominator of the weights, using the
same baseline and time-dependent covariates, and data from the same patient
intervals. This analysis was carried out using the R package randomForest. The
model can be fit using the following function:

model ¼ randomForest predictors, as:factor outcomeð Þ, ntree ¼ 1000ð Þ,

where
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• “predictors” contains a matrix with the values of patient covariates included in the
model with rows corresponding to patient intervals used to fit the model.

• “outcome” is a vector of binary values representing the switching indicator for
each patient interval as previously described.

• “ntree” is a parameter of the random forest algorithm specifying the number of
classification trees that are fit as part of the random forest.

A default setting is used for the number of covariates that are randomly chosen as
candidates for the splits (the “mtry” parameter) when building the classification trees
so that the square root of the number of all available predictors is used. Once the
model is estimated, predicted probabilities of not switching (remaining uncensored
due to the non-ignorable reason) can be obtained using the function “predict” from
the randomForest package:

pred ¼ as:data:frame predict model, newdata ¼ predictors, type ¼ “prob”
� �� �

where

• “model” is a “randomForest” object estimated above.
• “newdata¼ predictors” specifies that predictions should be provided for the same

data set of patient intervals and covariate values.
• type ¼ “prob” argument requests predictions in the form of probabilities as

opposed to binary outcomes. These predicted probabilities are used for the
calculation of the numerator or denominator of the stabilized weights.

6.5.3.6 Results

When applying the IPCW method, it is important to explore the distributions of the
weights estimated in the first part of the method. A necessary condition for the
correct model specification is that the stabilized weights have a mean of 1 (Hernán
and Robins 2006).

Summary statistics on the stabilized weights for the IPCW analysis are presented
in Table 6.9. Irrespective of the method used to estimate the probability of not being
informatively censored (logistic regression or random forest), for both treatment

Table 6.9 Descriptive statistics for stabilized weights in IPCW models

Treatment arm N Mean STD Min Max Q1 Median Q3

Logistic regression

Placebo 10,692 1.01 0.25 0.87 12.10 0.98 0.99 1.00

Experimental 11,039 1.00 0.07 0.92 2.78 0.98 1.00 1.00

Random forest

Placebo 10,692 1.02 0.24 0.27 9.60 1.00 1.00 1.00

Experimental 11,039 1.01 0.11 0.28 3.67 1.00 1.00 1.00
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arms, the mean of the stabilized weights is very close to 1, as expected. The median
of the weights is also close to 1.

The results of the unadjusted analysis and the IPCW method using stabilized
weights obtained from both logistic regression and random forest method are
provided in Fig. 6.7. The unadjusted results were obtained with the analysis where
all ITT subjects were included in the analysis set and no censoring was applied at the
point of treatment switching.

Adjusting for the treatment switching, as well as for other baseline characteristics,
indicates that the experimental treatment was associated with reduction in the risk of
mortality of approximately 41% irrespective of the method used to obtain the
stabilized weights (HR ¼ 0.59; 95% CI [0.48; 0.68] using logistic regression and
HR¼ 0.60; 95% CI [0.48; 0.69] using random forest). The unadjusted HR was 0.76,
95% CI [0.66; 0.88]. A smaller HR from the adjusted analysis is expected because
there are more switchers in the placebo arm than in the experimental arm which is
appropriately accounted for in the adjusted analysis.

As discussed in Sect. 6.3.1, random forests can also provide an insight into which
covariates are most predictive of the outcome using the estimated variable impor-
tance scores. They can be obtained using the function “importance”:

VI ¼ importance model, type ¼ 1ð Þ

where the argument “type¼1” requests the VI scores estimated based on the mean
decrease in accuracy from permuting out-of-bag data (see Sect. 6.3.1). For example,
from the treatment-specific models used for the denominators of the weights includ-
ing baseline and time-dependent covariates, the VI scores are as illustrated in
Fig. 6.8. We can see that in both treatment arms, the top four predictors are the
time to treatment discontinuation, PSA level, time from randomization, and age.

0.762 [ 0.657; 0.884]

0.585 [ 0.482; 0.680]

0.595 [ 0.477; 0.692]

0.2 0.4 0.6 0.8 1.0

ITT

Logistic regression

Random forest

HR [95% CI]

Fig. 6.7 Results of the unadjusted analysis and the IPCW method. The 95% CI are obtained from
bootstrapping
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To gain further insight into the relationship between the top predictors and the
probability of treatment switching, we can obtain partial dependence plots (using the
function “partialPlot”) that provide a graphical display of the marginal effects of the
variables of interest on class probability. Figure 6.9 illustrates such partial depen-
dence plots for the three top predictors in the treatment-specific models of weight
denominators.

6.5.3.7 Discussion

The objective of these analyses was to estimate the effect of experimental
treatment vs. placebo, adjusting for the potentially confounding effects of receipt
of nonstandard anticancer therapy in both treatment groups. This is of particular
interest for economic evaluations considering a lifetime horizon where standard ITT
analyses are likely to be inappropriate in the presence of treatment switching failing
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Fig. 6.8 Variable importance scores from random forest models of treatment switching based on
baseline and time-dependent covariates (models for denominators of stabilized weights)
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to inform the decision problem (selecting the most effective therapy for a given
patient population) from the causal inference perspective.

The IPCW method to adjust for the treatment switching was chosen in this
example because a large number of potentially prognostic covariates (that can
influence the investigator’s decision to switch treatment for a prostate cancer patient)
were available for the analysis. Also, as suggested by the theory and existing
evidence, IPCW is best suited for studies where the switching proportions are not
very high (Latimer and Abrams 2014), which is the case in our example data set. The
IPCW method is reliant on the assumption of “no unmeasured confounders” which
is not testable from observed data. One strategy is to include in the analysis a
comprehensive set of potentially important confounders identified using expert
knowledge (which may include redundant covariates) and rely on powerful machine
learning methods to extract useful information in the process of model building.
Whether the results could substantially change after including covariates entirely
missing in the observed data can be evaluated using sensitivity analyses framework
(see Brumback et al. 2004; Klungsøyr et al. 2009).

We have applied the IPCW method where weights were estimated using two
approaches: a traditional logistic regression and a modern method of statistical
learning, the random forest. In our example, the results using the logistic regression
and random forest models of treatment switching provided similar results. The
random forest model is of particular interest as it is free of parametric model
assumptions, can effectively deal with a large number of predictors without
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Fig. 6.9 Partial dependence plots for three top predictors from random forest models of treatment
switching based on baseline and time-dependent covariates (models for denominators of stabilized
weights)
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overfitting, is known for its good predictive accuracy, and provides useful insights
into the predictive strength of considered covariates and their relationship to the
outcome.

6.6 Discussion and Conclusions

DMML methods are becoming now an integral part of data analysis at all stages of
clinical drug development, which can be contrasted with its primary use in preclin-
ical stage of “drug discovery” in the past. The need in DMML arises whenever a
model selection is entertained, which may occur in different tasks including tradi-
tional estimation of the overall treatment effect in the presence of potential
confounding due to post-randomization events and novel tasks of treatment optimi-
zation in the realm of personalized/precision medicine.

A wealth of patient data collected during the clinical development program may
be better utilized with the principled use of DMML that should inform a decision-
making process across the entire drug development cycle. We hope that the refer-
ences to examples of various clinical applications and case studies provided in this
chapter will give the reader an appreciation of the breadth of areas where the power
of DMML can be leveraged.

Application of DMML to clinical data has some unique features. Unlike more
traditional applications of DMML (such as speech and character recognition), with
potentially unlimited amount of data that can be used for model training, DMML in
clinical settings is dealing with relatively small number of records due to substantial
costs and other constraints associated with each patient that can be enrolled in a
clinical study. Therefore, a typical application of DMML in the clinical world is
within the medium or small “n” and medium/large “p.” Cross-validation and other
resampling-based methods, therefore, play a key role.

Modeling of clinical data, whether randomized or based on observational studies,
involves methods accounting for different sources of confounding and missing data.
This explains the trend of integrating DMML and casual inference methods in some
applications.

Another feature of applications of DMML in drug development is the need to
control the Type I error or false discovery rate which is a new trend in the area of
machine learning that historically considered the concept of statistical significance
irrelevant. Typically, the analytical form of the null distribution for many DMML
techniques is not available, and one needs to resort to methods of resampling.

It is important to understand that the multiplicity control is interrelated with
model complexity control: the latter effectively restricts the model search space
and results in a lesser multiplicity burden.

It is a common trend for DMML applications in clinical data that the decision-
makers desire interpretable solutions rather than a “black box” which can often be
achieved by post-processing the “black box” to produce interpretable graphical
displays, such as trees, marginal plots, low dimensional projections, etc.
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“Data mining” in the clinical world sometimes was ascribed a negative connota-
tion as “data dredging.” However, we argue that using principled DMML strategies
and pre-specification of analytic strategies in the data mining plans may help remove
the stigma from data mining, making it a valuable set of tools for improved decision-
making in the drug development process.
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