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Preface

The motivation for this book came from a discussion on how to help a young
individual interested in quantitative disciplines in school to choose a major for
further education and a career. In the old days, if someone were good in quantitative
disciplines in school, he or she would go to college to receive a degree in Mathe-
matics or Physics. Nowadays, universities offer a range of different concentration
areas that rely on quantitative methods, such as Mathematics, Statistics, Biostatistics,
Pharmacometrics, Genetics, Computer Science, Data Science, to name a few. It is
not easy to make an educated choice for a future career. We decided to focus on the
pharmaceutical industry specifically. There are many books available that describe
one specific area, e.g., statistics, or a couple of areas, but we are not aware of books
that provide a good overview of different analytics and statistical applications used
in the pharmaceutical industry. Additionally, we were trying to understand what
quantitative methods different departments at a company use to answer questions in
the pharmaceutical industry and how people working at these departments collabo-
rate and build on each other’s knowledge.

The book Quantitative Methods in Pharmaceutical Research and Development
presents an overview of concepts, methods, and applications in different quantitative
areas of drug research, development, and marketing. Biostatistics, pharmacometrics,
genomics, bioinformatics, pharmacoepidemiology, commercial analytics, and oper-
ational analytics—all of these disciplines use quantitative methods and analysis
techniques to answer different questions related to drug research, development,
and marketing. By bringing theory and applications of these disciplines together in
one book, we hope to allow the reader to learn more about different quantitative
fields and recognize similarities and differences in theory and applications employed
by different disciplines. This book is aimed at people interested in quantitative
methods and applications used in the pharmaceutical industry, experts working in
these areas, and students looking for applications and career options in quantitative
sciences.

Each chapter of this book is self-contained and written by different authors.
Chapter 1 provides a brief overview of basic biostatistical principles, selected
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study designs, and analysis methods used in clinical trials. It also discusses the
importance of biostatistics in drug development and highlights some additional
considerations for clinical trials, such as defining appropriate estimands, handling
outcomes with missing data, applying multiplicity adjustments, analyzing sub-
groups, planning multiregional clinical trials, and evaluating drug safety.
Chapter 2 provides a brief introduction to pharmacometric analysis approaches
including pharmacokinetic (PK) models, PK/pharmacodynamics (PD) models,
physiologically based pharmacokinetic models, quantitative systems pharmacology
models, and model-based meta-analysis. It includes discussions on software, model-
ing workflow, and major model components, with a focus on population modeling
analysis. Chapter 3 gives an overview of bioinformatics and common methods used
to address genomics-related questions. In Chapter 4, readers are introduced to
common biostatistical methods used in the analysis and interpretation of
pharmacoepidemiological data. This chapter also briefly describes how to take into
account common issues in observational epidemiology, such as bias, confounding,
and interactions, in order to establish a clear causal link between exposure and drug
effect.

Chapter 5 provides an overview of the causal inference paradigm, reviewing
current methodology and discussing the applications of these concepts to strengthen
and improve pharmacoepidemiology. More specifically, this chapter focuses on
marginal structural models fitted using inverse probability weights and discusses
advanced topics, such as time-varying exposure, instrumental variables, and survival
analyses. It also includes a discussion of challenges specific to analyses that employ
medical claims and electronic health records. Chapter 6 provides an introduction to
the diverse field of data science as viewed from the perspective of a clinical
statistician. This chapter discusses data mining and its relationship with machine
learning and classical statistics. More specifically, the authors map some common
problems occurring in the analysis of clinical data onto general machine learning
tasks, such as supervised, unsupervised, and semi-supervised learning, and review
key concepts of data mining and machine learning with an emphasis on methods that
are most relevant for the analyses of clinical data. Chapter 7 is an introduction to
quantitative pharmaceutical market research techniques. It focuses on two types of
primary market research: market segmentation and choice modeling. This chapter
describes clustering methods that are used to create segments, that is, groups of
individuals with unique attitudes and behaviors that allow for more targeted mar-
keting efforts. It also reviews multiple approaches to choice modeling: a family of
approaches that aim to deconstruct decisions and identify what attributes drive
decision-making. Chapter 8 describes new predictive analytic techniques for effi-
cient modeling and forecasting trial operations, more specifically modeling patient
enrollment at different levels and analyzing interim trial performance and risk-based
data monitoring using P-values and 2D classification. Chapter 9 provides case
studies illustrating the impact of collaboration between biostatisticians,
pharmacometricians, clinicians, formulation, and laboratory scientists. It also
explains how working as a team and using quantitative modeling and simulation
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methodologies can result in significant efficiencies and improvements in the drug
development process.

This book is a collaborative effort from several authors and based on knowledge
and experience gained from working in academia, the pharmaceutical industry, and
regulatory agencies. We present material that hopefully will be interesting to a broad
and diverse audience. The views expressed in this book are those of the authors and
do not necessarily represent the views of organizations with which the authors have
been or are presently affiliated.

We would like to acknowledge and thank all authors who contributed to this book
and reviewers who helped us review and improve the different chapters. We
appreciate the constructive comments provided by José Pinheiro, Michael Hale,
Ken Chase, Tony Zagar, Seth Berry, Ilya Lipkovich, and Russell Reeve. From our
employers, we thank Torsten Westermeier, Bayer Statistics and Data Insights, and
Lisa DiPippo, the University of Rhode Island Department of Computer Science and
Statistics, for the encouragement. Additionally, we thank the Springer Publishing
Agency for giving us an opportunity to publish this book and the Editor of Math-
ematics and Statistics, Springer US Christopher Tominich for his patience and
helpful tips. Finally, we thank our special friends, Mikhail Benediktovich and
Maria Francevna, and our families for encouragement and support.

Whippany, NJ, USA Olga V. Marchenko
Kingston, RI, USA Natallia V. Katenka
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Chapter 1 ®)
Biostatistics in Clinical Trials Creck o

Olga V. Marchenko, Lisa M. LaVange, and Natallia V. Katenka

1.1 Introduction

1.1.1 What Is Biostatistics

Biostatistics is a part of statistics applied in a wide range of areas in the biological
sciences. It covers the design of biological experiments, e.g., experiments in med-
icine, pharmacy, and agriculture; the collection, summarization, and analysis of data
from the experiments; and the interpretation of results. A major branch of biostatis-
tics is medical biostatistics that is applied in medicine and health.

As part of drug development, tests are conducted to determine how drugs affect
the human body. We can only fully understand these effects—both positive and
negative—if they are tested on living organisms. Animal studies are primarily used
for testing pharmaceutical compounds in the preclinical development phase,
followed by clinical studies with human subjects. In recent years, many new
methods have been developed as alternatives to research on animals: in the in vitro
method, active ingredients are tested on human cell cultures; in the in silico method,
chemical reactions are tested using mathematical and computer-based models. Still,
these methods cannot entirely replace tests on animals or humans yet. Clinical
studies (clinical trials) are experiments intended to discover or verify the effects of
one or more investigational treatments in human subjects, e.g., patients or healthy
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volunteers. Biostatistics plays a vital role in the design, conduct, and reporting of
clinical trials.

1.1.2  Basic Biostatistics Principals for Clinical Trials

This section briefly describes some important biostatistics principals for designing a
clinical trial. There are many statistical books that cover statistical principals and
designs of clinical trials in more details (e.g., Snedecor and Cochran 1980; Friedman
et al. 2015; Piantadosi 2017). Additional valuable resources include the ICH Guide-
lines on efficacy and safety. Specifically, ICH Guideline E9 provides succinct
information on Statistical Principals for Clinical Trials.

1.1.2.1 Population and Sample

A population is an entire group of people we want to understand and make
inferences on. The size of the population can vary greatly. For example, the
population of patients with diabetes around the world is enormous; the population
of people with Pompe disease is quite small. A sample is a subgroup of the whole
population that can be considered a representative set with respect to the question of
interest.

The study population (a sample of patients with the disease selected for the study)
in a clinical trial is the subset of the population with the condition or characteristics
of interest defined by the eligibility criteria, e.g., inclusion and exclusion criteria
outlined in a clinical protocol. When reporting a study, it is important to say what
patients were studied and how they were selected. Knowledge of the study popula-
tion helps assess the study’s merit and relevance.

If the study population is selected by using very restrictive eligibility criteria,
generalizing results from participants in the trial to the study population and then to a
population with the condition might be difficult or even impossible. However, if the
study includes diverse groups of patients and the treatment is only beneficial to a
specific subgroup of patients, the effect of the intervention on a heterogeneous group
may be diluted, and the ability to detect a benefit may be reduced. As scientific
knowledge advances, the ability to classify improves. Modern trial designs such as
platform and basket trial designs allow to include a more diverse group of patients
into one trial and treat them with “personalized” treatments, e.g., treatments based on
the genotype.

1.1.2.2 Sampling Error and Bias

When a sample is randomly chosen from a population, some variability exists and,
therefore, the sample average will not precisely reflect the population average. An
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error has two components, a random one and a systematic one called bias. Sampling
error does not necessarily mean that a mistake has been made during the sampling
process; it is a fluctuation that remains beyond our ability to attribute it to a specific
cause. Because of biologic variations, subject-to-subject differences, measurement
error, or other sources of noise, it is impossible to eliminate random error
completely. Averaging an increased number of observations and repeating the
experiment reduce the magnitude of a random error. As we gain more knowledge,
it is possible that some errors that are thought to be random become explainable.

As defined in ICH E9 Guidance (ICH E9 1998), bias is “the systematic tendency
of any factors associated with the design, conduct, analysis, and interpretation of the
results of a clinical trial to estimate a treatment effect deviate from its true value.”
The presence of bias may compromise the ability to draw valid conclusions. It is
important to identify sources of bias in order to eliminate or reduce such bias. In a
statistical context (statistical bias), the bias can be quantified. More discussion on the
statistical bias is provided in Sect. 1.3 of this chapter. In a clinical context (opera-
tional bias), bias can arise from different sources and can rarely be quantified
precisely. One type of operational bias is a selection bias. For example, if an
investigator believes that a particular treatment in a clinical trial works better, he
might want to enroll his better patients to this treatment, and therefore, he may affect
the validity of the study. By excluding patients from analysis based upon knowledge
of their outcomes, one can introduce an assessment bias that can enhance or diminish
the strength of the actual treatment effect. Such operational biases can be removed or
reduced by using an appropriate design, a pre-planned analysis, and a thorough
execution of the clinical trial. For example, randomization reduces the selection bias
and blinding reduces the assessment bias. Both randomization and blinding are
discussed in more details later in this section. Most of the statistical principals and
techniques outlined in this chapter deal with the problem of minimizing bias and
maximizing the precision of estimation and, therefore, maximizing the validity of
conclusions.

1.1.2.3 Choice of Control

Control group is a group of patients that helps understand what would have
happened to the patients if they did not receive the experimental treatment or if
they received a different treatment known to be effective. Choice of the control
group is one of the major elements of the design of a clinical trial. The foundation for
the design of controlled experiments was established in agriculture and made its way
to the pharmaceutical industry a long time ago.

If the course of disease was uniform or predictable from patient characteristics
such that the outcome could be reliably predicted for any given patient or a group of
patients, we would not need to have a control group because the results of the
treatment could be compared with the known outcome without a treatment. For
example, one could assume that without a treatment, the pain would have persisted
for a defined time, blood pressure would not change, or tumors would grow
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following a pre-specified model. If the course of a disease is predictable in a defined
population, it may be possible to use previously studied patients as a historical
control. In rare diseases, the use of historical control might be the only option. It is
also possible to have a very high treatment effect that no comparison group is
needed, but successful results of this magnitude are very rare. In most cases, a
concurrent control group is needed because it is impossible to predict an outcome
with an adequate accuracy or certainty.

The types of control that are mostly used in clinical trials are (1) placebo,
(2) active control, or (3) different doses or regimens of the experimental treatment.
The experimental treatment and concurrent control groups are sampled from the
same population and treated in the same trial over the same period of time. Both
groups, including those assigned to the study treatment and the control, should have
similar baseline characteristics. Failure to achieve this similarity can introduce a bias
into the study.

Study designs that use placebo as the control group are called placebo-controlled
designs. A placebo is a “dummy” treatment that appears as identical as possible to
the experimental treatment with regard to color, shape, weight, taste, and smell but
does not contain any active treatment. Such designs almost always use randomiza-
tion to assign patients to either an experimental treatment or to a placebo for ethical
reasons and to eliminate a selection bias. Active-controlled (or positive controlled)
trials are the trials in which patients are assigned to the experimental treatment and
the active control treatment, e.g., the treatment already approved and available on a
market. At times even though trials use a placebo arm to make formal comparisons
with an experimental treatment arm, an active control arm can be included to validate
the study and to help make predictions about a treatment effect of the experimental
treatment against the active control. Such designs might be preferable to patients
because of the smaller chance of being randomized to the placebo arm. An add-on
study design is a placebo-controlled design of a new treatment and a placebo, both
added to a standard treatment. Such studies are common in oncology, specifically,
when the experimental treatment alone does not provide the necessary treatment
effect but can improve the clinical outcome of the standard treatment if it is given as
a combination treatment. Designs that use several fixed doses of the experimental
treatment in addition to placebo allow selection of the most efficacious and safe dose
or doses for further development and might help to characterize the dose-response
shape.

Sound scientific clinical investigations almost always demand that a control
group be a part of a trial to measure and compare a new treatment against a placebo
or an active control. ICH E10 Guideline on Choice of Control Group and Related
Issues in Clinical Trials (ICH E10, 2001) provides more details on types of a control
and how to choose a control group. Randomization is the preferred approach to
assign patients to a control group and an experimental group or groups.
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1.1.2.4 Randomization and Allocation

Randomization is a process by which each participant has a specific probability
(sometimes equal, sometimes not) to be assigned to either a treatment arm(s) or a
control arm. Fisher formally suggested the concept of randomization in the 1920s.
Amberson et al. in 1931 reported the first clinical trial that used a form of random
assignment of participants to study groups. The principal of blinding was also
introduced in this trial (Friedman et al. 2015).

Until the new treatment has been proven beneficial, randomization is the most
ethical approach. Randomization removes a potential bias (selection bias) in the
assignment of patients to study groups. Randomization tends to produce study
groups comparable with respect to known and unknown risk factors, measured
and unmeasured covariates. Another advantage of randomization is that it helps
ensure the validity of statistical tests (Armitage and Berry 1994; Lachin 1988).

Randomization procedures can be fixed or adaptive. Fixed allocation randomi-
zation assigns participants to different treatment arms with a pre-specified probabil-
ity, and this allocation probability does not change as the study progresses. The most
common types of fixed allocation randomization are complete (simple) randomiza-
tion, blocked randomization, and stratified randomization. One of the simplest
methods of complete randomization is to toss an unbiased coin each time a partic-
ipant is eligible to be randomized. If the coin turns up heads, the participant is
assigned to group A; otherwise, the participant is assigned to group B. In practice, a
random number generator is used to assign participants to treatment groups. Simple
randomization does not take past history into account, as it makes each new
treatment assignment regardless of the assignments already made and might create
imbalances in the number of patients assigned to treatments. These imbalances
become more noticeable when one needs to account for prognostic factors. Even if
the number of treatment assignments is balanced, the distribution of patients with
different prognostic factors might not be. Blocked (permuted block) randomization is
used to avoid serious imbalances in the number of participants assigned to each
group that might occur if the simple randomization procedure is used. If participants
are randomly assigned with equal probability to groups A or B, then for each block
of even size (e.g., 4, 6, 8), one-half of the participants is assigned to group A, and the
other half is assigned to group B. The number in each group does not differ by more
than b/2, where b is a length of the block. Blocks do not need to be the same size.
Varying the length of each block randomly can prevent from guessing the treatment
assignments in small blocks. One of the objectives of stratified randomization in
allocating patients to treatments is to achieve between-group balance of certain
characteristics known as prognostic or risk factors (e.g., smokers vs. non-smokers).
These factors should be available at baseline or at the time of randomization. Within
each stratum, the randomization process itself can be a simple randomization, but in
practice, most clinical trials use a blocked randomization strategy.

When adaptive randomization is used, alterations in the randomization schedule
are allowed depending upon the varied or unequal probabilities of treatment
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assignments. In contrast to the fixed randomization, the adaptive randomization
allows changing the allocation probability as enrollment of participants to a
study progresses. Adaptive randomization can be restricted, covariate-adaptive,
response-adaptive (outcome-adaptive), or covariate-adjusted response-adaptive.
Restricted randomization procedures are preferred for many clinical trials because
it is often desirable to allocate an equal number of patients to each treatment. This
equality is usually achieved by changing the probability of randomization to treat-
ment according to the number of patients that have already been assigned. Covar-
iate-adaptive randomization methods are used to ensure the balance between
treatments with respect to certain known covariates. These methods are very effec-
tive in producing a marginal balance of the treatment groups when many covariates
are considered. Response-adaptive randomization is used when ethical consider-
ations make it undesirable to have an equal number of patients assigned to each
treatment. Adaptive assessment is made sequentially, updating randomization for a
next single patient or a cohort of patients using treatment estimates calculated from
all available patient data received so far. In this situation, it should be feasible to
identify the “better” treatment, and this “better” treatment should not be associated
with any potential severe toxicity. A delay in response should be moderate allowing
the adaptation to take place. Covariate-adjusted response-adaptive randomization
combines covariate-adaptive and response-adaptive randomization. These types of
adaptive randomization are discussed in details in Rosenberger and Lachin (2002)
and Hu and Rosenberger (2006).

Until the new treatment has been proven beneficial, equal allocation to treatments
is preferred. This strategy is often the best approach to maximize the efficiency
(power) of the primary comparison. At times, an unequal allocation is used to meet
important secondary objectives, when the responses have unequal variances or when
the costs of treatments differ substantially. Response-adaptive randomization mod-
ifies the allocation ratio of patients to treatments during the trial, but as previously
mentioned, it should be feasible to identify the “better” treatment before the
adaptation.

Large multicenter clinical studies should use blocked randomization stratified by
center. A few important risk factors can be used as strata to ensure the balance for
these factors. For a large number of prognostic factors, adaptive randomization
should be considered and appropriate analyses performed. Stratified analysis can
still be performed even if stratified randomization was not done.

The process of implementing the chosen randomization method is fundamental.
For fixed randomization, the sequence of assignments can be prepared at the start of
the study. However, this is not possible for adaptive randomization because the
treatment assignment depends upon the values of the variables for patients already
entered the study. To accomplish valid randomization, it is recommended to use an
experienced independent center to be responsible for developing and testing the
randomization process and monitoring the assignment of patients to the appropriate
groups.
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1.1.2.5 Blinding

In an unblinded (open-label) trial, both the patient and the investigator know to
which study group the patient has been assigned. Some trials can be conducted only
in this manner. Such studies include those involving surgical procedures, compar-
isons of devices, or changes in lifestyle (e.g., eating habits, exercise, smoking). The
appeal of such designs is in the simplicity of the trial execution. Additionally,
investigators might be more comfortable deciding whether the patient should con-
tinue participating in the trial or not if they know the identity of the drug. The main
disadvantage of such trials is the possibility of bias. Randomization and blinding are
the two techniques usually used to minimize bias and to ensure that the experimental
and control groups are similar at the start of the study and are treated similarly in the
course of the study (ICH E9 1998).

Blinded studies can be single-blinded, double-blinded, or triple-blinded. In a
single-blinded study, only patients are unaware of what treatment they receive, but
investigators are aware of what treatment each patient is receiving. The advantages
of this design are similar to the ones of an unblinded study: it is usually simpler to
carry out than a double-blind design, and the knowledge of the intervention may help
the investigator exercise their best judgment when caring for patients. It is recog-
nized that bias is partially reduced by keeping patients blinded (especially, if the
patient knowledge of the treatment can influence the response variable), but this
design is vulnerable to another source of potential bias introduced by investigators.
For example, the investigator can influence non-study therapy (concomitant treat-
ment) or the time of their patient’s enrollment to the study. In a double-blinded
study, neither the patients nor the investigators know the treatment assignment of
patients whom they treat. A clinical trial should ideally have a double-blinded design
to avoid potential problems of bias during data collection and assessment. In studies
where such a design is impossible, a single-blinded approach favored and other
measures to reduce potential bias are implemented. The triple-blinded study design
is an extension of the double-blinded design in which the committee monitoring
response variables are not aware of the identity of the treatment groups. The Data
Monitoring Committee (DMC) receives the study data and analyses with treatment
groups as A and B. The actual treatments are revealed only if there is a major safety
concern raised by the DMC. In a blinded study (double-, or triple-), blinding to
patients and investigator should be preserved during the clinical trial; otherwise, the
benefits of randomization can be lost.

1.1.2.6 Sample Size

Questions regarding the quantitative properties of clinical trial designs, specifically,
sample size, power, the precision of an estimator, and an optimal study duration, are
among the most frequently asked questions by a clinical team to statisticians.
Table 1.1 summarizes the quantitative design parameters commonly used in clinical
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Table 1.1 Quantitative design parameters commonly used in clinical trials

Parameter

Description

Sample size

Number of patients (subjects) required for the study

Type I error (o) | Concluding that a treatment effect exists when, in reality, it does not

Type II error Concluding that a treatment effect does not exist when, in reality, it does

®

Power (1 — B) | Chance of detecting a difference of a specified size as being statistically
significant

A Smallest treatment effect of interest based on clinical consideration (clinically

relevant or important difference)

Allocation ratio

Ratio of sample sizes in treatment groups

Accrual rate

Number of patients (subjects) entering a trial per unit of time

Number of Number of patients (subjects) achieved an event of interest

events

Percent Percent of patients (subjects) left without an event of interest by the end of
censoring follow-up

Study duration

Interval from the beginning to the end of the study

Follow-up

Interval from the end of accrual to the end of follow-up

period

trials. The sample size is the number of patients in a clinical trial. The sample size is a
function of different parameters including a significance level (), a power (1 — f),
and a size of the difference in responses that need to be detected. For trials with a
time-to-event endpoint, (e.g., overall survival or disease progression), one must
distinguish the sample size from the number of events required by the study design.
The actual sample size needed to meet the required number of events depends
additionally on the censoring, enrollment, duration of the trial, and its follow-up
time.

The underlying theme of sample size considerations in all clinical trials is
precision. High precision implies little variation. The precision of estimation is the
characteristic of a study that is most directly related to the sample size: the higher the
sample size, the better the precision. In contrast, other essential features of the
estimates, such as validity, unbiasedness, and reliability, do not necessarily relate
to the study sample size. Precision is a consequence of a measurement error, within-
person and person-to-person variability, a number of replicates (sample size), exper-
imental design, and methods of analysis. By specifying quantitatively the precision
of measurement required, we implicitly outline the sample size and other features of
the study. Scientific validity is a consequence of good study design and well-
executed study.

There are two widely used frequentist approaches for determining the appropriate
sample size for a clinical trial: the first is based on confidence intervals around the
effect that we expect to observe, and the second approach is based on the ability of
the study to reject the null hypothesis when a specified treatment effect is hypothet-
ically present (based on power). There is a third perspective based on likelihood
ratios, a basic biostatistical idea that is appealing theoretically but has not been used
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widely (Piantadosi 2017). For a more detailed review of fixed sample size calcula-
tions, see Donner (1984), Lachin (1981), Chow et al. (2003), Machin et al. (2008),
Friedman et al. (2015), and Piantadosi (2017). A good review of group sequential
designs and adaptive designs including sample size estimation is given in Jennison
and Turnbull (2000), Proschan et al. (2006), Chow and Chang (2007), and Wassmer
and Brannath (2016).

It should be noted that the sample size calculations provide only a rough estimate
of the needed number of patients for a trial because parameters used to estimate the
sample size are estimates and have an element of uncertainty. For example, a study
population might be different from a population used to design a trial (sampling
error), a control group might have a higher effect than originally assumed, or effect
of an experimental drug might be overestimated. Statisticians should use simulations
to assess uncertainty, evaluate different scenarios, and understand the quantitative
properties and operating characteristics of proposed study designs.

1.1.2.7 Statistical Significance and Clinical Significance

Clinically relevant (important) difference is one of the parameters that are usually
used to estimate the sample size for a clinical trial. There are several methods
proposed to define the minimal clinically important difference (MCID) including
distribution-based methods (use statistical techniques and statistical characteristics
of the obtained sample), anchor-based methods (based on comparisons with an
external measure which serves as the anchor), and Delphi method (based on the
opinion of experts). These methods are described in more details in McGlothlin and
Lewis 2014. MCID can be defined from a patient, healthcare professional, or
researcher’s perspective. Recently, more efforts are made by regulators, researchers,
and clinical trial sponsors to include patients’ perspective in the design and evalu-
ation of clinical trials.

Once the trial is completed and analyzed, the priority is to see whether the results
produced by the data from the trial are statistically significant. The findings can be
statistically significant at a pre-specified level (usually, 5%) but unimportant clini-
cally. For example, in a study of overweight people, a weight loss at 12 months on an
experimental drug can be only 1 pound more than on a placebo and can produce a
statistically significant result if the sample size is very large. However, most likely
this degree of weight loss would not be relevant or of interest. Such results would not
be clinically significant or even meaningful. Statistical significance does not neces-
sarily mean that the improvements from a trial will be clinically significant (mean-
ingful or relevant to patients). To understand whether the results are clinically
significant requires clinical judgment. Even if the MCID was used to design the
trial, there is still a possibility that the treatment estimate can be smaller than MCID,
for example, if the variability is much smaller than expected. In practice, to minimize
the cost of a trial, more substantial treatment effect than MCID is assumed at the trial
design, which results in a smaller sample size. If the sample size is underestimated,
such a trial might fall short in demonstrating statistical significance even though
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clinical significance is met. In general, if there is an evidence that the experimental
treatment can demonstrate a substantial effect (much larger than MCID), a group
sequential design is recommended (Jennison and Turnbull 2000).

1.1.2.8 Role of Biostatistics and Biostatisticians in Clinical Development

Biostatistics is a highly developed information science; it plays a significant role in
every stage of drug development. Historically, development of clinical trials has
depended mostly on biological and medical advances, as opposed to applied math-
ematical or statistical developments. Some consider biostatistics to be a useful set of
tools that biostatisticians apply when help is needed with the calculation of the study
sample size or at the time of the data analysis. Making reasonable, accurate, and
reliable inferences from data in the presence of uncertainty is an important intellec-
tual skill that biostatisticians bring to cross-functional teams. In recent years, the
recognition and appreciation of biostatistics have considerably improved. Biostatis-
ticians are not only responsible for the quantitative properties of clinical trial designs
and for analyzing data from clinical trials, but they are also respected partners of the
clinical teams contributing to strategic discussions and helping solve day-to-day
issues on studies and clinical programs.

A biostatistician plays an essential role in every stage of clinical research and
development, starting from the design and planning stage up to the analysis and
interpretation of the results. For example, in pharmaceutical industry, a clinical
biostatistician provides statistical expertise to cross-functional teams, leads teams
of statisticians and programmers, and ensures the use of appropriate and efficient
statistical designs and analysis methods during development, submissions, and life
cycle management of drugs, biologics, and devices according to applicable global
and regional standards, procedures, and regulatory guidance documents and
guidelines.

Biostatisticians drive the development and implementation of the innovative
statistical methodology—recent advances in information science and technology
enhanced application of innovative statistical designs and methods. High-
performing computers and the use of cloud computing facilitated advances in the
development of more complex computational algorithms for statistical modeling and
simulations. Open-source software and development of handy statistical packages
increased the use of advanced methods.

Biostatisticians bring an ability to solve problems efficiently at a level of rigor to
data analysis that is a hallmark of our discipline. To have a more significant impact
on a clinical program or study design strategy, biostatisticians have to be effective
communicators and willing to assume a leadership role in a variety of situations.
This is an exciting time in both clinical and statistical research and development,
with the promise of personalized medicine and the explosion of computer-intensive
statistical tools in development. The job of a biostatistician is exciting, challenging,
and rewarding.
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1.2 Phases of Clinical Development and Design Types

This section gives a brief overview of clinical development phases and most
common design types used in clinical trials: parallel group designs, factorial designs,
crossover designs, enrichment designs, group sequential, and adaptive designs. ICH
E8 (ICH E8 1997) and ICH E9 (ICH E9 1998) are additional resources that provide
information on this topic. ICH E8 guideline on General Considerations for Clinical
Trials provides an overview of clinical development phases and gives the classifi-
cation of clinical trials according to their objectives. This guideline is currently under
revision because clinical trial design and conduct have become more complex during
the last decade and influenced strategies required to develop drugs. ICH E9 guideline
describes statistical principals for clinical trials including a brief description of
common design types. The detailed description of clinical trial designs can be
found in Chow and Liu (2003), Friedman et al. (2015), Piantadosi (2017), Jennison
and Turnbull (2000), and Wassmer and Brannath (2016).

1.2.1 Phases of Clinical Development

Traditionally, a clinical development program consists of four phases: Phase I, Phase
II, Phase III, and Phase IV.

Phase I starts with the initial administration of an experimental drug to humans.
Phase I clinical trials are designed to evaluate the safety and tolerability of a new
drug in a dose range predicted by preclinical research. Such studies are conducted in
healthy volunteers or patients with the target disease. Cancer studies are almost
always conducted in patients.

Preliminary characterization of a drug’s absorption, distribution, metabolism, and
excretion is an essential goal of Phase I. Pharmacokinetics (PK) may be assessed in a
separate study or as a part of safety and tolerance studies. Pharmacodynamic
(PD) studies and studies relating drug blood levels to response (PK/PD studies)
may be conducted to provide early estimates of activity and potential efficacy and to
guide the dosage and dose regimen in later studies. Preliminary assessment of
activity or potential therapeutic benefit is evaluated in Phase I as a secondary
objective. For many orally administered drugs, the study of food effects on bioavail-
ability is an important part of Phase I.

The objective of the Phase I trial is to estimate the safe range of doses that can be
used in Phase II. Often, the first step is to find how large the dose in a given dose
range can be before unacceptable toxicity is experienced by patients. To estimate the
maximum tolerated dose (MTD), the process typically begins with the administra-
tion of the lowest dose in the dose range and escalates to the next dose until the
pre-specified level of toxicity is reached. Dose-escalation designs are typically used
in this phase.
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Phase 1II clinical trials are designed to evaluate the level of biological activity of a
new agent and continue safety monitoring. Studies in Phase II are typically
conducted in a small group of patients selected by relatively narrow criteria. Phase
IT usually starts with the initiation of studies in which the primary objective is to
explore therapeutic efficacy in patients. These studies are often referred to as the
proof-of-concept (POC) studies and considered to be Phase Ila studies. An important
goal of Phase II is also to determine the dose(s) and regimen for Phase III trial(s).
This goal is addressed in Phase IIb studies that are usually dose-ranging trials aimed
to estimate the dose-response relationship and choose a dose or doses for Phase III.

Additional objectives of clinical trials conducted in Phase II may include evalu-
ation of multiple study endpoints, therapeutic regimens (including concomitant
medications), and different patient subgroups and target populations for further
study in Phase II or Phase III. Exploratory analyses can address these objectives,
examining subsets of data and by including multiple endpoints in trials. Initial
therapeutic exploratory studies may use a variety of study designs. A comparison
may consist of a concurrent control group, historical control, or pre-treatment versus
post-treatment evaluations. Typically, dose-ranging studies include three to five
doses of an experimental agent and a placebo; occasionally, they may include an
active control.

Phase III begins with the initiation of studies in which the primary objective is to
confirm the therapeutic benefit and the preliminary evidence accumulated in Phase II
that a drug is safe and effective for use in the intended indication and population.
These studies provide the basis for marketing approval. Studies in Phase III may also
further explore the dose-response relationship or evaluate the drug’s use in a broader
population, in various stages of the disease, or in predefined patients’ subgroups. For
drugs intended to administer for a long period of time, extension trials or extension
phases involving extended exposure to the drug are usually conducted in Phase III.
During the last several years, it became more popular to include in Phase III studies
conducted not just for marketing approval but also to satisfy payers’ requirements.
These studies usually use randomized, double-blind, parallel group designs. Group
sequential designs and adaptive designs that allow for early stopping, population
enrichment, or sample size re-estimation have become more popular in recent years.

Phase IV begins after the initial drug approval. The studies in Phase IV are
performed after the drug approval and, usually, are related to the approved indica-
tion. They are studies that were not considered necessary for approval but are
important for the further evaluation of the drug’s use. They may be of any type
but should have valid scientific objectives. Commonly conducted studies include
additional drug-drug interaction, safety studies, and studies designed to support the
use under the approved indication, e.g., mortality/morbidity studies and epidemio-
logical studies. Although some studies in this phase may use randomization, most
trials use observational, non-randomized designs. Typical types of observational
study designs include cohort and case-control designs. Chapter 4 of this book
discusses observational studies and provides more details on the design types used
for these studies.
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A research goal can overlap with more than one study phase, and some types of
studies can be conducted in several phases. Additionally, emerging data can prompt
modification of the development strategy. For example, the results of a confirmatory
study may suggest a need for an additional human pharmacology study. Recently,
seamless trials that combine objectives from two development phases have become
more popular in drug development. Seamless designs are used in Phase I/Ila trials,
Phase IIa/IIb trials, and Phase IIb/III trials. Such designs aim to reduce the overall
sample size, for example, by allowing the patients’ data from Phase II to be used in
Phase III analysis (inferentially seamless) or by eliminating the time between phases
(operationally seamless), which results in a shorter overall drug development time.
After the initial approval, drug development may continue with studies of new
indications, new dosage regimens, new routes of administration, or additional patient
populations. In this case, additional human pharmacology studies may indicate a
necessity for a new development plan. Depending on the relevance of the data from
the original development plan and therapeutic use, the requirement for some studies
may be reduced.

1.2.2 Clinical Trial Designs
1.2.2.1 Parallel Group Designs

A parallel group design is a randomized controlled design in which each patient is
randomized to one of two or more treatment arms to receive study treatment. The
treatments in this design usually include the investigational product at one or more
doses, and one or more control treatments, such as a placebo and/or an active
comparator. The assumptions underlying this design are less complicated than for
most designs discussed in this section. However, as with other designs, there may be
additional features of the trial that complicate the analysis and interpretation (e.g.,
covariates, repeated measurements over time, protocol violations, intercurrent
events, missing data). This design is the most common clinical trial design used
for confirmatory trials in Phase III.

1.2.2.2 Factorial Designs

In a factorial design, two or more treatments are evaluated simultaneously to assess
the interactions among the treatments. The most straightforward factorial design is
2 x 2 design in which patients are randomly assigned to four possible combinations
of treatments A and B: A alone, B alone, A and B together, and neither A nor B (e.g.,
a placebo). Factorial designs offer some advantages over conventional parallel group
designs. The factorial structure of the design allows for certain comparisons that
cannot be achieved by any other designs. When two or more treatments do not
interact, factorial designs can test the main effects using smaller sample sizes with
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greater precision than separate parallel group designs. The precision with which
interaction effects are estimated is lower than for main effects, but these designs
allow studying the interactions. When there are many treatments or factors, these
designs require a large number of treatment groups. In complex designs, if some
interactions are not of interest or unimportant, it is possible to omit some treatment
groups and reduce the sample size and complexity and, still, estimate the effects of
interest. Factorial designs are used mainly in disease prevention studies and to
establish the dose response of the combination treatments when the efficacy of
each monotherapy has been established.

1.2.2.3 Crossover Designs

The crossover design is a special case of a randomized controlled trial design which
allows each participant to serve as his or her control. The simplest crossover design
is the two-treatment two-period crossover design (Fig. 1.1). In this type of design,
there are two treatment periods, and patients are randomized to the sequence of
treatments: either to receive drug A followed by drug B or to receive drug B followed
by drug A. Extensions of this design include designs using more than one period for
each drug, more than two drugs, or incomplete block design where not all patients
receive every studied treatment.

There are some advantages of crossover designs over a parallel group design. For
example, because each patient serves as his/her control and because within-subject
variability is usually smaller than between-subject variability, the sample size for a
crossover design is smaller than for a parallel group design. Another advantage is
operational: patient recruitment to the trial might be easier because each patient
would have an opportunity to try multiple treatments tested in the trial. A potential
problem with crossover designs is the possibility that the treatment effect from one
period might continue to the next period. Usually, crossover trials implement a
sufficiently long washout interval between the treatment periods to address this
problem. Another problem related to the carryover effect is the treatment by period
interaction (means that treatment effect is not the same in different treatment periods;
it varies over time). This problem is not unique to crossover designs, but carryover
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effects can cause treatment by period interactions, and for the two-treatment
two-period crossover trials, the carryover effect and treatment by period interactions
are indistinguishable. Missing data has substantial effects on crossover trials. Usu-
ally, the trial duration is longer in crossover trials than in parallel group designs, and
the side effects from multiple drugs can increase the chance of patients dropping
earlier. ICH E9 guidance suggests restricting crossover designs to trials where loss of
subjects and data is expected to be small, and to chronic and stable diseases under
study. Crossover designs are commonly used in bioavailability trials.

1.2.2.4 Enrichment Designs

Enrichment designs are the clinical trial designs that aim to enrich the study
population by selecting a subset of patients in which the potential effect of a drug
can more readily be demonstrated (US Food and Drug Administration 2019a). The
FDA guidance on Enrichment Strategies for Clinical Trials identified three broad
categories of enrichment strategies: (1) strategies to decrease variability, (2) prog-
nostic enrichment strategies, and (3) predictive enrichment strategies. Many differ-
ent designs can support each of these strategies. Below, we provide examples of
some of them.

Study designs that decrease heterogeneity (nondrug-related variability) and,
therefore, increase the study power are widely used in clinical trials. The simplest
enrichment design is the placebo lead-in design (Fig. 1.2). In this design, all patients
have a run-in period during which they receive a placebo. Patients who respond to
placebo are taken off study. Patients who do not respond to placebo are randomized
to receive an experimental drug or a placebo. Only randomized patients are included
in the final analysis. Placebo lead-in period helps to eliminate patients who improve
spontaneously or have large placebo responses. The main advantage of this design is
the decreased variability and the increased power to detect the effect in the enriched
population.

A slightly more complex and more efficient design is sequential parallel compar-
ison design (SPCD) (Fig. 1.3). This design has a smaller sample size than a
traditional two-arm parallel group design because it uses two data points from
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Fig. 1.3 Sequential parallel
comparison design

a?
g responders
(=]
E.
5 -
gl 5 m
responders ) Placebo
\ / g I
—_ 4
Stage 1 Stage2

some patients. Compared to the crossover design, the sample size is larger, but there
are no concerns about the carryover effect, and we do not need to assume that
treatment effects are the same in two periods as they are analyzed separately. More
information on these designs can be found in Ivanova et al. (2011) and Baer and
Ivanova (2013). Additionally, it is possible to enrich two ways: after Stage 1, one can
evaluate both drug and placebo responders and non-responders and then
re-randomize placebo non-responders and drug responders to drug and placebo
treatment groups (Huang and Tamura 2010). There are other modifications of
these designs (Ivanova and Tamura 2015).

Prognostic enrichment strategies mentioned in the FDA guidance on Enrichment
Strategies for Clinical Trials (US Food and Drug Administration 2019a) are aimed to
identify high-risk patients for the clinical trial before its initiation. For example, type
2 diabetes mellitus therapies have to characterize the cardiovascular (CV) safety
profile of the new antidiabetic treatment with a certain level of risk ruled out in the
pre-approval stage and a reduced level of risk to be ruled out in the post-approval
stage. To meet these requirements, meta-analyses and large cardiovascular outcome
trials (CVOTs) are conducted. CVOTs require large sample sizes and, therefore, are
very costly studies. Choosing patients at relatively high risk of CV events is critical
for these studies to be able to rule out a given level of CV risk with a reasonably
feasible study size. Inclusion criteria that are used to identify the high-risk patients
for CVOTs include a history of recent myocardial infarction or stroke, the presence
of concomitant illness, and certain blood markers. Statistical designs that usually
used for these trials are the standard parallel group design, group sequential and
adaptive designs that are briefly described in the next subsection. More information
on strategies and statistical designs of CVOTs can be found in Marchenko et al.
(2015) and Marchenko et al. (2017).

Another type of enrichment designs includes designs focused on a subset of
patients with specific genomic patterns that appear to be associated with the response
to the therapy. For example, a biomarker-stratified design can be used to prospec-
tively validate the biomarker and compare responses in biomarker-positive and
biomarker-negative populations (Fig. 1.4). Exclusion of the marker-negative
patients from the trial would be justified when there are evidence based on
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mechanistic, nonclinical, or early clinical data that the marker-negative patients
would not benefit from the experimental drug or would be exposed to the unreason-
able risk. In this case, the biomarker enrichment design that selects only biomarker-
positive patients to randomize and study in the trial further will be more appropriate
(Fig. 1.5).

If there is uncertainty at the planning stage about the strength of the marker-
outcome relationship, a fixed sample enrichment design might not be the best choice.
A study design that incorporates planned adaptations with the enrichment strategy,
taking advantage of information gained during a clinical trial, could be a better
choice.

1.2.2.5 Group Sequential and Adaptive Designs

Designs that allow for prospectively planned adaptations to one or more aspects of
the design based on accumulative data from subjects in the trial are called adaptive
designs (US Food and Drug Administration 2019b). Some authors consider group
sequential designs to be a separate class of designs. Recently released FDA draft
guidance on adaptive designs includes group sequential designs as one of the
adaptive design types. There are many types of adaptive designs; here we provide
some commonly used designs.

Group sequential designs allow stopping a study prematurely due to overwhelming
efficacy or futility at a pre-planned interim analysis. The total number of stages (the
number of interim analyses plus a final analysis) and the timing and stopping
criterion from rejecting or accepting the null hypothesis at each interim analysis
are usually pre-planned in advance. The Lan-DeMets alpha-spending approach
allows for flexibility in determining the number and timing of interim analyses
(Lan and DeMets 1983) if such flexibility is necessary, for example, when the
enrollment rate is much slower than anticipated. The timing and number of interim
analyses should be evaluated and simulated to navigate the decision process.
Although by increasing the number of analyses, the chance of stopping before the
end of the trial increases, multiple analyses during the trial might not be practical or
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even possible due to the fast enrollment or financial constraints. The opportunity to
stop a trial early and claim efficacy increases the probability of an erroneous
conclusion regarding the new treatment (type I error). For this reason, it is important
to choose the method and the significance levels for interim and final analyses
carefully so that the overall type I error rate is controlled at a pre-specified level.
Usually, stopping rules are based on rejection boundaries, on a conditional power, or
on a predictive power. The boundaries determine how conclusions would be drawn
following the interim and final analyses, and it is important to pre-specify which type
of boundary and spending function (if applicable) would be employed. The condi-
tional power approach is based on an appealing idea of predicting the likelihood of a
statistically significant outcome at the end of the trial, given the data observed at the
interim and some assumption on the treatment effect. If the conditional power is
extremely low, it is wise to stop the trial early for both ethical and financial reasons.
Although it is possible to stop the trial and claim the efficacy if the conditional power
is exceptionally high, the conditional power is mostly used to stop for futility. The
choice of the statistical approach and the type of boundaries should depend on the
objective of the trial and the role of the trial in a clinical program. When considering
stopping for the overwhelming efficacy, one should keep in mind the implication of
stopping early on the secondary endpoints and the safety profile of the drug. Group
sequential designs have a reduced minimum and expected sample size but an
increased maximum sample size relative to a comparable non-adaptive (fixed sam-
ple) parallel group design. In most cases, the increase is not large, and the design is
worth considering given the savings from early stopping. The group sequential
designs are considered to be more ethical and desirable for patients. More details
on sequential designs can be found in Jennison and Turnbull (2000), Proschan et al.
(2006), and Wassmer and Brannath (2016).

Adaptive dose-ranging designs allow fuller and more efficient characterization of
the dose-response by facilitating iterative learning and decision-making during the
trial. Insufficient exploration of a dose-response relationship often leads to a poor
choice of the dose selected for the confirmatory trial and may subsequently lead to
the failure of the trial and even a clinical program. Understanding of a dose-response
relationship with regard to efficacy and safety before entering the confirmatory stage
is a necessary step in a drug development. During an early development phase,
limited knowledge about a drug opens more opportunities for the adaptive design
consideration. Adaptive dose-ranging designs can have several objectives. They can
be used to establish an overall dose-response relationship for an efficacy parameter
or efficacy and safety parameters, estimate a therapeutic window or regimen, or
select a single target dose. The allocation of subjects to the dose currently believed to
give best results, or to doses close to the best one, has become very popular in
clinical dose-finding studies, specifically, when the intention is to identify the
maximum tolerated dose (MTD), the minimum efficacious dose (MED), or the
optimal dose. Examples are included in Lai and Robbins (1978); O’Quigley et al.
(1990); and Thall and Cook (2004) among others. More rigorous approaches are
based on the introduction of utility functions, which quantify the “effectiveness” of a
particular dose, and penalty functions, which quantify potential harm due to
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exposure to toxic or non-efficacious doses. Examples are provided by Li et al. (1995)
and Fedorov and Leonov (2013). The FDA draft guidance on adaptive designs
(US Food and Drug Administration 2019b) mentions adaptive parallel group designs
with multiple dose arms that can be dropped or added at an interim analysis based on
the pre-specified algorithm (Bretz et al. 2009; Wassmer and Brannath 2016). A
special case of adaptive treatment arm selection occurs in the context of an adaptive
platform trial designed to compare more than one experimental treatment against an
appropriate control for a disease (Woodcock and LaVange 2017).

Sample size re-estimation designs allow for sample size adjustment or
re-estimation based on observed data at an interim time point(s) for which statistical
analysis may be conducted in a blinded or unblinded manner. Sample size
re-estimation can improve the outcome of a trial if the information used to calculate
the original sample size was unreliable, if the change is necessary due to new or
additional information from an ongoing or finished trial, or if recent research in the
therapeutic area led to new requirements or standards. Although the flexibility to
adjust a sample size for a trial during an interim analysis is appealing when
information is limited at the design stage, it does not come without a price. When
the adjustment is made, it is important to take steps to preserve type I error rate.
Sample size re-estimation is an adaptive design feature that mostly used in confir-
matory trials to increase the sample size if variability is larger than originally
planned. Refer to Chow and Chang (2007) and Bretz et al. (2009) for methods that
are commonly used to re-estimate sample size in clinical trials. Similar to adaptive
group sequential designs, the timing of a sample size re-estimation requires addi-
tional considerations. While it is possible to perform a sample size re-estimation
multiple times, it is not recommended to perform it more than once during the trial.
Careful consideration must be given to the total sample size utilized for decision-
making at the planning stage and the processes that minimize potential bias that may
result from knowing an interim-observed treatment effect. In the case of unblinded
sample size re-estimation, special considerations should be given to the management
of the Data Monitoring Committees (DMC) and the control of the results
dissemination.

Adaptive enrichment design allows to decide whether to continue with the overall
population or just with the marker-defined subpopulation and re-estimate the study
sample size accordantly. Such changes should be prospectively planned and would
often need appropriate type I error rate control to account for interim analyses of the
accumulating data and subgroup analyses. If the only change were increased sample
size based on blinded, pooled results because the prevalence of the marker-defined
subgroup was lower than expected, there would be no need for a type I error rate
adjustment. Designs that can be used to perform the subgroup search and identifi-
cations based on biomarkers are discussed in Lipkovich et al. (2011) and Chap. 6 of
this book. Stallard (2010) describes a seamless Phase II/IIl design based on a
selection using a short-term endpoint; Jenkins et al. (2011) present an adaptive
seamless Phase II/IIl design with subpopulation selection using correlated end-
points; and Friede et al. (2012) introduce a conditional error function approach for
subgroup selection.
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Adaptive seamless designs have become more popular in drug development in
recent years. Such designs aim to reduce an overall sample size by allowing the data
from one phase to be used in another phase analysis (inferentially seamless) or to
reduce the development period by eliminating the time between phases (operation-
ally seamless). For example, an adaptive seamless Phase II/III design is a two-stage
design consisting of a so-called learning stage (Phase II) and a confirmatory stage
(Phase III). Just as there are a number of Phase II and Phase III designs, there are a
number of the corresponding Phase II/III designs. Seamless designs pose many
challenges as the time for planning a confirmatory trial is eliminated or rather
combined with the planning time of Phase II when the information is limited and
the uncertainties of the treatment are more significant. A sufficient benefit should be
expected from the combined Phase II/III trial as compared to the strategy with a
Phase 1II trial followed by a separate Phase III trial. To retain the validity, a type I
error control is important for the inferentially seamless designs. Approaches based
on the combination test principle that combine the stage-wise p-values using a
pre-specified combination function or on the conditional error principle which
computes the type I error under the null hypothesis conditional on the observed
data at interim are usually used to control type I error rate. Bretz et al. (2009) provide
a comprehensive review of the methods and offer practical considerations.

The planning stages for an adaptive clinical trial must be completed before
finalizing the decision to proceed. Trial simulations that compare different design
options, evaluate a range of assumptions, and compare operating characteristics of
designs are an essential step in a trial design and planning stage. Simulation tools can
also be used to monitor clinical trial outcomes and enrollment during the study to
ensure that the study is meeting expectations. Chapter 8 of this book provides
more information on the predictive modeling of the clinical trial operations, specif-
ically, predicting patient enrollment at different stages of the study. More informa-
tion on adaptive design considerations and implementation can be found in He
et al. (2014).

1.3 Statistical Methods

Statistical methods in drug development are used for the design and analyses of
clinical trials that, in turn, are aimed to determine the effects of particular healthcare
treatments, practices, and interventions. While many pharmaceutical studies have
utilized mainly randomized trial designs and employed basic inference procedures to
assess the efficacy and safety of new interventions and treatments, more recent
studies rely on modeling techniques that extend beyond traditional regression-
based approaches. Although data in drug development are often collected longitu-
dinally (i.e., data collected repeatedly over time on the same set of subjects),
frequently primary and critical secondary analyses rely on a single post-
randomization time point (e.g., change from baseline in response at a specific
time). While a focus on a single time point may be driven by regulatory requirements
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in a “confirmatory” setting, longitudinal modeling utilizing the totality of the
observed data offers the opportunity to achieve substantial efficiencies in data
analysis compared to current prevailing practices at the “learn” stage of drug
development. Those efficiencies may translate into faster and more accurate
decision-making, increased statistical power and/or estimation precision, and com-
binations of these, ultimately leading to increased probability of program success,
while reducing development costs. For the listed reasons, we decided to dedicate a
substantial part of this section to parametric longitudinal modeling methods, the
primary goal of which is to characterize the change in response over time and the
factors that influence change (Fitzmaurice et al. 2009). In many pharmaceutical
studies, the focus is primarily on mortality or survival with a specific interest given to
identification of the causes of early death and effectiveness of treatments for
delaying death and morbidity. In these types of studies, the survival analysis of
time-to-event is utilized (Kleinbaum and Klein 2012a, b).

The rest of this section is organized as follows. We start with a brief overview of
the most commonly used probability models and basic principles of parametric
estimation and inference in Sect. 1.3.1. Focusing on both categorical and continuous
types of response, we continue with the main properties of sampling distributions of
estimators commonly used for data analysis. We follow with the concept of regres-
sion and generalized linear modeling, thereby unifying the process of model con-
struction for a quantitative and categorical response in Sect. 1.3.2. With this, we lay
the ground for longitudinal data analysis described in Sect. 1.3.3 and finish with a
brief discussion about inference and modeling techniques for a time-to-event,
survival analysis in Sect. 1.3.4. Where appropriate, we include references to avail-
able software procedures in R and SAS.

1.3.1 Basic Principals of Probability and Inference

All statistical studies distinguish between response (or dependent, outcome) vari-
ables and explanatory (or independent, predictor) variables. Both response and
explanatory variables can be qualitative or quantitative.

When a variable takes numerical values in the list or an interval or a set of
multiple intervals, this variable is called quantitative or numerical. Quantitative
variables are classified as discrete and continuous. While discrete quantitative vari-
ables usually take a few or many values from the list, continuous variables can take a
large number of values, in practice, and an infinite number of values, in theory.
Examples of continuous response variables in clinical studies include blood pres-
sure, the concentration of white cells, and body temperature.

A qualitative (or categorical) variable has a measurement scale consisting of a set
of categories. Qualitative variables can be of two types of scales: nominal and
ordinal. While nominal categorical variables have no inherent natural order in
categories (e.g., skin color, sex, personality type, type of side effect), ordinal
categorical variables do have ordered categories (e.g., disease stage, patient
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condition). The choice of statistical analysis depends on the type of distribution of a
categorical variable. Agresti presents a comprehensive review of the analysis of
categorical data (Agresti 2002).

The first and foremost important step of any statistical analysis is a clear definition
of the type and nature of the response and explanatory variables. This step helps to
determine an appropriate set of descriptive and inferential methods for analysis and,
if needed, leads to a proper choice of class of models. While descriptive analysis
relies only on the assumption of the randomness of the data, inferential data analyses
also rely on assumptions of the specific distribution of the variables under consid-
eration. For instance, for linear regression models with continuous responses, the
assumption of normality is essential; for logistic regression, the distribution of
responses is assumed to be binomial.

1.3.1.1 Probability Distributions

Many statistical inference procedures rely on the assumption of a particular distri-
bution. For example, the assumption of normal distribution is required for statistical
procedures such as t-tests, linear regression analysis, discriminant analysis, and
analysis of variance, and when violated, interpretation and inferences may not be
reliable or valid. Here, we provide an overview of the probability distributions most
commonly used in pharmaceutical data analyses. Specifically, we focus on normal,
multivariate normal, binomial, hypergeometric, multinomial, Poisson, and negative
binomial distributions.

Normal Distribution

Normal random variable, Y, is the most frequently used and most studied univariate
continuous random variable in theory of statistics and probability that is completely
characterized by its expected value (mean) y and the standard deviation o. Most of
the inferential and modeling procedures for continuous response (e.g., regression,
one- and two-sample inference for population mean) rely on an assumption of
normality of some sort, as well as large sample procedure for categorical response
(e.g., one- and two-sample inference for population proportion). Similarly, studies
with a multivariate continuous response (e.g., repeated measurement over time
and/or conditions, clustered data) rely on assumption of multivariate normality.
Multivariate normal distribution of random vector ¥ = (Y1, Y,,...,Yy) is fully
defined by a mean vector u and a covariance matrix X. Table 1.2 contains a summary
for univariate and multivariate normal distribution.
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Binomial Distribution

Many pharmaceutical applications use a binary response to report, for example,
presence or absence of a certain disease, side effect, effectiveness of a drug, etc. Let
Y1s Y2, - .., ¥, denote binary responses for n independent individuals related to n
independent random variables Yy, Y5, .. ., Y¥,,. For a binomial model, we assume that
each person’s response is an independent and identical Bernoulli experiments with P
(Y;=1)=pand P(Y;=0) = 1 — p, where outcomes 1 and 0 are labeled as “success”
and “failure” and p is the same across all responders. The total number of successes,
Y = Z:':l Y;, is a binomial random variable with a fixed number of experiments, n,
and a probability of success, p. Table 1.2 provides the binomial probability mass
function with a corresponding mean and variance. As a number of experiments
grows and p remains fixed, the distribution of ¥ converges to normal. In some cases
when there is no guarantee that successive response experiments are independent or
identical, one can use the hypergeometric distribution that samples n binary out-
comes without replacement from a finite population of size N with A successes
(Agresti 2002).

Multinomial Distribution

In some sense, it represents an extension of binomial distribution when each person’s
response is exactly one of k possible categories. Consider, for example, a blood type
where each person can be either of O, A, B, or AB type. In this case, response of
person i is a k-dimensional vector y; = (Y1, Vi2, - - -» Yix) With only a single non-zero
value 1 (e.g., a person with AB blood type has a multinomial outcome vector
(0,0,0,1)). The total sum of responses is a random vector Y = (Y,Ys,..., Yy,
where each entry Y; is the sum of all responses for category j. The sum of all
responses across all categories, Z;(:l Y;, always equals to the number of responses,
n. The probability of success in category k on each experiment is fixed, p;, and
Zf: pi = 1. The probability mass function of Y = (Y}, Y>, .. ., Y)~Multinomial(n,
P1,P2 - - -, Pr) along with the means and variances for each category as well as
covariances between categories is summarized in Table 1.2.

Poisson and Negative Binomial Distribution

Poisson random variable is a discrete random variable that is used for counts of
events that occur randomly over a continuum (time or space), when outcomes in
disjoint segments (periods or regions) are independent. In theory, a Poisson random
variable can take discrete values from an infinite list of possible values, though in
practice only some values can happen with non-trivial probability. The distribution
of a Poisson random variable, Y, depends on a single parameter A, which defines both
its mean and variance. Moreover, the variance equals to the mean of Poisson
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distribution (see Table 1.2). In practice, this means that sample counts vary more
when their mean is higher. Often, however, sample count observations exhibit
variability exceeding expected by the Poisson distribution, phenomena is known
as overdispersion. In these cases, assumption of a Poisson distribution for count data
is too simplistic and the negative binomial distribution can serve as an alternative
model for count data that permits the variance to exceed the mean. Negative
binomial distribution is a discrete probability distribution that counts the number
of successes, y, in a sequence of independent and identically distributed Bernoulli
experiments until a pre-specified (fixed in advance) number of failures, r, occurs.
Analogously to binomial, each Bernoulli experiments results in one of the outcomes,
success or failure, with probabilities p and (1 — p), respectively.

1.3.1.2 Statistical Estimation

In general, the choice of the distribution for a response variable is one of the essential
steps. Each distribution is defined by one parameter or a set of parameters that in
practice are unknown and need to be estimated using sample data. In this chapter, we
follow the approach described by Agresti (2002), and we first focus on maximum
likelihood (ML) estimators that under weak regularity conditions possess important
properties for large samples: such as for approximate normality of sampling distri-
butions, asymptotical consistency (converging to the parameter as sample size
increases), and efficiency (producing standard errors no higher than those using
other methods).

Suppose response variables Vi, Y,, Y3, ..., ¥, have the following joint density
function (for continuous variables) or the probability mass distribution function (for
discrete random variables) f(yy, ya, - . ., ¥4l €), where 8 can be a single parameter (e.g.,
0 = p) or a vector of parameters (e.g., 0 = (u,0), 0 = (o, p1.p>,....p,). Given
observed values Y, =y, Y,=y,,..., Y, =Yy, thelikelihood of @ is the probability
of observing the given data as a function of 9, L(0) = f(y1, 2, - - ., .l ). The value of
0 that maximizes L), 0= arg maxg L(9), is called the maximum likelihood
estimate (MLE) of parameter §. The MLE is also a value of the parameter that
maximizes [(0) = log L(6) = > logf(y;|0) = > _1;(0) and guarantees that observed

data have the highest probability of occurrence.

The standard error of €, in general, can be obtained from the asymptotic
covariance matrix of @, which under certain regularity conditions equals to the
inverse of information matrix 1(#) ' (Rao 1973), where the information matrix is

~ %16 .
defined as / (9) =—E {Ta@'] . The standard errors of each parameter of interest are
the square roots of diagonal elements of the inverse of information matrix evaluated
at the maximum likelihood estimator, 6. A number of other variance/covariance

-1
. . . . . . azll-@
estimators include negative Hessian variance estimator | — 000 , outer
i
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. OEA0) L
product of gradient (— O O) , and the result of M-estimation

- -1
0 0 0 8
<Z aéa@) ( I @ g O > ( a;g) , also known as the empirical or

“sandwich” estimator. M-estimators and their asymptotic properties were initially
introduced by Huber (Huber 1964, 1967). In the biostatistics literature, M-estimators
were brought under the name of generalizes estimation equations (GEE) by Liang
and Zeger (Liang and Zeger 1986, 1995). Serving as an alternative to maximum
likelihood estimation, the GEE approach provides a more general methodology for
analyzing correlated responses that can be discrete or continuous (Fitzmaurice et al.
1993). The well-known generalized least squares (GLS) approach used in regression
model can be considered a special case of the GEE approach. The key idea behind
the GEE is to extend the usual likelihood equations by incorporating the covariance
matrix of the vector responses.

In practice, it is more informative to construct confidence intervals than to report
estimates and their corresponding standard errors. Based on the asymptotical con-
sistency and normality of the MLE of 0 and using both the values of the estimates
and standard errors, one can construct 100(1 — a)% Wald confidence interval. The
Wald confidence interval (Wald 1943) for univariate parameter is a set of € values

between 6 — 72 SE (9) and 0 + % SE( ) where z¢ denotes the 100(1 — a) percentile

of the standard normal distribution. For categorical data and data with a small sample
size, the likelihood-ratio-based confidence interval is more preferable. The
likelihood-ratio-based confidence interval is based on the 100(1 — «a) percentile of
the chi-square distribution, Xéf(a), with g degrees of freedom (with one degree of

freedom for a single parameter). In general, this interval represents a q-dimensional

confidence region space for multivariate parameter §: —2 [L(H) —L (@)} < Xflf (a).

The likelihood-ratio-based approach to construction of a confidence region (interval)
remains reliable when the assumption of normality of Bis violated (Pierce and Peters
1992). See Kauermann and Carroll (2001) for a more recent discussion of the
properties of the “sandwich” estimator and corresponding coverage probability of
confidence intervals (Kauermann and Carroll 2001).

1.3.1.3 Statistical Inference

Here we focus on two standard approaches to perform large sample inference of a
parameter of interest: one using the reported maximum likelihood estimates and
corresponding standard errors and another based on the likelihood-ratio test. Con-
sider a significance test of a null hypothesis Hy, : 8 = 6. Using the first approach, the

Wald test statistic z = (@— 490)/SE (5) has an approximate standard normal

distribution when € = 6,. Depending on the alternative hypothesis H; (one- or
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two-sided), one can follow with the computation of p-value or reference the standard
normal table for appropriate critical values.

A second method uses maximization of the likelihood function under two con-
ditions: (1) when H,, is true and 8 = 6, and (2) permitting H, or H; to be true. The
likelihood maximized under the second condition L, will always be as large as or
larger than the likelihood maximized under the first condition L, due to maximiza-
tion of an unrestricted set of parameters. The likelihood-ratio test statistics
—2 log [Ly/L{] under H, converges to chi-square distribution with the degrees of
freedom equal to the difference between the dimension of the full parameter space
and the dimension of the parameter space restricted by Hy (Willks 1938). For large
samples, both approaches provide the estimates asymptotically equivalent; for small
to moderate samples sizes, the likelihood-ratio test is usually more reliable (Cox
1970). Overall, the traditional approach to statistical inference focuses on hypothesis
testing of a single test or a number of multiple test with some chosen multiplicity
adjustment strategy (see Alosh et al. 2014; Dmitrienko and D’Agostino 2013; and
Tamhane and Gou 2017).

Evidently, knowledge of a sampling distribution or at least the expected value and
the standard error of a sample statistics significantly simplify the process of statistical
inference that is based on the probability distribution of a statistic, rather than on the
likelihood function built on all sample values. A sampling distribution is the
probability distribution of a given sample statistic, or more specifically, if a large
number of random samples of size n was drawn from the same population of interest,
and each sample was used to produce one value of a sample statistic (e.g., the sample
mean), then the probability distribution of the values that the statistic takes on is
called the sampling distribution. Many sampling distributions are not observed in
practice but instead derived in theory via various versions of the Central Limit
Theorem. For example, when a random sample is drawn from a normal population
or the sample size n that is relatively large (roughly 30 or more), the sample mean
follows normal or approximately normal distribution with the same mean as the
population mean p and the standard error as a ratio of the population standard
deviation and a square root on the sample size, ﬁ In cases, when the population

standard deviation is unknown and is estimated using a sample standard deviation,
the same statement applies except the sampling distribution is the Student’s
t-distribution, rather than normal. The exact sampling distribution of a sample
proportion of successes in n Bernoulli trials p is npBinomial(n, p) that can be also

approximated by a normal distribution, p ~ N | p, ’@ . There are other sam-

pling distributions derived for many sample statistics that are out of the scope of this
Section.
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1.3.2 Linear Regression and Generalized Linear Models

The objective of statistical modeling is usually twofold: (1) the interpretability and
the prediction power of the model and (2) the inference about the effect of individual
predictors on the response. For example, in many pharmaceutical studies, one of the
objectives is (1) to test a statistically significant effect of some treatment (e.g., new
analgesic vs. placebo) on a response variable (e.g., pain relief score) and (2) to
estimate the magnitude of the treatment effect. Consistently with these two objec-
tives, statistical modeling approaches often rely on certain assumptions regarding the
relationship between the response and predictors and the distribution of the response.
By fitting a simple regression model with the treatment represented as one of the
independent variables (categorical), one can perform a test of statistical significance
essentially equivalent to t-test for the difference in population means. Using the
regression approach, it is also possible to adjust the model for other independent
(pre-treatment) variables, such as baseline patient characteristics.

1.3.2.1 Linear Regression Model

Classical regression model focuses on a continuous dependent variable, or response,
and has the general form of:

Y = E(Y|X) +e,

where X denotes a set of independent predictor variables (with the first column
assumed to be one) and ¢ represents a random error induced by some source of
uncertainty (e.g., random sampling). While the expected value of the response Y is
considered to be a linear combination of predictors E(Y1X) = Xﬂ, error term € is
assumed to follow a normal distribution with the expected value of zero and the
variance of o> and to be independent of X.

More specifically, let’s consider N independent observations of a single response
variable, Y, that can be either continuous, binary, or count. Let ¥; (i = 1,2,...,N)
denote the response variable for the i/ subject and assume a p-dimensional vector of
covariates, X; = (X;i, . . ., X;) associated with each outcome Y;, where X, denotes the
k™ covariate for the i”* subject. The classical linear regression model for ¥; can be
written as:

Yi = ﬁlXil + ﬂzX,Q +... +ﬁle'p + e;,
where X;; = 1 for all individuals and f; is the regression intercept. According to this

model, the expected value of Y; is the average for all individuals with the
pre-specified covariate values that vary linearly with the values of the covariates,
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E(Y,"Xil, cen inp) = ‘M(Y,'\X,'l ,,,, le) = ﬂ]Xil +ﬁ2X,'2 + ... +ﬂpXip~

Vector of coefficients f = (61, f,, ..., p,) is estimated using the least squares
(LS) approach of the maximum likelihood (ML) method and has the following
interpretation. The population intercept (for X; = 1), 3, is the mean value of the
response when all of the covariates equal zero. In turn, the population slope, say S,
has interpretation in terms of the expected change in the mean response for a single-
unit change in X given that all of the other covariates remain constant.

The basic idea behind the least squares (LS) estimation is to choose the estimates
of i, ... By (Bl, o ,ﬁ,,) such that the fitted regression model “deviates” the least
from the observed data or minimizes the residual sums of squares defined as:

N
2
i

S (r-n)y -y

i=1 i=1

where ¢; is an estimated residual, Y; is an observed value of the response, and IA/i a
fitted value of the response of the i subject:

Yi =B Xa +BXo + ...+ B Xip

Recall that according to ML approach, the estimates of 4, ..., §, (/Ail, . ,Bp),

and 62(32) are the values that are most “likely” for the observed data that can be
found as the values that maximize the log-likelihood:

1By, ....B,.0%) = lnL( b B Y Xii=1,...,N)

= —— ln (27102)

N
2
—1/(26%) Y (Yi = BiXa + X + ... + B, Xp)

i=1

It turns out that the estimates found by ML and LS approaches are equivalent and
in the vector/matrix notation form can be written as:

B: (Al’ ""ﬁp) =

This value of the estimate is the one usually produced by any statistical software
for linear regression. In SAS, one can use PROG GLM or PROC REG and the “Im”
function (as a part of standard ‘stats’ package) in R.

Provided that the main linear regression model assumptions are satisfied, the ML
(LS) estimator of regression coefficients possesses the following important

N -1

> (X))

ENI (X,Y;

i=1
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properties. The estimator of f is unbiased that is E (ﬁ) = f; and the sampling

distribution of ﬁ is asymptotically normal,

-1
p~N|p o

XN; (XiX7)

Note that in this chapter, we do not provide a detailed description of classical
methodology of the analysis of variance (ANOVA) and the analysis of covariances
(ANCOVA). Both of these concepts can be formulated and interpreted in term of the
general linear models. See Rutherford (2011) for a comprehensive review and
detailed explanation of how ANOVA and ANCOVA are incorporated in GLMs.
In his book, Rutherford (2011) also discusses corresponding different multiple
comparisons procedures and the power analysis in relation to the sample size
computation.

1.3.2.2 Generalized Linear Models

In many pharmaceutical and biomedical applications, the response is not continuous,
for example, presence or absence of some particular side effect or counts of the
number of epileptic seizures over some period of time or the number of acne pimples
over a certain body area or the type of response to cancer treatment (e.g., complete
response, partial response, stable disease, progression). When the response variable
is discrete (e.g., binary, ordinal, or a count), the linear regression models are no
longer appropriate. Instead, generalized linear models can serve as an alternative for
relating changes in the expected response to covariates. Generalized linear models
extend the class of linear regression models to settings where the outcome variable
can be categorical, continuous, or count using the distribution models appropriate for
each type of response.

First, we consider methods for analyzing cross-sectional data and then we extend
them to longitudinal and clustered data settings. Assume N independent observations
of a single response variable, Y, that can be either continuous, binary, or count. As
before, we let ¥; (i = 1,2, ..., N) denote the response variable for the i subject and
assume a p-dimensional vector of covariates, X; = (X;y, . . ., X,) associated with each
outcome Y;, where X;; denotes the k" covariate for the i subject with X;; = 1 for all
subjects. The primary goal of a generalized linear model is to relate the mean of Y;,
u; = E(Yl1X;1, ..., Xjp), to the covariates X; in some linear form through the specifi-
cation of (1) a distribution for Y;, (2) a systematics component, and (3) a link
function.

The distribution of the response is assumed to belong to the exponential family of
distributions, the density function of which can be expressed in a form:
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Table 1.3 Scale factor, variance functions, and canonical link for normal, Bernoulli, and Poisson
distributions

Distribution | Scale factor | Variance function | Location parameter/canonical link function
Normal =0 v(u) =1 Identity: 0 = g(u) = u
Bernoulli ¢p=1 v(p) = pu(l — p) Logit: 0 = g(u) = log (ﬁ)
Poisson p=1 v(u) = p Identity: 6 = g(u) = log (1)
. {6 — a(6)}
£ ) = exp | DTS 4 by, )|,

where a(-) and b(-) are specifically defined for each particular distribution. All
exponential family distributions share some common statistical properties. Focusing
on the mean and the variance of exponential family distributions, it can be shown
that the mean of Y; can be computed as a derivative of the function a(g;), that is
EY;) =u, = a‘é#g’), and the variance of the response can be computed using a
second derivative of a(f;) and expressed in terms of the product of a positive

dispersion parameter, ¢ > 0, and a variance function of mean, v(y;), that is

Var(Y;) = ¢ aza“ 9(? ) — ¢v(u;). In fact, the normal, Bernoulli, binomial, and Poisson
distributions all belong to the exponential family distributions. For instance, by
re-arranging terms in the normal density function, f(y;; u;, 6°), one can represent it
in a general form of exponential density with canonical location parameter 8; = y;,
scale parameter ¢ = 1, a(6;) = p?/2, and b(y;, ¢) = —1/2 {y?/c* + log (275?).
Scale factors and variance functions for normal, Bernoulli, and Poisson distributions
are summarized in Table 1.3.

The systematic component of a generalized linear model specifies the effect of the
covariates, X;, on the mean of Y; that can be expressed in a linear combination of the
unknown regression coefficient and covariates (or even transformed coefficients),
denoted by 7;,

n; =P Xi +PoXo + ...+ B, Xip.

By taking a suitable transformation of the mean response, y;, and relating the
transformed response to the covariates through an appropriate link function, g(u;),
the specification of a generalized linear model becomes

gwi) = n; = piXa + X+ ...+ B Xip.

The link function, g(u;), is some known function. For example, for the normal
distribution of the responses, the link function is an identity function, g(y;) = p;; for
count data following the Poisson distribution, the link function is a natural logarithm
g(u;) = log (u;). Table 1.3 contains canonical link functions for three most used
distributions that are normal, Bernoulli, and Poisson.
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In general, the estimation of the regression coefficients in a generalized linear
model is based on the maximum likelihood approach that requires an iterative
procedure that has been implemented in many statistical packages. In SAS, one
can use PROC GENMOD and the “glm” function in R.

Logistic Regression for Binary Responses

In situations when the response for each subject is binary (i.e., can be mapped to
1 = “success” and 0 = “failure”), ¥; € {0, 1}, the mean of the binary response
variable, denoted as p, is the proportion of successes or the probability that the
response takes on the value one, p; = E(Y;1 X;) = Pr (¥; = 11X;). Estimation of p; and
relating this to a set of covariates X is usually done using logistic regression:

In (%) = X:ﬂ:ﬂlXil +ﬂ2X,~2 +... +ﬁ[,X,~p,

where In (1”7) defines the logarithm of the odds of success and replaces the mean
of the continuous response used in linear regression model, hence imposing a
nonlinear relationship between p and the covariates. Under the assumption that the
binary responses (Y1, Y5, .. ., ¥,,) are binomial (Bernoulli) random variables, one can
use ML estimation to obtain estimates of the logistic regression parameters and adopt
the interpretation similar to linear regression coefficients but in terms of log odds of
success. Specifically, the population intercept, f1, is the log odds of success when all
of the covariates equal zero; and the population slope, f,, is the change in log odds of
success for a single-unit change in X;; given that all of the other covariates remain
constant.

Log-Linear Regression for Counts

In Poisson regression, the response variable Y; is a count (e.g., number of specific
symptoms of a disease in a given period of time) assumed to follow the Poisson
distribution with the expected count or number of events E(Y;| X;) = 4;. This provides
the basis for model likelihood-based inference. As a basis for direct comparison,
counts are often expressed as rates; the corresponding expected rate is given by A/t
where 7 is a relevant baseline measure. Poisson regression relates the expected counts
or rates to a set of covariates:

In (%) = Xip = B X + B X2 + ... + B, Xip,

or the expected rates to a set of covariates:
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In (%) = In (1) + X;f=In (1) + B Xaa + o Xiz + ... + B, Xip,

where In(?) is an adjustment term known as an “offset.”

Thus, modeling 4; (or A;/f) with a logarithm function can be considered equivalent
to a linear regression model but replacing the mean of Y; by the logarithm of the
expected count (or rate). The coefficients of the model are interpreted in terms of the
logarithm of the expected count (or rate), respectively.

Both logistic and Poisson regression models as well as linear regression models
fall within generalized linear models. Note that when a Poisson regression model is
applied to data consisting of very small rates (e.g., applicable to studies with rare
events), then the rate is approximately equal to the corresponding probability, p;, and
In 27 ~ In ]f p 5 hence making the estimates of the regression coefficients for Poisson
regression and logistic regression models approximately equal and the results of the
inference not discernibly different. See Agresti (2002) for comprehensive descrip-
tion of regression models for ordinal model and Hilbe (2007) for negative binomial
regression.

Overdispersion

One of the important properties of Poisson random variable is an equality of the
expected value and variance. However, in practice count data variable often has
variability far exceeding the expected value. This phenomenon is referred to in
statistics as overdispersion. Although overdispersion has negligible effect on the
estimated model coefficients, failure to account for overdispersion results in
underestimated standard errors that lead to potentially misleading inferences such
as too narrow confidence intervals and too small p-values. There are several options
to address the issue of overdispersion. First option is to make the adjustment to
nominal standard errors by including a scale factor ¢ in specification of the Poisson
variance, Var(Y) = ¢E(Y). This option makes an assumption of variance increasing
linearly as a function of mean; seemingly simplified, in practice, it tends to work
well. Second option to handle overdispersion is to include in the log-linear model an
additional source of random variability, say some additional random error e that
arises due to unmeasured individual factors:

In (E(Yi|X,'; e,-)) = In (ti) +ﬂ1Xi1 +ﬁ2Xi2 —+ ... -‘rﬂ[,X,’p + e;.

The inclusion of random errors with normal distribution with zero mean and
variance a’? implies a more complicated dependence of the variance of Y from the
mean: Var(Y) = E(Y) + (exp (62) — 1)E*(Y). However, the model with additional
normal errors does not have a closed form of the likelihood and requires computa-
tionally demanding integration techniques. At the same time, assuming a gamma
distribution for the exponentiated errors, exp(e), with mean of 1 and variance y
results in the model that has a closed-form likelihood corresponding to a negative
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binomial distribution, leading to a more straightforward estimation of the model
parameters. This approach of adjusting for overdispersion also allows for the
quadratic dependence of the variance of the counts: Var(Y) = E(Y) + yEZ(Y).

We finish our discussion on overdispersion with a final note about situations
when overdispersion arises with a discernably large number of zero counts in the
data. This prevalence of zeros often leads to the inflation of the count variability
compared to the mean value of Poisson distribution. Using, for example, a scale
factor or inclusion of the additional variation in these situations can solve only
partially the problem of overdispersion and explain the excess of zeros. One way to
account for zeros is to explicitly incorporate them in the regression-like models.
So-called “zero-inflated Poisson” (ZIP) models have been developed specifically to
account for excess of zeros (Lambert 1992). These models assume two unobserved
groups “always-zero group” and “sometimes-zero group.” For example, it may be of
interest to model the average number of times patients refill their prescriptions for
opioids. In this example, patients can be thought as belonging to one of two groups:
those who never refill a prescription for opioids (the “always-zero group”) and those
who refill a prescription whenever they feel pain that is severe (the “sometimes-zero
group”). Observed zero counts are realized from the first group (those who never
refill their opioid prescriptions) and a proportion of patients from the second group
(those who would refill but not during the period of the study). Zero-inflated models
are available for binomial and negative binomial types of distributions (Hall 2001).
See Yang et al. (2016) for a more detailed review and comparison of different
methods for zero-inflated data with application to health surveys. Similar extensions
have been made to incorporate inflations other than zero for multinomial or ordinal
outcomes (see Sweeney and Parnell 2018). Package “pscl” with function “zeroinfl”
has been developed in R for zero-inflated count data (see also R help manual for
more details).

Model Selection

Performance assessment is an essential step that guides the selection process of the
best model. In order to select a model, one can distinguish between two situations
when (a) competing models are nested and (b) competing models are not nested.
Nested models can be compared using the likelihood-ratio test. Two models are
nested if a set of the parameters in a simpler (or reduced) model is a subset of the
parameters of a more complex (or full) model or, alternatively, if the full model can
be transformed into the reduced model by putting constraints on a subset of the

parameters. The likelihood-ratio test statistics —2 log {med/LM} = Z(Z,LA,H — l;i)

under Hy (no significant difference between full and reduced models) converges to
chi-square distribution with the degrees of freedom equal to the difference between
the dimension of the full model and the reduced model. This approach can be used in
backward or forward variable subset selection approaches. In R, one can use
ANOVA (modell, model2) function to implement a comparison.
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‘When one compares non-nested models, other statistics may be used to assess the
quality of each model. These statistics include Mallow’s C,, Akaike information
criterion (AIC), Bayesian information criterion (BIC), and adjusted R%.

1.3.3 Applied Longitudinal Analysis

Longitudinal studies allow direct evaluation of change in response over time and the
factors that influence this change. While many of the longitudinal studies are
observational, more and more recent longitudinal studies are designed as random-
ized experiments. In this Section, we summarize the main concepts described in
Fitzmaurice et al. (2011).

In a longitudinal study, participants (subjects or patients) are measured repeatedly
at different occasions or times. When the number and the timing of occasions are the
same for each participant in the study, then the design of the study is called balanced.
Generally, both the number of occasions and the timing can vary from one partic-
ipant to another, which can happen due to the nature of the study design or due to the
incompleteness of the data collection. In order to obtain valid inferences, longitudi-
nal data analysis methods must account for correlation (dependence), which is
usually present between repeated measures on the same individual, and variability,
which is often heterogeneous across measurement occasions. Both correlation
between observations and heterogeneity violate the fundamental assumptions of
independence and homoscedasticity in the linear regression modeling. Failure to
account for correlation and heterogeneity often results in large standard errors,
increasing the risk of type II error.

Let Y;; denote the response variable for the i individual (i=1,...,N)atthe jth
occasion (j = 1, ..., n;). The expected average and the variance for each occasion
among N individuals are denoted as y; = E(Y;) and 0_2]. = E[Yij — E(Y,-j)]z =
E (Y,-j —u j), 2 respectively. The covariance is a measure of the linear dependence
between two variables Y;; and Yy, denoted by oy = E[(Y; — up)(Yix — pi)]. The

E[(Yzjf*ﬂj)(Yik*ﬂk)]/

correlation between Yj; and Yj; is denoted by p;, = o
J

, where o; and o,

are the standard deviations of Y;; and Yj. For the vector of repeated measures,
Yi=i, Yo, ..., Yin)', we define the symmetric variance-covariance matrix, X;.
The independence assumption between observations measured on the same
individual and homoscedasticity of observations at different occasions would lead
to (incorrect) estimates of the variance of change in the mean over time. As a result
the estimated standard errors and the corresponding p-values would be under- or
overestimated, leading to misleading statistical inference. Thus, longitudinal data
modeling would require proper modeling of both mean responses over time and
modeling of covariance among repeated measures. When proposing the final longi-
tudinal model, one must jointly specify models for the mean and covariance.
Analogously to classical regression models, longitudinal models adopt the gen-
eral form of the relationship between a dependent variable and a set of covariates:
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Yi=Xp+ e E(YylXi, ... Xip) =y = BiXin + PoXip + ...+ B, Xy . but
unlike classical models with a univariate response, longitudinal models focus on a
multivariate response and assume multivariate normal distribution for random errors.
In this case, the values of response Y; follow a multivariate normal distribution, and
in order to find maximum likelihood estimates of a vector of coefficients #, we must
maximize the log-likelihood based on the product of multivariate normal densities.
Assuming known and constant (across all individuals) covariance matrix X, the
log-likelihood of interest has a form:

The solution to this optimization problem has a closed form expression for the
vector of regression coefficients f, the corresponding ML estimate, also known in
the literature as the generalized least squares (GLS) estimate:

Nn N N . — . Iy—1 PR .
1) = ln{(2ﬂ)_7|2_7exp [— iz Y X,ﬂiZ (Yi — Xip)
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The GLS estimate of # is an unbiased and consistent estimate that follows

. N -
asymptotically multivariate normal distribution, f ~ N (ﬂ, [Z (X='x ,)] ) .In

i=1
the beginning of this section, we assumed a known covariance matrix, X; in practice,
however, £ must be estimated from the data. Unfortunately, no closed form ML
expression is available from the multivariate normal log-likelihood. One can obtain
the ML estimate of ¥ via numerical approximation and then substitute the
corresponding ¥ in the ML expression for a vector of coefficient ﬁ, which, in turn,
for sufficiently large samples holds the same properties as the estimatorﬁ when X is
known. When X is unknown and the sample size is small, the ML can potentially
underestimate diagonal elements of X (i.e., variances). As an alternative to MLE, one
can utilize the method of residual or restricted maximum likelihood estimation
(REML). The key idea behind REML is to utilize the likelihood for the residuals

after estimating g:
_l }
2

Maximizing the residual log-likelihood, we obtain less biased estimate of £ and
the same GLS estimator of # but with modified covariance:

>0 (=)

[_ S (Yi=XiB)'E (Yi=X,B)
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Cov(B) =

~ o~ ~\ 7/
where Cov(Y;) can estimated as V; = (Y,- — X,ﬂ) (Y,- — X,-ﬂ) .

In practice it is important to note that the REML can be used to compare different
models for the covariance structure, but the standard ML should be used to compare
different regression models for the mean. Also, if the covariance Cov (Y;) has been
misspecified, an empirical, so-called sandwich, or robust variance estimate of

-1

ZN:(X’E Cov(Y))E x)

i=1

N ~1
Z (X227 Xl-)

3 (X’z X)

i=1

Cov (ﬁ) is obtained by using M-estimator approach (see Fitzmaurice et al. (2011)
for details).

1.3.3.1 Mean Response Profiles for Continuous Longitudinal Data

When the purpose of the study is to characterize change patterns in the mean
response over time in groups and to determine whether and how the shapes of
profiles differ among groups, one can compare groups of subjects in terms of
mean response profiles over time. Given any level of some group effect, we refer
to the mean response profile as the sequence of means over time computed for a
given group. Although this approach is particularly useful in situations when the
study design is balanced and there is only one of a few categorical covariates are at
the consideration, the analysis of response profiles can be extended to handle more
than a single group factor and missing data.

Consider the following example of a randomized trial with two treatment groups
(new treatment vs. placebo or control treatment) and three time measurements that
are the same for each study participant. This study design is a simple example of a
balanced longitudinal randomized experiment, for which the mean response profiles
analysis is the most straightforward. The main focus of the analysis is on the testing
of the null hypothesis that the difference in the mean response profiles in two groups
is not significant (i.e., the mean response profiles are parallel). To test such hypoth-
eses, it is usually assumed that both treatment group and time are categorical vari-
ables. In this regard, the analysis of the mean response profiles is similar to two-way
analysis of variances, but unlike classical ANOVA, the mean response profile
approach must account for dependencies and variability in repeated measurements
on the same individuals.

Referring back to the two-treatment example, we use a constant and a set of three
indicator variables as covariates to formulate a simple response profile model:

Yij = ﬂlXijl +/32Xij2 +ﬂ3Xij3 +/)’4X,'j4 + ﬂinjzX,-jg +ﬂ6XijzX,'j4 + eij

where X;;; = 1, X = I(patient i randomized to new drug), X;;z = I(j = 2), X;u =1
(J=3).
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For many longitudinal studies, especially longitudinal clinical trials, the main
interest is on the time X treatment (or similarly, time x group) interaction effect.
Thus, the null hypothesis of interest in the hypothetical trial above can be
reformulated in terms of the group and time interaction effect or using the regression
coefficients: Hy : ffs = f¢ = 0. To test this null hypothesis of no time x treatment
interaction effect, one can use a multivariate Wald statistics that under certain
regularity conditions follows chi-square distribution with (n — 1) degrees of free-
dom. When the number of treatments (groups) exceeds two, the same type of test can
be applied with (n — k + 1) degrees of freedom, where k is a number of treatments. In
general, the Wald test requires the estimation of regression coefficients and the
corresponding standard errors. At the same time, the analysis that is based on the
repeated measure on the same patients must account for the correlation structure
among these measurements. In our example, the analysis of response profiles
requires the estimates of three (generally n) variances for each occasion and three
(generally n(n — 1)/2) pairwise correlations. When no additional assumption is made
on the covariance/correlation structure among repeated measurements and all values
are estimated separately, the structure of the covariance matrix is called unrestricted.

Note that a significant test based on a multivariate Wald statistics only indicates
that groups differ but does not tell us how they differ. The two single contrasts (each
based on a univariate test in a general linear model) for time x treatment interaction
have direct interpretations in terms of treatment comparisons of changes from
baseline. In longitudinal clinical trials, a natural baseline for a group variable is a
control, often a placebo, or an existing standard treatment. A natural baseline level
for a categorical time variable is “time zero” that can be referred to a pre-treatment
visit. The baseline response measurement, or the response at “time zero,” is often
analyzed within a vector of post-treatment outcomes, but alternatively it can be used
to transform post-treatment outcomes to a vector of differences from the baseline;
and sometimes when there are no missing values at “time zero,” the baseline
response can be effectively incorporated in a set of covariates.

It is also worth to mention that if the Wald test is not significant, the secondary
hypotheses concerning the mean response profiles could be formulated as follows.
Assuming the mean response profiles are parallel (55 = fig = 0), one can test (1) if the
means are also constant over time, Hy : /3 = f4 = 0, or (2) if the mean response
profiles for the groups coincide, Hy : /> = 0

There are some obvious advantages of using the analysis of mean response
profiles when a longitudinal study design is balanced with time measurements
common for all individuals and no mistimed measurements. The analysis is fairly
straightforward and allows for arbitrary patterns in the change of mean response over
time as well as in the covariance/correlation structure. In addition, the response
profiles can be adjusted for missing response data, and essentially there is no
potential risk of bias that often arises due to misspecification of the model.

Despite outlined advantages, the analysis of response profiles does have a number
of disadvantages and restrictions that make it infeasible for many longitudinal
studies. The method cannot be applied when repeated measurements are obtained
from participants with different measurement schedules. Disregarding the time
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ordering, the response profiles approach tends to fail to recognize time trends of the
repeated measures in a longitudinal study. And finally, it becomes computationally
inefficient rapidly when the number of time occasions and groups grows. To analyze
the longitudinal data using the mean response profiles approach, one can adopt
PROC MIXED in SAS and “gls” function with “nlme” package in R, respectively.

1.3.3.2 Parametric Curve Models for Continuous Response

As mentioned earlier, the analysis of response profiles may be infeasible for many
longitudinal studies due to its numerous restrictions. Unlike response profile models,
fitting parametric or semi-parametric curves to longitudinal data allows to describe
the patterns of change in the mean response over time in terms of simple polynomial
trends, model means as an explicit function of time, handle highly unbalanced
designs in a relatively seamless way, and incorporate mistimed measurements. For
example, to compare treatment and control in a two-group clinical trial, where
changes in mean response are approximately linear and measurements are not
necessarily taken on the same schedule, one can use the following simple linear
model:

E(Yu) = py; = P + Potime;; + fagroup; + Ptime;group;,

where time;; refers to the actual value of 7™ time measurement on " individual and as
group; is a time invariant group indicator which equals one for treatment and zero for
control. Then intercept f; refers to average baseline response for the control group,
(B + p5) refers to the average baseline response for the treatment group, and the
slopes f, and (f, + f4) have a direct interpretation in terms of a constant rate of
change in mean response for a single unit change in time for control and treatment
groups, respectively. The null hypothesis of interest would be here H : 4 = 0, and if
it is not rejected, then the two groups do not defer in terms of change in the mean
response over time.

When changes in the mean response over time are not linear, one can consider
fitting a model with a quadratic or higher-order polynomial trend. In a quadratic
trend model, for example, the rate of change depends on time and must be
represented in terms of two parameters for each treatment group. When fitting
polynomial trends, one must include a sufficient number of terms to account for
model complexity and test higher-order terms before lower-order terms. Also, it is
advisable to replace time observations by their deviations from the mean (i.e., center
variable by a time step) to avoid problems of collinearity.

If change over time represents a sequence of joined linear or higher-order
segments that produce a piecewise polynomial pattern, one can extend a simpler
polynomial model to a spline model to accommodate trends that cannot be approx-
imated by just fitting a polynomial in time. The basic idea behind the spline models is
to divide time axis into a sequence of segments and consider piecewise polynomial
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trends on each segment with different sets of parameters but joined at fixed times
(known as “knots”). The simplest possible spline model has only one knot. For
two-group example, linear spline model with knot at #x:

E(Yy) = uy
= f| + portime;; + f; (timeij — t*)+ + Pygroup; + Pstime;; group;
+ fs (time,-j — t*)+ group;,

where (x), is a truncated line function that takes the value of x, if x > 0, and zero,
otherwise.

To analyze the longitudinal data using the polynomial curves or spline modeling,
one can adopt PROC MIXED in SAS and “gls” function with “nlme” package in R,
respectively. These are the same functions that are used for the mean response
profiles approach with one important difference. For the polynomial curves or spline
modeling, time is considered to be continuous, not categorical like in the mean
response profiles. In SAS, however, one needs to create an additional copy of the
time variable, say ¢, and include it in the CLASS statement and repeated statement of
the PROC MIXED; time is included in the MODEL statement as a continuous
predictor and in REPEATED statement. For a spline model, one must create one
additional variable for each knot #* corresponding to fime* = (time — t*), function
and include all of them in the MODEL statement in SAS or as a set of continues
variables in the “glm” formula in R.

1.3.3.3 Modeling the Covariance

Choice of models for mean response for longitudinal observations often interrelated
with the choice of covariance model. In turn, a model for the covariance must be
selected based on the chosen model for the mean response, because the covariance
between residuals depends on the model for the mean and therefore depends on f.

When the longitudinal design is balanced (i.e., with the same schedule and the
number of occasions for each patient) and the number of occasions is relatively
small, unstructured covariance, which does not require any explicit structure
assumption except homogeneity of covariance across different individuals, may be
appropriate. With n measurement occasions, unstructured covariance matrix has
n variance and n x (n — 1)/2 pairwise covariance parameters. The total number of
parameters grows rapidly with an increasing number of occasions/assessment times.
This design of covariance structure can be used in the combination with the mean
response profiles model; other covariance (pattern) models that impose some struc-
ture on covariance have often been used in combination with the parametric curve
models. In what follows, we briefly discuss several covariance models to choose
from when fitting parametric models for mean response.
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Compound symmetry covariance model assumes constant variance across all
occasions, and the constant pairwise correlations, Corr(Y;;, Y;) = p for all j and k.
Despite its simplicity and a minimal number of parameters (i.e., two) that does not
depend on the number of occasions, this covariance model may not be valid for most
of longitudinal datasets. Toeplitz covariance model assumes constant variance across
occasions and Corr(Y, Y; j + ) = pi forall jand k, i.e., a constant correlation among
responses at adjacent measurement occasions. This model has a total of n parameters
and is more flexibility in terms of the correlation structure than compound symmetry
but still restrictive and applicable when measurements are taken at equal intervals in
time. A special case of the Toeplitz covariance models is the (first-order)
autoregressive covariance, where p; = p* for all j and k. Relaxing assumption of
constant variance across time, one can fit heterogeneous versions of the Toeplitz
(and also autoregressive) covariance models that would require additional (n — 1)
parameters. When time measurements are not equally spaced over time, then, for
example, the parsimonious (heterogeneous or homogeneous) autoregressive model
can be extended by fitting correlation between any pair of repeated measures by a
function which decreases exponentially with the time separations between them,
Corr(Yy, Yy) =p =] for all j and k.

Choice of models for covariance and mean are interdependent, and choice of
model for covariance should be based on a “maximal” model for the mean response
(e.g., based on AIC, BIC). For nested covariance pattern models, a log-likelihood
ratio test statistic built on REML can be constructed (e.g., compound symmetry
model is nested within the Toeplitz model). For comparing non-nested covariance
models, AIC or BIC can be used.

We conclude that the covariance models attempt to characterize and model the
covariance between longitudinal time measurements with a relatively small number
of parameters. While parametric models permit patients to be measured on different
number of occasions and at different times, not many covariance models (except
unrestricted) can handle data from inherently unbalanced longitudinal designs.
Moreover, because the models for the mean and covariance are interdependent, the
best choice of each can be difficult.

To analyze the longitudinal data using the polynomial curves or splines with a
chosen covariance model, one can use PROC MIXED in SAS and “gls” function
with “nlme” package in R, respectively. In PROC MIXED, a covariance mode is
identified under REPEATED .../TYPE = [covariance type] statement. In “gls”
function, a type of covariance is included in a set of parameters under “corr=
[corSymm, corAR, corExp]” statement specified for a compound symmetry,
autoregressive, or exponential models, respectively.

1.3.3.4 Linear Mixed Effects Models

As an alternative to the described models, one can use linear mixed effects models to
account for sources of natural heterogeneity in the population over time. These
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models are the regression-based models. The term mixed effects comes from the fact
that the mean response is modeled as a combination of population parameters, shared
by all individuals and referred as fixed effects, and subject-specific parameters,
referred as random effects, which vary randomly from one individual to another,
and assumed to be unique to a particular individual. In these settings, individuals in
the population are allowed to have their own subject-specific mean response trajec-
tories over time. Also, the introduction of random effects self-induces subject-
specific covariance (among individual’s responses) that has a distinctive random
effects structure and that can be expressed as a function of time with relatively few
parameters, regardless of the number and the timing of measurements.

Linear mixed effects models allow (a) estimation of parameters describing the
mean response changes in the population of interest and (b) prediction of individual
response trajectories over time. In the context of clinical trials, for instance, these
predictions can help to identify those participants who do not respond well or
somewhat very different from expected.

One of the main advantages of linear mixed effects models, in comparison to the
models described in the previous subsections, is their flexibility in accommodating
unbalanced data that is when subjects have a different number of observations and
measurements taken at different times.

A simple example of linear mixed effects models is a model with an intercept and
a slope that vary randomly among individuals. In this model, each subject has its
own baseline level of response and the level of change in the response over time.
This model can be generalized to incorporate additional randomly varying regression
parameters related to time changing covariates. The effects of covariates (e.g., due to
treatments, exposures) are included by allowing mean of intercepts and slopes to
depend on covariates. In general settings, the linear effects model can be expressed
as

Yj =X} p+Z;bi+ ¢,

where f is p-dimensional vector of fixed effects, b; is g-dimensional vector of

random effects, X; = {Xf»j,

(matching the number of measurement occasions for subject i) and p columns,
Z; = {Zj,j=1,....,n;} is a matrix of time-varying covariates with n; rows and
q columns, with g < p, and ¢; = {e;;, j = 1, . . ., n;} is an;-dimensional vector of errors
assumed to be independent of b; with a multivariate normal distribution with mean
zero and covariance diagonal matrix R; = 021,,,. Often, the columns of the matrix of
time-varying covariates Z; are a subset of the matrix X;, and the random effects, b;,
are assumed to be independent of X; and to have a multivariate normal distribution
with mean zero (E(b;) = 0) and covariance matrix G. The latter assumption is
essential for the prediction of the random effects as well as the interpretation of
conditional or subject-specific mean. Combining fixed effects and random effects,
conditional mean describes the mean response profile for the ith individual:

j=1, ...,n,-} is a matrix of covariates with n; rows
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! !
E(YylXy.b:) = Xy + Zib:.

In this model, the response for the ith subject at jth occasion is assumed to differ
from the population mean E (Y,;j|X§j),

population-averaged mean of Y;, E(Y,‘-/|X,;,~) = X;jﬁ,

by a subject effect, Zjb;. That is the marginal

The introduction of a random subject effect induces correlation among the
repeated measures. The conditional and marginal covariances can be distinguished
in a similar way as conditional and marginal means. Using a vector-matrix notation,
the conditional covariance of Y;, given b;, is

Cov(Y|X:,b;) = Cov(¢;) = R; = 6’1,

and the marginal (population-averaged) covariance of Y;, averaged over the distri-
bution of random effects b;, is Cov(Y;) = Z;GZ} + R;.

If the mixed effect model includes only a random intercept, then the covariance
matrix of the repeated measurements has the form of the compound symmetry. To
allow variance heterogeneity among variances of time measurements, a model with a
random intercept and a slope serves as a yet simple alternative. In this random
intercept and slope model and more complex mixed effect models for longitudinal
data, the variances and covariances are individual and do not require any additional
specification (self-induced) with the terms expressed as explicit functions of time
thereby accounting for inherently unbalanced designs with a different number of
time occasions per subject.

In many pharmaceutical- and health outcome-related studies, the primary focus is
on estimation and inference of fixed effects, 8, f,, . . ., .. When the researchers also
desire to estimate subject-specific random effects, b;, they can do it using maximum
likelihood or restricted maximum likelihood approach and construct so-called best

linear unbiased predictor (BLUP) for each individual subject in a form of l; =

E (bi|Yi;ﬁ, G, 32> . To predict subject-specific response trajectories over time, one

can simply plug in the estimated values of fixed effects and predicted values of
random effects in a definition of conditional mean, )A’,-j = X;ﬁ + ijl;,

To analyze the longitudinal data using the mixed effect models, one can adopt
PROC MIXED in SAS and “Ime” function with “nlme” package in R, respectively.
In PROC MIXED, for example, a mixed effects model with a random intercept and a
slope for time is identified under REPEATED INTERCEPT time/statement. In
“Ime” function, the same model is included in a set of parameters under “random
= ~ timel id” statement. One can also obtain BLUPs in SAS and R, using outlined
functions.

When the response variable in a longitudinal study is categorical (e.g., binary and
count data), previously discussed generalized linear models can be extended to
handle the correlated outcomes. There are two different analytic approaches: gener-
alized marginal models and mixed effects models (see Chapters 12—15, Fitzmaurice
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et al. 2011). Note also that both linear and generalized mixed effects models can be
used to analyze multilevel data (see Chapter 22, Fitzmaurice et al. 2011). Multilevel
models are especially effective in studies where the primary goal is on the assess-
ment of health services and/or outcomes with information obtained from patients
who are nested within different sites and clinics. Such data can be regarded as
hierarchical or multilevel data.

1.3.4 Analysis of Time-to-Event Qutcome

The theoretical background represented in this subsection is mainly based on the
book of Kleinbaum and Klein (2012a, b). Analysis of time-to-event outcome, or
survival analysis, is a collection of statistical procedures for data analysis for which
the outcome variable of interest is time until an event occurs. An event, in survival
analysis also referred as a failure, is usually related to (but not limited to) some
negative experience, for example, death in patients with heart transplant or relapse in
remission in cancer patients. It could also be a positive experience such as recovery
from obstructive pulmonary disease or any experience or event of interest that can
happen to an individual. Time, in the survival analysis referred as survival time, can
be counted in years, months, weeks, or any other suitable units characterizing period
from the beginning of follow-up of an individual until an occurrence of an event. In
this section, we focus on traditional survival analysis settings when only one event of
interest is analyzed. In case, when more than one event of interest needs to be
analyzed, we refer our reader to the read about recurrent event survival analysis and
competing risks survival analysis described in Kleinbaum and Klein (2012a, b);
Austin et al. (2016); De Glas et al. (2016); and references therein.

Censoring is a common problem related to survival analysis. Censoring occurs
when we have some information about individual survival time, but the exact
survival time is unavailable. This can happen due to the following reasons. A patient
does not experience the event of interest before the trial ends, or a patient withdraws
from the trial earlier due to a specific reason or fails to follow-up during the trial
period. In these examples, the survival time of a patient becomes incomplete or cut
off at the right side of the observed survival time interval. These observations are
further marked as right-censored. Less frequently than right-censored, survival times
can also be left-censored or interval-censored. A patient’s survival time is marked as
left-censored if a patient’s true survival time is less than or equal to the pre-specified
observed survival time. For example, in an observational study, some women had
babies before the pre-specified 250-day mark. If a procedure is administered multiple
times during the study period and a patient’s true survival time falls within a known
time interval but the actual time is unknown, such event will be considered as
interval-censored. In what follows we focus on the analysis of right-censored
observations that are more common in clinical trials.

Formally, let 7 be a random variable for a person’s survival time. By construction,
T can take only non-negative values less than or equal to the length of the study
period. A specific realization of T is denoted by ¢. Together with the random variable
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for survival time, we define a binary (dichotomous) random variable d indicating
event occurrence or censorship. That is d = 1, if the event of interest occurs during
the study, and d = 0, if and only if one of the following happens: a patient does not
experience an event of interest until the end of the study and a patient is lost to
follow-up or withdraws from the study.

Given the above notation, we now can define two critical functions of survival
time, namely, the survival function S(#) and the hazard function A(f). The survival
function S(#) provides the probability that a patient survives longer than some
specified time t, S(f) = P(T > t). In theory, S(¢) is a non-increasing function of t
with S(0) = 1, indicating no event occurrences for any patients at the beginning of
the study, and S(co) = 0, indicating all patients are experiencing an event occurrence
at the end of the study. In practice, however, when using actual observations and the
fixed study period (not infinite), the survival function S(#) may not approach zero at
the end of the study. The hazard function, A(f), provides the instantaneous potential
per unit time for event occurrence, given that the individual has survived (has not
experienced an event) up to time t. Formally, A(f) equals the limit of conditional
probability P(t < T < t + At | T > f) as At approaches zero, and in this formulation is
also called a conditional failure rate. While A(?) is not limited to start at one and go
down to zero like S(f), for any fixed value of ¢, the hazard function is always
non-negative and has no upper bound.

Both the survival function and the hazard function are equally important in
practice. The survival function directly describes the survival from the observations;
the hazard function is used for modeling by taking a specific form with a known
distribution. Knowing the form of A(), one can derive the corresponding S(t), and
vice versa. The relationship between the two can be expressed as follows:

S() = exp | — / h(w)du |, h(o) :_[%}

0

Given the time-to-event outcome, one can pursue the following steps in the
survival analysis. The analysis starts with the first step that includes estimation and
the interpretation of the survival and/or hazards functions from observed survival
data. In clinical studies with the time-to-event outcome, this step could be used to
compare survival trends and/or hazard rates over time for patients in a treatment
group and a placebo group. The two survival curves are estimated, for example,
using the Kaplan-Meier method, and then graphed on the same axis to aid the further
visual comparison. A formal comparison of two or more survival curves estimating a
common curve can be performed via the log-rank test. Before the comparison over
time, one can compute simple descriptive measures including the average survival

n n
time, T = Y t;/n, and the average hazard rate, h = #events/ >_ t;, to provide overall
i=1 i=1
preliminary comparison. Since the average survival time includes censored data
(if present) in the computation, it may significantly underestimate the true average
survival time. As an alternative, median survival time can provide a better measure
to compare. If the study also collects additional variables, one can also look at the
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survival curves considering the possible confounding effect of any available vari-
ables or proceed with the second step of survival analysis that may include the
statistical modeling with the purpose to assess the relationship between the survival
time and the explanatory variables. The most commonly used model for this step is
the Cox proportional hazards model, which is described later in this chapter.

1.3.4.1 Kaplan-Meier Survival Curves and the Log-Rank Test

Descriptive statistics of survival times provide overall comparisons but do not
compare two or more groups at different times of follow-up. In this subsection, we
discuss how to estimate a survival curve S(¢) using the Kaplan-Meier (KM) method
and how to decide whether or not two or more survival curves are equivalent using
the log-rank test or similar tests of hypotheses. We also provide equations for
computing 95% confidence intervals for KM curves and for the median
survival time.

The general theoretical formula for an estimate of a survival curve g(t( f)) at time-
to-event ¢ s using KM method can be expressed as the probability of surviving past
the previous time-to-event #, _ ), multiplied by the conditional probability of
surviving past time #( s), given survival to at least time 7 sy:

~

S(tcp) =St y—1)) X Pr(T >t )|T > 1 p)).

Equivalently, KM curve §(t( f)) can be written as a product of all fractions that
estimate the conditional probabilities for time-to-event and earlier:

o~ f o~
S(tp) = [1Pr(T > 1T = 1 p)).
i=1

In practice, KM curves can be constructed as follows. For convenience, the
collected survival data should be organized in a form of the tables with at least
three columns for each group or treatment: ordered survival times from smallest to
largest; frequency counts of failures (events) at each distinct failure time; and
frequency counts of those subjects censored in time interval [f sy, % 4 1)). To
estimate the survival probability at a given time, one can use the information in
these columns. If there are no censored cases in a group, one can compute the
survival probabilities §(t< f)) as the number of subjects surviving past the specified
time being considered and divided by the number of subjects at the start of the
follow-up, §(t( f)) = #S"m:;:f():; ‘;; rZ ;Z ZIZZ"’ D Ifa group contains any censored sub-
jects, the Kaplan-Meier approach that utilizes a product-limit formula can be used.
The first survival estimate E(O) in both cases, with and without censored subjects, is
always one as the probability of surviving past time zero. The following survival
estimates are calculated by multiplying the preceding survival estimate §(z‘( f,l)) by




1 Biostatistics in Clinical Trials 47

a fraction of subjects surviving past time #( s out of subjects at risk at time # s, or
Pr(T > 1 p|T > 1(p).

To better understand the behavior of the estimated KM survival curves, the
appropriate confidence bounds for Sy (¢) can be also estimated:

:S\KM(I) :‘:Zg VQ7'|:§KM(I):|,

using the Greenwood’s formula for computation of the standard error:

—

where my is the total observed number of failures and 7, is the total number of
subjects at risk in all groups at time £ s, for a given group. At this point, we resume
the estimation of survival curves and continue with the overview of the hypothesis
testing using the log-rank approach and later with the modeling using the Cox
proportional hazard model.

To evaluate whether or not KM curves for two or more groups (G > 2) are
significantly different, and test Hy : S1(f) = Sx(f) = ... = S;(f), one can use the
log-rank test. The log-rank test is a large-sample chi-squared test that is based on the
idea of comparing observed and expected counts in different categories over failure
times. Thus, for each ordered failure time, # s (f= 1,2, ..., k), in the entire data and
for each group i, (i =1, 2, .. ., G), one needs to obtain the number of subjects at risk
in group i, ny; the observed number of failures in group i, m,; and the expected
number of failures in group 7, e;= While values of n;-and m for each failure time can
be derived directly from the data, the expected counts e;r are computed as

n
eif = nif n—; ,

G G

where my = ) my is the total observed number of failures and ny = > nj is the
i=1 i=1

total number of subjects at risk in all groups at time #( ). Given the observed and

expected counts, the next step is to compute a set of the differences aggregated over

time and their corresponding variances and covariances:

k [y (ng —ny)my(ng —my)
Oi—Ei = (my —ey).Var(0; = E0) = ) ’

= = ni(ny —1)

=1 ”zf(”f - 1)
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By letting D = (Oy — Ey, Oy — E,,...,Og _ | — Eg _ 1) be the vector of
difference between observed and expected failure counts, and V be the matrix
containing variances and covariances of D, one can compute the log-rank test
statistics, which in the matrix notation has a form, D'C™'D, and for a large sample
size under the null hypothesis follows a chi-squared distribution with (G — 1)
degrees of freedom. In practice, for large samples, an approximation of the
log-rank statistic that does not require computation of variances and covariances
can be used to compare two or more survival curves. The approximate formula
includes the sum over all groups of the square of the observed minus expected values

G >
divided by the expected value, 21 % ~ ;(%CZQ1 . When survival curves are
i=
being compared for two groups, the log-rank test is formed using the difference and
its variance for one of the two groups without using any covariance information.

There are several variations of the log-rank test approach that are designed to test
the equivalence of two or more survival curves. The most commonly used variations
include the methods that incorporate the weights for different failure times such as
the Wilcoxon, the Tarone-Ware, the Peto, and the Flemington-Harrington tests.
Although all of these tests should provide similar results and lead to the same
clinical conclusions, one needs to make a priori decision which test to use and
why. The decision should be based on both considerations of the power of the test
and the possible violations of assumptions behind the null hypothesis. Another
extension of the log-rank test is a stratified log-rank test that allows controlling the
comparison for the stratified explanatory variable. For more details, see Kleinbaum
and Klein (2012a, b).

1.3.4.2 The Cox Proportional Hazards Model and Its Characteristics

The Cox proportional hazards model is the most common model used for the
analysis of time-to-event or survival data. This model provides an expression for
the hazard at time ¢ for an individual with a given specification of a set of
p explanatory variables X = (X;, X5, ...,X,,) and can be represented in a form of a
product of the baseline function, (), and the exponential expression depending on
a linear combination of explanatory variables and parameters, X'f:

h(t,X) = ho(1)eX?.

In general, it is possible to consider explanatory variables that are time-dependent
(i.e., depending on f). In this case, one can use the extended Cox model. The focus of
this section is on the time-invariant X variables that do not change their values over
time (e.g., sex, race, family history). When all covariates X are equal to zero, the Cox
model reduces to the baseline hazard A(f), which does not have to be specified. This
property among others makes the Cox model a widely used semiparametric model. It
does not require specification of the baseline hazard but allows obtaining estimates
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of the regression coefficients, hazard ratios, and adjusted survival curves. At the
same, if the correct form of a parametric hazard function is known (typically not), a
corresponding parametric model may be preferred (e.g., Weibull, Exponential,
Log-Normal). When in doubt, one can choose the Cox model as a reasonable choice
of a robust model.

To obtain the estimates for the parameter coefficients 3 of the Cox model, the Cox
model uses so-called “partial” maximum likelihood approach, which consists of
probabilities for subjects that fail (or experience event), but does not include
probabilities for censored subjects. However, the process of construction of the
partial likelihood as a product of likelihoods at all failure times incorporates the
censored data implicitly.

Once the estimates coefficients are obtained, one can fit the model and compare
two individuals with different values of the predictors, say X, = (X4, Xo4, - . -, Xp0)
and X;, = (X, X, . . ., Xp,p,). For example, the goal could be to compare hazard rates
of two patients with similar baseline characteristics assigned to placebo and treat-
ment. Using general notation above, the estimated hazard ratio is:

)4
HR = exp lz Bi(Xia — Xip)
i=1

As one can notice, the formula for HR does not depend on time, or equivalently, it
implies that the hazard for one individual is proportional to the hazard for any other
individual and the proportionality is constant. This statement briefly explains the
concept of the proportional hazard assumption, which usually requires being for-
mally tested using, for instance, so-called Schoenfeld residuals (see Chapter 4 of
Kleinbaum and Klein 2012a, b for more details).

Maximum likelihood approach can be also used to compute the corresponding
standard error and the confidence interval of the HR. If the confidence interval
contains one (i.e., Hy : HR = 1), this would indicate no significant difference
(statistically speaking) in terms of the hazard ratio for two subjects. Similarly, one
can use the confidence intervals (and standard errors) of the estimated parameters to
make inference about the effect of the predictors on individual hazard rates or HR
(i.e., in terms of Hy : f = 0).

Additionally, the estimated coefficients ,E from the Cox model can be used to
produce the adjusted survival curves, the survival curves that are adjusted for the
explanatory variables:

exp X'

$(e.X) = [So(0] ™

where the estimate of §o(t) is also produced by fitting the Cox model; the values of
X should be specified by the investigator. The obtained adjusted survival curves can
be produced for two or more groups analogously to the KM curves that are fitted
without any model assumption.
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To analyze the time-to-event outcome data in SAS, one can use PROC
LEFETEST, PROC PHREG, and PROC LIFEREG. PROC LEFETEST is used to
construct Kaplan-Meier survival estimates and plots. In addition, it produces output
for life table estimates, the log rank, and Wilcoxon test statistics. PROC PHREG can
be used to fit the traditional Cox proportional hazard model, a stratified Cox model,
and a Cox model with time-varying covariates. For a comprehensive graphical
output PROC PHREG can be used in a combination with PROC GPLOT. PROC
LIFEREG is used to obtain the output for parametric accelerated failure time (ATF)
models, survival models that are less restrictive than proportional hazard models (see
Chapter 7 of Kleinbaum and Klein 2012a, b for more details).

In R, the following functions are available for analysis of the time-to-event
outcome data within “survival” package. Function “surv” serves as an essential
first step to create a survival object. This object is used as input variable for other
survival functions including “survfit,” a function that produces Kaplan-Meier sur-
vival estimates; “survdiff,” a function that tests the equality of survival functions;
“coxph,” a function that fits the Cox proportional hazard model, a stratified Cox
model, and an extended Cox model; and “survereg,” a function that fits ATF and
other parametric survival models.

1.4 Important Considerations in Clinical Trials

There are many points to consider when designing and analyzing clinical trials.
Estimation of the clinical trial sample size depends on the choice of statistical
methods and pre-defined set of parameters that depend on our knowledge about
disease under the study, study population, study drugs and actions, tolerability of the
drug and other safety issues, acceptability of endpoints, enrollment rate, participating
countries, drop-out mechanism, etc. To account for different scenarios and uncer-
tainties in our knowledge, in addition to pre-defined primary analysis of the clinical
trial endpoints, sensitivity analyses are usually planned and conducted. This section
focuses on some common statistical considerations that affect the design, execution,
and analysis of clinical trials including missing data issues and prevention, defining
an appropriate estimand, handling multiple objectives, analyzing subgroups, plan-
ning multiregional clinical trials, and evaluating drug safety.

1.4.1 Missing Data and Patient Retention

Missing data is a common problem in clinical trials. There are many reasons why
data can be missing, including patient dropout due to adverse events, lack of
efficacy, or any other reasons either related or unrelated to the study treatment or
the primary objective. Loss to follow-up is generally considered to be one of the
most important and preventable reasons for missing data. Even if a patient completes
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the study, one may still have elements of incomplete data due to different aspects of
study conduct. For example, patients can complete a trial but discontinue the study
treatment early, requiring careful consideration about the appropriate use of the data
collected, or have missed measurements at one or more visits. Missing data can lead
to loss of power and biased results that affect the quality and validity of clinical trials.
There are three common types of missing data defined by the reason the data are
missing: missing completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR). There are many statistical methods available to
handle incomplete data, but different methods require different assumptions and can
lead to different conclusions in extreme cases of missing data. The detailed descrip-
tion of the various methods with applications can be found in the literature including
Little and Rubin (2002), O’Kelly and Ratitch (2014), and Mallinckrodt and
Lipkovich (2017).

In 2010, the National Research Council (NRC) published the report The Preven-
tion and Treatment of Missing Data in Clinical Trials (National Research Council
2010). The NRC report advocated preventing missing data through increased
follow-up efforts for patients who discontinue treatment or otherwise violate the
study protocol. The report provided a review of available methods for handling
missing data during the data analysis stage, but rather than recommending any one
method as best, it stressed the importance of clearly defining the estimand at the
design stage of a trial. The term “estimand” as used here refers to the treatment
effect—the quantity to be estimated with study data. The report argued against the
use of single-value imputation methods, such as last observation carried forward or
baseline carried forward, due to potential underestimation of the variability of the
resulting treatment effect estimates.

At the time of the NRC report publication, drug development clinical trials with
continuous outcomes (e.g., blood pressure, lung function, blood glucose levels, or
patient reported symptom scores) often relied on mixed models for repeated mea-
surements (MMRM) as the primary analysis strategy for estimating and testing
hypotheses about treatment effects. Implicit in the use of these methods is the
assumption that dropouts would behave similarly to other patients in the same
treatment group, and possibly with similar covariate values, had they not dropped
out. Such an assumption, however, may not be reasonable if a patient discontinues
therapy for intolerability. Focusing on the appropriate estimand at the design stage
can help bring considerations such as these to the forefront, ultimately resulting in
the most appropriate treatment effect definition and analysis strategy for a particular
setting.

The International Council for Harmonisation (ICH) published a first revision of
the E9 Statistical Principles in Clinical Trials guideline in 2017 (ICH E9 R1 2017).
This draft guideline ICH E9 (R1) sets forth basic principles for defining estimands or
treatment effects, taking into consideration the target population, the outcome
variable or trial endpoint, the method to account for intercurrent events (e.g.,
dropouts or use of rescue medications), and the population summary measure that
provides the basis for comparing treatments (e.g., differences in means or risk
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ratios). The guidance suggests some potential strategies for constructing estimands,
including the following:

* Treatment policy estimand—the actual value of the outcome variable is obtained
and used in the analysis, regardless of any post-randomization events that
occurred (e.g., taking rescue medication). There are no statistical issues with
this estimand, as it preserves the advantages of randomization and may come
closest to mimicking medical practice, but prescribers and patients often find it
less desirable, being too far removed from a pharmacologic effect. An additional
benefit is that retrieved data on dropouts can be used to impute outcomes for
dropouts whose data were unable to be retrieved.

* Composite estimand—the post-randomization event becomes the outcome of
interest for patients experiencing the event, and treatment effects are defined
using composite endpoints combining measured values for some patients and
events for others. This approach is particularly useful when a measurement
following an event is not meaningful but the fact that the event occurred
is. Other approaches, such as trimmed means (Permutt and Li 2016), may also
be useful in these settings.

* Principal stratification—the treatment effect is defined in patients able to tolerate
the test drug, even if the patient was assigned to control. Note this is not a
completer’s analysis but is what clinicians are often most interested in—what is
the effect of the drug among those able to take it? It is, however, difficult to
implement, requiring identification of patients in the control group who would
have tolerated the drug, had they been assigned to it.

* Hpypothetical effect—the treatment effect is defined under alternative conditions
(e.g., if adherence had been perfect or if rescue medications were withheld).
Analyses that involve estimating the effect that would have been observed had all
patients tolerated treatment and completed the trial are not generally acceptable
from a regulatory standpoint. The effect if rescue medications are withheld may
be of interest, but a trial that allows direct estimation of this effect is usually
unethical to conduct.

e Effect while on treatment—the treatment effect is defined based on measurements
obtained while each patient remained on treatment. Because every patient has a
measured value to contribute to the analysis, there are no statistical issues with
this strategy. Note, however, that although measurements were taken when
treatment stops, regardless of when that occurs, and are available for all patients,
the treatment effect based on those measurements will not usually provide a valid
estimate of the effect at the planned end of the trial and could, therefore, raise
problems when labeling the drug. The relevance of this estimand will usually be a
clinical decision.

Sensitivity analyses are often performed to assess the impact of assumptions,
required for a particular analysis strategy but unable to be verified, on a study’s
findings. ICH E9 (R1) addresses the need to plan for sensitivity analyses to assess the
impact of missing data on a trial’s results. In this application, conducting additional
analyses that make the same missing data assumptions as the primary analysis will
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rarely be useful. For example, if a primary analysis involves fitting an MMRM that
assumes data are missing at random, then sensitivity analyses based on multiple
imputations that make the same missing-at-random assumption will be less infor-
mative than sensitivity analyses that vary the reasons the data are missing and
include missing not-at-random scenarios. When planning sensitivity analyses to
assess the impact of missing data on study results, the number of different analyses
to be conducted is usually less important than how the missing data assumptions are
varied.

Tipping point analyses are mentioned in Permutt et al. (2016b) as being partic-
ularly useful for regulatory purposes. With these analyses, unverifiable assumptions
about missing data are varied in such a way as to identify the scenarios under which
the analysis results are tipped away from success, followed by an assessment of how
likely those scenarios would be. As discussed in LaVange (2019), a useful example
of a pharmaceutical sponsor’s use of tipping point analysis can be found in the
briefing materials for the June 20, 2017 meeting of the Endocrinologic and Meta-
bolic Drugs Advisory Committee (US Food and Drug Administration 2017a).
During this meeting, a tipping point analysis used to address missing data in a
large cardiovascular outcome trial of liraglutide to treat type 2 diabetes was
discussed. The sponsor presented sensitivity analyses that identified (1) the number
of liraglutide patients with missing outcomes who would need to experience an event
and (2) the number of placebo patients with missing outcomes who would need to
not experience any events before superiority of the hazard ratio would be reversed.
The argument was made that the resulting tipping point scenario was unlikely to
occur, thereby supporting the trial’s finding of superiority.

The US FDA and some sponsor organizations are becoming increasingly
concerned with the misuse of sensitivity analyses during regulatory reviews and
the impact of those analyses on approval decisions. An example illustrating this
problem is included in LaVange (2013) based on a 2012 meeting of the Gastroin-
testinal Drugs Advisory Committee. Additional manuscripts describing the agency’s
thinking on missing data, estimands, and sensitivity analysis appeared in recent years
(LaVange and Permutt 2016; Permutt et al. 2016a, b). FDA advises sponsors on the
adequacy of their proposed approach to missing data and sensitivity analyses
through protocol reviews of new trial designs and statistical reviews of submitted
trial data for nearly every application submitted, and although the ICH E9
(R1) guidance provides a framework for addressing missing data problems, appli-
cation of some of the approaches described therein can pose challenges (LaVange
2019).

As mentioned previously, prevention of missing data through the development of
strategies to increase patient retention is an essential component of study planning,
especially in long-term studies where challenges with patient retention are the most
notable. Statisticians can help with missing data prevention at the study design stage
by quantifying the amount of missing data in similar studies and illustrating its
effect, translating finding into information to inform future subject care, educating
the clinical study team, and participating in the creation of missing data prevention
plans (Hughes 2014).
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1.4.2 Multiple Objectives and Multiplicity Adjustments

Efficacy endpoints in a clinical trial are measures intended to reflect the effect of a
drug or drugs (treatment effect) on patients or healthy volunteers. Clinical trials are
often designed to examine the treatment effect on more than one endpoint. Endpoints
in clinical trials are usually classified into three families: primary, secondary, and
exploratory. Endpoints are frequently ordered by clinical importance, with the most
import