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Abstract. A word w = w1 ...u, is a scattered factor of a word w if
u can be obtained from w by deleting some of its letters: there exist
the (potentially empty) words vo, v1, .., v, such that w = vouiv1...unvn.
The set of all scattered factors up to length k£ of a word is called its
full k-spectrum. Firstly, we show an algorithm deciding whether the k-
spectra for given k of two words are equal or not, running in optimal
time. Secondly, we consider a notion of scattered-factors universality: the
word w, with alph(w) = X, is called k-universal if its k-spectrum includes
all words of length k over the alphabet X'; we extend this notion to k-
circular universality. After a series of preliminary combinatorial results,
we present an algorithm computing, for a given k’-universal word w the
minimal 4 such that w® is k-universal for some k > k’. Several other
connected problems are also considered.

1 Introduction

A scattered factor (also called subsequence or subword) of a given word w is a
word u such that there exist (possibly empty) words vg, ..., vy, u1,. .., U, with
U= uUp... U, and w = VouU VU3 ... U, V,. Thus, scattered factors of a word w
are imperfect representations of w, obtained by removing some of its parts. As
such, there is considerable interest in the relationship between a word and its
scattered factors, both from a theoretical and practical point of view (cf. e.g.,
the chapter Subwords by J. Sakarovitch and I. Simon in [27, Chapter 6] for an
introduction to the combinatorial properties). Indeed, in situations where one
has to deal with input strings in which errors may occur, e.g., sequencing DNA
or transmitting a digital signal, scattered factors form a natural model for the
processed data as parts of the input may be missing. This versatility of scattered
factors is also highlighted by the many contexts in which this concept appears.
For instance, in [16,24,37], various logic-theories were developed around the
notion of scattered factors which are analysed mostly with automata theory tools
and discussed in connection to applications in formal verification. On an even
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more fundamental perspective, there have been efforts to bridge the gap between
the field of combinatorics on words, with its usual non-commutative tools, and
traditional linear algebra, via, e.g., subword histories or Parikh matrices (cf.
e.g., [30,33,34]) which are algebraic structures in which the number of specific
scattered factors occurring in a word are stored. In an algorithmic framework,
scattered factors are central in many classical problems, e.g., the longest common
subsequence or the shortest common supersequence problems [1,28], the string-
to-string correction problem [36], as well as in bioinformatics-related works [10].
In this paper we focus, for a given word, on the sets of scattered factors
of a given length: the (full) k-spectrum of w is the set containing all scattered
factors of w of length exactly k (up to & resp.). The total set of scattered factors
(also called downward closure) of w = aba is {¢, a, aa, ab, aba, b, ba} and the 2-
spectrum is {aa, ab, ba}. The study of scattered factors of a fixed length of a word
has its roots in [35], where the relation ~j, (called Simon’s congruence) defines
the congruence of words that have the same full k-spectra. Our main interest
here lies in a special congruence class w.r.t. ~g: the class of words which have
the largest possible k-spectrum. A word w is called k-universal if its k-spectrum
contains all the words of length k& over a given alphabet. That is, k-universal
words are those words that are as rich as possible in terms of scattered factors
of length k (and, consequently, also scattered factors of length at most k): the
restriction of their downward closure to words of length k contains all possible
words of the respective length, i.e., is a universal language. Thus w = aba is not
2-universal since bb is not a scattered factor of w, while w’ = abab is 2-universal.
Calling a words universal if its k-spectrum contains all possible words of length
k, is rooted in formal language theory. The classical universality problem (cf. e.g.,
[18]) is whether a given language L (over an alphabet X) is equal to X*, where L
can be given, e.g., as the language accepted by an automaton. A variant of this
problem, called length universality, asks, for a natural number ¢ and a language
L (over X), whether L contains all strings of length ¢ over X. See [14] for a series
of results on this problem and a discussion on its motivation, and [14,23,31] and
the references therein for more results on the universality problem for various
types of automata. The universality problem was also considered for words [6,29]
and, more recently, for partial words [2,15] w.r.t. their factors. In this context,
the question is to find, for a given ¢, a word w over an alphabet X', such that
each word of length ¢ over X occurs exactly once as a contiguous factor of w.
De Bruijn sequences [6] fulfil this property, and have been shown to have many
applications in various areas of computer science or combinatorics, see [2,15]
and the references therein. As such, our study of scattered factor-universality is
related to, and motivated by, this well developed and classical line of research.
While ~y is a well studied congruence relation from language theoretic,
combinatorial, or algorithmic points of view (see [11,27,35] and the references
therein), the study of universality w.r.t. scattered factors seems to have been
mainly carried out from a language theoretic point of view. In [20] as well as
in [21,22] the authors approach, in the context of studying the height of piece-
wise testable languages, the notion of ¢-rich words, which coincides with the
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f-universal words we define here; we will discuss the relation between these
notions, as well as our preference to talk about universality rather than rich-
ness, later in the paper. A combinatorial study of scattered factors universality
was started in [5], where a simple characterisation of k-universal binary words
was given. In the combinatorics on words literature, more attention was given
to the so called binomial complexity of words, i.e., a measure of the multiset of
scattered factors that occur in a word, where each occurrence of such a factor
is considered as an element of the respective multiset (see, e.g., [12,25,26,32]).
As such, it seemed interesting to us to continue the work on scattered factor
universality: try to understand better (in general, not only in the case of binary
alphabets) their combinatorial properties, but, mainly, try to develop an algo-
rithmic toolbox around the concept of (k-)universal words.

Our Results. In the preliminaries we give the basic definitions and recall the
arch factorisation introduced by Hebrard [17]. Moreover we explain in detail the
connection to richness introduced in [20].

In Sect.3 we show one of our main results: testing whether two words have
the same full k-spectrum, for given k& € N, can be done in optimal linear time for
words over ordered alphabets and improve and extend the results of [11]. They
also lead to an optimal solution over general alphabets.

In Sect. 4 we prove that the arch factorisation can be computed in time linear
w.r.t. the word-length and, thus, we can also determine whether a given word is
k-universal. Afterwards, we provide several combinatorial results on k-universal
words (over arbitrary alphabets); while some of them follow in a rather straight-
forward way from the seminal work of Simon [35], other require a more involved
analysis. One such result is a characterisation of k-universal words by comparing
the spectra of w and w?. We also investigate the similarities and differences of
the universality if a word w is repeated or w® and m(w) resp. are appended to
w, for a morphic permutation of the alphabet 7. As consequences, we get a lin-
ear run-time algorithm for computing a minimal length scattered factor of ww
that is not a scattered factor of w. This approach works for arbitrary alphabets,
while, e.g., the approach of [17] only works for binary ones. We conclude the
section by analysing the new notion of k-circular universality, connected to the
universality of repetitions.

In Sect.5 we consider the problem of modifying the universality of a word
by repeated concatenations or deletions. Motivated by the fact that, in general,
starting from an input word w, we could reach larger sets of scattered factors
of fixed length by iterative concatenations of w, we show that, for a word w
a positive integer k, we can compute efficiently the minimal ¢ such that w? is
k-universal. This result is extensible to sets of words. Finally, the shortest prefix
or suffix we need to delete to lower the universality index of a word to a given
number can be computed in linear time. Interestingly, in all of the algorithms
where we are concerned with reaching k-universality we never effectively con-
struct a k-universal word (which would take exponential time, when k is given as
input via its binary encoding, and would have been needed when solving these
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problems using, e.g., [10,11]). Our algorithms run in polynomial time w.r.t. |w],
the length of the input word, and log, k, the size of the representation of k.

2 Preliminaries

Let N be the set of natural numbers and Ny = N U {0}. Define [n] as the set
{1,...,n}, [n]o = [n) U {0} for an n € N, and N3,, = N\[n — 1]. An alphabet
X is a nonempty finite set of symbols called letters. A word is a finite sequence
of letters from X, thus an element of the free monoid X*. Let X+ = X*\{e},
where € is the empty word. The length of a word w € X* is denoted by |w|.
For k € N define ¥¥ = {w € Y*||w| = k} and X<F, 2* analogously. A word
u € X* is a factor of w € X* if w = xuy for some z,y € X*. If x = ¢ (resp.
y =€), u is called a prefix (resp. suffiz of w). Let Prefy(w) be the prefix of w
of length k € Ny. The i*® letter of w € X* is denoted by w[i] for i € [|w|] and
set wli..j] = wliw[i + 1]...w[j] for 1 < i < j < |wl|. Define the reversal of
w € X" by wl = wn]...w[l]. Set |w|. = |{i € [|w|]|w[i] = a}| and alph(w)
={a € Y||lw|, > 0} for w € X*. For a word u € X* we define u® = ¢, u'*! = v'u,
for i € N. A word w € X* is called power (repetition) of a word v € X*, if w = u?
for some t € N>o. A word u € X* is a conjugate of w € X* if there exist z,y € X*
with w = xy and v = yx. A function 7 : X* — X* is called morphic permutation
if 7 is bijective and w(uv) = 7 (u)7(v) for all u,v € X*.

Definition 1. A wordv = vy ... v, € X* is a scattered factor of w € X* if there
exist T1,...,Tr41 € X* such that w = xqvy ... zvETEy1. Let ScatFact(w) be the
set of all scattered factors of w and define ScatFacty(w) (resp., ScatFact<y(w))
as the set of all scattered factors of w of length (resp., up to) k € N. A word u €
X* is a common scattered factor of w,v € X*, if u € ScatFact(w)NScatFact(v);
the word u is an uncommon scattered factor of w and v (and distinguishes them)
if u is a scattered factor of exactly one of them.

For k € Ny, the sets ScatFacty(w) and ScatFact<y(w) are also known as the
k-spectrum and the full-k-spectrum of w resp.. Simon [35] defined the congruence
~p in which u,v € X* are congruent if they have the same full k-spectrum and
thus the same k-spectrum. The shortlex normal form of a word w € X* w.r.t.
~, where Y is an ordered alphabet, is the shortest word w with u ~ w which
is also lexicographically smallest (w.r.t. the given order on X') amongst all words
v ~p w with |v| = |u|. The maximal cardinality of a word’s k-spectrum is | 2|*
and as shown in [5] this is equivalent in the binary case to w € {ab,ba}*. The
following definition captures this property of a word in a generalised setting.

Definition 2. A word w € X* is called k-universal (w.r.t. X), for k € Ny, if
ScatFacty(w) = X*. We abbreviate 1-universal by universal. The universality-
index t(w) of w € X* is the largest k such that w is k-universal.

Remark 3. Notice that k-universality is always w.r.t. a given alphabet X: the
word abcba is 1-universal for X' = {a,b, ¢} but it is not universal for ¥ U {d}. If
it is clear from the context, we do not explicitly mention Y. The universality of
the factors of a word w is considered w.r.t. alph(w).



18 L. Barker et al.

Karandikar and Schnoebelen introduced in [21,22] the notion of richness of
words: w € X* is rich (w.r.t. X) if alph(w) = X' (and poor otherwise) and w is
{-rich if w is the concatenation of ¢ € N rich words. Immediately we get that a
word is universal iff it is rich and moreover that a word is ¢-rich iff it is f-universal
and a rich-factorisation, i.e., the factorisation of an ¢-rich word into ¢ rich words,
can be efficiently obtained. However, we will use the name (-universality rather
than ¢-richness, as richness defines as well, e.g. the property of a word w € X"
to have n + 1 distinct palindromic factors, see, e.g., [7,9]. As w is f-universal
iff w is the concatenation of £ € N universal words it follows immediately that,
if w is over the ordered alphabet ¥ = {1 < 2 < ... < o} and it is f-universal
then its shortlex normal form w.r.t. ~ is (1-2---0)¢ (as this is the shortest and
lexicographically smallest ¢-universal word).

The following observation leads to the next definition: the word w = abc €
{a,b, c}* is 1-universal and w*® is s-universal for all s € N. But, v? = (ababcc)? €
{a,b, c}* is 3-universal even though v is only 1-universal. Notice that the con-
jugate abccab of v is 2-universal.

Definition 4. A word w € X* is called k-circular universal if a conjugate of w
is k-universal (abbreviate 1-circular universal by circular universal). The circular
universality index ((w) of w is the largest k such that w is k-circular universal.

Remark 5. Tt is worth noting that, unlike the case of factor universality of words
and partial words [2,6,15,29], in the case of scattered factors it does not make
sense to try to identify a k-universal word w € X*, for k € Ny, such that each
word from X* occurs ezactly once as scattered factor of w. Indeed for |¥| = o,
if |w| > k + o then there exists a word from X* which occurs at least twice as a
scattered factor of w. Moreover, the shortest word which is k-universal has length
ko (we need a* € ScatFacty(w) for all a € X). As ko > k+ o for k,0 € N>, all
k-universal words have scattered factors occurring more than once: there exists
i,j € [0 +1] such that w[i] = w[j] and ¢ # j. Then wlilw[o + 2..0 + k], w[jlw[o +
2..0 + k] € ScatFacty(w) and w[ilw[o + 2.0 + k] = w[jlw[o + 2..0 + k].

We now recall the arch factorisation, introduced by Hebrard in [17].

Definition 6 (/17]). For w € X* the arch factorisation of w is given by w =
ary (1) ... ar, (k)r(w) for a k € Ng with ar,,(¢) is universal and ar,,(7)[| ar,, (i)|] &
alph(ar, (i)[1...|ary (i) — 1]) for all i € [n], and alph(r(w)) C X. The words
ary, (i) are called archs of w, r(w) is called the rest. Set m(w) = ar,, (1)[| ary, (1)[]
...ary (k)| ary (k)] as the word containing the unique last letters of each arch.

Remark 7. If the arch factorisation contains k € Ny archs, the word is k-
universal, thus the equivalence of k-richness and k-universality becomes clear.
Moreover if a factor v of w € X* is k-universal then w is also k-universal: if v
has an arch factorisation with k£ archs then w’s arch factorisation has at least k
archs (in which the archs of v and w are not necessarily related).

Finally, our main results are of algorithmic nature. The computational model
we use is the standard unit-cost RAM with logarithmic word size: for an input of
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size n, each memory word can hold logn bits. Arithmetic and bitwise operations
with numbers in [n] are, thus, assumed to take O(1) time. Arithmetic operations
on numbers larger than n, with ¢ bits, take O(¢/logn) time. For simplicity, when
evaluating the complexity of an algorithm we first count the number of steps we
perform (e.g., each arithmetic operation is counted as 1, no matter the size of
the operands), and then give the actual time needed to implement these steps
in our model. In our algorithmic problems, we assume that the processed words
are sequences of integers (called letters or symbols, each fitting in O(1) memory
words). In other words, we assume that the alphabet of our input words is an
integer alphabet. In general, after a linear time preprocessing, we can assume
that the letters of an input word of length n over an integer alphabet Y are in
{1,...,]|X|} where, clearly, |X| < n. For a more detailed discussion see, e.g., [4].

3 Testing Simon’s Congruence

Our first result extends and improves the results of Fleischer and Kufleitner [11].

Theorem 8. (1) Given a word w over an integer alphabet X, with |w| = n,
and a number k < n, we can compute the shortlexr normal form of w w.r.t.
~ in time O(n). (2) Given two words w',w” over an integer alphabet X, with
|w'| < |w”] =n, and a number k < n, we can test if w' ~p w' in time O(n).

Proof. The main idea of the algorithm is that checking w’ ~j w” is equivalent
to checking whether the shortlex normal forms w.r.t. ~, of w’ and w” are equal.
To compute the shortlex normal form of a word w € X™ w.r.t. ~ the following
approach was used in [11]: firstly, for each position of w the 2- and y-coordinates
were defined. The z-coordinate of i, denoted x;, is the length of the shortest
sequence of indices 1 < i1 < ig < ... < iy = i such that ¢; is the position where
the letter w(i1] occurs w for the first time and, for 1 < j < ¢, 4; is the first position
where w[i;] occurs in w[i;_1 + 1..7]. Obviously, if a occurs for the first time on
position 4 in w, then z; = 1 (see [11] for more details). A crucial property of the
x-coordinates is that if w[¢] = w[i] = a for some ¢ > ¢ such that w[j] # a for all
l+1<j<i-—1,then z; = min{zy, z¢41,...,z;—1} + 1. The y-coordinate of a
position i, denoted y;, is defined symmetrically: y; is the length of the shortest
sequence of indices n > i1 > i5 > ... > i; = i such that 7; is the position where
the letter w[i1] occurs last time in w and, for 1 < j < ¢, i, is the last position
where w(i;] occurs in w(i..i;_1 — 1]. Clearly, if w[¢] = w[i] = a for some i < ¢
such that w[j] #aforall £—1> j >i+1, then y; = min{y;1,...,ye—1,ye} + 1.

Computing the coordinates is done in two phases: the z-coordinates are com-
puted and stored (in an array x with elements x1,...,z,) from left to right in
phase la, and the y-coordinates are stored in an array y with elements y1, ...,y
and computed from right to left in phase 1b (while dynamically deleting a posi-
tion whenever the sum of its coordinates is greater then k+1 (cf. [11, Prop. 2])).
Then, to compute the shortlex normal form, in a third phase, labelled phase 2, if
letters b > a occur consecutively in this order, they are interchanged whenever
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they have the same x- and y-coordinates and the sum of these coordinates is
k + 1 (until this situation does not occur anymore).

We now show how these steps can be implemented in O(n) time for input
words over integer alphabets. For simplicity, let x[i..j] denote the sequence of
coordinates x;, i1, ..., x;; min(z[i..j]) denotes min{x;, ..., x;}. It is clear that
in O(n) time we can compute all values last[i]| = max({0} U{j < iJw[j] = wi]}).

Firstly, phase 1a. For simplicity, assume that ¢y = 0. While going with ¢ from 1
to m, we maintain a list L of positions 0 = iy < i1 < 49 < ... < iy = ¢ such that
the following property is invariant: z;,_, < x;, for 1 < ¢ <t and z, > x;, for
all ip_1 < p < iy. After each i is read, if last[i] = 0 then set x; = 1; otherwise,
determine x; = min(x[last[i]..i — 1]) + 1 by L, then append 4 to L and update L
accordingly so that its invariant property holds. This is done as follows: we go
through the list L from right to left (i.e., inspect the elements i;,4;—1,...) until
we reach a position i,_1 < last[i] or completely traverse the list (i.e., i;_1 = 0).
Let us note now that all elements x, with i — 1 > ¢ > last[i] fulfill z;, > z;, and
i; > last[i]. Consequently, x; = x;, + 1. Moreover, x;,,, > x;; + 1. As such, we
update the list L so that it becomes iy,...,7;,4 (and z; is stored in the array z).
Note that each position of w is inserted once in L and once deleted (but never
reinserted). Also, the time needed for the update of L caused by the insertion of
i is proportional to the number of elements removed from the list in that step.
Accordingly, the total time needed to process L, for all ¢, is O(n). Clearly, this
procedure computes the z-coordinates of all the positions of w correctly.

Secondly, phase 1b. We cannot proceed exactly like in the previous case, because
we need to dynamically delete a position whenever the sum of its coordinates is
greater than k+1 (i.e., as soon as we finished computing its y-coordinate and see
that it is > k + 1; this position does not influence the rest of the computation).
If we would proceed just as above (right to left this time), it might be the case
that after computing some y; we need to delete position 4, instead of storing it
in our list and removing some of the elements of the list. As such, our argument
showing that the time spent for inspecting and updating the list in the steps
where the y-coordinates are computed amortises to O(n) would not work.

So, we will use an enhanced approach. For simplicity, assume that 3,41 = 0
and that every time we should eliminate position i we actually set y; to +oc.
Also, let y[i..j] denote the sequence of coordinates y;, yi+1, - - - , ¥;j; note that some
of these coordinates can be +oo. Let min(yli..j]) denote the minimum in the
sequence y[i..j]. Similarly to what we did in phase la, while going with ¢ from n to
1, we maintain a list L’ of positions n+1 =g > i1 > i3 > ... > i; > ¢ such that
the following property is invariant: y;, , <y;, for 1 < ¢ <t and y, > y;, for all
t¢—1 > p > ir. In the current case, we also have that y, = +oo for all 7; > p > i.
The numbers g, i1, %2, . . ., 4 > ¢ contained in the list I’ at some moment in our
computation define a partition of the universe [1,n] in intervals: {1},{2},...,
{i—1},[4,4¢-1 — 1], [ft—1,8t—2 — 1], ..., [i1, 90 — 1] for which we define an interval
union-find data structure [13,19]; here the singleton {a} is seen as the interval
[a,a]. According to [19], in our model of computation, such a structure can be
initialized in O(n) time such that we can perform a sequence of O(n) union and
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find operations on it in O(n) time, with the crucial restriction that one can only
unite neighbouring intervals. We assume that £ind (j) returns the bounds of the
interval stored in our data structure to which j belongs. From the definition of the
list L', it is clear that, before processing position ¢ (and after finishing processing
position i+1), y;, = min(y[i+1..ip—1 —1]) holds. We maintain a new array next|:|
with | Y| elements: before processing position 7, next[w]i]] is the smallest position
J > i where w[i] occurs after position ¢, which was not eliminated (i.e., smallest
J > i with y; # 400), or 0 if there is no such position. Position ¢ is now processed
as follows: let [a,b] be the interval returned by find(next[i]). If @ = i + 1 then
let min = y;,; if @ > i + 1 then there exists j such that [a,b] = [i;,4;—1 — 1]
and t > j > 0, so let min = y;. Let now y = min+1, and note that we should
set y; = y, but only if x; +¢ < k + 1. So, we check whether z; +i¢ < k 4+ 1
and, if yes, let y; = y and set next[w[i]] = i; otherwise, set y; = 400 (note
that position ¢ becomes, as such, irrelevant when the y-coordinate is computed
for other positions). If y; = 400 then make the union of the intervals {i} and
[ +1,4;—1 — 1] and start processing ¢ — 1; L’ remains unchanged. If y; # +oo
then make the union of the intervals {i}, [z + 1,41 —1],...,[¢j41,4; — 1] and
start processing ¢ — 1; L' becomes ,%;,%;_1, ..., 9.

As each position of w is inserted at most once in L', and then deleted once
(never reinserted), the number of list operations is O(n). The time needed for
the update of L', caused by the insertion of ¢ in L’, is proportional to the number
of elements removed from L’ in that step, so the total time needed (exclusively)
to process L is O(n). On top of that, for each position 4, we run one find
operation and a number of union operations proportional to the number of
elements removed from L’ in that step. Overall we do O(n) union and find
operations on the union-find data structure. This takes in total, for all i, O(n)
time (including the initialisation). Thus, the time complexity of phase 1b is
linear.

Thirdly, phase 2. Assume that wy is the input word of this phase. Clearly, |wg| =
m < n, and we have computed the coordinates for all its positions (and maybe
eliminated some positions of the initial input word w). We partition in linear time
O(n) the interval [1, m] into 2¢41 (possibly empty) lists of positions Ly, . .., Las+1
such that the following conditions hold. Firstly, all elements of L; are smaller
than those of L;y; for 1 < i < 2¢. Secondly, for ¢ odd, the elements j in L; have
xz; +y; < k+1; for each i even, there exist a;,b; such that a; +b; = k + 1
and for all j in L; we have z; = a;,y; = b;. Thirdly, we want ¢ to be minimal
with these properties. We now produce, also in linear time, a new list U: for
each ¢ < t and j € Log; we add the triplet (i,w[j],7) in U. We sort the list of
triples U (cf. [11, Prop. 10]) with radix sort in linear time [3]. After sorting it,
U can be decomposed in t consecutive blocks U;, Us, ..., Uy, where U; contains
the positions of Lo; sorted w.r.t. the order on X (i.e., determined by the second
component of the pair). As such, U; induces a new order on the positions of
wq stored in Lo;. We can now construct a word wy by just writing in order the
letters of wy corresponding to the positions stored in L;, for ¢ from 1 to 2t + 1,
such that the letters of L; are written in the original order, for 7 odd, and in
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the order induced by Uj;, for i even. Clearly, this is a correct implementation of
phase 2 which runs in linear time. The word w; is the shortlex normal form of
w.

Summing up, we have shown how to compute the shortlex normal form of a
word in linear time (for integer alphabets). Both our claims follow. a

This improves the complexity of the algorithm reported in [11], where the
problem was solved in O(n|X|) time. As such, over integer alphabets, testing
Simon’s congruence for a given k can be done in optimal time, that does not
depend on the input alphabet or on k. When no restriction is made on the input
alphabet, we can first sort it, replace the letters by their ranks, and, as such,
reduce the problem to the case of integer alphabets. In that case, testing Simon’s
congruence takes O(|X|log | X|4+n) time which is again optimal: for k = 1, testing
if wy ~1 we is equivalent (after a linear time processing) to testing whether two
subsets of X are equal, and this requires ©(|X|log |X]) time [8].

4 Scattered Factor Universality

In this section we present several algorithmic and combinatorial results.

Remark 9. Theorem 8 allows us to decide in linear time O(n) whether a word w
over ¥ = {1 <2< ... <o} is k-universal, for a given k < n,o € N. We compute
the shortlex normal form of w w.r.t. ~; and check whether it is (1-2--- O')k.

We can actually compute ¢(w) efficiently by computing its arch factorisation
in linear time in |w|. Moreover this allows us to check whether w is k-universal
for some given k by just checking if ¢(w) > k or not.

Proposition 10. Given a word w € X™, we can compute t(w) in time O(n).

Proof. We actually compute the number ¢ of archs in the arch factorisation. For a
lighter notation, we use u; = ar,, (%) for i € [¢]o. The factors u; can be computed
in linear time as follows. We maintain an array C of |X| elements, whose all
elements are initially 0, and a counter h, which is initially |X|. For simplicity,
let mo = 0. We go through the letters w(j] of w[m;_1 + 1..n], from left to right,
and if Cfw[j]] equals 0, we decrement h by 1 and set Clw[j]] = 1. Intuitively, we
keep track of which letters of X we meet while traversing w[m;_1 + 1..n] using
the array C, and we store in h how many letters we still need to see. As soon as
h =0 or j =n, we stop: set m; = j (the position of the last letter of w we read),
w; = wlm;_1 + 1..m;] (the i*" arch), and h = |X| again. If j < n then reinitialise
all elements of C' to 0 and restart the procedure for ¢ + 1. Note that if j = n
then w; is r(w) as introduced in the definition of the arch factorization. The
time complexity of computing u; is O(|u,|), because we process each symbol
of u; = wim;—1 + 1..m;] in O(1) time, and, at the end of the procedure, we
reinitialise C' in O(]X]) time iff u; contained all letters of X, so |u;| > |¥|. The
conclusion follows. O
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The following combinatorial result characterise universality by repetitions.

Theorem 11 (). A word w € £2% with alph(w) = X is k-universal for k € Ng
iff ScatFacty (w™) = ScatFacty(w"™ 1) for an n € N. Moreover we have t(w™) >
kn if v(w) = k.

As witnessed by w = aabb € {a,b}*, ((w™) can be greater than n - ¢t(w): w
is universal, not 2-universal but w? = aab.ba.ab.b is 3-universal. We study this
phenomenon at the end of this section. Theorem 11 can also be used to compute
an uncommon scattered factor of w and ww over arbitrary alphabets; note that
the shortest such a factor has to have length k + 1 if o(w) = k.

Proposition 12 (x). Given a word w € X* we can compute in linear time
O(|w|) one of the uncommon scattered factors of w und ww of minimal length.

Remark 13. By Proposition 12, computing the shortest uncommon scattered fac-
tor of w and ww takes optimal O(n) time, which is more efficient than running
an algorithm computing the shortest uncommon scattered factor of two arbi-
trary words (see, e.g., [10,11], and note that we are not aware of any linear-time
algorithm performing this task for integer alphabets). In particular, we can use
Theorem 8 to find by binary search the smallest k& for which two words have
distinct k-spectra in O(nlogn) time. In [17] a linear time algorithm solving this
problem is given for binary alphabets; an extension seems non-trivial.

Continuing the idea of Theorem 11, we investigate even-length palindromes,
i.e. appending w’* to w. The first result is similar to Theorem 11 for n = 1.
Notice that ¢(w) = t(w®) follows immediately with the arch factorisation.

Corollary 14. A word w is k-universal iff ScatFacty(w) = ScatFacty (ww?).

In contrast to ¢(w?), «(ww’) is never greater than 2u(w).

Proposition 15 (x). Let w € X* be a palindrome and u = PrefLMJ(w) with
2

t(u) =k € N. For |w| even we have t(w) = 2k if |w| even and for |w| odd we get
v(w) =2k + 1 iff w2 U alph(r(u)) = X.

Remark 16. If we consider the universality of a word w = wy ... w,, for m € N
with w; € {u,uf} for a given word u € X*, then a combination of the previous
results can be applied. Each time either u? or (u®)? occurs Theorem 11 can
be applied (and the results about circular universality that finish this section).
Whenever vuf® or ufu occur in w, the results of Proposition 15 are applicable.
Another generalisation of Theorem 11 is to investigate concatenations under
permutations: for a morphic permutation w of X' can we compute ¢(wm(w))?

Lemma 17 (). Let w : X* — X* be a morphic permutation. Then t(w) =
t(m(w)) for all w € X* and especially the factors of the arch factorisation of w
are mapped by 7 to the factors of the arch factorisation of w(w).
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By Lemma 17 we have 2u(w) < t(wnm(w)) < 2t(w) + 1. Consider the universal
word w = abcba. For m(a) = ¢, m(b) = b, and w(c) = a we obtain wr(w) =
abc.bac.babc. which is 3-universal. However, for the identity id on X we get that
wid(w) is 2-universal. We can show exactly the case when ¢(wm(w)) = 2¢(w)+1.

Proposition 18 (x). Let # : X* — X* be a morphic permutation and
w € X* with the arch factorisation w = ary(1)...ar,(k)r(w) and w(w)? =
ar (e (1) ... arg (e (k)r(r(w)®) for an appropriate k € No. Then t(wr(w)) =
2u(w) +1 iff alph(r(w)r(mx(w)T)) = X, i.e. the both rests together are 1-universal.

Proposition 18 ensures that, for a given word with a non-empty rest, we can
raise the universality-index of wm(w) by one if 7 is chosen accordingly.

Remark 19. Appending permutations of the word instead of its images under
permutations of the alphabet, i.e. appending to w abelian equivalent words, does
not lead to immediate results as the universality depends heavily on the permuta-
tion. If w is k-universal, a permutation m may arrange the letters in lexicographi-
cal order, so m(w) would only be 1-universal. On the other hand, the universality
can be increased by sorting the letters in 1-universal factors: aj*aj’... ay for

Y ={ai,...,ay} is l-universal but (a;...a y)™ is m-universal, for m € N.

In the rest of this section we present results regarding circular universality.
Recall that a word w is k-circular universal if a conjugate of w is k-universal. Con-
sider X' = {a,b,c,d} and w = abbccdabacdbdc. Note that w is not 3-universal
(dda ¢ ScatFacts(w)) but 2-universal. Moreover, the conjugate bbccdabacdbdca
of w is 3-universal; accordingly, w is 3-circular universal.

Lemma 20 (x). Let w € X*. If t(w) = k € N then k < {(w) < k+1. Moreover
if ((w) =k+1 then t(w) > k.

Lemma 21 (x). Let w € XF. If t(w) = k and {(w) = k + 1 then there exists
v, z,u € X* such that w = vzu, with u,v # ¢ and (z) = k.

The following theorem connects the circular universality index of a word with
the universality index of the repetitions of that word.

Theorem 22 (x). Let w € X*. If v(w) = k and {(w) = k + 1 then (w®) =
sk+s—1, for all s € N.

The other direction of Theorem 22 does not hold for arbitrary alphabets:
Consider the 2-universal word w = babccaabc. We have that w? is 5-universal
but w is not 3-circular universal. Nevertheless, Lemma 21 helps us show that
the converse of Theorem 22 holds for binary alphabets:

Theorem 23 (x). Let w € {a,b}* with «(w) = k and s € N. Then 1(w®) =
sk+s—1if ((w) =k+1 and sk otherwise.



Scattered Factor-Universality of Words 25

5 On Modifying the Universality Index

In this section we present algorithms answering the for us most natural questions
regarding universality: is a specific factor v of w € X* universal? what is the
minimal ¢ € N such that w’ is k-universal for a given & € N? how many (and
which) words from a given set do we have to concatenate such that the resulting
word is k-universal for a given k € N7 what is the longest (shortest) prefix
(suffix) of a word being k-universal for a given k € N? In the following lemma
we establish some preliminary data structures.

Lemma 24 (x). Given a word x € X" with alph(x) = X, we can compute in
O(n) and for all j € [n]

— the shortest 1-universal prefiz of z[j..n]: uz[j] = min{i | z[j..7] is universal},

— the value t(x[j..n]): ty[j] = max{t | ScatFact;(x[j..n]) = X}, and

~ the minimal £ € [n] with «(x[j..0]) = o(x[j..|z[]): ms[j] = min{i | ScatFact,_;
(z[j..4]) = Xt=lil}.

The data structures constructed in Lemma 24 allow us to test in O(1) time
the universality of factors w[i..j] of a given word w, w.r.t. alph(w) = X wli..j]
is X-universal iff j > u,,[i]. The combinatorial results of Sect. 4 give us an initial
idea on how the universality of repetitions of a word relates to the universality of
that word: Theorem 22 shows that in order to compute the minimum s such that
w?® is f-universal, for a given binary word w and a number ¢, can be reduced to
computing the circular universality of w. Unfortunately, this is not the case for
all alphabets, as also shown in Sect. 4. However, this number s can be computed
efficiently, for input words over alphabets of all sizes. While the main idea for
binary alphabets was to analyse the universality index of the conjugates of w (i.e.,
factors of length |w| of ww), in the general case we can analyse the universality
index of the suffixes of ww, by constructing the data structures of Lemma 24 for
x = ww. The problem is then reduced to solving an equation over integers in
order to identify the smallest ¢ such that w’ is k-universal.

Proposition 25 (). Given a word w € X™ with alph(w) = X and k € N, we

can compute the minimal £ such that w' is k-universal in O(n + %ggfb) time.

We can extend the previous result to the more general (but less motivated)
case of arbitrary concatenations of words from a given set, not just repetitions
of the same word. The following preliminary results can be obtained. In all cases
we give the number of steps of the algorithms, including arithmetic operations
on log k-bit numbers; the time complexities of these algorithms is obtained by

multiplying these numbers by O(%ggfl)
1. Given the words wy, ..., w, € X* with |w; - --wp| = n and alph(w; - - -w,) =

Y, and k£ € N, we can compute the minimal ¢ for which there exist
{i1,...,i¢} C [k] such that w,, ---w;, is k-universal in O(231¥p?log? + n)
steps.
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2. Given £k € N and wy,...,w, € {a,b}* with alph(w;---w,) = {a,b}
and |w; ---wp| = n, we can compute the minimal ¢ for which there exist
{i1,...,9¢} C [k] such that w;, ---w;, is k-universal in O(n + log ¢) steps.

3. Given wy,...,w, € X*, with alph(w;) = X for all i € [p] and |wy - - w,| = n,
and k € N, we can compute in O(n + p3|¥|log¥) steps the minimal ¢ for
which there exist {i1,...,4} C [k] with w;, - --w;, is k-universal.

Finally, we consider the case of decreasing the universality of a word by an
operation opposed to concatenation, namely the deletion of a prefix or a suffix.

Theorem 26 (x). Given w € X™ with t(w) = m and a number £ < m, we can
compute in linear time the shortest prefiz (resp., suffix) w[l..d] (resp., wi..n])
such that wli + 1..n] (resp., w[l..i — 1]) has universality index {.

Theorem 26 allows us to compute which is the shortest prefix (suffix) we
should delete so that we get a string of universality index ¢. Its proof is based
on the data structures of Lemma 24. For instance, to compute the longest prefix
w[l.. — 1] of w which has universality index ¢, we identify the first £+ 1 factors
of the decomposition of Theorem 10, assume that their concatenation is w[l..7],
and remove the last symbol of this string. A similar approach works for suffixes.
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