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Abstract. We show that equivalence of deterministic linear tree trans-
ducers can be decided in polynomial time when their outputs are inter-
preted over the free group. Due to the cancellation properties offered
by the free group, the required constructions are not only more gen-
eral, but also simpler than the corresponding constructions for proving
equivalence of deterministic linear tree-to-word transducers.
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1 Introduction

In 2009, Staworko and Niehren observed that equivalence for sequential tree-to-
word transducers [13] can be reduced to the morphism equivalence problem for
context-free languages. Since the latter problem is decidable in polynomial time
[10], they thus proved that equivalence of sequential tree-to-word transducers is
decidable in polynomial time. This decision procedure was later accompanied
by a canonical normal form which can be applied to learning [3,4]. Sequen-
tiality of transducers means that subtrees must always be processed from left
to right. This restriction was lifted by Boiret who provided a canonical nor-
mal form for unrestricted linear tree-to-word transducers [1]. Construction of
that normal form, however, may require exponential time implying that the
corresponding decision procedure requires exponential time as well. In order
to improve on that, Palenta and Boiret provided a polynomial time procedure
which just normalizes the order in which an unrestricted linear tree-to-word
transducer processes the subtrees of its input [2]. They proved that after that
normalization, equivalent transducers are necessarily same-ordered. As a conse-
quence, equivalence of linear tree-to-word transducers can thus also be reduced
to the morphism equivalence problem for context-free languages and thus can
be decided in polynomial time. Independently of that, Seidl, Maneth and
Kemper showed by algebraic means, that equivalence of general (possibly non-
linear) tree-to-word transducers is decidable [11]. Their techniques are also appli-
cable if the outputs of transducers are not just in a free monoid of words, but
also if outputs are in a free group. The latter means that output words are con-
sidered as equivalent not just when they are literally equal, but also when they
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become equal after cancellation of matching positive and negative occurrences
of letters. For the special case of linear tree transducers with outputs either in a
free monoid or a free group, Seidl et al. provided a randomized polynomial time
procedure for in-equivalence. The question remained open whether for outputs
in a free group, randomization can be omitted. Here, we answer this question to
the affirmative. In fact, we follow the approach of [2] to normalize the order in
which tree transducers produce their outputs. For that normalization, we heavily
rely on commutation laws as provided for the free group. Due to these laws, the
construction as well as the arguments for its correctness, are not only more gen-
eral but also much cleaner than in the case of outputs in a free monoid only. The
observation that reasoning over the free group may simplify arguments has also
been made, e.g., by Tomita and Seino and later by Senizergues when dealing
with the equivalence problem for deterministic pushdown transducers [12,14].
As morphism equivalence on context-free languages is decidable in polynomial
time—even if the morphism outputs are in a free group [10], we obtain a polyno-
mial time algorithm for equivalence of tree transducers with output in the free
group.

Missing proofs can be found in the extended version of this paper [5].

2 Preliminaries

We use Σ to denote a finite ranked alphabet, while A is used for an unranked
alphabet. TΣ denotes the set of all trees (or terms) over Σ. The depth depth(t)
of a tree t ∈ TΣ equals 0, if t = f() for some f ∈ Σ of rank 0, and otherwise,
depth(t) = 1+max{depth(ti) | i = 1, . . . , m} for t = f(t1, . . . , tm). We denote by
FA the representation of the free group generated by A where the carrier is the
set of reduced words instead of the usual quotient construction: For each a ∈ A,
we introduce its inverse a−. The set of elements of FA then consists of all words
over the alphabet {a, a− | a ∈ A} which do not contain a a− or a−a as factors.
These words are also called reduced. In particular, A∗ ⊆ FA. The group operation
“·” of FA is concatenation, followed by reduction, i.e., repeated cancellation of
subwords a a− or a−a. Thus, a b c− · c b− a =FA

a a. The neutral element w.r.t.
this operation is the empty word ε, while the inverse w− of some element w ∈ FA

is obtained by reverting the order of the letters in w while replacing each letter
a with a− and each a− with a. Thus, e.g., (a b c−)− = c b−a−.

In light of the inverse operation ( . )−, we have that v · w =FA
v′w′ where

v = v′u (as words) for a maximal suffix u so that u− is a prefix of w with
w = u−w′. For an element w ∈ FA, 〈w〉 = {wl | l ∈ Z} denotes the cyclic
subgroup of FA generated from w. As usual, we use the convention that w0 = ε,
and w−l = (w−)l for l > 0. An element p ∈ FA different from ε, is called primitive
if wl =FA

p for some w ∈ FA and l ∈ Z implies that w =FA
p or w =FA

p−,
i.e., p and p− are the only (trivial) roots of p. Thus, primitive elements generate
maximal cyclic subgroups of FA. We state two crucial technical lemmas.

Lemma 1. Assume that ym =FA
β ·yn ·β− with y ∈ FA primitive. Then m = n,

and β =FA
yk for some k ∈ Z.
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Proof. Since β · yn · β− =FA
(β · y · β−)n, we find by [8, Proposition 2.17] a

primitive element c such that y and β · y · β− are powers of c. As y is primitive,
c can be chosen as y. Accordingly,

yj =FA
β · y · β− (1)

holds for some j. If β is a power of y, then β · y · β− =FA
y, and the assertion of

the lemma holds. Likewise if j = 1, then β and y commute. Since y is primitive,
then β necessarily must be a power of y.

For a contradiction, therefore now assume that β is not a power of y and
j �= 1. W.l.o.g., we can assume that j > 1. First, assume now that y is cyclically
reduced, i.e., the first and last letters, a and b, respectively, of y are not mutually
inverse. Then for each n > 0, yn is obtained from y by n-concatenation of y
as a word (no reduction taking place). Likewise, either the last letter of β is
different a− or the first letter of β− is different from b− because these two
letters are mutually inverse. Assume that the former is the case. Then β · y is
obtained by concatenation of β and y as words (no reduction taking place). By
(1), β · yn =FA

yj·n · β. for every n ≥ 1. Let m > 0 denote the length of β as
a word. Since β can cancel only a suffix of yj·n of length at most m, it follows,
that the word β y must a prefix of the word ym+1. Since β is not a power of
y, the word y can be factored into y = y′c for some non-empty suffix c such
that β = yj′

y′, implying that yc = cy holds. As a consequence, y = cl for some
l > 1—in contradiction to the irreducibility of y.

If on the other hand, the first letter of β− is not the inverse of the last letter
of y, then y · β− is obtained as the concatenation of y and β− as words. As a
consequence, yβ− is a suffix of ym+1, and we arrive at a contradiction.

We conclude that the statement of the lemma holds whenever y is cyclically
reduced. Now assume that y is not yet cyclically reduced. Then we can find a
maximal suffix r of y (considered as a word) such that y = r−sr holds and s
is cyclically reduced. Then s is also necessarily primitive. (If s =FA

cn, then
y =FA

(r−cr)n). Then assertion (1) can be equivalently formulated as

sj =FA
(r · β · r−) · y · (r · β · r−)−

We conclude that r·β·r− =FA
sl for some l ∈ Z. But then β =FA

(r−·s·r)l =FA
yl,

and the claim of the lemma follows.

Lemma 2. Assume that x1, x2 and y1, y2 are distinct elements in FA and that

xi · α · yj · β =FA
γ · y′

j · α′ · x′
i · β′ (2)

holds for i = 1, 2 and j = 1, 2. Then there is some primitive element p and
exponents r, s ∈ Z such that x1 · α =FA

x2 · α · pr and y1 =FA
ps · y2.

Proof. By the assumption (2),

γ =FA
(x1 · α · yj · β) · (y′

j · α′ · x′
1 · β′)−

=FA
(x2 · α · yj · β) · (y′

j · α′ · x′
2 · β′)−
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for all j = 1, 2. Thus,

x1 · α · yj · ββ′−x′−
1 α′−y′−

j =FA
x2 · α · yj · β · β′− · x′−

2 · α′− · y′−
j implying

y−
j · α− · x−

2 · x1 · α · yj =FA
β · β′− · x′−

2 · x′
1 · β′ · β−

for j = 1, 2. Hence,

y−
1 · α− · x−

2 · x1 · α · y1 =FA
y−
2 · α− · x−

2 · x1 · α · y2 implying
(x2 · α)−x1 · α =FA

(y1 · y−
2 ) · ((x2 · α)− · x1 · α) · (y1 · y−

2 )−

Since x1 is different from x2, also x1 · α is different from x2 · α. Let p denote a
primitive root of (x2 · α)− · x1 · α. Then by Lemma 1,

x1 · α =FA
x2 · α · pr

y1 =FA
ps · y2

for suitable exponents r, s ∈ Z.

As the elements of FA are words, they can be represented by straight-line pro-
grams (SLPs). An SLP is a context-free grammar where each non-terminal occurs
as the left-hand side of exactly one rule. We briefly recall basic complexity results
for operations on elements of FA when represented as SLPs [7].

Lemma 3. Let U, V be SLPs representing words w1, w2 ∈ {a, a− | a ∈ A},
respectively. Then the following computations/decision problems can be realized
in polynomial time

– compute an SLP for w−
1 ;

– compute the primitive root of w1 if w1 �= ε;
– compute an SLP for w =FA

w1 with w reduced;
– decide whether w1 =FA

w2;
– decide whether it exists g ∈ FA, such that w1 ∈ g · 〈w2〉 and compute an SLP

for such g.

In the following, we introduce deterministic linear tree transducers which pro-
duce outputs in the free group FA. For convenience, we follow the approach in
[11] where only total deterministic transducers are considered—but equivalence
is relative w.r.t. some top-down deterministic domain automaton B. A top-down
deterministic automaton (DTA) B is a tuple (H,Σ, δB , h0) where H is a finite
set of states, Σ is a finite ranked alphabet, δB : H×Σ → H∗ is a partial function
where δB(h, f) ∈ Hk if the the rank of f equals k, and h0 is the start state of B.
For every h ∈ H, we define the set dom(h) ⊆ TΣ by f(t1, . . . , tm) ∈ dom(h) iff
δB(h, f) = h1 . . . hm and ti ∈ dom(hi) for all i = 1, . . . , k. B is called reduced if
dom(h) �= ∅ for all h ∈ H. The language L(B) accepted by B is the set dom(h0).
We remark that for every DTA B with L(B) �= ∅, a reduced DTA B′ can be
constructed in polynomial time with L(B) = L(B′). Therefore, we subsequently
assume w.l.o.g. that each DTA B is reduced.

A (total deterministic) linear tree transducer with output in FA (LTA for
short) is a tuple M = (Σ,A, Q, S,R) where Σ is the ranked alphabet for the
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input trees, A is the finite (unranked) output alphabet, Q is the set of states, S
is the axiom of the form u0 or u0 · q0(x0) · u1 with u0, u1 ∈ FA and q0 ∈ Q, and
R is the set of rules which contains for each state q ∈ Q and each input symbol
f ∈ Σ, one rule of the form

q(f(x1, . . . , xm)) → u0 · q1(xσ(1)) · . . . · un−1 · qn(xσ(n)) · un (3)

Here, m is the rank of f , n ≤ m, u0, . . . , un ∈ FA and σ is an injective mapping
from {1, . . . , n} to {1, . . . , m}. The semantics of a state q is the function [[q]] :
TΣ → FA defined by

[[q]](f(t1, . . . , tm)) =FA
u0 · [[q1]](tσ(1)) · . . . · un−1 · [[qn]](tσ(n)) · un

if there is a rule of the form (3) in R. Then the translation of M is the function
[[M ]] : TΣ → FA defined by [[M ]](t) =FA

u0 if the axiom of M equals u0, and
[[M ]](t) =FA

u0 · [[q]](t) · u1 if the axiom of M is given by u0 · q(x0) · u1.

Example 1. Let A = {a, b}. As a running example we consider the LTA M with
input alphabet Σ = {f2, g1, k0} where the superscripts indicate the rank of the
input symbols. M has axiom q0(x0) and the following rules

q0(f(x1, x2)) → q1(x2)bq2(x1) q0(g(x1)) → q0(x1) q0(k) → ε
q1(f(x1, x2)) → q0(x1)q0(x2) q1(g(x1)) → abq1(x1) q1(k) → a
q2(f(x1, x2)) → q0(x1)q0(x2) q2(g(x1)) → abq2(x1) q2(k) → ab

Two LTAs M , M ′ are equivalent relative to the DTA B iff their translations
coincide on all input trees accepted by B, i.e., [[M ]](t) =FA

[[M ′]](t) for all t ∈
L(B).

To relate the computations of the LTA M and the domain automaton B, we
introduce the following notion. A mapping ι : Q → H from the set of states of
M to the set of states of B is called compatible if either the set of states of M
is empty (and thus the axiom of M consists of an element of FA only), or the
following holds:

1. ι(q0) = h0;
2. If ι(q) = h, δB(h, f) = h1 . . . hm, and there is a rule in M of the form (3)

then ι(qi) = hσ(i) for all i = 1, . . . , n;
3. If ι(q) = h and δB(h, f) is undefined for some f ∈ Σ of rank m ≥ 0, then M

has the rule q(f(x1, . . . , xm)) → ⊥ for some dedicated symbol ⊥ which does
not belong to A.

Lemma 4. For an LTA M and a DTA B = (H,Σ, δB , h0), an LTA M ′ with
a set of states Q′ together with a mapping ι : Q′ → H can be constructed in
polynomial time such that the following holds:

1. M and M ′ are equivalent relative to B;
2. ι is compatible.
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Example 2. Let LTA M be defined as in Example 1. Consider DTA B with
start state h0 and the transition function δB = {(h0, f) �→ h1h1, (h1, g) �→
h1, (h1, h) → ε}. According to Lemma 4, LTA M ′ for M then is defined as fol-
lows. M ′ has axiom 〈q0, h0〉(x0) and the rules

〈q0, h0〉(f(x1, x2)) → 〈q1, h1〉(x2) b 〈q2, h1〉(x1)
〈q1, h1〉(g(x1)) → ab 〈q1, h1〉(x1) 〈q1, h1〉(k) → a
〈q2, h1〉(g(x1)) → ab 〈q2, h1〉(x1) 〈q2, h1〉(k) → ab

where the rules with left-hand sides 〈q0, h0〉(g(x1)), 〈q0, h0〉(h), 〈q1, h1〉
(f(x1, x2)), 〈q2, h1〉(f(x1, x2)), all have right-hand-sides ⊥. The compatible map
ι is then given by ι = {〈q0, h0〉 �→ h0, 〈q1, h1〉 �→ h1, 〈q2, h1〉 �→ h1}. For conve-
nience, we again denote the pairs 〈q0, h0〉, 〈q1, h1〉, 〈q2, h1〉 with q0, q1, q2, respec-
tively.

Subsequently, we w.l.o.g. assume that each LTA M with corresponding DTA B
for its domain, comes with a compatible map ι. Moreover, we define for each state
q of M , the set L(q) = {[[q]](t) | t ∈ dom(ι(q))} of all outputs produced by state
q (on inputs in dom(ι(q))), and L(i)(q) = {[[q]](t) | t ∈ dom(ι(q)), depth(t) < i}
for i ≥ 0.

Beyond the availability of a compatible map, we also require that all states
of M are non-trivial (relative to B). Here, a state q of M is called trivial if L(q)
contains a single element only. Otherwise, it is called non-trivial. This property
will be established in Theorem 1.

3 Deciding Equivalence

In the first step, we show that equivalence relative to the DTA B of same-ordered
LTAs is decidable. For a DTA B, consider the LTAs M and M ′ with compatible
mappings ι and ι′, respectively. M and M ′ are same-ordered relative to B if
they process their input trees in the same order. We define set of pairs 〈q, q′〉 of
co-reachable states of M and M ′. Let u0 · q0(x1) · u1 and u′

0 · q′
0(x1) · u′

1 be the
axioms of M and M ′, respectively, where ι(q0) = ι′(q′

0) is the start state of B.
Then the pair 〈q0, q′

0〉 is co-reachable. Let 〈q, q′〉 be a pair of co-reachable states.
Then ι(q) = ι′(q′) should hold. For f ∈ Σ, assume that δB(ι(q), f) is defined.
Let

q(f(x1, . . . , xm)) → u0q1(xσ(1))u1 . . . un−1qn(xσ(n))un

q′(f(x1, . . . , xm)) → u′
0q

′
1(xσ′(1))u′

1 . . . u′
n−1q

′
n(xσ′(n′))u′

n′
(4)

be the rules of q, q′ for f , respectively. Then 〈qj , q
′
j′〉 is co-reachable whenever

σ(j) = σ′(j′) holds. In particular, we then have ι(qj) = ι′(q′
j′).

The pair 〈q, q′〉 of co-reachable states is called same-ordered, if for each cor-
responding pair of rules (4), n = n′ and σ = σ′. Finally, M and M ′ are same-
ordered if for every co-reachable pair 〈q, q′〉 of states of M,M ′, and every f ∈ Σ,
each pair of rules (4) is same-ordered whenever δB(ι(q), f) is defined.

Given that the LTAs M and M ′ are same-ordered relative to B, we can
represent the set of pairs of runs of M and M ′ on input trees by means of
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a single context-free grammar G. The set of nonterminals of G consists of a
distinct start nonterminal S together with all co-reachable pairs 〈q, q′〉 of states
q, q′ of M,M ′, respectively. The set of terminal symbols T of G is given by
{a, a−, ā, ā− | a ∈ A} for fresh distinct symbols ā, ā−, a ∈ A. Let 〈q, q′〉 be a
co-reachable pair of states of M,M ′, and f ∈ Σ such that δB(ι(q), f) is defined.
For each corresponding pair of rules (4), G receives the rule

〈q, q′〉 → u0ū
′
0〈q1, q′

1〉u1ū
′
1 . . . un−1ū

′
n−1〈qn, q′

n〉unū′
n

where ū′
i is obtained from u′

i by replacing each output symbol a ∈ A with
its barred copy ā as well as each inverse a− with its barred copy ā−. For the
axioms u0q(x1)u1 and u′

0q
′(x1)u′

1 of M,M ′, respectively, we introduce the rule
S → u0ū

′
0〈q, q′〉u1ū

′
1 where again ū′

i are the barred copies of u′
i. We define

morphisms f, g : T ∗ → FA by

f(a) = a f(a−) = a− f(ā) = f(ā−) = ε
g(ā) = a g(ā−) = a− g(a) = g(a−) = ε

for a ∈ A. Then M and M ′ are equivalent relative to B iff g(w) =FA
f(w) for

all w ∈ L(G). Combining Plandowski’s polynomial construction of a test set for
a context-free language to check morphism equivalence over finitely generated
free groups [10, Theorem 6], with Lohrey’s polynomial algorithm for checking
equivalence of SLPs over the free group [6], we deduce that the equivalence of
the morphisms f and g on all words generated by the context-free grammar G,
is decidable in polynomial time. Consequently, we obtain:

Corollary 1. Equivalence of same-ordered LTAs relative to a DTA B is decidable
in polynomial time. �

Next, we observe that for every LTA M with compatible map ι and non-trivial
states only, a canonical ordering can be established. We call M ordered (relative
to B) if for all rules of the form (3), with L(qi) · ui · . . . · uj−1 · L(qj) ⊆ v · 〈p〉,
p ∈ FA the ordering σ(i) < . . . < σ(j) holds. Here we have naturally extended
the operation “·” to sets of elements.

We show that two ordered LTAs, when they are equivalent, are necessarily
same-ordered. The proof of this claim is split in two parts. First, we prove that
the set of indices of subtrees processed by equivalent co-reachable states are
identical and second, that the order is the same.

Lemma 5. Let M,M ′ be LTAs with compatible maps ι and ι′, respectively, and
non-trivial states only so that M and M ′ are equivalent relative to the DTA B.
Let 〈q, q′〉 be a pair of co-reachable states of M and M ′. Assume that δB(ι(q), f)
is defined for some f ∈ Σ and consider the corresponding pair of rules (4). Then
the following holds:

1. {σ(1), . . . , σ(n)} = {σ′(1), . . . , σ′(n′)};
2. σ = σ′.
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Proof. Since 〈q, q′〉 is a co-reachable pair of states, there are elements
α, α′, β, β′ ∈ FA such that

α · [[q]](t) · β =FA
α′ · [[q′]](t) · β′

holds for all t ∈ dom(ι(q)). Consider the first statement. Assume for a con-
tradiction that qk(xj) occurs on the right-hand side of the rule for q but
xj does not occur on the right-hand side of the rule for q′. Then, there are
input trees t = f(t1, . . . , tm) and t′ = f(t′1, . . . , t

′
m), both in dom(ι(q)), such

that [[qk]](tj) �=FA
[[qk]](t′j) and ti = t′i for all i �= j. Moreover, there are

μ1, μ2 ∈ FA s.t.

α · [[q]](t) · β =FA α · μ1 · [[qk]](tj) · μ2 · β �=FA α · μ1 · [[qk]](t′
j) · μ2 · β =FA α · [[q]](t′) · β

But then,

α · [[q]](t) · β =FA
α′ · [[q′]](t) · β′ =FA

α′ · [[q′]](t′) · β′ =FA
α · [[q]](t′) · β

—a contradiction. By an analogous argument for some xj only occurring in the
right-hand side of the rule for q′ the first statement follows.

Assume for contradiction that the mappings σ and σ′ in the corresponding
rules (4) differ. Let k denote the minimal index so that σ(k) �= σ′(k). W.l.o.g., we
assume that σ′(k) < σ(k). By the first statement, n = n′ and {σ(1), . . . , σ(n)} =
{σ′(1), . . . , σ′(n)}. Then there are 
, 
′ > k such that

σ′(k) = σ(
) < σ(k) = σ′(
′)

Let t = f(t1, . . . , tn) ∈ dom(ι(q)) be an input tree. For that we obtain

μ0 := u0 · [[q1]](tσ(1)) · . . . · uk−1

μ1 := uk · [[qk+1]](tσ(k+1)) · . . . · u�−1

μ2 := u� · [[q�]](tσ(�)) · . . . · un

μ′
0 := u′

0 · [[q′
1]](tσ′(1)) · . . . · u′

k−1

μ′
1 := u′

k · [[q′
k+1]](tσ′(k+1)) · . . . · u′

�′−1

μ′
2 := u′

�′ · [[q′
�′ ]](tσ′(�′)) · . . . · u′

n

Then for all input trees t′ ∈ dom(ι(qk)), t′′ ∈ L(dom(ι(q′
k)),

α · μ0 · [[qk]](t′) · μ1 · [[q�]](t′′) · μ2 · β =FA
α′ · μ′

0 · [[q′
k]](t′′) · μ′

1 · [[q′
�′ ]](t′) · μ′

2 · β′

Let γ′ = μ−
0 α−α′μ′

0. Then

[[qk]](t′) · μ1 · [[q�]](t′′) · μ2 · β =FA
γ′ · [[q′

k]](t′′) · μ′
1 · [[q′

�′ ]](t′) · μ′
2 · β′

By Lemma 2, we obtain that for all w1, w2 ∈ L(qk) and v1, v2 ∈ L(q�), w−
2 ·w1 ∈

μ1 · 〈p〉 · μ−
1 and v1 · v−

2 ∈ 〈p〉 for some primitive p.
If 
 = k + 1, i.e., there is no further state between qk(xσ(k)) and q�(xσ(�)),

then μ1 =FA
uk, L(qk) ⊆ w · uk · 〈p〉 · u−

k and L(q�) ⊆ 〈p〉 · v for some fixed
w ∈ L(qk) and v ∈ L(q�). As σ(k) > σ′(k) = σ(
), this contradicts M being
ordered.
For the case that there is at least one occurrence of a state between qk(xσ(k))
and q�(xσ(�)), we show that for all α1, α2 ∈ uk · L(qk+1) · . . . · u�−1 =FA

: L̂,



Equivalence of Linear Tree Transducers with Output in the Free Group 215

α−
1 α2 ∈ 〈p〉 holds. We fix w1, w2 ∈ L(qk) and v1, v2 ∈ L(q�) with w1 �= w2 and

v1 �= v2. For every α ∈ L̂, we find by Lemma 2, primitive pα and exponent
rα ∈ Z such that v1 · v−

2 =FA
prα

α holds. Since pα is primitive, this means that
pα =FA

p or pα =FA
p−. Furthermore, there must be some exponent r′

α such
that w−

1 · w2 =FA
α · pr′

α · α−. For α1, α2 ∈ L̂, we therefore have that

pr′
α1 =FA

(α−
1 · α2) · pr′

α2 · (α−
1 · α2)−

Therefore by Lemma 1, α−
1 · α2 ∈ 〈p〉. Let us fix some wk ∈ L(qk), α ∈ L̂ =FA

uk · L(qk+1) · . . . ·u�−1, and wl ∈ L(ql). Then L(qk) ⊆ wk ·α · 〈p〉 ·α−, L̂ ⊆ α · 〈p〉
and L(ql) ⊆ 〈p〉 · wl. Therefore,

L(qk) · uk · . . . · L(q�) ⊆ wk · α · 〈p〉 · α− · α · 〈p〉 · 〈p〉 · wl =FA
wk · α · 〈p〉 · wl

As σ(k) > σ′(k) = σ(
), this again contradicts M being ordered.

It remains to show that every LTA can be ordered in polynomial time. For that,
we rely on the following characterization.

Lemma 6. Assume that L1, . . . , Ln are neither empty nor singleton subsets of
FA and u1, . . . , un−1 ∈ FA. Then there are v1, . . . , vn ∈ FA such that

L1 · u1 · . . . · Ln−1 · un−1 · Ln ⊆ v · 〈p〉 (5)

holds if and only if for i = 1, . . . , n, Li ⊆ vi · 〈pi〉 with

pn =FA
p

pi =FA
(ui · vi+1) · pi+1 · (ui · vi+1)− for i < n

and
v− · v1 · u1 · . . . · vn−1 · un−1 · vn ∈ 〈p〉 (6)

Proof. Let s1 = ε. For i = 2, . . . , n we fix some word si ∈ L1·u1·L2·. . .·Li−1·ui−1.
Likewise, let tn = ε and for i = 1, . . . , n − 1 fix some word ti ∈ ui · Li+1 · . . . · Ln,
and define vi =FA

s−
i · v · t−i .

First assume that the inclusion (5) holds. Let p′
i =FA

ti · p · t−i . Then for all
i, si · Li · ti ⊆ v · 〈p〉, and therefore

Li ⊆ s−
i · v · 〈p〉 · t−i =FA

s−
i · v · t−i · ti · 〈p〉 · t−i =FA

vi〈p′
i〉

We claim that p′
i = pi for all i = 1, . . . , n. We proceed by induction on n− i. As

tn = ε, we have that p′
n = p = pn. For i < n, we can rewrite ti =FA

ui ·wi+1 · ti+1

where wi+1 ∈ Li+1 and thus is of the form vi+1 · pki+1
i+1 for some exponent ki+1.

p′
i =FA

ti · p · t−i
=FA

ui · wi+1 · ti+1 · p · t−i+1 · w−
i+1 · u−

i

=FA
ui · wi+1 · pi+1 · w−

i+1 · u−
i by I.H.

=FA
ui · vi+1 · pi+1 · v−

i+1 · u−
i

=FA
pi



216 R. Löbel et al.

It remains to prove the inclusion (6). Since wi ∈ Li, we have by (5) that v−w1 ·
u1 · . . . wn · un ∈ 〈p〉 holds. Now we calculate:

v− · w1 · u1 · . . . un−1 · wn =FA
v− · v1 · pk1

1 · u1 · . . . · un−1 · vn · pkn
n

=FA
v− · v1 · u1 · v2 · pk1+k2

2 · u2 · . . . · un−1 · vn · pkn
n

. . .
=FA

v− · v1 · u1 · . . . vn−1 · un−1 · vn · pk
n

where k = k1 + . . . + kn. Since pn = p, the claim follows.
The other direction of the claim of the lemma follows directly:

L1u1 . . . Ln−1un−1Ln ⊆ v1 · 〈p1〉 · u1 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
=FA

v1 · u1 · v2 · 〈p2〉 · 〈p2〉 · u2 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
=FA

v1 · u1 · v2 · 〈p2〉 · u2 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
· · ·
=FA

v1 · u1 · v2 · . . . · un−1 · vn · 〈pn〉
=FA

v1 · u1 · v2 · . . . · un−1 · vn · 〈p〉
⊆ v · 〈p〉

where the last inclusion follows from (6).

Let us call a non-empty, non-singleton language L ⊆ FA periodic, if L ⊆ v · 〈p〉
for some v, p ∈ FA. Lemma 6 then implies that if a concatenation of languages
and elements from FA is periodic, then so must be all non-singleton component
languages. In fact, the languages in the composition can then be arbitrarily
permuted.

Corollary 2. Assume for non-empty, nonsingleton languages L1, . . . , Ln ⊆ FA

and u1, . . . , un−1 ∈ FA that property (5) holds. Then for every permutation π,
there are elements uπ,0, . . . , uπ,n ∈ FA such that

L1 · u1 · . . . · Ln−1 · un−1 · Ln = uπ,0 · Lπ(1) · uπ,1 · . . . · uπn−1 · Lπ(n) · uπ,n

Example 3. We reconsider LTA M ′ and DTA B from Example 2. We observe
that L(q1) ⊆ a · 〈ba〉, L(q2) ⊆ 〈ab〉, and thus L(q0) = L(q1) · b · L(q2) ⊆ 〈ab〉.
Accordingly, the rule for state q0 and input symbol f is not ordered. Following
the notation of Corollary 2, we find v1 = a, u1 = b and v2 = ε, and the rule for
q0 and f can be reordered to

q0(f(x1, x2)) → ab · q2(x1) · b−a− · q1(x2)b

This example shows major improvements compared to the construction in [2].
Since we have inverses at hand, only local changes must be applied to the sub-
sequence q1(x2) ·b ·q2(x1). In contrast to the construction in [2], neither auxiliary
states nor further changes to the rules of q1 and q2 are required.

By Corollary 2, the order of occurrences of terms qk(xσ(k)) can be permuted in
every sub-sequence qi(xσ(i))·ui·. . .·uj−1qj(xσ(j)) where L(qi)·ui·. . .·uj−1·L(qj) ∈
u · 〈p〉 is periodic, to satisfy the requirements of an ordered LTA. A sufficient
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condition for that is, according to Lemma 6, that L(qk) is periodic for each
qk occurring in that sub-sequence. Therefore we will determine the subset of all
states q where L(q) is periodic, and if so elements vq, pq such that L(q) ⊆ vq ·〈pq〉.
In order to do so we compute an abstraction of the sets L(q) by means of a
complete lattice which both reports constant values and also captures periodicity.

Let D = 2FA denote the complete lattice of subsets of the free group FA. We
define a projection α : D → D by α(∅) = ∅, α({g}) = {g}, and for languages L
with at least two elements,

α(L) =

{
g〈p〉 if L ⊆ g〈p〉 and p is primitive
FA otherwise

The projection α is a closure operator, i.e., is a monotonic function with
L ⊆ α(L), and α(α(L)) = α(L). The image of α can be considered as an abstract
complete lattice D�, partially ordered by subset inclusion. Thereby, the abstrac-
tion α commutes with least upper bounds as well as with the group operation.
For that, we define abstract versions �, � : (D�)2 → D� of set union and the
group operation by

A1 � A2 = α(A1 ∪ A2) A1 � A2 = α(A1 · A2)

In fact, “�” is the least upper bound operation for D�. The two abstract operators
can also be more explicitly defined by:

∅ � L = L � ∅ = L
FA � L = L � FA = FA

{g1} � {g2} =

{
{g1} if g1 = g2

g1 · 〈p〉 if g1 �= g2, p primitive root of g−
1 · g2

{g1} � g2 · 〈p〉 = g2 · 〈p〉 � {g1} =

{
g2 · 〈p〉 if g1 ∈ g2 · 〈p〉
FA otherwise

g1 · 〈p1〉 � g2 · 〈p2〉 =

{
g1 · 〈p1〉 if p2 ∈ 〈p1〉 and g−

2 · g1 ∈ 〈p1〉
FA otherwise

∅ � L = L � ∅ = ∅
FA � L = L � FA = FA for L �= ∅
{g1} � {g2} = {g1 · g2}
{g1} � g2 · 〈p〉 = (g1 · g2) · 〈p〉
g1 · 〈p〉 � {g2} = (g1 · g2) · 〈g−

2 · p · g2〉

g1 · 〈p1〉 � g2 · 〈p2〉 =

{
(g1 · g2) · 〈p2〉 if g−

2 · p1 · g2 ∈ 〈p2〉
FA otherwise

Lemma 7. For all subsets L1, L2 ⊆ FA, α(L1 ∪ L2) = α(L1) � α(L2) and
α(L1 · L2) = α(L1) � α(L2).
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We conclude that α in fact represents a precise abstract interpretation in the
sense of [9]. Accordingly, we obtain:

Lemma 8. For every LTA M and DTA B with compatible map ι, the sets
α(L(q)), q state of M , can be computed in polynomial time.

Proof. We introduce one unknown Xq for every state q of M , and one constraint
for each rule of M of the form (3) where δ(ι(q), f) is defined in B. This constraint
is given by:

Xq � u0 � Xq1 � . . . � un−1 � Xqn
� un (7)

As the right-hand sides of the constraints (7) all represent monotonic functions,
the given system of constraints has a least solution. In order to obtain this
solution, we consider for each state q of M , the sequence X

(i)
q , i ≥ 0 of values in

D� where X
(0)
q = ∅, and for i > 0, we set X

(i)
q as the least upper bound of the

values obtained from the constraints with left-hand side Xq of the form (7) by
replacing the unknowns Xqj

on the right-hand side with the values X
(i−1)
qj . By

induction on i ≥ 0, we verify that for all states q of M ,

X(i)
q = α(L(i)(q))

holds. Note that the induction step thereby, relies on Lemma 7.
As each strictly increasing chain of elements in D� consists of at most four

elements, we have that the least solution of the constraint system is attained
after at most 3 · N iterations, if N is the number of states of M , i.e., for each
state q of M , X

(3N)
q = X

(i)
q for all i ≥ 3N . The elements of D� can be represented

by SLPs where the operations � and � run in polynomial time, cf. Lemma 3.
Since each iteration requires only a polynomial number of operations � and �,
the statement of the lemma follows.

We now exploit the information provided by the α(L(q)) to remove trivial states
as well as order subsequences of right-hand sides which are periodic.

Theorem 1. Let B be a DTA such that L(B) �= ∅. For every LTA M with
compatible map ι, an LTA M ′ with compatible map ι′ can be constructed in
polynomial time such that

1. M and M ′ are equivalent relative to B;
2. M ′ has no trivial states;
3. M ′ is ordered.

Proof. By Lemma 8, we can, in polynomial time, determine for every state q
of M , the value α(L(q)). We use this information to remove from M all trivial
states. W.l.o.g., assume that the axiom of M is given by u0 · q0(x0) · u1. If the
state q0 occurring in the axiom of M is trivial with L(q0) = {v}, then M1 has
no states or rules, but the axiom u0 · v · u1.

Therefore now assume that q0 is non-trivial. We then construct an LTA M1

whose set of states Q1 consists of all non-trivial states q of M where the com-
patible map ι1 of M1 is obtained from ι by restriction to Q1. Since L(M) �= ∅,
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the state of M occurring in the axiom is non-trivial. Accordingly, the axiom of
M is also used as axiom for M1. Consider a non-trivial state q of M and f ∈ Σ.
If δ(ι(q), f) is not defined M1 has the rule q(f(x1, . . . , xm) → ⊥. Assume that
δ(ι(q), f) is defined and M has a rule of the form (3). Then M1 has the rule

q(f(x1, . . . , xm)) → u0 · g1 · . . . · un−1 · gn · un

where for i = 1, . . . , n, gi equals qi(xσ(i)) if qi is non-trivial, and equals the
single word in L(qi) otherwise. Obviously, M and M1 are equivalent relative to
B where M1 now has no trivial states, while for every non-trivial state q, the
semantics of q in M and M1 are the same relative to B. Our goal now is to
equivalently rewrite the right-hand side of each rule of M1 so that the result is
ordered. For each state q of the LTA we determine whether there are v, p ∈ B∗

such that L(q) ⊆ v〈p〉, cf. Lemma 8. So consider a rule of M1 of the form (3). By
means of the values α(L(qi)), i = 1, . . . , n, together with the abstract operation
“�”, we can determine maximal intervals [i, j] such that L(qi) ·ui · . . . ·uj−1 ·L(qj)
is periodic, i.e., α(L(qi)) � ui · . . . � uj−1 � α(L(qj)) ⊆ v · 〈p〉 for some v, p ∈ FA.
We remark that these maximal intervals are necessarily disjoint. By Corollary 2,
for every permutation π : [i, j] → [i, j], elements u′, u′

i, . . . , u
′
j , u

′′ ∈ FA can be
found so that qi(xσ(i)) ·ui · . . . ·uj−1 · qj(xσ(j)) is equivalent to u′ · qπ(i)(xσ(π(i))) ·
u′

i · . . . · u′
j−1 · qπ(j)(xσ(π(j))) · u′′.

In particular, this is true for the permutation π with σ(π(i)) < . . . < σ(π(j)).
Assuming that all group elements are represented as SLPs, the overall construc-
tion runs in polynomial time.

In summary, we arrive at the main theorem of this paper.

Theorem 2. The equivalence of LTAs relative to some DTA B can be decided
in polynomial time.

Proof. Assume we are given LTAs M,M ′ with compatible maps (relative to B).
By Theorem 1, we may w.l.o.g. assume that M and M ′ both have no trivial
states and are ordered. It can be checked in polynomial time whether or not
M and M ′ are same-ordered. If they are not, then by Lemma 5, they cannot
be equivalent relative to B. Therefore now assume that M and M ′ are same-
ordered. Then their equivalence relative to B is decidable in polynomial time
by Corollary 1. Altogether we thus obtain a polynomial decision procedure for
equivalence of LTAs relative to some DTA B.

4 Conclusion

We have shown that equivalence of LTAs relative to a given DTA B can be
decided in polynomial time. For that, we considered total transducers only, but
defined the domain of allowed input trees separately by means of the DTA. This
does not impose any restriction of generality, since any (possibly partial) linear
deterministic top-down tree transducer can be translated in polynomial time to
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a corresponding total LTA together with a corresponding DTA (see, e.g., [11]).
The required constructions for LTAs which we have presented here, turn out
to be more general than the constructions provided in [2] since they apply to
transducers which may not only output symbols a ∈ A, but also their inverses
a−. At the same time, they are simpler and easier to be proven correct due to
the combinatorial and algebraic properties provided by the free group.

Acknowledgements. We also like to thank the anonymous reviewers for their
detailed comments and valuable advice.

References

1. Boiret, A.: Normal form on linear tree-to-word transducers. In: Dediu, A.-H.,
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