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Abstract. Splicing systems are generative mechanisms introduced by
Tom Head in 1987 to model the biological process of DNA recombination.
The computational engine of a splicing system is the “splicing operation”,
a cut-and-paste binary string operation defined by a set of “splicing
rules”, quadruples r = (u1, u2;u3, u4) where u1, u2, u3, u4 are words over
an alphabet Σ. For two strings x1u1u2y1 and x2u3u4y2, applying the
splicing rule r produces the string x1u1u4y2. In this paper we focus on
a particular type of splicing systems, called (i, j) semi-simple splicing
systems, i = 1, 2 and j = 3, 4, wherein all splicing rules r have the
property that the two strings in positions i and j in r are singleton
letters, while the other two strings are empty. The language generated
by such a system consists of the set of words that are obtained starting
from an initial set called “axiom set”, by iteratively applying the splicing
rules to strings in the axiom set as well as to intermediately produced
strings. We consider semi-simple splicing systems where the axiom set is
a regular language, and investigate the descriptional complexity of such
systems in terms of the size of the minimal deterministic finite automata
that recognize the languages they generate.

1 Introduction

Splicing systems are generative mechanisms introduced by Tom Head [7] to
model the biological process of DNA recombination. A splicing system consists of
an initial language called an axiom set, and a set of so-called splicing rules. The
result of applying a splicing rule to a pair of operand strings is a new “recom-
binant” string, and the language generated by a splicing system consists of all
the words that can be obtained by successively applying splicing rules to axioms
and the intermediately produced words. The most natural variant of splicing
systems, often referred to as finite splicing systems, is to consider a finite set of
axioms and a finite set of rules. Several different types of splicing systems have
been proposed in the literature, and Bonizzoni et al. [1] showed that the classes
of languages they generate are related: the class of languages generated by finite
Head splicing systems [7] is strictly contained in the class of languages generated
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by finite Păun splicing systems [13], which is strictly contained in the class of
languages generated by finite Pixton splicing systems [12].

In this paper we will use the Păun definition [13], which defines a splicing
rule as a quadruplet of words r = (u1, u2;u3, u4). This rule splices two words
x1u1u2y1 and x2u3u4y2 as follows: The words are cut between the factors u1, u2,
respectively u3, u4, and the prefix of the first word (ending in u1) is recombined
by catenation with the suffix of the second word (starting with u4), resulting in
the word x1u1u4y2.

Culik II and Harju [3] proved that finite Head splicing systems can only
generate regular languages, while [8] and [12] proved a similar result for Păun,
respectively Pixton splicing systems. Gatterdam [5] gave (aa)∗ as an example of
a regular language which cannot be generated by a finite Head splicing system,
which proved that this is a strict inclusion.

As the classes of languages generated by finite splicing systems are subclasses
of the family of regular languages, their descriptional complexity can be consid-
ered in terms of the finite automata that recognize them. For example, Loos
et al. [10] gave a bound on the number of states required for a nondeterminis-
tic finite automaton to recognize the language generated by an equivalent Păun
finite splicing system. Other descriptional complexity measures for finite splicing
systems that have been investigated in the literature include the number of rules,
the number of words in the initial language, the maximum length of a word in
the initial axiom set, and the sum of the lengths of all words in the axiom set.
Păun [13] also proposed the radius, defined to be the size of the largest ui in a
rule, as another possible measure.

In the original definition, simple splicing systems are finite splicing systems
where all the words in the splicing rules are singleton letters. The descriptional
complexity of simple splicing systems was considered by Mateescu et al. [11]
in terms of the size of a right linear grammar that generates a simple splicing
language. Semi-simple splicing systems were introduced in Goode and Pixton [6]
as having a finite axiom set, and splicing rules of the form (a, ε; b, ε) where a, b
are singleton letters, and ε denotes the empty word.

In this paper we focus our study on some variants of semi-simple splicing
systems called (i, j)-semi-simple splicing systems, i = 1, 2 and j = 3, 4, wherein
all splicing rules have the property that the two strings in positions i and j
are singleton letters, while the other two strings are empty. (Note that Ceterchi
et al. [2] showed that all classes of languages generated by semi-simple splicing
systems are pairwise incomparable1). In addition, in a departure from the orig-
inal definition of semi-simple splicing systems [6], in this paper the axiom set is
allowed to be a (potentially infinite) regular set.

More precisely, we investigate the descriptional complexity of (i, j)-semi-
simple splicing systems with regular axiom sets, in terms of the size of the
minimal deterministic finite automaton that recognizes the language generated
by the system. The paper is organized as follows: Sect. 2 introduces definitions

1 Simple splicing language classes are pairwise incomparable except for the pair (1,3)
and (2,4), which are equivalent [11].
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and notations, Sect. 3 defines splicing systems and outlines some basic results
on simple splicing systems, Sects. 4, 5 and 6 investigate the state complexity of
(2,4)-, (2,3)- respectively (1,4)-semi-simple splicing systems, and Sect. 7 summa-
rizes our results (Table 1).

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over
Σ, including the empty word, which we denote by ε. We denote the length of a
word w by |w| = n. If w = xyz for x, y, z ∈ Σ∗, we say that x is a prefix of w, y
is a factor of w, and z is a suffix of w.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F ) where
Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q × Σ → Q,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states. We extend the
transition function δ to a function Q × Σ∗ → Q in the usual way. A DFA A
is complete if δ is defined for all q ∈ Q and a ∈ Σ. In this paper, all DFAs
are defined to be complete. We will also make use of the notation q

w−→ q′ for
δ(q, w) = q′, where w ∈ Σ∗ and q, q′ ∈ Q. The language recognized or accepted
by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

Each letter a ∈ Σ defines a transformation of the state set Q. Let δa : Q → Q
be the transformation on Q induced by a, defined by δa(q) = δ(q, a). We extend
this definition to words by composing the transformations δw = δa1 ◦δa2 ◦· · ·◦δan

for w = a1a2 · · · an. We denote by im δa the image of δa, defined im δa =
{δ(p, a) | p ∈ Q}.

A state q is called reachable if there exists a string w ∈ Σ∗ such that
δ(q0, w) = q. A state q is called useful if there exists a string w ∈ Σ∗ such
that δ(q, w) ∈ F . A state that is not useful is called useless. A complete DFA
with multiple useless states can be easily transformed into an equivalent DFA
with at most one useless state, which we refer to as the sink state.

Two states p and q of A are said to be equivalent or indistinguishable in the
case that δ(p,w) ∈ F if and only if δ(q, w) ∈ F for every word w ∈ Σ∗. States
that are not equivalent are distinguishable. A DFA A is minimal if each state
q ∈ Q is reachable from the initial state and no two states are equivalent. The
state complexity of a regular language L is the number of states of the minimal
complete DFA recognizing L [4].

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, I, F )
where Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → 2Q,
I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states. The language
recognized by an NFA A is L(A) = {w ∈ Σ∗ | ⋃

q∈I δ(q, w) ∩ F �= ∅}. As with
DFAs, transitions of A can be viewed as transformations on the state set. Let
δa : Q → 2Q be the transformation on Q induced by a, defined by δa(q) = δ(q, a).
We define im δa =

⋃
q∈Q δa(q). We make use of the notation P

w−→ P ′ for
P ′ =

⋃
q∈P δ(q, w), where w ∈ Σ∗ and P, P ′ ⊆ Q.
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3 Semi-simple Splicing Systems

In this paper we will use the notation of Păun [13]. The splicing operation is
defined via sets of quadruples r = (u1, u2;u3, u4) with u1, u2, u3, u4 ∈ Σ∗ called
splicing rules. For two strings x = x1u1u2x2 and y = y1u3u4y2, applying the
rule r = (u1, u2;u3, u4) produces a string z = x1u1u4y2, which we denote by
(x, y) 	r z.

A splicing scheme is a pair σ = (Σ,R) where Σ is an alphabet and R is a
set of splicing rules. For a splicing scheme σ = (Σ,R) and a language L ⊆ Σ∗,
we denote by σ(L) the language

σ(L) = L ∪ {z ∈ Σ∗ | (x, y) 	r z, where x, y ∈ L, r ∈ R}.
Then we define σ0(L) = L and σi+1(L) = σ(σi(L)) for i ≥ 0 and

σ∗(L) = lim
i→∞

σi(L) =
⋃

i≥0

σi(L).

For a splicing scheme σ = (Σ,R) and an initial language L ⊆ Σ∗, we say the
triple H = (Σ,R, L) is a splicing system. The language generated by H is defined
by L(H) = σ∗(L).

Goode and Pixton [6] define a restricted class of splicing systems called semi-
simple splicing systems. A semi-simple splicing system is a triple H = (Σ,M, I),
where Σ is an alphabet, M ⊆ Σ × Σ is a set of markers, and I is a finite initial
language over Σ. We have (x, y) 	(a,b) z if and only if x = x1ax2, y = y1by2, and
z = x1ay2 for some x1, x2, y1, y2 ∈ Σ∗. That is, a semi-simple splicing system
is a splicing system in which the set of rules is M = {(a, ε; b, ε) | (a, b) ∈ M}.
Since the rules are determined solely by our choice of M ⊆ Σ × Σ, the set M is
used in the definition of the semi-simple splicing system rather than the set of
rules M.

It is shown in [6] that the class of languages generated by semi-simple splicing
systems is a subclass of the regular languages. Semi-simple splicing systems are
a generalization of the class of simple splicing systems, defined by Mateescu et
al. [11]. A splicing system is a simple splicing system if it is a semi-simple splicing
system and all markers are of the form (a, a) for a ∈ Σ. It is shown in [11] that
the class of languages generated by simple splicing systems is a subclass of the
extended star-free languages.

Observe that the set of rules M = {(a, ε; b, ε) | (a, b) ∈ M} of a semi-
simple splicing system consist of 4-tuples with symbols from Σ in positions 1
and 3 and ε in positions 2 and 4. We can call such splicing rules (1,3)-splicing
rules. Then a (1,3)-splicing system is a splicing system with only (1,3)-splicing
rules and ordinary semi-simple splicing systems can be considered (1,3)-semi-
simple splicing systems. The state complexity of (1,3)-simple and (1,3)-semi-
simple splicing systems was studied previously by the authors in [9].

We can consider variants of semi-simple splicing systems in this way by defin-
ing semi-simple (i, j)-splicing systems, for i = 1, 2 and j = 3, 4. A semi-simple
(2,4)-splicing system is a splicing system (Σ,M, I) with rules M = {(ε, a; ε, b) |
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(a, b) ∈ M}. A (2,3)-semi-simple splicing system is a splicing system (Σ,M, I)
with rules M = {(ε, a; b, ε) | (a, b) ∈ M}. A (1,4)-semi-simple splicing system is
a semi-simple splicing system (Σ,M, I) with rules M = {(a, ε; ε, b) | (a, b) ∈ M}.

The classes of languages generated by simple and semi-simple splicing sys-
tems and their variants have different relationships among each other. Mateescu
et al. [11] show that the classes of languages generated by (1,3)-simple splicing
systems (i.e. ordinary simple splicing systems) and (2,4)-simple splicing systems
are equivalent, while, the classes of languages generated by (1,3)-, (1,4)-, and
(2,3)-simple splicing systems are all incomparable and subregular.

The situation is different for semi-simple splicing systems. Ceterchi et al. [2]
show that each of the classes of languages generated by (1,3)-, (1,4)-, (2,3)-,
and (2,4)-semi-simple splicing systems are all incomparable. So unlike simple
splicing systems, the (1,3)- and (2,4)- variants are not equivalent. They show
this by showing that the language a+ ∪ a+ab ∪ aba+ ∪ aba+b is generated
by the (1,3)-semi-simple splicing system ({a, b}, {(a, ε; b, ε)}, {abab}) but can-
not be generated by a (2,4)-semi-simple splicing system, while the language
b+ ∪ abb+ ∪ b+ab ∪ ab+ab can be generated by the (2,4)-semi-simple splicing
system ({a, b}, {(ε, a; ε, b)}, {abab}) but not a (1,3)-semi-simple splicing system.

In this paper, we will relax the condition that the initial language of a semi-
simple splicing system must be a finite language, and we will consider also semi-
simple splicing systems with regular initial languages. By [13], it is clear that
such a splicing system will also produce a regular language. In the following, we
will use the convention that I denotes a finite language and L denotes an infinite
language.

4 State Complexity of (2,4)-semi-simple Splicing Systems

In this section, we will consider the state complexity of (2,4)-semi-simple splicing
systems. Recall that a (2,4)-semi-simple splicing system is a splicing system with
rules of the form (ε, a; ε, b) for a, b ∈ Σ. As mentioned previously, the classes of
languages generated by (1,3)- and (2,4)-simple splicing systems were shown to
be equivalent by Mateescu et al. [11], while the classes of languages generated
by (1,3)- and (2,4)-semi-simple splicing systems were shown to be incomparable
by Ceterchi et al. [2].

First, we define an NFA that recognizes the language of a given (2,4)-semi-
simple splicing system. This construction is based on the construction of Head
and Pixton [8] for Păun splicing rules, which is based on the construction for
Pixton splicing rules by Pixton [12]. The original proof of regularity of finite
splicing is due to Culik and Harju [3]. We follow the Head and Pixton construc-
tion and apply ε-transition removal on the resulting NFA to obtain an NFA for
the semi-simple splicing system with the same number of states as the DFA for
the initial language of the splicing system.

Proposition 1. Let H = (Σ,M,L) be a (2,4)-semi-simple splicing system with
a regular initial language and let L be recognized by a DFA with n states. Then
there exists an NFA A′

H with n states such that L(A′
H) = L(H).
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The result of this construction is an NFA that “guesses” when a splicing
operation occurs. Since each component of a semi-simple splicing rule is of length
at most 1, the construction of the NFA need only consider the outgoing and
incoming transitions of states. In the case of (2,4)-semi-simple splicing systems,
for a rule (a, b), any state with an outgoing transition on a has added transitions
on a to every state with an incoming transition on b.

From this NFA construction, we can obtain a DFA via subset construction.
This gives an upper bound of 2n − 1 reachable states. This upper bound is the
same for (1,3)-simple and (1,3)-semi-simple splicing systems and was shown to
be tight [9]. Since (1,3)-simple splicing systems and (2,4)-simple splicing sys-
tems are equivalent, we state without proof that the same result holds for (2,4)-
simple splicing systems via the same lower bound witness. Therefore, this bound
is reachable for (2,4)-semi-simple splicing systems via the same lower bound
witness.

Proposition 2 [9]. For |Σ| ≥ 3 and n ≥ 3, there exists a (2,4)-simple splicing
system with a regular initial language H = (Σ,M,L) with |M | = 1 where L is
a regular language with state complexity n such that the minimal DFA for L(H)
requires at least 2n − 1 states.

It was also shown in [9] that if the initial language is finite, this upper bound
is not reachable for (1,3)-simple and (1,3)-semi-simple splicing systems. This
result holds for all variants of semi-simple splicing systems and the proof is
exactly the same as in [9]. We state the result for semi-simple splicing systems
for completeness.

Proposition 3 [9]. Let H = (Σ,M, I) be a semi-simple splicing system with a
finite initial language where I is a finite language recognized by a DFA A with n
states. Then a DFA recognizing L(H) requires at most 2n−2 + 1 states.

This upper bound is witnessed by a (2,4)-semi-simple splicing system which
requires both an alphabet and ruleset that grows exponentially with the number
of states of the initial language. This is in contrast to the lower bound witness
for (1,3)-semi-simple systems from [9], which requires only three letters. We
also note that the initial language used for this witness is the same as that for
(1,3)-simple splicing systems from [9]. From this, we observe that the choice of
the visible sites for the splicing rules (i.e. (1,3) vs. (2,4)) makes a difference in
the state complexity. We will see other examples of this later as we consider
semi-simple splicing systems with other rule variants.

Theorem 4. Let H = (Σ,M, I) be a (2,4)-semi-simple splicing system with a
finite initial language, where I is a finite language with state complexity n and
M ⊆ Σ × Σ. Then the state complexity of L(H) is at most 2n−2 + 1 and this
bound can be reached in the worst case.

5 State Complexity of (2,3)-semi-simple Splicing Systems

We will now consider the state complexity of (2,3)-semi-simple splicing systems.
Recall that a (2,3)-semi-simple splicing system is a splicing system with rules
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of the form (ε, a; b, ε) for a, b ∈ Σ. We can follow the same construction from
Proposition 1 with slight modifications to account for (2, 3)-semi-simple splicing
rules to obtain an NFA for a language generated by a (2,3)-semi-simple splicing
system with the same number of states as the DFA for the initial language of
the splicing system.

Proposition 5. Let H = (Σ,M,L) be a (2,3)-semi-simple splicing system with
a regular initial language and let L be recognized by a DFA with n states. Then
there exists an NFA A′

H with n states such that L(A′
H) = L(H).

Note that in this NFA construction, for each (2,3)-semi-simple splicing rule
(a, b), any state with an outgoing transition on a has additional ε-transitions
to every state with an incoming transition on b. This differs from the NFA
construction for (2,4)-semi-simple splicing systems, where the new transitions
were on the symbol a. From this NFA, we then get an upper bound of 2n − 1
reachable states via the subset construction. However, we will show that because
of the ε-transitions, this bound cannot be reached.

Proposition 6. Let H = (Σ,M,L) be a (2,3)-semi-simple splicing system with
a regular initial language, where M ⊆ Σ × Σ and L ⊆ Σ∗ is recognized by a
DFA with n states. Then there exists a DFA AH such that L(AH) = L(H) and
AH has at most 2n−1 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be the DFA for L and let BH = (Q,Σ, δ′, q0, F )
be the NFA obtained via the construction of Proposition 5 given the (2,3)-semi-
simple splicing system H. Let AH be the DFA obtained by applying the subset
construction to BH . Note that the states of AH are subsets of states of BH .

Consider a ∈ Σ with (a, b) ∈ M and δ(q, a) = q′ is defined for some q′ ∈ Q. In
other words, q has an outgoing transition on a. Assuming that (a, b) is non-trivial
and im δb contains useful states, for any set P ⊆ Q, we must have im δb ⊆ P
if q ∈ P . This is because for each symbol a ∈ Σ for which there is a pair
(a, b) ∈ M , if the NFA BH enters a state q ∈ Q with an outgoing transition on
a, the NFA BH also simultaneously, via ε-transitions, enters any state with an
incoming transition on b. This implies that not all 2n − 1 non-empty subsets of
Q are reachable in AH , since the singleton set {q} is unreachable.

Because of this construction, the number of distinct sets that contains q
decreases as the size of im δb grows. Thus, to maximize the number of sets that
can be reached, the number of states with incoming transitions on any symbol b
with (a, b) ∈ M must be minimized. Therefore, for (a, b) ∈ M , there can be only
one useful state with incoming transitions on b. Let us call this state qb ∈ Q.

We claim that to maximize the number of states, A must contain no useless
states and therefore A contains no sink state. First, suppose otherwise and that
A contains a sink state q∅. To maximize the number of states, we minimize the
number of states of A with outgoing transitions, so there is only one state of A,
say q′, with an outgoing transition on a. We observe that q′ �= qb, since otherwise,
| im δb| = 1 and if the only state with an outgoing transition on a is qb itself,
then the only reachable subset that contains qb is the singleton set {qb}.
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Now, recall that for all subsets P ⊆ Q\{q∅}, the two sets P and P ∪{q∅} are
indistinguishable. Then there are at most 2n−2 distinguishable subsets containing
qb and at most 2n−3 − 1 nonempty subsets of Q \ {qb, q′, q∅}. Together with the
sink state, this gives a total of at most 2n−2 + 2n−3 states in AH .

Now, we consider when A contains no sink state. In this case, since A must
be a complete DFA, in order to satisfy the condition that | im δb| is minimal,
we must have δ(q, a) = qb for all q ∈ Q. But this means that for any state q ∈ Q
and subset P ⊆ Q, if q ∈ P , then qb ∈ P . Therefore, every reachable subset of
Q must contain qb. This gives an upper bound of 2n−1 states in AH .

Since 2n−1 > 2n−2 + 2n−3 for n ≥ 3, the DFA AH can have at most 2n−1

states in the worst case. �

The bound of Proposition 6 is reachable when the initial language is a regular

language, even when restricted to simple splicing rules defined over an alphabet
of size 3. This upper bound is met by the (2,3)-simple splicing system H =
(Σ, {(c, c)}, L(An)), where Σ = {a, b, c} and An is the DFA shown in Fig. 1.
This gives us the following result.

Fig. 1. The DFA An of Theorem 7

Theorem 7. Let H = (Σ,M,L) be a (2,3)-semi-simple splicing system with a
regular initial language, where L ⊆ Σ∗ is a regular language with state complexity
n and M ⊆ Σ × Σ. Then the state complexity of L(H) is at most 2n−1 and this
bound can be reached in the worst case.

The bound of Proposition 6 depends on whether or not the DFA for the
initial language contains a sink state. Since a DFA recognizing a finite language
must have a sink state, the upper bound stated in the proposition is clearly not
reachable when the initial language is finite.

Proposition 8. Let H = (Σ,M, I) be a (2,3)-semi-simple splicing system where
I is a finite language recognized by a DFA A with n states. Then a DFA recog-
nizing L(H) requires at most 2n−3 + 2 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be the DFA for I and let AH be the DFA obtained
via the construction of Proposition 6, given the (2,3)-semi-simple splicing system
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H. We will consider the number of reachable and pairwise distinguishable states
of AH .

Recall from the proof of Proposition 6 that to maximize the number of sets
that can be reached in AH , the number of states with incoming transitions on
any symbol b with (a, b) ∈ M must be minimized. Then for (a, b) ∈ M , there
can be only one useful state with incoming transitions on b. Let us call this state
qb ∈ Q.

Since I is a finite language, we know that q0, the initial state of A, is contained
in exactly one reachable state in AH . Similarly A must contain a sink state q∅
and for all subsets P ⊆ Q, we have that P and P ∪ {q∅} are indistinguishable.
Finally, we observe that there must exist at least one state q1 ∈ Q that is directly
reachable from q0 and is not reachable by any word of length greater than 1.
Therefore, in order to maximize the number of reachable subsets, we must have
that q1 = qb.

Let Qa denote the set of states for which there is an outgoing transition on
the symbol a. That is, if q ∈ Qa, we have δ(q, a) ≤ n − 2. Let ka = |Qa|. It is
clear that ka ≥ 1. Now, consider a reachable subset P ⊆ Q \ {q0, q∅}. We claim
that if |P | ≥ 2 and qb ∈ P , then we must have q ∈ P for some q ∈ Qa.

Suppose otherwise and that Qa ∩ P = ∅. Recall that qb = q1 and the only
incoming transitions to q1 are from the initial state q0. Then this means that
P = {q1} and |P | = 1, a contradiction. Therefore, we have Qa ∩P �= ∅ whenever
qb ∈ P with |P | ≥ 2.

Now, we can count the number of reachable subsets of Q \ {q0, q∅}. There
are 2n−3−ka(2ka − 1) non-empty subsets of size greater than 1 which contain qb
and there are 2n−3−ka − 1 non-empty subsets which do not contain qb. Together
with the initial and sink states and the set {qb}, we have

2n−3−ka(2ka − 1) + 2n−3−ka − 1 + 3.

Thus, the DFA AH has at most 2n−3 + 2 reachable states. �

Let H = (Σ, {(a, c)}, L(Bn)) be a (2,3)-semi-simple splicing system, where

Σ = {a, b, c} and Bn is a DFA for a finite language with n states. The DFA Bn

is shown in Fig. 2. Then H is a (2,3)-semi-simple splicing system with an initial
finite language that is defined over a fixed alphabet that can reach the upper
bound of Proposition 8. This then gives us the following theorem.

Fig. 2. The DFA Bn of Theorem 9. Transitions not shown are to the sink state n − 1,
which is not shown.
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Theorem 9. Let H = (Σ,M, I) be a (2,3)-semi-simple splicing system with a
finite initial language, where I is a finite language with state complexity n and
M ⊆ Σ × Σ. Then the state complexity of L(H) is at most 2n−3 + 2 and this
bound can be reached in the worst case.

Unlike the situation with (2,3)-semi-simple splicing systems with regular ini-
tial languages, when we restrict (2,3)-semi-simple splicing systems with initial
finite languages to allow only (2,3)-simple splicing rules, the bound of Theorem 9
is not reachable.

Proposition 10. Let H = (Σ,M, I) be a (2,3)-simple splicing system where I
is a finite language recognized by a DFA A with n states. Then a DFA recognizing
L(H) requires at most 2n−4 + 2n−5 + 2 states.

This bound is reachable by a family of witnesses defined over an alphabet of
size 7. We define the (2,3)-finite simple splicing system H = (Σ, {(c, c)}, L(Cn)),
where Σ = {a, b, c, d, e, f, g} and Cn is a DFA with n states that accepts a finite
language, shown in Fig. 3. Then we have the following theorem.

Fig. 3. The DFA Cn of Theorem 11. Transitions not shown are to the sink state n− 1,
which is not shown.

Theorem 11. Let H = (Σ,M, I) be a (2,3)-simple splicing system with a finite
initial language, where I ⊆ Σ∗ is a finite language with state complexity n and
M ⊆ Σ∗ × Σ∗. Then the state complexity of L(H) is at most 2n−4 + 2n−5 + 2
and this bound can be reached in the worst case.

6 State Complexity of (1,4)-semi-simple Splicing Systems

In this section, we consider the state complexity of (1,4)-semi-simple splicing
systems. Recall that a (1,4)-semi-simple splicing system is a splicing system
with rules of the form (a, ε; ε, b) for a, b ∈ Σ. As with (2,3)-semi-simple splicing
systems, we can easily modify the construction of Proposition 1 to obtain an
NFA for (1,4)-semi-simple splicing systems.

Proposition 12. Let H = (Σ,M,L) be a (1,4)-semi-simple splicing system
with a regular initial language, M = M1 × M2 with M1,M2 ⊆ Σ and let L be
recognized by a DFA with n states. Then there exists an NFA A′

H with n + m
states such that L(A′

H) = L(H), where m = |M1|.
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This NFA construction differs from the constructions for (2,3)- and (2,4)-
semi-simple splicing systems in that additional states are introduced for each
splicing rule. For each (1,4)-semi-simple splicing rule (a, b), we add a new state
pa to which any state with an outgoing transition on a has additional transitions
on a and from which there are transitions on b to every state with an incoming
transition on b.

This construction immediately gives an upper bound of 2n+m states necessary
for an equivalent DFA via the subset construction, where m is the number of
symbols on the left side of each pair of rules in M . However, we will show via
the following DFA construction that the upper bound is much lower than this.

Proposition 13. Let H = (Σ,M,L) be a (1,4)-semi-simple splicing system
with a regular initial language, where M = M1 × M2 with M1,M2 ⊆ Σ and
L ⊆ Σ∗ is recognized by a DFA with n states. Then there exists a DFA AH such
that L(AH) = L(H) and AH has at most (2n − 2)(|M1| + 1) + 1 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be a DFA for L. We will define the DFA AH =
(Q′, Σ, δ′, q′

0, F
′). Then the state set of AH is Q′ = 2Q × (M1 ∪ {ε}), the initial

state is q′
0 = 〈{q0}, ε〉, the set of final states is F ′ = {〈P, a〉 | P ∩ F �= ∅}, and

the transition function δ′ is defined

– δ′(〈P, ε〉, a) = 〈P ′, ε〉 if a �∈ M1,
– δ′(〈P, ε〉, a) = 〈P ′, a〉 if a ∈ M1,
– δ′(〈P, b〉, a) = 〈P ′, ε〉 if (b, a) �∈ M and a �∈ M1,
– δ′(〈P, b〉, a) = 〈P ′, a〉 if (b, a) �∈ M and a ∈ M1,
– δ′(〈P, b〉, a) = 〈 im δa, ε〉 if (b, a) ∈ M and a �∈ M1,
– δ′(〈P, b〉, a) = 〈 im δa, a〉 if (b, a) ∈ M and a ∈ M1,

where P ′ =
⋃

q∈P δ(q, a).
This construction gives an immediate upper bound of (2n − 1)(|M1| + 1)

states, however, not all of these states are distinguishable. Consider the two
states 〈Q, ε〉 and 〈Q, a〉 for some a ∈ M1. We claim that these two states are
indistinguishable. This arises from the observation that

⋃
q∈Q δ(q, a) = im δa

for all a ∈ Σ. Then one of the following occurs:

– 〈Q, ε〉 b−→ 〈 im δb, ε〉 and 〈Q, a〉 b−→ 〈 im δb, ε〉 if b �∈ M1,
– 〈Q, ε〉 b−→ 〈 im δb, b〉 and 〈Q, a〉 b−→ 〈 im δb, b〉 if b ∈ M1.

Note that in either case, it does not matter whether or not (a, b) ∈ M and the
two cases are distinguished solely by whether or not b is in M1. Thus, all states
〈Q, a〉 with a ∈ M1 ∪ {ε} are indistinguishable.

Thus, AH has at most (2n − 2)(|M1| + 1) + 1 states. �

When the initial language is a regular language, the upper bound is easily

reached, even when we are restricted to simple splicing rules. We consider the
(1,4)-simple splicing system H = (Σ, {(c, c)}, L(Dn)), where Σ = {a, b, c} and
Dn is the DFA shown in Fig. 4.
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Fig. 4. The DFA Dn for Theorem 14

We note that the witness, H has |M | = 1 and therefore |M1| = 1. We observe
that we can set |M1| to be arbitrarily large by adding symbols and transitions
appropriately and adding the corresponding markers to M for each new such
symbol. We then have the following result.

Theorem 14. Let H = (Σ,M,L) be a (1,4)-semi-simple splicing system with a
regular initial language, where L ⊆ Σ∗ is a regular language with state complexity
n and M = M1 × M2 with M1,M2 ⊆ Σ. Then the state complexity of L(H) is
at most (2n − 2)(|M1| + 1) + 1 and this bound can be reached in the worst case.

We will show that this bound cannot be reached by any (1,4)-semi-simple
splicing system when the initial language is finite.

Proposition 15. Let H = (Σ,M, I) be a (1,4)-semi-simple splicing system with
a finite initial language, where M = M1 × M2 with M1,M2 ⊆ Σ and I ⊆ Σ∗

is a finite language recognized by a DFA with n states. Then there exists a DFA
AH such that L(AH) = L(H) and AH has at most 2n−2 + |M1| · 2n−3 +1 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be a DFA for I with n states and let AH be the
DFA recognizing L(H) obtained via the construction of Proposition 13. Since
I is finite, the initial state of A contains no incoming transitions and A must
have a sink state. Therefore, for any state 〈S, c〉, we have S ⊆ Q \ {q0, q∅} and
c ∈ M1∪{ε}, where q∅ is the sink state. This gives us up to (2n−2−1)(|M1|+1)+2
states.

We can reduce the number of reachable states further by noting that since
I is finite, A must contain at least one useful state q1 that is directly reachable
only from the initial state q0. Then there are only two ways to reach a state 〈P, c〉
in AH with q1 ∈ P . Either P = {q1} and is reached directly via a transition from
{q0} or |P | ≥ 2 and P = im δb for some (a, b) ∈ M . For each c ∈ M1, this gives
a total of 2 reachable states 〈P, c〉.

Therefore, we can enumerate the reachable states of AH as follows:

– the initial state 〈{q0}, ε〉 and the sink state 〈{q∅}, ε〉,
– at most 2n−2 − 1 states of the form 〈P, ε〉, where P ⊆ Q \ {q0, q∅},
– at most |M1| states of the form 〈{q1}, c〉 with c ∈ M1,
– at most |M1| states of the form 〈P, c〉 such that P ⊆ Q \ {q0, q∅}, |P | ≥ 2,

and q1 ∈ P with c ∈ M1,
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– at most |M1|(2n−3 −1) states of the form 〈P, c〉 such that P ⊆ Q\{q0, q1, q∅}
with c ∈ M1.

This gives a total of at most 2n−2 + |M1| · (2n−3 + 1) + 1 reachable states
in AH . �


This bound is witnessed by a (1,4)-semi-simple splicing system that is defined
over an alphabet and ruleset that grows exponentially in the size of the number
of states of the initial language. This is similar to the (2,4)-semi-simple case. We
note also that one can arbitrarily increase the size of M by adding symbols and
corresponding pairs of rules appropriately. We then get the following result.

Theorem 16. Let H = (Σ,M, I) be a (1,4)-semi-simple splicing system with a
finite initial language, where I ⊆ Σ∗ is a finite language with state complexity n
and M = M1 × M2 with M1,M2 ⊆ Σ. Then the state complexity of L(H) is at
most 2n−2 + |M1| · 2n−3 + 1 and this bound is reachable in the worst case.

7 Conclusion

We have studied the state complexity of several variants of semi-simple splic-
ing systems. Our results are summarized in Table 1 and we include the state
complexity of (1,3)-semi-simple and (1,3)-simple splicing systems from [9] for
comparison.

Table 1. Summary of state complexity bounds for (i, j)-simple and semi-simple splicing
systems with alphabet Σ, state complexity of the axiom set n, and set of splicing rules
M = M1 × M2, with M1, M2 ⊆ Σ. Regular axiom sets have |Σ| = 3.

Regular axiom set Finite axiom set |Σ|
(2,4)-semi. 2n − 1 2n−2 + 1 ≥ 2n−3

(2,3)-semi. 2n−1 2n−3 + 2 3

(1,4)-semi. (2n−2 − 2)(|M1| + 1) + 1 2n−2 + |M1| · 2n−3 ≥ 2n−3

(1,3)-semi. [9] 2n − 1 2n−2 + 1 3

(2,4)-simple 2n − 1 Same as (1,3)

(2,3)-simple 2n−1 2n−4 + 2n−5 + 2 7

(1,4)-simple (2n−2 − 2)(|M1| + 1) + 1 ?

(1,3)-simple [9] 2n − 1 2n−2 + 1 ≥ 2n−3

Observe that for all variants of semi-simple splicing systems, the state com-
plexity bounds for splicing systems with regular initial languages are reached
with simple splicing witnesses defined over a three-letter alphabet. For semi-
simple splicing systems with finite initial languages, we note that the state com-
plexity bounds for the (2,3) and (1,3) variants are reached by witnesses defined
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over a three-letter alphabet, while both of the (1,4) and (2,4) variants require an
alphabet size that is exponential in the size of the DFA for the initial language.

We note that the witness for (2,3)-simple splicing systems with a finite initial
language is defined over a fixed alphabet of size 7, while the problem remains
open for (1,4)-simple splicing systems. Another problem that remains open is
the state complexity of (1,4)- and (2,4)- simple and semi-simple splicing systems
with finite initial languages defined over alphabets of size k for 3 < k < 2n−3. A
similar question can be asked of (2,3)-simple splicing systems with a finite initial
language for alphabets of size less than 7.
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