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Preface

The year 2020 will be remembered in history by the pandemic of COVID-19 caused by
a novel corona virus that triggered the cancellation of many events around the world.
The International Conference on Developments in Language Theory (DLT 2020) was
one of those events; the conference was supposed to be held during May 11–15, 2020,
at the University of South Florida, USA, but due to the pandemic outbreak it was
canceled. The schedule of the conference allowed for the paper submission and ref-
ereeing process to be finished before the outbreak, therefore this volume contains the
accepted papers of DLT 2020. The authors of these papers will be invited to present the
work covered in this volume at the next installation of the conference (DLT 2021),
which, if the world pandemic events allow, will be held in Porto, Portugal, in
September 2021.

There were 38 papers submitted with authors from 18 countries. The Program
Committee accepted 24 of these submissions. The papers on average received 3.7
reviews. The production of this volume was made possible through the diligent work
of the Program Committee and the expert referees. We are very grateful to all of the
Program Committee and the superb sub-reviewers for their conscientious work.

As this volume indicates, should the world events have allowed the conference to
convene, it would have been a very successful and scientifically gratifying event.

We would like to acknowledge the flexibility of National Science Foundation and
National Security Agency, as well as the University of South Florida, in allowing
partial support of the authors of this volume’s papers to participate at DLT 2021. The
review process and preparation of this volume was greatly facilitated by EasyChair.

April 2020 Nataša Jonoska
Dmytro Savchuk
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Equational Theories of Scattered
and Countable Series-Parallel Posets

Amrane Amazigh(B) and Nicolas Bedon

LITIS (EA 4108), Université de Rouen, Rouen, France
Amazigh.Amrane@etu.univ-rouen.fr, Nicolas.Bedon@univ-rouen.fr

Abstract. In this paper we consider two classes of posets labeled over
an alphabet A. The class SP �(A) is built from the letters and closed
under the operations of series finite, ω and ω products, and finite parallel
product. In the class ωSP (A), ω and ω products are replaced by ω and ω
powers. We prove that SP �(A) and ωSP (A) are freely generated in their
respective natural varieties of algebras V and V ′, and that the equational
theory of V ′ is decidable.

Keywords: Transfinite N-free posets · Series-parallel posets ·
Variety · Free algebra · Series product · Parallel product · ω-power ·
ω-power · Decidability

1 Introduction

In his generalization of the algebraic approach of recognizable languages from
finite words to ω-words, Wilke [22] introduced right binoids, that are two-sorted
algebras equipped with a binary product and an ω-power. The operations are
linked together by equalities reflecting their properties. These equalities define
a variety of algebras. This algebraic study of ω-words have since been extended
to more general structures, such as for example partial words (or equivalently,
labeled posets) or transfinite strings (long words). In [8], shuffle binoids are right
binoids equipped with a shuffle operation that enables to take into consideration
N-free posets with finite antichains and ω-chains instead of ω-words. In [3,5], the
structure of right binoids in two parts is modified in order to enable products to
extend over ω, ie. small ordinals (≤ ωn, n ∈ N) and countable ordinals. The lat-
ter algebras are enriched in [10,11] with operations such as for example reverse
ω-power in order to take into account countable linear orderings (scattered in
some cases). Some of the previous algebraic enrichments were also applied to
shuffle binoids [4,12]. The motivations in [3–5,10,11,17,22] are mainly the study
of the links between automata, rational expressions, algebraic recognition and
monadic second-order logic. In [7–9,12,22] the authors focus essentially on vari-
eties of algebras; for example, free algebras are characterized in the corresponding
varieties, and decisions algorithms for equivalence of terms are provided.

Let us denote by ω the reverse ordering of ω. In this paper we focus on
algebras equipped with a parallel product, series product, and either ω and ω

c© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 1–13, 2020.
https://doi.org/10.1007/978-3-030-48516-0_1
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2 A. Amazigh and N. Bedon

products or ω and ω powers. For example, the class SP �(A) of N-free posets in
which antichains are finite and chains are scattered and countable orderings lies
in this framework. In [2,6] this class has been studied from the point of view
of automata, rational expression and logic. We prove here that SP �(A) is the
free algebra in a variety V of algebras equipped with a parallel product, series
product, and ω and ω products. By removing the parallel product, it follows
that A�, the class of scattered and countable words over A, is also a free algebra
in the corresponding variety. We also consider the class ωSP (A) where the ω and
ω products are replaced by ω and ω powers, and show that it is freely generated
in the corresponding variety V ′. Relying of decision results of [2] we prove that
the equality of terms of V ′ is decidable.

2 Linear Orderings and Posets

We let |E| denote the cardinality of a set E, and [n] the set {1, . . . , n}, for any
non-negative integer n ∈ N.

Let J be a set equipped with a strict order <. The ordering J is linear if either
j < k or k < j for any distinct j, k ∈ J . We denote by J the backward linear
ordering obtained from the set J with the reverse ordering. A linear ordering
J is dense if for any j, k ∈ J such that j < k, there exists an element i of J
such that j < i < k. It is scattered if it contains no infinite dense sub-ordering.
The ordering ω of natural integers is scattered as well as the ordering ζ of all
integers (negative, 0 and positive). Ordinals are also scattered orderings. We let
N , O and S denote respectively the class of finite linear orderings, the class of
countable ordinals and the class of countable scattered linear orderings. We also
let 0 and 1 denote respectively the empty and the singleton linear ordering. We
refer to [20] for more details on linear orderings and ordinals.

A poset (P,<) is a set P partially ordered by <. For short we often denote the
poset (P,<) by P . The width of P is wd(P ) = sup{|E| : Eis an antichain of P}
where sup denotes the least upper bound of the set. In this paper, we restrict to
posets with finite antichains and countable and scattered chains.

Let (P,<P ) and (Q,<Q) be two disjoint posets. The union (or parallel compo-
sition) P ∪Q of (P,<P ) and (Q,<Q) is the poset (P ∪Q,<P ∪ <Q). The sum (or
sequential composition) P +Q is the poset (P ∪Q,<P ∪ <Q ∪P ×Q). The sum
of two posets can be generalized to a J-sum of any linearly ordered sequence
((Pj , <j))j∈J of pairwise disjoint posets by

∑
j∈J Pj = (

⋃
j∈J Pj , (

⋃
j∈J <j)

∪(
⋃

j,j′∈J, j<j′ Pj ×Pj′)). The sequence ((Pj , <j))j∈J is called a J-factorization,
or (sequential) factorization for short, of the poset

∑
j∈J Pj . A poset P is sequen-

tial if it admits a J-factorization where J contains at least two elements j �= j′

with Pj , Pj′ �= 0, or P is a singleton. It is parallel when P = P1 ∪ P2 for some
P1, P2 �= 0. A poset is sequentially irreducible (resp. parallelly irreducible) when
P is either a singleton or a parallel poset (resp. a singleton or a sequential poset).
A sequential factorization ((Pj , <j))j∈J of P =

∑
j∈J Pj is irreducible when all

the Pj are sequentially irreducible. It is non-trivial if all the Pj are non-empty.
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The notions of irreducible and non-trivial parallel factorization are defined sim-
ilarly. A poset is scattered if all its chains are scattered. The class SP � of series-
parallel scattered and countable posets is the smallest class of posets containing
0, the singleton, and closed under finite parallel composition and sum indexed
by countable scattered linear orderings. By extension of a well-known result on
finite posets [18,21], it has a nice characterization in terms of graph properties:
SP � coincides with the class of scattered countable N-free posets without infinite
antichains [6]. Recall that (P,<) is N-free if there is no X = {x1, x2, x3, x4} ⊆ P
such that < ∩X2 = {(x1, x2), (x3, x2), (x3, x4)}.

When P ∈ SP � and P = R + P ′ + S or P = P ′ ∪ R for some R,S, P ′ ∈ SP �

then P ′ is a factor of P ; the factors of P ′, R and S are also factors of P .
F. Hausdorff proposed in [16] an inductive definition of scattered linear order-

ings. In fact, each countable and scattered linear ordering is obtained using sums
indexed by finite linear orderings, ω and ω. This has been adapted in [6] to SP �.

We let C∪,+(E) denote the closure of a set E of posets under finite disjoint
union and finite disjoint sum.

Definition 1. The classes of countable and scattered posets (equivalent up to
isomorphism) Vα and Wα are defined inductively as follows:

V0 = {0, 1}
Wα = C∪,+(Vα)

Vα =

{
∑

i∈J

Pi : J ∈ {ω, ω} and ∀i ∈ J, Pi ∈
⋃

β<α

Wβ

}

∪
⋃

β<α

Wβ when α > 0

and the class Ssp of countable and scattered posets by Ssp =
⋃

α∈O Wα.

The following theorem extends a result of Hausdorff on linear orderings [16].

Theorem 1 ([6]). Ssp = SP �.

For every α ∈ O, Wα can be decomposed as the closure of Vα by finite disjoint
union and finite disjoint sum:

Theorem 2 ([6]). For all α ∈ O, i ∈ N, let

Xα,0 = Vα

Yα,i =

{

P : ∃n ∈ N P =
∑

j≤n

Pj such that Pj ∈ Xα,i for all j ≤ n

}

Xα,i+1 =

{

P : ∃n ∈ N P =
⋃

j≤n

Pj such that Pj ∈ Yα,i for all j ≤ n

}

Then Wα =
⋃

i∈N

Xα,i.
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Example 1. W0 is the set of all finite N-free posets. Its subset Y0,0 is the set
of all finite linear orderings. The linear orderings ω and ω are contained in V1.
Each poset of V1 \ W0 has some chain isomorphic to either ω or ω, but can not
have a chain isomorphic to ω and another isomorphic to ω. The ordering ζ of all
integers is in Y1,0. For all α ∈ O, ωα ∈ Vα.

Define a well-ordering on O × N by (β, j) < (α, i) if and only if β < α or
β = α and j < i. As a consequence of Theorems 1 and 2, for any P ∈ SP � there
exists a unique pair (α, i) ∈ O × N as small as possible such that P ∈ Xα,i.

Definition 2. The rank r(P ) of P ∈ SP � is the smallest pair (α, i) ∈ O × N

such that P ∈ Xα,i.

Example 2. The linear ordering ζ has rank r(ζ) = (1, 1). Each linear ordering I
of S has rank r(I) ∈ {(α, 0), (α, 1)} for some α ∈ O. For all α ∈ O, r(ωα) = α.

Remark 1. Let P ∈ SP � with r(P ) = (α, 0), α > 0. Assume that P =
∑

j∈J Pj

is a non-trivial J-factorization of P for some J ∈ {ω, ω}. If J = ω (resp. J = ω),
then, for all j ∈ J , r(Pj) < r(P ). In addition, for all (β, i) ∈ O × N such that
(β, i) < (α, 0), for all j ∈ J there exists k ∈ J such that k > j (resp. k < j) and

(β, i) ≤ r(Pk) < r(P )

This implies that, for all j ∈ J ,
∑

j′≥j Pj (resp.
∑

j′≤j Pj) is of rank (α, 0).

Lemma 1. Let P ∈ SP � be a sequential poset such that r(P ) = (α, 0), α > 0.
Let

∑
j∈J Pj and

∑
j∈J ′ P ′

j be some non-trivial J- and J ′-factorizations of P
where J, J ′ ∈ {ω, ω}. Then J = J ′.

Proof. Assume by contradiction that J �= J ′. Assume wlog that J = ω and
J ′ = ω. Let L =

∑
j≤k Pj and R =

∑
k<j<ω Pj for some k ∈ ω. Then P = L+R.

As a consequence of Remark 1, r(R) = (α, 0). Observe that there exists k′ ∈ ω
such that R is a sequential factor of R′ =

∑
j′≥k′ P ′

j′ . Let L′ =
∑

ω<j′<k′ P ′
j′ .

As a consequence of Remark 1, r(L′) = r(R) = (α, 0). Furthermore, r(R) ≤
r(R′) ≤ r(P ). Thus r(R′) = (α, 0) too. We have P = L′ +R′, and by Theorem 2,
r(P ) = (α, 1), which is a contradiction.

In [6] an equivalence relation ∼ over the elements of a poset of SP � is
given, such that P/∼ is isomorphic to a countable and scattered linear ordering
(Lemma 9), and such that each equivalence class is a sequentially irreducible
factor of P (Lemma 10). This leads to the following proposition.

Proposition 1 ([6]). Each poset of SP � admits a unique irreducible sequential
factorization.

Definition 1 and Theorem 1 provide a well-founded definition of SP � which
we consider from now as a set, although originally defined as a class.
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3 Labeled Posets

An alphabet A is a non-empty set (not necessarily finite) whose elements are
called letters or labels. In the literature a word over A is a totally ordered
sequence of elements of A. The sequence may have properties depending on
the context, for example it can be finite, an ordinal, or a countable scattered
linear ordering. The notion of a finite word has early been extended to partial
orderings (finite partial words or pomsets [14,15,23]). In this paper we consider
a mixture between the notions of finite partial words and words indexed by
scattered and countable linear orderings.

A poset P is labeled by A when it is equipped with a labeling total map
l : P → A. Also, the finite labeled posets of width at most 1 correspond to the
usual notion of words. We let ε denote the empty labeled poset. For short, the
singleton poset labeled by {a} is denoted by a, and we often make no distinction
between a poset and a labeled poset, except for operations.

The sequential product (or concatenation, denoted by P ·P ′ or PP ′ for short)
and the parallel product P ‖ P ′ of two labeled posets are respectively obtained by
the sequential and parallel compositions of the corresponding (unlabeled) posets.
By extension, the sequential product

∏
j∈J Pj of a linearly ordered sequence of

labeled posets is the poset
∑

j∈J Pj in which the label of the elements is kept. In
particular, the ω-product (resp. ω-product) of an ω-sequence (resp. ω-sequence)
of labeled posets (Pi)i∈ω (resp. (Pi)i∈ω) is denoted by

∏
i∈ω Pi (resp.

∏
i∈ω Pi).

The ω-power (resp. ω-power) Pω (resp. Pω) of the poset P is the ω-product
(resp. ω-product) of an ω-sequence (resp. ω-sequence) of posets that are all
isomorphic to P . As usual, in this paper we consider two labeled posets to be
identical if they are isomorphic. By extension, the rank r(P ) of a labeled poset
P is the rank of its underlying unlabeled poset.

Let A and B be two alphabets and let P be a poset labeled by A. For all
a ∈ A, let Ga be some poset labeled by B, and let G = (Ga)a∈A. The poset
labeled by B consisting of P in which each element labeled by the letter a is
replaced by Ga, for all a ∈ A, is denoted by G ◦A P . If the underlying posets of
P and of all the Ga are in SP �, then so is G ◦A P .

Definition 3. Let A be an alphabet. We define:

– SP �(A), the smallest set of posets labeled by A containing ε, a for all a ∈ A,
and closed under operations of sequential, parallel, ω and ω-products. Accord-
ing to Theorem 1, the underlying posets are precisely those of SP �;

– ωA, the smallest subset of SP �(A) containing ε, a for all a ∈ A, and closed
under operations of sequential product, ω-power and ω-power;

– A�, the smallest subset of SP �(A) containing ε, a for all a ∈ A, and closed
under operations of sequential product, ω-product and ω-product;

– ωSP (A), the smallest subset of SP �(A) containing ε, a for all a ∈ A, and
closed under operations of sequential and parallel product, ω-power and ω-
power;
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– ωSP (A), the smallest subset of SP �(A) containing ε, a for all a ∈ A, and
closed under operations of sequential product, parallel product and ω-product
(note that there is no ω-product here).

Note that ωA = {P ∈ SP �(A) : r(P ) ∈ N × {0, 1}} and ωSP (A) = {P ∈
SP �(A) : r(P ) ∈ N × N}}.

4 Varieties

In this section we define the different varieties studied throughout this paper
by listing the axioms they satisfy. The usual notions and results of universal
algebra apply to our case, even if we use here for example operations of infinite
arity. For more details about universal algebra, we refer the reader to [1]. In the
following 1 is considered as a neutral element (the interpretation of a constant).

x · (y · z) = (x · y) · z (A1)
x ‖ (y ‖ z) = (x ‖ y) ‖ z (A2)

x ‖ y = y ‖ x (A3)
(x · y)ω = x · (y · x)ω (A4)

(xn)ω = xω, n ≥ 1 (A5)

(x · y)ω = (y · x)ω · y (A6)

(xn)ω = xω, n ≥ 1 (A7)
x · 1 = x (A8)
1 · x = x (A9)

x ‖ 1 = x (A10)
1ω = 1 (A11)

1ω = 1 (A12)

for all ω-sequences x0, x1, . . . , xi, . . . and all decompositions
(x0, . . . , xn0−1), (xn0 , . . . , xn1−1), . . . , (xni

, . . . , xni−1), . . .

ω((x0, . . . , xn0−1), (xn0 , . . . , xn1−1), . . . ) = ω(x0, x1, . . . ) (A13)
x0 · ω(x1, x2, . . . ) = ω(x0, x1, x2, . . . ) (A14)

ω(1, 1, . . . ) = 1 (A15)

for all ω-sequences . . . , xi, . . . , x1, x0 and all decompositions
. . . , (xni−1, . . . , xni

), . . . , (xn1−1, . . . , xn0), (xn0−1, . . . , x0)

ω(. . . , (xn1−1, . . . , xn0), (xn0−1, . . . , x0)) = ω(. . . , x1, x0) (A16)
ω(. . . , x2, x1) · x0 = ω(. . . , x2, x1, x0) (A17)

ω(. . . , 1, 1) = 1 (A18)
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Definition 4. We define

– V, the collection of algebras (S, ·, ‖, ω, ω, 1) satisfying the axioms (A1)–(A3),
(A8)–(A10) and (A13)–(A18);

– V0, the collection of algebras (S, ·, ω, ω, 1) satisfying the axioms (A1), (A8),
(A9) and (A13)–(A18);

– V1, the collection of algebras (S, ·, ‖, ω, 1) satisfying the axioms (A1)–(A3),
(A8)–(A10) and (A13)–(A15);

– V ′, the collection of algebras (S, ·, ‖,ω ,ω , 1) satisfying the axioms (A1)–(A12);
– V ′

0, the collection of algebras (S, ·,ω ,ω , 1) satisfying the axioms (A1), (A4)–
(A9) and (A11),(A12).

In order to simplify the notation, an algebra whose set of elements is S is some-
times denoted by S when there is no ambiguity.

5 Freeness

Throughout this section, A denotes an alphabet. We start by proving the freeness
of SP �(A).

Theorem 3. SP �(A) is freely generated by A in V.

Proof. For all (α, i) ∈ O×N, let Xα,i denote the set of posets of SP �(A) of rank
(α, i) or less. Let M = (M, ·, ‖, ω, ω, 1) be any algebra of V and let h : A → M
be any function. We show that h can be extended into a homomorphism of V-
algebras h� : SP �(A) → M in a unique way. Define h� as h� =

⋃

(α,i)∈O×N

hα,i

where each hα,i : Xα,i → M is defined by induction over (α, i) as follows. Let
us denote by h<(α,i) = ∪(β,j)<(α,i)hβ,j . Let P ∈ Xα,i. If r(P ) < (α, i) then
hα,i(P ) = h<(α,i)(P ). Otherwise

– if α = 0 and i = 0 then hα,i = h ∪ (ε → 1);
– if α > 0 and i = 0 then P admits a non-trivial J-factorization

P =
∏

j∈J

Pj (19)

where J ∈ {ω, ω} (see Remark 1) and r(Pj) < r(P ) for all j ∈ J . Define
hα,i(P ) by

hα,i(P ) =
∏

j∈J

h<(α,i)(Pj)

– if i > 0:
• if P is a sequential poset then it has a factorization

P =
∏

j∈[n]

Pj (20)
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where each Pj is a non-empty poset of rank lower than (α, i) and n ∈
N \ {0, 1}. Define hα,i(P ) by

hα,i(P ) =
∏

j∈[n]

hα,i−1(Pj)

• otherwise, P is a parallel poset. Write

P =‖s∈[n] Ps

where each Ps is a sequential poset and n ≥ 2. Then, define hα,i(P ) by

hα,i(P ) =‖s∈[n] hα,i(Ps)

By Theorem 2, the factorizations used in the definition of hα,i exist. However,
observe that the sequential ones ((19) and (20)) are not unique. This would
question the fact that hα,i is a well-defined function. For all P ∈ SP �(A) of rank
(α, i), we show that:

1. hα,i(P ) does not depend on the factorization of P and thus is well-defined;
2. hα,i commutes with all the operations of V:

(a) hα,i(
∏

j∈J Pj) =
∏

j∈J hα,i(Pj), for some J ∈ N ∪ {ω, ω};
(b) hα,i(‖s∈[n] Ps) =‖s∈[n] hα,i(Ps), for some n ∈ N.

We proceed by induction on (α, i). Let us start by proving that hα,i maps
P ∈ Xα,i to the same element of M regardless of the factorization of P . If
(α, i) = (0, 0) the theorem follows immediately. Otherwise, assume first that
i = 0. By Lemma 1, all the possible factorizations of P as in (19) are either
all ω-factorizations or all ω-factorizations. Assume wlog that P admits only ω-
factorizations as in (19). Let P =

∏
j∈ω Pj and P =

∏
j∈ω Qj be two different

such ω-factorizations. By definition of hα,i

hα,i(
∏

j∈ω

Pj) =
∏

j∈ω

h<(α,i)(Pj) and hα,i(
∏

j∈ω

Qj) =
∏

j∈ω

h<(α,i)(Qj)

There exists a sequence (Rj)j∈ω of non-empty posets such that P =
∏

k∈ω Rk

and for all j ∈ ω there exist kPj
, k′

Pj
, kQj

, k′
Qj

∈ ω such that

Pj =
∏

kPj
≤l≤k′

Pj

Rl and Qj =
∏

kQj
≤l≤k′

Qj

Rl

By induction hypothesis h<(α,i) commutes with all the operations of V. Then,
we have for all j ∈ ω:

h<(α,i)(Pj) =
∏

kPj
≤l≤k′

Pj

h<(α,i)(Rl) and h<(α,i)(Qj) =
∏

kQj
≤l≤k′

Qj

h<(α,i)(Rl)
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Thus
∏

j∈ω h<(α,i)(Pj) can be written as

ω(h<(α,i)(RkP0
) · . . . · h<(α,i)(Rk′

P0
), h<(α,i)(RkP1

) · . . . · h<(α,i)(Rk′
P1

), · · · )
(A13)= ω(h<(α,i)(RkP0

), . . . , h<(α,i)(Rk′
P0

), h<(α,i)(RkP1
), . . . , h<(α,i)(Rk′

P1
), · · · )

(A13)= ω(h<(α,i)(RkQ0
) · . . . · h<(α,i)(Rk′

Q0
), h<(α,i)(RkQ1

) · . . . · h<(α,i)(Rk′
Q1

), · · · )

We have
∏

j∈ω h<(α,i)(Pj) =
∏

j∈ω h<(α,i)(Qj). The case where P admits
only ω-factorizations as in (19) is proved symmetrically using (A16) instead
of (A13). In addition, using (A1) instead of (A13) and arguments similar to those
of the previous case, we prove that when P is sequential and i > 0, hα,i(P ) does
not depend on the factorization of P .

Thus, we have proved that hα,i is well-defined for sequential posets of rank
(α, i) ∈ O×N. In addition, the irreducible parallel factorization is unique modulo
the commutativity of ‖. Thus hα,i is well-defined for all posets of rank (α, i),
for all (α, i) ∈ O × N. Furthermore, proving that hα,i commutes with all the
operations in Xα,i can be done by induction on r(P ) too. The arguments are
very similar to those used to prove that hα,i is well-defined. It follows that h�

is a homomorphism of V-algebras. In addition, since h� relies on h then h� is
unique.

The proofs of the following theorems rely on the same arguments. It suffices
to restrict h� to the operations of the corresponding variety. In particular, this
provides a new proof of Theorem 5.

Theorem 4. A� is freely generated by A in V0.

Theorem 5 ([12]). ωSP (A) is freely generated by A in V1.

In the remainder of this section, we prove the freeness of ωSP (A) in V ′. The
arguments are similar to those of the proof of Theorem 6.1 in [12] in which the
variety considered is V ′ without ω-power. We need the following result.

Theorem 6 ([9]). ωA is freely generated by A in V ′
0.

Lemma 2. Let A and B be two alphabets. Let S ⊆ ωSP (B) such that S is closed
under sequential product, ω-power and ω-power. Let f : A → G be some function
defined by f(a) = Ga ∈ G for some G ⊆ S. Then, the function f � : ωA → S
extending f defined by f �(u) = (Ga)a∈A ◦A u, for all u ∈ ωA, is a homomorphism
from (ωA, ·,ω ,ω , ε) to (S, ·,ω ,ω , 1).

Furthermore, if f is bijective, S is generated by G, and G contains only
sequentially irreducible posets then f � is bijective.

Proof. Let u ∈ ωA whose irreducible sequential factorization is
∏

j∈J uj for some
J ∈ S, where each uj ∈ A. Note that

f �(u) = (Ga)a∈A ◦A u =
∏

j∈J

(Ga)a∈A ◦A ui =
∏

j∈J

f(ui)
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Let v · w, xω and yω be some sequential factorizations of u. Then, one can prove
easily that

f �(u) = f �(v) · f �(w) = f �(x)ω = f �(y)ω

relying on the uniqueness of the irreducible sequential factorization of u (Propo-
sition 1).

Let us prove now that when f is bijective and S is generated by a set of
sequentially irreducible posets then f � is bijective. Let u, v ∈ ωA and assume
that f �(u) = P and f �(v) = Q. Let

∏
i∈I ui and

∏
j∈J vj be the irreducible

sequential factorizations of respectively u and v, for some I, J ∈ S, where each
ui and vj are in A. By definition of f �, P =

∏
i∈I Pi and Q =

∏
j∈J Qj where

each Pi = (Ga)a∈A ◦A ui and Qj = (Ga)a∈A ◦A vj . Then, for all i ∈ I and for all
j ∈ J , Pi and Qj are sequentially irreducible posets of G. Assume that P = Q.
Then I = J and, for all i ∈ I, Pi = Qi. We have, for all i ∈ I, ui = vi since f is
injective by hypothesis. In addition, as G generates S, each element P of S can
be written as

∏
j∈J Pj where each Pj ∈ G, for some J ∈ S. Since f is surjective

by hypothesis, for all j ∈ J there exists uj ∈ A such that f(uj) = Pj . Then
f �(

∏
j∈J uj) = P .

As a consequence of HSP Birkhoff’s Theorem (see eg. [1, Theorem 1.3.8])
and Lemma 2:

Corollary 1. For all S ⊆ ωSP (A) closed under sequential product, ω-power
and ω-power and generated by a set of sequentially irreducible posets of ωSP (A),
(S, ·,ω ,ω , 1) is a V ′

0-algebra.

In addition, as a consequence of Theorem 6 and Lemma 2:

Corollary 2. For all S ⊆ ωSP (A) closed under sequential product, ω-power and
ω-power and generated by a set G of sequentially irreducible posets of ωSP (A),
(S, ·,ω ,ω , 1) is freely generated by G in V ′

0.

We are now ready to prove the following theorem.

Theorem 7. ωSP (A) is freely generated by A in V ′.

Proof. For all i ∈ N, let ωSP (A)i be the subset of ωSP (A) consisting all its
posets of width lower or equal to i. Then ωSP (A) =

⋃
i∈N

ωSP (A)i. Note that
ωSP (A)0 = {ε} and ωSP (A)1 = ωA. Observe that for all i ∈ N, ωSP (A)i is closed
under sequential product, ω-power and ω-power. In addition, for all i ∈ N,
ωSP (A)i is generated by its sequentially irreducible posets. By Corollary 1, for
all i ∈ N, ωSP (A)i can be considered as a V ′

0-algebra. In addition, by Corollary 2,
for all i ∈ N, ωSP (A)i is freely generated by its sequentially irreducible posets
in V ′

0. Then, for all i ∈ N and S ∈ V ′
0, a function h′ : A → S can be extended in

a unique homomorphism of V ′
0-algebras h′

i :
ωSP (A)i → S.

Let S be some V ′-algebra and let h : A → S be some function. We show that
h can be extended into a homomorphism of V ′-algebras h� : ωSP (A) → S in a
unique way. Indeed, we define h� as h� =

⋃

i∈N

hi where each hi : ωSP (A)i → S is

defined, by induction on i, as follows:
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– when i = 0, h0 is defined by ε → 1;
– when i = 1, h1 is the unique homomorphism of V ′

0-algebras ωA → S extending
h (Theorem 6);

– when i ≥ 2, hi is defined as follows:
• on posets P of width lower than i, hi(P ) is hi−1(P );
• on sequential posets P of width i, hi(P ) is h′

i(P );
• on parallel posets P of width i, hi(P ) is defined relying on the irreducible

parallel factorization ‖j∈[n] Pj of P , for some n ∈ N, by:

hi(P ) =‖j∈[n] hi−1(Pj)

Proving that h� is a homomorphism of V ′-algebras is routine. Furthermore, the
uniqueness of h� comes from the facts that h� extends h and that A is a generating
set of ωSP (A).

6 Decidability

Throughout this section, A denotes an alphabet. The set of terms of some signa-
ture over A is the smallest set of finite words built from A using the operations
of the corresponding signature. In this section we prove the decidability of the
equational theory of V ′.

Let τ be the signature of V ′-algebras. We start by defining the set of terms
in which we are interested.

Definition 5. The set of terms TA over A is the smallest set satisfying the
following conditions:

– A ∪ {1} ⊆ TA;
– if t1, t2 ∈ TA then t1 · t2, t1 ‖ t2 ∈ TA;
– if t ∈ TA then tω, tω ∈ TA.

By equipping TA with the operations of τ , we define a structure called the term
algebra T (A) = (TA, ·, ‖,ω ,ω , 1) over A. Note that TA can be considered also as
the set of trees whose leaves are labeled by A ∪ {1} and whose internal nodes
are labeled by the operations of τ where the out-degree of each internal node
coincides with the arity of the corresponding operation.

Two terms t, t′ ∈ TA are equivalent if t′ can be derived from t using the
axioms which V ′ satisfy (denoted t ≡ t′). This equivalence relation is actually
a congruence. It is well-known that T (A) is absolutely free i.e. it is freely gen-
erated by A in the class containing all the algebras of signature τ . In addition,
as a consequence of Theorem 7, T (A)/≡ is isomorphic to ωSP (A) (see eg. [1,
Theorem 1.3.2]). This isomorphism can be defined by �1� = ε and �a� = a for
all a ∈ A.

Then we have:

Proposition 2. Let t, t′ ∈ TA. Then �t� = �t′� if and only if t ≡ t′ holds in V ′.
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As a consequence, proving the decidability of the equational theory of V ′ can
be reduced to decide whether �t� = �t′�.

Theorem 8. Let t, t′ ∈ TA. It is decidable whether �t� = �t′�.

We now give a quick outline of the proof. The terms t and t′ can be interpreted
as particular forms of rational expressions over languages of SP �(A), see [6]. By
extension of a well-known result of Büchi on ordinals, it is known from [2] that a
language of SP �(A) is rational if and only if it is definable in an extension, named
P-MSO, of the so-called monadic second-order logic. Two P-MSO formulæ ψt

and ψt′ such that L(ψt) = �t� and L(ψt′) = �t′� can effectively be built from t
and t′. We have L(ψt ∧ ψt′) = ∅ if and only if �t� �= �t′�. Theorem 8 follows from
the decidability of the P-MSO theory of SP �(A) [2, Theorem 6].

This decision procedure has a non-elementary complexity. Another proof with
an exponential complexity (in the size of t, t′) can be derived from the proof
of [12, Theorem 7.6], in which the ω-power is not considered, by replacing the
use of [12, Theorem 7.3] by [9, Corollary 3.19].

Acknowledgements. We would like to thank the anonymous referees for their com-
ments on this work. One of them pointed out that Theorem 3 can be deduced from
Theorem 1 using the theory of categories, and in particular works by Fiore and Hur [13],
Robinson [19], Adámek, Rosicky, Velbil et al.
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12. Choffrut, C., Ésik, Z.: Two equational theories of partial words. Theor. Comput.
Sci. 737, 19–39 (2018)

13. Fiore, M., Hur, C.K.: On the construction of free algebras for equa-
tional systems. Theor. Comput. Sci. 410(18), 1704–1729 (2009). https://doi.
org/10.1016/j.tcs.2008.12.052. http://www.sciencedirect.com/science/article/pii/
S0304397508009353. Automata, Languages and Programming (ICALP 2007)

14. Gischer, J.: The equational theory of pomsets. Theor. Comput. Sci. 61(2–3), 199–
224 (1988)

15. Grabowski, J.: On partial languages. Fundam. Inform. 4(1), 427–498 (1981)
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Abstract. A word u = u1 . . . un is a scattered factor of a word w if
u can be obtained from w by deleting some of its letters: there exist
the (potentially empty) words v0, v1, .. , vn such that w = v0u1v1...unvn.
The set of all scattered factors up to length k of a word is called its
full k-spectrum. Firstly, we show an algorithm deciding whether the k-
spectra for given k of two words are equal or not, running in optimal
time. Secondly, we consider a notion of scattered-factors universality: the
word w, with alph(w) = Σ, is called k-universal if its k-spectrum includes
all words of length k over the alphabet Σ; we extend this notion to k-
circular universality. After a series of preliminary combinatorial results,
we present an algorithm computing, for a given k′-universal word w the
minimal i such that wi is k-universal for some k > k′. Several other
connected problems are also considered.

1 Introduction

A scattered factor (also called subsequence or subword) of a given word w is a
word u such that there exist (possibly empty) words v0, . . . , vn, u1, . . . , un with
u = u1 . . . un and w = v0u1v1u2 . . . unvn. Thus, scattered factors of a word w
are imperfect representations of w, obtained by removing some of its parts. As
such, there is considerable interest in the relationship between a word and its
scattered factors, both from a theoretical and practical point of view (cf. e.g.,
the chapter Subwords by J. Sakarovitch and I. Simon in [27, Chapter 6] for an
introduction to the combinatorial properties). Indeed, in situations where one
has to deal with input strings in which errors may occur, e.g., sequencing DNA
or transmitting a digital signal, scattered factors form a natural model for the
processed data as parts of the input may be missing. This versatility of scattered
factors is also highlighted by the many contexts in which this concept appears.
For instance, in [16,24,37], various logic-theories were developed around the
notion of scattered factors which are analysed mostly with automata theory tools
and discussed in connection to applications in formal verification. On an even
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more fundamental perspective, there have been efforts to bridge the gap between
the field of combinatorics on words, with its usual non-commutative tools, and
traditional linear algebra, via, e.g., subword histories or Parikh matrices (cf.
e.g., [30,33,34]) which are algebraic structures in which the number of specific
scattered factors occurring in a word are stored. In an algorithmic framework,
scattered factors are central in many classical problems, e.g., the longest common
subsequence or the shortest common supersequence problems [1,28], the string-
to-string correction problem [36], as well as in bioinformatics-related works [10].

In this paper we focus, for a given word, on the sets of scattered factors
of a given length: the (full) k-spectrum of w is the set containing all scattered
factors of w of length exactly k (up to k resp.). The total set of scattered factors
(also called downward closure) of w = aba is {ε, a, aa, ab, aba, b, ba} and the 2-
spectrum is {aa, ab, ba}. The study of scattered factors of a fixed length of a word
has its roots in [35], where the relation ∼k (called Simon’s congruence) defines
the congruence of words that have the same full k-spectra. Our main interest
here lies in a special congruence class w.r.t. ∼k: the class of words which have
the largest possible k-spectrum. A word w is called k-universal if its k-spectrum
contains all the words of length k over a given alphabet. That is, k-universal
words are those words that are as rich as possible in terms of scattered factors
of length k (and, consequently, also scattered factors of length at most k): the
restriction of their downward closure to words of length k contains all possible
words of the respective length, i.e., is a universal language. Thus w = aba is not
2-universal since bb is not a scattered factor of w, while w′ = abab is 2-universal.
Calling a words universal if its k-spectrum contains all possible words of length
k, is rooted in formal language theory. The classical universality problem (cf. e.g.,
[18]) is whether a given language L (over an alphabet Σ) is equal to Σ∗, where L
can be given, e.g., as the language accepted by an automaton. A variant of this
problem, called length universality, asks, for a natural number � and a language
L (over Σ), whether L contains all strings of length � over Σ. See [14] for a series
of results on this problem and a discussion on its motivation, and [14,23,31] and
the references therein for more results on the universality problem for various
types of automata. The universality problem was also considered for words [6,29]
and, more recently, for partial words [2,15] w.r.t. their factors. In this context,
the question is to find, for a given �, a word w over an alphabet Σ, such that
each word of length � over Σ occurs exactly once as a contiguous factor of w.
De Bruijn sequences [6] fulfil this property, and have been shown to have many
applications in various areas of computer science or combinatorics, see [2,15]
and the references therein. As such, our study of scattered factor-universality is
related to, and motivated by, this well developed and classical line of research.

While ∼k is a well studied congruence relation from language theoretic,
combinatorial, or algorithmic points of view (see [11,27,35] and the references
therein), the study of universality w.r.t. scattered factors seems to have been
mainly carried out from a language theoretic point of view. In [20] as well as
in [21,22] the authors approach, in the context of studying the height of piece-
wise testable languages, the notion of �-rich words, which coincides with the
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�-universal words we define here; we will discuss the relation between these
notions, as well as our preference to talk about universality rather than rich-
ness, later in the paper. A combinatorial study of scattered factors universality
was started in [5], where a simple characterisation of k-universal binary words
was given. In the combinatorics on words literature, more attention was given
to the so called binomial complexity of words, i.e., a measure of the multiset of
scattered factors that occur in a word, where each occurrence of such a factor
is considered as an element of the respective multiset (see, e.g., [12,25,26,32]).
As such, it seemed interesting to us to continue the work on scattered factor
universality: try to understand better (in general, not only in the case of binary
alphabets) their combinatorial properties, but, mainly, try to develop an algo-
rithmic toolbox around the concept of (k-)universal words.

Our Results. In the preliminaries we give the basic definitions and recall the
arch factorisation introduced by Hebrard [17]. Moreover we explain in detail the
connection to richness introduced in [20].

In Sect. 3 we show one of our main results: testing whether two words have
the same full k-spectrum, for given k ∈ N, can be done in optimal linear time for
words over ordered alphabets and improve and extend the results of [11]. They
also lead to an optimal solution over general alphabets.

In Sect. 4 we prove that the arch factorisation can be computed in time linear
w.r.t. the word-length and, thus, we can also determine whether a given word is
k-universal. Afterwards, we provide several combinatorial results on k-universal
words (over arbitrary alphabets); while some of them follow in a rather straight-
forward way from the seminal work of Simon [35], other require a more involved
analysis. One such result is a characterisation of k-universal words by comparing
the spectra of w and w2. We also investigate the similarities and differences of
the universality if a word w is repeated or wR and π(w) resp. are appended to
w, for a morphic permutation of the alphabet π. As consequences, we get a lin-
ear run-time algorithm for computing a minimal length scattered factor of ww
that is not a scattered factor of w. This approach works for arbitrary alphabets,
while, e.g., the approach of [17] only works for binary ones. We conclude the
section by analysing the new notion of k-circular universality, connected to the
universality of repetitions.

In Sect. 5 we consider the problem of modifying the universality of a word
by repeated concatenations or deletions. Motivated by the fact that, in general,
starting from an input word w, we could reach larger sets of scattered factors
of fixed length by iterative concatenations of w, we show that, for a word w
a positive integer k, we can compute efficiently the minimal � such that w� is
k-universal. This result is extensible to sets of words. Finally, the shortest prefix
or suffix we need to delete to lower the universality index of a word to a given
number can be computed in linear time. Interestingly, in all of the algorithms
where we are concerned with reaching k-universality we never effectively con-
struct a k-universal word (which would take exponential time, when k is given as
input via its binary encoding, and would have been needed when solving these
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problems using, e.g., [10,11]). Our algorithms run in polynomial time w.r.t. |w|,
the length of the input word, and log2 k, the size of the representation of k.

2 Preliminaries

Let N be the set of natural numbers and N0 = N ∪ {0}. Define [n] as the set
{1, . . . , n}, [n]0 = [n] ∪ {0} for an n ∈ N, and N≥n = N\[n − 1]. An alphabet
Σ is a nonempty finite set of symbols called letters. A word is a finite sequence
of letters from Σ, thus an element of the free monoid Σ∗. Let Σ+ = Σ∗\{ε},
where ε is the empty word. The length of a word w ∈ Σ∗ is denoted by |w|.
For k ∈ N define Σk = {w ∈ Σ∗||w| = k} and Σ≤k, Σ≥k analogously. A word
u ∈ Σ∗ is a factor of w ∈ Σ∗ if w = xuy for some x, y ∈ Σ∗. If x = ε (resp.
y = ε), u is called a prefix (resp. suffix of w). Let Prefk(w) be the prefix of w
of length k ∈ N0. The ith letter of w ∈ Σ∗ is denoted by w[i] for i ∈ [|w|] and
set w[i..j] = w[i]w[i + 1] . . . w[j] for 1 ≤ i ≤ j ≤ |w|. Define the reversal of
w ∈ Σn by wR = w[n] . . . w[1]. Set |w|a = |{i ∈ [|w|]|w[i] = a}| and alph(w)
= {a ∈ Σ||w|a > 0} for w ∈ Σ∗. For a word u ∈ Σ∗ we define u0 = ε, ui+1 = uiu,
for i ∈ N. A word w ∈ Σ∗ is called power (repetition) of a word u ∈ Σ∗, if w = ut

for some t ∈ N≥2. A word u ∈ Σ∗ is a conjugate of w ∈ Σ∗ if there exist x, y ∈ Σ∗

with w = xy and u = yx. A function π : Σ∗ → Σ∗ is called morphic permutation
if π is bijective and π(uv) = π(u)π(v) for all u, v ∈ Σ∗.

Definition 1. A word v = v1 . . . vk ∈ Σ∗ is a scattered factor of w ∈ Σ∗ if there
exist x1, . . . , xk+1 ∈ Σ∗ such that w = x1v1 . . . xkvkxk+1. Let ScatFact(w) be the
set of all scattered factors of w and define ScatFactk(w) (resp.,ScatFact≤k(w))
as the set of all scattered factors of w of length (resp., up to) k ∈ N. A word u ∈
Σ∗ is a common scattered factor of w, v ∈ Σ∗, if u ∈ ScatFact(w)∩ScatFact(v);
the word u is an uncommon scattered factor of w and v (and distinguishes them)
if u is a scattered factor of exactly one of them.

For k ∈ N0, the sets ScatFactk(w) and ScatFact≤k(w) are also known as the
k-spectrum and the full-k-spectrum of w resp.. Simon [35] defined the congruence
∼k in which u, v ∈ Σ∗ are congruent if they have the same full k-spectrum and
thus the same k-spectrum. The shortlex normal form of a word w ∈ Σ∗ w.r.t.
∼k, where Σ is an ordered alphabet, is the shortest word u with u ∼k w which
is also lexicographically smallest (w.r.t. the given order on Σ) amongst all words
v ∼k w with |v| = |u|. The maximal cardinality of a word’s k-spectrum is |Σ|k
and as shown in [5] this is equivalent in the binary case to w ∈ {ab, ba}k. The
following definition captures this property of a word in a generalised setting.

Definition 2. A word w ∈ Σ∗ is called k-universal (w.r.t. Σ), for k ∈ N0, if
ScatFactk(w) = Σk. We abbreviate 1-universal by universal. The universality-
index ι(w) of w ∈ Σ∗ is the largest k such that w is k-universal.

Remark 3. Notice that k-universality is always w.r.t. a given alphabet Σ: the
word abcba is 1-universal for Σ = {a, b, c} but it is not universal for Σ ∪ {d}. If
it is clear from the context, we do not explicitly mention Σ. The universality of
the factors of a word w is considered w.r.t. alph(w).
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Karandikar and Schnoebelen introduced in [21,22] the notion of richness of
words: w ∈ Σ∗ is rich (w.r.t. Σ) if alph(w) = Σ (and poor otherwise) and w is
�-rich if w is the concatenation of � ∈ N rich words. Immediately we get that a
word is universal iff it is rich and moreover that a word is �-rich iff it is �-universal
and a rich-factorisation, i.e., the factorisation of an �-rich word into � rich words,
can be efficiently obtained. However, we will use the name �-universality rather
than �-richness, as richness defines as well, e.g. the property of a word w ∈ Σn

to have n + 1 distinct palindromic factors, see, e.g., [7,9]. As w is �-universal
iff w is the concatenation of � ∈ N universal words it follows immediately that,
if w is over the ordered alphabet Σ = {1 < 2 < . . . < σ} and it is �-universal
then its shortlex normal form w.r.t. ∼� is (1 ·2 · · · σ)� (as this is the shortest and
lexicographically smallest �-universal word).

The following observation leads to the next definition: the word w = abc ∈
{a, b, c}∗ is 1-universal and ws is s-universal for all s ∈ N. But, v2 = (ababcc)2 ∈
{a, b, c}∗ is 3-universal even though v is only 1-universal. Notice that the con-
jugate abccab of v is 2-universal.

Definition 4. A word w ∈ Σ∗ is called k-circular universal if a conjugate of w
is k-universal (abbreviate 1-circular universal by circular universal). The circular
universality index ζ(w) of w is the largest k such that w is k-circular universal.

Remark 5. It is worth noting that, unlike the case of factor universality of words
and partial words [2,6,15,29], in the case of scattered factors it does not make
sense to try to identify a k-universal word w ∈ Σ∗, for k ∈ N0, such that each
word from Σk occurs exactly once as scattered factor of w. Indeed for |Σ| = σ,
if |w| ≥ k + σ then there exists a word from Σk which occurs at least twice as a
scattered factor of w. Moreover, the shortest word which is k-universal has length
kσ (we need ak ∈ ScatFactk(w) for all a ∈ Σ). As kσ ≥ k + σ for k, σ ∈ N≥2, all
k-universal words have scattered factors occurring more than once: there exists
i, j ∈ [σ +1] such that w[i] = w[j] and i 	= j. Then w[i]w[σ +2..σ +k], w[j]w[σ +
2..σ + k] ∈ ScatFactk(w) and w[i]w[σ + 2.σ + k] = w[j]w[σ + 2..σ + k].

We now recall the arch factorisation, introduced by Hebrard in [17].

Definition 6 ([17]). For w ∈ Σ∗ the arch factorisation of w is given by w =
arw(1) . . . arw(k)r(w) for a k ∈ N0 with arw(i) is universal and arw(i)[| arw(i)|] 	∈
alph(arw(i)[1 . . . | arw(i)| − 1]) for all i ∈ [n], and alph(r(w)) ⊂ Σ. The words
arw(i) are called archs of w, r(w) is called the rest. Set m(w) = arw(1)[| arw(1)|]
. . . arw(k)[| arw(k)|] as the word containing the unique last letters of each arch.

Remark 7. If the arch factorisation contains k ∈ N0 archs, the word is k-
universal, thus the equivalence of k-richness and k-universality becomes clear.
Moreover if a factor v of w ∈ Σ∗ is k-universal then w is also k-universal: if v
has an arch factorisation with k archs then w’s arch factorisation has at least k
archs (in which the archs of v and w are not necessarily related).

Finally, our main results are of algorithmic nature. The computational model
we use is the standard unit-cost RAM with logarithmic word size: for an input of
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size n, each memory word can hold log n bits. Arithmetic and bitwise operations
with numbers in [n] are, thus, assumed to take O(1) time. Arithmetic operations
on numbers larger than n, with � bits, take O(�/ log n) time. For simplicity, when
evaluating the complexity of an algorithm we first count the number of steps we
perform (e.g., each arithmetic operation is counted as 1, no matter the size of
the operands), and then give the actual time needed to implement these steps
in our model. In our algorithmic problems, we assume that the processed words
are sequences of integers (called letters or symbols, each fitting in O(1) memory
words). In other words, we assume that the alphabet of our input words is an
integer alphabet. In general, after a linear time preprocessing, we can assume
that the letters of an input word of length n over an integer alphabet Σ are in
{1, . . . , |Σ|} where, clearly, |Σ| ≤ n. For a more detailed discussion see, e.g., [4].

3 Testing Simon’s Congruence

Our first result extends and improves the results of Fleischer and Kufleitner [11].

Theorem 8. (1) Given a word w over an integer alphabet Σ, with |w| = n,
and a number k ≤ n, we can compute the shortlex normal form of w w.r.t.
∼k in time O(n). (2) Given two words w′, w′′ over an integer alphabet Σ, with
|w′| ≤ |w′′| = n, and a number k ≤ n, we can test if w′ ∼k w′′ in time O(n).

Proof. The main idea of the algorithm is that checking w′ ∼k w′′ is equivalent
to checking whether the shortlex normal forms w.r.t. ∼k of w′ and w′′ are equal.
To compute the shortlex normal form of a word w ∈ Σn w.r.t. ∼k the following
approach was used in [11]: firstly, for each position of w the x- and y-coordinates
were defined. The x-coordinate of i, denoted xi, is the length of the shortest
sequence of indices 1 ≤ i1 < i2 < . . . < it = i such that i1 is the position where
the letter w[i1] occurs w for the first time and, for 1 < j ≤ t, ij is the first position
where w[ij ] occurs in w[ij−1 + 1..i]. Obviously, if a occurs for the first time on
position i in w, then xi = 1 (see [11] for more details). A crucial property of the
x-coordinates is that if w[�] = w[i] = a for some i > � such that w[j] 	= a for all
� + 1 ≤ j ≤ i − 1, then xi = min{x�, x�+1, . . . , xi−1} + 1. The y-coordinate of a
position i, denoted yi, is defined symmetrically: yi is the length of the shortest
sequence of indices n ≥ i1 > i2 > . . . > it = i such that i1 is the position where
the letter w[i1] occurs last time in w and, for 1 < j ≤ t, ij is the last position
where w[ij ] occurs in w[i..ij−1 − 1]. Clearly, if w[�] = w[i] = a for some i < �
such that w[j] 	= a for all �−1 ≥ j ≥ i+1, then yi = min{yi+1, . . . , y�−1, y�}+1.

Computing the coordinates is done in two phases: the x-coordinates are com-
puted and stored (in an array x with elements x1, . . . , xn) from left to right in
phase 1a, and the y-coordinates are stored in an array y with elements y1, . . . , yn

and computed from right to left in phase 1b (while dynamically deleting a posi-
tion whenever the sum of its coordinates is greater then k+1 (cf. [11, Prop. 2])).
Then, to compute the shortlex normal form, in a third phase, labelled phase 2, if
letters b > a occur consecutively in this order, they are interchanged whenever
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they have the same x- and y-coordinates and the sum of these coordinates is
k + 1 (until this situation does not occur anymore).

We now show how these steps can be implemented in O(n) time for input
words over integer alphabets. For simplicity, let x[i..j] denote the sequence of
coordinates xi, xi+1, . . . , xj ; min(x[i..j]) denotes min{xi, . . . , xj}. It is clear that
in O(n) time we can compute all values last[i] = max({0}∪{j < i|w[j] = w[i]}).

Firstly, phase 1a. For simplicity, assume that x0 = 0. While going with i from 1
to n, we maintain a list L of positions 0 = i0 < i1 < i2 < . . . < it = i such that
the following property is invariant: xi�−1 < xi�

for 1 ≤ � ≤ t and xp ≥ xi�
for

all i�−1 < p ≤ i�. After each i is read, if last[i] = 0 then set xi = 1; otherwise,
determine xi = min(x[last[i]..i − 1]) + 1 by L, then append i to L and update L
accordingly so that its invariant property holds. This is done as follows: we go
through the list L from right to left (i.e., inspect the elements it, it−1, . . .) until
we reach a position ij−1 < last[i] or completely traverse the list (i.e., ij−1 = 0).
Let us note now that all elements x� with i − 1 ≥ � ≥ last[i] fulfill x� ≥ xij

and
ij ≥ last[i]. Consequently, xi = xij

+ 1. Moreover, xij+1 ≥ xij
+ 1. As such, we

update the list L so that it becomes i1, . . . , ij , i (and xi is stored in the array x).
Note that each position of w is inserted once in L and once deleted (but never

reinserted). Also, the time needed for the update of L caused by the insertion of
i is proportional to the number of elements removed from the list in that step.
Accordingly, the total time needed to process L, for all i, is O(n). Clearly, this
procedure computes the x-coordinates of all the positions of w correctly.

Secondly, phase 1b. We cannot proceed exactly like in the previous case, because
we need to dynamically delete a position whenever the sum of its coordinates is
greater than k+1 (i.e., as soon as we finished computing its y-coordinate and see
that it is > k + 1; this position does not influence the rest of the computation).
If we would proceed just as above (right to left this time), it might be the case
that after computing some yi we need to delete position i, instead of storing it
in our list and removing some of the elements of the list. As such, our argument
showing that the time spent for inspecting and updating the list in the steps
where the y-coordinates are computed amortises to O(n) would not work.

So, we will use an enhanced approach. For simplicity, assume that yn+1 = 0
and that every time we should eliminate position i we actually set yi to +∞.
Also, let y[i..j] denote the sequence of coordinates yi, yi+1, . . . , yj ; note that some
of these coordinates can be +∞. Let min(y[i..j]) denote the minimum in the
sequence y[i..j]. Similarly to what we did in phase 1a, while going with i from n to
1, we maintain a list L′ of positions n+1 = i0 > i1 > i2 > . . . > it ≥ i such that
the following property is invariant: yi�−1 < yi�

for 1 ≤ � ≤ t and yp ≥ yi�
for all

i�−1 > p ≥ i�. In the current case, we also have that yp = +∞ for all it > p ≥ i.
The numbers i0, i1, i2, . . . , it ≥ i contained in the list L′ at some moment in our
computation define a partition of the universe [1, n] in intervals: {1}, {2}, . . . ,
{i − 1}, [i, it−1 − 1], [it−1, it−2 − 1], . . . , [i1, i0 − 1] for which we define an interval
union-find data structure [13,19]; here the singleton {a} is seen as the interval
[a, a]. According to [19], in our model of computation, such a structure can be
initialized in O(n) time such that we can perform a sequence of O(n) union and
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find operations on it in O(n) time, with the crucial restriction that one can only
unite neighbouring intervals. We assume that find(j) returns the bounds of the
interval stored in our data structure to which j belongs. From the definition of the
list L′, it is clear that, before processing position i (and after finishing processing
position i+1), yi�

= min(y[i+1..i�−1−1]) holds. We maintain a new array next[·]
with |Σ| elements: before processing position i, next[w[i]] is the smallest position
j > i where w[i] occurs after position i, which was not eliminated (i.e., smallest
j > i with yj 	= +∞), or 0 if there is no such position. Position i is now processed
as follows: let [a, b] be the interval returned by find(next[i]). If a = i + 1 then
let min = yit

; if a > i + 1 then there exists j such that [a, b] = [ij , ij−1 − 1]
and t > j > 0, so let min = yj . Let now y = min +1, and note that we should
set yi = y, but only if xi + i ≤ k + 1. So, we check whether xi + i ≤ k + 1
and, if yes, let yi = y and set next[w[i]] = i; otherwise, set yi = +∞ (note
that position i becomes, as such, irrelevant when the y-coordinate is computed
for other positions). If yi = +∞ then make the union of the intervals {i} and
[i + 1, it−1 − 1] and start processing i − 1; L′ remains unchanged. If yi 	= +∞
then make the union of the intervals {i}, [i + 1, it−1 − 1], . . . , [ij+1, ij − 1] and
start processing i − 1; L′ becomes i, ij , ij−1, . . . , i0.

As each position of w is inserted at most once in L′, and then deleted once
(never reinserted), the number of list operations is O(n). The time needed for
the update of L′, caused by the insertion of i in L′, is proportional to the number
of elements removed from L′ in that step, so the total time needed (exclusively)
to process L is O(n). On top of that, for each position i, we run one find
operation and a number of union operations proportional to the number of
elements removed from L′ in that step. Overall we do O(n) union and find
operations on the union-find data structure. This takes in total, for all i, O(n)
time (including the initialisation). Thus, the time complexity of phase 1b is
linear.

Thirdly, phase 2. Assume that w0 is the input word of this phase. Clearly, |w0| =
m ≤ n, and we have computed the coordinates for all its positions (and maybe
eliminated some positions of the initial input word w). We partition in linear time
O(n) the interval [1,m] into 2t+1 (possibly empty) lists of positions L1, . . . , L2t+1

such that the following conditions hold. Firstly, all elements of Li are smaller
than those of Li+1 for 1 ≤ i ≤ 2t. Secondly, for i odd, the elements j in Li have
xj + yj < k + 1; for each i even, there exist ai, bi such that ai + bi = k + 1
and for all j in Li we have xj = ai, yj = bi. Thirdly, we want t to be minimal
with these properties. We now produce, also in linear time, a new list U : for
each i ≤ t and j ∈ L2i we add the triplet (i, w[j], j) in U . We sort the list of
triples U (cf. [11, Prop. 10]) with radix sort in linear time [3]. After sorting it,
U can be decomposed in t consecutive blocks U1, U2, . . . , Ut, where Ui contains
the positions of L2i sorted w.r.t. the order on Σ (i.e., determined by the second
component of the pair). As such, Ui induces a new order on the positions of
w0 stored in L2i. We can now construct a word w1 by just writing in order the
letters of w0 corresponding to the positions stored in Li, for i from 1 to 2t + 1,
such that the letters of Li are written in the original order, for i odd, and in
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the order induced by Ui, for i even. Clearly, this is a correct implementation of
phase 2 which runs in linear time. The word w1 is the shortlex normal form of
w.

Summing up, we have shown how to compute the shortlex normal form of a
word in linear time (for integer alphabets). Both our claims follow. �


This improves the complexity of the algorithm reported in [11], where the
problem was solved in O(n|Σ|) time. As such, over integer alphabets, testing
Simon’s congruence for a given k can be done in optimal time, that does not
depend on the input alphabet or on k. When no restriction is made on the input
alphabet, we can first sort it, replace the letters by their ranks, and, as such,
reduce the problem to the case of integer alphabets. In that case, testing Simon’s
congruence takes O(|Σ| log |Σ|+n) time which is again optimal: for k = 1, testing
if w1 ∼1 w2 is equivalent (after a linear time processing) to testing whether two
subsets of Σ are equal, and this requires Θ(|Σ| log |Σ|) time [8].

4 Scattered Factor Universality

In this section we present several algorithmic and combinatorial results.

Remark 9. Theorem 8 allows us to decide in linear time O(n) whether a word w
over Σ = {1 < 2 < . . . < σ} is k-universal, for a given k ≤ n, σ ∈ N. We compute
the shortlex normal form of w w.r.t. ∼k and check whether it is (1 · 2 · · · σ)k.

We can actually compute ι(w) efficiently by computing its arch factorisation
in linear time in |w|. Moreover this allows us to check whether w is k-universal
for some given k by just checking if ι(w) ≥ k or not.

Proposition 10. Given a word w ∈ Σn, we can compute ι(w) in time O(n).

Proof. We actually compute the number � of archs in the arch factorisation. For a
lighter notation, we use ui = arw(i) for i ∈ [�]0. The factors ui can be computed
in linear time as follows. We maintain an array C of |Σ| elements, whose all
elements are initially 0, and a counter h, which is initially |Σ|. For simplicity,
let m0 = 0. We go through the letters w[j] of w[mi−1 + 1..n], from left to right,
and if C[w[j]] equals 0, we decrement h by 1 and set C[w[j]] = 1. Intuitively, we
keep track of which letters of Σ we meet while traversing w[mi−1 + 1..n] using
the array C, and we store in h how many letters we still need to see. As soon as
h = 0 or j = n, we stop: set mi = j (the position of the last letter of w we read),
ui = w[mi−1 +1..mi] (the ith arch), and h = |Σ| again. If j < n then reinitialise
all elements of C to 0 and restart the procedure for i + 1. Note that if j = n
then ui is r(w) as introduced in the definition of the arch factorization. The
time complexity of computing uj is O(|uj |), because we process each symbol
of ui = w[mi−1 + 1..mi] in O(1) time, and, at the end of the procedure, we
reinitialise C in O(|Σ|) time iff ui contained all letters of Σ, so |ui| ≥ |Σ|. The
conclusion follows. �
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The following combinatorial result characterise universality by repetitions.

Theorem 11 (∗). A word w ∈ Σ≥k with alph(w) = Σ is k-universal for k ∈ N0

iff ScatFactk(wn) = ScatFactk(wn+1) for an n ∈ N. Moreover we have ι(wn) ≥
kn if ι(w) = k.

As witnessed by w = aabb ∈ {a, b}∗, ι(wn) can be greater than n · ι(w): w
is universal, not 2-universal but w2 = aab.ba.ab.b is 3-universal. We study this
phenomenon at the end of this section. Theorem 11 can also be used to compute
an uncommon scattered factor of w and ww over arbitrary alphabets; note that
the shortest such a factor has to have length k + 1 if ι(w) = k.

Proposition 12 (∗). Given a word w ∈ Σ∗ we can compute in linear time
O(|w|) one of the uncommon scattered factors of w und ww of minimal length.

Remark 13. By Proposition 12, computing the shortest uncommon scattered fac-
tor of w and ww takes optimal O(n) time, which is more efficient than running
an algorithm computing the shortest uncommon scattered factor of two arbi-
trary words (see, e.g., [10,11], and note that we are not aware of any linear-time
algorithm performing this task for integer alphabets). In particular, we can use
Theorem 8 to find by binary search the smallest k for which two words have
distinct k-spectra in O(n log n) time. In [17] a linear time algorithm solving this
problem is given for binary alphabets; an extension seems non-trivial.

Continuing the idea of Theorem11, we investigate even-length palindromes,
i.e. appending wR to w. The first result is similar to Theorem 11 for n = 1.
Notice that ι(w) = ι(wR) follows immediately with the arch factorisation.

Corollary 14. A word w is k-universal iff ScatFactk(w) = ScatFactk(wwR).

In contrast to ι(w2), ι(wwR) is never greater than 2ι(w).

Proposition 15 (∗). Let w ∈ Σ∗ be a palindrome and u = Pref� |w|
2 �(w) with

ι(u) = k ∈ N. For |w| even we have ι(w) = 2k if |w| even and for |w| odd we get
ι(w) = 2k + 1 iff w[n+1

2 ] ∪ alph(r(u)) = Σ.

Remark 16. If we consider the universality of a word w = w1 . . . wm for m ∈ N

with wi ∈ {u, uR} for a given word u ∈ Σ∗, then a combination of the previous
results can be applied. Each time either u2 or (uR)2 occurs Theorem 11 can
be applied (and the results about circular universality that finish this section).
Whenever uuR or uRu occur in w, the results of Proposition 15 are applicable.

Another generalisation of Theorem 11 is to investigate concatenations under
permutations: for a morphic permutation π of Σ can we compute ι(wπ(w))?

Lemma 17 (∗). Let π : Σ∗ → Σ∗ be a morphic permutation. Then ι(w) =
ι(π(w)) for all w ∈ Σ∗ and especially the factors of the arch factorisation of w
are mapped by π to the factors of the arch factorisation of π(w).
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By Lemma 17 we have 2ι(w) ≤ ι(wπ(w)) ≤ 2ι(w)+1. Consider the universal
word w = abcba. For π(a) = c, π(b) = b, and π(c) = a we obtain wπ(w) =
abc.bac.babc. which is 3-universal. However, for the identity id on Σ we get that
w id(w) is 2-universal. We can show exactly the case when ι(wπ(w)) = 2ι(w)+1.

Proposition 18 (∗). Let π : Σ∗ → Σ∗ be a morphic permutation and
w ∈ Σ∗ with the arch factorisation w = arw(1) . . . arw(k)r(w) and π(w)R =
arπ(w)R(1) . . . arπ(w)R(k)r(π(w)R) for an appropriate k ∈ N0. Then ι(wπ(w)) =
2ι(w)+1 iff alph(r(w)r(π(w)R)) = Σ, i.e. the both rests together are 1-universal.

Proposition 18 ensures that, for a given word with a non-empty rest, we can
raise the universality-index of wπ(w) by one if π is chosen accordingly.

Remark 19. Appending permutations of the word instead of its images under
permutations of the alphabet, i.e. appending to w abelian equivalent words, does
not lead to immediate results as the universality depends heavily on the permuta-
tion. If w is k-universal, a permutation π may arrange the letters in lexicographi-
cal order, so π(w) would only be 1-universal. On the other hand, the universality
can be increased by sorting the letters in 1-universal factors: am

1 am
2 . . . am

|Σ| for
Σ = {a1, . . . , a|Σ|} is 1-universal but (a1 . . . a|Σ|)m is m-universal, for m ∈ N.

In the rest of this section we present results regarding circular universality.
Recall that a word w is k-circular universal if a conjugate of w is k-universal. Con-
sider Σ = {a, b, c, d} and w = abbccdabacdbdc. Note that w is not 3-universal
(dda 	∈ ScatFact3(w)) but 2-universal. Moreover, the conjugate bbccdabacdbdca
of w is 3-universal; accordingly, w is 3-circular universal.

Lemma 20 (∗). Let w ∈ Σ∗. If ι(w) = k ∈ N then k ≤ ζ(w) ≤ k +1. Moreover
if ζ(w) = k + 1 then ι(w) ≥ k.

Lemma 21 (∗). Let w ∈ Σ+. If ι(w) = k and ζ(w) = k + 1 then there exists
v, z, u ∈ Σ∗ such that w = vzu, with u, v 	= ε and ι(z) = k.

The following theorem connects the circular universality index of a word with
the universality index of the repetitions of that word.

Theorem 22 (∗). Let w ∈ Σ∗. If ι(w) = k and ζ(w) = k + 1 then ι(ws) =
sk + s − 1, for all s ∈ N.

The other direction of Theorem 22 does not hold for arbitrary alphabets:
Consider the 2-universal word w = babccaabc. We have that w2 is 5-universal
but w is not 3-circular universal. Nevertheless, Lemma 21 helps us show that
the converse of Theorem 22 holds for binary alphabets:

Theorem 23 (∗). Let w ∈ {a, b}∗ with ι(w) = k and s ∈ N. Then ι(ws) =
sk + s − 1 if ζ(w) = k + 1 and sk otherwise.
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5 On Modifying the Universality Index

In this section we present algorithms answering the for us most natural questions
regarding universality: is a specific factor v of w ∈ Σ∗ universal? what is the
minimal � ∈ N such that w� is k-universal for a given k ∈ N? how many (and
which) words from a given set do we have to concatenate such that the resulting
word is k-universal for a given k ∈ N? what is the longest (shortest) prefix
(suffix) of a word being k-universal for a given k ∈ N? In the following lemma
we establish some preliminary data structures.

Lemma 24 (∗). Given a word x ∈ Σn with alph(x) = Σ, we can compute in
O(n) and for all j ∈ [n]

– the shortest 1-universal prefix of x[j..n]: ux[j] = min{i | x[j..i] is universal},
– the value ι(x[j..n]): tx[j] = max{t | ScatFactt(x[j..n]) = Σt}, and
– the minimal � ∈ [n] with ι(x[j..�]) = ι(x[j..|x|]): mx[j] = min{i | ScatFacttx[j]

(x[j..i]) = Σtx[j]}.
The data structures constructed in Lemma 24 allow us to test in O(1) time

the universality of factors w[i..j] of a given word w, w.r.t. alph(w) = Σ: w[i..j]
is Σ-universal iff j ≥ uw[i]. The combinatorial results of Sect. 4 give us an initial
idea on how the universality of repetitions of a word relates to the universality of
that word: Theorem 22 shows that in order to compute the minimum s such that
ws is �-universal, for a given binary word w and a number �, can be reduced to
computing the circular universality of w. Unfortunately, this is not the case for
all alphabets, as also shown in Sect. 4. However, this number s can be computed
efficiently, for input words over alphabets of all sizes. While the main idea for
binary alphabets was to analyse the universality index of the conjugates of w (i.e.,
factors of length |w| of ww), in the general case we can analyse the universality
index of the suffixes of ww, by constructing the data structures of Lemma 24 for
x = ww. The problem is then reduced to solving an equation over integers in
order to identify the smallest � such that w� is k-universal.

Proposition 25 (∗). Given a word w ∈ Σn with alph(w) = Σ and k ∈ N, we
can compute the minimal � such that w� is k-universal in O(n + log k

log n ) time.

We can extend the previous result to the more general (but less motivated)
case of arbitrary concatenations of words from a given set, not just repetitions
of the same word. The following preliminary results can be obtained. In all cases
we give the number of steps of the algorithms, including arithmetic operations
on log k-bit numbers; the time complexities of these algorithms is obtained by
multiplying these numbers by O( log k

log n ).

1. Given the words w1, . . . , wp ∈ Σ∗ with |w1 · · · wp| = n and alph(w1 · · · wp) =
Σ, and k ∈ N, we can compute the minimal � for which there exist
{i1, . . . , i�} ⊆ [k] such that wi1 · · · wi�

is k-universal in O(23|Σ|p2 log � + n)
steps.
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2. Given k ∈ N and w1, . . . , wp ∈ {a, b}∗ with alph(w1 · · · wp) = {a, b}
and |w1 · · · wp| = n, we can compute the minimal � for which there exist
{i1, . . . , i�} ⊆ [k] such that wi1 · · · wi�

is k-universal in O(n + log �) steps.
3. Given w1, . . . , wp ∈ Σ∗, with alph(wi) = Σ for all i ∈ [p] and |w1 · · · wp| = n,

and k ∈ N, we can compute in O(n + p3|Σ| log �) steps the minimal � for
which there exist {i1, . . . , i�} ⊆ [k] with wi1 · · · wi�

is k-universal.

Finally, we consider the case of decreasing the universality of a word by an
operation opposed to concatenation, namely the deletion of a prefix or a suffix.

Theorem 26 (∗). Given w ∈ Σn with ι(w) = m and a number � < m, we can
compute in linear time the shortest prefix (resp., suffix) w[1..i] (resp., w[i..n])
such that w[i + 1..n] (resp., w[1..i − 1]) has universality index �.

Theorem 26 allows us to compute which is the shortest prefix (suffix) we
should delete so that we get a string of universality index �. Its proof is based
on the data structures of Lemma 24. For instance, to compute the longest prefix
w[1..i − 1] of w which has universality index �, we identify the first � + 1 factors
of the decomposition of Theorem 10, assume that their concatenation is w[1..i],
and remove the last symbol of this string. A similar approach works for suffixes.
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Abstract. Results in C∗ algebras, of Matte Bon and Le Boudec, and
of Haagerup and Olesen, apply to the R. Thompson groups F ≤ T ≤ V .
These results together show that F is non-amenable if and only if T has
a simple reduced C∗-algebra.

In further investigations into the structure of C∗-algebras, Breuil-
lard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish
subgroup of a group G. They show that if a group G admits no non-
trivial finite normal subgroups and no normalish amenable subgroups
then it has a simple reduced C∗-algebra. Our chief result concerns the
R. Thompson groups F < T < V ; we show that there is an elementary
amenable group E < F (where here, E ∼= . . .) � Z) � Z) � Z) with E nor-
malish in V .

The proof given uses a natural partial action of the group V on a
regular language determined by a synchronizing automaton in order to
verify a certain stability condition: once again highlighting the existence
of interesting intersections of the theory of V with various forms of formal
language theory.

Keywords: Thompson’s group · Amenable · C∗-simplicity · Regular
language · Synchronizing automata · Group actions · Normalish
subgroups · Wreath product

1 Introduction

In this note we show that for the R. Thompson groups F ≤ T ≤ V there is
an elementary amenable group E ≤ F so that E is normalish in each of the
groups F , T , and V .

1.1 General Motivating Background

Various weakenings of the notion of normal subgroup were introduced between
2014 and 2018 in order to obtain insight into the C∗-simplicity of the (reduced)
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group algebra C∗
r (G) of a group G. This has had particular impact for infinite

simple groups such as the R. Thompson groups T and V . The concept of a nor-
malish subgroup of a group was introduced by in the seminal paper of Breuilliard,
Kalantar, Kennedy, and Ozawa [5]. They show that a discrete group G with no
non-trivial finite normal subgroups and no amenable normalish subgroups is C∗-
simple. In that paper, they also obtain the just-previously-announced result of
Haagerup and Olesen [8] that if the reduced group C∗-algebra C∗

r (T ) is simple,
then F is non-amenable.

Meanwhile, Kennedy in [9] shows that a countable group G is C∗-simple (has
simple reduced C∗-algebra) if and only if G admits no non-trivial amenable URS
(uniformly recurrent subgroup). Using this, Le Boudec and Matte Bon in [10]
show the converse of the stated Haagerup-Olesen result, if F is non-amenable,
then the reduced C∗-algebra of T must be simple.

Indeed, for those interested in the question of the non-amenability of the
R. Thompson group F , the focus has passed through the exploration of the
uniformly recurrent subgroups of T to understanding the point stabilisers of the
action of T on its Furstenberg boundary. Here, there are two possible cases, and
F will be non-amenable precisely if these point stabilisers are trivial (see [10]).
Despite this shift, we find the concept of normalish subgroups of simple groups
like F and T to be of interest, and that is the focus of this note.

1.2 Core Results

Let G ≤ H be groups. The group G is normalish in H if for any finite set of
elements {c1, c2, . . . , ck} the intersection

k⋂

i=1

Gci

is infinite.
Our chief result is the following:

Theorem 1. There is an embedding of the elementary amenable group

∞(Z � Z) = . . . � Z) � Z) � Z

into R. Thompson’s group F so that the image group E is normalish in V .

Observe the corollary that E is then an amenable normalish subgroup of
both F and of T as well.

1.3 Specific History of the Core Result

We should mention some other history related to this result. In [1] we showed
the existence of an infinite direct sum of copies of Z that could be found embed-
ded as a normalish amenable subgroup of F , and discussed our conjecture (dis-
proven here) that any normalish amenable subgroup of T should either contain
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an embedded subgroup isomorphic to R. Thompson’s group F or to a non-abelian
free subgroup. Meanwhile, the paper [10] shows that V contains an amenable
normalish torsion group Λ: the subgroup of V consisting of those elements which
are automorphisms of the infinite rooted binary tree T2. These automorphism
arise as finite compositions of the tree automorphisms that swap the two child
vertices of any particular vertex (copying the dependent trees identically). The
group Λ is normalish for reasons that are very similar to why our own group
E is normalish, and it is a limit of finite groups hence elementary amenable.
However, the group Λ is not a subgroup of F nor of T .

1.4 An Unexpected Visitor: A Controlling Synchronizing
Automaton

A note on the proof: for experts on R. Thompson groups, the embedded copy of
E that we find will clearly be normalish in V after short inspection. However,
the technical proof of this requires a bit of work in that the conjugation action
on our generators needs to not introduce too many breakpoints into our group
elements, and also in that we need to have enough group elements that the set is
essentially closed under translations by arbitrary elements in V . The second task
is the harder one if we are to avoid having further subgroups isomorphic to R.
Thompson’s group F . We approach this by introducing a partial action of V on
a regular language which is determined by a synchronizing automaton. We link
this to the action of V on an infinite specified subset of E. By considering our
partial action on the regular language, we can show there is an infinite subset
of E that is not moved off of itself too much under the action of finitely many
elements of V .

Thanks:
We would like to thank Adrienne Le Boudec for kind and informative conversa-
tions where he has helped the author of the present note to understand some of
the amazing events that have transpired in the field of C∗-algebras over the last
six years.

2 The Interval and the Circle as Quotients of Cantor
Space, and Some Related Language

Let I := [0, 1] ⊂ R represent the unit interval in the real numbers. Let C :=
{0, 1}ω represent the Cantor space that arises as the infinite cartesian product
of the discrete space {0, 1} with itself, with the product indexed by the ordinal
ω. As we will act on our Cantor space from the right via prefix substitutions, we
will express elements of Cantor space as left infinite strings, so a typical element
�

x of C will be written as �

x = . . . x2x1x0 where each xi is either a 0 or a 1. Note
that in this usage, and for such left-infinite strings, we will refer to any finite
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rightmost contiguous substring as a prefix of the infinite string (and we will use
the word prefix in this way as well when comparing finite strings, which we will
formalise below). The monoid {0, 1}∗ of finite strings under the concatenation
operator “ˆ” (e.g., 00110ˆ1001 = 001101001) will be central to our analysis and
we might refer to an element of {0, 1}∗ as an address, for reasons which will
become clear.

We give the monoid of finite words {0, 1}∗ the prefix-based partial
ordering as follows: if p1, p2 ∈ {0, 1}∗ with p1 = xjxj−1 . . . x1x0 and p2 =
ykyk−1 . . . y1y0 (where each xi and yi is in the set {0, 1} for each valid index i),
we say p1 ≤ p2 if and only if j ≤ k and for all indices 0 ≤ i ≤ j we have xi = yi.
Recall that with this partial ordering, a complete antichain A of {0, 1}∗ is
a finite set {p1, p2, . . . , pk} so that for each pair of distinct indices i and j we
have that pi and pj are incomparable (written p1 ⊥ p2, and meaning that both
p1 �≤ p2 and p2 �≤ p1 are true) and for any w ∈ {0, 1}∗ we have some index r so
that either w ≤ pr or pr ≤ w.

The monoid {0, 1}∗ with the partial order above can be naturally drawn as
a rooted infinite binary tree, with its vertices being the elements of {0, 1}∗, and
where we draw an edge from vertices r to s if r ≤ s and the length of s (denoted
|s|) is one greater than the length of r. We will denote this tree as T2 and sketch
a small neighbourhood of its root in the figure below (the tree T2 is often drawn
so as to “open out” as one descends) (Fig. 1).

Fig. 1. A neighbourhood of the root ε of the tree T2

For any finite word w = wkwk−1 . . . w1w0 ∈ {0, 1}∗ we obtain the basic open
set Cw for the topology of C. Specifically, Cw is the set of all points in Cantor
space with prefix w:

Cw = {�

xˆw : �

x ∈ C}.

We will refer to such basic open sets as cones, and for a given finite word w ∈
{0, 1}∗ the set Cw will be called the cone at (address) w. It is a standard fact
that one can identify the Cantor space C with the boundary of T2, or with the set
of infinite descending paths in the tree (which correspond to infinite sequences
of edge lables, if one labels each edge of T2 with a 0 or a 1, depending on the
letter of the extension connecting the shorter address to the longer address).
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Recall there is a standard quotient map q : C � [0, 1], which we define fully
here in order to give some practice with our right-to-left indexing notation. Let

�

x = . . . x2x1x0 ∈ C.

We have

(�

x)q :=
∞∑

i=0

xi · 1
2i+1

,

which we can think of as the ordinary map which interprets a real number in
[0, 1] from its binary expansion.

We further recall that given any prefix w = wkwk−1 . . . w1w0 the map q iden-
tifies the two points 10wkwk−1 . . . w1w0 and 01wkwk−1 . . . w1w0. The resulting
two-point equivalence classes map onto the dyadic rationals in Z[1/2]∩(0, 1) ⊂ R,
and further, the cone Cw at w maps to the closed interval Iw of radius (1/2)k+2

centered at the diadic point dw which is defined by the infinite sum

dw :=
∞∑

i=0

wi · 1
2i+1

.

where we set wk+1 = 1 and wm = 0 for all m > k + 1. For example, if w = 01,
then k = 1 and we have w0 = 1, w1 = 0, w2 = 1 and wm = 0 for all m > 2.
Then, d01 is computed as

d01 =
(

w0 · 1
21

+ w1 · 1
22

+ w2 · 1
23

+ 0
)

=
(

1 · 1
2

+ 0 · 1
4

+ 1 · 1
8

)
=

5
8

and the interval I01 is of radius 1/(21+2) = 1/8 centered at d01 = 5/8. In
particular, we have I01 = [1/2, 3/4] = [5/8 − 1/8, 5/8 + 1/8].

For w ∈ {0, 1}∗, we call the interval Iw constructed as above the standard
dyadic interval at address w (or “the standard dyadic interval centered at
dw”), noting that these intervals are naturally in a one-one correspondence with
the words in the monoid {0, 1}∗ (we set k = −1 when w = ε, the empty word,
so that we produce the interval [0, 1], that is, the closed interval of radius 1/2
centered at 1/2).

To obtain the circle as a quotient of Cantor space we add one further identi-
fication, that is, we identify the point . . . 000 = 00 with the point . . . 111 = 11,
noting that this simply identifies the real numbers 0 and 1 from the interval I.

When working in the unit interval, we will mostly use the real number param-
eterisation of points, but sometimes it is convenient to name a point by one of its
names arising from the map q−1. Similarly, for points on the circle, we will use
either the parameterisation arising from the quotient map I → I/(0 ∼ 1) = R/Z
(this is equivalent to applying the map p : I → S

1 given by t �→ e2πit where we
consider S

1 as the unit circle in the complex plane) or, we will use the param-
eterisation arising from the map q · p : C → S

1, where a point on the circle is
referred to by one of its preimage left-infinite strings under the map q · p.
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Our group elements will act on the right, and induce permutations of the
underlying sets of the spaces under consideration. We establish some notation
for our context. Let Y be a set. We will use the notation Sym(Y ) for the group of
bijections from Y to itself. For any element g ∈ Sym(Y ) we define the support
of g, written supt(g), as the set

supt(g) := {y ∈ Y : yg �= y},

that is, the set of points moved by g. In keeping with our right-actions notation,
if g, h ∈ Sym(Y ), then the conjugate of g by h, denoted gh, is the map h−1gh.
That is, we apply h−1, then g, and finally h again. We then obtain the following
standard lemma from the theory of permutation groups.

Lemma 2. Let Y be a set, and g, h ∈ Sym(Y ). We have

supt(gh) = supt(g)h.

In particular, the support of gh is the image of the support of g under the
function h.

3 The R. Thompson Groups F < T < V

The Thompson groups F < T < V are groups of homeomorphisms which have
been well studied. In this note, we generally take F , T , and V as each being
groups of homeomorphisms of the Cantor space C.

3.1 Describing Elements of F , T , and V

For two words w1, w2 ∈ {0, 1}∗ with |w1| > 0 and |w2| > 0 we define the cone
map φw1,w2 : Cw1 → Cw2 by the rule �

xw1 �→ �

xw2, for each point �

x of C. It is
immediate that this map is a homeomorphism from the Cantor space Cw1 to the
Cantor space Cw2. Note that the map φw1,w2 induces a map Iw1 → Iw2 which is
a restriction of an affine map on the reals R, and for this reason we might refer to
φw1,w2 as an “affine map” between the two subspaces of our larger Cantor space
C. Note further that any such cone map φw1,w2 is not just a homeomorphism from
its domain to its range but also that it has many extensions to homeomorphisms
from C → C, and we can think of φw1,w2 as being a subset of a larger (if w1 �=
ε �= w2) function from C to C (which we in turn consider as a subset of C × C).

We are now in a position to define the R. Thompson groups F < T < V .
An element g ∈ Homeo(C) is an element of V if and only if we can write g

as a prefix replacement map, as follows.
The element g is a prefix replacement map if and only if it admits some

natural number n > 1, two complete antichains D = {a1, a2, . . . , an} and R =
{r1, r2, . . . , rn} for {0, 1}∗, and a bijection σ : D → R, so that when restricted
to any cone Cai (for valid index i), the map g restricts and co-restricts to the
cone map φa1,a1·σ. In this context, we will write

g = ({a1, a2, . . . , an}, {r1, r2, . . . , rn}, σ) .
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We observe in passing that any element of V admits infinitely many distinct pre-
fix replacement maps representing it, but it is a standard exercise in R. Thomp-
son theory that there is a unique, minimal prefix-map representation of v.

We observe that any complete antichain {a1, a2, . . . , an} for {0, 1}∗ admits a
natural left-to-right ordering ≺ induced from the arrangement of the addresses ai

on the tree (this is simply the dictionary order, when we take 0 ≺ 1 and read our
strings from right to left). An element g ∈ V is in the subgroup F if and only
if, when expressed as a prefix replacement map, the permutation σ preserves
the ordering ≺. An element g ∈ V is in the subgroup T if and only if, when
expressed as a prefix replacement map, the permution σ preserves the ordering
≺ up to some cyclic rotation. It is then a standard exercise that elements of F
induce homeomorphisms of I through the quotient map q which are piecewise
affine, respect the dyadic rationals, and where all slopes are powers of two and
all breaks in slope occur over dyadic rationals. Similarly, it is a standard exercise
that elements of T induce homeomorphisms of S1 through the quotient q ·p which
are piecewise affine, respect the dyadic rationals, and where all slopes are powers
of two and all breaks in slope occur over dyadic rationals.

A standard introductory reference for the general theory of the R. Thompson
groups F , T , and V is the paper [6].

3.2 The Element Family X
We now single out a family

X := {xw : w ∈ {0, 1}∗}

of elements of V of specific interest to our discussion.
Given a word w ∈ {0, 1}∗, we specify the element xw as the element of V

which acts as the identity over the complement of the cone Cw, and on the cone
Cw, acts according to the prefix map specified below (we only express the actual
prefix substitutions here):

xw :=

⎧
⎨

⎩

00ˆw �→ 0ˆw
10ˆw �→ 01ˆw
1ˆw �→ 11ˆw

In particular, the element xw is the extension of the partial function

φ00ˆw,0ˆw 
 φ10ˆw,01ˆw 
 φ1ˆw,11ˆw

by the identity map away from the cone Cw.
Note that it is easy to extend the set {00 ˆ w, 01 ˆ w, 1 ˆ w} to a complete

antichain {a1, a2, . . . , ak−1, 00 ˆ w, 10 ˆ w, 1 ˆw} for {0, 1}∗ where |w| = k, and
that in this case {a1, a2, . . . , ak−1, 0ˆw, 01ˆw, 11ˆw} is also a complete antichain
for {0, 1}∗ (the set of addresses {ai : 1 ≤ i ≤ k − 1} represents the minimal set
of addresses one can use so that {ai : i ∈ 1 ≤ i ≤ k − 1} ∪ {w} is a complete
antichain). Our map xw acts as cone maps on each of the cones at the set of
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addresses {00ˆw, 01ˆw, 1ˆw}, and otherwise takes each cone Cai to itself with
the identity map.

It is easy to see that X ⊂ F so also X ⊂ T and X ⊂ V . The figure below
depicts the graphs of xε and x10 as homeomorphisms of I as examples.

Fig. 2. The elements xε and x10.

3.3 The Element Family G
For each natural n ∈ N, set gn := x(10)n . The set G := {gi : i ∈ N} will be our
second family of elements of F of interest. Note that we use N to represent the
natural numbers, which we take to be the non-negative integers.

We observe that Fig. 2 also depicts g0 and g1 since g0 = xε and g1 = x10.

4 Realising ∞(Z � Z) in F

Set E := 〈G〉 ≤ F ≤ T ≤ V . For each index n, consider the group

Wn := 〈{gi : i ∈ N, i < n}〉,

where for clarity we specify W0 = {1V }. It is immediate that Wm ≤ Wn when
m < n. Direct calculation shows that supt(gn)∩ supt(ggm

n ) = ∅ whenever m < n
(the content of the following lemma, which is not hard to prove). Specifically,
following the arguments of [2,3] for natural index n we have Wn

∼= (. . . ((Z �Z) �
Z) . . . � Z) � Z (with n appearances of Z in this expression), which is a solvable
group of derived length n. We immediately obtain E ∼= ∞(Z �Z) = . . . �Z) �Z) �Z,
as described in detail in [4]. As E admits a decomposition as a direct union of
the solvable groups Wn, we obtain that E is elementary amenable (see Chou’s
paper [7] for details on the class of elementary amenable groups).

For what follows, set Gm,n := 〈gm, gn〉 for all natural numbers m < n.

Lemma 3. Let m < n be two natural numbers. We have

1. there is an isomorphism Gm,n
∼= G0,(n−m) which is induced by a restriction

map followed by a topological conjugacy,
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2. supt(gn) ∩ supt(ggm
n ) = ∅, and therefore

3. Gm,n
∼= Z � Z.

Proof. We first prove Point (1) that there is an isomorphism Gm,n := 〈gm, gn〉 ∼=
〈g0, gn−m〉 = G0,(n−m) which is induced by a restriction map followed by a
topological conjugacy.

To see this point, first observe that both of the elements gn and gm are sup-
ported wholly in the cone C(10)m, so, the restriction of the maps gn and gm to the
cone C(10)m results in an isomorphism of groups between the homeomorphism
group Gm,n = 〈gm, gn〉, which acts on the Cantor space C, to a homeomorphism
group Ĝm,n = 〈ĝm, ĝn〉 (these generators being the restrictions of the generators
gm and gn respectively), so that the group Ĝm,n is a group of homeomorphisms of
the Cantor space C(10)m. Now, the homeomorphism θm : C(10)m → C which is
induced by deleting the prefix (10)m from all points in the Cantor space C(10)m

provides a topological conjugacy which induces an isomorphism from the group
Ĝm,n to the group G0,n−m = 〈g0, g(n−m)〉, as the reader can check that the
image of the ĝm is the element g0 and the image of ĝ(n) is the element g(n−m)

under this topological conjugacy.
For Point (2), we observe that the restrictions applied in the argument for

Point (1) only removed areas from the domain of the elements gm and gn where
these elements already acted as the identity. Therefore the support of gn and of
ggm

n will be disjoint if and only if the supports of the elements g(n−m) and of
gg0
(n−m) are disjoint. In particular, we have our result if we prove that for any

positive integer k, we have supt(gk) ∩ supt(gg0
k ) = ∅.

However, g0 = xε, which acts over the cone C10 as a cone map, affinely taking
the cone C10 rightward to the cone C01 by the prefix substitution 10 �→ 01. Now,
the support of gk is contained in the cone C(10)k, a subset of the cone C(10).
Direct calculation now shows that the cone C(10)k is carried affinely to the cone
C(10)k−1(01) by g0, so Lemma 2 implies our result. We note in passing that we
have shown that gg0

k = x(10)k−101, or more specifically, that xxε

(01)k = x(10)k−101,
since our conjugator acted affinely.

For Point (3), recall Section 1.2.1 of [2], where an argument is given that
two elements α1 and α2 of F generate a group isomorphic to Z � Z, with the
element α1 generating the top group of the wreath product. It happens that the
element α1 of that paper is the element we call xε here, while the element α2

is the element we call x10 here. The proof of Section 1.2.1 essentially relies on
only three facts: 1) the support of α2 is contained in the support of α1, 2) every
point in the support of α1 is on an infinite orbit under the action of 〈α1〉, and 3)
the support of α2 is moved entirely off of itself by α1. In our case with gm and
gn, we again have these three conditions (with gm playing the role of α1), so we
have our claimed Point (3).

The discussion above indicates the following lemma.

Lemma 4. Let v ∈ V . There are {a1, a2, . . . , an} and {b1, b2, . . . , bn}, minimal
cardinality (finite) antichains, together with a bijection σ between them, so that
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v can be described as the prefix replacement map

v = ({a1, a2, . . . , an}, {b1, b2, . . . , bn}, σ) .

If w, u ∈ {0, 1}∗ so that w = uˆai for some i, then xv
w = xuˆ(aiσ).

Proof. By definition, we have xv
w = v−1xwv. By our assumptions w has ai as a

prefix, and we note that the initial map v−1 restricts to a cone map from C(aiσ)
to Cai, that is, an affine map with image containing the support of xw. The
action of xw off the cone Cai is as the identity, and in general is as described in
the definition of xw (it acts as a prefix replacement map, which modifies only the
prefixes which begin with w = uˆai, and these modifications appear in entries
at indices larger than the length |w|). Finally, v acts on the cone Cai by affinely
returning it to C(aiσ) as a cone map, (it simply transforms the prefix ai to the
prefix aiσ, and preserves all later entries (with index offset of size |aiσ|− |ai|) at
larger indices, for any point in the Cantor space C(ai)). Therefore, xv

w = xuˆ(aiσ).

5 On Partial Actions

The proof of Lemma 4 suggests the well-known fact that V has a natural partial
action on the addresses in {0, 1}∗. Let v ∈ V and suppose there is a minimal
natural number n and antichains A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}
with a bijection σ between them so that v can be described as the prefix replace-
ment map v = (A,B, σ). The partial action of v on {0, 1}∗ is defined precisely on
the set of words in {0, 1}∗ which admit one of the ai as a prefix. Let us suppose
w ∈ {0, 1}∗ and w = uˆai. We set w · v := uˆ(aiσ).

We can now re-express the result of Lemma 4 in terms of the partial action
of V on the set {0, 1}∗.

Corollary 5. Let v ∈ V and w1, w2 ∈ {0, 1}∗ so that w1 · v = w2 under the
partial action of V on {0, 1}∗. If u ∈ {0, 1}∗ then xv

uˆw1
= xuˆw2 .

That is, we see that the group V admits a partial action on the set X which
parallels its partial action on {0, 1}∗. We now work to understand the action of
V on elements of the group E.

Our first step in understanding this partial action is to analyse a formal
language.

5.1 A Regular Language and An Action

Define the set T ⊂ {0, 1}∗ of tokens as follows:

T := {10k, 01k : k ∈ N, k �= 0}.

We build a formal language W over the alphabet {0, 1} as follows. The lan-
guage W is the set of all words which decompose as w = wj ˆwj−1ˆ . . . ˆw1 for
some natural j, where each wi is a token. The language W is actually a regular
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Fig. 3. The automaton A which accepts the language W

language, which is recognised by the automaton A depicted in Fig. 3. The state
q0 of A is both the start and accept state of A.

Recall that an automaton is a finite directed edge-labelled graph with a subset
of its set of states called the start states of the automaton, and another subset
of its set of states called the accept states of the automaton. Then, the language
accepted by the automaton is precisely the set of all finite-length words which
arise as the concatenated edge-labels of some finite path in the automaton from
a start state to an end state.

One can see that our formal language W is indeed the language accepted
by A; the paths which leave the state q0 and then eventually return (exactly
once) have labels of the form 10k or 01k, for some non-zero natural number k. In
particular, the language accepted by A is precisely the language of words built
by concatenating tokens from T .

We now set some terminology describing the structure of elements of the
language W. Observe firstly that the decomposition of any word in W into a
concatenation of tokens is unique. Therefore, for each w ∈ W we can define
the token length of w as the number of tokens in its decomposition as a
concatenation of tokens. Note that we index these tokens from right to left:
w = wkˆwk−1ˆ . . . ˆw2ˆw1.

We now observe that the partial action of V on {0, 1}∗ restricts to an action
of 〈g0〉 on the set T . Below, the proofs of Lemmas 6 and 8 follow by simple
inductions on a basic calculation.

Lemma 6. For each integer k, the restriction of gk
0 to the cone C10 produces a

cone map from the cone C10 to the cone Cwk, where wk is given by the formula
below:

wk = 10 · gk
0 =

{
10|k−1| k ≤ 0

01k k > 0.

Proof. This proof is a simple induction. Recall that g0 = xε.
If k = 0 we observe that our formula works as g00 = 1V , which maps the cone

C10 to the cone C10 by the identity map, which is a cone map. If k = 1 then g0
takes C10 to C01 as a cone map, in accordance with the definiton of xε. For all
k ≥ 2, gk

0 acts as xε · xk−1
ε , so first as a cone map from C10 to C01, and then

it will continue to act as xk−1
ε on this resulting cone. However, the cone C01 is

contained in the cone C1, and so the prefix replacement of xε here replaces the
initial prefix 1 with the prefix 11, and this process repeats so inductively we have
our desired result for all integers k ≥ 0. For negative integers k, the argument
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follows as x−1
ε replaces the prefix 0 with the prefix 00, and so inductively, the

cone at 10 is carried by a cone map to the cone at 10|k−1| by xk
ε .

A translation of the above result is as follows.

Corollary 7. The partial action of V on the set {0, 1}∗ restricts to a free, tran-
sitive action of 〈g0〉 on the set T of tokens.

The following lemma simply extends the result of Lemma 6.

Lemma 8. For each integer k and natural number i, the restriction of gk
i to the

cone C(10)i+1 produces a cone map from the cone C(10)i+1 to the cone Cwi,k,
where wi,k is given by the formula below:

wi,k = (10)i+1 · gk
i =

{
10|k−1|(10)i k ≤ 0

01k(10)i k > 0.

Proof. The proof is similar to the proof of Lemma 6; gi = x(10)i acts as the
identity off of the cone C(10)i, and acts on the cone C(10)i in the same way that
g0 acts on the cone Cε = C (this is essentially the content of the proof of Lemma
3 (1). That is, the prefix (10)i is fixed by all powers of gi, but the word (10)i+1 is
changed by gi on the final token “10” (the “0” at index 2i and the “1” at index
2i + 1).

Lemma 8 has the following related corollary.

Corollary 9. Let i be a natural number. The partial action of V on the set
{0, 1}∗ restricts to a transitive and free action of 〈gi〉 on the set of words
{tˆ(10)i : t ∈ T }.

6 Visiting the Family X
We now discuss the intersection of the group E = 〈G〉 with the family X .

Lemma 10. Let w ∈ W, and k ∈ N so that w has token decomposition w =
wkˆwk−1ˆ . . . ˆw2ˆw1. For each token wi, let ji be the integer so that 10·xji

ε = wi

and also, recall that xε = g0. If we set θw to be the product

θw := gjk

k−1g
jk−1
k−2 · · · gj2

1 gj1
0

then we have
xw = gθw

k .

Proof. One constructs θ by modifying the prefix (10)k to the prefix w by acting
on one token at a time, starting with the leftmost token (the kth token), and
then working to the first token w1. Progressively, each term in the product
decomposition of θ acts on a cone containing the impact of the previous terms
which have acted, the actions stack to create the following sequence of prefixes
for the locations of the actions of the (partially) conjugated versions of x(10)k .
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(10)k �→
wk(10)k−1 �→
wkwk−1(10)k−2 �→
. . .
wkwk−1 . . . w210 �→
wkwk−1 . . . w2w1.

We therefore have the following corollary.

Corollary 11. Let XW := {xw : w ∈ W}. Then XW ⊂ E.

We now consider a special subset of W. Set

S := {100ˆw, 011ˆw : w ∈ {0, 1}∗}.

Lemma 12. The set S is a subset of W.

Proof. The automaton A of Fig. 3 has further properties not mentioned previ-
ously; it is highly connected and synchronizing. These properties together mean
that given any particular state (let us say q0), there is a non-empty set of syn-
chronizing words Wq0 associated with q0 so that, starting from any particular
state s of the automaton and following a path labelled by any word in Wq0 ,
perforce, one will be lead to the state q0.

Note that the words 100 and 011 are synchronizing words for the state q0;
no matter what state one starts in, after following the path labelled by the word
100 from that state, or the path labelled by the word 011 from that state, one
arrives in the state q0 (recall that we are reading these words from right-to-left!).

Thus, if we have some general word w and we append a suffix 011 or 100 to
produce either z = 011ˆw or z = 100ˆw (that is, a general word z in S), then
upon reading this resulting word on the automaton A starting from the start
state q0, we will return to q0; our word z is in the language W accepted by A.

Below, we will actually be interested in the subset of XW where the words
involved come from S. Set

XS := {xw : w ∈ S}.

Corollary 13. The set XS is a subset of the group E.

We now consider how V interacts with the set XS under conjugation. The fol-
lowing lemma follows quickly by an application of Corollary 5.

Lemma 14. Let v ∈ V . There is a natural number n so that for all w ∈ S with
|w| ≥ n there is z ∈ S so that xv

z = xw.
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Proof. Let us assume that we can represent v by some prefix replacement map

v = ({a1, a2, . . . , am}, {b1, b2, . . . , bm}, σ)

where we assume that n is at least three larger than the length of the largest
string in the range antichain {b1, b2, . . . , bm}. We then set b as the prefix of
w appearing in the set {b1, b2, . . . , bm}, and set a = bσ−1 ∈ {a1, a2, . . . , am}.
Then, w = c ˆ b where c is some string of length at least three, and we have
(cˆa) ·v = (cˆb) = w, so that, in particular, if we take z := cˆa, then Corollary 5
assures us that xv

z = xcˆb = xw.
But now, as the word c has length at least three, we see that it must end

with the string 100 or the string 011 (since w has one of these two length three
suffixes), and in particular, z ∈ S.

Thus, we have found that all sufficiently long strings w in S have that xw is
the conjugate image of xz under v, for z another string in S.

Proof of Theorem 1:

Proof. The group E of this note is infinite and amenable. We can further see
that for any finite set C := {v1, v2, . . . , vk} ⊂ V , the elements xw, for w ∈ S
with w long enough (given by some particular integer dependent on the set C),
all appear in all of the groups Evi . In particular, the intersection

⋂

vi∈C

Evi

is an infinite set, so that E is normalish in each of F , T , and V .
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Abstract. A distance between two languages is a useful tool to mea-
sure the language similarity, and is closely related to the intersection
problem as well as the shortest string problem. A parsing expression
grammar (PEG) is an unambiguous grammar such that the choice oper-
ator selects the first matching in PEG while it can be ambiguous in a
context-free grammar. PEGs are also closely related to top-down pars-
ing languages. We consider two problems on parsing expression lan-
guages (PELs). One is the r-shortest string problem that decides whether
or not a given PEL contains a string of length shorter than r. The other
problem is the edit-distance problem of PELs with respect to other lan-
guage families such as finite languages or regular languages. We show that
the r-shortest string problem and the edit-distance problem with respect
to finite languages are NEXPTIME-complete, and the edit-distance prob-
lem with respect to regular languages is undecidable. In addition, we
prove that it is impossible to compute a length bound B(G) of a PEG G
such that L(G) has a string w of length at most B(G).

Keywords: Formal languages · Parsing expression grammars ·
Edit-distance

1 Introduction

Perl-compatible regular expressions (PCREs) are popular tools for information
retrieval and data processing. From a formal language viewpoint, the expressive
power of PCREs is interesting. A simple PCRE can define a context-sensitive
language. For example, the PCRE (a*)b\1b\1 represents a context-sensitive
language anbanban, which is not context-free. This implies that there are no
simple matching algorithms for PCREs.

Ford [4] proposed parsing expression grammars as a recognition-based for-
mal grammar that is a generalization of TMG recognition schema [2]. Parsing
expression grammars (PEGs) are intuitive for pattern matching and have a sim-
pler and efficient algorithm for matching than the algorithms for PCRE. Unlike
other grammars such as regular expressions or context-free grammars (CFGs)
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that match the input string if the grammars generate the whole input string,
PEGs regard the string matching if PEGs recognize a prefix (not necessarily
the whole string) of the input string deterministically. Thus, a PEG itself is
unambiguous—each rule in the grammar has a strict order and the grammar
tries to match the input according to its rule orders. This makes PEGs useful
for parsing a string since it has a lookahead that can verify whether or not a
prefix of the remaining input matches the given expression. Based on this prop-
erty, the Packrat parsing algorithm [3] for PEG recognizes a prefix of its input
string in polynomial time in the input size and the grammar size. This efficient
matching algorithm makes PEGs to be alternatives of PCREs. IBM recently
proposed Rosie pattern language (RPL) [1] based on PEG for pattern matching.

Medeiros et al. [11] designed a PEG construction from a PCRE and evaluated
the pattern matching performance between PEGs and PCREs. Loff et al. [10] dis-
cussed a few computational aspects of PEGs. They showed that a PEG accepts a
pair of an input and its output for any computable functions. They also proposed
a new computational machine, scaffolding automata (SAs), that operates using a
set of states and an auxiliary DAG structure, and proved the equivalence between
SAs and the reversal of parsing expression languages (PELs). Koga [7] examined
the context-freeness of a PEL, and showed that it is undecidable whether or not
a PEL L belongs to a subfamily of context-free languages (CFLs).

For the edit-distance problems of languages, Mohri [12] showed that the edit-
distance between two regular languages can be solved in polynomial-time while
the same problem between two CFLs is undecidable. Konstantinidis [8] suggested
an algorithm for computing the edit-distance of a given finite automaton (FA)
and obtained an upper bound of the distance. Povarov [16] studied the neighbor-
hood language according to the Hamming distance [5] that counts the number of
different symbols between two strings of the same length. An r-neighborhood Lr

of a language L according to a distance metric d is a set of strings whose distance
from a string in L is at most r. From an FA with n states, we can construct an
NFA with n(r+1) states for r-Hamming-neighborhood language of L(A). Under
the similar construction, we can also construct an NFA for r-edit-distance neigh-
borhood with the same bound. Han et al. [6] considered the edit-distance prob-
lem between a regular language and a CFL. They presented a construction that
accepts an alignment between a pair of strings from each language, and designed
an algorithm that computes the edit-distance between a regular language and
a CFL in polynomial time based on the construction. Ng et al. [13] studied the
edit-distance neighborhood of a regular languages. They showed that, for an n
state FA A, there exists a DFA with at most (r + 2)n − 1 states that accepts an
r-edit-distance neighborhood of L(A).

We consider two decision problems on PEGs: the r-shortest string prob-
lem and the r-edit-distance problem. The r-shortest string problem determines
whether or not a given PEL has a string whose length is at most length r ≥ 0
string. The r-edit-distance problem decides whether or not the edit-distance
between one PEL and another language is at most r ≥ 0. We show that the
r-shortest string problem and the edit-distance problem with respect to finite
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languages are NEXPTIME-complete. Moreover, we demonstrate that the r-edit-
distance problem with respect to regular languages is undecidable. In addition,
we prove that it is impossible to compute a length bound B(G) of a PEG G such
that L(G) has a string of length at most B(G).

2 Preliminaries

A Turing machine (TM) M is specified by a tuple (Q,Σ, Γ, δ, q0, qa, qr), where Q
is a set of states, Σ is an input alphabet, Γ is a tape alphabet, δ ⊆ Q×Γ ×Q×
Γ ×{L,R} is a set of transitions, and three states q0, qa, qr ∈ Q are an initial, an
accepting and a rejecting state, respectively. The blank tape symbol is denoted
by B ∈ Γ .

A TM M accepts (rejects) a string w ∈ Σ∗ if, starting from the initial state q0,
M has a transition path that reaches an accepting state qa (a rejecting state qr,
respectively) by following δ. We define the language L(M) of M to be

L(M) = {w | M accepts w}.

We assume that M halts on w if M reaches either qa or qr on w.
A configuration C of M is a string over Q ∪ Γ , where C consists of one

state symbol and tape symbols. The state symbol represents both the current
state (by the symbol itself) and the head position (by its position). The initial
configuration with the input string w is always q0w and the head is at the first
symbol of w. We say a configuration C is accepting (rejecting) if C is on the
state qa (qr, respectively).

2.1 Parsing Expression Grammars

A parsing expression is an expression generated from the following grammars.

e → λ | a ∈ Σ | A ∈ V | (e) | ee | e/e | &e | !e,

where λ denotes the empty string, Σ is an alphabet and V is a set of variables.
Given a parsing expression e and a string w = xy, we say that (e, w) → y if e
recognizes a prefix x of w and (e, w) → f if e fails to recognize w. A PEG G
is specified by a tuple (V,Σ,R, S), where V is a set of variables, Σ is an input
alphabet, R is a set of rules and S ∈ V is the starting variable. A rule (A, e) ∈ R is
a pair of a variable and a parsing expression—we sometimes denote it by A ← e.
PEGs look similar to CFGs yet the main difference is that PEGs do not have
the union operation that can nondeterministically choose either of productions.
On the other hand, PEGs have a choice operator (/) (e.g., A/B) that first tries
to match its left side rule (A) and, if it fails, tries its right side rule (B) in order.
This choice operator makes a PEG unambiguous. The expressions of the forms
&e or !e are called and- and not-predicate that recognizes the empty string λ
if e recognizes (cannot recognize, respectively) the input string. In other words,
these expressions work as unbounded lookahead.
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Given a PEG G = (V,Σ,R, S), we define the PEL L(G) to be

L(G) = {xy | (S, xy) → y, y ∈ Σ∗}.

This definition allows to contain any strings whose prefix is recognized by the
grammar.

Example 1. The following PEG G over Σ = {a, b, c} with a single rule S ←
&a/!(bc) recognizes the language {(a + ba + bb + c)Σ∗} by the following steps:

– The strings in {aΣ∗} (e.g., abc) match the and-predicate. We do not try
matching the second expression.

– The strings in {bcΣ∗} (e.g., bca) do not match both expressions so G fails to
recognize. (The second expression !(bc) fails to match since bc matches those
strings.)

– Other strings in {(ba+ bb+ c)Σ∗} do not match the and-predicate but match
the not-predicate.

Example 1 illustrates the role of & and ! in PEGs. Table 1 shows a few more
PEG examples and languages (Σ matches any symbol).

Table 1. Example PEGs and their languages

PEG Language

S ← a {aΣ∗}
S ← a/ab {aΣ∗}
S ← &(ab) {abΣ∗}
S ← a!Σ {a}

It is known that the emptiness, the universality of a PEL and the equivalence
between two PELs are all undecidable [4]. It follows that the intersection empti-
ness between a regular language and a PEL is also undecidable: if the regular
language is Σ∗, their intersection emptiness shows that the PEL is empty. Fur-
thermore, PEGs have a linear-time parsing algorithm that uses Packrat parsing
method. If the grammar G, however, is not fixed, the membership test w ∈ L(G)
can be done in O(|G| · |w|) time [3].

Note that PEGs may seem similar to conjunctive grammars [14]. However, a
big difference is that PEGs are always unambiguous whereas conjunctive gram-
mars can be ambiguous [4,15]. Also, in parsing, the conjunction operation in con-
junctive grammars must consume the matching substring but the and-predicate
in PEGs only verifies the matching string and consumes no symbols.
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2.2 Edit-Distance

The edit-distance (or the Levenshtein distance) [9] between two strings x and
y, denoted by d(x, y), is the minimum number of edit operations—insertion,
deletion and substitution—that transform x into y, where

– insertion adds a symbol into x
– deletion removes a symbol from x and
– substitution replaces a symbol from x with another symbol.

Then, we define the edit-distance between a string and a language, and
between two languages as follows:

d(w,L) = min
x∈L

d(w, x) d(L1, L2) = min
x∈L1

d(x,L2).

3 The r-Shortest String Problem

The r-shortest string problem is to decide whether or not a language L contains
a string of length of at most r ≥ 0. For CFGs, this problem is straightforward.
However, for PEGs, because of the ordered choice and the predicates in PEGs,
the problem is not trivial. When recognizing a given input string, we need to
check both the predicates and the corresponding rules that actually process the
input string. Thus, we need to verify every rule and predicate, and find the
common string for every rule. For instance, a PEG G of

S ← &(10)A, A ← 1(1/01)

cannot recognize the string 11 as the and-predicate does not match 11. Moreover,
the r-shortest string problem is a special version of the r-edit-distance problem
for two languages (the formal definition is in Definition 2), where one language
is {λ}.

Definition 1 (r-shortest string (r-SS) problem). Given a language L and
an integer r ≥ 0, the r-SS problem on L is to decide whether or not there exists
a string w ∈ L whose length is at most r.

We prove that the r-SS problem on PELs is NEXPTIME-complete. We start
with a simple NEXPTIME algorithm.

Lemma 1. Given a PEG G = (V,Σ,R, S) and an integer r ≥ 0, The r-SS
problem on L(G) is in NEXPTIME.

Proof. Consider the following algorithm.

1. Nondeterministically choose a string w ∈ Σ≤r,
2. Decide whether or not w ∈ L(G).

We can guess the string w on the first step of the algorithm in at most r
computation steps. The following membership test takes in quadratic time to
the grammar size |G| and the input size |w| ≤ r [3]. Thus, the entire algorithm
is in NEXPTIME. 	
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Next we show that the r-SS problem on PEL is NEXPTIME-hard using the
bounded halting problem.

Theorem 1 (Bounded halting problem [17]). Given a TM M , an input w ∈
Σ∗ and an integer k ≥ 0, it is NEXPTIME-complete to decide whether or not M
halts on w in at most k steps.

Before the main proof, consider the following PEG that generates a string of
an exponential length with respect to the grammar size.

Example 2. The following PEG G of n + 1 variables recognizes 02
n

and, thus,
L(G) = {02

n

Σ∗}.

S ← An−1An−1

An−1 ← An−2An−2

...
A1 ← A0A0

A0 ← 0

By substituting A0 rule to recognize a set of symbols, say A0 ← Σ, we can
design a PEG for recognizing Σn using O(log n) rules.

Now, we are ready to show that the r-SS problem on PELs is NEXPTIME-
hard.

Lemma 2. Given a PEG G and an integer r ≥ 0, the r-SS problem on L(G) is
NEXPTIME-hard.

Proof. We prove the hardness by a poly-time reduction from the bounded halting
problem to the r-SS problem. Given a TM M = (Q,Σ, Γ, δ, q0, qa, qr), an input w
and a nonnegative integer k, if M halts on w in at most k steps, we must have
a finite computation of

C1#C2#C3# . . . #Cn#,

where each Ci is a configuration over Σ ∪ Q and 1 ≤ n ≤ k. Such a halting
computation is valid if and only if:

1. every configuration Ci is valid (has only one state and contains only tape
symbols),

2. the initial configuration is C1 = q0w,
3. the final configuration is on either the state qa or qr and
4. every computation step must follow the TM transitions δ.

We construct a PEG G that accepts every halting computation

C = C ′
1#C ′

2#C ′
3# . . . #C ′

n#
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of M on input w, where C ′
1 = Bkq0wBk with the blank symbol B. Because C ′

1

has at least k symbols on both sides of its head, as long as we simulate at most
k steps, we can assume that every configuration Ci has the same number l =
2k + |C1| = 2k + |w| + 1 of symbols.

The following is a fragment of PEG G for M over the alphabet ˜Σ = Γ ∪Q∪
{#}. We omit the polynomial size rules for the strings in the form of Ak, where
A is a set of symbols for simplicity. (The construction is similar to Example 2)

S ←&(Bkq0wBk#)D

F ←&(Qf#)(Γ ∪ Q)l#! ˜Σ

D ←F

/cpa&( ˜Σl−2qcb)D (p, a, q, b, L) ∈ δ, c ∈ Γ

/pa&( ˜Σl−1bq)D (p, a, q, b, R) ∈ δ

/a&( ˜Σla)D a ∈ Γ ∪ {#}
Qf ←(qa/qr)Γ ∗/ΓQf

The constructed PEG G has three main rules: S, F and D. The rule S for
the valid condition 2 checks whether or not the initial configuration is exactly
Bkq0wBk. Since we can design a PEG that accepts the prefix Bk in the size of
O(log k), this rule does not violate the polynomial bound of reduction.

The rule F corresponding to the valid condition 3 determines whether or not a
length l configuration is a halting configuration. F checks that the configuration
has exactly one state, which is either qa or qr, and l − 1 tape symbol sequence
ending with #.

The rule D corresponding to the valid condition 4 represents the TM transi-
tions. D first checks that the current configuration is a halting configuration by
delegating checking to F . If the current configuration is not a halting configu-
ration, it enumerates possible TM transitions between the current configuration
and the next configuration.

The valid condition 1 holds because the initial configuration always has
exactly one (q0) state surrounded by l − 1 tape symbols and the rule D ensures
that, if the previous configuration is valid for rule 1, then the next one is also
valid. The rule Qf decides whether or not the current configuration sequence, not
necessarily l-length, has exactly one final state and a sequence of tape symbols.

The constructed grammar G can recognize a halting computation of a (2k +
|w|+2)n length string, where n is the number of computation steps to halt. Thus,
the (r = (2k + |w| + 2)k)-SS problem is equivalent to deciding the existence of
a halting computation of at most k steps. This completes a polynomial time
reduction. 	


By Lemmas 1 and 2, we establish the following statement.

Theorem 2. Given a PEG G and an integer r ≥ 0, the r-SS problem on L(G)
is NEXPTIME-complete.
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When r is in unary representation or a fixed constant, we can obtain a better
result as follows:

Corollary 1. When r is given in a unary representation, the r-SS problem is
NP-complete. If r is a fixed constant, then we can solve the problem in polynomial
time.

Proof. The proof is similar to the proof for Lemma 2. The bounded halting prob-
lem is NP-complete when the input r is unary [17]. If we regard r to be a fixed
constant, then the algorithm in the proof of Lemma 2 becomes polynomial. 	


4 The r-Edit-Distance Problem

Next, we examine the r-edit-distance problem for PELs. This problem is crucial
for verifying whether or not a string is in a given error bound from a PEL, or
for measuring the similarity between a PEL and another language.

Definition 2 (r-edit-distance problem (r-ED)). Given a language L, a
string w and an integer r ≥ 0, the r-ED problem between w and L is to decide
whether or not d(w,L) ≤ r.

As the r-SS problem is a simple version of the r-ED problem, it is immediate
that the r-ED problem is “harder” than r-SS problem.

Lemma 3. Given a language L and an integer r ≥ 0, the r-SS problem for L
is mapping reducible to the r-ED between λ and L.

Proof. If L has a string of length n ≤ r, the edit-distance between the empty
string λ and the string must be n ≤ r. On the other hand, if L has no strings
of length n ≤ r, then the edit-distance between the empty string and L must be
greater than r. 	

Corollary 2. Given a PEG G, a string w and an integer r ≥ 0, the r-ED
between w and L(G) is NEXPTIME-hard.

Now, we show that the r-ED problem on PELs is in NEXPTIME.

Lemma 4. Given a PEG G, a string w and an integer r ≥ 0, the r-ED between
w and L(G) is in NEXPTIME.

Proof. Similar to the r-SS problem, the following algorithm shows that the r-ED
problem is in NEXPTIME.

1. Choose i ≤ r nondeterministically.
2. Nondeterministically choose a valid edit operation on w and apply it.
3. Repeat the previous step i times to make the resulting string x has edit-

distance of at most r.
4. Decide whether or not x ∈ L(G).
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Note that the length of x is between max(0, |w| − r) and |w| + r, which is
exponential to the input size. 	


Combining Corollary 2 and Lemma 4, we obtain the following statement.

Theorem 3. Given a PEG G, a string w and an integer r ≥ 0, the r-ED
between w and L(G) is NEXPTIME-complete.

We can also solve the r-ED problem between a PEL and a finite language.

Theorem 4. Given a PEG G, an acyclic DFA A and an integer r ≥ 0, the
r-ED problem between L(G) and L(A) is NEXPTIME-complete.

Proof. It is easy to show that the problem is NEXPTIME-hard since the r-ED
between a PEL and a single string is already NEXPTIME-complete.

The following is a naive NEXPTIME algorithm for the r-ED problem.

1. Nondeterministically choose a string w ∈ L(A).
2. Apply the NEXPTIME algorithm for the r-ED problem between the given

PEG G and the string w.

Since A is acyclic, |w| ≤ |A|, we can guess w in polynomial time to the input
size. Thus, the second step is in NEXPTIME bound with respect to the original
input size. 	


For the general case when we consider the r-ED problem for a PEG G and
an arbitrary infinite language L, we should ensure that L(G) is nonempty. If not,
the problem becomes undecidable since d(L(G), Σ∗) ≤ 0, which is equivalent to
L(G) ∩ Σ∗ �= ∅, decides whether or not L(G) is empty [4]. Therefore, from now
on, we assume that a PEL is a nonempty language. Now consider when L is
regular. We show that this problem is undecidable even with a fixed r.

Theorem 5. Given a nonempty PEG G, a DFA A and a fixed integer r ≥ 0,
it is undecidable that the r-ED problem between L(G) and L(A).

Proof. It is easy to show that the case for r = 0 is undecidable as we cannot
decide the emptiness of a PEL [4].

The case for r > 0, we will show a reduction from the Post Correspondence
Problem (PCP), which is a well-known undecidable problem, to the r-ED prob-
lem by construct a PEG that recognizes possible solutions for the given PCP
instance and a DFA for PCP solution encodings.

Consider a PCP instance P = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where every
xi’s and yi’s are strings over Σ. We first construct a PEG G with the starting
variable S for P and its alphabet ˜Σ = Σ ∪ {#, $}:

S ← &(X! ˜Σ)&(Y ! ˜Σ) ˜Σ ˜Σ/$r+1! ˜Σ

X ← x1Xa1/x2Xa2/ . . . /xnXan/#
Y ← y1Y a1/y2Y a2/ . . . /ynY an/#
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where $, #, ai’s are new symbols not in Σ. Then L(G) contains an encoded
PCP solutions if P has a solution. Note that this grammar is similar to one on
Ford’s PCP to PEL emptiness reduction [4] but always nonempty by ensuring
that L(G) always contains the string $r+1. Also G cannot recognize the string
# because S requires to recognize at least 2 symbols.

If P has no match, then the first choice rule on G cannot recognize any string,
and thus G can recognize only $r+1. On the other hand, if P has at least one
match, the first one can recognize the solution as well as the second rule.

Second, we construct a DFA A for the language

L(A) = {w#α | w ∈ Σ∗, α ∈ {ai}∗}

such that A represents a superset of valid PCP solution encodings.
Considering the PEG G and the DFA A, we can see that

– d(L(G), L(A)) = 0 ≤ r if P has a match and
– d(L(G), L(A)) = r + 1 �≤ r if P has no match. 	


Furthermore, we cannot decide the r-ED problem between a PEL and a CFL
since the classes of PELs or CFLs both contain regular languages.

Corollary 3. Given a PEG G, a CFG (or a PEG) A and a fixed integer r ≥ 0,
the r-ED problem between L(G) and L(A) with bound r is undecidable.

For other representations of r, the r-ED problems have similar results to the
r-SS problems.

Corollary 4. Given a PEG G, a finite language L and a unary (or a fixed)
integer r ≥ 0, the r-ED problem between L and L(G) is NP-complete (done in
polynomial time, respectively).

5 Undecidability of Length Bound

Our next question is what is the length bound of shortest string in a PEG.

Definition 3. We define B(G) to be a string length bound of a PEG G, where
there is a nonempty string w ∈ L(G) such that |w| ≤ B(G).

If we can compute B(G), then we can use B(G) to find a bound, which
gives rise to the shortest string as well as the edit-distance. For example, a
regular language contains at least one string whose length is shorter than the
number of its FA states, a context-free language contains at least one string
whose length is 2|V |−1, where V is the set of variables of corresponding CFG in
CNF. Unfortunately, for PEGs, we prove that we cannot find such bound.

Corollary 5. On a PEG G, B(G) is not computable.
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Proof. We prove the statement by contradiction. Suppose that there exists a TM
for B. Then, by the definition of B, for given a PEG G, L(G) must contain a
string w whose length is at most B(G). On the other hand, if L(G) has at least
one string, regardless of its length, L(G) is not empty.

Then, we can decide whether or not L(G) is nonempty by testing membership
of every string in ΣB(G) on G since B(G) is computable. If G can recognize any
of those strings, G must be nonempty. This contradicts to the fact that deciding
emptiness of G is not possible. 	


6 Conclusions

Recently, PEGs became popular as a recognition-based formal grammar, which
is always unambiguous and has a simple parsing algorithm. We have studied the
shortest string problem and the edit-distance problem on PELs since we can use
a language similarity metric, like edit-distance, to quantitatively verify errors
between a grammar and a target string.

We have considered the r-SS problem about whether or not a PEL con-
tains a string of length at most r and we have proved that the r-SS problem is
NEXPTIME-complete. We have also examined the r-ED problem about whether
or not the edit-distance between a PEL and a language is bounded up to r. The
r-ED problem is decidable when we consider the edit-distance between a PEL
and a finite language, and we prove that its complexity is NEXPTIME-complete.
Finally, we have demonstrated that we cannot bound the length of strings in
L(G), where G is a PEG.

For future work, we plan to design a nontrivial algorithm that computes B(G)
for a nonempty PEG G. We would also compute the edit-distance with the swap
operation, which is another popular edit operation.
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Abstract. Let G be a group and H1,. . . ,Hs be subgroups of G of indices
d1, . . . , ds respectively. In 1974, M. Herzog and J. Schönheim conjectured
that if {Hiαi}i=s

i=1, αi ∈ G, is a coset partition of G, then d1, . . . , ds cannot
be distinct. In this paper, we present a new approach to the Herzog-
Schönheim conjecture based on automata and present a translation of
the conjecture as a problem on automata.

Keywords: Free groups · Coset partitions · The Herzog-Schönheim
conjecture · Automata

1 Introduction

Let G be a group and H1, . . . , Hs be subgroups of G. If there exist αi ∈ G such

that G =
i=s⋃

i=1

Hiαi, and the sets Hiαi, 1 ≤ i ≤ s, are pairwise disjoint, then

{Hiαi}i=s
i=1 is a coset partition of G (or a disjoint cover of G). In this case, all

the subgroups H1, . . . , Hs can be assumed to be of finite index in G [17,21].
We denote by d1, . . . , ds the indices of H1, . . . , Hs respectively [20]. The coset
partition {Hiαi}i=s

i=1 has multiplicity if di = dj for some i �= j.
If G is the infinite cyclic group Z, a coset partition of Z is {diZ + ri}i=s

i=1,
ri ∈ Z, with each diZ+ri the residue class of ri modulo di. These coset partitions
of Z were first introduced by P. Erdös [11] and he conjectured that if {diZ +
ri}i=s

i=1, 1 < d1 ≤ ... ≤ ds, ri ∈ Z, is a coset partition of Z, then the largest
index ds appears at least twice. Erdös’ conjecture was proved independently by
H. Davenport with R.Rado and L. Mirsky with D. Newman using analysis of
complex functions [12,21,22]. Furthermore, it was proved that the largest index
ds appears at least p times, where p is the smallest prime dividing ds [21,22,34],
that each index di divides another index dj , j �= i, and that each index dk that
does not properly divide any other index appears at least twice [22]. We refer
also to [25–28,35] for more details on coset partitions of Z (also called covers of
Z by arithmetic progressions) and to [13] for a proof of the Erdös’ conjecture
using group representations [16].

In 1974, M. Herzog and J. Schönheim extended Erdös’ conjecture for arbi-
trary groups and conjectured that if {Hiαi}i=s

i=1, αi ∈ G, is a coset partition
c© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 55–68, 2020.
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of G, then d1, . . . , ds cannot be distinct. In the 1980’s, in a series of papers,
M.A. Berger, A. Felzenbaum and A.S. Fraenkel studied the Herzog-Schönheim
conjecture [2–4] and in [5] they proved the conjecture is true for the pyramidal
groups [14], a subclass of the finite solvable groups. Coset partitions of finite
groups with additional assumptions on the subgroups of the partition have been
extensively studied. We refer to [6,33,36,37]. In [18], the authors very recently
proved that the conjecture is true for all groups of order less than 1440.

The common approach to the Herzog-Schönheim (HS) conjecture is to study
it in finite groups. Indeed, given any group G, every coset partition of G induces
a coset partition of a finite quotient group of G with the same indices [17]. In
this paper, we present a completely different approach to the HS conjecture. The
idea is to study it in free groups of finite rank and from there to provide answers
for every group. This is possible since any finite or finitely generated group is a
quotient group of a free group of finite rank and any coset partition of a quotient
group F/N induces a coset partition of F with the same indices [7]. In order to
study the Herzog-Schönheim conjecture in free groups of finite rank, we use the
machinery of covering spaces. A pair (X̃, p) is a covering space of a topological
space X if X̃ is a path connected space, p : X̃ → X is an open continuous
surjection and every x ∈ X has an open neighborhood Ux such that p−1(Ux) is
a disjoint union of open sets in X̃, each of which is mapped homeomorphically
onto Ux by p. For each x ∈ X, the non-empty set Yx = p−1(x) is called the fiber
over x and for all x, x′ ∈ X, | Yx |=| Yx′ |. If the cardinal of a fiber is m, one
says that (X̃, p) is a m-sheeted covering (m-fold cover) of X [15,29].

The fundamental group of the bouquet with n leaves (or the wedge sum of
n circles), X, is Fn, the free group of finite rank n and for any subgroup H
of Fn of finite index d, there exists a d-sheeted covering space (X̃H , p) with a
fixed basepoint. The underlying graph of X̃H is a directed labelled graph, with
d vertices, called the Schreier graph and it can be seen as a finite complete bi-
deterministic automaton; fixing the start and the end state at the basepoint, it
recognises the set of elements in H. It is called the Schreier coset diagram for Fn

relative to the subgroup H [32, p.107] or the Schreier automaton for Fn relative
to the subgroup H [30, p.102]. The d vertices (or states) correspond to the d

right cosets of H, any edge (or transition) has the form Hg
a−→ Hga, g ∈ Fn, a

a generator of Fn, and it describes the right action of Fn on the right cosets of
H. If we fix the start state at the basepoint (H), and the end state at another
vertex Hα, where α denotes the label of some path from the start state to the
end state, then this automaton recognises the set of elements in Hα and we call
it the Schreier automaton of Hα and denote it by X̃Hα.

In general, for any automaton M , with alphabet Σ, and d states, there exists
a square matrix A of order d× d, with aij equal to the number of directed edges
from vertex i to vertex j, 1 ≤ i, j ≤ d. This matrix is non-negative and it is called
the transition matrix of M [10]. If for every 1 ≤ i, j ≤ d, there exists m ∈ Z

+

such that (Am)ij > 0, the matrix is said to be irreducible. For A an irreducible
non-negative matrix, the period of A is the gcd of all m ∈ Z

+ such that there
is i with (Am)ii > 0. If M has a unique start state i and a unique end state
j, then the number of words of length k (in the alphabet Σ) accepted by M is
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ak = (Ak)ij . The generating function of M is defined by p(z) =
k=∞∑

k=0

ak zk. It is

a rational function: the fraction of two polynomials in z with integer coefficients
[10], [31, p. 575].

In [8], we study the properties of the transition matrices and generating func-
tions of the Schreier automata in the context of coset partitions of the free group.
Let Fn = 〈Σ〉, and Σ∗ denote the free group and the free monoid generated by
Σ, respectively. We will consider Σ∗ as a subset of Fn. Let {Hiαi}i=s

i=1 be a coset
partition of Fn with Hi < Fn of index di > 1, αi ∈ Fn, 1 ≤ i ≤ s. Let X̃i denote
the Schreier graph of Hi, with transition matrix Ai of period hi ≥ 1 and X̃Hiαi

the Schreier automaton of Hiαi, with generating function pi(z), 1 ≤ i ≤ s. For
each X̃i, Ai is a non-negative irreducible matrix and ai,k = (Ak

i )bf , k ≥ 0, counts
the number of words of length k that belong to Hiαi∩Σ∗ (with b and f denoting
the start and end state of Hiαi respectively). Since Fn is the disjoint union of
the sets {Hiαi}i=s

i=1, each element in Σ∗ belongs to one and exactly one such set,

so nk, the number of words of length k in Σ∗, satisfies nk =
i=s∑

i=1

ai,k, for every

k ≥ 0, and moreover
k=∞∑

k=0

nk zk =
i=s∑

i=1

pi(z). By using this kind of counting argu-

ment and studying the behaviour of the generating functions at their poles, we
prove that if h = max{hi | 1 ≤ i ≤ s} is greater than 1, then there is a repetition
of the maximal period h > 1 and that, under certain conditions, the coset par-
tition has multiplicity. Furthermore, we recover the Davenport-Rado result (or
Mirsky-Newman result) for the Erdős’ conjecture and some of its consequences.

In this paper, we deepen further our study of the transition matrices of the
Schreier automata in the context of coset partitions of Fn and give some new
conditions that ensure a coset partition of Fn has multiplicity.

Theorem 1. Let Fn be the free group on n ≥ 2 generators. Let {Hiαi}i=s
i=1 be

a coset partition of Fn with Hi < Fn of index di, αi ∈ Fn, 1 ≤ i ≤ s, and
1 < d1 ≤ . . . ≤ ds. Let X̃i denote the Schreier graph of Hi, with transition
matrix Ai, and period hi ≥ 1, 1 ≤ i ≤ s. Let H = {hj | 1 ≤ j ≤ s, hj > 1}.
Assume H �= ∅ and different elements in H are pairwise coprime. Let rh denote
the number of repetitions of h. If for some h ∈ H, h ≤ rh ≤ 2(h − 1), then
{Hiαi}i=s

i=1 has multiplicity.

Furthermore, we show the Herzog-Schönheim conjecture in free groups can
be translated into a conjecture on automata.

Conjecture 1. Let Σ be a finite alphabet, and Σ∗ be the free monoid generated
by Σ. For every 1 ≤ i ≤ s, let Mi be a finite, bi-deterministic and complete
automaton with strongly-connected underlying graph. Let di be the number of
states of Mi (di > 1), and Li � Σ∗ be the accepted language of Mi. If Σ∗

is equal to the disjoint union of the s languages L1, L2, . . . , Ls, then there are
1 ≤ j, k ≤ s, j �= k, such that dj = dk.

Theorem 2. If Conjecture 1 is true, then the Herzog-Schönheim conjecture is
true.
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The paper is organized as follows. In Sect. 2, we give some preliminaries
on automata and on irreducible non-negative matrices. In Sect. 3, we present
a particular class of automata adapted to the study of the Herzog-Schönheim
conjecture in free groups and describe some of their properties. In Sect. 4, we
prove Theorem 1 and Theorem 2. We refer to [7] for more preliminaries and
examples: Sect. 2, for free groups and covering spaces and Sect. 3.1, for graphs.

2 Automata, Non-negative Irreducible Matrices

2.1 Automata

We refer the reader to [30, p. 96], [9, p. 7], [23,24], [10]. A finite state automaton
is a quintuple (S,Σ, μ, Y, s0), where S is a finite set, called the state set, Σ is a
finite set, called the alphabet, μ : S × Σ → S is a function, called the transition
function, Y is a (possibly empty) subset of S called the accept (or end) states,
and s0 is called the start state. It can be represented by a directed graph with
vertices the states and each transition μ(s, a) = s′ is represented by a labelled
edge s

a−→ s′ from s to s′ with label a ∈ Σ. The label of a path p of length
n is the product a1a2 . . . an of the labels of the edges of p. The finite state
automaton M = (S,Σ, μ, Y, s0) is deterministic if there is only one initial state
and each state is the source of exactly one arrow with any given label from Σ.
In a deterministic automaton, a path is determined by its starting point and
its label [30, p. 105]. It is co-deterministic if there is only one final state and
each state is the target of exactly one arrow with any given label from Σ. The
automaton M = (S,Σ, μ, Y, s0) is bi-deterministic if it is both deterministic
and co-deterministic. An automaton M is complete if for each state s ∈ S and
for each a ∈ Σ, there is exactly one edge from s labelled a. We say that an
automaton or a graph is strongly-connected if there is a directed path from any
state to any other state.

Definition 2.1. Let M = (S,Σ, μ, Y, s0) be a finite state automaton. Let Σ∗

be the free monoid generated by Σ. Let Map(S, S) be the monoid consisting of
all maps from S to S. The map φ : Σ → Map(S, S) given by μ (i.e. φ(a) : s �→
μ(s, a)), can be extended in a unique way to a monoid homomorphism φ : Σ∗ →
Map(S, S). The range of this map is a monoid called the transition monoid of
M , which is generated by {φ(a) | a ∈ Σ}. An element w ∈ Σ∗ is accepted by
M if the corresponding element of Map(S, S), φ(w), takes s0 to an element of
the accept states set Y . The set L ⊆ Σ∗ recognized by M is called the language
accepted by M , denoted by L(M).

For any directed graph with d vertices or any finite state automaton M ,
with alphabet Σ, and d states, there exists a square matrix A of order d × d,
with aij = Aij equal to the number of directed edges from vertex i to vertex
j, 1 ≤ i, j ≤ d. This matrix is non-negative (i.e aij ≥ 0) and it is called the
transition matrix (as in [10]) or the adjacency matrix (as in [31, p. 575]). For
any k ≥ 1, (Ak)ij is equal to the number of directed paths of length k from
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vertex i to vertex j. So, if M is a bi-deterministic automaton with alphabet Σ,
d states, start state i, accept state j and transition matrix A, then (Ak)ij is the
number of words of length k in the free monoid Σ∗ accepted by M .

2.2 Irreducible Non-negative Matrices

We refer to [1, Ch. 16], [19, Ch. 8]. There is a vast literature on the topic. Let A
be a transition matrix of order d × d of a directed graph or an automaton with
d states, as defined in Sect. 2.1. If for every 1 ≤ i, j ≤ d, there exists m ∈ Z

+

such that (Am)ij > 0, the matrix is said to be irreducible. For A an irreducible
non-negative matrix, the period of A is the gcd of all m ∈ Z

+ such that there is
i with (Am)ii > 0. If the period is 1, A is called aperiodic. In [19], an irreducible
and aperiodic matrix A is called primitive and the period h is called the index
of imprimitivity.

Let A be an irreducible non-negative matrix of order d × d with period
h ≥ 1 and spectral radius r. Then the Perron-Frobenius theorem states that
r is a positive real number and it is a simple eigenvalue of A, λPF , called the
Perron-Frobenius (PF) eigenvalue. It satisfies min

j

∑

i

aij ≤ λPF ≤ max
i

∑

j

aij .

The matrix A has a right eigenvector vR with eigenvalue λPF whose components
are all positive and likewise, a left eigenvector vL with eigenvalue λPF whose
components are all positive. Both right and left eigenspaces associated with λPF

are one-dimensional. The behaviour of irreducible non-negative matrices depends
strongly on whether the matrix is aperiodic or not.

Theorem 2.2. [19, Ch. 8] Let A be a d × d irreducible non-negative matrix of
period h ≥ 1, with PF eigenvalue λPF . Let vL and vR be left and right eigenvec-
tors of λPF whose components are all positive, with vL vR = 1.

If h = 1, lim
k→∞

Ak

λk
PF

= P , and if h > 1, lim
k→∞

1
k

m=k−1∑

m=0

Am

λm
PF

= P ; P = vR vL.

3 A Particular Class of Automaton Adapted
to the Study of the HS Conjecture

3.1 The Schreier Automaton of a Coset of a Subgroup

We now introduce the particular class of automata we are interested in, that
is a slightly modified version of the Schreier automaton for Fn relative to the
subgroup H [30, p. 102], [32, p. 107]. We refer to [7] for concrete examples.

Definition 3.1. Let Fn = 〈Σ〉, and Σ∗ denote the free group and the free
monoid generated by Σ, respectively. Let H < Fn be of index d. Let (X̃H , p) be
the covering of the n-leaves bouquet with basepoint x̃1 and vertices x̃1, x̃2, ..., x̃d.
Let ti ∈ Σ∗ denote the label of a directed path of minimal length from x̃1 to x̃i.
Let X̃H be the Schreier coset diagram for Fn relative to the subgroup H, with
x̃1 representing the subgroup H and the other vertices x̃2, ..., x̃d representing
the cosets Hti accordingly. We call X̃H the Schreier graph of H, with this
correspondence between the vertices x̃1, x̃2, ..., x̃d and the cosets Hti accordingly.
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From the correspondence between the vertices and the cosets as described
in Definition 3.1, there exists a directed path from any vertex x̃i to any other
vertex x̃j in X̃H , that is X̃H is a strongly-connected graph. Furthermore, it is
n-regular. So, its transition matrix A is non-negative and irreducible, with PF
eigenvalue n (the sum of the elements at each row and at each column is equal
to n).

Definition 3.2. Let Fn = 〈Σ〉, and Σ∗ denote the free group and the free
monoid generated by Σ, respectively. Let H < Fn be of index d. Let X̃H be
the Schreier graph of H. Using the notation from Definition 3.1, let x̃1 be the
start state and x̃f be the end state for some 1 ≤ f ≤ d. We call the automaton
obtained the Schreier automaton of Htf and denote it by X̃Htf . The language
accepted by X̃Htf is the set of elements in Σ∗ that belong to Htf . We call the
elements in Σ∗ ∩ Htf , the positive words in Htf . The identity may belong to
this set (and in fact, it does, for f = 1).

Example 3.3. Let Σ = {a, b}; F2 = 〈a, b〉. Let K ≤ F2, of index 4.

Fig. 1. The Schreier graph X̃K of K = 〈a4, b4, ab−1, a2b−2, a3b−3〉.

The transition matrix of X̃K is

⎛

⎜
⎜
⎝

0 2 0 0
0 0 2 0
0 0 0 2
2 0 0 0

⎞

⎟
⎟
⎠ with period 4. If K and Ka are

the start and end states, L is the set of positive words in Ka.

3.2 Properties of the Schreier Automata in Coset Partitions

We recall here some results proved in [8].

Theorem 3.4. [8] Let Fn be the free group on n ≥ 1 generators. Let {Hiαi}i=s
i=1

be a coset partition of Fn with Hi < Fn of index di, αi ∈ Fn, 1 ≤ i ≤ s, and
1 < d1 ≤ ... ≤ ds. Let X̃i denote the Schreier graph of Hi, with transition matrix
Ai, and period hi ≥ 1, 1 ≤ i ≤ s.

(i) Assume hk = max{hi | 1 ≤ i ≤ s} > 1. Then there exists j �= k such that
hj = hk.

(ii) Let h� > 1, such that h� does not properly divide any other period hi, 1 ≤
i ≤ s. Then there exists j �= � such that hj = h�.
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(iii) For every hi, there exists j �= i such that either hi = hj or hi | hj.


�
If n = 1 in Theorem 3.4, {Hiαi}i=s

i=1 is a coset partition of Z and we recover
the Davenport-Rado result (or Mirsky-Newman result) for the Erdős’ conjecture
and some of its consequences. Indeed, for every index d, the Schreier graph of dZ

has a transition matrix with period equal to d, so a repetition of the period is
equivalent to a repetition of the index. For the unique subgroup H of Z of index
d, its Schreier graph X̃H is a closed directed path of length d (with each edge
labelled 1). So, its transition matrix A is the permutation matrix corresponding
to the d−cycle (1, 2, ..., d), and it has period d. In particular, the period of As

is ds, and there exists j �= s such that dj = ds. Also, if the period (index) dk of
Ak does not properly divide any other period (index), then there exists j �= k
such that dj = dk. For the free groups in general, we prove that in some cases,
the repetition of the period implies the repetition of the index (see [8]).

4 Proof of the Main Results

4.1 Properties of the Transition Matrix of the Schreier Graph

We study the properties of the transition matrix of a Schreier graph.

Lemma 4.1. Let H < Fn of index d, with Schreier graph X̃H and transition
matrix A with period h ≥ 1. Then the following properties hold:

(i) The vectors vL = 1
d (1, 1, ..., 1), vR = (1, 1, ..., 1)T are left and right eigen-

vectors of n whose components are all positive, with vLvR = 1.
(ii) The matrix P = vR vL is of order d × d with all entries equal to 1

d .

(iii) If h = 1, then lim
k→∞

Ak

nk = P and if h > 1, then lim
k→∞

1
k

j=k−1∑

j=0

Aj

nj = P .

Proof. (i), (ii), (iii) As the sum of every row and every column in A is equal
to n, λPF = n with right eigenvector vR = (1, 1, ..., 1)T and left eigenvector
(1, 1, ..., 1). Since (1, 1, ..., 1)vR = d, vL = 1

d (1, 1, ..., 1) is a left eigenvector that
satisfies vLvR = 1. Computing vR vL gives the matrix P of order d × d with all
entries equal to 1

d . (iii) results from Theorem 2.2. 
�
The behaviour of exponents of an aperiodic d × d matrix of a Schreier graph

X̃H is well known: for every 1 ≤ i, j ≤ d, lim
k→∞

(Ak)ij
nk = 1

d , from Lemma 4.1. It

means that the proportion of positive words of every length k (k large enough)
that belong to any coset of H tends to the fixed value 1

d . We turn now to the

study of lim
k→∞

(Ak)ij
nk , where A is the transition matrix of a Schreier graph X̃H of

period h > 1.

Definition 4.2. For 1 ≤ i, j ≤ d, we define mij , 0 ≤ mij ≤ d, to be the minimal
natural number such that (Amij )ij �= 0.
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By definition, if i �= j, then mij is the minimal length of a directed path from
i to j in X̃H and if i = j, then mij = 0. Whenever h > 1, only for the exponents
mij + kh, k ≥ 0, (Amij+kh)ij �= 0, that is only positive words of length mij + kh
are accepted by the Schreier automaton, with i and j the start and end states
respectively. Note that if H is a subgroup of Z = 〈1〉 of index d, its transition
matrix A is a permutation matrix with period d and mij = r, where dZ + r is
the coset with i and j the start and end states respectively.

Lemma 4.3. Let H < Fn be of index d, with Schreier graph X̃H and transition
matrix A with period h > 1. Then, the following properties hold:

(i) (Ak)ij
nk = 0, whenever k �≡ mij(modh), 1 ≤ i, j ≤ d.

(ii) lim
k→∞

(Amij+kh)ij
nk = h

d , 1 ≤ i, j ≤ d.

(iii) for every 0 ≤ m ≤ h − 1, there is i such that m1i ≡ m(modh).
(iv) h divides d.

Proof. (i) By definition, whenever k �≡ mij(modh), (Ak)ij = 0.
(ii), (iii), (iv) We define an d × h matrix B in the following way. Each row

i is labelled by a right coset of H in the same order as they appear in the
rows and columns of A and each column by m = 0, 1, 2, ..., h − 1, and (B)ij =
lim

k→∞
(Aj+kh)1i

nj+kh . Roughly, (B)ij is the proportion of positive words of very large

length (congruent to j (modh)) that belong to the corresponding coset of H.
From (i):

(B)ij =

{
0 if m1i �≡ j(modh),

lim
k→∞

(Am1i+kh)1i
nm1i+kh if m1i ≡ j(modh).

So, at each row of B, there is a single non-zero entry. As Fn is partitioned
by the d cosets of H, all the non-zero elements in B are equal and for every

k ≥ 0 and every 1 ≤ i ≤ d,
f=d∑

f=1

(Ak)if = nk, in particular
f=d∑

f=1

(Ak)1f
nk = 1.

So,
i=d∑

i=1

(B)ij =
i=d∑

i=1

lim
k→∞

(Aj+kh)1i
nj+kh = lim

k→∞

i=d∑

i=1

(Aj+kh)1i
nj+kh = 1, that is the sum of

elements in each column of B is equal to 1. If h = d, B is a square matrix and
the right cosets can be arranged such that their labels m are in growing order
and we have necessarily a diagonal matrix (otherwise there would be a column of
zeroes). So, lim

k→∞
(Am1i+kh)1i

nm1i+kh = 1 and (ii), (iii), (iv) hold. Now, assume d > h. At

each column, there is at least one non-zero entry, so (iv) holds. Furthermore, the
number of non-zero entries in each column needs to be the same, so h divides
d and for any i, d

h ∗ ( lim
k→∞

(Am1i+kh)1i
nm1i+kh ) = 1. That is, lim

k→∞
(Am1i+kh)1i

nm1i+kh = h
d .

Furthermore, lim
k→∞

1
h

j=h−1∑

j=0

(Aj+kh)1i
nj+kh = 1

d . 
�
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4.2 Conditions that Ensure Multiplicity in a Coset Partition

Let Fn be the free group on n ≥ 1 generators. Let {Hiαi}i=s
i=1 be a coset partition

of Fn with Hi < Fn of index di, αi ∈ Fn, 1 ≤ i ≤ s, and 1 < d1 ≤ . . . ≤ ds. Let
X̃i denote the Schreier graph of Hi, with transition matrix Ai, and period hi ≥ 1,
1 ≤ i ≤ s. In the following lemmas, we prove, under additional assumptions, that
there exist conditions that ensure multiplicity.

Lemma 4.4. Assume that among all periods h1, . . . hs, there exists a unique
value h > 1. Let r denote the number of repetitions of h. Then, r ≥ h. Further-
more, if h ≤ r ≤ 2(h − 1), then {Hiαi}i=s

i=1 has multiplicity.

Proof. For every 1 ≤ i ≤ s, (Ak
i )1fi

denotes the number of positive words of
length k that belong to the coset Hiαi. Let I = {1 ≤ i ≤ s | hi = h}. For every
i ∈ I, we denote by mi the minimal natural number such that (Ami

i )1fi
�= 0. We

define an r × h matrix C in the following way. Each row i is labelled by a right
coset Hiαi, where i ∈ I and each column by m = 0, 1, 2, ..., h − 1, and:

(C)ij =

⎧
⎨

⎩

0 if mi �≡ j(modh),

lim
k→∞

(A
mi+hk

i )1fi
nmi+hk if mi ≡ j(modh).

Roughly, (C)ij is the proportion of positive words of very large length (con-
gruent to j (modh)) that belong to Hiαi, where i ∈ I. At each row of C
there is a unique non-zero entry. Since {Hiαi}i=s

i=1 is a coset partition of Fn,

for every k,
i=s∑

i=1

(Ak
i )1fi

= nk, that is
i=s∑

i=1

(Ak
i )1fi
nk = 1. If Ai is aperiodic, then

lim
k→∞

(Ak
i )1fi
nk = 1

di
from Lemma 4.1. So, 1 = lim

k→∞

i=s∑

i=1

(Ak
i )1fi
nk =

i=s∑

i=1

lim
k→∞

(Ak
i )1fi
nk =

∑

i/∈I

1
di

+
∑

i∈I

lim
k→∞

(Ak
i )1fi
nk . That is,

∑

i∈I

lim
k→∞

(Ak
i )1fi
nk = 1 − ∑

i/∈I

1
di

=
∑

i∈I

1
di

, since

i=s∑

i=1

1
di

= 1. So, the sum of elements in each column of C is equal to
∑

i∈I

1
di

and

from Lemma 4.3, the non-zero entries in C have the form h
di

. If r < h, then there
is necessarily a column of zeroes, so r ≥ h. If r = h, then C is a square matrix
and the right cosets can be arranged such that their labels m are in growing order
and we have necessarily a diagonal matrix (otherwise there would be a column
of zeroes). So, for every i ∈ I, h

di
=

∑

i∈I

1
di

. That is, the coset partition {Hiαi}i=s
i=1

has multiplicity with all the di equal for i ∈ I. Now, assume r > h. At each col-
umn, there is at least one non-zero entry and there are necessarily columns with
several non-zero entries. By a simple combinatorial argument, the number n0 of
columns with a single non-zero entry satisfies h − (r − h) ≤ n0 ≤ h − 1, that is
2h− r ≤ n0 ≤ h− 1. If we assume r ≤ 2(h− 1), then n0 ≥ 2h− r − 2(h− 1) ≥ 2,
that is the number of columns with a single non-zero entry is at least 2, so
there are at least two i ∈ I, such that h

di
=

∑

i∈I

1
di

, and the coset partition

{Hiαi}i=s
i=1 has multiplicity. Note that for every 0 ≤ m ≤ h − 1, there is i such

that mi ≡ m(modh). 
�
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Lemma 4.5. Assume there exist at least two coprime values h, h′ > 1 of periods
h1, . . . , hs. Let r and r′ denote the number of repetitions of h and h′ respectively.
If r = h or r ≤ 2(h − 1) or r′ = h′ or r′ ≤ 2(h′ − 1), then {Hiαi}i=s

i=1 has
multiplicity.

Proof. Let I = {1 ≤ i ≤ s | hi = h} and I ′ = {1 ≤ i ≤ s | hi = h′}. Assume
with no loss of generality that h′ < h. From the same argument as in the proof
of Lemma 4.4,

∑

i∈I∪I′
lim

k→∞
(Ak

i )1fi
nk =

∑

i∈I∪I′

1
di

. We show that each period can be

considered independently, that is each period has its own matrix C as defined
in the proof of Lemma 4.4. We define an (r′ + r) × L matrix D, where L = 2hh′,
in the following way. The first r′ rows are labelled by right cosets Hiαi, where
i ∈ I ′, the last r rows are labelled by right cosets Hiαi, where i ∈ I and each
column by m = 0, 1, 2, ..., h′ − 1, .., h − 1, h, ..., L − 1, and:

(D)ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if i ∈ I ′, mi �≡ j(modh′),

lim
k→∞

(A
mi+h′k
i )1fi
nmi+h′k if i ∈ I ′, mi ≡ j(modh′)

0 if i ∈ I, mi �≡ j(modh),

lim
k→∞

(A
mi+hk

i )1fi
nmi+hk if i ∈ I, mi ≡ j(modh).

So, the sum of elements in each column of D is equal to
∑

i∈I∪I′

1
di

and from

Lemma 4.3, the non-zero entries in D have the form h
di

for i ∈ I and h′
di

, for
i ∈ I ′. Let 0 ≤ m ≤ h′ − 1, be the minimal number such that the sum of entries
of the m-th column is

∑

i∈J0

h
di

+
∑

i∈J ′
0

h′
di

, where ∅ �= J0 ⊂ I and ∅ �= J ′
0 ⊂ I ′.

So, for every 0 ≤ k ≤ h′ − 1, the sum of entries of the (m + kh)-th column is
∑

i∈J0

h
di

+
∑

i∈J ′
k

h′
di

, and this implies necessarily
∑

i∈J ′
0

h′
di

=
∑

i∈J ′
1

h′
di

= ... =
∑

i∈J ′
h′−1

h′
di

.

We show that {h′
di

| i ∈ J ′
0}, {h′

di
| i ∈ J ′

1},..., {h′
di

| i ∈ J ′
h′−1} appear in the

first h′ columns of D (not necessarily in this order). Let 0 ≤ k, l ≤ h′ − 1,
k �= l. Assume by contradiction that m + kh ≡ m + lh (modh′). So, h′ divides
h(k − l). As h and h′ are coprime, h′ divides k − l, a contradiction. So, for every
0 ≤ k, l ≤ h′ −1, k �= l, m+kh �≡ m+ lh (modh′). As there are exactly h′ values,
these correspond to 0, 1, ..., h′ − 1 (modh′), and {h′

di
| i ∈ J ′

0}, {h′
di

| i ∈ J ′
1},...,

{h′
di

| i ∈ J ′
h′−1} appear in the first h′ columns of D with

∑

i∈J ′
0

h′
di

= ... =
∑

i∈J ′
h′−1

h′
di

.

Furthermore,
∑

i∈J ′
0

h′
di

= ... =
∑

i∈J ′
h′−1

h′
di

=
∑

i∈I′

1
di

. Indeed, on one hand, the sum

of elements in the first r′ rows and h′ columns is equal to h′ ∑

i∈J ′
0

h′
di

and on

the second hand, it is equal to
∑

i∈I′

h′
di

. Using the same argument, for every 0 ≤
k ≤ h − 1, the sum of entries of the (m + kh′)-th column is

∑

i∈Jk

h
di

+
∑

i∈J ′
0

h′
di

,
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and this implies necessarily
∑

i∈J0

h
di

=
∑

i∈J1

h
di

= ... =
∑

i∈Jh−1

h
di

. We show that

{ h
di

| i ∈ J0}, { h
di

| i ∈ J1},..., { h
di

| i ∈ Jh−1} appear in the first h columns
of D (not necessarily in this order). Let 0 ≤ k, l ≤ h − 1, k �= l. Assume by
contradiction that m + kh′ ≡ m + lh′ (modh). So, h divides h′(k − l). As h and
h′ are coprime, h divides k − l, a contradiction. So, for every 0 ≤ k, l ≤ h − 1,
k �= l, m+kh′ �≡ m+ lh′ (modh). As there are exactly h values, these correspond
to 0, 1, ..., h−1(modh), and { h

di
| i ∈ J0}, { h

di
| i ∈ J1},..., { h

di
| i ∈ Jh−1} appear

in the first h columns of D, with
∑

i∈J0

h
di

=
∑

i∈J1

h
di

= ... =
∑

i∈Jh−1

h
di

. Furthermore,
∑

i∈J0

h
di

= ... =
∑

i∈Jh−1

h
di

=
∑

i∈I

1
di

. So, each period has its own matrix C and we

apply the results of Lemma 4.3. 
�
From Lemma 4.5, coprime periods h and h′ can be considered independently.

But, if h and h′ are not coprime, then the situation is different. Indeed, consider
the following coset partition of F2: F2 = H ∪Ka∪Ka3, where K is the subgroup
described in Example 3.3 and H = 〈a2, b2, ab〉 < F2 of index 2. The period of the
transition matrix of X̃H is h′ = 2 and the period of the transition matrix of X̃K

is h = 4 and the corresponding matrix D as defined in the proof of Lemma4.5

is D =

⎛

⎝
1 0 1 0
0 1 0 0
0 0 0 1

⎞

⎠, with the first row labelled H, the second row Ka, the third

row Ka3 and at each column 0 ≤ m ≤ 3. So, if h′ divides h, each period cannot
have its own matrix C. Yet, using the same kind of arguments as before, it is
not difficult to prove that r ≥ h − h

h′ r
′ and that if r ≤ 2(h − h

h′ r
′ − 1) then the

coset partition has multiplicity. We now turn to the proof of Theorem1.

Proof of Theorem 1. We assume that H, the set of periods greater than 1, is
not empty and that different elements in H are pairwise coprime. Let rh denote
the number of repetitions of h. From the proof of Lemma 4.5, each period has
its own matrix C and we apply the results of Lemma 4.3. That is, if for some
h ∈ H, h ≤ rh ≤ 2(h − 1), then {Hiαi}i=s

i=1 has multiplicity. 
�

4.3 Translation of the HS Conjecture in Terms of Automata

Let Fn = 〈Σ〉, and Σ∗ denote the free group and the free monoid generated by
Σ, respectively. Let {Hiαi}i=s

i=1 be a coset partition of Fn with Hi < Fn of index
di > 1, αi ∈ Fn, 1 ≤ i ≤ s. Let X̃i be the Schreier automaton of Hiαi, with
language Li = Σ∗ ∩ Hiαi.

Proof of Theorem 2. Assume Conjecture 1 is true. For every 1 ≤ i ≤ s, the
Schreier automaton X̃i is a finite, bi-deterministic and complete automaton with
strongly-connected underlying graph and alphabet Σ. Since Fn is the disjoint
union of the sets {Hiαi}i=s

i=1, each word in Σ∗ belongs to one and exactly one
such language, so Σ∗ is the disjoint union of the s languages L1, L2, ..., Ls. Since
Conjecture 1 is true, there is a repetition of the number of states and this implies
the coset partition {Hiαi}i=s

i=1 has multiplicity, that is the HS conjecture in free
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groups of finite rank is true. From [7, Thm. 6], this implies the HS conjecture is
true for all finitely generated groups, in particular for all finite groups. So, the
HS conjecture is true for all groups. 
�

A question that arises naturally is whether the HS Conjecture implies Con-
jecture 1, that is do the conditions of Conjecture 1 imply necessarily the exis-
tence of a coset partition of a free group. First, we note that any finite, bi-
deterministic, complete automaton M with d states, finite alphabet Σ, and a
strongly-connected underlying graph can represent an automaton with accepted
language all the words that belong to some coset of a subgroup H of index d
in FΣ , the free group generated by Σ. Indeed, the start state is replaced by H
and each state is replaced by a right coset Hα, where α ∈ Σ∗ is the label of
a directed path from the start to it. As M is complete and bi-deterministic, at
each vertex v, there are | Σ | directed edges into v with each such edge labelled
by a different label a ∈ Σ, and | Σ | directed edges out of v, with each such
edge labelled by a different label a ∈ Σ. For each a ∈ Σ, there exists a−1 ∈ FΣ

and for each directed edge Hα
a−→ Hαa, α ∈ Σ∗, in the underlying graph of

M , there exists another directed edge Hα
a−1

←−− Hαa, which is implicit and not
drawn. This fact is crucial for the construction of an automaton with accepted
language all the words that belong to some coset Hα and not only the positive
words that belong to this coset. In fact, this is how the Schreier automaton for
a free group relative to a subgroup H is defined initially (see [30, p. 102], [32, p.
107]).

So, the existence of the s automata M1, . . . ,Ms, satisfying the conditions
of Conjecture 1, with accepted languages L1, . . . , Ls respectively, leads to the
existence of s automata M ′

1, . . . ,M
′
s with accepted language L′

1, . . . , L
′
s, where

L′
i denotes the set of words that belong to the coset Hiαi, and Hi < FΣ , 1 ≤

i ≤ s. The question is now: does the assumption that Σ∗ is equal to the disjoint
union of the s languages L1, L2, . . . , Ls imply necessarily that {Hiαi}i=s

i=1 is a
coset partition of FΣ . If all the s automata M1, . . . ,Ms satisfy the following
additional conditions: Σ is equal to the disjoint union of two sets S and S−,
where S− = {a− | a ∈ S} and a− is such that for each directed edge Hα

a−→ Hαa,

α ∈ S∗, in the underlying graph, there exists another directed edge Hα
a−

←−− Hαa

in the underlying graph (and it is drawn), then clearly Σ∗ =
i=s⊔

i=1

Li implies

FΣ =
i=s⊔

i=1

Hiαi (since FΣ = Σ∗ and Li is the set of words that belong to Hiαi).

But, for automata that do not satisfy these additional conditions, it is not clear
at all if this is still true. Indeed, it does not seem that if the languages L1, . . . , Ls

are mutually disjoint, then the languages L′
1, . . . , L

′
s are also mutually disjoint

and moreover, that Σ∗ =
i=s⊔

i=1

Li implies necessarily FΣ =
i=s⊔

i=1

L′
i.
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Abstract. We study the fine grained complexity of the DFA non-
emptiness of intersection problem parameterized by the number k of
input automata (k-DFA-NEI). More specifically, we are given a list
〈A1, ..., Ak〉 of DFA’s over a common alphabet Σ, and the goal is to
determine whether

⋂k
i=1 L(Ai) �= ∅. This problem can be solved in time

O(nk) by applying the classic Rabin-Scott product construction. In this
work, we show that the existence of algorithms solving k-DFA-NEI in
time slightly faster than O(nk) would imply the existence of determinis-
tic sub-exponential time algorithms for the simulation of nondetermin-
istic linear space bounded computations. This consequence strengthens
the existing conditional lower bounds for k-DFA-NEI and implies new
non-uniform circuit lower bounds.

Keywords: Finite automata · Intersection non-emptiness · Fine
grained complexity · Parameterized complexity

1 Introduction

1.1 History

In the DFA non-emptiness of intersection problem (DFA-NEI), the input con-
sists of a list 〈A1, ...,Ak〉 of DFA’s over a common alphabet Σ, and the goal is
to determine whether the intersection of the languages L(A1), ...,L(Ak) is non-
empty. When no restriction is imposed on the input, DFA-NEI is a PSPACE-
complete problem [18]. Nevertheless, the classic Rabin-Scott product construc-
tion for finite automata yields a simple algorithm that solves DFA-NEI in time
O(nk) where n is the number of states and k is the number of input automata.
Therefore, for a fixed number of input automata, the problem can be solved in
polynomial time.

In this work, we study the fine grained complexity of DFA-NEI parameter-
ized by the number of input automata k. For clarity, we refer to this parame-
terized version as k-DFA-NEI. Interestingly, Rabin and Scott’s six-decades-old
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time O(nk) algorithm for k-DFA-NEI remains unimproved, and in particular,
time O(n2) is still the best we can get for deciding non-emptiness of intersection
for two DFA’s.

Kasai and Iwata [17] are believed to be the first to provide conditional lower
bounds for k-DFA-NEI. They showed that k-DFA-NEI requires deterministic
time Ω(n(k−2)/2) under the conjecture that NSPACE[k · log n] �⊂ DTIME[nk−ε]
for all ε > 0.

Almost two decades later, Karakostas, Lipton, and Viglas showed that faster
algorithms for certain variants of k-DFA-NEI would imply both faster algo-
rithms for certain NP-hard problems and new complexity class separations [16].
In particular, they showed that an algorithm solving k-DFA-NEI in time no(k)

would have two consequences. First, this would imply that the well studied sub-
set sum problem can be solved in time O(2ε·n) for every ε > 0. Second, this
would imply that NTIME[n] ⊆ DTIME[2o(n)]. They also showed some remark-
able consequences of the existence of algorithms solving k-DFA-NEI in time
s · ro(k) where s is the number of states in the largest input automaton and r
is the number of states in the second largest input automaton. In particular,
such an algorithm would imply that NSPACE[O(log s)] ⊂ DTIME[s1+ε] for all
ε > 0, which would further imply that P �= NL. Additionally, by padding, we
would also have NSPACE[s] ⊆ DTIME[2o(s)]. It is worth noting that this last
result strongly requires that the runtime has only a marginal dependence on the
size s of the largest automaton. Further, this last result is in a similar spirit as
conditional lower bounds for weighted satisfiability problems from [8–10].

It was shown by Fernau and Krebs [12], and independently in [30], that an
algorithm solving k-DFA-NEI in time no(k) would contradict the celebrated
exponential time hypothesis (ETH). Using a refinement of the proof technique
introduced in [16], it was shown in [29,30] that if k-DFA-NEI can be solved in
time no(k), then P �= NL. Additional results on the parameterized complexity of
non-emptiness of intersection for DFA’s are presented in [17,19,26] and results
on the fine grained complexity of non-emptiness of intersection specifically for
two and three DFA’s are presented in [23].

1.2 Our Results

Finer Simulations for Nondeterministic Linear Space. Our first result
(Theorem 1) provides a finer reduction from the problem of simulating a non-
deterministic space bounded Turing machine to k-DFA-NEI. The following
two corollaries of Theorem 1 fill in some gaps in the literature related to non-
emptiness of intersection. In this work, NSPACE[n] denotes the class of functions
computable by 2-tape Turing Machines over a binary alphabet using at most n
bits on its work tape.

(Corollary 1.1) If we can solve k-DFA-NEI in time no(k), then NSPACE[n] ⊆
DTIME[2o(n)] [28].1

1 This work was not formally published.
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(Corollary 1.2) If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε), then NSPACE[n+ o(n)] ⊆ DTIME[2(1−δ)n] for some
δ > 0 [30].

As mentioned in the first part of the introduction, the conclusion that
NSPACE[n] ⊆ DTIME[2o(n)] can be obtained from the results in [16] under
the assumption that there exists an algorithm for k-DFA-NEI running in time
s · ro(k) where s is the size of the largest automaton and r is the size of the
second largest automaton. Corollary 1.1 relaxes this assumption to the existence
of an algorithm running in time no(k), with no regard to the way in which the
sizes of the input automata compare with each other. We observe that the same
assumption as ours was shown in [16] to imply that NTIME[n] ⊆ DTIME[2o(n)].
Therefore, we improve the consequence in [16] from NTIME[n] ⊆ DTIME[2o(n)]
to NSPACE[n] ⊆ DTIME[2o(n)].

Corollary 1.2 states that for each k > 1, any additive constant improvement
on the running time of the Rabin-Scott algorithm for k-DFA-NEI would imply
the existence of faster than state-of-the art algorithms for the simulation of
nondeterministic linear space bounded computations. In particular, an algorithm
solving non-emptiness of intersection for two DFA’s in time O(n2−ε), for some
ε > 0, would imply that NSPACE[n + o(n)] ⊆ DTIME[2(1−δ)n] for some δ > 0.

Contradicting Stronger Versions of ETH and SETH. In the satisfiability
problem for Boolean formulas (SAT), we are given a Boolean formula. The goal
is to determine if there exists an assignment that satisfies the formula. It is
common to restrict the inputs for SAT to formulas in conjunctive normal form
(CNF-SAT). Further, it is common to restrict the inputs for SAT to formulas
in conjunctive normal form with clause width at most k (k-CNF-SAT) for some
fixed number k.

The Exponential Time Hypothesis (ETH) asserts that for some ε > 0, 3-
CNF-SAT cannot be solved in time (1 + ε)n [14]. The strong exponential time
hypothesis (SETH) asserts that for every ε > 0, there is a large enough integer k
such that k-CNF-SAT cannot be solved in time (2−ε)n [7,14,15]. ETH has been
used to rule out the existence of subexponential algorithms for many decision
problems [14], parameterized problems [8,20], approximation problems [22], and
counting problems [11]. On the other hand, SETH has been useful in establish-
ing tight lower bounds for many problems in P such as Edit Distance [3],
k-Dominating Set [24], k-DFA-NEI [30], and many other problems [2,27,33].

Our next results state that slightly faster algorithms for k-DFA-NEI would
contradict much stronger versions of ETH and SETH. First, we show that if
there exists k ≥ 2 such that k-DFA-NEI can be solved in time O(nk−ε) for
some ε > 0, then satisfiability for n-variable Boolean formulas of size 2o(n) can
be solved in time O(2(1−δ)n) for some δ > 0 (Corollary 2). The inexistence of
such fast algorithms for satisfiability for n-variable Boolean formulas of sub-
exponential size is a safer assumption than SETH. Going further, we show that
if k-DFA-NEI can be solved in time no(k), then satisfiability for n-input fan-
in-2 Boolean circuits of depth O(n) and size 2o(n) can be solved in time 2o(n)
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(Corollary 3). We note that this consequence is stronger than the existence of
algorithms solving CNF-SAT in sub-exponential time. Indeed, CNF formulas of
polynomial size are a very weak model of computation, which are unable, for
instance, to compute the parity of their input bits [13]. On the other hand, cir-
cuits of linear depth can already simulate complicated cryptographic primitives.
Therefore, the inexistence of satisfiability algorithms for such circuits is a safer
assumption than ETH.

Non Uniform Circuit Lower Bounds. Finally, from the results mentioned
above together with results obtained within the context of Williams’ algorithms
versus lower bounds framework [1,31,32] (as well as [4]), we infer that faster
algorithms for k-DFA-NEI would imply non-uniform circuit lower bounds that
are sharper than what is currently known. In particular, an algorithm running
in time no(k) for k-DFA-NEI would imply that there are problems in ENP that
cannot be solved by non-uniform fan-in-2 Boolean circuits of linear depth and
sub-exponential size (Corollary 4). We note that currently it is still open whether
every problem in ENP can be solved by non-uniform fan-in-2 Boolean circuits
of linear size. Additionally, we show that an algorithm running in time O(n2−ε)
for 2-DFA-NEI would imply that there are problems in ENP that cannot be
solved by non-uniform Boolean formulas of sub-exponential size (Corollary 5).

Further, we have that even polylogarithmic improvements for the running
time of algorithms solving 2-DFA-NEI would imply interesting lower bounds.
More specifically, if 2-DFA-NEI can be solved in time O(n2/ logc n) for every
c > 0, then there are functions that can be computed in NTIME[2O(n)] but not
by non-uniform NC1 circuits.

Analogous conditional non-uniform circuit lower bounds have been obtained
in [1] under the assumptions that the Edit Distance problem can be computed
in time O(n2−ε) for some ε > 0 and in time O(n2/ logc n) for every c ≥ 1. It
is worth noting that Theorem 5 which establishes conditional lower bounds for
fan-in-2 Boolean circuits of linear depth and sub-exponential size is not explic-
itly stated in [1] and no parallel to the associated conditional lower bound for
k-DFA-NEI is given for Edit Distance.

2 Reducing Acceptance in NSPACE[n] to DFA-NEI

In this section we provide a reduction from the problem of simulating 2-tape
Turing machines to DFA-NEI. For any k, the reduction in Theorem 1 outputs
k DFA’s each with at most O(m2 ·n·σ1+c·2σ

k ) states where m denotes the number
of states in the Turing machine, n denotes the input string length, σ denotes the
amount of space on the binary work tape, and c denotes the maximum number of
occurrences of a special delimiter symbol # that can simultaneously appear on
the work tape during the computation. The parameter c is a constant associated
with the Turing machine and is independent of the parameters n and σ.

2-tape Turing Machines: A 2-tape Turing machine with binary alphabet is a
machine with a two-way read-only input tape and a two-way binary work tape.
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More formally, it is a tuple M = (Q, {0, 1}, c, q0, F, δ) where Q is a set of states,
c is the maximum number of occurrences of special delimiter symbol #, q0 ∈ Q
is an initial state, F is a set of final states, and

δ : Q × ({0, 1} ∪ {#})2 → P(Q × {−1, 0, 1}2 × ({0, 1} ∪ {#}))

is a partial transition function that assigns to each triple

(q, b1, b2) ∈ Q × ({0, 1} ∪ {#})2,

a set of tuples

δ(q, b1, b2) ⊆ Q × {−1, 0, 1}2 × ({0, 1} ∪ {#}).

We say that a tuple

(q, d, d′, w) ∈ Q × {−1, 0, 1}2 × ({0, 1} ∪ {#})

is an instruction that sets the machine to state q, moves the input head from
position p to position p + d, moves the work head from position p′ to position
p′ + d′, and writes symbol w at position p′ on the work tape. The transition
function δ specifies that if the machine M is currently at state q, reading symbol
b1 on the input tape and symbol b2 on the work tape, then the next instruction
of the machine must be an element of the set δ(q, b1, b2).

Configurations: A space-σ configuration for M on input x ∈ {0, 1}∗ is a tuple

(q, h, h′, y) ∈ Q × [|x|] × [σ] × ({0, 1} ∪ {#})σ

where intuitively, q ∈ Q is the current state of M , h ∈ [|x|] is the position
of M ’s input tape head, h′ ∈ [σ] is the position of M ’s work tape head, and
y ∈ ({0, 1} ∪ {#})σ is the binary string (containing at most c special delimiter
symbols) corresponding to the first σ symbols on the work tape of M .

Configuration Sequences: A space-σ configuration sequence for M on input
x ∈ {0, 1}∗ is a sequence of the form

S ≡ (q0, h0, h
′
0, y0)

(q1,d1,d′
1,r1,r′

1,w1)−−−−−−−−−−−−→ (q1, h1, h
′
1, y1)

(q2,d2,d′
2,r2,r′

2,w2)−−−−−−−−−−−−→ (q2, h2, h
′
2, y2)

...

(qk,dk,d′
k,rk,r′

k,wk)−−−−−−−−−−−−→ (qk, hk, h′
k, yk)

satisfying the following conditions.

1. For each i ∈ {0, 1, ..., k}, (qi, hi, h
′
i, yi) is a space-σ configuration for M on x.

2. q0 is the initial state of M , y0 = 0σ, meaning that the work tape is initialized
with zeros, and h0 = h′

0 = 1, meaning that the input tape head and work
tape head are in the first position of their respective tapes.
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3. For each i ∈ {1, ..., k}, (qi, di, d
′
i, wi) ∈ δ(qi−1, x[hi−1], yi−1[h′

i−1]), meaning
the state of the machine at time i, the directions taken by both heads at time
i, and the symbol written on the work tape at time i are compatible with the
transition function δ, and depend only on the state at time i − 1 and on the
symbols that are read at time i − 1.

4. For each i ∈ {1, ..., k}, hi = hi−1 + di, h′
i = h′

i−1 + d′
i, ri = x[hi−1], r′

i =
yi−1[h′

i−1], and yi is obtained from yi−1 by substituting wi for the symbol
yi−1[h′

i−1], and by leaving all other symbols untouched. Intuitively, this means
that the configuration at time i is obtained from the configuration at time
i − 1 by the application of the transition (qi, di, d

′
i, wi).

5. For each i ∈ {0, 1, ..., k}, yi contains at most c occurrences of the special
delimiter symbol #.

We say that the sequence

I ≡ (q1, d1, d′
1, r1, r

′
1, w1)(q2, d2, d′

2, r2, r
′
2, w2)...(qk, dk, d′

k, rk, r′
k, wk)

that induces a configuration sequence S as above is a space-σ instruction sequence
for M on input x. We say that I is accepting if qk ∈ F .

Remark 1. As suggested in [17], the technique provided in the proof of Propo-
sition 3 from [25] can be applied to remove the special delimiter symbol from
the work tape by increasing the Turing machine’s state and space complexities.
However, without a formal proof in the literature of the stated result from [17]
and because it is not required in our work, we decided to refrain from using it.

Theorem 1. Let a nondeterministic m-state 2-tape Turing machine M with
binary tape alphabet (other than at most c occurrences of symbol #) and an
input string x of length n be given. If M uses at most σ symbols on the work
tape, then for every k, we can efficiently compute k DFA’s 〈A1,A2, ...,Ak〉 each
with a binary alphabet and O(m2 · n · σ1+c · 2

σ
k ) states such that M accepts x if

and only if
⋂k

i=1 L(Ai) �= ∅.
Proof. The Turing machine M accepts x if and only if there exists an accepting
space-σ instruction sequence for M on x. We build k DFA’s that read in a binary
string and collectively determine whether the string encodes an accepting space-
σ instruction sequence for M on x.

Consider splitting the work tape of M into k equal sized blocks each con-
sisting of σ

k work tape cells. A block-i space-σ configuration for M on input x
consists of the state, input tape head, work tape head, the contents of the work
tape from position lboundi := (i − 1) · σ

k + 1 to position rboundi := i · σ
k , and

all c positions of the occurrences of special delimiter symbol #. We construct
k DFA’s 〈A1,A2, ...,Ak〉 where each DFA Ai keeps track of the current block-i
space-σ configuration for M on input x. The DFA’s read in space-σ instructions
one at a time and transition accordingly where each instruction is encoded as a
unique bit string of length O(log(m)).

The start state of DFA Ai represents the block-i space-σ configuration
(q0, 1, 1, 0

σ
k ) where q0 is the start state of M . Further, a state representing a



On the Fine Grained Complexity of Finite Automata Intersection 75

block-i space-σ configuration (qj , hj , h
′
j , contentsj) is accepting if qj is a final

state of M . Suppose that the DFA Ai is currently at a state representing a block-
i space-σ configuration (qj , hj , h

′
j , contentsj) and reads in a space-σ instruction

(q, d, d′, r, r′, w). The DFA Ai transitions to a state representing a block-i space-σ
configuration (qj+1, hj+1, h

′
j+1, contentsj+1) if:

1. (q, d, d′, w) ∈ δ(qj , r, r
′) and q = qj+1

2. hj+1 = hj + d and h′
j+1 = h′

j + d′

3. 1 ≤ hj , hj+1 ≤ n and 1 ≤ h′
j , h

′
j+1 ≤ σ

4. r = x[hj ]
5. if lboundi ≤ h′

j ≤ rboundi, then r′ = contentsj [h′
j − lboundi + 1] and

w = contentsj+1[h′
j − lboundi + 1]

Collectively the DFA’s determine whether the input string encodes an accept-
ing space-σ instruction sequence for M on x. Therefore, the Turing machine M
accepts x if and only if there exists an accepting space-σ instruction sequence
for M on x if and only if

⋂k
i=1 L(Ai) �= ∅. Further, the DFA’s each have at most

O(m2 · n · σ1+c · 2
σ
k ) states because there are O(m) space-σ instructions and

O(m · n · σ1+c · 2
σ
k ) block-i space-σ configurations. ��

Remark 2. The preceding simulation is sufficient for our purposes. However, we
suggest that it could be refined by having only one DFA keep track of the Turing
machine’s tape heads. When σ = O(log(n)), such a refinement could be used to
obtain a tighter connection between k-DFA-NEI and nondeterministic logspace.

Corollary 1. We obtain the following directly from the preceding theorem:

1. If we can solve k-DFA-NEI in time no(k), then NSPACE[n] ⊆ DTIME[2o(n)].
2. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be solved in time

O(nk−ε), then NSPACE[n + o(n)] ⊆ DTIME[2(1−δ)n] for some δ > 0.

3 Non-emptiness of Intersection and Conditional Lower
Bounds

In this section we apply results obtained in Theorem 1 to show that even a
slight improvement in running time of the classic algorithm for non-emptiness of
intersection for finite automata would yield faster than state of the art algorithms
for satisfiability for Boolean formulas and Boolean circuits. Therefore, this result
implies that the impossibility of obtaining better algorithms for non-emptiness
of intersection for k finite automata can be based on assumptions that are safer
than the exponential time hypothesis (ETH). An analogous result is proven with
respect to non-emptiness of intersection for a constant number of finite automata
(say two). We will show that the existence of algorithms that are faster than
time O(n2−ε) for non-emptiness of intersection for 2 DFA’s would contradict
assumptions that are safer than the strong exponential time hypothesis (SETH).
We note that the endeavour of basing lower bounds for algorithms in P on
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assumptions that are safer than ETH or SETH has been pursued before [1]. In
this work, we obtain lower bounds using assumptions like those used in [1], with
the advantage that our reductions are simpler. Therefore, we believe that the
techniques employed here provide a cleaner framework that can potentially be
used to strengthen the analysis of the fine grained complexity of other algorithmic
problems in P.

Finally, by applying Williams’ algorithms versus lower bounds framework,
we are able to show that faster algorithms for non-emptiness of intersection
for finite automata would also imply non-uniform circuit lower bounds that are
much better than those that are currently known.

3.1 Satisfiability for Boolean Formulas

Lemma 1. Satisfiability for n-variable Boolean formulas of size s is solvable by
a nondeterministic 2-tape Turing machine with binary alphabet using at most
n + O(log(s)) bits and a fixed number of delimiter symbol # occurrences on the
work tape.2

Proof. The machine uses n tape cells to guess an assignment x ∈ {0, 1}n to
the input variables. Subsequently, using O(log s) work tape cells, the machine
evaluates the Boolean formula from the input tape on the guessed assignment
from the work tape. This evaluation problem is referred to as the Boolean formula
value problem (BFVP) and has been shown to be solvable in space O(log s)
on formulas of size s in [6,21]. Storing both the assignment and the formula
evaluation on the same work tape, it will be necessary to use a fixed number
of occurrences of the delimiter symbol # as left/right tape markers, a delimiter
between assignment and formula evaluation, and markers for remembering the
position in the formula evaluation and the assignment when the work tape head
moves from formula evaluation to assignment or vice versa. ��

By combining Theorem 1 with Lemma 1, we obtain the following.

Theorem 2. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε), then satisfiability for n-variable Boolean formulas of
size s is solvable in time poly(s) · 2n(1−δ) for some δ > 0.

Proof. Suppose that there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε). Let a n-variable Boolean formula φ of size s be given. By
Theorem 1 and Lemma 1, we can reduce satisfiability for φ to non-emptiness of
intersection for k DFA’s each with poly(s) ·2n

k states. Therefore, by assumption,
we can determine whether φ has a satisfying assignment in time sO(k) · 2

k−ε
k ·n.

It follows that satisfiability for n-variable Boolean formulas of size s is solvable
in time poly(s) · 2n(1−δ) for some δ > 0. ��
2 In addition, both QBF and satisfiability for nondeterministic branching programs

are solvable by nondeterministic 2-tape Turing machines with binary alphabet using
at most n + O(log(s)) bits and a fixed number of delimiter symbol # occurrences.
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It was shown in [30] that if there exists some k ≥ 2 and ε > 0 such that
k-DFA-NEI can be solved in time O(nk−ε), then SETH is false. The following
corollary improves this result by showing a much stronger consequence. The
corollary follows directly from Theorem 2.

Corollary 2. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε), then satisfiability for n-variable Boolean formulas of
size 2o(n) can be solved in time O(2n(1−δ)) for some δ > 0.

Note that while CNF’s of bounded width and polynomial size are a very weak
computational model, Boolean formulas of sub-exponential size can already sim-
ulate any circuit in the class NC. Therefore, the consequence of Corollary 2
would contradict the NC-SETH hypothesis, a more robust version of SETH
which states that satisfiability for circuits of polynomial size and polylogarith-
mic depth cannot be solved in time O(2n(1−δ)) for any δ > 0 [1]. In the next
subsection we show that the existence of an algorithm running in time no(k) for
k-DFA-NEI would imply faster satisfiability algorithms for even larger classes
of circuits.

3.2 Satisfiability for Boolean Circuits

In the circuit value problem (CV), we are given a n-input fan-in-2 Boolean
circuit C and a string x ∈ {0, 1}n. The goal is to determine whether the circuit
C(x), obtained by initializing the input variables of C according to x, evaluates
to 1. Let the size of C denote the number of gates of C. The next lemma, which
is a classic result in complexity theory [5], states that the circuit value problem
for circuits of depth d and size s can be solved in space O(d) + O(log s) on a
2-tape Turing machine.

Lemma 2 (Borodin [5]). There is a deterministic 2-tape Turing machine M
with binary alphabet, that takes as input a pair 〈C, x〉 where x is a string in
{0, 1}n and C is a n-input fan-in-2 Boolean circuit of depth d and size s, and
determines, using at most O(d)+O(log s) work tape cells, whether C(x) evaluates
to 1.

In the satisfiability problem for Boolean circuits, we are given a n-input fan-
in-2 Boolean circuit C. The goal is to determine whether there exists a string
x ∈ {0, 1}n such that C(x) evaluates to 1. As a consequence of Lemma 2, we
have that satisfiability for Boolean circuits can be decided by a nondeterministic
2-tape Turing machine using at most n + O(d) + O(log s) tape cells.

Lemma 3. There is a nondeterministic 2-tape Turing machine M with binary
alphabet and a fixed number of delimiter symbol # occurrences, that takes as
input a n-input fan-in-2 Boolean circuit C of depth d and size s, and determines,
using at most n + O(d) + O(log s) tape cells, whether C is satisfiable.
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By combining Theorem 1 with Lemma 3, we obtain the following.

Theorem 3. If k-DFA-NEI can be solved in time O(nf(k)), then satisfiability
for n-input fan-in-2 Boolean circuits of depth d and size s can be solved in time
sO(f(k)) · 2

f(k)
k ·(n+O(d)) where k is allowed to depend on n, d, and s.

Proof. Suppose that k-DFA-NEI can be solved in time O(nf(k)). Let a n-
input fan-in-2 Boolean circuit C of depth d and size s be given. By Theorem 1
and Lemma 3, for any k, we can reduce satisfiability for C to non-emptiness
of intersection for k DFA’s each with poly(s) · 2

n+O(d)
k states. Therefore, by

assumption, we can determine whether C has a satisfying assignment in time
sO(f(k)) · 2 f(k)

k ·(n+O(d)). It follows that satisfiability for n-input fan-in-2 Boolean
circuits of depth d and size s is solvable in the desired time. ��

It was shown in [12,30] that if k-DFA-NEI can be solved in time no(k), then
ETH is false. The following corollary improves this result by showing a much
stronger consequence. The corollary follows directly from Theorem 3.

Corollary 3. If k-DFA-NEI can be solved in time no(k), then satisfiability for
fan-in-2 Boolean circuits of depth O(n) and size 2o(n) can be solved in time 2o(n).

Note that the consequence in the preceding corollary is stronger than ETH
because circuits of linear depth and sub-exponential size are a stronger compu-
tational model than formulas in conjunctive normal form.

3.3 Circuit Lower Bounds

Corollaries 2 and 3 lead us to the following questions.

– What are the barriers (beyond ETH) to solving satisfiability for fan-in-2
Boolean circuits of depth O(n) and size 2o(n) more efficiently?

– What are the barriers (beyond SETH) to solving satisfiability for Boolean
formulas of size 2o(n) more efficiently?

– What are the barriers to solving satisfiability only slightly faster for Boolean
formulas of polynomial size?

Below, we investigate the preceding questions and reference recent works
[1,4,31,32] that connect satisfiability problems to non-uniform circuit complexity
lower bounds. From these connections, we observe that faster algorithms for
k-DFA-NEI would imply new non-uniform circuit complexity lower bounds.

Barriers Beyond ETH. The following is a slightly modified restatement of a
technical theorem from [1] (with related results in [4,31,32]) that connects circuit
satisfiability to non-uniform circuit complexity lower bounds for ENP . Recall
that ENP is the class of functions that can be computed by Turing machines
that operate in time 2O(n) with the help of an NP oracle. Note that the strings
that are passed to each call of the oracle may have size up to 2O(n).
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Theorem 4 (Theorem 8 in [1]). Let S(n) be a time constructible and mono-
tone non-decreasing function such that n ≤ S(n) ≤ 2o(n). Let C be a class
of circuits. Suppose there is a SAT algorithm for n-input circuits which are
arbitrary functions of three O(S(n))-size circuits from C, that runs in time
O(2n/(n10 · S(n))). Then ENP does not have S(n)-size circuits from C.

Notice that if we take three circuits of linear depth and sub-exponential size
and combine their outputs using a constant number of additional gates, then
the resulting circuit still has linear depth and sub-exponential size. Therefore, a
satisfiability algorithm running in time 2o(n) for n-input fan-in-2 Boolean circuits
of linear depth and sub-exponential size would imply that there are functions
in ENP that cannot be computed by such circuits. This would be a significant
consequence in complexity theory since to date it is not even known whether
all functions in ENP can be computed by non-uniform circuits of linear size. In
view of our discussion, Theorem 5 directly follows from Theorem 4, but is not
explicitly stated in [1].

Theorem 5. If satisfiability for n-input fan-in-2 Boolean circuits of depth O(n)
and size 2o(n) is solvable in time O(2(1−δ)n) for some δ > 0, then ENP does not
have non-uniform fan-in-2 Boolean circuits of O(n) depth and 2o(n) size.

By combining the preceding theorem with Corollary 3, we obtain the
following.

Corollary 4. If k-DFA-NEI can be solved in time no(k), then ENP does not
have non-uniform fan-in-2 Boolean circuits of O(n) depth and 2o(n) size.

Barriers Beyond SETH. Next, we look at another known result that connects
formula satisfiability to non-uniform formula complexity lower bounds for ENP .
The following theorem is similar to Corollary 1.1 in [1] and directly follows from
Theorem 4.

Theorem 6. If satisfiability for n-variable Boolean formulas of size 2o(n) is solv-
able in time O(2(1−δ)n) for some δ > 0, then ENP does not have non-uniform
Boolean formulas of size 2o(n).

By combining the preceding theorem with Corollary 2, we obtain the
following.

Corollary 5. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε), then ENP does not have non-uniform Boolean formulas
of size 2o(n).

Barriers to Slightly Faster Algorithms. Finally, we investigate the possible
consequences of polylogarithmic improvements to the running time of algorithms
for k-DFA-NEI, and in particular for 2-DFA-NEI. The following is a restatement
of Theorem 7 in [1] (related to Theorem 1.3 in [31]).
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Theorem 7 (Theorem 7 in [1]). Suppose that there is a satisfiability algo-
rithm for bounded fan-in formulas of size nr running in time O(2n/nr), for each
constant r > 0. Then NTIME[2O(n)] is not contained in non-uniform NC1.

By combining the preceding theorem with Theorem 1 and Lemma 1, we
obtain the following.

Corollary 6. If k-DFA-NEI can be solved in time O(nk/(log n)c) for every
c > 0, then NTIME[2O(n)] is not contained in non-uniform NC1.

Proof. Suppose that there exists k ≥ 2 such that k-DFA-NEI can be solved in
time O(nk/(log n)c) for every c > 0. By combining Theorem 1 and Lemma 1, it
follows that for all r > 0, satisfiability for n-variable Boolean formulas of size nr

can be reduced to intersecting k DFA’s with at most poly(n) · 2
n
k states where

k and r are treated as constants. Therefore, satisfiability for n-variable Boolean
formulas of size nr can be solved in time

(poly(n) · 2
n
k )k

logc(poly(n) · 2
n
k )

≤ poly(n) · 2n

(O(log n) + n
k )c

≤ O(
nd · 2n

nc
)

for all c > 0 and some constant d that is independent of c. If we set c = d · r,
then we have that satisfiability for Boolean formulas of size nr can be solved in
time O(2n/nr). It follows that satisfiability for Boolean formulas of size nr can
be solved in time O(2n/nr) for all r > 0. Moreover, by Theorem 7, it follows
that NTIME[2O(n)] does not have non-uniform NC1 circuits. ��

Notice that if we set k = 2 in the preceding corollary, then it follows that
if 2-DFA-NEI can be solved in time O(n2/(log n)c) for every c > 0, then
NTIME[2O(n)] is not contained in non-uniform NC1.

4 Conclusion

We analyzed the fine grained complexity of the non-emptiness of intersection
problem parameterized by the number of input DFA’s (k-DFA-NEI). Despite
the fact that this problem has been studied for at least six decades, the fastest
known algorithm for k-DFA-NEI is still the O(nk) time algorithm obtained by
a direct application of the classic Rabin-Scott product construction.

The lack of progress in the task of developing a faster algorithm for k-DFA-
NEI motivated the search for evidence supporting the possibility that substan-
tially faster algorithms for this problem do not exist. In this work, we have simpli-
fied and strengthened several previous conditional lower bounds for k-DFA-NEI
under a unified perspective. In particular, we have shown that if k-DFA-NEI
can be solved in time no(k) then NSPACE[n] ⊆ DTIME[2o(n)]. Additionally, we
have shown that solving non-emptiness of intersection for two DFA’s in time
O(n2−ε) for some ε > 0 would imply that NSPACE[n+o(n)] ⊆ DTIME[2(1−δ)n]
for some δ > 0. Further, we have unveiled several connections between k-DFA-
NEI and non-uniform circuit complexity theory. In particular, we have shown
that even improving non-emptiness of intersection for two DFA’s by a logc n
factor for every c > 0 would imply non-uniform NC1 circuit lower bounds.
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Abstract. Given a regular language L over an ordered alphabet Σ, the
set of lexicographically smallest (resp., largest) words of each length is
itself regular. Moreover, there exists an unambiguous finite-state trans-
ducer that, on a given word w ∈ Σ∗, outputs the length-lexicographically
smallest word larger than w (henceforth called the L-successor of w). In
both cases, näıve constructions result in an exponential blowup in the
number of states. We prove that if L is recognized by a DFA with n
states, then 2Θ(

√
n log n) states are sufficient for a DFA to recognize the

subset S(L) of L composed of its lexicographically smallest words. We
give a matching lower bound that holds even if S(L) is represented as
an NFA. We then show that the same upper and lower bounds hold for
an unambiguous finite-state transducer that computes L-successors.

1 Introduction

One of the most basic problems in formal language theory is the problem of
enumerating the words of a language L. Since, in general, L is infinite, language
enumeration is often formalized in one of the following two ways:

1. A function that maps an integer n ∈ N to the n-th word of L.
2. A function that takes a word and maps it to the next word in L.

Both descriptions require some linear ordering of the words in order for them
to be well-defined. Usually, radix order (also known as length-lexicographical
order) is used. Throughout this work, we focus on the second formalization.

While enumeration is non-computable in general, there are many interest-
ing special cases. In this paper, we investigate the case of fixed regular lan-
guages, where successors can be computed in linear time [1,2,9]. Moreover,
Frougny [7] showed that for every regular language L, the mapping of words to
their successors in L can be realized by a finite-state transducer. Later, Angrand
and Sakarovitch refined this result [3], showing that the successor function of
any regular language is a finite union of functions computed by sequential
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transducers that operate from right to left. However, to the best of our knowl-
edge, no upper bound on the size of smallest transducer computing the successor
function was known.

In this work, we consider transducers operating from left to right, and prove
that the optimal upper bound for the size of transducers computing successors
in L is in 2Θ(

√
n log n), where n is the size of the smallest DFA for L.

The construction used to prove the upper bound relies heavily on another
closely related result. Many years before Frougny published her proof, it had
already been shown that if L is a regular language, the set of all lexicographically
smallest (resp., largest) words of each length is itself regular; see, e.g., [11,12].
This fact is used both in [3] and in our construction. In [12], it was shown that
if L is recognized by a DFA with n states, then the set of all lexicographically
smallest words is recognized by a DFA with 2n2

states. While it is easy to improve
this upper bound to n2n, the exact state complexity of this operation remained
open. We prove that 2Θ(

√
n log n) states are sufficient and that this upper bound

is optimal. We also prove that nondeterminism does not help with recognizing
lexicographically smallest words, i.e., the corresponding lower bound still holds
if the constructed automaton is allowed to be nondeterministic.

The key component to our results is a careful investigation of the structure
of lexicographically smallest words. This is broken down into a series of technical
lemmas in Sect. 3, which are interesting in their own right. Some of the other
techniques are similar to those already found in [3], but need to be carried out
more carefully to achieve the desired upper bound.

For some related results, see [5,10].

2 Preliminaries

We assume familiarity with basic concepts of formal language theory and
automata theory; see [8,13] for a comprehensive introduction. Below, we intro-
duce concepts and notation specific to this work.

Ordered Words and Languages. Let Σ be a finite ordered alphabet. Throughout
the paper, we consider words ordered by radix order, which is defined by u < v
if either |u| < |v| or there exist factorizations u = xay, v = xbz with |y| = |z|
and a, b ∈ Σ such that a < b. We write u � v if u = v or u < v. In this case, the
word u is smaller than v and the word v is larger than u.

For a language L ⊆ Σ∗ and two words u, v ∈ Σ∗, we say that v is the L-
successor of u if v ∈ L and w �∈ L for all w ∈ Σ∗ with u < w < v. Similarly, u
is the L-predecessor of v if u ∈ L and w �∈ L for all w ∈ Σ∗ with u < w < v. A
word is L-minimal if it has no L-predecessor. A word is L-maximal if it has no
L-successor. Note that every nonempty language contains exactly one L-minimal
word. It contains a (unique) L-maximal word if and only if L is finite. A word
u ∈ Σ∗ is L-length-preserving if it is not L-maximal and the L-successor of u has
length |u|. Words that are not L-length-preserving are called L-length-increasing.
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Note that by definition, an L-maximal word is always L-length-increasing. For
convenience, we sometimes use the terms successor (resp., predecessor) instead
of Σ∗-successor (resp., Σ∗-predecessor).

For a given language L ⊆ Σ∗, the set of all smallest words of each length
in L is denoted by S(L). It is formally defined as follows:

S(L) = {u ∈ L | ∀v ∈ L : v < u =⇒ |v| < |u|} .

Similarly, we define B(L) to be the set of all L-length-increasing words:

B(L) = {u ∈ L | ∀v ∈ L : v > u =⇒ |v| > |u|} .

A language L ⊆ Σ∗ is thin if it contains at most one word of each length,
i.e., |L ∩ Σn| ∈ {0, 1} for all n � 1. It is easy to see that for every language
L ⊆ Σ∗, the languages S(L) and B(L) are thin.

Finite Automata and Transducers. A nondeterministic finite automaton (NFA
for short) is a 5-tuple (Q,Σ, · , q0, F ) where Q is a finite set of states, Σ is a
finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states
and · : Q × Σ → 2Q is the transition function. We usually use the notation
q · a instead of · (q, a), and we extend the transition function to 2Q × Σ∗ by
letting X · ε = X and X · wa =

⋃
q∈X·w q · a for all X ⊆ Q, w ∈ Σ∗, and

a ∈ Σ. For a state q ∈ Q and a word w ∈ Σ∗, we also use the notation q · w
instead of {q} · w for convenience. A word w ∈ Σ∗ is accepted by the NFA if
q0 ·w ∩ F �= ∅. We sometimes use the notation p

a−→ q to indicate that q ∈ p·a. An
NFA is unambiguous if for every input, there exists at most one accepting run.
Unambiguous NFA are also called unambiguous finite state automata (UFA). A
deterministic finite automaton (DFA for short) is an NFA (Q,Σ, · , q0, F ) with
|q · a| = 1 for all q ∈ Q and a ∈ Σ. Since this implies |q · w| = 1 for all w ∈ Σ∗,
we sometimes identify the singleton q · w with the only element it contains.

A finite-state transducer is a nondeterministic finite automaton that addi-
tionally produces some output that depends on the current state, the current
letter and the successor state. For each transition, we allow both the input and
the output letter to be empty. Formally, it is a 6-tuple (Q,Σ, Γ, · , q0, F ) where
Q is a finite set of states, Σ and Γ are finite alphabets, q0 ∈ Q is the initial state
and F ⊆ Q is the set of accepting states, and · : Q × (Σ ∪ {ε}) → 2Q×(Γ∪{ε}) is
the transition function. One can extend this transition function to the product
2Q × Σ∗. To this end, we first define the ε-closure of a set T ⊆ Q × Σ∗ as
the smallest superset C of T with {(q · ε, w) | (q, w) ∈ C} ⊆ C. We then define
X · ε to be the ε-closure of {(q, ε) | q ∈ X} and X · wa to be the ε-closure of
{(q′, ub) | (q, u) ∈ X · w, (q′, b) ∈ q · a} for all X ⊆ Q, w ∈ Σ∗ and a ∈ Σ. We

sometimes use the notation p
a|b−−→ q to indicate that (q, b) ∈ p · a. A finite-state

transducer is unambiguous if, for every input, there exists at most one accepting
run.
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3 The State Complexity of S(L)

It is known that if L is a regular language, then both S(L) and B(L) are also
regular [11,12]. In this section, we investigate the state complexity of the oper-
ations L �→ S(L) and L �→ B(L) for regular languages. Since the operations are
symmetric, we focus on the former. To this end, we first prove some technical
lemmas. The first lemma is a simple observation that helps us investigate the
structure of words in S(L).

Lemma 1. Let x, u, y, v, z ∈ Σ∗ with |u| = |v|. Then xuuyz < xuyvz or
xyvvz < xuyvz or xuuyz = xuyvz = xyvvz.

Proof. Note that uy and yv are words of the same length. If uy < yv, then
xuuyz < xuyvz. Similarly, uy > yv immediately yields xuyvz > xyvvz. The last
case is uy = yv, which implies xuuyz = xuyvz = xyvvz. �


Using this observation, we can generalize a well-known factorization tech-
nique for regular languages to minimal words. For a DFA with state set Q, a
state q ∈ Q and a word w = a1 · · · an ∈ Σ∗, we define

tr(q, w) = (q, q · a1, . . . , q · a1 · · · an)

to be the sequence of all states that are visited when starting in state q and
following the transitions labeled by the letters from w.

Lemma 2. Let A be a DFA over Σ with n states and with initial state q0. Then
for every word w ∈ Σ∗, there exists a factorization w = u1v

i1
1 · · · ukvik

k with
u1, v1, . . . , uk, vk ∈ Σ∗ and i1, . . . , ik � 1 such that, for all j ∈ {1, . . . , k}, the
following hold:

(a) q0 · u1v
i1
1 · · · uj−1v

ij−1
j−1 uj = q0 · u1v

i1
1 · · · uj−1v

ij−1
j−1 ujvj,

(b) |ujvj | � n, and
(c) vj is not a prefix of uj+1v

ij+1
j+1 · · · ukvik

k .

Additionally, if w ∈ S(L(A)), this factorization can be chosen such that

(d) the lengths |vj | are pairwise disjoint (i.e., |{|v1| , . . . , |vk|}| = k) and
(e) there exists at most one j ∈ {1, . . . , k} with ij > n.

Proof. To construct the desired factorization, initialize j := 1 and q := q0 and
follow these steps:

1. If w = ε, we are done. If w �= ε and the states in tr(q, w) are pairwise distinct,
let uj = w and vj = ε and we are done. Otherwise, factorize w = xy with |x|
minimal such that tr(q0, x) contains exactly one state twice, i.e., |x| distinct
states in total.

2. Choose the unique factorization x = uv such that q · u = q · uv and v �= ε.
3. Let q := q · x and w := y.
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4. If j > 1 and u = ε and v = vj−1, increment ij−1 and go back to step 1.
Otherwise, let uj := u, vj := v and j := j + 1; then go back to step 1.

This factorization satisfies the first three properties by construction. It remains
to show that if w ∈ S(L(A)), then Properties (d) and (e) are satisfied as well.

Let us begin with Property (d). For the sake of contradiction, assume that
there exist two indices a, b with a < b and |va| = |vb|. Note that by construction,
va and vb must be nonempty. Moreover, by Property (a), the words

w′ := u1v
i1
1 · · · uavia+1

a · · · ubv
ib−1
b · · · ukvik

k and

w′′ := u1v
i1
1 · · · uavia−1

a · · · ubv
ib+1
b · · · ukvik

k

both belong to L(A). However, since w ∈ S(L(A)), neither w′ nor w′′ can be
strictly smaller than w. Using Lemma 1, we obtain that w′ = w. This contradicts
Property (c).

Property (e) can be proved by using the same argument: Assume that there
exist indices a, b with a < b and ia, ib > n. The words v

|vb|
a and v

|va|
b have the

same lengths. We define

w′ := u1v
i1
1 · · · uavia+|vb|

a · · · ubv
ib−|va|
b · · · ukvik

k ,

w′′ := u1v
i1
1 · · · uavia−|vb|

a · · · ubv
ib+|va|
b · · · ukvik

k ,

and obtain w = w′, which is a contradiction as above. �

The existence of such a factorization almost immediately yields our next

technical ingredient.

Lemma 3. Let A be a DFA with n � 3 states. Let q0 be the initial state of A
and let w ∈ S(L(A)). Then there exists a factorization w = xyiz with i ∈ N,
|xz| � n3 and |y| � n such that q0 · xy = q0 · x. In particular, xy∗z ⊆ L(A).

Proof. Let w = u1v
i1
1 · · · ukvik

k be a factorization that satisfies all properties in
the statement of Lemma 2. Suppose first that all exponents ij are at most n.
Using Properties (b) and (d), we obtain k � n+1 and the maximum length of w
is achieved when all lengths � ∈ {0, . . . , n} are present among the factors vj and
the corresponding uj have lengths n − |vj |. This yields

|w| �
n∑

�=0

(
n− �+n�

)
= n(n+1)+(n−1)

n∑

�=1

� = n2 +n+
(n − 1)n(n + 1)

2
� n3

where the last inequality uses n � 3. Therefore, we may set x := w, y := ε and
z := ε.

If not all exponents are at most n, by Property (e), there exists a unique
index j with ij > n. In this case, let x := u1v

i1
1 · · · uj−1v

ij−1
j−1 uj , y := vj and

z := uj+1v
ij+1
j+1 · · · ukvik

k . The upper bound |xz| � n3 still follows by the argument
above, and |y| � n is a direct consequence of Property (b). Moreover, w ∈ L(A)
and Property (a) together imply that xy∗z ⊆ L(A). �




88 L. Fleischer and J. Shallit

For the next lemma, we need one more definition. Let A be a DFA with initial
state q0. Two tuples (x, y, z) and (x′, y′, z′) are cycle-disjoint with respect to A
if the sets of states in tr(q0 · x, y) and tr(q0 · x′, y′) are either equal or disjoint.

Lemma 4. Let A be a DFA with n � 3 states and initial state q0. Let (x, y, z)
and (x′, y′, z′) be tuples that are not cycle-disjoint with respect to A such that

q0 · x = q0 · xy, q0 · x′ = q0 · x′y′, |xz| , |x′z′| � n3 and |y| , |y′| � n.

Then either xy∗z∩S(L(A)) or x′(y′)∗z′ ∩S(L(A)) only contains words of length
at most n3 + n2.

Proof. Since the tuples are not cycle-disjoint with respect to A, we can factorize
y = uv and y′ = u′v′ such that q0 · xu = q0 · x′u′.

Note that since q0 · xuv = q0 · x, the sets of states in tr(q0 · x, uv) and
tr(q0 · xu, (vu)i) coincide for all i � 1. By the same argument, the sets of states
in tr(q0 · x′, u′v′) and tr(q0 · x′u′, (v′u′)i) coincide for all i � 1.

If the powers (vu)|y′| and (v′u′)|y| were equal, then tr(q0 · xu, (vu)|y′|) and
tr(q0 ·x′u′, (v′u′)|y|) coincide. By the previous observation, this would imply that
the tuples (x, y, z) and (x′, y′, z′) are cycle-disjoint, a contradiction. We conclude
(vu)|y′| �= (v′u′)|y|.

By symmetry, we may assume that (vu)|y′| < (v′u′)|y|. But then, for every
word of the form x′(y′)iz′ ∈ L(A) with i > |y|, there exists a strictly smaller
word x′u′(vu)|y′|(v′u′)i−|y|−1v′z′ in L(A). To see that this word indeed belongs
to L(A), note that q0 · x′u′vu = q0 · xuvu = q0 · xu = q0 · x′u′. This means that
all words in x′(y′)∗z′ ∩ S(L) are of the form x′(y′)iz′ with i � |y|. �


The previous lemmas now allow us to replace any language L by another
language that has a simple structure and approximates L with respect to S(L).

Lemma 5. Let A be a DFA over Σ with n � 3 states. Then there exist an
integer k � n4 + n3 and tuples (x1, y1, z1), . . . , (xk, yk, zk) ∈ (Σ∗)3 such that the
following properties hold:

(i) S(L(A)) ⊆ ⋃k
i=1 xiy

∗
i zi ⊆ L(A),

(ii) |xizi| � n3 + n2 for all i ∈ {1, . . . k}, and
(iii)

∑
�∈Y � � n where Y = {|y1| , . . . , |yk|}.

Proof. If we ignore the required upper bound k � n4 + n3 and Property (iii) for
now, the statement follows immediately from Lemma 3 and the fact that there
are only finitely many different tuples (x, y, z) with |xz| � n3 and |y| � n. We
start with such a finite set of tuples (x1, y1, z1), . . . , (xk, yk, zk) and show that
we can repeatedly eliminate tuples until at most n4 + n3 cycle-disjoint tuples
remain. The desired upper bound

∑
�∈Y � � n then follows automatically.
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In each step of this elimination process, we handle one of the following cases:

– If there are two distinct tuples (xi, yi, zi) and (xj , yj , zj) with |xizi| = |xjzj |
and yi = yj , there are two possible scenarios. If xizi < xjzj , then for every
word in xjy

∗
j zj there exists a smaller word in xiy

∗
i zi and we can remove

(xj , yj , zj) from the set of tuples. By the same argument, we can remove the
tuple (xi, yi, zi) if yi = yj and xizi > xjzj .

– Now consider the case that there are two distinct tuples (xi, yi, zi) and
(xj , yj , zj) with |xizi| = |xjzj | and |yi| = |yj | but yi �= yj . We first check
whether xizi < xjzj . If true, we add the tuple (xi, ε, zi), otherwise we add
(xj , ε, zj). If xiyi < xjyj , we know that each word in xjy

+
j zj has a smaller

word in xiy
+
i zj , and we remove the tuple (xj , yj , zj). Otherwise, we can

remove (xi, yi, zi) by the same argument.
– The last case is that there exist two tuples (xi, yi, zi) and (xj , yj , zj) that are

not cycle-disjoint. By Lemma 4, we can remove at least one of these tuples
and replace it by multiple tuples of the form (x, ε, z). Note that the newly
introduced tuples might be of the form (x, ε, z) with |xz| > n3 but Lemma 4
asserts that they still satisfy |xz| � n3 + n2.

Note that we introduce new tuples of the form (x, ε, z) during this elimination
process. These new tuples are readily eliminated using the first rule.

After iterating this elimination process, the remaining tuples are pairwise
cycle-disjoint and the pairs (|xizi| , |yi|) assigned to these tuples (xi, yi, zi) are
pairwise disjoint. Properties (ii) and (iii) yield the desired upper bound on k. �

Remark 1. While S(L) can be approximated by a language of the simple form
given in Lemma 5, the language S(L) itself does not necessarily have such a
simple description. An example of a regular language L where S(L) does not
have such a simple form is given in the proof of Theorem2.

The last step is to investigate languages L of the simple structure described
in the previous lemma and show how to construct a small DFA for S(L).

Lemma 6. Let n ∈ N. Let L =
⋃k

i=1 xiy
∗
i zi with k � n4+n3 and |xizi| � n3+n2

for all i ∈ {1, . . . k} and
∑

�∈Y � � n where Y = {|y1| , . . . , |yk|}. Then S(L) is
recognized by a DFA with 2O(

√
n log n) states.

Proof. We describe how to construct a DFA of the desired size that recognizes
the language S(L). This DFA is the product automaton of multiple components.

In one component (henceforth called the counter component), we keep track
of the length of the processed input as long as at most n3 +n2 letters have been
consumed. If more than n3 +n2 letters have been consumed, we only keep track
of the length of the processed input modulo all numbers |yi| for i ∈ {1, . . . , k}.

For each i ∈ {1, . . . k}, there is an additional component (henceforth called
the i-th activity component). In this component, we keep track of whether the
currently processed prefix u of the input is a prefix of a word in xiy

∗
i , whether u

is a prefix of a word in xiy
∗
i zi and whether u ∈ xiy

∗
i zi. Note that if some prefix

of the input is not a prefix of a word in xiy
∗
i zi, no longer prefix of the input can
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be a prefix of a word in xiy
∗
i zi. The information stored in the counter component

suffices to compute the possible letters of xiy
∗
i zi allowed to be read in each step

to maintain the prefix invariants.
It remains to describe how to determine whether a state is final. To this end,

we use the following procedure. First, we determine which sets of the form xiy
∗
i zi

the input word leading to the considered state belongs to. These languages are
called the active languages of the state. They can be obtained from the activity
components of the state. If there are no active languages, the state is immediately
marked as not final. If the length of the input word w leading to the considered
state is n3 + n2 or less, we can obtain |w| from the counter component and
reconstruct w from the set of active languages. If the length of the input is larger
than n3 + n2, we cannot fully recover the input from the information stored in
the state. However, we can determine the shortest word w with |w| > n3 + n2

such that |w| is consistent with the length information stored in the counter
component and w itself is consistent with the set of active languages. In either
case, we then compute the set A of all words of length |w| that belong to any
(possibly not active) language xiy

∗
i zi with 1 � i � k. If w is the smallest word

in A, the state is final, otherwise it is not final.
The desired upper bound on the number of states follows from known esti-

mates on the least common multiple of a set of natural numbers with a given
sum; see e.g., [6]. �


We can now combine the previous lemmas to obtain an upper bound on the
state complexity of S(L).

Theorem 1. Let L be a regular language that is recognized by a DFA with n
states. Then S(L) is recognized by a DFA with 2O(

√
n log n) states.

Proof. By Lemma 5, we know that there exists a language L′ of the form
described in the statement of Lemma 6 with S(L) ⊆ L′ ⊆ L. Since L′ ⊆ L implies
S(L′) ⊆ S(L) and since S(S(L)) = S(L), this also means that S(L′) = S(L).
Lemma 6 now shows that there exists a DFA of the desired size. �


To show that the result is optimal, we provide a matching lower bound.

Theorem 2. There exists a family of DFA (An)n∈N over a binary alphabet such
that An has n states and every NFA for S(L(An)) has 2Ω(

√
n log n) states.

Proof. For i ∈ {1, . . . k}, let pi be the i-th prime number and let p = p1 · · · pk.
We define a language

L = 1∗ ∪
⋃

1�i�k

1i0k−i+1
{
1, 12, . . . , 1pi−1

}
(1pi)∗.

It is easy to see that L is recognized by a DFA with k2 + p1 + · · · + pk states.
We show that S(L) is not recognized by any NFA with less than p states. From
known estimates on the prime numbers (e.g., [4, Sec. 2.7]), this suffices to prove
our claim.
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Let A be a NFA for S(L) and assume, for the sake of contradiction, that A
has less than p states. Note that since for each i ∈ {1, . . . , k}, the integer p is a
multiple of pi, the language L does not contain any word of the form 1i0k−i+11p.
Therefore, the word 1k+1+p belongs to S(L) and by assumption, an accepting
path for this word in A must contain a loop of some length � ∈ {1, . . . , p − 1}.
But then 1k+1+p+� is accepted by A, too. However, since 1 � � < p, there exists
some i ∈ {1, . . . , k} such that pi does not divide �. This means that pi also does
not divide p + �. Thus, 1i0k−i+11p+� ∈ L, contradicting the fact that 1k+1+p+�

belongs to S(L). �

Combining the previous two theorems, we obtain the following corollary.

Corollary 1. Let L be a language that is recognized by a DFA with n states.
Then, in general, 2Θ(

√
n log n) states are necessary and sufficient for a DFA or

NFA to recognize S(L).

By reversing the alphabet ordering, we immediately obtain similar results for
largest words.

Corollary 2. Let L be a language that is recognized by a DFA with n states.
Then, in general, 2Θ(

√
n log n) states are necessary and sufficient for a DFA or

NFA to recognize B(L).

4 The State Complexity of Computing Successors

One approach to efficient enumeration of a regular language L is constructing
a transducer that reads a word and outputs its L-successor [3,7]. We consider
transducers that operate from left to right. Since the output letter in each step
might depend on letters that have not yet been read, this transducer needs
to be nondeterministic. However, the construction can be made unambiguous,
meaning that for any given input, at most one computation path is accepting
and yields the desired output word. In this paper, we prove that, in general,
2Θ(

√
n log n) states are necessary and sufficient for a transducer that performs

this computation.
Our proof is split into two parts. First, we construct a transducer that only

maps L-length-preserving words to their corresponding L-successors. All other
words are rejected. This construction heavily relies on results from the previous
section. Then we extend this transducer to L-length-increasing words by using
a technique called padding. For the first part, we also need the following result.

Theorem 3. Let L ⊆ Σ∗ be a thin language that is recognized by a DFA with n
states. Then the languages

L� = {v ∈ Σ∗ | ∃u ∈ L : |u| = |v| and v � u} and
L� = {v ∈ Σ∗ | ∃u ∈ L : |u| = |v| and v � u}

are recognized by UFA with 2n states.
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Proof. Let A = (Q,Σ, · , q0, F ) be a DFA for L and let n = |Q|. We construct a
UFA with 2n states for L�. The statement for L� follows by symmetry.

The state set of the UFA is Q × {0, 1}, the initial state is (q0, 0) and the set
of final states is F × {0, 1}. The transitions are

(q, 0) a−→ (q · a, 0) for all q ∈ Q and a ∈ Σ,

(q, 0) a−→ (q · b, 1) for all q ∈ Q and a, b ∈ Σ with a < b,

(q, 1) a−→ (q · b, 1) for all q ∈ Q and a, b ∈ Σ.

It is easy to verify that this automaton indeed recognizes L�. To see that this
automaton is unambiguous, consider an accepting run of a word w of length �.
Note that the sequence of first components of the states in this run yield an
accepting path of length � in A. Since L(A) is thin, this path is unique. Therefore,
the sequence of first components is uniquely defined. The second components are
then uniquely defined, too: they are 0 up to the first position where w differs
from the unique word of length � in L, and 1 afterwards. �


For a language L ⊆ Σ∗, we denote by B�(L) the language of all words
from Σ∗ such that there exists no strictly larger word of the same length in L.
Combining Theorem 1 and Theorem 3, the following corollary is immediate.

Corollary 3. Let L be a language that is recognized by a DFA with n states.
Then there exists a UFA with 2O(

√
n log n) states that recognizes the language

B�(L).

For a language L ⊆ Σ∗, we define

X(L) = {u ∈ Σ∗ | ∀v ∈ L : |u| �= |v|} .

If L is regular, it is easy to construct an NFA for the complement of X(L),
henceforth denoted as X(L). To this end, we take a DFA for L and replace the
label of each transition with all letters from Σ. This NFA can also be viewed
as an NFA over the unary alphabet {Σ}; here, Σ is interpreted as a letter,
not a set. It can be converted to a DFA for X(L) by using Chrobak’s efficient
determinization procedure for unary NFA [6]. The resulting DFA can then be
complemented to obtain a DFA for X(L):

Corollary 4. Let L be a language that is recognized by a DFA with n states.
Then there exists a DFA with 2O(

√
n log n) states that recognizes the language

X(L).

We now use the previous results to prove an upper bound on the size of a
transducer performing a variant of the L-successor computation that only works
for L-length-preserving words.

Theorem 4. Let L be a language that is recognized by a DFA with n states.
Then there exists an unambiguous finite-state transducer with 2O(

√
n log n) states

that rejects all L-length-increasing words and maps every L-length-preserving
word to its L-successor.
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Proof. Let A = (Q,Σ, · , q0, F ) be a DFA for L and let n = |Q|. For every q ∈ Q,
we denote by Aq the DFA that is obtained by making q the new initial state of A.
We use AS

q to denote DFA with 2O(
√

n log n) states that recognizes the language
S(L(Aq)). These DFA exist by Theorem 1. Moreover, by Corollary 3, there exist
UFA with 2O(

√
n log n) states that recognize the languages B�(L(Aq)). We denote

these UFA by AB
q . Similarly, we use AX

q to denote DFA with 2O(
√

n log n) states
that recognize X(L(Aq)). These DFA exist by Corollary 4.

In the finite-state transducer, we first simulate A on a prefix u of the input,
copying the input letters in each step, i.e., producing the output u. At some
position, after having read a prefix u leading up to the state q := q0 · u, we
nondeterministically decide to output a letter b that is strictly larger than the
current input letter a. From then on, we guess an output letter in each step and
start simulating multiple automata in different components. In one component,
we simulate AB

q·a on the remaining input. In another component, we simulate
AS

q·b on the guessed output. In additional components, for each c ∈ Σ with
a < c < b, we simulate AX

q·c on the input. The automata in all components must
accept in order for the transducer to accept the input.

The automaton AB
q·a verifies that there is no word in L that starts with the

prefix ua, has the same length as the input word and is strictly larger than the
input word. The automaton AS

q·b verifies that there is no word in L that starts
with the prefix ub, has the same length as the input word and is strictly smaller
than the output word. It also certifies that the output word belongs to L. For
each letter c, the automaton AX

q·c verifies that there is no word in L that starts
with the prefix uc and has the same length as the input word.

Together, the components ensure that the guessed output is the unique suc-
cessor of the input word, given that it is L-length-preserving. It is also clear
that L-length-increasing words are rejected, since the AS

q·b-component does not
accept for any sequence of nondeterministic choices. �


The construction given in the previous proof can be extended to also com-
pute L-successors of L-length-increasing words. However, this requires some
quite technical adjustments to the transducer. Instead, we use a technique called
padding. A very similar approach appears in [3, Prop. 5.1].

We call the smallest letter of an ordered alphabet Σ the padding symbol of Σ.
A language L ⊆ Σ∗ is �-padded if � is the padding symbol of Σ and L = �∗K for
some K ⊆ (Σ \ {�})∗. The key property of padded languages is that all words
prefixed by a sufficiently long block of padding symbols are L-length-preserving.

Lemma 7. Let A be a DFA over Σ with n states such that L(A) is a �-padded
language. Let Γ = Σ \ {�} and let K = L(A) ∩ Γ ∗. Let u ∈ Γ ∗ be a word that is
not K-maximal. Then the L(A)-successor of �nu has length |�nu|.
Proof. Let v be the K-successor of u. By a standard pumping argument, we
have |u| � |v| � |u| + n. This means that �n+|u|−|v|v is well-defined and belongs
to L(A). Note that this word is strictly greater than �nu and has length |�nu|.
Thus, the L(A)-successor of �nu has length |�nu|, too. �
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We now state the main result of this section.

Theorem 5. Let A be a deterministic finite automaton over Σ with n states.
Then there exists an unambiguous finite-state transducer with 2O(

√
n log n) states

that maps every word to its L(A)-successor.

Proof. We extend the alphabet by adding a new padding symbol � and convert A
to a DFA for �∗L by adding a new initial state. The language L′ accepted by this
new DFA is �-padded. By Theorem 4 and Lemma 7, there exists an unambiguous
transducer of the desired size that maps every word from �n+1Σ∗ to its successor
in L′. It is easy to modify this transducer such that all words that do not belong
to �n+1Σ∗ are rejected. We then replace every transition that reads a � by a
corresponding transition that reads the empty word instead. Similarly, we replace
every transition that outputs a � by a transition that outputs the empty word
instead. Clearly, this yields the desired construction for the original language
L. A careful analysis of the construction shows that the transducer remains
unambiguous after each step. �


We now show that this construction is optimal up to constants in the expo-
nent. The idea is similar to the construction used in Theorem 2.

Theorem 6. There exists a family of deterministic finite automata (An)n∈N

such that An has n states whereas the smallest unambiguous transducer that
maps every word to its L(An)-successor has 2Ω(

√
n log n) states.

Proof. Let k ∈ N. Let p1, . . . , pk be the k smallest prime numbers such that
p1 < · · · < pk and let p = p1 · · · pk. We construct a deterministic finite automaton
A with 2 + p1 + · · · + pk states such that the smallest transducer computing
the desired mapping has at least p states. From known estimates on the prime
numbers (e.g., [4, Sec. 2.7]), this suffices to prove our claim.

The automaton is defined over the alphabet Σ = {1, . . . , k}∪{#}. It consists
of an initial state q0, an error state qerr, and states (i, j) for i ∈ {1, . . . , k} and
j ∈ {0, . . . , pi − 1} with transitions defined as follows:

q0 · a =

{
(a, 0), for a ∈ {1, . . . , k} ;
qerr, if a = #;

(i, j) · a =

{
(i, j + 1 mod pi), if a = #;
qerr, for a ∈ {1, . . . , k} .

The set of accepting states is {(i, 0) | 1 � i � k}. The language L(A) is the set
of all words of the form i#j with 1 � i � k such that j is a multiple of pi.

Assume, to get a contradiction, that there exists an unambiguous transducer
with less than p states that maps w to the smallest word in L(A) strictly greater
than w. Consider an accepting run of this transducer on some input of the form
2#�p with � ∈ N large enough such that the run contains a cycle. Clearly, since
�p + 1 and p are coprime, the output of the transducer has to be 2#�p+2. We fix
one cycle in this run.
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If the number of # read in this cycle does not equal the number of # output
in this cycle, by using a pumping argument, we can construct a word of the form
2#j that is mapped to a word or the form i#j′

with |j′ − j| > 2. This contradicts
the fact that 2#2N is a subset of L(A). Therefore, we may assume that both the
number of letters read and output on the cycle is r ∈ {1, . . . , p − 1}.

Again, by a pumping argument, this implies that 2#�p+jr is mapped to
2#�p+jr+2 for every j ∈ N. Since r < p, at least one of the prime numbers pi

is coprime to r. Therefore, we can choose j such that jr + 1 ≡ 0 (mod pi).
However, this means that pi#�p+jr+1 belongs to L(A), contradicting the fact
that the transducer maps 2#�p+jr to 2#�p+jr+2. �


Combining the two previous theorems, we obtain the following corollary.

Corollary 5. Let L be a language that is recognized by a DFA with n states.
Then, in general, 2Θ(

√
n log n) states are necessary and sufficient for an unam-

biguous finite-state transducer that maps words to their L-successors.
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Abstract. A reconstruction problem of words from scattered factors
asks for the minimal information, like multisets of scattered factors of
a given length or the number of occurrences of scattered factors from a
given set, necessary to uniquely determine a word. We show that a word
w ∈ {a, b}∗ can be reconstructed from the number of occurrences of at
most min(|w|a, |w|b) + 1 scattered factors of the form aib, where |w|a is
the number of occurrences of the letter a in w. Moreover, we generalize
the result to alphabets of the form {1, . . . , q} by showing that at most∑q−1

i=1 |w|i (q − i + 1) scattered factors suffices to reconstruct w. Both
results improve on the upper bounds known so far. Complexity time
bounds on reconstruction algorithms are also considered here.

1 Introduction

The general scheme for a so-called reconstruction problem is the following one:
given a sufficient amount of information about substructures of a hidden discrete
structure, can one uniquely determine this structure? In particular, what are the
fragments about the structure needed to recover it all. For instance, a square
matrix of size at least 5 can be reconstructed from its principal minors given in
any order [20].

In graph theory, given some subgraphs of a graph (these subgraphs may share
some common vertices and edges), can one uniquely rebuild the original graph?
Given a finite undirected graph G = (V,E) with n vertices, consider the multiset
made of the n induced subgraphs of G obtained by deleting exactly one vertex
from G. In particular, one knows how many isomorphic subgraphs of a given
class appear. Two graphs leading to the same multiset (generally called a deck)
are said to be hypomorphic. A conjecture due to Kelly and Ulam states that two
hypomorphic graphs with at least three vertices are isomorphic [14,21]. A similar
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conjecture in terms of edge-deleted subgraphs has been proposed by Harary [11].
These conjectures are known to hold true for several families of graphs.

A finite word, i.e., a finite sequence of letters of some given alphabet, can be
seen as an edge- or vertex-labeled linear tree. So variants of the graph reconstruc-
tion problem can be considered and are of independent interest. Participants of
the Oberwolfach meeting on Combinatorics on Words in 2010 [2] gave a list of
18 important open problems in the field. Amongst them, the twelfth problem is
stated as reconstruction from subwords of given length. In the following statement
and all along the paper, a subword of a word is understood as a subsequence of
not necessarily contiguous letters from this word, i.e., subwords can be obtained
by deleting letters from the given word. To highlight this latter property, they
are often called scattered subwords or scattered factors, which is the notion we
are going to use.

Definition 1. Let k, n be natural numbers. Words of length n over a given
alphabet are said to be k-reconstructible whenever the multiset of scattered fac-
tors of length k (or k-deck) uniquely determines any word of length n.

Notice that the definition requires multisets to store the information how
often a scattered factor occurs in the words. For instance, the scattered factor
ba occurs three times in baba which provides more information for the recon-
struction than the mere fact that ba is a scattered factor.

The challenge is to determine the function f(n) = k where k is the least
integer for which words of length n are k-reconstructible. This problem has
been studied by several authors and one of the first trace goes back to 1973
[13]. Results in that direction have been obtained by M.-P. Schützenberger
(with the so-called Schützenberger’s Guessing game) and L. Simon [25]. They
show that words of length n sharing the same multiset of scattered factors
of length up to �n/2� + 1 are the same. Consequently, words of length n
are (�n/2� + 1)-reconstructible. In [15], this upper bound has been improved:
Krasikov and Roditty have shown that words of length n are k-reconstructible for
k ≥ �16

√
n/7�+5. On the other hand Dudik and Schulmann [6] provide a lower

bound: if words of length n are k-reconstructible, then k ≥ 3(
√

2/3−o(1)) log
1/2
3 n.

Bounds were also considered in [19]. Algorithmic complexity of the reconstruc-
tion problem is discussed, for instance, in [5]. Note that the different types of
reconstruction problems have application in philogenetic networks, see, e.g., [12],
or in the context of molecular genetics [7] and coding theory [16].

Another motivation, close to combinatorics on words, stems from the study
of k-binomial equivalence of finite words and k-binomial complexity of infinite
words (see [23] for more details). Given two words of the same length, they are
k-binomially equivalent if they have the same multiset of scattered factors of
length k, also known as k-spectrum ([1,18,24]). Given two words x and y of the
same length, one can address the following problem: decide whether or not x and
y are k-binomially equivalent? A polynomial time decision algorithm based on
automata and a probabilistic algorithm have been addressed in [10]. A variation
of our work would be to find, given k and n, a minimal set of scattered factors
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for which the knowledge of the number of occurrences in x and y permits to
decide k-binomial equivalence.

Over an alphabet of size q, there are qk pairwise distinct length-k factors. If
we relax the requirement of only considering scattered factors of the same length,
another interesting question is to look for a minimal (in terms of cardinality)
multiset of scattered factors to reconstruct entirely a word. Let the binomial
coefficient

(
u
x

)
be the number of occurrences of x as a scattered factor of u. The

general problem addressed in this paper is therefore the following one.

Problem 2. Let Σ be a given alphabet and n a natural number. We want to
reconstruct a hidden word w ∈ Σn. To that aim, we are allowed to pick a
word ui and ask questions of the type “What is the value of

(
w
ui

)
?”. Based on

the answers to questions related to
(

w
u1

)
, . . . ,

(
w
ui

)
, we can decide which will be

the next question (i.e. decide which word will be ui+1). We want to have the
shortest sequence (u1, . . . , uk) uniquely determining w by knowing the values of(

w
u1

)
, . . . ,

(
w
uk

)
.

We naturally look for a value of k less than the upper bound for k-
reconstructibility.

In this paper, we firstly recall the use of Lyndon words in the context of
reconstructibility. A word w over a totally ordered alphabet is called Lyndon
word if it is the lexicographically smallest amongst all its rotations, i.e., w = xy
is smaller than yx for all non trivial factorisations w = xy. Every binomial coef-
ficient

(
w
x

)
for arbitrary words w and x over the same alphabet can be deduced

from the values of the coefficients
(
w
u

)
for Lyndon words u that are lexicograph-

ically less than or equal to x. This result is presented in Sect. 2 along with the
basic definitions. We consider an alphabet equipped with a total order on the
letters. Words of the form anb with letters a < b and a natural number n are a
special form of Lyndon words, the so-called right-bounded-block words.

We consider the reconstruction problem from the information given by the
occurrences of right-bounded-block words as scattered factors of a word of
length n. In Sect. 3 we show how to reconstruct a word uniquely from m + 1
binomial coefficients of right-bounded-block words where m is the minimum
number of occurrences of a and b in the word. We also prove that this is less
than the upper bound given in [15]. In Sect. 4 we reduce the problem for arbi-
trary finite alphabets {1, . . . , q} to the binary case. Here we show that at most∑q−1

i=1 |w|i (q − i + 1) ≤ q|w| binomial coefficients suffice to uniquely reconstruct
w with |w|i being the number of occurrences of letter i in w. Again, we compare
this bound to the best known one for the classical reconstruction problem (from
words of a given length). In the last section of the paper we also propose several
results of algorithmic nature regarding the efficient reconstruction of words from
given scattered factors.

Due to space restrictions some proofs (marked with ∗) can be found in [9].
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2 Preliminaries

Let N be the set of natural numbers, N0 = N ∪ {0}, and let N≥k be the set of
all natural numbers greater than or equal to k. Let [n] denote the set {1, . . . , n}
and [n]0 = [n] ∪ {0} for an n ∈ N.

An alphabet Σ = {a, b, c, . . . } is a finite set of letters and a word is a finite
sequence of letters. We let Σ∗ denote the set of all finite words over Σ. The
empty word is denoted by ε and Σ+ is the free semigroup Σ∗\{ε}. The length of
a word w is denoted by |w|. Let Σ≤k := {w ∈ Σ∗| |w| ≤ k} and Σk be the set of
all words of length exactly k ∈ N. The number of occurrences of a letter a ∈ Σ in
a word w ∈ Σ∗ is denoted by |w|a. The ith letter of a word w is given by w[i] for
i ∈ [|w|]. The powers of w ∈ Σ∗ are defined recursively by w0 = ε, wn = wwn−1

for n ∈ N. A word u ∈ Σ∗ is a factor of w ∈ Σ∗, if w = xuy holds for some
words x, y ∈ Σ∗. Moreover, u is a prefix of w if x = ε holds and a suffix if y = ε
holds. The factor of w from the ith to the jth letter will be denoted by w[i..j]
for 1 ≤ i ≤ j ≤ |w|. Two words u, v ∈ Σ∗ are called conjugates or rotations of
each other if there exist x, y ∈ Σ∗ with u = xy and v = yx. Additional basic
information about combinatorics on words can be found in [17].

Definition 3. Let < be a total ordering on Σ. A word w ∈ Σ∗ is called right-
bounded-block word if there exist x, y ∈ Σ with x < y and � ∈ N0 with w = x�y.

Definition 4. A word u = a1 · · · an ∈ Σn, for n ∈ N, is a scattered factor of a
word w ∈ Σ+ if there exist v0, . . . , vn ∈ Σ∗ with w = v0a1v1 · · · vn−1anvn. For
words w, u ∈ Σ∗, define

(
w
u

)
as the number of occurrences of u as a scattered

factor of w.

Remark 5. Notice that |w|x =
(
w
x

)
for all x ∈ Σ.

The following definition addresses Problem2.

Definition 6. A word w ∈ Σn is called uniquely reconstructible/determined by
the set S ⊂ Σ∗ if for all words v ∈ Σn\{w} there exists a word u ∈ S with(
w
u

) �= (
v
u

)
.

Consider S = {ab, ba}. Then w = abba is not uniquely reconstructible by S
since

[(
w
ab

)
,
(

w
ba

)]
= [2, 2] is also the 2-vector of binomial coefficients of baab. On

the other hand S = {a, ab, ab2} reconstructs w uniquely. The following remark
gives immediate results for binary alphabets.

Remark 7. Let Σ = {a, b} and w ∈ Σn. If |w|a ∈ {0, n} then w contains either
only b or a and by the given length n of w, w is uniquely determined by S = {a}.
This fact is in particular an equivalence: w ∈ Σn can be uniquely determined by
{a} iff |w|a ∈ {0, n}. If |w|a ∈ {1, n − 1}, w is not uniquely determined by {a}
as witnessed by ab and ba for n = 2. It is immediately clear that the additional
information

(
w
ab

)
leads to unique determinism of w.
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Lyndon words play an important role regarding the reconstruction problem.
As shown in [22] only scattered factors which are Lyndon words are necessary to
determine a word uniquely, i.e., S can always be assumed to be a set of Lyndon
words.

Definition 8. Let < be a total ordering on Σ. A word w ∈ Σ∗ is a Lyndon
word iff for all u, v ∈ Σ+ with w = uv, we have w <lex vu where <lex is the
lexicographical ordering on words induced by <.

Proposition 9 ([22]). Let w and u be two words. The binomial coefficient
(
w
u

)

can be computed using only binomial coefficients of the type
(
w
v

)
where v is a

Lyndon word of length up to |u| such that v ≤lex u.

To obtain a formula to compute the binomial coefficient
(
w
u

)
for w, u ∈ Σ∗ by

binomial coefficients
(

w
vi

)
for Lyndon words v1, . . . , vk with vi ∈ Σ≤|u|, i ∈ [k],

and k ∈ N the definitions of shuffle and infiltration are necessary [17].

Definition 10. Let n1, n2 ∈ N, u1 ∈ Σn1 , and u2 ∈ Σn2 . Set n = n1 + n2. The
shuffle of u1 and u2 is the polynomial u1� u2 =

∑
I1,I2

w(I1, I2) where the sum
has to be taken over all pairs (I1, I2) of sets that are partitions of [n] such that
|I1| = n1 and |I2| = n2. If I1 = {i1,1 < . . . < i1,n1} and I2 = {i2,1 < . . . < i2,n2},
then the word w(I1, I2) is defined such that w[i1,1]w[i1,2] · · · w[i1,n1 ] = u1 and
w[i2,1]w[i2,2] · · · w[i2,n2 ] = u2 hold.

The infiltration is a variant of the shuffle in which equal letters can be merged.

Definition 11. Let n1, n2 ∈ N, u1 ∈ Σn1 , and u2 ∈ Σn2 . Set n = n1 + n2.
The infiltration of u1 and u2 is the polynomial u1 ↓ u2 =

∑
I1,I2

w(I1, I2), where
the sum has to be taken over all pairs (I1, I2) of sets of cardinality n1 and n2

respectively, for which the union is equal to the set [n′] for some n′ ≤ n. Words
w(I1, I2) are defined as in the previous definition. Note that some w(I1, I2) are
not well defined if i1,j = i2,k but u1[j] �= u2[k]. In that case they do not appear
in the previous sum.

Considering for instance u1 = aba and u2 = ab gives the polynomials

u1 � u2 = 2ababa + 4aabba + 2aabab + 2abaab,
u1 ↓ u2 = aba� ab + aba + 2abba + 2aaba + 2abab.

Based on Definitions 10 and 11, we are able to give a formula to compute a
binomial coefficient from the ones making use of Lyndon words. This formula is
given implicitely in [22, Theorem 6.4]: Let u ∈ Σ∗ be a non-Lyndon word. By
[22, Corollary 6.2] there exist non-empty words x, y ∈ Σ∗ and with u = xy and
such that every word appearing in the polynomial x� y is lexicographically less
than or equal to u. Then, for all word w ∈ Σ∗, we have

(
w

u

)
=

1
(x� y, u)

⎡

⎣
(

w

x

)(
w

y

)
−

∑

v∈Σ∗,v �=u

(x ↓ y, v)
(

w

v

)
⎤

⎦ ,
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where (P, v) is a notation giving the coefficient of the word v in the polynomial P .
One may apply recursively this formula until only Lyndon factors are considered.
Some examples can be found in [9].

3 Reconstruction from Binary Right-Bounded-Block
Words

In this section we present a method to reconstruct a binary word uniquely from
binomial coefficients of right-bounded-block words. Let n ∈ N be a natural num-
ber and w ∈ {a, b}n a word. Since the word length n is assumed to be known,
|w|a is known if |w|b is given and vice versa. Set for abbreviation ku =

(
w
u

)
for

u ∈ Σ∗. Moreover we assume w.l.o.g. ka ≤ kb and that ka is known (other-
wise substitute each a by b and each b by a, apply the following reconstruction
method and revert the substitution). This implies that w is of the form

bs1abs2 . . . bskaabska+1 (1)

for si ∈ N0 and i ∈ [|w|a + 1] with
∑

i∈[ka+1] si = n − ka = kb and thus we get
for � ∈ [ka]0

ka�b =
(

w

a�b

)
=

ka+1∑

i=�+1

(
i − 1

�

)
si. (2)

Remark 12. Notice that for fixed � ∈ [ka]0 and ci =
(
i−1

�

)
for i ∈ [ka + 1]\[�], we

have ci < ci+1 and especially c�+1 = 1 and c�+2 = � + 1.

Equation (2) shows that reconstructing a word uniquely from binomial coef-
ficients of right-bounded-block words equates to solve a system of Diophantine
equations. The knowledge of kb, . . . , ka�b provides � + 1 equations. If the equa-
tion of ka�b has a unique solution for {s�+1, . . . , ska+1} (in this case we say, by
language abuse, that ka�b is unique), then the system in row echelon form has
a unique solution and thus the binary word is uniquely reconstructible. Notice
that kaka b is always unique since kaka b = ska+1.

Consider n = 10 and ka = 4. This leads to w = bs1abs2abs3abs4abs5 with∑
i∈[5] si = 6. Given kab = 4 we get 4 = s2 + 2s3 + 3s4 + 4s5. The si are

not uniquely determined. If ka2b = 2 is also given, we obtain the equation 2 =
s3 +3s4 +6s5 and thus s3 = 2 and s4 = s5 = 0 is the only solution. Substituting
these results in the previous equation leads to s2 = 0 and since we only have six b,
we get s1 = 4. Hence w = b4a2b2a2 is uniquely reconstructed by S = {a, ab, a2b}.

The following definition captures all solutions for the equation defined by
ka�b for � ∈ [ka]0.

Definition 13. Set M(ka�b) = {(r�+1, . . . , rka+1)| ka�b =
∑ka+1

i=�+1

(
i−1

�

)
ri} for

fixed � ∈ [ka]0. We call ka�b unique if |M(ka�b)| = 1.

By Remark 12 the coefficients of each equation of the form (2) are strictly
increasing. The next lemma provides the range each ka�b may take under the
constraint

∑ka+1
i=1 si = n − ka.
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Lemma 14. Let n ∈ N, k ∈ [n]0, j ∈ [k + 1] and c1, . . . , ck+1, s1, . . . , sk+1 ∈ N0

with ci < ci+1, for i ∈ [k], and
∑k+1

i=1 si = n − k. The sum
∑k+1

i=j cisi is maximal
iff sk+1 = n − k (and consequently si = 0 for all i ∈ [k]).

Proof. The case k = 0 is trivial. Consider the case n = k, i.e.,
∑k+1

i=1 si = 0. This
implies immediately si = 0 for all i ∈ [k + 1] and the equivalence holds. Assume
for the rest of the proof k < n. If sk+1 = n − k, then si = 0 for all i ≤ k and∑k+1

i=j cisi = ck+1(n − k). Let us assume that the maximal value for
∑k+1

i=j cisi

can be obtained in another way and that there exist s′
1, . . . , s

′
k+1 ∈ N0, � ∈ [n−k]

such that
∑k+1

i=1 s′
i = n − k and s′

k+1 = n − k − �. Thus

ck+1(n − k) ≤
k+1∑

i=j

cis
′
i =

⎛

⎝
k∑

i=j

cis
′
i

⎞

⎠ + ck+1(n − k − �).

This implies
∑k

i=j cis
′
i ≥ ck+1�. Since the coefficients are strictly increasing we

get
∑k

i=j cis
′
i ≤ ck

∑k
i=j s′

i < ck+1�, hence the contradiction. 
�

Corollary 15. Let ka ∈ [n]0, � ∈ [ka]0, and s1, . . . , ska+1 ∈ N0 with
∑ka+1

i=1 si =

n − ka. Then
(

w
a�b

) ∈
[(

ka

�

)
(n − ka)

]

0
.

Proof. It follows directly from Eq. (2) and Lemma 14. 
�
The following lemma shows some cases in which ka�b is unique.

Lemma 16. Let ka ∈ [n], � ∈ [ka]0 and s1, . . . , ska+1 ∈ N0 with
∑ka+1

i=1 si =
n − ka. If ka�b ∈ [�]0 ∪ {(

ka

�

)
(n − ka)} or ka�b =

(
ka−1

�

)
r +

(
ka

�

)
(n − ka − r) for

r ∈ [kb]0 then ka�b is unique.

Proof. Consider firstly ka�b ∈ [�]0. By Remark 12 we have c�+1 = 1 and c�+2 =
� + 1. By ci < ci+1 we obtain immediately si = 0 for i ∈ [ka + 1]\[� + 1]. By
setting s�+1 = ka�b the claim is proven. If ka�b =

(
ka

�

)
(n − ka), ska+1 = (n − ka)

and si = 0 for i ∈ [ka]0 is the only possibility. Let secondly be r ∈ [kb]0 and
ka�b =

(
ka−1

�

)
r +

(
ka

�

)
(n − ka − r) and suppose that ka�b is not unique. This

implies ska+1 < n − ka − r. Assume that ska+1 = n − ka − r′ for r′ ∈ [kb]>r.
Thus there exists x ∈ N with

(
ka

�

)
(n−ka − r′)+x = (ka−1)!(ka(n−ka)−�r)

�!(ka−�)! , i.e., x =
(ka−1)!(kar

′−�r)
�!(ka−�)! . By kb = n − ka we have x ≤ (

ka−1
�

)
r′ = (ka−1)!(kar

′−�r′)
�!(ka−�)! (we only

have r′ occurrences of b left to distribute). By r′ > r we have (ka−1)!(kar
′−�r)

�!(ka−�)! =

x < (ka−1)!(kar
′−�r)

�!(ka−�)! - a contradiction. 
�

Since we are not able to fully characterise the uniquely determined values for
each ka�b for arbitrary n and �, the following proposition gives the characterisa-
tion for � ∈ {0, 1}. Notice that we use ka immediately since it is determinable
by n and ka0b = kb.
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Proposition 17 (∗). The word w ∈ Σn is uniquely determined by ka and kab
iff one of the following occurs

– ka = 0 or ka = n (and obviously kab = 0),
– ka = 1 or ka = n − 1 and kab is arbitrary,
– ka ∈ [n − 2]≥2 and kab ∈ {0, 1, ka(n − ka) − 1, ka(n − ka)}.

In all cases not covered by Proposition 17 the word cannot be uniquely deter-
mined by

(
w
a

)
and

(
w
ab

)
. The following theorem combines the reconstruction of a

word with the binomial coefficients of right-bounded-block words.

Theorem 18. Let j ∈ [ka]0. If kajb is unique, then the word w ∈ Σn is uniquely
determined by {b, ab, a2b, . . . , ajb}.
Proof. If kajb is unique, the coefficients sj+1, . . . , ska+1 are uniquely determined.
Substituting backwards the known values in the first j − 1 Eq. (2) (for � =
1, . . . , j − 1) we can now obtain successively the values for sj , . . . , s1. 
�
Corollary 19. Let � be minimal such that ka�b is unique. Then w is
uniquely determined by {a, ab, a2b, . . . , a�b} and not uniquely determined by any
{a, ab, a2b, . . . , aib} for i < �.

Proof. It follows directly from Theorem 18. 
�
By [15] an upper bound on the number of binomial coefficients to uniquely

reconstruct the word w ∈ Σn is given by the amount of the binomial coefficients
of the (� 16

7

√
n�+5)-spectrum. Notice that implicitly the full spectrum is assumed

to be known. As proven in Sect. 2, Lyndon words up to this length suffice. Since
there are 1

n

∑
d|n μ(d) · 2

n
d Lyndon words of length n, the combination of both

results presented in [15,22] states that, for n > 6,

	 16
7

√
n�+5∑

i=1

1
i

∑

d|i
μ(d) · 2

i
d (3)

binomial coefficients are sufficient for a unique reconstruction with the Möbius
function μ. Up to now, it was the best known upper bound.

Theorem 18 shows that min{ka, kb} + 1 binomial coefficients are enough for
reconstructing a binary word uniquely. By Proposition 17 we need exactly one
binomial coefficient if n ∈ [3] and at most two if n = 4. For n ∈ {5, 6} we need
at most n − 2 different binomial coefficients. The following theorem shows that
by Theorem 18 we need strictly less binomial coefficients for n > 6.

Theorem 20 (∗). Let w ∈ Σn. We have that min{ka, kb} + 1 binomial coef-
ficients suffice to uniquely reconstruct w. If ka ≤ kb, then the set of sufficient
binomial coefficients is S = {b, ab, a2b, ..., ahb} where h = �n

2 �. If ka > kb, then
the set is S = {a, ba, b2a, ..., bha}. This bound is strictly smaller than (3).
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Remark 21. By Lemma 16 we know that ka�b is unique if it is in [�]0 or exactly(
ka

�

)
(n−ka). The probability for the latter is 1

2n for w ∈ {a, b}n. If ka�b = m ∈ [�]0
we get by (2) immediately s�+1 = m and si = 0 for �+2 ≤ i ≤ ka+1. Hence, the
values for sj for j ∈ [�] are not determined. By

∑
i∈[�] si = n − ka − m there are

d =
∑

i∈[�]0

(
�

�−i

)(
n−ka−m−1

i−1

)
possibilities to fulfill the constraints, i.e., we have

a probability of d
2n to have such a word.

4 Reconstruction for Arbitrary Alphabets

In this section we address the problem of reconstructing words over arbitrary
alphabets from their scattered factors. We begin with a series of results of algo-
rithmic nature. Let Σ = {a1, . . . , aq} be an alphabet equipped with the ordering
ai < aj for 1 ≤ i < j ≤ q ∈ N.

Definition 22. Let w1, . . . , wk ∈ Σ∗ for k ∈ N, and K = (ka)a∈Σ a sequence
of |Σ| natural numbers. A K−valid marking of w1, . . . , wk is a mapping ψ :
[k] × N → N such that for all j ∈ [k], i, � ∈ [|wj |], and a ∈ Σ there holds

– if wj [i] = a then ψ(j, i) ≤ ka,
– if i < � ≤ |wj | and wj [i] = wj [�] = a then ψ(j, i) < ψ(j, �).

A K-valid marking of w1, . . . , wk is represented as the string wψ
1 , wψ

2 , . . ., wψ
k ,

where wψ
j [i] = (wj [i])ψ(j,i) for fresh letters (wj [i])ψ(j,i).

For instance, let k = 2, Σ = {a, b}, and w1 = aab, w2 = abb. Let ka =
3, kb = 2 define the sequence K. A K-valid marking of w1, w2 would be wψ

1 =
(a)1(a)3(b)1, w

ψ
2 = (a)2(b)1(b)2 defining ψ implicitly by the indices. We used

parentheses in the marking of the letters in order to avoid confusions.
We recall that a topological sorting of a directed graph G = (V,E), with

V = {v1, . . . , vn}, is a linear ordering vσ(1) < vσ(2) < . . . < vσ(n) of the nodes,
defined by the permutation σ : [n] → [n], such that there exists no edge in E
from vσ(i) to vσ(j) for any i > j (i.e., if va comes after vb in the linear ordering,
for some a = σ(i) and b = σ(j), then we have i > j and there should be no
edge between va and vb). It is a folklore result that any directed graph G has a
topological sorting if and only if G is acyclic.

Definition 23. Let w1, . . . , wk ∈ Σ∗ for k ∈ N, K = (ka)a∈Σ a sequence of |Σ|
natural numbers, and ψ a K−valid marking of w1, . . . , wk. Let Gψ be the graph
that has

∑
a∈Σ ka nodes, labelled with the letters (a)1, . . . , (a)ka

, for all a ∈ Σ,
and the directed edges ((wj [i])ψ(j,i), (wj [i + 1])ψ(j,i+1)), for all j ∈ [k], i ∈ [|wj |],
and ((a)i, (a)i+1), for all occuring i and a ∈ Σ. We say that there exists a valid
topological sorting of the ψ-marked letters of the words w1, . . . , wk if there exists
a topological sorting of the nodes of Gψ, i.e., Gψ is a directed acyclic graph.

The graph associated with the K-valid marking of w1, w2 from above
would have the five nodes (a)1, (a)2, (a)3, (b)1, (b)2 and the six directed edges
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((a)1, (a)3), ((a)3, (b)1), ((a)2, (b)1), ((b)1, (b)2), ((a)1, (a)2), ((a)2, (a)3) (where
the direction of the edge is from the left node to the right node of the pair
defining it). This graph has the topological sorting (a)1(a)2(a)3(b)1(b)2.

Theorem 24 (∗). For w1, . . . , wk ∈ Σ∗ and a sequence K = (ka)a∈Σ of |Σ|
natural numbers, there exists a word w such that wi is a scattered factor of w
with |w|a = ka, for all i ∈ [k] and all a ∈ Σ, if and only if there exist a K-
valid marking ψ of the words w1, . . . , wk and a valid topological sorting of the
ψ-marked letters of the words w1, . . . , wk.

Next we show that in Theorem 24 uniqueness propagates in the ⇐-direction.

Corollary 25. Let w1, . . . , wk ∈ Σ∗ and K = (ka)a∈Σ a sequence of |Σ| natural
numbers. If the following hold

– there exists a unique K-valid marking ψ of the words w1, . . . , wk,
– in the unique K-valid marking ψ we have that for each a ∈ Σ and � ∈ [ka]

there exists i ∈ [k] and j ∈ [|wi|] with ψ(i, j) = �, and
– there exists a unique valid topological sorting of the ψ-marked letters of the

words w1, . . . , wk

then there exists a unique word w such that wi is a scattered factor of w, for all
i ∈ [k] and |w|a = ka for all a ∈ Σ.

Proof. Let w be the word obtained by writing in order the letters of the unique
valid topological sorting of the ψ-marked letters of the words w1, . . . , wk and
removing their markings. It is clear that w′ has wi as a scattered factor, for all
i ∈ [k], and that |w|a = ka, for all a ∈ Σ. The word w is uniquely defined (as
there is no other K-valid marking nor valid topological sorting of the ψ-marked
letters), and |w|a = ka, for all a ∈ Σ. 
�

In order to state the second result, we need the projection πS(w) of a word
w ∈ Σ∗ on S ⊆ Σ: πS(w) is obtained from w by removing all letters from Σ \S.

Theorem 26. Set W = {wa,b | a < b ∈ Σ} such that

– wa,b ∈ {a, b}∗ for all a, b ∈ Σ,
– for all w,w′ ∈ W and all a ∈ Σ, if |w|a · |w′|a > 0, then |w|a = |w′|a.
Then there exists at most one w ∈ Σ∗ such that wa,b is π{a,b}(w) for all a, b ∈ Σ.

Proof. Notice firstly |W | = q(q−1)
2 . Let ka = |wa,b|a, for a < b ∈ Σ. These

numbers are clearly well defined, by the second item in our hypothesis. Let
K = (ka)a∈Σ . It is immediate that there exists a unique K-valid marking ψ of
the words (wa,b)a<b∈Σ . As each two marked letters (a)i and (b)j (i.e., each two
nodes (a)i and (b)j of Gψ) appear in the marked word wψ

a,b, we know the order
in which these two nodes should occur in a topological sorting of Gψ. This means
that, if Gψ is acyclic, then it has a unique topological sorting. Our statement
follows now from Corollary 25. 
�
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Remark 27. Given the set W = {wa,b | a < b ∈ Σ} as in the statement of
Theorem 26, with ka = |wa,b|a, for a < b ∈ Σ, and K = (ka)a∈Σ , we can
produce the unique K-valid marking ψ of the words (wa,b)a<b∈Σ in linear time
O(

∑
a<b∈Σ |wa,b|) = O((q − 1)

∑
a∈Σ ka): just replace the ith letter a of wa,b by

(a)i, for all a and i. The graph Gψ has O((q−1)
∑

ka) edges and O(
∑

ka) vertices
and can be constructed in linear time O((q − 1)

∑
ka). Sorting Gψ topologically

takes O((q−1)
∑

ka) time (see, e.g., the handbook [4]). As such, we conclude that
reconstructing a word w ∈ Σ∗ from its projections over all two-letter-subsets of
Σ can be done in linear time w.r.t. the total length of the respective projections.

Theorem 26 is in a sense optimal: in order to reconstruct a word over Σ
uniquely, we need all its projections on two-letter-subsets of Σ. That is, it is
always the case that for a strict subset U of {{a, b} | a < b ∈ Σ}, with |U | =
q(q−1)

2 − 1, there exist two words w′ �= w such that {πp(w′) | p ∈ U} = {πp(w) |
p ∈ U}. We can, in fact, show the following results:

Theorem 28. Let S1, . . . , Sk be subsets of Σ. The following hold:

1. If each pair {a, b} ⊆ Σ is included in at least one of the sets Si, then we can
reconstruct any word uniquely from its projections πS1(·), . . . , πSk

(·).
2. If there exists a pair {a, b} that is not contained in any of the sets S1, . . . , Sk,

then there exist two words w and w′ such that w �= w′ and πS1(w) =
πS1(w

′), . . . , πSk
(w) = πSk

(w′).

Proof. The first part is, once again, a consequence of Corollary 25. The second
part can be shown by assuming that Σ = {a1, . . . , aq} and the pair {a1, a2}
is not contained in any of the sets S1, . . . , Sk. Then, for w = a1a3a4 . . . aq and
w′ = a2a3a4 . . . aq, we have that πS1(w) = πS1(w

′), . . . , πSk
(w) = πSk

(w′). 
�
In this context, we can ask how efficiently can we decide if a word is uniquely

reconstructible from the projections πS1(·), . . ., πSk
(·) for S1, . . . , Sk ⊂ Σ.

Theorem 29 (∗). Given the sets S1, . . . , Sk ⊂ Σ, we decide whether we can
reconstruct any word uniquely from its projections πS1(·), . . . , πSk

(·) in O(q2k)
time. Moreover, under the Strong Exponential Time Hypothesis (see the sur-
vey [3] and the references therein), there is no O(q2−dkc) algorithm for solving
the above decision problem, for any d, c > 0.

Coming now back to combinatorial results, we use the method developed
in Sect. 3 to reconstruct a word over an arbitrary alphabet. We show that we
need at most

∑
i∈[q] |w|i(q + 1 − i) different binomial coefficients to reconstruct

w uniquely for the alphabet Σ = {1, . . . , q}. In fact, following the results from
the first part of this section, we apply this method on all combinations of two
letters. Consider for an example that for w ∈ {a, b, n}6 the following binomial
coefficients

(
w
a0b

)
= 1,

(
w
a0n

)
= 2,

(
w
a1b

)
= 0,

(
w
a1n

)
= 3,

(
w
b1n

)
= 2, and

(
w
a2n

)
= 1 are

given. By |w| = 6, |w|b = 1, and |w|n = 2, we get |w|a = 3. Applying the method
from Sect. 3 for {a, b}, {a, n}, and {b, n} we obtain the scattered factors ba3,
anana, and bn2. Combining all these three scattered factors gives us uniquely
banana. Notice that in this example we only needed six binomial coefficients
instead of ten, which is the worst case.
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Remark 30. As seen in the example we have not only the word length but also(
w
x

)
for all x ∈ Σ but one. Both information give us the remaining single letter

binomial coefficient and hence we will assume that we know all of them.

For convenience in the following theorem consider Σ = {1, . . . , q} for q > 2
and set α := � 16

7

√
n� + 5. In the general case the results by [22] and [15] yield

that

∑

i∈[α]

1
i

(q + 1)
i
2 − 1

q
(4)

is smaller than the best known upper bound on the number of binomial coeffi-
cients sufficient to reconstruct a word uniquely.

The following theorem generalises Theorem 20 on an arbitrary alphabet.

Theorem 31 (∗). For uniquely reconstructing a word w ∈ Σ∗ of length at least
q − 1,

∑
i∈[q] |w|i(q +1− i) binomial coefficients suffice, which is strictly smaller

than (4).

Remark 32. Since the estimation in Theorem 31 depends on the distribution of
the letters in contrast to the method of reconstruction, it is wise to choose
an order < on Σ such that x < y if |w|x ≤ |w|y. In the example we have
chosen the natural order a < b < n which leads in the worst case to fourteen
binomial coefficients that has to be taken into consideration. If we chose the order
b < n < a the formula from Theorem 31 provides that ten binomial coefficients
suffice. This observation leads also to the fact that less binomial coefficients
suffice for a unique determinism if the letters are not distributed equally but
some letters occur very often and some only a few times.

Remark 33. Let’s note that the number of binomial coefficients we need is at
most qn. Indeed, we will prove that

∑
i∈[q] |w|i(q + 1 − i) ≤ qn. We have qn =

qn+n−n = q
∑

i∈[q] |w|i+
∑

i∈[q] |w|i−
∑

i∈[q] |w|i ≥ q
∑

i∈[q] |w|i+
∑

i∈[q] |w|i−∑
i∈[q](|w|ii) =

∑
i∈[q] |w|i(q + 1 − i).

5 Conclusion

In this paper we have proven that a relaxation of the so far investigated recon-
struction problem from scattered factors from k-spectra to arbitrary sets yields
that less scattered factors than the best known upper bound are sufficient to
reconstruct a word uniquely. Not only in the binary but also in the general case
the distribution of the letters plays an important role: in the binary case the
amount of necessary binomial coefficients is smaller the larger |w|a − |w|b is.
The same observation results from the general case - if all letters are equally
distributed in w then we need more binomial coefficients than in the case where
some letters rarely occur and others occur much more often. Nevertheless the
restriction to right-bounded-block words (that are intrinsically Lyndon words)
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shows that a word can be reconstructed by fewer binomial coefficients if scat-
tered factors from different spectra are taken. Further investigations may lead
into two directions: firstly a better characterisation of the uniqueness of the ka�b

would be helpful to understand better in which cases less than the worst case
amount of binomial coefficients suffices and secondly other sets than the right-
bounded-block words could be investigated for the reconstruction problem.
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Abstract. A modifier is a k-ary operator acting on DFAs and producing
a DFA. Modifiers are involved in the theory of state complexity. We define
and study a class of simple modifiers, called product modifiers, and we
link closely the regular operations they encode to boolean operations.

1 Introduction

State complexity is a measure of complexity defined on regular operations. It
allows to write the size of the minimal automaton recognizing the output as
a function of the sizes of the minimal automata recognizing the inputs. The
topic dates back to the 70s, from the seminal paper of Maslov [14] describing,
explicitly but without any proof, the state complexities of several operations.
Since the 90s, this area of research became very active and the state complexity
of numerous operations has been computed. See, for example, [6,11–13,15] and
[8] for a survey of the subject.

However, a few general methods are commonly used in order to compute
state complexities. The most common method consists in providing a witness,
which is a specific example reaching what is proven to be an upper bound. The
witness itself is, in general, found by trial and error, sometimes using a witness
that worked for a number of other operations and modifying it to fit the specific
needs of the operation considered. In many cases, for example [1,7] or [4], the
witness is constructed by considering, explicitly or implicitly, the whole monoid
of the transformations acting on the states of the minimal automata recogniz-
ing the input languages. This method has been theorized in two independently
written papers [2,5]. More precisely, the approach consists, on the one hand,
in describing states as combinatorial objects and finding upper bounds using
combinatorial tools, and, on the other hand, in building a huge witness, called
a monster, chosen in a set of automata having as many transition functions as
possible. This method can be applied to obtain the state complexity to the wide
range of 1-uniform operations that are associated to operators, called modifiers,
that act on automata to produce an automaton in a certain restrictive way. In
this paper, we examine the regular operations described by the class of some
very simple modifiers called product modifiers. These modifiers are characterized
c© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 110–121, 2020.
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by the fact that they build the Cartesian product automaton with the tran-
sitions took from the input automata. We investigate many properties of this
class and in particular we completely describe the set of the regular operations
that can be encoded by product modifiers. The paper is organized as follows.
Section 2 gives definitions and notations about automata. In Sect. 3, we partially
recall the monster approach. Finally, in Sect. 4, we define product modifiers and
characterize the regular operations they encode in Sect. 5.

2 Preliminaries

2.1 Operations over Sets

The set of subsets of E is denoted by 2E and the set of mappings of E into itself
is denoted by EE . The symmetric difference of two sets E1 and E2 is denoted
by ⊕ and defined by E1 ⊕ E2 = (E1 ∪ E2)\(E1 ∩ E2).

Let (E1, . . . , Ek) be a k-tuple of finite sets, and let (δ1, . . . , δk) be a k-
tuple such that δi is a function from Ei to Ei for every i ∈ {1, . . . , k}. For
any k-tuple (e1, . . . , ek) such that ei ∈ Ei for all i ∈ {1, . . . , k}, we denote by
(δ1, . . . , δk)(e1, . . . , ek) the k-tuple (δ1(e1), . . . , δk(ek)).

Let E be a set, f : Ej → E and g : Ek → E for some j, k ∈ N \ {0}. A
composition is a function f ◦p g : Ej+k−1 → E defined for some 1 ≤ p ≤ j by

f ◦p g(e1, . . . , ej+k−1) = f(e1, . . . , ep−1, g(ep, . . . , ep+k−1), ep+k, . . . , ej+k−1),

for any e1, . . . , ej+k−1 ∈ E.

2.2 Languages and Automata

Let Σ be a finite alphabet. A word w over Σ is a finite sequence of symbols of
Σ. The set of all finite words over Σ is denoted by Σ∗. A language over Σ is a
subset of Σ∗. We define the complement of a language L ⊆ Σ∗ by Lc = Σ∗ \ L.

A complete and deterministic finite automaton (DFA) is a 5-tuple A =
(Σ,Q, i, F, δ) where Σ is the input alphabet, Q is a finite set of states, i ∈ Q is
the initial state, F ⊂ Q is the set of final states and δ is the transition function
from Q×Σ to Q that is defined for every q ∈ Q and every a ∈ Σ. We can extend
transition functions in a natural way to functions from Q × Σ∗ to Q, and again
to functions from 2Q × Σ∗ to Q. For any word w, we denote by δw the function
q → δ(q, w).

Let A = (Σ,Q, i, F, δ) be a DFA. A word w ∈ Σ∗ is recognized by the DFA
A if δ(i, w) ∈ F . The language recognized by a DFA A is the set L(A) of words
recognized by A. By Kleene’s theorem, a language is regular if and only if it is
recognized by a DFA. It is well known that for any DFA, there exists a unique
minimal one (up to isomorphism) among all DFAs recognizing the same language
([10]).
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2.3 State Complexity

A unary regular operation is a function from regular languages of Σ into regular
languages of Σ. A k-ary regular operation is a function from the set of k-tuples
of regular languages over Σ into regular languages over Σ.

The state complexity of a regular language L denoted by sc(L) is the number
of states of its minimal DFA. This notion extends to regular operations: the state
complexity of a unary regular operation ⊗ is the function sc⊗ such that, for all
n ∈ N, sc⊗(n) is the maximum of all the state complexities of ⊗(L) when L is
of state complexity n, i.e.

sc⊗(n) = max{sc(⊗(L))|sc(L) = n}.

This can be generalized, and the state complexity of a k-ary operation ⊗ is
the k-ary function sc⊗ such that, for all (n1, . . . , nk) ∈ (N)k,

sc⊗(n1, . . . , nk) = max{sc(⊗(L1, . . . , Lk)) | for all i ∈ {1, . . . , k}, sc(Li) = ni}.

Then, a witness for ⊗ is a way to assign to each (n1, . . . , nk), where each ni is
assumed sufficiently big, a k-tuple of languages (L1, . . . , Lk) with sc(Li) = ni,
for all i ∈ {1, . . . , k}, satisfying sc⊗(n1, . . . , nk) = sc(⊗(L1, . . . , Lk)).

3 Modifiers and 1-uniform Operations

We describe a class of regular operations, called 1-uniform which are interesting
for the study of state complexity [3,5]. We then define operations on DFA called
modifiers, and describe a subset of these operations that correspond to the set
of 1-uniform regular operations.

3.1 Definition and First Properties

Definition 1. Let Σ and Γ be two alphabets. A morphism is a function φ from
Σ∗ to Γ ∗ such that, for all w, v ∈ Σ∗, φ(wv) = φ(w)φ(v). Notice that φ is
completely defined by its value on letters. A morphism φ is 1-uniform if the
image by φ of any letter is a letter.

The preimage φ−1(L) of a regular language L by a morphism φ is regular, see,
e.g., [9]. This allows us to introduce the notion of 1-uniform regular operation.

Definition 2. A k-ary regular operation ⊗ is 1-uniform if, for any k-tuple
of regular languages (L1, . . . , Lk), for any 1-uniform morphism φ, we have
⊗(φ−1(L1), . . . , φ−1(Lk)) = φ−1(⊗(L1, . . . , Lk)).

Obviously, 1-uniformity is stable by composition. Many well-known regular oper-
ations are 1-uniform. See [5] for a non-exhaustive list of examples like the com-
plement, the Kleene star, the reverse, the cyclic shift, and the mirror, all boolean
operations and catenation among others.

Each 1-uniform regular k-ary operation corresponds to a construction over
DFAs, which is handy when we need to compute the state complexity of its
elements. Such a construction on DFAs has some constraints that are described
in the following definitions.
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Definition 3. The state configuration of a DFA A = (Σ,Q, i, F, δ) is the triplet
(Q, i, F ).

Definition 4. A k-modifier is a k-ary operation acting on a k-tuple of DFAs
(A1, . . . , Ak), on the same alphabet Σ, and producing a DFA m(A1, ..., Ak) such
that

– its alphabet is Σ,
– its state configuration depends only on the state configurations of the DFAs

A1, . . . , Ak,
– for any letter a ∈ Σ, the transition function of a in m(A1, . . . , Ak) depends

only on the state configurations of the DFAs A1, . . . , Ak and on the transition
functions of a in each of the DFAs A1, ..., Ak.

Example 1. For any DFA A = (Σ,Q, i, F, δ), define Star(A) = (Σ, 2Q, ∅, {E|E∩
F 
= ∅} ∪ {∅}, δ1), where for any a ∈ Σ, δa1 (∅) = δa(i) if δa(i) /∈ F and δa1 (∅) =
δa(i) otherwise, and, for all E 
= ∅, δa1 (E) = δa(E) if δa(E) ∩ F = ∅ and
δa1 (E) = δa(E) ∪ {i} otherwise. The modifier Star describes a construcion on
DFA associated to the Star operation on languages, i.e. for all DFA A, L(A)∗ =
L(Star(A)).

Example 2. For any DFAs A = (Σ,Q1, i1, F1, δ1) and B = (Σ,Q2, i2, F2, δ2), let
Xor(A,B) = (Σ,Q1 ×Q2, (i1, i2), (F1 × (Q2 \F2)∪ (Q1 \F1)×F2), (δ1, δ2)). The
modifier Xor describes the classical construction associated to the symmetrical
difference, i.e for all DFAs A and B, L(A) ⊕ L(B) = L(Xor(A,B)).

Definition 5. A k-modifier m is 1-uniform if, for every pair of k-tuples of DFAs
(A1, . . . , Ak) and (B1, . . . , Bk) such that L(Aj) = L(Bj) for all j ∈ {1, . . . , k},
we have L(m(A1, . . . , Ak)) = L(m(B1, . . . , Bk)). In that case, there exists a reg-
ular operation ⊗m such that, for all k-tuples (A1, . . . , Ak) of DFAs, we have
⊗m(L(A1), . . . ,L(Ak)) = L(m(A1, . . . , Ak)). We say that m describes the opera-
tion ⊗m.

We easily check that, for modifiers, the 1-uniformity is stable by composition.

Claim. Let m1 and m2 be respectively a j-modifier and a k-modifier describing,
respectively, operations ⊗1 and ⊗2. The modifier m1 ◦p m2 describes ⊗1 ◦p ⊗2.

The correspondence between 1-uniform modifiers and 1-uniform operations
is stated in the following Theorem proved in [3].

Theorem 1. A k-ary operation ⊗ is 1-uniform if and only if there exists a
k-modifier m such that ⊗ = ⊗m.

Modifiers have been defined, for the first time, in [2] as a tool to compute state
complexity of 1-uniform operations.
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3.2 Functional Notations

When there is no ambiguity, for any character X and any integer k given by the
context, we write X for (X1, · · · , Xk). The number k will often be the arity of the
regular operation or of the modifier we are considering.

From Definition 4, any k-modifier m can be seen as a 4-tuple of mappings
(Q, i, f, d) acting on k DFAs A with Aj = (Σ,Qj , ij , Fj , δj) to build a DFA
mA = (Σ,Q, i, F, δ), where Q = Q(Q, i, F ), i = i(Q, i, F ), F = f(Q, i, F )
and ∀a ∈ Σ, δa = d(i, F , δa). For the sake of clarity, we do not write explicitly
the domains of the 4-tuple of mappings but the reader can derive them easily
from the above equalities. Notice that we do not need to point out explicitly
the dependency of d on Q because the information is already contained in δa.
We identify modifiers and such 4-tuples of mappings with each other. Below we
revisit the definition of Xor according to this formalism.

Example 3. Xor = (Q, i, f, d) where

Q((Q1, Q2), (i1, i2), (F1, F2)) = Q1 × Q2, i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, i2),
f((Q1, Q2), (i1, i2), (F1, F2)) = F1 × (Q2 \ F2) ∪ (Q1 \ F1) × F2,

d((i1, i2), (F1, F2), (δ1, δ2)) = (δ1, δ2).

4 Product Modifiers

In this section, we study a kind of simple modifier called product modifiers and
show that they are closely linked to boolean operations.

Definition 6. A k-modifier m = (Q, i, f, d) is a product modifier if, for any
k-tuple of finite sets Q, for any k-tuple of finite sets F such that Fj ⊆ Qj for all
j, and for any i ∈ Q1 × · · · × Qk

1. Q(Q, i, F ) = Q1 × · · · × Qk.
2. ∀a ∈ Σ, d(i, F , δa) = δa, with δa(q) = (δa1 (q1), δa2 (q2), ..., δak(qk)).

In other words, if m is a product modifier, then mA is the product automaton
of the Aj , but with final states f(Q, i, F ) and initial state i(Q, i, F ). Intuitively,
product modifiers do not change the transition functions of the automata they
act on, but seek only to change their final and initial states. We can easily check
that the class of product modifiers is stable by composition.

For the sake of simplicity, in this section, m denotes any k-ary product
(but not necessarily 1-uniform) modifier and A = (A1, . . . , Ak) any sequence
of k DFAs, with Aj = (Σ,Qj , ij , Fj , δj). Recall that i = (i1, . . . , ik), Q =
(Q1, . . . , Qk) and F = (F1, . . . , Fk). We also denote mA = (Σ,Q′, i′, F ′, δ).

We define the complementary product to get an easier access to the intersec-
tion of languages and their complement.

Definition 7. For any k-tuple P of finite sets, for any k-tuple G of finite sets
such that Gj ⊆ Pj for all j, and for any d ⊆ {1, 2, ..., k}, we define cp(d,G, P ) =
X1 × · · · × Xk, where Xi = Pi\Gi if i ∈ d and Xi = Gi otherwise.
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Example 4. cp({1, 3}, ({1}, {2, 3}, {2}), ({1, 2}, {1, 2, 3, 4}, {1, 2, 3})) = {2} ×
{2, 3} × {1, 3}.

Lemma 1. The set {cp(d, F ,Q) | d ⊆ {1, . . . , k}} is a partition of Q′.

Proof. Let d 
= d′ and suppose that there exists j ∈ d \ d′. For any element
q ∈ cp(d, F ,Q), we have qj 
∈ Fj and, for any element q′ ∈ cp(d′, F ,Q), we have
q′
j ∈ Fj . It follows that cp(d, F ,Q) ∩ cp(d′, F ,Q) = ∅.

Furthermore, consider an element q ∈ Q′ and set d = {j | qj 
∈ Fj}. Obvi-
ously, q ∈ cp(d, F ,Q). This proves our result. ��

The following lemma sets a restriction on the form of f on each of its entries,
given that i does not change the initial states in its entries.

Lemma 2. Assume i′ = i. If m is 1-uniform then there exists E ⊆ 2{1,2,...,k}

such that F ′ =
⋃

d∈E

cp(d, F ,Q).

Proof. Let us prove the contrapositive statement and assume that there is no
set E ⊆ 2{1,2,...,k} such that F ′ =

⋃

d∈E

cp(d, F ,Q). From Lemma 1, there exists

d ⊆ {1, 2, ..., k} such that F ′ ∩ cp(d, F ,Q) /∈ {∅, cp(d, F ,Q)}. Let d be such a set
and let G = cp(d, F ,Q). The idea of the proof is to construct, with the states
in G, two k-tuple of automata B and C that recognize the same languages, and
such that L(mB) and L(mC) are different.

We distinguish two cases :

• First, suppose that i ∈ G. If i ∈ F ′ then we choose j ∈ G\F ′, otherwise we
choose j ∈ G ∩ F ′. Consider the two k-tuples of DFAs B and C such that
Bl = ({a}, Ql, il, Fl, βl) and Cl = ({a}, Ql, il, Fl, γl), where, for all positive
integer l ≤ k, βa

l (il) = jl if x = il, βa
l (x) = x if x ∈ Qil \ {il}, and γa

l (x) = x,
for any x ∈ Qil . Let us remark that, as i, j ∈ G = cp(d, F ,Q), il and jl are
either both in Fl (if l /∈ d), or both not in Fl (if l ∈ d) by definition of cp.
Therefore, il and jl have the same finality in Bl, which is also their finality
in Cl, and either Bl and Cl recognize a∗, or Bl and Cl recognize ∅.
As described in Fig. 1, the transition functions β of mB and γ of mC satisfy
βa(i) = j and γa(i) = i.
The finality of i is the same in mB and mC. However, it is not the same
finality as j in mB and mC. Therefore, we have (a ∈ L(mB) ∧ a /∈ L(mC))
or (a /∈ L(mB) ∧ a ∈ L(mC)). As a consequence, L(mB) 
= L(mC) and this
implies that m is not 1-uniform.

• Suppose now that i /∈ G. Let j ∈ G\F ′, and let j′ ∈ G ∩ F ′. Consider
the two k-tuple of DFAs B and C such that Bl = ({a, b}, Ql, il, Fl, βl) and
Cl = ({a, b}, Ql, il, Fl, γl), where, for all letters u ∈ {a, b}, for all positive
integer l ≤ k and all x ∈ Ql,

βu
l (x) =

⎧
⎨

⎩

jl if x = il ∧ u = a
j′
l if x = jl ∧ u = b

x otherwise.
and γu

l (x) =

⎧
⎨

⎩

j′
l if x = il ∧ u = a

jl if x = j′
l ∧ u = b

x otherwise.
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Fig. 1. Part of mB and mC.

Fig. 2. Parts of Bl and Cl.

For any positive integer l ≤ k, Bl and Cl recognize the same language. Indeed,
from Fig. 2, as j, j′ ∈ G = cp(d, F ,Q), jl and j′

l have the same finality in Bl and
Cl by definition of cp, we distinguish the cases :

– il ∈ Fl and jl ∈ Fl. L(Bl) = L(Cl) = (a + b)∗
– il ∈ Fl and jl /∈ Fl. L(Bl) = L(Cl) = b∗
– il /∈ Fl and jl ∈ Fl. L(Bl) = L(Cl) = b∗a(a + b)∗
– il /∈ Fl and jl /∈ Fl. L(Bl) = L(Cl) = ∅
As mB and mC are cartesian products of the Bl and the Cl respectively, if we
call β the transition function of mB and γ the transition function of mC, we
have βa(i) = j, βb(j) = j′, γa(i) = j′, and γb(j′) = j.

The finality of j is the same in mB and mC. However, it is different from the
finality of j′ in mB and mC. Therefore, we have (ab ∈ L(mB) ∧ ab /∈ L(mC)) or
(ab /∈ L(mB) ∧ ab ∈ L(mC)). As a consequence, L(mB) 
= L(mC) which implies
that m is not 1-uniform. ��

The following two lemmas state that, for product modifiers, we can set i′ = i
without changing the regular operation associated to m.

Lemma 3. If m is 1-uniform then i′ and i have the same finality.

Proof. Let us prove the contrapositive of our statement. Assume that i′ and
i do not have the same finality, i.e. (i /∈ F ′ ∧ i′ ∈ F ′) or (i ∈ F ′ ∧ i′ /∈ F ′).
Consider the two k-tuples of DFAs B and C such that Bl = ({a}, Ql, il, Fl, βl)
and Cl = ({a}, Ql, il, Fl, γl), where, for any l ∈ {1, . . . , k}, βa

l (i′l) = il, βa
l (q) = q

when q 
= i′l and γa
l (q) = q. Let us remark that Bl and Cl recognize {a}∗ if

il ∈ Fl, and ∅ otherwise. In any case, they recognize the same language.
If we denote by β the transition function of mB and by γ the transition

function of mC, we have βa(i′) = i and γa(i′) = i′. Recall that i′ is the initial
state of mB and mC. Since i and i′ do not have the same finality, the word a
belongs to one of the languages L(mB) or L(mC) but not both (see Fig. 3). Hence
the two automata do not recognize the same language and, as a consequence, m
is not 1-uniform. ��



A Study of a Simple Class of Modifiers: Product Modifiers 117

Fig. 3. Part of mB and mC.

We define an equivalence relation on states of the output of product modifiers
whose relationship with the finality of states is examined in Lemma 4.

Definition 8. Let j and j′ be two k-tuples. We define the equivalence relation
∼j,j′ on k-tuples by (x1, . . . , xk) ∼j,j′ (y1, . . . , yk) if and only if for all l ∈
{1, . . . , k}, jl = j′

l implies xl = yl.

Example 5. We have (3, 3, 2, 5, 1) ∼(1,4,3,2,3),(2,4,2,2,6) (1, 3, 5, 5, 2).
We do not have (3, 3, 2, 5, 1) ∼(1,4,3,2,3),(2,4,2,2,6) (1, 3, 5, 1, 2) .

Lemma 4. If m is 1-uniform then L(mA) = L((Σ,Q′, i, F ′, δ)).

Proof. One has to investigate the two complementary cases:

• There exists two states q ∈ F ′, q′ ∈ Q′ \ F ′ such that q ∼i,i′ q′.
In this case we prove that i = i′, in other words mA = (Σ,Q′, i, F ′, δ). Let
us show the contrapositive of the property. Suppose i 
= i′. We have to show
that m is not 1-uniform. By Lemma 3, i ∈ F ′ ∧ i′ ∈ F ′ or i /∈ F ′ ∧ i′ /∈ F ′.
Consider the two k-tuples of DFAs B and C such that Bl = ({a}, Ql, il, Fl, βl)
and Cl = ({a}, Ql, il, Fl, γl), where for all l ∈ {1, . . . , k} and all q ∈ Ql,

βa
l (q) =

{
ql if q = i′l
q otherwise and γa

l (q) =
{

q′
l if q = i′l

q otherwise.

Let us remark that either i′l = il, which implies ql = q′
l, and Bl = Cl, or i′l 
= il,

and Bl and Cl recognize {a}∗ if il ∈ Fl and ∅ otherwise. In any case, they
recognize the same language. Recall that β is the transition function of mB
and γ is the transition function of mC. We have βa(i′) = q and γa(i′) = q′.
Thus we have a ∈ L(mB) and a /∈ L(mC). Therefore, L(mB) 
= L(mC) and
m is not 1-uniform.

• For any two states q, q′ ∈ Q′, q ∼i,i′ q′ implies that q and q′ have the same
finality.

First, for any letter a ∈ Σ, any two states q, q′ ∈ Q′, the equivalence q ∼i,i′ q′

implies

δa(q) = (δa1 (q1), δa2 (q2), . . . , δak(qk)) ∼i,i′ (δa1 (q′
1), δ

a
2 (q′

2), . . . , δ
a
k(q′

k)) = δa(q′).

This property extends inductively to any word w ∈ Σ∗, i.e. q ∼i,i′ q′ implies
δw(q) ∼i,i′ δw(q′). In particular, applying this to q = i and q′ = i′, we have
δw(i′) ∈ F ′ if and only if δw(i) ∈ F ′. As a direct consequence, the languages
recognized by the two automata are the same. ��
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From Lemma 4, one can assume without loss of generality that i = i′. Hence,
applying Lemma 2, we obtain

Corollary 1. If m is 1-uniform then there exists E ⊆ 2{1,2,...,k} such that F ′ =⋃

d∈E

cp(d, F ,Q).

5 Quasi-boolean Operations

Before stating our main result, we need to clarify what is meant by a boolean oper-
ation. A boolean operation is an operation associated to an expression involving
only the operators union, intersection and complement. It is well known that
such an expression is equivalent to one written as a union of intersection of
languages or their complement. More formally,

Definition 9. A k-ary boolean operation ⊗ over regular languages L1, . . . , Lk

is defined as

⊗L =
⋃

d∈E

⎛

⎝
⋂

i∈d

Li ∩
⋂

i�∈d

Li
c

⎞

⎠ ,

for some E ⊆ 2{1,...,k}. Notice that there is a one-to-one correspondence between
the boolean k-ary operations and the sets E ⊆ 2{1,...,k}. So we denote E⊗ = E.

Example 6. The classical boolean operation union can be written this way: for
any two regular languages L1 and L2,

L1 ∪ L2 = (L1 ∩ L2
c) ∪ (L1 ∩ L2) ∪ (L1

c ∩ L2) =
⋃

d∈E

⎛

⎝
⋂

i∈d

Li ∩
⋂

i�∈d

Li
c

⎞

⎠ ,

with E = {{1}, {2}, {1, 2}}.

We easily check that boolean operations are 1-uniform and can be associated to
some product modifiers. More formally,

Lemma 5. Assume that ⊗ is a k-ary boolean operation. Then ⊗ = ⊗m, where
m = (Q, i, f, d) is a product modifier such that i(Q, i, F ) = i and

f(Q, i, F ) =
⋃

d∈E⊗

cp(d, F ,Q).

From Definition 9, we construct a wider class of operators that we prove to
be in correspondence with product modifiers.

Definition 10. For any k-ary regular operation ⊗, for any v ∈ {0, 1}k, we
denote by ⊗v the restriction of ⊗ to the set

Lv = {(L1, . . . , Lk) | ∀i ∈ {1, . . . , k}, Li is regular and vi = 0 ⇔ ε ∈ Li} .

We say that ⊗ is a k-ary quasi-boolean operation if for all v ∈ {0, 1}k, ⊗v is
a boolean operation, i.e. for any v, there exists a boolean operation ⊗1 such that
for any L ∈ Lv we have ⊗1L = ⊗vL.
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Example 7. Consider the unary operator defined by ⊗L = L if ε ∈ L and Lc

otherwise. This operation is clearly not boolean. Nevertheless, since for each
L ∈ L(0) we have ⊗L = L and for each L ∈ L(1) we have ⊗L = Lc, the
operation ⊗ is quasi-boolean.

These operations do not have a higher state complexity than boolean operations,
as we show in the following statement.

Proposition 1. For any quasi-boolean k-ary operation ⊗, we have

sc⊗(n1, . . . , nk) ≤ n1 · · · nk.

Proof. Lemma 5 implies that sc⊗(n1, . . . , nk) ≤ n1 · · · nk for any boolean oper-
ation ⊗. We we prove our statement, by remarking that, for any quasi-boolean
operation ⊗, we have sc⊗(n1, . . . , nk) ≤ max{sc⊗v (n1, . . . , nk) | v ∈ {0, 1}k}. ��

We now introduce our main result that characterizes the operations encoded
by 1-uniform product modifiers.

Theorem 2. An operation ⊗ is quasi-boolean if and only if there exists a 1-
uniform product modifier m such that ⊗ = ⊗m.

Proof. Let ⊗ be a k-ary quasi-boolean operation. We construct a modifier m
such that ⊗ = ⊗m as follows. We consider the product modifier m = (Q, i, f, d)
such that i(Q, i, F ) = i and,

f(Q, i, F ) =
⋃

d∈E⊗v

cp(d, F ,Q),

where v ∈ {0, 1}k is such that vj = 0 if and only if ij ∈ Fj .
Let L ∈ Lv for some v ∈ {0, 1}k . For any k-tuple of DFAs A such that

Aj = (Σ,Qj , ij , Fj , δj) recognizes Lj , we have ij ∈ Fj if and only if vj = 0.
From Lemma 5, one has L(mA) = ⊗vL. Hence, m is 1 − uniform and ⊗ = ⊗m.

Now, we prove the converse. Let ⊗ be a regular operation such that there
exists a 1-uniform product modifier m satisfying ⊗m = ⊗. We use a reductio ad
absurdum argument by assuming that ⊗ is not quasi-boolean. Let v ∈ {0, 1}k
be such that ⊗v is not a boolean operation. Let A be a k-tuple of DFAs
with Al = (Σ,Ql, il, Fl, αl) such that (L(A1), . . . ,L(Ak)) ∈ Lv. Furthermore,
we assume that for all l ∈ {1, . . . , k}, Fl /∈ {∅, Ql}. By Corollary 1, there
exists E ⊆ 2{1,2,...,k} such that F = f(Q, i, F ) =

⋃

d∈E

cp(d, F ,Q). There-

fore, mA =
⋃

d∈E

(
⋂

l∈d

L(Al) ∩ ⋂

l∈{1,2,...,k}\d
L(Al)c

)

which is obviously a boolean

operation applied to (L(A1), . . . ,L(Ak)). Since ⊗v is not a boolean operation,
there exists A′, with A′

l = (Σ′, Q′
l, i

′
l, F

′
l , α

′
l), a k-tuple of DFAs such that

(L(A′
1), . . . ,L(A′

k)) ∈ Lv and mA′ 
= ⋃

d∈E

(
⋂

l∈d

L(A′
l) ∩ ⋂

l∈{1,2,...,k}\d
L(A′

l)
c

)

. We
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construct new k-tuples of DFAs B and B′ such that L(Bl) = L(B′
l) but such

that L(mB) 
= L(mB′), contradicting the 1-uniformity of m. By Corollary 1,
there exists H ⊆ 2{1,...,k} such that F ′ = f(Q′, i′, F ′) =

⋃

d∈H

cp(d, F ′, Q′).

We have to examine two cases. Either there exists p′ ∈ F ′ such that p′ /∈
⋃

d∈E

cp(d, F ′, Q′), or there exists p′ ∈ ⋃

d∈E

cp(d, F ′, Q′) such that p′ /∈ F ′. We

only describe the first case, as the other one is treated symmetrically. Therefore,
Lemma 1 implies that there exists d ∈ H \ E such that p′ ∈ cp(d, F ′, Q′). Let
p ∈ cp(d, F ,Q). Notice that p 
∈ F while each pl has the same finality in Bl as
p′
l in B′

l. Also remark that, as (L(A1), . . . ,L(Ak)) and (L(A′
1), . . . ,L(A′

k)) are in
Lv, for all l ∈ {1, . . . , k}, vl = 0 implies il ∈ Fl and i′l ∈ F ′

l , and vl = 1 implies
il /∈ Fl and i′l /∈ F ′

l .
Now consider the two k-tuples of DFAs B and B′ such that Bl =

({a}, Ql, il, Fl, βl) and B′
l = ({a}, Q′

l, i
′
l, F

′
l , β

′
l), where βl and β′

l are defined,
for all positive integer l ≤ k and all (q, q′) ∈ Ql × Q′

l, by :

βa
l (q) =

{
pl if q = il
q otherwise. and β′a

l (q′) =
{

p′
l if q′ = i′l

q′ otherwise.

We notice that, for all l ∈ {1, . . . , k}, Bl and B′
l recognize the same language

Ll. Indeed, since il and i′l have the same finality and pl and p′
l have the same

finality, one has to examine four cases which are summarized in Table 1.
Furthermore, we have βa(i) = p 
∈ F , and β′a(i′) = p′ ∈ F ′, which means

that a 
∈ L(mB) and a ∈ L(mB′), which contradicts the 1-uniformity of m. ��

Table 1. Common values of L(Bl) and L(B′
l).

L(Bl) = L(B′
l) il ∈ Fl il �∈ Fl

pl ∈ Fl {a∗} {a}+

pl �∈ Fl {ε} ∅

6 Conclusion

We have shown that some very simple modifiers, namely product modifiers,
encode a class of very low state complexity operations. This is a non-trivial
example of a set of modifiers closed by composition whose associated regular
operations are completely described. The proof techniques open perspectives to
explore other classes of modifiers closed by composition. The aim for our future
works is to establish a kind of atlas, as complete as possible, of the set of modifiers
in relation to the theory of state complexity.
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Abstract. We investigate the class of languages recognized by permu-
tation deterministic finite automata. Using automata constructions and
some properties of permutation automata, we show that this class is
closed under Boolean operations, reversal, and quotients, and it is not
closed under concatenation, power, Kleene closure, positive closure, cut,
shuffle, cyclic shift, and permutation. We prove that the state complex-
ity of Boolean operations, Kleene closure, positive closure, and right
quotient on permutation languages is the same as in the general case of
regular languages. Next, we get the tight upper bounds on the state com-
plexity of concatenation (m2n − 2n−1 − m + 1), square (n2n−1 − 2n−2),
reversal (

(
n

�n/2�
)
), and left quotient (

(
m

�m/2�
)
; tight if m ≤ n). All our

witnesses are unary or binary, and the binary alphabet is always opti-
mal, except for Boolean operations in the case of gcd(m, n) = 1. In the
unary case, the state complexity of all considered operations is the same
as for regular languages, except for quotients and cut. In case of quo-
tients, it is min{m, n}, and in case of cut, it is either 2m − 1 or 2m − 2,
depending on whether there exists an integer � with 2 ≤ � ≤ n such
that m mod � �= 0.

1 Introduction

A deterministic finite automaton (DFA) is said to be a permutation DFA if every
input symbol induces a permutation on the state set. A language recognized by
a permutation DFA is called a permutation language. The class of permutation
languages has been introduced by Thierrin [22] who also proved some closure
properties of this class using cancellative congruences. The aim of this paper is
to study this class in detail, including the operational state complexity.

The state complexity of a regular operation is the number of states sufficient
and necessary in the worst case for a DFA to accept the language resulting
from the operation, considered as a function of the numbers of states in DFAs
for operands. The state complexity of basic regular operations was given by
Maslov [15] and Yu et al. [23].
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If the operands of an operation belong to some subclass of regular languages,
then the complexity of this operation may be significantly smaller than in the
general case. The operational state complexity in several subclasses of regular
languages has been studied in the literature. Câmpeanu et al. [6] considered
finite languages, Han and Salomaa [8,9] investigated prefix-free and suffix-free
languages, and Brzozowski et al. [3,4] examined ideal and closed languages. The
classes of co-finite, star-free, union-free, and unary languages have been studied
as well [1,5,13,18].

In this paper, we first study closure properties of the class of permutation
languages. We provide alternative proofs to those in [22]; our proofs use automata
constructions and properties of permutation DFAs. Moreover, we prove that
permutation languages are not closed under power, positive closure, cut, shuffle,
cyclic shift, and permutation. Then we study the operational state complexity
in the class of permutation languages. For each considered operation, we obtain
tight upper bounds on its state complexity. Our witnesses are defined over unary
or binary alphabets. In the case of left and right quotients, we need m ≤ n to
prove tightness.

2 Preliminaries

We assume that the reader is familiar with the backgrounds in formal languages
and automata theory. For details, the reader may refer to [11,21].

For a rational number r, we denote the set {i ∈ Z | 0 ≤ i < r} by r. For
example, we have 3 = {0, 1, 2}, and for an integer n we have n = {0, 1, . . . , n−1}.
Next, we have 7

2 = {0, 1, 2, 3} and n
2 = {0, 1, . . . , �n

2 � − 1}. For a finite set S, its
size is denoted by |S|, and its power-set by 2S .

Let Σ be a non-empty alphabet of symbols. Then Σ∗ denotes the set of all
strings over Σ including the empty string ε. A language is any subset of Σ∗.

Given two languages K and L over Σ, the complement of L is the language
Lc = Σ∗\L, and the operations of intersection, union, difference, and symmetric
difference are defined as standard set operations. The concatenation of K and L
is KL = {uv | u ∈ K and v ∈ L}. The k-th power of L is defined as L0 = {ε}
and Lk = LLk−1 if k ≥ 1. The second power is called square. The Kleene
closure of L is L∗ =

⋃
i≥0 Li. The positive closure of L is L+ =

⋃
i≥1 Li. The

right quotient of K by L is KL−1 = {w | wx ∈ K for some x in L}. The left quo-
tient of K by L is L−1K = {w | xw ∈ K for some x in L}. The cut of K and L
is K ! L = {uv | u ∈ K, v ∈ L, and uv′ /∈ K for every non-empty prefix v′ of v}.
The shuffle of K and L is K � L = {u0v1u1 · · · vkuk | u0u1 · · · uk ∈ K and
v1v2 · · · vk ∈ L}. The cyclic shift of L is shift(L) = {uv | vu ∈ L}. The permu-
tation of L is per(L) = {w | ψ(w) = ψ(v) for some v in L} where ψ(w) is the
Parikh vector of w.

A nondeterministic finite automaton with multiple initial states (MNFA) is
a quintuple M = (Q,Σ, ·, I, F ) where Q is a finite non-empty set of states, Σ is
a non-empty alphabet of input symbols, I ⊆ Q is the set of initial states, F ⊆ Q
is the set of final states, and · : Q × Σ → 2Q is the transition function which is
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naturally extended to the domain 2Q ×Σ∗. For a state q, a set S, and a string w,
we write qw and Sw instead of q ·w and S ·w if it does not cause any confusion.
The language accepted by M is the set L(M) = {w ∈ Σ∗ | Iw ∩ F 
= ∅}.

For states p and q and a symbol a, we write that M has a transition (p, a, q)
if q ∈ pa. We also say that p has an out-transition on a and q has an in-transition
on a. A state q is called a sink state if it has the transition (q, a, q) for each input
symbol a and no other out-transitions. To omit a state means to remove it from
the set of states and to remove all its in-transitions and out-transitions from the
transition function.

The reverse of an MNFA M is the MNFA MR obtained from M by reverting
all transitions and swapping the role of initial and final states. A subset S of Q
is reachable in M if S = Iw for some string w, and it is co-reachable in M if it
is reachable in MR.

If |I| = 1, we say that M is a nondeterministic finite automaton (NFA) and
write (Q,Σ, ·, s, F ) instead of (Q,Σ, ·, {s}, F ).

An NFA (Q,Σ, ·, s, F ) is called deterministic (DFA) if |qa| = 1 for each
state q and each symbol a. Similarly, an MNFA with this property is said to be
an MDFA. We write pa = q instead of pa = {q} and use the notation p

a−→ q.
A DFA is minimal if its language cannot be accepted by any smaller DFA (with
respect to number of states). It is well known that a DFA is minimal if and only
if all its states are reachable and pairwise distinguishable. The state complexity
of a language L, sc(L), is the number of states in a minimal DFA accepting L.

Every MNFA M = (Q,Σ, ·, I, F ) can be converted to an equivalent deter-
ministic finite automaton D(M) = (2Q, Σ, ·, I, {S | S ∩ F 
= ∅}) [19]. This DFA
is called the subset automaton of M . The DFA D(M) may not be minimal since
some of its states may be unreachable or equivalent to other states. To prove
distinguishability of states in subset automata, we use the following observation.

Lemma 1 ([12, Lemma 1]). If for each state q of an MNFA M , the singleton
set {q} is co-reachable in M , then all states of the subset automaton D(M) are
pairwise distinguishable.

To prove minimality of unary DFAs, we use the following lemma.

Lemma 2 ([16, Lemma 1]). A unary DFA (n, {a}, ·, 0, F ) with i · a = i + 1
for i = 0, 1, . . . , n − 2 and (n − 1) · a = k for some k in n is minimal if and only
if the two following conditions hold:

(1) its loop (the DFA obtained by omitting states in k and making k the initial
state) is minimal,

(2) if k 
= 0, then the states k − 1 and n − 1 do not have the same finality.

A DFA A = (Q,Σ, ·, s, F ) is said to be a permutation DFA if for each p, q ∈ Q
and each a ∈ Σ, p · a = q · a implies that p = q. A language is said to be a
permutation language if it is recognized by a permutation DFA.

In a permutation DFA, each input symbol a induces a permutation on Q,
namely q �→ q · a. To describe transitions in permutation automata, we use the
following notation. The formula a : (p1, p2, . . . , pk) denotes that pi · a = pi+1
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for i = 1, 2, . . . , k − 1, pk · a = p1, and q · a = q if q 
= pi for i = 1, 2, . . . , k. For
example, we denote the maximal cyclic permutation on n by (0, 1, . . . , n−1), the
transposition of 0 and 1 by (0, 1), and the identity by (0). The next observation
shows that a language is a permutation language if and only if its minimal DFA
is a permutation DFA.

Proposition 3. Let A be a permutation DFA. Then the minimal DFA equiva-
lent to A is a permutation DFA.

Proof. Assume that a permutation DFA A = (QA, Σ, ·, sA, FA) is equivalent
to a minimal DFA B = (QB , Σ, ◦, sB , FB) which is not a permutation DFA.
Then there exist two distinct states p and q in B and an input symbol a in Σ
such that p ◦ a = q ◦ a. Since B is minimal, the states p and q are reachable
from sB by some strings u and v, respectively. Let p′ = sA · u and q′ = sA · v
be the corresponding states in A. Since B is minimal, the states p and q are not
equivalent, and therefore also p′ and q′ are not equivalent. However, p′ ·a and q′ ·a
are equivalent since p ◦ a = q ◦ a. Moreover, for every positive i, the states p′ · ai

and q′ · ai are equivalent as well. Since A is a permutation DFA, there exist
positive integers k and � such that p′ · ak = p′ and q′ · a� = q′. Then p′ · ak� = p′

and q′ · ak� = q′. It follows that p′ and q′ are equivalent, a contradiction. ��
Notice that the converse does not hold; for example, the minimal unary DFA

for a∗ is a permutation DFA, however, this language is accepted by the two-state
DFA (2, {a}, ·, 0,2) with 0 ·a = 1 and 1 ·a = 1 which is not a permutation DFA.
We use the following corollary of Proposition 3 without citing it.

Corollary 4. A language L is a permutation language if and only if the minimal
DFA accepting L is a permutation DFA.

Lemma 5. If a DFA A has a reachable sink state and L(A) /∈ {∅, Σ∗}, then
L(A) is not a permutation language.

Proof. Let A have a reachable sink state. Let B be the minimal DFA for L(A).
Then B must have a reachable sink state d. Since L(A) /∈ {∅, Σ∗}, the state d
is reached from some other reachable state q by a symbol a. Then q · a = d · a,
hence B is not a permutation automaton, and the lemma follows. ��

A MDFA (Q,Σ, ·, I, F ) is said to be a permutation MDFA if each input
symbol a in Σ induces a permutation on Q.

Lemma 6. Every language recognized by a permutation MDFA is a permutation
language.

Proof. Let M = (Q,Σ, ·, I, F ) be a permutation MDFA. Let us show that the
subset automaton D(M) is a permutation DFA. Let S and T be subsets of Q
and assume that Sa = Ta. Since M is a permutation automaton, we have |S| =
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|Sa| = |Ta| = |T |. If Sa is empty, then S and T are empty as well. Otherwise,
let |Sa| = k and let Sa = {p1, p2, . . . , pk}. For each pi in Sa there is a state si

in S and a state ti in T such that si · a = pi = ti · a. This means that si = ti.
Moreover, if i 
= j, then pi 
= pj , and therefore si 
= sj and ti 
= tj since M is a
permutation MDFA. It follows that S = {s1, s2, . . . , sk} = {t1, t2, . . . , tk} = T ,
so the subset automaton D(M) is a permutation DFA. ��
Lemma 7. Let M be an n-state permutation MDFA. Then L(M) is accepted by
a permutation DFA with at most

(
n

�n/2�
)

states. This bound is met by permutation
MDFA M = (n, {a, b}, ·, n

2 , {0}) with a : (0, 1, . . . , n − 1) and b : (0, 1).

Proof. Let M = (Q,Σ, ·, I, F ) be a permutation MDFA. Let |I| = k. Then each
reachable set in the subset automaton D(M) is of size k. Hence D(M) has at
most

(
n
k

)
states. Since

(
n
k

) ≤ (
n

�n/2�
)
, we get our upper bound. Let us show that

this upper bound is met by the MDFA M from the statement of the lemma.
Since a and b are generators of the symmetric group, and the symmetric group
acts transitively on all subsets of given fixed size, each subset of n of size �n/2�
is reachable in the subset automaton D(M) from the initial subset. Since each
singleton set {i} is co-reachable in M via a string in a∗, all states in D(M) are
pairwise distinguishable by Lemma 1. This gives our lower bound. ��

3 Closure Properties of Permutation Languages

In this section, we study the closure properties of the class of permutation lan-
guages. The results for Boolean operations, concatenation, Kleene closure, rever-
sal, and quotients have been already obtained by Thierrin [22] using cancellative
congruences; here we provide alternative proofs using automata constructions
and properties of permutation automata. Moreover, we consider the operations
of power, positive closure, cut, shuffle, cyclic shift, and permutation.

Theorem 8 (Closure Properties). The class of permutation languages is
closed under complementation, intersection, union, difference, symmetric differ-
ence, reversal, right and left quotient, and it is not closed under concatenation,
cut, shuffle, power, Kleene and positive closure, cyclic shift, and permutation.

Proof. (a) Let K and L be accepted by permutation DFAs A and B, respectively.
The language Lc is accepted by a DFA with the same transitions as in B, hence it
is a permutation language. Next, intersection, union, difference, and symmetric
difference are accepted by a product automaton with appropriately defined final
states. The resulting product automaton is a permutation DFA. The language LR

is accepted by a permutation MDFA obtained from B by reversing all transitions
and by swapping the roles of initial and final states, and it is a permutation
language by Lemma 6. If A = (Q,Σ, ·, s, F ), then the right quotient KL−1 is
accepted by a permutation DFA obtained from A by making all states in the
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set {q | q · w ∈ F for some w in L} final. The left quotient L−1K is accepted by
a permutation MDFA obtained from A by making all states in {s · w | w ∈ L}
initial, so it is a permutation language by Lemma 6.

(b) Let k ≥ 2 and K = L = a(aa)∗. Then K and L are unary permutation
languages and we have KL = K ! L = K � L = aa(aa)∗ and Lk = ak(aa)∗,
which are not permutation languages.

(c) Let L = aa(aaa)∗. Then L is a unary permutation language and we
have L∗ = {ε, aa}∪a4a∗ and L+ = {aa}∪a4a∗, which are co-finite and different
from a∗. By Lemma 5, they are not permutation languages.

(d) Let A = (3, {a, b}, ·, 0, {0, 2}) be a permutation DFA with a : (0, 1, 2)
and b : (0, 1). Construct an MNFA with ε-transitions for shift(L(A)) as described
in [14, p. 340]. In the corresponding subset automaton, the initial subset
is I = {q00, q11, q22, p00, p20}, and we have Ib = {q01, q10, q22, p01, p10, p20, p21}
and Iba = {q02, q11, q20, p00, p02, p11, p20, p21, p22}. Notice that the set Ib is not
final and Iba ⊇ {p20, p21, p22}. The transitions on states p20, p21, p22 are the
same as in A, so a and b perform permutations on these three states. This means
that Iba · w is always a superset of {p20, p21, p22} and therefore each string is
accepted from the final state Iba. Hence Iba is equivalent to a final sink state,
which means that the minimal DFA for shift(L(A)) has a reachable final sink
state. By Lemma 5, shift(L(A)) is not a permutation language.

(e) Let A = (3, {a, b}, ·, 0, {2}) be a permutation DFA with a : (0, 1), b : (1, 2).
The language per(L(A)) consists of strings which have at least one a and at
least one b; notice that A has loops (0, b, 0) and (2, a, 2). It is accepted by the
DFA (4, {a, b}, ◦, 0, {3}) with the transitions (0, a, 1), (0, b, 2), (1, a, 1), (1, b, 3),
(2, a, 3), (2, b, 2), (3, a, 3), and (3, b, 3) which has a reachable sink state 3. Hence
per(L(A)) is not a permutation language by Lemma 5. ��

4 State Complexity of Operations on Permutation
Languages

In this section, we study the state complexity of operations on permutation
languages. Let us start with Boolean operations.

Theorem 9 (Boolean Operations). Let m,n ≥ 3. Let K and L be languages
accepted by permutation DFAs with m and n states, respectively. Then we have
sc(K ∪L), sc(K ∩L), sc(K \L), sc(K ⊕L) ≤ mn, and these upper bounds are met
by binary permutation languages. Moreover, if gcd(m,n) = 1, then these bounds
are met by unary permutation languages.

Proof. The upper bound mn is the same as for regular languages and it
is met by binary permutation languages K = {w ∈ {a, b}∗ | |w|a = 0 mod m}
and L = {w ∈ {a, b}∗ | |w|b = 0 mod n} by [13, Theorem 8(1-4)]. In the unary
case, the permutation languages (am)∗ and (an)∗ meet the upper bound for all
four operations whenever gcd(m,n) = 1; distinguishability in the mn-state cyclic
DFA can be proved by using the Chinese Remainder Theorem. ��
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We continue with concatenation, power, Kleene and positive closure, and
reversal. We first consider the unary case, then we deal with a general alphabet.

Theorem 10 (Basic Operations: Unary Case). Let m,n ≥ 2. Let K and L
be unary languages accepted by permutation DFAs with m and n states, respec-
tively. Then

(a) sc(KL) = sc(K � L) ≤ mn, and this bound is tight if gcd(m,n) = 1;
(b) sc(Lk) ≤ k(n − 1) + 1, and this bound is tight;
(c) sc(L+), sc(L∗) ≤ (n − 1)2 + 1, and this bound is tight;
(d) sc(LR) ≤ n, and this bound is tight.

Proof. (a) In the case of unary languages, we have KL = K � L, and the
upper bound mn follows from [23, Theorem 5.5]. For tightness in the case
when gcd(m,n) = 1, consider the unary permutation languages K = am−1(am)∗

and L = an−1(an)∗. Then sc(KL) = mn by [23, Theorem 5.4].
(b) The upper bound is the same as for regular languages [20, Theorem 3],

and it is met by the permutation language an−1(an)∗ [20, Proof of Theorem 4].
(c) Let A = (Q, {a}, ·, s, F ) be a permutation DFA for L. If F = {s},

then L+ = L∗ = L, and sc(L+) = sc(L∗) ≤ n. Otherwise, if L is empty, then the
upper bound follows since n ≥ 2. Let L be non-empty and F 
= {s}. We construct
an n-state NFA for L+ by adding the transitions (q, a, s) whenever q · a ∈ F . In
the corresponding subset automaton, the initial subset is {s} and there exists an
integer t such that t ≤ n−1 and |{s} ·at| ≥ 2. Since A is a cyclic unary DFA, we
cannot reach the singleton set {s} from any other state of the subset automaton.
It follows that to get a DFA for L∗, we only need to mark the initial state {s}
as final. It is shown in [23, Proof of Theorem 5.3] that the subset automaton
for L+ has at most (n − 1)2 + 1 reachable states, and that this upper bound is
met by the permutation language (aa)∗ if n = 2 and an−1(an)∗ if n ≥ 3.

(d) The upper bound n is met by the permutation language (an)∗. ��
Theorem 11 (Basic Operations: General Case). Let m,n ≥ 2. Let K
and L be languages accepted by permutation DFAs with m and n states. Then

(a) sc(KL) ≤ m2n − 2n−1 − m + 1,
(b) sc(L2) ≤ n2n−1 − 2n−2,
(c) sc(L+) ≤ 2n−1 + 2n−2 − 1 and sc(L∗) ≤ 2n−1 + 2n−2,
(d) sc(LR) ≤ (

n
�n/2�

)
,

and these bounds are met by binary witnesses and the binary alphabet is optimal.

Proof. (a) If K = ∅ or L = ∅, then KL = ∅. Otherwise, let K and L be accepted
by permutation DFAs A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB)
with QA ∩ QB = ∅, |QA| = m, |QB | = n, |FA| = k ≥ 1, and |FB | ≥ 1. Then KL
is accepted by an MNFA (QA ∪ QB , Σ, ·, I, FB) where I = {sA} if sA /∈ FA

and I = {sA, sB} otherwise, and the transition function · contains all transitions
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of ·A and ·B and moreover the transitions (q, a, sB) whenever q ·A a ∈ FA. In the
corresponding subset automaton, only the states of the form {q}∪S with q ∈ QA

and S ⊆ QB are reachable; denote such a state by (q, S). Moreover, if q ∈ FA,
then sB ∈ S. Next, since B is a permutation automaton, we have QB · w = QB

for every string w in Σ∗. It follows that every string is accepted from (p,QB)
for each p in QA, and all these m states are equivalent to each other. This gives
the upper bound (m − k)2n + k2n−1 − m + 1 ≤ m2n − 2n−1 − m + 1.

For tightness, consider the permutation DFAs A = (m, {a, b}, ·A, 0, {m − 1})
with a : (0, 1, . . . ,m− 1) and b : (0) and B = (n, {a, b}, ·B , 0, {n− 1}) with a : (0)
and b : (0, 1, . . . , n − 1). Notice that in A, the symbol a induces the maximal
cyclic permutation while b is an identity, and the transitions in B are symmetric.
Construct an NFA for L(A)L(B) as described above. Let us show by induction
on |S| that each state (i, S) with i = 0, 1, . . . ,m − 2 and each state (m − 1, S)
with 0 ∈ S is reachable in the corresponding subset automaton. The base case,
|S| = 0, holds true since for every i with 1 ≤ i ≤ m−2, the state (i, ∅) is reached
from the initial state (0, ∅) by ai. Now assume that our claim holds for each S′

with |S′| = k. Let |S| = k + 1. Consider three cases:

(1) i = m − 1. Then we must have 0 ∈ S. Take S′ = S \ {0}. Then (m − 2, S′)
is reachable by the induction hypothesis and it is sent to (m − 1, S) by a.

(2) 0 ≤ i ≤ m − 2 and 0 ∈ S. Then the set (m − 1, S) is reachable as shown in
case (1) and it is sent to (i, S) by ai+1.

(3) 0 ≤ i ≤ m−2 and 0 /∈ S. Take S′ = {s − min S | s ∈ S}. Then 0 ∈ S′, so the
set (i, S′) is reachable as shown in case (2) and it is sent to (i, S) by bminS .

Now we prove distinguishability. Each state (i,n) is equivalent to a final
sink state. Consider a state (i, S) with S 
= n. Let s /∈ S. Then bn−1−s is
rejected from (i, S), so (i, S) is not equivalent to a final sink state. Let (i, S)
and (j, T ) be two distinct states of the subset automaton with S, T 
= n. First
let S 
= T , and without loss of generality, let s ∈ S \ T . Then the string bn−1−s

is accepted from S and it is rejected from T . Now let S = T , and without
loss of generality, let i < j. Since S 
= n, there exists a state s with s /∈ S.
Let S′ = {(p − s) mod n | p ∈ S}. Then 0 /∈ S′. Consider the string bn−sam−1−j .
It leads (i, S) to (i+m−1−j, S′) and it leads (j, S) to (m−1, {0}∪S′). Since the
second components of the resulting states differ in the state 0, the states (i, S)
and (j, S) are distinguishable. This completes our proof for concatenation.

(b) If the DFA for L has a unique final state which is initial, then L2 = L.
Otherwise, let L be accepted by a permutation DFA A with the initial state s
and at least one final state f with f 
= s. Construct the NFA N for L2 = LL as
described in case (a). If the initial state s of A is final, then the initial state of the
subset automaton D(N) is (s, {s}). It follows that for each reachable state (q, S)
of D(N), we have q ∈ S. Moreover, if q is final, then s ∈ S. In total, we get at
most 2n−1 + 2n−2 + (n − 2)2n−1 = n2n−1 − 2n−2 reachable states. Now assume
that s is not final. Let us show that no state (q, S) with q ∈ S is reachable
in D(N). Since s is not final, the initial state of D(N) is (s, ∅) with s /∈ ∅.
Now let (q, S) be any reachable state with q /∈ S. Consider the state (p, T ) =
(q, S)a for any input symbol a. Assume for a contradiction that p ∈ T . It follows
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that qa = p and either there is a state r in S such that ra = p, or p = s and p
is final. In the former case, we get a contradiction with the fact that A is a
permutation DFA. The latter case cannot occur since s is not final. It follows by
induction that for every reachable state (q, S) we have q /∈ S. In total, taking
into account that s ∈ S whenever q is final, we get at most (n − 1)2n−1 + 2n−2

reachable states. This gives the upper bound.

A 0 1 2 . . . n− 2 n− 1
a, b a a a a

ab

b b b

Fig. 1. The witness DFA for square meeting the upper bound n2n−1 − 2n−2.

To prove tightness, consider the permutation DFA A = (n, {a, b}, ·, 0, {n−1})
with transitions a : (0, 1, . . . , n − 1) and b : (0, 1) shown in Fig. 1. Construct an
NFA for L(A)2 as described above. Let us show by induction on |S| that each
state (i, S) with i = 0, 1, . . . , n−2 and i /∈ S and each state (n−1, S) with 0 ∈ S
and n − 1 /∈ S is reachable. The base case, |S| = 0, holds true since for every i
with 1 ≤ i ≤ n − 2, the state (i, ∅) is reached from the initial state (0, ∅) by ai.
Now assume that our claim holds for each S′ with |S′| = k. Let |S| = k + 1.
Consider four cases:

(1) i = n − 1. Then 0 ∈ S and n − 1 /∈ S. Take S′ = (S \ {0}) · an−1. Then
n−2 /∈ S′, so (n−2, S′) is reachable by induction and it is sent to (n−1, S)
by a.

(2) i = 0 and 1 ∈ S. Take S′ = S · an−1. Since 0 /∈ S, we have n − 1 /∈ S′, so
(n − 1, S′) is reachable as shown in case (1) and it is sent to (0, S) by a.

(3) i = 0 and minS > 1. Take S′ = S · an−minS+1. Then 0 /∈ S′ and
1 ∈ S′, so (0, S′) is reachable as shown in case (2) and it is sent to (0, S)
by (ab)minS−1.

(4) 1 ≤ i ≤ n − 2. Take S′ = S · an−i. Since i /∈ S, we have 0 /∈ S′, so the
set (0, S′) is reachable as shown in case (1) or (2) and it is sent to (i, S)
by ai.

Now we prove distinguishability. Let (i, S) and (j, T ) be two distinct states
of the subset automaton with i /∈ S and j /∈ T . First let S 
= T , and without loss
of generality, assume that s ∈ S \ T . Then the string an−1−s is accepted from S
and rejected from T . Now let S = T , and without loss of generality, let i < j.
We have i, j /∈ S. Consider the string an−j(ab)j−i−1. Let S′ = S · an−j . Since
j /∈ S, we have 0 /∈ S′. Next,

(i, S) an−j

−−−→ (n − j + i, S′)
(ab)j−i−1

−−−−−−→ (n − 1, S′ · (ab)j−i−1 ∪ {0}),

(j, S) an−j

−−−→ (0, S′ ∪ {1})
(ab)j−i−1

−−−−−−→ (j − i − 1, (S′ ∪ {1}) · (ab)j−i−1).
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Since 0 /∈ S′, we have 0 /∈ (S′ ∪ {1}) · (ab)j−i−1; notice that the only state which
is set to 0 by a string in (ab)∗ is 0. This means that the resulting states differ
in the second component, therefore (i, S) and (j, S) are distinguishable. This
completes our proof for square.

(c) The upper bound for Kleene closure is the same as for regular lan-
guages. For tightness, consider the n-state DFA A = (n, {a, b}, ·, 0, {n − 1})
with a : (0, 1, . . . , n − 1) and b : (1, 2, . . . , n − 2). Notice that this DFA, shown
in Fig. 2, differs from the DFA in [17, Figure 4] just by having the unique final
state n − 1 and by having the transition (n − 2, b, 1) instead of (n − 2, b, 0). The
language L(A)∗ is accepted by MNFA ({q0} ∪ n, {a, b}, ◦, {q0, 0}, {q0, n − 1})
where ◦ has the same transitions as · and moreover we have 0 ∈ (n − 2) ◦ a and
0 ∈ (n − 1) ◦ b. Let R = {q0, 0} ∪ {S ⊆ n | S 
= ∅ and if n − 1 ∈ S, then 0 ∈ S}.
We can show by induction on the size of sets that each set in R is reachable in
the corresponding subset automaton. We also can prove that the sets in R are
pairwise distinguishable.

A 0 1 . . . n− 2 n− 1
a a, b a, b a

a

b
b

b

Fig. 2. The witness DFA for Kleene closure meeting the upper bound (3/4)2n.

To get an NFA for L+, we only remove the state q0 from the MNFA for L∗

described above. The corresponding subset automaton has at most (3/4)2n − 1
reachable states, and this upper bound is met by our witness for Kleene closure.

(d) If L is accepted by an n-state permutation DFA A, then LR is accepted
by a permutation MDFA AR obtained from A by reversing all transitions and
by swapping the roles of initial and final states. We have sc(LR) ≤ (

n
�n/2�

)

and this upper bound is met by the language accepted by the permutation
DFA (n, {a, b}, ·, 0, n

2 ) with a : (n − 1, n − 2, . . . , 0) and b : (0, 1) by Lemma 7. ��
Notice that for concatenation, the upper bound is almost the same as for

regular languages, while for square, the bound is exactly one half of the upper
bound in the general case. In the next theorem, we consider quotients.

Theorem 12 (Left and Right Quotient). Let m,n ≥ 2. Let K and L be
languages accepted by permutation DFAs with m and n states, respectively. Then
sc(KL−1) ≤ m, and this bound is met by unary languages if m ≤ n. Next,
sc(L−1K) ≤ (

m
�m/2�

)
, and this bound is met by binary languages if m ≤ n. In the

unary case, the tight upper bound for both quotients is min{m,n}.
Proof. We have sc(KL−1) ≤ m by the construction of a DFA for the right
quotient. To get tightness in the case of m ≤ n, let K = L = (am)∗.
Then KL−1 = K, so sc(KL−1) = m.
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The language L−1K is accepted by an m-state permutation MDFA. We
have sc(L−1K) ≤ (

m
�m/2�

)
by Lemma 7. For tightness, let m ≤ n. Let K be

the language accepted by DFA A = (m, {a, b}, ·, 0, {0}) with a : (0, 1, . . . ,m − 1)
and b : (0, 1). Let L be the language accepted by DFA B = (n, {a, b}, ·, 0, m

2 )
with a : (0, 1, . . . ,m − 1) and b : (0, 1); notice that states m,m + 1, . . . , n − 1 are
unreachable and the transitions on a and b in states 0, 1, . . . , m− 1 are the same
as in DFA A. The language L−1K is accepted by an MDFA M obtained from A
by making all states in m

2 initial; notice that after reading every input string,
both A and B are in the same state. Then sc(L−1K) =

(
m

�m/2�
)

by Lemma 7.
In the unary case, we have L−1K = KL−1. Therefore sc(L−1K) ≤ m.

Let us show that sc(KL−1) ≤ n. The languages K and L are periodic; let
their periods be k and �, respectively. By construction, the quotient KL−1 has
period k. If ai+� ∈ KL−1, then ai ∈ KL−1 since L has period �. Let ai ∈ KL−1.
Then aiw ∈ K for some w ∈ L. It follows that aia�a(k−1)�w ∈ K since K has
period k. Next, a(k−1)�w ∈ L since L has period �. It follows that ai+� ∈ KL−1.
Thus KL−1 has period �, so sc(KL−1) ≤ � ≤ n. This gives the upper bound
min{m,n} which is met by K = L = (amin{m,n})∗. ��

Finally, we consider the cut operation on permutation languages. We briefly
recall the construction of a DFA for the cut operation, cf. [2, p. 74], [7, p. 91]
or [10, p. 193]. For two languages accepted by DFAs A and B with m and n
states, respectively, we can construct the cut automaton A ! B as follows. The
cut automaton has states in a grid with a row for every state of A and a column
for every state of B, and one additional column which we denote by ⊥. The
column ⊥ corresponds to the situation that we have not read a string in L(A)
yet. When we reach a final state in A for the first time, we leave the column ⊥
and enter the product part of A ! B in the corresponding state. Unless we reach
a final state of A again, the transitions in A ! B are the same as in the product
automaton A × B. When we reach a final state in A again, we reset to a state
in the column corresponding to the initial state of B. The final states of A ! B
are all states in columns corresponding to the final states of B.

Formally, let A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB) be two
DFAs. Let ⊥ /∈ QB . Define the cut automaton A ! B = (Q,Σ, ·, s,QA × FB)
where Q = (QA × {⊥}) ∪ (QA × QB), s = (sA,⊥) if ε /∈ L(A) and s = (sA, sB)
otherwise, and for each state (p, q) in Q and each input symbol a in Σ, we have

(p,⊥) · a =

{
(p ·A a,⊥), if p ·A a /∈ FA ;
(p ·A a, sB), otherwise;

and

(p, q) · a =

{
(p ·A a, q ·B a), if p ·A a /∈ FA ;
(p ·A a, sB), otherwise.

The state complexity of cut in the general case is already solved in [7] where
binary permutation languages were used as witnesses. The unary case is more
interesting, as shown in the next theorem.
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Theorem 13 (Cut Operation). Let m ≥ 1 and n ≥ 3. Let K and L be
languages accepted by permutation DFAs with m and n states, respectively. Then
sc(K ! L) ≤ (m − 1)n + m, and this upper bound is met by binary languages.
If K and L are unary, then sc(K !L) ≤ 2m−1. This bound is tight if m mod � 
= 0
for some � with 2 ≤ � ≤ n, otherwise the tight upper bound is 2m − 2.

Proof. If K = ∅ or L = ∅, then K ! L = ∅, so sc(K ! L) = 1. Let K and L be non-
empty. In the general case, the witness languages from [7, Proof of Theorem 3.1]
are accepted by permutation DFAs and they meet the upper bound (m−1)n+m.

In the unary case, since each non-empty permutation language is infinite, the
upper bound is 2m − 1 by [7, Proof of Theorem 3.2].

First assume that there exists � with 2 ≤ � ≤ n such that m mod � 
= 0.
Let K = am−1(am)∗ and L = a(m−1) mod �(a�)∗ be unary languages recognized
by permutation DFAs A and B of m and � states, respectively. The cut automa-
ton A ! B has a tail of length m − 1 and a loop of length m starting in the
state (m − 1, 0) which has in-transitions from the non-final state (m − 2,⊥) and
the final state (m − 2, (m − 1) mod �). Let us show that the loop is minimal.
If m ≤ �, then the loop has just one final state, so it is minimal. Let m > �.
If m mod � = 1, then (m − 1) mod � = 0, hence the two states (m − 2, 0)
and (m − 1, 0) are final, while every other contiguous segment of final states
is of length 1, so the loop is minimal again. If 2 ≤ m mod � ≤ � − 1, then
1 ≤ (m − 1) mod � ≤ � − 2. Then every contiguous segment of non-final states is
of length � − 1, except for the segment containing (m − 1, 0) which is of length
(m − 1) mod � < � − 1, so the loop is minimal.

Let m mod � = 0 for each � with 2 ≤ � ≤ n. Then m mod 2 = m mod 3 = 0,
so m ≥ 6. Consider the permutation DFAs A = (m, {a}, ·A, 0, {m − 2,m − 1})
with a : (0, 1, . . . ,m−1) and B = (n, {a}, ·B , 0, {0}) with a : (0, 1). The DFA A ! B
has a tail of length m−2 and a loop of size m starting in the state (m−2, 0) which
has in-transitions from the non-final state (m−3,⊥) and the final state (m−3, 0).
In the loop, each contiguous segment of final states is of length 1, except for that
consisting of (m−3, 0), (m−2, 0), and (m−1, 0). Therefore the loop is minimal,
and so we have sc(L(A) ! L(B)) = 2m − 2.

Let us show that this bound is tight if m mod � = 0 for each � with 2 ≤ � ≤ n.
Since m mod n = 0 and m mod (n − 1) = 0, we must have m > n. Let K
and L be accepted by unary permutation DFAs A and B; these DFAs are cyclic,
that is, they do not have any tail. To meet the upper bound 2m − 1, the cut
automaton A ! B must have m− 1 states of the form (i,⊥). This is possible only
if A = (m, {a}, ·A, 0, {m−1}) with a : (0, 1, . . . ,m−1). Let B = (n, {a}, ·B , 0, F )
with a : (0, 1, . . . , �−1) for some � with 1 ≤ � ≤ n. If � = 1, then L = ∅ or L = a∗,
and K ! L is either empty or equal to am−1a∗, so it is of state complexity 1 or m.
Let � ≥ 2. Then m mod � = 0. In the loop of the cut automaton A ! B, we have

(m−1, 0) a�

−→ (�−1, 0) a�

−→ (2�−1, 0) a�

−→ · · · a�

−→ (m− �−1, 0) a�

−→ (m−1, 0).

Since the loop in B is of length �, we have (i, j) a�

−→ (i + �, j) for each state (i, j)
in the loop; here i + � is modulo m. The states (i, j) and (i + �, j) have the
same finality since all states with j in the second component have the same
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Table 1. Closure properties and state complexity of operations on the class of permu-
tation languages. (�): there exists � with 2 ≤ � ≤ n such that m mod � �= 0.

Operation Closed? State complexity |Σ| State complexity, |Σ| = 1

Lc Yes ([22]) n 1 n

∩, ∪, \, ⊕ Yes ([22]) mn 2 mn; gcd(m, n) = 1

KL No ([22]) m2n − 2n−1 − m + 1 2 mn; gcd(m, n) = 1

L2 No n2n−1 − 2n−2 2 2n − 1

Lk No ? k(n − 1) + 1

L+ No (3/4)2n − 1 2 (n − 1)2 + 1

L∗ No ([22]) (3/4)2n 2 (n − 1)2 + 1

LR Yes ([22])
( n
�n/2�

)
2 n

L−1K Yes ([22])
( m
�m/2�

)
; m ≤ n 2 min{m, n}

KL−1 Yes ([22]) m; m ≤ n 1 min{m, n}
K !L No (m − 1)n + m 2 2m − 1 if (�); 2m − 2 otherwise

K � L No ? mn; gcd(m, n) = 1

shift(L) No ? n

per(L) No ? n

finality as j in B. It follows that the loop can be replaced by a loop of length �,
so sc(K ! L) ≤ m − 1 + � < 2m − 1. ��

5 Conclusions

We examined the class of permutation languages, that is, the languages that are
recognized by deterministic finite automata in which every input symbol induces
a permutation on the state set. We used automata constructions and properties
of permutation automata to show that the class of permutation languages is
closed under Boolean operations, reversal, and left and right quotient, and it
is not closed under concatenation, power, positive closure, Kleene closure, cut,
shuffle, cyclic shift, and permutation.

We also studied the state complexity of operations on permutation languages.
Our results are summarized in Table 1. The table also displays the size of alpha-
bet used to describe witnesses. All our witnesses are described over a unary
or binary alphabet, and the binary alphabet is always optimal except for the
Boolean operations in case of gcd(m,n) = 1.

We did not consider the state complexity of shuffle and cyclic shift and leave
them for the future work. Although the class of regular languages is not closed
under the permutation operation, we conjecture that the permutation of a per-
mutation language is always regular. If this is the case, then the state complexity
of this operation is of great interest to us as well.
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Abstract. This paper examines several measures of space complexity
on variants of stack automata: non-erasing stack automata and check-
ing stack automata. These measures capture the minimum stack size
required to accept any word in a language (weak measure), the maxi-
mum stack size used in any accepting computation on any accepted word
(accept measure), and the maximum stack size used in any computation
(strong measure). We give a detailed characterization of the accept and
strong space complexity measures for checking stack automata. Exactly
one of three cases can occur: the complexity is either bounded by a con-
stant, behaves (up to small technicalities explained in the paper) like a
linear function, or it grows arbitrarily larger than the length of the input
word. However, this result does not hold for non-erasing stack automata;
we provide an example when the space complexity grows with the square
root of the input length. Furthermore, an investigation is done regarding
the best complexity of any machine accepting a given language, and on
decidability of space complexity properties.

Keywords: Checking stack automata · Stack automata · Pushdown
automata · Space complexity · Machine models

1 Introduction

When studying different machine models, it is common to study both time and
space complexity of a machine or an algorithm. In particular, the study of com-
plexity of Turing machines gave way to the area of computational complexity,
which has been one of the most well-studied areas of theoretical computer sci-
ence for the past 40 years [7]. The field of automata theory specializes in different
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machine models, often with more restricted types of data stores and operations.
Various models of automata differ in the languages that can be accepted by the
model, in the size of the machine (e.g. the number of states), in the algorithms
to decide various properties of a machine, and in the complexity of these algo-
rithms. Some of the well-studied automata models with more restricted power
than Turing machines are finite automata [5,9], pushdown automata [5,9], stack
automata [4], checking stack automata [4], visibly pushdown automata [1], and
many others.

For Turing machines, several different space complexity measures have been
studied. Some of these complexity measures are the following [13]:

– weak measure: for an input word w, the smallest tape size required for some
accepting computation on w;

– accept measure: for an input word w, the largest tape size required for any
accepting computation on w;

– strong measure: for an input word w, the largest tape size required for any
computation on w.

For any of these measures, the space complexity of a machine can be defined as
a function of an integer n as the maximum tape size required for any input word
of length n under these conditions. Finally, given a language, one can examine
the space complexity of different machines accepting this language. For many of
the more restricted automata models, some of these three complexity measures
have not been studied as extensively as for Turing machines1. This paper aims
to fill the gaps for several machine models.

We study the above complexity measures for machines and languages of one-
way stack automata, non-erasing stack automata, and checking stack automata.
One-way stack automata are, intuitively, pushdown automata with the additional
ability to read letters from inside the stack; but still only push to and pop from
the top of the stack. Non-erasing stack automata are stack automata without the
ability to erase (pop) letters from the stack. Finally, checking stack automata
are further restricted so that as soon as they read from inside of the stack, they
can no longer push new letters on the stack.

It is known that checking stack languages form a proper subset of non-erasing
stack languages, which form a proper subset of stack languages [4], and those in
turn form a proper subset of context-sensitive languages [8]. In terms of space
complexity, it is possible to study the three space complexity measures (weak,
accept, and strong) as the maximum stack size required for any input of length n.
It is already known that every stack language can be accepted by some stack
automaton which operates in linear space using the weak measure [8,12]. How-
ever, this does not imply that every stack automaton has this property. We prove
here that every checking stack automaton has this property. Further results are

1 We point out that, especially in the context of Turing machines, the weak measure,
corresponding to the minimal cost among all accepting computations on a given
input, if any, is by far the most commonly used.
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known relating one-way and two-way versions of these machines to other models,
and to space complexity classes of Turing machines, e.g. [3,10,12].

For checking stack automata, we give a complete characterization of the
possible accept and strong space measures. For both measures, exactly one of
the following three cases must occur for every checking stack automaton:

1. The complexity is O(1). Then the automaton accepts a regular language.
2. There is some word (accepted word for the accept measure) u which has com-

putations (accepting computations, respectively) that use arbitrarily large
stack space on u, and so the complexity is not O(f(n)) for any integer func-
tion f . The language accepted can be regular or not.

3. The complexity is O(n), but it is not o(n). The language accepted can be
regular or not.

The third case is essentially saying that the complexity is Θ(n), except for some
minor technicalities that will be discussed further in the paper. Therefore, there is
a “gap” in the possible asymptotical behaviors of space complexity. No checking
stack machine can have a space complexity between Θ(1) and Θ(n); or complex-
ity above Θ(n) (as long as there is some function which bounds the space). The
lower bound proof uses a method involving store languages of stack automata
(the language of all words occurring on the stack of an accepting computation).
We have not seen this technique used previously in the literature. Indeed, store
languages are used in multiple proofs of this paper.

For non-erasing stack automata, there are differences with checking stack
automata, as the complexity can be in o(n), though not constant. We present
an automaton with a weak and accept space complexity in Θ(

√
n).

We also consider the following problem: Given a language (accepted by one
of the stack automaton models) and one of the space complexity measures, what
are the space complexities of the machines accepting it? We show that there
is a checking stack language such that with the strong measure, every machine
accepting it can use arbitrarily larger stack space than the input size, and there-
fore it is not O(f(n)) for any function f . Lastly, decidability questions on space
complexity are addressed. It is shown that it is undecidable whether a checking
stack automaton operates in constant space using the weak measure, however
for both the strong and accept measures, it is decidable even for arbitrary stack
automata.

2 Preliminaries

This section introduces basic notation used in this paper, and defines the three
models of stack automata that we shall consider.

We assume that the reader is familiar with basics of formal language and
automata theory. Please see [9] for an introduction. An alphabet is a finite set of
letters. A word over an alphabet Σ = {a1, . . . , ak} is a finite sequence of letters
from Σ. The set of all words over Σ is denoted by Σ∗, which includes the empty
word, denoted by λ. A language L (over Σ) is any set of words L ⊆ Σ∗. The
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complement of L over Σ, denoted by L is equal to Σ∗ \L. Given a word w ∈ Σ∗,
the length of w is denoted by |w|, and the number of occurrences of a letter ai

in w by |w|ai
. The Parikh image of w is the vector ψ(w) = (|w|a1 , . . . , |w|ak

),
which is extended to a language L as ψ(L) = {ψ(w) | w ∈ L}. We do not define
the concept of semilinearity formally here, but it is known that a language L is
semilinear if and only if there is a regular language L′ with ψ(L) = ψ(L′) [5].
Given two words w, u ∈ Σ∗, we say that u is a prefix of w if w = uv for some
v ∈ Σ∗. The prefix closure of a language L, pref(L), is the set of all prefixes of
all words in L. It is known that if L is a regular language, then pref(L) is also
regular.

2.1 Automata Models

Next, we define the three types of stack automata models discussed in this paper.

Definition 1. A one-way nondeterministic stack automaton (SA for short) is
a 6-tuple M = (Q,Σ, Γ, δ, q0, F ), where:

– Q is the finite set of states.
– Σ and Γ are the input and stack alphabets, respectively.
– Γ contains symbols � and 	, which represent the bottom and top of the stack.

We denote by Γ0 the alphabet Γ \ {� , 	}.
– q0 ∈ Q and F ⊆ Q are the initial state and the set of final states, respectively.
– δ is the nondeterministic transition function from Q × (Σ ∪ {λ}) × Γ into

subsets of Q × {stay, push(x), pop,−1, 0,+1 | x ∈ Γ0}. We use the notation
(q, a, y) → (p, ι) to denote that (p, ι) ∈ δ(q, a, y).

A configuration c of an SA is a triple c = (q, w, γ), where q ∈ Q is the current
state, w ∈ Σ∗ is the remaining input to be read, and γ is the current stack tape.
The word γ either has to be of the form � Γ ∗

0

�

Γ ∗
0 	, or of the form �Γ ∗

0 	

�

.
The symbol denotes the position of the stack head, which is currently scanning
the symbol directly preceding it. We shall occasionally refer to the “pure” stack
content, that is, the word γ without the end markers and the head symbol. We
denote this word by γ̂. The stack size of c is ‖c‖Γ = |γ̂| = |γ| − 3.

We use two relations between configurations:

– The write relation: If (q, a, y) → (p, ι), where q, p ∈ Q, a ∈ Σ ∪ {λ}, y ∈
Γ0 ∪ {� }, and ι ∈ {stay, push(x), pop}; then for u ∈ Σ∗, γ ∈ Γ ∗, with
γy ∈ � Γ ∗

0 :
• (q, au, γy

�

	) �w (p, u, γy

�

	) if ι = stay,
• (q, au, γy

�

	) �w (p, u, γyx

�

	) if ι = push(x),
• (q, au, γy

�

	) �w (p, u, γ

�

	) if ι = pop and y 	= � .
Notice that the write relation is defined only if stay, push, and pop transitions
are performed when the stack head is scanning the topmost symbol of the
stack. If one of these operations is executed when the stack head is not on
the top of the stack, the machine halts and rejects.
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– The read relation: If (q, a, y) → (p, ι), where q, p ∈ Q, a ∈ Σ ∪ {λ}, y ∈ Γ ,
and ι ∈ {−1, 0, 1}; then for u ∈ Σ∗, γ1, γ2 ∈ Γ ∗, with γ1yγ2 ∈ � Γ ∗

0 	:
• (q, au, γ1y

�

γ2) �r (p, u, γ1

�

yγ2) if ι = −1 and y 	= � ,
• (q, au, γ1y

�

γ2) �r (p, u, γ1y

�

γ2) if ι = 0,
• (q, au, γ1y

�

γ2) �r (p, u, γ1yx

�

γ′
2) if ι = +1, γ2 = xγ′

2 and x ∈ Γ .

The union of �w and �r is denoted by �. The transitive closures of �w, �r, and
� are denoted by �+

w , �+
r , and �+; and their transitive and reflexive closures by

�∗
w, �∗

r , and �∗, respectively.
A partial computation of the automaton M on an input word u is a sequence

of configurations

C :

c0
︷ ︸︸ ︷

(p0, u0, γ0) � · · · �
cn

︷ ︸︸ ︷

(pn, un, γn), (1)

where p0 = q0, u0 = u, γ0 = �

�

	. If also un = λ, we say that this is a com-
putation; and furthermore, if also pn ∈ F then it is an accepting computation.
The stack size of the (partial) computation C, denoted by ‖C‖Γ , is defined as
max{‖cj‖Γ | 0 ≤ j ≤ n}.

The language accepted by an SA M , denoted by L(M), is the set of words
w for which M has an accepting computation on w. The store language of M ,
S(M), is the set of state and stack contents that can appear in an accept-
ing computation: S(M) = {qγ | (q, u, γ) is a configuration in some accepting}
computation of M . Notice that these words contain both the state and the stack
head position. It is known that for every SA M , S(M) is a regular language [2,11].

The accepting computation in Eq. (1) can be written uniquely as

c0 �∗
w d1 �+

r c1 �+
w · · · �+

w dm �∗
r cm.

We call a sequence of transitions ci �∗
w di+1 a write phase, and a sequence of

transitions di �∗
r ci a read phase. By this definition, a computation always starts

with a write phase and ends with a read phase. For the purpose of this paper,
we can assume without loss of generality that both the first write phase and last
read phase are non-empty, by altering the machine to always start by writing
with a stay instruction, and to always read with a 0 instruction before finishing.

Furthermore, for any such SA M = (Q,Σ, Γ, δ, q0, F ) (with a non-empty
initial read phase and final write phase), we can construct an SA M ′ = (Qw ∪
Qr, Σ, Γ, δ′, q0w, F ′); where Qw and Qr are two distinct copies of the state set
Q of M , with the copied states denoted by the w and r subscripts, F ′ = {qr |
q ∈ F}, and where δ′ is a union of two transition functions:

– δw, which contains transitions (qw, a, y) → (pw, ι) and (qw, a, y) → (pr, ι);
where (q, a, y) → (p, ι) in δ, and ι ∈ {stay, push(x), pop}; and

– δr, which contains transitions (qr, a, y) → (pw, ι) and (qr, a, y) → (pr, ι);
where (q, a, y) → (p, ι) in δ, and ι ∈ {−1, 0, 1}.

We call transitions in δw write transitions, and transitions in δr read transitions.
Similarly, we call states in Qw (resp. Qr) write states (resp. read states). Observe
that the language accepted by M ′ is the same as the one accepted by M .
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Any stack machine that has states that can be partitioned into write and read
ones, such that write transitions can only be applied from write states, and read
transitions can only be applied from read states, is said to have partitioned states.
In such a machine, the current state in every configuration dictates whether the
next transition to be taken is a write or a read transition.

A stack automaton is called non-erasing (NESA) if it contains no transitions
to an element of Q × {pop}. A non-erasing stack automaton is called a checking
stack automaton (CSA) if it has partitioned states and it contains no transitions
from a read state to a write state. Every accepting computation of a checking
stack automaton therefore has a single write phase followed by a single read
phase.

We denote by L(SA),L(NESA), and L(CSA) the families of languages
accepted by the three types of devices.

3 Complexity Measures on Stack Automata

For an SA M = (Q,Σ, Γ, δ, q0, F ), one can consider three different space com-
plexity measures defined similarly as for Turing machines [13]. Consider an input
word u ∈ Σ∗ to M .

– weak measure:

σw
M (u) =

{

min {‖C‖Γ | C an accepting computation on u} , if u ∈ L(M),
0, otherwise.

– accept measure:

σa
M (u) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

max {‖C‖Γ | C an accepting computation on u} , if exists &
u ∈ L(M),

∞ if does not exist & u ∈ L(M),
0, u /∈ L(M).

– strong measure:

σs
M (u) =

{

max {‖C‖Γ | C is a partial computation on u} if it exists,
∞ otherwise.

Next, we are interested in studying stack sizes as a function of the length of
the input. Thus, for each z ∈ {w, a, s}, we define the functions,

σz
M (n) = max {σz

M (u) | u ∈ Σ∗ and |u| = n} ,

σ́z
M (n) = max {σz

M (u) | u ∈ Σ∗ and |u| ≤ n} .

The latter essentially forces the space complexity to be a non-decreasing function.
We leave off M if it is clear based on the context.
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Using this notation, we can now write σz(n) ∈ O(f(n)), o(f(n)), Ω(f(n)),
etc., for some function f(n) from N0 to N0, in the usual fashion.

Note that, if there is any single word u with σz(u) = ∞, with z ∈ {a, s}
(this occurs if there are infinitely many accepting computations of the word u
of arbitrarily large stack sizes), then σz(n) = ∞ for n = |u|, and σz(n) cannot
be in O(f(n)) for any integer function f . If there is such a word u, then we say
that M is z-unlimited, and z-limited otherwise.

Example 2. Consider the language

L = {ambk | m ≤ k,m divides m + k}.

This contains for example a3b6 because 3 divides 9. It contains ab4 because 1
divides 5, but there are no other words accepted of length 5 since 5 is prime.

An obvious CSA M accepting L copies am to the stack, then verifies that m
divides k by going back and forth on the checking stack while reading from the
input and checking that both the stack and input reach the ends of their tape
at the same time.

Here are some properties of M :

1. σs(n), σa(n), σw(n) are all O(n).
2. For every even n, σa(an/2bn/2) = n/2, and thus σa(n) ≥ n/2. Therefore,

σa(n) is not o(n).
3. Also σ́a(n) is Ω(f(n)) since σ́a(n) is non-decreasing.
4. For every prime number n, σa(n) = 1. Thus, σa(n) is not Ω(n). Further,

σa(n) is not Ω(f(n)) for any f(n) in ω(1) (i.e. f(n) is ω(1) if for any positive
constant c, there exists a constant k such that 0 ≤ c < f(n) for all n ≥ k).
So, if we use the function σa instead of the non-decreasing function σ́a, then
it is no longer at least linear.

4 Space Complexities of Stack Automata

In [8] it was shown that for every stack automaton M , there exists another stack
automaton M ′ such that L(M) = L(M ′) and σw

M ′(n) is O(n). Here we show the
stronger statement that for any checking checking stack automaton M , σw

M (n) is
in O(n) (i.e. it is true for M without converting to M ′). Furthermore, it is also
true for the accept (and strong) measures as well as long as they are a-limited
(s-limited).

The basic idea of the proof for the weak measure is the following: consider
some accepting computation C on some string u ∈ L(M). Consider the stack
at the end of this computation. We shall look for maximal sections of the write
phase whereby, from the start of pushing this section until the end of pushing
this section, only λ-transitions are applied; and then in later read phases, this
section of the stack is also only read on λ-transitions. Therefore, the behavior of
the automaton in this section of the stack does not depend on the input string.
We shall show that if this section of the stack is too large (larger than some
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constant z′), then we can find some smaller word that we can replace it with,
without altering this behavior. This means that for every accepted string u, we
can find an accepting computation in which each of these sections is at most z′

letters long. Since each of these sections of the stack are surrounded by cells
of the stack in which the automaton reads some input symbol, there can be at
most (|u|+2)z′ letters on the stack in this new computation. A similar argument
can be used for the accept and strong measures.

Proposition 3. Let M be a CSA. The following are true:

– σw
M (n) is in O(n);

– if σa
M (n) is a-limited, then σa(n) is O(n);

– if σs
M (n) is s-limited, then σs(n) is O(n).

Whether or not the result above holds for NESA and SA generally is an open
problem.

Notice that in the proposition above, it is not true that every CSA machine M
has σa(n) in O(n), because of the following more general fact:

Remark 4. Consider a CSA machine M accepting Σ∗ that nondeterministically
pushes any string onto the stack using λ-transitions, and then reads any input
and accepts. Here, M is not a-limited or s-limited and σa(n) is not O(f(n)) for
any function f .

Lower bounds on the space complexity functions can also be studied similarly
to upper bounds. The next proof starts with an accepting computation using
some stack word, and then finds a new accepting computation on some possibly
different input word that is roughly linear in the size of the stack. It then uses
the regularity of the store languages of stack automata in order to determine
that for every increase in some constant c, there’s at least one more input word
of that length that has a stack that is linear in the size of the input. That is
enough to show that the accept and strong space complexities cannot be o(n),
and if the non-decreasing function σ́z is used, then it is at least linear.

Lemma 5. Let z ∈ {a, s}. Let M be a CSA such that σz(n) /∈ O(1) and M is
z-limited. The following are true:

– there exist c, d, e such that, for every n ∈ N0, there is some input u ∈ Σ∗

(with u ∈ L(M) if z = a) where n ≤ |u| ≤ n + c and d|u| ≤ σz(u) ≤ e|u|,
– σz(n) cannot be o(n),
– σ́z(n) ∈ Ω(n).

Lemma 5 is the “best possible result” in that it is not always the case
that σa(n) ∈ Ω(n) since the space complexity can periodically go below lin-
ear infinitely often as demonstrated with Example 2. But what this lemma says
is that it returns to at least linear infinitely often as well. Furthermore, there is
a constant c such that it must return to at least linear for every increase of c in
the length of the input. Putting together all results for CSA so far, we get the
following complete characterization:
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Theorem 6. Let M be a CSA. For z ∈ {a, s}, exactly one of the following must
occur.

1. M is z-unlimited, and so there is no f such that σz(n) ∈ O(f(n)) (and L(M)
can be either regular or not);

2. M is z-limited, σz(n) ∈ O(1), and L(M) is regular;
3. M is z-limited, σz(n) ∈ O(n), σz /∈ o(n), and σ́z(n) ∈ Θ(n) (and L(M) can

be either regular or not).

Proof. Consider the case z = a. Either M is a-limited, or not. If it is not, then
L(M) can be either regular or not. Moreover, both are possible, as one can take
an arbitrary CSA M ′ (which can either be regular or not), and modify it to M ′′ by
starting by pushing an arbitrary word over a new stack letter x on λ-transitions,
then simulating M ′. Thus, L(M ′) = L(M ′′), and M ′′ is a-unlimited.

Assume that M is a-limited. And, assume that σa(n) is O(1). Then only a
bounded amount of the stack is used, and M can therefore be simulated by an
NFA, and hence L(M) is regular.

Assume σa(n) is not O(1). Then Lemma 5 applies, and the statement follows.
Also, it is possible for it to be non-regular (Example 2), or regular (by taking
a DFA and simulating it with a CSA that copies the input to the stack while
simulating the DFA). 
�

The question arises next of whether the lower bound is also true for NESA
and SA. We see that this is not true.

Proposition 7. There exists a NESA (and a SA) M that accepts a non-regular
language such that σa(n) and σw(n) are in Θ(

√
n), and σs(n) ∈ O(

√
n).

Proof. Consider the language L = {a1ba2b · · · arb | r ≥ 1}, and let L0 =
pref(L), which is not regular. Then L0 can be accepted as follows. Consider
the input al1bal2b · · · alrbal, r, l ≥ 0. M starts by reading and pushing a, then it
repeats the following: It reads b and pushes one a on the stack, moves to the
left end of the stack and matches the a’s on the stack to the next block of a’s
of the input. These steps are repeated until the end of the last section, that can
be (the only one) shorter than the word stored in the stack.

On an input of size n, there is one word accepted of this length and the
stack γ satisfies 1/2

√
n ≤ |γ| ≤ √

n. Thus, σa(n) and σw(n) are in Θ(
√

n). For
the strong measure, the stack is at most

√
n in size. 
�

It is possible to observe that there exists a NESA M that accepts a regular
language such that σa(n) ∈ Θ(

√
n) and σs(n) ∈ O(

√
n). Let us consider L0 ∪

{a, b}∗ = {a, b}∗. A machine M ′ can be built that either simulates M described
in the proof of Proposition 7, or it reads the input and accepts without using
the stack. Thus, σa

M (n) = σa
M ′(n) and σs

M (n) = σs
M ′(n).

In conclusion,
√

n ∈ o(n), and thus Lemma 5 cannot be generalized to NESA
or SA. Therefore, unlike CSA, there is not a complete gap between Θ(1) and Θ(n),
and the exact functions possible between them (besides

√
n) remains open.
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5 Space Complexities of Languages Accepted by Stack
Automata

Just as the space complexity of stack machines can be studied, it is also possible
to ask the question, given a language L ∈ L(CSA), what are the space com-
plexities of the machines in CSA accepting L? (and similarly for NESA,SA). It
follows from Proposition 3 that for every L ∈ L(CSA), there exists a machine
M ∈ CSA such that σw(n) is O(n). A similar result is also known to be true for
SA generally [8,12].

For the strong measure, we will see that there are languages where all the
machines that accept them are more complicated.

Example 8. Consider the language

Lcopy = {u$u�v$v | u, v ∈ {a, b}∗}.

Certainly, there is an M ∈ CSA that accepts L as follows: on input u′$u′′#v′$v′′,
M guesses two words u and v in advance on λ-transitions, and pushes u#v on
the stack; then M verifies that u = u′ = u′′, and v = v′ = v′′.

For the accept measure, σa
M (n) ∈ O(n), as all computations that accept have

a stack that is linear in the input. However, for the strong measure, because the
machine M starts by guessing and pushing both u and v on λ-transitions, M
could guess u and v that are substantially longer (arbitrarily longer) than u′

and v′. This machine M is therefore s-unlimited.

The question arises as to whether every machine that accepts Lcopy is s-
unlimited. We will see that this is indeed the case. To show this, we first prove
the following lemma, which again uses store languages

Lemma 9. Let M = (Q,Σ, Γ, δ, q0, F ) be a CSA with partitioned states Qw and
Qr. The language

Lw,M = {u | (q0, uv, �

�

	) �∗
w (q, v, γ) �∗

r (qf , λ, γ′), q ∈ Qr, qf ∈ F},

composed of all the input words scanned by M during the (complete) write phase
of each accepting computation, is a regular language.

This is useful towards the following proposition.

Proposition 10. For the language Lcopy ∈ L(CSA) from Example 8, for all M
accepting Lcopy, M is s-unlimited. Thus, for each such M accepting Lcopy, there
is no function f such that σs

M (n) is O(f(n)).

Proof. We show that for every CSA M accepting Lcopy, M can perform an
arbitrarily long sequence of λ-transitions that write (either push or stay) where
the size of the stack can grow arbitrarily without reading input letters. If there
is some sequence of λ-transitions that writes (that can be reached from the
initial configuration) that is bigger than the number of states of the machine
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multiplied by the stack alphabet, then M has a cycle in which only write λ-
transitions occur. Then as long as this cycle has at least one push transition in
it, the stack can grow arbitrarily. Hence, there exist infinitely many (possibly
rejecting) computations during which arbitrarily many letters are pushed on the
stack making the machine s-unlimited.

Let M = (Q,Σ, Γ, δ, q0, F ) be an arbitrary CSA accepting Lcopy. Assume,
by contradiction, that Lcopy is s-limited. Consider the language Lw,M from
Lemma 9, which is a regular language. Furthermore, let W = pref(Lw,M ) ∩
{a, b}∗${a, b}∗�, which must also be regular. Assume that W is infinite. Thus,
there exist infinitely many words in W that have an accepting computation
that does not enter the read phase until after #. But as W is regular, and
only contains words of the form u$u#, there must be some infinite subset of
{u$u# | u ∈ {a, b}∗} that is regular, a contradiction, by the pumping lemma.
Thus, W must be finite.

Let u be some word such that u$u# /∈ W . Thus, for all accepting computa-
tions on any word in Lcopy = {u$u�v′$v′′ | v′, v′′ ∈ {a, b}∗}, it must enter the
read phase before reaching the # symbol. Also, there must exist a constant c such
that for all of these accepting computations, the stack must grow to at most c|u|,
otherwise M could enter an infinite cycle on λ-transitions that push in the write
phase, and it would be s-unlimited. Consider some word u$u#v$v ∈ Lcopy where
|v| > |Q| · c · |u|, and consider some accepting computation (where it must enter
the read phase before hitting #). When scanning the second v, there must be
two configurations reached where M reaches the same state and stack position,
and at least one letter of Σ was read between them. Hence, u$u#v$v′ is also
accepted, v 	= v′, a contradiction. Hence, M is s-unlimited. 
�

For the accept measure, the situation is more complicated, and it is left open.
However, we have the following conjecture. Consider the language

L = {1k#v1# · · · #vm | vi ∈ {0, 1}∗, |{v1, . . . , vm}| ≤ k}.

This language can be accepted by a CSA machine that, for every 1 read, pushes a
nondeterministically guessed word over {0, 1}∗ on the stack so that its contents
is u1# · · · #uk. Then, for each vi on the input, it guesses some uj on the stack
and verifies that they are equal. However, this machine does not keep track of
whether each uj on the stack was matched to some vi (and it seems to have no
way of keeping track of this), and uj could be arbitrarily long. We conjecture
that every M ∈ CSA accepting L is a-unlimited. In fact, we conjecture that this
is true for every M ∈ SA.

6 Decidability Properties Regarding Space Complexity
of Stack Machines

It is an easy observation that when the space used by a checking stack automaton
is constant, the device is no more powerful than a finite automaton. Nevertheless,
given a checking stack automaton M , it is not possible to decide whether or not it
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accepts by using a constant amount of space with the weak measure. This result
can be derived by adapting the argument used in [14] for proving that, when the
weak measure is considered, it is not decidable whether or not a nondeterministic
pushdown automaton accepts by using a constant amount of pushdown store.
In that case, the authors used a technique introduced in [6], based on suitable
encodings of single-tape Turing machine computations and reducing the proof
of the decidability to the halting problem; this can be done here as well.

Proposition 11. It is undecidable whether a CSA M accepts in space σw(n) ∈
O(1) or not.

On the other hand, although it may seem counterintuitive, the same problem
is decidable for the accept and strong measures, even for stack automata.

Proposition 12. For z ∈ {a, s}, it is decidable whether an SA M satisfies
σz(M) ∈ O(1) or not.

Proof. For the accept measure, first, we construct a finite automaton M ′ accept-
ing the store language of M . We can then decide finiteness of L(M ′) since it is
regular, which is finite if and only if M operates in constant space.

For the strong measure, we can take M , and change it so that all states are
final, then calculate the store language, and decide finiteness. 
�

7 Conclusions and Future Directions

In this paper, we defined and studied the weak, accept, and strong space com-
plexity measures for variants of stack automata. For checking stack automata
with the accept or strong measures, there is “gap”, and no function is possible
between constant and linear, or above linear. For non-erasing stack automata,
there are machines with complexity between constant and linear. Then, it is
shown that for the strong measure, there is a checking stack language such that
every machine accepting it is s-unlimited (there is no function bounding the
strong space complexity). Lastly, it is shown that it is undecidable whether a
checking stack automaton has constant space complexity with the weak measure.
But, this is decidable for both the accept and strong measures even for stack
automata.

Many open problems remain. It is desirable to know whether there are any
gaps between constant and linear space for the weak space complexity measure
for checking stacks. Also, it is open whether all stack automata have linear weak
space complexity (it is known that every language has some machine that oper-
ates in linear space complexity). The exact accept and strong space complexity
functions possible for non-erasing and stack automata (besides constant, square
root, and linear) still need to be determined. It is also open whether there is
some stack language (or non-erasing stack language) such that every machine
accepting it is s-unlimited. Furthermore, for the accept measure, we conjecture
that there is a CSA language whereby every machine is a-unlimited, although
this is also an open problem. Answering these open questions would be of interest
to the automata theory community.
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Abstract. Splicing systems are generative mechanisms introduced by
Tom Head in 1987 to model the biological process of DNA recombination.
The computational engine of a splicing system is the “splicing operation”,
a cut-and-paste binary string operation defined by a set of “splicing
rules”, quadruples r = (u1, u2;u3, u4) where u1, u2, u3, u4 are words over
an alphabet Σ. For two strings x1u1u2y1 and x2u3u4y2, applying the
splicing rule r produces the string x1u1u4y2. In this paper we focus on
a particular type of splicing systems, called (i, j) semi-simple splicing
systems, i = 1, 2 and j = 3, 4, wherein all splicing rules r have the
property that the two strings in positions i and j in r are singleton
letters, while the other two strings are empty. The language generated
by such a system consists of the set of words that are obtained starting
from an initial set called “axiom set”, by iteratively applying the splicing
rules to strings in the axiom set as well as to intermediately produced
strings. We consider semi-simple splicing systems where the axiom set is
a regular language, and investigate the descriptional complexity of such
systems in terms of the size of the minimal deterministic finite automata
that recognize the languages they generate.

1 Introduction

Splicing systems are generative mechanisms introduced by Tom Head [7] to
model the biological process of DNA recombination. A splicing system consists of
an initial language called an axiom set, and a set of so-called splicing rules. The
result of applying a splicing rule to a pair of operand strings is a new “recom-
binant” string, and the language generated by a splicing system consists of all
the words that can be obtained by successively applying splicing rules to axioms
and the intermediately produced words. The most natural variant of splicing
systems, often referred to as finite splicing systems, is to consider a finite set of
axioms and a finite set of rules. Several different types of splicing systems have
been proposed in the literature, and Bonizzoni et al. [1] showed that the classes
of languages they generate are related: the class of languages generated by finite
Head splicing systems [7] is strictly contained in the class of languages generated
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by finite Păun splicing systems [13], which is strictly contained in the class of
languages generated by finite Pixton splicing systems [12].

In this paper we will use the Păun definition [13], which defines a splicing
rule as a quadruplet of words r = (u1, u2;u3, u4). This rule splices two words
x1u1u2y1 and x2u3u4y2 as follows: The words are cut between the factors u1, u2,
respectively u3, u4, and the prefix of the first word (ending in u1) is recombined
by catenation with the suffix of the second word (starting with u4), resulting in
the word x1u1u4y2.

Culik II and Harju [3] proved that finite Head splicing systems can only
generate regular languages, while [8] and [12] proved a similar result for Păun,
respectively Pixton splicing systems. Gatterdam [5] gave (aa)∗ as an example of
a regular language which cannot be generated by a finite Head splicing system,
which proved that this is a strict inclusion.

As the classes of languages generated by finite splicing systems are subclasses
of the family of regular languages, their descriptional complexity can be consid-
ered in terms of the finite automata that recognize them. For example, Loos
et al. [10] gave a bound on the number of states required for a nondeterminis-
tic finite automaton to recognize the language generated by an equivalent Păun
finite splicing system. Other descriptional complexity measures for finite splicing
systems that have been investigated in the literature include the number of rules,
the number of words in the initial language, the maximum length of a word in
the initial axiom set, and the sum of the lengths of all words in the axiom set.
Păun [13] also proposed the radius, defined to be the size of the largest ui in a
rule, as another possible measure.

In the original definition, simple splicing systems are finite splicing systems
where all the words in the splicing rules are singleton letters. The descriptional
complexity of simple splicing systems was considered by Mateescu et al. [11]
in terms of the size of a right linear grammar that generates a simple splicing
language. Semi-simple splicing systems were introduced in Goode and Pixton [6]
as having a finite axiom set, and splicing rules of the form (a, ε; b, ε) where a, b
are singleton letters, and ε denotes the empty word.

In this paper we focus our study on some variants of semi-simple splicing
systems called (i, j)-semi-simple splicing systems, i = 1, 2 and j = 3, 4, wherein
all splicing rules have the property that the two strings in positions i and j
are singleton letters, while the other two strings are empty. (Note that Ceterchi
et al. [2] showed that all classes of languages generated by semi-simple splicing
systems are pairwise incomparable1). In addition, in a departure from the orig-
inal definition of semi-simple splicing systems [6], in this paper the axiom set is
allowed to be a (potentially infinite) regular set.

More precisely, we investigate the descriptional complexity of (i, j)-semi-
simple splicing systems with regular axiom sets, in terms of the size of the
minimal deterministic finite automaton that recognizes the language generated
by the system. The paper is organized as follows: Sect. 2 introduces definitions

1 Simple splicing language classes are pairwise incomparable except for the pair (1,3)
and (2,4), which are equivalent [11].
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and notations, Sect. 3 defines splicing systems and outlines some basic results
on simple splicing systems, Sects. 4, 5 and 6 investigate the state complexity of
(2,4)-, (2,3)- respectively (1,4)-semi-simple splicing systems, and Sect. 7 summa-
rizes our results (Table 1).

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over
Σ, including the empty word, which we denote by ε. We denote the length of a
word w by |w| = n. If w = xyz for x, y, z ∈ Σ∗, we say that x is a prefix of w, y
is a factor of w, and z is a suffix of w.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F ) where
Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q × Σ → Q,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states. We extend the
transition function δ to a function Q × Σ∗ → Q in the usual way. A DFA A
is complete if δ is defined for all q ∈ Q and a ∈ Σ. In this paper, all DFAs
are defined to be complete. We will also make use of the notation q

w−→ q′ for
δ(q, w) = q′, where w ∈ Σ∗ and q, q′ ∈ Q. The language recognized or accepted
by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

Each letter a ∈ Σ defines a transformation of the state set Q. Let δa : Q → Q
be the transformation on Q induced by a, defined by δa(q) = δ(q, a). We extend
this definition to words by composing the transformations δw = δa1 ◦δa2 ◦· · ·◦δan

for w = a1a2 · · · an. We denote by im δa the image of δa, defined im δa =
{δ(p, a) | p ∈ Q}.

A state q is called reachable if there exists a string w ∈ Σ∗ such that
δ(q0, w) = q. A state q is called useful if there exists a string w ∈ Σ∗ such
that δ(q, w) ∈ F . A state that is not useful is called useless. A complete DFA
with multiple useless states can be easily transformed into an equivalent DFA
with at most one useless state, which we refer to as the sink state.

Two states p and q of A are said to be equivalent or indistinguishable in the
case that δ(p,w) ∈ F if and only if δ(q, w) ∈ F for every word w ∈ Σ∗. States
that are not equivalent are distinguishable. A DFA A is minimal if each state
q ∈ Q is reachable from the initial state and no two states are equivalent. The
state complexity of a regular language L is the number of states of the minimal
complete DFA recognizing L [4].

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, I, F )
where Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → 2Q,
I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states. The language
recognized by an NFA A is L(A) = {w ∈ Σ∗ | ⋃

q∈I δ(q, w) ∩ F �= ∅}. As with
DFAs, transitions of A can be viewed as transformations on the state set. Let
δa : Q → 2Q be the transformation on Q induced by a, defined by δa(q) = δ(q, a).
We define im δa =

⋃
q∈Q δa(q). We make use of the notation P

w−→ P ′ for
P ′ =

⋃
q∈P δ(q, w), where w ∈ Σ∗ and P, P ′ ⊆ Q.
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3 Semi-simple Splicing Systems

In this paper we will use the notation of Păun [13]. The splicing operation is
defined via sets of quadruples r = (u1, u2;u3, u4) with u1, u2, u3, u4 ∈ Σ∗ called
splicing rules. For two strings x = x1u1u2x2 and y = y1u3u4y2, applying the
rule r = (u1, u2;u3, u4) produces a string z = x1u1u4y2, which we denote by
(x, y) 	r z.

A splicing scheme is a pair σ = (Σ,R) where Σ is an alphabet and R is a
set of splicing rules. For a splicing scheme σ = (Σ,R) and a language L ⊆ Σ∗,
we denote by σ(L) the language

σ(L) = L ∪ {z ∈ Σ∗ | (x, y) 	r z, where x, y ∈ L, r ∈ R}.
Then we define σ0(L) = L and σi+1(L) = σ(σi(L)) for i ≥ 0 and

σ∗(L) = lim
i→∞

σi(L) =
⋃

i≥0

σi(L).

For a splicing scheme σ = (Σ,R) and an initial language L ⊆ Σ∗, we say the
triple H = (Σ,R, L) is a splicing system. The language generated by H is defined
by L(H) = σ∗(L).

Goode and Pixton [6] define a restricted class of splicing systems called semi-
simple splicing systems. A semi-simple splicing system is a triple H = (Σ,M, I),
where Σ is an alphabet, M ⊆ Σ × Σ is a set of markers, and I is a finite initial
language over Σ. We have (x, y) 	(a,b) z if and only if x = x1ax2, y = y1by2, and
z = x1ay2 for some x1, x2, y1, y2 ∈ Σ∗. That is, a semi-simple splicing system
is a splicing system in which the set of rules is M = {(a, ε; b, ε) | (a, b) ∈ M}.
Since the rules are determined solely by our choice of M ⊆ Σ × Σ, the set M is
used in the definition of the semi-simple splicing system rather than the set of
rules M.

It is shown in [6] that the class of languages generated by semi-simple splicing
systems is a subclass of the regular languages. Semi-simple splicing systems are
a generalization of the class of simple splicing systems, defined by Mateescu et
al. [11]. A splicing system is a simple splicing system if it is a semi-simple splicing
system and all markers are of the form (a, a) for a ∈ Σ. It is shown in [11] that
the class of languages generated by simple splicing systems is a subclass of the
extended star-free languages.

Observe that the set of rules M = {(a, ε; b, ε) | (a, b) ∈ M} of a semi-
simple splicing system consist of 4-tuples with symbols from Σ in positions 1
and 3 and ε in positions 2 and 4. We can call such splicing rules (1,3)-splicing
rules. Then a (1,3)-splicing system is a splicing system with only (1,3)-splicing
rules and ordinary semi-simple splicing systems can be considered (1,3)-semi-
simple splicing systems. The state complexity of (1,3)-simple and (1,3)-semi-
simple splicing systems was studied previously by the authors in [9].

We can consider variants of semi-simple splicing systems in this way by defin-
ing semi-simple (i, j)-splicing systems, for i = 1, 2 and j = 3, 4. A semi-simple
(2,4)-splicing system is a splicing system (Σ,M, I) with rules M = {(ε, a; ε, b) |
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(a, b) ∈ M}. A (2,3)-semi-simple splicing system is a splicing system (Σ,M, I)
with rules M = {(ε, a; b, ε) | (a, b) ∈ M}. A (1,4)-semi-simple splicing system is
a semi-simple splicing system (Σ,M, I) with rules M = {(a, ε; ε, b) | (a, b) ∈ M}.

The classes of languages generated by simple and semi-simple splicing sys-
tems and their variants have different relationships among each other. Mateescu
et al. [11] show that the classes of languages generated by (1,3)-simple splicing
systems (i.e. ordinary simple splicing systems) and (2,4)-simple splicing systems
are equivalent, while, the classes of languages generated by (1,3)-, (1,4)-, and
(2,3)-simple splicing systems are all incomparable and subregular.

The situation is different for semi-simple splicing systems. Ceterchi et al. [2]
show that each of the classes of languages generated by (1,3)-, (1,4)-, (2,3)-,
and (2,4)-semi-simple splicing systems are all incomparable. So unlike simple
splicing systems, the (1,3)- and (2,4)- variants are not equivalent. They show
this by showing that the language a+ ∪ a+ab ∪ aba+ ∪ aba+b is generated
by the (1,3)-semi-simple splicing system ({a, b}, {(a, ε; b, ε)}, {abab}) but can-
not be generated by a (2,4)-semi-simple splicing system, while the language
b+ ∪ abb+ ∪ b+ab ∪ ab+ab can be generated by the (2,4)-semi-simple splicing
system ({a, b}, {(ε, a; ε, b)}, {abab}) but not a (1,3)-semi-simple splicing system.

In this paper, we will relax the condition that the initial language of a semi-
simple splicing system must be a finite language, and we will consider also semi-
simple splicing systems with regular initial languages. By [13], it is clear that
such a splicing system will also produce a regular language. In the following, we
will use the convention that I denotes a finite language and L denotes an infinite
language.

4 State Complexity of (2,4)-semi-simple Splicing Systems

In this section, we will consider the state complexity of (2,4)-semi-simple splicing
systems. Recall that a (2,4)-semi-simple splicing system is a splicing system with
rules of the form (ε, a; ε, b) for a, b ∈ Σ. As mentioned previously, the classes of
languages generated by (1,3)- and (2,4)-simple splicing systems were shown to
be equivalent by Mateescu et al. [11], while the classes of languages generated
by (1,3)- and (2,4)-semi-simple splicing systems were shown to be incomparable
by Ceterchi et al. [2].

First, we define an NFA that recognizes the language of a given (2,4)-semi-
simple splicing system. This construction is based on the construction of Head
and Pixton [8] for Păun splicing rules, which is based on the construction for
Pixton splicing rules by Pixton [12]. The original proof of regularity of finite
splicing is due to Culik and Harju [3]. We follow the Head and Pixton construc-
tion and apply ε-transition removal on the resulting NFA to obtain an NFA for
the semi-simple splicing system with the same number of states as the DFA for
the initial language of the splicing system.

Proposition 1. Let H = (Σ,M,L) be a (2,4)-semi-simple splicing system with
a regular initial language and let L be recognized by a DFA with n states. Then
there exists an NFA A′

H with n states such that L(A′
H) = L(H).
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The result of this construction is an NFA that “guesses” when a splicing
operation occurs. Since each component of a semi-simple splicing rule is of length
at most 1, the construction of the NFA need only consider the outgoing and
incoming transitions of states. In the case of (2,4)-semi-simple splicing systems,
for a rule (a, b), any state with an outgoing transition on a has added transitions
on a to every state with an incoming transition on b.

From this NFA construction, we can obtain a DFA via subset construction.
This gives an upper bound of 2n − 1 reachable states. This upper bound is the
same for (1,3)-simple and (1,3)-semi-simple splicing systems and was shown to
be tight [9]. Since (1,3)-simple splicing systems and (2,4)-simple splicing sys-
tems are equivalent, we state without proof that the same result holds for (2,4)-
simple splicing systems via the same lower bound witness. Therefore, this bound
is reachable for (2,4)-semi-simple splicing systems via the same lower bound
witness.

Proposition 2 [9]. For |Σ| ≥ 3 and n ≥ 3, there exists a (2,4)-simple splicing
system with a regular initial language H = (Σ,M,L) with |M | = 1 where L is
a regular language with state complexity n such that the minimal DFA for L(H)
requires at least 2n − 1 states.

It was also shown in [9] that if the initial language is finite, this upper bound
is not reachable for (1,3)-simple and (1,3)-semi-simple splicing systems. This
result holds for all variants of semi-simple splicing systems and the proof is
exactly the same as in [9]. We state the result for semi-simple splicing systems
for completeness.

Proposition 3 [9]. Let H = (Σ,M, I) be a semi-simple splicing system with a
finite initial language where I is a finite language recognized by a DFA A with n
states. Then a DFA recognizing L(H) requires at most 2n−2 + 1 states.

This upper bound is witnessed by a (2,4)-semi-simple splicing system which
requires both an alphabet and ruleset that grows exponentially with the number
of states of the initial language. This is in contrast to the lower bound witness
for (1,3)-semi-simple systems from [9], which requires only three letters. We
also note that the initial language used for this witness is the same as that for
(1,3)-simple splicing systems from [9]. From this, we observe that the choice of
the visible sites for the splicing rules (i.e. (1,3) vs. (2,4)) makes a difference in
the state complexity. We will see other examples of this later as we consider
semi-simple splicing systems with other rule variants.

Theorem 4. Let H = (Σ,M, I) be a (2,4)-semi-simple splicing system with a
finite initial language, where I is a finite language with state complexity n and
M ⊆ Σ × Σ. Then the state complexity of L(H) is at most 2n−2 + 1 and this
bound can be reached in the worst case.

5 State Complexity of (2,3)-semi-simple Splicing Systems

We will now consider the state complexity of (2,3)-semi-simple splicing systems.
Recall that a (2,3)-semi-simple splicing system is a splicing system with rules
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of the form (ε, a; b, ε) for a, b ∈ Σ. We can follow the same construction from
Proposition 1 with slight modifications to account for (2, 3)-semi-simple splicing
rules to obtain an NFA for a language generated by a (2,3)-semi-simple splicing
system with the same number of states as the DFA for the initial language of
the splicing system.

Proposition 5. Let H = (Σ,M,L) be a (2,3)-semi-simple splicing system with
a regular initial language and let L be recognized by a DFA with n states. Then
there exists an NFA A′

H with n states such that L(A′
H) = L(H).

Note that in this NFA construction, for each (2,3)-semi-simple splicing rule
(a, b), any state with an outgoing transition on a has additional ε-transitions
to every state with an incoming transition on b. This differs from the NFA
construction for (2,4)-semi-simple splicing systems, where the new transitions
were on the symbol a. From this NFA, we then get an upper bound of 2n − 1
reachable states via the subset construction. However, we will show that because
of the ε-transitions, this bound cannot be reached.

Proposition 6. Let H = (Σ,M,L) be a (2,3)-semi-simple splicing system with
a regular initial language, where M ⊆ Σ × Σ and L ⊆ Σ∗ is recognized by a
DFA with n states. Then there exists a DFA AH such that L(AH) = L(H) and
AH has at most 2n−1 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be the DFA for L and let BH = (Q,Σ, δ′, q0, F )
be the NFA obtained via the construction of Proposition 5 given the (2,3)-semi-
simple splicing system H. Let AH be the DFA obtained by applying the subset
construction to BH . Note that the states of AH are subsets of states of BH .

Consider a ∈ Σ with (a, b) ∈ M and δ(q, a) = q′ is defined for some q′ ∈ Q. In
other words, q has an outgoing transition on a. Assuming that (a, b) is non-trivial
and im δb contains useful states, for any set P ⊆ Q, we must have im δb ⊆ P
if q ∈ P . This is because for each symbol a ∈ Σ for which there is a pair
(a, b) ∈ M , if the NFA BH enters a state q ∈ Q with an outgoing transition on
a, the NFA BH also simultaneously, via ε-transitions, enters any state with an
incoming transition on b. This implies that not all 2n − 1 non-empty subsets of
Q are reachable in AH , since the singleton set {q} is unreachable.

Because of this construction, the number of distinct sets that contains q
decreases as the size of im δb grows. Thus, to maximize the number of sets that
can be reached, the number of states with incoming transitions on any symbol b
with (a, b) ∈ M must be minimized. Therefore, for (a, b) ∈ M , there can be only
one useful state with incoming transitions on b. Let us call this state qb ∈ Q.

We claim that to maximize the number of states, A must contain no useless
states and therefore A contains no sink state. First, suppose otherwise and that
A contains a sink state q∅. To maximize the number of states, we minimize the
number of states of A with outgoing transitions, so there is only one state of A,
say q′, with an outgoing transition on a. We observe that q′ �= qb, since otherwise,
| im δb| = 1 and if the only state with an outgoing transition on a is qb itself,
then the only reachable subset that contains qb is the singleton set {qb}.
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Now, recall that for all subsets P ⊆ Q\{q∅}, the two sets P and P ∪{q∅} are
indistinguishable. Then there are at most 2n−2 distinguishable subsets containing
qb and at most 2n−3 − 1 nonempty subsets of Q \ {qb, q′, q∅}. Together with the
sink state, this gives a total of at most 2n−2 + 2n−3 states in AH .

Now, we consider when A contains no sink state. In this case, since A must
be a complete DFA, in order to satisfy the condition that | im δb| is minimal,
we must have δ(q, a) = qb for all q ∈ Q. But this means that for any state q ∈ Q
and subset P ⊆ Q, if q ∈ P , then qb ∈ P . Therefore, every reachable subset of
Q must contain qb. This gives an upper bound of 2n−1 states in AH .

Since 2n−1 > 2n−2 + 2n−3 for n ≥ 3, the DFA AH can have at most 2n−1

states in the worst case. �

The bound of Proposition 6 is reachable when the initial language is a regular

language, even when restricted to simple splicing rules defined over an alphabet
of size 3. This upper bound is met by the (2,3)-simple splicing system H =
(Σ, {(c, c)}, L(An)), where Σ = {a, b, c} and An is the DFA shown in Fig. 1.
This gives us the following result.

Fig. 1. The DFA An of Theorem 7

Theorem 7. Let H = (Σ,M,L) be a (2,3)-semi-simple splicing system with a
regular initial language, where L ⊆ Σ∗ is a regular language with state complexity
n and M ⊆ Σ × Σ. Then the state complexity of L(H) is at most 2n−1 and this
bound can be reached in the worst case.

The bound of Proposition 6 depends on whether or not the DFA for the
initial language contains a sink state. Since a DFA recognizing a finite language
must have a sink state, the upper bound stated in the proposition is clearly not
reachable when the initial language is finite.

Proposition 8. Let H = (Σ,M, I) be a (2,3)-semi-simple splicing system where
I is a finite language recognized by a DFA A with n states. Then a DFA recog-
nizing L(H) requires at most 2n−3 + 2 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be the DFA for I and let AH be the DFA obtained
via the construction of Proposition 6, given the (2,3)-semi-simple splicing system
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H. We will consider the number of reachable and pairwise distinguishable states
of AH .

Recall from the proof of Proposition 6 that to maximize the number of sets
that can be reached in AH , the number of states with incoming transitions on
any symbol b with (a, b) ∈ M must be minimized. Then for (a, b) ∈ M , there
can be only one useful state with incoming transitions on b. Let us call this state
qb ∈ Q.

Since I is a finite language, we know that q0, the initial state of A, is contained
in exactly one reachable state in AH . Similarly A must contain a sink state q∅
and for all subsets P ⊆ Q, we have that P and P ∪ {q∅} are indistinguishable.
Finally, we observe that there must exist at least one state q1 ∈ Q that is directly
reachable from q0 and is not reachable by any word of length greater than 1.
Therefore, in order to maximize the number of reachable subsets, we must have
that q1 = qb.

Let Qa denote the set of states for which there is an outgoing transition on
the symbol a. That is, if q ∈ Qa, we have δ(q, a) ≤ n − 2. Let ka = |Qa|. It is
clear that ka ≥ 1. Now, consider a reachable subset P ⊆ Q \ {q0, q∅}. We claim
that if |P | ≥ 2 and qb ∈ P , then we must have q ∈ P for some q ∈ Qa.

Suppose otherwise and that Qa ∩ P = ∅. Recall that qb = q1 and the only
incoming transitions to q1 are from the initial state q0. Then this means that
P = {q1} and |P | = 1, a contradiction. Therefore, we have Qa ∩P �= ∅ whenever
qb ∈ P with |P | ≥ 2.

Now, we can count the number of reachable subsets of Q \ {q0, q∅}. There
are 2n−3−ka(2ka − 1) non-empty subsets of size greater than 1 which contain qb
and there are 2n−3−ka − 1 non-empty subsets which do not contain qb. Together
with the initial and sink states and the set {qb}, we have

2n−3−ka(2ka − 1) + 2n−3−ka − 1 + 3.

Thus, the DFA AH has at most 2n−3 + 2 reachable states. �

Let H = (Σ, {(a, c)}, L(Bn)) be a (2,3)-semi-simple splicing system, where

Σ = {a, b, c} and Bn is a DFA for a finite language with n states. The DFA Bn

is shown in Fig. 2. Then H is a (2,3)-semi-simple splicing system with an initial
finite language that is defined over a fixed alphabet that can reach the upper
bound of Proposition 8. This then gives us the following theorem.

Fig. 2. The DFA Bn of Theorem 9. Transitions not shown are to the sink state n − 1,
which is not shown.
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Theorem 9. Let H = (Σ,M, I) be a (2,3)-semi-simple splicing system with a
finite initial language, where I is a finite language with state complexity n and
M ⊆ Σ × Σ. Then the state complexity of L(H) is at most 2n−3 + 2 and this
bound can be reached in the worst case.

Unlike the situation with (2,3)-semi-simple splicing systems with regular ini-
tial languages, when we restrict (2,3)-semi-simple splicing systems with initial
finite languages to allow only (2,3)-simple splicing rules, the bound of Theorem 9
is not reachable.

Proposition 10. Let H = (Σ,M, I) be a (2,3)-simple splicing system where I
is a finite language recognized by a DFA A with n states. Then a DFA recognizing
L(H) requires at most 2n−4 + 2n−5 + 2 states.

This bound is reachable by a family of witnesses defined over an alphabet of
size 7. We define the (2,3)-finite simple splicing system H = (Σ, {(c, c)}, L(Cn)),
where Σ = {a, b, c, d, e, f, g} and Cn is a DFA with n states that accepts a finite
language, shown in Fig. 3. Then we have the following theorem.

Fig. 3. The DFA Cn of Theorem 11. Transitions not shown are to the sink state n− 1,
which is not shown.

Theorem 11. Let H = (Σ,M, I) be a (2,3)-simple splicing system with a finite
initial language, where I ⊆ Σ∗ is a finite language with state complexity n and
M ⊆ Σ∗ × Σ∗. Then the state complexity of L(H) is at most 2n−4 + 2n−5 + 2
and this bound can be reached in the worst case.

6 State Complexity of (1,4)-semi-simple Splicing Systems

In this section, we consider the state complexity of (1,4)-semi-simple splicing
systems. Recall that a (1,4)-semi-simple splicing system is a splicing system
with rules of the form (a, ε; ε, b) for a, b ∈ Σ. As with (2,3)-semi-simple splicing
systems, we can easily modify the construction of Proposition 1 to obtain an
NFA for (1,4)-semi-simple splicing systems.

Proposition 12. Let H = (Σ,M,L) be a (1,4)-semi-simple splicing system
with a regular initial language, M = M1 × M2 with M1,M2 ⊆ Σ and let L be
recognized by a DFA with n states. Then there exists an NFA A′

H with n + m
states such that L(A′

H) = L(H), where m = |M1|.
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This NFA construction differs from the constructions for (2,3)- and (2,4)-
semi-simple splicing systems in that additional states are introduced for each
splicing rule. For each (1,4)-semi-simple splicing rule (a, b), we add a new state
pa to which any state with an outgoing transition on a has additional transitions
on a and from which there are transitions on b to every state with an incoming
transition on b.

This construction immediately gives an upper bound of 2n+m states necessary
for an equivalent DFA via the subset construction, where m is the number of
symbols on the left side of each pair of rules in M . However, we will show via
the following DFA construction that the upper bound is much lower than this.

Proposition 13. Let H = (Σ,M,L) be a (1,4)-semi-simple splicing system
with a regular initial language, where M = M1 × M2 with M1,M2 ⊆ Σ and
L ⊆ Σ∗ is recognized by a DFA with n states. Then there exists a DFA AH such
that L(AH) = L(H) and AH has at most (2n − 2)(|M1| + 1) + 1 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be a DFA for L. We will define the DFA AH =
(Q′, Σ, δ′, q′

0, F
′). Then the state set of AH is Q′ = 2Q × (M1 ∪ {ε}), the initial

state is q′
0 = 〈{q0}, ε〉, the set of final states is F ′ = {〈P, a〉 | P ∩ F �= ∅}, and

the transition function δ′ is defined

– δ′(〈P, ε〉, a) = 〈P ′, ε〉 if a �∈ M1,
– δ′(〈P, ε〉, a) = 〈P ′, a〉 if a ∈ M1,
– δ′(〈P, b〉, a) = 〈P ′, ε〉 if (b, a) �∈ M and a �∈ M1,
– δ′(〈P, b〉, a) = 〈P ′, a〉 if (b, a) �∈ M and a ∈ M1,
– δ′(〈P, b〉, a) = 〈 im δa, ε〉 if (b, a) ∈ M and a �∈ M1,
– δ′(〈P, b〉, a) = 〈 im δa, a〉 if (b, a) ∈ M and a ∈ M1,

where P ′ =
⋃

q∈P δ(q, a).
This construction gives an immediate upper bound of (2n − 1)(|M1| + 1)

states, however, not all of these states are distinguishable. Consider the two
states 〈Q, ε〉 and 〈Q, a〉 for some a ∈ M1. We claim that these two states are
indistinguishable. This arises from the observation that

⋃
q∈Q δ(q, a) = im δa

for all a ∈ Σ. Then one of the following occurs:

– 〈Q, ε〉 b−→ 〈 im δb, ε〉 and 〈Q, a〉 b−→ 〈 im δb, ε〉 if b �∈ M1,
– 〈Q, ε〉 b−→ 〈 im δb, b〉 and 〈Q, a〉 b−→ 〈 im δb, b〉 if b ∈ M1.

Note that in either case, it does not matter whether or not (a, b) ∈ M and the
two cases are distinguished solely by whether or not b is in M1. Thus, all states
〈Q, a〉 with a ∈ M1 ∪ {ε} are indistinguishable.

Thus, AH has at most (2n − 2)(|M1| + 1) + 1 states. �

When the initial language is a regular language, the upper bound is easily

reached, even when we are restricted to simple splicing rules. We consider the
(1,4)-simple splicing system H = (Σ, {(c, c)}, L(Dn)), where Σ = {a, b, c} and
Dn is the DFA shown in Fig. 4.
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Fig. 4. The DFA Dn for Theorem 14

We note that the witness, H has |M | = 1 and therefore |M1| = 1. We observe
that we can set |M1| to be arbitrarily large by adding symbols and transitions
appropriately and adding the corresponding markers to M for each new such
symbol. We then have the following result.

Theorem 14. Let H = (Σ,M,L) be a (1,4)-semi-simple splicing system with a
regular initial language, where L ⊆ Σ∗ is a regular language with state complexity
n and M = M1 × M2 with M1,M2 ⊆ Σ. Then the state complexity of L(H) is
at most (2n − 2)(|M1| + 1) + 1 and this bound can be reached in the worst case.

We will show that this bound cannot be reached by any (1,4)-semi-simple
splicing system when the initial language is finite.

Proposition 15. Let H = (Σ,M, I) be a (1,4)-semi-simple splicing system with
a finite initial language, where M = M1 × M2 with M1,M2 ⊆ Σ and I ⊆ Σ∗

is a finite language recognized by a DFA with n states. Then there exists a DFA
AH such that L(AH) = L(H) and AH has at most 2n−2 + |M1| · 2n−3 +1 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be a DFA for I with n states and let AH be the
DFA recognizing L(H) obtained via the construction of Proposition 13. Since
I is finite, the initial state of A contains no incoming transitions and A must
have a sink state. Therefore, for any state 〈S, c〉, we have S ⊆ Q \ {q0, q∅} and
c ∈ M1∪{ε}, where q∅ is the sink state. This gives us up to (2n−2−1)(|M1|+1)+2
states.

We can reduce the number of reachable states further by noting that since
I is finite, A must contain at least one useful state q1 that is directly reachable
only from the initial state q0. Then there are only two ways to reach a state 〈P, c〉
in AH with q1 ∈ P . Either P = {q1} and is reached directly via a transition from
{q0} or |P | ≥ 2 and P = im δb for some (a, b) ∈ M . For each c ∈ M1, this gives
a total of 2 reachable states 〈P, c〉.

Therefore, we can enumerate the reachable states of AH as follows:

– the initial state 〈{q0}, ε〉 and the sink state 〈{q∅}, ε〉,
– at most 2n−2 − 1 states of the form 〈P, ε〉, where P ⊆ Q \ {q0, q∅},
– at most |M1| states of the form 〈{q1}, c〉 with c ∈ M1,
– at most |M1| states of the form 〈P, c〉 such that P ⊆ Q \ {q0, q∅}, |P | ≥ 2,

and q1 ∈ P with c ∈ M1,
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– at most |M1|(2n−3 −1) states of the form 〈P, c〉 such that P ⊆ Q\{q0, q1, q∅}
with c ∈ M1.

This gives a total of at most 2n−2 + |M1| · (2n−3 + 1) + 1 reachable states
in AH . �


This bound is witnessed by a (1,4)-semi-simple splicing system that is defined
over an alphabet and ruleset that grows exponentially in the size of the number
of states of the initial language. This is similar to the (2,4)-semi-simple case. We
note also that one can arbitrarily increase the size of M by adding symbols and
corresponding pairs of rules appropriately. We then get the following result.

Theorem 16. Let H = (Σ,M, I) be a (1,4)-semi-simple splicing system with a
finite initial language, where I ⊆ Σ∗ is a finite language with state complexity n
and M = M1 × M2 with M1,M2 ⊆ Σ. Then the state complexity of L(H) is at
most 2n−2 + |M1| · 2n−3 + 1 and this bound is reachable in the worst case.

7 Conclusion

We have studied the state complexity of several variants of semi-simple splic-
ing systems. Our results are summarized in Table 1 and we include the state
complexity of (1,3)-semi-simple and (1,3)-simple splicing systems from [9] for
comparison.

Table 1. Summary of state complexity bounds for (i, j)-simple and semi-simple splicing
systems with alphabet Σ, state complexity of the axiom set n, and set of splicing rules
M = M1 × M2, with M1, M2 ⊆ Σ. Regular axiom sets have |Σ| = 3.

Regular axiom set Finite axiom set |Σ|
(2,4)-semi. 2n − 1 2n−2 + 1 ≥ 2n−3

(2,3)-semi. 2n−1 2n−3 + 2 3

(1,4)-semi. (2n−2 − 2)(|M1| + 1) + 1 2n−2 + |M1| · 2n−3 ≥ 2n−3

(1,3)-semi. [9] 2n − 1 2n−2 + 1 3

(2,4)-simple 2n − 1 Same as (1,3)

(2,3)-simple 2n−1 2n−4 + 2n−5 + 2 7

(1,4)-simple (2n−2 − 2)(|M1| + 1) + 1 ?

(1,3)-simple [9] 2n − 1 2n−2 + 1 ≥ 2n−3

Observe that for all variants of semi-simple splicing systems, the state com-
plexity bounds for splicing systems with regular initial languages are reached
with simple splicing witnesses defined over a three-letter alphabet. For semi-
simple splicing systems with finite initial languages, we note that the state com-
plexity bounds for the (2,3) and (1,3) variants are reached by witnesses defined
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over a three-letter alphabet, while both of the (1,4) and (2,4) variants require an
alphabet size that is exponential in the size of the DFA for the initial language.

We note that the witness for (2,3)-simple splicing systems with a finite initial
language is defined over a fixed alphabet of size 7, while the problem remains
open for (1,4)-simple splicing systems. Another problem that remains open is
the state complexity of (1,4)- and (2,4)- simple and semi-simple splicing systems
with finite initial languages defined over alphabets of size k for 3 < k < 2n−3. A
similar question can be asked of (2,3)-simple splicing systems with a finite initial
language for alphabets of size less than 7.
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Abstract. We consider general expressions, which are trees whose nodes
are labeled with operators, that represent syntactic descriptions of formu-
las. We assume that there is an operator that has an absorbing pattern
and prove that if we use this property to simplify a uniform random
expression with n nodes, then the expected size of the result is bounded
by a constant. In our framework, expressions are defined using a combi-
natorial system, which describes how they are built: one can ensure, for
instance, that there are no two consecutive stars in regular expressions.
This generalizes a former result where only one equation was allowed,
confirming the lack of expressivity of uniform random expressions.

1 Introduction

This article is the sequel of the work started in [10], where we investigate the lack
of expressivity of uniform random expressions. In our setting, we use the natural
encoding of expressions as trees, which is a convenient way to manipulate them
both in theory and in practice. In particular, it allows us to treat many different
kinds of expressions at a general level (see Fig. 1 below): regular expressions,
arithmetic expressions, boolean formulas, LTL formulas, and so on.
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Fig. 1. Four expression trees and their associated formulas. From left to right: a logical
formula, a regular expression, an LTL formula and a function.
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For this representation, some problems are solved using a simple traversal of
the tree: for instance, testing whether the language of a regular expression con-
tains the empty word, or formally differentiating a function. Sometimes however,
the tree is not the best way to encode the object it represents in the computer,
and we transform it into an equivalent adequate structure; in the context of
formal languages, a regular expression (encoded using a tree) is typically trans-
formed into an automaton, using one of the many known algorithms such as the
Thompson construction or the Glushkov automaton.

In our setting, we assume that one wants to estimate the efficiency of an algo-
rithm, or a tool, whose inputs are expressions. The classical theoretical frame-
work consists in analyzing the worst case complexity, but there is often some
discrepancy between this measure of efficiency and what is observed in practice.
A practical approach consists in using benchmarks to test the tool on real data.
But in many contexts, having access to good benchmarks is quite difficult. An
alternative to these two solutions is to consider the average complexity of the
algorithm, which is sometimes amenable to a mathematical analysis, and which
can be studied experimentally, provided we have a random generator at hand.
Going that way, we have to choose a probability distribution on size-n inputs,
which can be difficult: we would like to study a “realistic” probability distri-
bution that is also mathematically tractable. When no specific random model
is available, it is classical to consider the uniform distribution, where all size-
n inputs are equally likely. In many frameworks, such as sorting algorithms,
studying the uniform distribution yields useful insights on the behavior of the
algorithm.

Following this idea, several works have been undertaken on uniform random
expressions, in various contexts. Some are done at a general level: the expected
height of a uniform random expression [12] always grows in Θ(

√
n), if we identify

common subexpressions then the expected size of the resulting acyclic graph [7]
is in Θ( n√

log n
), . . . There are also more specific results on the expected size of

the automaton built from a uniform random regular expression, using various
algorithms [4,14]. In another setting, the expected cost of the computation of
the derivative of a random function was proved to be in Θ(n3/2), both in time
and space [8]. There are also a lot of results on random boolean formulas, but
the framework is a bit different (for a more detailed account on this topic, we
refer the interested reader to Gardy’s survey [9]).

In [10], we questioned the model of uniform random expressions. Let us illus-
trate the main result of [10] on an example, regular expressions on the alphabet
{a, b}. The set LR of regular expressions is inductively defined by

LR = a + b + ε +
�
|

LR
+

•
/\

LR LR
+

+
/\

LR LR
. (�)

The formula above is an equation on trees, where the size of a tree is its num-
ber of nodes. In particular a, b and ε represent trees of size 1, reduced to a leaf,
labeled accordingly. As one can see from the specification (�), leaves have labels
in {a, b, ε}, unary nodes are labeled by � and binary nodes by either the concate-
nation • or the union +. Observe that the regular expression P corresponding to
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(a+ b)� denotes the regular language {a, b}� of all possible words. This language
is absorbing for the union operation on regular languages. So if we start with a
regular expression R (a tree), identify every occurrence of the pattern P (a sub-
tree), then rewrite the tree (bottom-up) by using inductively the simplifications
+
/\

X P
→ P and

+
/\

P X
→ P, this results in a simplified tree σ(R) that denotes the

same regular language. Of course, other simplifications could be considered, but
we focus on this particular one. The theorem we proved in [10] implies that if one
takes uniformly at random a regular expression of size n and applies this simpli-
fication algorithm, then the expected size of the resulting equivalent expression
tends to a constant! It means that the uniform distribution on regular expres-
sions produces a degenerated distribution on regular languages. More generally,
we proved that: For every class of expressions that admits a specification similar
to Eq. (�) and such that there is an absorbing pattern for some of the operations,
the expected size of the simplification of a uniform random expression of size n
tends to a constant as n tends to infinity.1 This negative result is quite general,
as most examples of expressions have an absorbing pattern: for instance x ∧ ¬x
is always false, and therefore absorbing for ∧.

The statement of the main theorem of [10] is general, as it can be used to
discard the uniform distribution for expressions defined inductively as in Eq. (�).
However it is limited to that kind of simple specifications. And if we take a closer
look at the regular expressions from LR, we observe that nothing prevents, for
instance, useless sequences of nested stars as in (((a + bb)�)�)�. It is natural to
wonder whether the result of [10] still holds when we forbid two consecutive stars
in the specification. We could also use the associativity of the union to prevent
different representations of the same language, as depicted in Fig. 2, or many
other properties, to try to reduce the redundancy at the combinatorial level.

+

+ �

ab +

c d

(b + (c + d)) + a�

+

+ �

a

b

+

c

d

((b + c) + d) + a�

+

+ +

db c �

a

(b + c) + (d + a�)

Fig. 2. Three regular expression trees whose denoted languages are equal because of
the associativity of the union.

This is the question we investigate in this article: does the degeneracy phe-
nomenon of [10] still hold for more advanced combinatorial specifications? More
precisely, we now consider specifications made using a system of (inductive) com-
binatorial equations, instead of only one as in Eq. (�). For instance, we can forbid
consecutive stars using the combinatorial system:
1 The idea behind our work comes from a very specific analysis of and/or formulas

established in Nguyên Thê PhD’s dissertation [13, Ch 4.4].
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⎧
⎨

⎩

LR =
�
|
S + S,

S = a + b + ε +
+
/\

LR LR
+

•
/\

LR LR
.

(��)

The associativity of the union (Fig. 2) can be taken into account by preventing
the right child of any +-node from being also labeled by +. Clearly, systems
cannot be used for forbidding intricated patterns, but they still greatly enrich
the families of expressions we can deal with. Moreover that kind of systems,
which has strong similarities with context-free grammars, is amenable to analytic
techniques as we will see in the sequel; this was for instance used by Lee and
Shallit to estimate the number of regular languages in [11].

Our contributions can be described as follows. We consider expressions
defined by systems of combinatorial equations (instead of just one equation),
and establish a similar degeneracy result: if there is an absorbing pattern, then
the expected reduced size of a uniform random expression of size n is upper
bounded by a constant as n tends to infinity.2 Hence, even if we use the system
to remove redundancy from the specification (e.g., by forbidding consecutive
stars), uniform random expressions still lack expressivity. Technically, we once
again rely on the framework of analytic combinatorics for our proofs. However,
the generalization to systems induces two main difficulties. First, we are not
dealing with the well-known varieties of simple trees anymore [6, VII.3], so we
have to rely on much more advanced techniques of analytic combinatorics; this
is sketched in Sect. 5. Second, some work is required on the specification itself,
to identify suitable hypotheses for our theorem; for instance, it is easy from
the specification to prevent the absorbing pattern from appearing as a subtree
at all, in which case our statement does not hold anymore, since there are no
simplifications taking place.

Due to the lack of space, the analytic proofs are only sketched or omitted
in this extended abstract: we chose to focus on the discussion on combinatorial
systems (Sect. 3) and on the presentation of our framework (Sect. 4).

2 Basic Definitions

For a given positive integer n, [n] = {1, . . . , n} denotes the set of the first n
positive integers. If E is a finite set, |E| denotes its cardinality.

A combinatorial class is a set C equipped with a size function | · | from C to
N (the size of C ∈ C is |C|) such that for any n ∈ N, the set Cn of size-n elements
of C is finite. Let Cn = |Cn|, the generating series C(z) of C is the formal power
series defined by

C(z) =
∑

C∈C
z|C| =

∑

n≥0

Cnzn.

Generating series are tools of choice to study combinatorial objects. When their
radius of convergence is not zero, they can be viewed as analytic function from
2 The result holds for natural yet technical conditions on the system.
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C to C, and very useful theorems have been developed in the field of analytic
combinatorics [6] to, for instance, easily obtain an asymptotic equivalent to Cn.
We rely on that kind of techniques in Sect. 5 to prove our main theorem.

If C(z) =
∑

n≥0 Cnzn is a formal power series, let [zn]C(z) denote its n-th
coefficient Cn. Let ξ be a parameter on the combinatorial class C, that is, a
mapping from C to N. Typically, ξ stands for some statistic on the objects of C:
the number of cycles in a permutation, the number of leaves in a tree, . . . We
define the bivariate generating series C(z, u) associated with C and ξ by:

C(z, u) =
∑

C∈C
z|C|uξ(C) =

∑

k,n≥0

Cn,kznuk,

where Cn,k is the number of size-n elements C of C such that ξ(C) = k. In partic-
ular, C(z) = C(z, 1). Bivariate generating series are useful to obtain information
on ξ, such as its expectation or higher moments. Indeed, if En[ξ] denotes the
expectation of ξ for the uniform distribution on Cn, i.e. where all the elements
of size n are equally likely, a direct computation yields:

En[ξ] =
[zn]∂uC(z, u)

∣
∣
u=1

[zn]C(z)
, (1)

where ∂uC(z, u)
∣
∣
u=1

consists in first differentiating C(z, u) with respect to u,
and then setting u = 1. Hence, if we have an expression for C(z, u) we can
estimate En[ξ] if we can estimate the coefficients of the series in Eq. (1).

In the sequel, the combinatorial objects we study are trees, and we will
have methods to compute the generating series directly from their specifications.
Then, powerful theorems from analytic combinatorics will be used to estimate
the expectation, using Eq. (1). So we delay the automatic construction and the
analytic treatment to their respective sections.

3 Combinatorial Systems of Trees

3.1 Definition of Combinatorial Expressions and of Systems

In the sequel the only combinatorial objects we consider are plane trees. These
are trees embedded in the plane, which means that the order of the children
matters: the two trees

•
/\◦ • and

•
/\• ◦ are different. Every node is labeled by an

element in a set of symbols and the size of a tree is its number of nodes.
More formally, let S be a finite set, whose elements are operator symbols,

and let a be a mapping from S to N. The value a(s) is called the arity3 of the
operator s. An expression over S is a plane tree where each node of arity i is
labeled by an element s ∈ S such that a(s) = i (leaves’ symbols have arity 0).

3 We do not use the term degree, because if the tree is viewed as a graph, the degree
of a node is its arity plus one (except for the root).
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Example 1. In Fig. 1, the first tree is an expression over S = {∧,∨,¬, x1, x2, x3}
with a(∧) = a(∨) = 2, a(¬) = 1 and a(x1) = a(x2) = a(x3) = 0.

An incomplete expression over S is an expression where (possibly) some
leaves are labeled with a new symbol � of arity 0. Informally, such a tree repre-
sents part of an expression, where the �-nodes need to be completed by being
substituted by an expression. An incomplete expression with no �-leaf is called a
complete expression, or just an expression. If T is an incomplete expression over
S, its arity a(T ) is its number of �-leaves. It is consistent with the definition
of the arity of a symbol, by viewing a symbol s of arity a(s) as an incomplete
expression made of a root labeled by s with a(s) �-children: ∧ is viewed as

∧
/\� �.

Let T�(S) and T (S) be the set of incomplete and complete expressions over S.
If T is an incomplete expression over S of arity t, and T1, . . . , Tt are expres-

sions over S, we denote by T [T1, . . . , Tt] the expression obtained by substi-
tuting the i-th �-leaf in depth-first order by Ti, for i ∈ [t]. This notation is
generalized to sets of expressions: if T1, . . . , Tt are sets of expressions then
T [T1, . . . , Tt] = {T [T1, . . . , Tt] : T1 ∈ T1, . . . , Tt ∈ Tt}.

A rule of dimension m ≥ 1 over S is an incomplete expression T ∈ T�(S)
where each �-node is replaced by an integer of [m]. Alternatively, a rule can be
seen as a tuple M = (T, i1, . . . , it), where T is an incomplete expression of arity
t and i1, . . . , it are the values placed in its �-leaves in depth-first order. The
arity a(M) of a rule M is the arity of its incomplete expression, and ind(M) =
(i1, . . . , it) is the tuple of integer values obtained by a depth-first traversal of
M. A combinatorial system of trees E = {E1, . . . , Em} of dimension m over S is
a system of m set equations of complete trees in T (S): each Ei is a non-empty
finite set of rules over S, and the system in variables L1, . . . , Lm is:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L1 =
⋃

(T,i1,...,it)∈E1

T [Li1 , . . . ,Lit ]

...
Lm =

⋃

(T,i1,...,it)∈Em

T [Li1 , . . . ,Lit ].

(2)

Example 2. To specify the system given in Eq. (��) using our formalism, we
have m = 2. Its tuples representation is: E1 =

{(
�
|�, 2

)
, (�, 2)

}
, and E2 =

{( •
/\� �, 1, 1

)
,
(

+
/\� �, 1, 1

)
, (a), (b), (ε)

}
, and its equivalent tree representation is

E1 =
{�

|
2

}
, and E2 =

{ •
/\
1 1

,
+
/\
1 1

, a, b, ε
}

, which corresponds to Eq. (��) with LR =

L1 and S = L2. In practice, we prefer descriptions as in Eq. (��), which are easier
to read, but they are all equivalent.
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3.2 Generating Series

If the system is not ambiguous, that is, if L1, . . . ,Lm is the4 solution of the
system and every tree in every Li can be uniquely built from the specification,
then the system can be directly translated into a system of equations on the
generating series. This is a direct application of the symbolic method in analytic
combinatorics [6, Part A] and we get the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L1(z) =
∑

(T,i1,...,ia(T ))∈E1

z|T |−a(T )Li1(z) · · · Lia(T )(z)

...
Lm(z) =

∑

(T,i1,...,ia(T ))∈Em

z|T |−a(T )Li1(z) · · · Lia(T )(z).

(3)

where Li(z) is the generating series of Li. If the system is ambiguous, the Li(z)’s
still have a meaning: each expression of Li accounts for the number of ways it
can be derived from the system. When the system is unambiguous, there is only
one way to derive each expression, and Li(z) is the generating series of Li.

3.3 Designing Practical Combinatorial Systems of Trees

Systems of trees such as Eq. (2) are not always well-founded. Sometimes they
are, but still contain unnecessary equations. It is not the topic of this article to
fully characterize when a system is correct, but we nonetheless need sufficient
conditions to ensure that our results hold: in this section, we just present exam-
ples to underline some bad properties that might happen. For a more detailed
account on combinatorial systems, the reader is referred to [1,8,16].

Ambiguity. As mentioned above, the system can be ambiguous, in which case the
combinatorial system cannot directly be translated into a system of generating
series. This is a case for instance for the following system

⎧
⎨

⎩

L1 = a +
�
|

L1
+

�
|

L2

L2 =
�
|

L1
+ a + b + ε,

as the expression
�
|
a

can be produced in two ways for the component L1.

Empty Components. Some specifications produce empty Li’s. For instance, con-
sider the system

{
L1 =

•
/\

L1 L2
; L2 = a + b + ε + L1

}
: its only solution is L1 = ∅

and L2 = {a, b, ε}.

4 In all generalities, there can be several solutions to a system, but the conditions we
will add prevent this from happening.
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Cyclic Unit-Dependency. The unit-dependency graph G�(E) of a system E is the
directed graph of vertex set [m], with an edge i → j whenever (�, j) ∈ Ei. Such
a rule is called a unit rule. It means that Li directly depends on Lj . For instance
LR directly depends on S in Eq. (��). We can work with systems having unit
dependencies, provided the unit-dependency graph is acyclic. If it is not, then the
equations forming a cycle are useless or badly defined for our purposes. Consider
for instance the system and its unit-dependency graph depicted in Fig. 3.

L1 = L2 +
�
|

L1

2 = a + b + ε + 1

1 2

Fig. 3. The unit-dependency graph is not acyclic, and there are infinitely many ways
to derive a from L2: L2 → a, L2 → L1 → L2 → a. . .

Not Strongly Connected. The dependency graph G(E) of the system E is the
directed graph of vertex set [m], with an edge i → j whenever there is a rule
M ∈ Ei such that j ∈ ind(M): Li depends on Lj in the specification. Some
parts of the system may be unreachable from other parts, which may bring up
difficulties. A sufficient condition to prevent this from happening is to ask for
the dependency graph to be strongly connected; it is not necessary, but this
assumption will also be useful in the proof our main theorem. See Sect. 6 for a
more detailed discussion on non-strongly connected systems. In Fig. 4 is depicted
a system and its associated graph.

L1 =
�
|

L2
+

�
|

L3

L2 = a + b + ε +
•
/\

L4 L4

L3 =
+
/\

L4 L1
+

+
/\

L4 L2

4 = 1 + 2 + 3

1 2

3 4

Fig. 4. A system and its associated dependency graph, which is strongly connected.

4 Settings, Working Hypothesis and Simplifications

4.1 Framework

In this section, we describe our framework: we specify the kind of systems we
are going to work with, and the settings for describing syntactic simplifications.

Let E be a combinatorial system of trees over S of dimension m of solution
(L1, . . . ,Lm). A set of expressions L over S is defined by E if there exists a
non-empty subset I of [m] such that L = ∪i∈ILi.
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From now on we assume that we are using a system E of dimension m over S
and that S contains an operator � of arity at least 2. We furthermore assume that
there is a complete expression P, such that when interpreted, every expression of
root � having P as a child is equivalent to P: the interpretation of P is absorbing
for the operator associated with �. The expression P is the absorbing pattern
and � is the absorbing operator.

Example 3. Our main example is L defined by the system of Eq. (��) with L =
LR, the regular expressions with no two consecutive stars. As regular expressions,
they are interpreted as regular languages. Since the language (a+b)� is absorbing
for the union, we set the associated expression as the absorbing pattern P and
the operator symbol + as the absorbing operator.

The simplification of a complete expression T is the complete expression σ(T )
obtained by applying bottom-up the rewriting rule, where a is the arity of �:

�

C1
. . . Ca

� P , whenever Ci = P for some i ∈ {1, . . . , a}.

More formally, the simplification σ(T,P,�) of T , or just σ(T ) when the
context is clear, is inductively defined by: σ(T ) = T if T has size 1 and

σ((⊕, C1, . . . , Cd)) =
{

P if ⊕ = � and ∃i, σ(Ci) = P,
(⊕, σ(C1), . . . , σ(Cd)) otherwise.

A complete expression T is fully reducible when σ(T ) = P.
We also need some conditions on the system E . Some of them come from

the discussion of Sect. 3.3, others are needed for the techniques from analytic
combinatorics used in our proofs. A system E satisfies the hypothesis (H) when:

(H1) The graph G(E) is strongly connected and G�(E) is acyclic.
(H2) The system is aperiodic: there exists N such that for all n ≥ N , there

is at least one expression of size n in every coordinate of the solution
(L1, . . . ,Lm) of the system.

(H3) For some j, there is a rule T ∈ Ej of root �, having at least two children
T ′ and T ′′ such that: there is a way to produce a fully reducible expression
from T ′ and a(T ′′) ≥ 1.

(H4) The system is not linear : there is a rule of arity at least 2.
(H5) The system is non-ambiguous: each complete expression can be built in at

most one way.

Conditions (H1) and (H5) were already discussed in Sect. 3.3. Condition (H4)
prevents the system from generating only lists (trees whose internal nodes have

arity 1), or more generally families that grow linearly (for instance L =
+
/\

L a
+ b),

which are degenerated. Without Condition (H3) the system could be designed
in a way that prevents simplifications (in which case our result does not hold,
of course). Finally, Condition (H2) is necessary to keep the analysis manageable
(together with the strong connectivity of G(E) of Condition (H1)).
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4.2 Proper Systems and System Iteration

A combinatorial system of trees E is proper when it contains no unit rules and
when the �-leaves of all its rules have depth one (they are children of a root).
In this section we establish the following preparatory proposition:

Proposition 1. If L is defined by a system E that satisfies (H), then there exists
a proper system E ′ that satisfies (H) such that L is defined by E ′.

Proposition 1 will be important in the sequel, as proper systems are easier to
deal with for the analytic analysis. One key tool to prove Proposition 1 is the
notion of system iteration, which consists in substituting simultaneously every
integer-leaf i in each rule by all the rules of Ei. For instance, if we iterate once

our recurring system {L1 =
�
|

L2
+ L2; L2 = a + b + ε +

+
/\

L1 L1
+

•
/\

L1 L1
}, we get5

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L1 =
�
|
a
+

�
|
b
+

�
|
ε
+

�
|
+
/\

L1 L1

+
�
|•

/\
L1 L1

+ a + b + ε +
+
/\

L1 L1
+

•
/\

L1 L1

L2 = a + b + ε +
+
/\

L2 L2
+

+
/ \

� L2
|

L2

+

+
/ \

L2 �
|

L2

+
+

/ \
� �
| |
L2 L2

+
•
/\

L2 L2
+

•
/ \

� L2
|

L2

+

•
/ \

L2 �
|

L2

+
•

/ \
� �
| |
L2 L2

.

Formally, if we iterate E = {E1, . . . , Em} once, then for all i ∈ [m] we have

Li =
⋃

(T,i1,...,it)∈E1

T

⎡

⎣
⋃

(T1,j1)∈Ei1

T1[Lj1,1 , . . . ,Lj1,t1
], . . . ,

⋃

(Tt,jt)∈Eit

Tt[Ljt,1 , . . . ,Ljt,tt
]

⎤

⎦

where j1 = (j1,1, . . . , j1,t1), . . . , jt = (jt,1, . . . , jt,tt).
Let E2 denote the system obtained after iterating E once; it is called the system
of order 2 (from E). More generally Et is the system of order t obtained by
iterating t − 1 times the system E . From the definition we directly get:

Lemma 1. If L is defined by a system E, it is also defined by all its iterates Et.
Moreover, if E satisfies (H), every Et also satisfies (H), except that G(Et) may
not be strongly connected.

We can sketch the proof of Proposition 1 as follows: since G�(E) is acyclic,
we can remove all the unit rules by iterating the system sufficiently many times.
By Lemma 1, we have to be cautious, and find an order t so that Gt is strongly
connected: a study of the cycle lengths in G(E) ensures that such a t exists. So L
is defined by Et, which has no unit rules and which satisfies (H). To transform

5 Observe that the iterated system is not strongly connected anymore. It also yields
two ways of defining the set of expressions using only one equation: it is very specific
to this example, no such property holds in general.
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Et into an equivalent proper system, we have to increase the dimension to cut
the rules as needed. It is better explained on an example:

L1 =
�
|

L3
+

•
/ \

� L2
|
L1

→

⎧
⎨

⎩

L1 =
�
|

L3
+

•
/ \

K L2

K =
�
|

L1
.

This construction can be systematized. It preserves (H) and introduces no unit
rules, which concludes the proof sketch.

5 Main Result

Our main result establishes the degeneracy of uniform random expressions when
there is an absorbing pattern, in our framework:

Theorem 1. Let E be a combinatorial system of trees over S, of absorbing oper-
ator � and of absorbing pattern P, that satisfies (H). If L is defined by E then
there exists a positive constant C such that, for the uniform distribution on size-
n expressions in L, the expected size of the simplification of a random expression
is smaller than C. Moreover, every moment of order t of this random variable
is bounded from above by a constant Ct.

The remainder of this section is devoted to the proof sketch of the first part
of Theorem 1: the expectation of the size after simplification. The moments are
handled similarly. Thanks to Proposition 1, we can assume that E is a proper
system. By Condition (H5), it is non-ambiguous so we can directly obtain a
system of equations for the associated generating series, as explained in Sect. 3.2.
From now on, for readability and succinctness, we use the vector notation (with
bold characters): L(z) denotes the vector (L1(z), . . . , Lm(z)), and we rewrite the
system of Eq. (3) in the more compact form

L(z) = z φ(z;L(z)), (4)

where φ = (φ1, . . . , φm) and φi(z;y) =
∑

(T,i1,...,ia(T ))∈Ei

z|T |−1−a(T )
∏a(T )

j=1 yij .

Under this form, and because E satisfies (H), we are in the setting of Drmota’s
celebrated Theorem for systems of equations (Theorem 2.33 in [5], refined in [3]),
which gives the asymptotics of the coefficients of the Li(z)’s. This is stated in
Proposition 2 below, where Jacy[φ](z;y) is the Jacobian matrix of the system,
which is the m × m matrix such that Jacy[φ](z;y)i,j = ∂yj

φi(z;y).

Proposition 2. As E satisfies (H), the solution L(z) of the system of equa-
tions (4) is such that all its coordinates Lj(z) share the same dominant singular-
ity ρ ∈ (0, 1], and we have τj := Lj(ρ) < ∞. The singularity ρ and τ = (τj)j ver-
ify the characteristic system {τ = ρφ(ρ; τ),det(Idm×m − ρ Jacy[φ](ρ; τ)) = 0}.
Moreover, for every j, there exist two functions gj(z) and hj(z), analytic at
z = ρ, such that locally around z = ρ, with z 
∈ [ρ,+∞),

Lj(z) = gj(z) − hj(z)
√

1 − z/ρ , with hj(ρ) 
= 0 .
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Lastly, we have the asymptotics [zn]Lj(z) ∼ Cjρ
−n/n3/2 for some positive Cj.

The next step is to introduce the bivariate generating series associated with the
size of the simplified expression L(z, u) = (L1(z, u); . . . , Lm(z, u)). We rely on
Eq. (1) to estimate the expectation of this statistic for uniform random expres-
sions. Proposition 2 already gives an estimation of the denominator, so we focus
on proving that for all j ∈ [m], [zn]∂uLj(z, u) ≤ αρ−nn−3/2, for some positive α.

For this purpose, let Rj be the set of fully reducible elements of Lj and let
Gj = Lj \ Rj . Let R(z) and L(z) be the vectors of the generating series Rj

and Lj , respectively. Let also R(z, u) and G(z, u) be the vectors of their associ-
ated bivariate generating series, where u accounts for the size of the simplified
expression. Of course we have R(z, u) = upR(z), where p = |P| is the size of the
absorbing pattern. We also split the system φ into φ = φ + A + B where: φ use
all the rules of φ whose root is not � and B gathers the rules of root � with a
constant fully reducible child; if necessary, we iterate the system to ensure that
B is not constant as a function of y. Using marking techniques (see [10] for a
detailed presentation on expression simplification) we finally obtain:6

L(z, u) = up (R(z) − P(z)) + zu
(
φ(zu;L(z, u)) + A(zu; G(z, u))

)
, (5)

where P(z) = (a1z
p, . . . , amzp), with ai = 1 if P ∈ Li and 0 otherwise.

At this point, we can differentiate the whole equality with respect to u and
set u = 1. But we do not have much information on R(z) and G(z), so it is not
possible to conclude directly. Instead of working directly on R and G, which may
rise some technical difficulties, we exploit the fact that G,R ⊆ L and apply a
fixed point iteration: this results in a crucial bound for [zn]∂uL(z, u)

∣
∣
u=1

purely
in terms of L(z), which is stated in the following proposition.

Proposition 3. For some C > 0, the following coordinate-wise bound holds:

[zn]
{

∂uL(z, u)
∣∣
u=1

}
≤ C · [zn]

{(
Idm×m − z · Jacy[φ + A](z;L(z))

)−1 · L(z)
}

.

So we switch to the analysis of the right hand term in the inequality of Proposi-
tion 3. Despite its expression, it is easier to study its dominant singularities, and
we do so by examining the spectrum of the matrix J(z) = Jacy[φ +A](z;L(z)).
This yields the following estimate, which concludes the whole proof:

Proposition 4. The function F : z �→ (Id − z · J(z))−1 ·L(z) has ρ = ρL, as its
dominant singularity. Further, around z = ρ there exist analytic functions g̃j , h̃j

such that Fj(z) = g̃j(z)− h̃j(z)
√

1 − z/ρ with h̃j(ρ) 
= 0. Moreover, we have the
asymptotics [zn]Fj(z) ∼ Djρ

−nn−3/2, for some positive Dj.

6 Conclusion and Discussion

To summarize our contributions in one sentence, we proved in this article that
even if we use systems to specify them, uniform random expressions lack expres-
sivity as they are drastically simplified as soon as there is an absorbing pattern.
6 In fact this is the size of a less effective variation of the simplification algorithm,

which is ok for our proof as we are looking for an upper bound.
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This confirms and extends our previous result [10], which holds for much more
simple specifications only. It questions the relevance of uniform distributions in
this context, both for experiments and for theoretical analysis.

Roughly speaking, the intuition behind the surprising power of this simple
simplifications is that, on the one hand the absorbing pattern appears a linear
number of times, while on the other, the shape of uniform trees facilitates the
pruning of huge chunks of the expression.

Mathematically speaking, Theorem 1 is not a generalization of the main
result of [10]: we proved that the expectation is bounded (and not that it tends
to a constant), and we only allowed finitely many rules. Obtaining that the
expectation tends to a constant is doable, but technically more difficult; we do
not think it is worth the effort, as our result already proves the degeneracy of
the distribution. Using infinitely many rules is probably possible, under some
analytic conditions, and there are other hypotheses that may be weakened: it
is not difficult for instance to ask that the dependency graph has one large
strongly connected component (all others having size one)7, periodicity is also
manageable, . . . All of these generalizations introduce technical difficulties in
the analysis, but we think that in most natural cases, unless we explicitly design
the specification to prevent the simplifications from happening sufficiently often,
the uniform distribution is degenerated when interpreting the expression: this
phenomenon can be considered as inherent in this framework.

In our opinion, instead of generalizing the kind of specification even more, the
natural continuation of this work is to investigate non-uniform distributions. The
first candidate that comes in mind is what is called BST-like distributions, where
the size of the children are distributed as in a binary search tree: that kind of
distribution is really used to test algorithms, and it is probably mathematically
tractable [15], even if it implies dealing with systems of differential equations.

Acknowledgments. The third author is funded by the Project RIN Alenor (Regional
Project from French Normandy).
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Abstract. We consider the range of possible dynamics of cellular
automata (CA) on two-sided beta-shifts Sβ . We show that any reversible
CA F : Sβ → Sβ has an almost equicontinuous direction whenever Sβ

is not sofic. This has the corollary that non-sofic beta-shifts are topo-
logically direct prime, i.e. they are not conjugate to direct topological
factorizations X × Y of two nontrivial subshifts X and Y . We also
make some preliminary observations on direct topological factorizations
of beta-shifts that are subshifts of finite type.

Keywords: Cellular automata · Beta-shifts · Sensitivity · Direct
topological factorizations

1 Introduction

Let X ⊆ AZ be a one-dimensional subshift over a finite symbol set A. A cellular
automaton (CA) is a function F : X → X defined by a local rule, and it endows
the space X with translation invariant dynamics given by local interactions.
It is natural to ask how the structure of the underlying subshift X affects the
range of possible topological dynamics that can be achieved by CA on X. Our
preferred approach is via the framework of directional dynamics of Sablik [16].
This framework is concerned with the possible space-time diagrams of x ∈ X
with respect to F , in which successive iterations F t(x) are drawn on consecutive
rows (see Fig. 1 for a typical space-time diagram of a configuration with respect
to the CA which shifts each symbol by one position to the left). Information
cannot cross the dashed gray line in the figure so we say that the slope of this
line is an almost equicontinuous direction. On the other hand, a slope is called
a sensitive direction if information can cross over every line having that slope.

It has been proven in Theorem 5.2.19 of [7] that every nontrivial mixing sofic
subshift admits a reversible CA which is sensitive in all directions. On the other
hand, Subsect. 5.4.2 of [7] presents a collection of non-sofic S-gap shifts XS ,
all of them synchronizing and many with specification property, such that every
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Fig. 1. A space-time diagram of the binary shift map σ. White and black squares cor-
respond to digits 0 and 1 respectively. The dashed gray line shows an almost equicon-
tinuous direction.

reversible CA on XS has an almost equicontinuous direction. It would be interest-
ing to extend the latter result to other natural classes of subshifts. The classical
study of Aut(X), the group of reversible CA on X, is mostly not related to our
line of inquiry. However, we highlight the result of [4] saying that Aut(X)/ 〈σ〉
is a periodic group if X is a transitive subshift that has subquadratic growth.
This implies for such X that every F ∈ Aut(X) has an almost equicontinuous
direction.

In this paper we consider two-sided beta-shifts, which form a naturally occur-
ring class of mixing coded subshifts. We show in Theorem 3 that if Sβ is a
non-sofic beta-shift, then every reversible CA on Sβ has an almost equicontin-
uous direction. As an application we use this result to show in Theorem 4 that
non-sofic beta shifts are topologically direct prime, i.e. they are not conjugate
to direct topological factorizations X × Y of two nontrivial subshifts X and Y ,
thus answering a problem suggested in the presentation [13].

The proof of Theorem 4 relies on the observation that whenever X and Y
are infinite transitive subshifts, then X × Y has a very simple reversibe CA
with all directions sensitive: it just shifts information into opposite directions
in the X and Y components. Therefore the problem of determining whether
a given subshift is topologically direct prime is closely related to the study of
directional dynamics. In the last section of this paper we suggest a program of
studying direct topological factorizations of sofic beta-shifts and accompany this
suggestion with some preliminary remarks.

2 Preliminaries

In this section we recall some preliminaries concerning symbolic dynamics and
topological dynamics in general. Good references to these topics are [8,11].

Definition 1. If X is a compact metrizable topological space and T : X → X
is a continuous map, we say that (X,T ) is a (topological) dynamical system.
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When there is no risk of confusion, we may identify the dynamical system
(X,T ) with the underlying space or the underlying map, so we may say that X
is a dynamical system or that T is a dynamical system.

Definition 2. We write ψ : (X,T ) → (Y, S) whenever (X,T ) and (Y, S) are
dynamical systems and ψ : X → Y is a continuous map such that ψ ◦ T = S ◦ ψ
(this equality is known as the equivariance condition). Then we say that ψ is a
morphism. If ψ is injective, we say that ψ is an embedding. If ψ is surjective,
we say that ψ is a factor map and that (Y, S) is a factor of (X,T ) (via the map
ψ). If ψ is bijective, we say that ψ is a conjugacy and that (X,T ) and (Y, S)
are conjugate (via ψ).

A finite set A containing at least two elements (letters) is called an alphabet.
In this paper the alphabet usually consists of numbers and thus for n ∈ N+ we
denote Σn = {0, 1, . . . , n−1}. The set AZ of bi-infinite sequences (configurations)
over A is called a full shift. The set AN is the set of one-way infinite sequences
over A. Formally any x ∈ AZ (resp. x ∈ AN) is a function Z → A (resp. N → A)
and the value of x at i ∈ Z is denoted by x[i]. It contains finite, right-infinite
and left-infinite subsequences denoted by x[i, j] = x[i]x[i + 1] · · · x[j], x[i,∞] =
x[i]x[i+1] · · · and x[−∞, i] = · · · x[i−1]x[i]. Occasionally we signify the symbol
at position zero in a configuration x by a dot as follows:

x = · · · x[−2]x[−1].x[0]x[1]x[2] · · · .

A configuration x ∈ AZ or x ∈ AN is periodic if there is a p ∈ N+ such that
x[i + p] = x[i] for all i ∈ Z. Then we may also say that x is p-periodic or that x
has period p. We say that x is eventually periodic if there are p ∈ N+ and i0 ∈ Z

such that x[i + p] = x[i] holds for all i ≥ i0.
A subword of x ∈ AZ is any finite sequence x[i, j] where i, j ∈ Z, and we inter-

pret the sequence to be empty if j < i. Any finite sequence w = w[1]w[2] · · · w[n]
(also the empty sequence, which is denoted by ε) where w[i] ∈ A is a word over
A. Unless we consider a word w as a subword of some configuration, we start
indexing the symbols of w from 1 as we have done here. The concatenation of
a word or a left-infinite sequence u with a word or a right-infinite sequence v
is denoted by uv. A word u is a prefix of a word or a right-infinite sequence
x if there is a word or a right-infinite sequence v such that x = uv. Similarly,
u is a suffix of a word or a left-infinite sequence x if there is a word or a left-
infinite sequence v such that x = vu. The set of all words over A is denoted
by A∗, and the set of non-empty words is A+ = A∗ \ {ε}. The set of words
of length n is denoted by An. For a word w ∈ A∗, |w| denotes its length, i.e.
|w| = n ⇐⇒ w ∈ An. For any word w ∈ A+ we denote by ∞w and w∞ the left-
and right-infinite sequences obtained by infinite repetitions of the word w. We
denote by wZ ∈ AZ the configuration defined by wZ[in, (i + 1)n − 1] = w (where
n = |w|) for every i ∈ Z.

Any collection of words L ⊆ A∗ is called a language. For any S ⊆ AZ the
collection of words appearing as subwords of elements of S is the language of S,
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denoted by L(S). For n ∈ N we denote Ln(S) = L(S) ∩ An. For any L ⊆ A∗,
the Kleene star of L is

L∗ = {w1 · · · wn | n ≥ 0, wi ∈ L} ⊆ A∗,

i.e. L∗ is the set of all finite concatenations of elements of L. If ε /∈ L, define
L+ = L∗ \ {ε} and if ε ∈ L, define L+ = L∗.

To consider topological dynamics on subsets of the full shifts, the sets AZ and
AN are endowed with the product topology (with respect to the discrete topology
on A). These are compact metrizable spaces. The shift map σ : AZ → AZ is
defined by σ(x)[i] = x[i + 1] for x ∈ AZ, i ∈ Z, and it is a homeomorphism.
Also in the one-sided case we define σ : AN → AN by σ(x)[i] = x[i + 1]. Any
topologically closed nonempty subset X ⊆ AZ such that σ(X) = X is called
a subshift. A subshift X equipped with the map σ forms a dynamical system
and the elements of X can also be called points. Any w ∈ L(X) \ ε and i ∈ Z

determine a cylinder of X

CylX(w, i) = {x ∈ X | w occurs in x at position i}.

Definition 3. We say that a subshift X is transitive (or irreducible in the
terminology of [11]) if for all words u, v ∈ L(X) there is w ∈ L(X) such that
uwv ∈ L(X). We say that X is mixing if for all u, v ∈ L(X) there is N ∈ N

such that for all n ≥ N there is w ∈ Ln(X) such that uwv ∈ L(X).

Definition 4. Let X ⊆ AZ and Y ⊆ BZ be subshifts. We say that the map F :
X → Y is a sliding block code from X to Y (with memory m and anticipation
a for integers m ≤ a) if there exists a local rule f : Aa−m+1 → B such that
F (x)[i] = f(x[i+m], . . . , x[i], . . . , x[i+a]). If X = Y , we say that F is a cellular
automaton (CA). If we can choose m and a so that −m = a = r ≥ 0, we say
that F is a radius-r CA.

Note that both memory and anticipation can be either positive or negative.
Note also that if F has memory m and anticipation a with the associated local
rule f : Aa−m+1 → A, then F is also a radius-r CA for r = max{|m|, |a|}, with
possibly a different local rule f ′ : A2r+1 → A.

The following observation of [6] characterizes sliding block codes as the class
of structure preserving transformations between subshifts.

Theorem 1 (Curtis-Hedlund-Lyndon). A map F : X → Y between sub-
shifts X and Y is a morphism between dynamical systems (X,σ) and (Y, σ) if
and only if it is a sliding block code.

Bijective CA are called reversible. It is known that the inverse map of a
reversible CA is also a CA. We denote by End(X) the monoid of CA on X and
by Aut(X) the group of reversible CA on X (the binary operation is function
composition).

The notions of almost equicontinuity and sensitivity can be defined for gen-
eral topological dynamical systems. We omit the topological definitions, because
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for cellular automata on transitive subshifts there are combinatorial character-
izations for these notions using blocking words. We present these alternative
characterizations below.

Definition 5. Let F : X → X be a radius-r CA and w ∈ L(X). We say that w
is a blocking word if there is an integer e with |w| ≥ e ≥ r + 1 and an integer
p ∈ [0, |w| − e] such that

∀x, y ∈ CylX(w, 0),∀n ∈ N, Fn(x)[p, p + e − 1] = Fn(y)[p, p + e − 1].

The following is proved in Proposition 2.1 of [16].

Proposition 1. If X is a transitive subshift and F : X → X is a CA, then F
is almost equicontinuous if and only if it has a blocking word.

We say that a CA on a transitive subshift is sensitive if it is not almost
equicontinuous. The notion of sensitivity is refined by Sablik’s framework of
directional dynamics [16].

Definition 6. Let F : X → X be a cellular automaton and let p, q ∈ Z be
coprime integers, q > 0. Then p/q is a sensitive direction of F if σp ◦ F q is
sensitive. Similarly, p/q is an almost equicontinuous direction of F if σp ◦F q is
almost equicontinuous.

As indicated in the introduction, this definition is best understood via the
space-time diagram of x ∈ X with respect to F , in which successive iterations
F t(x) are drawn on consecutive rows (see Fig. 1 for a typical space-time diagram
of a configuration with respect to the shift map). By definition −1 = (−1)/1
is an almost equicontinuous direction of σ : AZ → AZ because σ−1 ◦ σ = Id
is almost equicontinuous. This is directly visible in the space-time diagram of
Fig. 1, because it looks like the space-time diagram of the identity map when it
is followed along the dashed line. Note that the slope of the dashed line is equal
to −1 with respect to the vertical axis extending downwards in the diagram.

The notions of subshifts of finite type (SFT) and sofic subshifts are well
known and can be found in Chapters 2 and 3 of [11]. Any square matrix A with
nonnegative entries is an adjacency matrix of a directed graph with multiple
edges. The set of all bi-infinite sequences of edges forming valid paths is an edge
SFT (associated to A), whose alphabet is the set of edges.

Some other classes of subshifts relevant to the study of beta-shifts are the
following.

Definition 7. Given a subshift X, we say that a word w ∈ L(X) is synchroniz-
ing if

∀u, v ∈ L(X) : uw,wv ∈ L(X) =⇒ uwv ∈ L(X).

We say that a transitive subshift X is synchronizing if L(X) contains a synchro-
nizing word.

Definition 8. A language L ⊆ A+ is a code if for all distinct u, v ∈ L it holds
that u is not a prefix of v. A subshift X ⊆ AZ is a coded subshift (given by a
code L) if L(X) is the set of all subwords of elements of L∗.
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3 Beta-Shifts

We recall some preliminaries on beta-shifts from Blanchard’s paper [2] and from
Lothaire’s book [12].

For ξ ∈ R we denote Frac (ξ) = ξ − �ξ�, for example Frac (1.2) = 0.2 and
Frac (1) = 0.

Definition 9. For every real number β > 1 we define a dynamical system
(I, Tβ), where I = [0, 1] and Tβ(ξ) = Frac (βξ) for every ξ ∈ I.

Definition 10. The β-expansion of a number ξ ∈ I is the sequence d(ξ, β) ∈
ΣN

�β�+1 where d(ξ, β)[i] =
⌊
βT i(ξ)

⌋
for i ∈ N.

Denote d(1, β) = d(β). By this convention d(2) = 2000 . . . If d(β) ends in
infinitely many zeros, i.e. d(β) = d0 · · · dm0∞ for dm �= 0, we say that d(β) is
finite, write d(β) = d0 · · · dm, and define d∗(β) = (d0 · · · (dm − 1))∞. Otherwise
we let d∗(β) = d(β). Denote by Dβ the set of β-expansions of numbers from
[0, 1). It is the set of all infinite concatenations of words from the code

Yβ = {d0d1 · · · dn−1b | n ∈ N, 0 ≤ b < dn}
where d(β) = d0d1d2 . . . . For example, Y2 = {0, 1}. Let Sβ be the coded subshift
given by the code Yβ . Since Sβ is coded, it also has a natural representation by
a deterministic automaton (not necessarily finite) [3,17]. These representations
allow us to make pumping arguments similar to those that occur in the study of
sofic shifts and regular languages.

The subshift Sβ is mixing. Namely, any u, v ∈ L(Sβ) are subwords of u1 · · · un

and v1 · · · vm respectively for some n,m ∈ N+ and ui, vi ∈ Yβ . Because the code
Yβ always contains the word 0, it follows that u1 · · · un0iv1 · · · vm ∈ L(Sβ) for
all i ∈ N and mixingness follows. The subshift Sβ is sofic if and only if d(β) is
eventually periodic and it is an SFT if and only if d(β) is finite.

There is a natural lexicographical ordering on ΣN
n which we denote by < and

≤. Using this we can alternatively characterize Sβ as

Sβ = {x ∈ ΣZ

�β� | x[i,∞] ≤ d∗(β) for all i ∈ Z}.

We call Sβ a beta-shift (with base β). When β > 1 is an integer, the equality
Sβ = ΣZ

β holds.

4 CA Dynamics on Beta-Shifts

In this section we study the topological dynamics of reversible CA on beta-shifts,
and more precisely the possibility of them having no almost equicontinuous direc-
tions. By Theorem 5.2.19 of [7] every nontrivial mixing sofic subshift admits a
reversible CA which is sensitive in all directions, and in particular this holds for
mixing sofic beta-shifts. In this section we see that this result does not extend
to the class of non-sofic beta-shifts.

We begin with a proposition showing that a CA on a non-sofic beta-shift has
to “fix the expansion of one in the preimage” in some sense.
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Proposition 2. Let β > 1 be such that Sβ is not sofic, let F ∈ End(Sβ), let
x ∈ Sβ be such that x[0,∞] = d(β) and let y ∈ F−1(x). Then there is a unique
i ∈ Z such that y[i,∞] = d(β). Moreover, i does not depend on the choice of x
or y.

Proof. Let r ∈ N be such that F is a radius-r CA.
We first claim that i does not depend on the choice of x or y when it exists.

To see this, assume to the contrary that for j ∈ {1, 2} there exist xj ∈ Sβ with
xj [0,∞] = d(β), yj ∈ F−1(xj) and ij ∈ Z such that i1 < i2 and y1[i1,∞] =
d(β) = y2[i2,∞]. Then in particular for M = max{i2 − i1, i2} it holds that
y2[M,∞] = y2[M − i2 + i2,∞] = y1[M − i2 + i1,∞] and

d(β)[M − i2 + i1 + r,∞] = x1[M − i2 + i1 + r,∞] = F (y1)[M − i2 + i1 + r,∞]
= F (y2)[M + r,∞] = x2[M + r,∞] = d(β)[M + r,∞].

Then d(β) would be eventually periodic, contradicting the assumption that Sβ

is not sofic.
For the other claim, let us assume that for some x and y as in the assumption

of the proposition there is no i ∈ Z such that y[i,∞] = d(β). We claim that the
sequence y[−r,∞] can be written as an infinite concatenation of elements of Yβ .
This concatenation is found inductively. By our assumption y[−r,∞] < d(β),
so y[−r,∞] has a prefix of the form w1 = d0d1 · · · dn−1b ∈ Yβ for some n ∈ N,
b < dn. We can write y[−r,∞] = w1x1 for some x1 ∈ ΣN

�β�. Because x1 is a suffix
of y, then again from our assumption it follows that x1 < d(β) and we can find
a w2 ∈ Yβ which is a prefix of x1. For all i ∈ Z we similarly we find wi ∈ Yβ such
that y[−r,∞] = w1w2w3 . . . .

Let ri be such that y[−r, ri] = w1 · · · wi for all i ∈ N. Fix some j, k ∈ N such
that 0 ≤ rj < rk, |rk − rj | ≥ 2r and y[rj − r, rj + r] = y[rk − r, rk + r]. Because
x is not eventually periodic, it follows that x[rj + 1,∞] �= x[rk + 1,∞].

Assume first that x[rj +1,∞] < x[rk +1,∞]. Because Sβ is coded, there is a
configuration z ∈ Sβ such that z[−r,∞] = w1 · · · wjwk+1wk+2 · · · , i.e. this suffix
can be found by removing the word wj+1 · · · wk from the middle of y[−r,∞].
Then F (z) ∈ Sβ but F (z)[0,∞] = x[0, rj ]x[rk + 1,∞] > x[0, rj ]x[rj + 1,∞] =
d(β) contradicting one of the characterizations of Sβ .

Assume then alternatively that x[rj + 1,∞] > x[rk + 1,∞]. Because Sβ is
coded, there is a configuration z ∈ Sβ such that

z[−r,∞] = w1 · · · wj(wj+1 · · · wk)(wj+1 · · · wk)wk+1wk+2 · · · ,

i.e. this suffix can be found by repeating the occurrence of the word wj+1 · · · wk

in the middle of y[−r,∞]. Then F (z) ∈ Sβ but

F (z)[0,∞] = x[0, rj ]x[rj + 1, rk]x[rj + 1, rk]x[rk + 1,∞]
= x[0, rj ]x[rj + 1, rk]x[rj + 1,∞] > x[0, rj ]x[rj + 1, rk]x[rk + 1,∞] = d(β)

contradicting again the characterization of Sβ . ��
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To apply the previous proposition for a non-sofic Sβ and F ∈ End(Sβ), there
must exist at least some x, y ∈ Sβ such that x[0,∞] = d(β) and y ∈ F−1(x).
This happens at least when F is surjective, in which case we take the number
i ∈ Z of the previous proposition and say that the intrinsic shift of F is equal to
i. If the intrinsic shift of F is equal to 0, we say that F is shiftless.

In the class of non-synchronizing beta-shifts we get a very strong result on
surjective CA: they are all shift maps.

Theorem 2. If Sβ is not synchronizing, then all surjective CA in End(Sβ) are
powers of the shift map.

Proof. Let F ∈ End(Sβ) be an arbitrary surjective CA and let r ∈ N be some
radius of F . We may assume without loss of generality (by composing F with a
suitable power of the shift if necessary) that F is shiftless. We prove that F = Id.

Assume to the contrary that F �= Id, so there is x ∈ Sβ such that F (x)[0] �=
x[0]. Let e = ∞0.d(β) and let z ∈ F−1(e) be arbitrary, so in particular z[0,∞] =
d(β) by Proposition 2. Since Sβ is not synchronizing, it follows that every word of
L(Sβ) occurs in d(β) (as explained by Kwietniak in [9], attributed to Bertrand-
Mathis [1]). In particular it is possible to choose i ≥ r+1 such that σi(z)[−r, r] =
x[−r, r] and F (x)[0] = F (σi(z))[0] = σi(z)[0] = x[0], a contradiction. ��

Next we consider only reversible CA. They do not have to be shift maps in
the class of general non-sofic beta-shifts, and in fact the group Aut(X) contains
a copy of the free product of all finite groups whenever X is an infinite synchro-
nizing subshift by Theorem 2.17 of [5]. Nevertheless Aut(Sβ) is constrained in
the sense of directional dynamics.

Theorem 3. If Sβ is not sofic and F ∈ Aut(Sβ) is shiftless then F admits a
blocking word. In particular all elements of Aut(Sβ) have an almost equicontin-
uous direction.

Proof. Let r ∈ N+ be a radius of both F and F−1. Since d(β) is not eventually
periodic, it is easy to see (and is one formulation of the Morse-Hedlund theorem,
see e.g. Theorem 7.3 of [15]) that there is a word u ∈ Σ3r

�β� and symbols a < b

such that both ua and ub are subwords of d(β). Let p = p′ub (p, p′ ∈ L(Sβ)) be
some prefix of d(β) ending in ub. We claim that p is blocking. More precisely we
will show that if x ∈ Sβ is such that x[0, |p| − 1] = p then F t(x)[0, |p| − 2] = p′u
for all t ∈ N.

Assume to the contrary that t ∈ N is the minimal number for which we have
F t(x)[0, |p| − 2] �= p′u. We can find w, v, v′ ∈ L(Sβ) and c, d ∈ Σ�β� (c < d) so
that u = wdv, |w| ≥ 2r and F t(x)[0, |p| − 2] = p′wcv′. Indeed, F−1 is shiftless
because F is, and therefore the prefix p′w still remains unchanged in F t(x)[0,∞].

Now we note that x could have been chosen so that some of its suffixes is equal
to 0∞ and in particular under this choice no suffix of F t(x) is equal to d(β). As
in the proof of Proposition 2 we can represent F t(x)[0,∞] = w1w2w3 . . . where
wi ∈ Yβ for all i ∈ N and in fact w1 = p′wc.

Now let q = q′ua (q, q′ ∈ L(Sβ)) be some prefix of d(β) ending in ua. Then
also q′wd is a prefix of d(β) and thus q′wc ∈ Yβ . Because Sβ is a coded subshift,
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there is a configuration y ∈ Sβ such that y[0,∞] = (q′wc)w2w3 . . . . For such y it
holds that F−t(y) ∈ Sβ but F−t(y)[0,∞] = q′(ub)x[|p|,∞] > d(β) contradicting
the characterization of Sβ . ��

5 Topological Direct Primeness of Beta-Shifts

We recall the terminology of Meyerovitch [14]. A direct topological factorization
of a subshift X is a subshift X1 × · · · × Xn which is conjugate to X and where
each Xi is a subshift. We also say that each subshift Xi is a direct factor of X.
The subshift X is topologically direct prime if it does not admit a non-trivial
direct factorization, i.e. if every direct factorization contains one copy of X and
the other Xi in the factorization contain just one point.

Non-sofic β-shifts turn out to be examples of topologically direct prime
dynamical systems. This is an application of Theorem 3.

Theorem 4. If Sβ is a non-sofic beta-shift then it is topologically direct prime.

Proof. Assume to the contrary that there is a topological conjugacy φ : Sβ →
X × Y where X and Y are non-trivial direct factors of Sβ . The subshifts X and
Y are mixing as factors of the mixing subshift Sβ , and in particular both of them
are infinite, because a mixing finite subshift can only contain one point.

Define a reversible CA F : X × Y → X × Y by F (x, y) = (σ(x), σ−1(y)) for
all x ∈ X, y ∈ Y . Because X and Y are infinite, it follows that F has no almost
equicontinuous directions, i.e. σr ◦ F s is sensitive for all coprime r and s such
that s > 0. Then define G = φ−1 ◦ F ◦ φ : Sβ → Sβ . The map G is a reversible
CA on Sβ and furthermore (Sβ , G) and (X × Y, F ) are conjugate via the map
φ. By Theorem 3 the CA G has an almost equicontinuous direction, so we can
fix coprime r and s such that s > 0 for which σr ◦ Gs is almost equicontinuous.
But σr ◦ Gs is conjugate to σr ◦ F s via the map φ, so σr ◦ F s is also almost
equicontinuous, a contradiction. ��

In general determining whether a given subshift is topologically direct prime
or not seems to be a difficult problem. Lind gives sufficient conditions in [10]
for SFTs based on their entropies: for example any mixing SFT with entropy
log p for a prime number p is topologically direct prime. The paper [14] contains
results on multidimensional full shifts, multidimensional 3-colored chessboard
shifts and p-Dyck shifts with p a prime number.

In the class of beta-shifts the question of topological direct primeness remains
open in a countable number of cases.

Problem 1. Characterize the topologically direct prime sofic beta-shifts.

Example 1. If β > 1 is an integer, then Sβ = ΣZ

β is topologically direct prime
if and only if β is a prime number. Namely, if β = nm for integers n,m ≥ 2,
then Sβ is easily seen to be conjugate to Sn × Sm via a coordinatewise symbol
permutation. The case when β = p is a prime number follows by Lind’s result
because the entropy of ΣZ

p is log p.
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In this example the existence of a direct factorization is characterized by the
existence of direct factorization into beta shifts with integral base. Therefore,
considering the following problem might be a good point to start with Problem 1.

Problem 2. Characterize the numbers n, γ > 1 such that n is an integer and Snγ

is conjugate to Sn × Sγ .

In Theorem 5 we consider this simpler problem in the SFT case. We start
with a definition and a lemma stated in [2].

Definition 11. Let n > 1 be an integer, a ∈ Σn and w ∈ Σ∗
n. We say that aw

is lexicographically greater than all its shifts if aw0∞ > σi(aw0∞) for every
i > 0.

Lemma 1 (Blanchard, [2]). Sβ is an SFT if and only if β > 1 is the unique
positive solution of some equation xd = ad−1x

d−1 + · · · + a0 where d ≥ 1,
ad−1, a0 ≥ 1 and ai ∈ N such that ad−1 · · · a0 is lexicographically greater than all
its shifts. Then d(β) = ad−1 · · · a0.

Proof. The polynomial equation is equivalent to 1 = ad−1x
−1 + · · · + a0x

−d,
which clearly has a unique positive solution. If β satisfies such an equation then
d(β) = ad−1 · · · a0 and Sβ is an SFT. On the other hand, if Sβ is an SFT, then
d(β) takes the form of a word ad−1 · · · a0 which is lexicographically greater than
all its shifts and β satisfies 1 = ad−1x

−1 + · · · + a0x
−d. ��

For the following we also recall some facts on zeta functions. The zeta function
ζX(t) of a subshift X is a formal power series that encodes information about
the number of periodic configurations in X and it is a conjugacy invariant of
X (for precise definitions see Section 6.4 of [11]). Every SFT X is conjugate
to an edge SFT associated to a square matrix A. Let I be an index set and
let {μi ∈ C \ {0} | i ∈ I} be the collection of non-zero eigenvalues of A with
multiplicities: it is called the non-zero spectrum of X. It is known that then
ζX(t) =

∏
i∈I(1 − μit)−1. The number of p-periodic configurations in X is equal

to
∑

i∈I μp
i for p ∈ N+. If Y is also an SFT with ζY (t) =

∏
j∈J(1 − νjt)−1, then

the zeta function of X × Y is ζX(t) ⊗ ζY (t) =
∏

i∈I,j∈J(1 − μiνjt)−1 [10].

Theorem 5. Let Sγ be an SFT with γ the unique positive solution of some
equation xd = ad−1x

d−1 + · · · + a0 where d ≥ 1, ad−1, a0 ≥ 1 and ai ≥ 0 such
that ad−1 · · · a0 is lexicographically greater than all its shifts. If n ≥ 2 is an
integer such that also (nad−1) · · · (nda0) is lexicographically greater than all its
shifts, then Snγ is topologically conjugate to Sn ×Sγ . The converse also holds: if
(nad−1) · · · (nda0) is not lexicographically greater than all its shifts, then either
Snγ is not an SFT or Snγ and Sn×Sγ have different zeta functions. In particular
they are not conjugate.

Proof. We have d(γ) = ad−1 · · · a0. The roots of xd = ad−1x
d−1 + · · · + a0

are γ1 = γ, γ2, . . . , γd. By multiplying both sides by nd and by substituting
y = nx we see that the roots of yd = nad−1y

d−1 + · · · + nda0 are nγi and nγ is
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the unique positive solution. Because multiplying
∏

i(x − γi) = 0 by nd yields∏
i(y − nγi) = 0, we also see that the multiplicities of the roots γi and nγi are

the same in their respective equations. If (nad−1) · · · (nda0) is lexicographically
greater than all its shifts, then Snγ is an SFT with d(nγ) = nad−1 · · · nda0.
As in [17], the shifts Sγ and Snγ are conjugate to the edge shifts XC and XB

respectively given by the matrices

C =

⎛

⎜
⎜
⎜
⎝

ad−1 1 0 · · · 0
ad−2 0 1 · · · 0

...
...

...
...

a0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

B =

⎛

⎜
⎜
⎜
⎝

nad−1 1 0 · · · 0
n2ad−2 0 1 · · · 0

...
...

...
...

nda0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

.

They are also the companion matrices of the polynomials xd − ad−1x
d−1 − · · · −

a0 and yd − nad−1y
d−1 − · · · − nda0, so the eigenvalues are the roots of these

polynomials and the zeta functions of Sγ and Snγ are

ζXC
(t) =

∏

i

(1 − γit)−1 and ζXB
(t) =

∏

i

(1 − nγit)−1.

In any case ζSn
= (1 − nt)−1, so the zeta function of X = Sn × Sγ is

ζX(t) =
∏

i(1 − nγit)−1, which is equal to ζXB
.

We will construct a conjugacy between Sn ×XC and XB . We will choose the
labels of the edges in XC and XB as in Figs. 2 and 3. The labels in the figures
range according to 0 ≤ ij < n and 0 ≤ kj < ad−j for 1 ≤ j ≤ d.

Fig. 2. The choice of labels for the graph of XC .

The labeling has been chosen in a way that suggests the correct choice of the
reversible sliding block code φ : Sn × XC → XB . For any x ∈ Sn × XC we make
the usual identification x = (x1, x2) where x1 ∈ Sn, x2 ∈ XC and we denote
π1(x) = x1, π2(x) = x2. Then φ is defined by

φ(x)[i] =

⎧
⎪⎪⎨

⎪⎪⎩

∗j when π2(x)[i] = ∗j ,
(i1, k1) when π2(x)[i] = (1, k1) and π1(x)[i] = i1,
(i1, i2, . . . , ij , kj) when π2(x)[i − (j − 1), i] = ∗1 ∗2 · · · ∗j−1 (j, kj)

and π1(x)[i − (j − 1), i] = i1i2 · · · ij
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Fig. 3. The choice of labels for the graph of XB .

The intuition here is that the sliding block code φ attempts to deposit all the
information at x[i] to φ(x)[i]. This is not possible when π2(x)[x] = ∗j , so the
remaining information is deposited to the nearest suitable coordinate to the
right.

For the converse, assume that the word (nad−1) · · · (nda0) is not lexicograph-
ically greater than all its shifts and that Snγ is an SFT. Then nγ is the unique
positive solution of some equation xe = be−1x

e−1 + · · · + b0 where e ≥ 1,
be−1, b0 ≥ 1 and bi ≥ 0 such that be−1 · · · b0 is lexicographically greater than
all its shifts. As above, Snγ is conjugate to an edge shift Y given by a matrix
with eigenvalues β1, β2, . . . , βe which are also the roots of the corresponding
polynomial. By our assumption the polynomials xe − be−1x

e−1 − · · · − b0 and
yd − nad−1y

d−1 − · · · − nda0 are different, so they have different sets of roots
(with multiplicities taken into account) and

ζY (t) =
∏

j

(1 − βit)−1 �=
∏

i

(1 − nγit)−1 = ζX(t),

because C[t] is a unique factorization domain. ��
We conclude with an example concerning an SFT beta-shift Sβ1×β2 where

the assumption of either β1 or β2 being an integer is dropped.

Example 2. A beta-shift Sγ×γ can be topologically direct prime even if Sγ and
Sγ×γ are SFTs (and then in particular Sγ×γ is not conjugate to Sγ × Sγ).
Denote by γ the unique positive root of x3 − x2 − x − 1. By Lemma 1 we
have d(γ) = 111 and in particular Sγ is an SFT. Denote β = γ2. Its minimal
polynomial is x3 −3x2 −x−1 and by Lemma 1 d(β) = 311, so Sβ is an SFT and

it is conjugate to the edge SFT given by the matrix A =
(

3 1 0
1 0 1
1 0 0

)
. It has three

distinct eigenvalues β0 = β, β1 and β2.
We claim that Sβ is topologically direct prime. To see this, assume to the con-

trary that Sβ is topologically conjugate to X ×Y where X and Y are nontrivial
direct factors for Sβ . Since X ×Y is a mixing SFT, it follows from Proposition 6
of [10] that X and Y are mixing SFTs and in particular they are infinite. The
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zeta functions of X and Y are of the form

ζX(t) =
∏

i

(1 − μit)−1 and ζY (t) =
∏

j

(1 − νjt)−1

for some μi, νj ∈ C \ {0}. The zeta function of Sβ is

ζSβ
(t) = (1 − βt)−1(1 − β1t)−1(1 − β2t)−1 =

∏

i,j

(1 − μiνjt)−1.

Because C[t] is a unique factorization domain and because X and Y are non-
trivial SFTs, we may assume without loss of generality that ζX(t) = (1−μt) and
ζY (t) = (1− ν1t)(1− ν2t)(1− ν3t) for some μ, ν1, ν2, ν3 ∈ C\{0}. The quantities
μ and ν1 + ν2 + ν3 are the numbers of 1-periodic points of X and Y respectively
and thus the number of 1-periodic points of Sβ is equal to μ(ν1 + ν2 + ν3) = 3
where μ and ν1 + ν2 + ν3 are nonnegative integers. In particular μ ∈ {1, 3}.

Assume first that μ = 1. Therefore X has the same zeta function as the full
shift over the one letter alphabet and X has just one periodic point. As a mixing
SFT X has periodic points dense so X only contains one point, contradicting
the nontriviality of X.

Assume then that μ = 3. Therefore X has the same zeta function as ΣZ
3 and

X has precisely 3n n-periodic points for all n ∈ N+. In particular the number of
2-periodic points of Sβ is divisible by 32 = 9. On the other hand the number of
2-periodic points of Sβ is equal to Tr(A2) = 11, a contradiction.
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Abstract. Let A ⊂ N be a set of size 4 such that A cannot be obtained
by applying the same affine function to all of the elements of {0, 1, 2, 3}.
We show that there is an infinite sequence of elements of A that contains
no three consecutive blocks of same size and same sum (additive cubes).
Moreover, it is possible to replace N by C in the statement.

Keywords: Abelian/additive equivalence · Abelian/additive powers ·
Combinatorics on words

1 Introduction

Let k ≥ 2 be an integer and (G,+) a semigroup. An additive kth power is a
non-empty word w1 · · · wk over A ⊆ G such for every i ∈ {2, . . . , k}, |wi| = |w1|
and

∑
wi =

∑
w1 (where

∑
v denotes the sum of the letters in v seen as

numbers). It is a longstanding question whether there exists an infinite word w
over a finite subset of N that avoids additive squares (additive 2nd powers) [3,
4,6]. One motivation for studying this problem is that a positive answer to this
question would imply that additive squares are avoidable over any semigroup
that contains some finitely generated infinite semigroup [6] (an application of
van der Waerden’s theorem shows that additive powers are not avoidable over
any other semigroup [4]). Cassaigne et al. [1] showed that there exists an infinite
word over the finite alphabet {0, 1, 3, 4} ⊂ Z without additive cubes (additive
3rd powers). Rao [7] used this result to show that there exist infinite words
avoiding additive cubes over any alphabet {0, i, j} ⊂ N

3 with i and j coprime,
i < j and 6 ≤ j ≤ 9 (and he conjectured that the second condition can be
replaced by 6 ≤ j). This motivates the following more general problem:

Problem 1. Characterize the finite subsets of N over which additive cubes are
avoidable.
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It seems restrictive to use N instead of R (or C), but solving Problem 1 for
alphabets of the form {0, a1, . . . , am} ∈ N with the ai’s being coprime com-
pletely solves the problem for any finite alphabet over C (if the ai’s are given
in increasing order one can additionally assume a1 be smaller than am − am−1).
For the sake of completeness, we give a short proof of this fact in Sect. 2.

If Rao’s conjecture were true then the only remaining 3-letter alphabets
over C to characterize would be {0, 1, 2}, {0, 1, 3}, {0, 1, 4} and {0, 2, 5} (see [9,
Section 2.2.2] for details). However, this conjecture is known to be true for only
finitely many such alphabets (up to a trivial equivalence relation defined in
Sect. 2.1). In the present paper we propose a twist on previously used ideas to
show our main theorem (see Corollary 1).

Main Theorem. Let A ⊂ C be an alphabet with |A| ≥ 4. If A is not equivalent
to {0, 1, 2, 3} then additive cubes are avoidable over A.

This also implies that additive cubes are avoidable over any alphabet of complex
numbers of size at least 5. Rao used the fact that additive cubes are avoidable
over {0, 1, 3, 4} to show that they are avoidable over some 3-letter alphabets [7,
Section 3.2], so our result might also be of importance for tackling Problem 1 for
alphabets of size 3.

The present paper is organized as follows. We first recall some notation and
we define the equivalence between two alphabets. Equipped with this equivalence
relation we explain why it is enough to study alphabets of integers or alphabets
of the form {0, 1, a2, a3, . . . , am} with m ∈ N and a2, . . . , am ∈ Q. Then we
introduce the word Wa,b,c,d, based on the construction of [1], and we show that
for all but finitely (up to our equivalence relation) many values of a, b, c, and
d, the word Wa,b,c,d avoids additive cubes. Finally, using the literature for the
remaining alphabets, we conclude that additive cubes are avoidable over all the
remaining alphabets of size 4, with the sole exception of {0, 1, 2, 3}. We leave the
case of {0, 1, 2, 3} open, and comment on our calculations regarding this case in
the last section.

2 Preliminaries

We use the standard notation introduced in Chapter 1 of [5]. In the rest of the
present article all of our alphabets are finite sets of complex numbers. For the
rest of this section, let A ⊂ C be such an alphabet. We denote by ε the empty
word and by |A| the cardinality of the alphabet A. Given a word w ∈ A∗, we
denote by |w| the length of w and by |w|α the number of occurrences of the letter
α ∈ A in w. Two words u and v are abelian equivalent, denoted by u �ab v if u
and v are permutations of each other. They are additively equivalent, denoted by
u �ad v, if |u| = |v| and

∑
u =

∑
v, where

∑
v denotes the sum of the letters

in v (this make sense since the letters are complex numbers). A word uvw ∈ A∗

is an abelian cube (respectively, an additive cube) if u �ab v �ab w (respectively,
if u �ad v �ad w).
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2.1 Alphabets in N

For any function h : A → C and words w over A ⊂ C, the word h(w) is obtained
by replacing each letter of w by its image under h. We say that two alphabets
A,A′ ⊂ C of same size are equivalent if there is a function h : A → A′ such that
for all u, v ∈ A∗,

u �ad v ⇐⇒ h(u) �ad h(v) .

Let us now show that for any alphabet of complex numbers, we either already
know that additive cubes are avoidable or the alphabet is equivalent to an alpha-
bet of integers. We start by giving sufficient conditions for two alphabets to be
equivalent.

Lemma 1. Let u, v ∈ A∗ be two finite words, let a ∈ C\{0}, b ∈ C and f : C →
C, x �→ ax + b. Then u �ad v if and only if f(u) �ad f(v).

The proof is left to the reader. Recall that two complex numbers a and b are
said to be rationally independent if k1a + k2b = 0 for (k1, k2) ∈ Z

2 implies
k1 = k2 = 0.

Lemma 2. Let A ⊂ C.

(i) If |A| ≤ 2 then additive cubes are not avoidable over A.
(ii) If |A| > 2 and if there are a, b, c ∈ A, such that b−a and c−a are rationally

independent, then additive cubes are avoidable over A.
(iii) If |A| > 2 and if for any pairwise different a, b, c ∈ A, the differences

b − a and c − a are rationally dependent, then there exists an alphabet
A′ = {0, a1, . . . , am} ⊂ N with gcd(a1, . . . , am) = 1 such that A and A′ are
equivalent.

Proof.

(i) This statement follows from the fact that abelian cubes are not avoidable
over two letters [2].

(ii) Since b − a and c − a are rationally independent, for any k1, k2, k3 ∈ Z,
if 0k1 + (b − a)k2 + (c − a)k3 = 0 then k2 = k3 = 0. Thus for any words
u, v ∈ {0, b−a, c−a}∗, if

∑
u =

∑
v then u has the same number of occurrences

of b−a (resp., c−a) as v; moreover, if |u| = |v| then u and v also have the same
number of occurrences of 0. Thus, for any word u, v ∈ {0, b−a, c−a}∗, if u �ad v
then u �ab v. From Lemma 1 (with f : x �→ x + a), for any u, v ∈ {a, b, c}∗, if
u �ad v then u �ab v. Since abelian cubes are avoidable over 3 letters [2], we
deduce that additive cubes are avoidable over A.

(iii) Let {b1, . . . , bm} = A. For any i, bi −b1 and b2−b1 are rationally dependent
which implies bi−b1

b2−b1
∈ Q. Thus there exists a q ∈ Z such that for all i, q bi−b1

b2−b1
∈ Z

and gcd
(
q b2−b1

b2−b1
, q b3−b1

b2−b1
, . . . , q bm−b1

b2−b1

)
= 1. Let s = min1≤i≤m

(
q bi−b1

b2−b1

)
. Finally,

we apply Lemma 1 with f : x �→ q x−b1
b2−b1

− s and we get that the alphabet
{q b1−b1

b2−b1
− s, q b2−b1

b2−b1
− s, q b3−b1

b2−b1
− s, . . . , q bm−b1

b2−b1
− s} satisfies all the required

conditions. This concludes the proof.
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Thus solving Problem 1 for alphabets of the form {0, a1, . . . , am} ⊂ N with
coprime ai’s completely solves the problem for any finite alphabet over C. Notice
that, in case (iii), one can add the condition that a1 < am − am−1, (otherwise
apply f : x �→ am − x to this alphabet). One could also add that in the case
|A| = 2, one can avoid additive 4th powers (with an argument similar to (ii) and
the fact that abelian 4th powers are avoidable over 2 letters [2]).

Remark 1. Every alphabet {a0, a1, . . . , am} ⊂ N is equivalent to the alphabet
{0, 1, f(a2), . . . , f(am)} ⊂ Q, where f : x �→ x−a0

a1−a0
. Therefore, in Sects. 3 and

4, instead of considering alphabets of four integers we consider alphabets of the
form {0, 1, c, d} ⊂ Q.

3 The Infinite Word Wa,b,c,d

Let a, b, c, d ∈ R and let ϕa,b,c,d : {a, b, c, d}∗ → {a, b, c, d}∗ be the following
morphism:

ϕa,b,c,d(a) = ac ; ϕa,b,c,d(b) = dc ; ϕa,b,c,d(c) = b ; ϕa,b,c,d(d) = ab.

Let Wa,b,c,d := lim
n→+∞ ϕn

a,b,c,d(a) be the infinite fixed point of ϕa,b,c,d. Cassaigne

et al. [1] showed in 2014 that W0,1,3,4 avoids additive cubes. In particular, this
implies that W0,1,3,4 avoids abelian cubes. This property does not depend on
the choice of a, b, c, d, therefore we deduce the following lemma.

Lemma 3. For any pairwise distinct a, b, c, d, the word Wa,b,c,d avoids abelian
cubes.

We define the Parikh vector Ψ as the map

Ψ : {a, b, c, d}∗ −→ Z
4

w �−→ t (|w|a |w|b |w|c |w|d) .

Let Mϕ =
(

1 0 0 1
0 0 1 1
1 1 0 0
0 1 0 0

)

be the adjacency matrix of ϕa,b,c,d and τ be the vector

corresponding to the numerical approximation1 τ =̇
( 0.5788−0.5749i

−0.3219+0.2183i
−0.0690+0.6165i
−0.1662−0.6810i

)

, which is

1 We stress the fact that this is not an issue to use numerical approximation. Indeed, all
our computations are numerically stable (additions, multiplications and no divisions
by numbers close to zero) and if we start with sufficiently accurate approximations,
we get sufficiently accurate approximations at the end (see footnote 2 for the only
case where it matters that a coefficient is exactly 0). Moreover, there is an algebraic
extension of Q of degree 24 that contains all the eigenvalues of the matrices (accord-
ing to mathematica) and thus we could use the original proof of [1, Theorem 8] to
get an exact value for C and only use exact computation in our article. However, one
might think that this is convenient to use the fact that these roots can be expressed
with radicals, but maintaining exact expressions involving radicals is much more
inefficient and would lead to even more unreadable computations.
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related to the eigenvalue 0.4074+0.4766i of Mϕ and precisely defined in Sect. 2.1
of [1]. For the sake of conciseness, the definition is omitted here. We recall the
following result from [1].

Theorem 1 ([1, Theorem 3.1]). There exists a positive real constant C such
that for any two factors of Wa,b,c,d (not necessarily adjacent) u and v

|τ · (Ψ(u) − Ψ(v))| < C,

where 2.175816 < C < 2.175817.

Let us summarize the main idea behind Theorem 1. The asymptotic behavior
of the Parikh vectors of factors is closely related to the asymptotic behavior of
the iterations of the matrix Mϕ (since Ψ(ϕ(u)) = Mϕ(Ψ(u))). Moreover, the
eigenvalue corresponding to this eigenvector is of norm less than 1 and thus the
associated subspace is contracting. We deduce that τ(Ψ(u)) is bounded for any
factor u. Theorem 1 provides good bounds in this particular case. Equipped with
Lemma 3 and Theorem 1 we deduce the following one.

Lemma 4. For any pairwise distinct a, b, c, d ∈ R, let Ma,b,c,d = ( 1 1 1 1
a b c d ).

Suppose that Wa,b,c,d contains an additive cube, then there exists a vector
x ∈ ker(Ma,b,c,d) ∩ Z

4 \ {0} such that |τ · x| < C, where C is given in Theo-
rem 1.

Proof. Let uvw be an additive cube factor of Wa,b,c,d. By Lemma 3, uvw cannot
be an abelian cube. Thus either Ψ(u) 
= Ψ(v) or Ψ(v) 
= Ψ(w). Without loss of
generality, Ψ(u) 
= Ψ(v). In this case, let x = Ψ(u) − Ψ(v) 
= 0. Since x is the
difference of two Parikh vectors we get x ∈ Z

4. Since uvw is an additive cube,
|u| = |v| and |u|aa+ |u|bb+ |u|cc+ |u|dd = |v|aa+ |v|bb+ |v|cc+ |v|dd. This implies
that Ma,b,c,d(Ψ(u) − Ψ(v)) = 0 which can be rewritten as x ∈ ker(Ma,b,c,d).
Therefore, x ∈ ker(Ma,b,c,d) ∩ Z

4 \ {0}. By assumption u and v are two factors
of Wa,b,c,d and by Theorem 1 we get |τ · x| < C, which concludes the proof.

This Lemma contains the main idea of the present work. If we want to know
for which choices of a, b, c and d, the word Wa,b,c,d avoids additive cubes, it is
sufficient to study the behavior of the lattice ker(Ma,b,c,d) ∩ Z

4 \ {0}.

4 The Case of W0,1,c,d

Let us first study the lattice ker(M0,1,c,d) ∩ Z
4 \ {0} for c, d ∈ R. We show that

in many cases additive cubes are avoidable over {0, 1, c, d}.

Theorem 2. Let c, d ∈ R. Suppose d > c > 1, c 
∈ {5/4, 4/3, 3/2, 2} and d 
∈
{6 − 4c, 5 − 3c, 4 − 2c, 3 − c, 2c − 3, 2c − 2, 2c − 1, 3c − 3, 2}. Then W0,1,c,d avoids
additive cubes.
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Proof. From Lemma 4, it is sufficient to show that under the assumptions on
c and d we get |τ · x| ≥ C for any x ∈ ker(M0,1,c,d) ∩ Z

4 \ {0}. Let us first
express this set of vectors in a more convenient way. It is straightforward to
check that if α = (c − 1,−c, 1, 0) and β = (d − 1,−d, 0, 1), then {α, β} is a basis
of ker(M0,1,c,d). For any reals m and n, if mα + nβ is an integral vector then
m ∈ N (resp., n ∈ N) because otherwise its third (resp., its fourth) coordinate is
not an integer and mc + nd ∈ Z, otherwise the first and second coordinates are
not integers. We deduce that

ker(M0,1,c,d) ∩ Z
4 = {mα + nβ|m,n ∈ Z,mc + nd ∈ Z}.

Thus, we only need to show that, under the assumptions, for any m,n ∈ Z with
mc + nd ∈ Z and (m,n) 
= (0, 0), we get

|τ · (mα + nβ)| ≥ C. (1)

Let us show that (1) holds if n = 0. In this case, m 
= 0, |τ · mα| =
|m||τ · α| and mc ∈ Z. Numerical computation gives f0(c) := |τ · α| =̇√

1.83908 + c(−3.05698 + 1.44043c). The minimum of f0 is reached at c =̇
3.05698

2×1.44043 =̇ 1.06114. Thus for any numbers x, y ∈ R with x < y and 1.06114 < y
the minimum of f0 over the interval [x, y] is given by f0(max(1.06114, x)). We
distinguish several cases depending on the value of c.

– If c > 2.85 a straightforward computation gives |τ · α| > C and |τ · mα| > C.
– If c ∈ [1.9, 2.9] \ {2}, a computation gives |τ · α| > C

2 . Moreover, in this case
m ∈ Z and mc ∈ Z imply |m| ≥ 2 (since c 
∈ Z) and |τ · mα| > C.

– If c ∈ [1.55, 1.95], a computation gives |τ · α| > C
3 . Moreover, in this case

m ∈ Z and mc ∈ Z imply |m| ≥ 3 (since 2c 
∈ Z) and we get |τ · mα| > C.
– If c ∈ [1.3, 1.65] \ {4/3, 3/2}, a computation gives |τ · α| > C

4 . Moreover, in
this case m ∈ Z and mc ∈ Z imply |m| ≥ 4 (since 3c, 2c 
∈ Z) and we get
|τ · mα| > C.

– If c ∈]1, 1.35] \ {5/4, 4/3}, a computation gives |τ · α| > C
5 . Moreover, in this

case m ∈ Z and mc ∈ Z imply |m| ≥ 5 (since 4c, 3c, 2c 
∈ Z) and we get
|τ · mα| > C.

Let us show that (1) is true if |n| ≥ 4 and m ∈ Z. We have

|mτ ·α+nτ ·β| = |n||τ ·α|
∣
∣
∣
∣
m

n
+

τ · β

τ · α

∣
∣
∣
∣ ≥ |n||τ ·α|

∣
∣
∣
∣Im

(
m

n
+

τ · β

τ · α

)∣
∣
∣
∣ ≥ k|n|, (2)

where k = |τ · α|
∣
∣
∣Im

(
τ ·β
τ ·α

)∣
∣
∣. Numerical computations give:

k2 =̇
1

c2 − 2.12228 c + 1.27676

(
0.217137 d2 + 0.533079 dc + 0.327181c2

+ 0.217127 d − 0.911556c + 0.634921
)
,

k2 −
(

C

4

)2

=̇
1

c2 − 2.12228 c + 1.27676

(
0.257151 + 0.0312991c2

+ c(−0.283614 + 0.533079d) + (−0.742604 + 0.217137d)d
)
.
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The denominator c2 − 2.12228 c + 1.27676 is positive for any real c. Thus the
sign of k2 − (

C
4

)2
is the same as the sign of the numerator. For a given d, the

minimum of the numerator is reached for c =̇ 0.00443843 − 0.00834245d < 0
(since d > 1). Thus the numerator is an increasing function of c for c > 0
and in particular for fixed d and 1 ≤ c < d the minimum is reached at c = 1
and is given by 0.00483619 + (−0.209525 + 0.217137d)d which is positive since
d > 1. We conclude that k > C

4 . We use Eq. (2) to get that if |n| ≥ 4, then
|mτ · α + nτ · β| > C.

It remains to deal with the cases |n| ∈ {1, 2, 3}. It is enough in (1) to consider
the cases n ∈ {1, 2, 3}. We treat each case in a similar way. Let us start with the
case n = 1. We get numerically

Pc,d,1(m) := |τ · (mα + β)|2 − C2

=̇ −4.16782 + 0.712407m − 1.17373cm + 1.83908m2 − 3.05698cm2

+ 1.44043c2m2 + (−1.17373 − 3.05698m + 2.88085cm)d + 1.44043d2.

Pc,d,1(m) is a quadratic polynomial in d. Computing the discriminant yields
Pc,d,1(m) > 0, for all c ∈ R if and only if Δc(d) :=̇ 25.3914 + 3.07144m −
1.25108m2 < 0. This is a quadratic inequality2 in m and solving it yields

m 
∈ [−3.44178, 5.89681] =⇒ |τ · (mα + β)| > C.

Thus we only need to check that for every m ∈ {5, 4, 3, 2, 1, 0,−1,−2,−3} such
that mc + d ∈ Z, Pc,d,1(m) > 0. Let us detail the cases m = −3 and m = 4.
Numerically, we get Pc,d,1(−3) =̇ 10.2467+12.9638c2+c(−23.9917−8.64256d)+
d(7.99723 + 1.44043d). This is a quadratic polynomial in d and we deduce3 that

Pc,d,1(−3) > 0 ⇐⇒ d ∈ ] − ∞, 3c − 3.54573[ ∪ ]3c − 2.00625,∞[.

Thus, in particular, since by hypothesis d 
= 3c − 3 then either Pc,d,1(−3) > 0 or
d ∈ [3c−3.54573, 3c−2.00625] and then −3c+d 
∈ Z. The condition Pc,d,1(4) > 0
is equivalent to d ∈]6.1107 − 4c,∞[. Since d > c > 1 and d 
= 6 − 4c then either
Pc,d,1(4) > 0 or d + 4c 
∈ Z. The other cases are similar. We give, in Table 1, for
each of them the condition on the reals and the assumptions that allow us to
conclude.

2 We remark that it is no numerical coincidence that c does not appear in the expres-
sion of Δc(d). It follows from Pc,d,1(m) = (x+ym+ z(d+ cm))2 +(x′ +y′m+ z′(d+
cm))2 − C2 with x, y, z ∈ R.

3 As for the previous note, it is no numerical coincidence that there is no complicated
square root involving c since c does not appear in the discriminant.
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Table 1. Study of Pc,d,1(m) for m ∈ {5, 4, 3, 2, 1, 0, −1, −2, −3}.

(A): an equivalent condition for d A sufficient condition

to get (A)

Pc,d,1(5) > 0 ⇔ d ∈]6.78141 − 5c, ∞[ d > c > 1

Pc,d,1(4) > 0 ⇔ d ∈]6.1107 − 4c, ∞[ d > c > 1 and d �= 6 − 4c

Pc,d,1(3) > 0 ⇔ d ∈]5.26804 − 3c, ∞[ d > c > 1 and d �= 5 − 3c

Pc,d,1(2) > 0 ⇔ d ∈]4.31762 − 2c, ∞[ d > c > 1 and d �= 4 − 2c

Pc,d,1(1) > 0 ⇔ d ∈]3.27931 − c, ∞[ d > c > 1 and d �= 3 − c

Pc,d,1(0) > 0 ⇔ d �∈ [−1.34171, 2.15655] d > c > 1 and d �= 2

Pc,d,1(−1) > 0 ⇔ d ∈]c + 0.939592, ∞[ d > c

Pc,d,1(−2) > 0 d �∈ {2c − 3, 2c − 2, 2c − 1}
⇔ d �∈ [2c − 3.02493, 2c − 0.404774]

Pc,d,1(−3) > 0 d �= 3c − 3

⇔ d �∈ [3c − 3.54573, 3c − 2.00625]

The next case is n = 2 and we treat it in a similar fashion. We get numerically

Pc,d,2(m) := |τ · (mα + 2β)|2 − C2

=̇ −2.46898 + 1.42481m − 2.34745cm + 1.83908m2 − 3.05698cm2

+ 1.44043c2m2 + (−4.6949 − 6.11397m + 5.76171cm)d + 5.76171d2.

Computing the discriminant yields Pc,d,2(m) > 0, for all d ∈ R if and only if
Δc(d) :=̇ 78.9442 + (24.5715 − 5.00433m)m < 0. This is a quadratic inequality
in m and solving it yields m 
∈ [−2.21427, 7.12433] =⇒ |τ · (mα + β)| >
C. Thus we only need to check that, under the assumptions, for every m ∈
{7, 6, 5, 4, 3, 2, 1, 0,−1,−2} such that mc + 2d ∈ Z, Pc,d,2(m) > 0. Each case
is similar to the cases with n = 1. We give, in Table 2, for each of them the
condition on the reals and the assumptions that allow us to conclude. The only
remaining case is n = 3 and we treat it in a similar fashion. We get numerically

Pc,d,3(m) := |τ · (mα + 2β)|2 − C2

=̇ 0.362434 + 2.13722m − 3.52118bm + 1.83908m2 − 3.05698cm2

+ 1.44043c2m2 + (−10.5635 − 9.17095m + 8.64256cm)d + 12.9638d2.

Computing the discriminant yields Pc,d,3(m) > 0, for all d ∈ R if and only if
Δc(d) :=̇ 92.7941 + 82.929m − 11.2597m2 < 0. This is a quadratic inequality
in m and solving it yields m 
∈ [−0.986756, 8.35184] =⇒ |τ · (mα + β)| >
C. Thus we only need to check that, under the assumptions, for every m ∈
{8, 7, 6, 5, 4, 3, 2, 1, 0} such that mc + 3d ∈ Z, Pc,d,3(m) > 0. Each case is similar
to the cases n = 1, 2. We give, in Table 3, for each of them the condition on the
reals and the assumptions that allow us to conclude. This finishes the proof of
Theorem 2.
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Table 2. Theorem 2: Study of Pc,d,2(m) for m ∈ {7, 6, 5, 4, 3, 2, 1, 0, −1, −2}.

(B1): an equivalent condition for d A sufficient condition

to get (B1)

Pc,d,2(7) > 0 ⇔ d �∈]3.91363 − 3.5c, 4.32919 − 3.5c[ d > c > 1

Pc,d,2(6) > 0 ⇔ d �∈]3.00088 − 3c, 4.1808 − 3c[ d > c > 1

Pc,d,2(5) > 0 ⇔ d �∈]2.30029 − 2.5c, 3.82024 − 2.5c[ d > c > 1

Pc,d,2(4) > 0 ⇔ d �∈]1.67431 − 2c, 3.38509 − 2c[ d > c > 1

Pc,d,2(3) > 0 ⇔ d �∈]1.09888 − 1.5c, 2.89938 − 1.5c[ d > c > 1

Pc,d,2(2) > 0 ⇔ d �∈]0.566427 − c, 2.3707 − c[ d > c > 1

Pc,d,2(1) > 0 ⇔ d �∈]0.0766769 − 0.5c, 1.79931 − 0.5c[ d > c > 1

Pc,d,2(0) > 0 ⇔ d �∈] − 0.363621, 1.17847[ d > c > 1

Pc,d,2(−1) > 0 ⇔ d �∈ [−0.732884 + 0.5c, 0.486592 + 0.5c] d > c

Pc,d,2(−2) > 0 ⇔ d �∈ [−0.925154 + c, −0.382276 + c] d > c

In fact, using a symmetry argument we can improve the previous result.

Theorem 3. For any (c, d) ∈ R
2\F additive cubes are avoidable over {0, 1, c, d}

where
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{ (
10

9
,
14

9

)
,

(
9

8
,
3

2

)
,

(
9

8
,
13

8

)
,

(
8

7
,
10

7

)
,

(
8

7
,
11

7

)
,

(
8

7
,
12

7

)
,

(
7

6
,
11

6

)
,

(
7

6
,
3

2

)
,

(
7

6
,
5

3

)
,

(
6

5
,
8

5

)
,

(
6

5
,
9

5

)
,

(
6

5
, 2

)
,

(
5

4
,
7

4

)
,

(
5

4
, 2

)
,

(
5

4
,
9

4

)
,(

5

4
,
5

2

)
,

(
5

4
,
11

4

)
,

(
5

4
, 3

)
,

(
5

4
,
13

4

)
,

(
5

4
,
7

2

)
,

(
4

3
, 2

)
,

(
4

3
,
7

3

)
,

(
4

3
,
8

3

)
,(

4

3
, 3

)
,

(
4

3
,
10

3

)
,

(
4

3
,
11

3

)
,

(
4

3
, 4

)
,

(
3

2
,
5

2

)
,

(
3

2
, 3

)
,

(
3

2
,
7

2

)
,

(
3

2
, 4

)
,

(
3

2
,
9

2

)
,

(
3

2
, 5

)
, (4, 5)

}

∪ ({(2, t), (t, 2t − 2), (t, 2t − 1), (t, 3t − 3) : t ∈ R} ∩ {(c, d) : d > c > 1}) .

Proof. Let X be the following set of pairs of parametric equations:

X ={(5/4, t), (4/3, t), (3/2, t), (2, t), (t, 6 − 4t), (t, 5 − 3t), (t, 4 − 2t),
(t, 3 − t), (t, 2t − 3), (t, 2t − 2), (t, 2t − 1), (t, 3t − 3), (t, 2) : t ∈ R}.

For any pair e = (x(t), y(t)) of parametric equations, we denote by C(e) the
associated parametric curve (that is the set of points defined by {(x(t), y(t)) : t ∈
R}). By the Theorem 2 for any c, d ∈ R with c > d > 1 and (c, d) 
∈ ⋃

e∈X C(e)
additive cubes are avoidable over {0, 1, c, d}. Moreover, for any c, d ∈ R with
d > c > 1, the alphabet {0, 1, c, d} is equivalent to the alphabet {0, 1, d−1

d−c , d
d−c}

(via the affine map x �→ d−x
d−c ). Let f : R

2 → R
2, (x, y) �→

(
y−1
y−x , y

y−x

)
. We
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Table 3. Theorem 2: Study of Pc,d,3(m) for m ∈ {8, 7, 6, 5, 4, 3, 2, 1, 0}.

(B2): an equivalent condition for d A sufficient condition

to get (B2)

Pc,d,3(8) > 0 ⇔ d �∈]3.00699 − 2.66667c, 3.46726 − 2.66667c[ d > c > 1

Pc,d,3(7) > 0 ⇔ d �∈]2.45816 − 2.33333c, 3.30867 − 2.33333c[ d > c > 1

Pc,d,3(6) > 0 ⇔ d �∈]2.00508 − 2c, 3.05432 − 2c[ d > c > 1

Pc,d,3(5) > 0 d > c > 1

⇔ d �∈]1.59624 − 1.66667c, 2.75573 − 1.66667c[

Pc,d,3(4) > 0 d > c > 1

⇔ d �∈]1.21937 − 1.33333c, 2.42518 − 1.33333c[

Pc,d,3(3) > 0 ⇔ d �∈]0.870753 − c, 2.06637 − c[ d > c > 1

Pc,d,3(2) > 0 d > c > 1

⇔ d �∈]0.551146 − 0.666667c, 1.67855 − 0.666667c[

Pc,d,3(1) > 0 d > c > 1

⇔ d �∈]0.266517 − 0.333333c, 1.25575 − 0.333333c[

Pc,d,3(0) > 0 ⇔ d �∈]0.0358908, 0.778955[ d > c > 1

deduce that for any c, d ∈ R with d > c > 1 and (c, d) 
∈ ⋃
e∈X C(f ◦ e) additive

cubes are avoidable over {0, 1, c, d}. Let

F =

( ⋃
e∈X

C(f ◦ e)

)
∩

( ⋃
e∈X

C(e)

)
∩ {(c, d) : d > c > 1}. (3)

Then, for any c, d ∈ R with d > c > 1 and (c, d) 
∈ F additive cubes are avoidable
over {0, 1, c, d}. Let us now compute F . First, one computes

C({f ◦ e : e ∈ X}) = C
({

(t, 6t − 4), (t, 5t − 3), (t, 4t − 2), (t, 3t − 1), (t,
3

2
t − 1),

(t, 2(t − 1)), (2, t), (t, 3(t − 1)), (t, 2t), (t, 5t − 4),

(t, 4t − 3), (t, 3t − 2), (t, 2t − 1)
})

.

We get the set from Theorem 3 by simply computing the intersection of the two
sets in (3) (this is done by solving the 169 equations).

5 The Case of W1,0,c,d

We show the next result by using a similar procedure as the one in the proof of
Theorem 2 in Sect. 4.

Theorem 4. Let c, d ∈ R. Suppose we have d > c > 1, d 
∈ {2, c + 1, c + 2, 2c +
2, 2c + 1, 2c, 3c, 3c + 1, 1 + c

2 , 1
2 + c}. Then W1,0,c,d avoids additive cubes.
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Proof. Following the proof of Theorem 2, we only need to show that, under the
assumptions, for any m,n ∈ Z with mc + nd ∈ Z, we have |τ · (mα + nβ)| > C,
where α = (−c, c − 1, 1, 0) and β = (−d, d − 1, 0, 1).

Let us first show that this is the case if n = 0. Two subcases occur:

– If c > 1.71 a computation gives |τ · α| > C and |τ · mα| > C.
– If c ∈]1, 2[, a computation gives |τ ·α| > C

2 . Moreover, in this case m ∈ Z and
mc ∈ Z imply |m| ≥ 2 (since c 
∈ Z) and we get |τ · mα| ≥ C.

Let us now show that |τ · (mα + nβ)| > C if |n| ≥ 4 and m ∈ Z. The same
computation as (2) gives:

|mτ · α + nτ · β| ≥ k|n|, where k = |τ · α|
∣
∣
∣
∣Im

(
τ · β

τ · α

)∣
∣
∣
∣ . (4)

The same approach as in proof of Theorem 2 can be used to verify that k2 −
(C
4 )2 > 0 for any d > c > 1. This gives with inequality (4) that if |n| ≥ 4,

then |mτ · α + nτ · β| > C. It remains to treat the cases |n| ∈ {1, 2, 3} but it is
enough to consider the cases n ∈ {1, 2, 3}, as previously. We start with the case
n = 1. Once again Pc,d,1(m) := |τ · (mα + β)|2 − C2 is a quadratic polynomial
in d. Computing its discriminant yields Pc,d,1(m) > 0, for all c ∈ R if and only
if Δc(d) :=̇ 25.3914 + 3.07144m − 1.25108m2 < 0. This is a quadratic inequality
in m and solving it yields m 
∈ [−3.44178, 5.89681] =⇒ |τ · (mα + β)| > C (the
conditions on m happen to be exactly the same as in Sect. 4). Thus we only need
to check that for every m ∈ {5, 4, 3, 2, 1, 0,−1,−2,−3} such that mc+d ∈ Z, we
have Pc,d,1(m) > 0.

All the cases are similar to what we did in the previous proof. We give, in
Table 4, for each of them the condition on the reals and the assumptions that
allow us to conclude. The next case is n = 2 and we treat it in a similar fashion.

We verify that the only interesting cases are m 
∈ [−2.21427, 7.12433]. Thus
we only need to check that for every m ∈ {7, 6, 5, 4, 3, 2, 1, 0,−1,−2} such that
mc + 2d ∈ Z, we get Pc,d,2(m) > 0. Each case is similar to the cases with n = 1.
We omit here, because of the lack of space, the table that give for each of them
the condition on the reals and the assumptions that allow us to conclude. This
table can be found at https://members.loria.fr/FLietard/tables-of-values/.

The only remaining case is n = 3. We once again compute the dis-
criminant of Pc,d,3(m) seen as a polynomial in d. We deduce that m 
∈
[−0.986756, 8.35184] =⇒ |τ · (mα + β)| > C.

Summing up, we only need to check that for every m ∈ {8, 7, 6, 5, 4, 3, 2, 1, 0}
such that mc + 3d ∈ Z, Pc,d,3(m) > 0. We prove this statement by solving each
of the corresponding 9 equations and this concludes the proof of Theorem 4.

We could improve this result with the same approach as the one we used in the
proof of Theorem 3, but we already have a strong enough result for our purpose.

https://members.loria.fr/FLietard/tables-of-values/
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Table 4. Theorem 4: Study of Pc,d,1(m) for m ∈ {5, 4, 3, 2, 1, 0, −1, −2, −3}.

(C1): an equivalent condition for d A sufficient condition

to get (C1)

Pc,d,1(5) > 0 ⇔ d �∈] − 0.781405 − 5c, 1.35518 − 5c[ d > c > 1

Pc,d,1(4) > 0 ⇔ d �∈] − 1.1107 − 4c, 1.80675 − 4c[ d > c > 1

Pc,d,1(3) > 0 ⇔ d �∈] − 1.26804 − 3c, 2.08636 − 3c[ d > c > 1

Pc,d,1(2) > 0 ⇔ d �∈] − 1.31762 − 2c, 2.25822 − 2c[ d > c > 1

Pc,d,1(1) > 0 ⇔ d �∈] − 1.27931 − c, d > 2.34218 − c[ d > c > 1

Pc,d,1(0) > 0 ⇔ d �∈ [−1.15655, 2.34171] d > c > 1 and d �= 2

Pc,d,1(−1) > 0 ⇔ d �∈] − 0.939592 + c, 2.24702 + c[ d > c and

d �∈ {c + 1, c + 2}
Pc,d,1(−2) > 0 ⇔ d �∈] − 0.595226 + 2c, 2.02493 + 2c[ d �∈ {2c + 2,

2c + 1, 2c}
Pc,d,1(−3) > 0 ⇔ d �∈]0.00625218 + 3c, 1.54573 + 3c)[ d �∈ {3c, 3c + 1}

6 The Remaining Alphabets

We use Theorem 3 and Theorem 4 to get the following result:

Theorem 5. Let

F =

{ (
10

9
,
14

9

)
,

(
9

8
,
13

8

)
,

(
8

7
,
11

7

)
,

(
7

6
,
5

3

)
,

(
6

5
,
8

5

)
,

(
6

5
, 2

)
,

(
5

4
,
7

4

)
,

(
5

4
, 2

)
,

(
5

4
,
9

4

)
,

(
5

4
,
5

2

)
,

(
5

4
,
13

4

)
,

(
5

4
,
7

2

)
,

(
4

3
, 2

)
,

(
4

3
,
7

3

)
,(

4

3
,
8

3

)
,

(
4

3
,
10

3

)
,

(
4

3
,
11

3

)
,

(
3

2
,
5

2

)
,

(
3

2
, 3

)
,

(
3

2
,
7

2

)
, (4, 5) ,

(
4

3
,
5

3

)
,(

3

2
, 2

)
,

(
8

5
,
9

5

)
,

(
5

3
, 2

)
,

(
7

4
,
9

4

)
,

(
2,

5

2

)
, (2, 3) , (2, 4) , (2, 5) ,

(
5

2
, 3

)
,

(
5

2
,
9

2

)
, (3, 4) , (3, 5) , (3, 6) , (4, 6) , (4, 9)

}
.

and (c, d) ∈ R
2 \ F . Then additive cubes are avoidable over {0, 1, c, d}.

Proof. This set is obtained by taking the intersection of the sets of forbidden
pairs from Theorem 3 and Theorem 4.

In order to study the remaining alphabets (those of the form {0, 1, c, d} with
c, d ∈ F) let us recall the following results from the literature.

Theorem 6 ([7, Section 3.2]). Additive cubes are avoidable over the following
alphabets: {0, 1, 5}, {0, 1, 6}, {0, 1, 7}, {0, 2, 7}, {0, 3, 7}, {0, 1, 8}, {0, 3, 8}, {0, 1,
9}, {0, 2, 9}, {0, 4, 9}.
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Theorem 7 ([8, Theorem 9]). Additive cubes are avoidable over the following
alphabets: {0, 2, 3, 6}, {0, 1, 2, 4}, {0, 2, 3, 5}.
We use the fact that all but one of the remaining alphabets contain an alphabet
equivalent to an alphabet from Theorem 6 or Theorem 7. Our main result after
this reduction is the following:

Theorem 8. For any rational numbers c and d with c < d and (c, d) 
= (2, 3)
additive cubes are avoidable over {0, 1, c, d}.
Proof.

{
0, 1, 10

9 , 14
9

}
contains an alphabet equivalent to {0, 1, 5} (apply x �→ 9x−

9 to
{
1, 10

9 , 14
9

}
). We deduce from Theorem 6 that additive cubes are avoidable

over both alphabets. We proceed in a same way for the other alphabets and we
provide for each of them the alphabet from Theorem 6 or from Theorem 7 in
Table 5. This concludes the proof.

Table 5. Each remaining alphabet, with exception of {0, 1, 2, 3}, contains an alphabet
equivalent to an alphabet from Theorems 6 or 7.

( 10
9 , 149 ),( 5

4 , 72 ),( 4
3 , 53 ),(4,5),(2, 52 ),(2,5),(3,5) {0, 1, 5}

( 6
5 , 85 ),( 6

5 ,2),( 5
4 , 52 ),( 5

3 ,2),( 5
2 ,3),(3,6),(4,6) {0, 1, 6}

( 7
6 , 53 ),( 4

3 , 103 ) {0, 1, 7}
( 3
2 , 72 ) {0, 2, 7}

( 5
4 , 74 ),( 4

3 , 73 ) {0, 3, 7}
( 8
7 , 117 ),( 4

3 , 113 ),( 3
2 , 52 ) {0, 1, 8}

( 5
4 ,2),( 4

3 , 83 ) {0, 3, 8}
( 9
8 , 138 ),( 5

4 , 134 ),( 8
5 , 95 ) {0, 1, 9}

( 5
2 , 92 ) {0, 2, 9}

( 5
4 , 94 ),( 7

4 , 94 ),(4,9) {0, 4, 9}
( 4
3 ,2),( 3

2 ,3) {0, 2, 3, 6}
( 3
2 ,2),(2,4) {0, 1, 2, 4}

(3,4) {0, 1, 3, 4}

We reformulate this result in terms of Problem 1.

Corollary 1. Let A ⊂ C be an alphabet with |A| ≥ 4. If A is not equivalent to
{0, 1, 2, 3} then additive cubes are avoidable over A. In particular, if |A| ≥ 5,
then additive cubes are avoidable over A.

Note that we have shown that for all but finitely many integral alphabets of
size 4 (up to the equivalence relation given in Sect. 2.1) the word Wa,b,c,d can
be used to avoid additive cubes. This is probably not the only fixed point of
a morphism with this property. Indeed, as long as the adjacency matrix of a
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morphism has at most two eigenvalues of norm at least 1, we can deduce an
inequality similar to that of Theorem 1 (see Proposition 7 in [8] for details). If
the word also avoids abelian cubes, we can show an inequality similar to this in
Lemma 4. The conditions of this Lemma should be strong enough to study the
lattice in a similar way to what we did.

Let us conclude by restating two remaining related open questions. First it
is natural to ask whether additive cubes are avoidable over the only remaining
alphabet (see Problem 7 in [8]).

Question 1. Are additive cubes avoidable over {0, 1, 2, 3}?

On the one hand, Rao [7] claims that he got a word of length 1.4 × 105 over the
alphabet {0, 1, 2, 3} without additive cubes. Damien Jamet, the first author and
Thomas Stoll constructed over this alphabet several words of length greater than
107 without additive cubes (see https://members.loria.fr/FLietard/un-mot-sur-
0123/ for such a word). Therefore, it seems to be reasonable to believe that there
exists an infinite word without additive cubes over {0, 1, 2, 3}. On the other hand,
for every alphabet {a, b, c, d} different from {0, 1, 2, 3} it is possible to provide
a short morphism with the same eigenvalues as those of ϕa,b,c,d or ϕ2

a,b,c,d with
an infinite fixed point avoiding additive cubes. An exhaustive research shows,
however, that every morphism over {0, 1, 2, 3} with images of size at most 7 fails
to provide an infinite fixed point without additive cubes. We do not dare to
conjecture whether or not a morphism providing such an infinite word exists.

It seems that additive cubes are avoidable over most alphabets of size 3. Our
result might stimulate research to treat the following question.

Question 2. Can we characterize the sets of integers of size 3 over which additive
cubes are avoidable?

In fact, with the exception of {0, 1, 2, 3}, the alphabets of size three are the only
remaining case of Problem 1 due to Lemma 2 and Theorem 8.
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Abstract. We show that equivalence of deterministic linear tree trans-
ducers can be decided in polynomial time when their outputs are inter-
preted over the free group. Due to the cancellation properties offered
by the free group, the required constructions are not only more gen-
eral, but also simpler than the corresponding constructions for proving
equivalence of deterministic linear tree-to-word transducers.

Keywords: Linear tree transducer · Free group · Equivalence
problem · Polynomial time

1 Introduction

In 2009, Staworko and Niehren observed that equivalence for sequential tree-to-
word transducers [13] can be reduced to the morphism equivalence problem for
context-free languages. Since the latter problem is decidable in polynomial time
[10], they thus proved that equivalence of sequential tree-to-word transducers is
decidable in polynomial time. This decision procedure was later accompanied
by a canonical normal form which can be applied to learning [3,4]. Sequen-
tiality of transducers means that subtrees must always be processed from left
to right. This restriction was lifted by Boiret who provided a canonical nor-
mal form for unrestricted linear tree-to-word transducers [1]. Construction of
that normal form, however, may require exponential time implying that the
corresponding decision procedure requires exponential time as well. In order
to improve on that, Palenta and Boiret provided a polynomial time procedure
which just normalizes the order in which an unrestricted linear tree-to-word
transducer processes the subtrees of its input [2]. They proved that after that
normalization, equivalent transducers are necessarily same-ordered. As a conse-
quence, equivalence of linear tree-to-word transducers can thus also be reduced
to the morphism equivalence problem for context-free languages and thus can
be decided in polynomial time. Independently of that, Seidl, Maneth and
Kemper showed by algebraic means, that equivalence of general (possibly non-
linear) tree-to-word transducers is decidable [11]. Their techniques are also appli-
cable if the outputs of transducers are not just in a free monoid of words, but
also if outputs are in a free group. The latter means that output words are con-
sidered as equivalent not just when they are literally equal, but also when they
c© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 207–221, 2020.
https://doi.org/10.1007/978-3-030-48516-0_16
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become equal after cancellation of matching positive and negative occurrences
of letters. For the special case of linear tree transducers with outputs either in a
free monoid or a free group, Seidl et al. provided a randomized polynomial time
procedure for in-equivalence. The question remained open whether for outputs
in a free group, randomization can be omitted. Here, we answer this question to
the affirmative. In fact, we follow the approach of [2] to normalize the order in
which tree transducers produce their outputs. For that normalization, we heavily
rely on commutation laws as provided for the free group. Due to these laws, the
construction as well as the arguments for its correctness, are not only more gen-
eral but also much cleaner than in the case of outputs in a free monoid only. The
observation that reasoning over the free group may simplify arguments has also
been made, e.g., by Tomita and Seino and later by Senizergues when dealing
with the equivalence problem for deterministic pushdown transducers [12,14].
As morphism equivalence on context-free languages is decidable in polynomial
time—even if the morphism outputs are in a free group [10], we obtain a polyno-
mial time algorithm for equivalence of tree transducers with output in the free
group.

Missing proofs can be found in the extended version of this paper [5].

2 Preliminaries

We use Σ to denote a finite ranked alphabet, while A is used for an unranked
alphabet. TΣ denotes the set of all trees (or terms) over Σ. The depth depth(t)
of a tree t ∈ TΣ equals 0, if t = f() for some f ∈ Σ of rank 0, and otherwise,
depth(t) = 1+max{depth(ti) | i = 1, . . . , m} for t = f(t1, . . . , tm). We denote by
FA the representation of the free group generated by A where the carrier is the
set of reduced words instead of the usual quotient construction: For each a ∈ A,
we introduce its inverse a−. The set of elements of FA then consists of all words
over the alphabet {a, a− | a ∈ A} which do not contain a a− or a−a as factors.
These words are also called reduced. In particular, A∗ ⊆ FA. The group operation
“·” of FA is concatenation, followed by reduction, i.e., repeated cancellation of
subwords a a− or a−a. Thus, a b c− · c b− a =FA

a a. The neutral element w.r.t.
this operation is the empty word ε, while the inverse w− of some element w ∈ FA

is obtained by reverting the order of the letters in w while replacing each letter
a with a− and each a− with a. Thus, e.g., (a b c−)− = c b−a−.

In light of the inverse operation ( . )−, we have that v · w =FA
v′w′ where

v = v′u (as words) for a maximal suffix u so that u− is a prefix of w with
w = u−w′. For an element w ∈ FA, 〈w〉 = {wl | l ∈ Z} denotes the cyclic
subgroup of FA generated from w. As usual, we use the convention that w0 = ε,
and w−l = (w−)l for l > 0. An element p ∈ FA different from ε, is called primitive
if wl =FA

p for some w ∈ FA and l ∈ Z implies that w =FA
p or w =FA

p−,
i.e., p and p− are the only (trivial) roots of p. Thus, primitive elements generate
maximal cyclic subgroups of FA. We state two crucial technical lemmas.

Lemma 1. Assume that ym =FA
β ·yn ·β− with y ∈ FA primitive. Then m = n,

and β =FA
yk for some k ∈ Z.
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Proof. Since β · yn · β− =FA
(β · y · β−)n, we find by [8, Proposition 2.17] a

primitive element c such that y and β · y · β− are powers of c. As y is primitive,
c can be chosen as y. Accordingly,

yj =FA
β · y · β− (1)

holds for some j. If β is a power of y, then β · y · β− =FA
y, and the assertion of

the lemma holds. Likewise if j = 1, then β and y commute. Since y is primitive,
then β necessarily must be a power of y.

For a contradiction, therefore now assume that β is not a power of y and
j �= 1. W.l.o.g., we can assume that j > 1. First, assume now that y is cyclically
reduced, i.e., the first and last letters, a and b, respectively, of y are not mutually
inverse. Then for each n > 0, yn is obtained from y by n-concatenation of y
as a word (no reduction taking place). Likewise, either the last letter of β is
different a− or the first letter of β− is different from b− because these two
letters are mutually inverse. Assume that the former is the case. Then β · y is
obtained by concatenation of β and y as words (no reduction taking place). By
(1), β · yn =FA

yj·n · β. for every n ≥ 1. Let m > 0 denote the length of β as
a word. Since β can cancel only a suffix of yj·n of length at most m, it follows,
that the word β y must a prefix of the word ym+1. Since β is not a power of
y, the word y can be factored into y = y′c for some non-empty suffix c such
that β = yj′

y′, implying that yc = cy holds. As a consequence, y = cl for some
l > 1—in contradiction to the irreducibility of y.

If on the other hand, the first letter of β− is not the inverse of the last letter
of y, then y · β− is obtained as the concatenation of y and β− as words. As a
consequence, yβ− is a suffix of ym+1, and we arrive at a contradiction.

We conclude that the statement of the lemma holds whenever y is cyclically
reduced. Now assume that y is not yet cyclically reduced. Then we can find a
maximal suffix r of y (considered as a word) such that y = r−sr holds and s
is cyclically reduced. Then s is also necessarily primitive. (If s =FA

cn, then
y =FA

(r−cr)n). Then assertion (1) can be equivalently formulated as

sj =FA
(r · β · r−) · y · (r · β · r−)−

We conclude that r·β·r− =FA
sl for some l ∈ Z. But then β =FA

(r−·s·r)l =FA
yl,

and the claim of the lemma follows.

Lemma 2. Assume that x1, x2 and y1, y2 are distinct elements in FA and that

xi · α · yj · β =FA
γ · y′

j · α′ · x′
i · β′ (2)

holds for i = 1, 2 and j = 1, 2. Then there is some primitive element p and
exponents r, s ∈ Z such that x1 · α =FA

x2 · α · pr and y1 =FA
ps · y2.

Proof. By the assumption (2),

γ =FA
(x1 · α · yj · β) · (y′

j · α′ · x′
1 · β′)−

=FA
(x2 · α · yj · β) · (y′

j · α′ · x′
2 · β′)−
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for all j = 1, 2. Thus,

x1 · α · yj · ββ′−x′−
1 α′−y′−

j =FA
x2 · α · yj · β · β′− · x′−

2 · α′− · y′−
j implying

y−
j · α− · x−

2 · x1 · α · yj =FA
β · β′− · x′−

2 · x′
1 · β′ · β−

for j = 1, 2. Hence,

y−
1 · α− · x−

2 · x1 · α · y1 =FA
y−
2 · α− · x−

2 · x1 · α · y2 implying
(x2 · α)−x1 · α =FA

(y1 · y−
2 ) · ((x2 · α)− · x1 · α) · (y1 · y−

2 )−

Since x1 is different from x2, also x1 · α is different from x2 · α. Let p denote a
primitive root of (x2 · α)− · x1 · α. Then by Lemma 1,

x1 · α =FA
x2 · α · pr

y1 =FA
ps · y2

for suitable exponents r, s ∈ Z.

As the elements of FA are words, they can be represented by straight-line pro-
grams (SLPs). An SLP is a context-free grammar where each non-terminal occurs
as the left-hand side of exactly one rule. We briefly recall basic complexity results
for operations on elements of FA when represented as SLPs [7].

Lemma 3. Let U, V be SLPs representing words w1, w2 ∈ {a, a− | a ∈ A},
respectively. Then the following computations/decision problems can be realized
in polynomial time

– compute an SLP for w−
1 ;

– compute the primitive root of w1 if w1 �= ε;
– compute an SLP for w =FA

w1 with w reduced;
– decide whether w1 =FA

w2;
– decide whether it exists g ∈ FA, such that w1 ∈ g · 〈w2〉 and compute an SLP

for such g.

In the following, we introduce deterministic linear tree transducers which pro-
duce outputs in the free group FA. For convenience, we follow the approach in
[11] where only total deterministic transducers are considered—but equivalence
is relative w.r.t. some top-down deterministic domain automaton B. A top-down
deterministic automaton (DTA) B is a tuple (H,Σ, δB , h0) where H is a finite
set of states, Σ is a finite ranked alphabet, δB : H×Σ → H∗ is a partial function
where δB(h, f) ∈ Hk if the the rank of f equals k, and h0 is the start state of B.
For every h ∈ H, we define the set dom(h) ⊆ TΣ by f(t1, . . . , tm) ∈ dom(h) iff
δB(h, f) = h1 . . . hm and ti ∈ dom(hi) for all i = 1, . . . , k. B is called reduced if
dom(h) �= ∅ for all h ∈ H. The language L(B) accepted by B is the set dom(h0).
We remark that for every DTA B with L(B) �= ∅, a reduced DTA B′ can be
constructed in polynomial time with L(B) = L(B′). Therefore, we subsequently
assume w.l.o.g. that each DTA B is reduced.

A (total deterministic) linear tree transducer with output in FA (LTA for
short) is a tuple M = (Σ,A, Q, S,R) where Σ is the ranked alphabet for the
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input trees, A is the finite (unranked) output alphabet, Q is the set of states, S
is the axiom of the form u0 or u0 · q0(x0) · u1 with u0, u1 ∈ FA and q0 ∈ Q, and
R is the set of rules which contains for each state q ∈ Q and each input symbol
f ∈ Σ, one rule of the form

q(f(x1, . . . , xm)) → u0 · q1(xσ(1)) · . . . · un−1 · qn(xσ(n)) · un (3)

Here, m is the rank of f , n ≤ m, u0, . . . , un ∈ FA and σ is an injective mapping
from {1, . . . , n} to {1, . . . , m}. The semantics of a state q is the function [[q]] :
TΣ → FA defined by

[[q]](f(t1, . . . , tm)) =FA
u0 · [[q1]](tσ(1)) · . . . · un−1 · [[qn]](tσ(n)) · un

if there is a rule of the form (3) in R. Then the translation of M is the function
[[M ]] : TΣ → FA defined by [[M ]](t) =FA

u0 if the axiom of M equals u0, and
[[M ]](t) =FA

u0 · [[q]](t) · u1 if the axiom of M is given by u0 · q(x0) · u1.

Example 1. Let A = {a, b}. As a running example we consider the LTA M with
input alphabet Σ = {f2, g1, k0} where the superscripts indicate the rank of the
input symbols. M has axiom q0(x0) and the following rules

q0(f(x1, x2)) → q1(x2)bq2(x1) q0(g(x1)) → q0(x1) q0(k) → ε
q1(f(x1, x2)) → q0(x1)q0(x2) q1(g(x1)) → abq1(x1) q1(k) → a
q2(f(x1, x2)) → q0(x1)q0(x2) q2(g(x1)) → abq2(x1) q2(k) → ab

Two LTAs M , M ′ are equivalent relative to the DTA B iff their translations
coincide on all input trees accepted by B, i.e., [[M ]](t) =FA

[[M ′]](t) for all t ∈
L(B).

To relate the computations of the LTA M and the domain automaton B, we
introduce the following notion. A mapping ι : Q → H from the set of states of
M to the set of states of B is called compatible if either the set of states of M
is empty (and thus the axiom of M consists of an element of FA only), or the
following holds:

1. ι(q0) = h0;
2. If ι(q) = h, δB(h, f) = h1 . . . hm, and there is a rule in M of the form (3)

then ι(qi) = hσ(i) for all i = 1, . . . , n;
3. If ι(q) = h and δB(h, f) is undefined for some f ∈ Σ of rank m ≥ 0, then M

has the rule q(f(x1, . . . , xm)) → ⊥ for some dedicated symbol ⊥ which does
not belong to A.

Lemma 4. For an LTA M and a DTA B = (H,Σ, δB , h0), an LTA M ′ with
a set of states Q′ together with a mapping ι : Q′ → H can be constructed in
polynomial time such that the following holds:

1. M and M ′ are equivalent relative to B;
2. ι is compatible.
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Example 2. Let LTA M be defined as in Example 1. Consider DTA B with
start state h0 and the transition function δB = {(h0, f) �→ h1h1, (h1, g) �→
h1, (h1, h) → ε}. According to Lemma 4, LTA M ′ for M then is defined as fol-
lows. M ′ has axiom 〈q0, h0〉(x0) and the rules

〈q0, h0〉(f(x1, x2)) → 〈q1, h1〉(x2) b 〈q2, h1〉(x1)
〈q1, h1〉(g(x1)) → ab 〈q1, h1〉(x1) 〈q1, h1〉(k) → a
〈q2, h1〉(g(x1)) → ab 〈q2, h1〉(x1) 〈q2, h1〉(k) → ab

where the rules with left-hand sides 〈q0, h0〉(g(x1)), 〈q0, h0〉(h), 〈q1, h1〉
(f(x1, x2)), 〈q2, h1〉(f(x1, x2)), all have right-hand-sides ⊥. The compatible map
ι is then given by ι = {〈q0, h0〉 �→ h0, 〈q1, h1〉 �→ h1, 〈q2, h1〉 �→ h1}. For conve-
nience, we again denote the pairs 〈q0, h0〉, 〈q1, h1〉, 〈q2, h1〉 with q0, q1, q2, respec-
tively.

Subsequently, we w.l.o.g. assume that each LTA M with corresponding DTA B
for its domain, comes with a compatible map ι. Moreover, we define for each state
q of M , the set L(q) = {[[q]](t) | t ∈ dom(ι(q))} of all outputs produced by state
q (on inputs in dom(ι(q))), and L(i)(q) = {[[q]](t) | t ∈ dom(ι(q)), depth(t) < i}
for i ≥ 0.

Beyond the availability of a compatible map, we also require that all states
of M are non-trivial (relative to B). Here, a state q of M is called trivial if L(q)
contains a single element only. Otherwise, it is called non-trivial. This property
will be established in Theorem 1.

3 Deciding Equivalence

In the first step, we show that equivalence relative to the DTA B of same-ordered
LTAs is decidable. For a DTA B, consider the LTAs M and M ′ with compatible
mappings ι and ι′, respectively. M and M ′ are same-ordered relative to B if
they process their input trees in the same order. We define set of pairs 〈q, q′〉 of
co-reachable states of M and M ′. Let u0 · q0(x1) · u1 and u′

0 · q′
0(x1) · u′

1 be the
axioms of M and M ′, respectively, where ι(q0) = ι′(q′

0) is the start state of B.
Then the pair 〈q0, q′

0〉 is co-reachable. Let 〈q, q′〉 be a pair of co-reachable states.
Then ι(q) = ι′(q′) should hold. For f ∈ Σ, assume that δB(ι(q), f) is defined.
Let

q(f(x1, . . . , xm)) → u0q1(xσ(1))u1 . . . un−1qn(xσ(n))un

q′(f(x1, . . . , xm)) → u′
0q

′
1(xσ′(1))u′

1 . . . u′
n−1q

′
n(xσ′(n′))u′

n′
(4)

be the rules of q, q′ for f , respectively. Then 〈qj , q
′
j′〉 is co-reachable whenever

σ(j) = σ′(j′) holds. In particular, we then have ι(qj) = ι′(q′
j′).

The pair 〈q, q′〉 of co-reachable states is called same-ordered, if for each cor-
responding pair of rules (4), n = n′ and σ = σ′. Finally, M and M ′ are same-
ordered if for every co-reachable pair 〈q, q′〉 of states of M,M ′, and every f ∈ Σ,
each pair of rules (4) is same-ordered whenever δB(ι(q), f) is defined.

Given that the LTAs M and M ′ are same-ordered relative to B, we can
represent the set of pairs of runs of M and M ′ on input trees by means of
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a single context-free grammar G. The set of nonterminals of G consists of a
distinct start nonterminal S together with all co-reachable pairs 〈q, q′〉 of states
q, q′ of M,M ′, respectively. The set of terminal symbols T of G is given by
{a, a−, ā, ā− | a ∈ A} for fresh distinct symbols ā, ā−, a ∈ A. Let 〈q, q′〉 be a
co-reachable pair of states of M,M ′, and f ∈ Σ such that δB(ι(q), f) is defined.
For each corresponding pair of rules (4), G receives the rule

〈q, q′〉 → u0ū
′
0〈q1, q′

1〉u1ū
′
1 . . . un−1ū

′
n−1〈qn, q′

n〉unū′
n

where ū′
i is obtained from u′

i by replacing each output symbol a ∈ A with
its barred copy ā as well as each inverse a− with its barred copy ā−. For the
axioms u0q(x1)u1 and u′

0q
′(x1)u′

1 of M,M ′, respectively, we introduce the rule
S → u0ū

′
0〈q, q′〉u1ū

′
1 where again ū′

i are the barred copies of u′
i. We define

morphisms f, g : T ∗ → FA by

f(a) = a f(a−) = a− f(ā) = f(ā−) = ε
g(ā) = a g(ā−) = a− g(a) = g(a−) = ε

for a ∈ A. Then M and M ′ are equivalent relative to B iff g(w) =FA
f(w) for

all w ∈ L(G). Combining Plandowski’s polynomial construction of a test set for
a context-free language to check morphism equivalence over finitely generated
free groups [10, Theorem 6], with Lohrey’s polynomial algorithm for checking
equivalence of SLPs over the free group [6], we deduce that the equivalence of
the morphisms f and g on all words generated by the context-free grammar G,
is decidable in polynomial time. Consequently, we obtain:

Corollary 1. Equivalence of same-ordered LTAs relative to a DTA B is decidable
in polynomial time. 
�

Next, we observe that for every LTA M with compatible map ι and non-trivial
states only, a canonical ordering can be established. We call M ordered (relative
to B) if for all rules of the form (3), with L(qi) · ui · . . . · uj−1 · L(qj) ⊆ v · 〈p〉,
p ∈ FA the ordering σ(i) < . . . < σ(j) holds. Here we have naturally extended
the operation “·” to sets of elements.

We show that two ordered LTAs, when they are equivalent, are necessarily
same-ordered. The proof of this claim is split in two parts. First, we prove that
the set of indices of subtrees processed by equivalent co-reachable states are
identical and second, that the order is the same.

Lemma 5. Let M,M ′ be LTAs with compatible maps ι and ι′, respectively, and
non-trivial states only so that M and M ′ are equivalent relative to the DTA B.
Let 〈q, q′〉 be a pair of co-reachable states of M and M ′. Assume that δB(ι(q), f)
is defined for some f ∈ Σ and consider the corresponding pair of rules (4). Then
the following holds:

1. {σ(1), . . . , σ(n)} = {σ′(1), . . . , σ′(n′)};
2. σ = σ′.
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Proof. Since 〈q, q′〉 is a co-reachable pair of states, there are elements
α, α′, β, β′ ∈ FA such that

α · [[q]](t) · β =FA
α′ · [[q′]](t) · β′

holds for all t ∈ dom(ι(q)). Consider the first statement. Assume for a con-
tradiction that qk(xj) occurs on the right-hand side of the rule for q but
xj does not occur on the right-hand side of the rule for q′. Then, there are
input trees t = f(t1, . . . , tm) and t′ = f(t′1, . . . , t

′
m), both in dom(ι(q)), such

that [[qk]](tj) �=FA
[[qk]](t′j) and ti = t′i for all i �= j. Moreover, there are

μ1, μ2 ∈ FA s.t.

α · [[q]](t) · β =FA α · μ1 · [[qk]](tj) · μ2 · β �=FA α · μ1 · [[qk]](t′
j) · μ2 · β =FA α · [[q]](t′) · β

But then,

α · [[q]](t) · β =FA
α′ · [[q′]](t) · β′ =FA

α′ · [[q′]](t′) · β′ =FA
α · [[q]](t′) · β

—a contradiction. By an analogous argument for some xj only occurring in the
right-hand side of the rule for q′ the first statement follows.

Assume for contradiction that the mappings σ and σ′ in the corresponding
rules (4) differ. Let k denote the minimal index so that σ(k) �= σ′(k). W.l.o.g., we
assume that σ′(k) < σ(k). By the first statement, n = n′ and {σ(1), . . . , σ(n)} =
{σ′(1), . . . , σ′(n)}. Then there are 
, 
′ > k such that

σ′(k) = σ(
) < σ(k) = σ′(
′)

Let t = f(t1, . . . , tn) ∈ dom(ι(q)) be an input tree. For that we obtain

μ0 := u0 · [[q1]](tσ(1)) · . . . · uk−1

μ1 := uk · [[qk+1]](tσ(k+1)) · . . . · u�−1

μ2 := u� · [[q�]](tσ(�)) · . . . · un

μ′
0 := u′

0 · [[q′
1]](tσ′(1)) · . . . · u′

k−1

μ′
1 := u′

k · [[q′
k+1]](tσ′(k+1)) · . . . · u′

�′−1

μ′
2 := u′

�′ · [[q′
�′ ]](tσ′(�′)) · . . . · u′

n

Then for all input trees t′ ∈ dom(ι(qk)), t′′ ∈ L(dom(ι(q′
k)),

α · μ0 · [[qk]](t′) · μ1 · [[q�]](t′′) · μ2 · β =FA
α′ · μ′

0 · [[q′
k]](t′′) · μ′

1 · [[q′
�′ ]](t′) · μ′

2 · β′

Let γ′ = μ−
0 α−α′μ′

0. Then

[[qk]](t′) · μ1 · [[q�]](t′′) · μ2 · β =FA
γ′ · [[q′

k]](t′′) · μ′
1 · [[q′

�′ ]](t′) · μ′
2 · β′

By Lemma 2, we obtain that for all w1, w2 ∈ L(qk) and v1, v2 ∈ L(q�), w−
2 ·w1 ∈

μ1 · 〈p〉 · μ−
1 and v1 · v−

2 ∈ 〈p〉 for some primitive p.
If 
 = k + 1, i.e., there is no further state between qk(xσ(k)) and q�(xσ(�)),

then μ1 =FA
uk, L(qk) ⊆ w · uk · 〈p〉 · u−

k and L(q�) ⊆ 〈p〉 · v for some fixed
w ∈ L(qk) and v ∈ L(q�). As σ(k) > σ′(k) = σ(
), this contradicts M being
ordered.
For the case that there is at least one occurrence of a state between qk(xσ(k))
and q�(xσ(�)), we show that for all α1, α2 ∈ uk · L(qk+1) · . . . · u�−1 =FA

: L̂,
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α−
1 α2 ∈ 〈p〉 holds. We fix w1, w2 ∈ L(qk) and v1, v2 ∈ L(q�) with w1 �= w2 and

v1 �= v2. For every α ∈ L̂, we find by Lemma 2, primitive pα and exponent
rα ∈ Z such that v1 · v−

2 =FA
prα

α holds. Since pα is primitive, this means that
pα =FA

p or pα =FA
p−. Furthermore, there must be some exponent r′

α such
that w−

1 · w2 =FA
α · pr′

α · α−. For α1, α2 ∈ L̂, we therefore have that

pr′
α1 =FA

(α−
1 · α2) · pr′

α2 · (α−
1 · α2)−

Therefore by Lemma 1, α−
1 · α2 ∈ 〈p〉. Let us fix some wk ∈ L(qk), α ∈ L̂ =FA

uk · L(qk+1) · . . . ·u�−1, and wl ∈ L(ql). Then L(qk) ⊆ wk ·α · 〈p〉 ·α−, L̂ ⊆ α · 〈p〉
and L(ql) ⊆ 〈p〉 · wl. Therefore,

L(qk) · uk · . . . · L(q�) ⊆ wk · α · 〈p〉 · α− · α · 〈p〉 · 〈p〉 · wl =FA
wk · α · 〈p〉 · wl

As σ(k) > σ′(k) = σ(
), this again contradicts M being ordered.

It remains to show that every LTA can be ordered in polynomial time. For that,
we rely on the following characterization.

Lemma 6. Assume that L1, . . . , Ln are neither empty nor singleton subsets of
FA and u1, . . . , un−1 ∈ FA. Then there are v1, . . . , vn ∈ FA such that

L1 · u1 · . . . · Ln−1 · un−1 · Ln ⊆ v · 〈p〉 (5)

holds if and only if for i = 1, . . . , n, Li ⊆ vi · 〈pi〉 with

pn =FA
p

pi =FA
(ui · vi+1) · pi+1 · (ui · vi+1)− for i < n

and
v− · v1 · u1 · . . . · vn−1 · un−1 · vn ∈ 〈p〉 (6)

Proof. Let s1 = ε. For i = 2, . . . , n we fix some word si ∈ L1·u1·L2·. . .·Li−1·ui−1.
Likewise, let tn = ε and for i = 1, . . . , n − 1 fix some word ti ∈ ui · Li+1 · . . . · Ln,
and define vi =FA

s−
i · v · t−i .

First assume that the inclusion (5) holds. Let p′
i =FA

ti · p · t−i . Then for all
i, si · Li · ti ⊆ v · 〈p〉, and therefore

Li ⊆ s−
i · v · 〈p〉 · t−i =FA

s−
i · v · t−i · ti · 〈p〉 · t−i =FA

vi〈p′
i〉

We claim that p′
i = pi for all i = 1, . . . , n. We proceed by induction on n− i. As

tn = ε, we have that p′
n = p = pn. For i < n, we can rewrite ti =FA

ui ·wi+1 · ti+1

where wi+1 ∈ Li+1 and thus is of the form vi+1 · pki+1
i+1 for some exponent ki+1.

p′
i =FA

ti · p · t−i
=FA

ui · wi+1 · ti+1 · p · t−i+1 · w−
i+1 · u−

i

=FA
ui · wi+1 · pi+1 · w−

i+1 · u−
i by I.H.

=FA
ui · vi+1 · pi+1 · v−

i+1 · u−
i

=FA
pi



216 R. Löbel et al.

It remains to prove the inclusion (6). Since wi ∈ Li, we have by (5) that v−w1 ·
u1 · . . . wn · un ∈ 〈p〉 holds. Now we calculate:

v− · w1 · u1 · . . . un−1 · wn =FA
v− · v1 · pk1

1 · u1 · . . . · un−1 · vn · pkn
n

=FA
v− · v1 · u1 · v2 · pk1+k2

2 · u2 · . . . · un−1 · vn · pkn
n

. . .
=FA

v− · v1 · u1 · . . . vn−1 · un−1 · vn · pk
n

where k = k1 + . . . + kn. Since pn = p, the claim follows.
The other direction of the claim of the lemma follows directly:

L1u1 . . . Ln−1un−1Ln ⊆ v1 · 〈p1〉 · u1 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
=FA

v1 · u1 · v2 · 〈p2〉 · 〈p2〉 · u2 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
=FA

v1 · u1 · v2 · 〈p2〉 · u2 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
· · ·
=FA

v1 · u1 · v2 · . . . · un−1 · vn · 〈pn〉
=FA

v1 · u1 · v2 · . . . · un−1 · vn · 〈p〉
⊆ v · 〈p〉

where the last inclusion follows from (6).

Let us call a non-empty, non-singleton language L ⊆ FA periodic, if L ⊆ v · 〈p〉
for some v, p ∈ FA. Lemma 6 then implies that if a concatenation of languages
and elements from FA is periodic, then so must be all non-singleton component
languages. In fact, the languages in the composition can then be arbitrarily
permuted.

Corollary 2. Assume for non-empty, nonsingleton languages L1, . . . , Ln ⊆ FA

and u1, . . . , un−1 ∈ FA that property (5) holds. Then for every permutation π,
there are elements uπ,0, . . . , uπ,n ∈ FA such that

L1 · u1 · . . . · Ln−1 · un−1 · Ln = uπ,0 · Lπ(1) · uπ,1 · . . . · uπn−1 · Lπ(n) · uπ,n

Example 3. We reconsider LTA M ′ and DTA B from Example 2. We observe
that L(q1) ⊆ a · 〈ba〉, L(q2) ⊆ 〈ab〉, and thus L(q0) = L(q1) · b · L(q2) ⊆ 〈ab〉.
Accordingly, the rule for state q0 and input symbol f is not ordered. Following
the notation of Corollary 2, we find v1 = a, u1 = b and v2 = ε, and the rule for
q0 and f can be reordered to

q0(f(x1, x2)) → ab · q2(x1) · b−a− · q1(x2)b

This example shows major improvements compared to the construction in [2].
Since we have inverses at hand, only local changes must be applied to the sub-
sequence q1(x2) ·b ·q2(x1). In contrast to the construction in [2], neither auxiliary
states nor further changes to the rules of q1 and q2 are required.

By Corollary 2, the order of occurrences of terms qk(xσ(k)) can be permuted in
every sub-sequence qi(xσ(i))·ui·. . .·uj−1qj(xσ(j)) where L(qi)·ui·. . .·uj−1·L(qj) ∈
u · 〈p〉 is periodic, to satisfy the requirements of an ordered LTA. A sufficient
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condition for that is, according to Lemma 6, that L(qk) is periodic for each
qk occurring in that sub-sequence. Therefore we will determine the subset of all
states q where L(q) is periodic, and if so elements vq, pq such that L(q) ⊆ vq ·〈pq〉.
In order to do so we compute an abstraction of the sets L(q) by means of a
complete lattice which both reports constant values and also captures periodicity.

Let D = 2FA denote the complete lattice of subsets of the free group FA. We
define a projection α : D → D by α(∅) = ∅, α({g}) = {g}, and for languages L
with at least two elements,

α(L) =

{
g〈p〉 if L ⊆ g〈p〉 and p is primitive
FA otherwise

The projection α is a closure operator, i.e., is a monotonic function with
L ⊆ α(L), and α(α(L)) = α(L). The image of α can be considered as an abstract
complete lattice D�, partially ordered by subset inclusion. Thereby, the abstrac-
tion α commutes with least upper bounds as well as with the group operation.
For that, we define abstract versions �, � : (D�)2 → D� of set union and the
group operation by

A1 � A2 = α(A1 ∪ A2) A1 � A2 = α(A1 · A2)

In fact, “�” is the least upper bound operation for D�. The two abstract operators
can also be more explicitly defined by:

∅ � L = L � ∅ = L
FA � L = L � FA = FA

{g1} � {g2} =

{
{g1} if g1 = g2

g1 · 〈p〉 if g1 �= g2, p primitive root of g−
1 · g2

{g1} � g2 · 〈p〉 = g2 · 〈p〉 � {g1} =

{
g2 · 〈p〉 if g1 ∈ g2 · 〈p〉
FA otherwise

g1 · 〈p1〉 � g2 · 〈p2〉 =

{
g1 · 〈p1〉 if p2 ∈ 〈p1〉 and g−

2 · g1 ∈ 〈p1〉
FA otherwise

∅ � L = L � ∅ = ∅
FA � L = L � FA = FA for L �= ∅
{g1} � {g2} = {g1 · g2}
{g1} � g2 · 〈p〉 = (g1 · g2) · 〈p〉
g1 · 〈p〉 � {g2} = (g1 · g2) · 〈g−

2 · p · g2〉

g1 · 〈p1〉 � g2 · 〈p2〉 =

{
(g1 · g2) · 〈p2〉 if g−

2 · p1 · g2 ∈ 〈p2〉
FA otherwise

Lemma 7. For all subsets L1, L2 ⊆ FA, α(L1 ∪ L2) = α(L1) � α(L2) and
α(L1 · L2) = α(L1) � α(L2).
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We conclude that α in fact represents a precise abstract interpretation in the
sense of [9]. Accordingly, we obtain:

Lemma 8. For every LTA M and DTA B with compatible map ι, the sets
α(L(q)), q state of M , can be computed in polynomial time.

Proof. We introduce one unknown Xq for every state q of M , and one constraint
for each rule of M of the form (3) where δ(ι(q), f) is defined in B. This constraint
is given by:

Xq � u0 � Xq1 � . . . � un−1 � Xqn
� un (7)

As the right-hand sides of the constraints (7) all represent monotonic functions,
the given system of constraints has a least solution. In order to obtain this
solution, we consider for each state q of M , the sequence X

(i)
q , i ≥ 0 of values in

D� where X
(0)
q = ∅, and for i > 0, we set X

(i)
q as the least upper bound of the

values obtained from the constraints with left-hand side Xq of the form (7) by
replacing the unknowns Xqj

on the right-hand side with the values X
(i−1)
qj . By

induction on i ≥ 0, we verify that for all states q of M ,

X(i)
q = α(L(i)(q))

holds. Note that the induction step thereby, relies on Lemma 7.
As each strictly increasing chain of elements in D� consists of at most four

elements, we have that the least solution of the constraint system is attained
after at most 3 · N iterations, if N is the number of states of M , i.e., for each
state q of M , X

(3N)
q = X

(i)
q for all i ≥ 3N . The elements of D� can be represented

by SLPs where the operations � and � run in polynomial time, cf. Lemma 3.
Since each iteration requires only a polynomial number of operations � and �,
the statement of the lemma follows.

We now exploit the information provided by the α(L(q)) to remove trivial states
as well as order subsequences of right-hand sides which are periodic.

Theorem 1. Let B be a DTA such that L(B) �= ∅. For every LTA M with
compatible map ι, an LTA M ′ with compatible map ι′ can be constructed in
polynomial time such that

1. M and M ′ are equivalent relative to B;
2. M ′ has no trivial states;
3. M ′ is ordered.

Proof. By Lemma 8, we can, in polynomial time, determine for every state q
of M , the value α(L(q)). We use this information to remove from M all trivial
states. W.l.o.g., assume that the axiom of M is given by u0 · q0(x0) · u1. If the
state q0 occurring in the axiom of M is trivial with L(q0) = {v}, then M1 has
no states or rules, but the axiom u0 · v · u1.

Therefore now assume that q0 is non-trivial. We then construct an LTA M1

whose set of states Q1 consists of all non-trivial states q of M where the com-
patible map ι1 of M1 is obtained from ι by restriction to Q1. Since L(M) �= ∅,
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the state of M occurring in the axiom is non-trivial. Accordingly, the axiom of
M is also used as axiom for M1. Consider a non-trivial state q of M and f ∈ Σ.
If δ(ι(q), f) is not defined M1 has the rule q(f(x1, . . . , xm) → ⊥. Assume that
δ(ι(q), f) is defined and M has a rule of the form (3). Then M1 has the rule

q(f(x1, . . . , xm)) → u0 · g1 · . . . · un−1 · gn · un

where for i = 1, . . . , n, gi equals qi(xσ(i)) if qi is non-trivial, and equals the
single word in L(qi) otherwise. Obviously, M and M1 are equivalent relative to
B where M1 now has no trivial states, while for every non-trivial state q, the
semantics of q in M and M1 are the same relative to B. Our goal now is to
equivalently rewrite the right-hand side of each rule of M1 so that the result is
ordered. For each state q of the LTA we determine whether there are v, p ∈ B∗

such that L(q) ⊆ v〈p〉, cf. Lemma 8. So consider a rule of M1 of the form (3). By
means of the values α(L(qi)), i = 1, . . . , n, together with the abstract operation
“�”, we can determine maximal intervals [i, j] such that L(qi) ·ui · . . . ·uj−1 ·L(qj)
is periodic, i.e., α(L(qi)) � ui · . . . � uj−1 � α(L(qj)) ⊆ v · 〈p〉 for some v, p ∈ FA.
We remark that these maximal intervals are necessarily disjoint. By Corollary 2,
for every permutation π : [i, j] → [i, j], elements u′, u′

i, . . . , u
′
j , u

′′ ∈ FA can be
found so that qi(xσ(i)) ·ui · . . . ·uj−1 · qj(xσ(j)) is equivalent to u′ · qπ(i)(xσ(π(i))) ·
u′

i · . . . · u′
j−1 · qπ(j)(xσ(π(j))) · u′′.

In particular, this is true for the permutation π with σ(π(i)) < . . . < σ(π(j)).
Assuming that all group elements are represented as SLPs, the overall construc-
tion runs in polynomial time.

In summary, we arrive at the main theorem of this paper.

Theorem 2. The equivalence of LTAs relative to some DTA B can be decided
in polynomial time.

Proof. Assume we are given LTAs M,M ′ with compatible maps (relative to B).
By Theorem 1, we may w.l.o.g. assume that M and M ′ both have no trivial
states and are ordered. It can be checked in polynomial time whether or not
M and M ′ are same-ordered. If they are not, then by Lemma 5, they cannot
be equivalent relative to B. Therefore now assume that M and M ′ are same-
ordered. Then their equivalence relative to B is decidable in polynomial time
by Corollary 1. Altogether we thus obtain a polynomial decision procedure for
equivalence of LTAs relative to some DTA B.

4 Conclusion

We have shown that equivalence of LTAs relative to a given DTA B can be
decided in polynomial time. For that, we considered total transducers only, but
defined the domain of allowed input trees separately by means of the DTA. This
does not impose any restriction of generality, since any (possibly partial) linear
deterministic top-down tree transducer can be translated in polynomial time to
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a corresponding total LTA together with a corresponding DTA (see, e.g., [11]).
The required constructions for LTAs which we have presented here, turn out
to be more general than the constructions provided in [2] since they apply to
transducers which may not only output symbols a ∈ A, but also their inverses
a−. At the same time, they are simpler and easier to be proven correct due to
the combinatorial and algebraic properties provided by the free group.

Acknowledgements. We also like to thank the anonymous reviewers for their
detailed comments and valuable advice.

References

1. Boiret, A.: Normal form on linear tree-to-word transducers. In: Dediu, A.-H.,
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Abstract. A language over an alphabet B = A ∪ A of opening (A) and
closing (A ) brackets, is balanced if it is a subset of the Dyck language
DB over B, and it is well-formed if all words are prefixes of words in DB.
We show that well-formedness of a context-free language is decidable
in polynomial time, and that the longest common reduced suffix can be
computed in polynomial time. With this at a hand we decide for the class
2-TW of non-linear tree transducers with output alphabet B∗ whether
or not the output language is balanced.

Keywords: Balancedness of tree-to-word transducer · Equivalence ·
Longest common suffix/prefix of a CFG

1 Introduction

Structured text requires that pairs of opening and closing brackets are properly
nested. This applies to text representing program code as well as to XML or
HTML documents. Subsequently, we call properly nested words over an alpha-
bet B of opening and closing brackets balanced. Balanced words, i.e. structured
text, need not necessarily be constructed in a structured way. Therefore, it is
a non-trivial problem whether the set of words produced by some kind of text
processor, consists of balanced words only. For the case of a single pair of brack-
ets and context-free languages, decidability of this problem has been settled by
Knuth [3] where a polynomial time algorithm is presented by Minamide and
Tozawa [9]. Recently, these results were generalized to the output languages of
monadic second-order logic (MSO) definable tree-to-word transductions [8]. The
case when the alphabet B consists of multiple pairs of brackets, though, seems
to be more intricate. Still, balancedness for context-free languages was shown
to be decidable by Berstel and Boasson [1] where a polynomial time algorithm
again has been provided by Tozawa and Minamide [13]. Whether or not these
results for B can be generalized to MSO definable transductions as e.g. done
by finite copying macro tree transducers with regular look-ahead, remains as an
open problem. Reynier and Talbot [10] considered visibly pushdown transducers
and showed decidability of this class with well-nested output in polynomial time.

Here, we provide a first step to answering this question. We consider deter-
ministic tree-to-word transducers which process their input at most twice by
c© Springer Nature Switzerland AG 2020
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calling in their axioms at most two linear transductions of the input. Let 2-TW
denote the class of these transductions. Note that the output languages of lin-
ear deterministic tree-to-word transducers is context-free, which does not need
to be the case for 2-TW transducers. 2-TW forms a subclass of MSO definable
transductions which allows to specify transductions such as prepending an XML
document with the list of its section headings, or appending such a document
with the list of figure titles. For 2-TW transducers we show that balancedness is
decidable—and this in polynomial time. In order to obtain this result, we first
generalize the notion of balancedness to the notion of well-formedness of a lan-
guage, which means that each word is a prefix of a balanced word. Then we show
that well-formedness for context-free languages is decidable in polynomial time.
A central ingredient is the computation of the longest common suffix of a context-
free language L over B after reduction i.e. after canceling all pairs of matching
brackets. While the proof shares many ideas with the computation of the longest
common prefix of a context-free language [7] we could not directly make use of
the results of [7] s.t. the results of this paper fully subsume the results of [7]. Now
assume that we have verified that the output language of the first linear transduc-
tion called in the axiom of the 2-TW transducer and the inverted output language
of the second linear transformation both are well-formed. Then balancedness of
the 2-TW transducer in question, effectively reduces to the equivalence of two
deterministic linear tree-to-word transducers—modulo the reduction of opening
followed by corresponding closing brackets. Due to the well-formedness we can
use the equivalence of linear tree-to-word transducers over the free group which
can be decided in polynomial time [5].

This paper is organized as follows. After introducing basic concepts in Sect. 2,
Sect. 3 shows how balancedness for 2-TW transducers can be reduced to equiv-
alence over the free group and well-formedness of LTΔs. Section 4 considers the
problem of deciding well-formedness of context-free languages in general.

Missing proofs can be found in the extended version of this paper [4].

2 Preliminaries

As usual, N (N0) denotes the natural numbers (including 0). The power set of a
set S is denoted by 2S . Σ denotes some generic (nonempty) alphabet, Σ∗ and
Σω denote the set of all finite words and the set of all infinite words, respectively.
Then Σ∞ = Σ∗∪Σω is the set of all countable words. Note, that the transducers
considered here output finite words only; however, for the operations needed to
analyze the output infinite words are very helpful. We denote the empty word by
ε. For a finite word w = w0 . . . wl, its reverse wR is defined by wR = wl . . . w1w0;
as usual, set LR := {wR | w ∈ L} for L ⊆ Σ∗. A is used to denote an alphabet of
opening brackets with A = {a | a ∈ A} the derived alphabet of closing brackets,
and B := A ∪ A the resulting alphabet of opening and closing brackets.

Longest Common Prefix and Suffix. Let Σ be an alphabet. We first define the
longest common prefix of a language, and then reduce the definition of the longest
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common suffix to it by means of the reverse. We write
p

� to denote the prefix

relation on Σ∞, i.e. we have u
p

� w if either (i) u,w ∈ Σ∗ and there exists v ∈ Σ∗

s.t. w = uv, or (ii) u ∈ Σ∗ and w ∈ Σω and there exists v ∈ Σω s.t. w = uv,
or (iii) u,w ∈ Σω and u = w. We extend Σ∞ by a greatest element � �∈ Σ∞

w.r.t.
p

� s.t. u
p

� � for all u ∈ Σ∞
� := Σ∞ ∪{�}. Then every set L ⊆ Σ∞

� has an

infimum w.r.t.
p

� which is called the longest common prefix of L, abbreviated by
lcp(L). Further, define εω := �, �R := �, and �w := � =: w� for all w ∈ Σ∞

� .
In Sect. 4 we will need to study the longest common suffix ( lcs) of a language

L. For L ⊆ Σ∗, we can simply set lcs(L) := lcp(LR)R, but also certain infinite
words are very useful for describing how the lcs changes when concatenating two
languages (see e.g. Example 2). Recall that for u,w ∈ Σ∗ and w �= ε the ω-regular
expression uwω denotes the unique infinite word uwww . . . in

⋂
k∈N0

uwkΣω; such
a word is also called ultimately periodic. For the lcs we will use the expression
w

ω

u to denote the ultimately left-periodic word . . . wwwu that ends on the suffix
u with infinitely many copies of w left of u; these words are used to abbreviate
the fact that we can generate a word wku for unbounded k ∈ N0. As we reduce
the lcs to the lcp by means of the reverse, we define the reverse of w

ω

u, denoted
by (w

ω

u)R, by means of (w

ω

u)R := uR(wR)ω.

Definition 1. Let Σulp denote the set of all expressions of the form w

ω

u with
u ∈ Σ∗ and w ∈ Σ+. Σulp is called the set of ultimately left-periodic words.
Define the reverse of an expression w

ω

u ∈ Σulp by means of (w

ω

u)R := uR(wR)ω.
Accordingly, set (uwω)R := (wR)

ω
uR for u ∈ Σ∗, w ∈ Σ+.

The suffix order on Σ∗ ∪ Σulp ∪ {�} is defined by u
s
� v :⇔ uR

p

� vR. The
longest common suffix (lcs) of a language L ⊆ Σ∗ ∪ Σulp is lcs(L) := lcp(LR)R.

For instance, we have lcs((bba)

ω

, (ba)

ω

a) = a, and lcs((ab)

ω

, (ba)

ω

b) = (ab)

ω

.

As usual, we write u
s
� v if u

s
� v, but u �= v. As the lcp is the infimum

w.r.t.
p

�, we also have for x, y, z ∈ {�} ∪ Σ∗ ∪ Σulp and L,L′ ⊆ {�} ∪ Σ∗ ∪ Σulp

that (i) lcs(x, y) = lcs(y, x), (ii) lcs(x, lcs(y, z)) = lcs(x, y, z), (iii) lcs(L)
s
� lcs(L′)

for L ⊇ L′, and (iv) lcs(Lx) = lcs(L)x for x ∈ {�} ∪ Σ∗. In Lemma 8 in the
appendix of the extended version [4] we derive further equalities for lcs that
allow to simplify its computation. In particular, the following two equalities (for
x, y ∈ Σ∗) are very useful:

lcs(x, xy) = lcs(x, y

ω

) = lcs(x, xyk) for every k ≥ 1

lcs(x

ω

, y

ω

) =

{
(xy)

ω

if xy = yx

lcs(xy, x

ω

) = lcs(xy, yxk) if xy �= yx, for every k ≥ 1

For instance, we have lcs((ab)

ω

, (bab)

ω

) = bab = lcs(abbab, (ab)

ω

). Note also that
by definition we have ε

ω

= � s.t. lcs(x

ω

, ε

ω

) = (xε)

ω

. We will use the following
observation frequently:
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Lemma 1. Let L ⊆ Σ∗ be nonempty. Then for any x ∈ L we have lcs(L) =
lcs(lcs(x, z) | z ∈ L); in particular, there is some witness y ∈ L (w.r.t. x) s.t.
lcs(L) = lcs(x, y).

Involutive Monoid. We briefly recall the basic definitions and properties of the
finitely generated involutive monoid, but refer the reader for details and a formal
treatment to e.g. [11]. Let A be a finite alphabet (of opening brackets/letters).
From A we derive the alphabet A := {a | a ∈ A} (of closing brackets/letters)
where we assume that A∩A = ∅. Set B := A∪A . We use roman letters p, q, . . .
to denote words over A, while Greek letters α, β, γ, . . . will denote words over B.

We extend · to an involution on B∗ by means of ε := ε, a := a for all a ∈ A,
and αβ := β α for all other α, β ∈ B∗. Let

ρ→ be the binary relation on B∗ defined
by αaa β

ρ→ αβ for any α, β ∈ B∗ and a ∈ A, i.e.
ρ→ cancels nondeterministically

one pair of matching opening and closing brackets. A word α ∈ B∗ is reduced
if it does not contain any infix of the form aa for any a ∈ A, i.e. α is reduced
if and only if it has no direct successor w.r.t.

ρ→. For every α ∈ B∗ canceling
all matching brackets in any arbitrary order always results in the same unique
reduced word which we denote by ρ(α); we write α

ρ
= β if ρ(α) = ρ(β). Then

B∗/
ρ
= is the free involutive monoid generated by A, and ρ(α) is the shortest

word in the
ρ
=-equivalence class of α. For L ⊆ B∗ we set ρ(L) := {ρ(w) | w ∈ L}.

Well-Formed Languages and Context-Free Grammars. We are specifically inter-
ested in context-free grammars (CFG) G over the alphabet B. We write →G for
the rewrite rules of G. We assume that G is reduced to the productive nonter-
minals that are reachable from its axiom S. For simplicity, we assume for the
proofs and constructions that the rules of G are of the form

X →G Y Z X →G Y X →G u v

for nonterminals X,Y,Z and u, v ∈ A∗. We write LX := {α ∈ B∗ | X →∗
G α}

for the language generated by the nonterminal X. Specifically for the axiom S
of G we set L := LS . The height of a derivation tree w.r.t. G is measured in the
maximal number of nonterminals occurring along a path from the root to any
leaf, i.e. in our case any derivation tree has height at least 1. We write L≤h

X for
the subset of LX of words that possess a derivation tree of height at most h s.t.:

L≤1
X = {u v | X →G u v} L≤h+2

X = L≤h+1
X ∪

⋃

X→GY Z

L≤h+1
Y L≤h+1

Z ∪
⋃

X→GY

L≤h+1
Y

We will also write L<h
X for L≤h−1

X and L=h
X for L≤h

X \ L<h
X . The prefix closure of

L ⊆ B∗ is denoted by Prf(L) := {α′ | α′α′′ ∈ L}.

Definition 2. Let α ∈ B∗ and L ⊆ B∗.

1. Let Δ(α) := |α|A −|α|A be the difference of opening brackets to closing brack-

ets. α is nonnegative if ∀α′ p

� α : Δ(α′) ≥ 0. L ⊆ B∗ is nonnegative if every
α ∈ L is nonnegative.
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2. A context-free grammar G with L(G) ⊆ B∗ is nonnegative if L(G) is nonneg-
ative. For a nonterminal X of G let dX := sup({−Δ(α′) | α′α′′ ∈ LX}).

3. A word α is well-formed (short: wwf) resp. well-formed (short: wf) if ρ(α) ∈
A ∗A∗ resp. if ρ(α) ∈ A∗. A context-free grammar G is wf if L(G) is wf.
L ⊆ B∗ is wwf resp. wf if every word of L is wwf resp. wf.

4. A context-free grammar G is bounded well-formed (bwf) if it is wwf and for
every nonterminal X there is a (shortest) word rX ∈ A∗ with |rX | = dX s.t.
rXLX is wf.

Note that dX ≥ 0 as we can always choose α′ = ε in the definition of dX .
As already mentioned in the abstract and the introduction, we have that L

is wf iff Prf(L) is wf iff L is a subset of the prefix closure of the Dyck language
generated by S → ε, S → SS, S → aSa (for a ∈ A). We state some further
direct consequences of above definition: (i) L is nonnegative iff the image of
L under the homomorphism that collapses A to a singleton is wf. Hence, if L
is wf, then L is nonnegative. Δ is an ω-continuous homomorphism from the
language semiring generated by B to the tropical semiring 〈Z ∪ {−∞},min,+〉.
Thus it is decidable in polynomial time if G is nonnegative using the Bellman-
Ford algorithm [2]. (ii) If L is not wf, then there exists some α ∈ Prf(L)\{ε} s.t.
Δ(α) < 0 or α

ρ
= uab for u ∈ A∗ and a, b ∈ A (with a �= b). (iii) If LX is wwf,

then dX = sup{|y| | γ ∈ LX , ρ(γ) = y z}.
In particular, because of context-freeness, it follows that, if G is wf, then for

every nonterminal X there is rX ∈ A∗ s.t. (i) rX ∈ ρ(Prf(LX)), (ii) |rX | = dX

and (iii) rXLX is wf. Hence:

Lemma 2. A context-free grammar G is wf iff G is bwf with rS = ε for S the
axiom of G.

The words rX mentioned in the definition of bounded well-formedness can be
computed in polynomial time using the Bellman-Ford algorithm similar to [13];
more precisely, a straight-line program (SLP) (see e.g. [6] for more details on
SLPs), i.e. a context-free grammar generating exactly one derivation tree and
thus word, can be extracted from G for each rX .

Lemma 3. Let L = L(G) be wf. Let X be some nonterminal of G. Let rX ∈ A∗

be the shortest word s.t. rXLX is wf. We can compute an SLP for rX from G in
polynomial time.

Tree-to-Word Transducers. We define a linear tree-to-word transducer (LTB)
M = (Σ,B, Q, S,R) where Σ is a finite ranked input alphabet, B is the finite
(unranked) output alphabet, Q is a finite set of states, the axiom S is of the
form u0 or u0q(x1)u1 with u0, u1 ∈ B∗ and R is a set of rules of the form
q(f(x1, . . . , xm)) → u0q1(xσ(1))u1 . . . qn(sσ(n))un with q, qi ∈ Q, f ∈ Σ, ui ∈
B∗, n ≤ m and σ an injective mapping from {1, . . . , n} to {1, . . . , m}. Since
non-deterministic choices of linear transducers can be encoded into the input
symbols, we may, w.l.o.g., consider deterministic transducers only. For simplicity,
we moreover assume the transducers to be total. This restriction can be lifted
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by additionally taking a top-down deterministic tree automaton for the domain
into account. The constructions introduced in Sect. 3 would then have to be
applied w.r.t. such a domain tree automaton. As we consider total deterministic
transducers there is exactly one rule for each pair q ∈ Q and f ∈ Σ.

A 2-copy tree-to-word transducer (2-TW) is a tuple N = (Σ,B, Q, S,R) that
is defined in the same way as an LTB but the axiom S is of the form u0 or
u0q1(x1)u1q2(x1)u2, with ui ∈ B∗.

TΣ denotes the set of all trees/terms over Σ. We define the semantics �q� :
TΣ → B∗ of a state q with rule q(f(t1, . . . , tm)) → u0q1(tσ(1))u1 . . . qn(tσ(n))un

inductively by

�q�(f(t1, . . . , tm)) = ρ(u0�q1�(tσ(1))u1 . . . �qn�(tσ(n))un)

The semantics �M� of an LTB M with axiom u0 is given by ρ(u0); if the axiom
is of the form u0q(x1)u1 it is defined by ρ(u0�q�(t)u1) for all t ∈ TΣ ; while the
semantics �N� of a 2-TW N with axiom u0 is again given by ρ(u0) and for axiom
u0q1(x1)u1q2(x1)u2 it is defined by ρ(u0�q1�(t)u1�q2�(t)u2) for all t ∈ TΣ . For
a state q we define the output language L(q) = {�q�(t) | t ∈ TΣ}; For a 2-TW
M we let L(M) = {�M�(t) | t ∈ TΣ}. Note that the output language of an LTB

is context-free and a corresponding context-free grammar for this language can
directly read from the rules of the transducer.

Additionally, we may assume w.l.o.g. that all states q of an LTB are non-
singleton, i.e., L(q) contains at least two words. We call a 2-TW M balanced
if L(M) = {ε}. We say an LTB M is well-formed if L(M) ⊆ A∗. Balanced and
well-formed states are defined analogously. We use q to denote the inverse trans-
duction of q which is obtained from a copy of the transitions reachable from q by
involution of the right-hand side of each rule. As a consequence, �q �(t) = �q�(t)
for all t ∈ TΣ , and thus, L(q ) = L(q) . We say that two states q, q′ are equivalent
iff for all t ∈ TΣ , �q�(t) = �q′�(t). Accordingly, two 2-TWs M , M ′ are equivalent
iff for all t ∈ TΣ , �M�(t) = �M ′�(t).

3 Balancedness of 2-TWs

Let M denote a 2-TW. W.l.o.g., we assume that the axiom of M is of the form
q1(x1)q2(x1) for two states q1, q2. If this is not yet the case, an equivalent 2-TW
with this property can be constructed in polynomial time. We reduce balanced-
ness of M to decision problems for linear tree-to-word transducers alone.

Proposition 1. The 2-TW M is balanced iff the following two properties hold:

– Both L(q1) and L(q2) are well-formed;
– q1 and q2 are equivalent.

Proof. Assume first that M with axiom q1(x1)q2(x1) is balanced, i.e., L(M) = ε.
Then for all w′, w′′ with w = w′w′′ ∈ L(M), ρ(w′) = u ∈ A∗ and ρ(w′′) = u .
Thus, both L(q1) and L(q2) consist of well-formed words only. Assume for a
contradiction that q1 and q2 are not equivalent. Then there is some t ∈ TΣ such
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that �q1�(t) � ρ= �q2 �(t). Let �q1�(t) = u ∈ A∗ and �q2 �(t) = �q2�(t) = v with
v ∈ A∗ and u �= v. Then ρ(�q1�(t)�q2�(t)) = ρ(uv ) �= ε as u �= v, u, v ∈ A∗. Since
M is balanced, this is not possible.

Now, assume that L(q1) and L(q2) are well-formed, i.e., for all t ∈ TΣ ,
�q1�(t) ∈ A∗ and �q2�(t) ∈ A ∗. Additionally assume that q1 and q2 are equivalent,
i.e., for all t ∈ TΣ , �q1�(t) = �q2 �(t) = �q2�(t) . Therefore for all t ∈ TΣ , �q2�(t) =
�q1�(t) and hence,

ρ(�q1�(t)�q2�(t)) = ρ(�q1�(t)�q1�(t) ) = ε

Therefore, the 2-TW M must be balanced. ��

The output languages of states q1 and q2 are generated by means of context-free
grammars of polynomial size.

Example 1. Consider LTB M with input alphabet Σ = {f (2), g(0)} (the super-
script denotes the rank), output alphabet B = {a, a }, axiom q3(x1) and rules

q3(f(x1, x2)) → aq2(x1)q2(x2)a q2(g) → ε
q2(f(x1, x2)) → aq1(x1)q1(x2)a q2(g) → ε
q1(f(x1, x2)) → q3(x1)q3(x2) q1(g) → aa

We obtain a CFG producing exactly the output language of M by nondetermin-
istically guessing the input symbol, i.e. the state qi becomes the nonterminal Wi.
The axiom of this CFG is then W3, and as rules we obtain

W3 → aW2W2a | ε W2 → aW1W1a | ε W1 → W3W3 | aa

Note that the rules of M and the associated CFG use a form of iterated squaring,
i.e. W3 →2 W 4

3 , that allows to encode potentially exponentially large outputs
within the rules (see also Example 4). In general, words thus have to be stored
in compressed form as SLPs [6].

Therefore, Theorem 2 of Sect. 4 implies that well-formedness of q1, q2 can be
decided in polynomial time. Accordingly, it remains to consider the equivalence
problem for well-formed LTBs. Since the two transducers in question are well-
formed, they are equivalent as LTBs iff they are equivalent when their outputs
are considered over the free group FA. In the free group FA, we additionally have
that a a

ρ
= ε—which does not hold in our rewriting system. If sets L(q1),L(q2 ) of

outputs for q1 and q2 , however, are well-formed, it follows for all u ∈ L(q1), v ∈
L(q2 ) that ρ(uv ) = ρ(ρ(u)ρ(v )) cannot contain a a. Therefore, ρ(uv ) = ε iff
uv is equivalent to ε over the free group FA. In [5, Theorem 2], we have proven
that equivalence of LTBs where the output is interpreted over the free group, is
decidable in polynomial time. Thus, we obtain our main theorem.

Theorem 1. Balancedness of 2-TWs is decidable in polynomial time.
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4 Deciding Well-Formedness of Context-Free Grammars

As described in the preceding sections, given a 2-TW we split it into the two
underlying LTBs that process a copy of the input tree. We then check that each
of these two LTBs are equivalent w.r.t. the free group. As sketched in Example 1
we obtain a context-free grammar for the output language of each of these LTBs.
It then remains to check that both context-free grammars are well-formed. In
order to prove that we can decide in polynomial time whether a context-free
grammar is well-formed (short: wf), we proceed as follows:

First, we introduce in Definition 3 the maximal suffix extension of a language
L ⊆ Σ∗ w.r.t. the lcs (denoted by lcsx(L)), i.e. the longest word u ∈ Σ∞ s.t.
lcs(uL) = u lcs(L). We then show that the relation L ≈lcs L′ :⇔ lcs(L) = lcs(L′)∧
lcsx(L) = lcsx(L′) is an equivalence relation on Σ∗ that respects both union and
concatenation of languages (see Lemma 5). It then follows that for every language
L ⊆ Σ∗ there is some subset Tlcs(L) ⊆ L of size at most 3 with L ≈lcs Tlcs(L).

We then use Tlcs to compute a finite ≈lcs-equivalent representation T≤h
X of

the reduced language generated by each nonterminal X of the given context-
free grammar inductively for increasing derivation height h. In particular, we
show that we only have to compute up to derivation height 4N + 1 (with N the
number of nonterminals) in order to decide whether G is wf: In Lemma 7 we show
that, if G is wf, then we have to have T≤4N+1

X ≈lcs T
≤4N
X for all nonterminals X

of G. The complementary result is then shown in Lemma 6, i.e. if G is not wf,
then we either cannot compute up to T≤4N+1

X as we discover some word that is
not wf, or we have T≤4N

X �≈lcs T
≤4N+1
X for at least one nonterminal X.

Maximal Suffix Extension and lcs-Equivalence. We first show that we can com-
pute the longest common suffix of the union L ∪ L′ and the concatenation LL′

of two languages L,L′ ⊆ Σ∗ if we know both lcs(L) and lcs(L′), and in addition,
the longest word lcsx(L) resp. lcsx(L′) by which we can extend lcs(L) resp. lcs(L′)
when concatenating another language from left. In contrast to the computation
of the lcp presented in [7], we have to take the maximal extension lcsx explicitly
into account. In this paragraph we do not consider the involution, thus let Σ
denote an arbitrary alphabet.

Definition 3. For L ⊆ Σ∗ with R = lcs(L) the maximal suffix extension (lcsx)
of L is defined by lcsx(L) := lcs(z

ω| zR ∈ L).

Recall that by definition lcsx(∅) = lcs(∅) = � and lcsx({R}) = lcs(ε

ω

) = �. The
following example motivates the definition of lcsx:

Example 2. Consider the language L = {R, xR, yR} with lcs(L) = R and
lcsx(L) = lcs(x

ω

, y

ω

). Assume we prepend some word u ∈ Σ∗ to L resulting
in the language uL = {uR, uxR, uyR}, see the following picture for an illustra-
tion (dotted boxes represent copies of z ∈ {x, y} stemming from the usual line
of argumentation that, if z is a suffix of u = u′z, then uzR = u′zzR, and thus
eventually covering all of u by z

ω

):
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Ru

Ru x

Rxxxx

Ru y

Ryyy

As motivated by the picture, lcs(uL) is given by lcs(u, x

ω

, y

ω

)R. Using the con-
cept of ultimately left-periodic words, we may also formalize this as follows:

lcs(u{xR, yR,R}) = lcs(u, ux, uy)R
= lcs(lcs(u, ux), lcs(u, uy))R (as lcs(u, ux) = lcs(u, x

ω

))
= lcs(lcs(u, x

ω

), lcs(u, y

ω

))R
= lcs(u, lcs(x

ω

, y

ω

))R = lcs(u, lcsx(L))lcs(L)

In particular, if xy = yx, we can extend lcs by any finite suffix of lcsx(L) = (xy)

ω

(note that, if x = ε = y, then lcsx(L) = ε

ω

= � is defined to be the

greatest element w.r.t.
s
�); but if xy �= yx, we can extend it at most to

lcsx(L) = lcs(x

ω

, y

ω

) = lcs(xy, yx)
s
� xy. Essentially, only three cases can arise

as illustrated by the following three examples:
First, consider L1 = {ab, cb} with lcs(L1) = b. Obviously, for every word

u ∈ Σ∗ we have that lcs(uL1) = lcs(L1) and so we should have lcsx(L1) = ε.
Instantiating the definition we obtain indeed lcsx(L1) = lcs(a

ω

, b

ω

) = lcs(ε) = ε.
As another example consider L2 = {a, baa} with lcs(L2) = a. Here, we obtain

lcsx(L2) = lcs(ε

ω

, (ba)

ω

) = lcs(�, (ba)

ω

) = (ba)

ω

, i.e. the suffix of L2 can be
extended by any finite suffix of (ba)

ω
= . . . bababa.

Finally, consider L3 = {b, banb, abanb} with lcs(L3) = b for some fixed n ∈ N.
As mentioned in Sect. 2, we have lcs(x

ω

, y

ω

) = lcs(xy, yx) for xy �= yx. We thus
obtain in this case lcs((ban)

ω

, (aban)

ω

) = lcs(ban aban, aban ban) = anban. The
classic result by Fine and Wilf states that, if xy �= yx, then |lcs(x ω

, y

ω

)| <
|x| + |y| − gcd(|x|, |y|). Thus x = ban and y = aban constitute an extremal case
where the lcs is only finitely extendable.

If lcs(L) is not contained in L, then lcs(L) has to be a strict suffix of every
shortest word in L, and thus immediately lcsx(L) = ε. As in the case of the lcs,
also lcsx(L) is already defined by two words in L:

Lemma 4. Let L ⊆ Σ∗ with |L| ≥ 2 and R := lcs(L). Fix any xR ∈ L \ {R}.
Then there is some yR ∈ L \ {R} s.t. lcsx(L) = lcs(x

ω

, y

ω

) = lcs(x

ω

, y

ω

, z

ω

) for
all zR ∈ L. If xy = yx, then R ∈ L.

We show that we can compute the lcs and the extension lcsx of the union resp.
the concatenation of two languages solely from their lcs and lcsx. To this end,
we define the lcs-summary of a language as:

Definition 4. For L ⊆ Σ∗ set πlcs(L) := (lcs(L), lcsx(L)). The equivalence rela-
tion ≈lcs on 2Σ∗

is defined by: L ≈lcs L′ iff πlcs(L) = πlcs(L′).

Lemma 5. Let L,L′ ⊆ Σ∗ with πlcs(L) = (R,E) and πlcs(L′) = (R′, E′). If L =
∅ or L′ = ∅, then πlcs(L ∪ L′) = (lcs(R,R′), lcs(E,E′)), and πlcs(LL′) = (�,�).
Assume thus L �= ∅ �= L′ which implies R �= � �= R′. Then:
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– lcs(L ∪ L′) = lcs(R,R′) and lcs(LL′) = lcs(R,E′)R′.
– If lcs(R,R′) �∈ {R,R′}, then lcsx(L ∪ L′) = ε; else w.l.o.g. R′ = δR and

lcsx(L ∪ L′) = lcs(E, lcs(E′, E′δ)δ).
– If lcs(R,E′)

s
� R, then lcsx(LL′) = ε; else E′ = δR and lcsx(LL′) = lcs(E, δ).

Example 3. Lemma 5 can be illustrated as follows:

(L ∪ L′)

lcs(L)
lcs(L′)
lcs(L′)

δ

lcsx(L)

lcsx(L′)
δδδ

(LL′)
lcs(L′)
lcs(L′)lcs(L)

lcs(L)δ

lcsx(L)

lcsx(L′) lcs(L′)

For instance, consider L = {a, baa} and L′ = {aa, baaa} s.t. πlcs(L) = (a, (ba)

ω

)
and πlcs(L′) = (aa, (ba)

ω

). Applying Lemma 5, we obtain for the union lcs(L ∪
L′) = lcs

(
a, aa

)
= a and lcsx(L ∪ L′) = lcs

(
(ba)

ω

, lcs((ba)

ω

, (ba)

ω

a)a
)

= a. In
case of the concatenation, Lemma 5 yields lcs(LL′) = lcs

(
a, (ba)

ω)
aa = aaa and

lcsx(LL′) = lcs
(
(ba)

ω

, (ab)

ω

) = ε.

As both the lcs and the lcsx are determined by already two words (cf. Lem-
mas 1 and 4), it follows that every L ⊆ Σ∗ is ≈lcs-equivalent to some sublanguage
Tlcs(L) ⊆ L consisting of at most three words where the words xR, yR can be
chosen arbitrarily up to the stated constraints (with R = lcs(L)):

Tlcs(L) :=

⎧
⎪⎨

⎪⎩

L if |L| ≤ 2
{R, xR, yR} if {R, xR, yR} ⊆ L ∧ lcsx(L) = lcs(x

ω
, y

ω
)

{xR, yR} if R = lcs(xR, yR) ∧ R �∈ L ∧ {xR, yR} ⊆ L

Deciding Well-Formedness. For the following, we assume that G is a context-free
grammar over B = A∪A with nonterminals X. Set N := |X|. We further assume
that G is nonnegative, and that we have computed for every nonterminal X of G
a word rX ∈ A∗ (represented as an SLP) s.t. |rX | = dX and rX ∈ Prf(ρ(LX)).1 In
order to decide whether G is wf we compute the languages ρ(rXL≤h

X ) modulo ≈lcs

for increasing derivation height h using fixed-point iteration. Assume inductively
that (i) rXL≤h

X is wf and (ii) that we have computed T≤h
X := Tlcs(ρ(rXL≤h

X )) ≈lcs

ρ(rXL≤h
X ) for all X ∈ X up to height h. Then we can compute Tlcs(ρ(rXL≤h+1

X ))
for each nonterminal as follows:

ρ(rXL≤h+1
X )

= ρ(rXL≤h
X ) ∪ ⋃

X→GY ρ(rXrY rY L≤h
Y ) ∪ ⋃

X→GY Z ρ(rXrY rY L≤h
Y rZ rZL≤h

Z )

≈lcs T
≤h
X ∪ ⋃

X→GY ρ(rXrY T≤h
Y ) ∪ ⋃

X→GY Z ρ(rXrY T≤h
Y rZ T≤h

Z )

≈lcs Tlcs

(
ρ
(
T≤h

X ∪ ⋃
X→GY rXrY T≤h

Y ∪ ⋃
X→GY Z rXrY T≤h

Y rZ T≤h
Z

))
=: T≤h+1

X

1 rX is (after reduction) a longest word of closing brackets in ρ(LX) (if G is wf, then
rX is unique). An SLP encoding rX can be computed in polynomial time while
checking that G is nonnegative; see Definition 2 and the subsequent explanations,
and the proof of Lemma 3 in the appendix of the extended version [4]. All required
operations on words run in time polynomial in the size of the SLPs representing the
words, see e.g. [6].
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Note that, if all constants rXrY and all T≤h
X are wf, but G is not wf, then the

computation has to fail while computing rXrY T≤h
Y rZ ; see the following example.

Example 4. Consider the nonnegative context-free grammar G given by the rules
(with the parameter n ∈ N fixed)

S → Uc U → AV | Wn V → UB Wi → Wi−1Wi−1 (2 ≤ i ≤ n)
A → a B → b B → b W1 → BB

with axiom S. Except for B all nonterminals generate nonnegative languages.
Note that the nonterminals Wn to W1 form an SLP that encodes the word b2

n

by
means of iterated squaring which only becomes productive at height h = n + 1.
For h ≥ n + 3 we have:

L≤h
S = {akb2

n

b kc | k ≤ �h−(n+3)
2 �}

L≤h
U = {akb2

n

b k | k ≤ �h−(n+2)
2 �} L≤h

Wi
= {b2

i} L≤h
B = {b}

L≤h
V = {akb2

n

b k+1 | k ≤ �h−(n+3)
2 �} L≤h

A = {a} L≤h

B
= {b }

Here the words rX used to cancel the longest prefix of closing brackets (after
reduction) are rS = rU = rV = rW = rA = rB = ε and rB = b. Note that rXL≤h

X

is wf for all nonterminals X up to h ≤ h0 = 2n+1+(n+2) s.t. Tlcs(ρ(rSL≤h
S )) ≈lcs

T≤h
S = {b2

n

c, akb2
n−k(h)c} for k(h) = �(h − (n + 3))/2� and n + 3 ≤ h ≤ h0; in

particular, the lcs of T≤h
S has already converged to c at h = n+3, only its maximal

extension lcsx changes for n + 3 ≤ h ≤ h0. We discover the first counterexample
a2nb that G is not wf while computing T≤h0+1

V = Tlcs(ρ(T≤h0
U b )).

As illustrated in Example 4, if G is not wf, then the minimal derivation height
h0 + 1 at which we discover a counterexample might be exponential in the size
of the grammar. The following lemma states that up to this derivation height
h0 the representations T≤h

X cannot have converged (modulo ≈lcs).

Lemma 6. If L = L(G) is not wf, then there is some least h0 s.t. rXL≤h0
Y rZ is

not wf with X →G Y Z. For h ≤ h0, all rXL≤h
X are wf s.t. T≤h

X ≈lcs ρ(rXL≤h
X ).

If h0 ≥ 4N +1, then at least for one nonterminal X we have T≤4N+1
X �≈lcs T

≤4N
X .

The following Lemma 7 states the complementary result, i.e. if G is wf then the
representations T≤h

X have converged at the latest for h = 4N modulo ≈lcs. The
basic idea underlying the proof of Lemma7 is similar to [7]: we show that from
every derivation tree of height at least 4N +1 we can construct a derivation tree
of height at most 4N such that both trees carry the same information w.r.t. the
lcs (after reduction). In contrast to [7] we need not only to show that T≤4N

X has
the same lcs as ρ(rXL≤4N

X ), but that T≤4N
X has converged modulo ≈lcs if G is wf;

to this end, we need to explicitly consider lcsx, and re-prove stronger versions of
the results regarding the combinatorics on words which take the involution into
account (see A.6 in the appendix of the extended version [4]).
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Lemma 7. Let G be a context-free grammar with N nonterminals and L(G) be
wf. For every nonterminal X let rX ∈ A∗ s.t. |rX | = dX and rXLX wf. Then
ρ(rXLX) ≈lcs ρ(rXL≤4N

X ), and T≤4N
X ≈lcs T

≤4N+1
X for every nonterminal X.

The following example sketches the main idea underlying the proof of Lemma7.

Example 5. The central combinatorial observation2 is that for any well-formed
language L ⊆ B∗ of the form

L = (α, β)[(μ1, ν1) + (μ2, ν2)]∗γ := {αμi1 . . . μilγνil . . . νi1β | i1 . . . il ∈ {1, 2}∗}

we have that its longest common suffix after reduction lcsρ(L) := lcs(ρ(L))
is determined by the reduced longest common suffix of αγβ and either
(α, β)(μi, νi)γ = αμiγνiβ or (α, β)(μi, νi)(μj , νj)γ = αμiμjγνjνiβ for some
i ∈ {1, 2} but arbitrary j ∈ {1, 2} in the latter case.3

Assume now we are given a context-free grammar G with N variables. Further
assume that L := L(G) is well-formed. W.l.o.g. G is in Chomsky normal form
and reduced to the productive nonterminals reachable from the axiom of G. Let
L≤4N denote the sublanguage of words generated by G with a derivation tree
of height at most 4N . Pick a shortest (before reduction) word κ0 ∈ L := L(G).
Then there is some κ1 ∈ L with R := lcsρ(L) = lcsρ(κ0, κ1); we will call any
such word a witness (w.r.t. κ0) in the following. If R ∈ L, then κ0

ρ
= R, and

any word in L is a witness. In particular, there is a witness in L≤4N . So assume
R �∈ L. Then we may factorize (in a unique way) κ0 = κ′′

0aκ′
0 and κ1 = κ′′

1bκ′
1

such that ρ(κ′
0) = R = ρ(κ′

1) where a, b ∈ A with a �= b. Then ρ(κ0) = z′
0aR and

ρ(κ1) = z′
1bR. Further assume that κ1 �∈ L≤4N , otherwise we are done. Fix any

derivation tree t of κ1, and fix within t the main path from the root of t to the
last letter b of the suffix bκ′

1 of ρ(κ1) (the dotted path in Fig. 1). We may assume
that any path starting at a node on this main path and then immediately turning
left towards a letter within the prefix κ′′

1 consists of at most N nonterminals: if
any nonterminal occurs twice the induced pumping tree can be pruned without
changing the suffix bκ′

1; as the resulting tree is still a valid derivation tree w.r.t.
G, we obtain another witness w.r.t. κ0. Thus consider any path (including the
main path) in t that leads from its root to a letter within the suffix bκ′

1. If every
such path consists of at most 3N nonterminals, then every path in t consists
of at most 4N nonterminals so that κ1 ∈ L≤4N follows. Hence, assume there is
at least one such path consisting of 3N + 1 nonterminals. Then there is some
nonterminal X occurring at least four times on this path. Fix four occurrences
of X and factorize κ1 accordingly

κ1 = us1s2s3wτ3τ2τ1v =: (u, v)(s1, τ1)(s2, τ2)(s3, τ3)w
2 This observation strengthens the combinatorial results in [7] and also allows to

greatly simplify the original proof of convergence given there.
3 To clarify notation, we set (α, β)(μ, ν) := (αμ, νβ) and (α, β)γ := αγβ, i.e. the

pair (α, β) is treated as a word with a “hole” into which the pair or word on the
right-hand side is substituted.
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Fig. 1. Factorization of a witness κ1 = (u, v)(s1, t1)(s2, t2)(s3, t3)w = κ′′
1 bκ′

1 w.r.t. a
nonterminal X occurring at least four times a long the dashed path in a derivation tree
of κ1 leading to a letter within the suffix bκ′

1. The dotted path depicts the main path
leading to the lcsρ-delimiting occurrence of the letter b.

In the proof of Lemma7 we show that we may assume—as L is well-formed—
that u, v, w, s1, s2, s3 ∈ A∗ with only τ1, τ2, τ3 ∈ B∗. From this factorization we
obtain the sublanguage L′ := (u, v)[(s1, τ1) + (s2, τ2) + (s3, τ3)]∗w. Our goal
is to show that (u, v)w or (u, v)(si, τi)w or (u, v)(si, τi)(sj , τj)w (for i �= j)
is a witness w.r.t. κ0: note that each of these words result from pruning at
least one pumping tree from t which inductively leads to a procedure to reduce
t to a derivation tree of height at most 4N that still yields a witness for
R = lcsρ(L) w.r.t. κ0. Assume thus specifically that neither (u, v)w = uwv nor
(u, v)(s3, τ3)w = us3wτ3v nor (u, v)(si, τi)(s3, τ3)w = usis3wτ3τiv for i ∈ {1, 2}
is a witness w.r.t. κ0, i.e. each of these words end on aR after reduction.
Apply now the result mentioned at the beginning of this example to the lan-
guage L′′ := (u, v)[(s1, τ1) + (s2, τ2)]∗(s3, τ3)w: by our assumptions κ1 ∈ L′′

is a witness w.r.t. us3wτ3v ∈ L′′ so that both lcsρ(L′′) = lcsρ(L) and also
(u, v)(s1, τ1)2(s3, τ3)w is a witness w.r.t. us3wτ3v as we may choose j = 1.
Thus also lcsρ(L) = lcsρ(L′′′) for L′′′ := (u, v)[(s1, τ1) + (s3, τ3)]∗w as L′′′ ⊆ L
and both (u, v)w ∈ L′′′ and (u, v)(s1, τ1)(s1, τ1)(s3, τ3)w ∈ L′′′. Applying the
same argument now to L′′′, but choosing j �= i it follows that (u, v)(s1, τ1)w or
(u, v)(s3, τ3)(s1, τ1)w has to be a witness w.r.t. κ0.

The sketched argument can be adapted so that it also allows to conclude the
maximal extension after reduction lcsx(ρ(L)) has to have converged at derivation
height 4N the latest, if L is well-formed. For details, see the proof of Lemma 7
in the appendix of the extended version [4].

As |T≤h
X | ≤ 3, a straight-forward induction also shows that every word in T≤h

X

can be represented by an SLP that we can compute in time polynomial in G for
h ≤ 4N + 1; together with the preceding Lemmas 7 and 6 we thus obtain the
main result of this section:
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Theorem 2. Given a context-free grammar G over B we can decide in time
polynomial in the size of G whether G is wf.

5 Conclusion

We have shown that well-formedness for context-free languages is decidable in
polynomial time. This allowed us to decide in polynomial time whether or not a
2-TW is balanced. The presented techniques, however, are particularly tailored
for 2-TWs. It is unclear how a generalization to transducers processing three or
more copies of the input would look like. Thus, the question remains whether
balancedness is decidable for general MSO definable transductions. It is also open
whether even the single bracket case can be generalized beyond MSO definable
transduction, e.g. to output languages of top-down tree-to-word transducers [12].

Acknowledgements. We also like to thank the anonymous reviewers for their
detailed comments and valuable advice.
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Abstract. Tree substitution grammars are formal models that are used
extensively in natural language processing. It is demonstrated that their
expressive power is located strictly between the local tree grammars and
the regular tree grammars. A decision procedure for the problem of deter-
mining whether a tree substitution grammar generates a local tree lan-
guage is provided. Unfortunately, the class of tree substitution languages
is neither closed under union, nor intersection, nor complements. Indeed
unions of tree substitution languages even generate an infinite hierarchy.
However, all finite and all co-finite tree languages are tree substitution
languages.

1 Introduction

Trees are a fundamental data structure in computer science and are used in many
application areas like natural language processing [12], database theory [1], and
compiler construction [17]. All the mentioned applications as well as others [6,7]
require effective representations of sets of trees, also called tree languages. These
requirements triggered detailed investigations of various classes of tree languages
since the 1960s and by now there exists an abundance of models [5].

The most robust of those classes of tree languages are the regular tree lan-
guages [6,7], which are generated by finite-state tree automata, which are a
natural extension of the finite-state string automata that generate the regular
string languages [18]. Most standard problems are decidable for the regular tree
languages and they generally enjoy the same nice algorithmic properties as the
regular string languages. The main feature of those automata are their finitely
many states, which enable most of the positive properties. However, these states
are not exhibited directly in the trees generated. In application areas like nat-
ural language processing, in which representations of tree languages have to be
inferred from finite sets of trees, practitioners often resorted to simpler models,
in which the representation can more readily be induced from the sample.

Tree substitution grammars were originally introduced as a special case of
tree-adjoining grammars [9,11], in which no adjunction is allowed. This restric-
tion proved useful in the lexicalization of context-free grammars [10]. However,
tree substitution grammar soon became popular in the parsing community [15]
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under the approach called data-oriented parsing [3] and were the formal model
of many state-of-the-art parsers [16]. Similarly, synchronous tree substitution
grammars, which are the same as the syntax-directed translation schemes of [2],
are used in many statistical machine translation models [4,8,13,14]. Despite the
multitude of applications, a fundamental study of their expressive power is miss-
ing. Rather they are attributed properties like “extended domain of locality”,
which provides some intuition, but has no formal definition.

A tree substitution grammar G is essentially a finite set F of tree fragments
together with a set R of permissible root labels. Those tree fragments can be
arbitrarily tall or large, which distinguishes tree substitution grammars from
local tree grammars [6,7]. In addition, the fragments can contain leaves that
are labeled by internal symbols. Leaves with such labels are called open and
can be expanded further by fragments of F that have the same symbol as root
label. Indeed G generates trees from a permissible root label of R by successively
expanding open leaves with fragments of F until no open leaves remain. The set
of all trees derivable in this manner is called the tree language generated by G.
The tree languages that can be generated by some tree substitution grammar
are called the tree substitution languages.

In this contribution we start a fundamental study of the expressive power
of tree substitution grammars. We show that tree substitution grammars are
strictly more expressive than local tree grammars [6,7], but strictly less expres-
sive than finite-state tree automata (see Corollary 10). This, in particular, yields
that most standard decision problems are also decidable for tree substitution
languages because they are regular. In addition, it is decidable to determine
whether a given tree substitution language is local (see Theorem 8). The decid-
ability status of the related question whether a given regular tree language is a
tree substitution language remains open. It is interesting to note that all finite
and co-finite tree languages are tree substitution languages (see Theorem6),
which makes them much more useful for the approximation of finite samples of
trees than the local tree languages, which do not contain all finite tree languages.

We also investigate the closure properties of the tree substitution languages.
Unfortunately, they are neither closed under union (see Theorem9), nor under
intersection (see Theorem 13), nor under complement (see Theorem 14). In fact,
unions of tree substitution languages even form a strict hierarchy (see Theo-
rem 11), so unions of k tree substitution languages are strictly less expressive
than unions of k + 1 tree substitution languages. A similar hierarchy is sig-
nificantly more difficult to prove for intersections and remains an open prob-
lem because intersections break the “extended domain of locality” (as shown in
the proof of Theorem13) and can manage a non-explicit information transport
over unbounded distances in the trees. Indeed the trivial union construction,
which just takes the union of the fragments of the individual tree substitu-
tion grammars G1, . . . , Gn, does yield a tree substitution grammar G that can
generate each tree that can be generated by some Gi. However, G might over-
generalize in the sense that it may also generate trees that cannot be generated
by any G1, . . . , Gn. This property is utilized in grammar induction to generalize
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beyond the seen data. Overall, the expressive power of tree substitution gram-
mars is interesting and offers new challenging problems because they are used
extensively in real-world applications despite their brittle expressive power. It
is exactly this absence of good closure properties, which requires separate argu-
ments for each individual problem and thus makes several problems challenging
as outlined in the open problems section.

2 Preliminaries

We denote the set of nonnegative integers (including 0) by N. For every k ∈ N,
we use the subset [k] = {i ∈ N | 1 ≤ i ≤ k}. An alphabet A is simply a finite set
and A∗ =

⋃
k∈N Ak is the set of all finite words over A, where Ak = A × · · · × A

containing k factors A and A0 = {ε}, of which ε is called the empty word. The
length |w| of a word w = a1 · · · ak ∈ A∗ with a1, . . . , ak ∈ A is |w| = k; i.e. the
number of symbols making up w. Given words v, w ∈ A∗, their concatenation
is written v.w or simply vw. We write v � w provided that there exists u ∈ A∗

such that vu = w. The relation � is actually a partial order, called the prefix
order.

Let S be a set and R ⊆ S × S be a relation. The identity on S is the rela-
tion idS = {(s, s) | s ∈ S}. Given another relation R′ ⊆ S × S, the composition
R ; R′ is given by R ; R′ = {(s1, s3) | ∃s2 ∈ S : (s1, s2) ∈ R, (s2, s3) ∈ R′}.
The relation R is reflexive if idS ⊆ R, and it is transitive if R ; R ⊆ R. The
reflexive, transitive closure of R is R∗ =

⋃
k∈N Rk and the transitive closure of R

is R+ =
⋃

k≥1 Rk, where R0 = idS and Rk = R ; · · · ; R containing k times the
relation R.

A ranked alphabet (Σ, rk) is a pair consisting of an alphabet Σ and a map-
ping rk: Σ → N that assigns a rank to each symbol of Σ. We usually denote
a ranked alphabet (Σ, rk) by just Σ alone when the ranks are clear. We also
write σ(k) to indicate that rk(σ) = k. Moreover, for every k ∈ N, we let
Σk = {σ ∈ Σ | rk(σ) = k}. Given a ranked alphabet Σ and a set Z, the
set TΣ(Z) of Σ” trees indexed by Z is the smallest set T such that Z ⊆ T and
σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ T . We abbrevi-
ate TΣ(∅) simply to TΣ , and any subset L ⊆ TΣ is called tree language. It is
co-finite if TΣ \ L is finite.

Next, we recall some common notions and notations for trees. In the fol-
lowing, let t ∈ TΣ(Z) be a tree for a ranked alphabet Σ and a set Z. The
set pos(t) of positions of t is inductively defined by pos(z) = {ε} for all z ∈ Z,
and pos(σ(t1, . . . , tk)) = {ε}∪{i.p | i ∈ [k], p ∈ pos(ti)} for every k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ(Z). The height of t is defined by ht(t) = maxp∈pos(t) |p|, and
the size of t is defined by |t| = |pos(t)|. A leaf is a position p ∈ pos(t) such
that p.1 /∈ pos(t). We denote the subset of leaves of pos(t) by leaf(t). Given a
position p ∈ pos(t), the label t(p) of t at p and the subtree t|p of t at p are
defined by z(ε) = z|ε = z for all z ∈ Z, and
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Fig. 1. Fragments of the TSG of Example 2.

(
σ(t1, . . . , tk)

)
(p) =

{
σ if p = ε

ti(p′) if p = i.p′ with i ∈ N and p′ ∈ pos(ti)

σ(t1, . . . , tk)|p =

{
σ(t1, . . . , tk) if p = ε

ti|p′ if p = i.p′ with i ∈ N and p′ ∈ pos(ti)

for all k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z). Finally, the replacement t[u]p
of the leaf p ∈ leaf(t) by another tree u ∈ TΣ(Z) is given by α[u]ε = u for
every α ∈ Z ∪Σ0, and σ(t1, . . . , tk)[u]i.p′ = σ(t1, . . . , ti−1, ti[u]p′ , ti+1, . . . , tk) for
every k ∈ N, i ∈ [k], σ ∈ Σk, t1, . . . , tk ∈ TΣ(Z), and p′ ∈ pos(ti).

We reserve the use of the special symbol �. A tree t ∈ TΣ(Z ∪ {�}) is a
context, if there exists exactly one p ∈ pos(t) with t(p) = �; i.e., there is exactly
one occurrence of � in t. The set of all such contexts is denoted by CΣ(Z). Given
a context c ∈ CΣ(Z) and a tree t ∈ TΣ(Z ∪ {�}), the substitution c[t] of t into c
yields the tree c[t]p, where p is the unique position p ∈ pos(c) with c(p) = �.
Note that given c, c′ ∈ CΣ(Z), also c[c′] ∈ CΣ(Z). Similarly, we write ck[t] for
c[c[· · · c[t] · · · ]] containing the context c a total of k times.

Finally, let us recall regular tree grammars (RTGs) [6,7]. An RTG is a tuple
G = (Q,Σ,Q0, P ), where Q is a finite set of states such that Q ∩ Σ = ∅,
Σ is a ranked alphabet of input symbols, Q0 ⊆ Q is a set of initial states, and
P ⊆ Q×TΣ(Q) is a finite set of productions. We also write productions (q, t) as
q → t. The derivation relation for ξ, ζ ∈ TΣ(Q) is defined for every ξ, ζ ∈ TΣ(Q)
by ξ ⇒G ζ if and only if there exists a production q → t ∈ P and a context c ∈
CΣ(Q) such that ξ = c[q] and ζ = c[t]. The tree language generated by G is
L(G) =

⋃
q∈Q0

{t ∈ TΣ | q ⇒+
G t}. A tree language L is regular if there exists

an RTG G such that L(G) = L. The class of regular tree languages is denoted
by RTL. We note that RTL coincides with the class of tree languages generated
by tree automata [6,7].
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Fig. 2. Example derivation steps using the TSG G of Example 2.

3 Tree Substitution Grammars

Let us start with the formal definition of tree substitution grammars (TSGs)
taken essentially from the natural language processing community [10,11]. TSGs
have been applied to various tasks including parsing [16] and machine transla-
tion [19]. Consequently, the definitions of TSGs vary, but our definition captures
the essence of the notion, while still being convenient to work with.

Definition 1. A tree substitution grammar (TSG) is a tuple G = (Σ,R, F ), in
which Σ is a ranked alphabet of input symbols, R ⊆ Σ is a set of root labels,
and F ⊆ TΣ(Σ) \ Σ is a finite set of fragments. The TSG G is a local tree
grammar (LTG) if ht(f) ≤ 1 for all f ∈ F .

Example 2. Consider the ranked alphabet Σ = {σ(2), δ(2), α(0), β(0)} and the
TSG G = (Σ, {σ}, F ) with the fragments displayed in Fig. 1. Clearly, this TSG
is not an LTG due to the third and fourth fragment.

Next we present the derivation semantics for a TSG G = (Σ,R, F ). Essen-
tially we start the derivation process with a tree consisting solely of a root label
of R and then iteratively replace a leaf by a fragment of F with the same root
label. This process can be repeated until no replacements are possible anymore. If
the such obtained tree t contains only leaves that are labeled by nullary symbols,
then t is part of the tree language generated by G.

Definition 3. Let G = (Σ,R, F ) be a TSG. For any two trees ξ, ζ ∈ TΣ(Σ),
we write ξ ⇒G ζ if there exists a fragment f ∈ F and a context c ∈ CΣ(Σ)
such that ξ = c[f(ε)] and ζ = c[f ]. The TSG G generates the tree language
L(G) = {t ∈ TΣ | ∃σ ∈ R : σ ⇒∗

G t}.

Example 4. Let Σ = {σ(2), γ(1), α(0)} and consider the TSG G = (Σ, {σ}, F )
with the fragments displayed in Fig. 3. The derivation presented in Fig. 3 illus-
trates that a derived tree can contain several leaves that still need to be inde-
pendently replaced. More precisely, both occurrences of γ in the tree σ(γ, γ) are
independently replaced in the displayed derivation.
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Fig. 3. Fragments of the TSG G of Example 4 and example derivation steps.

Example 5. Consider the TSG G from Example 2. A few derivation steps are
displayed in Fig. 2. Let cα = δ(α, δ(α, �)) and cβ = δ(β, δ(β, �)). Overall, this
TSG generates the tree language

{
σ(x, c1[· · · cn[δ(y, α)] · · · ]) | x, y ∈ {α, β}, n ∈ N, ∀i ∈ [n] : ci ∈ {cα, cβ}}

.

Two TSGs G and G′ are equivalent if L(G) = L(G′). A tree language L is
a tree substitution language if there exists a TSG G such that L = L(G), and
it is local [6,7] if there exists a local tree grammar G such that L = L(G). The
classes of all tree substitution languages and all local tree languages are denoted
by TSL and LTL, respectively.

4 Expressive Power

In this section, we investigate the expressive power of tree substitution grammars
and start with some simple tree languages that are contained in TSL. To this
end, let FIN and co-FIN be the classes of all finite and all co-finite tree languages,
respectively.

Theorem 6. FIN ∪ co-FIN ⊆ TSL.

Proof. Every finite tree language L ⊆ TΣ is trivially a tree substitution language
via the TSG (Σ,R,L) with R = {t(ε) | t ∈ L}.

Now, let L ⊆ TΣ be a co-finite tree language and TΣ \L = {t1, . . . , tk} be the
finitely many trees outside L. Moreover, let n > maxi∈[k] ht(ti) be larger than
the height of the tallest tree from {t1, . . . , tk}. We construct the TSG (Σ,R, F )
with

– R = {t(ε) | t ∈ L} and
– F = {t ∈ L | ht(t) ≤ 2n} ∪ {t ∈ TΣ(Σ) | n ≤ ht(t) ≤ 2n}.

Clearly, F is finite. Now we prove L(G) = L. For L(G) ⊆ L it is sufficient to
show that ti /∈ L(G) for every i ∈ [k]. Obviously, the fragments of F are either
in L or have height at least n, which proves L(G) ⊆ L. We prove the converse
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L ⊆ L(G) by contradiction, so suppose that there exists t ∈ L with t /∈ L(G).
Then there also exists a smallest t′ ∈ L with t′ /∈ L(G). Since all trees t′ ∈ L
with ht(t′) ≤ 2n can be generated directly using a single fragment from F , we
must have ht(t′) > 2n. Let

P = {p ∈ pos(t′) | |p| ≤ n, ∃p′ ∈ pos(t′) : p � p′, |p′| > 2n}
be the short positions that are prefixes to long positions, and let C = max� P
be the maximal (with respect to �) elements of P . We construct the unique
tree f ∈ TΣ(Σ) with positions

pos(f) = {p ∈ pos(t′) | |p| ≤ 2n} \ {p ∈ pos(t′) | ∃c ∈ C : c ≺ p}
and labels f(p) = t′(p) for all p ∈ pos(f). In other words, we obtain f by cutting
all paths in t′ that have length more than 2n at length n. Obviously, f ∈ F .
In addition, we observe that ht(t′|p) > n for all p ∈ C. For every p ∈ C, we
thus obtain t′|p ∈ L and t′|p ∈ L(G) since |t′|p| < |t′| and t′ is the smallest
counterexample. However, this yields that t′(ε) ⇒G f as well as f(p) ⇒∗

G t′|p
for all p ∈ C. Altogether t′(ε) ⇒∗

G t′, which proves that t′ ∈ L(G) contradicting
the assumption. ��

Next we relate the class of tree substitution languages to the well-known
classes of local and regular tree languages, respectively. Unsurprisingly, they are
situated strictly between them, but the second strictness will be established later
(see Corollary 10).

Theorem 7. LTL � TSL ⊆ RTL.

Proof. The first inclusion holds by definition. For the latter, let G = (Σ,R, F ) be
a TSG and S /∈ Σ a new symbol. We construct an RTG G′ = (Σ ∪{S}, Σ, S, P )
such that L(G′) = L(G). To this end, we use copies Σ = {σ | σ ∈ Σ} of the
input symbols of Σ as states. The productions are given by P = PS ∪ P ′ with

PS = {S → rel(σ) | σ ∈ R}
P ′ = {f(ε) → rel(f) | f ∈ F},

where rel : TΣ(Σ) → TΣ(Σ) is inductively defined by

rel(σ) =

{
σ if σ ∈ Σ0

σ otherwise

for every σ ∈ Σ and rel(σ(t1, . . . , tk)) = σ(rel(t1), . . . , rel(tk)) for all k ∈ N\{0},
σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Σ). Clearly any derivation ξ0 ⇒G ξ1 ⇒G · · · ⇒G ξn

of G yields a corresponding derivation rel(ξ0) ⇒G′ rel(ξ1) ⇒G′ · · · ⇒G′ rel(ξn)
of G′. Together with rel(t) = t for all t ∈ TΣ and the new initial states, we obtain
L(G) ⊆ L(G′). The converse is proved similarly.

The first inclusion is strict because FIN ⊆ TSL by Theorem 6, but it is well-
known [6,7] that FIN �⊆ LTL. ��
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Fig. 4. The tree languages L(G1) and L(G2) used in the proof of Theorem9.

The inclusion TSL ⊆ RTL immediately yields that most interesting prob-
lems are decidable for tree substitution languages. For example, the emptiness,
finiteness, inclusion, and equivalence problems are all decidable because they are
decidable for regular tree languages [6,7]. We proceed with a subclass definabil-
ity problem: Is it decidable whether an effectively presented tree substitution
language is local? Whenever we speak about an effectively presented tree sub-
stitution language L, we assume that we are actually given a tree substitution
grammar G such that L(G) = L. Let G = (Σ,R, F ) be a TSG. A fragment f ∈ F
is useless if G and (Σ,R, F \ {f}) are equivalent. The TSG G is reduced if no
fragment f ∈ F is useless. Clearly, for every TSG we can construct an equivalent
reduced TSG.

Theorem 8. For every effectively presented L ∈ TSL, it is decidable whether
L ∈ LTL.

Proof. Let G = (Σ,R, F ) be a reduced tree substitution grammar such that
L(G) = L. We construct the local tree grammar G′ = (Σ,R, F ′) with

F ′ = {f(p)(f(p.1), . . . , f(p.k)) | f ∈ F, k ∈ N, p ∈ pos(f) \ leaf(f), f(p) ∈ Σk}.

Obviously, L = L(G) ⊆ L(G′) and all fragments of F ′ are essential for this prop-
erty. Consequently, L is local if and only if L(G′) ⊆ L. Since both L(G′) and L are
regular by Theorem7 and inclusion is decidable for regular tree languages [6,7],
we obtain the desired statement. ��

5 Closure Properties

In this section, we investigate the closure properties of the class of tree substitu-
tion languages. More specifically, we investigate the Boolean operations and the
hierarchy for union. Unfortunately, the results are all negative, but they and,
in particular, their proofs shed additional light on the expressive power of tree
substitution languages. Let us start with union.

Theorem 9. TSL is not closed under union.



On Tree Substitution Grammars 245

Proof. Consider the ranked alphabet Σ = {σ(2), γ(1), α(0), β(0)} and the LTGs

G1 =
(
Σ, {σ}, {σ(γ, α), γ(γ), γ(α)})

G2 =
(
Σ, {σ}, {σ(γ, β), γ(γ), γ(β)}),

which generate the local tree languages (see Fig. 4)

L(G1) =
{
σ
(
cn[α], α

) | n ∈ N
}

and L(G2) =
{
σ
(
cn[β], β

) | n ∈ N
}

with c = γ(�). Now suppose that their union L = L(G1) ∪ L(G2) is a tree
substitution language; i.e., L ∈ TSL. Hence there exists a TSG G = (Σ,R, F )
such that L(G) = L. Let n ∈ N be such that n > maxf∈F ht(f). Since t =
σ(cn[α], α) ∈ L, there must exist a derivation σ ⇒∗

G t and σ ∈ R. Since ht(t) >
n at least two derivation steps are required, so σ ⇒G σ(ck[γ], α) ⇒+

G t for
some 0 ≤ k < n, which yields the subderivation γ ⇒+

G cn−k[α]. In the same
manner we consider the tree t′ = σ(cn[β], β) ∈ L, for which the derivation
σ ⇒G σ(c�[γ], β) ⇒+

G t′ for some 0 ≤ � < n and the subderivation γ ⇒+
G cn−�[β]

must exist. However, exchanging the subderivations yields the derivation

σ ⇒G σ(ck[γ], α) ⇒+
G σ(ck[cn−�[β]], α),

which shows σ(cn−�+k[β], α) ∈ L(G) = L contradicting L = L(G1) ∪ L(G2). ��
Since the class of regular tree languages is closed under union [6,7], we obtain

the following corollary from Theorems 7 and 9.

Corollary 10. LTL � TSL � RTL.

We demonstrated that the union of two tree substitution languages need
not be a tree substitution language. Next, we ask ourselves whether additional
unions increase the expressive power even further. For every k ∈ N let

∪k-TSL = {L1 ∪ · · · ∪ Lk | L1, . . . , Lk ∈ TSL}

be the class of those tree languages that can be presented as unions of k tree
substitution languages. Since ∅ ∈ TSL (see Theorem 6), we obtain ∪0-TSL = ∅,
∪1-TSL = TSL, and ∪k-TSL ⊆ ∪k+1-TSL for every k ∈ N. Next, we show that
the mentioned inclusion is actually strict, so that we obtain an infinite hierarchy.

Theorem 11. ∪k-TSL � ∪k+1-TSL for all k ∈ N.

Proof. The statement is clear for k = 0, so let k ≥ 1. Consider the ranked
alphabet Σ = {σ(2), δ(2), α(0)} and the TSG Gi = (Σ, {σ}, Fi) for every i ∈
[k + 1], where

Fi = {σ(δ, si), si, δ(δ, α), δ(si, α)}
and si = ci

r[α] with cr = δ(α, �). Clearly, L(Gi) = {σ(cn
� [si], si) | n ∈ N} with

c� = δ(�, α). The tree substitution language L(Gi) and the tree si are illustrated
in Fig. 5.
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Fig. 5. Illustration of the tree substitution languages used in the proof of Theorem11.

Obviously, L = L(G1) ∪ · · · ∪ L(Gk+1) ∈ ∪k+1-TSL and those individual
tree languages are infinite and pairwise disjoint. For the sake of a contradiction,
assume that L ∈ ∪k-TSL; i. e. there exist L′

1, . . . , L
′
k ∈ TSL such that L = L′

1 ∪
· · · ∪ L′

k. The pigeonhole principle establishes that there exist i ∈ [k] and m,n ∈
[k+1] with m �= n such that Lm∩L′

i and Ln∩L′
i are infinite. Let G = (Σ,R, F ) be

a TSG such that L(G) = L′
i. Let z > maxf∈F ht(f). Since Lm ∩L(G) is infinite,

there exists x > z such that σ(cx
� [sm], sm) ∈ L(G). Similarly, there exists y > z

such that σ(cy
� [sn], sn) ∈ L(G) because Ln ∩ L(G) is infinite. Inspecting the

derivations for those trees there exist x′, y′ ∈ N such that

σ ⇒G σ(cx′
� [δ], sm) ⇒∗

G σ(cx
� [sm], sm) with subderivation δ ⇒+

G cx−x′
� [sm]

σ ⇒G σ(cy′
� [δ], sn) ⇒∗

G σ(cy
� [sn], sn) with subderivation δ ⇒+

G cy−y′
� [sn]

Exchanging the subderivations we obtain

σ ⇒G σ(cx′
� [δ], sm) ⇒∗

G σ(cx′+y−y′
� [sn], sm)

and thus σ(cx′+y−y′
� [sn], sm) ∈ L(G) ⊆ L, which is a contradiction because

m �= n. ��
Corollary 12 (of Theorem 11).

∪0-TSL � ∪1-TSL � ∪2-TSL � ∪3-TSL � ∪4-TSL � · · ·
Let us move on to intersection. Unfortunately, TSL is not closed under inter-

section, but intersections of TSL become quite powerful. In particular, they allow
information to be transported over unbounded distances, which can be observed
from the proof.

Theorem 13. TSL is not closed under intersection.

Proof. Recall the ranked alphabet Σ = {σ(2), δ(2), α(0), β(0)} and the TSG G of
Example 2 as well as the contexts cα = δ(α, δ(α, �)) and cβ = δ(β, δ(β, �)) from
Example 5. Additionally, let G′ = (Σ, {σ}, F ′) with F ′ displayed in Fig. 6. The
generated tree substitution languages L(G) and L(G′) are

{
σ(x, c1[· · · cn[δ(y, α)] · · · ]) | x, y ∈ {α, β}, n ∈ N, ∀i ∈ [n] : ci ∈ {cα, cβ}}

{
σ(x, δ(x, c1[· · · cn[α] · · · ]) | x ∈ {α, β}, n ∈ N, ∀i ∈ [n] : ci ∈ {cα, cβ}}
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Fig. 6. Fragments of the TSG G′ used in the proof of Theorem13.

Fig. 7. Tree substitution languages L(G) and L(G′) used in the proof of Theorem13.

respectively, which are also illustrated in Fig. 7. Their intersection

L(G) ∩ L(G′) =
{
σ(α, δ(α, cα[· · · cα[α] · · · ]) | n ∈ N

} ∪
{
σ(β, δ(β, cβ [· · · cβ [α] · · · ]) | n ∈ N}

contains only trees, in which all left children along the spine carry the same label.
This tree language is not a tree substitution language, which can be proved using
the subderivation exchange technique used in the proof of Theorem9. ��

Note how the intersection achieves a global synchronization in the proof
of Theorem 13. This power makes the investigation of the intersection hierarchy
difficult. We leave the strictness of the intersection hierarchy as an open problem
and conclude by considering the complement.

Theorem 14. TSL is not closed under complements.

Proof. Consider the ranked alphabet Σ = {γ(1), A(1), B(1), α(0), β(0)} and the
LTG G = (Σ, {γ}, F ) with fragments

F = {γ(A), A(A), A(α)} ∪ {γ(B), B(B), B(β)}.



248 A. Maletti and K. Stier

Fig. 8. Trees used in the proof of Theorem14.

The generated tree language is illustrated in Fig. 8. Now suppose that its com-
plement L = TΣ(Σ)\L(G) is a tree substitution language; i.e., L ∈ TSL. Hence
there exists a TSG G′ = (Σ,R, F ) such that L = L(G′). Let n ∈ N be such
that n > maxf∈F ht(f). Since t = γ(An(β)) ∈ L (see Fig. 8) there must exist
a derivation γ ⇒∗

G t and γ ∈ R. Since ht(t) > n at least two derivation steps
are required, so γ ⇒G γ(Ak) ⇒+

G t for some 0 ≤ k < n, which yields the sub-
derivation A ⇒+

G An−k(β). Similarly, we consider the tree t′ = γ(B(An(α))) ∈ L
(see Fig. 8), for which the derivation γ ⇒+

G γ(B(A�)) ⇒+
G t′ for some 0 ≤ � < n

and the subderivation A ⇒+
G An−�(α) must exist. However, exchanging the sub-

derivations yields the derivation

γ ⇒G γ(Ak) ⇒+
G γ(Ak(An−�(α)),

which shows γ(Ak(An−�(α)) ∈ L(G′) = L contradicting L = TΣ(Σ) \ L(G). ��

6 Open Problems

We showed that it is decidable whether a given tree substitution language is
local. It remains open if we can also decide whether a given regular tree lan-
guage is a tree substitution language. Progress on this problem will probably
provide additional fine-grained insight into the expressive power of tree substi-
tution grammars in comparison to the regular tree grammars.

Another open problem concerns the intersection hierarchy. We showed that
unions of tree substitution languages can progressively express more and more
tree languages. A similar hierarchy also exists for intersections of tree substi-
tution languages and we showed that the intersection of two tree substitution
languages is not necessarily a tree substitution languages. However, it remains
open whether there is an infinite intersection hierarchy or whether it collapses
at some level.
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Abstract. After an apparent hiatus of roughly 30 years, we revisit a
seemingly neglected subject in the theory of (one-dimensional) cellular
automata: sublinear-time computation. The model considered is that of
ACAs, which are language acceptors whose acceptance condition depends
on the states of all cells in the automaton. We prove a time hierarchy the-
orem for sublinear-time ACA classes, analyze their intersection with the
regular languages, and, finally, establish strict inclusions in the parallel
computation classes SC and (uniform) AC. As an addendum, we intro-
duce and investigate the concept of a decider ACA (DACA) as a can-
didate for a decider counterpart to (acceptor) ACAs. We show the class
of languages decidable in constant time by DACAs equals the locally
testable languages, and we also determine Ω(

√
n) as the (tight) time

complexity threshold for DACAs up to which no advantage compared to
constant time is possible.

1 Introduction

While there have been several works on linear- and real-time language recog-
nition by cellular automata over the years (see, e.g., [14,24] for an overview),
interest in the sublinear-time case has been scanty at best. We can only speculate
this has been due to a certain obstinacy concerning what is now the established
acceptance condition for cellular automata, namely that the first cell determines
the automaton’s response, despite alternatives being long known [18]. Under
this condition, only a constant-size prefix can ever influence the automaton’s
decision, which effectively dooms sublinear time to be but a trivial case just as
it is for (classical) Turing machines, for example. Nevertheless, at least in the
realm of Turing machines, this shortcoming was readily circumvented by adding
a random access mechanism to the model, thus sparking rich theories on parallel
computation [5,20], probabilistically checkable proofs [23], and property testing
[8,19].

In the case of cellular automata, the adaptation needed is an alternate (and
by all means novel) acceptance condition, covered in Sect. 2. Interestingly, in the

Some proofs have been omitted due to page constraints. These may be found in the
full version of the paper [17].
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resulting model, called ACA, parallelism and local behavior seem to be more
marked features, taking priority over cell communication and synchronization
algorithms (which are the dominant themes in the linear- and real-time construc-
tions). As mentioned above, the body of theory on sublinear-time ACAs is very
small and, to the best of our knowledge, resumes itself to [10,13,21]. Ibarra et al.
[10] show sublinear-time ACAs are capable of recognizing non-regular languages
and also determine a threshold (namely Ω(log n)) up to which no advantage
compared to constant time is possible. Meanwhile, Kim and McCloskey [13] and
Sommerhalder and Westrhenen [21] analyze the constant-time case subject to
different acceptance conditions and characterize it based on the locally testable
languages, a subclass of the regular languages.

Indeed, as covered in Sect. 3, the defining property of the locally testable lan-
guages, that is, that words which locally appear to be the same are equivalent
with respect to membership in the language at hand, effectively translates into an
inherent property of acceptance by sublinear-time ACAs. In Sect. 4, we prove a
time hierarchy theorem for sublinear-time ACAs as well as further relate the lan-
guage classes they define to the regular languages and the parallel computation
classes SC and (uniform) AC. In the same section, we also obtain an improvement
on a result of [10]. Finally, in Sect. 5 we consider a plausible model of ACAs as
language deciders, that is, machines which must not only accept words in the
target language but also explicitly reject those which do not. Section 6 concludes.

2 Definitions

We assume the reader is familiar with the theory of formal languages and cellular
automata as well as with computational complexity theory (see, e.g., standard
references [1,6]). This section reviews basic concepts and introduces ACAs.

Z denotes the set of integers, N+ that of (strictly) positive integers, and
N0 = N+ ∪ {0}. BA is the set of functions f : A → B. For a word w ∈ Σ∗ over
an alphabet Σ, w(i) is the i-th symbol of w (starting with the 0-th symbol), and
|w|x is the number of occurrences of x ∈ Σ in w. For k ∈ N0, pk(w), sk(w), and
Ik(w) are the prefix, suffix and set of infixes of length k of w, respectively, where
pk′(w) = sk′(w) = w and Ik′(w) = {w} for k′ ≥ |w|. Σ≤k is the set of words
w ∈ Σ∗ for which |w| ≤ k. Unless otherwise noted, n is the input length.

2.1 (Strictly) Locally Testable Languages

The class REG of regular languages is defined in terms of (deterministic)
automata with finite memory and which read their input in a single direction
(i.e., from left to right), one symbol at a time; once all symbols have been read,
the machine outputs a single bit representing its decision. In contrast, a scanner
is a memoryless machine which reads a span of k ∈ N+ symbols at a time of an
input provided with start and end markers (so it can handle prefixes and suffixes
separately); the scanner validates every such substring it reads using the same
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predicate, and it accepts if and only if all these validations are successful. The
languages accepted by these machines are the strictly locally testable languages.1

Definition 1 (strictly locally testable). Let Σ be an alphabet. A language
L ⊆ Σ∗ is strictly locally testable if there is some k ∈ N+ and sets π, σ ⊆ Σ≤k

and μ ⊆ Σk such that, for every word w ∈ Σ∗, w ∈ L if and only if pk(w) ∈ π,
Ik(w) ⊆ μ, and sk(w) ∈ σ. SLT is the class of strictly locally testable languages.

A more general notion of locality is provided by the locally testable languages.
Intuitively, L is locally testable if a word w being in L or not is entirely dependent
on a property of the substrings of w of some constant length k ∈ N+ (that
depends only on L, not on w). Thus, if any two words have the same set of
substrings of length k, then they are equivalent with respect to being in L:

Definition 2 (locally testable). Let Σ be an alphabet. A language L ⊆ Σ∗

is locally testable if there is some k ∈ N+ such that, for every w1, w2 ∈ Σ∗ with
pk(w1) = pk(w2), Ik(w1) = Ik(w2), and sk(w1) = sk(w2) we have that w1 ∈ L
if and only if w2 ∈ L. LT denotes the class of locally testable languages.

LT is the Boolean closure of SLT, that is, its closure under union, intersection,
and complement [16]. In particular, SLT � LT (i.e., the inclusion is proper [15]).

2.2 Cellular Automata

In this paper, we are strictly interested in one-dimensional cellular automata
with the standard neighborhood. For r ∈ N0, let Nr(z) = {z′ ∈ Z | |z − z′| ≤ r}
denote the extended neighborhood of radius r of the cell z ∈ Z.

Definition 3 (cellular automaton). A cellular automaton (CA) C is a triple
(Q, δ,Σ) where Q is a finite, non-empty set of states, δ : Q3 → Q is the local
transition function, and Σ ⊆ Q is the input alphabet. An element of Q3 (resp.,
QZ) is called a local (resp., global) configuration of C. δ induces the global
transition function Δ : QZ → QZ on the configuration space QZ by Δ(c)(z) =
δ(c(z − 1), c(z), c(z + 1)), where z ∈ Z is a cell and c ∈ QZ.

Our interest in CAs is as machines which receive an input and process it until
a final state is reached. The input is provided from left to right, with one cell
for each input symbol. The surrounding cells are inactive and remain so for the
entirety of the computation (i.e., the CA is bounded). It is customary for CAs to
have a distinguished cell, usually cell zero, which communicates the machine’s
output. As mentioned in the introduction, this convention is inadequate for com-
putation in sublinear time; instead, we require the finality condition to depend
on the entire (global) configuration (modulo inactive cells):

1 The term “(locally) testable in the strict sense” ((L)TSS) is also common [13,15,16].
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Fig. 1. Computation of an ACA which recognizes L = {01}+. The input words are
010101 ∈ L and 001010 �∈ L, respectively.

Definition 4 (CA computation). There is a distinguished state q ∈ Q \ Σ,
called the inactive state, which, for every z1, z2, z3 ∈ Q, satisfies δ(z1, z2, z3) = q
if and only if z2 = q. A cell not in state q is said to be active. For an input
w ∈ Σ∗, the initial configuration c0 = c0(w) ∈ QZ of C for w is c0(i) = w(i) for
i ∈ {0, . . . , |w| − 1} and c0(i) = q otherwise. For F ⊆ Q \ {q}, a configuration
c ∈ QZ is F -final (for w) if there is a (minimal) τ ∈ N0 such that c = Δτ (c0) and
c contains only states in F ∪{q}. In this context, the sequence c0, . . . ,Δ

τ (c0) = c
is the trace of w, and τ is the time complexity of C (with respect to F and w).

Because we effectively consider only bounded CAs, the computation of w
involves exactly |w| active cells. The surrounding inactive cells are needed only
as markers for the start and end of w. As a side effect, the initial configuration
c0 = c0(ε) for the empty word ε is stationary (i.e., Δ(c0) = c0) regardless of the
choice of δ. Since this is the case only for ε, we disregard it for the rest of the
paper, that is, we assume it is not contained in any of the languages considered.

Finally, we relate final configurations and computation results. We adopt an
acceptance condition as in [18,21] and obtain a so-called ACA; here, the “A” of
“ACA” refers to the property that all (active) cells are relevant for acceptance.

Definition 5 (ACA). An ACA is a CA C with a non-empty subset A ⊆ Q\{q}
of accept states. For w ∈ Σ+, if C reaches an A-final configuration, we say C
accepts w. L(C) denotes the set of words accepted by C. For t : N+ → N0, we
write ACA(t) for the class of languages accepted by an ACA with time complexity
bounded by t, that is, for which the time complexity of accepting w is ≤ t(|w|).

ACA(t1) ⊆ ACA(t2) is immediate for functions t1, t2 : N+ → N0 with t1(n) ≤
t2(n) for every n ∈ N+. Because Definition 5 allows multiple accept states, it is
possible for each (non-accepting) state z to have a corresponding accept state
zA. In the rest of this paper, when we say a cell becomes (or marks itself as)
accepting (without explicitly mentioning its state), we intend to say it changes
from such a state z to zA.

Figure 1 illustrates the computation of an ACA with input alphabet Σ =
{0, 1} and which accepts {01}+ with time complexity equal to one (step).
The local transition function is such that δ(0, 1, 0) = δ(1, 0, 1) = δ(q, 0, 1) =
δ(0, 1, q) = a, a being the (only) accept state, and δ(z1, z2, z3) = z2 for z2 �= a
and arbitrary z1 and z3.

3 First Observations

This section recalls results on sublinear-time ACA computation (i.e., ACA(t)
where t ∈ o(n)) from [10,13,21] and provides some additional remarks. We start
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with the constant-time case (i.e., ACA(O(1))). Here, the connection between
scanners and ACAs is apparent: If an ACA accepts an input w in time τ = τ(w),
then w can be verified by a scanner with an input span of 2τ + 1 symbols and
using the predicate induced by the local transition function of the ACA (i.e., the
predicate is true if and only if the symbols read correspond to Nτ (z) for some
cell z in the initial configuration and z is accepting after τ steps).

Constant-time ACA computation has been studied in [13,21]. Although in
[13] we find a characterization based on a hierarchy over SLT, the acceptance con-
dition there differs slightly from that in Definition 5; in particular, the automata
there run for a number of steps which is fixed for each automaton, and the
outcome is evaluated (only) in the final step. In contrast, in [21] we find the
following, where SLT∨ denotes the closure of SLT under union:

Theorem 6 ([21]). ACA(O(1)) = SLT∨.

Thus, ACA(O(1)) is closed under union. In fact, more generally:

Proposition 7. For any t : N+ → N+, ACA(O(t)) is closed under union.

ACA(O(1)) is closed under intersection [21]. It is an open question whether
ACA(O(t)) is also closed under intersection for every t ∈ o(n).

Moving beyond constant time, in [10] we find the following:

Theorem 8 ([10]). For t ∈ o(log n), ACA(t) ⊆ REG.

In [10] we find an example for a non-regular language in ACA(O(log n)) which
is essentially a variation of the language

BIN = {bink(0)#bink(1)# · · · #bink(2k − 1) | k ∈ N+}

where bink(m) is the k-digit binary representation of m ∈ {0, . . . , 2k − 1}.
To illustrate the ideas involved, we present an example related to BIN (though

it results in a different time complexity) and which is also useful in later discus-
sions in Sect. 5. Let wk(i) = 0i10k−i−1 and consider the language

IDMAT = {wk(0)#wk(1)# · · · #wk(k − 1) | k ∈ N+}

of all identity matrices in line-for-line representations, where the lines are sepa-
rated by # symbols.2

We now describe an ACA for IDMAT; the construction closely follows the
aforementioned one for BIN found in [10] (and the difference in complexity is
only due to the different number and size of blocks in the words of IDMAT
and BIN). Denote each group of cells initially containing a (maximally long)
{0, 1}+ substring of w ∈ IDMAT by a block. Each block of size b propagates its
contents to the neighboring blocks (in separate registers); using a textbook CA
technique, this requires exactly 2b steps. Once the strings align, a block initially

2 Alternatively, one can also think of IDMAT as a (natural) problem on graphs pre-
sented in the adjacency matrix representation.
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containing wk(i) verifies it has received wk(i − 1) and wk(i + 1) from its left
and right neighbor blocks (if either exists), respectively. The cells of a block
and its delimiters become accepting if and only if the comparisons are successful
and there is a single # between the block and its neighbors. This process takes
linear time in b; since any w ∈ IDMAT has O(

√|w|) many blocks, each with
b ∈ O(

√|w|) cells, it follows that IDMAT ∈ ACA(O(
√

n)).
To show the above construction is time-optimal, we use the following obser-

vation, which is also central in proving several other results in this paper:

Lemma 9. Let C be an ACA, and let w be an input which C accepts in
(exactly) τ = τ(w) steps. Then, for every input w′ such that p2τ (w) = p2τ (w′),
I2τ+1(w′) ⊆ I2τ+1(w), and s2τ (w) = s2τ (w′), C accepts w′ in at most τ steps.

The lemma is intended to be used with τ < |w|
2 since otherwise w = w′. It

can be used, for instance, to show that SOMEONE = {w ∈ {0, 1}+ | |w|1 ≥ 1}
is not in ACA(t) for any t ∈ o(n) (e.g., set w = 0k10k and w′ = 02k+1 for large
k ∈ N+). It follows REG �⊆ ACA(t) for t ∈ o(n).

Since the complement of SOMEONE (respective to {0, 1}+) is {0}+ and
{0}+ ∈ ACA(O(1)) (e.g., simply set 0 as the ACA’s accepting state), ACA(t)
is not closed under complement for any t ∈ o(n). Also, SOMEONE is a regular
language and BIN ∈ ACA(O(log n)) is not, so we have:

Proposition 10. For t ∈ Ω(log n) ∩ o(n), ACA(t) and REG are incomparable.

If the inclusion of infixes in Lemma 9 is strengthened to an equality, one may
apply it in both directions and obtain the following stronger statement:

Lemma 11. Let C be an ACA with time complexity bounded by t : N+ → N0

(i.e., C accepts any input of length n in at most t(n) steps). Then, for any two
inputs w and w′ with p2μ(w) = p2μ(w′), I2μ+1(w) = I2μ+1(w′), and s2μ(w) =
s2μ(w′) where μ = max{t(|w|), t(|w′|)}, we have that w ∈ L(C) if and only if
w′ ∈ L(C).

Finally, we can show our ACA for IDMAT is time-optimal:

Proposition 12. For any t ∈ o(
√

n), IDMAT �∈ ACA(t).

4 Main Results

In this section, we present various results regarding ACA(t) where t ∈ o(n).
First, we obtain a time hierarchy theorem, that is, under plausible conditions,
ACA(t′) � ACA(t) for t′ ∈ o(t). Next, we show ACA(t) ∩ REG is (strictly) con-
tained in LT and also present an improvement to Theorem 8. Finally, we study
inclusion relations between ACA(t) and the SC and (uniform) AC hierarchies.
Save for the material covered so far, all three subsections stand out indepen-
dently from one another.
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4.1 Time Hierarchy

For functions f, t : N+ → N0, we say f is time-constructible by CAs in t(n) time
if there is a CA C which, on input 1n, reaches a configuration containing the
value f(n) (binary-encoded) in at most t(n) steps.3 Note that, since CAs can
simulate (one-tape) Turing machines in real-time, any function constructible by
Turing machines (in the corresponding sense) is also constructible by CAs.

Theorem 13. Let f ∈ ω(n) with f(n) ≤ 2n, g(n) = 2n−�log f(n)�, and let f and
g be time-constructible (by CAs) in f(n) time. Furthermore, let t : N+ → N0

be such that 3f(k) ≤ t(f(k)g(k)) ≤ cf(k) for some constant c ≥ 3 and all but
finitely many k ∈ N+. Then, for every t′ ∈ o(t), ACA(t′) � ACA(t).

Given a > 1, this can be used, for instance, with any time-constructible
f ∈ Θ(na) (resp., f ∈ Θ(2n/a), in which case a = 1 is also possible) and t ∈
Θ((log n)a) (resp., t ∈ Θ(n1/a)). The proof idea is to construct a language L
similar to BIN (see Sect. 3) in which every w ∈ L has length exponential in the
size of its blocks while the distance between any two blocks is Θ(t(|w|)). Due to
Lemma 9, the latter implies L is not recognizable in o(t(|w|)) time.

Proof. For simplicity, let f(n) > n. Consider L = {wk | k ∈ N+} where

wk = bink(0)#f(k)−kbink(1)#f(k)−k · · · bink(g(k) − 1)#f(k)−k

and note |wk| = f(k)g(k). Because t(|wk|) ∈ O(f(k)) and f(k) ∈ ω(k), given
any t′ ∈ o(t), setting w = wk, w′ = 0k#|wk|−k, and τ = t′(|wk|) and applying
Lemma 9 for sufficiently large k yields L �∈ ACA(t′).

By assumption it suffices to show w = wk ∈ L is accepted by an ACA C in
at most 3f(k) ≤ t(|w|) steps for sufficiently large k ∈ N+. The cells of C perform
two procedures P1 and P2 simultaneously: P1 is as in the ACA for BIN (see Sect. 3)
and ensures that the blocks of w have the same length, that the respective binary
encodings are valid, and that the last value is correct (i.e., equal to g(k) − 1). In
P2, each block computes f(k) as a function of its block length k. Subsequently, the
value f(k) is decreased using a real-time counter (see, e.g., [12] for a construction).
Every time the counter is decremented, a signal starts from the block’s leftmost
cell and is propagated to the right. This allows every group of cells of the form bs
with b ∈ {0, 1}+ and s ∈ {#}+ to assert there are precisely f(k) symbols in total
(i.e., |bs| = f(k)). A cell is accepting if and only if it is accepting both in P1 and
P2. The proof is complete by noticing either procedure takes a maximum of 3f(k)
steps (again, for sufficiently large k). ��

4.2 Intersection with the Regular Languages

In light of Proposition 10, we now consider the intersection ACA(t) ∩ REG for
t ∈ o(n) (in the same spirit as a conjecture by Straubing [22]). For this section,
3 Just as is the case for Turing machines, there is not a single definition for time-
constructibility by CAs (see, e.g., [12] for an alternative). Here, we opt for a plausible
variant which has the benefit of simplifying the ensuing line of argument.
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we assume the reader is familiar with the theory of syntactic semigroups (see,
e.g., [7] for an in-depth treatment).

Given a language L, let SS(L) denote the syntactic semigroup of L. It is
well-known that SS(L) is finite if and only if L is regular. A semigroup S is a
semilattice if x2 = x and xy = yx for every x, y ∈ S. Additionally, S is locally
semilattice if eSe is a semilattice for every idempotent e ∈ S, that is, e2 = e. We
use the following characterization of locally testable languages:

Theorem 14 ([3,15]). L ∈ LT if and only if SS(L) is finite and locally semilat-
tice.

In conjunction with Lemma 9, this yields the following, where the strict
inclusion is due to SOMEONE �∈ ACA(t) (since SOMEONE ∈ LT; see Sect. 3):

Theorem 15. For every t ∈ o(n), ACA(t) ∩ REG � LT.

Proof. Let L ∈ ACA(t) be a language over the alphabet Σ and, in addition, let
L ∈ REG, that is, S = SS(L) is finite. By Theorem 14, it suffices to show S is
locally semilattice. To that end, let e ∈ S be idempotent, and let x, y ∈ S.

To show (exe)(eye) = (eye)(exe), let a, b ∈ Σ∗ and consider the words u =
a(exe)(eye)b and v = a(eye)(exe)b. For m ∈ N+, let u′

m = a(emxem)(emyem)b,
and let r ∈ N+ be such that r > max{|x|, |y|, |a|, |b|} and also t(|u′

2r+1|) <
1

16|e| |u′
2r+1| < r. Since e is idempotent, u′ = u′

2r+1 and u belong to the same
class in S, that is, u′ ∈ L if and only if u ∈ L; the same is true for v′ =
a(e2r+1ye2r+1)(e2r+1xe2r+1)b and v. Furthermore, p2r(u′) = p2r(v′), I2r+1(u′) =
I2r+1(v′), and s2r(u′) = s2r(v′) hold. Since L ∈ ACA(t), Lemma 11 applies.

The proof of (exe)(exe) = exe is analogous. Simply consider the words
a(emxem)b and a(emxem)(emxem)b for sufficiently large m ∈ N+ and use, again,
Lemma 11 and the fact that e is idempotent. ��

Using Theorems 8 and 15, we have ACA(t) � LT for t ∈ o(log n). We can
improve this bound to ACA(O(1)) = SLT∨, which is a proper subset of LT:

Theorem 16. For every t ∈ o(log n), ACA(t) = ACA(O(1)).

Proof. We prove every ACA C with time complexity at most t ∈ o(log n) actually
has O(1) time complexity. Let Q be the state set of C and assume |Q| ≥ 2, and
let n0 ∈ N+ be such that t(n) < log n

9 log |Q| for n ≥ n0. Letting k(n) = 2t(n)+1 and
assuming t(n) ≥ 1, we then have |Q|3k(n) ≤ |Q|9t(n) < n (�). We shall use this
to prove that, for any word w ∈ L of length |w| ≥ n0, there is a word w′ ∈ L of
length |w′| ≤ n0 as well as r < n0 such that pr(w) = pr(w′), Ir+1(w) = Ir+1(w′),
and sr(w) = sr(w′). By Lemma 9, C must have t(|w′|) time complexity on w and,
since the set of all such w′ is finite, it follows that C has O(1) time complexity.

Now let w be as above and let C accept w in (exactly) τ = τ(w) ≤ t(|w|)
steps. We prove the claim by induction on |w|. The base case |w| = n0 is trivial,
so let n > n0 and assume the claim holds for every word in L of length strictly less
than n. Consider the De Bruijn graph G over the words in |Q|κ where κ = 2τ +1.
Then, from the infixes of w of length κ (in order of appearance in w) one obtains
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a path P in G by starting at the leftmost infix and visiting every subsequent one,
up to the rightmost one. Let G′ be the induced subgraph of G containing exactly
the nodes visited by P , and notice P visits every node in G′ at least once. It is
not hard to show that, for every such P and G′, there is a path P ′ in G′ with the
same starting and ending points as P and that visits every node of G′ at least
once while having length at most m2 ≤ |Q|2κ, where m is the number of nodes
in G′.4 To this P ′ corresponds a word w′ of length |w′| ≤ κ + |Q|2κ < |Q|3κ

for which, by construction of P ′ and G′, pκ−1(w′) = pκ−1(w), Iκ(w′) = Iκ(w),
and sκ−1(w′) = sκ−1(w′). Since κ ≤ k(|w|), using (�) we have |w′| < |w|, and
then either |w′| ≤ n0 and κ < n0 (since otherwise w = w′, which contradicts
|w′| < |w|), or we may apply the induction hypothesis; in either case, the claim
follows. ��

4.3 Relation to Parallel Complexity Classes

In this section, we relate ACA(t) to other classes which characterize parallel com-
putation, namely the SC and (uniform) AC hierarchies. In this context, SCk is the
class of problems decidable by Turing machines in O((log n)k) space and poly-
nomial time, whereas ACk is that decidable by Boolean circuits with polynomial
size, O((log n)k) depth, and gates with unbounded fan-in. SC (resp., AC) is the
union of all SCk (resp., ACk) for k ∈ N0. Here, we consider only uniform versions
of AC; when relevant, we state the respective uniformity condition. Although
SC1 = L ⊆ AC1 is known, it is unclear whether any other containment holds
between SC and AC.

One should not expect to include SC or AC in ACA(t) for any t ∈ o(n).
Conceptually speaking, whereas the models of SC and AC are capable of ran-
dom access to their input, ACAs are inherently local (as evinced by Lem-
mas 9 and 11). Explicit counterexamples may be found among the unary lan-
guages: For any fixed m ∈ N+ and w1, w2 ∈ {1}+ with |w1|, |w2| ≥ m, trivially
pm−1(w1) = pm−1(w2), Im(w1) = Im(w2), and sm−1(w1) = sm−1(w2) hold.
Hence, by Lemma 9, if an ACA C accepts w ∈ {1}+ in t ∈ o(n) time and |w| is
large (e.g., |w| > 4t(|w|)), then C accepts any w′ ∈ {1}+ with |w′| ≥ |w|. Thus,
extending a result from [21]:

Proposition 17. If t ∈ o(n) and L ∈ ACA(t) is a unary language (i.e., L ⊆ Σ+

and |Σ| = 1), then L is either finite or co-finite.

In light of the above, the rest of this section is concerned with the converse
type of inclusion (i.e., of ACA(t) in the SC or AC hierarchies). For f, s, t : N+ →
N0 with f(n) ≤ s(n), we say f is constructible (by a Turing machine) in s(n)
space and t(n) time if there is a Turing machine T which, on input 1n, outputs

4 Number the nodes of G′ from 1 to m according to the order in which they are first
visited by P . Then, there is a path in G′ from i to i+1 for every i ∈ {1, . . . , m − 1},
and a shortest such path has length at most m. Piecing these paths together along
with a last (shortest) path from m to the ending point of P , we obtain a path of
length at most m2 with the purported property.
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f(n) in binary using at most s(n) space and t(n) time. Also, recall a Turing
machine can simulate τ steps of a CA with m (active) cells in O(m) space and
O(τm) time.

Proposition 18. Let C be an ACA with time complexity bounded by t ∈ o(n),
t(n) ≥ log n, and let t be constructible in t(n) space and poly(n) time. Then,
there is a Turing machine which decides L(C) in O(t(n)) space and poly(n)
time.

Thus, for polylogarithmic t (where the strict inclusion is due to Proposi-
tion 17):

Corollary 19. For k ∈ N+, ACA(O((log n)k)) � SCk.

Moving on to the AC classes, we employ some notions from descriptive com-
plexity theory (see, e.g., [11] for an introduction). Let FOL[t] be the class of
languages describable by first-order formulas with numeric relations in L (i.e.,
logarithmic space) and quantifier block iterations bounded by t : N+ → N0.

Theorem 20. Let t : N+ → N0 with t(n) ≥ log n be constructible in logarithmic
space (and arbitrary time). For any ACA C whose time complexity is bounded
by t, L(C) ∈ FOL[O( t

log n )].

Since FOL[O((log n)k)] equals L-uniform ACk [11], by Proposition 17 we have:

Corollary 21. For k ∈ N+, ACA(O((log n)k)) � L-uniform ACk−1.

Because SC1 �⊆ AC0 (regardless of non-uniformity) [9], this is an improve-
ment on Corollary 19 at least for k = 1. Nevertheless, note the usual unifor-
mity condition for AC0 is not L- but the more restrictive DLOGTIME-uniformity
[25], and there is good evidence that these two versions of AC0 are distinct
[4]. Using methods from [2], Corollary 21 may be rephrased for AC0 in terms
of TIME(polylog(n))- or even TIME((log n)2)-uniformity, but the DLOGTIME-
uniformity case remains unclear.

5 Decider ACA

So far, we have considered ACAs strictly as language acceptors. As such, their
time complexity for inputs not in the target language (i.e., those which are not
accepted) is entirely disregarded. In this section, we investigate ACAs as deciders,
that is, as machines which must also (explicitly) reject invalid inputs. We analyze
the case in which these decider ACAs must reject under the same condition as
acceptance (i.e., all cells are simultaneously in a final rejecting state):

Definition 22 (DACA). A decider ACA (DACA) is an ACA C which, in
addition to its set A of accept states, has a non-empty subset R ⊆ Q \ {q} of
reject states that is disjoint from A (i.e., A∩R = ∅). Every input w ∈ Σ+ of C
must lead to an A- or an R-final configuration (or both). C accepts w if it leads
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Fig. 2. Computation of a DACA C which decides SOMEONE. The inputs words are
000000 ∈ L(C) and 001010 �∈ L(C), respectively.

to an A-final configuration cA and none of the configurations prior to cA are R-
final. Similarly, C rejects w if it leads to an R-final configuration cR and none
of the configurations prior to cR are A-final. The time complexity of C (with
respect to w) is the number of steps elapsed until C reaches an R- or A-final
configuration (for the first time). DACA(t) is the DACA analogue of ACA(t).

In contrast to Definition 5, here we must be careful so that the accept and
reject results do not overlap (i.e., a word cannot be both accepted and rejected).
We opt for interpreting the first (chronologically speaking) of the final configu-
rations as the machine’s response. Since the outcome of the computation is then
irrelevant regardless of any subsequent configurations (whether they are final or
not), this is equivalent to requiring, for instance, that the DACA must halt once
a final configuration is reached.

One peculiar consequence of Definition 22 is the relation between languages
which can be recognized by acceptor ACAs and DACAs (i.e., the classes ACA(t)
and DACA(t)). As it turns out, the situation is quite different from what is usually
expected of restricting an acceptor model to a decider one, that is, that deciders
yield a (possibly strictly) more restricted class of machines. In fact, one can show
DACA(t) �⊆ ACA(t) holds for t ∈ o(n) since SOMEONE �∈ ACA(O(1)) (see discus-
sion after Lemma 9); nevertheless, SOMEONE ∈ DACA(O(1)). For example, the
local transition function δ of the DACA can be chosen as δ(z1, 0, z2) = r and
δ(z1, z, z2) = a for z ∈ {1, a, r}, where z1 and z2 are arbitrary states, and a and
r are the (only) accept and reject states, respectively; see Fig. 2. Choosing the
same δ for an (acceptor) ACA does not yield an ACA for SOMEONE since then
all words of the form 0+ are accepted in the second step (as they are not rejected
in the first one). We stress this rather counterintuitive phenomenon occurs only
in the case of sublinear time (as ACA(t) = CA(t) = DACA(t) for t ∈ Ω(n)).

Similar to (acceptor) ACAs (Lemma 9), sublinear-time DACAs operate
locally:

Lemma 23. Let C be a DACA and let w ∈ {0, 1}+ be a word which C decides
in exactly τ = τ(w) steps. Then, for every word w′ ∈ {0, 1}+ with p2τ (w) =
p2τ (w′), I2τ+1(w′) = I2τ+1(w), and s2τ (w) = s2τ (w′), C decides w′ in ≤ τ
steps, and w ∈ L(C) holds if and only if w′ ∈ L(C).

One might be tempted to relax the requirements above to I2τ+1(w′) ⊆
I2τ+1(w) (as in Lemma 9). We stress, however, the equality I2τ+1(w) = I2τ+1(w′)
is crucial; otherwise, it might be the case that C takes strictly less than τ steps
to decide w′ and, hence, w ∈ L(C) may not be equivalent to w′ ∈ L(C).
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We note that, in addition to Lemmas 9 and 11, the results from Sect. 4
are extendable to decider ACAs; a more systematic treatment is left as a topic
for future work. The remainder of this section is concerned with characterizing
DACA(O(1)) computation (as a parallel to Theorem 6) as well as establishing the
time threshold for DACAs to decide languages other than those in DACA(O(1))
(as Theorem 16 and the result BIN ∈ ACA(O(log n)) do for acceptor ACAs).

5.1 The Constant-Time Case

First notice that, for any DACA C, swapping the accept and reject states yields
a DACA with the same time complexity and which decides the complement of
L(C). Hence, in contrast to ACAs (see discussion following Lemma 9):

Proposition 24. For any t : N+ → N+, DACA(t) is closed under complement.

Using this, we can prove the following, which characterizes constant-time
DACA computation as a parallel to Theorem 6:

Theorem 25. DACA(O(1)) = LT.

Hence, we obtain the rather surprising inclusion ACA(O(1)) � DACA(O(1)),
that is, for constant time, DACAs constitute a strictly more powerful model than
their acceptor counterparts.

5.2 Beyond Constant Time

Theorem 16 establishes a logarithmic time threshold for (acceptor) ACAs to
recognize languages not in ACA(O(1)). We now turn to obtaining a similar result
for DACAs. As it turns out, in this case the bound is considerably larger:

Theorem 26. For any t ∈ o(
√

n), DACA(t) = DACA(O(1)).

One immediate implication is that DACA(t) and ACA(t) are incomparable
for t ∈ o(

√
n) ∩ ω(1) (since, e.g., BIN ∈ ACA(log n); see Sect. 3). The proof

idea is that any DACA whose time complexity is not constant admits an infinite
sequence of words with increasing time complexity; however, the time complexity
of each such word can be traced back to a critical set of cells which prevent the
automaton from either accepting or rejecting. By contracting the words while
keeping the extended neighborhoods of these cells intact, we obtain a new infinite
sequence of words which the DACA necessarily takes Ω(

√
n) time to decide:

Proof. Let C be a DACA with time complexity bounded by t and assume t �∈
O(1); we show t ∈ Ω(

√
n). Since t �∈ O(1), for every i ∈ N0 there is a wi such that

C takes strictly more than i steps to decide wi. In particular, when C receives wi

as input, there are cells xi
j and yi

j for j ∈ {0, . . . , i} such that xi
j (resp., yi

j) is not
accepting (resp., rejecting) in step j. Let Ji be the set of all z ∈ {0, . . . , |wi|− 1}
for which min{|z − xi

j |, |z − yi
j |} ≤ j, that is, z ∈ Nj(xi

j) ∪ Nj(yi
j) for some

j. Consider the restriction w′
i of wi to the symbols having index in Ji, that is,
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w′
i(k) = wi(jk) for Ji = {j0, . . . , jm−1} and j0 < · · · < jm−1, and notice w′

i has
the same property as wi (i.e., C takes strictly more than i steps to decide wi).
Since |w′

i| = |Ji| ≤ 2(i + 1)2, C has Ω(
√

n) time complexity on the (infinite) set
{w′

i | i ∈ N0}. ��
Using IDMAT (see Sect. 3), we show the bound in Theorem 26 is optimal:

Proposition 27. IDMAT ∈ DACA(O(
√

n)).

We have IDMAT ∈ ACA(O(
√

n)) (see Sect. 3); the non-trivial part is ensuring
the DACA also rejects every w �∈ IDMAT in O(

√|w|) time. In particular, in
such strings the # delimiters may be an arbitrary number of cells apart or even
absent altogether; hence, naively comparing every pair of blocks is not an option.
Rather, we check the existence of a particular set of substrings of increasing
length and which must present if the input is in IDMAT. Every O(1) steps the
existence of a different substring is verified; the result is that the input length
must be at least quadratic in the length of the last substring tested (and the
input is timely rejected if it does not contain any one of the required substrings).

6 Conclusion and Open Problems

Following the definition of ACAs in Sect. 2, Sect. 3 reviewed existing results on
ACA(t) for sublinear t (i.e., t ∈ o(n)); we also observed that sublinear-time
ACAs operate in an inherently local manner (Lemmas 9 and 11). In Sect. 4, we
proved a time hierarchy theorem (Theorem 13), narrowed down the languages in
ACA(t)∩REG (Theorem 15), improved Theorem 8 to ACA(o(log n)) = ACA(O(1))
(Theorem 16), and, finally, obtained (strict) inclusions in the parallel computa-
tion classes SC and AC (Corollaries 19 and 21, respectively). The existence of a
hierarchy theorem for ACAs is of interest because obtaining an equivalent result
for NC and AC is an open problem in computational complexity theory. Also of
note is that the proof of Theorem 13 does not rely on diagonalization (the preva-
lent technique for most computational models) but, rather, on a quintessential
property of sublinear-time ACA computation (i.e., locality as in the sense of
Lemma 9).

In Sect. 5, we considered a plausible definition of ACAs as language deciders
as opposed to simply acceptors, obtaining DACAs. The respective constant-time
class is LT (Theorem 25), which surprisingly is a (strict) superset of ACA(O(1)) =
SLT∨. Meanwhile, Ω(

√
n) is the time complexity threshold for deciding languages

other than those in LT (Theorem 26 and Proposition 27).
As for future work, the primary concern is extending the results of Sect. 4 to

DACAs. DACA(O(1)) = LT is closed under union and intersection and we saw
that DACA(t) is closed under complement for any t ∈ o(n); a further question
would be whether DACA(t) is also closed under union and intersection. Finally,
we have ACA(O(1)) � DACA(O(1)), ACA(O(n)) = CA(O(n)) = DACA(O(n)),
and that ACA(t) and DACA(t) are incomparable for t ∈ o(

√
n)∩ω(1); it remains

open what the relation between the two classes is for t ∈ Ω(
√

n) ∩ o(n).



264 A. Modanese

Acknowledgments. I would like to thank Thomas Worsch for the fruitful discussions
and feedback during the development of this work. I would also like to thank the DLT
2020 reviewers for their valuable comments and suggestions and, in particular, one of
the reviewers for pointing out a proof idea for Theorem 16, which was listed as an open
problem in a preliminary version of the paper.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Mix Barrington, D.A.: Extensions of an idea of McNaughton. Math. Syst. Theory
23(3), 147–164 (1990). https://doi.org/10.1007/BF02090772

3. Brzozowski, J.A., Simon, I.: Characterizations of locally testable events. Discrete
Math. 4(3), 243–271 (1973). https://doi.org/10.1016/S0012-365X(73)80005-6

4. Caussinus, H., et al.: Nondeterministic NC1 computation. J. Comput. Syst. Sci.
57(2), 200–212 (1998). https://doi.org/10.1006/jcss.1998.1588

5. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inf. Control
64(1–3), 2–21 (1985). https://doi.org/10.1016/S0019-9958(85)80041-3

6. Delorme, M., Mazoyer, J. (eds.): Cellular Automata. A Parallel Model. Mathemat-
ics and Its Application, vol. 460. Springer, Netherlands (1999). https://doi.org/10.
1007/978-94-015-9153-9

7. Eilenberg, S.: Automata, Languages, and Machines. Pure and Applied Mathemat-
ics, vol. B. Academic Press, New York (1976)

8. Fischer, E.: The art of uninformed decisions. In: Bulletin of the EATCS 75, p. 97
(2001)

9. Furst, M.L., et al.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst.
Theory 17(1), 13–27 (1984). https://doi.org/10.1007/BF01744431

10. Ibarra, O.H., et al.: Fast parallel language recognition by cellular automata. Theor.
Comput. Sci. 41, 231–246 (1985). https://doi.org/10.1016/0304-3975(85)90073-8

11. Immerman, N.: Descriptive Complexity. Texts in Computer Science. Springer, New
York (1999). https://doi.org/10.1007/978-1-4612-0539-5

12. Iwamoto, C., et al.: Constructible functions in cellular automata and their applica-
tions to hierarchy results. Theor. Comput. Sci. 270(1–2), 797–809 (2002). https://
doi.org/10.1016/S0304-3975(01)00112-8

13. Kim, S., McCloskey, R., Sam Kim and Robert McCloskey: A characterization of
constant-time cellular automata computation. Phys. D 45(1–3), 404–419 (1990).
https://doi.org/10.1016/0167-2789(90)90198-X

14. Kutrib, M.: Cellular automata and language theory. In: Meyers, R. (ed.) Encyclo-
pedia of Complexity and Systems Science, pp. 800–823. Springer, New York (2009).
https://doi.org/10.1007/978-0-387-30440-3

15. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst.
Theory 8(1), 60–76 (1974). https://doi.org/10.1007/BF01761708

16. McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press, Cambridge,
MA (1971)

17. Modanese, A.: Sublinear-Time Language Recognition and Decision by One-
Dimensional Cellular Automata. CoRR abs/1909.05828 (2019). arXiv: 1909.05828

18. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Aca-
demic Press, New York (1979)

https://doi.org/10.1007/BF02090772
https://doi.org/10.1016/S0012-365X(73)80005-6
https://doi.org/10.1006/jcss.1998.1588
https://doi.org/10.1016/S0019-9958(85)80041-3
https://doi.org/10.1007/978-94-015-9153-9
https://doi.org/10.1007/978-94-015-9153-9
https://doi.org/10.1007/BF01744431
https://doi.org/10.1016/0304-3975(85)90073-8
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1016/S0304-3975(01)00112-8
https://doi.org/10.1016/S0304-3975(01)00112-8
https://doi.org/10.1016/0167-2789(90)90198-X
https://doi.org/10.1007/978-0-387-30440-3
https://doi.org/10.1007/BF01761708
http://arxiv.org/abs/1909.05828


Sublinear-Time Language Recognition and Decision 265

19. Rubinfeld, R., Shapira, A., Ronitt Rubinfeld and Asaf Shapira: Sublinear time
algorithms. SIAM J. Discrete Math. 25(4), 1562–1588 (2011). https://doi.org/10.
1137/100791075

20. Ruzzo, W.L.: On uniform circuit complexity. J. Comput. Syst. Sci. 22(3), 365–383
(1981). https://doi.org/10.1016/0022-0000(81)90038-6

21. Sommerhalder, R., van Westrhenen, S.C.: Parallel language recognition in constant
time by cellular automata. Acta Inf. 19, 397–407 (1983). https://doi.org/10.1007/
BF00290736

22. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Progress
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Abstract. We study the problem of finding a given 2×2 matrix as a sub-
matrix of a given Boolean matrix. Three variants are considered: search
for a matching submatrix of any area, of minimum area, or of maximum
area. The problem relates to 2D pattern matching, and to fields such
as data mining, where the search for submatrices plays an important
role. Besides these connections, the problem itself is very natural and
its investigation helps to demonstrate differences between search tasks
in one-dimensional and multidimensional topologies.

Our results reveal that the problem variants are of different com-
plexities. First, we show that given an m × n Boolean matrix, the any
variant can be solved in ˜O(mn) time for any given 2 × 2 matrix, but
requires various strategies for different 2 × 2 matrices. This contrasts
with the complexity of the task over matrices with entries from the set
{0, 1, 2}, where the problem is Triangle Finding-hard and hence no algo-
rithm with similar running time is known for it. Then, we show that the
minimization variant in the case of Boolean matrices can also be solved
in ˜O(mn) time. Finally, in contrast, we prove Triangle Finding-hardness
for the maximization variant and show that there is a rectangular matrix
multiplication-based algorithm solving it in O

(

mn(min{m,n})0.5302)
time.

Keywords: Boolean matrix · Submatrices · Two-dimensional pattern
matching · Local picture language · Triangle Finding-hard problem ·
Fast matrix multiplication

1 Introduction

We study the complexity of Four Corner Problems. A Four Corner Problem is
concerned with finding a given 2 × 2 matrix as a submatrix of a given Boolean
matrix. By submatrix, we mean a matrix that is formed by restricting the original
matrix to a subset of its rows and columns. For a matrix B =

(
a b
c d

)
, where

a, b, c, d ∈ {0, 1}, we consider three kinds of Four Corner Problems:

1. In the input Boolean matrix M, search for any 2 × 2 submatrix of M that
matches B (we abbreviate this task as ANY

[
a b
c d

]
)

c© Springer Nature Switzerland AG 2020
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2. Search for a submatrix that matches B and encloses the minimum area of M
(abbreviated as MIN

[
a b
c d

]
)

3. Search for a submatrix that matches B and encloses the maximum area of
M (abbreviated as MAX

[
a b
c d

]
).

In general, the problem of finding a specific submatrix in a larger matrix is of
importance in several computer science disciplines. For example Boolean matri-
ces, and their associated submatrices of 1’s, play a central role in data mining
problems such as frequent itemset mining [13]. Moreover, finding a submatrix
of 1’s in the adjacency matrix of a graph G corresponds to finding a biclique of
G [13]. As the maximum edge biclique problem is NP-complete [10], the com-
plexity of searching for a k ×k submatrix is expected to grow as k grows. In this
paper, we deal with the simplest case when k = 2. An example of its use is as
follows. Given m respondents answering n yes/no questions in a questionnaire,
are there two respondents who answered yes on two of the same questions?

The above tasks ANY
[

a b
c d

]
, MIN

[
a b
c d

]
and MAX

[
a b
c d

]
can also be viewed

as two-dimensional pattern matching: we search for any/min/max rectangular
block of a matrix that matches a given template. In only one dimension, similar
pattern matching problems can be described using regular languages [2]. In this
case, all the any/min/max tasks are solvable by a finite-state automaton-based
algorithm in time linear in the input length [8]. In two dimensions, these prob-
lems are easily definable via the notion of local picture languages [5]. This is a
formalism defining sets of two-dimensional arrays (so called pictures) for which
the membership problem can be determined by looking at a window of size 2×2.
These picture languages are a straightforward generalization of the well known
local (string) languages [12], which form a proper subset of the family of regular
languages.

We introduced in [8] a general algorithm solving two-dimensional pattern
matching against local picture languages in time O(mn min{m,n}) for m × n
input matrices. Further, for a specific local picture language, we investigated
the pattern matching problem which is precisely ANY [ 1 1

1 1 ] and showed it to be
solvable in linear time in the input matrix area. Here our goal is to propose
more efficient algorithms for a specialized subclass of local picture language
pattern matching problems over Boolean matrices called Four Corner Problems.
In particular, we show that the problem ANY

[
a b
c d

]
is solvable in Õ(mn) time

for any a, b, c, d ∈ {0, 1} (Theorem 1). This result is surprising because it was
proven in [8] that searching for a submatrix matching ( 1 0

1 1 ) in an n × n matrix
over {0, 1, 2} is Triangle Finding-hard. In other words, the proof introduced
a fine-grained reduction [15] from Triangle Finding to the search problem for
( 1 0
1 1 ) over {0, 1, 2} suggesting that Four Corner Problems are harder over larger

alphabets.
The Triangle Finding problem is to decide whether a given undirected graph

G = (V,E) is triangle-free or not. It is a classic algorithmic problem which can
be reduced to Boolean Matrix Multiplication (see [6]) and solved in time O(nω),
where n = |V | and ω < 2.373 denotes the matrix multiplication exponent [14].
However, it is currently unknown whether Triangle Finding can be solved in
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time Õ(n2). Note that conditional lower bounds based on Triangle Finding are
known for several problems (see, e.g., [1,7,9,11]).

We further investigate the minimization and maximization variants of the
search problem over Boolean matrices. For the min variant, we improve on
Theorem 1 by showing that the problem MIN

[
a b
c d

]
is solvable in Õ(mn) time for

any a, b, c, d ∈ {0, 1} (Theorem 4). For the max variant, we prove that MAX
[

a b
c d

]

is Triangle Finding-hard for any a, b, c, d ∈ {0, 1} (Theorem 5). Also, we present
an algorithm that solves MAX

[
a b
c d

]
in O

(
mn(min{m,n})0.5302

)
time (Theo-

rem 6). This algorithm is based on computing a minimum witness for Boolean
matrix multiplication [4]. However, it is likely impractical because it uses a fast
rectangular matrix multiplication algorithm that involves a large constant factor.

The paper is structured as follows. Section 2 establishes some required
notions. Then, Sects. 3, 4 and 5 gradually present results for the problems
ANY

[
a b
c d

]
, MIN

[
a b
c d

]
and MAX

[
a b
c d

]
.

2 Preliminaries

N = {0, 1, 2, . . .} is the set of natural numbers and N
+ = N � {0} is the set

of positive integers. For functions f, g : N × N → N, we write f(m,n) =
Õ(g(m,n)) if and only if there are numbers p, q ∈ N such that f(m,n) =
O (g(m,n) logp(m) logq(n)).

Let M be an m × n Boolean matrix. We write M to denote the matrix
obtained from M by negating its entries (i.e., we have Mi,j = 1 − Mi,j for
every entry). We consider that rows and columns of M are indexed from 1 to
m and n, respectively. A k × � (rectangular) block of M at a position (r, c) is
denoted as B = M[r, c; k, �], where 1 ≤ k ≤ m, 1 ≤ � ≤ n, 1 ≤ r ≤ m − k + 1,
1 ≤ c ≤ n− �+1. Its entries coincide with the entries of the submatrix obtained
from M by deleting rows 1, . . . , r − 1 and r + k, . . . , m, and columns 1, . . . , c − 1
and c+�, . . . , n. We use Bi,j to refer to the entry in the i-th row and j-th column
of B. We have Bi,j = Mr+i−1,c+j−1. We define the area of B as a(B) = k�, and
the 2 × 2 corners submatrix of B as

κ(B) =
(

B1,1 B1,�

Bk,1 Bk,�

)
.

The set of all blocks of M is denoted by BM.
For a, b, c, d ∈ {0, 1}, we define the following search problems (also known as

Four Corner Problems) for an input Boolean matrix M.

– ANY
[

a b
c d

]
: find B ∈ BM such that κ(B) =

(
a b
c d

)
,

– MIN
[

a b
c d

]
: find B ∈ arg minB∈BM

{a(B) | κ(B) =
(

a b
c d

)},
– MAX

[
a b
c d

]
: find B ∈ arg maxB∈BM

{a(B) | κ(B) =
(

a b
c d

)}.

3 Searching for Any Matching Submatrix

This section presents algorithms for ANY
[

a b
c d

]
that run in nearly linear time

in the input matrix area, for every a, b, c, and d. In some cases an efficient
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algorithm is achieved by using properties of the minimum matching submatrix, so
these algorithms also solve the corresponding MIN

[
a b
c d

]
problem (see Lemmas 2

and 3).
Out of all ANY

[
a b
c d

]
problems, ANY [ 1 1

1 1 ] and ANY [ 0 0
0 0 ] are easiest to solve.

It has already been shown in [8] that ANY [ 1 1
1 1 ] reduces to finding a four-cycle

in a bipartite graph. Here we give a more straightforward algorithm.

Lemma 1. ANY [ 1 1
1 1 ] is solvable in time O(mn) for m by n Boolean matrices.

Proof. Let an m × n Boolean matrix M be given. Without loss of generality,
suppose that m ≥ n. The algorithm is as follows. We create a set S of pairs of
column indexes. Initially, the set is empty. The matrix is traversed row by row.
For each row i, we find the set Ci of all column indexes j such that Mi,j = 1.
Then, for every pair {c1, c2} ∈ (

Ci

2

)
, we check whether {c1, c2} is in S. If not, it

is added to S. Otherwise, a desired submatrix has been found.
The algorithm takes O(mn + n2) time because it visits each entry from M

at most once and it adds at most
(
n
2

)
pairs of column indexes into S. Because

m ≥ n, the total runtime is O(mn). ��
Lemma 2. MIN [ 1 0

1 1 ] is solvable in time O(mn) for m by n Boolean matrices.

Proof. Let M be an m × n Boolean matrix. The algorithm is based on the
following claim: If M contains a block B = M[r, c; k, �] such that κ(B) = ( 1 0

1 1 ),
then it contains a block B′ = M[r′, c′; k′, �′] such that κ(B′) = ( 1 0

1 1 ), B′
i,1 = 0

for all i = 2, . . . , k′ − 1 and B′
k′,j = 0 for all j = 2, . . . , �′ − 1 (i.e., the left and

bottom edge of B′, excluding the corners, contain only 0 entries).
To see this, suppose without loss of generality that Bi,1 = 1 for some 1 <

i < k. Let B1 = M[r, c; i, �] and B2 = M[r + i − 1, c; k − i + 1, �]. Then, either
κ(B1) = ( 1 0

1 1 ) (if Bi,� = 1) or κ(B2) = ( 1 0
1 1 ) (if Bi,� = 0). Since B1 and B2

are proper subsets of B, we have found a smaller block containing ( 1 0
1 1 ) as a

submatrix.
Now, we present the algorithm. It creates a map σ where a key is a pair (i, j)

such that Mi,j = 1. The value associated with (i, j) is a pair (i′, j′) such that
i′ is the largest row index less than i such that Mi′,j = 1 (i.e., i′ is the row
index of the nearest entry 1 located upwards from the position (i, j)) and j′ is
the smallest column index greater than j such that Mi,j′ = 1 (i.e., the column
index of the nearest entry 1 rightwards). Note that the value of i′ or j′ might be
undefined if there is no such row index or column index, respectively.

It is possible to build σ in O(mn) time by making two passes over M. The first
pass is to compute the i′’s. The matrix M is scanned column by column. Each
column index j is scanned from top to bottom. Whenever entry 1 is detected at
a position (i′, j), then i′ is the first component of σ(i, j) for the next detected
entry 1 from position (i, j). Analogously, the second pass, scanning M row by
row, is to compute the j′’s.

Now, for each key (i, j) in the map σ, the algorithm takes its value (i′, j′) and
checks if rows i, i′ and columns j, j′ form a desired submatrix matching ( 1 0

1 1 ).
By doing this, every existing block with 0 entries on the left and bottom edges is
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checked. Among these blocks, a minimum-area block B such that κ(B) = ( 1 0
1 1 )

is returned as the result.
Assuming constant time map operations, the algorithm runs in O(mn) time

(note that the map σ can be implemented by using an m × n array). ��

Lemma 3. MIN [ 1 0
0 1 ] is solvable in time Õ(mn) for m by n Boolean matrices.

Proof. Case I (square matrices): Let an n×n Boolean matrix M be given. We
present a divide and conquer strategy. If t(n) denotes the runtime of searching
for a desired minimum submatrix in an n × n matrix, then we show that

t(n) = 4 · t
(n

2

)
+ O

(
n2

)
. (1)

To accomplish this, we split M horizontally into matrices Mtop and Mbottom,
where Mtop is �n

2 	 by n and Mbottom is 
n
2 � by n. Next, we split Mtop vertically

into Mtop,left, which is �n
2 	 by �n

2 	, and Mtop,right, which is �n
2 	 by 
n

2 �. Quite
analogously, we split Mbottom vertically into Mbottom,left and Mbottom,right. A
desired minimum submatrix is either in one of the four n

2 by n
2 matrices or it

spans the border between either Mtop and Mbottom, Mtop,left and Mtop,right,
or, Mbottom,left and Mbottom,right. We propose a procedure running in O(n2)
time that finds a desired minimum submatrix by the assumption that there is
such a submatrix crossing the specified borders. Therefore, in O(n2) time, we
reduce finding a desired submatrix in an n by n matrix M to finding a desired
submatrix in one of four n

2 by n
2 matrices. If we solve recurrence (1), then we

get t(n) = O
(
n2 log(n)

)
[3].

Without loss of generality, let us deal only with the border between Mtop

and Mbottom. We claim: if B = M[r, c; k, �] is a minimum-area block of M such
that κ(B) = ( 1 0

0 1 ), then Bi,1 = Bi,� for all i = 2, . . . , k − 1. Indeed, Bi,1 �= Bi,�

would clearly contradict the minimality of B.
Based on the claim, we create maps σtop and σbottom such that σtop({i, j}) is

the largest row index such that columns i and j differ in Mtop, and, analogously,
σbottom({i, j}) is the smallest row index such that columns i and j differ in
Mbottom. Once we have constructed σtop and σbottom we go through each pair of
column indexes {i, j} and check if rows σtop({i, j}), σbottom({i, j}) and columns
i, j together create a desired submatrix of M. A minimum submatrix among
the detected submatrices is the candidate for the resulting submatrix returned
by the procedure.

It remains to explain how we obtain the maps. Let us first give a construction
for σtop. We create a set X of pairwise disjoint sets of column indexes. Initially, X
contains one set containing all column indexes. We repeat the following process
for each row of Mtop, starting at the bottommost one and proceeding upwards:
Create two disjoint sets A0 and A1 where A0 contains all column indexes that
are 0’s and A1 contains all column indexes that are 1’s in the current row. For
each set S in X, split S into two disjoint subsets S0 = S ∩ A0 and S1 = S ∩ A1.
For every {i, j} such that i ∈ S0 and j ∈ S1, set σtop({i, j}) to the current row
index. Then, update X by replacing S with S0 and S1. Throw out any sets from
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X that have less than two elements. Finish when X is empty or every row of
Mtop has been processed.

We similarly build σbottom, but we start at the top row of Mbottom going
one row down at a time. It only takes O(n2) time to construct σtop and σbottom

because we do O(n) work per row plus an additional constant amount of work
for each pair of columns.

Case II (rectangular matrices): Let an m × n Boolean matrix M be given.
Assume without loss of generality that m > n.

We perform horizontal splits to divide M into d = �m
n 	 smaller matrices

{Mk}k∈[d] such that for each k ∈ [d − 1], Mk is n by n, and Md is c by n for
some c ≤ n. A desired minimum submatrix is either in Mk for some k ∈ [d] or
it crosses the border between Mk and Mk+1 for some k ∈ [d − 1]. Then, the
former cases in total take O

(
m
n · t(n)

)
time. We claim that the latter cases take

O(mn) time. For each k ∈ [d − 1], we construct maps σk,top and σk,bottom such
that σk,top({i, j}) is the smallest row index such that columns i and j differ in
Mk, and σk,bottom({i, j}) is the largest row index such that columns i and j
differ in Mk. Following the same approach as for the square matrix case, we can
construct all maps in total time O(mn). Then, for each pair of column indexes i,
j we have up to d cases to check. This results in total time O(mn). Note that if
a map is not defined at {i, j}, then we try the next map and combine the cases
together since this means a submatrix might span across multiple horizontal
splits. In total, our algorithm takes O

(
m
n · t(n) + mn

)
= O(mn log(n)) time. ��

Lemma 4. ANY [ 1 0
1 0 ] is solvable in time Õ(mn) for m by n Boolean matrices.

Proof. Let an m × n Boolean matrix M be given.

Case I (tall matrices): We consider the case when m ≥ n. We proceed in a
similar manner as in the proof of Lemma 1. We create a set S of pairs of column
indexes. Initially, the set is empty. The matrix is traversed row by row. For each
row, we do the following. We create a set R. Initially, R is empty, but we will
add column indexes to R. We scan entries from left to right in the row. When
we encounter a 1 entry at column index i, we add i to R. When we encounter a
0 entry at column index j, we go through each column index i from R. If (i, j)
is in S, then we found a desired submatrix. Otherwise, we add (i, j) to S. Since
m ≥ n, this takes O(mn + n2) = O(mn) time.

Case II (short matrices): We consider the case when m < n. We perform
vertical splits to divide M into d = � n

m	 smaller matrices {Mk}k∈[d] such that
for each k ∈ [d − 1], Mk is m by m, and Md is m by c for some c ≤ m.
The matrix M contains a desired submatrix if and only if some Mk contains a
minimal submatrix for some k ∈ [d] or there is a minimal submatrix that crosses
the border between Mk and Mk+1 for some k ∈ [d − 1].

Consider the former condition. Checking if a given Mk matrix contains a
minimal desired submatrix takes O(m2) time by applying the approach from
the first case. Checking all of the matrices in {Mk}k∈[d] takes O(d · m2) =
O

(
n
m · m2

)
= O(mn) time.
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Now, we focus on checking the latter condition. For each k ∈ [d − 1], we
construct maps σk,left and σk,right such that σk,left({i, j}) is the smallest column
index such that rows i and j are equal in Mk, and σk,right({i, j}) is the largest
column index such that rows i and j are equal in Mk. Once we have constructed
these maps, we consider each pair of rows i and j. We have up to d − 1 cases
to check where each case considers the border between Mk and Mk+1 for some
k ∈ [d − 1]. We check each case by seeing if rows i and j along with columns
σk,right({i, j}) and σk+1,left({i, j}) form a desired submatrix. It is sufficient to
check these submatrices because we are only concerned with desired submatrices
crossing the border that are minimal. Note if a map is not defined at {i, j}, then
we try the next map and combine the cases together since this means a submatrix
might span across multiple vertical splits. This takes O(d · m2) = O

(
n
m · m2

)
=

O(mn) time. It remains to describe how the maps are constructed. We claim
that the maps can be constructed in O(mn log(m)) time. Therefore, the total
runtime is O(mn log(m)).

Given k ∈ [d − 1], we describe how to construct σk,left for the matrix Mk.
For each � ∈ [log(m)], we construct a matrix Mk,�. The matrix Mk,� is obtained
from Mk by negating all bits in each row i such that i’s binary expansion has a 1
at position �. Next, in a similar manner as described in the proof of Lemma 3, we
construct a map σ� such that σ�({i, j}) is the smallest column index where rows
i and j differ in Mk,�. Now, we use these log(m) maps to construct σk,left. For
each pair of rows i and j, there is some position � in i and j’s binary expansions
where they differ. The smallest column index where rows i and j differ in Mk,�

is exactly the same as the smallest column index where rows i and j are equal
in Mk. Hence, we make σk,left({i, j}) = σ�({i, j}). It takes O(m2 log(m)) time
to construct σk,left. The map σk,right can be constructed in a similar manner. In
total, it takes O(d · m2 log(m)) = O

(
n
m · m2 log(m)

)
= O(mn log(m)) time to

construct all of the maps. ��
Theorem 1. Problem ANY

[
a b
c d

]
is solvable in time Õ(mn) for m by n Boolean

matrices and any a, b, c, d ∈ {0, 1}.
Proof. Consider the set of matrices S = {( 1 1

1 1 ) , ( 1 0
1 1 ) , ( 1 0

0 1 ) , ( 1 0
1 0 )}. Every 2× 2

Boolean matrix A is similar to a Boolean matrix B ∈ S in the sense that
B = U(A) for an operation U that combines a rotation with an optional nega-
tion of all bits. Further, for every Boolean matrix M, the matrix M contains
A as a submatrix if and only if U(M) contains B as a submatrix. Applying
Lemmas 1, 2, 3, and 4, we can determine if M has A as a submatrix in Õ(mn)
time. ��

4 Searching for a Minimum 2-by-2 Submatrix of 1’s

In the previous section, we presented fast algorithms for minimization prob-
lems MIN [ 1 0

1 1 ] and MIN [ 1 0
0 1 ]. Here, we use preceding results for ANY [ 1 1

1 1 ] and
ANY [ 1 0

1 0 ] to also obtain fast algorithms for MIN [ 1 1
1 1 ] and MIN [ 1 0

1 0 ].
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First, we introduce an algorithm for MIN [ 1 1
1 1 ]. The technique we apply

requires several preparatory steps: a characterization of Boolean matrices that
do not have ( 1 1

1 1 ) as a submatrix (Lemma 5), an algorithm solving MIN [ 1 1
1 1 ]

whose complexity depends on the number of pairs of 1’s within the same rows
(Lemma 6), and a fast algorithm solving MIN [ 1 1

1 1 ] approximately (Lemma 8).
Then, we can apply a similar approach to solve MIN [ 1 0

1 0 ].

Lemma 5. Let A be an m by n Boolean matrix. Let ai denote the number of
1’s in the i-th row of A. If Σm

i=0

(
ai

2

)
>

(
n
2

)
, then A must contain a block whose

corners are 1’s.

Proof. Σm
i=0

(
ai

2

)
is the size of the set T = {(i, {j, k}) | j �= k ∧ Aij = Aik = 1}. If

|T | >
(
n
2

)
, then there are (i1, {j, k}), (i2, {j, k}) ∈ T , where i1 �= i2. This means

that rows i1, i2 and columns j, k form a submatrix ( 1 1
1 1 ). ��

Lemma 6. Let M be an m by n Boolean matrix and T (M) = {(i, {j, k}) | j �=
k ∧ Mi,j = Mi,k = 1}. There is an algorithm solving MIN [ 1 1

1 1 ] in O(|T (M)| +
mn) time.

Proof. The algorithm uses a map σ with keys {j, k}, where j �= k are column
indexes. The value of σ({j, k}) is a row index. Initially, the map is empty.

The input Boolean matrix M is processed row by row. In the i-th row, the
following actions are performed for each (i, {j, k}) ∈ T (M). First, it is checked
whether σ({j, k}) is defined. If it is not, then σ({j, k}) is set to i. Otherwise,
the algorithm finds out whether the rectangle formed by rows i, σ({j, k}) and
columns j, k is the minimum one so far. Then, σ({j, k}) is updated to be i. ��

For convenience, for each Boolean matrix M considered now until the end
of this section, assume that the number of rows and the number of columns of
M are powers of 2. Since any matrix of a general size m × n can be extended to
a 2�log2 m� × 2�log2 n� matrix (with the added entries set to “undefined” value),
the assumption will not have any impact on the generality and asymptotic time
complexity of the presented algorithms.

For p ∈ N
+, let S(p) = {2i | i = 1, 2, . . . , 
log2 p�} be the set of powers of

two greater than 1 and not greater than p. Let M be an m × n Boolean matrix.
For k ∈ S(m) and � ∈ S(n), let RM(k, �) denote the set of all k × � blocks of M
whose top left corner is located in M at a position (1 + a · k

2 , 1 + b · �
2 ) for some

a, b ∈ N. Let RM =
⋃

k∈S(m),�∈S(n) RM(k, �).

Lemma 7. Let B be a p by q block of M. There are powers of 2, denoted by k
and �, such that k < 4p, � < 4q and B is included in a block from RM(k, �).

Proof. Assume B = M[r, c; p, q]. Let k = min{m, 2 · 2�log2 p�}, � = min{n, 2 ·
2�log2 q�},

a = max{x | x ∈ N ∧ x · k

2
+ k ≤ m ∧ 1 + x · k

2
≤ r} , and (2)

b = max{y | y ∈ N ∧ y · �

2
+ � ≤ n ∧ 1 + y · �

2
≤ c}. (3)
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Then, B is included in the block M[1 + a · k
2 , 1 + b · �

2 ; k, �] ∈ RM(k, �). This is
proved as follows. The definition of a ensures that 1+a · k

2 ≤ r. It is also needed
to verify that

r + p − 1 ≤ a · k

2
+ k. (4)

Observe that this inequality is trivially fulfilled when a · k
2 + k = m. Hence,

assume that
a · k

2
+ k < m. (5)

Since m is divisible by k
2 , inequality (5) implies that

(a + 1) · k

2
+ k ≤ m. (6)

It must thus hold that
1 + (a + 1) · k

2
> r (7)

(otherwise the right-hand side of (2) is greater than a). Now, it suffices to combine
(7) and p ≤ 2�log2 p� = k

2 to obtain inequality (4).
Quite analogously, the definition of b ensures that 1 + b · �

2 ≤ c and it can be
proved that c + q − 1 ≤ b · �

2 + �. ��
Lemma 7 and the defined set of blocks RM provide a basis for designing a

fast algorithm that solves MIN [ 1 1
1 1 ] approximately.

Lemma 8. There is an algorithm that, for any m by n Boolean matrix M, finds
in O(mn log m log n) time a block B of M such that κ(B) = ( 1 1

1 1 ) and a(B) <
16·a(Bmin), where Bmin is a minimum-area block of M fulfilling κ(Bmin) = ( 1 1

1 1 ).

Proof. The algorithm works as follows. For each block B ∈ RM, it uses the
algorithm of Lemma 1 to search inside B for a submatrix matching ( 1 1

1 1 ). Among
all the detected submatrices, it outputs a minimal one.

By Lemma 7, Bmin is a part of a block B′ ∈ RM whose area is less than 16
times the area of Bmin, hence the algorithm of Lemma 1 running on B′ finds a
block of M fulfilling the lemma requirement.

For each (k, �) ∈ S(m)×S(n), the sum of the areas of the blocks in RM(k, �)
is O(mn), hence all these blocks are processed by the algorithm of Lemma 1
cumulatively in O(mn) time. Finally, since |S(m) × S(n)| = O(log m log n), the
proposed algorithm runs in O(mn log m log n) time. ��

Theorem 2. MIN [ 1 1
1 1 ] is solvable in time Õ(mn) for m by n Boolean matrices.

Proof. Let M be an input m × n Boolean matrix. Assume that the algorithm of
Lemma 8 finds in M a block of an area S. The minimum area of a block of M
containing ( 1 1

1 1 ) as a submatrix is in the range ( S
16 , S].



Complexity of Searching for 2 by 2 Submatrices in Boolean Matrices 275

Let us identify a suitable subset of blocks in RM such that each minimum-
area block containing ( 1 1

1 1 ) as a submatrix is a part of a block from the subset.
Define

P =
{

(k, �) | k ∈ S(m) ∧ � = 2�log2
16·S
k �−1 ∧ � ≤ n

}
, and

R′
M =

⋃
(k,�)∈P RM(k, �).

The subset of blocks R′
M satisfies the following properties.

Claim I: Every k × � block B in R′
M is of area less than 16 · S. Indeed, we can

derive
a(B) = k� = k · 2�log2

16·S
k �−1 < k · 2log2

16·S
k = 16 · S.

Claim II: Every p × q block B of M such that a(B) ≤ S is a subset of a
block in R′

M. This is proved as follows. By Lemma 7, there is a k × � block
B1 such that 4p > k ∈ S(m), 4q > � ∈ S(n), and B is included in B1. It
holds that k� < 16 · pq ≤ 16 · S, and hence � < 2�log2

16·S
k �. Since l is a power

of 2, we can write � ≤ 2�log2
16·S
k �−1 = �′, which implies that there is a block

B2 ∈ RM(k, �′) ⊆ R′
M that includes B1 as well as B.

Claim III: Every k × � block B in R′
M fulfills min{|T (B)|, |T (Bᵀ)|} =

O((min{k, �})2) (see Lemma 6 for the definition of T (B)). To show this, assume
without loss of generality that k ≥ � and k ≥ 256. Consider B to be split hori-
zontally into 256 subblocks Bi of size k

256 × �. Hence, a(Bi) = k�
256 . By Claim I, it

holds that k� < 16 · S, and hence a(Bi) < 16·S
256 = S

16 . This means that Bi does not
contain ( 1 1

1 1 ) as a submatrix, and hence Lemma 5 implies that |T (Bi)| = O(�2).
Finally, we derive |T (B)| =

∑256
i=1 |T (Bi)| = O(�2).

Algorithm: We now have all prerequisites for describing the intended algo-
rithm and deriving its time complexity. It works as follows. Call the algorithm
of Lemma 8 to obtain S. For each B ∈ R′

M of a size k × �, call the algorithm of
Lemma 6 either for B (if k ≥ �) or Bᵀ (if k < �) to find a minimum-area block
within B containing ( 1 1

1 1 ) as a submatrix in time O((min{k, �})2). A minimum-
area block among all found blocks is returned as the final output.

For an ordered pair (k, �) ∈ P , the blocks of RM(k, �) are processed by the
algorithm of Lemma 6 in cumulative time

O
(mn

k�
· (

(min{k, �})2 + k�
))

= O (mn) .

Hence, assuming without loss of generality that m ≤ n, all the blocks of R′
M are

processed in total time

O

(
∑

(k,�)∈P

mn

)

= O (mn log m) .

Since the other stages of the algorithm run in Õ(mn) time, the stated time
complexity has been proven. ��
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Theorem 3. MIN [ 1 0
1 0 ] is solvable in time Õ(mn) for m by n Boolean matrices.

Theorem 4. MIN
[

a b
c d

]
is solvable in time Õ(mn) for m by n Boolean matrices

and any a, b, c, d ∈ {0, 1}.

5 Searching for a Maximum Matching Submatrix

We first prove that the problem MAX
[

a b
c d

]
is Triangle Finding-hard for any

a, b, c, d ∈ {0, 1} (Theorem 5). Then, we show how MAX
[

a b
c d

]
can be solved

using rectangular matrix multiplication (Theorem 6).

Theorem 5. MAX
[

a b
c d

]
is Triangle Finding-hard for any a, b, c, d ∈ {0, 1}.

Proof. By the same reasoning given in the proof of Theorem 1, it suffices to
prove Triangle Finding-hardness for problems MAX [ 1 1

1 1 ], MAX [ 1 0
1 1 ], MAX [ 1 0

0 1 ],
and MAX [ 1 0

1 0 ]. We first present a fine-grained reduction from Triangle Finding
to MAX [ 1 1

1 1 ]. We then adapt the reduction to the other three problems.
Let a graph G = (V,E) be given. Let the set of vertices be V = {vi | i ∈

{1, . . . , n}}. Let A be an n×n lower triangular Boolean matrix derived from the
adjacency matrix of G as follows: Ai,j = 1 if and only if i > j and {vi, vj} ∈ E.
Observe that {vi, vj , vk}, where i < j < k, is a triangle in G if and only if
Aj,i = Ak,i = Ak,j = 1.

Define the matrix

M1 =

⎛

⎝
A1 O I
O O O
A2 O A3

⎞

⎠

where O is the n×n zero matrix, I is the n×n identity matrix, and A1 = A2 =
A3 = A. An example of a graph G and the induced matrices A and M1 is given
in Fig. 1.

Triangle Finding-hardness of MAX [ 1 1
1 1 ] is implied by the following property.

Claim: G has a triangle if and only if there is a block B of M such that κ(B) =
( 1 1
1 1 ) and a(B) ≥ 3n2.

To prove this, let us investigate which blocks can exist in M1 where all four
corners are 1’s. It is easy to see that there are three types of such blocks:

– A block B included in one of the matrices Ai, i ∈ {1, 2, 3}. Its area is not
greater than n2.

– A block B with two corners in A2 and the other two corners in either A1 or
A3. Assume e.g. that the leftmost column of such a block is the k-th column
of M1 and the rightmost column is in the �-th column of M1, where � > 2n.
The height of B is at most n − k and it holds that � < 3n. Hence, a(B) is
upper bounded by (� − k + 1)(n − k) ≤ (3n − k)(n − k) < 3n2.

– A block B that has one corner in each of the matrices A1, A2, A3, I. Let
the top left corner of B be in M1 at a position (k, �), and the bottom right
corner of B be at a position (s, t). Properties of the Ai’s and I ensure that
|�−k| < n, t = 2n+k, and s > 2n+ �. Hence, a(B) = (s−k +1)(t− �+1) >
(2n + � − k)(2n + k − �) = 4n2 − (� − k)2 ≥ 3n2.
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Fig. 1. (a) A sample graph G on the set of vertices {1, 2, 3, 4} where the subset T =
{1, 2, 4} forms a triangle. (b) The lower triangular adjacency matrix of G. The framed
entries indicate the existence of the triangle T . (c) Triangle Finding in G reduced to
MAX [ 1 1

1 1 ].

It is not difficult to verify that there is a one-to-one correspondence between
blocks of the third type and triples i < j < k such that Aj,i = Ak,i = Ak,j = 1,
hence representing triangles {vi, vj , vk} of G.

To reduce Triangle Finding to MAX [ 1 0
1 1 ], MAX [ 1 0

0 1 ] and MAX [ 1 0
1 0 ], define

the matrices M2, M3 and M4, respectively, as

M2 =

⎛

⎝
A1 O I
O O O
A2 O A3

⎞

⎠ , M3 =

⎛

⎝
A1 O I
O O O
A2 O A3

⎞

⎠ , M4 =

⎛

⎝
A1 O I
O O O
A2 O A3

⎞

⎠ .

Recall that C denotes the matrix created from a Boolean matrix C by negating
its entries. Figure 2 shows the matrices M3 and M4 constructed for the graph
G from Fig. 1.

One can again verify that G has a triangle if and only if each of the con-
structed matrices contains a block B such that a(B) ≥ 3n2 and κ(B) matches
the desired 2 × 2 matrix. ��

Now, let us focus on approaches for solving the maximization problems. Given
an m × n Boolean matrix M and p, q ∈ {0, 1}, let σM

p,q denote the map whose
keys are pairs (i, j), where i, j are row indexes of M such that i < j. For a key
(i, j), the map value is defined as the smallest column index c such that Mi,c = p
and Mj,c = q.

Let M′ denote the matrix M flipped left to right. It is easy to see that
every problem MAX

[
a b
c d

]
, where a, b, c, d ∈ {0, 1}, can be solved based on the

maps σM
a,c and σM′

b,d . Conversely, this also shows that these maps are Triangle
Finding-hard to build.
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Fig. 2. Triangle Finding reduced to (a) MAX [ 1 0
0 1 ] and (b) MAX [ 1 0

1 0 ], respectively.

The maps can be computed based on a minimum witness for Boolean matrix
multiplication [4], and hence the time complexity of solving MAX

[
a b
c d

]
in this

way coincides with the time complexity in [4] for the minimum witness problem.

Lemma 9. There is an algorithm that, for any m by n Boolean matrix M where
m ≤ n, and any p, q ∈ {0, 1}, builds σM

p,q in time O
(
mn · m0.5302

)
.

Theorem 6. For any a, b, c, d ∈ {0, 1}, there is an algorithm solving MAX
[

a b
c d

]

in time O
(
mn · (min{m,n})0.5302

)
for m by n Boolean matrices.

6 Conclusion

We investigated the complexity of Four Corner Problems over Boolean matrices.
A Four Corner Problem is concerned with searching for a given 2 × 2 submatrix
in a given Boolean matrix. We demonstrated that minimum-area Four Corner
Problems over Boolean matrices are solvable in nearly linear time in the input
matrix area (Theorem 4) and maximum-area Four Corner Problems over Boolean
matrices are Triangle Finding-hard (Theorem 5). The algorithms that we pre-
sented for the former problems might lead to efficient implementations, while
the results achieved for the latter problems give rise to an interesting unresolved
theoretical question: Are the maximum-area Four Corner Problems harder than
the Triangle Finding problem? Going further, we suggest that a possible future
direction is to investigate the complexity of Four Corner Problems over matrices
with entries from larger alphabets.
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Abstract. We identify the structure of the lexicographically least word
avoiding 5/4-powers on the alphabet of nonnegative integers.

Keywords: Combinatorics on words · Power-freeness ·
Lexicographic-leastness

1 Introduction

For any (finite or infinite) alphabet Σ, we let Σ∗ denote the set of finite words
on Σ. We start indexing (finite and infinite) words at position 0.

A morphism on an alphabet Σ is a map ϕ : Σ → Σ∗. It extends naturally
to finite and infinite words by concatenation. We say that a morphism ϕ on Σ
is k-uniform if |ϕ(c)| = k for all c ∈ Σ. A 1-uniform morphism is also called a
coding. If there exists a letter c ∈ Σ such that ϕ(c) starts with c, then iterating
ϕ on c gives a word ϕω(c), which is a fixed point of ϕ beginning with c.

A fractional power is a partial repetition, defined as follows. Let a and b be
relatively prime positive integers. If v = v0v1 · · · v�−1 is a nonempty word whose
length � is divisible by b, the a/b-power of v is the word

va/b := v�a/b�v0v1 · · · v�·{a/b}−1,

where {a/b} = a/b − �a/b� is the fractional part of a/b. Note that |va/b| = a
b |v|.

If a/b > 1, then a word w is an a/b-power if and only if w can be written veu

where e is a positive integer, u is a prefix of v, and |w|
|v| = a

b .

Example 1. The 3/2-power of the word 0111 is (0111)3/2 = 011101.

In general, a 5/4-power is a word of the form (xy)5/4 = xyx, where |xy| = 4�
and |xyx| = 5� for some � ≥ 1. It follows that |x| = � and |y| = 3�.

Elsewhere in the literature, researchers have been interested in words with
no α-power factors for all α ≥ a/b. In this paper, we consider a slightly different
notion, and we say that a word is a/b-power-free if none of its factors is an
(exact) a/b-power.

Supported in part by a Francqui Foundation Fellowship of the Belgian American Edu-
cational Foundation.

c© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 280–293, 2020.
https://doi.org/10.1007/978-3-030-48516-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48516-0_21&domain=pdf
http://orcid.org/0000-0002-0359-8381
http://orcid.org/0000-0002-2805-2465
https://doi.org/10.1007/978-3-030-48516-0_21


Avoiding 5/4-Powers on the Alphabet of Nonnegative Integers 281

Notation 1. Let a and b be relatively prime positive integers such that a/b > 1.
Define wa/b to be the lexicographically least infinite word on Z≥0 avoiding a/b-
powers.

Fig. 1. Portions of w3/2 (left) and w5/4 (right), partitioned into rows of width 6. The
letter 0 is represented by white cells, 1 by slightly darker cells, and so on. The word w3/2

is shown from the beginning. The word w5/4 = w(0)w(1) · · · is shown beginning from
w(i)i≥6758; the term w(6759) (top row, second column) is the last entry in w(6i+3)i≥0

that is not 1.

Guay-Paquet and Shallit [1] identified the structure of wa for each integer
a ≥ 2. In particular,

w2 = 01020103010201040102010301020105 · · ·

is the fixed point of the 2-uniform morphism μ on the alphabet of nonnegative
integers defined by μ(n) = 0(n + 1) for all n ≥ 0. The first-named author and
Shallit [3] studied the structure of

w3/2 = 0011021001120011031001130011021001140011031 · · · ,

which is the image under a coding of a fixed point of a 6-uniform morphism.
A prefix of this word appears in Fig. 1. Pudwell and the first-named author [2]
undertook a large study of wa/b for rational numbers in the range 1 < a

b < 2,
and identified many of these words as images under codings of fixed points of
morphisms.

The simplest number a
b in this range for which the structure of wa/b was not

known is 5
4 . In this paper we give a morphic description for w5/4. Let w(i) be
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the ith letter of w5/4. For the morphic description of w5/4, we need 8 types of
letters, n0, n1, . . . , n7 for each integer n ∈ Z. For example, 00, 01, . . . , 07 are the
8 different letters of the form 0j . The subscript j of the letter nj will determine
the first 5 letters of ϕ(nj), which correspond to the first 5 columns in Fig. 1. The
definition of ϕ in Notation 2 implies that these columns are eventually periodic
with period length 1 or 4.

Notation 2. Let Σ8 be the alphabet {nj | n ∈ Z, 0 ≤ j ≤ 7}. Let ϕ be the
6-uniform morphism defined on Σ8 by

ϕ(n0) = 0011020314(n + 3)5
ϕ(n1) = 1617000102(n + 2)3
ϕ(n2) = 1415160700(n + 3)1
ϕ(n3) = 0213140516(n + 2)7
ϕ(n4) = 0011020314(n + 1)5
ϕ(n5) = 1617000102(n + 2)3
ϕ(n6) = 1415160700(n + 1)1
ϕ(n7) = 0213140516(n + 2)7.

We also define the coding τ(nj) = n for all nj ∈ Σ8. In the rest of the paper,
we think about the definitions of ϕ and τ ◦ ϕ as 8 × 6 arrays of their letters. In
particular, we will refer to letters in images of ϕ and τ ◦ϕ by their columns (first
through sixth).

The following gives the structure of w5/4.

Theorem 1. There exist words p, z of lengths |p| = 6764 and |z| = 20226 such
that w5/4 = p τ(ϕ(z)ϕ2(z) · · · ).

This word is more complicated than previously studied words wa/b in two
major ways. Unlike all words wa/b whose structures were previously known, the
natural description of w5/4 is not as an image under a coding of a fixed point
of a morphism, since τ(z) is not a factor of w5/4. Additionally, the value of d in
the image ϕ(nj) = u (n + d)i varies with j. The sequence 3, 2, 3, 2, 1, 2, 1, 2, . . .
of d values is periodic with period length 8, hence the 8 types of letters. These
properties make the proofs significantly more intricate.

We will define s = zϕ(z)ϕ2(z) · · · . To prove Theorem 1, we must show that

1. p τ(ϕ(s)) is 5/4-power-free, and
2. p τ(ϕ(s)) is lexicographically least (by showing that decreasing any letter

introduces a 5/4-power ending in that position).

We use Mathematica to carry out several computations required in the proofs.
Theorem 1 implies the following recurrence for letters sufficiently far out in

w5/4 with positions ≡ 1 mod 6.
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Corollary 1. Let w(i) be the ith letter of w5/4. Then, for all i ≥ 0,

w(6i + 123061) = w(i + 5920) +

⎧
⎪⎨

⎪⎩

3 if i ≡ 0, 2 mod 8
1 if i ≡ 4, 6 mod 8
2 if i ≡ 1 mod 2.

This paper is organized as follows. Section 2 gives preliminary properties
about ϕ, p, and z. In Sect. 3, we introduce the concept of pre-5/4-power-freeness.
We show that w5/4 = p τ(ϕ(s)) in two steps. First, in Sect. 4, we show that
p τ(ϕ(s)) is 5/4-power-free using the fact that s is pre-5/4-power-free. Second,
in Sect. 5, we show that p τ(ϕ(s)) is lexicographically least. Proofs of some sup-
porting lemmas and propositions are omitted in this extended abstract due to
space constraints and appear in the full version of the paper [4].

2 Preliminary Properties

Note that in Notation 2 the subscripts in each image under ϕ increase by 1
modulo 8 from one letter to the next and also from the end of each image to the
beginning of the next.

Definition 1. A (finite or infinite) word w on Σ8 is subscript-increasing if the
subscripts of the letters of w increase by 1 modulo 8 from one letter to the next.

If w is a subscript-increasing word on Σ8, then so is ϕ(w). For every subscript-
increasing word w on Σ8, it follows from Notation 2 that the subsequence of
letters with even subscripts in ϕ(w) is a factor of (00021416)ω.

Iterating ϕ on any word on Σ8 will eventually give a word containing letters
nj with arbitrarily large n. Indeed, after one iteration, we see a letter with
subscript 3 or 7, so after two iterations we see a letter with subscript 7. Since
ϕ(n7) contains (n + 2)7, the alphabet is growing.

Before position 6764, we cannot expect the prefix of w5/4 to be the image of
another word under the morphism ϕ because the five columns have not become
periodic yet (recall Fig. 1 where w(6759) is the last term of w(6i + 3) before a
periodic pattern appears).

One checks programmatically that there are two subscript-increasing pre-
images of w(6764)w(6765) · · · under τ ◦ ϕ. We choose the following for s.

Definition 2. Let p denote the length-6764 prefix of w5/4. We define

z = 020334051617(−10)2102232405 · · · 001102031425162700010233
to be the length-20226 subscript-increasing word on Σ8 starting with 02 and
satisfying

τ(ϕ(z)) = w(6764)w(6765) · · · w(6764 + 6|z| − 1).

We define s = zϕ(z)ϕ2(z) · · · as before.
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Lemma 1. Let Γ ⊂ Σ8 be the finite alphabet

{−30,−32,−20,−21,−22,−23,−25,−27,−11,−13,−14,−15,−16,−17, 04, 06}.

We have the following properties.

1. The length-844 suffixes of p and τ(z) are equal.
2. The word z is a subscript-increasing finite word whose alphabet is the 32-letter

set

Alph(z) = {−10,−12, 00, 01, 02, 03, 05, 07, 10, 11, 12, 13, 14, 15, 16, 17,
21, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 37, 41, 43, 45, 47}.

In particular, z contains no letters in Γ . The last letter of the form −1j

appears at position 80, and the subsequence of letters with even subscripts
starting at position 86 is a finite prefix of (00021416)ω.

3. The word s is a subscript-increasing infinite word whose alphabet is Alph(z)∪
{53, 63} ∪ {n7 | n ≥ 5}. In particular, s contains no letters in Γ .

4. For all words w on Σ8, the only letters of ϕ(w) of the form nj with even j
are 0j and 1j. More precisely, the only letter with subscript 0 (resp., 2; resp.,
4; resp., 6) in ϕ(w) is 00 (resp., 02; resp., 14; resp., 16).

5. As long as nj ∈ (Σ8 \ Γ ) with 0 ≤ j ≤ 7, the last letter of ϕ(nj) is not of the
form 0i or 1i. In particular, for all letters nj of s, the last letter of ϕ(nj) is
of the form ni where n ≥ 2.

3 Pre-5/4-Power-Freeness

A morphism μ on Σ is a/b-power-free if μ preserves a/b-power-freeness, that
is, for all a/b-power-free words w on Σ, μ(w) is also a/b-power-free. Previously
studied a/b-power-free words [1–3] have all been described by a/b-power-free
morphisms. However, the morphism ϕ defined in Notation 2 is not 5/4-power-
free. Indeed for any integers n, n̄ ∈ Z, the word 04n5n̄6 is 5/4-power-free, but
ϕ(04n5n̄6) contains the length-10 factor 14151617000102(n + 2)31415, which is a
5/4-power. Therefore, to prove that w5/4 is 5/4-power-free, we use a different
approach. We still need to guarantee that there are no 5/4-powers in images of
certain words under ϕ. Specifically, we would like all factors xyx′ of a word with
|x| = 1

3 |y| = |x′| to satisfy ϕ(x) �= ϕ(x′).

Definition 3. A pre-5/4-power-free word is a (finite or infinite) subscript-
increasing word w on Σ8 such that, for all factors xyx′ of w with |x| = 1

3 |y| = |x′|,
there exists 0 ≤ m ≤ |x| − 1 such that

1. if the subscripts of x(m) and x′(m) are equal or odd, then τ(x(m)) �=
τ(x′(m)), and

2. if the subscripts of x(m) and x′(m) are even and differ by 4, then τ(x(m)) −
τ(x′(m)) /∈ {−2, 2}.
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Note that if the subscripts of x(m) and x′(m) are not equal, then they differ
by 4 since |xy| = 4|x|. Definition 3 involves the set {−2, 2} because if the sub-
scripts of x(m) and x′(m) are even and differ by 4 and τ(x(m)) − τ(x′(m)) ∈
{−2, 2} then ϕ(x(m)) = ϕ(x′(m)).

For example, the word 00n1n̄2 ¯̄n324 is not pre-5/4-power-free because

ϕ(00n1n̄2 ¯̄n324) = 001102031435ϕ(n1n̄2 ¯̄n3)001102031435

is a 5/4-power of length 30. On the other hand, the word 00n1n̄2 ¯̄n304 is pre-5/4-
power-free because

ϕ(00n1n̄2 ¯̄n304) = 001102031435ϕ(n1n̄2 ¯̄n3)001102031415

is not a 5/4-power. The word 00n1n̄2 ¯̄n304 is also 5/4-power-free, since 00 and
04 are different letters. The next proposition states that pre-5/4-power-freeness
implies 5/4-power-freeness in general.

Proposition 1. If a word is pre-5/4-power-free, then it is also 5/4-power-free.

One checks programmatically that the finite word z is pre-5/4-power-free. As
a consequence, we will show that pτ(ϕ(s)) is 5/4-power-free in Sect. 4.

Lemma 2. Let � ≥ 6 be an integer. If w is a pre-5/4-power-free word on Σ8,
then ϕ(w) contains no 5/4-power of length 5�.

Lemma 2 takes care of large 5/4-powers. Toward avoiding all 5/4-powers,
the following proposition shows that ϕ preserves the property of pre-5/4-power-
freeness.

Proposition 2. Let Γ be the alphabet

{−30,−32,−20,−21,−22,−23,−25,−27,−11,−13,−14,−15,−16,−17, 04, 06}.

For all pre-5/4-power-free words w on Σ8 \ Γ , ϕ(w) is pre-5/4-power-free.

Next we show that the word s = zϕ(z)ϕ2(z) · · · is pre-5/4-power-free. The
common length-4 suffix 0003 of p and τ(z) is a possible factor of ϕ, which requires
extra consideration in Theorems 2 and 3, and in Proposition 3.

Theorem 2. The word s is pre-5/4-power-free.

Proof. We show that, for all e ≥ 1, zϕ(z) · · · ϕe(z) is pre-5/4-power-free. Note
that zϕ(z) · · · ϕe(z) ∈ (Σ8 \Γ )∗ for all e ≥ 1. We proceed by induction on e ≥ 1.

Base Case. Suppose that e = 1. We wrote code to check that zϕ(z) is
pre-5/4-power-free. The computation took about 13 hours.

Induction Step. We suppose that zϕ(z) · · · ϕe(z) is pre-5/4-power-free for
e ≥ 1. We show that zϕ(z) · · · ϕe+1(z) is also pre-5/4-power-free. First, the word
zϕ(z) · · · ϕe+1(z) is subscript-increasing. Let xyx′ be a factor of zϕ(z) · · · ϕe+1(z)
with |x| = 1

3 |y| = |x′|.
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Suppose that xyx′ is a factor of either z or ϕ(z) · · · ϕe+1(z). In the first case,
Definition 3 holds since z is pre-5/4-power-free. In the second case, Definition 3
holds too. Indeed, it suffices to use Proposition 2 with zϕ(z) · · · ϕe(z) ∈ (Σ8\Γ )∗,
which is pre-5/4-power-free by the induction hypothesis.

It remains to check the case where xyx′ overlaps z. If yx′ overlaps z, then x
is a factor of z and |xyx′| = 5|x| ≤ 5|z| < 6|z| = |ϕ(z)|. In particular, xyx′ is a
factor of zϕ(z). The base case of the induction implies that Definition 3 holds
in this case. Thus we may suppose that x overlaps z.

If the overlap length is at least 5, then x contains the suffix 2700010233 of z.
If the subscripts of x and x′ differ by 4, then x′ being a factor of ϕ(z) · · · ϕe+1(z)
implies that the factor 2700010233 of x corresponds to a factor n314n̄516 ¯̄n7 of x′.
So Definition 3 is fulfilled. If the subscripts of x and x′ line up, then x′ being a
factor of ϕ(z) · · · ϕe+1(z) implies that the factor 2700010233 of x corresponds to
a factor n700n̄102 ¯̄n3 of x′. If n7 �= 27 or n̄1 �= 01 or ¯̄n3 �= 33, then Definition 3
holds. Otherwise, then x′ contains 2700010233, which is impossible since this
factor does not appear in ϕ(z) · · · ϕe+1(z).

Suppose the overlap length is less than or equal to 4. If |x| = |x′| is odd, then
the subscripts of x and x′ differ by 4. Since x contains the factor 3314, then x′

being a factor of ϕ(z) · · · ϕe+1(z) implies that the factor 3314 of x corresponds to
a factor n700 of x′, and Definition 3 holds. If |x| = |x′| is even, then the subscripts
of x and x′ line up. The words x and x′ agree on even subscripts (because the
length-4 suffix of z is 00010233). For odd subscripts, if the corresponding letters
of x and x′ belong to different columns (that is, their positions are not congruent
modulo 6), then Definition 3 holds by Part 5 of Lemma 1. If the corresponding
letters belong to the same column, then x and x′ agree everywhere except maybe
in the sixth column. Toward a contradiction, suppose the words are equal in the
sixth column, so x = x′. Since x′ is a factor of ϕ(z) · · · ϕe+1(z), there exists
a word w ∈ Σ∗

8 such that x′ is a factor of ϕ(w) and w itself is a factor of
zϕ(z) · · · ϕe(z). We take w to be of minimal length.

If |w| ≤ 3, then |x| = |x′| ≤ |ϕ(w)| ≤ 18, so |xyx′| = 5|x| ≤ 90 < |zϕ(z)|,
which means that xyx′ is a factor of zϕ(z). Due to the base case, we already
know that xyx′ satisfies the conditions of Definition 3.

If |w| ≥ 4, then w can take two different forms:

w =

{
11020334 · · ·
15260710 · · ·

since 00010233ϕ(z)ϕ2(z) · · · = 00010233141516010031 · · · . Due to the definition
of the morphism ϕ, the letters 10 and 34 do not occur in ϕ(z) · · · ϕe(z). Since
w is a factor of zϕ(z) · · · ϕe(z), they must belong to z. But none of the words
11020334 and 15260710 belongs to z. Indeed, the letter 34 occurs in z only at
positions 2 and 66, and we have z(63)z(64)z(65)z(66) = 01020334. Similarly, the
letter 10 only occurs in z only at positions 22 and 54 and 78, and we find
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z(19)z(20)z(21)z(22) = 25260710,
z(51)z(52)z(53)z(54) = 15262710,
z(75)z(76)z(77)z(78) = 15261710.

This case is thus impossible.

4 5/4-power-freeness

In this section we show that pτ(ϕ(s)) is 5/4-power-free. As a corollary of Theo-
rem 2, we obtain the following.

Corollary 2. The infinite word ϕ(s) is 5/4-power-free.

Proof. By Theorem 2, s is pre-5/4-power-free. Since s ∈ (Σ8\Γ )ω, Proposition 2
implies that ϕ(s) is pre-5/4-power-free. By Proposition 1, ϕ(s) is 5/4-power-free.

The following lemma asserts that applying the coding τ on ϕ(s) preserves
the 5/4-power-freeness.

Lemma 3. The infinite word τ(ϕ(s)) is 5/4-power-free.

The last step in showing 5/4-power-freeness is to prove that prepending p
to τ(ϕ(s)) also yields a 5/4-power-free word. To that aim, we introduce the
following notion.

Definition 4. Let N be a set of integers, and let α, β ∈ Z∪{n+1, n+2, n+3},
where n is a symbol. Then α and β are possibly equal with respect to N if there
exist m,m′ ∈ N such that α|n=m = β|n=m′ .

Two letters α, β are possibly equal with respect to N if we can make them
equal by substituting integers from N for the symbol n. In particular, for every
nonempty set N , two integers α, β are possibly equal if and only if α = β. The
definition of possibly equal letters extends to words in the natural way. The next
two lemmas will be used to prove Theorem 3.

Lemma 4. Let n be a symbol, and let N ⊇ {−3,−2, . . . , 4}. Let α, β be elements
of {0, 1, . . . , 5} ∪ {n + 1, n + 2, n + 3}. If α and β are possibly equal with respect
to N , then they are possibly equal with respect to {−3,−2, . . . , 4}.
Lemma 5. Let n be a symbol, let D = {1, 2, 3}, and let N = {−3,−2, . . . , 4}.
Let v be the prefix of pτ(ϕ(s)) of length |p|+952 = 7716. For each position i ≥ 0
in the eventually periodic word

vτ
(
ϕ(n1)ϕ(n2)ϕ(n3)ϕ(n4)ϕ(n5)ϕ(n6)ϕ(n7)ϕ(n0) · · ·

)

on {0, 1, . . . , 5} ∪ {n + 1, n + 2, n + 3}, define the set

Xi =

{
{c} if the letter in position i is c ∈ Z

N + d if the letter in position i is n + d where d ∈ D.

For all i, j ≥ 0, if the letters in positions i, j are possibly equal with respect to
N , then Xi ∩ Xj is nonempty.
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Proof. The set Xi is the set of integer letters c such that the letter in position i
in vτ(ϕ(n1)ϕ(n2)ϕ(n3) · · · ) is possibly equal to c with respect to N . Since v is
a word on {0, 1, . . . , 5} and the integer letters of τ ◦ ϕ are elements of {0, 1} ⊆
{0, 1, . . . , 5}, the integer letters of vτ(ϕ(n1)ϕ(n2)ϕ(n3) · · · ) are in {0, 1, . . . , 5}.
There are three cases to consider depending on the nature of the letters in
positions i and j.

If both letters are integers, let c be the letter in position i and c′ be the letter
in position j. Since they are possibly equal with respect to N , then c = c′. So
c ∈ Xi ∩ Xj .

If one letter is an integer and the other is symbolic, without loss of generality,
let c be the letter in position i and n + d be the letter in position j with d ∈ D.
By assumption, c = n + d for some n ∈ N . So Xi ∩ Xj = {c} ∩ (N + d) = {c}.

If both letters are symbolic, let n + d be the letter in position i and n + d′

be the letter in position j with d, d′ ∈ D. By assumption, Xi = N + d and
Xj = N + d′, so 0 ∈ Xi ∩ Xj .

Theorem 3. The infinite word pτ(ϕ(s)) is 5/4-power-free.

Proof. Since p is the prefix of w5/4 of length 6764, p is 5/4-power-free. By
Lemma 3, τ(ϕ(s)) is also 5/4-power-free. So if pτ(ϕ(s)) contains a 5/4-power,
then it must overlap p and τ(ϕ(s)). We will show that there are no 5/4-powers
xyx starting in p.

For factors xyx with |x| < 952 starting in p, note that |x| < 952 implies
|xyx| < 5 · 952, so it is enough to look for 5/4-powers in pτ(ϕ(z))—as opposed
to pτ(ϕ(s))—starting in p. We check programmatically that there is no such
5/4-power xyx. The computation took less than a minute.

For long factors, we show that each length-952 factor x starting in p only
occurs once in pτ(ϕ(s)). This will imply that there is no 5/4-power xyx in
pτ(ϕ(s)) starting in p such that |x| ≥ 952. Since s = 020334 · · · , the word
pτ(ϕ(s)) is of the form

pτ
(
ϕ(n2)ϕ(n3)ϕ(n4)ϕ(n5)ϕ(n6)ϕ(n7)ϕ(n0)ϕ(n1) · · ·

)
.

Here we abuse notation; namely, the n’s are not necessarily equal. Observe that
|ϕ(n2)ϕ(n3) · · · ϕ(n0)ϕ(n1)| = 48. We use a method based on [2, Section 6]. How-
ever, this is another situation in which the structure of the word w5/4 is more
complex. The sequence 3, 2, 1, 2, 1, 2, 3, 2, . . . of increments d in Notation 2 is
periodic with period length 8, but each of the first five columns is periodic with
period length at most 4. In other words, the factors starting at positions i and
i + 24 are possibly equal when i is sufficiently large. Therefore we need to run
the following procedure for two different sets of positions instead of one. These
two sets are

S1 = {0, 1, . . . , |p| − 1} ∪ {|p|, |p| + 1, . . . , |p| + 23}
and

S2 = {0, 1, . . . , |p| − 1} ∪ {|p| + 24, |p| + 25, . . . , |p| + 47}.
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The positions in {0, 1, . . . , |p| − 1} represent factors starting in the prefix p
of pτ(ϕ(s)), while the other positions are representatives of general positions
modulo 48 in the suffix τ(ϕ(s)). We also need to specify a set N of integers that,
roughly speaking, represent the possible values that each symbolic n can take.

Let S be a set of positions, and let N be a set of integers. As in Lemma 5, the
set N represents values of n such that the last letter of τ(ϕ(nj)), namely n + d
for some d ∈ {1, 2, 3}, is a letter in pτ(ϕ(s)). We maintain classes of positions
corresponding to possibly equal factors starting at those positions. Start with
� = 0, for which all length-0 factors are equal. Then all positions belong to the
same class S. At each step, we increase � by 1, and for each position i we consider
the factor of length � starting at position i, extended from the previous step by
one letter to the right. We break each class into new classes according to the last
letter of each extended factor, as described in the following paragraph. We stop
once each class contains exactly one position, because then each factor occurs at
most once. Note that this procedure does not necessarily terminate, depending
on the inputs. If it terminates, then the output is �.

We define the value of each letter in Σ8 to be its image under τ . For each
class I, we build subclasses Ic indexed by integers c. For each position i ∈ I, we
consider the extended factor of length � starting at position i. If 0 ≤ i ≤ |p| − 1,
then the new letter is in Z because i + � − 1 represents a particular position in
pτ(ϕ(s)). If i ≥ |p|, then the new letter is either in Z or symbolic in n because
i + � − 1 represents all sufficiently large positions congruent to i + � − 1 modulo
48. Now there are two cases. If the new letter is an integer c, we add the position
i to the class Ic. If the new letter is n + d where d ∈ {1, 2, 3}, then we add the
position i to the class In′+d for each n′ ∈ N . We do this for all classes I and we
use the union ⋃

I
{Ic : c ∈ Z}

as our new set of classes in the next step.
For the sets S1 and S2, we use N = {0, 1, 2, 3, 4}. The prefix of pτ(ϕ(s))

of length |p| + 952 is a word on the alphabet {0, 1, . . . , 5}. Therefore, since
d ∈ {1, 2, 3}, at most the eight classes I0, I1, . . . , I7 arise in each step of the
procedure, since {0, 1, . . . , 5} ∪ (N + {1, 2, 3}) = {0, 1, . . . , 7}. We wrote code
that implements this procedure. For both sets, it terminates and gives � = 952.
Our implementation took about 20 s for each set.

It remains to show that using the set N = {0, 1, 2, 3, 4} is sufficient to guar-
antee that if the procedure terminates then each length-952 factor x starting in
p only occurs once in pτ(ϕ(s)). Since pτ(ϕ(s)) is a word on the alphabet N, it
suffices to choose a subset N of N − {1, 2, 3} = {−3,−2, . . . }.

There exist letters in pτ(ϕ(s)) that arise as the last letter of τ(ϕ(nj)) for
arbitrarily large n, but the procedure cannot use an infinite set N . We use
Lemmas 4 and 5 to show that N need not contain any integer greater than 4.
Let v be the prefix of pτ(ϕ(s)) of length |p|+952. The procedure examines factors
of vτ(ϕ(n1)ϕ(n2)ϕ(n3) · · · ), which is a word on the alphabet {0, 1, . . . , 5}∪{n+
1, n + 2, n + 3}. Let N ⊇ {0, 1, . . . , 5} − {1, 2, 3} = {−3,−2, . . . , 4}. On the
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step corresponding to length � in the procedure, suppose the length-� factors of
vτ(ϕ(n1)ϕ(n2)ϕ(n3) · · · ) starting at positions i and j are possibly equal with
respect to N . By Lemma 4, the two factors are possibly equal with respect to
{−3,−2, . . . , 4}. In particular, the last two letters, which have positions i+ �−1
and j + � − 1, are possibly equal with respect to {−3,−2, . . . , 4}. By Lemma 5,
there exists c ∈ Xi+�−1 ∩Xj+�−1. Therefore the letters in positions i+ �− 1 and
j + � − 1 are both possibly equal to c with respect to {−3,−2, . . . , 4}, so i and
j are both added to Ic.

We have shown that N ⊆ {−3,−2, . . . , 4} suffices. Next we remove −3 and
−2. We continue to consider letters in pτ(ϕ(s)) that arise as the last letter of
τ(ϕ(nj)) for n ∈ N . Since τ(s) does not contain the letter −3, this implies n+3
and 0 are not possibly equal with respect to the alphabet of τ(s), so N need not
contain −3. Similarly, τ(s) does not contain the letter −2; therefore n + 2 and
0 are not possibly equal, and n + 3 and 1 are not possibly equal, so N need not
contain −2. Therefore N ⊆ {−1, 0, 1, 2, 3, 4} suffices.

To remove −1, we run the procedure on both sets S1 and S2 again but with
the set {−1, 0, 1, 2, 3, 4}. However, we artificially stop the procedure at � = 952.

For the set S1, there are 4 nonempty classes of positions remaining, namely
{6760, 6784}, {6761, 6785}, {6762, 6786}, {6763, 6787}. The smallest position
in each class is one of the last 4 positions in p. As length-952 factors of
pτ(ϕ(n2)ϕ(n3) · · · ), each pair of factors starting at those positions are possi-
bly equal with respect to N . For instance, consider the two factors

000 3 11100 3 01101 2 01001 4 11000 2 11100 2 · · · ,

000(n + 2)11100(n + 1)01101(n + 2)01001(n + 3)11000(n + 2)11100(n + 3) · · ·
starting at positions 6760, 6784. The first factor is 0003τ(ϕ(s)) and the second
is 000(n+2)τ(ϕ(n6)ϕ(n7) · · · ), which occurs every 48 positions in the repetition
period τ(ϕ(n2)ϕ(n3) · · · ). For these two factors to be equal, the pair of letters 2
and n+3 have to be equal, and solving 2 = n+3 gives n = −1. Similarly, the other
three pairs of factors are only equal if the same pair of letters are equal, which
again gives n = −1. But letters −1 only appear in s in its prefix z and only with
subscripts 0 and 2 and only at the nine positions 6, 14, 16, 32, 40, 48, 56, 70, 80. A
finite check shows that the factors in each pair are different.

For S2, there are also 4 nonempty classes of positions remaining. To show that
the factors in each pair are different, we use slightly longer prefixes of 003τ(ϕ(s))
and 000(n + 2)τ(ϕ(n2)ϕ(n3) · · · ) than we used for S1, and we again find a pair
of letters 2 and n + 3. This again implies n = −1 for each class.

Therefore we can remove −1 from N . We are left with N ⊆ {0, 1, 2, 3, 4}, so
N = {0, 1, 2, 3, 4} suffices.

5 Lexicographic-Leastness

In this section we show that pτ(ϕ(s)) is lexicographically least by show-
ing that decreasing any nonzero letter introduces a 5/4-power ending in that
position.
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Recall that, for all e ≥ 1, the subsequence of letters with even subscripts in
ϕe(z) is a factor of (00021416)ω by Lemma 1.

Lemma 6. If 00 (resp., 02; resp., 14; resp., 16) appears in s at a position i ≥ 90,
then the letter at position i − 4 in s is 14 (resp., 16; resp., 00; resp., 02).

Proposition 3. Decreasing any nonzero letter of pτ(ϕ(s)) introduces a 5/4-
power ending in that position.

Proof. We proceed by induction on the positions i of letters in pτ(ϕ(s)).
As a base case, since we have computed a long enough common prefix of
w5/4 and pτ(ϕ(s)), decreasing any nonzero letter of pτ(ϕ(s)) at position
i ∈ {0, 1, . . . , 331039} introduces a 5/4-power in pτ(ϕ(s)) ending in that posi-
tion.

Now suppose that i ≥ 331040 and assume that decreasing any nonzero letter
in any position < i in pτ(ϕ(s)) introduces a 5/4-power in pτ(ϕ(s)) ending in
that position. We will show that decreasing the letter in position i in pτ(ϕ(s))
introduces a 5/4-power in pτ(ϕ(s)) ending in that position. Since |p| = 6764
and |z| = 20226, observe that the letter in position i ≥ 331040 actually belongs
to the suffix τ(ϕ2(s)), and i − |pτ(ϕ(z))| = i − |p| − 6|z| gives its position in
τ(ϕ2(s)). Recall that every such letter is a factor of τ(ϕ(nj)) for some n ∈ N

and j ∈ {0, 1, . . . , 7}. We make use of the array in Notation 2 of letters of ϕ.
If i − |p| − 6|z| is not congruent to 5 modulo 6, then the letter in position

i belongs to one of the first five columns. Any 0 letters cannot be decreased.
Observe that the fourth column is made of letters 0. Since the second column
contains only letters 1, decreasing any letter 1 to 0 in the second column produces
a new 5/4-power of length 5 between the fourth and second columns. Since the
even-subscript letters in ϕ(s) form the word (14160002)ω, then decreasing any
letter 1 to 0 in the first, third or fifth column introduces a 5/4-power of length
5 of the form 0y0.

It remains to consider positions i such that i− |p| − 6|z| ≡ 5 mod 6, that is,
letters in the sixth column. By Part 5 of Lemma 1, note that the letters in the
sixth column belong to {nj | n ≥ 2, 0 ≤ j ≤ 7}, that is, their values are greater
than or equal to 2. If we decrease the letter in position i to 0, then we create
one of the following 5/4-powers of length 10:

10 · 1(n + 2)0100 · 10, 10 · 1(n + 2)0100 · 10,

00 · 1(n + 3)1100 · 00, 00 · 1(n + 1)1100 · 00,

00 · 0(n + 2)1110 · 00, 00 · 0(n + 2)1110 · 00,

10 · 0(n + 3)0110 · 10, 10 · 0(n + 1)0110 · 10.

If we decrease the letter in position i to 1, then we create a new 5/4-power
of length 5 because each letter in the second column is 1.

It remains to show that decreasing the letter in position i to some letter c with
c ≥ 2 introduces a 5/4-power ending in that position. Intuitively, this operation
corresponds, under τ ◦ ϕ, to decreasing a letter nj of ϕ(s) to (c − d)j with
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0 ≤ j ≤ 7 and d ∈ {1, 2, 3}. To be more precise, the last letter of τ(ϕ((c − d)j))
is c. We examine three cases according to the value of d.

Case 1. If d = 1, then the corresponding letter in position i in ϕ2(s) is of
the form (n+1)1 or (n+1)5. From Notation 2, we see that (n+1)1 and (n+1)5
appear in the images of n4 and n6 under ϕ. By Part 4 of Lemma 1, the only
letters with subscripts 4 and 6 in ϕ(s) are 14 and 16. The images of these letters
under τ ◦ ϕ contain τ((n + 1)1) = 2 and τ((n + 1)5) = 2. So there is nothing to
check since the value of the letters is too small.

Case 3. If d = 3, then the corresponding letter in position i in ϕ2(s) is of
the form (n + 3)1 or (n + 3)5, which appear in the images of n0 and n2 under
ϕ. From Part 4 of Lemma 1, the only letters with subscripts 0 or 2 in ϕ(s) are
00 and 02, so the only relevant value of c is 2. Lemma 6 tells us that decreasing
the value of a letter (n + 3)1 or (n + 3)5 to c = 2 introduces one of the following
5/4-powers of length 30:

τ(ϕ(14n5n̄6 ¯̄n7))01001(3 − 1) = 010012τ(ϕ(n5n̄6 ¯̄n7))010012,
τ(ϕ(16n7n̄0 ¯̄n1))11100(3 − 1) = 111002τ(ϕ(n7n̄0 ¯̄n1))111002.

Case 2. If d = 2, then the corresponding letter in position i in ϕ2(s) is of
the form (n + 2)3 or (n + 2)7, which appear in the images of n1, n3, n5, and
n7 under ϕ. Let w be the length-(i − |p| − 6|z| + 1) prefix of τ(ϕ2(s)) with last
letter n + 2. Since i − |p| − 6|z| ≡ 5 mod 6, let u be the prefix of ϕ(s) of length
i−|p|−6|z|+1

6 . Then τ(ϕ(u)) = w and τ(u) ends with n as pictured.

p τ(ϕ(z)) τ(ϕ2(z)ϕ3(z) · · · )

w

i

τ(u)

Let w′ be the word obtained by decreasing the last letter n + 2 to c in w, and
let u′ be the word obtained by decreasing the last letter with value n of u to
c − 2. Then τ(ϕ(u′)) = w′. By the induction hypothesis, pτ(u′) contains a 5/4-
power suffix xyx. Now we consider two subcases, depending on where xyx starts
in pτ(u′) as depicted below. (We show that the middle case does not actually
occur).

p τ(u′)

x y x
Case 2.1

Case 2.2

x y x

x y x

Case 2.1. Suppose that xyx starts after p in pτ(u′), that is, xyx is a suffix of
τ(u′). Write x = τ(x′) = τ(x′′) and y = τ(y′) where x′y′x′′ is the corresponding
subscript-increasing suffix of u′. Since |xy| is divisible by 4, the subscripts of x′
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and x′′ are either equal or differ by 4. Since d = 2, the subscripts of the last
letters of x′ and x′′ are odd. If |x| = 1, then x = c − 2 and ϕ(x′) = ϕ(x′′) by
definition of ϕ. Now if |x| ≥ 2, the subscripts of the penultimate letters of x′ and
x′′ are even and either equal each other or differ by 4. They cannot differ by 4;
otherwise τ(x′) �= τ(x′′) since the subsequence of letters with even subscripts in
ϕ(s) is a factor of (00021416)ω. So they must be equal and then ϕ(x′) = ϕ(x′′).
Then pτ(ϕ(z))w′ = pτ(ϕ(z))τ(ϕ(u′)) contains the 5/4-power τ(ϕ(x′y′x′′)) as
a suffix. Therefore, decreasing that letter n + 2 to c introduces a 5/4-power in
pτ(ϕ(s)) ending in position i.

Case 2.2. Suppose that xyx starts before τ(u′) in pτ(u′). In particular, τ(u′)
is a suffix of xyx. Since i ≥ 331040, the first x is not a factor of p. Otherwise,
we have

i − |p| − 6|z| + 1
6

= |u| = |τ(u′)| ≤ |xyx| = 5|x| ≤ 5|p|,

which implies i ≤ 31|p| + 6|z| − 1 = 331039. Therefore, the first x overlaps p
but is not a factor of p. Suppose the overlap length is at least 5. Then the first
x contains 20003 as a factor. But since 20003 is never a factor of τ ◦ ϕ, this case
does not happen. Now suppose that the overlap length is less than or equal to 4.
Then the first factor x = sv is made of a nonempty suffix s of 0003 followed by
a nonempty prefix v of τ(u′) such that vyx = τ(u′). Write v = τ(v′), x = τ(x′′)
and y = τ(y′) where v′y′x′′ = u′. To get around the fact that p does not have
subscripts, we use z instead. Recall that 0003 is a common suffix of p and τ(z),
and the corresponding suffix in z is 00010233. So let s′ be the suffix of 00010233
such that s = τ(s′). Now observe that x′ = s′v′ is a subscript-increasing factor
of zu′, overlapping z. Thus ϕ(x′y′x′′) is a subscript-increasing suffix of ϕ(zu′),
overlapping ϕ(z). Similarly to Case 2.1, since τ(x′) = τ(s′v′) = sv = x = τ(x′′)
and |x| ≥ 2, the subscripts of x′ and x′′ are equal. Consequently, x′ = x′′

and ϕ(x′) = ϕ(x′′). Then pτ(ϕ(z))w′ = pτ(ϕ(zu′)) contains the 5/4-power
τ(ϕ(x′y′x′′)) as a suffix. Therefore, decreasing that letter n + 2 to c introduces
a 5/4-power in pτ(ϕ(s)) ending in that position i.
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Abstract. In 1985, Restivo and Salemi presented a list of five problems
concerning power free languages. Problem 4 states: Given α-power-free
words u and v, decide whether there is a transition from u to v. Problem
5 states: Given α-power-free words u and v, find a transition word w, if
it exists.

Let Σk denote an alphabet with k letters. Let Lk,α denote the α-power
free language over the alphabet Σk, where α is a rational number or a
rational “number with +”. If α is a “number with +” then suppose k ≥ 3
and α ≥ 2. If α is “only” a number then suppose k = 3 and α > 2 or
k > 3 and α ≥ 2. We show that: If u ∈ Lk,α is a right extendable word
in Lk,α and v ∈ Lk,α is a left extendable word in Lk,α then there is a
(transition) word w such that uwv ∈ Lk,α. We also show a construction
of the word w.

Keywords: Power free languages · Transition property · Dejean’s
conjecture

1 Introduction

The power free words are one of the major themes in the area of combinatorics
on words. An α-power of a word r is the word rα = rr . . . rt such that |rα|

|r| = α

and t is a prefix of r, where α ≥ 1 is a rational number. For example (1234)3 =
123412341234 and (1234)

7
4 = 1234123. We say that a finite or infinite word w

is α-power free if w has no factors that are β-powers for β ≥ α and we say
that a finite or infinite word w is α+-power free if w has no factors that are
β-powers for β > α, where α, β ≥ 1 are rational numbers. In the following, when
we write “α-power free” then α denotes a number or a “number with +”. The
power free words, also called repetitions free words, include well known square
free (2-power free), overlap free (2+-power free), and cube free words (3-power
free). Two surveys on the topic of power free words can be found in [8] and [13].

One of the questions being researched is the construction of infinite power
free words. We define the repetition threshold RT(k) to be the infimum of all
rational numbers α such that there exists an infinite α-power-free word over an
alphabet with k letters. Dejean’s conjecture states that RT(2) = 2, RT(3) = 7

4 ,
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RT(4) = 7
5 , and RT(k) = k

k−1 for each k > 4 [3]. Dejean’s conjecture has been
proved with the aid of several articles [1–3,5,6,9].

It is easy to see that α-power free words form a factorial language [13]; it
means that all factors of a α-power free word are also α-power free words. Then
Dejean’s conjecture implies that there are infinitely many finite α-power free
words over Σk, where α > RT(k).

In [10], Restivo and Salemi presented a list of five problems that deal with the
question of extendability of power free words. In the current paper we investigate
Problem 4 and Problem 5:

– Problem 4: Given α-power-free words u and v, decide whether there is a
transition word w, such that uwu is α-power free.

– Problem 5: Given α-power-free words u and v, find a transition word w, if it
exists.

A recent survey on the progress of solving all the five problems can be found
in [7]; in particular, the problems 4 and 5 are solved for some overlap free (2+-
power free) binary words. In addition, in [7] the authors prove that: For every
pair (u, v) of cube free words (3-power free) over an alphabet with k letters, if
u can be infinitely extended to the right and v can be infinitely extended to the
left respecting the cube-freeness property, then there exists a “transition” word
w over the same alphabet such that uwv is cube free.

In 2009, a conjecture related to Problems 4 and Problem 5 of Restivo and
Salemi appeared in [12]:

Conjecture 1. [12, Conjecture 1] Let L be a power-free language and let e(L) ⊆ L
be the set of words of L that can be extended to a bi-infinite word respecting
the given power-freeness. If u, v ∈ e(L) then uwv ∈ e(L) for some word w.

In 2018, Conjecture 1 was presented also in [11] in a slightly different form.
Let N denote the set of natural numbers and let Q denote the set of rational

numbers.

Definition 1. Let

Υ = {(k, α) | k ∈ N and α ∈ Q and k = 3 and α > 2}
∪{(k, α) | k ∈ N and α ∈ Q and k > 3 and α ≥ 2}

∪{(k, α+) | k ∈ N and α ∈ Q and k ≥ 3 and α ≥ 2}.

Remark 1. The definition of Υ says that: If (k, α) ∈ Υ and α is a “number with
+” then k ≥ 3 and α ≥ 2. If (k, α) ∈ Υ and α is “just” a number then k = 3
and α > 2 or k > 3 and α ≥ 2.

Let L be a language. A finite word w ∈ L is called left extendable (resp., right
extendable) in L if for every n ∈ N there is a word u ∈ L with |u| = n such that
uw ∈ L (resp., wu ∈ L).

In the current article we improve the results addressing Problems 4 and
Problem 5 of Restivo and Salemi from [7] as follows. Let Σk denote an alphabet
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with k letters. Let Lk,α denote the α-power free language over the alphabet Σk.
We show that if (k, α) ∈ Υ , u ∈ Lk,α is a right extendable word in Lk,α, and
v ∈ Lk,α is a left extendable word in Lk,α then there is a word w such that
uwv ∈ Lk,α. We also show a construction of the word w.

We sketch briefly our construction of a “transition” word. Let u be a right
extendable α-power free word and let v be a left extendable α-power free word
over Σk with k > 2 letters. Let ū be a right infinite α-power free word having u
as a prefix and let v̄ be a left infinite α-power free word having v as a suffix. Let
x be a letter that is recurrent in both ū and v̄. We show that we may suppose
that ū and v̄ have a common recurrent letter. Let t be a right infinite α-power
free word over Σk \ {x}. Let t̄ be a left infinite α-power free word such that the
set of factors of t̄ is a subset of the set of recurrent factors of t. We show that
such t̄ exists. We identify a prefix ũxg of ū such that g is a prefix of t and ũxt
is a right infinite α-power free word. Analogously we identify a suffix ḡxṽ of v̄
such that ḡ is a suffix of t̄ and t̄xṽ is a left infinite α-power free word. Moreover
our construction guarantees that u is a prefix of ũxt and v is a suffix of t̄xṽ.
Then we find a prefix hp of t such that pxṽ is a suffix of t̄xṽ and such that both
h and p are “sufficiently long”. Then we show that ũxhpxṽ is an α-power free
word having u as a prefix and v as a suffix.

The very basic idea of our proof is that if u, v are α-power free words and x is
a letter such that x is not a factor of both u and v, then clearly uxv is α-power
free on condition that α ≥ 2. Just note that there cannot be a factor in uxv
which is an α-power and contains x, because x has only one occurrence in uxv.
Our constructed words ũxt, t̄xṽ, and ũxhpxṽ have “long” factors which does not
contain a letter x. This will allow us to apply a similar approach to show that
the constructed words do not contain square factor rr such that r contains the
letter x.

Another key observation is that if k ≥ 3 and α > RT(k − 1) then there is an
infinite α-power free word w̄ over Σk \{x}, where x ∈ Σk. This is an implication
of Dejean’s conjecture. Less formally said, if u, v are α-power free words over
an alphabet with k letters, then we construct a “transition” word w over an
alphabet with k − 1 letters such that uwv is α-power free.

Dejean’s conjecture imposes also the limit to possible improvement of our
construction. The construction cannot be used for RT(k) ≤ α < RT(k − 1),
where k ≥ 3, because every infinite (or “sufficiently long”) word w over an
alphabet with k − 1 letters contains a factor which is an α-power. Also for
k = 2 and α ≥ 1 our technique fails. On the other hand, based on our research,
it seems that our technique, with some adjustments, could be applied also for
RT(k−1) ≤ α ≤ 2 and k ≥ 3. Moreover it seems to be possible to generalize our
technique to bi-infinite words and consequently to prove Conjecture 1 for k ≥ 3
and α ≥ RT(k − 1).

2 Preliminaries

Recall that Σk denotes an alphabet with k letters. Let ε denote the empty word.
Let Σ∗

k denote the set of all finite words over Σk including the empty word ε, let
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ΣN,R
k denote the set of all right infinite words over Σk, and let ΣN,L

k denote the
set of all left infinite words over Σk. Let ΣN

k = ΣN,L
k ∪ ΣN,R

k . We call w ∈ ΣN

k an
infinite word.

Let occur(w, t) denote the number of occurrences of the nonempty factor
t ∈ Σ∗

k \ {ε} in the word w ∈ Σ∗
k ∪ ΣN

k . If w ∈ ΣN

k and occur(w, t) = ∞, then we
call t a recurrent factor in w.

Let F(w) denote the set of all finite factors of a finite or infinite word w ∈
Σ∗

k ∪ ΣN

k . The set F(w) contains the empty word and if w is finite then also
w ∈ F(w). Let Fr(w) ⊆ F(w) denote the set of all recurrent nonempty factors
of w ∈ ΣN

k .
Let Prf(w) ⊆ F(w) denote the set of all prefixes of w ∈ Σ∗

k ∪ ΣN,R
k and let

Suf(w) ⊆ F(w) denote the set of all suffixes of w ∈ Σ∗
k ∪ ΣN,L

k . We define that
ε ∈ Prf(w) ∩ Suf(w) and if w is finite then also w ∈ Prf(w) ∩ Suf(w).

We have that Lk,α ⊆ Σ∗
k . Let LN

k,α ⊆ ΣN

k denote the set of all infinite α-power
free words over Σk. Obviously LN

k,α = {w ∈ ΣN

k | F(w) ⊆ Lk,α}. In addition we
define LN,R

k,α = LN

k,α ∩ΣN,R
k and LN,L

k,α = LN

k,α ∩ΣN,L
k ; it means the sets of right

infinite and left infinite α-power free words.

3 Power Free Languages

Let (k, α) ∈ Υ and let u, v be α-power free words. The first lemma says that uv
is α-power free if there are no word r and no nonempty prefix v̄ of v such that
rr is a suffix of uv̄ and rr is longer than v̄.

Lemma 1. Suppose (k, α) ∈ Υ , u ∈ Lk,α, and v ∈ Lk,α ∪LN,R
k,α . Let

Π = {(r, v̄) | r ∈ Σ∗
k \ {ε} and v̄ ∈ Prf(v) \ {ε} and

rr ∈ Suf(uv̄) and |rr| > |v̄|}.

If Π = ∅ then uv ∈ Lk,α ∪LN,R
k,α .

Proof. Suppose that uv is not α-power free. Since u is α-power free, then there
are t ∈ Σ∗

k and x ∈ Σk such that tx ∈ Prf(v), ut ∈ Lk,α and utx 
∈ Lk,α. It means
that there is r ∈ Suf(utx) such that rβ ∈ Suf(utx) for some β ≥ α or β > α if
α is a “number with +”; recall Definition 1 of Υ . Because α ≥ 2, this implies
that rr ∈ Suf(rβ). If follows that (tx, r) ∈ Π. We proved that uv 
∈ Lk,α ∪LN,R

k,α

implies that Π 
= ∅. The lemma follows. ��
The following technical set Γ (k, α) of 5-tuples (w1, w2, x, g, t) will simplify

our propositions.

Definition 2. Given (k, α) ∈ Υ , we define that (w1, w2, x, g, t) ∈ Γ (k, α) if

1. w1, w2, g ∈ Σ∗
k ,

2. x ∈ Σk,
3. w1w2xg ∈ Lk,α,
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4. t ∈ LN,R
k,α ,

5. occur(t, x) = 0,
6. g ∈ Prf(t),
7. occur(w2xgy, xgy) = 1, where y ∈ Σk is such that gy ∈ Prf(t), and
8. occur(w2, x) ≥ occur(w1, x).

Remark 2. Less formally said, the 5-tuple (w1, w2, x, g, t) is in Γ (k, α) if w1w2xg
is α-power free word over Σk, t is a right infinite α-power free word over Σk, t
has no occurrence of x (thus t is a word over Σk \ {x}), g is a prefix of t, xgy
has only one occurrence in w2xgy, where y is a letter such that gy is a prefix
of t, and the number of occurrences of x in w2 is bigger than the number of
occurrences of x in w1, where w1, w2, g are finite words and x is a letter.

The next proposition shows that if (w1, w2, x, g, t) is from the set Γ (k, α)
then w1w2xt is a right infinite α-power free word, where (k, α) is from the set Υ .

Proposition 1. If (k, α) ∈ Υ and (w1, w2, x, g, t) ∈ Γ (k, α) then w1w2xt ∈
LN,R

k,α .

Proof. Lemma 1 implies that it suffices to show that there are no u ∈ Prf(t)
with |u| > |g| and no r ∈ Σ∗

k \ {ε} such that rr ∈ Suf(w1w2xu) and |rr| > |u|.
Recall that w1w2xg is an α-power free word, hence we consider |u| > |g|. To
get a contradiction, suppose that such r, u exist. We distinguish the following
distinct cases.

– If |r| ≤ |u| then: Since u ∈ Prf(t) ⊆ Lk,α it follows that xu ∈ Suf(r2) and
hence x ∈ F(r2). It is clear that occur(r2, x) ≥ 1 if and only if occur(r, x) ≥ 1.
Since x 
∈ F(u) and thus x 
∈ F(r), this is a contradiction.

– If |r| > |u| and rr ∈ Suf(w2xu) then: Let y ∈ Σk be such that gy ∈ Prf(t).
Since |u| > |g| we have that gy ∈ Prf(u) and xgy ∈ Prf(xu). Since |r| > |u|
we have that xgy ∈ F(r). In consequence occur(rr, xgy) ≥ 2. But Property 7
of Definition 2 states that occur(w2xgy, xgy) = 1. Since rr ∈ Suf(w2xu), this
is a contradiction.

– If |r| > |u| and rr 
∈ Suf(w2xu) and r ∈ Suf(w2xu) then:
Let w11, w12, w13, w21, w22 ∈ Σ∗

k be such that w1 = w11w12w13, w2 = w21w22,
w12w13w21 = r, w12w13w2xu = rr, and w13w21 = xu; see Figure below.

xu

w11 w12 w13 w21 w22 x u

r r

It follows that w22xu = r and w22 = w12. It is easy to see that w13w21 =
xu. From occur(u, x) = 0 we have that occur(w2, x) = occur(w22, x)
and occur(w13, x) = 1. From w22 = w12 it follows that occur(w1, x) >
occur(w2, x). This is a contradiction to Property 8 of Definition 2.
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– If |r| > |u| and rr 
∈ Suf(w2xu) and r 
∈ Suf(w2xu) then: Let w11, w12, w13 ∈
Σ∗

k be such that w1 = w11w12w13, w12 = r and w13w2xu = r; see Figure
below.

w11 w12 w13 w2 x u

r r

It follows that

occur(w12, x) = occur(w13, x) + occur(w2, x) + occur(xu, x).

This is a contradiction to Property 8 of Definition 2.

We proved that the assumption of existence of r, u leads to a contradiction.
Thus we proved that for each prefix u ∈ Prf(t) we have that w1w2xu ∈ Lk,α.
The proposition follows. ��
We prove that if (k, α) ∈ Υ then there is a right infinite α-power free word over
Σk−1. In the introduction we showed that this observation could be deduced
from Dejean’s conjecture. Here additionally, to be able to address Problem 5
from the list of Restivo and Salemi, we present in the proof also examples of
such words.

Lemma 2. If (k, α) ∈ Υ then the set LN,R
k−1,α is not empty.

Proof. If k = 3 then |Σk−1| = 2. It is well known that the Thue Morse word is a
right infinite 2+-power free word over an alphabet with 2 letters [11]. It follows
that the Thue Morse word is α-power free for each α > 2.

If k > 3 then |Σk−1| ≥ 3. It is well known that there are infinite 2-power free
words over an alphabet with 3 letters [11]. Suppose 0, 1, 2 ∈ Σk. An example is
the fixed point of the morphism θ defined by θ(0) = 012, θ(1) = 02, and θ(2) = 1
[11]. If an infinite word t is 2-power free then obviously t is α-power free and
α+-power free for each α ≥ 2.

This completes the proof. ��
We define the sets of extendable words.

Definition 3. Let L ⊆ Σ∗
k . We define

lext(L) = {w ∈ L | w is left extendable in L}

and
rext(L) = {w ∈ L | w is right extendable in L}.

If u ∈ lext(L) then let lext(u,L) be the set of all left infinite words ū such that
Suf(ū) ⊆ L and u ∈ Suf(ū). Analogously if u ∈ rext(L) then let rext(u,L) be the
set of all right infinite words ū such that Prf(ū) ⊆ L and u ∈ Prf(ū).
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We show the sets lext(u,L) and rext(v,L) are nonempty for left extendable and
right extendable words.

Lemma 3. If L ⊆ Σ∗
k and u ∈ lext(L) (resp., v ∈ rext(L)) then lext(u,L) 
= ∅

(resp., rext(v,L) 
= ∅).
Proof. Realize that u ∈ lext(L) (resp., v ∈ rext(L)) implies that there are
infinitely many finite words in L having u as a suffix (resp., v as a prefix).
Then the lemma follows from König’s Infinity Lemma [4,8]. ��
The next proposition proves that if (k, α) ∈ Υ , w is a right extendable α-power
free word, w̄ is a right infinite α-power free word having the letter x as a recurrent
factor and having w as a prefix, and t is a right infinite α-power free word over
Σk\{x}, then there are finite words w1, w2, g such that the 5-tuple (w1, w2, x, g, t)
is in the set Γ (k, α) and w is a prefix of w1w2xg.

Proposition 2. If (k, α) ∈ Υ , w ∈ rext(Lk,α), w̄ ∈ rext(w,Lk,α), x ∈ Fr(w̄) ∩
Σk, t ∈ LN,R

k,α , and occur(t, x) = 0 then there are finite words w1, w2, g such that
(w1, w2, x, g, t) ∈ Γ (k, α) and w ∈ Prf(w1w2xg).

Proof. Let ω = F(w̄) ∩ Prf(xt) be the set of factors of w̄ that are also prefixes
of the word xt. Based on the size of the set ω we construct the words w1, w2, g
and we show that (w1, w2, x, g, t) ∈ Γ (k, α) and w1w2xg ∈ Prf(w̄) ⊆ Lk,α. The
Properties 1, 2, 3, 4, 5, and 6 of Definition 2 are easy to verify. Hence we explicitly
prove only properties 7 and 8 and that w ∈ Prf(w1w2xg).

– If ω is an infinite set. It follows that Prf(xt) = ω. Let g ∈ Prf(t) be such that
|g| = |w|; recall that t is infinite and hence such g exists. Let w2 ∈ Prf(w̄) be
such that w2xg ∈ Prf(w̄) and occur(w2xg, xg) = 1. Let w1 = ε.
Property 7 of Definition 2 follows from occur(w2xg, xg) = 1. Property 8 of
Definition 2 is obvious, because w1 is the empty word. Since |g| = |w| and
w ∈ Prf(w̄) we have that w ∈ Prf(w1w2xg).

– If ω is a finite set. Let ω̄ = ω ∩ Fr(w̄) be the set of prefixes of xt that are
recurrent in w̄. Since x is recurrent in w̄ we have that x ∈ ω̄ and thus ω̄ is
not empty. Let g ∈ Prf(t) be such that xg is the longest element in ω̄. Let
w1 ∈ Prf(w) be the shortest prefix of w̄ such that if u ∈ ω\ω̄ is a non-recurrent
prefix of xt in w̄ then occur(w1, u) = occur(w̄, u). Such w1 obviously exists,
because ω is a finite set and non-recurrent factors have only a finite number of
occurrences. Let w2 be the shortest factor of w̄ such that w1w2xg ∈ Prf(w̄),
occur(w1, x) < occur(w2, x), and w ∈ Prf(w1w2xg). Since xg is recurrent in
w̄ and w ∈ Prf(w̄) it is clear such w2 exists.
We show that Property 7 of Definition 2 holds. Let y ∈ Σk be such that
gy ∈ Prf(t). Suppose that occur(w2xg, xgy) > 0. It would imply that xgy
is recurrent in w̄, since all occurrences of non-recurrent words from ω are
in w1. But we defined xg to be the longest recurrent word ω. Hence it is
contradiction to our assumption that occur(w2xg, xgy) > 0.
Property 8 of Definition 2 and w ∈ Prf(w1w2xg) are obvious from the con-
struction of w2.
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This completes the proof. ��
We define the reversal wR of a finite or infinite word w = Σ∗

k ∪ ΣN

k as
follows: If w ∈ Σ∗

k and w = w1w2 . . . wm, where wi ∈ Σk and 1 ≤ i ≤ m, then
wR = wmwm−1 . . . w2w1. If w ∈ ΣN,L

k and w = . . . w2w1, where wi ∈ Σk and
i ∈ N, then wR = w1w2 · · · ∈ ΣN,R

k . Analogously if w ∈ ΣN,R
k and w = w1w2 . . . ,

where wi ∈ Σk and i ∈ N, then wR = . . . w2w1 ∈ ΣN,L
k .

Proposition 1 allows one to construct a right infinite α-power free word with
a given prefix. The next simple corollary shows that in the same way we can
construct a left infinite α-power free word with a given suffix.

Corollary 1. If (k, α) ∈ Υ , w ∈ lext(Lk,α), w̄ ∈ lext(w,Lk,α), x ∈ Fr(w̄) ∩ Σk,
t ∈ LN,L

k,α , and occur(t, x) = 0 then there are finite words w1, w2, g such that
(wR

1 , wR
2 , x, gR, tR) ∈ Γ (k, α), w ∈ Suf(gxw2w1), and txw2w1 ∈ LN,L

k,α .

Proof. Let u ∈ Σ∗
k ∪ ΣN

k . Realize that u ∈ Lk,α ∪LN

k,α if and only if uR ∈
Lk,α ∪LN

k,α. Then the corollary follows from Proposition 1 and Proposition 2. ��

Given k ∈ N and a right infinite word t ∈ ΣN,R
k , let Φ(t) be the set of all

left infinite words t̄ ∈ ΣN,L
k such that F(t̄) ⊆ Fr(t). It means that all factors of

t̄ ∈ Φ(t) are recurrent factors of t. We show that the set Φ(t) is not empty.

Lemma 4. If k ∈ N and t ∈ ΣN,R
k then Φ(t) 
= ∅.

Proof. Since t is an infinite word, the set of recurrent factors of t is not empty. Let
g be a recurrent nonempty factor of t; g may be a letter. Obviously there is x ∈ Σk

such that xg is also recurrent in t. This implies that the set {h | hg ∈ Fr(t)} is
infinite. The lemma follows from König’s Infinity Lemma [4,8]. ��

The next lemma shows that if u is a right extendable α-power free word
then for each letter x there is a right infinite α-power free word ū such that x is
recurrent in ū and u is a prefix of ū.

Lemma 5. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and x ∈ Σk then there is ū ∈
rext(u,Lk,α) such that x ∈ Fr(ū).

Proof. Let w ∈ rext(u,Lk,α); Lemma 3 implies that rext(u,Lk,α) is not empty.
If x ∈ Fr(w) then we are done. Suppose that x 
∈ Fr(w). Let y ∈ Fr(w) ∩ Σk.
Clearly x 
= y. Proposition 2 implies that there is (w1, w2, y, g, t) ∈ Γ (k, α) such
that u ∈ Prf(w1w2yg). The proof of Lemma 2 implies that we can choose t in such
a way that x is recurrent in t. Then w1w2yt ∈ rext(u,Lk,α) and x ∈ Fr(w1w2yt).
This completes the proof. ��

The next proposition shows that if u is left extendable and v is right extend-
able then there are finite words ũ, ṽ, a letter x, a right infinite word t, and a
left infinite word t̄ such that ũxt, t̄xṽ are infinite α-power free words, t has no
occurrence of x, every factor of t̄ is a recurrent factor in t, u is a prefix of ũxt,
and v is a suffix of t̄xṽ.
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Proposition 3. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and v ∈ lext(Lk,α) then there are
ũ, ṽ ∈ Σ∗

k , x ∈ Σk, t ∈ ΣN,R
k , and t̄ ∈ ΣN,L

k such that ũxt ∈ LN,R
k,α , t̄xṽ ∈ LN,L

k,α ,
occur(t, x) = 0, F(t̄) ⊆ Fr(t), u ∈ Prf(ũxt), and v ∈ Suf(t̄xṽ).

Proof. Let ū ∈ rext(u,Lk,α) and v̄ ∈ lext(v,Lk,α) be such that Fr(ū) ∩ Fr(v̄) ∩
Σk 
= ∅. Lemma 5 implies that such ū, v̄ exist. Let x ∈ Fr(ū) ∩ Fr(v̄) ∩ Σk. It
means that the letter x is recurrent in both ū and v̄.

Let t be a right infinite α-power free word over Σk \ {x}. Lemma 2 asserts
that such t exists. Let t̄ ∈ Φ(t); Lemma 4 shows that Φ(t) 
= ∅. It is easy to see
that t̄ ∈ LN,L

k,α , because F(t̄) ⊆ Fr(t) and t ∈ LN,R
k,α .

Proposition 2 and Corollary 1 imply that there are u1, u2, g, v1, v2, ḡ ∈ Lk,α

such that

– (u1, u2, x, g, t) ∈ Γ (k, α),
– (vR

1 , vR
2 , x, ḡR, t̄R) ∈ Γ (k, α),

– u ∈ Prf(u1u2xg), and
– vR ∈ Prf(vR

1 vR
2 xḡR); it follows that v ∈ Suf(ḡxv2v1).

Proposition 1 implies that u1u2xt, vR
1 vR

2 xt̄R ∈ LN,R
k,α . It follows that t̄xv2v1 ∈

LN,L
k,α . Let ũ = u1u2 and ṽ = v2v1. This completes the proof. ��

The main theorem of the article shows that if u is a right extendable α-power free
word and v is a left extendable α-power free word then there is a word w such
that uwv is α-power free. The proof of the theorem shows also a construction of
the word w.

Theorem 1. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and v ∈ lext(Lk,α) then there is
w ∈ Lk,α such that uwv ∈ Lk,α.

Proof. Let ũ, ṽ, x, t, t̄ be as in Proposition 3. Let p ∈ Suf(t̄) be the shortest suffix
such that |p| > max{|ũx|, |xṽ|, |u|, |v|}. Let h ∈ Prf(t) be the shortest prefix such
that hp ∈ Prf(t) and |h| > |p|; such h exists, because p is a recurrent factor of t;
see Proposition 3. We show that ũxhpxṽ ∈ Lk,α.

We have that ũxhp ∈ Lk,α, since hp ∈ Prf(t) and Proposition 3 states that
ũxt ∈ LN,R

k,α . Lemma 1 implies that it suffices to show that there are no g ∈ Prf(ṽ)
and no r ∈ Σ∗

k \ {ε} such that rr ∈ Suf(ũxhpxg) and |rr| > |xg|. To get a
contradiction, suppose there are such r, g. We distinguish the following cases.

– If |r| ≤ |xg| then rr ∈ Suf(pxg), because |p| > |xṽ| and xg ∈ Prf(xṽ). This is
a contradiction, since pxṽ ∈ Suf(t̄xṽ) and t̄xṽ ∈ LN,L

k,α ; see Proposition 3.
– If |r| > |xg| then |r| ≤ 1

2 |ũxhpxg|, otherwise rr cannot be a suffix of ũxhpxg.
Because |h| > |p| > max{|ũx|, |xṽ|} we have that r ∈ Suf(hpxg). Since
occur(hp, x) = 0, |h| > |p| > |xṽ|, and xg ∈ Suf(r) it follows that there are
words h1, h2 such that ũxhpxg = ũxh1h2pxg, r = h2pxg and r ∈ Suf(ũxh1).
It follows that xg ∈ Suf(ũxh1) and because occur(h1, x) = 0 we have that
|h1| ≤ |g|. Since |p| > |ũx| we get that |h2pxg| > |ũxg| ≥ |ũxh1|; hence
|r| > |ũxh1|. This is a contradiction.
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We conclude that there is no word r and no prefix g ∈ Prf(ṽ) such that rr ∈
Suf(ũxhpxg). Hence ũxhpxṽ ∈ Lk,α. Due to the construction of p and h we have
that u ∈ Prf(ũxhpxṽ) and v ∈ Suf(ũxhpxṽ). This completes the proof. ��
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Context-Freeness of Word-MIX
Languages
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Abstract. In this paper we provide a decidable characterisation of
the context-freeness of a Word-MIX language LA(w1, . . . , wk), where
LA(w1, . . . , wk) is the set of all words over A that contain the same
number of subword occurrences of parameter words w1, . . . , wk.

1 Introduction

Counting occurrences of letters in words is a major topic in formal language
theory. In particular, much ink has been spent on investigating the counting
ability of some language classes. For example, Joshi et al. [1] suggested that
the language MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} should not be in
the class of so-called mildly context-sensitive languages since it allows too much
freedom in word order, so that relations between MIX and several language
classes have been investigated (e.g., indexed languages [2], range concatenation
languages [3], tree-adjoining languages [4], multiple context-free languages [5],
etc.). The Parikh map is another rich example on this topic (counting occurrences
of letters) [6].

In the recent work [7] by Colbourn et al., the counting feature of MIX is gen-
eralised from counting letter occurrences to counting word occurrences. They
considered several problems for languages of the form LA(w1, . . . , wk) = {w ∈
A∗ | |w|w1 = · · · = |w|wk

} (where |u|v is the number of occurrences of v in
w) which we call Word-MIX languages (WMIX for short) in this paper. While
LA(w1, w2) is always deterministic context-free, it can also be regular (LA(ab, ba)
is regular if A = {a, b}, while it is not regular if A = {a, b, c}, for example) [7].
This kind of generalisation – from letter occurrences to word occurrences – is
also considered in the context of the Parikh map through so-called Parikh matri-
ces [8] and subword histories [9,10] (in this setting they have considered scattered
subword occurrences instead of subword occurrences).

Colbourn et al. [7] provided a necessary and sufficient condition for w1 and
w2 for the WMIX language LA(w1, w2) to be regular, and gave a polynomial
time algorithm for testing that condition. For the fully general case, the decid-
ability of the regularity problem for WMIX languages can be derived from some
known results on unambiguous constrained automata (UnCA for short), since

The author is also with RIKEN AIP.
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LA(w1, . . . , wk) is always recognised by an UnCA, and the regularity for UnCA
languages is decidable due to [11].

In this paper, we show that context-freeness is decidable for WMIX languages.
We also give an alternative decidability proof for the regularity of WMIX lan-
guages. As we mentioned above, the regularity for WMIX languages is already
known to be decidable thanks to the decidability results on UnCA languages
(which include all WMIX languages) given by Cadilhac et al. [11]. But the alter-
native proof of the regularity for WMIX languages given in this paper gives
more structural information of WMIX languages, and the proof can be naturally
extended into the context-freeness. We introduce a new notion called dimension,
which represents certain structural information of WMIX languages, and prove
that a WMIX language is (1) regular if and only if its dimension is at most
one, and (2) context-free if and only if its dimension is at most two. To the
best of our knowledge, there has been no research on the context-freeness for
WMIX languages or UnCA languages. As far as we know, a language class with
such a decidable context-freeness property is very rare. We are only aware of
such examples in some subclasses of bounded languages [12–14] and languages
associated with vector addition systems [15].

For the space restriction, we omit some definitions and proofs; see the full
version [16] for details.

2 Preliminaries

For a set X, we denote by #(X) the cardinality of X. We denote by N the set
of natural numbers including 0. We call a mapping M : X → N multiset over
X. For a set X, we write 2X for the power set of X.

We assume that the reader has a basic understanding of automata and linear
algebra.

2.1 Words and Word-MIX Languages

For an alphabet A, we denote the set of all words (resp. all non-empty words)
over A by A∗ (resp. A+). We write An (resp. A<n) for the set of all words of
length n (resp. less than n), and write N

≤c for the set of all natural numbers
less than or equal c for c ∈ N. For a pair of words v, w ∈ A∗, |w|v denotes the
number of subword occurrences of v in w

|w|v def== #({(w1, w2) ∈ A∗ × A∗ | w1vw2 = w}) .

We write u � v if u is a subword of v, and write u �sc v if u is a scattered
subword of v. For words w1, . . . , wk ∈ A∗, we define

LA(w1, . . . , wk) def== {w ∈ A∗ | |w|w1 = · · · = |w|wk
}

and call it the Word-MIX (WMIX for short) language of k-parameter words
w1, . . . , wk over A. For a word w ∈ A∗, we denote the set of prefixes and suffixes
of w by pref(w) and suff(w), and denote the length-n (n ≤ |w|) prefix and suffix
of w by prefn(w) and suffn(w), respectively.



306 R. Sin’Ya

2.2 Graphs and Walks

Let G = (V,E) be a (directed) graph. We call a sequence of vertices ω =
(v1, . . . , vn) ∈ V n (n ≥ 1) walk (from v1 into vn in G) if (vi, vi+1) ∈ E for
each i ∈ {1, . . . , n − 1}, and define the length of ω as n − 1 and denote it
by |ω|. We denote by from(ω) and into(ω) the source from(ω) def== v1 and the
target into(ω) def== vn of ω. ω is called an empty walk if |ω| = 0. If two walks
ω1 = (v1, . . . , vm), ω2 = (v′

1, . . . , v
′
n) are connectable (i.e., into(ω1) = from(ω2)),

we write ω1 � ω2 for the connecting walk ω1 � ω2
def== (v1, . . . , vm, v′

2, . . . , v
′
n). A

non-empty walk ω is called loop (on from(ω)) if from(ω) = into(ω). A walk
(v1, . . . , vn) is called path if vi �= vj for every i, j ∈ {1, . . . , n} with i �= j. A loop
(v, v1, . . . , vn, v) is called cycle if (v, v1, . . . , vn) is a path. We use the metavari-
able π for a path, and the metavariable γ for a cycle. For a cycle γ and n ≥ 1,
we write γn for the loop which is an n-times repetition of γ. We denote by
W(G),P(G), and by C(G) the set of all walks, paths and cycles in G. Note that
W(G) is infinite in general, but P(G) and C(G) are both finite if G is finite.

The N -dimensional de Bruijn graph GN
A = (AN , E) over A is a graph whose

vertex set AN is the set of words of length N and the edge set E is defined by

E
def== {(av, vb) | a, b ∈ A, v ∈ AN−1}.

The case N = 2 is depicted in Fig. 1.

Fig. 1. The 2-dimensional de Bruijn graph G2
A over A = {a, b}, a walk

(ba, aa, aa, ab, bb, ba) (dotted red arrow) on G2
A and its corresponding word baaabba.

(Color figure online)

Let v be a vertex of GN
A . A word w = a1 · · · am ∈ A+ induces the walk

(v, v1, . . . , vm) (where vi = suffn(v prefi(w))) in GN
A , and we denote it by

walkGN
A

(v, w). Conversely, a walk ω = (v1, . . . , vn) in GN
A induces the word

v1suff1(v2) · · · suff1(vn) ∈ A∗, and we denote it by wordGN
A

(ω) (see Fig. 1). For
words w,w1, . . . , wk ∈ A∗ and a walk ω = (v0, v1, . . . , vn) ∈ W(GN

A ), we define
the following vectors in N

k:
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|w|(w1,...,wk)
def
== (|w|w1 , . . . , |w|wk )

|ω|(w1,...,wk)
def
==

n∑

i=1

(ci,1, . . . , ci,k) where ci,j = 1 if wj ∈ suff(vi), ci,j = 0 otherwise.

We call |w|(w1,...,wk) (resp. |ω|(w1,...,wk)) the occurrence vector of w (resp. ω).
We notice that the range of the summation in the above definition of |ω|(w1,...,wk)

does not contain 0, hence |ω|(w1,...,wk) = (0, . . . , 0) if ω is an empty walk ω = (v0).
The next proposition states a basic property of GN

A , which can be shown by a
straightforward induction on the length of w.

Proposition 1. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any
pair of words v, w ∈ A∗ such that |v| = N and ω = walkGN

A
(v, w), we have

|vw|(w1,...,wk) = |v|(w1,...,wk) + |ω|(w1,...,wk).

2.3 Well-Quasi-Orders

A quasi order ≤ on a set X is called well-quasi-order (wqo for short) if any infinite
sequence (xi)i∈N (xi ∈ X) contains an increasing pair xi ≤ xj with i < j. Let ≤1

be a quasi order on a set X1 and ≤2 be a quasi order on a set X2. The product
order ≤1,2 is a quasi order on X1 × X2 defined by

(x1, y1) ≤1,2 (x2, y2)
def⇐⇒ x1 ≤1 x2 and y1 ≤2 y2.

Proposition 2 (cf.Proposition 6.1.1 in [17]). Let ≤1 be a wqo on a set X1

and ≤2 be a wqo on a set X2. The product order ≤1,2 is again a wqo on X1×X2.

We list some examples of wqos below:

(1) The identity relation = on any finite set X is a wqo (the pigeonhole princi-
ple).

(2) The usual order ≤ on N is a wqo.
(3) The product order ≤m on N

m is a wqo for any m ≥ 1 (Dickson’s lemma),
which is a direct corollary of Proposition 2.

(4) The point-wise order ≤pt on the multisets N
X (M ≤pt M ′ def⇐⇒ M(x) ≤

M ′(x) for all x ∈ X) over a finite set X is a wqo (just a paraphrase of
Dickson’s lemma).

3 Path-Cycle Decomposition of Walks

In this section, we provide a simple method which decomposes, in left-to-right
manner, a walk ω into a (possibly empty) path π and a sequence of cycles Γ
(Fig. 2). This decomposition, and its inverse operation (composition), are prob-
ably folklore, and the contents in this section appeared already in the author’s
unpublished note [18]. A similar method is also used in [11].
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Let G = (V,E) be a graph. For a pair of sequences of cycles Γ1 = (γ1, . . . , γn),
Γ2 = (γ′

1, . . . , γ
′
m), we write Γ1.Γ2 for the concatenation (γ1, . . . , γn, γ′

1, . . . , γ
′
m).

When Γ1 = (γ) we simply write γ.Γ2 for Γ1.Γ2 We write ∅ for the empty sequence
of cycles. For Γ = (γ1, . . . , γn), we denote by Γ (i) for the i-th component γi of
Γ , and denote by |Γ |γ the number #({i | Γ (i) = γ}) of occurrences of γ in Γ .
For a walk ω = (v1, . . . , vn), we denote by V (ω) the set of all vertices appearing
in ω: V (ω) def== {v1, . . . , vn}.

Fig. 2. Computation of ΦK4 and ΨK4

We then define a decomposition function ΦG inductively as follows:
ΦG((v)) def== ((v), ∅) and

ΦG(ω � (v, v′)) def==

{
(π � (v, v′), Γ ) if v′ /∈ V (π),
(π1, Γ.(π2 � (v, v′))) if π = π1 � (v′) � π2

where (π, Γ ) = ΦG(ω).

It is clear by definition that, for any ω and (ω′, Γ ) = ΦG(ω), ω′ is a path and Γ is
a sequence of cycles, i.e., ΦG : W(G) → P(G) × C(G)∗. Conversely, we can define
a composition (partial) function ΨG as an inverse of ΦG , i.e., ω = ΨG(ΦG(ω)).
The formal definition of ΨG can be found in the full version [16].

Example 1. Consider the complete graph K4 = (V4 = {1, 2, 3, 4}, E4 = V4 × V4)
of order 4 and a walk ω = (1, 2, 3, 2, 3, 4, 3, 4, 2, 4). The result of decomposition
is ΦK4(ω) = (π = (1, 2, 4), Γ = ((2, 3, 2), (3, 4, 3), (2, 3, 4, 2))). All intermediate
computation steps of ΦK4(ω) and ΨK4(ΦK4(ω)) are drawn in Fig. 2 (in the figure
we denote by π&Γ a pair (π, Γ ) for visibility).
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3.1 Multi-traces and Traces

For a walk ω in a graph G, we define the multi-trace NTr(ω) : P(G) ∪ C(G) → N

of a walk ω as the following multiset over paths and cycles:

(NTr(ω))(π) def==

{
1 if π = πω

0 otherwise
(NTr(ω))(γ) def== |Γ |γ

where (πω, Γ ) = ΦG(ω).

We define the trace Tr(ω) of a walk ω in G as the following set of paths and
cycles:

Tr(ω) def== {π ∈ P(G) | (NTr(ω))(π) �= 0} ∪ {γ ∈ C(G) | (NTr(ω))(γ) �= 0}.

Intuitively, the multi-trace of ω in G is obtained by forgetting the ordering of
the decomposition result (ω, Γ ) = ΦG(ω) of ω, and the trace of ω is obtained
by forgetting the multiplicity from the original multi-trace (see Fig. 3 for the
relation).

Fig. 3. Relations between words, walks and (multi-)traces (N = 2 for the examples).

The following proposition states that the occurrences of parameter words of
a walk are completely determined from its multi-trace (see the full version [16]
for details).

Proposition 3. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any ω
in W(GN

A ), we have

|ω|(w1,...,wk) =
∑

π∈P(GN
A

)

(NTr(ω))(π) · |π|(w1,...,wk) +
∑

γ∈C(GN
A

)

(NTr(ω))(γ) · |γ|(w1,...,wk).

4 Main Results

In this section we first introduce a new notion for WMIX languages called dimen-
sion. Afterwards, we state our main results that characterise both regularity and
context-freeness of WMIX languages.
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Definition 1. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). Let T =
{π} ∪ {γ1, . . . , γm} be a trace of a walk ω in GN

A . A subset S of {γ1, . . . , γm} is
called pumpable in T of LA(w1, . . . , wk) if, for any number n ≥ 1, there exists a
word uv ∈ LA(w1, . . . , wk) with ω = walkGN

A
(u, v) such that (1) Tr(ω) = T and

(2) (NTr(ω))(γ) ≥ n for each γ ∈ S. We further say S is maximal if no proper
superset of S included in {γ1, . . . , γm} is pumpable.

Remark 1. The emptyset ∅ is always pumpable in a trace T of LA(w1, . . . , wk)
such that Tr(walkGN

A
(u, v)) = T for some uv ∈ LA(w1, . . . , wk). Moreover, it is

decidable whether S is pumpable or not in T of LA(w1, . . . , wk) (see the full
version [16]).

Recall that a vector space is a set V ⊆ R
k such that 0 ∈ V ,V + V ⊆ V and

RV = {α · v | v ∈ V , α ∈ R} ⊆ V where 0 is the vector with all zeros.

Definition 2. Let w1, . . . , wk ∈ A∗, N = max(|w1|, . . . , |wk|). The dimension
of L = LA(w1, . . . , wk) is the natural number defined as

max{dim(V ) | V =span({|γ|(w1,...,wk) | γ ∈ S}), S is pumpable in some T of L}

where dim(V ) is the dimension of the vector space V and span(B) is the vector
space spanned by B (where span(∅) def== {0}).

Fig. 4. The 1-dimensional de Bruijn graph G1
A over A = {a, b, c}.

The dimension of a WMIX language L is, roughly speaking, the minimum
number of cycles (in the de Bruijn graph) that should be counted independently.
We describe this intuition more rigorously by using MIX = LA(a, b, c) for A =
{a, b, c} as a simple example.

Example 2. Since max(|a|, |b|, |c|) = 1, it is enough to consider the 1-dimensional
de Bruijn graph G1

A over A = {a, b, c} (see Fig. 4). One can easily observe that
the set of cycles S = {γ1 = (a, a), γ2 = (b, b), γ3 = (c, c)}, each γi is depicted in
Fig. 4, is pumpable in the trace T = {(a, b, c)}∪S: for any n > 0, the word awn =
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an+1bn+1cn+1 is in MIX and it satisfies the two conditions in the Definition 1
as (1) Tr(walkGN

A
(a,wn)) = T and (2) (NTr(walkGN

A
(a,wn)))(γi) = n for each

γi ∈ S. The occurrence vectors corresponding to γ1, γ2, γ3 are v1 = (1, 0, 0),v2 =
(0, 1, 0),v3 = (0, 0, 1), respectively. Since those occurrence vectors are linearly
independent, the vector space spanned by them is R3 and thus the dimension of
MIX is three.

By considering dimensions of WMIX languages, we can nicely characterise
both regularity and context-freeness as follows.

Theorem 1 (regularity). LA(w1, . . . , wk) is regular if and only if its dimen-
sion is at most one.

Theorem 2 (context-freeness). LA(w1, . . . , wk) is context-free if and only if
its dimension is at most two.

Some pushdown automaton A can recognise LA(a, b) since, by using its stack,
A can track the number |w|a − |w|b. However, no pushdown automaton A can
recognise MIX = LA(a, b, c) since, for that purpose, one should track the numbers
|w|a−|w|b and |w|b−|w|c simultaneously. This is a rough intuition why a language
with dimension greater than or equal three is never to be context-free (the formal
proof is in the next section).

The set P(GN
A ) ∪ C(GN

A ) of paths and cycles in the N -dimensional de Bruijn
graph is finite, hence we can effectively enumerate all traces of all walks in GN

A

(see the full version [16] for details). Moreover, as we mentioned in Remark 1,
we can also effectively enumerate all pumpable sets in a trace. For a pumpable
set S, computing the dimension of the vector space spanned by the occurrence
vectors S is just counting the maximum number of linearly independent ones
from the occurrence vectors of S. Combining these facts and Theorem 1–2, we
can effectively compute the dimension of LA(w1, . . . , wk) and hence we have the
following decidability result.

Corollary 1. Regularity and context-freeness are decidable for WMIX
languages.

5 Proof of the Main Results

The proof structure of Theorem 1 is similar with one of Theorem 2, albeit that
the latter is more complicated. In this section, we firstly investigate some struc-
tural properties of pumpable sets, which play crucial role in the main proof. We
secondly give a proof of Theorem 1 which would give a good intuition for the
latter proof. Finally, we give a proof of Theorem 2.

5.1 Properties of Pumpable Sets

For a vector v = (c1, . . . , ck) ∈ R
k, we define diff(v) def==

∑k
i=1(max{c1, . . . , ck}

− ci). Observe that w ∈ LA(w1, . . . , wk) if and only if diff(|w|(w1,...,wk)) = 0.
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Lemma 1. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any
maximum pumpable set S in T = {π} ∪ S′ of LA(w1, . . . , wk), if V =
span({|γ|(w1,...,wk) | γ ∈ S}) has a non-zero dimension, then V contains the
vector 1.

Proof. Let u = from(π). Since S is pumpable, there exists an infinite sequence
(uvi)i∈N, where u ∈ AN , of words that satisfies:

(1) Tr(walkGN
A

(u, vi)) = T for all i ∈ N.
(2) uvi ∈ LA(w1, . . . , wk) for all i ∈ N.
(3) NTr(walkGN

A
(u, vi))(γ) < NTr(walkGN

A
(u, vj))(γ) for all i, j ∈ N with i < j

and for all γ ∈ S.

Now consider an infinite sequence of multi-traces of the above sequence

(Mi)i∈N

def== (NTr(walkGN
A

(u, vi)))i∈N.

Since the point-wise order on the multisets over any finite set is a wqo (thanks
to Dickson’s lemma) and P(GN

A ) ∪ C(GN
A ) is finite, (Mi)i∈N contains an infinite

increasing subsequence (Mj)j∈J (J ⊆ N). Let S = (S′ \ S). Because S is maxi-
mum, the number of maximum occurrence of any non-pumpable cycle γ ∈ S is
bounded, i.e., there is some constant c ∈ N such that (NTr(walkGN

A
(u, vi)))(γ) <

c for any γ ∈ S and i ∈ N. By using pigeonhole principle, we can deduce that, in
the infinite sequence (Mj)j∈J , there exists a pair (i1, i2) ∈ J2 with i1 < i2 such
that (Mi1)(γ) = (Mi2)(γ) for all γ ∈ S. Let C =

∑
γ∈S Mi1(γ) · |γ|(w1,...,wk).

Combining the above observation and the condition (3) of (uvi)i∈N, we have

Mi1(γ) = Mi2(γ) for all γ ∈ S Mi1(γ) < Mi2(γ) for all γ ∈ S. (�)

Because uvi1 , uvi2 ∈ LA(w1, . . . , wk), by Proposition 1 and Proposition 3, we
have

diff(|uvi1 |(w1,...,wk)) = diff(|uvi2 |(w1,...,wk)) = 0

= diff

⎛
⎝|u|(w1,...,wk) + |π|(w1,...,wk) + C +

∑
γ∈S

Mi1(γ) · |γ|(w1,...,wk)

⎞
⎠

= diff

⎛
⎝|u|(w1,...,wk) + |π|(w1,...,wk) + C +

∑
γ∈S

Mi2(γ) · |γ|(w1,...,wk)

⎞
⎠ .

Moreover, from the above equation we obtain

diff

⎛
⎝∑

γ∈S

(Mi2(γ) − Mi1(γ)) · |γ|(w1,...,wk)

⎞
⎠ = 0 (1)
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because for any v such that diff(v) = 0, diff(v + v′) = 0 if and only if
diff(v′) = 0. By Condition (�), the vector

v =
∑
γ∈S

(Mi2(γ) − Mi1(γ)) · |γ|(w1,...,wk)

is not the zero vector 0. Thus v is of the form n · 1 (n �= 0), i.e., 1 ∈ span(V ). ��
Lemma 2. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any trace T
of some walk in GN

A , if Tr(walkGN
A

(u, v)) = T for some uv ∈ LA(w1, . . . , wk),
then there exists a unique maximal (i.e., the maximum) pumpable set S in T of
LA(w1, . . . , wk).

Proof. Let S1, S2 be two maximal pumpable sets in T of LA(w1, . . . , wk) and
S1 = {γ1, . . . , γm}. We now prove that S1 ∪ S2 is also pumpable in T , which
implies S1 = S2 by the maximality of S1 and S2. By Condition (�) and Equa-
tion (1) in the proof of Lemma 1, we can deduce that there exist n1, . . . , nm ∈ N

such that ni > 0 for all i ∈ {1, . . . , m} and diff(
∑m

i=1 ni · |γi|(w1,...,wk)) = 0. Let
(uvi)i∈N be an infinite sequence that ensures the pumpability of S2, namely,

(1) Tr(walkGN
A

(u, vi)) = T for all i ∈ N.
(2) uvi ∈ LA(w1, . . . , wk) for all i ∈ N.
(3) NTr(walkGN

A
(u, vi))(γ) ≥ i for all i ∈ N and for all γ ∈ S2.

Let uv′
i be a word that satisfying Tr(walkGN

A
(u, v′

i)) = T , NTr(walkGN
A

(u, v′
i))(γj)

= NTr(walkGN
A

(u, vi))(γj)+i×nj for all i ∈ N and γj ∈ S1. Such word uv′
i always

exists because we can just pump an occurrence of γj ∈ S1 in walkGN
A

(u, vi)
(i × nj)-times repeatedly. Then the infinite sequence (uv′

i)i∈N satisfies uv′
i ∈

LA(w1, . . . , wk) and NTr(walkGN
A

(u, v′
i))(γ) ≥ i for all i ∈ N and for all γ ∈

S1 ∪ S2, because diff(
∑m

j=1 nj · |γj |(w1,...,wk)) = 0. Which means that (uv′
i)i∈N

ensures the pumpability of S1 ∪ S2, this ends the proof. ��
Lemma 3. Let w1, . . . , wk ∈ A∗ and N = max(|w1|, . . . , |wk|). For any maxi-
mum pumpable set S of LA(w1, . . . , wk),

(1) if the vector space V spanned by the occurrence vectors of S is of dimension
one, then V = span({1}) where 1 is the k-dimensional vector with entries
all 1, i.e., any occurrence vector v of S satisfies diff(v) = 0.

(2) if the vector space V spanned by the occurrence vectors of S is of dimension
greater than or equal two, then we can choose a basis B ⊆ {|γ|(w1,...,wk) |
γ ∈ S} of V such that any element v of B satisfies diff(v) �= 0.

Proof. Condition (1) is a direct consequence of Lemma 1. Condition (2) is also
from Lemma 1. Let γ ∈ S be a pumpable cycle such that diff(γ) �= 0. Such γ
always exists since S contains at least two cycles whose occurrence vectors are
linearly independent. Moreover, by Condition (�) in the proof of Lemma 1, we
can deduce that there exists B′ ⊆ S such that the occurrence vectors of B′ ∪{γ}
are linearly independent and 1 ∈ span(B′ ∪ {γ}). Thus any vector of the form
n · 1 (n �= 0) is not in the occurrence vectors of B′ ∪ {γ}, we can take a desired
basis B as an extension of B′ ∪ {γ} (B′ ∪ {γ} ⊆ B). ��



314 R. Sin’Ya

5.2 Proof of Theorem 1

To prove “only if” part, we modify standard Pumping Lemma as follows and call
it Shrinking Lemma. Shrinking Lemma (see the full version [16] for the proof).

Lemma 4 (Shrinking Lemma for regular languages). Let L ⊆ A∗ be a
regular language. Then there exists a constant c ∈ N such that, for any number
n ≥ c and for any word w ∈ L with |w| ≥ n, for any factorisation w = xyz such
that |y| = n ≥ c, there exists a word y′ such that (1) y′ �sc y, (2) |y′| ≤ c and
(3) xy′z ∈ L.

Now we prove Theorem 1. Let N = max(|w1|, . . . , |wk|). The “only if” part is
shown by contraposition. Assume that the dimension of L = LA(w1, . . . , wk) is
two (higher-dimensional case can be shown similarly). Because L is of dimension
two, there exists a maximum pumpable set S = {γi1 , . . . , γij

} in some trace
T = {π} ∪ {γ1, . . . , γm} in GN

A such that two occurrence vectors |γα|(w1,...,wk)

and |γβ |(w1,...,wk) of two cycles γα and γβ in S are linearly independent and any
occurrence vector of an element of S can be represented as a linear combination
of |γα|(w1,...,wk) and |γβ |(w1,...,wk). By Condition (2) of Lemma 3, we can assume
that diff(|γα|(w1,...,wk)) �= 0 and diff(|γβ |(w1,...,wk)) �= 0. Since S is a maximum
pumpable set and the dimension of L is two, there exists a constant cT ∈ N such
that for any n ∈ N there exists a word uvn ∈ L with Tr(walkGN

A
(u, vn)) = T ,

(NTr(u, vn))(γα) = nα, (NTr(u, v))(γβ) = nβ ≥ n and (NTr(u, vn))(γi) ≤ cT for
each i ∈ ({1, . . . ,m} \ {α, β}). By Proposition 3, we can assume that the walk
walkGN

A
(u, vn) is of the form

walkGN
A

(u, vn) = ω1 � γnα
α � ω2 � γ

nβ

β � ω3.

Intuitively, walkGN
A

(u, vn) firstly moves to from(γα) (part of ω1), and secondly
passes γα repeatedly nα-times and moves to from(γβ) (part of γnα

α � ω2), and
lastly passes γβ repeatedly nβ-times and moves to the end (part of γ

nβ

β � ω3). If
L is regular, then by Lemma 4, there exists a constant c such that for any n ≥ c
and the factorisation uvn = xynzn, where x, yn and zn are words corresponding
to the first, second and last part of walks described above, there exists a word
y′

n satisfying conditions (1)–(3) in Lemma 4. Because diff(|γβ |(w1,...,wk)) �= 0,
we have |γβ |wj

< |γβ |wj′ for some 1 ≤ j, j′ ≤ k. However, since the length of
x and y′

n are fixed by constant but zn can be arbitrarily large, the gap of the
occurrences |zn|wj′ − |zn|wj

can be arbitrarily large (thus |xy′
nzn|w′

j
− |xy′

nzn|wj

can be arbitrarily large, too). It means that xy′
nzn �∈ L for sufficiently large n, a

contradiction.
The “if” part is achieved by showing that the language LT = {uv ∈ L | |u| =

N,Tr(walkGN
A

(u, v)) = T} is regular for each trace T = {π} ∪ {γ1, . . . , γm} in
GN

A . It implies that L is regular because L = L<N ∪ ⋃
T :trace LT (notice that

L<N = {w ∈ L | |w| < N} is finite and thus regular). One can observe that
L = {w ∈ L | |w| < N}∪⋃

T : trace in GN
A

LT , hence if every LT is regular then L is
also regular. To achieve it, we construct a deterministic automaton AT,S , where
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S is the maximum pumpable set in T , so that LT = L(AT,S). Let S = (T \S\{π})
and define

cT
def== max{(NTr(walkGN

A
(u, v)))(γ) ∈ N | uv ∈ L,Tr(walkGN

A
(u, v)) = T, γ ∈ S}

(notice that max ∅ def== 0 as usual). cT is well-defined natural number, because,
by the definition of pumpable set and S being maximum, for any cycle γ in T
but not in S, the maximum number of occurrences of γ in a walk of some word
in L is bounded. We denote by F the set of all functions from S to N

≤cT . Notice
that both S and N

≤cT are finite, F is also finite. Let f0 ∈ F be the constant
map to 0. Then the construction is as follows: AT,S = (Q, δ, ε, F ) where each
component is defined in Fig. 5.

Fig. 5. The construction of AT,S = (Q, δ, ε, F ).

Although the formal definition in Fig. 5 could look complex, the behavior of
AT,S is simple: it computes path-cycle decomposition and counts the number
of occurrences of each non-pumpable cycle γ ∈ S. The main part of states is
Q′ which consists of the path part P(GN

A ), pumpable-cycles part 2S and non-
pumpable-cycles part F . While reading an input word w, AT,S extends the path
part (Case 1©) if the next vertex wb is not in the current path. If the next
vertex wb is already in the current path, there are four possibilities (Case 2©–
5©). If the induced cycle γ on wb is in S (Case 2©), AT,S updates the pumpable
cycle part. The number of occurrences of such cycle γ ∈ S is not necessary to
be memorised, since by Condition (1) of Lemma 3 diff(|γ|(w1,...,wk)) = 0. If
γ is not in T (Case 3©), AT,S goes to the rejecting state qrej, since the trace



316 R. Sin’Ya

of w is never to be T . If γ is in S, there are two possibilities further: if the
current number of occurrences of γ is less than cT (Case 4©), AT,S increments
it, otherwise (Case 5©), AT,S goes to qrej because w is never to be in L by the
definition of cT . ��

5.3 Proof of Theorem 2

The proof structure is similar with the regular case (Theorem 1). The following
lemma is a context-free variant of Lemma 4. Lemma 4 (see the full version [16]
for the proof).

Lemma 5 (Shrinking Lemma for context-free languages). Let L ⊆ A∗

be a context-free language. Then there exists a constant c ∈ N such that, for any
number n ≥ c and for any word w ∈ L with |w| ≥ n, there exists a factorisation
w = xyz and a word y′ such that (0) 2n > |y| ≥ n ≥ c, (1) y′ �sc y, (2) |y′| ≤ c
and (3) xy′z ∈ L.

Now we prove Theorem 2. Let N = max(|w1|, . . . , |wk|). The “only if” part
is shown by contraposition. Assume that the dimension of L = LA(w1, . . . , wk)
is three (higher-dimensional case can be shown similarly). Because L is of
dimension three, there exists a maximum pumpable set S = {γi1 , . . . , γij

} in
some trace T = {π} ∪ {γ1, . . . , γm} in GN

A such that three occurrence vectors
B = {|γα|(w1,...,wk), |γβ |(w1,...,wk), |γδ|(w1,...,wk)} of three cycles γα, γβ and γδ in
S are linearly independent and any occurrence vector of an element of S can
be represented as a linear combination of B. By Condition (2) of Lemma 3,
we can assume that any vector v in B satisfies diff(v) �= 0. Since S is a
maximum pumpable set and the dimension of L is three, there exists a con-
stant cT ∈ N such that for any n ∈ N there exists a word uvn ∈ L with
Tr(walkGN

A
(u, vn)) = T , (NTr(walkGN

A
(u, vn)))(γi) = ni ≥ n for each i ∈

{α, β, δ} and (NTr(walkGN
A

(u, vn)))(γi) ≤ c for each i ∈ ({1, . . . , m} \ {α, β, δ}).
By Proposition 3, we can assume that the walk walkGN

A
(u, vn) is of the form

walkGN
A

(u, vn) = ω1 � γnα
α � ω2 � γ

nβ

β � ω3 � γnδ

δ � ω4.

Let un,1, un,2 and un,3 be words corresponding to ω1 � γnα
α , ω2 � γ

nβ

β and ω3 �
γnδ

δ � ω4, respectively (thus uvn = un,1un,2un,3). Let Mn = min{nα · |γα|, nβ ·
|γβ |, nδ · |γδ|}. If L is context-free, then by Lemma 5, there exists a constant c
such that for any n ≥ c, there is a factorisation uvn = xnynzn and a word y′

n

satisfying conditions (0)–(3) in Lemma 5. Take n ∈ N that satisfies Mn ≥ c.
Then, the word y in the factorisation uvn = xnynzn above can cross at most two
words from un,1, un,2, un,3. It means that xny′

nzn �∈ L for sufficiently large n, a
contradiction.

The “if” part is achieved in a similar way as the regular case: we can construct
a pushdown automaton AT,S , where S is the maximum pumpable set in T , so
that LT = L(AT,S). The only difference is that AT,S uses its stack for checking
the consistency the occurrences of two linearly independent occurrence vectors.
AT,S achieves it as some pushdown automaton recognises LA(a, b). ��
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6 Conclusion and Future Work

In this paper, we provided decidable, necessary and sufficient conditions of the
regularity and context-freeness for WMIX languages by using the notion of
dimensions. Complexity issues on these problems (tight lower/upper bounds,
more efficient algorithm, etc.) are untouched and could be future work.

The author’s main interest is how to generalise the main result into more
richer language classes, e.g., UnCA languages [11]. From WMIX languages (rep-
resented by de Bruijn graphs and diagonals {n·1 | n ∈ N}) into UnCA languages
(represented by unambiguous automata and semilinear sets), although we should
modify the notion of dimensions and some part of the proof strategy, the author
conjectures that the context-freeness is still decidable for UnCA languages.

Acknowledgement. The author would like to thank Thomas Finn Lidbetter for
telling me this topic in DLT 2018. Special thanks also go to my colleague Fazekas
Szilard whose helpful discussion were an enormous help to me. The author also thank
to anonymous reviewers for many valuable comments. This work was supported by
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Abstract. In 1842, Dirichlet observed that any real number α can be
obtained as the limit of a sequence ( pn

qn
) of irreducible rational numbers.

Few years later, M. Stern (1858) and A. Brocot (1861) defined a tree-
like arrangement of all the (irreducible) rational numbers whose infinite
paths are the Dirichlet sequences of the real numbers and are character-
ized by their continued fraction representations. The Stern-Brocot tree
is equivalent to the Christoffel tree obtained by ordering the Christof-
fel words according to their standard factorization. We remark that the
Fibonacci word’s prefixes belong to a minimal path in the Christoffel
tree with respect to the second order balancedness parameter defined on
Christoffel words. This alows us to switch back to the Stern-Brocot tree,
in order to give a characterization of the continued fraction representa-
tion for all the rational numbers belonging to minimal paths with respect
to the growth of the second order balancedness.

Keywords: Continued fractions · Stern-Brocot tree · Christoffel
words · Balance property · Minimal path

1 Introduction

It appears that balancedness [2] is a crucial notion for the recently developed
research area of combinatorics on words. A widely studied class of binary bal-
anced words are the Christoffel words, whose interest arises from their strong
connections with geometry, algebra, and number theory (see [2] for the defini-
tions, first properties and extensive bibliography). Each Christoffel word is the
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discretization of a line segment of rational slope, and it can be uniquely factor-
ized into two different Christoffel words. Such standard factorization allows us to
arrange all the Christoffel words in a binary tree structure, called Christoffel tree,
whose root is the word w = 01 = (0, 1). The notion of balancedness allows us
to define, for each binary word w, a balance matrix Bw whose maximal element
provides its order of balancedness, noted by δ(w). The present study focuses on
Christoffel words that are balanced words, i.e. whose order of balancedness is 1.
In this case, each row of the balance matrix is again a binary word, whose order
of balancedness can be computed again, obtaining a second order balance matrix
Uw whose maximal element is defined as the second order balance value δ2(w).
This value can also be obtained using the link between the abelian complexity
and balanced words represented by Zamboni ([6], Section 4), using the Parikh
vectors.

The matrix Uw has several properties that allow a recursive construction
by referring to three Uw′ matrices, of some specific ancestors w′ of w in the
Christoffel tree [12]. The authors used this notion to study the distribution
of 1′s in Christoffel words and relate it to the longstanding problem of their
synchronization [7,8].

The correspondence between Christoffel word and continued fraction repre-
sentation of its rational slope allows us to transfer the notion of balancedness
to the Stern-Brocot tree. This tree, indicated hereafter as SB-tree, is a binary
tree where the irreducible rational numbers are arranged according to a specific
operator called Farey sum, defined independently in [4] and in [11], and that
perfectly mimes the notion of Standard decomposition of a Christoffel word. In
our study, we first establish a connection between the second order balance value
of a Christoffel word and the form of the continued fraction representation of
the slope of the related discrete segment. Then, we present the sequence of the
ratios of consecutive Fibonacci numbers constitutes, in the SB-tree, as being an
example of a path which minimizes the growth of the second order balancedness
parameter of the related Christoffel words. Finally, relying on this result, we
characterize the minimal paths (w.r.t the second order balance value) by mixing
algebraic and arithmetic techniques on the continued fraction representations.
In fact, in the final theorem, we determine the rational numbers belonging to a
minimal path with respect to the form of their continued fractions.

The paper is structured as follows: in Sect. 2, we recall the definitions of
Christoffel words, Christoffel tree and the Stern-Brocot tree. In Sect. 2.4, we
introduce the notion of balancedness and we define the balance matrix of a
binary word. Then we generalize the notion to the second order balance matrix.
Finally, in Sect. 3, we show how the second order balancedness parameter is
spread on the SB-tree, providing the example of the Fibonacci sequence. Here
we provide our main result: the characterization of the minimal paths in the
SB-tree according to the δ2 parameter. We prove that a rational number on the
SB-tree belongs to a minimal path, according to the growth of a second order
balancedness, if the elements of its continued fractions start by 0, 1 and end by
2, while the middle terms are only made of blocks of (1, 1, 1); (2, 1); (1, 2) or (3).
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2 Definitions and Previous Results

We refer to the book [5] for the standard terminology in combinatorics of words:
alphabet, word, length of a word, occurrence of a letter, factor, prefix, suffix,
period, conjugate, primitive, reversal, palindrome etc. The related notation will
be recalled when used.

Christoffel Paths and Christoffel Words. In discrete geometry, the theory
of Christoffel words has been considered during this last few decades and has
acquired a prominent role in the study of the discretization of segments and
shapes. Concerning the former, let a, b be two co-prime numbers; the Christoffel
path of slope a

b is defined as the connected path joining the origin O(0, 0) to the
point (b, a) in the integer lattice Z × Z; such that it is the nearest path below
the Euclidean line segment joining these two points, as shown in Fig. 1. So, there
are no points of the discrete plane between the path and the line segment.

Still in Fig. 1, we can see the coding of a Christoffel path by a binary word,
say Christoffel word, whose letters 0 and 1 represent a horizontal and a vertical
step in the path, respectively.

The Christoffel word related to the path reaching the point (b, a) is indicated
by C(a

b ), and its slope is a
b = |w|1

|w|0 , where the notation |w|x stands for the number
of occurrences of the letter x in w.

Fig. 1. The Christoffel path of the line segment of slope 5
8
, and the corresponding

Christoffel word C( 5
8
) = 0010010100101.

A binary word w is k-balanced, with k > 0, if, for any two factors u and
v of its conjugates such that |u| = |v|, it follows that ||u|1 − |v|1| ≤ k. One of
the most important properties of Christoffel words is that they are 1-balanced
binary words, or simply balanced words, as shown in [3].

2.1 Christoffel Tree

Let us recall the definition of the Christoffel tree, i.e. a well-known arrangement
of the Christoffel words as a binary tree (see [1]). The root of the Christoffel
tree is labeled by the pair (0, 1), representing the Christoffel word 01 of slope
1
1 . Each node (u, v) generates two children according to two functions φ0 and
φ1 such that: φ0(u, v) = (u, uv) produces the left-child, and φ1(u, v) = (uv, v)
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produces the right-child. Each node (u, v) corresponds to the Christoffel word uv
and represents its standard factorization form [5]. Figure 2 shows the first levels
of the Christoffel tree.

Fig. 2. The first levels of the Christoffel tree.

Let w = C(a
b ) be a Christoffel word lying at level k of the tree. The directive

sequence of w is the word Δ(a
b ) = i1i2 . . . ik such that w = (φik ◦ . . . ◦ φi2 ◦

φi1)(0, 1). According to the definition of φ0 and φ1, the elements of Δ(a
b ) also

show, step by step, the directions to reach the word w in the tree starting from
its root at level 1. If in = 0, we must move to the left, otherwise, to the right.

As an example, the directive sequence of the Christoffel word C(43 ) = 0101011
at level 4 of the Christoffel tree is Δ(43 ) = 100: according to the definition it holds
(φ0 ◦ φ0 ◦ φ1)(0, 1) = (φ0 ◦ φ0)(01, 1) = φ0(01, 011) = (01, 01011).

2.2 Stern-Brocot Tree

The Christoffel tree is known to be isomorphic to the SB-tree, that was intro-
duced by M. Stern [11] and A. Brocot [4] as a binary-tree arrangement of the
irreducible fractions. Such arrangement relies on the Farey sum operator, indi-
cated by ⊕, and defined on two generic rational numbers as a

b ⊕ c
d = a+c

b+d . The
root of the SB-tree is labeled with the fraction 1

1 and each node at level n > 1 is
labeled with the Farey sum of its nearest left and right ancestors, i.e., the nodes
lying on the greatest level of the tree and having k in its left and right subtree,
respectively. The left and right ancestors of the root are considered to be the
fractions 0

1 and 1
0 , even if not present in the tree. The first levels of the SB-tree

are depicted in Fig. 3.

Fig. 3. The first levels of the Stern-Brocot tree.
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As an example, we compute the left-child and right-child of the node 3
4 by

Farey summing it with its left-ancestor 2
3 and with its right-ancestor 1

1 , and
obtaining 5

7 and 4
5 , respectively. The SB-tree contains once each irreducible

fraction and over the years has attracted researchers for its many interesting
properties.

Remark 1. By the construction of the SB-tree, the following hold

i) The tree is divided into two symmetric parts. The left part contains all the
reduced fractions less than 1, while the right part contains the reduced frac-
tions bigger than 1.

ii) For each level k of the SB tree, the rational numbers appear in increasing
order from left to right, and their values are bounded by 1

k and k
1 .

From our perspective, the SB-tree’s appeal reveals in its close relationship
with the Christoffel tree: in fact, we can note that if we replace the label of each
node (u, v) of this last with the rational number |uv|1

|uv|0 representing the slope of the
corresponding Christoffel word, we obtain the SB-tree. This correspondence is
interesting but not surprising once we observe that the slope of the concatenation
of two Christoffel words is the Farey sum of their slopes. For instance, take the
rational number 3

5 on the SB-tree, it is at the same position of the Christoffel
word 00100101 of slope 3

5 on the Christoffel tree.

2.3 Continued Fraction Representation

Our study requires to recall a final notion to identify the nodes of the SB-tree.
Let a

b be a positive fraction, we define its continued fraction representation as
the sequence of integers [a0, . . . , az], with a0 ≥ 0, represented below, and such
that for each 1 ≤ i ≤ z, ai ≥ 1:

a

b
= a0 +

1
a1 + 1

... 1
az−1+ 1

az

In order to obtain a unique continued fraction representation of each rational
number, it is also commonly required that if z ≥ 2, then az ≥ 2. Otherwise, with
a simple calculation, we can remark that if az = 1, it is sufficient to reduc
ethe sequence to az−1 and add +1, for example: 2

3 = [0, 1, 1, 1] = [0, 1, 2]. The
continued fraction representation of a rational number is always finite while the
representation is infinite in the case of an irrational number (among the vast
literature on continued fraction representation, we refer the reader to [10] for
the main properties).

Equivalently to the Christoffel tree, the directive sequence of the Christoffel
word of slope a

b can be read in the SB-tree by using the terms of the continued
fraction representation of a

b . The following lemma presents this connection (a
proof can be found in [9] and [12]).
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Lemma 1. [9] Let w be the Christoffel word of slope a
b whose continued fraction

representation is [a0, a1, . . . , az]. The directive sequence of w has the following
form: Δ(a

b ) = 1a00a11a2 . . . paz−1, where p ∈ {0, 1} according to the parity of z.

Referring again to the continued fraction representation [0, 1, 2, 2] of 5
7 , the

directive sequence Δ( 57 ) is exactly 10011201.

2.4 The Second Order Balance Matrix

The second order of balancedness of a Christoffel word w, denoted δ2(w), pro-
vides an idea of how uniformly the factors of each abelian class, as defined in [6],
are distributed in w. It is the maximal value of the second order balance matrix,
denoted Uw, introduced in [12]. In order to construct this matrix, the author had
to define the balance matrix Bw, of a binary word w. This matrix calculates the
order of balancedness, that is usually obtained by computing ||u|1 −|v|1| ≤ k for
any factors u and v of same length, of any binary word w = w1w2 . . . wn in an
explicit way. To do that, we first compute the matrix Sw of dimension (n−1)×n
whose generic element Sw[i, j] counts the number of elements 1 in the i-length
prefix of the conjugate of w starting in position j. We let M [i] represents the ith

row of any matrix M.
The balance matrix Bw is computed from Sw by subtracting the minimum

of a given row to each of its element, i.e.,

Bw[i, j] = Sw[i, j] − min{Sw[i]}.

By construction, we can note the following lemma:

Lemma 2. Let w = w1w2 . . . wn, the maximum element of Bw is equal to the
balance orer of w.

We denote the balance order by δ(w). A simple example will clarify the con-
struction.

Example 1. Let us consider the Christoffel word w = 00100101 of slope 3
5 . We

provide the matrices Sw and Bw:

Sw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 1
0 1 1 0 1 1 1 1
1 1 1 1 1 2 1 1
1 1 2 1 2 2 1 2
1 2 2 2 2 2 2 2
2 2 3 2 2 3 2 2
2 3 3 2 3 3 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Bw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 1
0 1 1 0 1 1 1 1
0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1
0 1 1 1 1 1 1 1
0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since each Christoffel word w is 1-balanced, then the rows of its balance
matrix Bw are binary words too. So, we can push the notion of balancedness to
a second level by studying the balancedness of the rows of Bw. Let us define the
second order balance matrix Uw of dimension (n − 1) × (n − 1), with n = |w|, as
Uw[i, j] = max(BBw[i][j]). In words, the element Uw[i, j] shows the balancedness
of the i-th row of Bw with respect to its proper factors of length j. More details
and properties about this matrix can be found in [12].
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Example 2. Let us consider the 1-balanced word w of Example 1. The fourth row
of the matrix Uw is obtained by computing the balance value of the fourth row
of Bw with respect to all the possible factors’ lengths from 1 to 8. We explicitly
determine the element Uw[4, 3]: the eight factors of the conjugates of Bw[4] of
length 3 are (001, 010, 101, 011, 110, 101, 101, 100), and the maximum difference
of the number of elements 1 between any two of them is 1, so Uw[4, 3] = 1.
Doing an analogous computation for all the lengths from 1 to 7, we obtain
Uw[4] = (1, 2, 1, 2, 1, 2, 1).

So, the second order of balancedness of a Christoffel word w provides an
idea of how uniformly the factors of each abelian class, as defined in [6], are
distributed in w.

3 Path Minimality in SB-Tree

In this section, we prove some new properties of the second order balance param-
eter for Christoffel words and we show how it is distributed on the Christoffel
tree. Finally, we characterize the paths of the tree where the parameter’s growth
is minimal. So, let us consider the following two ancestors of a

b = [a0, . . . , az] in
the SB-tree:
u
v whose continued fraction expansion is = [a0, . . . , az−1 + 1]
ρ
θ whose continued fraction expansion is either [a0, . . . , az − 2] if az > 2, or

[a0, . . . , az−2] if az = 2.

In [12], Section 6.1, the authors proved that the matrix Uw, with w = C(a
b ),

can be decomposed into blocks belonging either to Uw1 or to Uw2 + 1, with
w1 = C(u

v ) and w2 = C(ρ
θ ). From this result it immediately follows:

Theorem 1. The second order balance value of C(a
b ) is:

δ2
(
C

(a

b

))
= max

(
δ2

(
C

(u

v

))
, δ2

(
C

(ρ

θ

))
+ 1

)
.

Using the previous result, we set a lower bound to the growth of the second
order balanced value inside the Christoffel tree. The next lemma states that
δ2(C(a

b )) increases according to the distance between a
b and u

v in the SB-tree.

Lemma 3. Let a
b = [a0, . . . , az] and belongs to the level k on the SB-tree, where

δ2(C(u
v )) = t and δ2(C(ρ

θ )) = n.

i) If az = 2, then δ2(C(a
b )) ∈ {t; t + 1}.

ii) If az > 2, then δ2(C(a
b )) = n + 1, i.e it is increased by one value each 2

levels after u
v .

Proof. Let us consider these two rational numbers a
b = [a0, . . . , az] and u/v =

[a0, . . . , az−1 + 1], where δ2(C(u
v )) = t.

If az = 2, then ρ
θ = [a0, . . . , az−2], in this case, its second order value is equal to

n ≤ t. In all the cases, from Theorem 1, δ2(C(a
b )) = max(δ2(C(u

v )), δ2(C(ρ
θ ))+1)

that can be either t or t + 1.
If az ≥ 3, then we must consider two cases for the rational number ρ

θ .
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– If az = 3, in this case ρ
θ = u

v and n = t, then:
δ2(C(a

b )) = max(δ2(C(u
v )), δ2(C(ρ

θ ) + 1) = n + 1.
– If az ≥ 4, in this case ρ

θ = [a0, a1, · · · , az − 2], and n ≥ t then:
δ2(C(a

b )) = δ2(C(ρ
θ )) + 1 = n + 1.

Finally, we provide a lower bound, denoted by δ2k, for the second order balance
value of any element at level k in the Christoffel tree.

Theorem 2. For each level k in the SB tree, we have: δ2k ≥ �k
3 �.

Proof. By induction on the levels of the Stern-Brocot tree, we have δ21 = δ22 = 1;
and δ23 ∈ {1, 2} while δ24 = 2. Hence the minimal value of δ23 (denoted min δ23)
is equal to 1 and min δ24 = 2. Which means that δ2i ≥ � i

3� with 1 ≤ i ≤ 4.
Suppose that it is true for all the levels till k = 3k′; i.e min δ2k = min δ2k−1 =

min δ2k−2 = k′. We prove that δ2k+1 ≥ �k+1
3 � = k′ + 1.

All the children of the fractions on level k, with δ2 > k′, have δ2 ≥ k′ + 1. It
remains to study the case where δ2k = k′. For that, we let u

v be a fraction at level
k with δ2(C(u

v )) = k′. By contradiction, we let c
d be the fraction at level k + 1

with δ2(C( c
d )) = k′. This fraction is either in the same, or opposite direction of

u
v . If c

d is in the same direction of u
v , then by Lemma 3, we get δ2(C(a

b )) = k′ −1,
where a

b is the fraction at level k − 1. If c
d is in the opposite direction, then the

fraction u
v can be either in the same direction or opposite to a

b . In this case, we
let m

n be the fraction at level (k − 2) and we have:

– If u/v = (a/b) then by Lemma 3, δ2(C(m
n )) = k′ − 1.

– If u/v = (a/b), then if δ2(C(a
b )) = k′, we get:

δ2(C( c
d )) = max(δ2(C(u

v )), δ2(C(m
n )) + 1) = k′. If δ2(C(m

n )) = k′ then
δ2(C( c

d )) = k′ + 1; and if δ2(C(m
n )) = k′ − 1 we get a contradiction since

δ2(k−2) ≥ �k−2
3 � = k′.

Therefore δ2 ≥ k′ + 1 for all the fractions on the level k + 1 thus

δ2k+1 ≥ �k + 1
3

� = �3k′ + 1
3

� = k′ + 1.

	

The remaining part of the section, is devoted to the study of the paths of the
SB-tree whose related Christoffel words realize the lower bound. The symmetry
of the tree allows us to consider, without loss of generality, its left part only,
i.e., those fractions less than or equal to 1 and whose continued fractions have
a0 = 0. We denote the subtree SBL.

3.1 Minimal Paths in the SB-Tree

Let us assign to each fraction of SBL the δ2 value of its related Christoffel word
starting from the root 1

1 : Fig. 4 shows the computation till the fifth level of the
tree.
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Fig. 4. The second order balancedness of the rational numbers belonging to the first
five levels of SBL.

Let us indicate by P (a
b ) the sequence of all the fractions in the path from

the root of SBL to the element a
b , and by Pδ2(a

b ) the sequence of the related
δ2 values. From Lemma 3, it follows that Pδ2(a

b ) is a weakly increasing integer
sequence.

As an example, let us consider the fraction 7
12 , lying in the sixth level of SBL.

We have P ( 7
12 ) = (11 , 1

2 , 2
3 , 3

5 , 4
7 , 7

12 ), and the related δ2 sequence is Pδ2( 7
12 ) =

(1, 1, 1, 2, 2, 2).
We give now the definition of a minimal path at a certain level k of SBL.

Definition 1. For each level k of the SBL, the minimal path MPk is given by:
(1, 1, 1, 2, 2, 2, 3, . . . , �k

3 �).
In order to give an example, we consider the Fibonacci sequence {fk}∞

k=0 =
1, 1, 2, 3, 5, 8, 13, . . ., and define the zig-zag path to be the sequence of rational
numbers obtained by the ratio of two consecutive elements. It is well known that
the golden number is the limit of the sequence of the rational numbers fk

fk+1
, with

k ≥ 0. The continued fraction representations of these rational numbers are of
the form [0, 1, 1 . . . , 1, 2], and they constitute a (infinite) path in SBL. This path
realizes the lower bound stated in Theorem 2 assuring that, for each k, Pδ2( fk

fk+1
)

is minimal, and it equals MPk.
Now we focus our study on the questions: For each level k, is the zig-zag path

the only minimal one? If no, can we characterize all the minimal paths in SBL?

3.2 A Connection Between δ2 Value and the Continued Fraction
Representation

Let us consider the following continued fraction representations:
a
b = [a0, a1, · · · , az]; u

v = [a0, a1, · · · , az−1 + 1]; p
q = [a0, · · · , az−2 + 1];

s
t = [a0, · · · , az−2]; and ρ

θ =

⎧⎪⎨
⎪⎩

[a0, a1, · · · , az − 2] if az ≥ 4
[a0, a1, · · · , az−1 + 1] if az = 3
[a0, a1, · · · , az−2] if az = 2.
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From Lemma 3, we know that δ2
(
C

(
a
b

))
is related to δ2

(
C

(
u
v

))
and

δ2
(
C

(
ρ
θ

))
. In the final part of the section, we will show how this relation reflects

on their continued fraction representations.

Theorem 3. Let a
b = [a0, a1, · · · , az], we have:

δ2
(
C

(a

b

))
=

⎧⎪⎨
⎪⎩

δ2
(
C

(u

v

))
if az−1 ≥ 2 and az = 2

δ2
(
C

(ρ

θ

))
+ 1 elsewhere.

Proof. Without loss of generality and in order to enlighten the notation, we
denote δ2

(
C

(
a
b

))
by Da, δ2

(
C

(
u
v

))
= Du, δ2

(
C

(
ρ
θ

))
= Dr, δ2

(
C

(
p
q

))
= Dp

and δ2
(
C

(
s
t

))
= Ds. Equivalently, by symmetry, we consider z to be an even

number which means that the last element of Δ(a
b ) is equal to 1. We start by

considering separately the cases az ≥ 4 and az = 3, then we discuss the case
az = 2.

1. If az ≥ 4, we let Du = d, then Dr ≥ d since ρ
θ > u

v . Hence Da = max(Du,Dr+
1) = Dr + 1 (see Fig. 5, on the left).

2. If az = 3, in this case the fractions u
v and ρ

θ are the same and we have:
Da = max(Du,Dr +1) = max(Dr,Dr +1) = Dr +1 (see Fig. 5, on the right).

3. If az = 2, in this case we get several sub-cases depending on the values of
az−1 and az−2.
(a) If az−1 = 1, we get 4 sub-cases that are summarized in the table of Fig. 6,

where fraction u
v = [a0, · · · , 2] and Dr = d. If Dp = d, then Du can be

equal to d or d + 1. In the former case, it holds Da = max(Du,Dr + 1) =
d + 1 = Dr + 1, while, in the latter, it holds then Da = max(d + 1, d +
1) = d + 1 = Dr + 1. Acting similarly in the case Dp = d + 1, it holds
Da = d + 1 = Dr + 1.

(b) If az−1 = 2, the cases are represented in Fig. 7. If Dp = d, then by Lemma
3, Du = d + 1 and Da = d + 1 = Du. On the other hand, if Dp = d + 1,
then Du = d + 2 and Da = d + 2 = Du.

(c) If az−1 = 3, the rational numbers are represented in Fig. 8 where the
fraction k

l = [a0, · · · , az−2, 2] with δ2
(
C

(
k
l

))
= Dk must be considered.

If Dk = d, by Lemma 3, it holds Du = d + 1 and Da = d + 1 = Du, while
if Dk = d + 1, it holds Du = d + 2 and Da = d + 2 = Du.

(d) Finally, if az−1 > 3, it holds Du > Dr + 1 therefore, Da = Du. 	


Fig. 5. Positions of the fractions a
b
, u

v
, ρ

θ
on SBL in case where the last element of the

continued fraction of a
b

= az = 4 or az = 3 respectively.
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Fig. 6. Position of the fractions ρ
θ
, p

q
, u

v

and a
b
, when az = 2, and az−1 = 1,

and the table showing the 4 possible
subcases

Fig. 7. Position of the fractions ρ
θ
, p

q
, u

v

and a
b
, when az = 2, and az−1 = 2

az = 2 and the table representing the
2 sub-cases.

Fig. 8. Position of the fractions ρ
θ
, p

q
, k

l
, u

v
and a

b
, when az = 2, and az−1 = 3 and the

table representing the 2 sub-cases.

3.3 General Form of a Minimal Path

In this section we give the final result of the paper, by providing a characteriza-
tion on the elements of the continued fraction of a

b in order to consider Pδ2(a
b )

as a minimal path in SBL.
At level 4 of the SBL, only two rational numbers out of 4 belong to a minimal

path as we can see in Table 1. We have Pδ2( 35 ) = Pδ2( 34 ) = (1, 1, 1, 2), where
3
5 = [0, 1, 1, 2] and 3

4 = [0, 1, 3]. This insures that the continued fraction of
any rational number in SBL, who belongs to a minimal path must starts with
[0, 1]. At level 5, we note that these two rational numbers generate 4 rational
numbers that belong to a minimal path. While at level 6, we get again 4 rational
numbers that are also represented in Table 1. By Definition 1, we can notice that
three consecutive elements pi, pi+1, and pi+2, of a minimal path are such that
pi+1 − pi ≤ 1. Hence, all the children of the rational numbers of SBL belonging
to MP6 maintain the minimality at levels 7 and 8. While at level 9, there exist
only 16 (= 42) fractions that belong to MP9 and are represented in Table 2.

Considering these first levels, we note that the continued fraction representa-
tions of the elements of MP9 must start with 0, 1 and end with 2. On the other
hand, all the remaining δ2 values of each element of MP9 can be grouped into
the blocks (1, 1, 1); (1, 2); (2, 1) or 3 as the red and blue colored sequences in
Table 2 witness. Aware of this, we can characterize the elements of SBL that
belongs to a minimal path.
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Table 1. The rational numbers a
b

at level 4 of SBL with their continued fraction
representation, P (a

b
) and Pδ2(

a
b
). The four rational numbers at level 6 that belong to

a minimal path with their continued fraction representation, and sequences P and Pδ2 .

Level Fraction a
b

Continued fraction P (a
b
) Pδ2(

a
b
)

4 1
4

[0, 4] ( 1
1
, 1
2
, 1
3
, 1
4
) (1, 1, 2, 2)

4 2
5

[0, 2, 2] ( 1
1
, 1
2
, 1
3
, 2
5
) (1, 1, 2, 2)

4 3
5

[0, 1, 1, 2] ( 1
1
, 1
2
, 2
3
, 3
5
) (1, 1, 1, 2)

4 3
4

[0, 1, 3] ( 1
1
, 1
2
, 2
3
, 3
4
) (1, 1, 1, 2)

6 8
13

[0, 1,1,1,1, 2] ( 1
1
, 1
2
, 2
3
, 3
5
, 5
8
, 8
13

) (1, 1, 1, 2, 2, 2)

6 8
11

[0, 1,2,1, 2] ( 1
1
, 1
2
, 2
3
, 3
4
, 5
7
, 8
11

) (1, 1, 1, 2, 2, 2)

6 7
12

[0, 1,1,2, 2] ( 1
1
, 1
2
, 2
3
, 3
5
, 4
7
, 7
12

) (1, 1, 1, 2, 2, 2)

6 7
9

[0, 1,3, 2] ( 1
1
, 1
2
, 2
3
, 3
4
, 4
5
, 7
9
) (1, 1, 1, 2, 2, 2)

Table 2. The 16 rational numbers that belong to MP9 on SBL.

29
50

27
46

26
45

23
39

[0, 1,1,2, 1,1,1, 2] [0, 1,1,2, 2,1, 2] [0, 1,1,2, 1,2, 2] [0, 1,1,2, 3, 2]
34
55

30
49

31
50

25
41

[0, 1,1,1,1, 1,1,1, 2] [0, 1,1,1,1, 2,1, 2] [0, 1,1,1,1, 1,2, 2] [0, 1,1,1,1, 3, 2]
34
47

30
41

31
43

25
34

[0, 1,2,1, 1,1,1, 2] [0, 1,2,1, 2,1, 2] [0, 1,2,1, 1,2, 2] [0, 1,2,1, 3, 2]
29
37

27
35

26
33

23
30

[0, 1,3, 1,1,1, 2] [0, 1,3, 2,1, 2] [0, 1,3, 1,2, 2] [0, 1,3, 3, 2]

Theorem 4. Let a
b be an element of SBL at a certain level k ≥ 6 and whose

continued fraction representation is [a0, a1, . . . , az]. If the ai’s respect the follow-
ing conditions: a0 = 0, a1 = 1, az = 2 and the elements a2, . . . , az−1 are obtained
by the concatenation of the blocks (1, 1, 1), (2, 1) (1, 2) and (3), then a

b ∈ MPk.

Proof. By the computation of the first minimal paths of SBL we have that
a0 = 0 and a1 = 1. From Lemma 3, we know that az must be equal to 2 in order
to realize the minimal growth. Now, from Definition 1, we know that the rational
number a

b belongs to a minimal path if the values of Pδ2(a
b ) are increased by 1,

each three steps. Relying on that, we consider all the possible ways to pass from
a level t to a level t+3 in SBL keeping the minimal growth of one, and we easily
realize that these elements can only have one the following forms:
(1, 1, 1), (2, 1) (1, 2) or (3), i.e. all the possible integer decompositions of the
number three. Note that the first case, is equivalent to the zig-zag path, while
the other cases are obtained by Theorem 3 and Lemma 3.

	

Finally, some simple computations lead to the following:
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Corollary 1. Let k be a certain level in SBL, the number of MPk is equal to:
⎧⎪⎪⎨
⎪⎪⎩

4
k
3 −1 if k ≡3 0

2 · 4� k
3 �−1 if k ≡3 1

4 · 4� k
3 �−1 if k ≡3 2

This last theorem determines the form of the minimal paths inside the SB-
tree according to the δ2-paths, and from a geometrical perspective, it defines
a new family of Christoffel words that deserves to be investigated. A further
generalization of the order of balancedness may also identify special paths of the
SB-tree showing a fixed point property.
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