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Abstract. The World-Wide-Web is a complex system naturally repre-
sented by a directed network of documents (nodes) connected through
hyperlinks (edges). In this work, we focus on one of the most relevant
topological properties that characterize the network, i.e. being scale-free.
A directed network is scale-free if its in-degree and out-degree distribu-
tions have an approximate and asymptotic power-law behavior. If we
consider the Web as a whole, it presents empirical evidence of such prop-
erty. On the other hand, when we restrict the study of the degree distri-
butions to specific sub-categories of websites, there is no longer strong
evidence for it. For this reason, many works questioned the almost uni-
versal ubiquity of the scale-free property. Moreover, existing statistical
methods to test whether an empirical degree distribution follows a power
law suffer from large sample sizes and/or noisy data.

In this paper, we propose an extension of a state-of-the-art method
that overcomes such problems by applying a Monte Carlo sub-sampling
procedure on the graphs. We show on synthetic experiments that even
small variations of true power-law distributed data causes the state-of-
the-art method to reject the hypothesis, while the proposed method is
more sound and stable under such variations.

Lastly, we perform a study on 3 websites showing that indeed, depend-
ing on their category, some accept and some refuse the hypothesis of
being power-law. We argue that our method could be used to better char-
acterize topological properties deriving from different generative princi-
ples: central or peripheral.

Keywords: Power-law distribution · Monte Carlo · Statistical test ·
World-Wide-Web · Network Analytics

1 Introduction

The World-Wide-Web (WWW) encodes associative links among a large amount
of pages. Its structure has grown without any central control, thus make it
approximable to the result of a random process, where pages link to each other
following local probabilistic rules.
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Such probabilistic rules are defined through statistical properties of Web
graph features. In particular, several investigations show that the WWW is scale-
free [1,5,10] i.e., both the distributions of incoming and outgoing links are well-
approximated by a discrete power law [21]. This can be traced to the fact that
the vast majority of documents in the Web have relatively few outgoing and
incoming links, but few pages still have enormous number of links that skew the
mean of the empirical distribution far above the median.

Nonetheless, when analyzing specific portions of the Web, i.e. websites, the
scale-free property seems to be less evident especially for specific categories (e.g.
university homepages) [22,24]. Note that, differently from what is commonly
done in literature [22], we consider websites as closed sub-systems of the Web
whose temporal evolution is independent of the system they evolved into.

In this work, we are interested in developing a method able to assess if data
from empirical observations follow a power-law. Indeed, testing power laws on
empirical data is usually hard due to the large fluctuations that are present in
the tail of the distribution.

One of the most commonly used statistical test is the Kolmogorov-Smirnov
[11]. This method focuses on the center of the distribution, making it not suit-
able for testing heavy-tailed distributions. In [11] the authors make strong use
of this test by performing a bootstrap procedure that is optimal in small sample
size regimes. Indeed, as the sample size grows, the power of the statistical test
increases, thus leading to higher rate of rejections of the null hypothesis. More-
over, even in presence of small sample sizes, adding a low amount of noise may
cause the test to reject.

As in real-world, noisy or large samples are the common scenario, here, we
propose an alternative testing pipeline that leverages on the Anderson Darling
test [3] and Monte Carlo sub-sampling. Our pipeline is able to cope with the
power of the test problem by reducing the sample size while maintaining the
original degree distribution behavior.

We show synthetic experiments in which the state-of-the-art method fails
under small variations or large sample sizes of input data. In all these cases,
our method is proved to be more stable under variations and it can be shown
that provides results with a better confidence. Lastly, we present case studies
on 3 websites representative of different generative processes. These case studies
present interesting results showing that indeed, closed sub-portion of the Web do
not necessarily follow a power-law distribution. And, they seem to point in the
direction that the more the generative process is centralized the less the degree
distribution can be associated to a power law decay.

Outline. The remainder of the paper is organized as follows: Sect. 2 presents the
state-of-the art algorithm for testing empirical power-law distribution; in Sect. 3
we present the limitations of such method with the related synthetic examples;
in Sect. 4 we present our adaptation based on Monte Carlo sub-sampling to
overcome the issue of power in empirical data; in Sect. 5 we present a large
variety of experiments showing how our method is more stable and the case
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studies; lastly, we conclude with Sect. 6 with some discussion on the obtained
results and future research directions.

2 Discrete Power-Law Distribution: Definition, Fit
and Statistical Test

The discrete power-law distribution is defined as

P(dv = x) ≈ 1
ξ(xmin, α)

x−α, (1)

where dv is the random variable representing the degree of a node v, xmin is a
fixed lower bound on the values x, α is a scaling parameter, and ξ(xmin, α) =

∞∑

x=xmin

x−α is the Hurwitz-zeta function [15].

The parameter xmin is particularly important, as often the degree distribu-
tion of a network follows a power law only for degrees x greater than a lower
bound. A network is said to be scale-free if the tail of its in-degree and out-degree
distributions obeys to a discrete power law decay. In practice, this entails that
we have a non-null probability to observe nodes with a degree much greater than
average (hubs).

2.1 Maximum Likelihood Estimation

The parameters xmin and α of an empirical power-law distribution need to be
estimated from data. Given as input a vector x ∈ N

n representing the degrees
of n nodes of a graph, we need to perform two different procedures to estimate
these two parameters, as described by the pseudo-code in Algorithm 1.
Estimate of xmin. First, we pick x̂ as the value that minimizes the difference
between the empirical degree distribution and the fitted power-law model where
xmin = x̂ [11,12].

In order to minimize such difference, we need to select a suitable distance.
One of the most common is the Kolmogorov-Smirnov (KS) statistic, which is
defined as the supremum norm of the difference between two distribution func-
tions (CDFs) of the empirical data and the best-fit model [18]. Although the KS
statistic is widely used, it presents some drawbacks in the detection of heavy-
tailed distributions since, being based on the CDF, it mainly penalizes fluctua-
tions in the center of the empirical distribution. A more reliable distance for the
comparison of heavy-tailed distributions is the Anderson-Darling (AD) statistic
as it puts more importance to the extreme values of the CDFs [3]. For this rea-
son, we will recur to this statistic in the rest of the paper. The AD distance is
defined as

A2(x, Fxmin=x) = −n −
n∑

i=1

2i − 1
n

[

ln Fxmin=x(xi) + ln(1 − Fxmin=x(xn+1−i))
]

,
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Algorithm 1. Power-law fitting
1: Input: degrees vector of length n
2: distances = [ ]
3: for x ∈ {min(degrees), . . . , max(degrees)} do
4: if len(unique(degrees) > x) <25 then
5: break
6: α ← power law fit(degrees, xmin = x)
7: d ← Anderson-Darling(degrees, x, α)
8: distances.append(d)

9: x̂ ← argmin
x

distances

10: α̂ ← power law fit(degrees, xmin = x̂)
11: d̂ ← Anderson-Darling(degrees, x̂, α̂)
12: return x̂, α̂, d̂

where n is the sample size and Fxmin=x is the power-law CDF.
Note that, if we select a x̂ > xmin, we are reducing the size of our training

data, and our model will suffer from the statistical fluctuations in the tail of the
empirical distribution. On the other hand, if x̂ < xmin, the maximum likelihood
estimate of the scaling parameter α̂ may be severely biased.
Estimate of α. Given the lower bound xmin, we estimate the scaling parameter
α by means of maximum likelihood, which provides consistent estimates in the
limit of large sample sizes [13].

In the discrete case, a good approximation of the true scaling parameter can
be reached mostly in the xmin ≥ 6 regime [11]. And it can be computed as:

α̂ ≈ 1 + n

[ n∑

i=1

ln
xi

xmin − 1
2

]−1

.

2.2 Goodness-of-Fit Test

Once α̂ and x̂ have been estimated, we need to assess if observed data are
plausibly sampled from the related power-law distribution. To such extent, we
perform a goodness-of-fit (GoF) test procedure [19].

A goodness-of-fit test measures how well a statistical model fits into a set
of observations. Given the statistical model under testing, a GoF makes use of
a statistic that evaluates the discrepancy between the observed values and the
expected value of the model. By definition, a statistic is a function which does
not depend on the parameters of the model. The output of the GoF procedure
is a p-value corresponding to the probability that the statistic is greater than its
realization on the observed data.

Note that, since we estimate the model parameters from data we do not know
the distribution of the statistic. Thus, we perform a semi-parametric bootstrap
approach to estimate such distribution empirically [11,25].
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Algorithm 2. Power-law testing
1: Input: degrees vector of length n, x̂, α̂, d̂
2: distances = [ ]
3: for i = 1, . . . , M do
4: ntail = count(degrees > x̂)
5: for j = 1, . . . , n do:
6: b ← bernoulli sample(ntail/n)
7: if b is 1 then
8: si[k] = power law sample(x̂, α̂)
9: else

10: si[j] ← uniform sample(degrees < x̂)

11: αi, xi ← power law fit(s)
12: d ← Anderson-Darling(s, xi, αi)
13: distances.append(d)

14: p-value = count(distances > d̂)/M
15: return p-value

In particular, we fixed as statistic the Anderson-Darling distance and we
perform a procedure described in Algorithm 2. Given n samples, we indicate
with ntail the amount of samples that are greater than x̂. Bootstrap is then
performed by simulating ntail examples from a power law with parameters α̂
and x̂, and for the remaining sample size n − ntail we sample degrees from the
empirical data that are smaller than x̂. We repeat this procedure M times. The
value of M depends on the desired significance of the p-value. Typically, if we
want a p-value that approximates its true value with an error smaller than ε,
then M = 1

4ε2 .
Given the M simulated data sets, we fit to each of them its own power-law

model and compute the AD distance. This provides the empirical distribution of
the AD statistic that we use to compute the associated p-value, defined as the
fraction of synthetic distances larger than the observed one.

If p is large (relatively to a fixed significance level, e.g. 0.1), we cannot reject
the null hypothesis. Then, possibly, the difference between the empirical and
theoretical distributions may be attributed to statistical fluctuations. Differently,
if p is smaller than the significance level, we say that the empirical data are not
power law.

3 Problems of Goodness-of-Fit on Empirical Data

Testing whether empirical data are power-law distributed is a hard task. This is
due to the following reasons: a) the probability of rejecting the null hypothesis
grows with sample size; and, as a consequence b) the procedure is too sensitive
to even minimal amount of noise. Little attention has been put on these issues,
but we argue that they are crucial as they heavily affect the final response of the
statistical test.
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Fig. 1. On the left, the empirical probability density functions of true power-law data
(black line) and noisy power-law data (pink). On the right, the Anderson-Darling test
on both samples. Little variations from an exact power-law sample lead to reject the
null hypothesis. (Color figure online)

Fig. 2. On the left, the empirical probability density function of true power law data.
On the right, the Anderson-Darling test. Large sample size (5×105) leads to reject the
null hypothesis.

In particular, both problems can be addressed by considering the power of
the test, which, fixed a significance level, is defined as the probability of correctly
rejecting the null hypothesis. Such probability increases accordingly to the sam-
ple size, hence, when the number of nodes n is large, we tend to reject the null
hypothesis even in cases of true power-law distributed data (as the power of
the test is very close to 1). Indeed, by performing bootstrap, we simulate nearly
exact power-law samples, which induce the Anderson-Darling test to be very
sensitive to even minimal fluctuations in the observed distribution.

In Fig. 1 and 2, we show two synthetic experiments where such test fails, in
particular:

(a) we generated n = 105 samples from a discrete power-law distribution with
parameters xmin = 7 and α = 2.7. We perturbed the data by adding one
occurrence to the last 13◦ in the extreme tail (see Fig. 1 left panel for the
true and perturbed data);
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Fig. 3. Schematic representation of the proposed pipeline.

(b) we generated n = 5 × 105 samples from a discrete power-law distribution
with parameters xmin = 2 and α = 2.7.

We applied the procedure in Sect. 2 on both datasets, with M = 200 and sig-
nificance level set to 0.1. Results are shown on the right side of Fig. 1 and 2. In
Fig. 1, the empirical probability density functions of the two samples are indis-
tinguishable from each other except in the extreme tail, where little divergences
can be traced. Thus, it becomes evident that for large sample sizes the test is
very sensitive even to little fluctuations in the observed sample. Also, with exam-
ple (b) we show that even perfect power-law samples induce the test to fail when
the sample size is too large (Fig. 2).

Both examples show that the high power of the Anderson-Darling test in
large sample size regimes constitutes a drawback of the previously introduced
method [11]. Since it is never the case that an observed degree distribution is
exactly drawn from a discrete power law, we propose a variation of the method
in Sect. 2 that aims at testing the goodness of fit of heavy tail distributions.

4 Monte Carlo Approach

Our proposal is based on the idea of performing iterative Monte Carlo (MC)
sub-samplings of different length on the original degree sequence. We argue that
with this sub-sampling scheme we can reduce the sample size without modifying
the trend of the original degree distribution and possibly obtain a more reliable
test.

The global scheme of the procedure is provided in Fig. 3. In particular, we
define a set of lengths, {l1, . . . , lmax}, for each length we perform r correspond-
ing MC samplings. For each sample, we fit a power-law distribution and assess
its plausibility exploiting Algorithm 1 and Algorithm 2 and, thus, obtaining a
sequence of p-values of the Anderson-Darling test of length r. We consider, as
final output of the procedure, the mean of all p-values sequences for all different
lengths and the related standard deviation.

To the best of our knowledge, it is not usual to exploit MC sub-sampling
to test for power-law decay in the degree distribution. In fact, performing MC
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does not allow to exactly estimate the parameters of the power-law distribu-
tion, indeed, to each sub-sample may correspond a different set of parameters.
Nonetheless, we do not use MC as a fitting method but rather to say if a network
is plausible to asymptotically satisfying the scale-free property. We argue that
using MC as a way to obtain suitable sub-samples of smaller sample size would
provide better understanding of the degree sequence behavior while overcoming
the drawbacks induced by large sample sizes.

4.1 Instantiation of Parameters

In order to apply the Monte Carlo approach we need to fix different values,
specifically l1, lmax, r and the significance level.

The problem of selecting adequate lengths for the MC sub-samples is not
trivial. On the one hand, a too small sub-sample would lead to very different
degree sequences due to the large fluctuations present in the original network,
while, on the other hand, lengths close to the original degree sequence would lead
to higher rates of rejection of the power-law hypothesis. Then, we arbitrarily
decided to set l1 at n/2 which is half the length of the observed data. As for
lmax, we fix it to n as in case of true power-law samples we want to being able to
obtain a high p-value, while in case of noisy data, considering one length equal
to the original size does not particularly affect the resulting mean p-value.

The value of r affects the robustness of the final result, the more repetitions
the better approximation of the true p-value. Nonetheless, its value depends on
constraints deriving from computational power. Thus, we leave the definition of
such value to the user.

We fixed the significance level at 0.1 for the rejection of the null hypothesis.
This is a conservative choice implying that the power law hypothesis is ruled out
if there is a probability of 1 in 10 or less that data sampled from the true model
agree with the model as the empirical data.

Lastly, we fixed the maximal possible xmin to be least 25 observations less
than the maximal observed degree. This is due to limit the chances of fitting a
power-law distribution on too few observations.

5 Experimental Results

In order to evaluate the performance of the proposed pipeline, we perform four
experiments and compare the results with the state-of-the-art method. In the
rest of the narration we will refer to the state-of-the-art method as Bootstrap
and to our method as Monte Carlo + Bootstrap.

All the simulations are performed in Python. We used the package powerlaw
[2] for fitting power-law distributions to empirical data and compute the AD
distances. We provide all the notebooks used for the experiments of this paper
in a GitHub repository1. For all experiments, we fixed 30 lengths of Monte Carlo
re-sampling in the interval [n

2 , n] and for each of this length we get r = 10 re-
samplings.
1 https://github.com/DaviGarba/netanalytics.

https://github.com/DaviGarba/netanalytics
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Table 1. Results to assess the goodness of the proposed testing pipeline in cases of
scale-free graphs (Barabasi-Albert) or not (Erdős-Renyi), in terms of mean p-value and
standard deviation on 10 repetitions of the test for different sample sizes.

Test type Erdős-Renyi Barabasi-Albert

75000 150000 75000 150000 300000

Bootstrap 0.00 ± 0.00 0.00 ± 0.00 0.85 ± 0.24 0.75 ± 0.27 0.78 ± 0.18

MC + Boostrap 0.00 ± 0.00 0.00 ± 0.00 0.85 ± 0.06 0.69 ± 0.16 0.71 ± 0.15

5.1 Validation of the Proposed Method on Different Graph Models

In the first experiment we aim at verifying if Monte Carlo + Bootstrap is com-
parable to just Bootstrap when considering two cases at varying sample sizes:

1. Erdős-Renyi models of size {75 × 103, 15 × 104}, we expect both methods to
refuse the null hypothesis as the degree distribution of this model is known
to follow a binomial distribution [14]. Thus, we use this as base test to assess
the probability of correctly rejecting the power-law hypothesis.

2. Barabasi-Albert models of size {75 × 103, 15 × 104, 3 × 105}, we expect both
methods to have high p-values as the degree distribution follows a power law
[6]. We use this experiment to provide proof of the soundness of the method
in presence of true power-law data.

Each experiment listed above is repeated 10 times to estimate the mean and
standard deviation of p-values. Results are reported in Table 1 where we observe
that our approach (Monte Carlo + Bootstrap) always reject the null hypothesis
in the Erdős-Renyi case as the Bootstrap method, while in the Barabasi-Albert
case we always provide p-values with a smaller variance.

5.2 Robustness to Noise

We now want to assess that our method is indeed more robust under increasing
noise in the input empirical distribution. We simulated from a discrete power
law with parameters α = 2.3 and xmin = 1, a sample of size n = 105. For differ-
ent levels of noise in the set n̄ ∈ {10, 40, 70, 100}, we perturbed the power law
observation by adding n̄ values uniformly sampled from the original observation.

Figure 4 shows that the proposed methods is in mean always better than the
simple bootstrap approach while also providing a smaller variance. Also, it never
reject the null-hypothesis in cases in which the noise is small while sometimes
it rejects it in presence of high amount of noise (100 added observations). Dif-
ferently from the Bootstrap approach that, depending on the simulated sample,
sometimes rejects it even in presence of zero noise.
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Fig. 4. Results in terms of p-values for the two testing pipelines as the input data
present an increasing level of noisy observations.

5.3 Benchmark on University of Notre Dame Website

We exploit a widely studied example of empirical data that is assumed to fol-
low a power-law distribution [1,4,20], i.e. the web graph of the University of
Notre Dame website. This graph, in 1999, has been studied in order to obtain
information regarding the topology of the Web. In [1], the authors found that
the in-degree and out-degree distributions of the graph underlying the hyper-
link structure of the domain nd.edu were well approximated by power-law dis-
tributions with scaling parameters 2.7 and 2.1 respectively. We downloaded the
hyperlink graph from http://snap.stanford.edu/ [16]; the crawl consists of 325729
documents and 1497134 links. We tested the Monte Carlo + Bootstrap approach
against the Bootstrap approach as the empirical data are noisy and we want to
provide further validation of our testing procedure on the in-degree distribution
of the network.

We performed r = 5 MC re-samplings for different sizes equally spaced in the
interval [162864, 325729]. Monte Carlo + Bootstrap results in a mean p-value of
0.15, meaning that there is no strong evidence against the power-law hypothesis
for the in-degree distribution. Differently, when applying the Bootstrap method
we observed a p-value equal to 0.00, which would lead us to reject the null
hypothesis.

As in literature many have argued the power-law nature of this graph, this
allows us to conclude that our testing procedure is more robust and thus can be
applied on real-world data with higher reliability.

5.4 Websites Analysis

We now want to exploit our procedure in real scenarios to seek for evidence
of differences in the degree distributions deriving from different generative pro-
cesses. We considered three different websites that we deemed representative of
different strategies of content creation: e-commerce, academic and free encyclo-
pedia. The first category is typically characterized by a strong central control

http://snap.stanford.edu/


A Robust Method for Statistical Testing 155

in the design and evolution of the information architecture and content gener-
ation. Conversely, the last category is completely user-guided and its evolution
is, thus, likely to be random. We argue that the academic category, as well as
other website of complex institutions, should be a trade-off between the two,
as usually many contributors have access to writing and adding content with a
mild central control (Fig. 5).

Fig. 5. Log-log plots of the empirical distributions of the considered case studies.

Table 2. Analyzed websites with the related information about number of nodes,
number of edges and category.

Name Url Website type No. nodes No. edges p-value

Goop goop.com E-commerce 100.482 731.259 0.00 ± 0.00

Stanford stanford.edu Academic 281.903 2.312.497 0.01 ± 0.00

Wikipedia (ES) es.wikipedia.org Encyclopedia 972.933 23.041.488 0.74 ± 0.21

We consider the following websites:

1. Goop, the website of a wellness and lifestyle company; we crawled the entire
website using the open source framework Scrapy2, during the crawl we
restricted to the domains goop.com and shop.goop.com;

2. Stanford, the website of Stanford University. We downloaded a crawl per-
formed in 2002 available at http://snap.stanford.edu/;

3. Wikipedia (ES), the website of the free spanish encyclopedia. We downloaded
a crawl of 2013 at http://law.di.unimi.it/index.php [8,9].

Table 2 describes the characteristics of the three considered websites, in terms of
category, number of nodes and number of edges. Table 2 also reports the mean
p-values obtained with Monte Carlo + Bootstrap on the in-degree distributions.
Results seems to validate our hypothesis about an inverse correlation between
the centrality of the content generative process and the scale-free property.
2 https://scrapy.org/.

http://goop.com
http://stanford.edu
http://es.wikipedia.org
http://snap.stanford.edu/
http://law.di.unimi.it/index.php
https://scrapy.org/
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6 Discussion

In this paper, we proposed a method for hypothesis testing of power-law distri-
butions in empirical data that overcomes issues related to the power of the test.
In particular, our method mediates the effect of possibly noisy data through
Monte-Carlo sub-samplings of the empirical distribution. We verified that the
proposed method retains the ability of assessing if observations are indeed plau-
sibly sampled from a power law, under different sample sizes and level of noise.
Indeed, the method is more reliable than the state-of-the art on synthetic data.
To further assess the reliability of our approach we also provide a real-world
example, specifically the University of Notre Dame website, which is a well stud-
ied dataset and it is considered to be scale-free. Our method does indeed provide
a p-value higher than the significance level, differently from the state-of-the-art
method that rejects the null hypothesis.

This allowed us to use our method to test different websites corresponding to
different content generative processes. From a first insights, we observed that dif-
ferent content generation strategies may induce a different connectivity structure
of the hyperlink graph.

For future research we intend to increase the number of real networks studied
and consider current websites related to different generative processes to provide
a more comprehensive understanding of specific sub-categories of the Web.

Future research directions may also involve the use of random walks instead
of Monte Carlo as a sub-sampling technique on graphs [7,17] and the comparison
with other estimators of power laws in empirical data [23].

To conclude, our pipeline is an attempt to perform statistical testing while
considering its limits both theoretical and due to noisiness of data. We argue
that this is fundamental to reliably test assumptions on real-world examples.
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