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Preface

The 17th Workshop on Algorithms and Models for the Web Graph (WAW 2020) was
originally scheduled to take place at the SGH Warsaw School of Economics, Warsaw,
Poland, during June 18–19, 2020. Unfortunately, because of the COVID-19 pandemic,
the event was postponed and at the time of writing this text it is scheduled to take place
during September 21–22, 2020.

This is an annual meeting, which is traditionally co-located with another, related,
conference. WAW 2020 was planned to be co-located with the Workshop on Hyper-
graph Modelling. Co-location of the two workshops provides opportunities for
researchers in two different but interrelated areas to interact and to exchange research
ideas. We hope that WAW provides an effective venue for the dissemination of new
results and for fostering research collaboration.

The World Wide Web has become part of our everyday life, and information
retrieval and data mining on the Web are now of enormous practical interest. The
algorithms supporting these activities combine the view of the Web as a text repository
and as a graph, induced in various ways by links among pages, hosts, and users. The
aim of the workshop was to further the understanding of graphs that arise from the Web
and various user activities on the Web, and stimulate the development of
high-performance algorithms and applications that exploit these graphs. The workshop
gathered the researchers who are working on graph-theoretic and algorithmic aspects of
related complex networks, including social networks, citation networks, biological
networks, molecular networks, and other networks arising from the Internet.

This volume contains the papers accepted to WAW 2020. Each submission was
carefully reviewed by the members of the Program Committee. Papers were submitted
and reviewed using the EasyChair online system. The committee members decided to
accept 12 papers.

April 2020 Bogumił Kamiński
Paweł Prałat

Przemysław Szufel
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Hypergraph Analytics of Domain Name
System Relationships

Cliff A. Joslyn1(B), Sinan Aksoy2, Dustin Arendt2, Jesun Firoz1,
Louis Jenkins3, Brenda Praggastis1, Emilie Purvine1, and Marcin Zalewski4

1 Pacific Northwest National Laboratory, Seattle, WA, USA
cliff.joslyn@pnnl.gov

2 Pacific Northwest National Laboratory, Richland, WA, USA
3 University of Rochester, Rochester, NY, USA

4 NVIDIA, Santa Clara, CA, USA

Abstract. We report on the use of novel mathematical methods in
hypergraph analytics over a large quantity of DNS data. Hypergraphs
generalize graphs, as used in network science, to better model com-
plex multiway relations in cyber data. Specifically, casting DNS data
from Georgia Tech’s ActiveDNS repository as hypergraphs allows us
to fully represent the interactions between collections of domains and
IP addresses. To facilitate large-scale analytics, we fielded an analyti-
cal pipeline of two capabilities: HyperNetX (HNX) is a Python pack-
age for the exploration and visualization of hypergraphs; while on the
backend, the Chapel HyperGraph Library (CHGL) is a library for high
performance hypergraph analytics written in the exascale programming
language Chapel. CHGL was used to process gigascale DNS data, per-
forming compute-intensive calculations for data reduction and segmen-
tation. Identified portions are then sent to HNX for both exploratory
analysis and knowledge discovery targeting known tactics, techniques,
and procedures.

Keywords: Hypergraphs · DNS · High performance computing ·
Chapel

1 Introduction

Many problems in data analytics involve rich interactions amongst multiple
entities, for which graph representations are commonly used. High order (high
dimensional) interactions abound in cyber and social networks, and can only be
represented in graphs as highly inefficiently coded, “reified” labeled subgraphs.
Lacking multi-dimensional relations, it is hard to address questions of “commu-
nity interaction” in graphs: how is a collection of entities A connected to another
collection B through chains of other communities?; where does a particular com-
munity stand in relation to other communities in its neighborhood?

c© Springer Nature Switzerland AG 2020
B. Kamiński et al. (Eds.): WAW 2020, LNCS 12091, pp. 1–15, 2020.
https://doi.org/10.1007/978-3-030-48478-1_1
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2 C. A. Joslyn et al.

Hypergraphs [4] are generalizations of graphs which allow edges to connect
any number of vertices. Hypergraph methods are well known in discrete math-
ematics, and are closely related to important objects in data science such as
bipartite graphs, set systems, partial orders, finite topologies, and especially
graphs proper, which they directly generalize (every graph is a 2-uniform hyer-
graph). In HPC, hypergraph-partitioning methods help enable parallel matrix
computations [8], and have applications in VLSI [13]. In the network science
literature, researchers have devised several path and motif-based hypergraph
data analytics (albeit fewer than their graph counterparts), such as in clustering
coefficients [15] and centrality metrics [9].

Complex data commonly analyzed using network science methods, and espe-
cially including cyber data, often contain multi-way interactions. But while they
thus present naturally as hypergraphs, still hypergraph treatments are very
unusual compared to graph representations of the same data. This is due at
least to the greater mathematical, conceptual, and computational complexity of
hypergraph methods, since as data objects, hypergraphs scale as O(2n) in the
number of vertices n, as opposed to O(n2) for graphs. In the face of this, complex
data are typically collapsed or are simplified to graphs to ease analysis.

We are accepting the challenge of the complexity of hypergraphs in order to
gain the formal clarity and support for analysis of complex data they provide.
A substantial high-performance computing (HPC) component is thus necessary,
despite hypergraph analytics not receiving much attention in the software engi-
neering community at large, and the HPC community in particular. We thus
pursue a two-fold approach to developing our methods:

1. The Chapel Hypergraph Library (CHGL, https://github.com/pnnl/chgl)
[12] is a library for hypergraph computation in the emerging Chapel program-
ming language [6,7], for HPC hypergraph processing, large scale analysis, and
data segmentation.

2. We explore single hypergraphs or collections of hypergraphs using
HyperNetX (HNX, https://github.com/pnnl/HyperNetX), a Python library
for exploratory data analytics and visualization of hypergraphs.

In our work, CHGL and HNX are two stages of an analytical pipeline: CHGL
provides a highly abstract interface for implementation of HPC hypergraph algo-
rithms over large data, identifying segments and subsets which can then be
passed to HNX for more detailed analysis.

In this paper we first introduce the foundations of hypergraph mathematics
and hypernetwork science in the context of our CHGL and HNX capabilities. We
then describe the DNS data set, selections of the ActiveDNS data sets from the
Georgia Institute of Technology [1]. We then describe CHGL, before going on
to describe the results of our demonstration analyses. These include both basic
global statistics like degree and edge size distributions, as well as exploratory
discovery of small components involving motif mining and computation of simple
hypergraph metrics to discover outliers.

https://github.com/pnnl/chgl
https://github.com/pnnl/HyperNetX
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2 Hypergraph Analytics

An undirected hypergraph is a pair H = 〈V, E〉 with V a finite, non-empty
set of vertices, and E a non-empty multiset of hyperedges e ∈ E (or just
“edges” when clear), where ∀e ∈ E , e ⊆ V . Hypergraphs can be represented
in many forms, two of which are shown in Fig. 1 for a small example H with
V = {1, 2, . . . , 9}, representing |V | = 9 IP addresses.1 On the left is an Euler
diagram showing each of eight hyperedges A,B, . . . ,H, representing domains, as
a “lasso” around its vertices. On the right is a V × E incidence matrix I, where
a non-null 〈v, e〉 ∈ I cell indicates that v ∈ e for some v ∈ V, e ∈ E .

Fig. 1. (Left) An Euler diagram of an example hypergraph H. (Right) Its incidence
matrix I.

We call each hyperedge e ∈ E an s-edge where s = |e|. Thus all graphs are
hypergraphs, in that all graph edges are 2-edges, for example H = {4, 5}, saying
that the domain H has two IPs 4 and 5. But F = {1, 2, 3, 9} is a 4-edge, with
domain F having those four IPs. Where each column of the incidence matrix of
a graph has exactly two cells, those of hypergraphs are unrestricted.

Our research group is pursuing hypergraph analytics as an analog to graph
analytics [14]. While our development is consistent with others in the literature
[9,16], our notation and concepts are somewhat distinct. For a more comprehen-
sive development see [2].

We say that two edges e, f ∈ E are s-adjacent if |e ∩ f | ≥ s for s ≥ 1. An
s-star is a set of edges F ⊆ E sharing exactly a common intersection f ⊆ V ,
with |f | ≥ s, so that ∀ei, ej ∈ F we have ei ∩ ej = f . An s-path is a sequence of
edges 〈e0, e1, . . . , en〉 such that each ei−1, ei are s-adjacent for 1 ≤ i ≤ n; and an
s-component is a maximal collection of edges any pair of which is connected by
an s-path. The s-diameter of an s-component is the length of its longest short-
est s-path. Comparing again to graphs, graph paths are all 1-paths, and graph

1 H can also be represented as a bipartite graph on the disjoint union V � E , with
each component a distinct part.
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components all 1-components. Our example has two 1-components (shown obvi-
ously), but also four 2-components (listed edge-wise) {A,F,G,H}, {B,D}, {C}
and {E}. Its 3- and 4-components are each single edges of size larger than 3 or
4 (respectively), and it has no 5 or higher components.

Given a hypergraph H, it is possible to construct smaller representations
which capture important properties:

– Note that in our example, the edges A = F and B = D, and the vertices
1 = 9 and 7 = 8, are equivalent, represented as duplicate columns and rows
in I respectively. Collapsing is the process of combining these and replacing
them with a representative, while also possibly maintaining a multiplicity
count to be used for a weighting. The edges E are hereby transformed from a
multiset to a set.

– Additionally, note that after collapsing, the smaller 1-component becomes an
isolated singleton, effectively a collection of non-interacting vertices, or a
diagonal block in I. These are especially common in DNS data. Pre-collapse,
an isolated singleton would indicate the normal, uninteresting behavior in
DNS where a single IP is associated with a single domain, and vice versa. But
post-collapse, they indicate a collection of IPs and domains which are uni-
versally associated only with themselves, effectively forming a set of domain
and IP aliases. In this work, these are counted and pruned, but in the future
they could be attended to with respect to their multiplicities.

– Finally, note that H ⊂ G is an included edge. Non-included edges are called
toplexes, and not only is the collection of toplexes much smaller than H,
but it is sufficient to derive some hypergraph information, for example s-
components.

Table 1 shows some important statistics for our example, first for the initial
hypergraph, then after collapsing, and finally after removing isolated singletons
from the collapsed hypergraph. For hypergraph data, a vastly high or low aspect
ratio can indicate difficulty in analysis. Note that as reductions commence, the
number of vertices, edges, and cells reduces, while density increases. Finally,
Fig. 2 shows the distribution of node degree (# edges per node) and edge size.

Table 1. Basic hypergraph statistics for our example.

Initial Collapsed Non-singleton components

|V | 9 7 6

|E| 8 6 5

Aspect ratio 1.125 1.167 1.200

# Cells 23 14 13

Density 0.319 0.333 0.433
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Fig. 2. (Left) Distribution of node degree (# edges per node) in our example. (Right)
Distribution of edge size s.

In our pipeline the segmentation steps of collapsing, removing isolated single-
tons, and computing s-components are all performed using CHGL, as are node
degree, edge size, and s-component size distributions. Subsequent exploration
of the structures found within the components themselves, e.g., identification
of stars and computation of diameters, are done via HNX. HNX builds on the
popular library NetworkX [10], which offers metrics and algorithms for the anal-
ysis of graph data. Euler diagram visualizations that appear in this paper are
provided directly by the HNX package.

3 Hypergraph Representations of DNS Data

The Domain Name System (DNS) provides a decentralized service to translate
from the domain names that humans keep track of (e.g., www.google.com) to IP
addresses that computers require to communicate. Perhaps somewhat counter-
intuitively, DNS data present naturally as a hypergraph, in being a many-many
relationship between domains and IPs. While typically this relationship is one-
to-one, with each domain uniquely identifying a single IP address and vice versa,
there are a number of circumstances which can violate this:

– Some domains have aliases so that multiple domains (e.g., misspellings)
resolve to the same IP address.

– There are large hosting services where one IP serves multiple websites.
– Some domains are used so frequently that they must be duplicated across

hosts and therefore map to multiple IPs.
– IP addresses are randomly reassigned within some small IP block so the same

domain may map to multiple IP addresses when queried over time.

In order to explore large volumes of DNS mappings we used ActiveDNS
(ADNS), a data set maintained by the Astrolavos Lab at Georgia Institute of
Technology (https://activednsproject.org). ADNS submits daily DNS lookups
for popular zones (e.g., .com, .net, .org) and lists of domain names. The data
is stored in Avro format (https://avro.apache.org) which provides structured

https://www.google.com/
https://activednsproject.org
https://avro.apache.org
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records for each DNS lookup in a compressed binary file. Each record contains
information including: query date, lookup input (often a domain name), data
returned by a DNS server (often a list of IP addresses), and IP addresses of the
DNS servers that answered the query. DNS records are also typed according to
different properties (recorded as the qtype field in ADNS) such as the format
of the data and to indicate its intended use. This initial analysis accepted any
reasonable pairing of domain name IP address and did not restrict to any par-
ticular qtypes. Future work will restrict to qtype= 1, which map hostnames to
an IPv4 address of the host.

Our group acquired data from the time period April 24–May 29, 2018, and in
this paper we focus on the single day of April 26, 2018. This day consists of 1,200
Avro files with each file containing on average 900 K records. There was some
data cleaning necessary to remove records with empty lookup input or empty
returned data. Additionally we removed any records in which the lookup input
was an IP address or the returned data was a domain name. After cleaning, each
file was reduced to approximately 180 K records.

We structured these DNS data as a hypergraph on a vertex set V of IPs
and edge set E of domains. Thus our hypergraphs H coded each domain as a
collection of its IPs. We show results of our anlaysis below in Sect. 5, including
global statistics and the results of targeted exploration.

4 Chapel Hypergraph Library (CHGL)

The Chapel HyperGraph Library (CHGL) [12] is a prototype exascale library
written in Chapel [6,7] that brings generation, representation, and computation
of hypergraphs to the world of high performance computing (HPC). Thanks
to Chapel, CHGL provides scalability in both shared memory and distributed
memory contexts.

In most cases, data underlying a hypergraph is more complex than CHGL’s
internal representation of vertices and hyperedges as consecutive integers. In
such situations, a hash table that maps user-defined generic properties to the
consecutive identifiers of vertices and hyperedges is used for translation. The
properties are embedded in the internal representation of the hyperedges and
vertices, allowing O(1) bidirectional lookup as well as locality when iterating
over the graph, shared-memory and distributed alike.

CHGL performs segmentation, or reduction, of the data in multiple highly-
parallel phases. Segmentation reduces both the size of the graph to one that HNX
can process in a reasonable amount of time and the computational workload on
CHGL when computing metrics. Proper care is taken to ensure that references
to the collapsed hyperedges and vertices are taken forward to the hyperedge or
vertex that they collapsed into, and that all references to removed hyperedges
and vertices are removed. This is performed in linear time and applies to both
the graph and property map.

To prune away redundant entities, which is generally useful for computation,
hyperedges and nodes are placed into equivalence classes through the process of
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collapsing described in Sect. 2. All but one arbitrarily chosen representative is
removed from the graph. Determining the equivalence class of a vertex or hyper-
edge can be done by using a set or hash table, and can be performed in O(|V |) or
O(|V | log |V |) time, depending on the data structure used. In practice, the time
complexity is often linear or quasilinear, but in the worst-case scenario when the
hypergraph is fully connected, the time complexity is O(|V |2) or O(|V |2 log |V |).

Isolated singletons, as described in Sect. 2, tend to be uninteresting. After
collapsing, these are pruned away in a straightforward manner.

We implemented computation of s-components using a parallel search
method, where we iterate over edges in parallel, and every edge begins an inde-
pendent search. The s-neighbors of an edge are marked with the component
number originating from the initial edge. The component number is taken from
a global atomic counter at the beginning of every parallel search. 1-Components
are implemented by simply traversing the edges by following included vertices
(edge to vertex to neighbor edge), but 2-components and higher require an imple-
mentation with set intersections to check the cardinalities of adjacencies. This
implementation is well suited for a large number of small components because
most components end up being searched by a single task. The best case scenario
complexity of the parallel search algorithm is linear, and the worst is quadratic
if the maximum number of component collisions occur. The average complexity
in our case is close to linear since the DNS data has a large number of small
components, and most components are handled by a single task.

Obtaining the vertex degree and edge cardinality distributions is simple and
intuitive in CHGL, thanks to Chapel’s high-level abstractions. This particular
operation is short enough that it can be presented in full in Fig. 3. We compute
these both pre- and post-collapsing.

Fig. 3. Obtaining the vertex degree distribution in CHGL.

Finally, the s-component size distributions were computed, recording the
number of nodes and edges in each s-component and how many s-components
have each size. This allows us to understand how nodes and edges are distributed,
e.g., is there one giant component and a few small components or are component
sizes more uniformly distributed.

5 Computational Results

We ran experiments on one of the compute nodes of an Infiniband cluster, each
equipped with a 20-core Intel Xeon processor and 132 GB memory. All cores
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were involved in the experiments. CHGL v0.1.3 was compiled against Chapel
pre-release version 1.18.0 with --fast flag to enable all compiler optimizations.

Execution times of the stages of the CHGL DNS processing pipeline are
shown on the left side of Fig. 4. s-component computation dominates the exe-
cution time for 128 or more files. The s-components are reused when comput-
ing the s-component size distributions, leading to them taking significantly less
time. Collapsing duplicates and removing isolated components scale linearly, as
is expected for their time complexity. The hypergraph is constructed in about
the same amount of time it takes to collapse it, showing that processing DNS
data is mostly compute-bound.
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Fig. 4. (Left) Execution times (log-log scale). (Right) Effectiveness of reduction from
segmentation.

The purpose of segmentation is to reduce the size of the graph while also
maintaining the data that is of interest. The right side of Fig. 4 shows the com-
pression as a result of performing segmentation. Collapsing of duplicate edges
results in the most compression, reducing the graph from 55% at one file to over
90% at 1024 files, which can be expected to improve further when more data
is processed. Removing isolated components results in less compression as data
size increases, likely due to the premature marking of components as isolated
prior to having all of the data. Perhaps with larger amounts of data, there will
be a convergence to a stable number of isolated components in the entirety of
the DNS network. Note that there are very few duplicate IP addresses on smaller
samples, but that may change as more data is processed; nonetheless, collapsing
duplicate vertices may be unnecessary and can possibly save some time.

Above we reported on scaling of loading and compute time using CHGL on
varying numbers of ActiveDNS files, from 1 to 1,024. Here we report on analysis
of the hypergraph built from one full day, April 26, 2018, comprising 1,200 files.
See Table 2 for basic count statistics.

The node degree and edge size distributions are shown in Figs. 6a and 6c.
Except for the small increase around x = 102 the node degree distribution looks
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Table 2. Basic hypergraph statistics for ActiveDNS data for April 26, 2018.

Initial Collapsed Non-singleton components

|V | 10.6M 10.3M 557K

|E| 131.2M 11.0M 1.2M

Aspect ratio 0.081 0.941 0.460

# cells 157.4M 25.7M 15.9M

Density 1.14 E-7 2.26 E-7 2.35 E-5

like a power law or heavy tailed distribution typical in real-world graphs [3]. The
degree distribution has a general decreasing tendency from x = 1 to x = 70, it
increases by roughly 1,000 through x = 80, and then returns to the downward
trend. We do not know why this occurs, but it is possible that it could be an
artifact of DNS server configuration practices. Edge size distribution also seems
to be heavy-tailed although somewhat more noisy for low edge sizes than the
degree distribution.

See the second column in Table 2 for the simple count statistics of the col-
lapsed hypergraph. Notice that collapsing resulted in a much more square inci-
dence matrix since only 2% of nodes were collapsed while 92% of edges were
collapsed. The number of cells in the collapsed hypergraph incidence matrix is
now reduced to 16% of the full hypergraph.

The distributions of node and edge duplicate counts are shown in Fig. 5.
Notice that the distribution of duplicate edge counts has a similar shape as the
node degree distribution of the original hypergraph with a slight increase around
x = 102. After seeing this it is possible that the nodes which had degree around
70–80, where this increase occurs, were actually in many duplicate edges which
are now collapsed. The node degree distribution for the collapsed hypergraph
found in Fig. 6b further supports this hypothesis since the increase around x =
102 in the node degree distribution is absent.

Fig. 5. Distribution of duplicate node counts (top) and edge counts (bottom).
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Initial node degree distribution Post-collapse degree dist.

Initial edge size distribution Post-collapse edge size dist.

Fig. 6. Node degree and edge size distributions, on a log-log scale, for April 26, 2018
DNS hypergraph. The x and y axes are the same across both node plots and across
both edge plots to illustrate the changes through the collapsing procedure.

The edge size distribution post collapse is shown in Fig. 6d. This distribution
is very similar to that of the original hypergraph, although it appears less noisy
up through approximately x = 20. This is not surprising since there were not
many duplicate nodes removed, so edges that remained likely stayed close to
their original size.

After collapsing duplicate nodes and edges we removed all 9,784,763 isolated
singleton edges, or 89% of all remaining edges. The only differences between
the collapsed hypergraph and the hypergraph after removal of isolated singleton
components is the number of degree 1 nodes and the number of size 1 edges.
Therefore, we omit the final node degree and edge size distributions since they
are identical to the post-collapse distributions except for the points at x = 1.

Comparing the pre-collapse (left), post-collapse (right), and post-removal
distributions (not pictured) in Fig. 6, we observe that hypergraph collapsing and
removal significantly alters the shape of degree and edge size distributions. In
addition to the qualitative differences apparent from the plots, these differences
can also be quantified using the Kolmogorov-Smirnov (KS) distance metric, a
normalized statistic between 0 and 1 in which larger values indicate greater
degree distribution dissimilarity. In the case of the degree distributions (top row),
KS distance suggests the pre-collapsing hypergraph differs significantly from the
post-collapse and post-removal degree distributions, with KS values of 0.36 and
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0.34, respectively. In the case of the edge-size distributions (bottom row), the
most pronounced difference is between the pre-collapsing and post-removal edge
size distribution, with a KS value of 0.60. Here, the large KS distance reflects the
dramatic changes at the head of the distribution, where the number of 1-edges
decreases from 118 million to 369 thousand.

6 Analytical Results

The next step toward finding interesting subgraphs within the single day of
ActiveDNS data was to compute and explore s-components. CHGL computed
s-components of the hypergraph post-collapse and post-removal of isolated sin-
gletons for s = 1, 2, 3. Before exploring these components themselves we report
the distribution of component sizes (both node and edge counts) which are found
in Fig. 7. As s increases the shapes of these distributions do not change much but
they do tend to skew more toward smaller components and the distribution flat-
tens slightly. This is required since every s-component is contained within some
s′-component for s′ < s: as s increases components can only decrease in size.
These distributions also show that while there are some very large s-components
the majority are very small. Additionally, we see that the notion of a “giant com-
ponent” is much more prevalent in the set of 1-components than for s = 2 or 3.
Indeed, as s increases the largest component breaks up and the jump between
the largest component and second largest becomes smaller.

1-component node count
distribution

2-component node count
distribution

3-component node count
distribution

1-component edge count
distribution

2-component edge count
distribution

3-component edge count
distribution

Fig. 7. Node and edge count distributions, on a log-log scale, for s-components within
simplified April 26, 2018 DNS hypergraph. The x and y axes are the same across all
three node count plots and across all three edge count plots to illustrate the changes
as s increases.
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Once the hypergraphs were segmented into s-components by CHGL we pro-
ceeded to do exploratory analysis using HNX. In particular, we looked for:

– Occurrences of 1-stars within the 1-components, and
– s-components with maximum s-diameter for s = 2, 3.

Recall that a 1-star is a small hypergraph in which all edges pairwise intersect
in one node, and that one node is the same across all pairwise intersections. The
simplest 1-star has all edges of size 2, see Fig. 9a for an example of this case.
In our DNS use case a star is a collection of domains which all share exactly
one IP address but each also have their own separate IP address(es). These are
consistent with the behavior of content delivery networks (CDN), geographically
distributed networks of servers with the goal of quickly and reliably serving up
content to a variety of users, which could explain the existence of stars with a
diverse set of IP addresses since a consideration for IP assignment is geographic
location. Star motifs are also consistent with DNS sinkholes and domain hosting
services.

Fig. 8. Distribution of star sizes (# of edges).

We searched the 1-components for 1-stars and looked for size outliers. The
distribution of number of edges per star is shown in Fig. 8. We can see that there
is one notable outlier, a star with 701 edges and 642 toplexes. The domain names
within this star appear to be mostly randomly generated within the .com and .net
zones (e.g., twlwta.com, comgslklpa.net) and the common IP address within
all domains is 17.17.17.17. A WHOIS search finds that this IP address is within
the network range of Apple, Inc. The other 642 IPs present in this star come
from 640 distinct of/16 ranges. This is consistent with “DNS sinkhole” behavior
where traffic to a variety of (potentially malicious) domains is redirected to a
benign location [5]. And later (i.e., not on April 26) DNS searches for a sample of
domains within this star have a Start of Authority (SOA) record with “sinkhole
root@sinkhole” as the name and contact for the server.

Unlike this largest star which had IP addresses in many different ranges,
smaller stars such as the one shown in Fig. 9a tend to have all IPs and domains
within the same, or a relatively small set of, ranges and organizations. In
this small example WHOIS lookups indicate that the central IP address is
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Fig. 9. (a) A small star seen in the ActiveDNS data. (b) The 2-component with largest
2-diameter.

from Google Cloud whereas the leaves are from Microsoft Corporation. All five
domains are registered through the hosting site GoDaddy.com.

To discover interesting 2-components (resp. 3-components) we calculated 2-
diameters (resp. 3-diameters) of each of the components and look more closely
at those with maximal diameter. In the case of the 2-components the maxi-
mum 2-diameter is 6 and there is only one 2-component with that 2-diameter,
shown in Fig. 9b. The IP addresses in this component all belong to the IP
range 103.86.122.0/24 and the domains are registered to GMO INTERNET,
INC according to WHOIS records. Moreover, current DNS queries for most of
these domains at a later date resolve to IPs in the range 103.86.123.0/24 and
have a time to live of only 120 s. This pattern of quickly changing of IP address
is consistent with the fast flux DNS technique which can be used by botnets
to hide malicious content delivery sites and make networks of malware more
difficult to discover [11].

The large diameter 3-components tell different stories. The maximum 3-
diameter is 3 and there are four 3-components with this 3-diameter. One has
only one toplex with six sub-edges. Two others are fairly simple and, like the
large 2-diameter 2-component, are somewhat chain-like tracing out a long path.
The fourth is quite large with 70 nodes, 189 edges, and all IPs belonging to an
IP range from Amazon Technologies Inc.

7 Conclusions and Future Work

While our research group has been developing hypergraph methods and mathe-
matics over a moderate period, this paper reflects the first application of CHGL
to cyber data.

The current approach is limited in a number of ways. First, ActiveDNS
records data from DNS lookups on a daily basis (or perhaps multiple times
per day), but it does not do continual monitoring. This discrete sampling may
mean that the pipeline misses patterns that would normally be seen in a more
continuous approach. Additionally, the current analysis is for a single day, and
extending to multiple days in the current architecture will exacerbate issues with
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memory bounds. This might be mitigated using a theory of dynamic hypergraphs
(much like that of dynamic graphs) to understand the time-evolution of DNS or
similar data.

Additionally, certain DNS relationships are ignored, such as recursive DNS
records where one domain resolves not to an IP address but to another domain
name. This would require more complicated mathematics than just hypergraphs,
likely cell complexes or partial orders, which we have started to consider in our
research but not yet in our analysis. We also ignore other pieces of metadata like
the authority IP addresses (those servers which answered the DNS request).

Additional future work includes:

– We are extending our prior theoretical work [2,14] to a full consideration
of the mathematical foundations of hypergraphs for data science, including
spectral approaches and consideration of multiplicity weightings.

– A range of hypernetwork methods generalizing network science centrality,
connectivity, clustering coefficients, etc. are available [2].

– Also central to our approach is the consideration of hypergraphs as multidi-
mensional objects, and thus inherently available for topological applications,
including homology measurement for identification of loops and potential gaps
in the underlying data.

– CHGL is also under active development to include topology, homology mea-
sures, a proper graph library, and a distributed data model.

– Finally, application and data analysis continues, including DNS, additional
cyber data beyond DNS, and additional application domains including com-
putational biology and social hypernetworks.
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Abstract. Recently, non-Euclidean spaces became popular for embed-
ding structured data. However, determining suitable geometry and, in
particular, curvature for a given dataset is still an open problem. In this
paper, we define a notion of global graph curvature, specifically catered
to the problem of embedding graphs. We theoretically analyze this value
and show that the optimal curvature essentially depends on the dimen-
sionality of the embedding space and loss function one aims to mini-
mize via embedding. We also review existing notions of local curvature
(e.g., Ollivier-Ricci curvature) and conduct a theoretical analysis of their
properties. In particular, we demonstrate that the global curvature dif-
fers significantly from the aggregations of local ones. Thus, the proposed
measure is non-trivial and it requires new empirical estimators as well
as separate theoretical analysis.

Keywords: Graph embedding · Curvature · Non-Euclidean spaces

1 Introduction

Representation learning is an important tool for learning from structured data
such as graphs or texts [4,10,16]. State-of-the-art algorithms typically use
Euclidean space for embedding. Recently, however, it was found that hyper-
bolic spaces demonstrate superior performance for various tasks [13,17], while
in some cases spherical spaces can be useful [9]. A key characteristic classifying
the above-mentioned spaces is curvature, which is negative for hyperbolic spaces,
zero for Euclidean, and positive for spherical spaces. These findings, therefore,
show that certain graphs are better represented in spaces with non-zero curva-
ture. While some methods simply fix the curvature (e.g., −1 for hyperbolic space)
and then find the optimal embedding of the graph in the corresponding space
[13], others try to learn the right curvature and embedding simultaneously [5].

In this paper, we consider the problem of determining a graph curvature
suitable for embedding. We first introduce a concept of global graph curvature,
which depends on both the dimension and loss function used for the embedding.
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B. Kamiński et al. (Eds.): WAW 2020, LNCS 12091, pp. 16–35, 2020.
https://doi.org/10.1007/978-3-030-48478-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48478-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-48478-1_2


Global Graph Curvature 17

We theoretically analyze this curvature considering two loss functions: distor-
tion, which is widely used in embedding literature, and threshold-based loss (see
Sect. 2), which is more suitable for some practical applications. We prove that
these loss functions lead to fundamentally different graph curvatures. We also
conduct a systematic analysis of several existing estimators of global curvature,
in particular, the ones based on the well-known Ollivier-Ricci and Forman-Ricci
local graph curvatures. We prove that all these notions give curvatures that are
far from the optimal curvature for embedding the graph (in particular, because
they are dimension-independent).

One insight, which we gained based on our theoretical analysis, is the fact that
the optimal curvature is often smaller for smaller dimensions. In other words,
while hyperbolic space may be needed for some small dimension, Euclidean space
may be enough for a larger one.

Our analysis shows that the problem of estimating the global graph curvature
is non-trivial. Moreover, it provides important first steps towards understanding
this concept from both theoretical and practical aspects. This will aid future
researchers studying this important topic.

2 Background and Related Work

Graph Embeddings. For an unweighted connected graph G = (V,E) equipped
with the shortest path distance metric dG, a graph embedding f is a map f :
V → U , where U is a metric space. We refer to [2] for a survey of several graph
embedding methods and their applications.

The goal of an embedding is to preserve some structural properties of a
graph. Depending on the application, different loss/quality functions are used to
measure the quality of a graph embedding. The most well-known is distortion:1

D(f) =
1

(
n
2

)
∑

u�=v

|d(f(u), f(v)) − dG(u, v)|
dG(u, v)

,

where d denotes the distance metric in U .
Distortion is a global metric, it takes into account all graph distances. How-

ever, in some practical applications, it may not be the best choice. For example,
in recommendation tasks, we usually deal with a partially observed graph, so
a huge graph distance between nodes in the observed part does not necessar-
ily mean that the nodes are not connected by a short path in the full graph.
Additionally, as we shall see in Sect. 5.1, graph distances are hard to preserve:
there are simple graphs on just 4 nodes that can be perfectly embedded only in
a space of curvature −∞ for any dimension.

Another measure, often used for embeddings, is Mean Average Precision
(MAP), which, for a given node, compares the distance-based ranking of other
embedded nodes with the graph-neighborhood-based ranking. We do not con-
sider MAP in our analysis since it cares only about the order and so is curvature-
invariant. Indeed, changing curvature is equivalent to changing scale, so for MAP
1 There are other definitions of distortion in the literature, see, e.g., [17].
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it is sufficient to consider only the curvatures −1, 0, 1, corresponding to hyper-
bolic, Euclidean and spherical spaces. Moreover, by considering a small enough
region in hyperbolic or spherical space we get geometry similar to the Euclidean
one, so for MAP it is important to distinguish only between −1 and 1.

We also consider the following class of threshold-based loss functions. Given
an embedding f of a graph G, we (re)construct a graph G′ in the following
way: v and u are connected in G′ iff d(f(v), f(u)) ≤ 1. Then, any loss function
which is based on the comparison of G and G′ is called threshold-based. Such loss
functions are natural in many applications (graph reconstruction, link prediction,
recommendations). While many particular choices are possible, our theoretical
results hold for any threshold-based loss function.

Hyperbolic and Spherical Spaces. For many years, Euclidean space was
the primary choice for data embeddings [2]. However, it turned out that many
observed datasets are well fitted into hyperbolic space [8]. In particular, hyper-
bolic embeddings can improve state-of-the-art quality in several practical tasks,
e.g., lexical entailment and link prediction [12]. On the other hand, spherical
spaces are also used for embeddings [9]. Going even further, [5] suggests mixed
spaces: product manifolds combining multiple copies of spherical, hyperbolic,
and Euclidean spaces.

The main advantage of hyperbolic space is that it is “larger”: the volume of
a ball grows exponentially with its radius. Hence, such spaces are well suited for
tree-like structures. On the other hand, spherical spaces are suitable for embed-
ding cycles [5]. Spherical and hyperbolic spaces are parametrized by curvature c,
which is positive for spherical space and negative for hyperbolic space. As c → 0,
geometry of both these spaces becomes similar to the Euclidean one. We discuss
some geometrical properties of these different spaces in Appendix A.

3 Local Graph Curvatures

While in this paper we analyze global graph curvature, there are several local ones
proposed in the literature. Many of them are based on the notion of sectional
curvature and Ricci curvature defined for Riemannian manifolds. Intuitively,
Ricci curvature controls whether the distance between small spheres is smaller
or larger than the distance between the centers of the spheres. For example,
Ricci curvature is positive if small spheres are closer than their centers are. We
refer to [6,15] for more details on Ricci curvature.

Ollivier Curvature. Ollivier curvature translates the definition of Ricci curva-
ture to graphs. Again, the idea is to compare the distance between two small balls
with the distance between their centers. The distance between balls is defined by
the well-known optimal transport distance (a.k.a. Wasserstein distance or earth-
mover distance). Formally, for a graph G we consider the shortest path metric
on G, denoted by dG, and let WG

1 denote the Wasserstein metric with respect
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to the metric space (G, dG). Furthermore, for each node v we let mv denote the
uniform probability measure on the neighbors of v, i.e., mv(u) = 1u∼v

deg(v) , where
deg(v) denotes the degree of v. Then, the classic definition2 of Ollivier curvature
between two neighboring nodes v ∼ u in G is defined as

κG(u, v) = 1 − WG
1 (mv,mu). (1)

We note that Ollivier curvature always belongs to the interval [−2, 1] [7].

Forman Curvature. Forman curvature [20] is based on the discretization of
Ricci curvature proposed by [1]. It is defined for a general weighted graph G, with
both node and edge weights. When the graph G is not weighted, the definition
becomes:

FG(u, v) = 4 − (deg(v) + deg(u)). (2)
Forman was interested in a general discretization of curvature for Rieman-

nian manifolds and his formula includes faces of any dimension. Although this
can be translated to graphs [21], the formula becomes quite cumbersome. There-
fore, in Eq. 2 only 1-dimensional faces (edges) are included. One can extend this
expression by including higher dimensional faces. This was considered in [18],
where 2-dimensional faces on three nodes (triangles) were included. In the case
of an unweighted graph, we then obtain

F̂G(u, v) = F (u, v) + 3Δuv = 4 − deg(v) − deg(u) + 3Δuv, (3)

where Δuv is the number of triangles that contain the edge (u, v).
Based on the definitions, both Forman curvatures, especially FG(u, v), are

expected to often be highly negative (see Sect. 5).

Heuristic Sectional Curvature. A different notion of curvature used by [5] is
based on the following geometric fact. Let abc be a geodesic triangle and let m be
the (geodesic) midpoint of bc. Then the value d(a,m)2 + d(b,c)2

4 − d(a,b)2 + d(a,c)2

2
is equal to zero in euclidean space, is positive in spherical space and negative in
hyperbolic space.

For graphs, let v be a node in G, b, c neighbors of v and a any other node.
Then, we define

ξG(v; b, c; a) =
1

2dG(a, v)

(
dG(a, v)2 +

dG(b, c)2

4
− dG(a, b)2 + dG(a, c)2

2

)
. (4)

This resembles the formula above with m = v and the normalization constant
2dG(v, a) is included to yield the right scalings for trees and cycles. To define
the graph sectional curvature of a node v and its neighbors b, c, we average
ξG(v; b, c; a) over all possible a: ξG(v; b, c) = 1

|V |−3

∑
a∈G\{v,b,c} ξG(v; b, c; a).3

2 Note that Ollivier curvature is defined in much more generality in terms of metrics
and random walks [14]. Thus, different version on graphs can be considered. Equa-
tion (1) corresponds to the classical choices of graph distance and random walk.

3 We assume that a does not coincide with b or c, which does not affect the average
much, but makes our results in Sect. 5 more succinct.
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4 Global Graph Curvature

The problem with these different notions of local graph curvature is that they
cannot be easily used in practical applications, where data is usually embedded
in a space of constant curvature. Hence, a global notion of curvature is needed.
In this section, we propose a practice-driven definition of global graph curvature
and discuss how to estimate this curvature based on local notions.

4.1 Definition

For a graph G, let f(G) be an embedding of this graph into a d-dimensional
space of constant curvature c (spherical, Euclidean or hyperbolic). Assume that
we are given a loss function L(f) for the embedding task (see Sect. 2). Now, let
Lopt(G, d, c) be the optimal loss for given d and c: Lopt(G, d, c) = minf L(f).
Then, we define d-dimensional curvature of G in the following way:

CL
d (G) = arg min

c
Lopt(G, d, c) . (5)

Note that there may be several values of curvature c delivering the minimum of
Lopt(G, d, c), in this case we say that CL

d (G) consists of all such points.4

Below we analyze global curvatures based on distortion (Cdist
d (G)) and

threshold-based (Cthr
d (G)) loss functions. In the latter case, our theoretical

results apply to any threshold-based loss, since Lopt(G, d, c) reaches its mini-
mum on “perfect” embeddings, where we precisely reconstruct the graph G.

4.2 Approximations

Let us discuss how local graph curvatures can be used to estimate the global
one. In all cases, the standard practice is to average edge or sectional curvature
over the graph.

Ollivier Curvature. κ(G) = 1
|E|

∑

u∼v
κG(u, v).

Forman Curvature. F (G) = 1
|E|

∑

u∼v
FG(u, v), F̂ (G) = 1

|E|
∑

u∼v
F̂G(u, v).

Average Sectional Curvature. Let P3 denote the number of paths of length
3 in G, then ξ(G) = 1

P3

∑

v∈V

∑

b<c:b,c∈N(v)

ξG(v; b, c).

It is important to note that all curvatures discussed above do not depend on
dimension d and loss function L. However, as we show below, global curvature
defined in Sect. 4.1 significantly depends on them.
4 Further we slightly abuse notation by writing that CL

d (G) is a real value if such c is
unique and a set of values otherwise.
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There is also a concept of Gromov’s hyperbolicity [3], which is sometimes used
to decide whether it is reasonable to embed a graph to a hyperbolic space. A
metric has δ-hyperbolicity if all geodesic triangles are δ-slim: for any three points
a, b, c, the shortest paths between them satisfy the following property: any point
on one path is within distance δ from the closest point on the other two paths.
However, firstly, such estimator cannot be easily converted to curvature, and,
secondly, it does not say anything about the embedding in spherical spaces [11].

5 Theoretical Analysis of Global Curvature

To better understand the performance of the proposed approximations of global
graph curvature, we consider several basic graphs and compare their global cur-
vature and approximations. By studying these graphs we also gain insights into
how classic graph topologies influence the curvature of the space in which they
can be properly embedded.

5.1 Star Sn

It is pointed out in numerous papers that trees are negatively curved. We analyze
this theoretically and start with the simplest tree: one central node and n leaves.
We denote this graph by Sn and assume that n ≥ 3.

Ollivier Curvature. Consider any tree graph T , let v, u be two neighbors.
Then Proposition 2 in [7] states that

κT (u, v) = −2
(

1 − 1
deg(v)

− 1
deg(u)

)+

, (6)

where t+ = max{0, t}. In particular, if either deg(v) = 1 or deg(u) = 1, then
κT (u, v) = 0. As a result, for a star we have κSn

(u, v) = 0, so κ(Sn) = 0 and
stars are not negatively curved according to Ollivier curvature.

Forman Curvature. If follows from (2) and (3) that F (Sn) = F̂ (Sn) = 3 − n,
so stars are highly negatively curved for large n according to Forman curvature.

Average Sectional Curvature. Heuristic sectional curvature is defined for a
node and its two neighbors. In case of a star we can only take a central node v and
two neighboring ones b and c. For any other node a we obtain ξSn

(v; b, c; a) = −1.
Therefore, by averaging we obtain ξ(Sn) = −1.
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Distortion-Based Curvature. The following theorem holds.

Theorem 1. Let d and n be fixed. If c is bounded below by a constant, then
D(Sn) is also bounded below by a constant. If c → −∞, then the optimal distor-
tion Dopt(Sn) = Θ

(
1√−c

)
. Therefore, for any Sn we have Cdist

d (Sn) = −∞.

The intuition behind this result is the following: we cannot embed a star S3

with zero distortion into any space of constant curvature and any dimension,
because in case of zero distortion the central node v has to lie on the geodesics
between all pairs of leaves, so all 4 nodes have to belong to one geodesics, which
is impossible. Moreover, the same problem occurs if any graph G contains S3 as
an induced subgraph. On the other hand, if c → −∞, we can spread all leaves
of Sn uniformly on a circle of radius 1 around the central node and distortion of
such construction will tend to zero since the distance between the pairs of leaves
will tend to 2 (triangles become thinner). The formal proof of Theorem1 can be
found in AppendixB. Further we will see that if we minimize a threshold-based
loss, then any tree can be perfectly embedded with d = 2.

Threshold-Based Curvature. Here we have the following theorem.

Theorem 2. Cthr
d (Sn) = (−∞, C) for some C = C(n, d), which increases

with d and decreases with n. In particular, for d = 2, if n < 6, then

C =
(
arccos cos 2π

n

1−cos 2π
n

)2

; if n = 6, then C = 0; if n > 6, then C =

−
(
2 arccosh 1

2 sin π
n

)2

.

Proof. We show that for any n and d and some curvature c there exists a perfect
embedding (preserving all edges). Therefore Cdist

d (Sn) consists of curvatures for
which such perfect embedding exists. Note that if there exists a perfect embed-
ding f for some curvature c, then there exists a perfect embedding for any
curvature c′ < c. Indeed, w.l.o.g., we assume that the central node v is mapped
to the origin of a hyperspherical coordinate system and other points v1, . . . , vn

can be described by their radii and angles. We know that the distance between
v and any vi is at most 1 and the distance between any pair vi, vj is larger than
one. Now we change curvature to c′ < c and keep hyperspherical coordinates
the same. Then the distance between v and any vi does not change, while the
distance between nodes vi, vj increases.

It is easy to see that C increases with d: if there exists an embedding to some
dimension d, then, obviously, the same embedding works for d′ > d. Further, C
decreases with n since if there exists an embedding of Sn, then we can easily
construct an embedding of Sn′ for n′ < n by removing some nodes.

The rest of the proof (constructing a perfect embedding for d = 2) is technical
and can be found in AppendixC. The main idea is that when we embed a star
aiming to minimize a threshold-based loss, we just need a curvature to be small
enough to spread all neighbors of a central node sufficiently far away from each
other.
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5.2 Tree Tb with Branching Factor b

We consider a tree Tb, b ≥ 2. For symmetry, assume that the first node has b+1
children, while all other nodes have a parent and b children. For Ollivier and
Forman curvatures, we give the results for the case when the depth M of Tb

tends to infinity. For threshold-based curvature we will consider a tree of infinite
depth. In the other cases, our statements hold for any finite tree T .

Ollivier Curvature. Let Eb(M) denote the number of edges in the tree Tb(M)
of depth M ≥ 2 and observe that Eb(M) = (b + 1)

∑M−1
m=0 bm. There are two

types of edges: those adjacent to a leaf node and those not adjacent to a leaf
node. For the former, we have that one node has degree 1 and hence (6) implies
that Ollivier curvature of these edges is 0. For edges (u, v) that are not adjacent
to a leaf node (6) implies that κTb(M)(u, v) = −2

(
1 − 1

b+1 − 1
b+1

)
= − 2(b−1)

b+1 .
Since there are Eb(M − 1) edges of this type we get

κ(Tb(M)) = −2(b − 1)
b + 1

Eb(M − 1)
Eb(M)

,

which is negative for all M ≥ 2.
Finally we note that Eb(M −1) = Eb(M)−(b+1)

b and Eb(M) → ∞ as M → ∞,
so that

κ(Tb(M)) = −2(b − 1)
b + 1

(
1
b

− b + 1
bEb(M)

)
→ −2(b − 1)

b(b + 1)
.

Forman Curvature. It is easy to see that for an edge (u, v) adjacent to a
leaf node FTb(M)(u, v) = F̂Tb(M)(u, v) = 2 − b while edges (u′, v′) that are not
adjacent to a leaf node FTb(M)(u, v) = F̂Tb(M)(u, v) = 2 − 2b. Hence we obtain
that

F (Tb(M)) = F̂ (Tb(M))

=
1

Eb(M)
(Eb(M − 1)(2 − 2b) + (Eb(M) − Eb(M − 1))(2 − b))

=
1

Eb(M)
(Eb(M)(2 − b) − Eb(M − 1)b) = (1 − b) +

b − 1
Eb(M)

,

where we used the relation between Eb(M − 1) and Eb(M). From this it follows
that

F (Tb(M)) = F̂ (Tb(M)) → (1 − b),

which is negative.

Average Sectional Curvature. In contrast to Ollivier and Forman curvatures,
heuristic sectional curvature is global, i.e., it depends on the whole graph, which
has to be finite. Note that for any tree, to compute sectional curvature, we
average 0 and −1. As a result, for any tree T we have ξ(T ) ∈ [−1, 0] [5].
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Distortion-Based Curvature. On the one hand, our result for Sn implies that
if a graph contains S3, then it cannot be embedded with zero distortion in any
space. One the other hand, [19] proves that if we scale all edges by a sufficiently
large factor τ , then the obtained tree can be embedded in the hyperbolic plane
with distortion at most 1+ε with arbitrary small ε. Note that multiplying graph
edges by τ is equivalent to changing curvature from 1 to τ2. As a result, [19]
proves that we can achieve an arbitrary small distortion if c → −∞. Hence,
Cdist

d (T ) = −∞ for any T .

м

l r

l r1 2 3

1 1

1
1 1

1

Fig. 1. Threshold-based embedding of trees. The nodes ul, u and ur are at level l
while u1, u2, u3 are at level l + 1. This figure illustrates an intuitive idea of the proof
construction, the exact shape of the circles and triangles will depend on the specific
model of hyperbolic space used.

Threshold-Based Curvature

Theorem 3. Cthr
d (Tb) = (−∞, C) for some C = C(b, d), which increases with

d and decreases with b. In particular, C(b, 2) ≥ −
(

2 log b
2 arccosh cosh 1

cosh 1/2−1

)2

.

Actually, the bound above holds for any tree whose branching is bounded by
b. Interestingly, while it is often claimed that trees are intrinsically hyperbolic
[8,12], to the best of our knowledge, we are the first to formally prove that trees
can be perfectly embedded in a hyperbolic plane of some curvature.

Proof. First, recall that AppendixA lists some geometric properties of hyper-
bolic space which we use throughout this proof.

As for Sn, we prove that for Tb a perfect embedding exists for d = 2 and some
curvature c. Then, similarly to the previous section, it is clear that C increases
with b and decreases with n.

For the lower bound on C, we have to guarantee that an embedding exists.
For this, we provide the following construction (see Fig. 1 for an illustration).
(Below we assume that the curvature is large enough for our construction to
work, then we estimate the required curvature.) First, we take the node v and
consider a circle of radius 1 around this node. We spread b+1 neighbors uniformly



Global Graph Curvature 25

around this node. For our construction to work, we need all distances between
these nodes to be larger than 1. Now, at some step of the algorithm, assume that
we have all nodes at level l placed at some circle centered at v and all distances
between the nodes at level l are larger than 1. Our aim is then to find positions
for all nodes at level l + 1.

Let us take any node at l-th level. Consider two points ul and ur on the same
circle at distance 1 from the node u to the left and to the right, respectively. Let
u, ul, zl and u, ur, zr form equilateral triangles (with sides equal to 1). Then we
let the points at l+1-th level to be spread on the circle centred at v and passing
through zl and zr. The children of u (u1, . . . , ub) will be placed on the circular
arc between zl and zr. As usual, we want ui and ui+1 to be at distance at least 1
from each other. Moreover, they have to be at distance at least 1 from children
of other nodes. Also, note that placing u1, . . . , ub between zl and zr guarantees
that these nodes are closer than 1 to their parent node u but at the same time
at a distance larger than 1 from all other nodes at l-th level. Also, all points at
l-th level are far enough from points at l + 2-th level.

It remains to find a maximum curvature such that the required conditions
are satisfied. Let r and r′ be radii of circles at l-th and l + 1-th levels and let
2α = ∠ulvu. We know (the law of cosines and cos 2α = 1 − 2 sin2 α) that

cosh
1
R

= 1 + 2 sinh
( r

R

)
sin2 α , (7)

where R = 1/
√−C (see Appendix A). So, the only condition we need for the

whole procedure to work is that we have enough space on the circular arc for
placing b nodes there:

cosh
1
R

≤ 1 + 2 sinh
(

r′

R

)
sin2 α

b
.

We note that sin2 α
b ≥ sin2 α

b2 for all b ≥ 1. Therefore, it is sufficient to have

cosh
1
R

≤ 1 + 2 sinh
(

r′

R

)
· sin2 α

b2
. (8)

Combining (7) and (8), we obtain:

sinh
r′

R
≥ b2 · sinh

r

R
.

To achieve this, it is sufficient to have:

r′ − r

R
≥ 2 log b,

R ≤ r′ − r

2 log b
.

It remains to find the lower bound for r′ − r and it is easy to see that r′ − r
decreases with r. Therefore, it is sufficient to consider only the second step of
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the construction procedure, when we move from the circle of radius 1 to the next
one. In this case, r = 1 and

r′ = 2arccosh
(

cosh 1
cosh 0.5

)
.

So, we have

−C =
1

R2
≤

(
2 log b

2 arccosh
(

cosh 1
cosh 0.5

) − 1

)2

.

5.3 Complete Graph Kn

Ollivier Curvature. For any two nodes u and v, it follows from Example 1 in
[7] that κKn

(v, u) = n−2
n−1 . Thus, κ(Kn) = n−2

n−1 and it tends to 1 as n → ∞.

Forman Curvature. Simple computations yield: F (Kn) = 6−2n, F̂ (Kn) = n,
i.e., we get either highly positive or highly negative value.

Average Sectional Curvature. It is easy to compute that ξ(Kn) = 1
8 .

Distortion-Based Curvature. The following theorem analyzes Cdist
d (Kn) if

d = n − 2.

Theorem 4. Cdist
n−2(Kn) =

{
− ∞, 4

(
arcsin

√
n

2(n−1)

)2 }
.

Proof. If d = n−2, then we are given a (n−1)-simplex, which can be embedded
into n−2-dimensional spherical space. Indeed, the radius of circumscribed hyper-

sphere for the (n − 1)-simplex with side length a is known to be R = a
√

n−1
2n .

Since we want the spherical distance between all points to be equal to one, we
need to choose a accordingly:

sin
α

2
=

a

2R
for α =

1
R

.

Here α corresponds to the angle giving the arc length 1, while the condition on
sin α

2 relates α and a since α is the angle in a triangle with side lengths α,R,R.
This implies that

2R arcsin
a

2R
= 1,

and solving this equation for a yields

a =

√
2n

(n − 1)
1

2 arcsin
√

n
2(n−1)

.
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Plugging this back into the formula for the radius R we obtain

R =
1

2 arcsin
√

n
2(n−1)

,

so that we have

Cdist
n−2(Kn) = 4

(
arcsin

√
n

2(n − 1)

)2

.

Finally, let us show that if c → −∞, then optimal distortion Dopt(Kn) → 0.
This result follows from the fact that Dopt(Sn) → 0, because to embed a clique,
it is sufficient to embed a star on n + 1 node with edge lengths 1/2 and then
remove the central node.

Threshold-Based Curvature. Cthr
d (Kn) = R, since we can embed any com-

plete graph perfectly by mapping all nodes to one point.

5.4 Cycle Graph Cn

We consider a cycle Cn with n ≥ 4.

Ollivier Curvature. Let v ∼ u be two neighbors. Then it is easy to see that
WG

1 (mu,mv) = 1 and hence κG(u, v) = 0. Thus, κ(Cn) = 0.

Forman Curvature. Similarly, it is easy to see that F (Cn) = F̂ (Cn) = 0.

Average Sectional Curvature. If n is even, then ξCn
(v; b, c; a) = 0 for

all points except the one diametrically opposite to v for which we have
ξCn

(v; b, c; a) = 1. If n is odd, then for two points we have ξCn
(v; b, c; a) = n

2(n−1) .
As a result, ξ(Cn) = 1

n−3 for even n and ξ(Cn) = n
(n−1)(n−3) for odd n.

Distortion-Based Curvature. Here we have that Cdist
d (Cn) =

(
2π
n

)2
. Indeed,

if we consider any three consequent nodes, then the middle one should lie on the
geodetic between the other two. So, they all lie on a great circle (of length n)
from which the result follows.

Threshold-Based Curvature. It is easy to see that Cthr
d (Cn) = (−∞, C)

with some C > 0, which decreases with n and increases with d. A simple lower
bound for C is C ≥ (

4π
n

)2, since for such curvature we can embed all nodes into
a great circle with distances 1/2 between the closest ones.
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5.5 Complete Bipartite Graph Kl,m

W.l.o.g. we assume that l ≥ m ≥ 2 (the remaining cases are stars and are already
considered).

Ollivier Curvature. We prove the following lemma.

Lemma 1. κ(Kl,m) = 0.

Proof. Denote the node sets in Kl,m by U := {u1, . . . , ul} and V := {v1, . . . , vm}.
We will prove that for any edge (u, v), W

Kl,m

1 (mu,mv) = 1, which then implies
that κ(Kl,m) = 0. For this we use the dual representation for the Wasserstein
distance, see [14] for more details. This states that on the one hand

WG
1 (mu,mv) = inf

ρ

∑

v′∼v

∑

u′∼u

dG(v′, u′)ρ(v′, u′),

where the infimum is taken over all joint probability measures on the product
of the neighborhoods of v and u, while on the other hand

WG
1 (mu,mv) = sup

f

(
1

deg(v)

∑

v′∼v

f(v′) − 1
deg(u)

∑

u′∼u

f(u′)

)

,

where the supremum is taken over all 1-Lipschitz functions, i.e., |f(u) − f(v)| ≤
dG(u, v).

Note that for any u ∈ U, v ∈ V the joint neighborhood is V × U . First we
establish an upper bound by considering the product joint probability density
on V × U ρ(x, y) = 1

ml . It then follows that

W
Kl,m

1 (mu,mv) ≤
m∑

i=1

l∑

j=1

dG(vi, uj)ρ(vi, uj) = 1.

For the lower bound, we define the function

f(z) =

{
2 if z ∈ V,

1 if z ∈ U.

Observe that if u ∈ U and v ∈ V then |f(u) − f(v)| = 1 = dG(u, v). On the
other hand, if u, u′ ∈ U then |f(u) − f(u′)| = 0 ≤ 2 = dG(u, u′) and similar for
v, v′ ∈ V . Thus we conclude that f is 1-Lipschitz. It now follows that

W
Kl,m

1 (mu,mv) ≥ 1
m

m∑

i=1

f(vi) − 1
l

l∑

j=1

f(uj) = 1,

which completes the proof.
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Forman Curvature. It is easy to see that F (Kl,m) = F̂ (Kl,m) = 4 − l − m.

Average Sectional Curvature. The following lemma holds.

Lemma 2. ξ(Kl,m) = −(l − m)2 +m+ l − 2
(m+ l − 2)(l+m − 3) . In particular, if m = l we get

ξ(Kl,m) = 1
2m−3 .

This lemma implies that for balanced complete bipartite graphs ξ(Kl,m) is pos-
itive, but tends to zero as the graph grows.

Proof. If v and a are in the same part of the bipartite graph, then ξKl,m
(v; b,

c; a) = 1, otherwise ξKl,m
(v; b, c; a) = −1. Therefore, if v belongs to the part of

size l, sectional curvature is ξKl,m
(v; b, c) = l−m+1

l+m−3 , otherwise it is ξKl,m
(v; b, c) =

m−l+1
l+m−3 . As a result, by averaging over all triplets, we get

ξ(Kl,m) =
1

l
(
m
2

)
+ m

(
l
2

)
(

l

(
m

2

)
l − m + 1
l + m − 3

+ m

(
l

2

)
m − l + 1
l + m − 3

)

=
−(l − m)2 + m + l − 2
(m + l − 2)(l + m − 3)

.

Distortion-Based Curvature. We prove the following simple proposition.

Proposition 1. For any d, Cdist
d (K2,2) =

(
π
2

)2 ≈ 2.47 and K2,2 is the only
complete bipartite graph (with at least two nodes in each part) for which zero
distortion is achievable.

Proof. Indeed, the result for K2,2 follows from the corresponding result on cycle
C4. Moreover, if for Kl,m we have l ≥ 3 and m ≥ 2, then for any two nodes
in the part of size l there are at least 2 different geodesics of length 2 between
them. Therefore, all such pairs lie at opposite poles of the hypersphere, which is
impossible since l ≥ 3.

6 Conclusion

We introduced a concept of global graph curvature motivated by the practi-
cal task of embedding graphs. This curvature depends on the loss function and
space dimension. To get an intuition about how global graph curvature behaves,
we theoretically analyzed it for several simple graphs. We compared the global
graph curvature and several approximations based on well-known local graph
curvatures and showed that they essentially differ. We demonstrated that dimen-
sionality and the choice of a loss function fundamentally affect the global curva-
ture and, in particular, when dimension is larger the optimal curvature usually
becomes less negative. Our work shows that the problem of finding the right
space for graph embedding is interesting and non-trivial and we hope our results
will encourage further research on global graph curvature.
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A Geometrical Properties of Spaces of Constant
Curvature

In this section, we recall some useful equalities which will be used throughout
the proofs.

We use notation R, where R = 1√
c

in spherical space (corresponds to the
radius of a sphere) and R = 1√−c

in the hyperbolic case (can be considered as a
scaling factor compared to the space of curvature −1).

Law of Cosines. Let us consider a triangle with angles A,B,C and the lengths
of opposite sides a, b, c, respectively.

In Euclidean, space we have:

c2 = a2 + b2 − 2 a b cos C .

In spherical space, the first law of cosines is:

cos
c

R
= cos

a

R
cos

b

R
+ sin

a

R
sin

b

R
cos C ,

and the second law of cosines is:

cos C = − cos A cos B + sin A sin B cos
c

R
.

In hyperbolic space, we have

cosh
c

R
= cosh

a

R
cosh

b

R
− sinh

a

R
sinh

b

R
cos C .

Equilateral Triangle. The following equalities follow from the corresponding laws
of cosines, assuming that all sides (and angles) are equal.

For hyperbolic space:

cosh
a

2R
=

1
2 sin A

2

. (9)

For spherical space:

cos
a

R
=

cos A

1 − cos A
. (10)

Area and Volume of Hypersphere. Let Sd(r) and Vd(r) denote area of a
hypersphere and volume of a ball of radius r in d-dimensional space.

In euclidean space,
Sd(r) = dCd rd−1,

Vd(r) = Cd rd,

where

Cd =
πd/2

Γ (d
2 + 1)

.
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In spherical space, sphere of radius r is isometric to Euclidean sphere of
radius R sin r

R . Therefore, the area is

Sd(r) = dCd

(
R sin

r

R

)d−1

,

Vd(r) = dCd Rd

∫ r

0

(
sin

x

R

)d−1

dx.

Similarly, in hyperbolic space,

Sd(r) = dCd

(
R sinh

r

R

)d−1

,

Vd(r) = dCd Rd

∫ r

0

(
sinh

x

R

)d−1

dx.

B Proof of Theorem1

First, let us analyze the lower bound on distortion. Recall that distortion of a
graph is the average distortion over all pairs of nodes. Let v be the central node
and v1, . . . , vn (n ≥ 3) be its neighbors. For any embedding f , we have

D(Sn) =
1

(
n+1
2

)

⎛

⎝
∑

vi

|d(f(v), f(vi)) − 1| +
∑

vi �=vj

|d(f(vi), f(vj)) − 2|
2

⎞

⎠

=
1

(
n+1
2

)
∑

1≤i1<i2<i3≤n

⎛

⎝
∑

1≤j≤3

|d(f(vij ), f(v)) − 1|
(
n−1
2

) +
∑

1≤j<k≤3

|d(f(vij ), f(vik )) − 2|
2(n− 2)

⎞

⎠ .

Let Dmin be the minimum value of the following weighted distortion of a
star with 3 leaves:

Dmin = min
f

∑

1≤j≤3

|d(f(vj), f(v)) − 1|
(n − 1)/4

+
∑

1≤j<k≤3

|d(f(vj), f(vk)) − 2|,

then

D(Sn) ≥
(
n
3

)

2(n − 2)
(
n+1
2

)Dmin =
(n − 1)Dmin

6(n + 1)
. (11)

Hence, it remains to find a lower bound on Dmin, i.e., a lower bound for a
weighted distortion of S3 with central node v and three leaves v1, v2, v3. If we
consider three angles at the node v, then at least one of them is α ≤ 2π/3, so
we can get a lower bound by only considering this triangle, which is, w.l.o.g.,
formed by v, v1, v2.

Dmin ≥ |d(f(v1), f(v2)) − 2| +
|d(f(v1), f(v)) − 1| + |d(f(v2), f(v)) − 1|

(n − 1)/4
.
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Denote d(f(v1), f(v)) = x = 1 + ε, d(f(v2), f(v)) = y = 1 + δ,
d(f(v1), f(v2)) = z = 2 + ε + δ − ϕ with some ε, δ and some ϕ > 0 (from
triangle inequality). Assume that |ε| < 1/2 and |δ| < 1/2 (otherwise the lower
bound is trivial). Now we use the law of cosines to get a lower bound on ϕ. We
consider Euclidean and hyperbolic spaces separately and note that the bound
obtained in Euclidean space also holds in spherical spaces (with any c).

In Euclidean space, using triangle inequality, we get ϕ = x + y − z > 0. So,
in Euclidean and spherical spaces ϕ is bounded below by a constant.

In hyperbolic space the law of cosines gives (we denote R = 1√−c
):

cosh
z

R
= cosh

x

R
cosh

y

R
− sinh

x

R
sinh

y

R
cos α,

from which, using cosh(x + y) = cosh x cosh y + sinhx sinh y, we get

cosh
x + y

R
− cosh

z

R
= sinh

x

R
sinh

y

R
(1 + cos α).

If R → ∞, then, similarly to Euclidean case, we get ϕ = x + y − z = Ω(1).
On the other hand, if R → 0, we get ϕ = Ω(R). Note that Dmin ≥

|z − 2|+ |x−1|+|y−1|
(n−1)/2 = |ε+ δ −ϕ|+ |ε|+|δ|

(n−1)/2 . This gives us a lower bound Dmin =
Ω(1/n) in spherical and Euclidean spaces and Dmin = Ω(min(R, 1)/n) =

Ω

(
1

nmax(√−c,1)

)
in hyperbolic space. From this and (11) the bound on D(Sn)

follows.
Now, let us get an upper bound on optimal distortion Dopt(Sn). To do this,

we explicitly construct an embedding with sufficiently low distortion D(Sn).
Let v be the central node, then we spread all other nodes uniformly on a

2-dimensional circle of radius 1 centred at v. The smallest angle between two
points is 2π/n. Therefore, from the law of cosines, the distance between leaves
is at least k with

cosh
k

R
= 1 +

(
1 − cos

2π

n

)
sinh2 1

R
.

Note that for any two leaves vi and vj we have that d(f(vi), f(vj)) ≤ 2. In par-
ticular, the closer two leaves are, the greater the difference 2− d(f(vi), f(vj)) is.
Hence, the distance between adjacent leaves is the worst case and thus Dopt(Sn)
can be upper bounded as

Dopt(Sn) ≤
(
n
2

)

2
(
n+1
2

)
(

2 − R · arccosh
((

1 − cos
2π

n

)
sinh2 1

R
+ 1

))

=
(n − 1)
2(n + 1)

(
2 − R · arccosh

((
1 − cos

2π

n

)
sinh2 1

R
+ 1

))
.

Note that 1 − cos 2π
n = Θ

(
1
n

)
and sinh2

(
1
R

)
= Θ

(
e2/R

)
. Then, the value

arccosh
(
Θ

(
1
ne2/R

)
+ 1

)
behaves as

√
2e2/R/n if 2/R 
 log n and as 2

R − log n
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if 2/R � log n. Therefore, we get

Dopt(Sn) = O (R log n) = O

(
log n√−c

)
.

C Proof of Theorem2

Let us construct a perfect embedding of Sn for d = 2 and estimate the required
curvature. Recall that in a perfect embedding all leaves have to be inside the
ball of radius 1 around the central node v and also the distance between any two
leaves has to be larger than one. It is easy to see that if we managed to spread n
points inside the ball of radius 1 with distances more than 1 between them, then
we can move each point along the radius up to distance 1 from v preserving this
property. Therefore, it is sufficient to spread all points on a hypersphere.

First, assume that n > 6. In this case we have to consider only hyperbolic
space, since n neighbors would not fit to a circle of radius 1 in neither spherical
nor Euclidean spaces. We will find the largest curvature C which allows to have
distance exactly 1 between the closest leaves. In this case we cannot embed Sn

in a space of curvature C, but can embed in a space of any smaller curvature.
We use (9) (where R = 1√−C

) and let α = 2π
n :

cosh
1

2R
=

1
2 sin α

2

,

R =
1

2 arccosh 1
2 sin α

2

,

C = −
(

2 arccosh
1

2 sin α
2

)2

.

Note that if n is large, then sin α
2 = sin π

n−1 ∼ π
n−1 . Then, arccosh 1

2 sin α
2

∼
arccoshn−1

2π ∼ log n, so we get C ∼ −4 log2 n.
Now, let us consider n ≤ 6. Obviously, for n = 6 we have C = 0.
If n < 6, then C > 0. In this case we consider a spherical space and use the

corresponding law of cosines (10):

cos
1
R

=
cos α

1 − cos α
,

C =
(

arccos
cos α

1 − cos α

)2

.



34 L. Prokhorenkova et al.

References

1. Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci cur-
vature. Discrete Comput. Geom. 29(3), 323–374 (2003). https://doi.org/10.1007/
s00454-002-0743-x

2. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: a survey. Knowl.-Based Syst. 151, 78–94 (2018). https://doi.org/10.1016/
j.knosys.2018.03.022

3. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group The-
ory, vol. 8, pp. 75–263. Springer, New York (1987). https://doi.org/10.1007/978-
1-4613-9586-7 3

4. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM (2016)
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Abstract. This work introduces the problem of social influence diffu-
sion in complex networks, where vertices are linked not only through
simple pairwise relationships to other nodes but with groups of nodes
of arbitrary size. A challenging problem that arises in this domain is to
determine a small subset of nodes S (a target-set) able to spread their
influence in the whole network. This problem has been formalized and
studied in different ways, and many viable solutions have been found for
graphs. These have been applied to study several phenomena in research
fields such as social, economic, biological, and physical sciences.

In this contribution, we investigated the social influence problem on
hypergraphs. As hypergraphs are mathematical structures generaliza-
tion of graphs, they can naturally model the many-to-many relation-
ships characterizing a complex network. Given a network represented
by a hypergraph H = (V,E), we consider a dynamic influence diffu-
sion process on H, evolving as follows. At the beginning of the process,
the nodes in a given set S ⊆ V are influenced. Then, at each iteration,
the influenced hyperedges set is augmented by all hyperedges having a
sufficiently large number of influenced nodes. Consequently, the set of
influenced nodes is extended by all the nodes contained in a sufficiently
large number of already influenced hyperedges. The process terminates
when no new nodes can be influenced.

The so defined problem is an inherent chicken-and-egg question as
nodes are influenced by groups of other nodes (or hyperedges), while
hyperedges (or group of nodes) are influenced by the nodes they contain.
In this paper, we provide a formal definition of the influence diffusion
problem on hypergraphs. We propose a set of greedy-based heuristic
strategies for finding the minimum influence target set, and we present
an in-depth analysis of their performance on several classes of random
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hypergraphs. Furthermore, we describe an experiment on a real use-case,
based on the character co-occurrences network of the Game-of-Thrones
TV Series.

Keywords: Influence diffusion · Target set selection · Random
hypergraphs · Social network

1 Introduction

The current research on social networks is focusing on modeling community
structures to examine how and to what extent relationships between humans
or entities are the cause of complex emergent phenomena [21,40]. In the past
decades, graphs have played an essential role in the modeling and analysis of
large-scale online social networks (OSNs) [8,35], such as Facebook, Twitter or
Linkedin, as well as for studying biological [27,38] or economic systems [24,41].
Adopting graphs to model these networks assumes the existence of only binary
relationships between nodes. However, in many cases, complex networks are
characterized by more articulated interactions. For instance, communication net-
works, reviewing activities, money transactions, geographical tracking, and many
other scenarios are governed by many-to-many relationships. For a more clarify-
ing example, we can consider the network built upon email exchanges between
some users. In this context, the object email can be modeled as a relation involv-
ing a group of users. Thus, in this case, nodes of the network represent the
persons, while the edges of the network incorporate a sub-set of them – i.e.,
all email receivers. It is worth noting that if we represent this scenario with
a graph, we lose the information about which users are receivers of the same
emails. This approach, combined with grouping messages having the same title,
can be used for anomaly and spam detection in electronic communication [39].
Recently, hypergraphs have been exploited as a tool for modeling complex net-
works. Being a generalization of graphs, where a (hyper)edge is a relationship
among an arbitrary number of nodes, they can naturally define many-to-many
relations between groups of objects, such as domain names and IP addresses [30].

This research constitutes a relatively new area investigated in several recent
works [16,33]. A well-known problem in the field of network analysis is the ques-
tion of social influence maximization, which aims to identify the set of nodes
able to spread information in the whole network. However, little research on
this topic does take into account many-to-many relationships existing in a com-
plex network. Social influence [13,18] is the process by which each individual
change its behavior or adapt its opinions, according to the interactions with
other people. With this aim in mind, it is crucial to notice that this process is
a fundamental aspect in many fields, such as viral marketing [11,22], in which
the information diffusion process is used to attract people to adopt products or
ideas. According to Lately [32], “the traditional broadcast model of advertising-
one-way, one-to-many, read-only is increasingly being superseded by a vision of
marketing that wants and expects, consumers to spread the word themselves”.
The major contributions of this paper are summarized as follows.
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– We formally define the dynamic social influence problem on hypergraphs, and
we present a variant of the target set problem, first presented in [31], suitable
for networks involving many-to-many relationships.

– We introduce four random hypergraphs generative algorithms to build i) ran-
dom hypergraphs (without any constraint); ii) k-uniform hypergraphs (where
each hyperedge has size k); iii) d-regular hypergraphs (where each node has
degree d); and iv) hypergraphs with the preferential attachment rule [5].

– We propose three greedy-based heuristics for finding the minimum influence
target set on hypergraphs that eventually will influence the whole network.

– We present an evaluation of the proposed algorithms on a set of random
hypergraphs, varying the random properties of the networks, and results on
a real use-case, based on the network induced by the co-occurrences of char-
acters in the Game-of-Thrones TV Series.

Outline of the Paper. The paper is organized as follows. In Sect. 2, we define the
minimum target set problem on hypergraphs, representing networks defined by
many-to-many relationships. Furthermore, we describe four generating models
of random hypergraphs. Section 3 reviews some relevant literature about the
social influence problem and its applications. In Sect. 4, we describe our proposed
greedy-based heuristics to solve the social influence problem. Section 5 presents
our experiments, and we also discuss results on a real use-case. Finally, Sect. 6
details the conclusion and future work.

2 Background

2.1 Hypergraphs

A hypergraph is an ordered pair H = (V,E) where V is the set of nodes or
vertices, which refers to a set of objects, and E is the set of (hyper)edges. Each
hyperedge is a non-empty subset of vertices; i.e., E ⊆ 2V \ {∅}, where 2V is the
power set of V . In this paper, we indicate with n = |V | the number of nodes in
V , and with m = |E| the number of hyperedges in E, respectively. A graph is a
hypergraph, where each hyperedge is a two element subset of V ; in other words,
a hypergraph G = (V,E) is a graph if E ⊆ (

V
2

) ⊆ 2V \ {∅}. For a hypergraph
H, a two-section representation [H]2 can be obtained by connecting two nodes
in the graph [H]2 if and only if they are in the same hyperedge of H [9]. As a
result, each hyperedge from H occurs as a complete graph in [H]2. In this work,
we considered the weighted [H]2 of H, which assumes that the weight of an edge
corresponds to the number of hyperedges containing both the edge endpoints.

2.2 Dynamic Social Influence Diffusion on Hypergraphs

Given a network represented by a hypergraph H = (V,E), we consider a dynamic
influence diffusion process on H, which evolves in discrete steps as follows. In the
beginning, the nodes in a given set S ⊆ V are influenced. Then, at each iteration:



Information Diffusion in Complex Networks 39

1. the influenced hyperedges set is augmented by all edges which have a suffi-
ciently large number of influenced nodes;

2. consequently, the set of influenced nodes is augmented by all the nodes which
have a sufficiently large number of already influenced edges.

The process ends if no new nodes can be influenced.
Formally, let H = (V,E) be a hypergraph. For each v ∈ V , we denote with

E(v) ⊆ E the set of edges that contains v and with d(v) = |E(v)| the degree of
v. Analogously, for each e ∈ E, we denote with V (e) ⊆ V the set of nodes in e
and with k(e) = |V (e)| the cardinality of e. Let tV : V → N = {0, 1, . . .} and
tE : E → N = {0, 1, . . .} be two functions assigning thresholds to the vertices
and to the hyperedges, respectively. For each node v ∈ V (resp. e ∈ E), the
value tV (v) (resp. tE(e)) quantifies how hard it is to influence node v (edge e),
in the sense that easy-to-influence elements of the network have “low” threshold
values, and hard-to-influence elements have “high” threshold values.

Definition 1. Let H = (V,E) be a hypergraph with threshold functions tV :
V −→ N and tE : E −→ N, and S ⊆ V . An information diffusion process in H,
starting with a seed S ⊆ V , is a sequence

IV [S, 0] ⊆ IV [S, 1] ⊆ . . . ⊆ IV [S, �] ⊆ . . . ⊆ V

of vertex subsets, with IV [S, 0] = S, and

IE [S, 0] ⊆ IE [S, 1] ⊆ . . . ⊆ IE [S, �] ⊆ . . . ⊆ E

of edge subsets, with IE [S, 0] = ∅ and and such that for all � > 0

IE [S, �] = IE [S, � − 1]
⋃ {

e ∈ E : |V (e) ∩ IV [S, � − 1]| ≥ tE(e)
}

IV [S, �] = IV [S, � − 1]
⋃ {

v ∈ V : |E(v) ∩ IE [S, �]| ≥ tV (v)
}

A target set for H is a seed set S ⊆ V that will eventually influence the whole
network (i.e., IV [S, r] = V for some r ≥ 0).

We indicate the above information diffusion process on H with

IV [S], IE [S] = Φ(H,S, tV , tE),

where, IV [S] ⊆ V is the set of influenced vertices (IV [S] = IV [S, r]), and
IE [S] ⊆ E is the set of influenced hyperedges. tV and tE denote the thresholds
functions for nodes and hyperedges, respectively.

Example 1. Consider the hypergraph H in Fig. 1. The nodes are depicted as
an oval shape. The number on the top represents the node identifier; on the
bottom, its threshold value is shown. The hyperedge threshold value is drawn as
a black half oval shape. The hyperedge identifier is depicted inside the hyperedge.
Finally, influenced nodes are drawn in gray. Influenced hyperedges are shaped
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using a gray dotted line. Given a possible seed set S for H equal to {v1, v4}, the
information diffusion process evolves as follows.

IE [S, 0] = ∅, IV [S, 0] = S = {v1, v4}
IE [S, 1] = {e2}, IV [S, 1] = {v1, v3, v4}
IE [S, 2] = {e2, e3}, IV [S, 2] = {v1, v3, v4, v5}
IE [S, 3] = {e1, e2, e3}, IV [S, 3] = {v1, v2, v3, v4, v5} = V.

Hence, S is a target set for H.

The problem examined in this paper is defined as follows:

Problem 1. Diffusion on Hypergraphs—DoH
Instance: H = (V,E), thresholds tV : V → N0 and tE : E → N0.
Problem: Find a seed set S ⊆ V of minimum size such that IV [S] = V .

Fig. 1. An example of social influence diffusion process on H = (V,E).

2.3 Models for Random Hypergraphs

In this work, we investigate information diffusion processes on complex networks
by exploiting random hypergraphs. Here, we describe four generative models,
characterized according to the structural proprieties of the computed random
hypergraph (for example, hypergraphs with a fixed degree of nodes).

1. Random model. It generates a hypergraph without any structural property
constraint. Given two integer parameters n and m (the number of nodes
and hyperedges, respectively), the algorithm computes - for each hyperedge
he = 1, . . . ,m - a random number s ∈ [1, n] (i.e. the hyperedge size). Then,
the algorithm selects uniformly at random s vertices from V to add in he.

2. K-uniform model. It generates a k-uniform hypergraph, which is a hypergraph
where each hyperedge has a size of k. The algorithm proceeds as the random
model, but forcing the size of each hyperedge equal to k.
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3. D-regular model. It generates a d-regular hypergraph, where each node has
degree d. The algorithm exploits the k-uniform approach, described above, to
build a d-regular hypergraph H having m nodes and n edges. It then returns
the hypergraph H∗, dual of H.

4. Preferential-attachment model. It generates a hypergraph with a preferen-
tial attachment rule between nodes, as described in [5]. The algorithm starts
with a fully-random graph with 5 nodes and 5 edges. It then iteratively adds
a node or an edge, according to a given parameter p, defining the probability
of creating a new node or a new hyperedge. In detail, the connections with
the new node or hyperedge are generated according to a preferential attach-
ment policy [5]. We slightly changed the algorithm to avoid repetitions in the
hyperedges.

3 Related Work

The Social Influence Diffusion Problem. Previous research showed the
importance of the target set selection (TSS) problem to study the social influence
diffusion in networks. The TSS problem aims to select k initially-influenced
seed users to maximize the expected number of eventually-influenced users. In
other words, the objective is to find a subset of nodes in the network that, once
active, can activate all the nodes of the network under the linear threshold (LT)
influence propagation model. According to the LT model, a user v becomes active
when the sum of influences of its neighbors in the networks reaches a specific
threshold t(v) [17]. Given its importance in the context of influence spread in
both the online (social networks) and offline (word-of-mouth) worlds, the TSS
problem is extensively studied on graphs. Kempe et al. [31] first analyzed the
problem in networks with randomly chosen thresholds. Chen [12] studied the
minimization problem of finding the smallest target set able to influence the
whole network built with fixed arbitrary thresholds. Furthermore, Chen proved a
strong inapproximability result that makes unlikely the existence of an algorithm
for the TSS problem on graphs (2-uniform hypergraphs) with an approximation
factor better than O(2log

1−ε |V |). Cordasco et al. [16] presented an algorithm for
the TSS always producing an optimal solution (i.e., a minimum size subset of
nodes that influence the whole network) in case the network is either a tree, a
cycle, or a complete graph.

Considering that researchers started focusing on hypergraphs only in the
last decade, little or no literature exists on the TSS problem on hypergraphs.
Zhu et al. [42] deal with the problem of social influence maximization in social
networks. They model the crowd influence as a hyperedge e = (He, v) with
weight 0 ≤ Pe ≤ 1, where He is the head node-set and v is the tail node,
meaning that v will be activated by He with probability Pe only after each
node in He is activated. Their proposed algorithm selects k initially-influenced
seed users in a directed hypergraph G = (V,E, P ), maximizing the expected
number of eventually-influenced users. Another stochastic diffusion process in
which information diffusion can occur through interactions in groups of different
sizes is described by Iacopini et al. [28].
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Our study addresses the social influence diffusion problem on networks char-
acterized by many-to-many relationships, using undirected hypergraphs, which
allow modeling more kinds of real-world use cases, such as social networks like
Facebook or Yelp. Furthermore, in our work, we adopted a linear thresholds
model, investigating different threshold values for nodes and hyperedges. We
also present a deterministic model which is more suitable for real use-cases.

Random Hypergraphs Generation. The foundations of random graph the-
ory lie in a seminal paper by Erdős and Rényi [20]. However, several models have
been developed that make it possible to generate random graphs having desired
topological properties to better mimic the real world. The Barabási-Albert mod-
els rich-get-richer phenomena. On the other hand Watts-Strogat small-world
model is useful for representation of social networks. Random graph structures
have proved to be a useful concept in many disciplines. Still, more complex
mathematical tools are needed to comprehensively and accurately model many
real-world complex networks [5]. The study of random hypergraph models has
its origin from work by Erdős and Bollobas [7], which presents an analogous to
the Erdős-Rényi random graph model. In the following years, researchers focused
on analyzing several properties of this model [1,15,19,23]. Wang et al. [29] first
defined a preferential attachment model for hypergraphs, with vertex arrival
events and constant-size hyperedges. Starting from this model and its limitations,
Avin et al. [5] proposed a preferential attachment model generating hypergraphs
with hyperedges of arbitrary size, allowing cycles and non-uniformity. In partic-
ular, they extended the Chung-Lu preferential attachment model proposed for
graphs [14].

4 Finding the Minimum Target Set on Hypergraphs

In this Section, we discuss three greedy-based heuristics for the DoH problem
(see Sect. 2.2), i.e., finding the minimum influence target set S ⊆ V of a hyper-
graph H = (V,E) able to influence the whole network. A simple greedy strategy
may be selecting - at each iteration - the nodes in descending order by their
degree until the current set can influence the whole network. We refer to this
approach with the label StaticGreedy. It enables us to compute the set S by
exploiting a binary search strategy detailed in Algorithm 1. As described in
Sect. 2.2, we indicate the diffusion process on H with Φ(H,S), and we denote
with IV [S] ⊆ V and IE [S] ⊆ E the end set of influenced nodes and hyperedges,
respectively.

A dynamic approach, referred to as DynamicGreedy, is listed in Algorithm 2.
In this heuristic, all nodes are added to the candidates set U . At each stage, the
node of the maximum degree is added to S and removed from U . At this point,
some nodes and/or hyperedges become infected. The algorithm simulates the
diffusion process, and influenced edges are pruned from the network. The degree
of nodes (δ(v)) is updated accordingly.



Information Diffusion in Complex Networks 43

Algorithm 1. StaticGreedy(H = (V,E), tV , tE)
1: Let σ(V ) be the list of nodes in descending order of their degree d(v).
2: left = 1, right = |V |
3: while left < right do � Binary Search

4: mid =
⌈

left+right
2

⌉

5: IV [S], IE [S] = Φ(H, σmid, tV , tE) � σi denotes the set containing the first i nodes in the
order σ(V );

6: if IV [S]! = V then
7: left = mid
8: else
9: right = mid − 1

10: return S = σleft+1

Algorithm 2. DynamicGreedy(H = (V,E), tV , tE)
1: S = ∅, U = V , E′ = E
2: for u ∈ U do
3: δ(u) = d(u)

4: while U �= ∅ do
5: v = argmaxu∈U δ(v)
6: U = U \ {v}
7: S = S ∪ {v}
8: IV [S], IE [S] = Φ(H, S, tV , tE)
9: if IV [S] = V then
10: break;

11: E′ = E − IE [S]
12: for u ∈ U do
13: δ(u) = |E(u) ∩ E′| � δ(u) denotes the degree of u in H = (V, E′).
14: return S

Given the DynamicGreedy algorithm, we have designed a similar heuristic,
named DynamicGreedy[H]2 , and listed in Algorithm 2. In this heuristic, we
compute the degree of the nodes on the [H]2 of the residual hypergraph Hi of
H. Hi is the hypergraph obtained removing all hyperedges already influenced
by the nodes in S at stage i.

Algorithm 3. DynamicGreedy[H]2(H(V,E), tV , tE)

1: S = ∅, U = V , E′ = E, [H]2 = 2Section(H(V, E))
2: while U �= ∅ do
3: v = argmaxu∈U d[H]2 (v) � d[H]2 (v) denotes the degree of v in [H]2.

4: U = U \ {v}
5: S = S ∪ {v}
6: IV [S], IE [S] = Φ(H, S, tV , tE)
7: if IV [S] = V then
8: break;

9: E′ = E − IE [S]
10: [H]2 = 2Section(H(V, E′))
11: return S

5 Experiments

We present experiments on the three greedy-based heuristics discussed in Sect. 4.
We investigated two classes of experiments; we evaluated the proposed heuristics



44 A. Antelmi et al.

on random networks, and on a real use-case by exploiting the co-occurrences
network of the TV Series Game-of-Thrones.

5.1 Random Networks

We performed three experimental scenarios for the case of random hypergraphs.
In the first and second scenarios, we fixed the node threshold to a random
value between 1 and its degree. In the last scenario, each node threshold varies
proportionally - from 0.1 to 0.9 - to the degree of the node. In particular, in
the first scenario, we run the heuristics on random hypergraphs with no struc-
tural proprieties generated with the random model and hypergraphs generated
with the preferential-attachment rule. We ranged the hypergraph size, using
[100, 200, 400, 800] nodes and hyperedges. In the second scenario, we experi-
mented the heuristics on k-uniform and d-regular random hypergraphs, ranging
the value of k and d in [10, 20, 40, 80]. In the third and last scenario, we generated
a random hypergraph of fixed size (n = m = 500) with all generative models.
We fixed both k = 80 and d = 80, for the k-uniform and d-regular random
hypergraphs, respectively. In all experiments, we set each hyperedge activation
threshold proportional to its degree scaled of factor 0.5 (majority policy). We exe-
cuted each experiment 48 times. We implement all heuristics and experiments in
Julia language, by exploiting the library SimpleHypergraphs.jl [3]. The Julia
code used in the paper is available at the following public GitHub repository1.

Scenario 1—Increasing H Size, Random Thresholds. Figure 2 shows the
results obtained on random hypergraphs - with different sizes - generated by the
random and preferential-attachment models. On the y-axis, we report the size
of the influence target set S; on the x-axis, the hypergraph size (n = m). The

(a) Random model. (b) Preferential-attachment model.

Fig. 2. Experiments on random hypergraphs H = (V,E), generated with the random
and preferential-attachment models, varying the degree of nodes and hyperedges (n =
m). For each node, the threshold is fixed to a random value between 1 and the node
degree. A fixed threshold to 0.5 is used for hyperedges.

1 https://github.com/pszufe/LTMSim.jl.

https://github.com/pszufe/LTMSim.jl
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DynamicGreedy heuristic achieves the best average performance. However, as
shown in Fig. 2a, there is not a significant difference between the three strategies.
On the other hand, the DynamicGreedy heuristic significantly outperforms the
others in the case of the preferential-attachment scenario, as shown in Fig. 2b.

Scenario 2—Uniform and Regular H, Random Thresholds. Figure 3 shows
the results obtained on random hypergraphs generated by the k-uniform and
d-regular models. On the x-axis, we show values for k and d. As shown in
Fig. 3a, the DynamicGreedy strategy achieves better results for random k-
uniform hypergraphs, especially in the case of large values of k. Figure 3b depicts
the results for random d-regular hypergraphs. By increasing the size of d, there
is no significant difference between the heuristics, even if for small values of d,
their results exhibit a more significant variance. It is worth discussing the inter-
esting - even though not so surprising - outcomes revealed by the comparison of
the results obtained in the k-uniform and d-regular experiments. In general, the
k-uniform hypergraphs require a target set of smaller size compared to d-regular
hypergraphs.

(a) K-uniform model. (b) D-regular model.

Fig. 3. Experiments for random k-uniform and d-regular hypergraphs H = (V,E),
with a fixed hypergraph size n = m = 500. For each node, the threshold is fixed to
a random value between 1 and the node degree. A fixed threshold to 0.5 is used for
hyperedges.

Scenario 3—Varying Node Thresholds Proportionally to Their Degree.
Fig. 4 outlines the results obtained on a hypergraph H of fixed size n = m = 500,
generated by each random model. We ranged nodes activation thresholds pro-
portionally to their degree size from 0.1 to 0.9, and we fixed the hyper-
edges activation threshold proportionally to 0.5. The heuristics achieve almost
the same performance in the case of a completely random graph (Fig. 4a)
and a d-regular (Fig. 4d) hypergraph. Results obtained from the preferential-
attachment (Fig. 4b) and k-uniform (Fig. 4c) models are more attractive. In
both experiments, DynamicGreedy[H]2 exhibits the worst results compared
to the other two heuristics. Interestingly, the preferential-attachment case



46 A. Antelmi et al.

(a) Random model. (b) Preferential-attachment model.

(c) 80k-uniform model. (d) 80d-regular model.

Fig. 4. Experiments for random hypergraphs H = (V,E), of size n = m = 500, consid-
ering all random generative models. For each node, the threshold varies proportionally
- from 0.1 to 0.9 - to the degree of the node. A fixed threshold to 0.5 is used for
hyperedges. The value of k and d for the k-uniform and d-regular hypergraphs is set
to 80.

exhibits unusual behavior. When the thresholds are small, the performance of
DynamicGreedy[H]2 is poor, but for larger values, its performance improves and
is very close to the DynamicGreedy heuristic. As a result of using high thresh-
old values, it is hard to trigger an information cascade in the network as, in this
case, the influence diffusion process behaves more like a domination process. In
general, this makes the problem easier to face.

5.2 Game-of-Thrones TV Series Network

Game of Thrones [25] (GoT) is the screen adaption of the series of fantasy novels
A Song of Ice and Fire, written by George R.R. Martin. Created by D. Benioff
and D.B. Weiss for the American television network HBO, the American fan-
tasy drama TV series has attracted a record viewership and has a broad, active,
and international fan base—according to Wikipedia2. This enthusiasm has led
2 https://en.wikipedia.org/wiki/Game of Thrones.

https://en.wikipedia.org/wiki/Game_of_Thrones
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the intricate world of GoT to be a profoundly immersive entertainment expe-
rience [4]. Both the academic community and industries took the opportunity
to study not only complex dynamics within the GoT storyline [6], but also how
viewers engage with the GoT world on social media [2,26,37], or how the novel
itself is a portrait of real-world dynamics [10,34,36].

In this experiment, we exploited GoT season episodes data from the dataset
Game of Thrones Datasets and Visualizations, available at the following GitHub
repository3. Specifically, we used information describing each episode scenes.
They contain - for each scene - start, end, location, and a list of characters
performing in it. Table 1 reports some necessary information about the number
of episodes, scenes, and characters per GoT season. A more detailed description
of the dataset is available on the dataset GitHub repository.

The GoT Network—HGoT. We modeled the GoT network using a hypergraph
Hgot, considering the characters co-occurrences within scenes per each season.
The vertices of Hgot represents the 577 GoT characters. Each hyperedge of Hgot,
therefore, link together all characters that have acted in the same scene together.
The total number of considered scenes was 4165. Figure 5 presents the hyperedges
size distribution of Hgot. It shows a typical power-law distribution, where few
scenes assemble a considerable number of characters. In contrast, many others
focus on few or no characters.

Table 1. Some GoT dataset numbers.

Season Episodes Scenes Characters

1 10 286 125

2 10 468 137

3 10 470 137

4 10 517 152

5 10 508 175

6 10 577 208

7 7 468 75

8 6 871 66

Fig. 5. HGoT hyperedges distribution.

Influencing the GoT Network. We performed two experiments on the GoT
network, aiming at evaluating the performance of the heuristics in minimizing
the number of nodes (or characters) to influence. In Fig. 6, we detail the per-
formance of each heuristic both in the case of random threshold values for each
node (Fig. 6a), and in the case of proportional threshold values (Fig. 6a). The
DynamicGreedy and DynamicGreedy[H]2 provide similar results requiring a

3 Game of Thrones Datasets and Visualizations. https://github.com/jeffreylancaster/
game-of-thrones by Jeffrey Lancaster.

https://github.com/jeffreylancaster/game-of-thrones
https://github.com/jeffreylancaster/game-of-thrones
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(a) Random thresholds. (b) Degree proportional thresholds.

Fig. 6. Experiments for the GoT network using a) random and b) proportional nodes
thresholds values. A fixed threshold to 0.5 is used for hyperedges.

seed set of about 120 nodes on average. The second case shows the same trend,
and they can find reasonable solutions and achieve, in the worst-case (0.9), a
target set of size about 30% of V . On the contrary, StaticGreedy provides a
target set almost equal to V for each threshold.

6 Conclusions and Future Work

This paper faces the social influence diffusion process in complex networks,
exploiting the hypergraph structure. We propose a formulation of the dynamic
influence diffusion on hypergraphs, referred to as the Diffusion on Hypergraphs
(DoH) problem. The so-defined problem on hypergraphs differs from the cor-
respondent on graphs, as it introduces the influence propagation also on the
network connections, i.e., the hyperedges (which denote groups of related nodes).

A challenging problem arising in this domain is to determine a small subset
of nodes S (a target-set) able to spread their influence in the whole network.
We present three greedy-based heuristics to solve this problem on hypergraphs,
considering either the degree of nodes in the hypergraph H or in the two-section
view [H]2 of H, and selecting the nodes according to static or dynamic policies.
We provided an exhaustive investigation of their performance on a bunch of
random networks and a real use-case based on the character co-occurrences in
the GoT TV series. We observed that the DynamicGreedy heuristic achieved the
best results in the case of random networks. In the real use-case of the GoT net-
work, experiments highlighted that dynamically selecting the nodes (according
to their degree in the residual hypergraph) to add to the target set results in a
more efficient solution compared to a static approach. Furthermore, for the GoT
network, we also noticed that the dynamic greedy-based heuristics (Dynamic-
Greedy and DynamicGreedy[H]2) provided a good seed set when choosing an
initial set of size at most 30% of V .
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As future work, we plan to investigate more efficient algorithms and
approaches for the DoH problem. Furthermore, we aim to experiments with
the proposed strategies on real-world datasets, such as a Twitter social network
built upon tweet hashtags or user reviews from the Yelp.com dataset. Results
are encouraging, and further investigation is needed to explore the social influ-
ence diffusion problem on hypergraphs as it might shed light on complex social
phenomena, like fake news sharing in online social networks.
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Abstract. Graph embedding is a transformation of vertices of a graph
into a set of vectors. A good embedding should capture the graph topol-
ogy, vertex-to-vertex relationship, and other relevant information about
the graph, its subgraphs, and vertices. If these objectives are achieved,
an embedding is a meaningful, understandable, and often compressed
representations of a network. Unfortunately, selecting the best embed-
ding is a challenging task and very often requires domain experts.

In the recent paper [1], we propose a “divergence score” that can be
assigned to embeddings to help distinguish good ones from bad ones. This
general framework provides a tool for an unsupervised graph embedding
comparison. The complexity of the original algorithm was quadratic in
the number of vertices. It was enough to show that the proposed method
is feasible and has practical potential (proof-of-concept). In this paper,
we improve the complexity of the original framework and design a scal-
able approximation algorithm. Moreover, we perform some detailed qual-
ity and speed benchmarks.

Keywords: Graph embedding · Geometric Chung-Lu Model

1 Introduction

The study of networks has emerged in diverse disciplines as a means of analyz-
ing complex relational data. Indeed, capturing aspects of a complex system as a
graph can bring physical insights and predictive power [2]. Network Geometry is
a rapidly developing approach in Network Science [3] which further abstracts the
system by modelling the vertices of the network as points in a geometric space.
There are many successful examples of this approach that include latent space
models, and connections between geometry and network clustering and commu-
nity structure. Very often, these geometric embeddings naturally correspond to
physical space, such as when modelling wireless networks or when networks are
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embedded in some geographic space. See [4] for more details about applying
spatial graphs to model complex networks.

Another important application of geometric graphs is in graph embedding.
The idea here is that, for a given network, one tries to embed it in a geometric
space by assigning coordinates to each vertex such that nearby vertices are more
likely to share an edge than those far from each other. In a good embedding most
of the network’s edges can be predicted from the coordinates of the vertices.
Unfortunately, in the absence of a general-purpose representation for graphs,
very often graph embedding requires domain experts to craft features or to use
specialized feature selection algorithms. Having said that, there are some graph
embedding algorithms that work without any prior or additional information
other than graph structure, but these are randomized algorithms that are usually
not very stable; that is, the outcome of two applications of the algorithm is often
drastically different despite the fact that all the algorithm parameters remain
the same.

Consider a graph G = (V,E) on n vertices, and several embeddings of its
vertices in some multidimensional spaces (possibly in different dimensions). The
main question we try to answer in this paper is: how do we evaluate these
embeddings? Which one is the best and should be used? In order to answer these
questions, we propose a general framework that assigns the divergence score to
each embedding which, in an unsupervised learning fashion, distinguishes good
from bad embeddings. In order to benchmark embeddings, we generalize the
well-known Chung-Lu random graph model to incorporate geometry. The model
is interesting on its own and should be useful for many other problems and tools.
In order to test our algorithm, in [1] we experimented with synthetic networks as
well as real-world networks, and various embedding algorithms. In this paper, we
concentrate on the complexity challenges of the original algorithm and propose
a fast approximated algorithm that works very well in practice.

The paper is structured as follows. In Sect. 2, we describe our algorithm for
comparing graph embeddings, and we illustrate our approach on one simple
graph. The Chung-Lu model is generalized in Sect. 3. In the recent paper [1], we
experimented with many datasets and embedding algorithms to show that the
framework works well. In this paper, for illustration purposes, we use some of
these datasets and their corresponding embeddings. However, due to the space
limitation, we do not explain how they are constructed. Interested reader is
directed to [1] for more details. Here, we focus on improvements that were
required to make an algorithm scalable. The results presented in Sect. 4 for a
novel extension of the original algorithm are the main contribution of this paper.
We conclude with a discussion on some future directions in Sect. 5.

2 General Framework

Suppose that we are given a graph G = (V,E) on n vertices with the degree
distribution w = (w1, . . . , wn) and an embedding of its vertices to k-dimensional
space, E : V → R

k. Our goal is to assign a “divergence score” to this embedding.
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The lower the score, the better the embedding is. This will allow us to compare
several embeddings, possibly in different dimensions.

2.1 Intuition Behind the Algorithm

What do we expect from a good embedding? As already mentioned, in a good
embedding, one should be able to predict most of the network’s edges from the
coordinates of the vertices. Formally, it is natural to expect that if two vertices,
say u and v, are far away from each other (that is, dist(E(u), E(v)) is relatively
large), then the chance they are adjacent in the graph is smaller compared to
another pair of vertices that are close to each other. But, of course, in any real-
world network there are some sporadic long edges and some vertices that are
close to each other are not adjacent. In other words, we do not want to pay
attention to local properties such as existence of particular edges (microscopic
point of view) but rather evaluate some global properties such as density of some
relatively large subsets of vertices (macroscopic point of view). So, how can we
evaluate if the global structure is consistent with our expectations and intuition
without considering individual pairs?

The approach we take is as follows. We identify dense parts of the graph
by running some good graph clustering algorithm. As was illustrated in [1],
the choice of graph clustering algorithm is flexible so long as the vertex set is
partitioned into clusters such that there are substantially more edges captured
within clusters than between them. The clusters that are found will provide the
desired macroscopic point of view of the graph. Note that for this task we only
use information about the graph G; in particular, we do not use the embedding
E at all. We then consider the graph G from a different point of view. Using the
Geometric Chung-Lu (GCL) model that we introduce in this paper especially
for this purpose, based on the degree distribution w and the embedding E , we
compute the expected number of edges within each cluster found earlier, as
well as between them. The embedding is scored by computing a divergence score
between these expected number of edges, and the actual number of edges present
in G. Our approach falls into a general and commonly used method of statistical
inference, in our case applied to the Geometric Chung-Lu model. With these
methods, one fits a generative model of a network to observed network data,
and the parameters of the fit tell us about the structure of the network in much
the same way that fitting a straight line through a set of data points tells us
about their slope.

Finally, let us make a comment that not all embeddings proposed in the
literature try to capture edges. Some algorithms indeed try to preserve edges
whereas others care about some other structural properties; for example, they
might try to map together nodes with similar functions. Because of the applica-
tions we personally need to deal with require preserving (global) edge densities,
our framework favours embeddings that do a good job from that perspective.
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2.2 Algorithm

Given a graph G = (V,E), its degree distribution w on V , and an embedding
E : V → R

k of its vertices in k-dimensional space, we perform the five steps
detailed below to obtain ΔE(G), a divergence score for the embedding. We can
apply this algorithm to compare several embeddings E1, . . . , Em, and select the
best one via arg mini∈[m]ΔEi

(G) (here and later in the paper, we use [n] to denote
the set of natural numbers less than or equal to n; that is, [n] := {1, . . . , n}).
Note that our algorithm is a general framework and some parts have flexibility.
We clearly identify these below.

Step 1: Run some stable graph clustering algorithm on G to obtain a partition
C of the vertex set V into � communities C1, . . . , C�.

Note: In our implementation, we used the ensemble clustering algorithm for
graphs (ECG) which is based on the Louvain algorithm and the concept of
consensus clustering [5], and is shown to have good stability.

Note: In some applications, the desired partition can be provided together with
a graph (for example, when nodes contain some natural labelling and so some
form of a ground-truth is provided).

Step 2: For each i ∈ [�], let ci be the proportion of edges of G with both
endpoints in Ci. Similarly, for each 1 ≤ i < j ≤ �, let ci,j be the proportion of
edges of G with one endpoint in Ci and the other one in Cj . Let

c̄ = (c1,2, . . . , c1,�, c2,3, . . . , c2,�, . . . , c�−1,�) and ĉ = (c1, . . . , c�) (1)

be two vectors with a total of
(

�
2

)
+ � =

(
�+1
2

)
entries which together sum to

one. These graph vectors characterize the partition C from the perspective of
the graph G.

Note: The embedding E does not affect the vectors c̄ and ĉ. They are calculated
purely based on G and the partition C.

Step 3: For a given parameter α ∈ R+ and the same vertex partition C, we
consider G(w, E , α), the GCL Model presented in Sect. 3. For each 1 ≤ i < j ≤ �,
we compute bi,j , the expected proportion of edges of G(w, E , α) with one endpoint
in Ci and the other one in Cj . Similarly, for each i ∈ [�], let bi be the expected
proportion of edges within Ci. That gives us another two vectors

b̄E(α) = (b1,2, . . . , b1,�, b2,3, . . . , b2,�, . . . , b�−1,�)

b̂E(α) = (b1, . . . , b�) (2)

with a total of
(
�+1
2

)
entries which together sum to one. These model vectors

characterize the partition C from the perspective of the embedding E .
Note: The structure of graph G does not affect the vectors b̄E(α) and b̂E(α);
only its degree distribution w and embedding E are used.

Note: We used the Geometric Chung-Lu Model but the framework is flexible.
If, for any reason (perhaps there are some restrictions for the maximum edge
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length; such restrictions are often present in, for example, wireless networks)
it makes more sense to use some other model of random geometric graphs, it
can be easily implemented here. If the model is too complicated and computing
the expected number of edges between two parts is challenging, then it can be
approximated easily via simulations.

Step 4: Compute the distances between the two pairs of vectors, that is, between
c̄ and b̄E(α), and between ĉ and b̂E(α), in order to measure how well the model
G(w, E , α) fits the graph G. Let Δα be a weighted average of the two distances.

Note: We used the well-known and widely used Jensen–Shannon divergence
(JSD) to measure the dissimilarity between two probability distributions. The
JSD can be viewed as a smoothed version of the Kullback-Leibler divergence. In
our implementation, we used simple average, that is,

Δα =
1
2

·
(
JSD(c̄, b̄(α)) + JSD(ĉ, b̂(α))

)
. (3)

We decided to independently treat internal and external edges to compensate
the fact that there are

(
�
2

)
coefficients related to external densities whereas only

� ones related to internal ones. Depending on the application at hand, other
weighted averages can be used if more weight needs to be put on internal or
external edges.

Step 5: Select α̂ = arg minαΔα, and define the divergence score for embedding
E on G as: ΔE(G) = Δα̂.

Note: The parameter α is used to define a distance in the embedding space, as
we detail in Sect. 3. In our implementation we simply checked values of α on
a grid between 0 and 10. There are clearly better ways to search the space of
possible values of α but, since the algorithm worked very fast on our graphs, we
did not optimize this part.

In order to compare several embeddings for the same graph G, we repeat
steps 3–5 above and compare the divergence scores (the lower the score, the
better). Let us stress again that steps 1–2 are done only once, so we use the
same partition of the graph into � communities for each embedding. The code
can be accessed at the following GitHub repository1.

2.3 Illustration

We illustrate our framework on the well-known Zachary’s Karate Club graph [6].
The parameter α ≥ 0 in the GCL model controls the distance used in the embed-
ding space. With α = 0, the embedding is not taken into account and the classic
Chung-Lu model is obtained, so only the degree distribution is accounted for. As
α gets larger, long edges in the embedding space are penalized more severely. In
the left plot of Fig. 1, we show the impact of varying α on the two components
of Eq. (3) which respectively consider pairs of vertices that are internal (to some

1 https://github.com/ftheberge/Comparing Graph Embeddings.

https://github.com/ftheberge/Comparing_Graph_Embeddings
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cluster) or external (between clusters). Recall that the divergence score for a
given embedding is obtained by choosing α̂ = arg minαΔα. In the right plot of
Fig. 1, we used UMAP (Uniform Manifold Approximation and Projection) [7]
to show a 2-dimensional projection of the best embedding as obtained by our
framework (with node2vec, 64 dimensions and parameters p = 0.5 and q = 1.0).
The vertices are coloured according to the two known communities.

Fig. 1. Zachary’s Karate Club Graph. We illustrate the divergence score as a function
of α (left) for the best embedding found by our framework (right). The colors represent
the two ground-truth communities.

We can use the GCL model to generate edges, as with the standard Chung-
Lu model. In Fig. 2, we generate 3 such graphs using the best embedding shown
in Fig. 1. The left plot uses α = 0, which ignores the embedding and clearly
generates too many long edges between the clusters. The center plot uses the
optimal value (α̂ = 2.75 in this case), generating a graph that resembles the true
one. The rightmost plot uses the larger value α = 7, which penalizes long edges
more severely, yielding a graph with less edges between the two communities.

Fig. 2. Zachary’s Karate Club Graph. We generate random edges following the Geo-
metric Chung-Lu Model with the same expected degree distribution and with the
highest scoring embedding. We look at three cases: α = 0 which ignores the embedding
(left), α = 7 which penalizes long edges too severely (right), and the best α̂ = 2.75
(center).
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3 Geometric Chung-Lu Model

It is known that classical Erdős-Rényi (binomial) random graphs G(n, p) can
be generalized to the Chung-Lu model G(w), the random graph with a given
expected degree distribution w = (w1, . . . , wn). It is a classic and well-known
model but unfamiliar reader is directed to, for example, [1] or [8]. Since our goal
is to compare different embeddings of the same graph, we will generalize the
Chung-Lu model further, including geometry coming from the graph embedding.
In such models, that are called spatial models or geometric graphs, vertices are
embedded in some metric space and link formation is influenced by the metric
distance between vertices. The main principle of spatial models is that vertices
that are metrically close are more likely to link to each other. This is a formal
expression of the intuitive notion we have about virtual networks: Web links are
likely to point to similar pages, people that share similar interests are more likely
to become friends on Facebook, and scientific papers mostly refer to papers on
similar topics.

In the Geometric Chung-Lu model we are not only given the expected degree
distribution of a graph G

w = (w1, . . . , wn) = (degG(v1), . . . ,degG(vn))

but also an embedding of vertices of G in some k-dimensional space, function
E : V → R

k. In particular, for each pair of vertices, vi, vj , we know the distance
between them:

di,j = dist(E(vi), E(vj)).

It is desired that the probability that vertices vi and vj are adjacent to be
a function of di,j , that is, to be proportional to g(di,j) for some function g.
The function g should be a decreasing function as long edges should occur less
frequently than short ones. There are many natural choices such as g(d) = d−β

for some β ∈ [0,∞) or g(d) = exp(−γd) for some γ ∈ [0,∞). We use the
following, normalized function g : [0,∞) → [0, 1]: for a fixed α ∈ [0,∞), let

g(d) :=
(

1 − d − dmin

dmax − dmin

)α

,

where

dmin = min{dist(E(v), E(w)) : v, w ∈ V, v �= w}
dmax = max{dist(E(v), E(w)) : v, w ∈ V }

are the minimum, and respectively the maximum, distance between vertices in
embedding E . One convenient and desired property of this function is that it
is invariant with respect to an affine transformation of the distance measure.
Clearly, g(dmin) = 1 and g(dmax) = 0; in the computations, we can use clipping
to force g(dmin) < 1 and/or g(dmax) > 0 if required. Let us also note that if
α = 0 (that is, g(d) = 1 for any d ∈ [0,∞) with g(dmax) = 00 = 1), then we
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recover the original Chung-Lu model as the pairwise distances are neglected.
Moreover, the larger parameter α is, the larger the aversion to long edges is.
Since this family of functions (for various values of the parameter α) captures a
wide spectrum of behaviours, it should be enough to concentrate on this choice
but one can easily experiment with other functions. So, for now we may assume
that the only parameter of the model is α ∈ [0,∞).

The Geometric Chung-Lu (GCL) model is the random graph G(w, E , α) on
the vertex set V = {v1, . . . , vn} in which each pair of vertices vi, vj , indepen-
dently of other pairs, forms an edge with probability pi,j , where

pi,j = xixjg(di,j)

for some carefully tuned weights xi ∈ R+. The weights are selected such that
the expected degree of vi is wi; that is, for all i ∈ [n]

wi =
∑

j∈[n],j �=i

pi,j = xi

∑

j∈[n],j �=i

xjg(di,j).

Additionally, we set pi,i = 0 for i ∈ [n]. Let us mention one technical assumption.
It might happen that pi,j is greater than one and so it should really be regarded
as the expected number of edges between vi and vj ; for example, as suggested
in the book of Newman [2], one can introduce a Poisson-distributed number of
edges with mean pi,j between each pair of vertices vi, vj .

In [1], we proved that there exists the unique selection of weights, provided
that the maximum degree of G is less than the sum of degrees of all other vertices.
Since each connected component of G can be embedded independently, we may
assume that G is connected and so the minimum degree of G is at least 1. As
a result, this very mild condition is trivially satisfied unless G is a star on n
vertices.

It is not clear how to find weights explicitly but they can be easily (and
efficiently) approximated numerically to any desired precision, as is discussed in
detail in [1].

4 Complexity—Scalable Algorithm

The original algorithm proposed in [1] has a running time that is quadratic as a
function of the number of vertices. It was enough to experiment with graphs on
a few thousands of vertices to show that the proposed method is feasible and has
practical potential (the so-called proof-of-concept). In this section, we improve
the complexity and design a scalable algorithm that efficiently evaluates graph
embeddings even on millions of vertices.

The main bottleneck of the original algorithm is the process of tuning n
weights xi ∈ R+ (i ∈ [n]) in the Geometric Chung-Lu model (Step 3 of the
algorithm). This part requires Θ(n2) steps and so it is not feasible for large
graphs. The other components are much faster with the graph clustering algo-
rithm (Step 1 of the algorithm) being the next computationally intensive part,
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typically requiring O(n ln n) steps. We modify our algorithm slightly to obtain a
scalable approximation algorithm that can be efficiently run on large networks.
Its running time is O(n ln n) which is practical. Indeed, let us point out that
graph embedding algorithms have their own complexity and so our benchmark
framework is certainly not a bottleneck of the whole process anymore.

Recall that in Part 3 of the algorithm, for a given parameter α ∈ R+ and
vertex partition C, we need to compute the expected proportion of edges of
G(w, E , α) that are present within partition parts and between them, vectors
b̄E(α) and b̂E(α) defined in (2). The main idea behind our approximation algo-
rithm is quite simple. Our goal is to group together vertices from the same part
of C that are close to each other in the embedded space. Once such refinement
of partition C is generated, we simply replace each group by the corresponding
auxiliary vertex that is placed in the (appropriately weighted) center of mass
of the group it is associated with. Such auxiliary vertices will be called land-
marks. Finally, vectors b̄E(α) and b̂E(α) will be approximated by vectors āE(α)
and âE(α) in the corresponding auxiliary graph of landmarks. Since we aim for
a fast algorithm, the numer of landmarks should be close to n′ =

√
n so that the

process of tuning weights can be done in O(n′2) = O(n) time.
The process of selecting landmarks is discussed in the next subsection but

let us mention about one more modification that needs to be done. Our initial
Geometric Chung-Lu model produces simple graphs. On the other hand, after
merging vertices from one group into the corresponding landmark, we need to
control the expected number of edges between these vertices. Hence, we need to
generalize our model to include loops which we discuss in the following subsection
before we move to the quality and speed comparison.

Generating Landmarks

We start with a partition C of the vertex set V into � communities C1, . . . , C�.
The number of communities is typically relatively small. In what we write below,
our mild assumption is that � <

√
n; otherwise, one may simply use the original

algorithm or increase the number of landmarks (alternatively, one may insist
that the number of initial communities produced by graph clustering algorithm
is small). For each part Ci (i ∈ [�]) we compute the weighted center of mass
pi and the weighted sum of squared errors (SSE) ei, that is,

pi :=

∑
j∈Ci

wj E(vj)
∑

j∈Ci
wj

and ei =
∑

j∈Ci

wj dist
(
pi, E(vj)

)2
.

(Recall that wj is the degree of vertex vj and E(vj) is its position in the embedded
space Rk.) The weighted sum of squared errors is a natural measure of variation
within a cluster.

We will refine the partition C by repeatedly splitting some parts of it with the
goal to reach precisely

√
n parts. However, before we explain which parts will be

split, let us concentrate on splitting a given part Ci. The goal is to partition Ci

with SSE equal to ei into two parts with the corresponding SSEs equal to e1i and
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e2i in such a way that max{e1i , e
2
i } is as small as possible. Finding the best parti-

tion is difficult and computationally expensive. However, this can be efficiently
well approximated by finding the first principal component in the well-known
weighted Principal Component Analysis (PCA). This transformation is
defined in such a way that the first principal component has the largest possible
weighted variance (that is, accounts for as much of the weighted variability as
possible). After projecting all the points from Ci onto this component, we get
a total order of these points and one can quickly check which of the natural
|Ci| − 1 partitions minimizes max{e1i , e

2
i }. The original part Ci is then replaced

with two parts, C1
i and C2

i , with the corresponding centers of mass and SSEs.
See Fig. 3 for an illustration of this process.

Splitting Ci into two parts so as to minimize max{e1i , e
2
i } can be achieved

in O(|Ci|) steps using the bisection search over a projection of data onto the
first principal component. Indeed, this is doable because of the following: (1)
finding the first principal component and calculating the projection onto it has
linear cost, (2) finding the median over some range has a linear cost, (3) when a
splitting hyperplane is moved, and as a consequence points between C1

i and C2
i

are moved, then e1i and e2i can be updated using an online algorithm that also
has a linear cost, and (4) the number of potentially moved points in the bisection
search is halved in each step. (See split cluster rss function in the reference
implementation. In the code we make a significant use of the fact, that the Julia
language provides an efficient implementation of views into arrays which allowed
us to keep the number of required memory allocations made in the code small.)
As a result, since we will be recursively applying splitting until reaching

√
n

parts, similarly as in the case of well-known Quicksort sorting algorithm, the
expected total running time of this part of the algorithm is O(n ln n).

C1
i

C2
i

Fig. 3. Splitting Ci using SSE and the first principal component. Dots represent orig-
inal points, thick black line represents the first principal component, and blue line
represents the hyperplane orthogonal to the first principal component. It provides the
desired split of Ci into C1

i and C2
i .

Now, we are ready to describe the strategy for selecting parts for splitting.
First of all, let us mention that it is not desired to replace the whole original
part by one landmark as it may introduce large error. Indeed, the intuition is
that replacing many vertices with a landmark might affect the expected number
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of edges between them but the expected number of edges between vertices that
belong to different landmarks (that are often far away from each other) is not
affected too much. As a result, in our implementation we insist on splitting
each original part into s smaller parts even if the original SSE is small. (s is a
parameter of the model that we will discuss soon.) After this initial phase we
start splitting parts in a greedy fashion, each time selecting a part that has the
largest SSE. The process stops once n′ =

√
n parts are generated.

Let us now briefly discuss the influence of the parameter s. In a typical
scenario, even if s is small, each cluster is split many times in the second part of
the process where we greedily split clusters with large SSE. In such situations, the
value of the parameter s actually does not matter and this is what we observed
in our experiments. However, it is theoretically possible that in some rare cases
this natural splitting might not happen. As a result, in the implementation we
provided, we allow the user to tune parameter s to cover such rare instances.

Now, let us come back to the algorithm. As already mentioned, each part Ci is
replaced by its landmark ui. The position of landmark ui in the embedded space
R

k coincides with the weighted center of mass of its part, that is, E(ui) = pi.
Finally, the expected degree of landmark ui (that we denote as w′

i in order
to distinguish it from wi, the expected degree of vertex wi) is the sum of the
expected degrees of the associated vertices in the original model, that is, w′

i :=∑
j∈Ci

wj .

Note: We experimented with a number of different strategies for splitting, other
than minimizing the maximum SSE, such as balancing sizes of all clusters and
balancing diameters of all clusters. Once the objective function is fixed, the algo-
rithm may greedily select the worst cluster (from a given perspective) and then
split it appropriately (again, to minimize the objective function). The results
were comparable across all strategies.

Including Loops in the Geometric Chung-Lu Model

In order to approximate vectors b̄E(α) and b̂E(α) from the original model on n
vertices, we will use the auxiliary model on n′ =

√
n landmarks. Each landmark

ui is located at pi ∈ R
k (the weighted center of mass of the associated vertices)

and has expected degree wi (the sum of expected degrees of the associated
vertices). One can find the pairwise distances between landmarks, and apply
the original model G(w, E , α) for landmarks to compute the expected number of
edges between and within parts, vectors āE(α) and âE(α), as an approximation of
the original vectors b̄E(α) and b̂E(α). It is expected that āE(α) approximates well
b̄E(α) but, since many vertices (

√
n on average) are reduced to one landmark,

the number of internal edges might be affected, that is, âE(α) might not be very
close to b̂E(α).

We partially address this issue by insisting that each original part is split
into a number of landmarks. In order to achieve even better approximation
we introduce loops in our Geometric Chung-Lu Model. This generalization is
straightforward. The Geometric Chung-Lu (GCL) model is the random graph
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H(w, E , α) on the set of landmarks V = {u1, . . . , un′} in which each pair of
landmarks ui, uj , independently of other pairs, forms an edge with probability
pi,j , where

pi,j = xixjg(di,j)

for some carefully tuned weights xi ∈ R+. Additionally, for i ∈ [n′], the proba-
bility of creating a self loop around landmark ui is equal to

pi,i = x2
i g(di,i), where di,i =

√
ei∑

j∈Ci
wj

.

Note that the “distance” di,i from landmark ui to itself is an approximation of
the unobserved weighted average distance da,b over all pairs of vertices a and b
associated with ui. The weights are selected such that the expected degree of
landmark ui is w′

i; that is, for all i ∈ [n′]

w′
i =

∑

j∈[n′]

pi,j = xi

∑

j∈[n′]

xjg(di,j).

Since it is an extension to [1], we revisited the proof of the uniqueness of weights
in this more general setting (the proof is omitted here due to page limit). We
showed that the weights exist and are unique if and only if the following condition
is satisfied for more than two landmarks (for completeness, in the full version
of the paper we also derived the conditions for the graph on n′ = 2 landmarks,
which are slightly different):

dt,t > 0 ∨ 2w′
t <

∑

j∈n′
w′

j ,

where t = arg maxj∈n′ w′
j . Finally, let us mention that, as in the case of the

original model, standard root-finding algorithms can be used to efficiently find
the desired weights.

Quality and Speed Comparison

We start our experiments with the College Football graph and testing the same
set of embeddings as in [1]. This well-studied graph with known community
structure represents the schedule of United States football games between Divi-
sion IA colleges during the regular season in Fall 2000 [9]. The data consists of
115 teams (vertices) and 613 games (edges). For each embedding, we compared
the original divergence score computed for n = 115 vertices with the approx-
imated counterpart computed for n′ = 36 landmarks. (The value of 36 was
selected rather arbitrarily; the graph is tiny so any number of landmarks seems
reasonable for this illustration purpose.) Each of the 12 clusters were forced to
split once before greedy strategy was applied. The graph presented in Fig. 4
shows very high correlation between the two measures which indicates that the
approximation algorithm preforms well, as expected.
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Fig. 4. College Football Graph exhibits high correlation between the original diver-
gence score and its approximated counterpart.

We compared the two sets of divergence scores for all embeddings, the first set
based on the original algorithm and the second one based on the approximated
version. The two sets of scores (as well as their rankings) are highly correlated
as indicated by the following two measures of similarity: Pearson’s correlation of
0.941 for the divergence scores and Kendall-tau of 0.802 for the rankings. Having
said that, the rankings that we obtained are not identical. In Fig. 5, we show
the best and worst scoring embeddings for the approximated divergence score
based on landmarks. The conclusion is the same as for the original algorithm:
embeddings that score high are of good quality wheres the ones that score low
are of poor quality.

Fig. 5. The College Football Graph. We show the best (left) and the worst (right)
scoring embedding based on the approximated algorithm with landmarks.

Our next experiment is with Email-Eu-core Network on 986 vertices. This
network was generated using email data from a large European research institu-
tion and is available as one of the SNAP Datasets [10]. As before, we tested all
available embeddings. Clearly, our approximation algorithm provides a trade-off
between the speed and the accuracy of the obtained approximation—the more
landmarks we use, the better approximation we get but the algorithm gets slower.
The goal of this experiment is to investigate how sensitive the approximation
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is as a function of the number landmarks. We compare the Pearson’s correla-
tion between the two sets of divergence scores of all embeddings, the first one
computed for the original graph on n = 986 vertices, and the second one com-
puted for the approximated variant on n′ landmarks with n′ ≥ 25—see Fig. 6.
As expected, there is a high correlation between the two sets with a satisfying
outcomes already around

√
n landmarks.

Fig. 6. Pearson’s correlation between the divergence scores computed for the original
graph on n = 986 vertices and the ones computed for the approximated variant on
n′ ≥ 25 landmarks.

Fig. 7. Comparing quality and speed for ABCD graphs. We compare the approximated
divergence score and the time required to compute it as a function of the number of
landmarks.

In order to see how the approximated algorithm behaves on large graphs,
our last experiments are concerned with relatively large instances of ABCD
graphs, on n = 10,000 vertices and on n = 100,000 vertices. The Artificial
Benchmark for Community Detection (ABCD graph) [11] is a random graph
model with community structure and power-law distribution for both degrees
and community sizes (a new model that is an attempt to solve some of the
problems of the standard method for generating artificial networks, the LFR
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graph generator [12]). Whereas the smaller graph can be easily tested by the
original algorithm, dealing with the larger graph seems impractical (we only
tested it for n′ ≤ 10,000 < n = 100,000 landmarks). On the other hand, the
approximated algorithm easily deals with graphs of that size.

For each graph, we tested the embedding obtained by 8-dim node2vec algo-
rithm (time required to generate embedding for the small graph was roughly 32 s
wheres the large graph required 6 min and 20 s to be processed). The results are
presented in Fig. 7. For each number of landmarks n′, we plot the approximated
divergence score as well as the time required to compute it on 2.2 GHz Intel
Xeon E5 processor. We clearly see the trade-off between the accuracy and the
speed of the algorithm with the “sweet spot” around n′ ≈ √

n where the approx-
imated divergence score is very close to the original divergence score whereas the
algorithm is still extremely fast. In order to reach that conclusion, we tested the
algorithm for the values of n′ up to n′ = 104 = (105)4/5 = n4/5, much larger
than n′ =

√
n. As a result, in practice, one can easily deal with graphs or order

n = (104)2 = 108.

5 Future Directions

In this paper, our aim was to introduce a scalable general framework for evalu-
ating embeddings. This exploratory research showed that our divergence score is
a very promising distinguisher. The next natural step is to do extensive experi-
ments of various embedding algorithms on large real-world datasets in order to
evaluate and compare them.

A further extension of this work could be made to weighted graphs or hyper-
graphs that are generalizations of graphs in which a single (hyper)edge can
connect any number of vertices. Hypergraphs are often more suitable and useful
for representing and modelling many important networks and processes. We are
interested in generalizing classic notions to hypergraphs, such as clustering via
modularity [13], as well as developing new algorithms to apply to them [14].
Hence, a natural line of development of the proposed embedding comparison
framework is to generalize it to allow for evaluation of embeddings of hyper-
graphs.

As a side effect of our research on evaluating graph embeddings, we have
introduced the Geometric Chung-Lu model that is interesting on its own right
and potentially applicable in other problems. As it is not the main focus of this
paper, we did not analyze its graph-theoretic properties in detail. It remains as
a subject for further research.
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11. Kamiński, B., Pra�lat, P., Théberge, F.: Artificial benchmark for community detec-
tion (ABCD) – fast random graph model with community structure, pre-print
arXiv:2002.00843 (2020)

12. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)
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1 Institute of Informatics, Vilnius University,
Naugarduko 24, 03225 Vilnius, Lithuania

2 Department of Mathematics and Systems Analysis, School of Science,
Aalto University, Otakaari 1, 02015 Espoo, Finland

lasse.leskela@aalto.fi

Abstract. A probabilistic generative network model with n nodes and
m overlapping layers is obtained as a superposition of m mutually inde-
pendent Bernoulli random graphs of varying size and strength. When n
and m are large and of the same order of magnitude, the model admits a
sparse limiting regime with a tunable power-law degree distribution and
nonvanishing clustering coefficient. This article presents an asymptotic
formula for the joint degree distribution of adjacent nodes. This yields a
simple analytical formula for the model assortativity, and opens up ways
to analyze rank correlation coefficients suitable for random graphs with
heavy-tailed degree distributions.

Keywords: Joint degree distribution · Bidegree distribution ·
Degree–degree distribution · Empirical degree distribution · Degree
correlation · Transitivity · Statistical network model · Erdős–Rényi
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1 Introduction

Overview and Objectives. Questions in technology, life sciences, and economics
are often related to large systems of nodes connected via pairwise interac-
tions which involve uncertainty due to unpredictable node behavior and missing
data. Such uncertainties have been mathematically modeled and analyzed using
random graph models of various complexity, including classical independently
linked and uniform random graphs [17], stochastic block models and inhomoge-
neous Bernoulli graphs [1,12,20], random graphs with given degree distributions
[13,32], and generative models involving preferential attachment and rewiring
mechanisms [3,35]. While succeeding to obtain a good fit to degree distributions,
most earlier models fail to capture second-order effects related to clustering and
transitivity. Random intersection graphs [6,7,15,18,23,25], spatial preferential
attachment models [2,21], and hyperbolic random geometric graphs [11,26,27]
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have been successful in extending the analysis to sparse graph models with tun-
able global clustering coefficient. Despite remarkable methodological advances
obtained in the aforementioned articles and related literature, most models of
sparse random graphs still appear somewhat rigid in what comes to modeling
finer second-order properties, such as correlations of the degrees of adjacent
nodes [34] and degree-dependent clustering coefficients [5,42].

Main Contributions. This article discusses a mathematical network model
recently introduced in [10] which is motivated by the structure of social net-
works composed of a large number of overlapping communities [14]. The model
is generated as a superposition of mutually independent Bernoulli random graphs
G1, . . . , Gm of variable size (number of nodes) and strength (link probability),
which can be interpreted as layers or communities. The node sets of the layers
are random subsets of the underlying population of n nodes. A key feature of the
model is that the layer sizes and layer strengths are assumed to be correlated,
which allows for example to model social networks with tunable frequencies of
strong small communities and weak large communities. The main contribution
of this article is a rigorous mathematical analysis (Theorem 1) of the bidegree
distribution (joint degree distribution of adjacent nodes) of the model in a lim-
iting regime where the number of nodes n and the number of layers m are large
and of the same order of magnitude. The bidegree distribution yields compact
mathematical formulas for model assortativity (Theorem 2) and rank correla-
tions (Theorem 3) of the adjacent node degrees. The latter theorem is suitable for
modeling dependencies in heavy-tailed models with degrees having unbounded
second moments.

Related Work. Degree distributions, clustering, and percolation analysis of the
model is presented in [10]. An analogous model where the node sets of the layers
are deterministic has been studied in [44] in the context of overlapping com-
munity detection. Clustering coefficients and small subgraph frequencies for a
special case with constant layer strengths have been analyzed in [19,23,24,36].
In the special case with unit layer strengths, the layers become cliques and the
model reduces to the passive random intersection graph introduced in [18], with
degree and clustering properties analyzed in [7,30]. A network model with similar
features has been recently presented in [38]. Assortativity and bidegree distri-
butions have earlier been analyzed in the context of random intersection graph
models [8,9], inhomogeneous Bernoulli graphs and their extensions [12,31,37],
preferential attachment models [28,39], and configuration models in [39–41].
Extremal properties of bidegree correlations in general graphs have been reported
in [16,39].

1.1 Notations

Sets and Numbers. The cardinality of a set A is denoted |A|. Ordered pairs
are denoted by (i, j), and unordered pairs by ij = {i, j}. Here 1(A) is
defined to be one when statement A is true, and zero otherwise. We denote
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[n] = {1, . . . , n} and Z+ = {0, 1, 2, . . . }. The falling factorial is denoted
(x)r = x(x − 1) · · · (x − r + 1).

Graphs. A graph is a pair G = (V (G), E(G)) where V (G) is a set of elements
called nodes, and E(G) is a collection of unordered node pairs. Nodes i and
j are called adjacent if ij ∈ E(G). The set of nodes adjacent to i is denoted
NG(i) = {j ∈ V (G) : ij ∈ E(G)}. The degree of i is denoted degG(i) = |NG(i)|.

Probability. For probability measures on countable spaces we denote f(x) =
f({x}) and

∫
φ df =

∑
φ(x)f(x). The Dirac measure at x is denoted by δx.

The binomial distribution is denoted by Bin(x, y)(s) =
(
x
s

)
(1 − y)x−sys, and the

Poisson distribution by Poi(λ)(s) = e−λ λs

s! . The product and the convolution of
probability measures f and g are denoted by f ⊗ g and f ∗ g, respectively.

2 Assortativity and Bidegree Distributions

2.1 Empirical Quantities

Let G be a graph with a finite node set and a nonempty link set. Here G is viewed
as a nonrandom graph or a fixed sample of a random graph. The (empirical)
degree distribution of G is a probability measure on Z+ defined by

fG(s) =
1

|V (G)|
∑

i∈V (G)

1
(
degG(i) = s

)
,

and represents the probability distribution of random variable degG(I) where
I is a random variable obtained by sampling a node uniformly at random. The
(empirical) bidegree distribution of G with a nonempty link set is a probability
measure on Z

2
+ defined by

f
(2)
G (s, t) =

1
2|E(G)|

∑

(i,j):{i,j}∈E(G)

1
(
degG(i) = s, degG(j) = t

)
.

This is the joint probability distribution of the pair (degG(I),degG(J)) obtained
by sampling (I, J) uniformly at random from the set of all ordered node pairs
adjacent in G. Both marginals of the bidegree distribution are equal to the size-
biased degree distribution f∗

G(s) = sfG(s)∑
t tfG(t) . The Pearson correlation coefficient

of the bidegree distribution is called the (empirical) assortativity of graph G and
can be written as

CorG(degG(I),degG(J)) =

∑
s,t stf

(2)
G (s, t) − (

∑
s sf∗

G(s))2
∑

s s2f∗
G(s) − (

∑
s sf∗

G(s))2
.
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2.2 Model Quantities

Let G be a random graph such that V (G) is nonrandom and finite, and E(G) is
nonempty with positive probability. The model degree distribution of G is defined
by

f(s) = P
(
degG(I) = s

)
, (1)

where I is a random node in V (G), selected uniformly at random and indepen-
dently of E(G). The model bidegree distribution is defined by

f2(s, t) = P

(
degG(I) = s, degG(J) = t

∣
∣ IJ ∈ E(G)

)
, (2)

where (I, J) is an ordered pair of distinct nodes of V (G), selected uniformly
at random and independently of E(G). By simple computations one may verify
that f2(t, s) = f2(s, t), and that both marginals of the model bidegree distribu-
tion are equal to the size-biased model degree distribution f∗(s) = sf(s)∑

t tf(t) . The
Pearson correlation coefficient of the model bidegree distribution is called the
model assortativity, and can be written as

Cor∗(DI ,DJ ) =
E

∗DIDJ − (E∗DI)
2

E∗D2
I − (E∗DI)

2 , (3)

where DI = degG(I) and DJ = degG(J) for (I, J) as above, and E
∗ refers to

conditional expectation given {IJ ∈ E(G)}.
The random graph model is called exchangeable if its law is invariant to node

permutations. In this case the model degree distribution can be written as in (1)
but with I replaced by an arbitrary node i. Similarly, formulas (2)–(3) remain
valid with (I, J) replaced by an arbitrary pair (i, j) of distinct nodes.

3 Random Graph Superposition Model

A multilayer network model with n nodes and m layers is defined by a list
(
(Gn,1,Xn,1, Yn,1), . . . , (Gn,m,Xn,m, Yn,m)

)

of mutually independent random variables with values in Gn ×{0, . . . , n}× [0, 1],
where Gn is the set of undirected graphs with node set contained in {1, . . . , n}.
We assume that conditionally on (Xn,k, Yn,k), the probability distribution of
V (Gn,k) is uniform on the subsets of {1, . . . , n} of size Xn,k, and conditionally
on (V (Gn,k),Xn,k, Yn,k), the probability distribution of E(Gn,k) is such that
each node pair of V (Gn,k) is linked with probability Yn,k, independently of other
node pairs. The variables Xn,k, Yn,k are called the size and strength of layer k,
respectively. Aggregation of the layers produces an overlay random graph Gn

defined by
V (Gn) = {1, . . . , n}
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and
E(Gn) = E(Gn,1) ∪ · · · ∪ E(Gn,m).

We obtain a rich class of generative probabilistic models when we assume that
the layer types (Xn,1, Yn,1), . . . , (Xn,m, Yn,m) are mutually independent and dis-
tributed according to a probability measure P (n) on {0, . . . , n} × [0, 1].

A large network is modeled as a sequence of network models of the above
type indexed by the number of nodes n = 1, 2, . . . so that the number of layers
m = mn tends to infinity as n → ∞. To obtain tractable limiting formulas with
rich expressive power, we shall focus on a sparse parameter regime where there
exists a probability measure P on {0, 1, . . . }×[0, 1] which approximates the layer
type distribution according to P (n) → P weakly, together with the convergence
of suitable cross moments P

(n)
rs → Prs, where we use the shorthand notations

P (n)
rs = E

(
(Xn,k)r Y s

n,k

)
, Prs = E

(
(X)rY

s
)
,

with (x)r = x(x − 1) · · · (x − r + 1), and (X,Y ) being a generic P -distributed
random variable.

Sparse network models with a finite nonzero average degree are obtained
when the number of layers is of the same order as the number of nodes. When
m
n → μ ∈ (0,∞), P (n) → P weakly, and P

(n)
10 → P10 ∈ (0,∞), then the

model degree distribution of Gn converges weakly [10] to a compound Poisson
distribution

f = CPoi(λ, g) (4)

with rate parameter λ = μP10 and increment distribution

g(s) =
∫

Bin(x − 1, y)(s)
xP (dx, dy)

P10
, s ∈ Z+. (5)

The limiting model degree distribution f can be represented as the law of D =∑Λ
k=1 Dk, where Λ,D1,D2, . . . are mutually independent random integers and

such that Law(Λ) = Poi(λ) and Law(Dk) = g.

4 Main Results

4.1 Bidegree Distribution

The result below characterizes the limiting bidegree distribution in the random
Bernoulli graph superposition model. The limiting bidegree distribution can be
represented as the joint law of random variables

(
D∗

1 ,D
∗
2

)
=

(
1 + D1 + D′

1, 1 + D2 + D′
2

)
, (6)

where D1, D2, and (D′
1,D

′
2,X

′, Y ′) are mutually independent and such that D1

and D2 follow the limiting degree distribution f defined by (4), D′
1 and D′

2 are
conditionally independent and Bin(X ′ − 2, Y ′)-distributed given (X ′, Y ′), and
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the joint distribution of (X ′, Y ′) ∈ Z+ × [0, 1] equals (x)2y P (dx,dy)
P21

. Here X ′ and
Y ′ represent the size and strength of a random layer which links a particular
node pair {i, j}, and D′

1 and D′
2 represent the number of additional neighbors

of i and j inside the common layer. The joint distribution of (D∗
1 ,D

∗
2) defined

by (6) can be written as

f2 = δ(1,1) ∗ (f ⊗ f) ∗ f ′
2 (7)

where ∗ refers to the convolution of probability measures on Z
2
+, and f ′

2 is a
probability measure on Z

2
+ defined by

f ′
2(s, t) =

∫

Z+×[0,1]

Bin(x − 2, y)(s) Bin(x − 2, y)(t)
(x)2y P (dx, dy)

P21
. (8)

Theorem 1. Denote by f2,n the bidegree distribution of the n-th model Gn.
Assume that m

n → μ ∈ (0,∞) and P (n) → P weakly for some probability measure
P on Z+ × [0, 1] such that P21 > 0.

(i) If P
(n)
20 → P20 < ∞, then f2,n → f2 weakly, where the limit is defined by (7).

(ii) If in addition, P
(n)
rs → Prs < ∞ for rs = 32, 43, then

∫
φ df2,n → ∫

φ df2 for
all φ : Z2

+ → R such that |φ(x, y)| ≤ c(1 + x2 + y2) for some constant c < ∞
(convergence in the Wasserstein-2 metric [43, Theorem 6.9]).

4.2 Assortativity

The following result provides a formula of the limiting model assortativity which
is well defined when the limiting degree distribution has a finite third moment.
In the special case with unit strengths, this formula yields the corresponding
result for passive random intersection graphs given in [9, Theorem 3.1]. Using
a well-chosen coupling of P -distributed random vectors (details in an extended
version) it is possible to verify that

P21(P43 + P32) − P 2
32 ≥ P21(P43 + P33) − P 2

32 ≥ 0,

which implies that the limiting model assortativity below is always nonnegative.

Theorem 2. Assume that m
n → μ ∈ (0,∞), and that P

(n)
rs → Prs < ∞ for

rs = 20, 32, 43, for some probability measure P on Z+ × [0, 1] such that P21 > 0.
Then the model assortativity is approximated by

Cor∗(DI ,DJ ) → P21(P43 + P33) − P 2
32

P21(P43 + P32) − P 2
32 + μP 2

21(P21 + P32)
.

4.3 Rank Correlations

Assortativity modeled using Pearson’s correlation of the bidegree distribution
is ill-behaved for graph models where the limiting degree distribution has an
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infinite third moment [39]. In such cases, rank correlation coefficients provide a
robust alternative [39–41]. For a probability measure f on R

2 with nondegenerate
marginals, Kendall’s rank correlation [29,33] is defined by

ρKen(f) = Cor
(

sgn(X1 − Y1), sgn(X2 − Y2)
)

where sgn(x) = 1(x > 0) − 1(x < 0), and (X1,X2) and (Y1, Y2) are mutually
independent and f -distributed. Spearman’s rank correlation is defined as

ρSpe(f) = Cor
(
r1(X1), r2(X2)

)
,

where (X1,X2) is f -distributed and ri(x) = 1
2 (f (i)(−∞, x) + f (i)(−∞, x]) with

f (i) denoting the i-th marginal distribution of f . There are several alterna-
tive definitions for Spearman’s rank correlation corresponding to different tie-
breaking conventions [4]. The above definition agrees with the commonly used
mid-rank convention [33, Theorems 14 and 15].

Theorem 3. Assume that m
n → μ ∈ (0,∞), and P (n) → P weakly with P

(n)
20 →

P20, where 0 < P21 ≤ P20 < ∞. Spearman’s and Kendall’s rank correlation
coefficients of the n-th model are then approximated by

ρKen(f2,n) → ρKen(f2) and ρSpe(f2,n) → ρSpe(f2),

where the limiting bidegree distribution f2 is defined by (7).

5 Discussion

This article described degree correlations in a sparse network model introduced in
[10], constructed by a natural superposition mechanism with overlapping layers.
The main contribution is a compact explicit description of the limiting model
bidegree distribution (Theorem 1), fully characterized in terms of the limiting
joint distribution P of layer sizes and layer strengths, and the limiting ratio μ
of the number of layers and the number of nodes. Some remarks deserve further
attention.

(i) The model bidegree distribution differs from the empirical bidegree distri-
bution computed from a fixed random graph sample. Several earlier works
[39–41] have focused on the convergence in probability of the latter distri-
bution. Based on analogous studies on ergodic properties of clustering coef-
ficient [23,24], we expect that both distributions converge to the same limit
under mild regularity assumptions.

(ii) The freedom to tune the limiting joint distribution P of layer sizes and
layer strengths yields a rich class of network models. As a concrete example,
assume that the layer strength is a deterministic function of layer size such
Y = q(X). If layer sizes follow an approximate power law P(X = x) ∝ x−α

with α > 2, and q(x) ∝ x−β where β ∈ [0, 1) is such that α + β > 3,
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then the limiting degree distribution follows a power law [10] such that
P(D1 = t) ∝ t−δ with δ = 1 + α−2

1−β . (The same functional form of layer
strengths has been also investigated in [44] for deterministic layer node sets.)
Because the marginals of the limiting bidegree distribution are size-biased
versions of the degree distribution, it follows that the marginals of f2 are
power laws with density exponent δ − 1 = α−2

1−β . The dependence structure
of the power-law random variables D∗

1 and D∗
2 is implicitly captured by (6).

Characterizing how the dependence structure behaves as a function of the
power-law exponents is an interesting problem to be considered elsewhere.

(iii) Fitting the model to real data sets is a problem of future research. A fully
nonparametric approach to estimating P appears hard if not impossible,
even though currently there are no (positive or negative) theoretical results
regarding model identifiability. An alternative approach is to restrict to mod-
els where P = Pθ is parametrized by a small-dimensional parameter θ, and
develop estimators of θ using empirical small subgraph counts. Recent work
in this direction includes [19,23,24] for models with constant layer strength.
Model fitting with deterministic (unknown) layer node sets has been studied
in [44].

6 Proofs

6.1 Correlation of the Limiting Bidegree Distribution

Let us analyze the Pearson correlation coefficient Cor(D∗
1 ,D

∗
2) of the limiting

bidegree distribution in Theorem 1.

Proposition 1. For any μ ∈ (0,∞) and any probability measure P on Z+×[0, 1]
such that 0 < P10, P21 < ∞ and P32, P43 < ∞, the random variables (D∗

1 ,D
∗
2)

in (6) satisfy

Cor(D∗
1 ,D

∗
2) =

P21(P43 + P33) − P 2
32

P21(P43 + P32) − P 2
32 + μP 2

21(P21 + P32)
.

Proof. If B is a Bin(x − 2, y)-distributed random variable, then EB = (x − 2)y
and E(B)2 = (x − 2)2y2, from which we conclude that EB2 = E(B)2 + EB =
(x − 2)2y2 + (x − 2)y. Because (x − 2)(x)2 = (x)3, it follows that

ED′
1 =

∫
(x − 2)y

(x)2yP (dx, dy)
P21

=
P32

P21
.

Further, by noting that (x − 2)2(x)2 = (x)4, we see that

E(D′
1)

2 =
∫ (

(x − 2)2y2 + (x − 2)y
) (x)2yP (dx, dy)

P21
=

P43 + P32

P21
.

Hence D′
1 has a finite second moment, and variance equal to

Var(D′
1) =

P43 + P32

P21
−

(
P32

P21

)2

. (9)
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Similarly, the conditional independence of D′
1 and D′

2, together with the formula
(x − 2)2(x)2 = (x − 2)(x)3 = (x)4 + (x)3, implies that

ED′
1D

′
2 =

∫ (
(x − 2)y

)2 (x)2yP (dx, dy)
P21

=
P43 + P33

P21
,

and hence, noting that D′
1 and D′

2 identically distributed,

Cov(D′
1,D

′
2) =

P43 + P33

P21
−

(
P32

P21

)2

. (10)

Recall next that D1 follows the compound Poisson distribution f =
CPoi(λ, g). A simple computation confirms that the variance of g in (5) equals
P32+P21

P10
. Hence it follows (using basic properties of compound Poisson distribu-

tions) that D1 has a finite second moment with

Var(D1) = λ
P32 + P21

P10
. (11)

The mutual independence of D1, D2, and (D′
1,D

′
2) implies that

Cov(D∗
1 ,D

∗
2) = Cov(D′

1,D
′
2) and Var(D∗

1) = Var(D1) + Var(D′
1), so that

Cor(D∗
1 ,D

∗
2) =

Cov(D′
1,D

′
2)

Var(D1) + Var(D′
1)

. (12)

By plugging (9)–(11) into (12), we conclude that

Cor(D∗
1 ,D

∗
2) =

P43+P33
P21

−
(

P32
P21

)2

P43+P32
P21

−
(

P32
P21

)2

+ λP32+P21
P10

.

By recalling that λ = μP10, the claim follows. ��

6.2 Proof Outline of Theorem 1:(i)

Denote the bidegree distribution of the n-th model by

f2,n(s, t) = P

(
degGn

(1) = s,degGn
(2) = t

∣
∣ 12 ∈ E(Gn)

)
.

For A ⊂ [m], denote by Gn,A the graph with V (Gn,A) = [n] and E(Gn,A) =
∪k∈AE(Gn,k). We abbreviate Di = degGn

(i), and we note that for any k,

Di = Di,k + D̃i,k − D̂i,k,

where

Di,k = degGn,k
(i), D̃i,k = degGn,[m]\{k}(i), D̂i,k = degGn,k∩Gn,[m]\{k}(i).
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Also denote Ek = {12 ∈ E(Gn,k)} and

fn(s) = P(Di = s),

f̃2,n(s, t) = P(D̃1,k = s, D̃2,k = t),
f ′
2,n(s, t) = P(D1,k = s,D2,k = t | Ek).

The proof is based on approximating (details to appear in an extended version):

f2,n(s, t)P(12 ∈ E(Gn))
= P(D1 = s,D2 = t,∪kEk)

≈
∑

k

P(D1 = s,D2 = t, Ek)

=
∑

k

P(D1,k + D̃1,k − D̂1,k = s, D2,k + D̃2,k − D̂2,k = t, Ek)

≈
∑

k

P(D1,k + D̃1,k = s, D2,k + D̃2,k = t, Ek)

=
∑

k

∑

s1≤s

∑

t1≤t

f̃2,n(s1, t1)P(D1,k = s − s1,D2,k = t − t1, Ek)

=
( ∑

k

P(Ek)
) ∑

s1≤s

∑

t1≤t

f̃2,n(s1, t1)f ′
2,n(s − s1, t − t1)

≈ P(12 ∈ E(Gn))
∑

s1≤s

∑

t1≤t

f̃2,n(s1, t1) f ′
2,n(s − s1, t − t1)

≈ P(12 ∈ E(Gn))
∑

s1≤s

∑

t1≤t

fn(s1)fn(t1) f ′
2,n(s − s1, t − t1).

As a consequence,

|f2,n(s, t) − ((fn ⊗ fn) ∗ f ′
2,n)(s, t)| → 0 (13)

for any s, t ∈ Z+, with ∗ denoting the convolution of probability measures on the
additive group Z

2. Next, we know that fn → f weakly where f is the limiting
model degree distribution in (4). Therefore, fn⊗fn → f⊗f weakly as probability
measures on Z

2
+.

Let us investigate the limit of f ′
2,n. Next, we note that given (Xk, Yk) and

the event Ek = {12 ∈ E(Gn,k)}, the random variables D1,k and D2,k are inde-
pendent, and both distributed according to 1 + Bin(Xk − 2, Yk). Hence

P(D1,k = s,D2,k = t, Ek |Xk, Yk)
= P(Ek |Xk, Yk)P(D1,k = s,D2,k = t | Ek,Xk, Yk)

=
(Xk)2
(n)2

Yk Bin(Xk − 2, Yk)(s − 1)Bin(Xk − 2, Yk)(t − 1).
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By taking expectations above, and dividing the outcome by P(Ek) = E
(Xk)2
(n)2

Yk =

(n)−1
2 P

(n)
21 , it follows that

f ′
2,n(s, t) =

∫
Bin(x − 2, y)(s − 1)Bin(x − 2, y)(t − 1)

(x)2y P (n)(dx, dy)

P
(n)
21

.

When P (n) → P weakly and P
(n)
21 → P21 ∈ (0,∞), it follows that f ′

2,n(s, t) →
f ′
2(s − 1, t − 1) pointwise on Z

2
+, where f ′

2 is defined by (8). Hence

(fn ⊗ fn) ∗ f ′
2,n → δ(1,1) ∗ (f ⊗ f) ∗ f ′

2

pointwise, and together with (13), we conclude that Theorem 1:(i) is valid. ��

6.3 Proof of Theorem 1:(ii)

The proof is similar to the proof of [39, Theorem 3.2], but slightly simpler because
here we analyze model distributions instead of empirical distributions of random
graph samples. Let (D∗

1,n,D∗
2,n) ∈ Z

2
+ be a random variable distributed accord-

ing to the model bidegree distribution f2,n of G(n). Theorem 1:(i) states that
(D∗

1,n,D∗
2,n) → (D∗

1 ,D
∗
2) weakly. Now let φ : Z2

+ → R be a function bounded by
|φ(x, y)| ≤ c(1+x2+y2). Skorohod’s coupling theorem [22, Theorem 4.30] implies
that there exist a probability space and some random variables (D̃∗

1,n, D̃∗
2,n) =st

(D∗
1,n,D∗

2,n) and (D̃∗
1 , D̃

∗
2) =st (D∗

1 ,D
∗
2) such that (D̃∗

1,n, D̃∗
2,n) → (D̃∗

1 , D̃
∗
2)

almost surely. Then Zn := φ(D̃∗
1,n, D̃∗

2,n) → φ(D̃∗
1 , D̃

∗
2) =: Z almost surely.

Also |Zn| ≤ c(1 + (D̃∗
1,n)2 + (D̃∗

2,n)2) =: Z ′
n a.s. With the help of Lemma 1, we

note that

E((D̃∗
1,n)2) =

ED3
1,n

ED1,n
→ ED3

1

ED1
= E((D∗

1)
2) < ∞,

and hence EZ ′
n → EZ ′ = c(1 + 2E((D∗

1)
2)) < ∞. Lebesgue’s dominated con-

vergence theorem (see the version in [22, Theorem 1.21]) now implies that
EZn → EZ, which confirms the claim. ��

6.4 Proof of Theorem 2

We only sketch the proof in the case where m
n → μ ∈ (0,∞). By applying

Theorem 1:(ii) with φ(x, y) = x, and then with φ(x, y) = x2, we find that
Var(D∗

1,n) → Var(D∗
1). Observe next that for φ(x, y) = xy, |φ(x, y)| ≤ 2(x2+y2).

Hence Theorem 1:(ii) also implies that Cov(D∗
1,n,D∗

2,n) → Cov(D∗
1 ,D

∗
2). Hence

the claim follows by Proposition 1. ��
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6.5 Proof of Theorem 3

Because f2,n has identical marginals, we see that

ρKen(f2,n) =

∫
φ d(f2,n ⊗ f2,n) −

(∫
φ1 d(f (1)

2,n ⊗ f
(1)
2,n)

)2

∫
φ2
1 d(f (1)

2,n ⊗ f
(1)
2,n) −

(∫
φ1 d(f (1)

2,n ⊗ f
(1)
2,n)

)2 ,

where φ1(x1, y1) = sgn(x1 − y1), φ(x1, x2, y1, y2) = φ1(x1, y1)φ1(x2, y2) are
bounded (and trivially continuous) functions defined on Z

2
+ and Z

4
+, respec-

tively. Theorem 1 implies that f2,n → f2 weakly as probability measures on Z
2
+.

Hence also f2,n ⊗ f2,n → f2 ⊗ f2 and f
(1)
2,n ⊗ f

(1)
2,n → f

(1)
2 ⊗ f

(1)
2 weakly. Hence we

conclude that ρKen(f2,n) → ρKen(f2).
To verify the claim for Spearman’s rank correlation, we apply the represen-

tation [33, Section 4.3]

ρSpe(f2,n) =
3(P((X1 − Y2)(X2 − Z2) > 0) − P((X1 − Y2)(X2 − Z2) < 0))

√
1 − P(X1 = Y1 = Z1)

√
1 − P(X2 = Y2 = Z2)

,

where (X1,X2), (Y1, Y2), (Z1, Z2) are mutually independent and f2,n-distributed.
Because f2,n has identical marginals, this can be rewritten as

ρSpe(f2,n) = 3
∫

φ d(f2,n ⊗ f2,n ⊗ f2,n)
∫

ψ d(f (1)
2,n ⊗ f

(1)
2,n ⊗ f

(1)
2,n)

,

where φ(x1, x2, y1, y2, z1, z2) = sgn((x1 − y2)(x2 − z2)) and ψ(x1, y1, z1) = 1 −
1(x1 = y1 = z1) are bounded (and trivially continuous) functions on Z

6
+ and

Z
3
+, respectively. The second claim follows by noting that f2,n ⊗ f2,n ⊗ f2,n →

f2 ⊗ f2 ⊗ f2 and f
(1)
2,n ⊗ f

(1)
2,n ⊗ f

(1)
2,n → f

(1)
2 ⊗ f

(1)
2 ⊗ f

(1)
2 weakly. ��

Lemma 1. Assume that P (n) → Prs weakly and P
(n)
rs → Prs < ∞ for

rs = 10, 21, 32, 43, with P10 > 0. Then the third moments of the model degree
distribution converge according to

∑
s s3fn(s) → ∑

s s3f(s) < ∞.

Proof. To appear in extended version.
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17. Frieze, A., Karoński, M.: Introduction to Random Graphs. Cambridge University
Press, Cambridge (2015). https://doi.org/10.1017/CBO9781316339831

18. Godehardt, E., Jaworski, J.: Two models of random intersection graphs and their
applications. Electron. Notes Discret. Math. 10, 129–132 (2001)
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24. Karjalainen, J., Leskelä, L.: Moment-based parameter estimation in binomial ran-
dom intersection graph models. In: Bonato, A., Chung Graham, F., Pra�lat, P.
(eds.) WAW 2017. LNCS, vol. 10519, pp. 1–15. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67810-8 1

https://doi.org/10.1103/PhysRevE.74.056114
https://doi.org/10.1103/PhysRevE.74.056114
https://doi.org/10.1214/13-AAP942
https://doi.org/10.1214/12-AAP874
https://doi.org/10.1214/12-AAP874
https://doi.org/10.1214/EJP.v18-2277
https://doi.org/10.1214/EJP.v18-2277
https://arxiv.org/abs/1912.13404
https://doi.org/10.1103/PhysRevE.68.036112
https://doi.org/10.1103/PhysRevE.68.036112
https://doi.org/10.1002/rsa.20168
https://doi.org/10.1002/rsa.20168
https://doi.org/10.1093/sf/53.2.181
https://doi.org/10.1239/jap/1222441827
https://doi.org/10.1239/jap/1222441827
https://doi.org/10.1017/CBO9781316339831
https://arxiv.org/abs/1911.12827
https://arxiv.org/abs/1911.12827
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1214/16-AOP1098
https://doi.org/10.1007/978-1-4757-4015-8
https://doi.org/10.1007/978-3-319-92871-5_4
https://doi.org/10.1007/978-3-319-67810-8_1
https://doi.org/10.1007/978-3-319-67810-8_1


Assortativity and Bidegree Distributions 81
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Abstract. It is well known that the global clustering coefficient of a
standard preferential attachment random graph vanishes as the number
of vertices tends to ∞. We evaluate the global clustering coefficient of the
preferred attachment affiliation network [4] and show that it is bounded
away from zero.

Keywords: Preferential attachment · Affiliation network · Clustering
coefficient · Power law · Random intersection graph

1 Introduction and Results

In a preferential attachment network each newly arrived vertex is attached pref-
erentially to already well connected sites, [2]. An important class of social net-
works are affiliation networks: members of a network tend to establish relations
if they share some common features [8,14]. For example, customers of a video-
sharing website are considered related to each other if they have downloaded the
same movie. Here the rich get richer principle [2] affects customers and movies
simultaneously: a newly arrived customer u′ is likely to download popular items,
thus, further increasing their popularity. Similarly, by selecting a highly popular
movie, the new customer u′ becomes adjacent to highly connected customers
(those that have downloaded this movie), thus further, increasing the number of
their neighbours.

In the preferred attachment affiliation network [4] vertices (customers) are
linked to items (movies) independently at random, and the probability of a link
between the new vertex u′ and an item w is proportional to the number of vertices
already linked to w. Two vertices of the network are declared adjacent whenever
there is an item linked to both of them. The network admits (asymptotic) power
law degree sequence, see [4].

Model. Let k > 0, l ≥ 0 be integers. Let 0 < λ ≤ k + l. Consider an electronic
library containing items w1, . . . , wl at the beginning. Every wj is prescribed ini-
tial score s(wj) = 1. On the first step new items wl+1, . . . , wl+k arrive to the
library, each having score 1. Then the first customer v1 visits the library and
downloads items independently at random: An item w is downloaded with prob-
ability p1,s(w) = λs(w)(l+k)−1. Every item downloaded by v1 increases its score
c© Springer Nature Switzerland AG 2020
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by one. Let Wn = {w1, . . . , wl+nk} be the collection of items in the library after
n steps. On the n + 1 step k new items arrive to the library, each having score
1. Then customer vn+1 visits the library and downloads items independently at
random: An item w is downloaded with probability

pn+1,s(w) = λs(w)(l + (n + 1)k + nλ)−1,

which is proportional to the current score s(w) of w. Every item downloaded by
vn+1 increases its score by one. Note that after n-th step s(w)−1 is the number of
customers from Vn = {v1, . . . , vn} that have downloaded item w. The preferred
attachment affiliation network Gn has vertex set Vn. Two vertices (customers)
are adjacent in Gn whenever there is at least one item downloaded by (=linked
to) both of them. We note that the expected number of items downloaded by
each customer is the same and equals λ.

For convenience, we may represent items as bins. Each newly arrived bin con-
tains a single ball. A new customer vn+1 throws balls into bins w1, . . . , wl+(n+1)k

at random: Each bin w receives a ball with probability pn+1,s(w) and indepen-
dently of the other bins. The score s(w) counts the (current) number of balls in
the bin w. This number may increase with n. It measures the popularity of the
bin (item) w. Hence, popular bins (items) have higher chances to be selected.

Clustering Coefficient. The global clustering coefficient of a non-random finite
graph G is the conditional probability C(G) = P

{
v∗
2 ∼ v∗

3

∣
∣v∗

1 ∼ v∗
2 , v

∗
1 ∼ v∗

3

}
.

Here (v∗
1 , v

∗
2 , v

∗
3) is an (ordered) vertex triple sampled uniformly at random and

∼ stands for the adjacency relation. The calculation of C(G) reduces to the
subgraph counts NΔ (= the number of triangles in G) and N∨ (= the number
of paths of length 2 in G). Indeed, for a non-random graph G we have C(G) =
3NΔ/N∨.

In the case of random graph Gn the conditional probability

C(Gn) = P
{
v∗
2 ∼ v∗

3

∣
∣v∗

1 ∼ v∗
2 , v

∗
1 ∼ v∗

3

}
(1)

refers to the two sources of randomness: the random graph generation and the
sampling of the vertex triple. We assume that the vertex triple (v∗

1 , v
∗
2 , v

∗
3) (sam-

pled uniformly at random from Vn) is independent of Gn.

Results. In Theorem 1 we establish a first order approximation to the clustering
coefficient C(Gn) as n → +∞. Let

α =
k

λ
, β =

1
1 + α

, γ =
kβ(1 − 3β)
9(1 − 2β)

(
3

1 − β
+

2
1 − 2β

)
, τ =

2kβ(1 − 3β)
3(1 − 2β)2

.

Theorem 1. Let n → +∞. We have

C(Gn) =

{
1 − o(1), for α ≤ 2,

(1 + γ)−1 + o(1), for α > 2.
(2)
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In the proof of Theorem 1 we establish a first order asymptotics to the expected
number of triangles and paths of length 2 (“cherries”), see (44) and (46), (47)
below.

The random graph Gn is defined by the bipartite graph with bipartition
Vn ∪Wn, where customers (vertices) v ∈ Vn are linked to movies (items) w ∈ Wn

they have downloaded. Gn is related to the passive random intersection graph
introduced in [6], where items receive weights (=scores) independently at random
and, given the weights, vertices are linked to items independently at random
with probabilities proportional to the weights. Two vertices of the intersection
graph are declared adjacent whenever there is an item linked to both of them.
Depending on the distribution of random weights, the global clustering coefficient
of passive random intersection graph is 1 − o(1) when the weights have infinite
third moment, and it is less than one when weights have a finite third moment,
[3,7]. Theorem 1 reveals a similar pattern. Indeed, it has been shown in [4] that
(in the preferred attachment affiliation network model) the fraction of items with
score i scales as i−2−α. Therefore the (asymptotic) score sequence has infinite
third moment whenever α ≤ 2.

Vertices v1, . . . , vn of Gn are numbered in the order of their arrival. It is
interesting to know whether and how the arrival time of a vertex affects the
local clustering characteristics in a vicinity of that vertex. For this purpose we
study the conditional probabilities

Cx,y,z = P
{
vx ∼ vz

∣
∣vx ∼ vy ∼ vz

}
, x, y, z ∈ [n], x 	= y 	= z.

For s < t < u, let

γt,s,u = τ, γs,t,u = τsβt−β , γs,u,t = τsβt1−2βuβ−1,

In Theorem 2 below we assume that s = sn, t = tn and u = un.

Theorem 2. Let n → +∞. For 1 < s < t < u such that s → +∞ we have for
each triple (x, y, z) ∈ {(s, t, u), (t, s, u), (s, u, t)} that

Cx,y,z =

{
1 − o(1), for α ≤ 2,

(1 + γx,y,z)−1 + o(1), for α > 2.
(3)

The results of Theorem 2 might be applicable to link prediction problems
and recommender systems in dynamic settings.

Related Work. It has already been mentioned that in a standard preferential
attachment (PA) random graph the global clustering coefficient vanishes. The
clustering property of the PA affiliation network considered in the present paper
is facilitated by the underlying bipartite structure (vertices from Vn are linked
to items from Wn). Similarly, the clustering property has been established in the
spatial PA model [1] and random intersection graph process [5], where the under-
lying bipartite structure relates vertices to regions (subsets) of a given domain
(set), see [5,10,11]. Generally, the relation between the bipartite structure and
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clustering property in social networks has been discussed in [14]. Clustering
properties of a real co-authorship (affiliation) network evolving in time have
been reported in [13]. We also mention an approach of [9,15], where the cluster-
ing property of PA type random graph is enhanced by inserting (at each step)
extra edges that create triangles. Another model of evolving affiliation network
has been considered in [12], but the clustering property has not been addressed.

2 Proofs

The section is organized as follows. Before the proofs we introduce notation.
Then in two technical lemmas we present auxiliary results. Afterwards we give
proofs of Theorems 1 and 2.

Notation. Given w ∈ Wi+1, let Si(w) be the score of w just before the arrival
of the user vi+1. In particular the score of w ∈ Wi+1 \ Wi is Si(w) = 1. For
m = 1, 2, 3, let

μ
(m)
t = E

(
∑

w∈Wt

Sm
t−1(w)

)

.

Given vertex vu and item w we denote by Avu,w = {vu → w} the event that
user vu has downloaded item w. We write, for short,

Ast,w = Avs,w ∩ Avt,w, Astu,w = Avs,w ∩ Avt,w ∩ Avu,w.

The event Ast,w implies that vertices vs and vt are adjacent. We call w a
witness of the edge vs ∼ vt whenever Ast,w occurs. For 1 ≤ s < t the
union ∪w∈Ws

Ast,w = {vs ∼ vt} is the event that vs and vt are adjacent. For
1 ≤ s < t < u let Δstu = {vs ∼ vt, vs ∼ vu, vt ∼ vu} denote the event that
vertices vs, vt, vu make up a triangle in Gn. Furthermore, let

Δ∗
stu =

⋃

w∈Ws

Astu,w

be the event that some item is shared by the three vertices vs, vt, vu. Clearly, the
event Δ∗

stu implies event Δstu. Let ∨stu = {vs ∼ vt, vt ∼ vu} denote the event
that vs and vu are neighbours of vt.

By θ, θ′, θ′′ we denote numbers with absolute value bounded by a constant
that only depends on k, l and λ. The numbers θ, θ′, θ′′ may take different values
in different places.
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2.1 Auxiliary Results

Lemma 1. Let n, t → +∞. Assume that 1 < t ≤ n. Then there exist constants
c1, c2 > 0 depending on k, l, λ such that

μ
(1)
t = (k + λ)t + O(tβ) =

k

1 − β
t + O(tβ), (4)

μ
(2)
t =

⎧
⎪⎪⎨

⎪⎪⎩

k
(

2
1−2β − 1

1−β

)
t + O(t2β), for 2β < 1,

2kt ln t + O(t), for 2β = 1,

(c1 + o(1))t2β , for 2β > 1,

(5)

μ
(3)
t =

⎧
⎪⎪⎨

⎪⎪⎩

k
(

6
1−3β − 6

1−2β + 1
1−β

)
t + O(t3β), for 3β < 1,

6kt ln t + O(t), for 3β = 1,

(c2 + o(1))t3β , for 3β > 1.

(6)

Proof of Lemma 1. Let l∗ = α + l/λ. We have

pi+1,x =
x

i(α + 1) + l∗
= x

(
β

i
− Ri

)
, 0 < Ri < (β/i)2l∗. (7)

For k = 1, 2, 3 and i ≤ j − 1 we put

u
(k)
i,j =

j−1∏

s=i

(
1 +

kβ

s
− kRs

)

and define u
(k)
i,i = 1. We have for 1 ≤ i ≤ j

u
(k)
i,j =

jkβ

ikβ

(
1 +

θ

i

)
. (8)

Proof of (4). For w ∈ Wi+1, i ≥ 1, relation (7) implies

E(Si+1(w)|Si(w) = x) = x + pi+1,x = x

(
1 +

β

i
− Ri

)
. (9)

By iterating (9), we obtain for w ∈ Wi+1 and 1 ≤ i < j

E(Sj(w)|Si(w) = x) = u
(1)
i,j x =

jβ

iβ

(
1 +

θ

i

)
x. (10)

In the case where w ∈ Wi+1 \ Wi we have Si(w) ≡ 1 and therefore

ESj(w) =
jβ

iβ

(
1 +

θ

i

)
. (11)
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Finally,

μ
(1)
t =

∑

w∈W1

ESt−1(w) +
t−1∑

i=1

∑

w∈Wi+1\Wi

ESt−1(w) (12)

= (k + l)tβ(1 + θ) + k
t−1∑

i=1

(t − 1)β

iβ

(
1 +

θ

i

)

=
k

1 − β
t + O(tβ).

Proof of (5). For w ∈ Wi+1, i ≥ 1, relation (7) implies

E(S2
i+1(w)|Si(w) = x) = x2(1 − pi+1,x) + (x + 1)2pi+1,x (13)

= x2

(
1 +

2β

i
− 2Ri

)
+ x

(
β

i
− Ri

)
.

By iterating (13), we obtain for w ∈ Wi+1 and 1 ≤ i < j

E(S2
j (w)|Si(w) = x) = u

(2)
i,j x2 +

j−1∑

t=i

(
β

t
− Rt

)
u
(2)
t+1,j E(St(w)|Si(w) = x). (14)

Now (8) and (10) imply

E(S2
j (w)|Si(w) = x) =

j2β

i2β

(
1 +

θ

i

)
x2 + hi,jx, (15)

hi,j =
j−1∑

t=i

(
β

t
− Rt

)
j2β

t2β

(
1 +

θ

t

)
tβ

iβ

(
1 +

θ′

i

)
.

A straightforward calculation shows

hi,j =
j2β

i2β

(
1 +

θ

i

)
− jβ

iβ

(
1 +

θ′

i

)
. (16)

Hence,

ES2
j (w) =

j2β

i2β

(
1 +

θ

i

)
ES2

i (w) (17)

+
(

j2β

i2β

(
1 +

θ′

i

)
− jβ

iβ

(
1 +

θ′′

i

))
ESi(w).

For w ∈ Wi+1 \ Wi we have Si(w) ≡ 1. Now (17) implies

ES2
j (w) = 2

j2β

i2β

(
1 +

θ

i

)
− jβ

iβ

(
1 +

θ′

i

)
. (18)

From this identity we derive (5) proceeding similarly as in (12) above.
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Proof of (6). For w ∈ Wi+1, i ≥ 1, relation (7) implies

E(S3
i+1(w)|Si(w) = x) = x3(1 − pi+1,x) + (x + 1)3pi+1,x (19)

= x3

(
1 +

3β

i
− 3Ri

)
+ (3x2 + x)

(
β

i
− Ri

)
.

By iterating (19), we obtain for w ∈ Wi+1 and 1 ≤ i < j

E(S3
j (w)|Si(w) = x) = u

(3)
i,j x3

+
j−1∑

t=i

(
β

t
− Rt

)
u
(3)
t+1,jE(3S2

t (w) + St(w)|Si(w) = x).

Now (8), (10) and (15), (16) imply

E(S3
j (w)|Si(w) = x) =

j3β

i3β

(
1 +

θ

i

)
x3 + 3h

(1)
i,j x2 + h

(2)
i,j x, (20)

where

h
(1)
i,j =

j−1∑

t=i

(
β

t
− Rt

)
u
(3)
t+1,j

t2β

i2β

(
1 +

θ

i

)
=

j3β

i3β

(
1 +

θ

i

)
− j2β

i2β

(
1 +

θ′

i

)
,

h
(2)
i,j =

j−1∑

t=i

(
β

t
− Rt

)
u
(3)
t+1,j

(
3
t2β

i2β

(
1 +

θ′

i

)
− 2

tβ

iβ

(
1 +

θ′′

i

))

= 2
j3β

i3β

(
1 +

θ

i

)
− 3

j2β

i2β

(
1 +

θ′

i

)
+

jβ

iβ

(
1 +

θ′′

i

)
.

Hence

E(S3
j (w)|Si(w)) =

j3β

i3β

(
1 +

θ

i

)
ES3

i (w) + 3h
(1)
i,j ES2

i (w) + h
(2)
i,j ESi(w). (21)

For w ∈ Wi+1 \ Wi we have Si(w) ≡ 1. Now (21) implies

E(S3
j (w)) = 6

j3β

i3β

(
1 +

θ

i

)
− 6

j2β

i2β

(
1 +

θ′

i

)
+

jβ

iβ

(
1 +

θ′′

i

)
. (22)

This identity yields (6). �

Lemma 2. Let 1 < s < t < u be integers. For s → +∞ we have

P{vt ∼ vu} = (1 + o(1))β2 uβ−1

tβ+1

(
μ
(2)
t + μ

(1)
t

)
, (23)

P{Δ∗
stu} = (1 + o(1))β3 (ut)β−1

s2β+1

(
μ(3)

s + 3μ(2)
s + 2μ(1)

s

)
. (24)
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Proof of Lemma 2. Proof of (23). For 1 ≤ i ≤ t < u and w ∈ Wi \ Wi−1 we have,
by the total probability formula,

P{Atu,w|St−1(w) = z} = pt,zP{Avu,w|St(w) = z + 1}
= pt,z

∑

y≥z+1

P{Avu,w|Su−1(w) = y}P{Su−1 = y|St(w) = z + 1}

= pt,z

∑

y≥z+1

pu,yP{Su−1(w) = y|St(w) = z + 1}

= pt,z
λ

l + uk + (u − 1)λ

∑

y≥z+1

yP{Su−1 = y|St(w) = z + 1}

= pt,z
λ

l + uk + (u − 1)λ
E(Su−1(w)|St(w) = z + 1)

= β2 z(z + 1)
ut

uβ

tβ

(
1 +

θ

t

)
. (25)

In the last step we invoked (10) and used, see (7),

pt,z
λ

l + uk + (u − 1)λ
= z

(
β

t − 1
− θ

t2

)(
β

u − 1
− θ′

u2

)

= β2 z

ut

(
1 +

θ

t

)(
1 +

θ′

u

)

= β2 z

ut

(
1 +

θ

t

)
.

Using (25) we evaluate the probability

P{Atu,w} =
∑

z≥1

P{Atu,w|St−1(w) = z}P{St−1(w) = z}

= β2 uβ−1

tβ+1

(
1 +

θ

t

)
E

(
S2

t−1(w) + St−1(w)
)
. (26)

Furthermore, using inclusion-exclusion, we obtain as t → +∞

P{vt ∼ vu} = P

{
⋃

w∈Wt

Aut,w

}

= (1 + o(1))Ht,u, (27)

Ht,u :=
∑

w∈Wt

P{Aut,w} = β2 uβ−1

tβ+1

(
1 +

θ

t

)
E

(
μ
(2)
t + μ

(1)
t

)
. (28)

In the last step we used (26). We arrived to (23).
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Proof of (24). Denote ps,t,u|w(y) = P
{Astu,w

∣
∣Ss−1(w) = y

}
. For 1 ≤ i ≤ s <

t < u and w ∈ Wi \ Wi−1 we have, by the total probability formula and (25),

ps,t,u|w(y) = ps,yP
{Aut,w

∣
∣Ss(w) = y + 1

}

= ps,y

∑

z≥y+1

P
{Aut,w

∣
∣St−1(w) = z

}
P{St−1(w) = z|Ss(w) = y + 1}

= ps,y

∑

z≥y+1

β2 z(z + 1)
ut

uβ

tβ

(
1 +

θ

t

)
P{St−1(w) = z|Ss(w) = y + 1}

Invoking ps,y = βys−1(1 + θ/s), see (7), we have

ps,t,u|w(y) = β3y
uβ−1

stβ+1

(
1 +

θ

s

) ∑

z≥y+1

z(z + 1)P{St−1(w) = z|Ss(w) = y + 1}

= β3y
uβ−1

stβ+1

(
1 +

θ

s

)
E

(
S2

t−1(w) + St−1(w)
∣
∣Ss(w) = y + 1

)

= β3y
uβ−1

stβ+1

(
1 +

θ

s

)
t2β

s2β

(
(y + 1)2 + (y + 1)

)
(29)

= β3 (tu)β−1

s2β+1

(
1 +

θ

s

)
(
y3 + 3y2 + 2y

)
.

In (29) we used (10) and (15). We apply the total probability formula once
again,

P{Astu,w} =
∑

y≥1

ps,t,u|w(y)P{Ss−1(w) = y} (30)

= β3 (tu)β−1

s2β+1

(
1 +

θ

s

)
(
ES3

s−1(w) + 3ES2
s−1(w) + 2ESs−1(w)

)
.

Furthermore, using inclusion-exclusion, we obtain as s, u, t → +∞

P{Δ∗
stu} = (1 + o(1))

∑

w∈Ws

P
{Astu,w

}
. (31)

Finally, (30), (31) combined with Lemma 1 imply (24). Proofs of (27), (31) will
be presented in an extended version of the paper. �

2.2 Proofs of Theorems 1 and 2

Proof of Theorem 2. The result will follow from Lemmas 1 and 2 by establishing
the approximation

Cx,y,z =
P{Δstu}
P{∨xyz} = (1 + o(1))

P{Δ∗
stu}

P{vx ∼ vy}P{vy ∼ vz} + P{Δ∗
stu} .
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We sketch the proof of the respective approximations of the numerator and
denominator:

P{Δstu} = (1 + o(1))P{Δ∗
stu}, (32)

P{∨xyz} = (1 + o(1))
(
P{vx ∼ vy}P{vy ∼ vz} + P{Δ∗

stu})
. (33)

Proof of (32). The event Δstu occurs whenever either the edges vs ∼ vt, vt ∼ vu,
vs ∼ vu are witnessed by three distinct items (we denote this event by Δ0

stu),
or all three edges are witnessed by the same item (the event denoted Δ∗

stu).
Therefore, P{Δstu} = P{Δ∗

stu ∪ Δ0
stu}. To show (32) we prove that

P{Δ0
stu} = o

(
P{Δ∗

stu})
. (34)

With w̄1, w̄2, w̄3 denoting three distinct witnesses of the edges vs ∼ vt, vt ∼ vu,
vs ∼ vu, we have, by the union bound that P{Δ0

stu} is at most
∑

w̄1∈Ws

∑

w̄2∈Wt,
w̄2 �=w̄1

∑

w̄3∈Ws,
w̄3 �=w̄1,w̄2

P{Ast,w̄1}P{Atu,w̄2}P{Asu,w̄3}

≤
(

∑

w̄1∈Ws

P{Ast,w̄1}
) (

∑

w̄2∈Wt

P{Atu,w̄2}
) (

∑

w̄3∈Ws

P{Asu,w̄3}
)

= (1 + o(1))β6 u2β−2

t2s2β+2

(
μ(2)

s + μ(1)
s

)2(μ(2)
t + μ

(1)
t ). (35)

In the last step we used (28). We compare quantity (35) with expression (24).
At this step we use Lemma 1. Now a straightforward calculation shows (34).

Proof of (33). We only consider the case where x < y < z, i.e, x = s, y =
t, z = u. Remaining cases are treated similarly. The event {vs ∼ vt, vt ∼ vu}
occurs whenever the edges vs ∼ vt, vt ∼ vu are witnessed by two distinct items
(we denote this event by ∨0

stu), or both edges are witnessed by the same item
(this is the event Δ∗

stu). Therefore P{vs ∼ vt, vt ∼ vu} = P{Δ∗
stu ∪ ∨0

stu}. By
inclusion - exclusion,

P{∨stu} = P{∨0
stu} + P{Δ∗

stu} − P{∨0
stu ∩ Δ∗

stu}. (36)

In the next step we consider the cases 2β > 1 and 2β ≤ 1 separately.
For 2β ≤ 1 we derive (33) from (36) combined with the relations

P{∨0
stu ∩ Δ∗

stu} = o
(
P{Δ∗

stu})
, (37)

P{∨0
stu} = (1 + o(1))P{vs ∼ vt}P{vt ∼ vu}. (38)

Let us show (38). With w̄1, w̄2 being distinct witnesses of the edges vs ∼ vt,
vt ∼ vu, we have

P
{∨0

stu

}
= P

⎧
⎪⎪⎨

⎪⎪⎩

⋃

w̄1∈Ws,w̄2∈Wt
w̄1 �=w̄2

(Ast,w̄1 ∩ Atu,w̄2

)

⎫
⎪⎪⎬

⎪⎪⎭
(39)
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= (1 + o(1))
∑

w̄1∈Ws

∑

w̄2∈Wt\{w̄1}
P{Ast,w̄1 ∩ Atu,w̄2} (40)

and
∑

w̄1∈Ws

∑

w̄2∈Wt\{w̄1}
P{Ast,w̄1 ∩ Atu,w̄2}

=
∑

w̄1∈Ws

∑

w̄2∈Wt\{w̄1}
P{Ast,w̄1}P{Atu,w̄2} (41)

= (1 + o(1)) (Hs,tHt,u − R) .

Here Hs,t, Ht,u are the same as in (28) and

R =
∑

w∈Ws

P{Ast,w}P{Atu,w}.

In (40) and (41) we use inclusion-exclusion and the independence of Ast,w̄1 and
Atu,w̄2 . Next we upperbound R. From (26) and (11), (18) we obtain

R = 4β4uβ−1t2β−2sβ−1
∑

1≤i≤s

i−4β

(
1 +

θ

i

)
.

We compare the quantity on the right with the quantity Hs,tHt,u evaluated in
(28). At this step we use Lemma 1. A straightforward calculation shows that
R = o(Hs,tHt,u) for 2β ≤ 1. Hence P

{∨0
stu

}
= (1 + o(1))Hs,tHt,u. Now (28)

combined with (23) completes the proof of (38). Proofs of (37) and (40) will be
presented in an extended version of the paper.

For 2β > 1 we derive (33) from (36) combined with the bounds

P{∨0
stu} = o(1)P{Δ∗

stu} and P{vs ∼ vt}P{vt ∼ vu} = o(P{Δ∗
stu}).

Here the second bound follows by Lemmas 1, 2. To prove the first bound we
firstly apply the union bound to (39),

P
{∨0

stu

} ≤
∑

w̄1∈Ws

∑

w̄2∈Wt\{w̄1}
P{Ast,w̄1}P{Atu,w̄2} ≤ Hs,tHt,u.

Secondly, we combine (24) with (28) to show that Hs,tHt,u = o
(
P{Δ∗

stu})
. �

Proof of Theorem 1. Let (x∗, y∗, z∗) be an (ordered) triple of distinct integers
from [n] sampled uniformly at random. We have

C(Gn) =
P{Δx∗y∗z∗}
P{∨x∗y∗z∗} . (42)

We firstly consider P{Δx∗y∗z∗}. By symmetry and (32), we have

P{Δx∗y∗z∗} =
3!

(n)3

∑

1≤s<t<u≤n

P{Δstu} (43)

= (1 + o(1))
3!

(n)3

∑

1≤s<t<u≤n

P{Δ∗
stu}.
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We evaluate P{Δ∗
stu} using (24) and then approximate the sum by the integral

∑

1≤s<t<u≤n

P{Δ∗
stu}

= (1 + o(1))
∫ n

1

du

∫ u

1

dt

∫ t

1

ds

(
β3 (ut)β−1

s2β+1

(
μ(3)

s + 3μ(2)
s + 2μ(1)

s

)
)

.

Note that the functions s → μ
(m)
s , m = 1, 2, 3 are given in Lemma 1. A simple

calculation shows that the triple integral above (approximately) equals

(β3 + o(1)) ×

⎧
⎪⎨

⎪⎩

c2
6β3 n3β , for α < 2,

6kn lnn
(1−2β)(1−β) , for α = 2,

6kn
(1−3β)(1−2β)(1−β) , for α > 2.

Here and below c2 > 0 is the same as in Lemma 1. Inserting the obtained
expression into (43) we get

P{Δx∗y∗z∗} = (1 + o(1)) ×

⎧
⎪⎨

⎪⎩

c2n
3β−3, for α < 2,
36kβ3

(1−2β)(1−β)n
−2 ln n, for α = 2,

36kβ3

(1−3β)(1−2β)(1−β)n
−2, for α > 2.

(44)

We secondly consider P{∨x∗y∗z∗} = P{vx∗ ∼ vy∗ , vy∗ ∼ vz∗}. By symmetry,
we have

P{∨x∗y∗z∗} =
2

(n)3

∑

1≤s<t<u≤n

(
P{∨stu} + P{∨tsu} + P{∨sut}

)
. (45)

We will evaluate probabilities in the brackets using (33) and Lemmas 1, 2. Then
we approximate the sum in (45) by respective (triple) integral as above. We
consider the cases α ≤ 2 and α > 2 separately.

Let α ≤ 2. For each permutation (x, y, z) of s < t < u we have as s → +∞
(use (33) and Lemmas 1, 2 and note that P{∨xyz} = (1 + o(1))P{Δ∗

xyz})

P{∨xyz} = (1 + o(1))P{Δ∗
stu} = (β3 + o(1)) ×

{
c2(stu)β−1, for α < 2,

6k(stu)−2/3 ln s, for α = 2.

We insert this expression in (45) and then approximate the sum by the integral.
We obtain

P{∨x∗y∗z∗} = (1 + o(1)) ×
{

c2n
3β−3, for α < 2,
36kβ3

(1−2β)(1−β)n
−2 ln n, for α = 2.

(46)

Let α > 2. For a permutation (x, y, z) of s < t < u we have as s → +∞ (use
(33) and Lemmas 1, 2)

P{∨xyz} =
(1 + o(1))β3

u1−βt1−β

⎧
⎪⎨

⎪⎩

A(st)−β + Bs−2β , for (x, y, z) = (s, t, u),
As−2β + Bs−2β , for (x, y, z) = (t, s, u),
Auβ−1t1−2βs−β + Bs−2β , for (x, y, z) = (s, u, t).
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Here we denote for short A = 4βk2

(1−2β)2 and B = 6k
1−3β . We insert this expression

in (45) and then approximate the sum by the integral. We obtain

P{∨x∗y∗z∗} =
(1 + o(1))β3

n2

(
3A

(1 − β)2
+

2A + 6B

(1 − β)(1 − 2β)

)
. (47)

Finally, inserting into (42) the approximations of P{Δx∗y∗z∗} and
P{∨x∗y∗z∗} given by (44) and (46), (47) we obtain (2). �
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Abstract. Weight-dependent random connection graphs are a class of
local network models that combine scale-free degree distribution, small-
world properties and clustering. In this paper we discuss recurrence or
transience of these graphs, features that are relevant for the performance
of search and information diffusion algorithms on the network.

Keywords: Random-connection model · Recurrence · Transience ·
Scale-free percolation · Preferential attachment · Boolean model

1 Introduction and Statement of Results

1.1 Motivation

In the age of “big data” we are increasingly faced with data that is not linearly
structured and instead organised in the form of networks. Algorithmic processing
of such data is often dependent on the topological connectivity properties of the
network. In this paper we therefore investigate finer connectivity features of a
range of random network models. Features shared by these models are:

– They are scale-free, i.e., the proportion of nodes with k neighbours is of order
k−τ+o(1) for some power law exponent τ .

– They are clustering, i.e., local neighbourhoods of a node have a much higher
connectivity than the overall network.

– They are small worlds, i.e., the graph distances are no more than polyloga-
rithmic with respect to the system size.

Under the further assumption that the power law exponent τ is sufficiently small,
the models have the following additional features:
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– They are ultrasmall, i.e., the shortest path between two typical nodes in the
graph is doubly logarithmic in the size of the graph.

– They are robust, i.e., if an arbitrarily large proportion of links is randomly
removed the qualitative features of the network remain unchanged.

A prototype of such a network is the age-based spatial preferential attachment
model introduced in [8]. In this model nodes arrive after exponential waiting
times and upon birth are placed randomly on the unit torus T

d. They connect
independently to all existing nodes with a probability which is a decreasing
function of the spatial distance and the birth times of both vertices. This network
model is a simplification of the spatial preferential attachment model in [16] and,
in a less general setup, in [1], which however is believed to retain all essential
features of the more complex original spatial preferential attachment model.

The major tool to study the age-based spatial preferential attachment model
is to look at a local limit graph on Rd. Such a graph describes the scaled neigh-
bourhoods of a typical vertex in the network at a large time; long term averaged
features of the network are reflected in the features of the limiting graph. It is
shown in [8] that the limiting graph for the age-based spatial preferential attach-
ment model is the age-dependent random connection model, which is a special
case of the class of weight-dependent random connection models studied in this
paper and introduced below. This connection is used in [8] to show scale-freeness
and clustering, and in [9,11] to identify regimes of robustness and ultrasmallness
of the age-based spatial preferential attachment model.

In the context of information propagation, further properties of networks are
relevant: How long does it take for the information to propagate and reach a set
of targets for the first time? Does a target node receive the information at all (or
is it possible that information bypasses it)? Can a single source result in informa-
tion reaching a target in more than one way? Conversely, can information travel
through the network without being “detected” by a large proportion of the net-
work? Such questions are tightly connected to (and often well described by) the
behaviour of a random walker on the network. In many cases, the behaviour of
the walker is crucial for the development of random walk based search strategies,
cf. [27]. The present paper addresses the problem of recurrence or transience of
the limiting graph. Recurrence means that a random walker returns infinitely
often to its origin and it is a prerequisite for the functioning of many search and
information diffusion algorithms on networks [23].

1.2 The Weight-Dependent Random Connection Model

We study the transient/recurrent behaviour of a class of infinite graphs that,
although not necessarily built as a limit of a growing sequence of finite graphs as
in our motivating example, are built using similarly simple rules to connect pairs
of vertices. We call this class of graphs the weight-dependent random connection
model and we now describe the building principles they all have in common.

The vertex set of the model is a Poisson process of unit intensity on Rd×[0, 1].
We think of a Poisson point x = (x, s) as a vertex at position x with weight s−1.



98 P. Gracar et al.

Two vertices x = (x, s) and y = (y, t) are connected by an edge with probability
ϕ(x,y) for a connectivity function

ϕ : (Rd × [0, 1]) × (Rd × [0, 1]) → [0, 1], (1)

satisfying ϕ(x,y) = ϕ(y,x). Connections between different (unordered) pairs of
vertices occur independently. We assume throughout that ϕ has the form

ϕ(x,y) = ϕ
(
(x, s), (y, t)

)
= ρ

(
β−1 g(s, t) |x − y|d) (2)

for a non-increasing, integrable profile function ρ : R+ → [0, 1], a percolation
parameter β > 0 and a kernel function g : [0, 1] × [0, 1] → R+. The parameter β
controls the edge density in a monotone way; increasing β increases the number
of edges connected to a vertex at the origin. Varying β can also be interpreted
as rescaling distances, and therefore it is equivalent to varying the intensity of
the underlying Poisson process. We assume further that g is non-increasing in
both arguments; and ρ is non-increasing, so that vertices whose positions are
far apart are less likely to be connected. Without loss of generality we scale the
profile function as ∫

Rd

ρ(|x|d) dx = 1. (3)

Then it is easy to see that the degree distribution of a vertex does not depend on
ρ (see for example [8, Proposition 4.1]); it does however influence the likelihood
of long edges.

We next give concrete examples for the kernel function g, and demonstrate
that our setup yields a number of well-known models in continuum percola-
tion theory. We define the functions in terms of a parameter γ ∈ (0, 1), which
determines the strength of the influence of the vertex weight on the connection
probabilities; large γ correspond to strong favouring of vertices with large weight.
The models considered below are all scale-free with power-law exponent

τ = 1 +
1
γ

,

which means that, in probability as N → ∞,

# vertices x ∈ [−N,N ]d with degree k
# vertices x ∈ [−N,N ]d

→ μ(k), and μ(k) = k−τ+o(1). (4)

(A) We define the plain kernel as

gplain(s, t) = 1. (5)

In this case we have no dependence on the weights. If ρ(r) = 1[0,a] for
a = d/ωd and ωd is the area of the unit sphere in Rd, this gives the Gilbert
disc model with radius d

√
βa. Functions ρ of more general form lead to the

(ordinary) random connection model, including in particular a continuum
version of long-range percolation when ρ has polynomial decay at infinity.
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(B) We define the sum kernel as

gsum(s, t) =
(
s−γ/d + t−γ/d

)−d

. (6)

Interpreting (as−γ)1/d, (at−γ)1/d as random radii and letting ρ(r) = 1[0,a]

we get the Boolean model in which two vertices are connected by an edge
if the associated balls intersect. We get a further variant of the model with
the min-kernel defined as

gmin(s, t) = (s ∧ t)γ ,

which, as gsum ≤ gmin ≤ 2gsum, shows qualitatively the same behaviour.
(C) For the max-kernel defined as

gmax(s, t) = (s ∨ t)1+γ ,

we may choose any γ > 0. This is a continuum version and generalization
of the ultra-small scale-free geometric networks of Yukich [28], which is also
parametrized to have power-law exponent τ = 1 + 1

γ .
(D) A particularly interesting case is the product kernel

gprod(s, t) = sγtγ , (7)

which leads to a continuum version of the scale-free percolation model of
Deijfen et al. [4,13], see also [5,6]. This model combines features of scale-
free random graphs and polynomial-decay long-range percolation models (for
suitable choice of ρ).

(E) Our final example for g is the preferential attachment kernel

gpa(s, t) = (s ∨ t)1−γ(s ∧ t)γ , (8)

which gives rise to the age-dependent random connection model introduced
by Gracar et al. [8] as local weak limit of the age-based preferential attach-
ment model, which is a simplification and approximation of the spatial
preferential attachment model in Jacob and Mörters [16]. In this model,
s and t actually play the role of the birth times of vertices in the underlying
dynamic network. This model also combines scale-free degree distributions
with power-law exponent τ = 1 + 1

γ and long edges in a natural way, but
has a fundamentally different graph topology, as we will see.

The above listed kernels represent only some of the possible choices. We refer
the reader to Table 1 for a short literature survey of the terminology under which
the above kernels appear in the literature.

1.3 Main Results

We now focus on a profile function with polynomial decay

lim
v→∞ ρ(v) vδ = 1 for a parameter δ > 1, (9)
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Table 1. Terminology of the models in the literature.

Vertices Profile Kernel Name and reference

Poisson Indicator Plain Random geometric graph, Gilbert disc model [24]

Poisson General Plain Random connection model [20]

Soft random geometric graph [25]

Lattice Polynomial Plain Long-range percolation [2]

Poisson Indicator Sum Boolean model [12,21]

Lattice Indicator Max Ultra-small scale-free geometric networks [28]

Poisson Indicator Min Scale-free Gilbert graph [15]

Lattice Polynomial Prod Scale-free percolation [4,13]

Poisson Polynomial Prod Inhomogeneous long-range percolation [5]

Continuum scale-free percolation [6]

Poisson General Prod Geometric inhomogeneous random graphs [3]

Poisson General Pa Age-dependent random connection model [8]

renormalised appropriately to satisfy (3), and fix one of the kernel functions
described above. We keep γ, δ fixed and study the resulting graph Gβ as a func-
tion of β. Note that our assumptions δ > 1 and γ < 1 guarantee that Gβ is
locally finite for all values of β, since it can quickly be checked that the degree
of every vertex is Poisson distributed, cf. [8, p. 315 and Proposition 4.1]. We
informally define βc as the infimum over all values of β such that Gβ contains
an infinite component (henceforth the infinite cluster). If d ≥ 2, we always have
βc < ∞, cf. [13]. General arguments in [7] yield that there is at most one infi-
nite component of Gβ , and hence there is a unique infinite component whenever
β > βc. We study the properties of this infinite cluster.

Two cases correspond to different network topologies.

– If γ > 1
2 for the product kernel, γ > 0 for the max kernel, or γ > δ

δ+1 for the
preferential attachment, min or sum kernels we have βc = 0, i.e. there exists
an infinite cluster irrespective of the edge density, see [13] for product, [28]
for max and [11,17] for all other kernels. We say that this is the robust case.

– Otherwise, if γ < 1
2 for the product kernel, see [13], or if γ < δ

δ+1 for the pref-
erential attachment, min or sum kernels, we have βc > 0. This was recently
shown in [11]. In this case we say we are in the non-robust case.

Our main interest is whether the infinite cluster is recurrent (i.e., simple ran-
dom walk on the cluster returns to its starting point almost surely), or transient
(i.e., simple random walk on the cluster never returns to its starting point with
positive probability). Our results are summarized in the following theorem.

Theorem 1 (Recurrence vs. transience of the weight-dependent ran-
dom connection model). Consider the weight-dependent random connection
model with profile function satisfying (9).
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(a) For preferential attachment kernel, sum kernel, or min kernel and β > βc,
the infinite component is
– transient if either 1 < δ < 2 or γ > δ/(δ + 1);
– recurrent if d ∈ {1, 2}, δ > 2 and if γ < δ/(δ + 1).

(b) For the product kernel and β > βc, the infinite component is
– transient if either 1 < δ < 2 or γ > 1/2;
– recurrent if d ∈ {1, 2}, δ > 2 and if γ < 1/2.

(c) For the max kernel and β > βc, the infinite component is transient.

γ
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recurrent for d = 1, 2
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Fig. 1. The different phases in Theorem 1: Left: preferential attachment kernel. Right:
product kernel. The dashed line separates the robust from the non-robust phase.

For a summary of the results we refer to Fig. 1. We describe the proof of
this theorem in Sects. 3 and 4, and refer to the journal version [10] for the full
argument. We emphasise again that the characterisation of the regimes for this
large class of graphs yields important information about them, useful for example
in order to determine whether random walker algorithms will be able to properly
scale to larger graphs or not.

Remarks:

– Loosely speaking, for the models in (a) and (b) the walk can travel to infinity
using long edges if there are enough of them, i.e. if δ < 2. For the models in
(a) the walk can also use that vertices of ever increasing weight can be reached
using a pool of intermediate vertices, which is big enough if γ > δ/(δ + 1).
For the model in (b) with γ > 1

2 and the model in (c) with 0 < γ < 1 the
walk can travel directly between vertices of increasing weight without using
intermediate edges.
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– When δ > 2 and γ < δ
δ+1 for the preferential attachment kernel resp. γ < 1

2
for the product kernel, we expect that the long-range and scale-free effects do
not influence the behaviour of the random walk, so that for d ≥ 3 the infinite
cluster would be transient. A mathematical proof of transience in this regime
(even for long-range percolation) has not yet been found. We plan to address
this in future work.

2 The Weight-Dependent Random Connection Model

Construction As a Point Process on (Rd × [0, 1])[2] × [0, 1]. We give now a
more formal construction of our model. To this end, we extend the construction
given in [14, Sections 2.1 and 2.2] by additional vertex marks (the weight or birth
time). For further constructions, see Last and Ziesche [19] and Meester and Roy
[22]. We construct the random connection model as a deterministic functional
Gϕ(ξ) of a suitable point process ξ. Let η denote a unit intensity Rd-valued
Poisson point process, which we can write as

η = {Xi : i ∈ N}; (10)

such enumeration is possible, cf. [18, Corollary 6.5]. In order to define random
walks on the random connection model, it is convenient to have a designated
(starting) point, and we therefore add an extra point X0 = 0 and thereby get a
Palm version of the Poisson point process.

We further equip any Poisson point Xi (i ≥ 0) with an independent mark
Si drawn uniformly from the interval (0, 1). This defines a point process η′ :=
{Xi = (Xi, Si) : i ∈ N0} on R

d × (0, 1). Let (Rd × (0, 1))[2] denote the space of all
sets e ⊂ R

d × (0, 1) with exactly two elements; these are the potential edges of
the graph. We further introduce independent random variables (Ui,j : i, j ∈ N0)
uniformly distributed on the unit interval (0, 1) such that the double sequence
(Ui,j) is independent of η′. Using < for the strict lexicographical order on Rd,
we can now define

ξ :=
{({(Xi, Si), (Xj , Sj)}, Ui,j

)
: Xi < Xj , i, j ∈ N0

}
, (11)

which is a point process on (Rd×(0, 1))[2]×(0, 1). Mind that η′ might be recovered
from ξ. Even though the definition of ξ does depend on the ordering of the points
of η, its distribution does not.

We can now define the weight-dependent random connection model Gϕ(ξ) as
a deterministic functional of ξ; its vertex and edge sets are given as

V (Gϕ(ξ)) = η′,

E(Gϕ(ξ)) = {{Xi,Xj} ∈ V (Gϕ(ξ))[2] : Xi < Xj , Ui,j ≤ ϕ(Xi,Xj), i, j ∈ N0}.

Only in this section we write Gϕ(ξ) in order to make the dependence on the
connection function ϕ explicit; in the following sections we will fix a kernel
function as well as the parameters δ and γ, and therefore only write Gβ = Gβ(ξ).
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Percolation. Our construction ensures that 0 := (X0, S0) ∈ V (Gϕ(ξ)). We now
write {0 ↔ ∞} for the event that the random graph Gϕ(ξ) contains an infinite
self-avoiding path (v1, v2, v3, . . . ) of vertices with vi ∈ V (Gϕ(ξ)) (i ∈ N) such
that {0, v1}, {v1, v2}, {v2, v3} · · · ∈ E(Gϕ(ξ)), and we say that in this case the
graph percolates. We denote the percolation probability by

θ(β) = P(0 ↔ ∞ in Gϕ(ξ));

for the probability that this happens; this quantity is well-defined by the mono-
tonicity of the right-hand side in β. This allows us to define the critical percola-
tion threshold as

βc := inf{β > 0 : θ(β) > 0} ≥ 0. (12)

Random Walks. We recall that, as γ < 1, the resulting graph Gϕ(ξ) is locally
finite, i.e.

∑

y∈V (Gϕ(ξ))

1{{x,y} ∈ E(Gϕ(ξ))} < ∞ for all x ∈ V (Gϕ(ξ)) almost surely,

(13)
cf. [8, p. 315 and Proposition 4.1]. Given Gϕ(ξ) with 0 ↔ ∞ we define the simple
random walk on the random graph Gϕ(ξ) as the discrete-time stochastic process
for which X0 = 0 and

PGϕ(ξ)(Xn = y | Xn−1 = x) =
1
{{x,y} ∈ E(Gϕ(ξ))

}

∑
z∈V (Gϕ(ξ)) 1

{{x, z} ∈ E(Gϕ(ξ))
}

for any x,y ∈ V (Gϕ(ξ)) and n ∈ N. We say that Gϕ(ξ) is recurrent if

PGϕ(ξ)
(∃n ≥ 1 : Xn = 0

)
= 1,

otherwise we say that it is transient.

3 Transience

In this section we outline the key steps needed to prove the transience statement
of Theorem 1. Throughout, we write Gβ instead of Gϕ(ξ) to stress that kernel
and profile are fixed and the percolation parameter is β.

3.1 Transience in the Robust Case

Proving transient behaviour for the robust case hinges on a renormalisation
sequence argument. Heuristically, we consider a finite box in Rd and the largest
cluster of connected vertices inside of this box. Then, if the box is chosen suffi-
ciently large, the probability that this cluster represents a positive proportion of
the entire vertex set is increasing, as is the probability that within this cluster
a vertex with weight greater than some predetermined value exists. When these
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two conditions are satisfied, we consider this box good. We now, roughly speak-
ing, repeat this argument for a considerably larger box. We break this large box
into disjoint boxes of the previous scale and consider only those boxes which
satisfy the two conditions (which occurs independently and with uniform prob-
ability for all boxes). Then, we call the bigger box good whenever a sufficiently
large proportion of the boxes contained therein are good, they are sufficiently
well connected with each other and there exists a vertex in this newly constructed
cluster with weight greater than an even larger predetermined value.

Repeating this procedure at greater and greater scales we obtain a renor-
malised graph sequence that is contained in the infinite component of the graph
and can be shown to be transient with a fairly straightforward argument. We
formalise this statement in the following two results and leave the proof of
Theorem 2 for the full version of this paper [10].

Given a graph G = (V,E) and a sequence {Cn}∞
n=1 let Vl(jl, . . . , j1) with

l ∈ N0 and jn ∈ {1, . . . , Cn} be an element of the vertex set V . Furthermore, let
V0 be some arbitrary vertex. Now let for l ≥ m > 1

Vl(jl, . . . , jm) =
⋃Cm−1

jm−1=1 · · · ⋃C1
j1=1 Vl(jl, . . . , j1).

We call the sets Vl(jl, . . . , jm) bags, and the numbers Cn bag sizes.

Definition 1. We say that the graph G = (V,E) is renormalized for the
sequence {Cn}∞

n=1 if we can construct an infinite sequence of graphs such
that the vertices of the l-th stage graph are labelled by Vl(jl, . . . , j1) for all
jn ∈ {1, . . . , Cn}, and such that for every l ≥ m > 2, every jl, . . . , jm+1, and all
pairs of distinct um, wm ∈ {1, . . . , Cm} and um−1, wm−1 ∈ {1, . . . , Cm−1} there
is an edge in G between a vertex in the bag Vl(jl, . . . , jm+1, um, um−1) and a
vertex in the bag Vl(jl, . . . , jm+1, wm, wm−1).

The underlying intuition is that every n-th stage bag contains Cn (n − 1)-
stage bags, each one of which contains again Cn−1 (n−2)-stage bags. Every pair
of (n − 2)-stage bags in an n stage bag is connected by an edge between one of
the vertices in the bags.

Lemma 1 (Berger, [2, Lemma 2.7]). A graph renormalized for the sequence
Cn is transient if

∑∞
n=1 C−1

n < ∞.

Theorem 2 (Product and max kernel contain a renormalised graph
sequence). Let β > βc for the chosen kernel. If γ > 1

2 for gprod or γ > 0 for
gmax, then the infinite connected component contains a graph renormalized for
the sequence Cn = (n+1)2d almost surely. Consequently, the infinite component
is transient.

Before we proceed to argue the result for the remaining kernels from
Theorem 1, we first give a heuristic argument as to why the proof for the max
and product kernel does not work for the rest. In order to demonstrate the argu-
ment, we assume for the moment that the profile function ρ is the indicator
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function 1[0,c] for some constant c. The first key observation is that two nodes
of the graph that are far apart can only be connected if both of their respective
weights are large. This is especially clear in the max kernel case, since a connec-
tion between two nodes at distance v is then only possible when both of their
weights are greater than (vd/(βc))1/(1+γ). A similar observation can be made
for the product kernel - if one of the weights is small, the other weight must be
considerably bigger to ensure their product is large enough.

For the other kernels, both weights being large is similarly beneficial; it should
be remarked however that the probability of both weights being large is not suf-
ficiently offset by the increase in the connection probability. Unlike in the above
example, only the first heavy weight leads to a big increase in the probability of
a connection existing (the second weight has a considerably smaller effect on the
probability). In contrast to the max and product kernel, however, if the profile
function has sufficiently heavy tails at infinity, an alternative strategy exists. We
can connect pairs of nodes with large weights through a connector node with
a comparatively small weight. Intuitively, since the smaller of the weights in a
pair does not affect the connection probability of two nodes for the min ker-
nel (and affects the probability at a lower order than the large weight in the
sum and pa kernel), we can attempt to connect two far away nodes with large
weights through nodes of smaller weight. Their large number then makes the
probability of successfully finding such two-step connection sufficiently high to
again obtain a renormalised graph sequence. It is helpful to interpret this event
(i.e., the existence of a connector node through with which both nodes of the
pair are connected) as the existence of a bridged connection in a new graph with
the same vertex set (Fig. 2). Note however that a connection in this new graph
does not correspond to a specific tuple of a connector node and two correspond-
ing edges; instead, a bridged connection corresponds to the existence of such a
tuple. Then, one can roughly speaking use the same strategy as before in this
new graph.

Therefore, although the construction of Theorem 2 does not yield the desired
renormalised graph sequence for the remaining kernels when using direct con-
nections, it does lead to the stated result when using the bridged connections
instead. We state the main properties that hold for these connections in the
following proposition.

Proposition 1 (Occurrence of bridged connections). Let (x, t) and (y, s)
be two nodes of the graph with t > s. Then there exists a positive constant C
such that the probability that there exists a bridged connection between the two
vertices is at least

1 − exp{−Cs−γρ(β−1tγ(s
−γ
d + |x − y|)d)}.

Furthermore, this probability is monotonically decreasing in |x − y|.
A direct consequence of Proposition 1 is that one can, using the same construc-
tion as used to prove Theorem 2, obtain a renormalised graph sequence satisfying
the conditions of Lemma 1 which leads to the following result.
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Fig. 2. The diagram illustrates the intensity of the Poisson point process of all points
that are connected to (x, t) and (y, s) for the pa kernel and a large δ. Intuitively,
the area where such points are probable (contained roughly within the 4th innermost
contour line) is sufficiently large to make the existence of a bridged connection (like the
one in red) more probable than the direct connection (which would fall well outside
the 4th innermost contour line of only (x, t) or (y, t)).

Theorem 3 (Min, sum and preferential attachment kernel contain a
renormalised graph sequence). Suppose γ > δ

δ+1 and the kernel is gmin,
gsum or gpa. Then if β > βc the infinite connected component contains a graph
renormalized for the sequence Cn = (n + 1)2d almost surely. Consequently, the
infinite component is transient.

3.2 Transience in the Non-robust Case

Similar to the robust case, transience in the non-robust case requires a renor-
malisation argument. However, unlike in the previous section, the paths which
carry the random walk out of any finite neighbourhood of 0 are not supported by
vertices of extremely large weight which in turn are incident to very long edges,
independently of the overall density of edges. Instead, the walk travels along a
multitude of moderately long edges; if δ < 2 and β > βc then there are sufficiently
many of these edges and the walk is transient. The reason behind this difference is
the same structural feature that distinguishes robustness from non-robustness:
In the robust phase, there is a backbone of very few hubs of extremely high
weight that guarantees a high connectivity of the network, whereas in the non-
robust phase, these hubs are absent and high connectivity can only be obtained
by strongly amplifying the edge density.

We have seen in Sect. 3.1 that the precise way of forming the connections
between vertices of large weight in the robust case depends on the form of the
kernel function g. In the non-robust case, the form of the kernel g is much less



Transience Versus Recurrence for Scale-Free Spatial Networks 107

important for the proof of transience, and only requires that the profile decays
sufficiently slowly. More precisely, we require only the existence of s∗ such that

lim inf
v→∞ ρ

(
g(s∗, s∗) vd

)
vδd > 0, (14)

for some δ < 2. As soon as (14) is satisfied, any supercritical weight-dependent
random connection model contains a sub-graph that shows the same qualitative
behaviour as a supercritical cluster in long-range percolation with tail expo-
nent δ, which is known to be transient [2].

Theorem 4 (Non-robust supercritical clusters are transient if δ < 2).
Let G = Gϕ(ξ) denote the weight-dependent random connection model with ρ, g
satisfying (14) for some δ < 2. If G is supercritical, then the infinite cluster is
transient.

For a detailed proof of Theorem 4 we refer the reader to the full version
of this paper [10]. Here, we provide a condensed version of our argument and
briefly discuss its limitations. To relate G to long-range percolation, we use a
coarse graining technique. Rd is partitioned into cubes and these cubes form the
sites in a long-range bond-site percolation model. Connectivity between sites is
established using the edge-probabilities inherited from the underlying weight-
dependent random connection model. The crucial ingredient is that, for a site
to be present at all in the coarse grained model, the corresponding cube needs
to contain a cluster of G that is sufficiently dense in the cube.

Proposition 2 (Local density of clusters). Let G be as in Theorem 4. For
any λ ∈ (0, 1), and any ε > 0, there is a sufficiently large M0 ∈ N, such that the
following is true for all M > M0: the probability that the cube [0,M)d contains
a cluster with at least Mλd vertices exceeds 1 − ε.

The proof of Proposition 2 is precisely where the renormalisation scheme men-
tioned above comes into play. Just as in the robust case, vertices are grouped
into boxes on the initial scale. Boxes are called good if the vertices inside a box
form sufficiently large clusters, and bad if this is not the case. On all subsequent
scales, boxes themselves are grouped into larger boxes. The larger boxes are in
turn good if they have many good sub-boxes and the clusters inside these good
sub-boxes are sufficiently well-connected with each other, and thus form a single
cluster on a larger scale. When proceeding upwards in this hierarchy, one needs
to control the probability that several sub-clusters inside a box do not belong
to a single larger cluster. Our estimate for this probability is obtained from an
auxiliary construction describing how clusters inside boxes merge. To formulate
it, let δ0 ∈ (1, 2), m = (m1, . . . ,mr) with r ∈ N and mj ∈ N, j = 1, . . . , r and
let Im,δ0 denote the inhomogeneous random graph which is constructed on the
vertex set {1, . . . , r} by creating edges between 1 ≤ i < j ≤ r independently
with probability

1 − e−mimj/(
∑r

k=1 mk)
δ0 .

It is instructive to interpret m as mass distribution and |m| :=
∑r

k=1 mk as total
mass of Im,δ0 . At any stage of the renormalisation scheme, the clusters inherited
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from the previous stage are interpreted as the vertices in an inhomogeneous
random graph and the cluster sizes as the corresponding masses. Our probability
bounds for the merger of clusters rely on the following result:

Lemma 2 (Berger, [2, Lemma 2.5]). Let δ0 ∈ (1, 2) and � ∈ (0, 1) such that

18� > 16 + δ0.

There exist ζ = ζ(δ0, �) > 0 and M0(δ0, �) > 0 such that for all m with |m| ≥ M0

P
(
N|m|�(Im,δ0) > 1

)
< |m|−ζ ,

where Nx(Im,δ0) denotes the number of clusters C ⊂ Im,δ with
∑

j∈C mj ≥ x.

Note that the assumption that δ ≤ δ0 < 2 is necessary to apply Lemma 2. This
is precisely the reason why neither for the weight-dependent random connection
model, nor for any other known long-range percolation model with polynomial
tail connection probabilities, the proof of transience in the non-robust case can
be extended to the case where δ ≥ 2.

After invoking Lemma 2, a union bound over all stages of the renormalisation
shows that if the scaling parameters are carefully tuned, then the total probabil-
ity of ever encountering a bad box when zooming outward from 0 can be made
arbitrarily small, which implies Proposition 2. In turn, Proposition 2 implies
that the site density in the coarse grained model can be brought arbitrarily close
to one and thus the transience of the coarse-grained long-range bond-site per-
colation model follows from the corresponding result for the long-range bond
percolation model.

4 Recurrence

In order to show recurrence in dimensions d ∈ {1, 2}, we use electrical network
theory.

Proposition 3 (Nash-Williams, [26]). Let G be a graph with conductance
Ce on every edge e. Consider a random walk on the graph such that when the
particle is at some vertex, it chooses its way with probabilities proportional to
the conductances on the edges that it sees. Let {Πn}∞

n=1 be disjoint cut-sets, and
denote by CΠn

the sum of the conductances of Πn. If
∑

n

C−1
Πn

= ∞,

then the random walk is recurrent.

The arguments that lead to the result for d = 1 and d = 2 are subtly different
from each other, but roughly correspond to showing that the number of edges
leaving disjoint cut-sets are sufficiently light tailed. In dimension 1, this can
be shown directly by simply treating each edge as having unit conductance
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and counting the expected number of edges connecting subsequent cut-sets. In
dimension 2, we consider instead a lattice based graph that is constructed so
as to have effective conductance that is not smaller than that of our random
graph. Then, using a projection argument similar to the one in [2] on this lattice
graph, a sufficient condition for recurrence can again be obtained. Putting these
arguments together, we obtain the following result.

Theorem 5 (Recurrence in one and two dimensions, [2]). For d = 1 let G
be a random graph on a unit intensity Poisson point process where two vertices
x and y are connected with probability P|x−y| such that

lim sup
v→∞

v2Pv < ∞.

For d = 2 let G be a random graph on a unit intensity Poisson point process
where two vertices x and y are connected with probability P|x1−y1|,|x2−y2| such
that

lim sup
u,v→∞

(u + v)4Pu,v < ∞.

In both cases, any infinite component of such graph is recurrent.

Consequently in dimensions 1 and 2, if δ > 2 and γ < δ/(δ + 1) for the pref-
erential attachment, sum and min kernels, any infinite component is recurrent.
Similarly, if δ > 2 and γ < 1/2 for the product kernel, any infinite component is
recurrent.

Acknowledgement. We acknowledge support from DFG through Scientific Network
Stochastic Processes on Evolving Networks.

References

1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Pra�lat, P.: A spatial web graph
model with local influence regions. Internet Math. 5(1–2), 175–196 (2008)

2. Berger, N.: Transience, recurrence and critical behavior for long-range percolation.
Commun. Math. Phys. 226(3), 531–558 (2002). Corrected proof of Lemma 2.3 at
arXiv:math/0110296v3

3. Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs.
Theoret. Comput. Sci. 760, 35–54 (2019)

4. Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. Ann.
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Abstract. We introduce a new, deterministic directed graph model for
social networks, based on the transitivity of triads. In the Iterated Local
Directed Transitivity (ILDT) model, new nodes are born over discrete
time-steps and inherit the link structure of their parent nodes. The ILDT
model may be viewed as a directed graph analog of the ILT model for
undirected graphs introduced in [4]. We investigate network science and
graph-theoretical properties of ILDT digraphs. We prove that the ILDT
model exhibits a densification power law, so that the digraphs gener-
ated by the models densify over time. The number of directed triads are
investigated, and counts are given of the number of directed 3-cycles and
transitive 3-cycles. A higher number of transitive 3-cycles are generated
by the ILDT model, as found in real-world, on-line social networks that
have orientations on their edges. We discuss the eigenvalues of the adja-
cency matrices of ILDT digraphs. We finish by showing that in many
instances of the chosen initial digraph, the model eventually generates
digraphs with Hamiltonian directed cycles.

1 Introduction

Real-world, complex networks contain numerous mechanisms governing link for-
mation. Balance theory (or structural balance theory) in social network analysis
cites several mechanisms to complete triads (that is, subgraphs consisting of
three nodes) in social networks [9,11]. A central mechanism in balance theory is
transitivity : if x is a friend of y, and y is a friend of z, then x is a friend of z; see, for
example, [16]. Directed networks of ratings or trust scores and models for their
propagation were first considered in [10]. Status theory for directed networks,
first introduced in [14], was motivated by both trust propagation and balance
theory. While balance theory focuses on likes and dislikes, status theory posits
that a directed link indicates that the creator of the link views the recipient as
having higher status. For example, on Twitter or other social media, a directed
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link captures one user following another, and the person they follow may be of
higher social status. Evidence for status theory was found in directed networks
derived from Epinions, Slashdot, and Wikipedia [14]. For other applications of
status theory and directed triads in social networks, see also [12,18].

The Iterated Local Transitivity (ILT ) model introduced in [3,4] and further
studied in [2,17], simulates social networks and other complex networks. Tran-
sitivity gives rise to the notion of cloning, where a node x is adjacent to all of
the neighbors of y. Note that in the ILT model, the nodes have local influence
within their neighbor sets. Although the model graph evolves over time, there is
still a memory of the initial graph hidden in the structure. The ILT model sim-
ulates many properties of social networks. For example, as shown in [4], graphs
generated by the model densify over time and exhibit bad spectral expansion. In
addition, the ILT model generates graphs with the small-world property, which
requires the graphs to have low diameter and dense neighbor sets.

In the present work, we introduce a directed analog of the ILT model, where
nodes are added and copy the in- and out-neighbors of existing nodes. The model
simulates link creation in social networks, where new actors enter the network,
and directed edges are added via transitivity through the lens of status theory.
For example, in link formation in a directed social network such as Twitter,
a new user may reciprocally follow an existing one, then in turn follow their
followers. We consider the simplified setting where new nodes copy all of the
links of their parent node. Our model, and iterated models more generally [2],
provide counterparts for earlier studied random models for complex networks
involving copying [13] or duplication [8].

More formally, the Iterated Local Directed Transitivity (ILDT ) model is
deterministically defined over discrete time-steps as follows. The only parameter
of this deterministic model is the initial digraph G = G0. For a non-negative
integer t, the graph Gt represents the digraph at time-step t. Suppose that the
directed graph Gt has been defined for a fixed time t ≥ 0. To form Gt+1, for
each x ∈ V (Gt), add a new node x′ called the clone of x. We refer to x as the
parent of x′, and x′ as the child of x. Between x and x′ we add a bidirectional
arc, representing a reciprocal status (or friendship) relationship between them.
For arcs (x, z) and (y, x) in Gt, we add arcs (x′, z) and (y, x′), respectively, in
Gt+1. See Fig. 1. We refer to Gt as an ILDT digraph. Note that the clones form
an independent set in Gt+1.

y x z

x'

Fig. 1. Adding a clone x′ in ILDT.



The ILDT Model for Social Networks 113

In Fig. 2, we illustrate several time-steps of the ILDT model beginning with
the directed 3-cycle.

The paper is organized as follows. In Sect. 2, we prove that the ILDT model
exhibits a densification power law, so that the digraphs generated by the model
densify over time. The number of directed triads are investigated in Theorem 2,
and precise counts are given of the number of directed 3-cycles and transitive
cycles. These counts are contrasted, and it is shown that the transitive cycles
are more abundant (as is the case with social networks; see [14]). We include a
discussion of the eigenvalues of the adjacency matrices of ILDT directed graphs.
In Sect. 3, the eigenvalues of ILDT directed graphs are investigated. In Sect. 4,
we explore directed cycles of larger order in ILDT graphs. We show that ILDT
digraphs are acyclic if the initial digraph is such, and that for many instances
of initial digraphs, the model eventually generates graphs with Hamiltonian
directed cycles. We finish with open problems.

For a general reference on graph theory, the reader is directed to [19]. For
background on social and complex networks, see [1,5,7]. Throughout the paper,
we consider finite, directed graphs with bidirectional edges allowed. We refer to

Fig. 2. The ILDT graphs Gt, with t = 1, 2, 3, 4 of the ILDT model, where the initial
graph is the directed 3-cycle.
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a directed edge as an arc. For nodes x and y of a graph, if there is an arc between
x and y, we denote it by (x, y); if there is a bidirectional arc between x and y we
denote such an arc with usual graph theoretic notation of xy. When counting
the number of arcs within a graph, bidirectional arcs each contribute 2 to the
final count. We use log n to be the logarithm of n in base 2.

2 Densification and Triad Counts

As we referenced in the introduction, social networks densify, in the sense that
the ratio of their number of arcs to nodes tends to infinity over time [15]. We
show in this section that the ILDT model always generates digraphs that den-
sify, and we give a precise statement below of its densification power law. As
a phenomenon specific to digraphs, we consider the differing counts of directed
and transitive 3-cycles in graphs generated by the model.

The number of nodes of Gt is denoted nt, the number of arcs is denoted et,
and the number of bidirectional arcs is denoted bt. Note that et contains two
arcs for each bidirectional arc. We establish elementary but important recursive
formulas for these parameters.

Lemma 1. Let G0 be a digraph with n0 nodes, e0 arcs, and b0 bidirectional arcs.
For all t ≥ 1, we have the following:

1. nt = 2tn0;
2. et = 3et−1 + 2nt−1; and
3. bt = 3bt−1 + nt−1.

Proof. Item (1) follows immediately as the number of nodes doubles in each
time-step. For item (2), for each node in Gt−1 with t > 0, after cloning there
will be a bidirectional arc between each parent and their child. These count as
2nt−1-many arcs. For every arc (x, y) in Gt−1, arcs (x, y′) and (x′, y) appear in
Gt. Hence, for every arc in Gt−1, three arcs of Gt are generated. Summing these
two counts gives the desired expression for et. Item (3) follows analogously to (2),
except that we count the bidirectional edges once; hence, there are nt−1-many
bidirectional arcs. ��

We now state the densification power law for ILDT graphs. For positive
integer-valued functions ft and gt, we use the expression ft ∼ gt if ft/gt tends
to 1 as t tends to ∞.

Corollary 1. In the ILDT model, we have that

et

nt
∼

(
3
2

)t (e0 + 2n0)
n0

.

In particular, we have that et ∼ C · (nt)a, where a = log 3 and C = e0+2n0
(n0)a

.



The ILDT Model for Social Networks 115

Proof. By Lemma 1, we have that

et = 3te0 + 3t−121n0 + 3t−222n0 + . . . + 312t−1n0 + 2tn0

= 3te0 + 3t−12n0

(
1 − (

2
3

)t

1 − 2
3

)

= 3t (e0 + 2n0) − 2t(2n0).

We then derive that

et

nt
=

3t (e0 + 2 · n0) − 2t(2n0)
2tn0

∼
(

3
2

)t (e0 + 2n0)
n0

,

and the result follows. ��
We next consider 3-node subgraph counts in the ILDT model, where we find

a higher number of transitive 3-cycles relative to directed 3-cycles. A similar
phenomenon was found in directed network samples in social media such as
Epinions, Slashdot, and Wikipedia, where transitive 3-cycles appear much more
commonly than directed 3-cycles; see [14]. If the initial graph has no directed
3-cycles, then our results show there are none at any time-step in the evolution
of the model. For nodes x, y, z, if there exists a cycle with arcs (x, y), (y, z), and
(z, x), then we abbreviate this directed 3-cycle to (x, y, z). We take the directed
3-cycles (x, y, z) and (y, z, x) to be the same cycle. For a 3-cycle where the arcs
(x, y), (y, z), and (x, z) are present, we denote this transitive 3-cycle by xyz. A
bidirectional 3-cycle is one that consists of three bidirectional arcs. Although,
strictly speaking, a bidirectional 3-cycle contains six transitive 3-cycles and two
directed 3-cycles, we will distinguish these by asserting that each transitive and
directed 3-cycle must contain at least one non-bidirectional arc.

Theorem 1. In the graph Gt, let Dt be the number of directed 3-cycles, Tt be
the number of transitive 3-cycles, and Bt be the number of bidirectional 3-cycles.
We then have that

1. Dt+1 = 4Dt;
2. Tt+1 = 4Tt + 4(et − 2bt); and
3. Bt+1 = 4Bt + 2bt.

Proof. For item (1), consider a directed 3-cycle in a graph Gt, labeled (a, b, c).
Each node can be replaced by its clone to produce a new directed 3-cycle; hence,
(a′, b, c), (a, b′, c), and (a, b, c′) are all directed 3-cycles generated by the directed
3-cycle (a, b, c) from Gt. Thus, for each 3-cycle in Gt, there are four directed
3-cycles in Gt+1. Therefore, Dt+1 ≥ 4Dt.

To establish the upper bound, suppose, by way of contradiction, that there
exists another directed 3-cycle in Gt+1 which was not previously counted. Such a
directed 3-cycle cannot involve only parent nodes (since it would be from Gt) and
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it also cannot involve two clones because clones form an independent set. Hence,
it must involve two nodes from Gt and one of the clones, call it (a, d′, c). But
since d′ has all the same adjacencies as d, this implies that (a, d, c) is a directed
3-cycle which is in Gt, a contradiction, or that a, d, c are not all distinct. In the
later case, we can assume that a = d, and so the directed 3-cycle includes arcs
(a, c) and (c, a′), implying that 3-cycle is bidirectional, which is not counted in
Dt+1. Hence, Dt+1 = 4Dt.

To prove item (2), observe that for every non-bidirectional arc (x, y) in Gt,
there will be four transitive 3-cycles in Gt+1 formed with their clones using
bidirectional arcs: xx′y, x′xy, xyy′, and xy′y. Thus, we add 4(et − 2bt) to the
count of Tt+1 (note that et − 2bt counts the number of non-bidirectional arcs).

Existing transitive 3-cycles from Gt also exist in Gt+1, and substituting a clone
for its parent will produce a new transitive 3-cycle. Thus, each original transitive
3-cycle in Gt gives four transitive 3-cycles in Gt+1 (namely, the cycle itself, and
three produced from clone substitution). It is straightforward to check that these
are the only transitive 3-cycles in Gt+1. Therefore, Tt + 3Tt contributes to the
total count of transitive 3-cycles. We then have that Tt+1 = 4Tt + 4(et − 2bt).

Item (3) can be shown similarly, as each bidirectional 3-cycle of Gt will
correspond to four bidirectional 3-cycles in Gt+1. Each bidirectional arc xy in
Gt will correspond to two unique bidirectional 3-cycles in Gt+1 formed from the
nodes x, x′, y, y′. ��

We now present an exact expressions for Dt, Tt, and Bt.

Theorem 2. In the ILDT digraph Gt, we have that

1. Dt = 4tD0;
2. Tt = 4tT0 + 4(4t − 3t)(e0 − 2b0); and
3. Bt = 4tB0 + 2b0(4t − 3t) + n0(4t − 2 · 3t + 2t).

Proof. Item (1) follows from Theorem 1 (1) by induction. For (2), by Theorem 1
(2), we derive that

Tt = 4tT0 +
t∑

i=1

4i(et−i − 2bt−i).

By the proof of Corollary 1, along with a similar argument for bt, we have that

et−i = 3t−i(e0 + 2n0) − 2t−i+1n0,

bt−i = 3t−i(b0 + n0) − 2t−in0, and so (1)

et−i − 2bt−i = 3t−i(e0 − 2b0). (2)

From (2), we derive that

Tt = 4tT0 +
t∑

i=1

4i(3t−i(e0 − 2b0))

and item (2) follows by summing the geometric series.
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For item (3), we have that Bt = 4tB0 + 1
2

∑t
i=1 4ibt−i. From Eq. (1), we find

(in a way analogous to Tt) the desired expression for Bt. ��
We consider next the ratio of Dt and Tt, which gives more explicit estimates

on the relative abundance of transitive versus directed 3-cycles. By Theorem 2,
we have that

Dt

Tt
=

4tD0

4tT0 + 4(4t − 3t)(e0 − 2b0)
∼ D0

T0 + 4(e0 − 2b0)
.

Hence, the ratio Dt

Tt
may be made as small as we like by choosing an appropriate

initial digraph.

3 Eigenvalues

We next consider eigenvalues of the adjacency matrices of ILDT digraphs. Spec-
tral graph theory is a well-developed area for undirected graphs (see [6]) but
less so for directed graphs (where the eigenvalues may be complex numbers with
non-zero imaginary parts). We observe that if Gt has adjacency matrix A, then
Gt+1 has the following adjacency matrix:

(
A A + I

A + I 0

)
,

where I and 0 are the appropriately sized identity and zero matrices, respectively.
The following recursive formula (analogous to the one in the ILT model) allows
us to determine all the eigenvalues of ILDT graphs from the spectrum of the
initial graph. We have the following theorem from [4].

Theorem 3. Let t ≥ 0. If ρ is an eigenvalue of the adjacency matrix of Gt,
then the eigenvalues of the adjacency matrix of Gt+1 are

ρ ± √
ρ2 + 4(ρ + 1)2

2
.

It is of interest to consider properties of the distribution of eigenvalues arising
from ILDT digraphs graphs in the complex plane. For this, we consider the
special case of G0 a directed 3-cycle, which has eigenvalues the 3rd roots of
unity. The resulting eigenvalue distribution of these ILDT digraphs suggests a
rich structure. We plot the eigenvalues corresponding to Gt for 1 ≤ t ≤ 5 in
Fig. 3a.

If ρ is an eigenvalue of the adjacency matrix of Gt and ρ is large in magni-
tude, then there is an eigenvalue of the adjacency matrix of Gt+1 that is approx-
imately equal to ((1+

√
5)/2)ρ, and in a similar way there is an eigenvalue of the

adjacency matrix of Gt+α that is approximately equal to ((1 +
√

5)/2)αρ. We
normalize the eigenvalues corresponding to Gt by dividing them by ((1+

√
5)/2)t

for 1 ≤ t ≤ 5 in Fig. 3b.
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(a) Standard. (b) Normalized.

(c) Normalized, with curve Ct.

Fig. 3. Eigenvalues in the complex plane of ILDT digraphs Gt, where 1 ≤ t ≤ 5. Col-
ors distinguish the time-steps. Figures (a) depicts the eigenvalues, (b) the normalized
eigenvalues, and (c) depicts the curves Ct.

Let C0 be the circle in the complex plane of radius 1 centered at the origin.
By applying the function f(z) = (z ± √

z2 + 4(z + 1)2)/2 iteratively t times to
the points of C0, we obtain a curve Ct in the complex plane. If we let G0 be the
directed n-cycle, then the eigenvalues of Gt lie on Ct. In Fig. 3c, we include Ct

and the eigenvalues of Gt after normalization by dividing them by ((1+
√

5)/2)t,
where G0 is the directed 3-cycle. The curve Ct was plotted after normalization for
t ≤ 30, and there was no noticeable difference between the time-steps t = 15 and
t = 30. The structure after 30 iterations is provided in Fig. 4. We suspect that
as t approaches infinity, the normalization of Ct approaches a specific, limiting
curve. As a result, the normalized mapping applied to the nth roots of unity
would approach limiting points, and these limiting points can be calculated from
the curve.

Fig. 4. The mapping f(z) applied to the complex unit circle over 30 iterations, after
normalization.
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4 Directed Cycles

As a consequence of Theorem 2, there are no directed 3-cycles in an ILDT
digraph unless there is one present in the initial graph. We generalize this prop-
erty in the following result. Note that our directed cycles in the theorem are
oriented, and so do not include directed 2-cycles. However, we are allowed to
include bidirected edges (traversed in a single-direction) as part of our directed
cycles.

Theorem 4. For all t ≥ 0, the digraph Gt contains an oriented directed cycle
if and only if Gt+1 contains an oriented directed cycle.

Proof. The forward implication is immediate, so we focus on the reverse impli-
cation. Let (a1, . . . , ak) be a directed cycle of length k in Gt+1. Define a func-
tion f : V (Gt+1) → V (Gt) that maps a clone in Gt+1 to its parent node, and
acts as the identity mapping, otherwise. If (ai, ai+1) is an arc in Gt+1, then
(f(ai), f(ai+1)) is an arc in Gt. The subgraph induced by the edges of the closed
directed walk (f(a1), . . . , f(ak)) has in-degree equal to out-degree at every node
(counting the multiplicity of the edges in the walk) precisely because it is a closed
directed walk. Each time we visit a node on the walk we contribute one to the
in-degree and one to the out-degree. Hence, (f(a1), . . . , f(ak)) decomposes into
an edge-disjoint collection of directed cycles (none of which is a directed 2-cycle,
by hypothesis). Hence, Gt contains a cycle. ��

We turn next to directed Hamiltonian cycles; that is, directed cycles visiting
each node exactly once. Note that while we do not expect directed Hamiltonian
cycles in real-world social networks, the emergence of this property in ILDT
graphs is of graph-theoretical interest in its own right. For this, we first prove
the following theorem on Hamiltonian paths in ILT undirected graphs. For a
graph G, we use the notation ILTt(G) for the ILT graph resulting at time t if
G0 = G; analogous notation is used for ILDT graphs. We use the notation G[S]
for the subgraph induced by nodes S in G.

In the following lemma with G0 chosen as K1, we label the node of G0 as 0,
and its unique child in G1 as 1.

Lemma 2. Fix t ≥ 1 and let Gt = ILTt(K1). For every clone v ∈ V (Gt), there
is a Hamiltonian path in Gt from v to 0.

Proof. We use induction on t ≥ 1. The base case t = 1 is straightforward, since
G1

∼= K2. For the induction step, we assume t ≥ 2. We label the node of G0 as
0, and its unique child in G1 as 1. Note that we can partition V (Gt) into V0 and
V1 such that 0 ∈ V0, 1 ∈ V1 and Gt[V0] ∼= Gt[V1] ∼= Gt−1. To see this, consider
the ILDT process as starting with each of the nodes 0 and 1 independently. For
i = 1, 2, the set Vi consists of all clones over subsequent time-steps starting with
the initial vertex i.

First suppose that v ∈ V1, and choose an arbitrary w ∈ V0. By the induction
hypothesis, there exists a Hamiltonian path P0 in Gt[V0] with endpoints w and
0. Similarly, there exists a Hamiltonian path P1 in Gt[V1] with endpoints v and
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1. Let P = P1 + 1w + P0; now P is the desired Hamiltonian path in Gt from v
to 0.

Suppose instead that v ∈ V0, and choose an arbitrary w ∈ V1. By the induc-
tion hypothesis, there exists a Hamiltonian path P0 in Gt[V0] with endpoints v
and 0. Similarly, there exists a Hamiltonian path P1 in Gt[V1] with endpoints w
and 1. Let x be the neighbor of 0 on P0. Let P = P0 − x0 + x1 + P1 + w0. Now
P is the desired Hamiltonian path in Gt from v to 0 (Fig. 5). ��

clones

non-clones

v w

1 0

V1 V0

clones

non-clones

w vx

1 0

V1 V0

Fig. 5. The two cases in the proof of Lemma 2, wavy lines represent paths.

In a digraph D, a closed spanning walk C (that respects the orientations of
D) is nice if for each edge vivj ∈ E(C) either (i) vivj is the last edge departing
vi on C or (ii) vivj is the first edge entering vj on C; possibly both (i) and (ii)
hold for some edges of C. The max frequency, written s(C), of a nice walk C is
the largest number of times that any node appears in C.

Theorem 5. If D is a digraph with a nice walk C and t ∈ Z
+ such that 2t−1 ≥

s(C), then Dt has a directed Hamiltonian cycle.

Proof. Let Dt = ILDTt(D). We construct a Hamiltonian cycle in Dt by the
algorithm below. We assume that the nodes of D are {v1, . . . , vn} (each vi may
appear many times on C) and that the nodes of Dt are partitioned into V1, . . . , Vn

(where Vi consists of vi and all its descendants; that is, nodes that resulted by
iterated cloning of vi). Intuitively, we use C to ensure that our walk H visits each
Vi at least once and we use each Pi to ensure that we visit all remaining vertices
of Vi the last time that C visits vi, in D.

Initialization: Pick an arbitrary node vi on C. Choose a clone w ∈ Vi. Start
H at w. Let Pi be a Hamiltonian path in Vi that starts at w and ends at 0 (in
Vi), by Lemma 2 (with vertex 0 defined as in Lemma 2). Always vi, vj refers to
vertices of D and vertices of Dt are denoted by w, x, or 0.

Iteration: Assume that H currently ends at some clone w ∈ Vi (for some i) and
path Pi is defined, possibly from the initialization. If we have followed all edges
of C, then halt and output H. Otherwise, let e = vivj denote the next edge of
C. (1) If e is the last edge leaving vi on C, then follow Pi from w to 0 in Vi;
otherwise, move to the next node on Pi. (2) If Pj is undefined (we have not yet
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visited vj on C), then follow an edge to an arbitrary clone x in Vj . In this case,
define Pj to be a Hamiltonian path in Vj with endpoints x and 0; such a Pj

exists by Lemma 2. If Pj is defined, then follow an edge from the current node
of H to the next node on Pj (in Vj). (When e is the final edge of C, we return
to the node of Vj where we started, which finishes H.)

This completes the algorithm for constructing H from C. We prove its cor-
rectness in two steps. First, we show that if the algorithm completes, then it
constructs the desired Hamiltonian cycle H. Second, we show that the algorithm
does indeed complete. Suppose the algorithm completes successfully. Since C is
a spanning walk, it visits every node vi ∈ V (D). Thus, H visits every Vi. The
final time that H visits a Vi it visits every remaining node on Pi. Thus, H visits
every node in

⋃
Vi = V (Dt); that is, H is spanning in Dt.

Now we must show that the algorithm completes successfully. Every time H
leaves a Vi it does so from a non-clone, and every time H returns to a Vj it
returns to a clone (that has not been visited before). The number of clones in
each Vj is 2t−1, so this is possible precisely because s(C) ≥ 2t−1. Now we need to
check that Dt has the necessary edges between Vi and Vj . Since C is nice, each
edge e = vivj ∈ E(C) satisfies that either (i) vivj is the last edge leaving vi on
C or (ii) vivj is the first edge entering vj on C. In (i), H leaves Vi from node 0,
which has edges to every node of Vj . In (ii), any edge from a non-clone of Vi to
a clone of Vj suffices, since we will define Pj as starting from this clone of Vj

(and since C has never before visited vj). ��
The following result on the Hamiltonicity of the ILT model was first proven

in [2], and we give an alternative proof as a corollary of Theorem 5.

Corollary 2. If G is a connected undirected graph and t = log |V (G)|, then
ILTt(G) is Hamiltonian.

Proof. We form a digraph D from G by replacing each undirected edge vw with
arcs (v, w) and (w, v). We construct a nice spanning closed walk of D and apply
Theorem 5. Choose an arbitrary node v ∈ D and form C by recording each edge
followed in a depth-first traversal of D (including to what we call back-tracking
edges). Consider an edge vw ∈ E(C). If w has never been visited before, then
vw satisfies (ii) in the definition of nice. If w has been visited before, then it is
straightforward to check that vw satisfies (i) in the definition (precisely because
C arose from a depth-first traversal of D). ��

We conjecture that for every strongly connected digraph D there exists an
integer t such that ILTt(D) has a Hamiltonian cycle. In a sense, this conjecture
is best possible, since if ILTt(D) is Hamiltonian for some t, then D must be
strongly connected. Namely, if there exist vi, vj ∈ V (D) such that D has no
directed path from vi to vj , then ILTt(D) has no directed path from Vi to Vj ,
so ILTt(D) is not Hamiltonian. We suspect that this conjecture can be proved
by somehow modifying the proof of Theorem 5.
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5 Conclusion and Further Directions

We introduced and analyzed the Iterated Local Directed Transitivity (ILDT)
model for social networks, motivated by status theory, transitivity in triads, and
the ILT model in the undirected case [4]. We proved that the ILDT model,
as in social networks, generates graphs that densify over time. A count of the
directed, transitive, and bidirectional 3-cycles was given, and it was shown that
the 3-transitive cycles count may be far more abundant by choice of the initial
graph of the model. We studied the eigenvalues of the adjacency matrices of
ILDT graphs, with a discussion of the limiting distribution of eigenvalues of the
directed 3-cycle. We concluded our results with an analysis of directed cycles
in ILDT graphs and proved that in many instances of the initial graph, ILDT
graphs have Hamiltonian cycles.

Given our limited space, we did not explore distance properties of the model,
although we expect the model should generate small-world graphs, as is the
case for ILT graphs. In the full version of the paper, it would be interesting to
analyze the clustering coefficient, domination number, and degree distribution of
ILDT graphs. The eigenvalues of ILDT graphs are worthy of further study, both
in their limiting distribution in the complex plane and regarding their spectral
expansion.
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A Note on the Conductance of the
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Abstract. We establish the rapid mixing property of a binomial random
intersection graph G (n, m, p) introduced in [11,17]. For this purpose we
show that the conductance is bounded away from zero by a positive
constant. We consider the range of parameters n, m, p where the edge
density is just above the connectivity threshold (our graph is connected
with high probability as n, m → +∞). We assume in addition that
np = Θ(1).

Keywords: Random intersection graph · Mixing time · Conductance

1 Introduction

Model. Vertices v1, . . . , vn of an intersection graph represent subsets W(v1), . . . ,
W(vn) of an auxiliary set W = {w1, . . . , wm}. Two vertices vi and vj are called
adjacent whenever the corresponding subsets intersect, W(vi) ∩ W(vj) �= ∅. In a
random intersection graph the subsets W(v1), . . . ,W(vn) are drawn at random.
Random intersection graphs have attracted considerable attention in recent lit-
erature mainly as convenient models of real complex networks. For example, in
the collaboration network two scientists are adjacent if they have co-authored a
publication, in the consumer co-purchase network two customers are adjacent if
they purchased similar products, etc. They also have important applications in
networks’ modelling, see e.g. [1,3–6,8,12,18].

In this note we focus on the binomial random intersection graph G (n,m, p)
introduced in [11,17]. In the binomial random intersection graph the random sets
W(v1), . . . ,W(vn) are independent and identically distributed. Moreover, each
w ∈ W is included in W(vi) independently at random with probability p for
every vi, 1 ≤ i ≤ n. By V = {v1, . . . , vn} we denote the vertex set. Elements of
the auxiliary set W are called attributes. We will consider a sequence of random
intersection graphs Gn = G (n,m, p), where m = mn → +∞ and p = pn → 0
as n → +∞. We assume that np = Θ(1) and mp(1 − e−np) − ln n → +∞. The
latter relation implies that the event that G (n,m, p) is connected has probability
1 − o(1), see [15,17].
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B. Kamiński et al. (Eds.): WAW 2020, LNCS 12091, pp. 124–134, 2020.
https://doi.org/10.1007/978-3-030-48478-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48478-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-48478-1_9


A Note on the Conductance of the Binomial Random Intersection Graph 125

Motivation. The conductance of a graph is related to problems concerning ran-
dom walks on graphs [16]. In the accompanying paper [2] we use, among others,
this result to establish a first order asymptotic to the cover time of G (n,m, p) in
the range of parameters considered in Theorem 1. We believe that understand-
ing the random walk performance in random intersection graphs is an inter-
esting and important question as random intersection graphs are perceived as
convenient models of real complex networks [1,18]. The binomial random inter-
section graph G (n,m, p) is a particular representative of the family of random
intersection graphs and results concerning this model are the first step towards
understanding the random walks in other random intersection graph models.

Result. The conductance Φ(G) of a connected graph G with vertex set V is defined
as follows

Φ(G) = min
S⊂V,|S|≤|V|/2

e(S, S̄)
2e(S,S) + e(S, S̄)

,

where e(S,S) is the number of edges induced by set S ⊂ V and e(S, S̄) is
the number of edges between S and S̄ := V \ S. The conductance depicts how
“narrow” are “bottlenecks” which delay the mixing of a random walk on a graph
and is closely related to the mixing time of a random walk, see [16].

In Theorem 1 below we show that Φ
(G (n,m, p)

)
is bounded away from zero

by a positive constant as n → +∞. This implies that the mixing time of the
simple random walk on G (n,m, p) is O(ln n), see [16]. In particular, the random
intersection graph G (n,m, p) has the rapid mixing property.

Before formulating our result we mention that all limits in the paper are
taken as n → ∞. Throughout the paper we use standard asymptotic notation
o(·), O(·), Ω(·), Θ(·), and 
 defined as in [10].

Theorem 1. Let c2 > c1 > 0 and c3 > 0. Let n → +∞. Let m = m(n) → +∞,
p = p(n) → 0 and c = c(n) > 1 be such that c1 ≤ np ≤ c2 and c ≤ c3, and

mp(1 − (1 − p)n−1) = c ln n, and (c − 1) ln n → ∞. (1)

Then
Pr {Φ(G (n,m, p)) > 0.05} = 1 − o(1). (2)

Related Work. In earlier papers [13,14] the O(ln n) upper bound on the mixing
time of G (n,m, p) has been shown for the model’s parameters p = 4m−1 ln n
and m = nα, where α ≤ 1 is fixed. Note that for m = nα, α ≤ 1, the connec-
tivity threshold is at p = m−1 ln n. Interestingly, [13] lowerbounds the conduc-
tance, but of the related bipartite graph (see B (n,m, p) in Sect. 2 below) instead
of G (n,m, p). In Theorem 1 we concentrate on the case where m 
 n ln n there-
fore the range of parameters n,m, p considered here does not intersect with that
of [13,14]. We note that the random intersection graph considered in Theorem 1
is a union of m randomly located cliques (for each w ∈ W the set {v: w ∈ W(v)}
induces a clique in G (n,m, p)). The sizes of these cliques are independent binomial
random variables with the common distribution Bin (n, p).
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Further Work. The result concerning conductance of the binomial random inter-
section graph G (n,m, p) is a first step towards a better understanding of ran-
dom walks on random intersection graphs. It is essential in finding the expected
cover time of a random walk on G (n,m, p) [2]. It is interesting and technically
challenging problem to determine the cover time of (giant components of) more
general models of random intersection graphs including those with non-vanishing
clustering coefficient and power law degree distribution [1,18].

2 Notation and Idea of the Proof

By Bin (n, p) we denote the binomial distribution with parameters n, p. We also
use the phrase “with high probability” to say that the probability of a considered
event tends to one as n tends to infinity. All inequalities hold for n large enough.
If it does not influence the result, we consequently omit �·� and ·� for the sake
of clarity of presentation. By A1, A2, . . . we denote positive constants that do
not depend on n.

Let B (n,m, p) be the random bipartite graph with the bipartition (V,W),
where each v ∈ V and w ∈ W are linked independently with probability p.
Random intersection graph G = G (n,m, p) with the vertex set V is obtained
from B = B (n,m, p) as follows: v, v′ ∈ V are adjacent in G whenever v, v′ have a
common neighbour in B. Now W(v) and V(w) stand for the sets of neighbours in
B of vertices v ∈ V and w ∈ W respectively. Clearly, W(v) ⊂ W and V(w) ⊂ V.
We call the sets V(w) attribute cliques (each such set induces a clique in G). For
v ∈ V define

W ′(v) = {w ∈ W(v) : |V(w)| ≥ 2}.

Furthermore, define the vertex sets SMALL = {v : |W ′(v)| ≤ 0.1 ln n} and
LARGE = V \ SMALL. Vertices belonging to SMALL (LARGE) we call small
(large). Large vertices are those that have neighbours in many attribute cliques.
While small vertices’ neighbours are included in few attribute cliques (possibly
even in only one).

Let

d0 = mp(1 − (1 − p)n−1), d1 = nmp2, k0 = max{2, np} ln n

ln lnn
.

Observe that d0 = E|W ′(v)|, d1 is approximate expected degree of G (n,m, p).
Note that (1) and np = Θ(1) imply

d0 
 d1 
 ln n. (3)

Let w ∈ W, S ⊂ V, |S| = s, and VS(w) = V(w) ∩ S. Than the number of
edges included in both the attribute clique V(w) and S is

(|VS(w)|
2

)
where |VS(w)|

is binomially distributed Bin (s, p). Similarly the number of edges between S and
S̄ provided by the attribute clique V(w) is |VS(w)| · |VS̄(w)|, where |VS(w)| and
|VS̄(w)| are, resp., binomially distributed Bin (s, p) and Bin (n − s, p). We might
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expect that not many edges are included in multiple attribute cliques thus it is
reasonable to approximate 2e(S,S) and e(S, S̄) by the sums

2
∑

w∈W

(|VS(w)|
2

)
and

∑

w∈W
|VS(w)| · |VS̄(w)|, respectively. (4)

In the proofs we will need tight bounds for the above sums with exponential
probabilities. At some point we will concentrate on those attributes for which
2 ≤ |VS(w)| ≤ ln lnn (for the first sum) or 1 ≤ |VS(w)| ≤ ln lnn and
1 ≤ |VS̄(w)| ≤ ln lnn (for the second sum). Therefore we introduce some addi-
tional notation.

Let ηs ∼ Bin(s, p) be a binomial random variable. For 1 ≤ s ≤ n − 1, let

p1 = p1(s) = Pr {2 ≤ ηs ≤ ln lnn} ,

p2 = p2(s) = Pr {1 ≤ ηs ≤ ln lnn} Pr {1 ≤ ηn−s ≤ ln lnn} ,

f1 = f1(s) = p1(s)/(sp)2, f2 = f2(s) = p2(s)/(s(n − s)p2),

m1 = m1(s) = 0.5f1sd1, m2 = m2(s) = f2s(n − s)mp2.

Let Mi = Mi(s) ∼ Bin(m, pi(s)), i = 1, 2 be binomial random variables. Note
that, given S ⊂ V with |S| = s, M1 is the number of attributes w ∈ W with
2 ≤ |VS(w)| ≤ ln lnn and M2 counts those attributes for which both VS(w) and
VS̄(w) have sizes between 1 and ln ln n. Let {Xi,j , j ≥ 1}, i = 0, 1, 2 be sequences
of independent random variables with the distributions

Pr {X0,j = k} = Pr
{
ηs = k

∣
∣2 ≤ ηs ≤ ln lnn

}
, k = 2, 3, . . . ,

Pr {X1,j = k} = Pr
{
ηs = k

∣
∣1 ≤ ηs ≤ ln lnn

}
, k = 1, 2, . . . ,

Pr {X2,j = k} = Pr
{
ηn−s = k

∣
∣1 ≤ ηn−s ≤ ln lnn

}
, k = 1, 2, . . . .

We will concentrate on analysing random variables

Y1 = Y1(s) =
∑

1≤j≤2m1

X0,j(X0,j − 1),

Y2 = Y2(s) =
∑

1≤j≤�m2/2�
X1,jX2,j .

We will show that Y1 and Y2 have approximately the same value as the
random variables from (4) i.e. they are a good approximation of 2e(S,S) and
e(S, S̄).

3 Proof of Theorem 1

Before we proceed with the proof of the main theorem we show two auxiliary
lemmas.
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Lemma 1. Let n,m → +∞ and p = p(n) → 0. Under conditions of Theorem 1
the following events hold with high probability

(i) any two small vertices are at distance at least 3;
(ii) maxw∈W |V(w)| ≤ k0;
(iii) there is no vertex pair {u, v} ⊂ V belonging to three distinct attribute

cliques, the number of pairs {u, v} that belong to two attribute cliques is
less than ln3 n.

Proof. (i) and (ii) follow from property P7 and Fact 10 of [2]. Let us show (iii).
Let N2 (N3) be the number of pairs {u, v} ∈ V belonging to at least two (three)
attribute cliques. We have for i = 1, 2

EN1+i ≤
(

n

2

)(
m

i + 1

)
p2+2i ≤ (np)2(mp)2(mp2)i−1 = Θ(1) ln2 n

(
n−1 ln n

)i−1
.

By Markov’s inequality, Pr {N3 ≥ 1} = O(n−1 ln3 n) and Pr
{
N2 > ln3 n

}
=

O(ln−1 n). This finishes the proof of (iii).

Lemma 2. Assume that conditions of Theorem 1 are satisfied. Then there exist
constants A1, A2, A3, A4 > 0 such that uniformly in s ∈ [n/d31, n/2] and n ≥ A4,
m ≥ A4 we have

A1 < fi(s) < A2, i = 1, 2, (5)
Pr {M1(s) ≥ 2m1(s)} ≤ exp (−A3 s ln n) , (6)
Pr {M2(s) ≤ 0.5m2(s)} ≤ exp (−A3 s ln n) , (7)
Pr {Y1(s) ≥ 2sd1} ≤ exp

(−A3s(ln n)/(ln lnn)4
)
, (8)

Pr
{
Y2(s) ≤ s(n − s)mp2/4

} ≤ exp
(−A3s(ln n)/(ln lnn)4

)
. (9)

Proof. We prove (5) for i = 1. The proof for i = 2 is much the same.
Let p̂1 = Pr {2 ≤ Λ ≤ ln lnn}, where Λ ∼ P(sp) is a Poisson random variable

with EΛ = sp. The Poisson approximation error bound (Le Cam’s lemma [19])
implies |p1 − p̂1| ≤ 2sp2. Hence it sufficies to show (5) for f̂1 = p̂1/(sp)2. We write

p̂1 = p̂1.1 − p̂1.2, p̂1.1 = 1 − Pr {Λ ≤ 1} , p̂1.2 = Pr {Λ > ln lnn}

and easily verify (5) for f̂1.1 := p̂1.1/(sp)2 = (1 − e−sp − spe−sp)/(sp)2. Finally,
we upper bound the Poisson tail probability (Proposition 1 of [7])

p̂1.2 ≤
(

1 −
(

sp

ln lnn�
))−1

e−sp (sp)�ln lnn�

ln lnn�! ≤ 2
(sp)�ln lnn�

ln lnn�!

and show that p̂1.2/(sp)2 ≤ 2(c2/2)�ln lnn�−2/(ln lnn�!) ≤ ln−1 n. This finishes
the proof of (5).
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Proof of (6), (7). We have

EM1 = mp1 ≤ 0.5mf1snp2 = 0.5f1d1s = m1,

EM2 = mp2 = m2.

Chernoff’s bounds (see Theorem 2.1 in [10]) imply

Pr {M1 ≥ 2m1} ≤ Pr {M1 ≥ mp1 + m1}

≤ exp
(

− m2
1

2(mp1 + m1/3)

)
≤ exp (−(3/8)m1) ,

Pr {M2 ≤ 0.5m2} ≤ exp (−m2/8) .

Now (6), (7) follow from (3), (5).
Proof of (8), (9). We have

EY1 = 2m1E(X0,1(X0,1 − 1)) ≤ 2m1p
−1
1 Eηs(ηs − 1) = 2m1p

−1
1 s(s − 1)p2 ≤ sd1,

EY2 ≥ m2

2
(EX1,1)(EX2,1) ≥ m2s(n − s)p2

3p2
=

1
3
s(n − s)mp2.

Here we used (EX1,1)(EX2,1) = p−1
2 (EηsI{ηs≤ln lnn})(Eηn−sI{ηn−s≤ln lnn}) and

the fact that EηiI{ηi≤ln lnn} = (1 + o(1))Eηi uniformly in n/d3
1 ≤ i ≤ n as

n → +∞. Next we apply Hoeffding’s inequality [9] to the sums Y1, Y2 with
summands bounded by (ln lnn)2. We have

Pr {Y1 ≥ 2sd1} ≤ Pr {Y1 ≥ EY1 + sd1} ≤ exp
(

− s2d21
m1(ln lnn)4

)
,

Pr
{

Y2 <
1
4
s(n − s)mp2

}
≤ exp

(
−2

(s(n − s)mp2/12)2

m2/2�(ln lnn)4

)
.

Now (8), (9) follow from (3), (5). This finishes the proof of Lemma 2.

Now we proceed with the proof of Theorem 1.
Let ϕ(S) = e(S,S̄)

2e(S,S)+e(S,S̄)
. Then Φ(G) = minS⊂V,|S|≤n/2 ϕ(S). Note that

graph G (n,m, p) is connected with high probability, [15,17]. Hence with high
probability ϕ({v}) = 1,∀v ∈ V. We show below that for some {εn} such that
εn → 0 as n → ∞,

|ϕ(S) − 1| ≤ εn ∀ S ⊂ V, 2 ≤ |S| ≤ n/d3
1 (10)

with high probability. Furthermore, for some {ε′
n} such that ε′

n → 0 as n → ∞,
inequalities

e(S, S̄) ≥ (1 + ε′
n)|S|d1/8, e(S,S) ≤ (1 + ε′

n)|S|d1 (11)

hold uniformly in S ⊂ V, n/d31 ≤ |S| ≤ n/2, with high probability. From (10)
and (11) we derive (2). It remains to prove (10) and (11).
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Proof of (10). Given S ⊆ V let

W k(S) = |{w ∈ W : |VS(w)| ≥ k}|, VS(w) = V(w) ∩ S. (12)

We claim that the event

W k(S) ≤ 4k−1|S|, for every 2 ≤ k ≤ nd−3
1 and k ≤ |S| ≤ nd−3

1 (13)

has probability 1 − o(1). Indeed, by the union bound, the probability of the
complement event is at most

n/d3
1∑

k=2

n/d3
1∑

s=k

(
n

s

)(
m
4s
k

) ((
s

k

)
pk

)4s/k

≤
n/d3

1∑

k=2

n/d3
1∑

s=k

(
en

s
· e4/km4/kk4/k

44/ks4/k
· e4s4p4

k4

)s

=
n/d3

1∑

k=2

n/d3
1∑

s=k

(
e5+(4/k)

k4−(4/k)
· s

n
·
( s

m

)2−−4/k

(nmp2)2
)s

≤
n/d3

1∑

k=2

(
A5

d1

)k

= o(1).

Here A5 is a constant independent of k and n. In the second inequality we used(
t
u

) ≤ (et/u)u. In the last inequality we used s/n ≤ d−3
1 and s/m ≤ 1.

Now we show that for some sequence {ε′
n}, such that ε′

n → 0 as n → ∞, we
have with high probability

e(S,S) ≤ ε′
nd1|S| ∀ S ⊂ V, 2 ≤ |S| ≤ d−3

1 n. (14)

Given 0 < ε < 1 let

I = ((ln(ln k0 − ln 2) − ln ln ε−1)/ ln 2) − 1.

Note that ε2
I+1

k0 = 2 and I = O(ln ln lnn). Given realised instance of G (n,m, p)
satisfying Lemma 1 (ii) and (13) we have for any S ⊆ V with |S| ≤ n/d3

1

2e(S,S) ≤
∑

w∈W: |VS(w)|≥2

(|VS(w)|
2

)

≤
I∑

i=0

∑

w∈W: ε2i+1k0≤|VS(w)|≤ε2ik0

(
ε2

i

k0

)2

+
∑

w∈W: εk0≤|VS(w)|≤k0

k2
0

≤
I∑

i=0

W ε2i+1
k0(S)ε2

i+1
k2
0 + W εk0(S)k2

0

≤
I∑

i=0

4|S|
ε2i+1k0

ε2
i+1

k2
0 +

4|S|
εk0

k2
0

≤ 4|S|k0(I + 1 + ε−1).
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The last inequality combined with (3) shows (14).
Next we lowerbound e(S, S̄). For S ⊂ LARGE let WS,S̄ be the set of triples

(u, v, w) where u ∈ S, v ∈ S̄, w ∈ W and u, v ∈ V(w). Clearly, |WS,S̄ | ≥ e(S, S̄).
Observe that Lemma 1 (iii) implies 2e(S, S̄) ≥ |WS,S̄ | as each edge may belong
to at most two distinct attribute cliques. Furthermore, we have

|WS,S̄ | =
∑

u∈S

∑

w∈W′(u)

|VS̄(w)| ≥
∑

u∈S

∑

w∈W′(u)

I{VS̄(w) 
=∅}

≥
∑

u∈S
|W ′(u)| −

∑

w∈W:V(w)⊂S,|V(w)|≥2

|V(w)|. (15)

By Lemma 1 (ii) and (13), the quantity (15) is at least

|S|0.1 ln n − W 2(S)k0 ≥ |S|0.1 ln n − 2|S|k0 ≥ 0.09|S| ln n.

Invoking (3) we obtain for some constant A6 that with high probability

e(S, S̄) ≥ |WS,S̄ |/2 ≥ 0.04|S| ln n ≥ A6|S|d1, ∀S⊂LARGE. (16)

Now we show (10). Given S ⊆ V with |S| ≤ n/d31, let S1 = S ∩ SMALL and
S2 = S ∩ LARGE. Lemma 1 (i) implies e(S1,S1) = 0 and e(S1,S2) ≤ |S2|. For
S2 = ∅ we obtain ϕ(S) = ϕ(S1). But ϕ(S1) = 1 with high probability because
G (n,m, p) is connected with high probability. For S2 �= ∅ we have

e(S,S) = e(S1,S1) + e(S2,S2) + e(S1,S2) = e(S2,S2) + e(S1,S2),
e(S, S̄) = e(S1, S̄) + e(S2, S̄) ≥ e(S2, S̄) = e(S2, S̄2) − e(S1,S2).

Furthermore,

e(S,S) ≤ e(S2,S2) + |S2|,
2e(S,S) + e(S, S̄) ≥ 2e(S2,S2) + e(S2, S̄2).

The latter inequalities imply

0 ≤ 1 − ϕ(S) =
2e(S,S)

2e(S,S) + e(S, S̄)
≤ 2 + 2|S2|−1e(S2,S2)

2|S2|−1e(S2,S2) + |S2|−1e(S2, S̄2)
.

By (14), (16), the right side is o(1) uniformly in S ⊂ V, |S| ≤ n/d31 with high
probability. This finishes the proof of (10).

Proof of (11). Let us prove the second part of (11). Let
W1 = {w : |V(w)| ≥ ln lnn} and W2 = W \ W1. For any S ⊂ V we have

2e(S,S) ≤
∑

w∈W
|VS(w)| · (|VS(w)| − 1

)
= ẽ1(S,S) + ẽ2(S,S). (17)

Here ẽ1(S,S) and ẽ2(S,S) stand for the sums over w ∈ W1 and w ∈ W2 respec-
tively. Note that

ẽ1(S,S) ≤ ẽ1(V,V) =
∑

w∈W1

|V(w)| · (|V(w)| − 1
)
. (18)
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Furthermore,

E

(
∑

w∈W1

|V(w)|(|V(w)| − 1
)
)

= m
∑

t≥ln lnn

(
n

t

)
pt(1 − p)n−tt(t − 1)

≤ m
∑

t≥ln lnn

(enp

t

)t

t2

≤ e2n2mp2
∑

t≥ln lnn

( enp

ln lnn

)t−2

≤ e2n2mp2(1 + o(1))
( enp

ln lnn

)ln lnn−2

≤ n2mp2 ln−9 n.

In the last step we used np = Θ(1) and assumed that n is large. Hence we get
Eẽ1(V,V) ≤ nd1 ln−9 n. From (18) we obtain, by Markov’s inequality and (3),

Pr
{

max
S,|S|≥n/d3

1

ẽ1(S,S)
|S| ≥ d−1

1

}
≤ Pr

{
ẽ1(V,V) ≥ n/d41

} ≤ d51 ln−9 n = o(1).

(19)
Next we show that the event

ẽ2(S,S) ≤ 2|S|d1 ∀ S ⊂ V, n/d31 ≤ |S| ≤ n/2 (20)

holds with high probability. Given S, let MS be the number of attributes w ∈ W
such that 2 ≤ |VS(w)| ≤ ln lnn. Let

∑
S stand for the sum over S ⊂ V with

n/d31 ≤ |S| ≤ n/2. By the union bound, the probability of the event complement
to (20) is at most

∑

S
Pr {ẽ2(S,S) > 2|S|d1} (21)

≤
∑

S
Pr

{
ẽ2(S,S) > 2|S|d1

∣
∣
∣MS ≤ 2m1(|S|)

}
+

∑

S
Pr {MS ≥ 2m1(|S|)}

≤
n/2∑

s=n/d3
1

(
n

s

)
Pr {Y1(s) ≥ 2sd1} +

n/2∑

s=n/d3
1

(
n

s

)
Pr {M1(s) ≥ 2m1(s)}

≤
n/2∑

s=n/d3
1

exp
(

s ln
n

s
+ s − A3

s ln n

(ln lnn)4

)

+
n/2∑

s=n/d3
1

exp
(
s ln

n

s
+ s − A3 s ln n)

)

= o(1).

Here we used (6), (8), the inequality ln
(
n
s

) ≤ s + s ln(n/s) and (3). The second
part of (11) follows from (17), (19), (20).
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Let us prove the first part of (11). Let

T (S) =
∑

w∈W
|VS(w)||VS̄(w)|I{1≤|VS(w)|≤ln lnn}I{1≤|VS̄(w)|≤ln lnn}.

Lemma 1 (iii) implies that with high probability e(S, S̄) ≥ T (S)−ln3 n. To prove
(11) we show that the event

T (S) ≥ |S|(n − |S|)mp2/4 ∀S ⊂ V, n/d31 ≤ |S| ≤ n/2 (22)

holds with high probability. Given S ⊂ V, let M̃S be the number of attributes
w ∈ W such that 1 ≤ |VS(w)| ≤ ln lnn and 1 ≤ |VS̄(w)| ≤ ln lnn . Let

∑
S stand

for the sum over S ⊂ V, n/d31 ≤ |S| ≤ n/2. By the union bound, the probability
of the event complement to (22) is at most

∑

S
Pr

{
T (S) ≤ |S|(n − |S|)mp2/4

}

≤
∑

S
Pr

{
T (S) ≤ |S|(n − |S|)mp2/4

∣
∣
∣ M̃S ≥ 0.5m2(|S|)

}

+
∑

S
Pr

{
M̃S ≤ 0.5m2(|S|)

}

≤
n/2∑

s=n/d3
1

(
n

s

)
Pr

{
Y2(s) ≤ s(n − s)mp2/4

}

+
n/2∑

s=n/d3
1

(
n

s

)
Pr {M2(s) ≤ 0.5m2(s)}

≤
n/2∑

s=n/d3
1

exp
(

s ln
n

s
+ s − A3s

ln n

(ln lnn)4

)

+
n/2∑

s=n/d3
1

exp
(
s ln

n

s
+ s − A3s ln n

)

= o(1).

This completes the proof of Theorem 1.
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Abstract. We introduce the Iterated Global model as a deterministic
graph process that simulates several properties of complex networks. In
this model, for every set S of nodes of a prescribed cardinality, we add
a new node that is adjacent to every node in S. We focus on the case
where the size of S is approximately half the number of nodes at each
time-step, and we refer to this as the half-model. The half-model provably
generate graphs that densify over time, have bad spectral expansion, and
low diameter. We derive the clique, chromatic, and domination numbers
of graphs generated by the model.

Keywords: Network models · Social networks · Densification ·
Spectral Graph Theory

1 Introduction

Over the last two decades, research in modelling complex networks has become
of great interest to mathematicians and theoretical computer scientists. Complex
networks arise in technological, social, and biological contexts. The emergence
of the study of complex networks such as the web graph and on-line social
networks has focused attention on these large-scale graphs, and in the modeling
and mining of their emergent properties; see [1,5,6] for more on these models.

Two deterministic models of complex networks of particular interest to the
current study were introduced: the Iterated Local Transitivity (ILT) model and
the Iterated Local Anti-Transitivity (ILAT) model [3,4]. Consider a social net-
work where friendships have positive edge signs and adversarial relations have
negative edge signs. A triad is a set of three nodes in a signed network. A triad
is said to be balanced if the product of the edge signs is positive. Structural
balance theory states that these networks seek to balance all triads [8]. The ILT
and ILAT models were designed with balanced triads in mind. In the ILT model,
nodes are cloned, where nodes are adjacent to all neighbors of their parent node.
In the ILAT model, nodes are anti-cloned, where a new node is adjacent to all
non-neighbors of it’s parent node. The ILT and ILAT models simulates many
properties of social networks. For example, as shown in [4], graphs generated
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by the model densify over time (see [10] for more on densification), and exhibit
bad spectral expansion (see [9] for more on this topic in social networks). In
addition, the ILT model generates graphs with the small-world property, which
requires the graphs to have low diameter and dense neighbor sets. Both the ILT
and ILAT models were unified in the recent context of Iterated Local Models
in [2].

The ILT, ILAT, and ILM models focused on considering the local structure
of the graph and generating a new model iteratively from this structure. We
now define a model that is independent of the structure of the initial graph but
retains the iterative character of the previously defined models. We introduce
the Iterated Global Models, where a dominating node is added for each subset of
nodes of a given cardinality.

Let k ≥ 1 be an integer. The one parameter of the model is the initial,
connected graph G = G0. At each time-step t ≥ 0, we create Gt+1 from Gt in
the following way: for each set of nodes of cardinality � 1

k |V (Gt)|�, say S, add a
new vS that is adjacent to each node of S. We name this process the 1

k -model.
For ease of notation, we refer to newly added nodes in Gt+1 as clones. Note that
the clones form an independent set in Gt+1.

For the sake of clarity, we focus in this paper on the case k = 2, which
we refer to as the half-model. In the half-model, each new node is adjacent to
approximately half of the existing network. See Fig. 1 for an example.

While structural balance theory considers the importance of local ties, the
half-model may be useful in analyzing complex networks where nodes interact
via weaker, non-local ties. In social networks such as Twitter, Instagram, or
Reddit, we may form a network of users where links are determined by likes,
comments, or comments. For example, a user on Reddit may choose to comment
on a fraction of the posts they read, which is reflective of the design of the
half-model.

The paper is organized as follows. In Sect. 2, we prove that, as observed
in complex networks, the half-model densifies over time and has bad spectral
expansion. We also show that after five time-steps, graphs generated by the

Fig. 1. One time-step of the half-model beginning with C4.
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model have diameter at most 3. The half-model is of graph theoretic interest in
its own right, and in Sect. 3 we determine the clique, chromatic, and domination
numbers of graphs generated by the model. We conclude with further directions
to investigate for the half-model.

For a general reference on graph theory, the reader is directed to [13]. For
background on social and complex networks, see [1,5,7]. Throughout the paper,
we consider finite, undirected graphs.

2 Complex Network Properties of the Half-Model

Our first result establishes the order and size of graphs generated by the half-
model. We first recall Stirling’s approximation for the factorial given by

n! ∼
√

2πn
(n

e

)n

.

Stirling’s approximation may be used to derive an expression for the central
binomial coefficient given by

(
2n

n

)
∼ 22n√

πn
,

which may be derived directly and is part of folklore. Such an approximation
will be useful in our analysis, and its usefulness has provided motivation for the
study of the half-model as opposed to other values of k. For an exposition of the
asymptotics of binomial coefficients, see the book [12].

The number of nodes of Gt is denoted by nt, the number of edges is denoted
by et.

Theorem 1. The order and size of the graph Gt in the half-model are given by
the following, respectively:

nt ∼
(

nt−1⌊nt−1
2

⌋
)

and et ∼
(

nt−1⌊nt−1
2

⌋
)

·
⌊nt−1

2

⌋
.

Before we give the proof of Theorem1, we simplify notation by defining the
function

αt =
(

nt⌊
nt

2

⌋
)

.

Proof. We begin with the order of Gt. By the definition of the model, at each
time-step t ≥ 1, we add one node for each set of size

⌊nt−1
2

⌋
. Hence, we derive

the following sum given by

nt = n0 +
t∑

i=1

αi−1.

The term αt−1 will dominate the rest of the summation, which gives us the
desired expression for the order of Gt.
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Next, we determine the size of Gt. Each new node added is adjacent to a
set of size

⌊nt−1
2

⌋
, and we add αt−1 nodes, so we obtain the following recursive

formula for the number of edges at time-step t :

et = et−1 +
⌊nt−1

2

⌋
αt−1.

We observe that the second term dominates the sum, and the result follows. ��
We say that a network densifies if the limit of the ratio of edges to nodes is

unbounded. Densification power laws in complex networks were first reported in
[10]. From Theorem 1 we have the following result.

Corollary 1. The half-model densifies with time.

Proof. By Theorem 1, we have that

et
nt

∼ αt−1 · ⌊nt−1
2

⌋
αt−1

=
⌊nt−1

2

⌋
,

which tends to infinity with t. ��
For a graph G and sets of nodes X,Y ⊆ V (G), define E(X,Y ) to be the

set of edges in G with one endpoint in X and the other in Y. For simplicity, we
write E(X) = E(X,X). Let A denote the adjacency matrix and D denote the
diagonal degree matrix of a graph G. The normalized Laplacian of G is

L = I − D−1/2AD−1/2.

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 denote the eigenvalues of L. The spectral gap
of the normalized Laplacian is defined as

λ = max{|λ1 − 1|, |λn−1 − 1|}.

We will use the expander mixing lemma for the normalized Laplacian [6].
For sets of nodes X and Y , we use the notation vol(X) =

∑
v∈X deg(v) for the

volume of X, X = V \X for the complement of X, and, e(X,Y ) for the number
of edges with one end in each of X and Y. Note that X ∩ Y need not be empty,
and in this case, the edges completely contained in X ∩ Y are counted twice. In
particular, e(X,X) = 2|E(X)|.
Lemma 1 (Expander mixing lemma). [6] If G is a graph with spectral gap
λ, then, for all sets X ⊆ V (G),

∣∣∣∣e(X,X) − (vol(X))2

vol(G)

∣∣∣∣ ≤ λ
vol(X)vol(X)

vol(G)
.

A spectral gap bounded away from zero is an indication of bad expansion
properties, which is characteristic for social networks, [9]. The next theorem rep-
resents a drastic departure from the good expansion found in binomial random
graphs, where λ = o(1) [6].
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Theorem 2. Graphs generated by the half-model satisfy λt ∼ 1, where λt is the
spectral gap of Gt.

Proof. Let X = V (Gt)\V (Gt−1) be the set of cloned nodes added to Gt−1 to
form Gt. Since X is an independent set, we note that e(X,X) = 0. We derive
that

Vol(Gt) = 2et ∼ αt−1 · nt−1,

Vol(X) = αt−1 ·
⌊nt−1

2

⌋
,

Vol(X) ∼ αt−1 ·
⌊nt−1

2

⌋
.

Hence, by Lemma 1, we have that

λt ≥ (Vol(X))2

Vol(Gt)
· Vol(Gt)
Vol(X)Vol(X)

=
Vol(X)
Vol(X)

∼ αt−1 · ⌊nt−1
2

⌋

αt−1 · ⌊nt−1
2

⌋

= 1,

and the result follows. ��
We observe that the half-model has a small (in fact, constant) diameter as

required for the small-world property. We first prove some results about the
connectivity for graphs generated by this model.

Lemma 2. For all t ≥ 0, if Gt is connected and nt ≥ 2, then Gt+1 is connected.

Proof. If v is a clone in Gt+1, then since nt ≥ 2, we have that v is adjacent
to at least one node u in V (Gt)\V (Gt+1). Since Gt is connected by hypothesis,
there exists a path from u to any other node of Gt, and hence, there is such a
path from v to any node of Gt. Since the node v was an arbitrary clone, we have
shown there exists a path between any two nodes in Gt+1. ��

In the case where n0 = 1, then G0 is K1. Note that G1 is K2, and G2 is the
disjoint union of two edges. In particular, G1 and G2 are not connected. The
subsequent lemma will provide insight into how many iterations a disconnected
graph requires before becoming connected.

Lemma 3. For all t ≥ 0, if Gt is a graph with nt ≥ 4, then Gt+1 is connected.

Proof. We proceed by a proof by contraposition. Suppose then that Gt+1 is
disconnected, and so there exists two nodes u, v in Gt+1 such that there is no
path between them.
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Case 1: u, v are both in V (Gt).
In this case, there is no set of size

⌊nt−1
2

⌋
that contains both u and v, since

otherwise, a clone in Gt+1 would be adjacent to both u, v. At each time-step
t, we add a clone for every subset of size

⌊
nt

2

⌋
; hence, it must be the case that⌊

nt

2

⌋
< 2 which implies nt ≤ 3. This satisfies the negation of the predicate, and

we have proved the result in this case.

Case 2: Exactly one of u or v is not in V (Gt); without loss of generality, say
u ∈ V (Gt+1)\V (Gt).

As u is a clone it has degree
⌊nt−1

2

⌋
, and so has a neighbor x in Gt, whenever

nt ≥ 2. Thus, there is no path from x to v in Gt, and we apply Case 1 using
these two nodes.

Case 3: Both u, v are in V (Gt+1)\V (Gt).
Since there are at least two clones it must be the case that αt ≥ 2, and so

nt ≥ 2. There then exists some neighbor x of u in Gt and some neighbor y of v
in Gt. We then have that there is no path from x to y in Gt and we apply Case
1 to these two nodes. The proof follows. ��

Our next result proves the 2-connectivity of graphs generated by the half-
model.

Lemma 4. The graph Gt is 2-connected whenever t ≥ 4, regardless of the input
graph G0.

Proof. Using the recursive formula for the number of edges at time t in the proof
of Theorem 1, for any graph G0, we have at least four nodes after two time-
steps. Using Lemma 3, we require at least one additional time-step to ensure
connectivity. Thus, regardless of the input graph G0, it is the case that Gt is
connected for t ≥ 3. We now claim that whenever a graph Gt is connected, Gt+1

will be 2-connected.

Claim: If Gt is connected and nt ≥ 4, then Gt+1 is 2-connected.
If Gt is 2-connected, then we are done since every node in the set

V (Gt+1)\V (Gt) has at least one neighbor in V (Gt), and we may use the same
two paths between those neighbors to find 2-connectivity. Suppose Gt is at most
1-connected and thus let u be a cut-node of Gt. Consider two nodes in Gt, say
a, b, that have a shortest path through u. In Gt+1, there is some clone z that is
adjacent to both a, b. Therefore, we have two paths from a to b, and the proofs
of the claim and theorem follow. ��

Our main result on the diameter of half-model graphs is the following.

Theorem 3. Suppose that G0 has order at least 4. In the half-model, the diam-
eter of Gt for t ≥ 5, is at most three.

Proof. We consider the distance between two non-adjacent nodes x, y ∈ V (Gt)
in three cases.

Case 1 : x, y ∈ V (Gt−1).
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There exists some set S ⊆ V (Gt−1) of cardinality
⌊nt−1

2

⌋
containing both x

and y. Thus, the dominating node for this set S, vS is adjacent to both x and y
so their distance is 2.

Case 2 : x ∈ V (Gt−1) and y /∈ V (Gt−1).
There exists a node z ∈ NGt

(y). There is some set S ⊆ V (Gt−1) so that
x, z ∈ S. The node vS that dominates S in Gt is adjacent to both x and z, so
we have the path yzvSx. Hence, the distance between x and y is at most 3. The
symmetric case where y ∈ V (Gt−1) and x /∈ V (Gt−1) is analogous.

Case 3 : x, y /∈ V (Gt−1).
Since x, y are new nodes in time-step t, there must be two sets Sx, Sy ⊆

V (Gt−1), where x dominates Sx and y dominates Sy. If Sx

⋂
Sy = ∅, then there

is some node of Gt−1 adjacent to both x and y, so their distance is 2. Suppose
now that Sx

⋂
Sy = ∅. Since |Sx| = |Sy| =

⌊nt−1
2

⌋
, it may be the case that there

exists a node z /∈ Sx ∪ Sy.
Suppose first that there is no such node z. There must be some edge with

one endpoint in Sx and the other in Sy, since otherwise, the graph would be
disconnected, which contradicts Lemma 4. We call these two endpoints a and b.
We then have a path xaby and the distance between x and y is 3.

If there is such a node z, then since Gt is 2-connected by Lemma 4, z cannot
be a cut-node. Therefore, there must be some edge with one endpoint in Sx and
the other in Sy and the distance between x and y is 3. ��

3 Graph Parameters for the Half-Model

In this section, we discuss classical graph parameters for the half-model. We call
S ⊆ V a dominating set for G if for all v /∈ S, there exists w ∈ S such that
vw ∈ E. The minimum cardinality of all dominating sets in G is denoted γ(G),
and is called the domination number of G. To colour a graph, we assign a colour
from the set {c0, c1, . . . , ck} to each vertex. A proper colouring is achieved when
no two neighbouring vertices have the same colour. The chromatic number of a
graph G, denoted by χ(G), is the minimum number of colours required to achieve
a proper colouring of G. If G can be coloured using at most k colours, then we
say that G is k-colourable. The maximum order of a clique in G is called the
clique number of G, denoted by ω(G). The maximum order of an independent
set in G is called the independence number of G, denoted by α(G).

For further background on these parameters, the reader is directed to [13].
We begin by considering the independence and clique number.

Theorem 4. The independence number of Gt is αt−1 and for the clique number
we have

ω(Gt) ≥ min
(⌊nt−1

2

⌋
+ 1, ω(G0) + t

)
.

Proof. At each time-step t, all the cloned nodes form an independent set. The set
of new nodes has order αt−1 ≥ nt−1, so this set must be the largest independent
set in Gt. Therefore, we derive that α(Gt) = αt−1.
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We next consider the clique number of Gt. At each time-step t, we add a
dominating node to subsets of cardinality

⌊nt−1
2

⌋
from Gt−1. If the largest clique

K at time-step t − 1 is contained in one such subset, then we have increased the
order of K by 1. However, the maximum degree of new nodes is

⌊nt−1
2

⌋
. Hence,

we cannot increase the size of the largest clique to be larger than
⌊nt−1

2

⌋
+ 1. ��

We next give the chromatic number of the half-model.

Theorem 5. For the half-model, we have that the chromatic number is given by

χ(Gt) = min
(
χ(G0) + t,

⌊nt−1

2

⌋
+ 1

)
.

Proof. Suppose that Gt is properly colored. Consider a rainbow subset of nodes;
that is, a set of nodes that requires each distinct color in the graph. Let the
cardinality of this set be r ≥ 1. When r ≤ ⌊nt−1

2

⌋
, any new clone added that

contains this set in its neighbors will need a new color. When r >
⌊nt−1

2

⌋
, any

new clone that is added will have a neighbor set smaller than the cardinality of
the colors, which implies there will always be an available color. ��

We finish by proving a result on the domination number of graphs generated
by the half-model.

Theorem 6. The domination number of Gt is

γ(Gt) =
⌈nt−1

2

⌉
+ 1.

Proof. We will first establish the upper bound

γ(Gt) ≤
⌈nt−1

2

⌉
+ 1.

Consider a set S of �nt−1
2 � non-clone nodes in Gt−1. The node xS dominates

S. The complement T of S in V (Gt−1) has cardinality
⌈nt−1

2

⌉
. Hence, T ∪ {xS}

is the desired dominating set.
For the lower bound, we must show that γ(Gt) >

⌈nt−1
2

⌉
. For a contradiction,

suppose that some set of
⌈nt−1

2

⌉
-many nodes, say X, dominates Gt. Suppose first

that X consists of non-clones. Regardless of the choice of X, there will be some
set of non-clones, call it T , of size

⌊nt−1
2

⌋
such that X ∩ T = ∅. Thus, xT is not

dominated, which is a contradiction.
Suppose that X contains at least one clone. There is a least one clone z not

adjacent to X ∩ V (Gt−1), since |X ∩ V (Gt−1)| <
⌈nt−1

2

⌉
. See Fig. 2. Any clone

in X is not adjacent to z, since the clones form an independent set. Therefore,
z is not dominated by X, which gives a contradiction. ��
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X

Gt-1

z

Fig. 2. The node z is not adjacent to X.

4 Conclusion and Further Directions

We introduced the Iterated Global Model (IGM) for complex networks. The IGM
adds new nodes joined to � 1

knt�, where nt is the number of nodes at time t. Our
focus was the case k = 2, and we proved that graphs generated by the half-model
exhibit densification, low distances, and bad spectral expansion as found in real-
world, complex networks. We investigated various classical graph parameters for
this model, including the clique, chromatic, and domination numbers.

Several open problems remain concerning properties of graphs generated by
the half-model. Graph limits consider dense sequences of graphs and analyze
their properties based on their homomorphism densities; see [11]. Since the half-
model generates dense sequences of graphs, it would be interesting to explore
their graph limits. In the full version, we will consider the clustering coefficient
of the half-model, analyze its subgraph counts, and degree distribution. Another
interesting direction would be to generalize our results to integers k > 2.
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Abstract. The World-Wide-Web is a complex system naturally repre-
sented by a directed network of documents (nodes) connected through
hyperlinks (edges). In this work, we focus on one of the most relevant
topological properties that characterize the network, i.e. being scale-free.
A directed network is scale-free if its in-degree and out-degree distribu-
tions have an approximate and asymptotic power-law behavior. If we
consider the Web as a whole, it presents empirical evidence of such prop-
erty. On the other hand, when we restrict the study of the degree distri-
butions to specific sub-categories of websites, there is no longer strong
evidence for it. For this reason, many works questioned the almost uni-
versal ubiquity of the scale-free property. Moreover, existing statistical
methods to test whether an empirical degree distribution follows a power
law suffer from large sample sizes and/or noisy data.

In this paper, we propose an extension of a state-of-the-art method
that overcomes such problems by applying a Monte Carlo sub-sampling
procedure on the graphs. We show on synthetic experiments that even
small variations of true power-law distributed data causes the state-of-
the-art method to reject the hypothesis, while the proposed method is
more sound and stable under such variations.

Lastly, we perform a study on 3 websites showing that indeed, depend-
ing on their category, some accept and some refuse the hypothesis of
being power-law. We argue that our method could be used to better char-
acterize topological properties deriving from different generative princi-
ples: central or peripheral.

Keywords: Power-law distribution · Monte Carlo · Statistical test ·
World-Wide-Web · Network Analytics

1 Introduction

The World-Wide-Web (WWW) encodes associative links among a large amount
of pages. Its structure has grown without any central control, thus make it
approximable to the result of a random process, where pages link to each other
following local probabilistic rules.
c© Springer Nature Switzerland AG 2020
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Such probabilistic rules are defined through statistical properties of Web
graph features. In particular, several investigations show that the WWW is scale-
free [1,5,10] i.e., both the distributions of incoming and outgoing links are well-
approximated by a discrete power law [21]. This can be traced to the fact that
the vast majority of documents in the Web have relatively few outgoing and
incoming links, but few pages still have enormous number of links that skew the
mean of the empirical distribution far above the median.

Nonetheless, when analyzing specific portions of the Web, i.e. websites, the
scale-free property seems to be less evident especially for specific categories (e.g.
university homepages) [22,24]. Note that, differently from what is commonly
done in literature [22], we consider websites as closed sub-systems of the Web
whose temporal evolution is independent of the system they evolved into.

In this work, we are interested in developing a method able to assess if data
from empirical observations follow a power-law. Indeed, testing power laws on
empirical data is usually hard due to the large fluctuations that are present in
the tail of the distribution.

One of the most commonly used statistical test is the Kolmogorov-Smirnov
[11]. This method focuses on the center of the distribution, making it not suit-
able for testing heavy-tailed distributions. In [11] the authors make strong use
of this test by performing a bootstrap procedure that is optimal in small sample
size regimes. Indeed, as the sample size grows, the power of the statistical test
increases, thus leading to higher rate of rejections of the null hypothesis. More-
over, even in presence of small sample sizes, adding a low amount of noise may
cause the test to reject.

As in real-world, noisy or large samples are the common scenario, here, we
propose an alternative testing pipeline that leverages on the Anderson Darling
test [3] and Monte Carlo sub-sampling. Our pipeline is able to cope with the
power of the test problem by reducing the sample size while maintaining the
original degree distribution behavior.

We show synthetic experiments in which the state-of-the-art method fails
under small variations or large sample sizes of input data. In all these cases,
our method is proved to be more stable under variations and it can be shown
that provides results with a better confidence. Lastly, we present case studies
on 3 websites representative of different generative processes. These case studies
present interesting results showing that indeed, closed sub-portion of the Web do
not necessarily follow a power-law distribution. And, they seem to point in the
direction that the more the generative process is centralized the less the degree
distribution can be associated to a power law decay.

Outline. The remainder of the paper is organized as follows: Sect. 2 presents the
state-of-the art algorithm for testing empirical power-law distribution; in Sect. 3
we present the limitations of such method with the related synthetic examples;
in Sect. 4 we present our adaptation based on Monte Carlo sub-sampling to
overcome the issue of power in empirical data; in Sect. 5 we present a large
variety of experiments showing how our method is more stable and the case
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studies; lastly, we conclude with Sect. 6 with some discussion on the obtained
results and future research directions.

2 Discrete Power-Law Distribution: Definition, Fit
and Statistical Test

The discrete power-law distribution is defined as

P(dv = x) ≈ 1
ξ(xmin, α)

x−α, (1)

where dv is the random variable representing the degree of a node v, xmin is a
fixed lower bound on the values x, α is a scaling parameter, and ξ(xmin, α) =

∞∑

x=xmin

x−α is the Hurwitz-zeta function [15].

The parameter xmin is particularly important, as often the degree distribu-
tion of a network follows a power law only for degrees x greater than a lower
bound. A network is said to be scale-free if the tail of its in-degree and out-degree
distributions obeys to a discrete power law decay. In practice, this entails that
we have a non-null probability to observe nodes with a degree much greater than
average (hubs).

2.1 Maximum Likelihood Estimation

The parameters xmin and α of an empirical power-law distribution need to be
estimated from data. Given as input a vector x ∈ N

n representing the degrees
of n nodes of a graph, we need to perform two different procedures to estimate
these two parameters, as described by the pseudo-code in Algorithm 1.
Estimate of xmin. First, we pick x̂ as the value that minimizes the difference
between the empirical degree distribution and the fitted power-law model where
xmin = x̂ [11,12].

In order to minimize such difference, we need to select a suitable distance.
One of the most common is the Kolmogorov-Smirnov (KS) statistic, which is
defined as the supremum norm of the difference between two distribution func-
tions (CDFs) of the empirical data and the best-fit model [18]. Although the KS
statistic is widely used, it presents some drawbacks in the detection of heavy-
tailed distributions since, being based on the CDF, it mainly penalizes fluctua-
tions in the center of the empirical distribution. A more reliable distance for the
comparison of heavy-tailed distributions is the Anderson-Darling (AD) statistic
as it puts more importance to the extreme values of the CDFs [3]. For this rea-
son, we will recur to this statistic in the rest of the paper. The AD distance is
defined as

A2(x, Fxmin=x) = −n −
n∑

i=1

2i − 1
n

[

ln Fxmin=x(xi) + ln(1 − Fxmin=x(xn+1−i))
]

,
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Algorithm 1. Power-law fitting
1: Input: degrees vector of length n
2: distances = [ ]
3: for x ∈ {min(degrees), . . . , max(degrees)} do
4: if len(unique(degrees) > x) <25 then
5: break
6: α ← power law fit(degrees, xmin = x)
7: d ← Anderson-Darling(degrees, x, α)
8: distances.append(d)

9: x̂ ← argmin
x

distances

10: α̂ ← power law fit(degrees, xmin = x̂)
11: d̂ ← Anderson-Darling(degrees, x̂, α̂)
12: return x̂, α̂, d̂

where n is the sample size and Fxmin=x is the power-law CDF.
Note that, if we select a x̂ > xmin, we are reducing the size of our training

data, and our model will suffer from the statistical fluctuations in the tail of the
empirical distribution. On the other hand, if x̂ < xmin, the maximum likelihood
estimate of the scaling parameter α̂ may be severely biased.
Estimate of α. Given the lower bound xmin, we estimate the scaling parameter
α by means of maximum likelihood, which provides consistent estimates in the
limit of large sample sizes [13].

In the discrete case, a good approximation of the true scaling parameter can
be reached mostly in the xmin ≥ 6 regime [11]. And it can be computed as:

α̂ ≈ 1 + n

[ n∑

i=1

ln
xi

xmin − 1
2

]−1

.

2.2 Goodness-of-Fit Test

Once α̂ and x̂ have been estimated, we need to assess if observed data are
plausibly sampled from the related power-law distribution. To such extent, we
perform a goodness-of-fit (GoF) test procedure [19].

A goodness-of-fit test measures how well a statistical model fits into a set
of observations. Given the statistical model under testing, a GoF makes use of
a statistic that evaluates the discrepancy between the observed values and the
expected value of the model. By definition, a statistic is a function which does
not depend on the parameters of the model. The output of the GoF procedure
is a p-value corresponding to the probability that the statistic is greater than its
realization on the observed data.

Note that, since we estimate the model parameters from data we do not know
the distribution of the statistic. Thus, we perform a semi-parametric bootstrap
approach to estimate such distribution empirically [11,25].
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Algorithm 2. Power-law testing
1: Input: degrees vector of length n, x̂, α̂, d̂
2: distances = [ ]
3: for i = 1, . . . , M do
4: ntail = count(degrees > x̂)
5: for j = 1, . . . , n do:
6: b ← bernoulli sample(ntail/n)
7: if b is 1 then
8: si[k] = power law sample(x̂, α̂)
9: else

10: si[j] ← uniform sample(degrees < x̂)

11: αi, xi ← power law fit(s)
12: d ← Anderson-Darling(s, xi, αi)
13: distances.append(d)

14: p-value = count(distances > d̂)/M
15: return p-value

In particular, we fixed as statistic the Anderson-Darling distance and we
perform a procedure described in Algorithm 2. Given n samples, we indicate
with ntail the amount of samples that are greater than x̂. Bootstrap is then
performed by simulating ntail examples from a power law with parameters α̂
and x̂, and for the remaining sample size n − ntail we sample degrees from the
empirical data that are smaller than x̂. We repeat this procedure M times. The
value of M depends on the desired significance of the p-value. Typically, if we
want a p-value that approximates its true value with an error smaller than ε,
then M = 1

4ε2 .
Given the M simulated data sets, we fit to each of them its own power-law

model and compute the AD distance. This provides the empirical distribution of
the AD statistic that we use to compute the associated p-value, defined as the
fraction of synthetic distances larger than the observed one.

If p is large (relatively to a fixed significance level, e.g. 0.1), we cannot reject
the null hypothesis. Then, possibly, the difference between the empirical and
theoretical distributions may be attributed to statistical fluctuations. Differently,
if p is smaller than the significance level, we say that the empirical data are not
power law.

3 Problems of Goodness-of-Fit on Empirical Data

Testing whether empirical data are power-law distributed is a hard task. This is
due to the following reasons: a) the probability of rejecting the null hypothesis
grows with sample size; and, as a consequence b) the procedure is too sensitive
to even minimal amount of noise. Little attention has been put on these issues,
but we argue that they are crucial as they heavily affect the final response of the
statistical test.
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Fig. 1. On the left, the empirical probability density functions of true power-law data
(black line) and noisy power-law data (pink). On the right, the Anderson-Darling test
on both samples. Little variations from an exact power-law sample lead to reject the
null hypothesis. (Color figure online)

Fig. 2. On the left, the empirical probability density function of true power law data.
On the right, the Anderson-Darling test. Large sample size (5×105) leads to reject the
null hypothesis.

In particular, both problems can be addressed by considering the power of
the test, which, fixed a significance level, is defined as the probability of correctly
rejecting the null hypothesis. Such probability increases accordingly to the sam-
ple size, hence, when the number of nodes n is large, we tend to reject the null
hypothesis even in cases of true power-law distributed data (as the power of
the test is very close to 1). Indeed, by performing bootstrap, we simulate nearly
exact power-law samples, which induce the Anderson-Darling test to be very
sensitive to even minimal fluctuations in the observed distribution.

In Fig. 1 and 2, we show two synthetic experiments where such test fails, in
particular:

(a) we generated n = 105 samples from a discrete power-law distribution with
parameters xmin = 7 and α = 2.7. We perturbed the data by adding one
occurrence to the last 13◦ in the extreme tail (see Fig. 1 left panel for the
true and perturbed data);
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Fig. 3. Schematic representation of the proposed pipeline.

(b) we generated n = 5 × 105 samples from a discrete power-law distribution
with parameters xmin = 2 and α = 2.7.

We applied the procedure in Sect. 2 on both datasets, with M = 200 and sig-
nificance level set to 0.1. Results are shown on the right side of Fig. 1 and 2. In
Fig. 1, the empirical probability density functions of the two samples are indis-
tinguishable from each other except in the extreme tail, where little divergences
can be traced. Thus, it becomes evident that for large sample sizes the test is
very sensitive even to little fluctuations in the observed sample. Also, with exam-
ple (b) we show that even perfect power-law samples induce the test to fail when
the sample size is too large (Fig. 2).

Both examples show that the high power of the Anderson-Darling test in
large sample size regimes constitutes a drawback of the previously introduced
method [11]. Since it is never the case that an observed degree distribution is
exactly drawn from a discrete power law, we propose a variation of the method
in Sect. 2 that aims at testing the goodness of fit of heavy tail distributions.

4 Monte Carlo Approach

Our proposal is based on the idea of performing iterative Monte Carlo (MC)
sub-samplings of different length on the original degree sequence. We argue that
with this sub-sampling scheme we can reduce the sample size without modifying
the trend of the original degree distribution and possibly obtain a more reliable
test.

The global scheme of the procedure is provided in Fig. 3. In particular, we
define a set of lengths, {l1, . . . , lmax}, for each length we perform r correspond-
ing MC samplings. For each sample, we fit a power-law distribution and assess
its plausibility exploiting Algorithm 1 and Algorithm 2 and, thus, obtaining a
sequence of p-values of the Anderson-Darling test of length r. We consider, as
final output of the procedure, the mean of all p-values sequences for all different
lengths and the related standard deviation.

To the best of our knowledge, it is not usual to exploit MC sub-sampling
to test for power-law decay in the degree distribution. In fact, performing MC



152 D. Garbarino et al.

does not allow to exactly estimate the parameters of the power-law distribu-
tion, indeed, to each sub-sample may correspond a different set of parameters.
Nonetheless, we do not use MC as a fitting method but rather to say if a network
is plausible to asymptotically satisfying the scale-free property. We argue that
using MC as a way to obtain suitable sub-samples of smaller sample size would
provide better understanding of the degree sequence behavior while overcoming
the drawbacks induced by large sample sizes.

4.1 Instantiation of Parameters

In order to apply the Monte Carlo approach we need to fix different values,
specifically l1, lmax, r and the significance level.

The problem of selecting adequate lengths for the MC sub-samples is not
trivial. On the one hand, a too small sub-sample would lead to very different
degree sequences due to the large fluctuations present in the original network,
while, on the other hand, lengths close to the original degree sequence would lead
to higher rates of rejection of the power-law hypothesis. Then, we arbitrarily
decided to set l1 at n/2 which is half the length of the observed data. As for
lmax, we fix it to n as in case of true power-law samples we want to being able to
obtain a high p-value, while in case of noisy data, considering one length equal
to the original size does not particularly affect the resulting mean p-value.

The value of r affects the robustness of the final result, the more repetitions
the better approximation of the true p-value. Nonetheless, its value depends on
constraints deriving from computational power. Thus, we leave the definition of
such value to the user.

We fixed the significance level at 0.1 for the rejection of the null hypothesis.
This is a conservative choice implying that the power law hypothesis is ruled out
if there is a probability of 1 in 10 or less that data sampled from the true model
agree with the model as the empirical data.

Lastly, we fixed the maximal possible xmin to be least 25 observations less
than the maximal observed degree. This is due to limit the chances of fitting a
power-law distribution on too few observations.

5 Experimental Results

In order to evaluate the performance of the proposed pipeline, we perform four
experiments and compare the results with the state-of-the-art method. In the
rest of the narration we will refer to the state-of-the-art method as Bootstrap
and to our method as Monte Carlo + Bootstrap.

All the simulations are performed in Python. We used the package powerlaw
[2] for fitting power-law distributions to empirical data and compute the AD
distances. We provide all the notebooks used for the experiments of this paper
in a GitHub repository1. For all experiments, we fixed 30 lengths of Monte Carlo
re-sampling in the interval [n

2 , n] and for each of this length we get r = 10 re-
samplings.
1 https://github.com/DaviGarba/netanalytics.

https://github.com/DaviGarba/netanalytics


A Robust Method for Statistical Testing 153

Table 1. Results to assess the goodness of the proposed testing pipeline in cases of
scale-free graphs (Barabasi-Albert) or not (Erdős-Renyi), in terms of mean p-value and
standard deviation on 10 repetitions of the test for different sample sizes.

Test type Erdős-Renyi Barabasi-Albert

75000 150000 75000 150000 300000

Bootstrap 0.00 ± 0.00 0.00 ± 0.00 0.85 ± 0.24 0.75 ± 0.27 0.78 ± 0.18

MC + Boostrap 0.00 ± 0.00 0.00 ± 0.00 0.85 ± 0.06 0.69 ± 0.16 0.71 ± 0.15

5.1 Validation of the Proposed Method on Different Graph Models

In the first experiment we aim at verifying if Monte Carlo + Bootstrap is com-
parable to just Bootstrap when considering two cases at varying sample sizes:

1. Erdős-Renyi models of size {75 × 103, 15 × 104}, we expect both methods to
refuse the null hypothesis as the degree distribution of this model is known
to follow a binomial distribution [14]. Thus, we use this as base test to assess
the probability of correctly rejecting the power-law hypothesis.

2. Barabasi-Albert models of size {75 × 103, 15 × 104, 3 × 105}, we expect both
methods to have high p-values as the degree distribution follows a power law
[6]. We use this experiment to provide proof of the soundness of the method
in presence of true power-law data.

Each experiment listed above is repeated 10 times to estimate the mean and
standard deviation of p-values. Results are reported in Table 1 where we observe
that our approach (Monte Carlo + Bootstrap) always reject the null hypothesis
in the Erdős-Renyi case as the Bootstrap method, while in the Barabasi-Albert
case we always provide p-values with a smaller variance.

5.2 Robustness to Noise

We now want to assess that our method is indeed more robust under increasing
noise in the input empirical distribution. We simulated from a discrete power
law with parameters α = 2.3 and xmin = 1, a sample of size n = 105. For differ-
ent levels of noise in the set n̄ ∈ {10, 40, 70, 100}, we perturbed the power law
observation by adding n̄ values uniformly sampled from the original observation.

Figure 4 shows that the proposed methods is in mean always better than the
simple bootstrap approach while also providing a smaller variance. Also, it never
reject the null-hypothesis in cases in which the noise is small while sometimes
it rejects it in presence of high amount of noise (100 added observations). Dif-
ferently from the Bootstrap approach that, depending on the simulated sample,
sometimes rejects it even in presence of zero noise.
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Fig. 4. Results in terms of p-values for the two testing pipelines as the input data
present an increasing level of noisy observations.

5.3 Benchmark on University of Notre Dame Website

We exploit a widely studied example of empirical data that is assumed to fol-
low a power-law distribution [1,4,20], i.e. the web graph of the University of
Notre Dame website. This graph, in 1999, has been studied in order to obtain
information regarding the topology of the Web. In [1], the authors found that
the in-degree and out-degree distributions of the graph underlying the hyper-
link structure of the domain nd.edu were well approximated by power-law dis-
tributions with scaling parameters 2.7 and 2.1 respectively. We downloaded the
hyperlink graph from http://snap.stanford.edu/ [16]; the crawl consists of 325729
documents and 1497134 links. We tested the Monte Carlo + Bootstrap approach
against the Bootstrap approach as the empirical data are noisy and we want to
provide further validation of our testing procedure on the in-degree distribution
of the network.

We performed r = 5 MC re-samplings for different sizes equally spaced in the
interval [162864, 325729]. Monte Carlo + Bootstrap results in a mean p-value of
0.15, meaning that there is no strong evidence against the power-law hypothesis
for the in-degree distribution. Differently, when applying the Bootstrap method
we observed a p-value equal to 0.00, which would lead us to reject the null
hypothesis.

As in literature many have argued the power-law nature of this graph, this
allows us to conclude that our testing procedure is more robust and thus can be
applied on real-world data with higher reliability.

5.4 Websites Analysis

We now want to exploit our procedure in real scenarios to seek for evidence
of differences in the degree distributions deriving from different generative pro-
cesses. We considered three different websites that we deemed representative of
different strategies of content creation: e-commerce, academic and free encyclo-
pedia. The first category is typically characterized by a strong central control

http://snap.stanford.edu/
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in the design and evolution of the information architecture and content gener-
ation. Conversely, the last category is completely user-guided and its evolution
is, thus, likely to be random. We argue that the academic category, as well as
other website of complex institutions, should be a trade-off between the two,
as usually many contributors have access to writing and adding content with a
mild central control (Fig. 5).

Fig. 5. Log-log plots of the empirical distributions of the considered case studies.

Table 2. Analyzed websites with the related information about number of nodes,
number of edges and category.

Name Url Website type No. nodes No. edges p-value

Goop goop.com E-commerce 100.482 731.259 0.00 ± 0.00

Stanford stanford.edu Academic 281.903 2.312.497 0.01 ± 0.00

Wikipedia (ES) es.wikipedia.org Encyclopedia 972.933 23.041.488 0.74 ± 0.21

We consider the following websites:

1. Goop, the website of a wellness and lifestyle company; we crawled the entire
website using the open source framework Scrapy2, during the crawl we
restricted to the domains goop.com and shop.goop.com;

2. Stanford, the website of Stanford University. We downloaded a crawl per-
formed in 2002 available at http://snap.stanford.edu/;

3. Wikipedia (ES), the website of the free spanish encyclopedia. We downloaded
a crawl of 2013 at http://law.di.unimi.it/index.php [8,9].

Table 2 describes the characteristics of the three considered websites, in terms of
category, number of nodes and number of edges. Table 2 also reports the mean
p-values obtained with Monte Carlo + Bootstrap on the in-degree distributions.
Results seems to validate our hypothesis about an inverse correlation between
the centrality of the content generative process and the scale-free property.
2 https://scrapy.org/.

http://goop.com
http://stanford.edu
http://es.wikipedia.org
http://snap.stanford.edu/
http://law.di.unimi.it/index.php
https://scrapy.org/
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6 Discussion

In this paper, we proposed a method for hypothesis testing of power-law distri-
butions in empirical data that overcomes issues related to the power of the test.
In particular, our method mediates the effect of possibly noisy data through
Monte-Carlo sub-samplings of the empirical distribution. We verified that the
proposed method retains the ability of assessing if observations are indeed plau-
sibly sampled from a power law, under different sample sizes and level of noise.
Indeed, the method is more reliable than the state-of-the art on synthetic data.
To further assess the reliability of our approach we also provide a real-world
example, specifically the University of Notre Dame website, which is a well stud-
ied dataset and it is considered to be scale-free. Our method does indeed provide
a p-value higher than the significance level, differently from the state-of-the-art
method that rejects the null hypothesis.

This allowed us to use our method to test different websites corresponding to
different content generative processes. From a first insights, we observed that dif-
ferent content generation strategies may induce a different connectivity structure
of the hyperlink graph.

For future research we intend to increase the number of real networks studied
and consider current websites related to different generative processes to provide
a more comprehensive understanding of specific sub-categories of the Web.

Future research directions may also involve the use of random walks instead
of Monte Carlo as a sub-sampling technique on graphs [7,17] and the comparison
with other estimators of power laws in empirical data [23].

To conclude, our pipeline is an attempt to perform statistical testing while
considering its limits both theoretical and due to noisiness of data. We argue
that this is fundamental to reliably test assumptions on real-world examples.
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Abstract. Using a game-theoretic framework, we characterize the com-
munity structure that emerges in a social (information) network. Our
analysis generalizes the results in [1,2] that were obtained for the case of
a continuous population model for the agents in the social network, to the
case of a discrete agent population model. We note that a discrete agent
set reflects more accurately real-life information networks, and are needed
in order to get additional insights into the community structure, such as
for example the connectivity (graph structure) within in a community, as
well as information dissemination within a community.

Keywords: Social and information networks · Community structure

1 Introduction

The information network that we consider in this paper was proposed and studied
in [1,2]. The work in [1,2] presents a model to study how agents form commu-
nities in information networks in order to efficiently share/exchange, and where
agents in the network obtain a certain utility for joining a given community.
Using a game-theoretic framework, the analysis in [1,2] characterizes the com-
munity structures that emerge under this model using the concept of a Nash
equilibrium. An interesting aspect of the analysis and results in [1,2] is that
the model is indeed is able to provide interesting insights into the microscopic
structure of information communities. For example, the characterization of how
content is being produced in the network, i.e. which content each agent pro-
duces, indeed matches what has been experimentally observed in real-life social
networks (see discussion in Sect. 2).

The model in [1,2] is based on a continuous agent population model. This
model simplifies the analysis, but it also has its limitations and drawbacks. For
example, it does not lend itself readily to study and characterize the graph
structure of how agents within a community connect (interact) with each other
in order to exchange content. The reason for this is that the graph structure is
typically assumes a discrete set of agents in order to describe the connectivity
between agents. We address this issue in this paper by extending the mode in
[1,2] to the case of discrete agent population model. Our analysis shows that the
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results in [1,2] essentially carry over to the discrete agent model. In particular,
the results in [1,2] are recovered in the limit as the agent population becomes
dense. Due to space constraints we present in this paper only the results of our
analysis, the proofs of the results can be found in [3].

2 Related Work

There exists extensive work, both experimental and theoretical, on the macro-
scopic properties of social network graphs such as the small world phenomena,
shrinking diameter, the dimension of the social network graph, and the power-
law degree distribution (see for example [4,5]). The difference between this body
of work and the model presented here is that these existing models a) do not
explicitly model and analyze the community structure of the social network, and
b) do not focus on deriving (characterizing) microscopic properties of a commu-
nity such as the content that each agent in a given community produces.

Related to the analysis in this paper is the work on content forwarding and
filtering in social networks presented in [6,7]. In [6], Zadeh, Goel and Muna-
gala consider the problem of information diffusion in social networks under a
broadcast model where content forwarded (posted) by a user is seen by all its
neighbors (followers, friends) in the social graph. For this model, the paper [6]
studies whether there exists a network structure and filtering strategy that leads
to both high recall and high precision. The main result in [6] shows that this
is indeed the case under suitable graph models such as for example Kronecker
graphs. In [7], Hegde, Massoulie, and Viennot study the problem where users
are interested in obtaining content on specific topics, and study whether there
exists a graph structure and filtering strategy that allows users to obtain all the
content they are interested in. Using a game-theoretic framework (flow games),
the analysis in [7] shows that under suitable assumptions there exists a Nash
equilibrium, and selfish dynamics converge to a Nash equilibrium. The main dif-
ference between the model and analysis in [6,7] and the approach in this paper
is that model and analysis in [6,7] does not explicitly consider and model com-
munity structures, and the utility obtained by users under the models in [6,7]
depends only on the content that agents receive, but not on the content agents
produce.

There exists an interesting connection between the modeling assumption
made in [6,7], and a result obtained in [1,2] and in this paper (Proposition 1,
Sect. 4). Both papers [6,7] make the modeling assumption that users produce
content only on a small subset of content that they are interested in receiving.
In [6] this assumption is supported by experimental results obtained on Twitter
data that shows that Twitter users indeed tend to produce content on a nar-
rower set of topics than they consume. The results presented in [1,2] and in this
paper provide a formal validation/explanation for this assumption as it shows
that under the proposed model it is optimal for agents (users) to produce con-
tent on a small subset of the content type that they are interested in consuming.
This result illustrates that the proposed model is able to capture and explain
important microscopic properties of information networks and communities.



160 P. Marbach

3 Model

In this section we introduce the mathematical model that we use for our analysis.
For this we assume that there exists a population of agents who are interested
in sharing content. Agents differ in the type of content they are interested in,
as well as their ability to produce content. Agents can form/join communities in
order to maximize their utility for obtaining and producing content. We use the
concept of a Nash equilibrium to characterize the community structures that
emerge under this model. In the following we define formally a) the space of
content that is being produced and shared in the network, b) the agents’ interest
in content as well as their ability to produce content, c) the utilities that agents
in obtain in a given community, and d) the Nash equilibrium structure that we
use for our analysis.

3.1 Content Space and Agent Model

For our analysis we assume that we are given a set of agents that produce and
consume content. Furthermore we assume that each content item that is being
produced belongs to a particular content type. One might think of a content type
as a topic, or an interest, that agents have. Furthermore we assume that there
exists a “measure” that characterizes how closely related two different content
types are. To model this situation we assume that the type of a content item
is given by a point x in a metric space, and the closeness between two content
types x, x′ ∈ M is then given by the distance measure d(x, x′) of the metric
space M.

Agents that share (produce and consume content) might have different inter-
ests, as well as different abilities to produce content. To model this situation we
associate with each agent that consumes content a center of interest y ∈ M.
The center of interest y of the agent is the content type (topic) that an agent
is most interested in. The probability that an agent with center of interest y is
interested in a content item of type x is given by

p(x|y) = f(d(x, y)), x, y ∈ M, (1)

where d(x, y) is the distance between the center of interest y and the content
type x, and f : [0,∞) �→ [0, 1] is a non-increasing function. As the function f is
non-increasing, the agent is more interested in content that is close to its center
of interest y.

Similarly given an agent that produces content, the center of interest y of
the agent is the content type (topic) that an agent is most adapt at producing.
The ability of the agent to produce content of type x ∈ M is then given by

q(x|y) = g(d(x, y)), x, y ∈ M, (2)

where g : [0,∞) �→ [0, 1] is a non-increasing function. The interpretation of this
function is as follows. If an agent with center of interest equal to y produces a
content item of type x, then this content item will be relevant to content type
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x with probability q(x|y) given by Eq. (1). As the function g is non-increasing,
the agent is better at producing content that is close to its center of interest y.

In the following we identify each agent by its center of interest y ∈ M, i.e.
agent y is the agent with center of interest being equal to y. Let A(d) ⊂ M be
the set of agents that consume content in the information network, and let be
A(s) ⊂ M be the set of agents that produce content. In addition we assume that
the sets A(d) and A(s) are given by discrete sets.

For simplicity, we assume for the reminder of the paper that the metric space
M is a subspace of Rn, n ≥ 1.

3.2 Information Community and Community Structure

An information community C = (Cs, Cd) is given by a set Cd ⊂ A(d) of agents
that consume content in the community C, and a set Cs ⊂ A(s) of agents that
produce content in the community C. Note that by definition the sets Cs and Cd

are discrete sets. For each agent y ∈ Cs that produces content in the community
C, we define the function βC(x|y), x ∈ M, which characterizes the rate with
which agent y produces content of type x in the community C. Similarly, for
each agent y ∈ Cd that consumes content in the community C, we define the
fraction of time αC(y), 0 ≤ αC(y) ≤ 1, that agent y spends consuming content
in the community C.

Using these definitions we next characterize for a given community C =
(Cs, Cd) the utility rate for content consumption U

(d)
C (y) of an agent y ∈ Cd

that consumes content in the community C, as well as the utility rate for content
production U

(s)
C (y) of an agent y ∈ Cs that produces content in the community

C. For this, we assume that agents pay a cost c, c > 0, for reading/consuming a
content item, where c is a processing cost that reflects the effort/time required by
an agent to read a content item (and decide whether it is of interest or not). If the
content item is of interest, then the agent receives a reward equal to 1; otherwise
the agent receives a reward equal to 0. The time-average utility rate (“reward
minus cost”) for content consumption U

(d)
C (y) of agent y ∈ Cd in community C

is given by (see [1–3] for a detailed derivation)

U
(d)
C (y) = αC(y)

∫
M

[ ∑
z∈Cs

βC(x|z)
[
q(x|z)p(x|y) − c

]]
dx. (3)

Similarly, the time-average utility rate for content production U
(s)
C (y) of agent

y is given by

U
(s)
C (y) =

∫
M

βC(x|y)

[ ∑
z∈Cd

αC(z)
[
q(x|y)p(x|z) − c

]]
dx. (4)

As discussed in [1–3], the utility rate for content production can be interpreted
as the reputation, or “reputation score”, of agent y in the community C, i.e.
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it captures how beneficial the contributions of a content producer y are for the
community C.

Having defined a community C = (Cs, Cd) in an information network, we
next define a community structure for an information network. A community
structure S is then given by a triplet

(C, {αC(y)}y∈A(d) , {βC(·|y)}y∈A(s)

)
where

C is a set of communities C = (Cd, Cs) that exist in the information network,
and

αC(y) = {αC(y)}C∈C and βC(y) = {βC(·|y)}C∈C

indicate the rates with which agents consume and produce allocate content in
the different communities C ∈ C.

In the following we assume that the total content consumption and produc-
tion rates of each agent can not exceed a given threshold, and we have that

||αC(y)|| =
∑
C∈C

αC(y) ≤ Ep, y ∈ A(d),

where 0 < Ep ≤ 1, and

||βC(y)|| =
∑
C∈C

||βC(·|y)|| ≤ Eq, y ∈ A(s),

where
||βC(·|y)|| =

∫
x∈M

βC(x|y)dx

and 0 < Eq. Finally, we require that for a given community structure S that for
each community C = (Cd, Cs) ∈ C we have that

αC(y) > 0, y ∈ Cd, and ||βC(y)|| > 0, y ∈ Cs.

3.3 ε−Equilibrium

Having defined a community structure in an information network, we next con-
sider the situation where agents consume and produce content in the different
communities in order to maximize their utility rates. For this situation we use a
game-theoretic approach to characterize the community structures that emerge
in an information network.

Given a community structure S =
(C, {αC(y)}y∈A(d) , {βC(·|y)}y∈A(s)

)
, let

U
(d)
S (y), y ∈ A(d), be the total utility rate for content consumption (over all

communities) that agent y receives under this community structure. More pre-
cisely, let U

(d)
S (y), y ∈ A(d), be given by

U
(d)
S (y) =

∑
C∈C

U
(d)
C (y) =

∑
C∈C

αC(y)
∫

x∈M

[ ∑
z∈Cs

βC(x|z)
[
q(x|z)p(x|y) − c

]]
dx.
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Similarly, let U
(s)
S (y), y ∈ A(s), be the total utility rate for content production

(over all communities) that agent y receives under this community structure.
The utility rate U

(s)
S (y), y ∈ A(s) is given by

U
(s)
S (y) =

∑
C∈C

U
(s)
C (y) =

∑
C∈C

∫
x∈M

βC(x|y)

[ ∑
z∈Cd

αC(z)
[
q(x|y)p(x|z) − c

]]
dx.

Using these definitions, in the following we analyze the situation where an
agent y ∈ A(d) in a given a community structure S changes its rate allocation
from αC(y) to αC′(y) given by

αC′(y) = {αC
′(y)}C∈C

such that
∑

C∈C αC
′(y) ≤ Ep. More precisely, let U

(d)
S (αC′(y)|y) be the utility

that agent y ∈ A(d) obtains under the new allocation αC′(y) (while all other
agents keep their rate allocation fixed) given by

U
(d)
S (αC′(y)|y) =

∑
C∈C

αC
′(y)

∫
x∈M

[ ∑
z∈Cs

βC(x|z)
[
q(x|z)p(x|y) − c

]]
dx.

Similarly, given a community structure S we analyze the situation where an
agent y ∈ A(s) changes its rate allocation βC(y) to βC′(y) given by

βC′(y) = {βC
′(·|y)}C∈C ,

such that ||βC′(y)|| ≤ Eq. Let U
(s)
S (βC′(y)|y) be the utility rate that agent y

receives under the new allocation βC′(y) (while all other agents keep their rate
allocation fixed) given by

U
(s)
S (βC′(y)|y) =

∑
C∈C

∫
x∈M

βC
′(x|y)

[ ∑
z∈Cd

αC(y)
[
q(x|y)p(x|z) − c

]]
dx.

Ideally each agent wants to choose an allocations for consuming and produc-
ing content in order to maximize its own utility rates. Here we use a slightly
weaker criteria where we assume that agents change their current allocations
only if the new allocations provides an increase in their utility rate by a factor
that is at least equal to ε, ε > 0.

More formally, we call a community structure

S∗ =
(C, {α∗

C(y)}y∈A(d) , {β∗
C(·|y)}y∈A(s)

)

a ε−equilibrium if

a) for all agents y ∈ A(d) we have that

U
(d)
S∗ (αC(y)|y) − U

(d)
S∗ (y) < ε,

where αC(y) = arg maxαC′(y):||αC′(y)||≤Ep
U

(d)
S∗ (αC′(y)|y),
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b) for all agents y ∈ A(s) we have that

U
(s)
S∗ (βC(y)|y) − U

(s)
S∗ (y) < ε,

where βC(y) = arg maxβC′(y):||βC′(y)||≤Eq
U

(s)
S∗ (βC′(y)|y).

In the following we study whether there exists a ε−equilibrium . For our analysis
we consider a particular metric space, and agent population model, that we
describe in the next section.

4 Analysis

In this section we provide the results of the analysis of the model presented in the
previous sections. Our results show that the analysis in [1,2] that was obtained
under the assumption of a continuous agent population extends to the case of a
discrete agent population.

For our analysis, we use the following notation. Given a real-valued function
f : M �→ R on a metric space M, we define the support supp(f) by

supp(f) = Ā

where A = {x ∈ M|f(x) 	= 0}, and Ā is the closure of A.
Given real-valued function f : M �→ R on a metric space M, we say that f

is symmetric with respect to y ∈ M if for x, x′ ∈ M such that

d(x, y) = d(x′, y),

we have that
f(x) = f(x′).

4.1 Content Space R and Discrete Agent Population Model

For our analysis we consider a metric space that has a particular structure. More
precisely, we consider a one dimensional metric space with the torus metric. The
reason for using this structure is that it simplifies the analysis and allows us to
obtain simple expressions for our results, that can easily been interpreted.

More formally, we consider in the following one-dimensional metric space for
our analysis. The metric space is given by an interval R = [−L,L) ∈ R, 0 < L,
with the torus metric, i.e. the distance between two points x, y ∈ R is given by

d(x, y) = ||x − y|| = min{|x − y|, 2L − |x − y|},

where |x| is the absolute value of x ∈ (−∞,∞). Note that we have that ||x−y|| ≤
L, x, y ∈ R.

Using the torus metric for the content space R eliminates “border effects”, in
the sense are no points that have a “special” position as it would be for example
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the case if we would an interval [−L,L] as the content space. This simplifies the
analysis, and leads to simpler expressions for our results.

We assume that there exists a finite number of agents that exclusively pro-
duce content, as well as a finite number of agents that exclusively consume
content. More precisely, we assume that there are K(d) agents that consume
content which are “uniformly distributed” on R with distance

δd =
2L

K(d)
,

and we have that A(d) = {y1, ..., yK(d)} where

yk+1 = yk + δd, k = 1, ...,K(d) − 1.

Similarly, we assume that there are K(s) agents that produce content which
are “uniformly distributed” with distance

δs =
2L

K(s)
,

over R, and we have that A(s) = {y1, ..., yK(s)} where

yk+1 = yk + δs, k = 1, ...,K(s) − 1.

While we consider here the case where there exists a set of content producers,
and a set content consumers, the results in this paper can easily be extended
to the case where each agent both produces and consumes content. The results
obtained in this paper also hold for this case, requiring only notational changes
in the proofs.

Finally, we make the following assumption for the function f and g are used in
Eq. (1) and Eq. (2) to define the agents’ interest and ability to produce content.

Assumption 1. The function f : [0, L] �→ [0, 1] is strictly decreasing and three
times continuously differentiable on [0, L], the first three derivatives are bounded
first derivative on [0, L], and we have that f ′(0) < 0. Furthermore, the function
f is locally strictly concave, i.e. there exists a constant b, 0 < b ≤ L, such that
f ′′(x) < 0, x ∈ [0, b]. The function g : [0, L] �→ [0, 1] is non-increasing on [0, L],
and strictly concave and twice continuously differentiable on its support supp(g)
with g(0) > 0 and g′(0) = 0.

These assumptions on the functions f and g are a technical assumptions used in
the proofs of our results presented in the next section.

4.2 Community Structure Cδ(LC )

In our analysis, we consider a particular class Cδ(LC) of community structures
that are defined as follows.
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Definition 1. Let LC be such that

0 < 2LC < min{b, L},

where b is the constant of Assumption 1. The class Cδ(LC) then consists of all
community structures

(C, {αC(y)}y∈A(d) , {βC(·|y)}y∈A(s)

)

where
C = {Ck}k=1,...,K

that are defined on a set of agents A(d) with distance δd such that

0 < δd < δ,

and set of agents A(s) with distance δs such that

0 < δs < δ,

and have the following properties.
There exists set a {ICk

}k=1,...,K of mutually non-overlapping intervals in R
of length 2LC , i.e we have that

1) ICk
∩ ICk′ = ∅, k 	= k′,

2) ∪k=1,..,KICk
= R,

3) |ICk
| = 2LC , k = 1, ..,K,

such that the community Ck = (Cd, Cs) ∈ C = {Ck}k=1,...,K , is given by

Cd = A(d) ∩ ICk

and
Cs = A(s) ∩ ICk

.

Furthermore, for C = (Cd, Cs) ∈ C{Ck}k=1,...,K we have that

a) αC(y) = Ep, y ∈ Cd, and
b) βC(x|y) = Eqδ(x∗(y) − x), y ∈ Cs, x ∈ R, where

x∗(y) = arg max
x∈R

[q(x|y)PC(x)] = arg max
x∈R

⎡
⎣q(x|y)Ep

∑
y∈Cd

p(x|y)

⎤
⎦

and δ(·) is the Dirac delta function.

In the next section, we show that there always exists a class Cδ(LC) of
community structures such that all community structures S ∈ Cδ(LC) are a
ε−equilibrium.
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4.3 Existence of a ε−Equilibrium

Our first results shows that there always exists a ε−equilibrium.

Proposition 1. Suppose that f(0)g(0) − c > 0, then there exists a LC ,

0 < 2LC < min{b, L},

where b is the constant of Assumption 1, such that the following is true. For every
ε > 0 there exists a δ > 0 such that all discrete interval community structures
S∗ ∈ Cδ(LC) are a ε−equilibrium.

Proposition 1 states that there always exists a ε−equilibrium S∗ given that
distance δd and δs of the agents sets A(d) and A(s), are small enough. In
addition, from the definition of the class Cδ(LC) we have that under a Nash
equilibrium given by Proposition 1 a content producer y ∈ Ck,s in community
Ck = (Ck,d, Ck,s) focuses on producing a single type of content given by x∗(y).
This result is interesting as experimental results suggest that this property indeed
holds in real-life information networks (see discussion in Sect. 2).

In the following we characterize in more details the properties of a
ε−equilibrium as given in Proposition 1.

4.4 Optimal Content Production

Proposition 1 states that under the ε−equilibrium as given in Proposition 1, each
agent y ∈ A(s) produces a single content type x∗(y). In this subsection we
characterize in more details the function x∗(y) for a given community C =
(Cd, Cs) in a ε−equilibrium. We have the following result.

Proposition 2. Let Cδ(LC) be a class of discrete interval community structures
with distance δ as given by Proposition 1, i.e. we have that all community struc-
tures S∗ ∈ Cδ(LC) are a ε−equilibrium. Then for every Δx∗ , 0 < Δx∗ < LC ,
there exists a class Cδ0(LC) ⊆ Cδ(LC), 0 < δ0 ≤ δ, of discrete interval community
structures with distance δ0 such that for all community structures

(C, {α∗
C(y)}y∈A(d) , {β∗

C(·|y)}y∈A(s)

) ∈ Cδ0(LC)

the following is true. Given a community C = (Cd, Cs) ∈ C, let the interval
IC = [mid(IC) − LC ,mid(IC) + LC) ⊂ R as given in Proposition 1, i.e. we have
that

Cd = A(d) ∩ IC and Cs = A(s) ∩ IC .

Then the solution x∗
δ(y) to the optimization problem

x∗(y) = arg max
x∈R

q(x|y)PC(x), y ∈ IC ,

where
PC(x) = Ep

∑
y∈Cd

p(x|y),

has the properties that
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(a) there exists a unique optimal solution x∗(y), y ∈ IC .
(b) for y ∈ [mid(IC) − LC ,mid(IC) − Δx∗ ], we have that

x∗(y) ∈ (y,mid(IC)) ∩ supp(q(·|y)).

(c) for y ∈ [mid(IC) + Δx∗ ,mid(IC) + LC ], we have that

x∗(y) ∈ (mid(IC), y) ∩ supp(q(·|y)).

(d) the function x∗(y) is strictly increasing and differentiable on

ĨC = [mid(IC) − LC ,mid(IC) − Δx∗ ] ∪ [mid(IC) + Δx∗ ,mid(IC) + LC ].

Proposition 2 states that the function x∗(y) is strictly increasing on ĨC . This
result implies that two different agents y, y′ ∈ ĨC , y 	= y′, produce different types
of content, i.e. we have that x∗(y) 	= x∗(y′). This result is interesting as it states
that under each agent y in ĨC produces a unique content type x∗(y), i.e. we have
that the content type x∗(y) is not produced by any other agent in ĨC .

Another interesting aspect of Proposition 2 is that Property (b) and Property
(c) state that agents y ∈ ĨC produce content that is closer to the center of
interest mid(IC) of the community C than their center of interest y. To get a
more detailed understanding of how agents adapt the type of content that they
produce towards the center of interest mid(IC) of the community C, we next
study the function Δ∗(y) given by

Δ∗(y) = ||y − x∗(y)||, y ∈ IC .

The function Δ∗(y) characterizes the absolute value of the “displacement” of
the optimal content x∗(y) that agent y produces, and content y that the agent
is best at producing which is equal to content type y. Or in other words, the
function Δ∗(y) characterizes by how much an agent y adapts its content x∗(y)
towards the center of interest of the community C, i.e. by how much agent y
produces content x∗(y) that is closer to the center of interest mid(IC) of the
community than its own center of interest.

We have the following result for the function Δ∗(y).

Proposition 3. Let Cδ(LC) be a class of discrete interval community structures
with distance δ as given by Proposition 1, i.e. we have that all community struc-
tures S∗ ∈ Cδ(LC) are a ε−equilibrium. Then for every Δx∗ , 0 < Δx∗ < LC ,
there exists a class Cδ0(LC) ⊆ Cδ(LC), 0 < δ0 ≤ δ, of discrete interval community
structures with distance δ0 such that for all community structures

(C, {α∗
C(y)}y∈A(d) , {β∗

C(·|y)}y∈A(s)

) ∈ Cδ0(LC)

the following is true. Given a community C = (Cd, Cs) ∈ C and the corresponding
interval IC = [mid(IC) − LC ,mid(IC) + LC), the function Δ∗(y) given by

Δ∗(y) = ||y − x∗(y)||, y ∈ IC ,

is strictly decreasing and differentiable on [mid(IC) − LC ,mid(IC) − Δx∗ ], and
strictly increasing and differentiable on [mid(IC) + Δx∗ ,mid(IC)] + LC ].
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Proposition 3 states that the function Δ∗(y) is strictly decreasing and differ-
entiable on [mid(IC)−LC ,mid(IC)−Δx∗ ], and strictly increasing and differen-
tiable on [mid(IC)+Δx∗ ,mid(IC)]+LC ]. This implies that the further away an
agent is from the center of interest mid(IC), the more it will “adapt” the con-
tent it produces towards to the center mid(IC) of the interval IC , i.e. the larger
Δ∗(y) will be. In addition, this result implies that the further away an agent is
from the center of interest mid(IC), the lower the quality is the content that
the agents produces. To see this, recall that by Assumption 1, g is decreasing on
supp(g) and we have that the quality of the content that agent y produces is
given by

q(x∗(y)|y) = g(||y − x∗(y)||) = g(Δ∗(y)).

4.5 Properties of the Content Demand Function PC (x)

We next characterize the properties of the content demand function PC(x) given
by

PC(x) =
∑

y∈Iδ,C

α∗
C(y)p(x|y) = Ep

∑
y∈Iδ,C

p(x|y), x ∈ R, (5)

of a discrete interval community C = (Cd, Cs) under ε−equilibrium as given in
Proposition 1. The demand function captures the “interest” in content on topic
x within the community C. We have the following result.

Proposition 4. Let Cδ(LC) be a class of discrete interval community structures
with distance δ as given by Proposition 1, i.e. we have that all community struc-
tures S∗ ∈ Cδ(LC) are a ε−equilibrium. Then for every ΔP , 0 < ΔP < LC ,
there exists a class Cδ0(LC) ⊆ Cδ(LC), 0 < δ0 ≤ δ, of discrete interval commu-
nity structures with distance δ0 such that for all community structures

(C, {α∗
C(y)}y∈A(d) , {β∗

C(·|y)}y∈A(s)

) ∈ Cδ0(LC)

the following is true. Given a community C = (Cd, Cs) ∈ C and the corresponding
interval IC = [mid(IC) − LC ,mid(IC) + LC), the demand function PC(x) given
by Eq. (5) is strictly increasing on the interval [mid(IC) − LC ,mid(IC) − ΔP ],
and strictly decreasing on the interval [mid(IC) + ΔP ,mid(IC) + LC).

Note that Proposition 4 implies that

arg max
x∈R

PC(x) ∈ [mid(IC) − ΔP ,mid(IC) + ΔP ],

i.e. the most popular content is close to the center of interest of the community
C. Furthermore, we have that the further away a content type x is from the
center of interest of the community, the less popular it is.
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4.6 Properties of the Content Supply Function Q∗
C (x)

Next characterize the properties of the content demand function Q∗
C(x) given

by
Q∗

C(x) = Eq

∑
y∈Cs

δ
(
x − x∗(y))q(x∗(y)|y)

. (6)

of a discrete interval community C = (Cd, Cs) under ε−equilibrium as given
in Proposition 1 where x∗(y) = arg maxx∈R q(x|y)PC(x), and δ(·) is the Dirac
delta function. The supply function Q∗

C(x) captures the overall rate with which
relevant content on topic x is produced within the community C. We have the
following result.

Proposition 5. Let Cδ(LC) be a class of discrete interval community struc-
tures with distance δ as given by Proposition 1, i.e. we have that all commu-
nity structures S∗ ∈ Cδ(LC) are a ε−equilibrium. Then there exists a class
Cδ0(LC) ⊆ Cδ(LC), 0 < δ0 ≤ δ, of discrete interval community structures with
distance δ0 such that for all community structures

(C, {α∗
C(y)}y∈A(d) , {β∗

C(·|y)}y∈A(s)

) ∈ Cδ0(LC)

the following is true. Given a community C = (Cd, Cs) ∈ C and the corresponding
interval IC = [mid(IC)−LC ,mid(IC)+LC), the content supply function Q∗

C(x),
x ∈ R, as given by Eq. (6) is such that

supp(Q∗
C(·)) ⊆ [mid(IC) − L∗

C ,mid(IC) + L∗
C ]

where 0 < L∗
C < LC .

Proposition 5 states that

supp(Q∗
C(·)) ⊆ [mid(IC) − L∗

C ,mid(IC) + L∗
C ]

where 0 < L∗
C < LC . This result implies that the content type that is being

produced by agents in the community C is a strict subset of the interval IC . As
a result, there is no overlap in the content produced in different communities
under a ε−equilibrium as given by Proposition 1.

4.7 Properties of the Utility Function U
(d)
C (y) and U

(s)
C (y)

Finally, we study the properties of the utility rate function for content con-
sumption U

(d)
C (y), and the utility rate function for content production U

(s)
C (y)

for an interval community C = (Cd, Cs) under a ε−equilibrium as given by
Proposition 1.

We first study the properties of the utility rates for content consumption
U

(d)
C (y) for an interval community C = (Cd, Cs) under a ε−equilibrium as given

by Proposition 1.
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Proposition 6. Let Cδ(LC) be a class of discrete interval community struc-
tures with distance δ as given by Proposition 1, i.e. we have that all community
structures S∗ ∈ Cδ(LC) are a ε−equilibrium. Then for every ΔU , 0 < ΔU < LC ,
there exists a class Cδ0(LC) ⊆ Cδ(LC), 0 < δ0 ≤ δ, of discrete interval community
structures with distance δ0 such that for all community structures

(C, {α∗
C(y)}y∈A(d) , {β∗

C(·|y)}y∈A(s)

) ∈ Cδ0(LC)

the following is true. Given a community C = (Cd, Cs) ∈ C and the corresponding
interval IC = [mid(IC)−LC ,mid(IC)+LC), the utility rate function for content
consumption U

(d)
C (y) given by

U
(d)
C (y) = EpEq

∑
z∈Cs

[
p(x∗(z)|y)q(x∗(z)|z) − c

]
, y ∈ Cd,

has the following properties.

a) For y, y′ ∈ Cd ∩ [mid(IC)−LC ,mid(IC)−ΔU ] such that y > y′, we have that
U

(d)
C (y) > U

(d)
C (y′).

b) For y, y′ ∈ Cd ∩ [mid(IC)+ΔU ,mid(IC)+LC ] such that y < y′, we have that
U

(d)
C (y) > U

(d)
C (y′).

Proposition 6 states that the closer an agent y ∈ Cd is to the center of interest of
the community, the higher a higher utility rate it receives. This is an interesting
result as it suggest that the utility rate might can be used to rank (order) agents
in an information community based on how close they are to the center mid(IC)
of the community IC .

We next study the properties of the utility rates for content production
U

(s)
C (y) for an discrete interval community C = (Cd, Cs) under a ε−equilibrium

as given by Proposition 1.

Proposition 7. Let Cδ(LC) be a class of discrete interval community struc-
tures with distance δ as given by Proposition 1 such that all community structures
S∗ ∈ Cδ(LC) are a ε−equilibrium. Then for every ΔU , 0 < ΔU < LC , there exists
a class Cδ0(LC) ⊆ Cδ(LC), 0 < δ0 ≤ δ, of discrete interval community structures
with distance δ0 such that for all community structures

(C, {α∗
C(y)}y∈A(d) , {β∗

C(·|y)}y∈A(s)

) ∈ Cδ0(LC)

the following is true. Given a community C = (Cd, Cs) ∈ C and the corresponding
interval IC = [mid(IC)−LC ,mid(IC)+LC), the utility rate function for content
production U

(s)
C (y) given by

U
(s)
C (y) = EpEq

∑
z∈Cd

[
q
(
x∗(y)|y)

p
(
x∗(y)|z) − c

]
, y ∈ Cs,

has the following properties.
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a) For y, y′ ∈ Cs ∩ [mid(IC)−LC ,mid(IC)−ΔU ] such that y > y′, we have that
U

(s)
C (y) > U

(s)
C (y′).

b) For y, y′ ∈ Cs ∩ [mid(IC)+ΔU ,mid(IC)+LC ] such that y < y′, we have that
U

(s)
C (y) > U

(s)
C (y′).

Similar to Proposition 6, Proposition 7 states that the closer an agent y ∈ Cd

is to the center of interest of the community, the higher a higher utility rate it
receives. Again this result suggest that the utility rate might can be used to rank
(order) agents in an information community based on how close they are to the
center mid(IC) of the community IC .

5 Conclusions

In this paper we generalized the results of [1,2] that were obtained for the case
of a continuous agent model, to the case of a discrete agent population model.
An interesting aspect of the obtained result is that they indeed provide insights
into properties of communities in real-life information networks. Due to space
constraints, we refer to [1–3] for a more detailed discussion.

In ongoing research we use the model and results presented in this paper to
study the connectivity (graph structure) of how agents interact with each other,
and forward content, in an information community. In addition use the model
and results presented in this paper to study a novel class of local algorithms to
detect (information) communities in social networks.
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