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10.1  �Introduction

Plant parasitic nematodes are considered to be the major constraint on plant produc-
tivity, and they have been found to attack almost every part of the plant including 
roots, stems, leaves, fruits, and seeds. They are also responsible for invasion of 
secondary pests and pathogens by causing wounds in the host roots (Caboni et al. 
2016). Global annual yield losses from plant parasitic nematodes have been esti-
mated at 12.6% ($215.77 billion) for top 20 life sustaining crops (Abd-Elgawad and 
Askary 2015). Among different groups of plant parasitic nematodes, root knot 
(Meloidogyne spp.) and cyst nematodes (Heterodera and Globodera spp.) are eco-
nomically important by forming complex feeding structures like giant cells and 
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syncytia in the roots of their hosts which act as a nutrient sink to the nematode. 
Apart from these, root-lesion nematodes (Pratylenchus spp.), burrowing nematode 
(Radopholus similis), stem nematode (Ditylenchus dipsaci), reniform nematode 
(Rotylenchulus reniformis), and several other plant parasitic nematodes causing 
economic damage to the crops (Jones et al. 2013).

Many traditional chemical pesticides such as fumigants, organophosphates, and 
carbamates have been used for the management of plant parasitic nematodes (Kour 
et al. 2020). However, the usage of harmful chemical pesticides cause environmen-
tal toxicity, health effects and further withdrawal of some pesticides has led to the 
development and adoption of non-chemical alternatives for the management of 
plant parasitic nematodes (Davies and Curtis 2011; Kumar et al. 2018). In addition, 
these chemicals do not affect the development of nematode eggs in soil, since the 
egg shell of nematode acts as a barrier which makes them resistant to chemical pes-
ticides (Baron et al. 2019). Crop rotation and use of resistant cultivars have been 
used as the management strategies for plant parasitic nematodes. However, these 
practices are limited by the size of growing area, wide host range of nematode spe-
cies, and high genetic diversity among or within nematode populations (Berlitz 
et al. 2014; Li et al. 2015).

Biological control, an alternative for the management of plant parasitic nema-
todes. The usage of biocontrol agents is increasing these days, due to their reduced 
environmental toxicity, target specificity, and safety to non-target organisms (Kumar 
and Singh 2015; Jiang et al. 2017). These biocontrol agents include fungi, bacteria, 
viruses, nematodes, and other invertebrates which have an antagonistic activity 
against plant parasitic nematodes. The market for biological nematicides has risen 
by nearly 20% from 2009 to the present, according to the Markets and Markets 
report, with most of the development in field crops. Nematicide sales amounted to 
just over $1 billion in 2014 and are anticipated to expand at a compound annual 
growth rate (CAGR) of 2.7% over the next 10 years to $1.3 billion over 20 years 
(Jiang et al. 2017).

Currently several biocontrol agents such as fungi and bacteria have been widely 
used as commercial products for the management of plant parasitic nematodes. 
Fungal antagonists have been considered as the most promising biocontrol agents 
and attention is being paid to the exploitation of fungi to control plant parasitic 
nematodes (Stirling 2011; Moosavi and Zare 2012; Lamovsek et al. 2013). Among 
different fungal biocontrol agents, the most widely studied species for nematode 
management include Pochonia chlamydosporia, Purpureocillium lilacinum, 
Arthrobotrys oligospora, Trichoderma spp. and Verticillium spp. (Rastegari et al. 
2020a, b; Yadav et al. 2020a, b). This chapter reviews different categories of nema-
tophagous fungi, mode of action, and knowledge of the interactions between nema-
todes and nematode trapping fungi and commercialization of different fungal 
products for the management of plant parasitic nematodes.
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10.2  �Nematophagous Fungi

This group of fungi has been widely used as biocontrol agents of plant parasitic 
nematodes due to their antagonistic, parasitic, and predatory action against different 
species. There are approximately 700 fungal species reported to be able to attack 
different life stages of nematodes (juveniles, adults, and eggs) (Li et al. 2015; Jiang 
et  al. 2017). Over the decades, several researchers have worked on fundamental 
studies and their potential as biocontrol agents against different plant parasitic nem-
atodes. Based on their infection mechanism, they are subdivided into four catego-
ries viz., nematode trapping fungi, endoparasitic fungi, egg and female parasitic 
fungi, and toxin producing fungi (Dackman et  al. 1992; Nordbring-Hertz et  al. 
2006) (Table 10.1).

10.2.1  �Nematode Trapping Fungi

These are soil borne fungi that have the ability to capture and kill nematodes by 
using trapping structures, including adhesive hyphae, adhesive knobs, constricting 
rings and non-constricting rings, and adhesive networks (Nordbring-Hertz et  al. 
2011; Jiang et al. 2017). The type of trapping structure formed mainly depends on 
the fungal species or strains of fungal species and both biotic and abiotic environ-
mental factors (Nordbring-Hertz et al. 2006). Based on phylogenetic analysis results 
using ribosomal RNAs (rRNAs) and protein coding genes, these trapping devices 
could serve as indicators for generic delimitation among these fungi (Ahren et al. 
1998; Scholler et al. 1999; Li et al. 2005). There are about 380 species of nematode 
trapping fungi have been reported from different regions of the world (Zhang et al. 
2011). They are usually non-host specific and can infect all soil dwelling nema-
todes. All the known nematode trapping fungi belong to the order Orbiliales of the 
phylum Ascomycota (Zhang and Hyde 2014). These fungi can live both saprophyti-
cally on organic matter and as predatory by capturing tiny animals. However, they 
can shift from saprophytic to predatory lifestyle in the presence of nematode prey 
by the production of trapping structures (Li et al. 2011; Yang et al. 2012; Zhang and 
Hyde 2014). The application of these fungi for nematode suppression was accom-
panied by addition of large amounts of organic matter and in most cases the levels 
of nematode control were unpredictable (Stirling 1991).

10.2.1.1  �Adhesive Hyphae

These are mostly produced by lower fungi belongs to the genera Stylopage and 
Cystopage under phylum Zygomycota (Table 10.1). They cannot produce complex 
devices for capturing nematodes due to the absence of septa (Barron 1977). 
However, septate fungi such as Arthrobotrys botryospora, Dactylaria psychrophila, 
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Table 10.1  Different categories of nematophagous fungi

Category
Nematode trapping 
structure Name of fungi Phylum

Nematode 
trapping fungi

Adhesive hyphae Stylopage hadra Zygomycota
Cystopage 
cladospora

Zygomycota

Adhesive knobs Dactylellina 
ellipsospora

Ascomycota

Dactylellina 
drechsleri

Ascomycota

Dactylaria candida Ascomycota
Monacrosporium 
haptotylum

Ascomycota

Gamsylella querci Ascomycota
Gamsylella robusta Ascomycota
Gamsylella 
parvicollis

Ascomycota

Nematoctonus sp. Basidiomycota
Non-constricting rings Dactylaria candida Ascomycota

Dactylaria lysipaga Ascomycota
Adhesive knobs + non-
constricting rings

Dactylellina 
appendiculata

Ascomycota

Dactylellina 
haptotyla

Ascomycota

Constricting rings A. dactyloides Ascomycota
A. brochopaga Ascomycota
Drechslerella 
stenobrocha

Ascomycota

Drechslerella 
brochopaga

Ascomycota

Drechslerella 
dactyloides

Ascomycota

Adhesive knobs + adhesive 
spores

Nematoctonus 
concurrens

Basidiomycota

Adhesive networks Arthrobotrys 
oligospora

Ascomycota

Arthrobotrys 
musiformis

Ascomycota

Arthrobotrys 
conoides

Ascomycota

Arthrobotrys 
vermicola

Ascomycota

Arthrobotrys superba Ascomycota
Dactylaria 
scaphoides

Ascomycota

(continued)
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Category
Nematode trapping 
structure Name of fungi Phylum

Endoparasitic 
fungi

Adhesive conidia Drechmeria 
coniospora

Ascomycota

Hirsutella 
rhossiliensis

Ascomycota

Hirsutella 
minnesotensis

Ascomycota

Cephalosporium 
balanoides

Ascomycota

Adhesive spores Nematoctonus 
concurrens

Basidiomycota

Nematoctonus 
haptocladus

Basidiomycota

Nematoctonus 
leiosporus

Basidiomycota

Ingested conidia Harposporium 
anguillulae

Ascomycota

Harosporium cerbri Ascomycota
Zoospores Catenaria auxillaris Blastocladiomycota

Catenaria 
anguillulae

Blastocladiomycota

Myzocytiopsis 
glutinospora

Oomycota

Myzocytiopsis 
vermicola

Oomycota

Myzocytiopsis 
enticularis

Oomycota

Myzocytiopsis 
humicola

Oomycota

Egg parasitic 
fungi

Appresoria Pochonia 
chlamydosporia

Ascomycota

Purpureocillium 
lilacinum 
(=Paecilomyces 
lilacinus)

Ascomycota

Acremonium 
(=Cephalosporium) 
sp.

Ascomycota

Dactylella 
oviparasitica

Ascomycota

Dactylella lysipaga Ascomycota
Lecanicillium 
psalliotae

Ascomycota

Lecanicillium lecanii Ascomycota
Zoospores Nematophthora 

gynophila
Oomycota

Toxin producing 
fungi

Toxic droplets Pleurotus ostreatus Basidiomycota
Toxin, spiny structures Coprinus comatus Basidiomycota

Endophytic fungi Fusarium oxysporum Ascomycota
Neotyphodium spp. Ascomycota
Acremonium Ascomycota
Penicillium oxalicum Ascomycota

Table 10.1  (continued)
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and A. superba can capture nematodes with adhesive hyphae under certain condi-
tions (Chen and Dickson 2004). The infection begins with the capture organ being 
adhered by nematode. Within few minutes, the nematodes added to a fungal colony 
were captured and penetrated within 1 h by the trap forming cell hyphae. After 6 h, 
the whole nematode body was filled with hyphae. The dead nematode did not induce 
traps but developed a large number of thin hyphae around the nematode.

10.2.1.2  �Adhesive Knobs

These are very effective trapping structures and nematodes are often attacked at 
more than one infection site (Barron 1977). These knobs are covered by a thin layer 
of adhesive materials and the infection process involves one knob and several asso-
ciated hyphal elements. These adhesive knobs produce an infection peg and infec-
tion bulb. From this bulb, the infection hyphae proliferate within the nematode and 
digest the inner contents. The adhesive knobs are found in Ascomycota and 
Basidiomycota (Table 10.1). This group of fungi is unique in forming clamp con-
nections on the secondary hyphae (Chen and Dickson 2004). The genomic studies 
of adhesive knob forming species, Monacrosporium haptotylum indicated the 
enrichment of small secreted proteins (SSPs) that were highly and differentially 
expressed during the interaction with nematode hosts (Meerupati et al. 2013).

10.2.1.3  �Adhesive Networks

This is the most common type of nematode trapping structure observed in 
Arthrobotrys spp. (Table 10.1). The trap may consist of a single ring or a three-
dimensional network. A. oligospora, a model organism for understanding the inter-
action between fungi and nematodes, forms a three-dimensional adhesive network 
during infection process. The genomic and proteomic analyses of this fungus pro-
vide insights into nematode trap formation including G-protein coupled receptors, 
adhesive proteins, cell division cycle, peroxisome related proteins, and proteins 
involved in energy supplementation (Yang et al. 2011).

10.2.1.4  �Constricting Rings

Among different trapping structures, constricting rings are probably the only ones 
that actually capture the nematodes and considered to be the lineal strategy after 
which other trapping structures evolved (Yang et al. 2007a; Liu et al. 2012). In gen-
eral, trapping fungi that form constricting rings are more abundant in soils rich in 
organic matter and influenced by the population density of nematodes (Linford 
1937; Gray 1985). However, the trapping mechanism is completely different in con-
trast to others. When a nematode passing into the ring, it stimulates the inner face of 
the ring such that the three cells comprising the ring inflate centripetally to about 

K. K. Kumar



291

three times and get trapped within 0.1 s. The pressure exerted by nematode on the 
ring during this process causes the activation of G-protein coupled receptors which 
leads to an increase in cytoplasmic Ca2+, and activation of calmodulin that opens the 
water channels, and thereby inflates the ring trapping the nematode (Chen et  al. 
2001). The genome sequence of Drechslerella stenobrocha constricting ring form-
ing fungus revealed that the downregulation of saprophytic enzyme genes and the 
upregulation of infection related genes during the capture of nematodes indicated a 
transition between saprophagous and predatory life strategies. This study also indi-
cated that protein kinase C (PKC) signal pathway and Zn (2)-C6 type transcription 
factors were responsible for trap formation in D. stenobrocha (Liu et  al. 2014). 
Following the capture an infection peg is produced by one of the three ring cells and 
a small globose infection bulb develops after the penetration of infection peg into 
the body cavity of the nematodes. Trophic hyphae quickly digest and absorb the 
internal contents of nematode leaving only the cuticle structures.

10.2.1.5  �Non-constricting Rings

Non-constricting rings are generally produced by erect lateral branches produced 
from septate hyphae. When a nematode thrusts its head inside the non-constricting 
ring, it gets wedged and held by friction. During this, the ring often breaks at the 
point of weakness near the stalk apex and this process may be repeated until several 
rings are wedged around the host. Following capture, the fungi penetrate and con-
sume the inner contents of the host (Zaki 1994). Dactylaria candida and D. lysipaga 
usually generally form non-constricting rings during infection process (Table 10.1).

10.2.2  �Endoparasitic Fungi

These are a group of fungi that infect nematodes mainly by conidia (Drechmeria 
coniospora), ingestive spores (Harposporium spp.), adhesive spores (Nematoctonus 
concurrens) or zoospores (Catenaria anguillulae) (Table 10.1). Their spores either 
adhere to the nematode cuticle or swallowed by the host and then germinate inside 
the nematode body which finally result in the death of nematode. In D. coniospora 
surface proteins and chymotrypsin-like proteases were involved in the infection 
process (Lopez-Llorca et al. 2008; Jansson and Friman 1999). Although some of 
these like Nematophthora gynophila could parasitize a large number of nematodes 
viz., Heterodera avenae, H. trifolii, H. schachtii, H. goettengiana, H. cruciferae, 
etc., and their bioefficacy was dependent on adequate soil moisture and on the rela-
tive number of nematodes and endozoic units present in the soil. Besides, their 
obligate nature posed a problem for mass production (Kerry 1987).
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10.2.3  �Egg and Female Parasitic Fungi

The research on egg and female parasitic fungi has been initiated in the 1990s. 
These fungi use either appressoria (Purpureocillium spp., Pochonia spp.,) or zoo-
spores (Nematophthora gynophila) to kill different life stages (Lopez-Llorca et al. 
2008) (Table 10.1). The relationship between nematodes and these fungi was vari-
able, but as some of the isolates were highly virulent, they were extensively used 
and are still available as formulations in the market, especially for sedentary endo-
parasites. However, it is important to ascertain the quality parameters, namely col-
ony forming units (CFU), presence of contaminants of these formulations before 
application in the field for control of nematode population. Among different egg 
parasitic fungi, P. chlamydosporia and P. lilacinum are widely used as biocon-
trol agents.

10.2.3.1  �  Pochonia chlamydosporia

P. chlamydosporia is considered as potential biocontrol agent of endoparasitic nem-
atodes due to their ability to colonize the rhizosphere of plants and cultivars, to 
produce chlamydospores in  vitro and to infect eggs of endoparasitic nematodes 
such as root knot (Meloidogyne spp.) and cyst nematodes (Heterodera avenae, 
H. glycines, H. schachtii) (Manzanilla-Lopez et al. 2013; Dallemole-Giaretta et al. 
2015). In addition, this fungus has shown activity against false root-knot nematode, 
Nacobbus aberrans, burrowing nematode, Radopholus similis, citrus nematode, 
Tylenchulus semipenetrans, and reniform nematode, Rotylenchulus spp. (Manzanilla-
Lopez et al. 2013; Abd-Elgawad and Askary 2018). The specificity of this fungus 
towards sedentary endoparasitic nematodes is associated with the recognition of 
both quantitative and qualitative changes in root exudates patterns during nematode 
infection (Wang and Bergeson 1974). Crops such as beans, cabbage, crotalaria, 
kale, pigeon pea, potato, pumpkin, and tomato are considered as good hosts 
(200 CFU/cm2 of root) for colonization of this fungus in the rhizosphere. Whereas, 
chilli, sweet potato, cowpea, rye, tobacco, and cotton are considered as moderate 
hosts (100–200 CFU/cm2 of root) and poor hosts (<100 CFU/cm2 of root) include 
aubergine, okra, soybean, sorghum, and wheat (de Leij 1992; Bourne et al. 1996).

P. chlamydosporia infects nematode eggs through the development of appresso-
ria at the hyphal tip and the presence of mucilaginous material between appressoria 
and surface of the egg shell appear to assist in egg shell penetration (Lopez-Llorca 
et al. 2002). A post infection bulb leads to the development of a mycelium within 
the egg and destruction of internal contents (Segers 1996; Kerry and Hirsch 2011). 
The fungus produce extracellular enzymes such as Serine proteases (VCP1) and 
chitinases which are involved in degradation of egg shells (Segers 1996). SCP1, a 
serine carboxypeptidase from P. chlamydosporia was immunolocalized in M. javan-
ica eggs infected by fungus (Escudero et al. 2016).
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The ability to produce chlamydospores in  vitro without the addition of other 
energy sources lead to the consideration of this fungus as biocontrol agent. Hence 
application of chlamydospores at the rate of 5000 spores/g soil in aqueous suspen-
sion is recommended to test the efficacy of fungus but it may vary according to the 
strain and target nematode (de Leij et al. 1992; Stirling and Smith 1998; Bourne and 
Kerry 2000; Kerry and Hidalgo-Diaz 2004). Application of organic amendments 
may increase fungal abundance in soil and fungus remains in saprophytic phase but 
not necessarily increase in nematode parasitic activity (Atkins et al. 2003). Gene 
expression studies showed differences among several genes involved in cellular sig-
nals, transport or DNA repair, with a distinct cluster of genes commonly expressed 
during transition from saprophytic to parasitic phase of this fungus (Rosso et al. 
2011). Niu (2017) reviewed that the secondary metabolites released from P. chla-
mydosporia and other species such as resorcylic acid lactone, pyranones, alkaloid, 
phenolics, etc. may act as virulence factors to plant and animal-parasitic nematodes 
parasitized by the fungus.

10.2.3.2  �Purpureocillium lilacinum (=Paecilomyces lilacinus)

P. lilacinum is a soil inhabiting fungus reported from different parts of the world and 
widely used as potential biocontrol agent against plant parasitic nematodes (Vasanthi 
and Kumaraswamy 1999; Brand et al. 2010). This fungus infects eggs, egg masses, 
females, and cysts of many plant parasitic nematodes such as Meloidogyne spp., 
Globodera spp., Heterodera spp., Tylenchulus sp., and Nacobbus sp. The fungus 
first colonizes gelatinous matrix of different nematodes and penetrate the eggs with 
the help of appressoria or hyphae. In addition, the fungus produce several extracel-
lular enzymes such as serine proteases, chitinases depending on the recognition of 
the host surface hydrophobicity and these were purified and characterized from dif-
ferent strains (Bonants et  al. 1995; Lopez-Llorca et  al. 2002; Khan et  al. 2003; 
Huang et al. 2004; Khan et al. 2004). Enzymes produced by P. lilacinum strain 251 
resulted in reduction of egg hatching in M. javanica (Khan et al. 2004). Similarly, 
the secondary metabolites produced by the fungi (Australian isolate), such as leuci-
nostatins, have significant effect on the colonization of M. javanica eggs (Park 
et al. 2004).

In addition to control of plant parasitic nematodes, species of this fungus pro-
duce several metabolites which promote plant growth and defensive substances 
against biotic and abiotic stresses (Khan et al. 2012). Further, this fungus promote 
plant growth by performing Phosphorus solubilization in soil (Rinu and Pandey 
2011; Lima-Rivera et al. 2016).
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10.2.4  �Toxin Producing Fungi

This group of fungi produces toxic metabolites which act as nematicidal toxins 
before the penetration of hyphae into nematode body through cuticle. The toxic 
effects on nematodes include reduced egg hatching, immobility, mortality, etc. The 
productions of toxins also help in preventing the consumption of fungal colonies by 
fungivorous nematodes and other invertebrates (de Freitas Soares et al. 2018). So 
far more than 200 compounds have been identified from nearly 280 fungal species 
(Li et al. 2007a; Li and Zhang 2014). The commonly included genera under this 
category are Nematoctonus, Pleurotus, and Penicillium, etc. (de Freitas Soares et al. 
2018). These toxic metabolites include peptides, terpenoids, alkaloids, quinines, 
sterols, etc. (Li and Zhang 2014). Table 10.3 shows a list of toxic metabolites identi-
fied in different fungi and their effect on different nematode species. The discovery 
of these toxic metabolites further lead to the development of these chemicals as 
biocontrol agents against plant parasitic nematodes (Guo et al. 2012) (Table 10.2).

10.2.5  �Endophytic Fungi

The approach of using endophytic fungi as biocontrol agents of plant parasitic nem-
atodes has gained attention in recent years to rectify the difficulties involved in 
establishing an introduced organism in the rhizosphere environment. Endophytes 
have the benefit that they occur in the same ecological niche as endoparasitic nema-
todes but are not subject to competition from microorganisms in the soil and rhizo-
sphere (Stirling 2011; Yadav et al. 2019a, b; 2020c). The most research work has 
focused on the strains of Fusarium oxysporum that reduce the infection and repro-
duction of burrowing nematode, Radopholus similis (Athman et al. 2007), root-knot 
nematode, M. incognita (Hallmann and Sikora 1994; Dababat and Sikora 2007), 
lesion nematode, Pratylenchus goodeyi (Waweru et  al. 2014), spiral nematode, 
Helicotylenchus multicinctus (Waweru et al. 2014).

Trichoderma spp. are endophytic and mycoparasitic fungi that have been 
described as biocontrol agent against plant parasitic nematodes (Zhang et al. 2014; 
Li et al. 2015; Dandurand and Knudsen 2016). Trichoderma parasitizes nematode 
eggs by the secretion of chitinolytic enzymes encoded by two genes chi 18-5 and chi 
18-12 (Szabó et al. 2012). In addition, trypsin like protease (PRA1) and serine pro-
tease (SprT) were also observed against Meloidogyne juveniles during infection by 
the fungi (Suarez et al. 2004; Chen et al. 2009). Further, Szabó et al. 2013 reported 
that comparative analysis of protease expression profiles in T. harzianum  revealed 13 
peptidase encoding genes, suggesting that these genes might play an important role 
in infection process by the fungi. In addition to direct antagonism, nematophagous 
activity has also observed on eggs of M. incognita, M. javanica, M. arenaria, and 
M. exigua (Windham et al. 1989; Eapen et al. 2005; Sharon et al. 2007; Spiegel et al. 
2007; Ferreira et al. 2008).
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Table 10.2  Nematicidal toxic metabolites identified in nematophagous fungi

Toxin Fungi Test nematode Reference

Secalonic acid D, Oxalin Penicillium 
anatolicum

Globodera 
rostochiensis, 
Heterodera avenae spp

Steyn (1970)

Penicillium 
vermiculatum, 
Penicillium oxalicum

Globodera 
rostochiensis, 
Globodera pallida

Penicillium 
chrysogenum

Meloidogyne javanica

trans-2-decenedioic acid Pleurotus ostreatus 
NRRL 3526

Panagrellus redivivus Kwok et al. 
(1992)

S-coriolic acid Pleurotus 
pulmonarius

Caenorhabditis elegans Stadler et al. 
(1994a)

Linoleic acid Pleurotus 
pulmonarius

Caenorhabditis elegans Stadler et al. 
(1994a)

p-Anisaldehyde Pleurotus 
pulmonarius

Caenorhabditis elegans Stadler et al. 
(1994a)

1-(4-Methoxyphenyl)-1,2-
propanediol

Pleurotus 
pulmonarius

Caenorhabditis elegans Stadler et al. 
(1994a)

2-Hydroxy-(4′-methoxy)_
propiophenone

Pleurotus 
pulmonarius

Caenorhabditis elegans Stadler et al. 
(1994a)

Dihydropleurotinic acid Nematoctonus 
robustus

Stadler et al. 
(1994b)

Pleurotin Nematoctonus 
robustus

Stadler et al. 
(1994b)

Leucopleurotin Nematoctonus 
robustus

Stadler et al. 
(1994b)

T2 toxin, Moniliformin, 
Fusarenone, Neosolaniol, 
Verrucarina,

Fusarium solani Meloidogyne javanica Ciancio 
(1995)

Cheimonophyllon E; 5α,8α-
epidioxyergosta-6,22-dien-3-
β-ol; 
5-hydroxymethyl-
furancarbaldehyde

Pleurotus eryngii 
var. ferulae L14

Bursaphelenchus 
xylophilus

Li et al. 
(2007b)

5-methylfuran-3- carboxylic 
acid; 5-hydroxy-3,5-
dimethylfuran-2 (5H)-one

Coprinus comatus Meloidogyne incognita 
and Panagrellus 
redivivus

Luo et al. 
(2007)

The future market for fungal products may be improved by commercializing 
several virulent strains for nematode pests. Zhao et al. (2013) reported that the cul-
ture filtrates of new fungal species, Simplicillium chinense (strain-Snef5) showed 
potential effect against soybean cyst nematode, Heterodera glycines, root-knot 
nematode M. incognita, white tip nematode Aphelenchoides besseyi and 
Caenorhabditis elegans. Whereas, Trichoderma sp. KAV1 and C. rosea KAV2 
showed 100% mortality to second stage juveniles of M. incognita and M. javanica 
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under in  vitro conditions (Migunova et  al. 2018). Further, the fungal isolate, 
Mortierella globalpina proved pathogenic to M. chitwoodi in vitro using trapping 
structures and subsequently reduced root galls in  vivo on the roots of tomato 
(Solanum lycopersicum var. Rutgers) (DiLegge et  al. 2019). Recently, Du et  al. 
(2019) reported inhibition rate of 84.61%. 78.91% and 84.25% and 79.48% for 
adult females, juveniles, egg mass, and gall index of M. incognita under greenhouse 
experimental conditions at a concentration of 3  ×  108  cfu  mL-1 Phanerochaete 
chrysosporium (strain B-22) in tomato.

10.3  �Nematode-Fungal Interaction

The infection process of nematophagous fungi to nematodes involves a variety of 
virulence factors which have been studied by various techniques such as electron 
microscopy, bioassays, and several biochemical, physiological, immunological, and 
molecular techniques (Thorn and Barron 1984; Murray and Wharton 1990; Singh 
and Yadav 2020). In general, the interaction of fungi with nematode species involves 
five different stages, viz., recognition, attraction, adhesion, penetration, and digestion.

10.3.1  �Recognition

The mechanism of host recognition by fungi is not completely understood. However, 
few reports suggested that lectin, a carbohydrate binding protein plays an important 
role in nematode–fungal interaction (Borrebaeck et  al. 1984; Rosenzweig and 
Ackroyd 1983; Nordbring-Hertz and Mattiasson 1979; Nordbring-Hertz and Chet 
1986). For example, the interaction between A. oligospora and nematode was medi-
ated by GalNAc-(N-acetyl-d-galactosamine) specific lectin which binds to carbohy-
drate on the nematode surface (Nordbring-Hertz and Mattiasson 1979). Whereas, 
Hsueh et al. (2013) reported that ascarosides, a group of glycolipids constitutively 
secreted by soil dwelling nematodes could trigger the trap formation in A. oligos-
pora. This type of ascaroside induced morphogenesis is conserved in several closely 
related species of nematophagous fungi and occurs under nutrient stress conditions 
(Jiang et al. 2017).

10.3.2  �Attraction

Nematodes are attracted by the culture filtrates and living mycelia of several nema-
tophagous fungi (Li et  al. 2015). The volatile compounds such as monoterpenes 
(α-pinene and β-pinene) and a terpenoid (camphor) produced by an endoparasitic 
fungus Esteya vermicola hypothesized to be involved in the interaction of pinewood 
nematode, Bursaphelenchus xylophilus to E. vermicola. Fungi which have more 
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parasitic ability, i.e., endoparasitic fungi are more effective in attracting nematodes 
than saprophytic fungi and it was tested in soil microcosms (Tunlid et  al. 1992; 
Dijksterhuis et al. 1994; Nordbring-Hertz et al. 2006). In the same way, the volatile 
compounds produced by host plant roots could also play a role in the interaction of 
nematode and fungi (Zhao et al. 2007).

10.3.3  �Adhesion

The adhesion of nematodes to the spores and trapping structures is an essential 
requirement in the infection process. The presence of extracellular fibrillar layer 
with residues of neutral sugars, uronic acid and proteins on the surface of adhesive 
traps, spores and appresoria mediates the adhesion of fungi to the nematode cuticle 
surface (Tunlid et al. 1991; Whipps and Lumsden 2001; Su et al. 2015).

10.3.4  �Penetration and Digestion

During this stage the nematophagous fungi penetrate the host by mechanical pres-
sure and the activity of several extracellular hydrolytic enzymes that can degrade 
the polysaccharides and proteins of the nematode cuticle and egg shells. These 
extracellular enzymes include proteases, collagenases, and chitinases that have 
identified in different nematode trapping fungi, which act as key factors in the pen-
etration process. After penetration, the nematode is digested by the fungus.

10.4  �Extracellular Enzymes

Extracellular hydrolytic enzymes such as proteases, chitinases, and collagenases 
produced by nematophagous fungi play an important role in nematode cuticle pen-
etration and host cell digestion (Åhman et al. 2002; Huang et al. 2004; Morton et al. 
2004). Among these, proteases produced more rapidly in higher concentrations by 
nematophagous fungi than collagenases and chitinases. So far, more than 20 serine 
proteases have been detected, characterized, and cloned from different nematode 
trapping and egg parasititc fungi by several researchers (Tunlid et al. 1994; Yang 
et  al. 2007c, 2008). Lopez-Llorca (1990) first isolated serine protease P32 from 
Pochonia rubens (Verticillium suchlasporium). With the availability of genomic 
data, the number of genes encoding serine proteases have been identified in differ-
ent nematophagous fungi (Table 10.3).

Chitinases are the enzymes usually produced by nematophagous fungi to pene-
trate the nematode eggshell during infection (Gortari and Hours 2008). The first 
chitinase (Chi43) was purified from P. chlamydosporia and P. suchlasporia 
(Tikhonov et  al. 2002). So far, 20 chitinases have been purified or cloned from 
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Table 10.3  Serine proteases purified/cloned in nematophagous fungi

Fungi Protease Testing nematode
Fungal activity against 
nematode Reference

Pochonia rubescens P32 Globodera pallida Degradation of proteins 
in nematode eggs

Lopez-
Llorca 
(1990)

Pochonia 
chlamydosporia

VCP1 Meloidogyne 
incognita

The purified enzyme 
hydrolysed proteins in 
situ from the outer 
layer of the egg shell 
and exposed its chitin 
layer

Segers et al. 
(1994)

Arthrobotrys 
oligospora

PII Panagrellus redivivus 76.8% immobilized 
nematodes after 
20–22 h of treatment

Tunlid et al. 
(1994)

Paecilomyces 
lilacinus

pSP-3 Meloidogyne hapla Significantly affect the 
development of eggs

Bonants 
et al. (1995)

Arthrobotrys 
oligospora

Aoz1 Panagrellus redivivus Immobilization of 
nematodes

Zhao et al. 
(2004)

Clonostachys rosea Lmz1 
(Serine 
like 
protease)

Immobilization of 
nematodes after 24 h of 
treatment

Zhao et al. 
(2005)

Lecanicillium 
psalliotae

Ver112 Panagrellus redivivus 81% of cuticle 
degradation after 
treating with ver112 for 
12 h

Yang et al. 
(2005)

Clonostachys rosea PrC Panagrellus redivivus 80 ± 5% of J2 were 
immobilized and 
degraded after treating 
with PrC for 48 h

Li et al. 
(2006)

Monacrosporium 
microscaphoides

Mlx Panagrellus redivivus Immobilization of 
nematodes after 24 h of 
incubation in purified 
protease and nematode 
cuticle degradation

Wang et al. 
(2006a)

Dactylella 
shizishanna

Ds1 Panagrellus redivivus >60% of nematodes 
were killed and 
degraded after being 
treated with crude 
extract or the purified 
enzyme for 12 h

Wang et al. 
(2006b)

Hirsutella 
rhossiliensis

Hnsp Panagrellus 
redivivus, Heterodera 
glycines

100% mortality of H. 
glycines J2 was 
observed in 100 μl 
crude enzyme solution 
after incubation for 
12 h

Wang et al. 
(2007)

(continued)
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Table 10.3  (continued)

Fungi Protease Testing nematode
Fungal activity against 
nematode Reference

Arthrobotrys 
conoides

Ac1 Panagrellus 
redivivus, 
Bursaphelenchus 
xylophilus

Immobilization of 
60–80% P. redivivus 
population after treated 
with crude enzyme for 
24 h. Whereas, 
40–50% of B. 
xylophilus nematode 
population was 
immobilized after 24 h 
of treatment

Yang et al. 
(2007b)

Dactylella varietas Dv1 Panagrellus redivivus 
and Caenorhabditis 
elegans

50–100% tested 
nematodes were killed 
and degraded after 
being treated with 
either the crude extract 
or the purified enzyme 
for 12 h

Yang et al. 
(2007c)

Monacrosporium 
cystosporium

Mc1 Panagrellus 
redivivus, 
Bursaphelenchus 
xylophilus

70–80% of P. redivivus 
were immobilized after 
being treated with the 
crude and the purified 
proteases for 24 h, but 
only 50–60% of B. 
xylophilus were 
immobilized

Yang et al. 
(2008)

Cordyceps sinensis Csp1 Hepialus spp. Loosening and 
degradation of cuticle 
in larvae

Zhang et al. 
(2008)

Cordyceps sinensis Csp2 Hepialus spp. Loosening and 
degradation of cuticle 
in larvae

Zhang et al. 
(2008)

Hirsutella 
rhossiliensis

Hasp Heterodera glycines The mortality of J2 was 
significantly higher in 
purified hasp solutions 
(43 ± 5% mortality at 
4 U/ml and 53 ± 4% 
mortality at 8 U/ml) 
than in the buffer 
control (22 ± 2%)

Wang et al. 
(2009)

Monacrosporium 
thaumasium

Mt1 Angiostrongylus 
vasorum

23.9% reduction in the 
number of L1 larvae, 
compared with control

Soares et al. 
(2012)

Duddingtonia 
flagrans

Df1 Cyathostomin 58% reduction of L3 
larvae, after 24 h of 
treatment compared 
with control

Braga et al. 
(2012)

Esteya vermicola Evsp Bursaphelenchus 
xylophilus

Wang et al. 
(2015)
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various nematophagous fungi (Li et al. 2015). Table 10.4 showed a list of chitinases 
either purified or cloned from different nematophagous fungi and their activity on 
different species of nematode eggs under in vitro conditions.

Collagenases are another group of enzymes which are suspected to play a role in 
nematode infection. Initially Schenck et al. (1980) reported that eight nematopha-
gous fungi could secrete collagenases. Later Tosi et  al. (2002) reported that 
Arthrobotrys genus could produce collagenases.

10.5  �Commercialization

The development of a biocontrol agent needs several steps aimed at isolation in pure 
culture and screening by different bioassay tests under in vitro, in vivo, and ex vivo 
conditions (Montesinos 2003). For commercialization of any product, the bioagent 
must be produced in a large scale, formulated by means of biocompatible additives 
to improve the storage capacity of the product. Further, quality control, registration 
of the particular formulated product and implementation are required 
(Ravensberg 2011).

Table 10.4  Chitinases purified/cloned in nematophagous fungi

Nematophagous fungi Chitinase
Testing 
nematode

Fungal activity 
against nematode Reference

Pochonia chlamydosporia 
(=Verticillium 
chlamydosporium)
P. suchlasporia (V. 
suchlasporium)

Chi43 Globodera 
pallida

Treated eggs showed 
surface damage

Tikhonov 
et al. (2002)

Paecilomyces lilacinus 
(strain 251)

Plc Khan et al. 
(2003)

Lecanicillium lecanii 
(Verticillium lecanii)

Chi2 Lu et al. 
(2005)

Lecanicillium psalliotae LpChi1 Meloidogyne 
incognita

Inhibition of egg 
hatching by 38.2% 
after 3 days of 
treatment

Gan et al. 
(2007a)

Clonostachys rosea 
(=Gliocladium roseum)

CrChi1 Gan et al. 
(2007b)

Paecilomyces variotii Chi 32 Meloidogyne 
incognita

Nguyen et al. 
(2009)

Paecilomyces variotii Chi 46 Meloidogyne 
incognita

Nguyen et al. 
(2009)

Pochonia chlamydosporia PcChi44 Meloidogyne 
incognita

Scars on the surface 
and peeling of 
eggshells was 
observed for about 
24 h after treatment

Mi et al. 
(2010)
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various companies under different trade names. Among these, the formulations of 
Table 10.5  Commercial products of fungal biocontrol agents developed against plant parasitic 
nematodes

Fungal species Trade name
Formulation 
type

Target 
nematode Producer/country

Purpureocillium 
lilacinum (=Paecilomyces 
lilacinus)

Bioact Water 
dispersible 
granule, 
water 
dispersible 
powder

Root-knot 
nematodes, 
cyst 
nematodes, 
reniform 
nematode, 
burrowing 
nematode, 
citrus 
nematode, 
golden cyst 
nematode and 
lesion 
nematode

Bayer Crop Science/
USA

PL Gold Granulate, 
WP

BASF Worldwide/
Germany

PL 251 Water 
dispersible 
granule

Biological Control 
Products/South Africa

Biocon WP Asiatic Technologies, 
Inc./Philippines

Shakti Paecil WP Shakti Biotech/India
Yorker WP Agriland Biotech 

Limited/India
Pl plus Wettable 

powder
Biological Control 
Products/South Africa

Miexianning Talc Agricultural Institute, 
Yunnan Academy of 
Tobacco Science/
China

Melocon Water 
dispersible 
granule

Prophyta GmbH/
Germany; Certis/
USA

Nematofree WP International 
Panaacea Ltd./India

Paecilo WP Agri life/India
Gmax bioguard Talc GreenMax AgroTech/

India
Green 
Nemagon

Liquid

Bio-Nematon Liquid/
powder

Imported from 
T. Stanes and 
company limited, 
India by Gaara 
company, Egypt

Biostat LAM International/
USA

(continued)

In case of nematophagous fungi, various species have been tested for their effi-
cacy in control of plant parasitic nematodes. However, only a few species have been 
commercialized for large scale multiplication and field application. Table 10.5 dem-
onstrates a list of commercial products of nematophagous fungi produced by 
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Table 10.5  (continued)

Fungal species Trade name
Formulation 
type

Target 
nematode Producer/country

Pochonia chlamydosporia Xianchongbike Liquid Root-knot 
nematodes, 
cyst 
nematodes, 
false 
root-knot 
nematode, 
reniform 
nematode

Laboratory for 
Conservation and 
Utilization of 
Bio-resources, 
Yunnan University/
China

Pochonia chlamydosporia 
(IMI SD 187)

KlamiC® Granulate CENSA/Cuba

P. chlamydosporia 
(Pc-10)

Rizotec® Rhizoflora, Viçosa 
(Brazil)

PcMR-1 strain Liquid Clamitec, Myco 
solutions, lda/
Portugal

Arthrobotrys robusta Royal 300 Unspecified France
Arthrobotrys irregularis Royal 350 Root-knot 

nematodes
France

Myrothecium verrucaria DiTera® Dry flowable Root-knot 
nematode, 
cyst 
nematode, 
root-lesion 
nematode, 
stubby-root 
nematode, 
citrus 
nematode, 
burrowing 
nematode, 
sting 
nematode

Valent Biosciences 
Corp/USA

Trichoderma harzianum Romulus WP Root-knot 
nematodes, 
cyst 
nematodes

Dagutat Biolab/South 
Africa

Ecosom-TH Wettable 
powder, 
liquid, 
lyophilized

Agri Life SOM 
Phytopharma 
Limited/India

Commander Unknown HTC Impex Private 
Limited/India

Trichobiol WP Control Biológico 
Integrado; Mora 
Jaramillo Arturo 
Orlando—Biocontrol/
Colombia

Trichoderma viride 
(strain 2684)

Trifesol WP BioCultivos S.A., 
Bogotá, Colômbia

(continued)
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P. chlamydosporia, P. lilacinum, and A. robusta, A. irregularis have been widely 
used for nematode management in vegetables and fruit crops.

Although, nematophagous fungi provides several advantages over traditional 
products, the Commercialization of these bioproducts lags far behind due to incon-
sistent performance, quality control issues, limited shelf life of product, slow rate of 
kill, lack of field persistence of some formulations, difficulties in scale-up produc-
tion, expensive and time consuming registration process and marketable issues, etc. 
(Moosavi and Askary 2015; Venkatesan and Pattar 2017). There is a need to focus 
on improving the formulation and manufacturing technologies that reduce costs and 
enhance shelf life of the commercial product.

The development and success of a biocontrol agent for plant parasitic nematodes 
require a better knowledge on the biology and ecology of the nematophagous fungi 
and the nematode, its host cultivar, method and time of application, and the various 
biotic and abiotic factors regulating the efficacy of biocontrol agent, the root diffu-
sates differ markedly between plant species and cultivar which influences the prolif-
eration of fungi (Tunlid and Ahrén 2001; Morton et  al. 2004; Davies 2005). In 
addition, several soil microbes or their metabolites compete with the introduced 
bioagents for scarce energy sources. These can significantly affect the efficacy of 

Table 10.5  (continued)

Fungal species Trade name
Formulation 
type

Target 
nematode Producer/country

Trichoderma lignorum Mycobac Unknown Laboratórios 
Laverlam/Colombia

Beauveria bassiana strain 
GHA

Botanigard ES/WP Root-knot 
nematodes

B. bassiana strain GHA Mycotrol ES Root-knot 
nematodes

Verticillium lecanii Mycotal WP Root-knot 
nematode 
(Meloidogyne 
incognita)

Consortium (Bacillus 
subtilis, Trichoderma 
spp., Paecilomyces spp. 
and extracts of Tagetes 
sp.)

Nemaxxion 
Biol

Liquid Root-knot 
nematodes

GreenCorp/Mexico.

Consortium (Arthrobotrys 
spp., Dactylella spp., 
Paecilomyces spp., 
Mycorrhiza (Glomus 
spp.), and bacteria 
(Bacillus spp. and 
Pseudomonas spp.))

Rem G Green Solutions/Italy
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the agent even when added to soil in a pre-colonized substrate. For example, egg 
masses of Meloidogyne spp. harbored 122 bacteria and 19 fungi, 23% and 74% of 
which, respectively, were antagonistic to P. chlamydosporium (Kok and Papert 
2001). Bacillus sp. strain H6 isolated from a fungistatic soil produced iturin like 
compounds from that caused swelling in the conidia and germ tube of nematopha-
gous fungi (Li et al. 2007a). Such sensitivity of a biocontrol agent to antagonism by 
an isolate of another microbe varies with the isolate (Montfort et al. 2006).

10.6  �Conclusion and Future Prospects

Over the past 50 years, the number of scientists involved in research on the biocon-
trol of nematodes has increased significantly. Although several biocontrol agents for 
nematodes have been reported, only few organisms were developed as commercial 
bioagents. Surveys and empirical tests are being replaced by quantitative experi-
mentation and basic research at genomic levels is being undertaken. Such informa-
tion is essential for a realistic appraisal of the impact of microbial agents on 
nematode pests and for monitoring the spread and survival of the releases organ-
isms. Our research efforts need to be directed towards identifying the factors gov-
erning their proliferation in soil and to remove the constraints wherever feasible. 
With the application of molecular biology, the molecular mechanisms of the inter-
action between nematode and fungal species can be understood, which further helps 
to develop new screening procedures of nematophagous fungi to control plant para-
sitic nematodes.
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