
Chapter 4
Introduction to Evaporative Heat Transfer

Manish Bhendura, K. Muralidhar, and Sameer Khandekar

Nomenclature

a Coefficient of velocity distribution function
cpa Specific heat capacity of air at constant pressure (J/kg K)
D Mass diffusivity of water vapor in dry air (m2/s)
fM Maxwellian velocity distribution function
F Correction factor for total mass flux
G Correction factor for total y-momentum flux
g Gravitational acceleration (m/s2)
hc Convective heat transfer coefficient (W/m2 K)
he Evaporative heat transfer coefficients (W/m2 K)
hfg Latent heat of vaporization of water (J/kg)
H Correction factor for total energy flux
j Molecular evaporative mass flux in kinetic model (kg/m2 s)
kB Boltzmann’s constant (J/K)
km Thermal conductivity of mth fluid (W/m K)
me Evaporative mass flux of water in continuum model (kg/m2 s)
Ma Molecular mass of air (kg/kmol)
Mw Molecular mass of water (kg/kmol)
n Molecular density (mol/m3)
p Saturation pressure of water vapor at a given temperature (kPa)
p0 Partial vapor pressure of water in saline water (kPa)
pT Total pressure (kPa)
Q Binary collision integral
qe Evaporative heat flux (W/m2)
R Gas constant of water vapor (J/kg K)
S Dimensionless speed ratio
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t Time (s)
T Temperature (K); suffix c and w for cold and water surface
u Speed of bulk flow (m/s)
um Tangential velocity component of mth fluid (m/s)
vm Velocity vector of mth

fluid (m/s)
Xw Mole fraction of water in the salt solution
y Directional length normal to the liquid-vapor interface (m); continuum model
Z Pressure ratio

Greek Letters

α Accommodation coefficient of water evaporation
αc Condensation coefficient
αe Evaporation coefficient
αm Thermal diffusivity of mth

fluid (m2/s)
βm Thermal expansion coefficient of mth

fluid (K�1)
γ Unit vector directed vertically upward
ξy y-component (normal) of molecular velocity vector (m/s)
θ Temperature ratio
μm Dynamic viscosity of mth

fluid (Pa s)
νm Kinetic viscosity of mth

fluid (m2/s)
ξ Molecular velocity vector (m/s)
ρm Density of mth

fluid (kg/m3)
ψ Arbitrary function for total fluxes of mass, y-momentum, and energy
ω Absolute humidity of air

Subscripts and Superscripts

1 Vapor side in kinetic model
0 Liquid side in kinetic model
e Emitted
r Reflected
+ Outward flux
� Inward flux

4.1 Introduction

Evaporation is a spontaneous liquid-to-vapor phase change process, seen in a variety
of contexts including the natural hydrological cycle of earth. It serves as a natural
thermal control mechanism of living and breathing animals. In the process industry,
evaporation is an important intermediate step in drying operations and in water
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purification via distillation. Low temperature applications of evaporation can be seen
in devices providing indoor thermal comfort while evaporation of thin films has been
proposed as an effective technique for thermal management of intense heat gener-
ating devices such as those in miniature electronics.

Evaporation is a heterogeneous phase change phenomenon, in which a surface
molecule of matter in the low energy liquid state jumps to a high energy vapor state.
The energy transition is accompanied by the transfer of latent heat of vaporization
from adjacent molecules, causing a thermal perturbation at the liquid-vapor inter-
face. The transfer of latent heat from the molecule in the liquid phase to the vapor is
isothermal but will tend to cool the liquid body. The molecule that has passed into
the vapor phase has definite kinetic energy and will diffuse into its surroundings,
thus initiating vapor phase mass transport. Evaporation of a liquid body into a gas
phase (air, in the present discussion) is spontaneous if the gas phase above is dry,
relative to saturation conditions, defined by the prevailing pressure and temperature.
Therefore, evaporation involves heat transfer in the liquid phase and simultaneous
heat and mass transport in the vapor phase, with the liquid-vapor interface serving as
a thermally active boundary.

In the simplest form, evaporation is considered a multiscale, multiphase, and
multiphysics phenomenon. The scales arise from the gas and liquid phases, apart
from molecular scales of diffusion and larger scales of fluid convection. In terms of
distinct physical processes, we have heat transfer in the individual phases coupled at
the interface, mass transfer of moisture across the interface and within the gaseous
region, possible transport of solutes within the liquid body as well as buoyant- and
Marangoni-driven flow in the liquid body. These processes are intrinsically coupled
and require an elaborate mathematical model for analysis. In device modeling, for
example, solar stills, evaporation is represented empirically in terms of an evapora-
tive mass flux stated in terms of a sink temperature and the temperature of the
evaporating liquid surface. Such models need to be validated against a full experi-
ment backed by detailed numerical simulation.

4.2 Evaporation Models

These are broadly divided into two categories depending on the treatment of the air-
water interface, as shown in Fig. 4.1. In a continuum model, interface temperature is
continuous across the liquid and gas phases and is referred to as quasi-equilibrium
(or, a local equilibrium) model, while variations in temperature, pressure, velocity,
and other properties are permitted elsewhere in the fluid domain. Consideration of
temperature jump at the interface originating from microscale processes constitutes
the non-equilibrium model. Models arising from these two criteria are discussed
here.
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4.2.1 Quasi-Equilibrium Model

In a quasi-equilibrium model, temperature varies continuously from the liquid side to
the gas side, while the jump in heat flux at the liquid-gas interface is fully accounted
for in terms of the latent heat absorbed. Specifically, temperature jump is zero at the
interface. Model statement developed under this framework in the form of differen-
tial equations is presented below.

Following evaporation, water vapor diffuses in the surrounding air and towards a
region of lower humidity. Water vapor is transported in air and sets up a moisture
concentration field. The gradient of moisture concentration at the air-water interface
controls the evaporation rate. One can now state a species transport equation for
moisture in the gas phase. In applications where the air-water interface is practically
stationary, transport of water vapor by evaporation may be taken as diffusion
dominated and the mass flux of water vapor (kg/m2-s) calculated using the Fick’s
law

_me ¼ �ρaD
∂ω
∂y

ð4:1Þ

Here, ω is the absolute humidity of air (kg vapor/kg of dry air), ρa is the density of
dry air (kg/m3), and D is mass diffusivity of water vapor in dry air (m2/s). The
corresponding evaporative heat flux (W/m2) at the interface is the product of
evaporation rate and the latent heat of vaporization (J/kg), namely

_qe ¼ _mehfg ð4:2Þ

To obtain the evaporation rate using Eq. (4.1), the moisture field must be known
in the surrounding air. This distribution can be determined by solving an advection-
diffusion equation for humidity along with suitable initial and boundary conditions.

In a simplified quasi-equilibrium model (Tiwari and Sahota 2017), an evaporative
heat transfer coefficient is empirically specified to estimate the evaporative heat flux,
and in turn, the evaporation rate. For a body of warm water evaporation into a cold
surface, this prescription is

Fig. 4.1 (a) Air-water interface assumed to be in quasi-equilibrium with each of the phases; (b)
non-equilibrium conditions revealed the appearance of a Knudsen layer
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_qe ¼ he Tw � Tcð Þ ð4:3Þ

Here, qe and he are the evaporative heat flux and evaporative heat transfer
coefficient, respectively, and Tw and Tc are the temperature of water surface and
the average cold surface temperature, respectively. The evaporative heat transfer
coefficient can be connected to the convective heat transfer coefficient (hc) using the
definitions of partial pressures ( pw, pc) and humidity ratio

he
hc

¼ hfg
cpa

� �
Mw

Ma

� �
pw � pc
Tw � Tc

� �
pT

pT � pwð Þ pT � pcð Þ
� �

ð4:4Þ

Here, hfg is the latent heat of vaporization of water (J/kg), cpa is the specific heat of
air (J/kg K),Mw andMa are the molecular masses of water and air, respectively, and
pT is the total pressure. Equation (4.4) is quite useful for the estimation of the
evaporative heat transfer coefficient since correlations are available in the literature
for the convective heat transfer coefficient. Dunkle’s correlation is one of these and
is derived for non-isothermal convection in an air-water system inside an enclosure.
It is expressed as

hc ¼ 0:844 Tw � Tcð Þ þ pw � pcð ÞTw

268:9� pwð Þ
� �1

3

ð4:5Þ

Here, Tw and Tc are the bulk temperature of water and average temperature of the
cold surface, respectively. Pressures are expressed in units of kPa and temperature in
Kelvin.

The quasi-equilibrium model with a correlation for the interfacial heat transfer
coefficient is extensively used in the analysis of solar distillation systems. Here, the
liquid body comprises saline water and the condensate is potable water. Salinity
affects the evaporation rate of water since it regulates the saturation pressure for a
given temperature. This change in saturation pressure is accounted for by Raoult’s
law, which states that the vapor pressure of a solvent (water) in a solution (saline
water) is

p0w ¼ Xwpw ð4:6Þ

Here, Xw is the mole fraction of water in the salt solution and is less than unity.
Thus, the effect of salt in water is to diminish the saturation pressure and thus lower
evaporation rates. Vapor pressure depression can be explained in terms of the
reduction of chemical potential of water due to an increase in the salt ion activity.
The influence is more pronounced at higher temperatures since the ionic activity is
also elevated (Kokya and Kokya 2008).
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4.2.2 Transport Equations in a Two-Layer Air-Water System

In water purification applications, water is heated by an external agency, while the
surrounding air is cooled externally using an active cold surface to increase the
evaporation rate and maximize condensation of pure water. A negative temperature
gradient is set up in both air and water, which results in two-layer natural convection.
The gradient in humidity is opposed to gravity and can stabilize convection in air.
Heat transfer rates in air and water influence interfacial temperature, which, in turn
affects the evaporation rate. Hence, the device performance depends on transport
phenomena at all scales of transport prevailing in the cavity.

The complete transport model of evaporation with associated initial and boundary
conditions are laid out in this section for a rectangular cavity that is partially filled
with water, the rest being air. The water body is taken to be initially warm; the top
surface is cold, other surfaces are insulated, and air is initially dry. Evaporation from
the air-water interface consumes the latent heat of evaporation from the water body
that progressively cools with time. The temperature differential in water is gravita-
tionally unstable and generates buoyancy-driven convection. Surface tension gradi-
ents over the gas-liquid interface may generate additional convection as well. From
thermal considerations alone, density gradient in air is unstable and heat transfer
would be controlled by buoyant convection. The interface region contains practically
moisture-saturated air while it is relatively dry at the cooler surface where water has
condensed. Hence, a gravitationally stable density gradient may form in air and the
resulting strength of convection currents will respond to the difference between the
body forces related to the heat and mass transfer mechanisms.

A rectangular enclosure partially filled with initially hot water is considered for
the formulation of transport models in air and water, Fig. 4.2. Governing equations
applicable for a two-dimensional geometry are written out in the following discus-
sion. Flow is taken to be unsteady but laminar; buoyancy is included but surface
tension gradients are neglected. The two phases are clearly separated across an
interface. The air-water interface is always flat and horizontal; change in water
level with time is neglected though it can be easily accounted for. Water condensing
at the top cooled wall is assumed to be drained away immediately so that a single-

Fig. 4.2 Schematic of a
rectangular enclosure,
thermally insulated from all
sides except the top and
partially filled with initially
hot water
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phase model of transport in air is applicable here. The gradient in temperature within
the cavity will be responsible for Rayleigh-Benard convection that is intrinsically
three dimensional. The two-dimensional treatment may correspond to an average
temperature field determined with respect to the dimension along the length of the
cavity.

The mass, momentum, and energy balance equations for air and water are as
follows (Nepomnyashchy and Simanovskii 2004):

∇ � v!m ¼ 0 ð4:7Þ
∂ v
!

m

∂t
þ v

!
m �∇

� �
v
!
m ¼ � 1

ρm
∇pm þ υm∇2 v

!
m � g 1� βm Tm � Tcð Þ½ �bγ ð4:8Þ

∂Tm

∂t
þ v

!
m �∇Tm ¼ αm∇2Tm ð4:9Þ

Here, index m is used to denote the two fluids; m ¼ 1 is water, while 2 is air.
Quantities v

!
m, pm, and Tm are the velocity vector, pressure, and temperature fields

of the mth fluid. Additionally, ρm, υm, βm, and αm are the density, kinetic viscosity,
thermal expansion coefficient, and thermal diffusivity of the respective fluid, while bγ
is a unit vector directed vertically upward.

Initially (t¼ 0), water inside the enclosure is hot (T1¼ Th) and filled up to a depth
of yw, while air above is at the cold temperature (T2 ¼ Tc). In most applications, the
cold temperature is the ambient value. The fluid phases are both initially stagnant

v
!
m t ¼ 0ð Þ ¼ 0

� �
.

The two vertical side walls and the lower surface are insulated. Hence, bn �
∇Tm ¼ 0, whereas the top surface is maintained at the cold temperature. All four
walls enforce the no-slip boundary condition, v!m ¼ 0. At the air-water interface,
tangential and normal velocity components are continuous, shear stresses are con-
tinuous, and phase heat fluxes are separated by the latent heat release. In addition, the
flatness of the interface condition requires the normal velocity component to be zero.
Symbolically, these interface conditions are expressed as

μ1
∂u1
∂y

¼ μ2
∂u2
∂y

and u1 ¼ u2; v1 ¼ v2 ¼ 0 ð4:10Þ

�k1
∂T1

∂y
¼ �k2

∂T2

∂y
þ qe and T1 ¼ T2 ð4:11Þ

where μm and km are the dynamic viscosity and thermal conductivity of the mth fluid.
The evaporative heat flux qe is estimated by utilizing one of the evaporation models
described earlier, via a correlation (via Eq. (4.3) with the correlation Eq. (4.4)) or via
the gradient of humidity (specifically, the evaporation rate) multiplied by the latent
heat of vaporization (Eqs. 4.1 and 4.2).
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Computation of the humidity gradient requires the solution of the moisture
transport equation in air. The governing equation for moisture transport in air is of
the advection-diffusion type

∂ω
∂t

þ v
!
2 �∇ω ¼ D∇2ω ð4:12Þ

where ω is the absolute humidity of air, and D is the mass diffusivity of water vapor
into air.

The binary mass diffusivity of air and water vapor, D is the strong function of
temperature and pressure, which can be estimated using the following expression
(Bird et al. 2002):

D ¼ a
Tb

p
ð4:13Þ

Here, D is in m2/s, p in atm, and T in K and the constants are a ¼ 0.434 � 10�10

and b ¼ 2.334. A typical value of the binary mass diffusivity is 2.5�10-5 m2/s.
Air is initially assumed to be dry, i.e., ω ¼ 0 (or partially saturated), whereas at

the interface and at the top surface, air is saturated with water vapor at the local
temperature; in other words, the value of ω is specified at these boundaries. The
moisture content under saturation conditions is calculated using

ωs ¼ Ma

Mw
� ps
pT � ps

ð4:14Þ

whereMa andMw are the molecular masses of the air and water, respectively, and ps
and pT denote the saturation pressure and total pressure (in Pa), respectively. The
saturation pressure of water can be calculated using empirical relations proposed by
numerous researchers. The correlation used in the design of solar distillation systems
is

ps Tð Þ ¼ exp 25:317� 5144
T

� �
ð4:15Þ

where T is in units of Kelvin and pressure is recovered in Pa.
The governing equations of phase velocity, pressure, temperature, and humidity

are clearly nonlinear and coupled. These can only be solved numerically using
sophisticated computational tools.
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4.2.3 Non-Equilibrium Model

We present here a simplified form of the non-equilibrium model by neglecting the
presence of air. Air is treated as a non-condensable gas and significantly alters the
evaporation rate. Specifically, the evaporation rate in humid air is smaller than in
pure vapor for a given temperature difference. For equal evaporation rates, humid air
would require a higher temperature difference when compared to pure vapor. In
addition, evaporation in humid air will give rise to a diffusion layer that is rich in
vapor. This contrasts with condensation of vapor from moist air, where the diffusion
layer is rich in air. These corrections can be determined from kinetic theory of gases
but is beyond the scope of the present discussion.

In the non-equilibrium model of a liquid-vapor system, two microscopic layers
appear between the bulk phases of water and vapor—the interface transition layer
and the Knudsen layer (Fig. 4.3). The interface transition thickness is of few
molecular diameters (~0.25–1 nm), across which the liquid density transitions to
vapor density. Evaporation causes a small but a nearly discontinuous temperature
jump in this layer. The thickness of this layer may be approximated as zero and
considered to be a part of the liquid surface.

The Knudsen layer is located between the interface transition layer and the bulk
vapor phase. Its thickness is of the order of a few free molecular mean-free paths
(~10–150 nm). It involves interaction among molecules arising from three sources.
These are molecules emerging from the liquid surface, molecules impinging on the
liquid surface from the vapor side and molecules of the vapor phase reflected from
the liquid surface. The molecules are indistinguishable and do not represent any
chemical reaction. A net positive molecular flux at the outer boundary of the
Knudsen layer results in evaporation. A negative flux of molecules ensures conden-
sation. In case of zero net flux, the liquid-vapor system around the interface is taken
to be in thermal, mechanical, and chemical equilibrium.

Molecular interaction in thin regions such as the Knudsen layer can result in large
temperature changes and hence alter heat and flow characteristics of bulk phases
involved in phase change. However, first principles modeling of transport in the
Knudsen layer is difficult since continuum principles of density, pressure, and

Fig. 4.3 Schematic
representation of
temperature drop along the
interface transition layer
(Tl � T0) and the Knudsen
layer (T0 � T1)
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temperature are not applicable (Gerasimov and Yurin 2018). An alternative is a
molecular approach, for example, the molecular kinetic theory (MKT) that can
determine changes in the macroscopic quantities due to molecular interaction in a
gap of a few molecular mean-free paths.

4.2.4 Kinetic Theory of Gases

The molecular kinetic theory involves the velocity distribution function for mole-
cules in a probabilistic context. In a collection of particles moving in time and space
with a wide spread of velocities, the distribution function represents the fraction of
molecules in a specified velocity interval. The commonly used Maxwell’s distribu-
tion function is an example of such a variation but holds only under conditions of
thermodynamic equilibrium. Vapor molecules leaving the liquid surface into the
Knudsen layer will generally show departure from equilibrium and the distribution
function will deviate from the Maxwellian. Differences are expected to be large at
temperatures closer to the boiling point of the liquid. The molecular velocity
distribution function, once found by other methods, can be utilized to estimate
macroscopic parameters such as number density, bulk velocity, and temperature,
including the temperature jump. The molecular interactions inside the Knudsen layer
can be analyzed using the transport equation of velocity distribution function and is
known as the Boltzmann’s kinetic equation (BKE).

For closure of BKE, boundary conditions for the Knudsen layer at the inlet
(towards the transition layer) and the outlet (towards the vapor bulk phase) are
required. The inlet velocity distribution function depends on the molecule emission
rate from the transition layer. It can be predicted reasonably well by molecular
dynamic simulations (MDS). The outlet boundary condition (velocity distribution)
is defined at the thermodynamic state of the bulk vapor phase. Hence, the solution of
MDS is the boundary condition for BKE, whereas the solution of BKE is utilized as
the boundary condition for the continuum analysis of the bulk phases (Shishkova
et al. 2017).

The involvement of two statistical approaches (MDS and MKT) results in a
comprehensive but difficult and computationally expensive methodology. The com-
plexity can be reduced by avoiding MDS and using an approximate velocity
distribution function at the inlet boundary of the Knudsen layer (Frezzotti et al.
2018). The half-space Maxwellian distribution is one such distribution well-known
in the kinetic theory of evaporation and has been utilized in the following discus-
sion. Under this simplification, evaporation mass flux can be estimated though
tempertaure jump and the thickness of the Knudsen layer are no longer be resolved.

The evaporation models based on the molecular kinetic theory are further
discussed below (Aursand and Ytrehus 2019).

Using the kinetic theory of gases approach, the velocities of molecules are
denoted probabilistically by the Maxwell velocity distribution. The probability
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density function of velocity represents the fraction of the total number of molecules
at a given point (x, t) having velocities in a specific range is

fM ξ; T , n, uð Þ ¼ n

2πRTð Þ3=2
exp � ξ� ubyð Þ2

2RT

� �
ð4:16Þ

Here, x is position vector, t is time, ξ is a molecular velocity vector, n is number
density of elementary particles, and u is the speed of bulk flow along the y-axis. This
distribution is further utilized to compute the fluxes of mass, y-momentum, and
kinetic energy of molecules evaporating from the interface into the Knudsen layer.
The outgoing particles (ξ> 0) from the liquid surface are postulated to be half of the
Maxwellian distribution corresponding to the reference state. Total fluxes of mass, y-
component momentum, and kinetic energy of a molecule are expressed in terms of
the Maxwellian distribution. A function ψ i (i ¼ 1, 2, and 3) is defined to represent
these fluxes

ψ i ¼ ðm,mξy, 12mξ
2Þ ð4:17Þ

Hence, the net outgoing fluxes (y > 0) are

Z
ξ>0

ξyψ i fMdξ ¼

ρ

ffiffiffiffiffiffi
RT
2π

r
Fþ Sð Þ, i ¼ 1

ρ
RT
2

Gþ Sð Þ, i ¼ 2

2ρRT

ffiffiffiffiffiffi
RT
2π

r
Hþ Sð Þ, i ¼ 3

8>>>>>>><
>>>>>>>:

ð4:18Þ

The net inward fluxes (y < 0) are

Z
ξ<0

ξyψ i fMdξ ¼

�ρ

ffiffiffiffiffiffi
RT
2π

r
F� Sð Þ, i ¼ 1

ρ
RT
2

G� Sð Þ, i ¼ 2

�2ρRT

ffiffiffiffiffiffi
RT
2π

r
H� Sð Þ, i ¼ 3

8>>>>>>><
>>>>>>>:

ð4:19Þ

where F�(S), G�(S), and H�(S) are correction factors to include the effect of bulk
molecular flow; these functions are defined

F� Sð Þ ¼ ffiffiffi
π

p
S erf Sð Þ � 1ð Þ þ e�S2 ð4:20Þ
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G� Sð Þ ¼ 2S2 þ 1
	 


erf Sð Þ � 1ð Þ � 2ffiffiffi
π

p e�S2 ð4:21Þ

H� Sð Þ ¼
ffiffiffi
π

p
S

2
S2 þ 5

2

� �
erf Sð Þ � 1ð Þ þ 1

2
S2 þ 2
	 


e�S2 ð4:22Þ

The dimensionless speed ratio (S) is

S u, Tð Þ ¼ uffiffiffiffiffiffiffiffiffi
2RT

p ð4:23Þ

The three correction factors approach unity, when S is small.
In the calculation of the evaporative mass flux, a collision-free transport of

molecules through the Knudsen layer under a high-vacuum condition is assumed
for each of its boundaries. The net mass flux at a boundary is the difference between
the incoming molecules and outgoing molecules. The two boundaries of the Knud-
sen layer are at temperatures Tl (liquid side) and T1 (vapor side). Bulk flow of the
vapor molecules is not considered in the present formulation (u ¼ 0). Therefore, the
distribution of molecules emerging from the liquid surface is

f e ¼ fM ξ; T l, ne, u ¼ 0ð Þ ð4:24Þ

The distribution of molecules coming out of the vapor side towards the liquid
boundary is

f1 ¼ fM ξ; T1, n1, u ¼ 0ð Þ ð4:25Þ

The resulting evaporation flux is derived as

j ¼ α½
Z
ξ>0

ξyψ1 f edξþ
Z
ξ<0

ξyψ1 f1dξ� ð4:26Þ

¼ α
ps T lð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRT l

p � p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRT1

p
� �

ð4:27Þ

where α is a pre-factor, known as the accommodation coefficient of evaporation,
falling in the range of 0 to 1. It is connected to the extent to which molecules
originating from the vapor side are reflected at the vapor-liquid interface.

In Eq. (4.27), temperature T1 (the vapor side temperature) is unknown and must
be the outcome of the evaporation model. In order to improve the utility of
Eq. (4.27), an ad hoc assumption is often implemented. The assumption states that
the vapor at the outer boundary of the Knudsen layer is fully saturated, namely

T1 ¼ Ts p1ð Þ ð4:28Þ
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For weak evaporation, the temperature difference across the Knudsen layer is
small and the evaporation flux is further reduced to the Hertz-Knudsen (HK) formula

j ¼ α 1� 1
2
RT l

hfg

� �
Δpsffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRT l

p ð4:29Þ

where, as before, hfg is the latent heat of vaporization, and Δps ¼ ps(Tl) � p1(Ts).
An improvement over the Hertz-Knudsen formula was made by including the

effect of bulk vapor molecular flow in the formulation. The outgoing Maxwellian
distribution for the vapor side boundary is written

f1 ¼ fM ξ; T1, n1, u1ð Þ ð4:30Þ

The resulting evaporation flux, known as the Schrage-Mills (SM) formula is

j ¼ α
ps T lð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRT l

p � p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRT1

p F� S1ð Þ
� �

ð4:31Þ

The bulk velocity correction factor F�(S1) is calculated using Eq. (4.20) with
dimensionless speed ratio evaluated at temperature T1. The temperature T1 is again
an unknown and the difficulty is accounted for using the assumption of Eq. (4.28).

Equation (4.31) reduces for weak evaporation (S1 � 1) to

j ¼ α
1� 0:5α

1� 1
2
RT l

hfg

� �
Δpsffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRT l

p ð4:32Þ

In the Boltzmann Equation Moment Method (BEMM) model, the y-momentum
and energy conservation equations across the Knudsen layer are included, contrary
to the earlier formulations. Accordingly, the model predicts the vapor side boundary
temperature (T1) as well. Three conservation equations are solved for the Knudsen
layer using the one-dimensional, steady-state version of the Boltzmann equation

ξy
∂f
∂y

¼ Q ff 1ð Þ ð4:33Þ

Equation (4.33) is an integro-differential equation for the y-velocity component
with the binary collision integral (Q) on the right-hand side. It is the rate of change of
the distribution function f during collision with another particle with a partner
distribution function f1 (Ytrehus and Østmo 1996).

The Knudsen layer consists of three probabilistic velocity distributions at its two
boundaries: the outgoing distribution ( f+(0, ξ)) at the liquid side boundary (y ¼ 0);
the incoming distribution ( f�(1, ξ)) and the outgoing ( f+(1, ξ)) distribution on the
vapor side boundary (y ! 1). The following forms of the three distributions as
boundary conditions for Eq. (4.33) facilitate a closed-form solution:
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f y, ξð Þ ¼ aþ0 yð Þ fþ 0, ξð Þ þ aþ1 yð Þ fþ 1, ξð Þ þ a�1 yð Þ f� 1, ξð Þ ð4:34Þ

The y-dependent coefficient a’s have boundary conditions

At y ¼ 0 aþ0 ¼ 1 aþ1 ¼ 0 a�1 ¼ β

At y ¼ 1 aþ0 ¼ 0 aþ1 ¼ 1 a�1 ¼ 1

Using these conditions with Eq. (4.34), the probability distribution for velocity on
the vapor side boundary can be written as

f 1, ξð Þ ¼ f þ 1, ξð Þ þ f� 1, ξð Þ ð4:35Þ

This distribution may be taken as prevailing in the bulk vapor state. Similarly, the
outgoing velocity distribution for the liquid surface can be written as

f 0, ξð Þ ¼ fþ 0, ξð Þ þ β f� 1, ξð Þ ð4:36Þ

where the symbol β is an unknown parameter related to the incoming velocity
distribution at the outer boundary of the Knudsen layer (y ! 1). The outgoing
distribution at the liquid surface can further be divided into an emission part and a
reflection part

fþ 0, ξð Þ ¼ αe f
þ
e 0, ξð Þ þ 1� αcð Þ fþr 0, ξð Þ ð4:37Þ

where αe and αc are the evaporation-coefficient and condensation-coefficient, respec-
tively. Functions fþe 0, ξð Þ and fþr 0, ξð Þ are the emission and reflection distributions,
respectively. These distributions are assumed to be Maxwellian (Eq. 4.16) at the
liquid temperature, but with a number densities ne and nr, respectively.

The number density nr in the reflection distribution is estimated by equating the
incoming flux on the vapor side boundary to the reflected flux on the liquid side
boundary

nr
n1

¼ β

ffiffiffiffiffiffiffi
T1
Tl

r
F� S1ð Þ ð4:38Þ

The boundary condition at y ¼ 0, can be written as

f 0, ξð Þ ¼ αe þ 1� αcð Þ nr
ne

� �
fþe 0,1ð Þ ξy > 0

β f�1 ξy < 0

8<
: ð4:39Þ

Equation (4.33) of the kinetic theory model is solved next with the boundary
conditions (Eqs. 4.35 and 4.39). The input variables are the properties of the bulk
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liquid surface (Tl) and corresponding number density ne(¼ρl/(kBTl)) and the outputs
of the model are the properties of the bulk vapor phase, T1, u1, and β.

These equations are solved using the moment method, in which the mass, y-
momentum, and energy are stated to be collision-invariants. This statement is
expected to be valid for the kinetic theory model when it is solved for the outer
boundary parameters (T1 and u1) of the Knudsen layer, instead of a full solution in
the entire vapor phase. The approximation eliminates the need of a collision model,
namely function Q( ff1). Thereafter, the moment equations are generated using the
function ψ i defined in Eq. (4.17). The basic form of moment equations is expressed
as

∂
∂y

Z
ψ i ξð Þξyf y, ξð Þ dξ ¼ 0 i ¼ 1, 2, 3ð Þ ð4:40Þ

These integrals can be split into an outgoing part (y > 0) and incoming part
(y < 0), which are further evaluated for the half Maxwellian distribution (Eq. 4.16)
using Eqs. (4.18) and (4.19). This formulation leads to three conservation equation
for mass, momentum, and energy in non-dimensional form, with four dependent
variables (S1,ℤ, θ, and β). Among these, parameters S1, ℤ, and θ are the dimen-
sionless speed ratio u1=

ffiffiffiffiffiffiffiffiffiffiffiffi
2RT1

p	 

, pressure ratio ( ps(Tl)/p1), and temperature ratio

(T1/Tl), respectively. These equations are solved by specifying one of the unknown
variables and solving for the other three parameters. Based on these values, the
evaporative mass flux can finally be calculated

j ¼ p1
RT1

u1; q ¼ j� hf g ð4:41Þ

In case a known pressure ( p1 or ℤ) boundary condition is imposed outside the
Knudsen layer, Eq. (4.41) can be reduced to

j ¼ p1ffiffiffiffiffiffiffiffi
RT l

p
ffiffiffi
2
θ

r
S1 ð4:42Þ

The kinetic theory models are likely to be accurate since they account for the
temperature jump across the air-water interface. Among the kinetic theory models,
the BEMM model is preferable under strong evaporation conditions, while SM
should be comparable to BEMM for weak evaporation (Aursand and Ytrehus 2019).

Polikarpov et al. (2019) compared the experimental data of Badam et al. (2007)
and Kazemi et al. (2017) on interfacial evaporation rate and temperature jump to the
available SM and BKE-based non-equilibrium models. The SM formula
overestimated the evaporation rate whereas the BKE-based kinetic model predicted
the evaporation rate reasonably well. The interfacial temperature jump from BKE
did not show good agreement with experiments.
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The evaporative mass flux obtained from the molecular kinetic theory can also be
used as an interfacial boundary condition in the quasi-equilibrium model (Qin and
Grigoriev 2015). In this approach, the transport equations (Eqs. 4.7–4.11) are solved
with evaporative heat flux calculated from Eq. (4.2). The evaporation rate in this
formulation is approximated by using the SM formula (Eq. 4.32), instead of
Eq. (4.1).

4.2.5 Accommodation Coefficient

The accommodation coefficient is a macroscopic measure of the actual (experimen-
tal) evaporation/condensation flux when compared with the estimated (theoretical)
flux. In molecular terms, the accommodation coefficient of evaporation is the ratio of
the molecular flux emitted from liquid surface and the molecular flux transferred to
the vapor phase. Similarly, the accommodation coefficient of condensation is
defined as the ratio of molecular flux absorbed by the liquid surface to the molecular
flux impinging on it, the difference being reflected from the interface.

In the literature, these evaporation and condensation coefficients are assumed to
be equal. A value of unity will indicate an equilibrium condition though evaporation
and condensation are strongly non-equilibrium phenomena. Hence, a unit accom-
modation coefficient may be applicable only for weak evaporation (Kryokov and
Levashov 2011). These coefficients, though less than unity, are treated to be
constant, but are expected to show dependence on temperature, pressure, and
contaminants spread over the interface (Marek and Straub 2001). Accommodation
coefficient may also be estimated by comparing kinetic theory predictions of mac-
roscopic quantities such as heat fluxes and water production rate with a fully
continuum-scale model. In principle, the quantification of accommodation coeffi-
cients requires molecular dynamic simulation and is a topic of research.

4.3 Closure

The quasi-equilibrium model of evaporation utilizes continuum tools and is concep-
tually simple. However, the resulting mathematical problem is coupled and
nonlinear and can only be solved using approximate computational tools. The
non-equilibrium model based on the kinetic theory is rich in physics and postulates
the appearance of a Knudsen layer at the air-water interface. The extent of jump
across the Knudsen layer in continuum-scale properties such as temperature, pres-
sure, and velocity are expected to be important for microscale device-level applica-
tions of evaporation and condensation. These calculations are formulated using the
framework of kinetic theory of gases. The significance of such Knudsen layer at the
liquid-vapor interface in engineering applications remains to be conclusively
established.
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