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Abstract

Malignant gliomas are the most common 
tumors in the central nervous system (CNS) 
and, unfortunately, are also the most deadly. 
The lethal nature of malignant gliomas is due 
in large part to their unique and distinctive 
ability to invade the surrounding neural tissue. 
The invasive and dispersive nature of these 
tumors makes them particularly challenging 
to treat, and currently there are no effective 
therapies for malignant gliomas. The brain 
tumor microenvironment plays a particularly 
important role in mediating the invasiveness 
of gliomas, and, therefore, understanding its 
function is key to developing novel therapies 
to treat these deadly tumors. A defining aspect 
of the tumor microenvironment of gliomas is 
the unique composition of the extracellular 
matrix that enables tumors to overcome the 
typically inhibitory environment found in the 
CNS. One conspicuous component of the gli-

oma tumor microenvironment is the neural-
specific ECM molecule, brain-enriched 
hyaluronan binding (BEHAB)/brevican (B/b). 
B/b is highly overexpressed in gliomas, and its 
expression in these tumors contributes impor-
tantly to the tumor invasiveness and aggres-
siveness. However, B/b is a complicated 
protein with multiple splice variants, cleavage 
products, and glycoforms that contribute to its 
complex functions in these tumors and pro-
vide unique targets for tumor therapy. Here we 
review the role of B/b in glioma tumor micro-
environment and explore targeting of this pro-
tein for glioma therapy.
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7.1	 �Introduction

The tumor microenvironment is comprised of the 
cells that directly make up the tumor, neighbor-
ing normal/non-transformed cells, the extracel-
lular matrix (ECM), and secreted molecules 
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found within this space [5, 52, 140]. Importantly, 
interactions between these constituents define the 
molecular properties of the specific tumor [52]. 
High-grade gliomas are the most frequently 
detected and virulent form of intracranial tumors, 
but they are also commonly impervious to cur-
rently available treatments, including surgery as 
well as chemotherapy and radiation [125]. One of 
the primary reasons as to why gliomas are insus-
ceptible to these therapies is due to the fact that 
gliomas are able to infiltrate surrounding tissues 
and, thus, are considered to be highly invasive 
[109, 126].

Many of the components within the tumor 
microenvironment support the dispersion and 
heightened motility of glioma cells. Specifically, 
gliomas exhibit aberrant expression patterns of 
cell adhesion molecules, ECM molecules, pro-
teolytic enzymes that remodel the ECM, and 
growth factors [5, 140]. One such ECM molecule 
that is overexpressed in gliomas is the chondroi-
tin sulfate proteoglycan (CSPG): brain-enriched 
hyaluronan-binding protein (BEHAB)/brevican 
(B/b) [42, 67]. This enhanced expression of B/b 
leads to an increase in the aggressiveness of the 
resulting tumors [35, 62, 83, 98, 134, 154]. It is 
important to note that that there are a number of 
B/b isoforms that are upregulated in glioma sam-
ples [133].

Mechanistically, B/b is cleaved by a disinteg-
rin and metalloproteainase with thrombospondin 
motifs (ADAMTS)-4 [86], and this causes the 
abnormal adhesion of glioma cells to fibronectin, 
and the overall motility of the glioma cells is 
enhanced [62], thereby leading to tumor inva-
sion. Moreover, as a result of an increase in the 
presence of B/b, fibronectin secretion is increased, 
as is the expression of a number of cell adhesion 
molecules [62]. Taken together, these molecular 
and structural changes to the tumor microenvi-
ronment favor glioma cell invasiveness and 
movement, which contributes to the resistance of 
gliomas to current therapeutics [109].

In this chapter we first focus on the function of 
B/b in normal/non-transformed cells and then 
delve into the molecular composition of the 
tumor microenvironment. Next, we dissect the 
specific role that B/b plays in promoting glioma 

cell invasion and motility. Additionally, the 
mechanisms underlying these processes will be 
discussed and will shed further light onto why the 
current treatments are not more effective at tar-
geting gliomas and why targeting B/b could be a 
new therapeutic strategy.

7.2	 �Brevican: Structure 
and Function

7.2.1	 �Structure

B/b is a member of the lectican family of CSPGs 
along with versican, neurocan, and aggrecan [7, 
113, 147]. In terms of structure, members of the 
lectican family are quite homologous. More spe-
cifically, these CSPGs contain a N-terminus, 
which is known as the hyaluronan (HA)-binding 
domain and link protein-like region, that medi-
ates interactions between the lectican family 
members and HA (see Fig. 7.1, [104]). The bind-
ing of these CSPGs to HA is a key step in overall 
organization of the ECM. Within the C-terminus, 
there is an epidermal growth factor (EGF)-like 
domain that is characteristic of proteins found 
within the ECM, a lectin-like domain, and a com-
plement regulatory protein-like domain [120]. It 
is through this lectin domain that the lecticans 
can bind tenascin-R, a glycoprotein present 
within the ECM.  Furthermore, this region of 
CSPGs can also bind to glycolipids found on the 
cell surface that have been sulfated, which pro-
motes cell adhesion [89].

CSPGs consist of a core protein that is deco-
rated with chondroitin sulfate (CS) sugar chains, 
which bind to the protein in the CS attachment 
region (Fig. 7.1). The amount of sugar units that 
can be added to the protein varies widely between 
members of the lectican family with B/b having 
1–3 CS chains that adorn the protein core [7]. 
The core protein has been shown to hinder neu-
rite outgrowth in cultured neuroblastoma cells 
[64], and the CS region of the CSPG has also 
been reported to inhibit overall growth and regen-
eration in the central nervous system (CNS) [21, 
70]. A substantial body of work utilizing the bac-
terial enzyme, chondroitinase ABC (chABC), to 
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digest CS chains supports these findings. In these 
studies, application of chABC resulted in recov-
ery after spinal cord injury [14, 75, 136]. 
Additionally, administration of chABC has been 
reported to enhance axonal regeneration within 
the CNS in undamaged animals [31, 90]. 
Pizzorusso and colleagues used this enzyme to 
reopen the critical period and, thus, restore plas-
ticity within the visual system of adult rats [105]. 
Taken together, both the core protein and the CS 
region of CSPGs inhibit growth and regeneration 
within the CNS and thus play a key role in 
restricting overall brain plasticity.

Specifically, B/b can exist in a number of dif-
ferent ways: a glycosylphosphatidylinositol form 

that is anchored to the plasma membrane [119, 
120] and a form that is secreted right into the 
ECM [119], and additionally, B/b can be present 
as a glycosylated proteoglycan or as a core pro-
tein that is not glycosylated (Fig.  7.1, [146]). 
Interestingly, the form that is anchored to the 
plasma membrane was detected primarily in 
white matter tracts where axons are located as 
well glial cells that were classified as diffusely 
distributed throughout the brain. The form that is 
secreted into the ECM was highly expressed in 
the gray matter within the cerebral cortex, hip-
pocampus, cerebellum, and particular thalamic 
nuclei [119]. Through Western blot analysis, in 
the adult rat brain, the full-length B/b protein 
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Fig. 7.1  BEHAB/brevican structure diversity, glycosyl-
ation, and cleavage. B/b is made as a both a secreted and 
GPI-linked isoform. It is routinely cleaved at a defined 
ADAMTS4/5 cleavage site leading to N-terminal and 
C-terminal fragments. In addition, work has shown that 
there is a lot of microheterogeneity in the glycosylation of 

this protein. In gliomas all forms of B/b are upregulated 
with the N-terminal cleavage fragment perhaps being the 
most critical functionally. In addition there are glioma-
specific glycoforms that are generated that may provide 
ideal targets for glioma therapy
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runs at 145 kDa, but cleavage products have been 
described at 90 kDa and 50 kDa [145, 154].

Temporally, B/b expression is first detected on 
embryonic day 15 (E15). In all assayed regions of 
the CNS, the onset of B/b expression occurred 
after neurogenesis and instead was consistent 
with the generation of glial cells [66]. It has also 
been demonstrated that B/b expression is upregu-
lated in response to injuries within the brain [41]. 
Following a stab wound to the adult rat brain, B/b 
was detected in regions of active gliosis [65], 
and, similarly, B/b expression within astrocytes 
was increased in response to lesions introduced 
into the entorhinal cortex in rats [127]. In that 
same vein, B/b mRNA was dramatically increased 
within the glial scar following cryo-injury in 
mice [64].

7.2.2	 �Function

B/b is one of the molecular constituents of the 
perineuronal net (PNN) that is found within the 
CNS. PNNs surround the cell body and proximal 
neurites of particular populations of neurons 
within the CNS.  Typically, these cells are 
GABAergic interneurons, but they also can be 
found around excitatory cells. This structure 
serves to restrict plasticity by closing the critical 
period [9, 17, 23, 24, 48, 53, 58, 59, 124, 153]. 
Other work postulates that PNNs provide a buff-
ering mechanism to preserve the balance of cat-
ionic charges within the extracellular milieu [17, 
18, 54, 55]. Using B/b deficient mice, Bekku and 
colleagues revealed that B/b regulates the assem-
bly of the proteoglycan, phosphacan, and tenas-
cin-R at Nodes of Ranvier within the CNS [8], 
which is likely critical in action potential propa-
gation. Proper B/b expression is also needed to 
maintain normal speeds of synaptic transmission 
at the calyx of Held in the medial nucleus of the 
trapezoid body within the brainstem, where 
PNNs are found in abundance [13]. Studies per-
formed using B/b knockout mice highlight a 
potential role for B/b in modulating long-term 
potentiation in the CA1 region of the hippocam-
pus. Of particular interest, the mice lacking B/b 

displayed less prominent PNNs, meaning that 
they were less condensed and focused at the cel-
lular surface and instead exhibited a more diffuse 
expression pattern [15].

7.3	 �Gliomas

7.3.1	 �Invasion and the Tumor 
Microenvironment

The tumor microenvironment describes the envi-
ronment around a particular tumor and consists 
of both cellular and non-cellular components [5, 
52, 140]. It is important to note that the tumor 
cells and the other constituents of the microenvi-
ronment interact with one another, and this can 
influence the growth and spread of the tumor 
[52]. In gliomas their most conspicuous ability 
is their invasive properties within the central ner-
vous system, which are typically very inhibitory 
to cellular movement.

The high mortality rate of patients with high-
grade gliomas is explained by the fact that glio-
mas uniquely invade the central nervous system 
[109, 126]. The neural ECM is usually thought of 
as an inhibitory environment, one that is not con-
ducive to large-scale reorganization or remodel-
ing; this has been attributed to the high presence 
of CSPGs [107, 113]. Gliomas are able to cir-
cumvent this inhibitory barrier. One of the main 
ways gliomas are able to do this is through the 
secretion of molecules that facilitate cell adhe-
sion and movement, which include fibronectin 
and collagen [12, 22, 30, 44, 45, 99, 106]. Other 
ECM molecules have been demonstrated to regu-
late the phenotypic characteristics of gliomas 
including laminin, vitronectin, and tenascin-
C. Using in vitro assays, it has been reported that 
glioma cells produce and secrete laminin [87, 
103]. Expression of the glycoprotein, vitronectin, 
is correlated with the glioma grade, and its 
expression has been linked to increased cell sur-
vival of glioma cells [131]. Similarly, tenascin-C 
expression is also linked to glioma grade, and its 
expression is thought to be involved in mediating 
cell adhesion, migration, and cell dispersion [57, 
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152]. Gliomas have also been shown to contain 
high levels of other ECM components like osteo-
pontin, secreted protein acidic and rich in cyste-
ine (SPARC), and thrombospondin [10]. 
Expressions of B/b, neurocan, and versican are 
also increased in glioma samples [100, 132, 134].

Enhanced expression of MMPs is characteris-
tic of many tumor types, including gliomas. 
These enzymes degrade parts of the ECM, which 
then allows for the glioma cells to move through 
the ECM and infiltrate surrounding tissues. The 
MMPs that are upregulated in glioma cells 
include MMP-2, 3, 7, 9, 12, 13, 14, 16, 19, and 26 
[33, 46, 63, 71, 73, 76, 85, 92, 106, 111, 115, 117, 
118, 137, 138, 141, 148–150]. Other enzymes 
that are also responsible for the invasive proper-
ties of glioma cells are cathepsin B and urokinase-
type plasminogen activator [11, 46, 71, 106, 115, 
118, 141, 149] and heparanases and sulfatases 
[82]. In human gliomas, the overexpression of 
the forkhead box m1b (Foxm1b) factor leads to 
the enhanced invasion of glioma cells through an 
increase in transcription of the MMP-2 gene [32, 
80].

Growth factors like epidermal growth factor 
(EGF), basic fibroblast growth factor (bFGF), 
and transforming growth factor-β (TGF-β) have 
been reported to mediate glioma cell invasion 
[28]. Glioma cells commonly display mutations 
or amplifications in the EGF receptor (EGFR) 
gene, and there is an increased presence of this 
receptor on the surface of the tumorigenic cells 
[81, 96]. Interestingly, the activation of EGFR 
and extracellular signal-regulated kinase (ERK) 
is thought to result in an increase in the expres-
sion of fibronectin [38, 130, 155], which likely 
underlies the increase in migration exhibited by 
glioma cells. Hepatocyte growth factor (HGF) is 
commonly overexpressed in glioma cells, and, as 
a result, cell migration pathways are activated, 
which leads to the enhanced movement of these 
cells [47]. Similarly, insulin-like growth factor 
(IGF) is also overexpressed in these tumorigenic 
cells, and, in specific, an increase in expression of 
IGFBP2 leads to an upregulation of genes that 
are involved in cancer cell invasion, including 
MMP-2 [139]. High levels of the angiogenic fac-

tor, angiopoietin-2 (Ang2), are detected in more 
invasive areas of gliomas, and this enhanced 
expression induces upregulation of MMP-2 both 
in vivo and in culture assays [50, 61, 69, 71]. The 
cell surface chemokine receptor, CXCR4, is also 
highly expressed in invasive glioma cells [36], 
and when the receptor interacts with a specific 
ligand, the Akt and ERK1/2 signaling pathways 
are activated, which affords glioma cells an 
increase in survival and cell division. This results 
in a more invasive phenotype [112, 142].

The canonical hyaluronan receptor, CD44, 
activates Rac1, which leads to a dramatic restruc-
turing of the actin cytoskeleton within glioma 
cells. This receptor can be cleaved by 
ADAMTS10, and the product increases the inva-
sive properties of glioma cells [3, 10, 91]. Rac 
not only facilitates the rearrangement of the actin 
cytoskeleton but is also known to increase cell 
motility [16, 110]. To demonstrate this, investiga-
tors inhibited Rac expression and found that gli-
oma cell invasion was decreased [26, 29]. Rac 
does not work independently to mediate such 
important events; it has  been reported that Rac 
works with the polypeptide P311 [84, 88]. The 
nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) is detected at high lev-
els in glioma cells and has been hypothesized to 
afford these glioma cells an enhanced cell sur-
vival rate [114].

Glioma cells also exhibit changes in expres-
sion of cell adhesion molecules. For example, 
glioma cells express focal adhesion kinase (FAK) 
at higher levels than non-tumor cells [51, 56, 
135], which has been linked to increases in cell 
proliferation [79, 151]. On the other hand, some 
cell adhesion molecules may exhibit decreased 
levels of expression in glioma cells. Expression 
of neural cell adhesion molecule (NCAM), for 
example, is reduced in glioma cells, which allows 
them to separate from neighboring cells and dis-
perse into surrounding tissues [101, 116]. Cell 
surface integrin receptors that help join cells to 
one another are upregulated in glioma cells; spe-
cifically, this includes integrin α3β1, αvβ1, αvβ3, 
and αvβ5 [74]. Other cell adhesion molecules 
that display abnormal expression patterns in gli-
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oma cells include adhesion molecule on glia/β2 
subunit of Na, K-ATPase (AMOG/β2), ephrin 
receptor tyrosine kinases (EphB2–B3), fibroblast 
growth factor inducible 14 receptor (Fn14), and 
protein tyrosine phosphatases zeta/beta [37, 94, 
95, 121, 129]. Cadherin molecules also work by 
joining adjacent cells to one another to form 
structures like adherens junctions. Any changes 
to the structure and stability of these junctions 
result in an increase in the movement and inva-
siveness of glioma cells [4]. Glioma cells that 
express high levels of E-cadherin are phenotypi-
cally highly invasive [77], while cells that contain 
high levels of N-cadherin demonstrate the oppo-
site, in that they are less invasive [19, 93].

7.3.2	 �Glioma-Initiating Cells (GICs)

Gliomas are highly resistant to current therapeu-
tic interventions, and, as a result, patient mortal-
ity rates are still quite high [126]. The invasive 
properties of gliomas are key in their therapeutic 
resistance; however, also key is the existence of 
glioma-initiating cells (GICs) within these 
tumors. In terms of the cellular composition, 
GICs that are present within the tumor are molec-
ularly distinct from other cells found within the 
glioma. More specifically, the GICs are capable 
of self-renewing and exhibit multipotency, which 
means that they can differentiate into any sub-
population of cells found within the CNS as well 
as within the tumor itself. After orthotopic trans-
plantation, these stem cells possess the ability to 
form a tumor that physically matches the parental 
tumor [25, 39, 123].

The GICs express many of the same proteins 
as those that are detected within normal stem cell 
niches [34] including laminin [122], tenascin-C 
[2, 40], members of the lectican family of CSPGs 
[68], and phosphacan [1, 2] as well as members 
of the integrin family [122]. Furthermore the 
GICs tend to be localized near vasculature within 
the tumors [43, 122]. It is important to note that 
the vasculature may develop due to the tumor 
presence itself, or the GICs might possess the 
ability to differentiate into endothelial cells, thus 
forming new blood vessels [108].

7.3.3	 �A Key Role for B/b 
in the Glioma 
Microenvironment

As noted above the interactions with tumors are 
complex within the tumor microenvironment; 
however, B/b presents as a uniquely intriguing 
target within this complex environment, and its 
specific roles are detailed below.

7.4	 �The Role of B/b in Gliomas

7.4.1	 �B/b Expression in Gliomas

Enhanced levels of B/b expression have been 
detected in human glioma samples, including oli-
godendrogliomas, all examined grades of astro-
cytomas, and gliosarcomas, relative to normal 
brain tissue and tissues derived from non-glioma 
tumors [42, 67]. More specifically, this increase 
in B/b expression was detected within the ECM 
as well as the cytoplasm of glioma cells. 
Importantly, within higher grades of astrocyto-
mas (grades III and IV), B/b staining was more 
dispersed, indicative of an increase in infiltration, 
compared to lower grades [83]. Glioma cell lines 
(e.g., 9L, CNS-1, and C6) that are propagated 
under normal culture conditions do not express 
B/b, but if they are grown as intracranial grafts, 
then they express B/b. This phenomenon was not 
noted in cells taken from noninvasive tumors 
[67].

In rodent and human glioma samples, B/b is 
cleaved, and the resulting products are a 
N-terminal fragment that includes the hyaluronan-
binding portion of the protein core (~50–60 kDa) 
and a C-terminal fragment (~90–100 kDa). Full-
length B/b runs at ~160 kDa [133, 154].

Gary and colleagues set forth the hypothesis 
that B/b modulates the invasiveness of gliomas 
[41]. To examine the properties and behaviors of 
gliomas further, investigators introduced B/b into 
CNS-1 cells in vitro through transfection. These 
cells were transfected either with a green fluores-
cent protein (GFP) control, full-length B/b, the 
C-terminus cleavage fragment of B/b, or the 
N-terminus cleavage fragment of B/b. These cells 
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were then injected into rats to assess the resulting 
tumors. The rats that were injected with the 
CNS-1 cells transfected with the various forms of 
B/b, exhibited  a lower survival rate than those 
rats that received the control cells. Furthermore, 
the B/b-derived tumors were more invasive and 
were highly vascular compared to the control 
tumors. This led to the conclusion that B/b 
enhances the aggressive properties of gliomas 
[98].

While it was established that full-length B/b is 
overexpressed in human glioma samples [42, 67], 
it was then identified that two novel isoforms of 
B/b were present in tumor tissues [133]. The two 
new isoforms were denoted as B/b∆g with a 
molecular mass of 150 kDa that was found within 
the membrane fraction and B/bsia, which had a 
molecular weight higher than 150 kDa and was 
located in both the membrane and soluble frac-
tions. It is important to note that the benign 
tumors that were assayed did not express these 
B/b isoforms, thereby indicating that perhaps 
these identified forms of B/b could be used as 
indicators of tumor grade. Furthermore, these 
isoforms were specifically identified in gliomas 
and were not present in tissues derived from 
patients with epilepsy or Alzheimer’s disease. 
Neither isoform of B/b was found within indi-
viduals over 1 year of age. Only the B/b∆g form 
was faintly detected in samples harvested from 
embryos at 16 weeks of gestation to infants aged 
19 days [133].

Through biochemical analyses, it was deter-
mined that these new isoforms of B/b were not 
cleavage fragments, and the peptide sequences of 
these forms were identical to the full-length pro-
tein, thereby indicating that these forms were 
derived from the same mRNA transcript. 
Attention was then focused on determining how 
these isoforms were molecularly distinct from 
the full-length protein. Deglycosylating enzymes 
were used to remove N-linked and O-linked sug-
ars from the protein core as well as CS chains 
(through the use of chondroitinase), and this 
revealed that the B/b∆g form was underglycosyl-
ated. Further work determined that this particular 
isoform associates with the cell membrane in a 
manner distinct from other B/b forms. 

Importantly, this does not require calcium, inter-
action with the CS chains, nor the N-terminal 
domain of B/b, affirming that the molecular asso-
ciation with the membrane is unique for this spe-
cific isoform. The B/bsia form is an over-sialylated 
version of the protein and is generated when 
there is an increase in the amount of sialic acid 
added to O-linked carbohydrates [133].

Having established that B/b is expressed at 
high levels in gliomas, the next step was to ascer-
tain which specific cellular population contained 
the highest amounts of B/b. Human glioblastoma 
tumor sections were analyzed, and B/b was found 
around cells that expressed Olig2 and CD133 
markers, both of which are indicative of highly 
tumorigenic cells [20, 49]. Interestingly, these 
markers are also detected within GICs. To exam-
ine B/b expression in these cells, researchers uti-
lized two GIC lines: 0627 and 0913. They 
determined that both B/b protein and mRNA 
were present in these cell lines, although the 
80–90  kDa C-terminal cleavage fragment was 
only expressed in the 0627 cells. Interestingly, 
B/b knockdown did not alter any of the assayed 
physical properties of the glioma-initiating cells 
including proliferation rate, viability, adhesive 
properties, migration, and invasion. Based on 
these results, it does not appear that B/b is needed 
for the GICs to behave normally nor for the main-
tenance of their characteristic physical proper-
ties, so likely B/b works in this cell population 
during the later stages of glioma pathogenesis 
[35].

7.4.2	 �Cleavage of B/b in Gliomas 
Leads to Increased 
Invasiveness

To address the ability of B/b to promote invasive-
ness, cultured 9L cells were transfected with 
either the full-length protein or the N-terminal 
fragment described above. It is important to note 
that the 9L cell line is characterized as a noninva-
sive cell line. 9L cells that expressed either the 
full-length form of B/b or the N-terminal frag-
ment displayed a higher degree of motility and 
invasion as compared to cells that were trans-
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fected with GFP. Of particular importance, when 
these cells were injected into rats, only the tumors 
that expressed the N-terminal cleavage fragment 
were able to invade surrounding brain tissue. 
This was not noted in tumors that expressed the 
full-length form of B/b, thereby suggesting that 
the cleavage of B/b is a key event that mediates 
glioma cell invasiveness in rat models [154].

This finding prompted the investigation into 
which molecule cleaves the lectican family mem-
ber. This was addressed through the generation of 
an antibody against the putative cleavage site at 
Glu395-Ser396 within B/b [86]. The cleavage site is 
homologous to the well-characterized site in 
another CSPG, aggrecan [156]. Cleavage of 
aggrecan at that particular site is regulated at 
least partially by ADAMTS4 [128].

The resulting antibody exclusively recognizes 
the N-terminal fragment of B/b and is referred to 
as B50. Through use of the invasive CNS-1 cell 
line, cleavage activity was detected in culture, 
and most of the resulting product was detected in 
the media and, thus, was soluble. Investigators 
then aimed to determine the proper conditions for 
B/b cleavage by altering calcium, zinc, and 
sodium chloride levels in addition to pH and tem-
perature. Administration of calcium chelators, 
and metalloproteinase inhibitors to the cultures, 
diminished the cleavage of B/b. From this work, 
Matthews and colleagues examined the potential 
role of ADAMTS4 in mediating the cleavage of 
B/b. They concluded that ADAMTS4 not only 
was expressed in CNS-1 cells but was also capa-
ble of cleaving B/b. This work pinpoints a critical 
role for ADAMTS4 to regulate B/b cleavage and, 
by extension, the invasive behavior displayed by 
glioma cells [86].

To directly assess if this cleavage event is nec-
essary for the pro-invasive properties seen in gli-
oma cells, a mutant construct in which B/b was 
not cleaved was introduced into CNS-1 cells. 
Tumor spheroids were created and then applied 
to organotypic slice cultures, and migration of 
the cells was examined. The spheroids containing 
the wild-type form of B/b migrated across the 
slice cultures more than those that expressed the 
mutant form of B/b that could not be cleaved. The 
CNS-1 cells that were transfected with wild-type 

B/b were implanted into rats intracranially, and 
the resulting tumors were more invasive, dis-
persed, and larger compared to those tumors that 
formed when the CNS-1 cells transfected with 
the mutant form of B/b were injected. Rats that 
had tumors that were more invasive exhibited a 
decreased survival rate compared to their coun-
terparts [134].

7.4.3	 �Molecular Mechanisms: How 
B/b Cleavage Promotes 
Invasiveness

Having determined that the cleavage of B/b pro-
motes glioma cell invasion, the mechanisms 
underlying this were next explored. B/b was 
introduced into glioma cells (U87MG, U373MG, 
and CNS-1 cells) through transduction in culture. 
Expression of B/b enhanced glioma cell adhesion 
to specific substrates: fibronectin, collagen, and 
hyaluronic acid, but this was not noted when lam-
inin and poly-L-lysine were used. Moreover, 
investigators probed glioma cell motility and 
reported that glioma cells expressing B/b were 
more mobile in response to hyaluronic acid and 
fibronectin substrates, in comparison with con-
trol cells that did not express B/b. B/b cleavage 
was required for the adhesion between B/b and 
fibronectin and hyaluronic acid. To provide fur-
ther support, the glioma cells were added to 
organotypic slice cultures to measure the amount 
of cell dispersion. Glioma cells that expressed 
either the full-length form of B/b or the N-terminal 
cleavage fragment of B/b exhibited a significant 
increase in cell movement compared to those 
cells that expressed the form of B/b that was 
resistant to cleavage [62].

The expression of a number of cell adhesion 
molecules is altered in glioma samples [4, 19, 37, 
51, 56, 74, 77, 79, 93, 94, 95, 101, 121, 129, 135, 
151, 157], and Hu and colleagues then focused on 
identifying which cell adhesion molecules might 
be involved in modulating glioma cell invasion. 
Glioma cells that expressed B/b and were plated 
on fibronectin displayed an increase in protein 
expression of β-3 integrin, a phosphorylated form 
of the β-3 integrin, and NCAM, in comparison 
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with control cells that did not express B/b [62]. 
These results are in accordance with reports that 
β-3 integrin expression induces cell dispersion 
and spreading [143, 144]. It is known that both 
B/b and fibronectin are upregulated in gliomas 
[99, 133] compared to normal brain tissue [97, 
102] and tumors that spread to the brain, but did 
not originate in the brain [67]. Specifically, fibro-
nectin was found at the cell surface on glioma 
cells that possessed either the full-length form of 
B/b or the N-terminal cleavage fragment of B/b. 
The expressed fibronectin was organized in 
microfibrillar structures, which is thought to facil-
itate rearrangement of the ECM and promote 
movement of tumor cells [60, 72].

When U87MG glioma cells were incubated in 
conditioned media that contained either secreted 
full-length B/b or the N-terminal cleavage frag-
ment of B/b, there was an increase in the amount 
of phosphorylated EGFR and phosphorylated 
ERK1/2 compared to control cells. If the glioma 
cells were treated with an EGFR inhibitor, then 
phosphorylation was inhibited, and, correspond-
ingly, fibronectin mRNA levels decreased. 
Importantly, as a result of the treatment with this 
inhibitor, the B/b-expressing glioma cells did not 
adhere as well to fibronectin relative to cells that 
were treated with a control empty vector [62]. 
This work is consistent with reports that the 
expression of EGFR is increased in glioma cells 
[81, 96]. Additionally, the results presented by 
Hu et  al. [62] corroborate previous demonstra-
tions that the activation of EGFR and ERK 
induces an increase in fibronectin expression [38, 
130, 155]. Precisely how fibronectin and B/b 
might associate with one another was directly 
addressed through co-immunoprecipitation and 
dot blot assays, in which it was shown that fibro-
nectin binds to the N-terminal cleavage fragment 
of B/b, but not the full-length form of the protein. 
This clearly shows that the cleavage of B/b is an 
important event that is required for binding to 
fibronectin, which results in the enhancement of 
glioma cell movement [62].

The work presented by Hu and colleagues was 
supported by another set of experiments where 
U251 and U87 glioma cells were induced to 
express B/b, which resulted in an increase in the 

adhesion of glioma cells to fibronectin and an 
overall increase in motility of the glioma cells 
[83].

7.4.4	 �Impact of B/b Knockdown 
on Glioma Cells

To further pinpoint the critical role that fibronec-
tin plays in mediating glioma cell motility, siRNA 
constructs were made to knockdown fibronectin 
expression. As a result, glioma cells adhered less 
to hyaluronan and fibronectin and additionally 
were less motile when plated on these substrates. 
Phenotypically, these glioma cells now presented 
the same as the control cells in terms of adhesion 
and motility [62].

To more thoroughly analyze how B/b is 
involved in regulating glioma cell behavior, U251 
cells were first transduced to express B/b, and 
then the protein was knocked down using 
shDNA. Due to the knockdown of B/b, these gli-
oma cells displayed a decrease in the rate of divi-
sion and reductions in the following properties: 
invasiveness, migration, and dispersion or spread-
ing distance, in direct comparison to the shDNA 
and mock controls. To examine resulting tumor 
growth in vivo, the transduced cells were intro-
duced into nude mice. The mice that received the 
B/b knockdown cells developed tumors that were 
less infiltrative and less dispersed relative to the 
mice that received the control cells. This work 
further defined the role of B/b role in regulating 
glioma cell migration and invasion [83].

Dwyer and colleagues then aimed to elucidate 
what occurs when B/b is knocked down in intra-
cranial gliomas. To this end, investigators trans-
fected CNS-1 cells with B/b expression constructs 
at the same time as B/b knockdown constructs. 
After determining the knockdown efficiency, the 
generated CNS-1 cells were injected in the thala-
mus of rats. The tumors that formed after CNS-1 
cells exposed to the shRNA construct specific to 
B/b displayed a reduction in overall volume and 
were less invasive compared to the tumors that 
developed when a control shRNA construct was 
introduced into the CNS-1 cells. In light of this, 
the survival rates of the rats injected with the B/b 
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knockdown cells were higher than those rats that 
received the control cells [35]. This body of evi-
dence suggests that B/b expression in gliomas 
results in increased motility and invasion [35, 83].

As stated above, B/b expression was detected 
in GICs [20, 35, 49], but the question as to how 
B/b functions in this cell population was next 
addressed. shRNA constructs were introduced 
into GICs and then were injected into the stria-
tum of nude mice to examine the properties of the 
tumors that were generated as a result. The GICs 
that expressed the knockdown constructs to 
reduce B/b expression formed a tumor that was 
smaller in volume and was less invasive relative 
to the cells that contained control constructs [35]. 
Therefore, it does appear that B/b mechanisti-
cally functions in the same capacity in the 
glioma-initiating cells as in glioma cells to pro-
mote invasion, spread, and migration.

7.5	 �Future Directions

B/b is a key molecule present within the tumor 
microenvironment of gliomas that works to pro-
mote cell invasion and movement [35, 41, 62, 83, 
86, 98, 133, 134, 154]. Due to the fact that glioma 
cells possess the ability to infiltrate the normally 
inhibitory ECM, patient prognosis and response 
to current treatment options are quite poor [126]. 
In addition, work suggests that B/b contributes to 
tumor vascularization, but the mechanism by 
which it does this is completely unknown [98]. 
Future work investigating the interaction between 
B/b and other cells in the tumor microenviron-
ment such as pericytes and vascular endothelial 
cells is clearly necessary. In addition, future stud-
ies need to be aimed at creating treatments that 
specifically target the GIC population. These 
cells are capable of self-renewal and also are able 
to form all of the cells within a glioma [39, 123]. 
Importantly, these cells create and maintain an 
environment that fuels tumor development, 
which not only is likely responsible for driving 
the initial establishment of the tumor but also 
explains why relapses might occur [6, 27, 78]. 
Therefore, treatments tailored to targeting the 
GICs might provide promising new avenues that 
could lead to better patient survival rates. B/b is 

an intriguing target in this regard as it seems to be 
an important component of the stem cell niche.

A complicating factor in treating individuals 
with gliomas is the fact that there is a great degree 
of molecular heterogeneity in these types of 
tumors. More specifically, cell adhesion mole-
cules, ECM constituents, enzymes, and growth 
factors are just some examples of molecules that 
may underlie glioma pathogenesis. Importantly, 
these molecules work together to create an intri-
cate and complex tumor microenvironment. In 
light of this, the best way to devise treatments is 
to precisely pinpoint how these molecules work 
together to contribute to the development and 
maintenance of gliomas in addition to defining 
the specific role of each of these molecules. This 
will give us a more complete picture as to how 
these tumors develop, thereby, providing us with 
the information necessary to generate more effec-
tive treatments.
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