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Abstract

Versican is an extracellular matrix proteo-
glycan with nonredundant roles in diverse 
biological and cellular processes, ranging 
from embryonic development to adult 
inflammation and cancer. Versican is essen-
tial for cardiovascular morphogenesis, neu-
ral crest migration, and skeletal development 
during embryogenesis. In the adult, versican 
acts as an inflammation “amplifier” and reg-
ulator of immune cell activation and cyto-
kine production. Increased versican 
expression has been observed in a wide 
range of malignant tumors and has been 
associated with poor patient outcomes. The 
main sources of versican production in the 
tumor microenvironment include accessory 

cells (myeloid cells and stromal compo-
nents) and, in some contexts, the tumor cells 
themselves. Versican has been implicated in 
several classical hallmarks of cancer such as 
proliferative signaling, evasion of growth 
suppressor signaling, resistance to cell death, 
angiogenesis, and tissue invasion and metas-
tasis. More recently, versican has been 
implicated in escape from tumor immune 
surveillance, e.g., through dendritic cell dys-
function. Versican’s multiple contributions 
to benign and malignant biological processes 
are further diversified through the generation 
of versican-derived bioactive proteolytic 
fragments (matrikines), with versikine being 
the most studied to date. Versican and 
versican- derived matrikines hold promise as 
targets in the management of inflammatory 
and malignant conditions as well as in the 
development of novel predictive and prog-
nostic biomarkers.
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4.1  Introduction: Structure, 
Isoforms, and Key 
Intermolecular Interactions

Versican is a chondroitin sulfate (CS) matrix 
proteoglycan with crucial, nonredundant roles 
in organ development and disease [117]. In 
humans, it is encoded from a single locus on 
chromosome 15q14.3 [50]. Its amino acid 
sequence is 89% identical between mouse and 
human [76] highlighting the highly conserved 
nature of this proteoglycan. The locus-encoding 
versican (VCAN, CSPG2) comprises 15 exons, 
which are arrayed over 90  kb of contigu-
ous genomic DNA. Versican core protein con-
sists of an N-terminal G1 domain, a C-terminal 
G3 domain, and CS chain-binding regions 
(Fig.  4.1). The G1 domain is composed of an 
immunoglobulin (Ig)-like module, followed by 
two hyaluronan (HA)-binding domains (link 
modules). The G3 domain of versican consists 
of two epidermal growth factor (EGF)-like 
repeats, a carbohydrate recognition (lectin-like, 
CRD) domain, and a complement binding pro-
tein (CBP)-like motif [124]. The expression of 
versican gene is regulated by a promoter that 
harbors a typical TATA box. Successful cloning 
of the gene in man, mouse, cow, and chicken has 
revealed the existence of at least four splice 
variants of versican, which differ in the size of 
the core protein and the number of glycosami-
noglycan (GAG) chains. The central, glycos-
aminoglycan (GAG)-bearing domain of the 
versican core protein is coded by two large 
exons, GAG-α and GAG-β, which can be alter-
nately spliced at exon 7 (which codes for the 
GAG-α region) and exon 8 (which codes for the 
GAG-β region). When both exons 7 and 8 are 
present and no splicing occurs, versican V0 iso-
form is formed. When exon 7 is spliced out, ver-
sican V1 is generated. When exon 8 is spliced 
out, versican V2 is formed. When both exons 7 
and 8 are spliced out, versican V3 is formed. 
Since V3 contains no GAG (CS) chains and is 
solely composed of the G1 and G3 domains, it 
cannot be considered a proteoglycan, but it is 
frequently grouped with proteoglycans and 
studied as such [117, 118].

Versican is a crucial partner in extracellular 
matrix (ECM) assembly through key protein- 
protein or protein-carbohydrate interactions. 
One of the most studied interactions is between 
the amino-terminal domains of versican (G1 
domain) to HA, mediated through link mod-
ules [118]. Versican interacts with diverse 
ECM components that are important in inflam-
mation, such as TNF- stimulated gene-6 (TSG-
6), fibulins and fibrillin, inter-alpha-trypsin 
inhibitor (IαI), fibronectin, tenascin-R and 
tenascin-C. Tenascin-R binds to versican at its 
C-terminal lectin-like domain (CRD) through 
protein-protein interactions [8]. Versican binds 
to fibulin-2 and fibrillin-1 through its 
C-terminal lectin-like domain in a calcium- 
dependent manner [51, 80]. Fibulin also may 
serve as a bridge between versican and fibril-
lin, forming highly ordered multimolecular 
structures important in the assembly of elastic 
fibers [117]. Versican also interacts with fibro-
nectin, as well as collagen type I [109, 126]. 
Moreover, versican G3 domain can form com-
plexes with fibronectin and vascular endothe-
lial growth factor (VEGF). This complex was 
found to stimulate endothelial cell adhesion, 
proliferation, and migration. Disrupting the 
complex through anti- fibronectin antibody 
reversed G3’s enhancing effects on endothelial 
cell activities [121]. Finally, versican binds to 
adhesion molecules on the surface of inflam-
matory leukocytes such as L- and P-selectins 
through oversulfated sequences [52, 53].

4.2  Versican and Versican 
Proteolysis in Embryonic 
Development

Versican has been implicated in cardiovascular 
morphogenesis, neural crest cell migration, and 
skeletal development. The ADAMTS protease 
family includes several versican-degrading mem-
bers (versicanases) that are active during remod-
eling of the embryonic provisional matrix, 
especially during sculpting of versican-rich tis-
sues [75]. Versican is cleaved at specific peptide 
bonds by ADAMTS proteases, and the proteo-
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lytic products are detectable by neo-epitope anti-
bodies. The developmental significance of 
versican’s proteolytic processing has been eluci-
dated at the sites of the most dramatic shaping of 
the provisional matrix such as interdigital webs, 
sculpting, redirection and migration of the sec-
ondary palate shelves prior to their midline 
fusion, resorption of cardiac jelly during myocar-
dial compaction, and remodeling of endocardial 
cushions to form mature heart valve leaflets. 
Collectively, several studies have illustrated how 
proteolysis of versican deposited early in the 
embryo could be a regulator of morphogenetic 
processes during subsequent development [23, 
55, 67, 88].

In cardiac development, versican is essential to 
the formation of endocardial cushion mesenchyme 
by epithelial-mesenchymal transformation (EMT). 
Versican proteolytic fragments generated through 
the actions of ADAMTS proteases can be detected 
in the cardiac cushions [56]. Later in development, 
endocardial cushions are rapidly remodeled to 
achieve their mature structure, and cleaved versi-
can is broadly distributed around cushion mesen-
chyme cells. Congenital valve anomalies 
associated with accumulation of versican were 
seen in both Adamts9+/− mice and Adamts5−/− mice 
and were attributed mostly to subtle developmen-
tal alterations in extracellular matrix remodeling 
or defects in adult homeostasis [55, 57].

Fig. 4.1 Structure of versican, its isoforms, and its proteolytic product, versikine. Ig immunoglobulin, GAG glycos-
aminoglycan, EGF epidermal growth factor, CBP complement-binding protein
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Versican proteolysis by ADAMTS9 in vascu-
lar endothelium and by ADAMTS20  in palate 
mesenchyme drives palatal shelf sculpting and 
extension. Cooperation of ADAMTS9 and 
ADAMTS20 contributes to secondary palate clo-
sure [23]. Reduced sculpting of the shelves and 
decreased growth were accompanied by accumu-
lation of ECM and reduced cell density, with 
decreased cell proliferation in palate mesen-
chyme of the Adamts9+/- and Adamts20bt/bt mutant 
mice. Moreover, the palates of these embryos 
showed a clear reduction of processed versican as 
evident from reduced anti-DPEAAE staining (a 
neo-epitope generated by cleavage of V1 versi-
can) [23]. Vcan haploinsufficiency in the 
Adamts20bt/bt background also led to cleft palate, 
demonstrating that versican was a necessary part-
ner of ADAMTS proteases during palate closure, 
possibly by providing a bioactive fragment, ver-
sikine [23].

Versikine, a bioactive N-terminal fragment 
generated by V1 versican cleavage, is implicated 
in induction of apoptosis in the context of web 
regression. Specifically, when Affi-Gel beads 
were soaked in conditioned medium from 
HEK293 cells stably overexpressing versikine, 
they could induce apoptosis in ADAMTS- 
deficient interdigital tissues [67]. Thus, versican 
itself and its proteolytic derivative are essential 
for web regression.

4.3  Versican in Tissue 
Inflammation and Immunity

Versican is a major component of the inflamma-
tory response cascade. Its production is highly 
regulated by inflammatory cytokine networks 
and, in turn, regulates downstream inflammatory 
mediators to amplify the response [132]. Upon 
extravasation in the subendothelium, leukocytes 
encounter ECM structures enriched in versican 
and HA that act as scaffold for leukocytes having 
an impact on their cell adhesion and subsequent 
retention and activation [119]. Versican interacts 
with receptors on the surface of leukocytes such 
as P and L selectins and then provides intrinsic 
signals that influence immune and inflammatory 

phenotypes [52, 53, 124, 133]. Once bound to the 
versican-containing ECM, leukocytes degrade 
the ECM to generate pro-inflammatory frag-
ments, mostly derived from laminin, elastin, and 
IV collagen that further drive the inflammatory 
response by increasing monocyte-/macrophage- 
dependent secretion of proteases and pro- 
inflammatory cytokines [1, 6, 98, 111]. Versican, 
which binds to HA, can also bind to CD44 via 
chondroitin sulfate (CS) GAGs [52], suggesting 
that both versican and HA may strengthen CD44- 
dependent interactions and subsequent CD44- 
dependent signaling in inflammatory cells. On 
the other hand, versican binding to HA may inter-
fere with the binding of HA to CD44 on immune 
cells, such as T lymphocytes [26], and attenuate 
the immune response. Versican proteolysis can 
also drive new blood vessel formation as part of 
inflammatory events associated with tissue repair. 
For instance, injection of an adenoviral vector 
expressing VEGF164 into the skin induces a robust 
angiogenic response by increasing ADAMTS-1 
and versican’s proteolytic fragment, versikine 
[28].

Versican appears to have a role in monocyte 
adhesion. ECMs that did not support monocyte 
adhesion were deficient in versican but enriched 
in HA.  In support of this notion, treating a 
monocyte- attractant ECM with an antibody 
against the N-terminal region of versican before 
adding monocytes blocked monocyte adhesion to 
that ECM [85]. Versican also controls inflamma-
tory cytokine release by myeloid cells. Versican 
acts as a danger-associated molecular pattern 
(DAMP) molecule that interacts with Toll-like 
receptors (TLRs), such as TLR2 on alveolar mac-
rophages, to promote production of inflammatory 
cytokines, including tumor necrosis factor-α 
(TNFα), IL-6, and other pro-inflammatory cyto-
kines [31, 38, 114, 120].

A major source of versican production in the 
inflammatory milieu is macrophages. Versican 
gene is differentially expressed in M1 macro-
phages, as opposed to M2 macrophages. Matrix 
metalloproteinases (MMP) degrade ECM pro-
teins [39, 43, 44]; however, ECM degradation is 
neither the sole nor predominant function of 
these enzymes. Versican produced by macro-
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phages can form complexes with MMPs [65], 
such as MMP-9, implying possible roles for ver-
sican in controlling the activity of matrix- 
degrading enzymes. Such activity suggests that 
versican could assist myeloid cells in shaping 
their own microenvironment [119]. Versican can 
also alter the inflammatory milieu through che-
mokine regulation. Versican expression is ele-
vated in CD14+ monocytes isolated from patients 
with systemic sclerosis, and this elevated expres-
sion is accompanied by increased expression of 
CCL2 [66]. Earlier studies had also shown that 
CCL2 binds to versican and impacts inflamma-
tion in a model of neuronal inflammation hyper-
algesia [12]. In the setting of lung infection, 
versican and HA are increased in the lung during 
acute inflammation associated with E. coli pneu-
monia. Bacterial activation of TLR4 led to syn-
thesis of versican which can itself interact with 
TLR4 to further modulate the inflammatory 
response [16].

Versican is also a crucial mediator of chronic 
inflammation. Versican accumulates in chronic 
lung diseases that involve persistent inflamma-
tion such as pulmonary fibrosis, acute respiratory 
distress syndrome, asthma, and chronic obstruc-
tive pulmonary disease [5, 10, 46, 72]. Versican, 
which is mainly secreted by fibroblasts through-
out the airway tree, contributes to airway remod-
eling in asthma, leading to persistent airway 
obstruction and subsequent decline in lung func-
tion [2]. Altered deposition of proteoglycan in the 
asthmatic lung seems to vary between asthma 
phenotypes and severities [77, 84]. Interestingly, 
fibroblasts isolated from bronchial biopsies from 
asthmatic patients with the greatest degree of 
hyperresponsiveness produced larger amounts of 
versican [116]. Patients with fatal asthma had 
increased versican content in the internal area of 
large and small airways compared with controls 
[18]. Versican is also implicated in chronic 
obstructive pulmonary disease (COPD), a chronic 
lung condition characterized by loss of elastic 
fibers from small airways and alveolar walls. 
Fibroblasts in distal airways from COPD patients 
bear modifications in proteoglycan production 
that may contribute to disease development: there 
is a higher rate of versican  production/accumula-

tion compared to degradation [34]. Versican in 
the alveolar wall is also negatively correlated to 
elastin and elastin-binding protein (EBP), a 
molecular chaperone important in processing of 
elastin [69]. In versican-rich microenvironment, 
new formation of elastic fibers is hampered. The 
association between elastic fiber loss and accu-
mulation of versican suggests that modulation of 
versican influences elastic fiber deposition [47, 
70].

In a seminal study by the Stambas group, ver-
sican was implicated in regulation of antigen- 
specific, adaptive immunity. Accumulation of 
versican in Adamts5-knockout mice, which lack 
ADAMTS5 versicanase, causes impaired influ-
enza virus clearance and prevents CD8+ T cell 
egress, leading to compromised antiviral immu-
nity. However, when Adamts5−/−Vcan+/hdf 
(versican- haploinsufficient) mice were infected 
with influenza virus, T cell function was restored. 
The authors showed that V0/V1 versican accu-
mulation impedes migration of CD8+ T cells 
from draining lymph nodes to the periphery, 
which is critically important for the establish-
ment of full effector function and eventual clear-
ance of the viral pathogen [68].

4.4  Versican in Cancer

Versican is of central relevance to several hall-
marks of cancer [35] and plays important roles in 
both malignant transformation and tumor pro-
gression (Fig. 4.2). Increased versican expression 
has been observed in a wide range of malignant 
tumors and has been associated with both cancer 
relapse and poor patient outcomes.

4.4.1  Source of Versican Production 
in the Tumor Bed

There are at least four major sources of versican 
production in the tumor bed: the tumor cells, the 
stromal cells, the tumor-associated myeloid cells, 
and the tumor-infiltrating lymphoid cells. 
Versican sources are often context-specific and 
not necessarily mutually exclusive.
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In lung cancer, versican’s main source of 
secretion is the tumor cell. Versican secretion by 
the experimental lung cancer model Lewis 
Lung  carcinoma (LLC) is necessary for meta-
static spread to the lung, liver, and adrenal gland, 
a process that depends on TLR2-mediated 
myeloid cell activation and TNF-α production 
[58]. Tumor cells show also an elevated expres-
sion of versican in ovarian cancer [63], leiomyo-
sarcoma [54], hepatocellular carcinoma [125], 
colon carcinoma [14], glioma [45], and bladder 
cancer [95]. Several of these studies find a direct 
correlation between tumor versican expression 
and tumor grade.

In other contexts, stromal cells constitute the 
main source of versican production, such as in 
breast cancer [17, 59, 89, 105], colon cancer 
[49], pharyngeal cancer [87], ovarian cancer 
[129], and prostate cancer [90, 96, 97]. Stromal 
versican is often accompanied by increased HA 
in the tumor bed. The increased amounts of ver-
sican and associated polysaccharide (HA) 

expand pericellular matrix volume and as a 
result distend the ECM [117]. Peritumoral ver-
sican expression is induced in stromal cells by 
factors secreted by carcinoma cells [13, 89, 97]. 
Versican, which is not expressed in normal 
breast tissue, gets upregulated with progressive 
premalignancy and frank malignancy [17]. 
Strong versican expression was also observed in 
primary pharyngeal tumors, whereas in meta-
static tumors, stromal versican staining in the 
metastatic site was found to be significantly 
more intense compared to the primary tumor 
[87]. TGF-β has been found to induce strong 
stromal versican expression in breast cancer 
[112] as well as other types of cancer [81]. 
Intriguingly, TGF-β can also induce the produc-
tion of versican by the tumor cells themselves, 
e.g., in prostate cancer [79]. In some cancers, 
such as endometrial and cervical cancers, tumor 
and stromal cells can both be the source of ver-
sican production. The combination of tumor and 
stromal expression of versican correlates with 

Fig. 4.2 Synopsis of the actions of versican on tumor progression
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shortened disease-free survival and overall sur-
vival [60].

Myeloid cells are a major source of versican 
production in the tumor microenvironment in 
certain cancer types. Studying spontaneous breast 
cancer murine models, Gao and colleagues 
showed that CD11b+Ly6Chigh monocytic cells 
(but not the tumor cells or other stromal cells) 
produces versican that subsequently promotes 
mesenchymal to epithelial transition and metas-
tasis [29]. Likewise, in breast cancer, versican 
derived from myeloid cells is crucial for tumor 
metastatic potential [30]. Interestingly, co-culture 
of myeloid cells with bladder carcinoma cells 
in vitro results in upregulation of versican in the 
myeloid cells, suggesting that the source of versi-
can in bladder  tumors includes myeloid cells 
[95]. Finally, in patients with acute myeloid leu-
kemia (AML) post-cord blood stem transplanta-
tion, macrophages were the major 
versican-producing cells in the bone marrow 
(BM) [100]. Consistent with the latter observa-
tion in the hematopoietic context, our group has 
demonstrated that macrophages are the major 
source of versican in the bone marrow of patients 
with multiple myeloma [42].

4.4.2  Role of Versican in Cancer

4.4.2.1  Tumor Cell Proliferation 
and Self-Renewal

Versican is a crucial mediator of tumor cell pro-
liferation and, in some cases, proliferation of 
essential tumor-accessory components. Versican 
enhanced proliferation rate of melanoma cells 
[109]. The G1 domain of versican is thought to 
stimulate proliferation by destabilizing cell 
adhesion [127], while the G3 domain mediates 
proliferation through two EGF-like motifs, 
which play a role in stimulating cell growth [22, 
130, 131]. The EGF motifs were also shown to 
mediate breast cancer cell self-renewal [21]. 
Overexpression of the versican G3 domain 
enhanced breast cancer self-renewal through 
EGFR/Akt/GSK-3β signaling and conferred 
enhanced resistance to chemotherapeutic drugs. 
Of interest, versican G3-overexpressing 

tumors  not only showed high levels of 4B6, 
pEGFR, pAKT, and GSK-3β (S9P), all of which 
were related with tumor invasiveness, but also 
expressed high levels of tumor stem cell mark-
ers Sox2, Sca-1, and ALDH1 [21]. Finally, 
siRNA against versican isoform V1 decreased 
tumor cell proliferation in human glioma cells 
[81].

Versican also regulates the proliferation of 
crucial tumor-accessory components. For 
example, platelet-derived growth factor 
(PDGF) upregulates versican expression in 
arterial smooth muscle cells and promotes the 
expansion of the pericellular ECM, which is 
required for the proliferation and migration of 
these cells [24, 25, 99].

4.4.2.2  Tumor Cell Survival 
and Apoptosis

Genetic or epigenetic modifications in tumor 
apoptotic signaling machinery facilitate tumor 
cell survival [48]. V1 versican overexpression 
has been reported to cause either selective apop-
totic resistance or selective apoptotic sensitiza-
tion. This combination of selective apoptotic 
resistance and sensitivity is often seen in cancer 
cells. Intriguingly, murine NIH 3T3 fibroblasts 
overexpressing V1 versican (V1 cells) were 
shown to have concurrent high resting levels of 
p53, which confers apoptotic sensitivity and 
Mdm2, which is a crucial negative regulator of 
p53 [62]. Expression of the G1 and G3 domains 
of versican protects cells from apoptosis induced 
by death receptor ligands or cytotoxic drugs [15]. 
The G3 domain of versican interacts also with 
beta-1 (β1) integrin and protects glioma cells 
against free radical-induced apoptosis [122]. 
Furthermore, versican protects cells from oxida-
tive stress-induced apoptosis through an enhance-
ment of cell-matrix interactions and increased 
cell attachment and expression of beta-1 integrin 
and fibronectin [123]. However, versican has also 
been implicated in proapoptotic signaling. 
siRNA-mediated versican knockdown prevented 
G3-modulated cell apoptosis in human breast 
cancer cell lines. The somewhat contradictory 
roles of versican in modulating cancer cell sur-
vival and apoptosis underscore the complexity of 
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apoptosis regulation in tumor development and 
progression.

4.4.2.3  Tumor Angiogenesis
Angiogenesis is the creation of new blood vessels 
from the branching of preexisting ones. Tumor 
neo-angiogenesis provides nascent tumors with 
adequate oxygen and nutrients. A recent study 
illustrated the impact of stroma-derived versican 
in tumor growth and vascularization [7]. The 
investigators showed that the major source of 
versican production was the tumor stroma in 
B16F10 (melanoma) and LLC tumors and com-
pared vasculature density of B16F10 tumors in 
Vcan hdf/+ mice (haploinsufficient for versican) 
and wild-type littermates. A significant reduction 
of tumor volume as well as capillary formation in 
the Vcan hdf/+ mice at 10 days and 13 days post- 
tumor inoculation compared to wild-type mice 
was observed [7]. Thus, genetically manipulated 
reduction of versican attenuates tumor angiogen-
esis by impairing vascular invasion into the tumor 
core, at the same time as exerting cell- autonomous 
growth regulatory effects on tumor cells [7].

In the context of the well-vascularized tumor 
glioblastoma, versican appears to exert a pro- 
angiogenic effect. The versican G3 domain 
enhanced angiogenesis both in vitro and in vivo. 
G3-expressing cells and tumors formed by these 
cells expressed very high levels of fibronectin 
and VEGF. Furthermore, the G3 domain directly 
interacted with fibronectin and formed a complex 
together with VEGF.  This complex promoted 
angiogenesis-associated activities in endothelial 
cells, and its disruption inhibited these processes 
[134]. Consistent with the observation that G3 
domain binds fibronectin, the V2 versican iso-
form promoted extensive vasculature formation 
by upregulating and binding to fibronectin [128]. 
Silencing fibronectin expression by siRNA abol-
ished V2 versican’s effect in enhancing vascular 
tube-like structure formation [128].

Pericytes also participate in normal and 
tumoral angiogenesis. Type 2 pericytes in partic-
ular have been shown to possess angiogenic 
potential and play an important role in stabilizing 
blood vessels in the microvasculature [11]. 

RT-PCR has demonstrated abundant versican 
message in cultured pericytes in vitro [20]. Thus, 
type 2 pericyte-derived versican might partici-
pate in new blood vessel formation during tumor 
angiogenesis.

4.4.2.4  Tumor Cell Motility and Local 
Invasion

Versican is associated with local tumor invasion 
[94]. Elevated levels of versican in the pericellu-
lar stroma is an indicator for disease relapse fol-
lowing surgery for clinically localized prostate 
cancer [90–92] and breast cancer [89, 104]. 
Versican has been shown to impede cell adhesion 
to ECM substratum, and this activity is attributed 
to the G1 domain: for example, versican enhances 
locomotion and reduces cell adhesion of astrocy-
toma cells through the binding of its G1 domain 
to hyaluronan and link protein [3, 127]. More 
recent studies have demonstrated that purified 
versican from cultured human prostatic fibro-
blasts inhibited adhesion of prostate cancer cells 
to a fibronectin substratum in vitro, highlighting 
the key anti-adhesive regulatory role of versican 
in prostate cancer [96]. Moreover, the formation 
of an HA/versican pericellular matrix promoted 
prostate cancer motility in Boyden chamber 
motility assays using fibronectin as a chemoat-
tractant. Thus, prostate cancer cells in vitro have 
the ability to recruit versican produced by pros-
tatic stromal cells to promote their motility [93]. 
These findings suggest that the formation of a 
pericellular sheath in  vivo by prostate cancer 
cells utilizing versican laid down by prostate 
stromal cells may contribute to the development 
of locally invasive disease.

Silencing versican by a specific siRNA against 
isoform V1, but not V3, significantly decreased 
migration in human glioma cell lines and primary 
cultures in vitro [81]. Induction of stromal versi-
can expression correlated with higher tumor 
grade and invasiveness in carcinomas and was 
associated with tumor progression [61, 101]. 
Elevated versican expression in tumor-associated 
stroma resulted in reduced numbers of intraepi-
thelial CD8-positive T cells and enhanced cancer 
cell local invasion in cervical cancer [32], 
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whereas increased expression of CD44 and versi-
can was associated with loss of expression of 
both progesterone receptor (PR) and E-cadherin 
[36]. Moreover, in vitro silencing of V0/V1 versi-
can caused increased adhesion to type I collagen, 
laminin, and fibronectin. This was coupled with 
reduced cell migration in both wound-healing 
assays and transwell chamber assays [37].

Ovarian cancer cells have the ability to recruit 
stromal ECM components such as versican and 
HA to form a pericellular matrix which in turn 
promotes ovarian cancer cell motility and inva-
sion. By using modified chemotaxis assays, treat-
ment with versican-rich conditioned media 
in vitro promoted ovarian cancer cell motility and 
invasion and enhanced their migratory potential. 
However, HA oligomers (six to ten disaccha-
rides) were able to significantly block formation 
of pericellular matrix by ovarian cells, as well as 
the increased motility and invasion induced by 
recombinant versican. Thus, HA oligomers could 
be a promising adjuvant treatment tool, adminis-
tered intraperitoneally together with chemother-
apy drugs to ovarian cancer patients following 
debulking surgery, to inhibit residual ovarian 
cancer cells from repopulating and invading peri-
toneal sites [115].

4.4.2.5  Tumor Systemic Metastasis
Versican accumulation has been associated 
with tumor metastasis to distant organs. 
Versican expression was upregulated in patients 
with clear cell renal carcinoma (ccRCC), and 
this upregulation was associated with poor 
prognosis and high rate of metastasis [71]. In a 
study of 84 matched sporadic ccRCC and nor-
mal renal tissues, patients with high versican 
expression had a significantly worse 5-year OS 
(overall survival) (p-value = 0.007) and a higher 
rate of systemic metastasis than those with low 
versican expression (p-value  =  0.0139). 
Mechanistically, versican promoted ccRCC cell 
migration and invasion via MMP7 and CXCR4 
[71]. In breast cancer, versican derived from 
CD11b+ Ly6Chigh myeloid cells is critical in 
promoting metastasis to the lung in a TGF-β-
dependent manner [29].

Karin and colleagues showed that versican 
binds TLR2 and its co-receptors TLR6 and CD14 
on myeloid cells in a highly metastatic lung can-
cer model (Lewis Lung carcinoma, LLC). Upon 
activating TLR2-TLR6 complexes and inducing 
TNF-α secretion by myeloid cells, versican 
strongly enhanced LLC metastatic growth. TLR2 
was absolutely necessary for metastatic growth, 
since no metastatic enhancement was seen in 
Tlr2−/− mice [58]. On the other hand, TNF-α is 
one of the major pro-metastatic factors produced 
by host myeloid cells. TNF-α can suppress the 
apoptosis of cancer cells and stimulate their pro-
liferation through NF-κB activation [64]. In addi-
tion, by increasing vascular permeability [110], 
TNF-α can enhance recruitment of leukocytes as 
well as intravasation and extravasation of cancer 
cells. Since TLR2 is absolutely necessary for ver-
sican to exert its metastasis-enhancing abilities 
and TNF-α is a product of activated myeloid cells 
after interacting with versican, either or both of 
these targets could provide a useful point for anti-
metastatic intervention.

4.4.2.6  Interplay Between Versican 
and Immune Cells in the Tumor 
Microenvironment (TME)

Dendritic cells (DCs) play a crucial role in the 
regulation of the balance between CD8+ T cell 
immunity vs. tolerance to tumor antigens. Cross- 
priming, a process which DCs activate CD8+ T 
cells by cross-presenting exogenous antigens, 
plays a critical role in generating antitumor 
CD8+ T cell immunity [102]. However, 
DC-mediated cross-presentation of tumor anti-
gens in tumor- bearing hosts often induces T cell 
tolerance instead of immunity. There is accumu-
lated evidence that the TME modulates tumor-
infiltrating DCs and other antigen-presenting 
cells such as macrophages, leading to impair-
ment of their function in initiating potent antitu-
mor immunity and even promotion of tumor 
progression [27, 78].

Importantly, tumor-derived versican leads to 
DC dysfunction through TLR2 activation. TLR2 
ligation not only stimulated secretion of auto-
crine IL-10 and IL-6 but also led to sustained 
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elevation of the cell-surface receptors for these 
cytokines, which decreased the threshold con-
centration required to activate STAT3. This 
amplification loop reprogrammed DCs to pro-
duce high amounts of IL-10 rather than IL-12 and 
IL-1β when stimulated with LPS, a classic pro- 
inflammatory stimulus. Thus, versican impeded 
immunogenic DC activation and conceivably 
downstream Th1 and cytotoxic lymphocyte 
(CTL) differentiation [107, 108]. In multiple 
myeloma, versican is abundantly expressed and 
processed in the bone marrow [42]. We have pre-
viously proposed a model in which versican acti-
vates myeloma-associated monocytes/
macrophages through TLR2/TLR6 signaling, 
thus generating trophic IL-1β and IL-6 induction 
[42]. The significance of versican pathway for 
human myeloma is further underscored by two 
recent reports: first, the high-resolution analysis 
of the human immune microenvironment in MM 
showing that myeloid-derived versican transcrip-
tion was very strongly associated with MM pro-
gression and loss of protective T cell stemlike 
(Tcf1+) memory in favor of dysfunctional/
exhausted T effectors [9] and, second, the dem-
onstration that immunosuppressive macrophages 
(expressing versican, ENTPD1, and STAB1) 
were associated with persistence of minimal 
residual disease post-autologous stem cell trans-
plant for myeloma, thus promoting relapse [4].

In the setting of mesothelioma, tumor-
derived versican promotes tumor progression by 
shaping a tumor-conducive inflammatory 
milieu, mainly by blunting macrophage antitu-
mor activities [83]. Mice harboring versican-
deficient tumors presented fewer tumor/pleural 
macrophages and neutrophils and fewer pleural 
T-regulatory cells, compared to the control ani-
mals. Moreover, macrophages co-cultured with 
versican-deficient mesothelioma cells were 
polarized toward M1 antitumor phenotype and 
demonstrated increased tumor cell phagocytic 
capacity, compared to macrophages co-cultured 
with control tumor cells [83]. Overall, the criti-
cal cross-talk created by versican among differ-
ent types of immune cells leads to an 
immunosuppressive TME that promotes cancer 
progression and metastasis.

4.5  Versican Proteolysis 
and Versican-Derived 
Matrikines in Inflammation 
and Cancer

Regulated proteolysis of versican by ADAMTS 
proteases at the Glu441-Ala442 bond of the V1 iso-
form is associated with robust CD8+ infiltration 
in MM BM [19, 41] as well as solid tumors [40]. 
This proteolytic event is predicted to release a 
441-aa-long N-terminal fragment, versikine 
(Figs.  4.1 and 4.3). We previously showed that 
versikine induces IRF8-dependent interferon- 
stimulated genes [41]. Versikine promotes IRF8- 
dependent Batf3-DC [33, 73] generation from 
Flt3L-mobilized BM in vitro [40] and Batf3-DC 
density in  vivo (our unpublished data, see next 
paragraph). Enhanced Batf3-DC at the tumor site 
could provide a conceptual link between versi-
kine and CD8+ infiltration because Batf3-DC, in 
addition to their role in cross-presenting tumor 
antigen for priming CD8+ effectors, orchestrate 
chemokine networks that enhance intratumoral 
CD8+ infiltration [102].

In order to investigate the effects of versikine 
in DC intratumoral composition in vivo, we uti-
lized a transplantable Ras-driven multiple 
myeloma model (VQ) as well as transplantable 
solid tumor models (LLC and 4T1 mammary car-
cinoma). Tumor cells were stably engineered to 
secrete versikine vs. empty vector control, and 
they were then implanted into syngeneic recipi-
ents. Versikine influenced the DC milieu in the 
tumor bed by increasing the density of intratu-
moral Batf3-DC and depleting the cDC2 
(CD11c+ CD11b+) subset. Our findings high-
light an unappreciated facet of immune regula-
tion of the tumor microenvironment through 
matrix proteolytic fragments (“matrikines”) 
(Papadas et  al., unpublished data accepted for 
presentation at the American Society of 
Hematology, 2019). Interestingly intense versi-
can proteolysis in the bone marrow of patients 
who underwent autologous stem cell transplanta-
tion for myeloma correlated with adverse out-
comes despite robust CD8+ infiltration [19]. 
Versican accumulation in this context is likely to 
produce an intensely immunosuppressive micro-
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environment that leads to effector dysfunction 
and impaired antitumor responses, despite the 
potential moderating effects of versikine 
signaling.

4.6  Versican: Potential 
for Cancer Biomarker 
Discovery

Versican expression correlates with poor prog-
nosis, disease progression, metastasis, and drug 
resistance in cancer. The prognostic role of ver-
sican expression is tissue-specific. Versican is 
considered an independent and adverse prog-
nostic marker in oral squamous cell cancer: high 
stromal versican expression correlates with both 
increased risk for disease recurrence and short-
ened survival for this cancer [86]. On the other 
hand, versican expression in the primary tumor 

is not an independent prognostic factor in pha-
ryngeal squamous cell carcinoma (PSCC), 
although versican is more strongly expressed in 
the stroma of local metastases and in the earlier 
stages of disease in PSCC [87]. In hepatocellu-
lar carcinoma (HCC), versican expression cor-
relates with poor prognosis, increased 
intratumoral macrophage infiltration, poor 
tumor differentiation, and a higher tumor-grade 
metastasis (TNM stage) [106, 125]. In colon 
cancer, versican expression by RT-PCR is sig-
nificantly upregulated (threefold) compared to 
normal tissues [103]. High stromal versican 
expression is associated with reduced 5-year 
survival rates of ovarian cancer patients (44% 
versus 32%) [113]. Versican is upregulated in 
chemoresistant ovarian cancer compared to che-
mosensitive ovarian cancer [82]. In multiple 
myeloma, we recently presented the first set of 
data ascribing prognostic significance to the 

Fig. 4.3 Complex coordinated actions of versican and its proteolytic product, versikine, in the tumor 
microenvironment
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versican proteolysis immunoregulatory path-
way. We observed the somewhat paradoxical 
association between intense versican proteoly-
sis and high CD8+ T cell infiltration with poor 
post- autologous stem cell transplant (ASCT) 
survival. Patients with low versican proteolysis 
compared to moderate/high versican proteolysis 
had better 2-year PFS (72% vs. 29%, p = 0.018) 
and 2-year OS (83% vs. 35%, p = 0.006) [19]. 
Thus, versican expression and/or proteolysis 
detection may generate powerful prognostic and 
in certain cases predictive (e.g., association of 
versican proteolysis with CD8+ T cell infiltra-
tion) cancer biomarkers [74].

4.7  Concluding Remarks 
and Future Directions

The versatile roles of versican in regulating cell 
behavior are critical in tumor development and 
progression. Key pathogenetic processes such as 
tumor proliferation, tumor cell adhesion, tumor 
cell survival, and apoptosis have been found to 
be regulated by versican. Versican supports 
tumor vasculature formation, tissue invasion, 
metastasis, and chemoresistance. Versican could 
act either in a cell-autonomous fashion, by hav-
ing an impact on the cancer cell phenotype (pro-
liferation, migration, and metastasis), or in 
non-cell- autonomous manners by influencing 
the tumor microenvironment, with particular 
bearing on tumor-associated immune cells. 
Versican proteolysis generates matrikines that 
engage in cross-talk with signaling emanating 
from their parent macromolecule, intact versi-
can. Our work on multiple myeloma and relevant 
studies on solid tumors from other groups have 
provided a rationale for testing versican and ver-
sican proteolysis as potential biomarkers to pre-
dict patient outcomes. A fuller understanding of 
the wide array of regulatory mechanisms con-
trolled by versican and versican-derived 
matrikines will strengthen the rational basis for 
further clinical development of tumor matrix-
targeting therapies.
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