Heuristic Search for a Real-World 3D M)
Stock Cutting Problem s

Katerina Klimova and Una Benlic

Abstract Stock cutting is an important optimisation problem which can be found
in many industries. The aim of the problem is to minimize the cutting waste, while
cutting standard-sized pieces from sheets or rolls of a given material. We consider
an application of this problem arising from the packing industry, where the problem
is extended from the standard one or two dimensional definition into the three
dimensional problem. The purpose of this work is to help businesses determine the
sizes of boxes to purchase so as to minimize the volume of empty space of their
packages. Given the size of a real-world problem instances, we present an effective
Adaptive Large Neighbourhood Search heuristic that is able to decrease the volume
of empty space by an average of 22% compared to the previous approach used by
the business.

Keywords Cutting and packing - Adaptive neighborhood search - Heuristics

1 Introduction

Stock cutting is a well-known optimisation problem arising from important practical
applications. It consists in cutting standard-sized pieces of stock material (e.g., paper
rolls or sheet metal) so as to minimize the amount of wasted material. According
to a study conducted by a leading international packing company, 50% of the
packing volume is air. Considering that Amazon alone dispatched over 5 billion
orders in 2017, the potential for packing improvement is massive. In the ideal
case scenario, each order would be packed into a custom-made box that fits its

K. Klimova (PX)
Satalia, Camden, London, UK
e-mail: kat@satalia.com

U. Benlic
School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang,
China

© The Editor(s) (if applicable) and The Author(s), under exclusive licence 63
to Springer Nature Switzerland AG 2020

J. S. Neufeld et al. (eds.), Operations Research Proceedings 2019, Operations

Research Proceedings, https://doi.org/10.1007/978-3-030-48439-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48439-2_8&domain=pdf
mailto:kat@satalia.com
https://doi.org/10.1007/978-3-030-48439-2_8

64 K. Klimova and U. Benlic

dimensions. However, this is generally impossible from the practical stance as the
packing process would get significantly slower and costly—a suitable box would
need to be produced for each order.

The purpose of this work is to determine the three-dimensions of a given finite
number of box types available for packing to help businesses reduce the amount
of empty packing volume. As stock cutting is known to be NP-complete [1], we
propose an Adaptive Large Neighbourhood Search heuristic based on different
repair and destroy move operators. The heuristic iterates between a destruction
and a repairer phase. The destruction phase is the diversification mechanism which
consists in removing a subset of items (elements) from a given complete solution.
This is based on fast destroy operators to escape from local optima, while the
repairer phase is the intensification mechanism that makes use of greedy move
operators to lead the search towards new quality solutions. Experimental results on
a set of real-world instances show an average decrease of around 22% in air volume
compared to the solutions used by the business.

2 Literature Review

Different formulations and applications of the cutting problem have been studied
in the literature since the 60s. The first problem definition was the minimization of
cost for cutting a given number of lengths of material from stock material of a given
cost. A linear programming approach for this problem was proposed by Gilmore
and Gomory [2]. Even though the problem was first defined as one dimensional, the
definition was soon extended to consider two dimensions. For instance, the work by
Gilmore and Gomory [3] presents a solution to multistage cutting stock problems
with two or more dimensions. More recently, Belov et al. [4] proposed a branch-
and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional
two-stage cutting. In [5], Hifi presented a combination of dynamic programming
and hill climbing for the two-dimensional stock cutting problem. Both one and two
dimensional stock cutting problems can be frequently found in practice, from cutting
wires to cutting boxes and corrugated paper.

Despite its practical applications in the packing industry, only limited research
has been done on the three-dimensional stock cutting problem [6], while more
attention has been devoted to the closely related 2D and 3D packing problem
that consists in packing items into minimal number of containers [7]. We present
the first heuristic approach based on the Adaptive Large Neighborhood Search [8]
framework for the 3D stock cutting problem.

Heuristic Search for a Real-World 3D Stock Cutting Problem 65
3 Formal Definition

The problem considered in this work is encountered at almost every online shipping
company, where a decision has to be made on the sizes of packing boxes that
the business needs to order so as to minimize the volume of empty space of their
packages. For practical reasons, the maximum number of different box types (sizes)
must not be exceeded, which is generally from three to twenty box types for the
majority of businesses.

Given a large number of orders consisting of different items, the problem is then
to determine the box types (dimensions) that the business needs to purchase, along
with their corresponding quantities, while ensuring that the permitted limit of box
types is not exceeded. We further take into account the common practice of item
consolidation (placement) into a single box with the aim to minimize empty volume.
These consolidated items then form a single object of a cumulative volume. To
determine the dimensions of this object, we rotate every item such that x and z
are the longest and the shortest dimensions respectively. The longest x dimensions
across each item to consolidate becomes the x dimension of the new consolidated
object. We determine the y dimension of the new object in the same manner, while
the z dimension is determined given the new x and y dimensions and the cumulative
volume.

Let n be the maximum number of box types and let I = {1, ..., m} be a set of
m historical orders with corresponding dimensions s){ i s)l, i s; ;»i € I, such that

Sx,i = Sy,i = 8z,;. The volume v of an item is then computed as sy ; * sy ; * 5;,;.

The 3D cutting problem consists in (1) determining the x, y, z dimensions of
each box b, represented by the decision variables sﬁ » = 0,d € {x,y,z},b =
1...n; and (2) in determining the assignment of each item i € I to boxes, where
upi €0,1,b=1...n,i €I is a binary variable that indicates if item i is assigned
to box b. The complete mathematical model is given below.

min > wpip =), st (1)
iel,beB
Y wi=1Viel 2)
bel..n
sﬁbzsﬁbzsfb,‘v’bzl...n 3)
s8> upish YielLb=1...nde{xy, 2})
up; € {0,1},Vi I,b=1...n)

sip €NVb=1...n.d € {x,y.2} (6)

66 K. Klimova and U. Benlic

Equation (1) defines the objective which is to minimize the difference between
the box volume v? and the item volume v! if item is assigned to the given
box. Equation (2) ensures that each order is assigned to exactly one box type,
while Eq. (3) ensures that dimensions x and z are the largest and the shortest box
dimensions respectively. Equation (4) ensures that each item fits the box assigned to
it.

Although the above formulation could be linearized, the problem still remains
hard to solve for the existing exact solvers. The reason for this is the definition of
problem where input can be millions of items which need to be assigned to one of
tens of boxes while applied constraints leave the search space too large.

4 Proposed Approach

4.1 General Framework

A solution to the 3D stock cutting problem can be represented as an array S of
integers, where each element of the array corresponds to an item i € I, while S(i)
isthebox 1 < b < n assigned to item i. Starting from a random assignment of items
to boxes, the proposed algorithm iterates between a destroy and a repair procedure,
where the destroyer consists in deallocating a selection of items from the solution for
the purpose of diversification, while the repairer reconstructs the partial solution by
reallocating all the items removed in the destroyer phase. A distinguishing feature
of the proposed Adaptive Large Neighborhood Search (ALNS) approach is the use
of multiple move operators during both the destroyer and the repairer phase.

Let M = {(m”li, mp), ..., (mz, m;)} be the set of combinations (pairs), where
m? and m" are the move operators used in the next destroyer and repairer phase
respectively. Each iteration of ALNS first consists in adaptively selecting a pair
(m?, m") € M as described in Sect. 4.3. The algorithm then proceeds by applying
o moves with operator m? to the current solution to diversify the search, followed
by o moves with operator m" to reconstruct the solution, where « is a parameter
that controls the diversification strength (¢ = 100 in our experiments). Finally,
the algorithm updates the best recorded solution if the solution following the repair
phase constitutes an improvement. The main algorithmic framework of the proposed
ALNS is given in Algorithm 1.

4.2 Move Operators

Move operators are the key element of a Large Neighborhood Search algorithm.
We distinguish between two types of move operators—destroyers and repairers.
Given a complete solution, each move of a destroyer deallocates an item from

Heuristic Search for a Real-World 3D Stock Cutting Problem 67

Algorithm 1 ALNS framework

S < buildInitial Solution
M <« {(m], m‘f), ooy (my, mg)} /*set of move operator pairs*/
Spest <= S
while Stopping condition is not met do
(m", m9) « select MoveOperator Pair(M)
S < destroy(S, md, o)
S < repair(S,m", a)
if cost (Spess) > cost(S) then
Spest <= S
end if
end while

its allocated box type leading to a partial solution. Given a partial solution, each
move of a repairer reassigns an item to a box. Since escaping from local minima is
especially difficult for very large data sets with small number of box types available,
the number of destroyers for our ALNS exceeds the number of repairers.

The proposed approach makes use of five types of destroy operators: (1) random
operator consists in deallocating from a solution a randomly selected item; (2) best
operator consists in removing from the solution an item with the largest volume
of empty space; (3) smaller container operator removes the smallest item from a
randomly selected box type; (4) larger container removes the largest item from a
randomly selected box type; and (5) clustered operator deallocates from the solution
an item from a selected cluster, where a cluster is formed of « items of similar
dimensions.

Three move operators are used during the repairer phase: (1) random operator
that assign a deallocated item to a randomly selected box type; (2) best operator that
assigns a deallocated item to the best fitting box type so as to minimize the volume
of empty space; and (2) dimension-fixed repairer that assigns a deallocated item to
a box type only if the assignment does not lead to a change in the box dimensions.

4.3 Adaptive Procedure for Operator Selection

Given five destroy and three repair operators, the number of operator combinations
in M (see Algorithm 1) is fifteen. Before the first iteration of the destroy/repair
phase, each pair py € M has an equal probability py = 1/| M| of selection. This
probability is then adaptively updated based on the performance of the selected
operator pair at the end of the ALNS iteration. Let times(k), k € M be the number
of times that operator pair p was used by ALNS, and let score(k) be the number of
times that the solution obtained after an application of k is better than the solution
from the previous ALNS iteration in terms of the objective value. The updated
probability py of using k in the next ALNS iteration is determined as py = vx/q,
where vy = pi * (1 — €) + € * (score(k)/times(k)),and g = D " r(Pk- € is a
parameter that takes a value in the range [0, 1].

68 K. Klimova and U. Benlic

Table 1 Results of 10 independent runs

Data set Scenario Orders Templates Best total (m?) Avg total (m3) Avg void/order (L)

1 1 277,000 4 1482 24,415 6.53
1 2 277,000 9 757 918 2.73
2 1 2,100,000 4 145,514 148,556 69.29
2 2 2,100,000 9 143,952 146,711 68.55

A move operator pair n € M to be used in the next iteration of ALNS is then
determined using the well-known roulette selection strategy based on its selection
probability p,. To avoid premature convergence towards a single move operator
pair, a pair py € M is selected at random with a probability y, where y is a
parameter.

5 Computational Results

This section presents computational results on two real-world data instances and
two scenarios. First scenario’s maximum number of available box types is limited
to four types and second scenario’s limit is nine types. Unfortunately, we are unable
to disclose any details on the used data instances or the actual solutions used by the
business.

We perform 10 independent runs for each instance and scenario, where each run
is limited to 20 min that was deemed acceptable for the client. For each case, Table 1
shows the best and the average total volume of empty space across all the runs, as
well as the average void in liters per order. We include average void per order as it
was one of main KPIs, the value in table represents this value averaged over the 10
runs.

In case of the first data instance, the dimension of the largest box for scenario 1
is 600 x 590 x 420 mm with 44,501 orders (~16%) larger than 330 x 280 x 265,
and 600 x 592 x 590 mm for scenario 2 with 771,040 (~37%) of items being larger
than 444 x 374 x 195 mm. It is important to note that the data sets are strongly
heterogeneous in dimensions.

6 Conclusion

This paper presents the first application of Adaptive Large Neighborhood Search
(ALNS) framework to a real-work 3D stock cutting problem that arises from online
shipping industry. The key elements of ALNS is a set of destroy and repair move
operators that are selected in a probabilistic and adaptive manner. The proposed
approach has been adopted by our client (a leading packing company) and is able to

Heuristic Search for a Real-World 3D Stock Cutting Problem 69

report a reduction in the total volume of empty space of their packages by around
22% on average compared to their previous solution.

References

1. Blazewicz, M., Drozdowski, M., Boleslaw, S., Walkowiak, R.: Two dimensional cutting
problem: basic complexity results and algorithms for irregular shapes. Found. Control Eng.
14(4), (1989)

2. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem.
Oper. Res. 9(6), 849-859 (1961)

3. Gilmore, P.C., Gomory, R.E.: Multistage cutting stock problems of two and more dimensions.
Oper. Res. 13(1), 94-120 (1965)

4. Belov, G., Guntram S.: A branch-and-cut-and-price algorithm for one-dimensional stock cutting
and two-dimensional two-stage cutting. Eur. J. Oper. Res. 171(1), 85-106 (2006)

5. Hifi, M.: Dynamic programming and hill-climbing techniques for constrained two-dimensional
cutting stock problems. J. Comb. Optim. 8(1), 65-84 (2004)

6. De Queiroz, T.A., et al.: Algorithms for 3D guillotine cutting problems: unbounded knapsack,
cutting stock and strip packing. Comput. Oper. Res. 39(2), 200-212 (2012)

7. Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Oper. Res.
48(2), 256-267 (2000)

8. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transp. Sci. 40(4), 455-472 (2006)

	Heuristic Search for a Real-World 3D Stock Cutting Problem
	1 Introduction
	2 Literature Review
	3 Formal Definition
	4 Proposed Approach
	4.1 General Framework
	4.2 Move Operators
	4.3 Adaptive Procedure for Operator Selection

	5 Computational Results
	6 Conclusion
	References

