
A Heuristic Approach for the
Multi-Project Scheduling Problem with
Resource Transition Constraints

Markus Berg, Tobias Fischer, and Sebastian Velten

Abstract A resource transition constraint models sequence dependent setup costs
between activities on the same resource. In this work, we propose a heuristic for
the multi-project scheduling problem with resource transition constraints, which
relies on constraint programming and local search methods. The objective is to
minimize the project delay, earliness and throughput time, while at the same time
reducing setup costs. In computational results, we demonstrate the effectiveness of
an implementation based on the presented concepts using instances from practice.

Keywords Project scheduling · Transition constraints · Setup costs

1 Introduction

Project scheduling problems have been the subject of extensive research for many
decades. A well-known standard problem is the Multi-Project Scheduling Problem
with Resource Constraints (RCMPSP). It involves the issue of determining the
starting times of project activities under satisfaction of precedence and resource
constraints. As an extension of RCMPSP, we consider the Multi-Project Scheduling
Problem with Resource Transition Constraints (MPSPRTC), where setup costs and
times depend on the sequence in which activities are processed.

The applications of MPSPRTC are abundant, e.g. in production processes with
cleaning, painting or printing operations. In many of these applications, the presence
of parallel projects and scarce resources makes scheduling a difficult task. In
addition, there is competition between activities for planning time points with lowest

M. Berg
proALPHA Business Solutions GmbH, Weilerbach, Germany
e-mail: markus.berg@proalpha.de

T. Fischer (�) · S. Velten
Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
e-mail: tobias.fischer@itwm.fraunhofer.de; sebastian.velten@itwm.fraunhofer.de

© The Editor(s) (if applicable) and The Author(s), under exclusive licence
to Springer Nature Switzerland AG 2020
J. S. Neufeld et al. (eds.), Operations Research Proceedings 2019, Operations
Research Proceedings, https://doi.org/10.1007/978-3-030-48439-2_70

575

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48439-2_70&domain=pdf
mailto:markus.berg@proalpha.de
mailto:tobias.fischer@itwm.fraunhofer.de
mailto:sebastian.velten@itwm.fraunhofer.de
https://doi.org/10.1007/978-3-030-48439-2_70

576 M. Berg et al.

setup costs and times. Often, project due dates can only be met if the activities are
scheduled accurately and the available resources are used optimally.

The appearance of resource transitions in project scheduling is already investi-
gated in Krüger and Scholl [1]. They formulate MPSPRTC as an integer program
and present a priority-based heuristic with promising computational results. Within
their framework, there are no due dates on the projects and the aim is to minimize the
average project ends. This goal goes hand in hand with minimizing the sequence-
dependent setup times of the activities and therefore there is no multi-objective
oriented optimization framework.

In this work, we present a priority-based heuristic for MPSPRTC using constraint
programming that we extend by a local search and solution refinement procedure.
The proposed algorithm is a multi-criteria approach for determining a good
compromise between low setup costs, adherence to project due dates, and short
project throughput times. In our model, we restrict us to the case that all setup times
are zero and there only exist sequence dependent setup costs.

The algorithm is divided into 3 steps: The first step is to find a practicable initial
solution using a constructive heuristic (see Sect. 2.1). The heuristic relies on priority
rules that include the goals of the objective functions. Starting from the initial
solution, we apply a local search in the second step of our algorithm (see Sect. 2.3),
where we try to improve the setup costs by permuting the activity sequences on
the setup resources. Finally, in the third step (see Sect. 2.3), we refine the solution
calculated in the previous steps by a forward-backward improvement heuristic.
The goal is to bring the activities closer to the due dates of the corresponding
projects, while keeping the sequence of activities on the setup resources essentially
unchanged. In a computational study in Sect. 3, we demonstrate the effectiveness of
an implementation based on the presented concepts using instances from practice.

1.1 Problem Definition

We consider a set of projects P = {p1, . . . , pm} with due dates d1, . . . , dm. Each
project p ∈ P is composed of a set Ap of activities with a fixed working time wa

for each a ∈ Ap . By A := ⋃m
p=1 Ap, we denote the set of all activities. The start

and end time points of these activities are variable and should be determined in such
a way that all constraints are met and the target criteria are optimized.

The constraints required by MPSPRTC are listed below:

1. Precedence Constraints: Each activity can have several predecessors and may
not be started until all its predecessors are complete. We assume that precedence
constraints only exist between activities of the same project. The precedence
constraints of each project p ∈ P are represented by the directed edges Ep of a
precedence graph Gp = (Ap, Ep).

2. Resource Requirements: Let R be the set of resources, which are assumed to be
renewable and to have a varying integer capacity over time. The execution of

A Heuristic Approach for the MPSPRTC 577

every activity a ∈ A requires a constant number of resource units uar of each
resource r ∈ R. By {a ∈ A : uar > 0} we denote the set of activities that are
assigned to r .

3. Resource Transition Constraints: These constraints are used to model sequence
dependent setup costs on a resource r ∈ R. Assume that every activity assigned
to r has a certain setup type of a set Tr . Activities of different types may not
overlap, i.e, they cannot be allocated in parallel on r . A nonnegative integer
matrix Mr of order |Tr | × |Tr | contains the setup costs required to change the
setup state of r to another setup state. In most applications, the diagonal entries
of M all are 0.

The (multi-)objective is to minimize the delay, earliness and throughput time of the
projects, while at the same time reducing setup costs.

2 Scheduling Heuristic for MPSPRTC

In the following sections, we describe the three steps of our scheduling heuristic.

2.1 Initial Planning

We use a greedy heuristic to find a feasible solution for MPSPRTC. The heuristic
relies on priority rules taking the characteristics of the problem into account.
Projects (respectively, activities) with highest priority are scheduled first towards
their specific goals. We define priority rules for the following aspects:

1. Scheduling sequence of projects: Projects are scheduled in the order of a user-
defined priority. If projects have an equal user-defined priority, then those with
the earliest due date are scheduled first.

2. Scheduling sequence of activities: Activities of a project are sorted with first
priority by the partial order induced by Gp and as second priority by the order of
their current latest end time; latest activities are scheduled first.

3. Point in time to schedule activities: Activities are scheduled as close as possible
to their intended point in time: For non-setup activities, this is the point x that
is as close as possible to the due date d of the corresponding project. For setup
activities we search in an interval [x − δ, x + δ] with δ > 0 for a point that leads
to the lowest setup costs w.r.t. the current schedule. If two points lead to the same
cost, then we take one that is closest to d .

All precedence constraints (a, ā) ∈ Ep, p ∈ P , in which either a or ā is a setup
activity, are modeled with an additional time offset of ε, i.e., a ends at least ε time
units before the start of ā. Here, ε is a parameter that can be selected by the user.
The extra time between activities is not necessary for the feasibility of the solution,

578 M. Berg et al.

but beneficial for the performance of the local search in Sect. 2.2, where we need
enough freedom to perform iterative permutations of the setup sequences. Then the
aim of the solution refinement in Sect. 2.3 is to remove the extra offset from the
schedule. Reasonable choices of ε are discussed in Sect. 3.

2.2 Local Search

The algorithm of Sect. 2.1 does not necessarily result in local optimal setup costs—
even if the other goals (earliness, tardiness and throughput time) are fixed in their
goal levels. To find improved setup costs, we propose a local search procedure that
is applied to the activity order of each setup resource.

Starting from the activity sequence S0 found in the initial planning (Sect. 2.1),
we iteratively move from one sequence Si to another Si+1. The sequence Si+1 is
selected from a neighborhood set N (Si), where we choose the sequence with the
best improvement w.r.t. some priority rule R. The feasibility of the current sequence
is checked every iteration (or less frequently for further speedup). If an infeasibility
is detected, we backtrack to the last feasible sequence and try the next candidate.
This process is continued until no improvement occurs anymore or a maximum
iteration number is met.

From a theoretical point, the feasibility of a sequence S could be checked by
rescheduling all activities subject to the condition that the ordering specified by
S must be satisfied. However, since feasibility has to be checked quite often, this
can be very time consuming. Therefore, we restrict MPSPRTC to the subproblem
where all activities except the ones of S are fixed. Of course, this has a restrictive
effect, which is however partly compensated by adding the additional time offset ε

to precedence constraints in the initial planning (see Sect. 2.1). Generally it can be
said that, the larger we choose ε, the more freedoms we receive for rescheduling the
setup activities and it is more likely that a valid sequence can be detected as such.
On the other hand, if we choose ε small, then the earliness, tardiness and throughput
time of the projects tends to be smaller.

It remains to specify the neighborhood set N (S) and the priority rule R: Two
sequences S and S′ are neighbours if S can be transformed into S′ by either a
pairwise exchange of two sequence elements, or a shift of one sequence element
at another position, or a shift of a group of consecutive sequence elements with
the same setup type at another position. Moreover, the priority rule R relies on the
sum of setup costs and a measure based on the Lehmer mean [3] that prefers large
numbers of consecutive occurrences of the same setup type.

A Heuristic Approach for the MPSPRTC 579

2.3 Solution Refinement

In the third step of our method, we refine the solution calculated in the previous
steps. This is done by a forward-backward improvement (FBI) heuristic. The goal
is to move the activities closer to the due dates of the corresponding projects, while
keeping the sequence of the setup activities essentially unchanged.

The FBI heuristic consists of two steps: In the forward step, the activities are
considered from left to right (based on the order of the current schedule) and
scheduled to their earliest feasible point in time. Similarly, in the backward step,
the activities are considered from right to left (according to the order of the forward
schedule) and scheduled as close as possible to their due dates. The approach can
be repeated multiple times until no improvement occurs anymore.

3 Computational Experience

In this section, we report on computational experience with our implementation of
the presented algorithm. The implementation is written in C++ using the framework
ILOG CP Optimizer V12.6.2 [2], which allows to express relations between interval
variables and cumulative variables in the form of constraints.

We use four different kind of instance classes which arise from rolling horizon
ERP data of three customers. The instances of classes 3–4 correspond to the same
customer, however different kind of resources are marked as setup resources. Table 1
gives statistics on all four instance classes. Column “#” denotes the number of
instances of the given class. Moreover, in arithmetic mean over all instances of
each class, we list the number of projects in “Projs”, the number of activities in
“Acts”, the number of precedences in “Precs”, the number of resources in “Ress”,
the number of setup resources in “S-Ress”, the number of setup activities in “S-
Act”, the number of different setup types in “S-Types”, and the definition of the
setup cost matrices in “Mij ”. We defined a planning horizon in which setup costs
are optimized. The horizon is useful for controlling the complexity of the problem.
For our purposes, we decided that a large horizon of 60 days would be appropriate,
since the activities can be multiple days long.

Our computational results are organized into two experiments. In the first
experiment, we use the default settings of Table 2, but vary the parameter ε from

Table 1 Statistics of the instance classes

Instances # Projs Acts Precs Ress S-Ress S-Acts S-Types Mij

Class 1 6 5287 30818 27591 750 2 1249 153 0 (i = j), 1 (i �= j)

Class 2 1 4367 79318 82602 111 1 2490 87 |i − j |
Class 3 7 8699 67247 66064 919 9 676 317 0 (i = j), 1 (i �= j)

Class 4 7 8699 67247 66064 919 2 8366 11 0 (i = j), 1 (i �= j)

580 M. Berg et al.

Table 2 Settings for test runs

Shortcut Explanation

Default Default settings (all methods enabled)

Initial-off Initial planning (Sect. 2.1) is done without taking care of resource transfers

ls-off Turn local search off (Sect. 2.2)

Refine-off Turn solution refinement off (Sect. 2.3)

Setup-off Combination of “ls-off”, “Refine-off”, and “Initial-off”

Table 3 Experiments on the 4 instance classes (in arithmetic mean)

Setting Class 1 Class 2

Shortcut ε Costs thr earl tard Time Costs thr earl tard Time

Setup-off 0 0.96 5.66 2.14 2.73 32 31.08 7.55 0.64 11.34 73

Default 1 0.59 5.81 2.23 2.73 310 5.57 7.70 0.58 12.39 568

2 0.54 5.86 2.29 2.86 295 4.91 7.83 0.64 12.15 630

4 0.49 5.90 2.39 3.04 281 4.08 8.16 0.78 12.32 534

6 0.46 5.93 2.57 3.07 266 4.60 8.00 0.84 12.74 625

8 0.43 5.97 2.57 3.25 167 4.67 8.27 0.87 12.89 600

Initial-off 4 0.59 5.88 2.56 2.91 201 5.30 7.76 0.69 11.14 558

ls-off 4 0.62 5.95 2.36 3.09 135 18.21 8.14 0.68 12.35 442

Refine-off 4 0.47 6.16 2.29 3.34 82 3.52 8.20 0.82 13.03 180

Setting Class 3 Class 4

Shortcut ε Costs thr earl tard Time Costs thr earl tard Time

Setup-off 0 0.87 6.61 0.64 9.69 142 0.388 6.61 0.64 9.69 151

Default 1 0.77 6.57 0.75 9.51 507 0.041 6.89 0.87 9.84 1178

2 0.76 6.57 0.76 9.55 496 0.036 7.17 0.96 10.21 1081

4 0.73 6.59 0.77 9.64 501 0.032 7.53 1.12 10.75 1036

6 0.71 6.61 0.79 9.71 503 0.033 7.69 1.22 11.16 1086

8 0.68 6.63 0.81 9.78 491 0.033 7.94 1.33 11.64 1142

Initial-off 4 0.77 6.61 0.69 9.67 493 0.048 7.29 1.02 10.76 1169

ls-off 4 0.79 6.59 0.73 9.79 491 0.132 7.63 0.82 11.14 591

Refine-off 4 0.72 6.66 6.70 9.93 145 0.025 8.53 1.04 12.03 627

Sect. 2.1 between 1 and 8 days. In the second experiment, we evaluate the effect
of the three basic steps (Sects. 2.1–2.3) of our algorithm by switching different
components off. The data of Table 3 shows aggregated results of these experiments.
For each instance class, the table reports on the mean number of setup costs per
setup activity (column “Costs”), the mean number of days of the throughput time,
earliness and tardiness per project (columns “thr”, “earl” and “tard”), and the CPU
time in seconds (column “Time”).

The results can be summarized as follows: A larger value for ε tends to result in
lower setup costs. The reason is that ε controls the degrees of freedom we get for
optimizing the setup sequences in the local search. On the other hand, if we choose ε

small, we obtain better values for the earliness, tardiness and throughput time of the

A Heuristic Approach for the MPSPRTC 581

projects. This reflects the fact that minimal setup costs and optimal project dates are
contrary targets. Comparing the default settings with “Setup-off”, it turns out that
our algorithm is able to significantly improve the setup costs without worsening the
project statistics too much. On the other hand, the solution time for optimizing setup
costs is significantly increased.

We proceed with an evaluation of the three basic steps of our algorithm, see rows
“Initial-off”, “ls-off” and “Refine-off’. For these test runs, we decided to choose ε =
4, since this was a good trade-off in our last experiment. If setup cost optimization
is deactivated either in the initial planning or the local search step, then we observe
a significant deterioration in this goal, however for the sake of the project statistics.
Moreover, solution refinement turns out to successfully remove a lot of free space
from the schedule, which originates from the additional precedence offset ε in the
initial planning. This is demonstrated by the fact that the project statistics tend to
get worse when solution refinement is switched off.

4 Conclusion and Outlook

In this paper, we discussed and computationally tested a heuristic approach based
on constraint programming for the MPSPRTC. The algorithm particularly addresses
the issue of finding a good trade-off between low setup costs and compliance with
project due dates. We presented a standard constructive heuristic which we extended
by a local search and solution refinement procedure. The algorithm was tested on
large real-world data of different customers. Our computational results demonstrate
that this extension clearly outperforms the setup costs without worsening the
throughput time, earliness and tardiness of the projects too much. Future research is
necessary to develop more efficient heuristics to speed up the whole solving process.

References

1. Krüger, D., Scholl, A.: A heuristic solution framework for the resource constrained multi-project
scheduling problem with sequence-dependent transfer times. Eur. J. Oper. Res. 197(2), 492–394
(2009)

2. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling. Constraints
23(2), 210–250 (2018)

3. Lehmer, D.H.: On the compounding of certain means. J. Math. Anal. Appl. 36, 183–200 (1971)

	A Heuristic Approach for the Multi-Project Scheduling Problem with Resource Transition Constraints
	1 Introduction
	1.1 Problem Definition

	2 Scheduling Heuristic for MPSPRTC
	2.1 Initial Planning
	2.2 Local Search
	2.3 Solution Refinement

	3 Computational Experience
	4 Conclusion and Outlook
	References

