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Abstract We propose a data-driven integrated production and maintenance plan-
ning model, where machine breakdowns are subject to uncertainty and major
sequence-dependent setup times occur. We address the uncertainty of breakdowns
by considering various covariates and the combinatorial problem of sequence-
dependent setup times with an asymmetric Traveling Salesman Problem (TSP)
approach. The combination of the TSP with machine learning optimizes the
production planning, minimizing the non-value creating time in production and
thus, overall costs. A data-driven approach integrates prediction and optimization
for the maintenance timing, which learns the influence of covariates cost-optimal
via a mixed integer linear programming model. We compare this approach with
a sequential approach, where an algorithm predicts the moment of machine
failure. An extensive numerical study presents performance guarantees, the value
of data incorporated into decision models, the differences between predictive
and prescriptive approaches and validates the applicability in practice with a
runtime analysis. We show the model contributes to cost savings of on average
30% compared to approaches not incorporating covariates and 18% compared to
sequential approaches. Additionally, we present regularization of our prescriptive
approach, which selects the important features, yielding lower cost in 80% of the
instances.
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1 Introduction

We consider a manufacturing environment of an one-line, multiple-product produc-
tion system that faces two challenges: (i) Due to the significant differences between
the products, high sequence-dependent setup times account for non-value creating
downtime and (ii) the significant amount of unplanned machine breakdowns, which
leads to supply shortages, lost profits and thus, customer dissatisfaction.

For an optimized production plan, the setup time and the uncertain breakdowns
need to be minimized to generate more output, better utilize the capacities of the
production lines and reduce the time to delivery from customer orders, leading to
an improvement of customer satisfaction. In order to cope with these challenges,
an integration of production and maintenance planning is needed, that does not only
minimize the setup cost, but also takes into account the trade-off between breakdown
costs and the additional maintenance costs, caused by frequent scheduling.

By addressing the challenge of breakdowns, predictive maintenance can, when
appropriately planned, reduce machine downtime by detecting unexpected trends
in feature data (e.g., sensor data), which may contain early warnings on pattern
changes. Predictive maintenance can ensure the availability, reliability, and safety
of the production systems. It generates profits through an undisrupted production
system, optimizing cost, quality, and throughput simultaneously. However, predic-
tive maintenance does not account for the underlying structure of the optimization
problem, which might yield suboptimal production and maintenance decisions. This
asks for prescriptive analytics approaches that integrate prediction and optimization.

In the course of this research we answer the following questions:
How to integrate production and maintenance scheduling for a holistic pro-

duction optimization model? How can the decision maker efficiently use data
of past observations of breakdowns and covariates to solve the problem? Which
performance guarantees does the decision maker have and how do these scale with
various problem parameters? What is the value of capturing the structure of the
optimization problem when making predictions? How is the applicability of the
models in practice?

2 Mathematical Formulation

This research proposes a data-driven optimization approach for integrated pro-
duction and maintenance planning, where machine breakdowns are subject to
uncertainty and major sequence-dependent setup times occur.

We address the uncertainty of breakdowns by considering various covariates such
as sensor signals and the combinatorial problem of sequence-dependent setup times
with an asymmetric TSP approach [1]. The combination of the TSP with machine
learning, to simultaneously optimize the production schedule and maintenance
timing, minimizes the non-value creating time in production lines and thus, the
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overall costs. We apply this by defining a maintenance node in the TSP graph.
Furthermore, we train data-driven thresholds based on a modified proportional
hazard model from condition-based maintenance. The threshold includes covariates,
such as sensor data (vibration, pressure, etc.), whose impact is learned directly from
data using the empirical risk minimization principle from learning theory ([2], p.
18).

Rather than conducing prediction and optimization sequentially, our data-driven
approach integrates them and learns the impact of covariates cost-optimal via a
mixed integer linear programming model to account for the complex structures
of optimization models. We compare this approach with a sequential approach,
where an algorithm predicts the moment of machine failure. The integrated prescrip-
tive algorithm considers the costs during training, which significantly influences
the decisions as the models are trained on a loss function consisting of both,
maintenance and breakdown costs, whereas the predictive approach is trained on
forecasting errors not incorporating any kind of costs. Our prescriptive approach
is based on principles of data-driven literature, which is applied to different
problems such as the Newsvendor Problem [3–5], portfolio management [6, 7], the
minimization of logistics costs in retail [8] or commodity procurement [9].

To our prescriptive model the general notation (Table 1) is applied.
The parameters α and βm are furthermore out-of-sample not decision variables,

but parameters.
In order to integrate the dimension t of the covariate observations to the time

used for production jobs, variables xijt and Cijt have the dimension t. They are only
set up in the regarding production cycle t, where maintenance is scheduled, and the
job is part of the production slot. For all other t, where no maintenance is set up, the
variables are set to zero. t is also used to separate and define the different production
slots/cycles.

The target of the optimization models is the minimization of the costs, arising
throughout the production system. Therefore, we state the following linear decision
rules for xijt, yt and zt:

• For every i = 1, . . . , n, j = 2, . . . , n and t = 1, . . . , k, xijt is set up, whenever the
edge (i, j) is in the graph and product j is scheduled after product i in production
slot t.

• xi1t equals one and maintenance is set up after job i for precisely one predecessor
job, if zt is set to one in t for every i = 2, . . . , n and t = 1, . . . , k.

• zt is set to one if the machine age in t plus the threshold function exceeds zero.
Another interpretation is when the age is higher than the absolute value of the
threshold function α + ∑l

m=1 βmFmt for every t = 1, . . . , k. This is in line with
the hazard function from proportional hazard models.

• yt is set to one, whenever a breakdown occurs, and no maintenance is done in t,
which accounts for a penalty setup for every t = 1, . . . , k.
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Table 1 Notation for the prescriptive production planning model

Sets
t = 1, . . . , T Time frame/time steps for the sensor data. Each time frame accounts for one

observation of every covariate at a certain point in time
i, j = 1, . . . , n n is the number of jobs to be scheduled. The combination (i, j) is defined as

the edges between job i (predecessor) and job j (successor)
m = 1, . . . , M Set of covariates of type m
Parameters
BM Sufficient big number
bt = 1, if the machine breaks in t, 0 otherwise
at Age of the machine in time frame t
cb Costs for one breakdown of the machine
cp Cost per unit time of production
cm Costs per maintenance setup
qij Sum of setup and production time for j if scheduled after i
Fmt Value of covariate m (numerical value of sensor observation like temperature,

pressure or vibration) in time frame t
Decision Variables
yt = 1, if a breakdown occurs and no maintenance is set up in t,

0 otherwise
zt = 1, if maintenance is set up in t, 0 otherwise
xijt = 1, if product j is produced after job i in production cycle ending in time

frame t, 0 otherwise
Cijt Completion time of job j following job i when set up in cycle ending in t
α Intercept/feature independent term of the threshold function
βm Coefficient for covariate m of the threshold function

Prescriptive production planning model:

min
∑n

i=1

n∑

j=2

(
xijt • qij

) • cp +
∑k

t=1
zt • cm +

∑k

t=1
yt • cb (1)

Subject to:

∑n

j=2
x1j t = zt ∀t = 1, . . . , T (2)

∑n

j=2
xj1t = zt ∀t = 1, . . . , T (3)

∑n

j=1

∑k

t=1
xijt = 1 ∀i = 2, . . . , n (4)
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∑n

j=1

∑k

t=1
xjit = 1 ∀i = 2, . . . , n (5)

c1j • x1j t ≤ C1j t ∀j = 2, . . . , n; t = 1, . . . , T (6)

∑n

i=1
Cijt +

∑n

k=1

(
qjk • xjkt

) ≤
∑n

k=1
Cjkt ∀j = 2, . . . , n; t = 1, . . . , T

(7)

α +
l∑

m=1

βmFmt + at ≤ BM • zt ∀t = 1, . . . , T (8)

−at −
(

α +
l∑

m=1

βmFmt

)

≤ BM • (1 − zt ) ∀t = 1, . . . , T (9)

yt ≥ st t − zt ∀t = 1, . . . , T (10)

Cijt ≥ 0 ∀i, j = 1, . . . , n; t = 1, . . . , T (11)

xijt ∈ {0, 1} ∀i, j = 1, . . . , n; t = 1, . . . , T (12)

yt , zt ∈ {0, 1} ∀t = 1, . . . , T (13)

The objective function (1) minimizes the overall costs. It includes the production
costs cp, the sum of the maintenance costs cm and the sum of the breakdown costs
cb multiplied with binary setup variables. Constraints (2) and (3) set—for the t in
which zt equals one—the maintenance node (node one) to one, over the sum of all
production jobs as a successor or predecessor jobs. Constraints (4) and (5) ensure,
that every production job (2, . . . , n) is set up exactly once. The completion times
Cijt are calculated with the Eqs. (6) and (7). Constraints (8), (9) and (10) are the
prescriptive part of the model. This part is learning in-sample the intercept and
the covariate coefficients for each of the sensors and represents the decision rules
out-of-sample. Constraints (8) and (9) determine the maintenance setup decision.
The two constraints ensure, that maintenance is set up, whenever the threshold
control constraints are reached (8). If this function is not greater than zero it is not
allowed set up maintenance (9). Constraint (10) sets up the penalty/breakdown costs
whenever a machine breakdown occurs, and no maintenance is done. This constraint
is as well used for the learning in-sample as a penalty constraint for wrong decisions.
Out-of-sample are the βs and α given as parameters and the age and the state of the
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machine calculated. Equation (11) sets the continuous variables Cijt greater equal
zero. Equations (12) and (13) are setting xijt and yt, zt as binary variables.

3 Results

In an extensive numerical study, we present the value of data incorporated into
decision models and validate the applicability in practice with a runtime analysis.
We examine the predictive and prescriptive model and compare these to a small
data approach that does not incorporate covariates when optimizing a time-based
threshold and the perfect foresight optimum to state cost deviations to the ex-post
optimal decisions.

Not having an infinite amount of data leads in theory to a bias, as the algorithms
do not have the information to determine the cost-optimal parameters. As stated by
the asymptotic optimality theorem, the solution converges to the perfect foresight
optimum, if given an infinite amount of data [6]. The numerical results for
the finite sample bias show that our prescriptive approach tends to the perfect
foresight optimum (below 1% deviation) at a considerable low amount of 1500
historical observations (predictive approach 10% deviation, small data approach
30% deviation). The challenge of the generalization error—the generalizability
of the in-sample decision to out-of-sample data [3]—is most prominent with a
high number of covariates and a low number of observations, causing risks for
the decision maker. This is addressed with the lasso regularization extension in
order to select the decision-relevant features and regulate against overfitting. This
approach yields lower cost in 80% of the instances compared to the approach
without regularization.

The sensitivity to the cost structure of the prescriptive model while learning is
the significant difference to the predictive model. The prescriptive model adjusts the
decisions according to the associated costs of breakdowns and maintenance, while
the predictive model proposes the same decision regardless the costs, which leads
to additional risks. This translates into cost savings of 50%, considering a ratio of
1/25 of maintenance to breakdown costs.

The overall runtimes for the training of the predictive approach (2500 observa-
tions 0.02 s) are significantly lower than of the prescriptive runtime (346 s), which
shows the trade-off between runtimes and robust decisions. By considering the
results of cost deviation, below 1% at a training size of 1500 with a training runtime
of 18 s, the model is applicable in practice. The optimization of the sequence-
dependent setup times and the scheduling of 1 month with 60 jobs on a conservative
choice of machine has a runtime of less than half an hour with two maintenance
setups and is therefore applicable in practice as well.
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4 Conclusion and Managerial Insights

Overall, we find that the prescriptive model contributes to cost savings of on average
30% compared to approaches not incorporating covariates and 18% compared to
predictive approaches. This shows the high importance of the covariates in the
maintenance context, as the small data approach never captures the true nature of
the machine state. Furthermore, it shows the potential in capturing the optimization
problem when making predictions.

We conclude, the data-driven integrated production and maintenance optimiza-
tion model is suitable to solve the challenges presented and can significantly reduce
costs in the production environment.
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