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Abstract Quantified integer (linear) programs (QIP) are integer linear programs
with variables being either existentially or universally quantified. They can be inter-
preted as two-person zero-sum games between an existential and a universal player
on the one side, or multistage optimization problems under uncertainty on the other
side. Solutions are so called winning strategies for the existential player that specify
how to react on moves—certain fixations of universally quantified variables—of the
universal player to certainly win the game. In this setting the existential player must
ensure the fulfillment of a system of linear constraints, while the universal variables
can range within given intervals, trying to make the fulfillment impossible. Recently,
this approach was extended by adding a linear constraint system the universal player
must obey. Consequently, existential and universal variable assignments in early
decision stages now can restrain possible universal variable assignments later on and
vice versa resulting in a multistage optimization problem with decision-dependent
uncertainty. We present an attenuated variant, which instead of an NP-complete
decision problem allows a polynomial-time decision on the legality of a move. Its
usability is motivated by several examples.

Keywords Robust optimization · Multistage optimization · Decision-dependent
uncertainty · Variable uncertainty

1 Introduction

Optimization under uncertainty often pushes the complexity of problems that are
in the complexity class P or NP, to PSPACE [14]. Nevertheless, dealing with
uncertainty is an important aspect of planning and various solution paradigms for
optimization under uncertainty exist, e.g. Stochastic Programming [3] and Robust
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Optimization [2]. In most settings it is assumed that the occurring uncertainty
is embedded in a predetermined uncertainty set or that it obeys a fixed random
distribution. In particular, planning decisions have no influence on uncertainty.
Decision-dependent uncertainty has recently gained importance in both stochastic
programming [1, 5, 8, 9] and robust optimization [11, 13, 15, 16]. We focus on
quantified integer programming (QIP) [12], which is a robust multistage opti-
mization problem. Only recently, an extension for QIP was presented such that
existential and universal variable assignments in early decision stages now can
restrain possible universal variable assignments later on and vice versa resulting
in a multistage optimization problem with decision-dependent uncertainty [6]. The
aim of this paper is to investigate the implications and possibilities of this extension
for operations research.

2 Quantified Integer Programs with Interdependent
Domains

Quantified Integer Programs (QIP) are Integer Programs (IP) extended by an explicit
variable order and a quantification vector that binds each variable to a universal
or existential quantifier. Existentially quantified variables depict decisions made
by a planner, whereas universally quantified variables represent uncertain events
the planner must cope with. In particular, a QIP can be interpreted as a zero-
sum game between a player assigning existentially quantified variables against the
player fixing the universally quantified variables. The first priority of the so-called
existential player is the fulfillment of the existential constraint system A∃x ≤ b∃
when all variables x are fixed. A solution of a QIP is a strategy for assigning
existentially quantified variables, that specifies how to react on moves of the
universal player—i.e. assignments of universally quantified variables—to certainly
fulfill A∃x ≤ b∃. By adding a min-max objective function the aim is to find the best
strategy [12].

Definition 1 (Quantified Integer Program) Let A∃ ∈ Qm∃×n and b∃ ∈ Qm∃ for
n,m∃ ∈ N and let L = {x ∈ Zn | x ∈ [l, u]} with l, u ∈ Zn. Let Q ∈ {∃,∀}n
be a vector of quantifiers. We call each maximal consecutive subsequence in Q

consisting of identical quantifiers a quantifier block and denote the i-th block
as Bi ⊆ {1, . . . , n} and the corresponding quantifier by Q(i) ∈ {∃,∀}, the
corresponding variables by x(i) and its domain by L(i). Let β ∈ N, β ≤ n, denote
the number of blocks. Let c ∈ Qn be the vector of objective coefficients and let
c(i) denote the vector of coefficients belonging to block Bi . Let Q ◦ x ∈ L with
the component wise binding operator ◦ denote the quantification vector (Q(1)x(1) ∈
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L(1), . . . ,Q(β)x(β) ∈ L(β)) such that every quantifier Q(i) binds the variables x(i)

of block i to its domain L(i). We call

min
x(1)∈L(1)

(
c(1)x(1) + max

x(2)∈L(2)

(
c(2)x(2) + . . . min

x(β)∈L(β)
c(β)x(β)

))

s.t. Q ◦ x ∈ L : A∃x ≤ b∃

a QIP with objective function (for a minimizing existential player).

In the above setting the universally quantified variables only must obey the
hypercube L given by the variable bounds. Hence, QIPs are rather unsymmetric
as—even though the min-max semantics is symmetrical—only the existential player
has to deal with a polytope (given by A∃x ≤ b∃) the universal player can modify.
In [7] this setting was extended to allow a polyhedral domain for the universal
variables given by a second constraint system A∀x ≤ b∀. However, still the
existential player’s variables had no influence on this system. Only recently, a further
extension was presented allowing the interdependence of both variable domains [6].
The presented Quantified Integer Program with Interdependent Domains (QIPID)
required the definition of a legal variable assignment, since now the case that both
constraint systems are violated could occur and the player who made the first illegal
move loses (we refer to [6] for more details).

Definition 2 (Legal Variable Assignment) For variable block i ∈ {1, . . . , β} the
set of legal variable assignments F (i)(x̃(1), . . . , x̃(i−1)) depends on the assignment
of previous variable blocks x̃(1), . . . , x̃(i−1) and is given by

F (i) =
{
x̂(i) ∈ L(i)

∣∣ ∃x = (x̃(1), . . . , x̃(i−1), x̂(i), x(i+1), . . . , x(β)) ∈ L : AQ(i)
x ≤ bQ(i)

}

i.e. after assigning the variables of block i there still must exist an assignment of x

such that the system of Q(i) ∈ {∃,∀} is fulfilled. The dependence on the previous
variables x̃(1), . . . , x̃(i−1) will be omitted when clear.

Hence, even a local information—whether a variable is allowed to be set to a
specific value—demands the solution of an NP-complete problem. Just like QIP,
QIPID is PSPACE-complete [6].

Definition 3 (QIP with Interdependent Domains (QIPID)) For given A∀, A∃, b∀,
b∃, c, L and Q with {x ∈ L | A∀x ≤ b∀} �= ∅ we call

min
x(1)∈F (1)

(
c(1)x(1) + max

x(2)∈F (2)

(
c(2)x(2) + . . . max

x(β)∈F (β)
c(β)x(β)

))

s.t. ∃x(1) ∈ F (1) ∀x(2) ∈ F (2) . . . ∀x(β) ∈ F (β) : A∃x ≤ b∃

a Quantified Integer Program with Interdependent Domains (QIPID).
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We say a player q ∈ {∃,∀} loses, if either a) Aqx̃ �≤ bq for a fully assigned x̃ or b) if
there exists no legal move for this player at some point during the game, i.e. F (i) =
∅. As we will see in the following section, a general QIPID is too comprehensive
for most problems of the OR-world and a few restrictions are sufficient in order to
simplify the solution process.

3 Addition Structural Requirements for A∀x ≤ b∀

The recurring NP-complete evaluation of F (i) constitutes a massive overload when
solving a QIPID via game-tree search [4]. In a general QIPID it can occur that the
universal player has no strategy in order to ensure the fulfillment of A∀x ≤ b∀.
This makes sense in an actual two-person game where both players could lose.
In an OR-setting, however, the universal player can be considered to be the one
who decides which uncertain event will occur, the scope of which depends on
previous planning decisions. But obviously there exists no planning decision that
obliterates uncertainty in the sense that there is no further legal assignment for
universal variables such that uncertainty “loses”. Therefore, we make the following
assumptions:

a) For each universal variable block i ∈ {1, . . . , β} we demand
∀ (

x̂(1) ∈ L(1), x̂(2) ∈ F (2), . . . , x̂(i−2) ∈ F (i−2), x̂(i−1) ∈ L(i−1)
) : F (i) �= ∅ .

b) Let i ∈ {1, . . . , β} with Q(i) = ∀ and let x̂(1) ∈ L(1), . . . , x̂(i−1) ∈ L(i−1) be a
partial variable assignment up to block i. If x̃(i) �∈ F (i)(x̂(1), . . . , x̂(i−1)) then

∃k ∈ {1, . . . ,m∀} :
∑
j<i

A∀
k,(j)x̂

(j) + A∀
k,(i)x̃

(i) +
∑
j>i

min
x(j)∈L(j)

A∀
k,(j)x

(j) �≤ b∀ .

Restriction a) requests, that there always exists a legal move for the universal
player, even if the existential player does not play legally. In particular, previous
variable assignments—although they can restrict the set of legal moves— can never
make A∀x ≤ b∀ unfulfillable. In b) we demand that a universal variable assignment
x̃(i) ∈ L(i) is illegal, if there is a universal constraint that cannot be fulfilled, even in
the best case. Therefore, it is sufficient to check separately the constraints in which
x̃(i) is present in order to ensure x̃(i) ∈ F (i). Hence, there always exists a strategy
for the universal player to fulfill A∀x ≤ b∀ (due to a)) and further checking x(i) ∈
F (i) can be done in polynomial time (due to a) and b)) for universal variables. The
legality of existential variable assignments does not have to be checked immediately
(due to a)) and can be left to the search.
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4 Application Examples

In this section we briefly describe a few examples where QIPID can be used in order
to grasp the relevance of multistage robust optimization with decision-dependent
uncertainty. We will not explicitly specify how the described problems can be
translated into linear constraints, but note, that all the upcoming examples can be
modeled as QIPID while meeting the requirements described in Sect. 3. Further,
keep in mind that QIPID is a multistage optimization framework. Therefore, rather
than adhering to adjustable robust programming with only a single response stage,
planning problems with multiple decision stages are realizable.

Maintenance Reduces Downtime Consider a job shop problem with several tasks
and machines. One is interested in a robust schedule as machines can fail for a
certain amount of time (universal variables indicate which machines fail and how
long they fail). The basic problem can be enhanced by adding maintenance work to
the set of jobs: the maintenance of a machine prevents its failure for a certain amount
of time at the expense of the time required for maintenance and the maintenance
costs. Therefore, the universal constraint system contains constraints describing
the relationship between maintenance and failure: With existential variable mi,t

indicating the maintenance of machine i at time t and universal variable fi,t

indicating the failure of machine i at time t the (universal) constraint fi,t+j ≤
1−mi,t prohibits the failure of machine i for each of the j ∈ {0, . . . ,K} subsequent
time periods. The universal constraint system also could contain further restrictions
regarding the number of machines allowed to fail at the same time, analogous to
budget constraints common in robust optimization [15]. This budget amount also
can depend on previous planning decisions, e.g. the overall machine utilization.
Further, reduced operation speed can reduce wear and therefore increase durability
and lessen the risk of failure.

Workers’ Skills Affect Sources of Uncertainty The assignment of employees to
various tasks may have significant impact on potential occurring failures, processing
times and the quality of the product. For example, it might be cheaper to have
a trainee carry out a task, but the risk of error is higher and the processing time
might increase. Further, some worker might work slower but with more diligence—
resulting in a long processing-time but a high quality output—than other faster,
but sloppier, workers. Hence, the decision which worker performs a particular task
has an impact on the anticipated uncertain events. In a more global perspective staff
training and health-promoting measures affect the skills and availability of a worker,
and thereby affecting potential risks.

Road Maintenance for Disaster Control In order to mitigate the impact of a
disaster, road rehabilitation can improve traveling time as the damage of such roads
can be reduced (see [13]). Again, a budget for the deterioration of travel times for all
roads could be implemented, whereat the budget amount could be influenced by the
number of emergency personal, emergency vehicles and technical equipment made
available.
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Time-Dependent Factors in Process Scheduling In [10] the authors present a
process scheduling approach with uncertain processing-time of the jobs, whereat
the range of the uncertain processing-time parameters depend on the scheduling
time of the job itself. The selection of specific scheduling times therefore actively
determines the range in which the uncertain processing-times are expected. For a
QIP this influence on uncertainty could be achieved by adding universal constraints
as follows: Let xi,t be the (existential) binary indicator whether task i is scheduled
to start at time t and let yi be the (universal) variable indicating the occurring
processing-time of task i. Let li,t and ui,t indicate the range of the processing-time
of task i if scheduled at t . Adding

∑
t li,t xi,t ≤ yi ≤ ∑

t ui,t xi,t to the universal
constraint system would establish the intended interdependence.

5 Conclusion

We addressed the largely neglected potential of optimization under decision-
dependent uncertainty. In the scope of quantified integer programming with
decision-dependent uncertainty we presented reasonable restrictions such that a
game-tree search algorithm must not cope with recurring NP-complete subproblems
but rather polynomial evaluations. Further, we provided several examples where
such a framework is applicable.
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