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Abstract This paper focuses on a special case of vehicle routing problem where
perishable goods are considered. Deliveries have to be performed until a due date,
which may vary for different products. Storing products is prohibited. Since late
deliveries have a direct impact on the revenues for these products, a precise demand
prediction is important. In our practical case the product demands and vehicle
driving times for the product delivery are dependent on weather conditions, i.e.,
temperatures, wind, and precipitation. In this paper the definition and a solution
approach to the Vehicle Routing Problem with Perishable Goods is presented.
The approach includes a procedure how historical weather data is used to predict
demands and driving times. Its run time and solution quality is evaluated on different
data sets given by the MOPTA Competition 2018.

Keywords Vehicle routing problem · Mixed integer programming

1 Introduction

Companies that sell goods to customers at multiple locations have to come up
with a dedicated plan how to distribute their products over the different locations
to perfectly fit the customers demands. Detailed vehicle routing problems arise
naturally when planning these deliveries. The Vehicle Routing Problem and its
variants are very well studied in the literature. We refer to [5] for a review.
These problems become even more complex by adding constraints modeling
characteristics of goods, vehicles, or strategic decisions. The authors of [2] call
these problems rich vehicle routing problems. This paper focuses on a special case
of these problems where perishable goods are considered, i.e. each product has a
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due date. Deliveries have to be performed before this date and it is prohibited to
store the products for a long time at the individual locations. Since late deliveries
have a direct impact on the revenues for these products, a precise demand prediction
is even more important. Moreover, the demands and vehicle driving times required
to transport the goods are dependent on the actual weather conditions. The problem
we are dealing with was defined for the AIMMS-MOPTA Optimization Modeling
Competition 2018 [3]. It came with a detailed problem description and a set of
historical weather features, which have an influence on the product demands and
the vehicle driving times to deliver the products. The data should be used to predict
the demands and weather conditions on a fixed date and to create an optimal plan
to deliver the perishable products to a set of customers. In this paper we present the
definition and a solution approach to the Vehicle Routing Problem with Perishable
Goods (VRPPG). This includes a procedure how historical weather data is used to
predict the demands and driving times. The VRPPG can be seen as a mixture of
the Capacitated Vehicle Routing Problem, first defined by Dantzig and Ramser [1]
and the Vehicle Routing Problem with Time Windows presented in [4]. We test the
approach which let our team finish second place in the MOPTA Competition 2018,
on different data sets given by the competition. Finally, we discuss the quality of the
approach in terms of run time and quality of the computed solutions.

2 The Vehicle Routing Problem with Perishable Goods

We consider a set of locations I ⊂ N including warehouse 0 and set of retailers
J ⊂ I . Each retailer j ∈ J has a demand of dj ∈ N of perishable goods. Deliveries
of goods are in time if they arrive before a fixed due date h ∈ [0,H [. Each good
delivered later is penalized by cm independently of the actual duration of the delay.
A maximum number of A ∈ N vehicles are available to perform deliveries. Each
vehicle has a capacity of C ∈ N items.

If a vehicle is used it induces the fixed cost MF ∈ R and, additionally, the
variable costs of mt,mv ∈ R for each hour and mile it is operated, respectively.

The possible trips between locations are given by the set E ⊆ I × I . The
resulting graph G := (I, E) is used to compute feasible tours beginning and ending
at the warehouse. It is assumed that unloading goods at a retailer takes no time. The
duration of a trip between two locations and its length is given by τ, l : E �→ R

+,
respectively.

Definition 1 The Vehicle Routing Problem with Perishable Goods is the task to find
the following items: a set of cycles R in G, for each cycle r ∈ R an assignment of
amounts of goods to retailers j , and an assignment of each cycle r ∈ R to a vehicle
in {1, ..., A}. These assignments have to minimize penalties caused by late deliveries
and the costs for operating the vehicles while satisfying the following conditions:
each cycle visits 0; the sum of the goods assigned to a retailer of a cycle does not
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exceed C; the sum of all goods assigned to a fixed retailer j over all cycles satisfies
dj .

For the MOPTA Competition 2018 the duration of a trip between two locations
was only given by historical data including the following three weather features:
temperature f ∈ R

+ in degrees Fahrenheit, precipitation p ∈ R
+ in cubic

centimeters per hour, and wind w ∈ R
+ in kilometers per hour. Based on the

historical data, the map τ : E × R
3 �→ R

+ for travel times between two locations
in dependence of the features had to be generated.

3 A Solution Approach to the VRPPG

We present an approach to tackle the problem in this section. It is based on a mixed
integer linear programming (MILP) model and optimizes the sequences of tours
that have to be performed by the vehicles. We define a tour as a single vehicle
movement along a cycle beginning at the warehouse, visiting one or more retailers
j ∈ J , before returning to the warehouse. Let T denote the set of tours. The

approach uses minimum and maximum numbers of tours given by m := �
∑

j∈J dj

C
�

and M := ∑
j∈J � dj

C
�, respectively.

Our solution approach can be summarized as follows. We assume that all travel
times τ (e, f, p,w) are given for a fixed tuple of weather features. We connect all
retailers in G to the warehouse 0. For those retailers originally not directly connected
to 0, the length of the edges is set to the length of the shortest path with respect to
travel time. We compute the set P of all possible cycles that visit at most n + 1
retailers with minimal travel time with respect to cycles that visit precisely the same
retailers. Here, n is defined as n := max{|S|| ∑j∈S dj ≤ C, S ⊆ J } and for a cycle
p, let cp and τp denote its length and duration. Further, let Pj denote the set of
cycles that visit j and let τp,j denote the time to reach retailer j from the warehouse
along some p ∈ Pj . The model given in Sect. 3.1 is then solved by an commercial
state of the art MILP solver.

3.1 MILP Model for the VRPPG

The MILP model formulation contains binary decision variables xt,p for all t ∈
T , p ∈ P that indicate if tour t performs cycle p, pt,j for all t ∈ T , j ∈ J that
indicate if retailer j is delivered late on tour t , vt for all t ∈ T that indicate if
tour t is operated by an additional vehicle, and rt for all t ∈ T that indicate if tour
t is operated by the same vehicle as tour t − 1. Let lt,j be continuous variables
that define the load of goods delivered in time for retailer j on tour t and st,j the
respective load delivered late. The continuous variables dt , at define the departure
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and arrival time of a tour t at the warehouse. Finally, let H denote the time horizon.
To shorten notation d̃j defines d̃j := min{C, dj }.

Reloading a vehicle for a tour requires that the preceding tour has already
arrived at the warehouse, which is controlled by constraints (3) and (4). The set
of equalities (5) decides which cycle is assigned to an operated tour. The correct
arrival and departure times are set by the constraints (6) with respect to the cycle
operated on a tour. To satisfy the demand of each retailer and to prevent exceeding
the vehicle capacity, the amount of transported goods for each retailer and each tour
are summed up in (7) and (8), respectively. The next two sets of inequalities restrict
the individual loads of each retailer on each tour. In set (9) the upper bound of the
(in time) load variable for a retailer is set to the minimum of the vehicle capacity and
the retailer’s demand, if a cycle containing the retailer is selected. It is set to zero
if the retailer is visited late on the selected cycle. The upper bounds for the (late)
load variables are enforced by (10). The set of constraints (11) takes care that the
decision variable pt,j becomes 1 if retailer j will be handled late, i.e., tour t starts
too late.

min
∑

t∈T

cpxt,p +
∑

t∈T

MF vt +
∑

t∈T

∑

j∈J

cmst,j ,

s.t. :
∑

t∈T

vt ≤ A, (1)

vt + rt ≤ 1, ∀t ∈ T (2)

dt+1 + H(1 − rt ) ≥ at ∀t ∈ T , (3)
∑

p∈P

xt,p ≥ rt+1 ∀t ∈ T , (4)

∑

p∈P

xt,p = vt + rt ∀t ∈ T , (5)

dt +
∑

p∈P

τpxt,p ≤ at ∀t ∈ T , (6)

∑

t∈T

lt,j + st,j ≥ dj ∀j ∈ J, (7)

∑

j∈J

lt,j + st,j ≤ C(vt + rt ) ∀t ∈ T , (8)

d̃j

∑

p∈Pj

xt,p − d̃jpt,j ≥ lt,j ∀t ∈ T , j ∈ J, (9)

d̃j

∑

p∈Pj

xt,p ≥ st,j ∀t ∈ T , j ∈ J, (10)
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∑

p∈Pj

τp,j xt,p + dt ≤ h + Hpt,j ∀t ∈ T , j ∈ J, (11)

xt,p ∈ {0, 1} ∀t ∈ T , p ∈ P, (12)

pt,j ∈ {0, 1}, st,l , lt,l ∈ {0, d̃j }, at , dt ∈ {0,H } ∀t ∈ T , j ∈ J, (13)

vt , rt ∈ {0, 1} ∀t ∈ T . (14)

3.2 Weather Features

So far we assumed that the travel times for each edge are given. As mentioned before
this was not the case for the MOPTA Competition 2018. Instead a set of historical
travel time data linked to weather features was given. To compute travel times for
the edges of G for a fixed tuple of weather features we implemented two different
methods.

The first method, which we call Closest Candidate Method (CCM), simply
searches for the ‘closest’ weather feature tuple in the historical data set and applies
these travel times to the edges of G. In this sense closest refers to the distance
according to the following metric d . Let w1 := (f1, p1, w1) and w2 := (f2, p2, w2)

be two weather tuples. The distance d(w1, w2) is a normalized Euclidean distance

given by d(w1, w2) :=
√(

f1−f2
fΔ

)2 +
(

p1−p2
pΔ

)2 +
(

w1−w2
wΔ

)2
.

Where fΔ, pΔ,wΔ are the ranges between minimum and maximum value of the
respective weather feature included in the historical data set.

The second method, which we call Closest Pair Method (CPM), looks for
two points w1 := (f1, p1, w1) and w2 := (f2, p2, w2) that enclose a given
weather feature w := (f, p,w), i.e., f ∈ [min{f1, f2}, max{f1, f2}], p ∈
[min{p1, p2},max{p1, p2}], w ∈ [min{w1, w2},max{f1, f2}]. CPM iterates through
all pairs of historical weather w1 and w2 that enclose w to find the pair with a
minimum cumulative distance d(w,w1) + d(w,w2). The found pair is then used to
interpolate the searched point as follows. Each edge e ∈ E is assigned a travel time

according to the weighted sum τ (e) :=
(

τ1(e)
d(w,w1)

+ τ2(e)
d(w,w2)

)
/
(
d(w,w1)+d(w,w2)

)

where τi(e) is the travel time on edge e and weather feature i. If no suitable pair of
features is found, CCM is used to assign travel times.

4 Computational Results

In this section we present the characteristics of the solution approach both for the
CCM and CPM method to estimate the driving times. Table 1 contains an individual
row for two data sets containing 50 respectively 100 VRPPG instances as shown
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Table 1 Computational results for CCM and CPM

CCM CPM Diff

CPU Gap CPU(s) Gap

Test set # ∅(s) 2m 15m 1 h (%) ∅(s) 2m 15m 1 h (%) # %

Fixed 50 23.5 47 3 0 0.0 23.9 48 2 0 0.0 2 1.9

Dependent 100 650 48 28 7 1.01 535 49 33 6 1.12 1 1.0

in Column #. The “dependent” data set contains instances where the retailers’
demands are dependent from the weather conditions. Therefore, the demands were
determined from a historical data set in a similar way like it was done for the driving
times. The next two blocks of four columns show the characteristics of the CCM
and CPM approach, respectively. The column ∅(s) marks the arithmetic average
of the run times for the instances of each set. The columns 2m and 5m give the
number of instances that were solved to optimality within 2 and 15 min, respectively,
whereas the column 1h shows the number of instances that hit the time limit before
proven to be optimal. The two columns headlined with gap mark the maximum gap
between the upper and lower bound of instances that were not proven to be solved
to optimality. Finally, the columns # and % in the Diff block compare the solutions
found by each of the approaches. The column # gives the number of instances
where a different number of vehicles is used in the solutions of CCM and CPM
while Column % shows |c(CCM) − c(CPM)|/c(CCM), i.e., the absolute value
between the two objective function values divided by the CCM objective function
value. All computations were done with AIMMS 4.53.5.7 with CPLEX 12.7.1 as
internal MILP solver on a Intel(R) Core(TM) i7-4600U CPU with 2.10 GHz, four
cores, 8 GB RAM and a maximum run time limit of 1 h.

Table 1 shows that the presented approaches generate high quality solutions for
all instances of both test sets in a short time, about 24 s on average per instance, in
case of the instances with weather independent demands. None of these instances
takes more than 4 min to solve, which is a promising result. The Diff block shows
that both approaches lead to very similar solutions for most of all instances.

5 Conclusion

We presented two approaches for the VRPPG based on a MILP problem formulation
with path variables. The chosen approach leads to high quality solutions combined
with fast running times for the instances subject to the competition, which justifies
the presented approach. To further improve the model and solve larger instances a
dynamic cycle construction, i.e., variable generation should be used.
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