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Abstract We consider the capacity and operations planning of a European energy
supply system with a high share of renewable energy. Our model includes the energy
sectors electricity, heat, and transportation and it considers numerous types of
consumers and power generation, storage, and transformation technologies, which
participate in these energy sectors. Given time series for the regional demands in
each sector and the potential renewable production, the goal is to simultaneously
optimize the strategic dimensioning and the hourly operation of all components in
the system such that the overall costs are minimized.

In this paper, we propose a Lagrangian solution approach that decomposes the
model into many independent unit-commitment-type problems by relaxing several
coupling constrains. This allows us to compute high quality lower bounds quickly
and, in combination with some problem tailored heuristics, globally valid solutions
with less computational effort.

1 Problem Description

We consider the problem of optimizing the design of several interconnected national
or regional energy systems with a high share of renewable energy. Our goal is
to simultaneously determine the dimensioning and the operation of a power plant
fleet involving several energy sectors at minimum overall costs. Given a scenario
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Fig. 1 Left: Primary energy sources and exchange capacities defined by technology installation.
Right: Electricity production and consumption per technology defined by operational schedules

year, this fleet must cover regional demands for electricity, several types of heat,
and transportation, which are given by time series at an hourly resolution, while
adhering to the technical constraints of all components and a CO2 emission budget.
Figure 1 illustrates the general decisions we have to take, i.e., the dimensioning of all
technologies in each region and the hourly operation of all components producing,
consuming, or transforming energy.

Integer and linear programming formulations, which are commonly used for
combined capacity and operations planning problems of this type, often lead to
models that are way too large to be solved efficiently in practice. The main
contribution of this paper is to show the efficiency of a Lagrangian solution approach
that decomposes the problem into several single unit-commitment-type problems
and, thus, allows us to solve problems with much less computational resources.
For the sake of brevity, we neglect data uncertainty, the multi-period nature of the
long-term energy system development and non-convexities stemming from discrete
decisions in this paper and only consider the setting of a deterministic single-stage
planning problem formulated as a continuous linear model. Possible extensions are
discussed briefly in the outlook chapter.

The problem described above is modeled as a linear program using the SCOPE

toolset developed at Fraunhofer IEE. SCOPE is a comprehensive and flexible energy
systems modeling and planning tool implemented in MATLAB [12]. A detailed
description of SCOPE and its modules can be found in [3–5, 9, 13] and the references
therein.

In the problem variant addressed in this paper, we consider pure power generators
(i.e. condensing power plants, gas turbines, wind turbines and PV systems) as
well as storage technologies (i.e. batteries, hydrogen storages, and hydroelectric
storages) in the electricity sector. These technologies contribute to regional elec-
tricity markets and a global CO2 budget. The regional electricity markets are
interconnected via so-called NTC links, which form the underlying electrical power
network. In the heat sector, we distinguish between local and district heating and
industrial process heating at different temperature levels, whose respective demand
time series must be met. In our model, we consider several types of renewable or
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conventionally operated combined heat and power plants as well as a wide variety of
pure heat producers (e.g. condensing boilers, solarthermal and geothermal energy)
and heat pumps, which participate in the electricity market as flexible consumers.
In the transport sector, industrial and personal transportation needs and driving
characteristics are described by different time series of transportation demands. The
optimization can draw on pure electric vehicles, catenary trucks, hydrogen vehicles
or plug-in hybrids, which can use both electricity and liquid (fossil or renewable)
fuels. In addition to the NTC links, some regions and energy sectors are also linked
via the exchange of fossil or renewable gas, which can be produced in power-to-gas
plants or electrolysers and used in gas turbines, for example. The task is to optimize
the dimensioning and the operation of all components in the system such that the
sum of investment and operational costs is minimized. For this, the model has to
simultaneously decide how much capacity of which type to install in which region
of the network and how to operate these over the planning horizon.

2 Lagrangian Approach and Implementation

Using the LP-tool set of SCOPE, the above problem is modelled as a linear
programming model. In principle, the overall model contains a sub-model for
each technology and for each region where this technology can be installed.
These sub-models contain the variables and the ‘local’ constraints describing the
dimensioning and the operation of a single technology without paying attention
to the other technologies, similar to a unit commitment model for a single power
plant. Additional ‘global’ energy balance, demand, and budget constraints then link
the sub-models of all technologies that contribute to the respective regional energy
balances, markets, and budgets. For each regional thermal and transport market,
a single variable per participating technology is used to describe its market share
and a single equality enforces a proper market split. This allows to optimize the
mix of technologies in each region, but each technology’s share remains fix for the
entire planning horizon. Once the shares are decided, the power production of each
technology must exactly meet its share of the corresponding demand time series over
the entire planning horizon. For electricity more flexibility among the technologies’
shares is permitted. Here, the model contains an individual energy balance equality
per region and per hour of the planning horizon to ensure that power production and
import meet consumption, export, and base demand. Finally, there are a few global
constraints describing the CO2 emission budget and a simplified gas network.

We illustrate this for the combined heat and power plant (CHP) technology. The
overall LP contains one sub-model per region and fuel type to (cumulatively) model
all corresponding CHP units. Each sub-model contains a variable Pinst to describe
the installed capacity and a variable xchp ∈ [0, 1] to describe the thermal demand
share of the CHP units in the corresponding region. To model the operation of
CHP, each sub-model uses numerous time-indexed variables: P(t) and Q(t) with
t ∈ T := {1, . . . , 8760} describe the electric and thermal power generation of the
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main unit per hour, Ppth(t) and Qbk(t) the corresponding backup units’ thermal
generation, and QS(t), QSin(t), QSout (t) the level, the addition, and the withdrawal
from the integrated thermal storage unit, etc. Numerous local constraints ensure
the valid operation of the units: Inequalities P(t) ≤ Pinst and Q(t) ≤ γPinst

for all t ∈ T bound the power and heat generation by the installed capacity and
equalities (1 − loss) · QS(t − 1) + QSin(t) − QSout (t) = QS(t) for all t ∈ T

model the dynamics of the thermal storage, for example. To ensure that the CHP
units satisfy their share of the regional thermal demand time series Dth(t), each sub-
model contains the equalities Q(t)+Qbk(t)+QSout−QSin(t) = xchp ·Dth(t) for all
t ∈ T . Global constraints linking the CHP sub-models with other sub-models, are,
for example, thermal market share and electric energy balance equalities. For each
region, a single equality

∑
u∈T hT xu = 1 ensures that the shares of all technologies

in T hT that contribute to the thermal demand (with chp ∈ T hT ) sum up to
1. Similarly, but permitting to vary the technologies’ shares over time, equalities∑

u∈ElT Pu(t) = Del(t) for all t ∈ T (with Pchp(t) := P(t) − Ppth(t) and
chp ∈ ElT ) ensure that electricity production and consumption are balanced in
each region and hour.

For the large European scenarios we are interested in, even solving the
continuous linear models is extremely challenging: The presolved LPs contain
up to 50 mio variables, 50 mio constraints, and 200 mio non-zeros and solving them
as monolithic LPs using CPLEX on a machine with 64 CPUs and 264 GB RAM
takes up to 30 days.

In order to compute (near-optimal) solutions for these LPs faster, we developed
a Lagrangian relaxation approach that actively exploits the special structure of
the model. For an overview on Lagrangian relaxation and decomposition we refer
the reader to the survey articles [10, 11]. A description of its application to unit
commitment and network design problems can be found in [1, 2]. As mentioned
above, the coefficient matrix of the overall LP has a near-block structure, with blocks
corresponding to the technologies’ sub-models linked only by few energy balance
and budget constraints. The idea of the proposed approach is to relax these linking
constraints, which disturb the block structure, and penalize their violation in the
objective function by a linear term. Thus, the remaining relaxation decomposes into
independent sub-problems, where each sub-problem only models the dimensioning
and the operation of a single technology in one region. As these sub-problems are
much smaller and easier to solve, this allows a more efficient solution of the overall
problem by solving the sub-problems independently.

For the CHP sub-model described above, the thermal demand share and electric
energy balance equalities are relaxed. This affects the objective coefficients of
the variables xchp, P(t), Ppth(t) via the Lagrangian multipliers, but breaks the
interdependency with other sub-models contributing to the same region’s heat and
electric balances.

In our implementation we use the general purpose bundle method CONICBUN-
DLE [6, 7] to solve the Lagrangian dual problem. As the model is generated by the
SCOPE toolset, a special MATLAB-to-C++ interface has been implemented to use
CONICBUNDLE with MATLAB and to solve the independent sub-problems of the
relaxation in parallel. The sub-problems are (re-)solved using the dual simplex of
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CPLEX 12.7.1 [8], which performed most efficient when iteratively resolving the
subproblems.

A disadvantage of the Lagrangian relaxation approach is that solutions obtained
by solving the subproblems are in general not fully feasible for the original problem.
However, these partial solutions are useful in heuristics to construct feasible near-
optimal solutions. Aggregating the subproblems’ solutions, the CONICBUNDLE

solver used in our implementation computes fractional solution candidates for the
original model, for which the violation of the relaxed constraints converges towards
0. Thus, solution candidates obtained in later iterations of the algorithms are nearly
feasible, which is often sufficient in our application. In order to compute fully
feasible solutions, we also implemented a heuristic that fixes the variables of all
but the most flexible and controllable technologies (i.e. gas units, boilers, and
emergency units) to the candidate’s values and then solves the original model for
the few remaining variables of those technologies.

In order to guarantee a stable and efficient operation of the method, all sub-
problems must be reasonably bounded and numerically well-conditioned. To ensure
this, we had to implement extra bound setting/strengthening and preprocessing
routines for the sub-models within SCOPE. To cope with numerical difficulties, the
sub-models for several technologies had to be revised. Still, especially problems
with large operational time-horizons are numerically notoriously difficult. Finally,
we had to ensure that the constraints that are relaxed in the approach are scaled
(before relaxing) in such a way that the corresponding optimal Lagrangian multipli-
ers do not differ by too many orders of magnitude and that the resulting penalties
are in the same order of magnitude as the original objective function. Otherwise
relaxed constraints might be fully ignored by the method, as they appear numerically
insignificant, or convergence takes too long.

3 Results

Using our approach, we can solve the considered problems with less computational
resources. Solving the subproblems sequentially substantially reduces the required
RAM, so even large problems can be handled on a standard workstation. Instead of
128 GB and more required for the barrier algorithm to run efficiently, the Lagrangian
approach only needed 12 GB RAM to solve models with operational schedules
covering all 8760 h of a 1 year time-horizon. On the other hand, solving the
subproblems in parallel, we can exploit multiprocessor machines very effectively. In
contrast to the barrier algorithm, the value of the Lagrangian relaxation progresses
rather fast in the first iterations before stalling near the optimal value. Thus, the
method allows us to efficiently compute bounds and solutions near the optimum,
which is sufficient for parameter studies. Table 1 shows the progression of both
methods on a machine with two E5-2690v4 CPUs (28 cores at 2.6 GHz) and 256 GB
RAM for two typical benchmark instances with 902 units in 21 regions and time-
horizons of 200 and 8760 h, respectively.



254 A. Bley et al.

Table 1 Progression of Lagrangian decomposition and barrier algorithm (without crossover) for
two small benchmark instances with 200 h (left) and a 8760 h (right) planning horizon

Time Gap lagrange Status barrier

6 s 6.8% Start first iteration

14 s 3.5% Dual bound < 0

63 s 0.5% First dual bound > 0

94 s 0.4% Optimal

184 s 0.1% –

Time Gap lagrange Status barrier

848 s 51.3% Start first iteration

5930 s 2.3% First dual bound > 0

8420 s 1.8% Gap <1%

9452 s 1.5% Optimal

14,459 s 1.0% –

Fig. 2 Aggregated electricity production and consumption for the Lagrangian relaxation’s solu-
tion candidate and the solution of the complete LP model for the 8760 h benchmark instance

Fig. 3 Operational schedules for the Lagrangian relaxation’s solution candidate and the solution
of the complete LP model for the 200 h benchmark instance

The solution candidates obtained from the Lagrangian relaxation in later itera-
tions are nearly feasible and converge towards the original LP solution. Figures 2
and 3 show how well the solution candidates obtained from the Lagrangian approach
at the end resemble both the aggregated energy production and consumption values
as well as the operational schedule of the optimal solution of the original complete
LP model.
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4 Outlook

In the future, we plan to apply this approach to mixed-integer versions of the model.
These permit a more accurate modeling of operational limits, downtimes, and start-
up times of certain technologies, which may have a significant impact on the cost
and operation of these components. Furthermore, we plan to address the multi-
period version of the problem, where several incremental expansion stages of the
energy system are considered. This will enable us to analyze so-called development
paths of energy systems, to quantify the path’s impact on the final system, and to
identify so-called bridging technologies. In both cases, the generalization of the
approach is straightforward.
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