
A Steepest Feasible Direction Extension
of the Simplex Method

Biressaw C. Wolde and Torbjörn Larsson

Abstract We present a feasible direction approach to general linear programming,
which can be embedded in the simplex method although it works with non-edge
feasible directions. The feasible direction used is the steepest in the space of
all variables, or an approximation thereof. Given a basic feasible solution, the
problem of finding a (near-)steepest feasible direction is stated as a strictly convex
quadratic program in the space of the non-basic variables and with only non-
negativity restrictions. The direction found is converted into an auxiliary non-basic
column, known as an external column. Our feasible direction approach allows
several computational strategies. First, one may choose how frequently external
columns are created. Secondly, one may choose how accurately the direction-finding
quadratic problem is solved. Thirdly, near-steepest directions can be obtained from
low-dimensional restrictions of the direction-finding quadratic program or by the
use of approximate algorithms for this program.

Keywords Linear program · Steepest-edge · Feasible direction · External
pivoting

1 Derivation

Let A ∈ R
m×n, with n > m, have full rank, and let b ∈ R

m and c ∈ R
n. Consider

the Linear Program (LP)

z� = min z = cTx

s.t. Ax = b

x ≥ 0,
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whose feasible set is assumed to be non-empty. Let a non-optimal non-degenerate
basic feasible solution be at hand. With a proper variable ordering, the solution
corresponds to the partitioning A = (B,N) and c = (cT

B, cT
N)T, where B ∈ R

m×m

is the non-singular basis matrix and N ∈ R
m×(n−m) is the matrix of non-basic

columns. Let x = (xT
B, xT

N)T. Introducing the reduced cost vector c̄T
N = cT

N −
uTN , where uT = cT

BB−1 is the complementary dual solution, and letting Im be the
identity matrix of size m, problem LP is equivalent to

z� = min z = cT
BB−1b + c̄T

NxN

s.t. ImxB + B−1NxN = B−1b

xB, xN ≥ 0.

The basic solution is xB = B−1b and xN = 0. By assumption, B−1b > 0 and
c̄N � 0 hold.

Let N = {m + 1, . . . , n}, that is, the index set of the non-basic variables, and
let aj be column j ∈ N of the matrix A. Geometrically, the given basic feasible
solution corresponds to an extreme point of the feasible polyhedron of problem LP,
and a variable xj , j ∈ N , that enters the basis corresponds to the movement along
a feasible direction that follows an edge from the extreme point. The edge direction
is given by, see e.g. [4],

ηj =
(−B−1aj

ej−m

)
∈ R

n,

where ej−m ∈ R
n−m is a unit vector with a one entry in position j − m. The

directional derivative of the objective function along an edge direction of unit length
is cTηj/‖ηj‖ = (cT

B, cT
N)ηj/‖ηj‖ = (−cT

BB−1aj + cj )/‖ηj‖ = c̄j /‖ηj‖ (where
‖ · ‖ is the Euclidean norm). This is the rationale for the steepest-edge criterion [3],
which in the simplex method finds a variable xr , r ∈ N , to enter the basis such that
c̄r/‖ηr‖ = minj∈N

{
c̄j /‖ηj‖

}
.

We consider feasible directions that are constructed from non-negative linear
combinations of the edge directions. To this extent, let w ∈ R

n−m+ and consider
the direction

η(w) =
∑

j∈N
wjηj =

(−B−1N

In−m

)
w,

where In−m is the identity matrix of size n − m. Note that any feasible solution to
LP is reachable from the given basic feasible solution along some direction η(w),
and that cTη(w) = c̄T

Nw. Our development is founded on the problem and theorem
below.
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Define the Steepest-Edge Problem (SEP)

min c̄T
Nw

s.t. ‖η(w)‖2 ≤ 1

supp(w) = 1

w ≥ 0,

where supp(·) is the support of a vector, that is, its number of nonzero components.

Theorem 1 An index r ∈ N fulfils the steepest-edge criterion if and only if the
solution

wj =
{

1/‖ηj‖ if j = r

0 otherwise
, j ∈ N ,

solves SEP.

The theorem follows directly from an enumeration of all feasible solutions to
problem SEP. Note that the optimal value of SEP is the steepest-edge slope c̄r/‖ηr‖.

To find a feasible direction that is steeper than the steepest edge, the support
constraint in problem SEP is relaxed. The relaxed problem, called Direction-Finding
Problem (DFP), can be stated as

min c̄T
Nw

s.t. wTQw ≤ 1 (1)

w ≥ 0,

where the matrix Q = NT(B−1)TB−1N + In−m ∈ R
(n−m)×(n−m), and it gives

the steepest feasible direction. Because Q is symmetric and positive definite, and
c̄N � 0 holds, the problem DFP has a unique, nonzero optimal solution, which
fulfils the normalization constraint (1) with equality and has a negative objective
value. Further, the optimal solution will in general yield a feasible direction that
is a non-trivial non-negative linear combination of the edge directions, and has a
directional derivative that is strictly better than that of the steepest edge.

As an example, we study the linear program

min {−x1 − 2x2 | 5x1 − 2x2 ≤ 10; − 2x1 + 4x2 ≤ 8; 2x1 + x2 ≤ 6; x1, x2 ≥ 0} ,

which is illustrated to the left in Fig. 1. For the extreme point at the origin,
which has the slack basis with B = I3, we have η1 = (−5, 2,−2, 1, 0)T and
η2 = (2,−4,−1, 0, 1)T, with c̄1/‖η1‖ = −1/

√
34 and c̄2/‖η2‖ = −2/

√
22.

If using the steepest-edge criterion, the variable x2 would therefore enter the
basis. The feasible set of DFP is shown to the right in Fig. 1. The optimal



116 B. C. Wolde and T. Larsson

x1

x2

0 1 2 3
0

1

2

3

0 0.05 0.15 0.250.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 1 Illustration of steepest feasible direction and problem DFP

solution of DFP is w∗ ≈ (0.163, 0.254)T with c̄T
Nw∗ = cTη(w∗) ≈ −0.672,

which should be compared with −2/
√

22 ≈ −0.426. The feasible direction is
η(w∗) ≈ (−0.309,−0.690,−0.581, 0.163, 0.254)T. The maximal feasible step in
this direction yields the boundary point (x1, x2) ≈ (1.687, 2.625), whose objective
value is better than those of the extreme points that are adjacent to the origin.
(Further, this boundary point is close to the extreme point (1.6, 2.8)T, which is
optimal.)

We next establish that problem DFP can be solved by means of a relaxed
problem. Let μ/2 > 0 be an arbitrary value of a Lagrangian multiplier for the
constraint (1), and consider the Lagrangian Relaxation (LR)

min
w≥0

r(w) = c̄T
Nw + μ

2
wTQw

of problem DFP (ignoring the constant −μ/2). Since r is a strictly convex function,
problem LR has a unique optimum, denoted w∗(μ). The following result can be
shown.

Theorem 2 If w∗(μ) is optimal in problem LR, then w∗ = w∗(μ)/‖η(w∗(μ))‖ is
the optimal solution to problem DFP.

The proof is straightforward; both problems are convex and have interior points,
and it can be verified that if w∗(μ) satisfies the Karush–Kuhn–Tucker conditions for
problem LR then w∗ = w∗(μ)/‖η(w∗(μ))‖ satisfies these conditions for problem
DFP.

Hence, the steepest feasible direction can be found by solving the simply
constrained quadratic program LR, for any choice of μ > 0. The following result,
which is easily verified, gives an interesting characterization of the gradient of the
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objective function r . It should be useful if LR is approached by an iterative descent
method, such as for example a projected Newton method [1].

Proposition 1 Let ηB(w) = −B−1Nw and ΔuT = μη(w)TB−1. Then

∇r(w) = cN − NT (u + Δu) + μw.

Note that the expression for Δu is similar to that of the dual solution, and that the
pricing mechanism of the simplex method is used to compute ∇r(w), but with a
modified dual solution. Further, −ηB(w) = B−1Nw = B−1 ∑

j∈N wjaj , that is,
a non-negative linear combination of the original columns (aj )j∈N expressed in
the current basis.

In order to use a feasible direction within the simplex method, it is converted into
an external column [2], which is a non-negative linear combination of the original
columns in LP. Letting w∗ be an (approximate) optimal solution to problem DFP,
we define the external column as cn+1 = cT

Nw∗ and an+1 = Nw∗. Letting c̄n+1 =
cn+1 − uTan+1, the problem LP is augmented with the variable xn+1, giving

z� = min z = cT
BB−1b + c̄T

NxN + c̄n+1xn+1

s.t. ImxB + B−1NxN + B−1an+1xn+1 = B−1b

xB, xN , xn+1 ≥ 0,

where c̄n+1 < 0. By letting the external column enter the basis, the feasible direction
will be followed. Note that the augmented problem has the same optimal value as
the original one (If B−1an+1 ≤ 0 holds, then z� = −∞.) Further, if the external
column is part of an optimal solution to the augmented problem, then it is easy to
recover an optimal solution to the original problem [2].

The approach presented above is related to those in [5] and [2], which both
use auxiliary primal variables for following a feasible direction. (The term external
column is adopted from the latter reference.) These two works do however use ad
hoc rules for constructing the feasible direction, for example based on only reduced
costs, instead of solving a direction-finding problem with the purpose of finding a
steep direction.

2 Numerical Illustration and Conclusions

It is in practice reasonable to use a version of LR that contains only a restricted
number of edge directions. Letting J ⊆ N , wJ = (wj )j∈J , c̄J = (c̄j )j∈J ,
NJ = (aj )j∈J and QJ = NT

J B−TB−1NJ + I|J |, the restricted LR is given by
minwJ ≥0 rJ (wJ ) = c̄T

J wJ + μ
2 wT

J QJ wJ .
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An external column should be advantageous to use compared to an ordinary non-
basic column, but it is computationally more expensive. Further, pivots on external
columns will lead to points that are not extreme points in the original polyhedron. It
is therefore reasonable to combine pivots on external columns with ordinary pivots.
Considering the choice of |J |, a high value makes the restricted LR computationally
more expensive, but it then also has the potential to yield a better feasible direction.
Hence, there is a trade-off between the computational burden of creating the external
columns, both with respect to frequency of external columns and the choice of |J |,
and the reduction in simplex iterations that they may lead to.

To make an initial assessment of the potential usefulness of generating external
columns as described above, we made a simple implementation in MATLAB of the
revised simplex method, using the Dantzig entering variable criterion but with the
option to replace ordinary pivots with pivots on external column, which are found
by solving restricted versions of LR. Letting k be the number of edge directions
to be included in the restriction, we consider two ways of making the selection:
by finding the k most negative values among {c̄j }j∈N or among {c̄j /‖ηj‖}j∈N .
These ways are called Dantzig selection and steepest-edge selection, respectively.
The latter is computationally more expensive. The restricted problem LR is solved
using the built-in solver quadprog.

We used test problem instances that are randomly generated according to the
principle in [2], which allows the simplex method to start with the slack basis.
The external columns are constructed from original columns only (although it is
in principle possible to include also earlier external columns). We study the number
of simplex iterations and running times required for reaching optimality when using
the standard simplex method, and when using the simplex method with external
columns with different numbers of edge directions used to generate the external
columns and when generating external column only once or repeatedly. Table 1
shows the results. Figure 2 shows the convergence histories for the smallest problem
instance when using k = 200.

Our results indicate that the use of approximate steepest feasible directions can
considerably reduce both the number of simplex iterations and the total running
times, if the directions are based on many edge directions and created seldomly;
if the directions are based on few edge directions and created frequently, then the
overall performance can instead worsen. These findings clearly demand for more
investigations. Further, our feasible direction approach must be extended to properly
handle degeneracy, and tailored algorithms for fast solution of the restricted problem
LR should be developed.
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Table 1 Simplex iterations and running times

External columns: External columns:

Size Std simplex Dantzig selection steepest-edge selection

m n Iterations Time k nmax Iterations Time k nmax Iteration Time

1000 2000 35,181 418.0 20 ∞ 28,198 310.6 20 ∞ 28,091 302.4

20 50 43,999 720.4 20 50 27,261 552.8

100 ∞ 20,200 211.3 100 ∞ 23,455 245.0

100 500 21,237 231.5 100 500 20,133 225.9

200 ∞ 20,561 217.7 200 ∞ 20,891 219.7

200 500 18,926 210.2 200 500 19,168 220.9

1000 3000 47,647 715.2 20 ∞ 38,545 571.0 20 ∞ 36,324 511.2

20 50 41,217 754.4 20 50 34,367 998.1

100 ∞ 30,676 440.5 100 ∞ 22,886 305.8

100 500 29,212 424.6 100 500 22,799 315.6

200 ∞ 24,504 365.0 200 ∞ 26,150 342.0

200 500 24,405 344.0 200 500 21,372 303.1

1000 4000 57,572 1096.1 20 ∞ 50,150 842.1 20 ∞ 41,857 713.9

20 50 65,081 1593.8 20 50 61,379 2725.6

100 ∞ 35,819 599.7 100 ∞ 33,346 574.5

100 500 40,863 674.0 100 500 32,866 588.1

200 ∞ 34,441 586.6 200 ∞ 31,678 536.8

200 500 33,430 544.3 200 500 25,350 462.6

Here, (m, n) = problem size; k = number of edge directions used to generate the external columns;
nmax = number of simplex iterations between external columns, where “∞” means that an
external column is generated only at the initial basis
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Fig. 2 Objective value versus iteration and running time, respectively
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