
Chapter 6
Cellular and Molecular Mechanisms
of Garlic Compounds in Common GI
Cancers

Rama Rao Malla

Abstract The major gastrointestinal (GI) tract cancers are stomach, colorectal,
pancreas, and liver cancers, which are foremost prevalent cancers worldwide,
accounting for more deaths than any other cancers of human body. The GI tract
cancers affect both men and women with preventable lifestyle risk factors including
diet. Garlic is a globally used food ingredient with innumerable medicinal benefits
due to the presence of sulfur-containing natural constituents such as alliin, methiin,
DAS, DADS, DATS, SAC, and SAMC. They reduce GI cancer growth by inhibiting
proliferation through disruption of microtubule-mediated cytoskeleton formation,
inhibiting different cyclin/cyclin-dependent kinases in a phase-specific manner, and
inducing apoptosis through mitochondrial dependent and independent pathways.
The garlic compounds inhibit angiogenesis in GI cancers by downregulating VEGF,
AKT/ERK, and NO signaling in tumor-induced endothelial cells. They also inhibit
metastasis by inhibiting NF-κB and MMP2/9 signaling pathways. They exhibit
antitumor by increasing the activity of NK cells, by secreting cytokine and
chemokines, and by enhancing phagocytic activity of macrophages. Therefore, the
consumption of garlic compounds may provide some kind of preventive mechanism
against GI cancers through modulation of immune system.
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AGE Aged garlic extract
AMC Allyl mercaptan
COX2 Cyclooxygenase-2
CYP Cytochrome P450
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DADS Diallyl disulfide
DAS Diallyl sulfide
DATS Diallyl trisulfide
DNMT1 DNA methyltransferase 1
DVLS-2 Disheveled-2
EMT Epithelial-mesenchymal transition
FGF-2 Fibroblast growth factor-2
FN Fibronectin
GSAC γ-Glutamyl-S-allyl-L-cysteines
HDAC Histone deacetylase
HIF Hypoxia-inducible factor
HMG-CoA β-Hydroxy β-methylglutaryl-CoA
HUVAC Human umbilical vein endothelial cells
IFN-gamma Interferon-gamma
IL-2 Interleukin 2
JNK1 c-Jun N-terminal kinases
LEF-1 Lymphoid enhancer factor
MAP kinase Mitogen-activated protein kinase
MCP-1 Monocyte chemoattractant protein-1
MDM2 Mouse double minute 2 homolog
MDR1 Multidrug resistance protein 1
MMP-2 Matrix metalloproteinase-2
MRP1 Multidrug resistance-associated protein 1
MSI Microsatellite instability
NK cells Natural killer cells
NO Nitric oxide
Nrf-2 Nuclear factor erythroid 2-related factor 2
OSC Organosulfur compound
PARP Poly (ADP-ribose) polymerase
PCD Programmed cell death
ROS Reactive oxygen species
SAC S-allyl cysteine
SAMC S-allyl mercaptocysteine
SPRC S-propargyl-L-cysteine
STAT-3 Signal transducer and activator of transcription 3
TAMs Tumor-associated macrophages
TGF-alpha Transforming growth factor-alpha
TIMP Tissue inhibitor of metallopeptidase
TNF-alpha Tumor necrosis factor-alpha
VEGF Vascular endothelial growth factor
VEGFR-2 Vascular endothelial growth factor receptor-2
VHL von Hippel-Lindau

120 R. R. Malla



1 Introduction

Gastrointestinal tract (GI) cancers are a group of malignancies of GI tract and
accessory organs. The etiological causes of GI cancers are primarily preventable
lifestyle habits including diet, exercise, alcohol and tobacco, and sanitation. Glob-
ally, GI tract cancers are one of the foremost prevalent cancers, diagnosed in more
than four million new cases every year, and affect both men and women. The major
GI cancers including stomach, colorectal, pancreas, and liver cancers account for
more deaths than any other cancers of human body [1]. Worldwide, these cancers are
foremost medical and economic burden to patients in both developed and developing
countries. Genomic biomarkers have been recognized as valid genetic tools for
diagnosis as well as treatment of GI tract cancers [2]. Microsatellite instability
(MSI) is recognized as a most promising marker for prognosis and prediction of
GI cancers [3, 4]. Also, genotyping of tumors [5] and RAS/BRAF [6], PI3K/Akt [7],
Wnt/ß-catenin, and STAT-3 are recognized as important markers of GI tract cancers
[8, 9]. Further, genome and epigenome-based biomarkers for GI tract cancers were
discovered using high-throughput technology. RAS/BRAF mutant genes are
predicted as prognostic markers in colon cancer. However, MSI has been demon-
strated as a most promising marker for colon cancer. Yu and Cheung proposed MSI
as a prognostic biomarker of adenocarcinoma of pancreas [10]. Even though exten-
sive efforts are devoted to develop novel drugs and diagnostic markers, the progno-
sis of advanced GI cancers is very poor. Large body of experimental as well as
epidemiological studies has provided ample evidence to support associations of
prevention and reduction of cancer risk with intake of essential cooking ingredients.
Garlic is one of the commonly used ingredients of dishes and an extensively used
natural remedy in folk medicines. The immunomodulatory and antioxidant activities
of garlic are related to anticancer activity against several cancers [11].

2 Health Benefits of Garlic

Garlic has health benefits mainly by sulfur-containing organic compounds as well as
their derivatives. The medicinal claims of garlic are treatment of leprosy, diarrhea,
constipation, and infections. Garlic can be used as expectorant, antispasmodic,
antiseptic, and antihypertensive agent. Further, garlic can be used as bactericidal
[12], antibiotic [13], and antifungal [14] agent. Additionally, garlic can reduce
chronic bronchitis [15], infections of upper respiratory tract [16], as well as influenza
[17, 18]. It can also diminish sugar levels in blood [19] and risk of heart diseases
[20, 21]. The most compelling studies reported significant correlation between
reduction of risks of GI tract cancers and intake of garlic [22–25].
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3 Biologically Active Compounds of Garlic

Garlic is a globally used spice with innumerable medicinal benefits. The most
important sulfur-containing natural constituents of fresh garlic are S-ally-L-cysteine
sulfoxide (alliin), S-methylcysteine sulfoxide (methiin), γ-glutamyl-S-allyl-L-cyste-
ines (GSAC), and S-allylcysteine. Allicin is a typical garlic compound with pungent
smell formed from alliin by allinase during crushing or cutting of garlic [12, 13,
26]. It is highly unstable and rapidly converted to diallyl sulfide (DAS), diallyl
disulfide (DADS), diallyl trisulfide (DATS), as well as diallyl tetrasulfide. Allicin,
ajoene, allyl propyl disulfide (APDS), DAS, DADS, DATS, S-allyl cysteine (SAC),
and S-allyl mercaptocysteine (SAMC) are prominent biologically active compounds
of garlic [27]. The prominent organosulfur compounds of garlic and their biological
activities of garlic compounds are depicted in Table 6.1.

3.1 Inhibition of Tumor Growth

Organosulfur garlic compounds inhibit proliferation of different human cancer cells
[28] including prostate [29], skin [30], colorectal [31], lung [32], neuroblastoma
[33], and melanoma [34] cancers. SAMC inhibits growth of colorectal cancer [35]
by disruption of microtubules, which are required for the formation of cytoskeleton,
and mitotic spindle, which is required for cell division [36]. DADS suppresses H-ras
oncogene-containing tumor growth in xenograft model through decreasing the
activity of HMG-CoA reductase and by inhibiting binding of p21 to membrane
without affecting farnesyl transferase activity [37].

3.2 Inhibition of Cell Cycle

Cell cycle involves simulation of growth, replication, and division, controlled by
checkpoints through diverse signal transduction pathways [38, 39]. The checkpoints
witness the completion of events in each phase of cell cycle during genomic
instability and DNA damage [38, 39]. Most commonly used anticancer agents
primarily target cell cycle and interfere with different phases depending on cells,
mode of action, as well as target. Garlic-derived compounds can suppress colon
cancer cell proliferation by arresting cell cycle [40] through decreasing Cdk1/cyclin
B1 activity, disrupting Cdk1 and cyclin B1 complex, and decreasing Cdc25C
expression [41]. DATS mediates cell cycle arrest in G2/M phase due to oligosulfide
chain (OSC) length [41–44]. In PC-3 cells, DATS mediates cell cycle arrest by
increasing phosphorylation of Cdk1 at Tyr 15, inhibiting Cdc25C activity of Cdk1/
cyclin B1 complex, increasing phosphorylation at inhibitory site (Ser216), as well as
downregulating Cdc25C protein level [45]. It also induces mitotic arrest by altering
tubulin network and chromatin condensation as well as by increasing histone H3
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Table 6.1 Summary of anticancer activity of allyl sulfides against GI tract cancers

Garlic
compound

Mechanism of action of garlic compounds

Gastric cancer Colon cancer Liver cancer Pancreatic cancer

DADS • Inhibits migra-
tion and inva-
siveness

• Inhibits MMP-2
and -9 activity

• Represses
claudin proteins

• Induces apopto-
sis

• Decreases Bcl-2
expression

• Enhances Fas
and Bax expres-
sion

• Increases
caspase-3
activity

• Inhibits prolifera-
tion

• Enhances apopto-
sis

• Targets ECM pro-
teins

• Reduces metasta-
sis

• Targets MMP-2,
�7, and -9

• Modulates PI3K,
Ras, MAP kinases,
ERK1/2, JNK1/2,
pathways

• Enhances early
apoptosis

• Enhances genomic
DNA degradation

• Induces cell cycle
arrest

• Enhances ROS
levels

• Increases cyclin
B1 activity

• Affects prolifera-
tion and viability

• Induces apoptosis
• Activates MAPK
pathway

• Enhances intracel-
lular ROS

• Induces
dysregulation of
mitochondrial
membrane poten-
tial

• Triggers DNA
damage

• Induces G2/M cell
cycle arrest

• Increases mito-
chondrial apopto-
tic pathway

• Invasion and
migration ability

• Protects against
cerulein-induced
acute pancreatitis

Allicin • Induces apopto-
sis

• Activates
caspase-3

• Activates p38
MAP kinase
signaling path-
way

• Induces mito-
chondrial
dependent apo-
ptosis

• Enhances
Fas/Fas ligand-
dependent
apoptosis

• Induces cytotoxic-
ity

• Promotes apopto-
sis

• Increases Nrf2
expression

• Induces
genotoxicity

• Inhibits CYP
enzymes

• Induces phase II
enzymes

• Sensitizes HCC
cells to
5-FU-induced apo-
ptosis

• Ameliorates
tamoxifen-induced
liver injury

• Induces
p53-mediated
autophagy

• Effectively induces
apoptosis

• Induces caspase-3
expression

• Causes DNA frag-
mentation

• Inhibits cell cycle
• Induces p21 (Waf1/
Cip1) cyclin-
dependent kinase
inhibitor expression

• Enhances ROS
generation

SAMC • Inhibits tumor
growth

• Induces apopto-
sis

• Modulates

• In combination
with rapamycin,
induces apoptosis

• Upregulates Bax/
Bcl-2 ratio

• Inhibits metastasis
• Targets Ki-67 and
PCNA

• Induces cell cycle
arrest at S/G2

–

(continued)
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Table 6.1 (continued)

Garlic
compound

Mechanism of action of garlic compounds

Gastric cancer Colon cancer Liver cancer Pancreatic cancer

MAPK and
PI3K/Akt sig-
naling pathways

• Induces depoly-
merization of
microtubule

• Activates JNK-1

• Inhibits autophagic
activity

• Promotes MAPK
inhibitor-induced
apoptosis

transition
• Induces apoptosis
• Downregulates
Bcl-xL and Bcl-2
proteins

• Activates caspase-
3 and -9

• Downregulates
Cdc25c, Cdc2, and
cyclin B1

DAS • Protects from
MNNG-induced
damages

• Inhibits cyto-
chrome P450
2E1

• Exhibits chemo-
preventive activity
by increasing
G2/M arrest

• Increases STAT1-
mediated PCD

• Upregulates
NF-kB expression

• Increases caspase-
3 activity

• Suppresses ERK-2
activity

• Promotes expres-
sion of drug-
resistant gene
MDR1

• Promotes expres-
sion of MRP3
gene

• Prevents initiation
of estrogen-
induced cancer

• Protects against N-
nitrosodiethylami-
ne-induced tumori-
genesis

• Modulates
testosterone-
induced oxidative
stress

• Displays
antigenotoxic
activity

• Prevents
hepatocarc
inogenesis

–

DATS • Enhances
chemosensitivit-
y by attenuating
NF-kB activity

• Enhances MRP1
expression

• Inhibits NF-κB
pathway

• Hamper COX-2
pathway

• Enhances caspase-
3-dependent apo-
ptosis

• Reduces viability
of J5 liver cancer
cells

• Enhances G2/M
phase arrest

• Enhances caspase-
3-dependent apo-
ptosis

• Reduces viability of
J5 liver cancer cells

• Inhibits cell prolif-
eration

• Induces caspase-3
activity
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phosphorylation at serine 10 in PC cells [42]. DATS also arrests cell division at
prometaphase of PC-3 cells by activating Chk1 and by accumulating APC/C and
cyclin A B1 along with hyperphosphorylation of securin [43]. DADS and SAMC
also induce mitotic attest in PC-3 cells [43]. DATS mediates cell cycle arrest through
generation of ROS in a JNK-dependent pathway [Ref]. In colorectal cancer cells,
DATS induces mitotic arrest in mitotic cells by disrupting the network of microtu-
bules as well as inhibiting the formation of spindle via oxidation-dependent tubulin β
(cysteine-12 and -354) modifications [46]. The summary of the mechanism of
DATS-mediated G2M arrest of cell cycle is depicted in Fig. 6.1.

Ajoene causes cells cycle arrest at G2/M phase by disrupting microtubule net-
work and inhibiting tubulin polymerization [47]. DADS also mediates cell cycle
arrest at S phase [48]. The synthetic derivative of DATS, allitridi, arrests cell cycle in
G1 phase by decreasing cyclin D1 level and increasing p27 protein level in gastric
cancer cells [49]. The arrest of cell cycle progression by garlic compounds can be
mediated by histone modifications. The garlic compound-dependent histone acety-
lation affects cancer cell proliferation by regulating gene expression. For instance,
DADS enhances H4 and H3 histone acetylation, but inhibits deacetylases [50]. Alli-
cin, SAMC, and SAC inhibit colon cancer growth by increasing acetylation of
histones [51]. The DADS induces cell cycle of colorectal cancer cells in G2/M
phase by inhibiting hyperacetylation of histones H3 and H4, and histone deacetylase,
and upregulating p21 levels [52]. DADS also affects cell cycle by decreasing tumor
cells at the G1 and S phases with concomitant increasing of G2/M phase [40]. DADS
is known to reduce proliferation of cells by inducting cell cycle arrest through
inhibition of p34cdc2 kinase [41]. It also inhibits growth of implanted H-ras-
dependent tumors by preventing the interaction of p21H-ras with cell membrane in
nude mice [37]. The summary of garlic compound-mediated cell cycle arrest is
presented in Fig. 6.1.

3.3 Apoptosis

Apoptosis/programmed cell death (PCD) with conserved and tight regulation is
essential for normal development of embryo as well as maintenance of tissue
homeostasis. Deregulation of apoptosis is the basis for various pathological states
of cancer. Hence, apoptosis is an effective target for cancer treatment as well as
prevention [53, 54]. The garlic compounds majorly mediate intrinsic or mitochon-
drial dependent apoptosis by promoting dissipation of mitochondrial membrane
potential (ΔΨm) along with release of apoptotic mediators into cytosol
[55, 56]. The ultimate fate of the mitochondrial dependent apoptosis depends on
the levels of anti-apoptotic (Bcl-2 and Bcl-xL) as well as pro-apoptotic (Bax and
Bak) proteins of Bcl-2 family [57].

Garlic-derived compounds trigger PCD by modulating Bcl-2 protein levels. For
instance, DAS and DADS increase Bax/Bcl-2 ratio in lung cancer cells
[58, 59]. DADS treatment also upregulates Bax level with concomitant
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downregulation of Bcl-xL [60]. DAS and DADS increase apoptosis by enhancing
p53 and Bax expression and decreasing Bcl-2 expression [59]. DADS and DATS
induce apoptosis by changing the morphology as well as by causing fragmentation
of DNA [31, 32]. DADS induces DNA fragmentation by increasing intracellular Ca2
+ and activating Ca2+-dependent endonucleases.

DATS is more potent in inducing apoptosis compared to other oil-soluble garlic
compounds [61]. It induces apoptosis by decreasing expression and JNK-dependent
hyperphosphorylation of Bcl-2, which decreases Bcl-2:Bax association and pro-
motes intrinsic apoptotic pathway [61]. DATS also enhances PCD by increasing
the expression of Bax as well as Bak [62]. DATS stimulates apoptosis mainly by
controlling Akt-mediated Bad pathway [63]. Akt enhances sequestration of Bad in
cytosol by phosphorylation and consequently reduces interaction of Bad with Bcl-2
protein. In fact, DATS reduces Akt-dependent phosphorylated Bad (Ser155 and
Ser136) levels, thereby diminishing Bad and 14-3-3β interaction [63]. It is experi-
mentally demonstrated that ROS is an intermediary of garlic-induced apoptotic cell
death mechanisms. DADS induces cell death by generating ROS [64] via activation
of JNK [65]. OSC induces apoptosis by increasing intracellular calcium. They
induce release of intracellular Ca2+ along with hydrogen peroxide level and activate

Fig. 6.1 Mechanism of garlic compounds on cell cycle. DATS induces cell arrest at G2M phase by
increasing phosphorylation of Cdk1 at Tyr 15, inhibiting Cdc25C activity, increasing phosphory-
lation of Cdc25C at inhibitory site (Ser216), downregulating Cdc25C and generation of ROS, and
inducing cell cycle arrest at G1 phase by decreasing cyclin D1 and increasing p27 protein levels.
DADS causes cell cycle arrest at G2M phase by inhibiting hyperacetylation of H3 and H4,
upregulating p21, and inhibiting p34cdc2 kinase and S phase by increasing phosphorylated
MAPKs and accumulating phosphorylated Chk1. SAMC inhibits cell cycle at M phase by inducing
depolymerization of microtubules. Allicin promotes G1-S transition by increasing cyclin D1,
CDK-4, and -6. Ajoene induces G2M cell arrest by disrupting microtubule network and inhibiting
tubulin polymerization
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caspase-3 [31, 32, 66, 67]. DAS and DADS can activate calpain by increasing
calcium levels [58]. The Z ajoene promotes apoptosis by caspase-dependent cleav-
age of Bcl-2 via generation of ROS [68]. SAMC can also induce apoptosis by
triggering activation of caspase cascade [36]. The mechanism of garlic compound-
induced apoptosis is summarized in Fig. 6.2.

4 Antimetastatic Activity

Angiogenesis is indispensable for tumor growth beyond 1 mm in diameter
[69]. Recent reports demonstrated that garlic-derived compounds inhibit tumor-
induced angiogenesis and metastasis in cellular and animal models (Fig. 6.3).
AGE inhibits proliferation and invasiveness of the endothelial cells by increasing
cell adhesion to collagen and fibronectin [70]. AGE reduces endothelial cell-
mediated formation of capillary tubes [70]. Even DATS is more efficacious in
reducing the viability of HUVEC by increasing active caspase-3 and cleaving
PARP as well as apoptosis [71]. DATS mediates reduction of capillary tube forma-
tion as well as migration of HUVEC by suppressing the secretion of VEGF,
downregulating the expression of VEGFR-2, and inactivating Akt and activating
ERK ½ [71]. Alliin also reduces VEGF- and FGF-2-mediated angiogenesis
[72]. DADS and DAS reduce MMP-2 and -9 expression [73]. Alliin inhibits
FGF2- and VEGF-mediated angiogenesis by upregulating p53 expression and by
enhancing the release of NO [72]. Ajoene inhibits metastasis by disrupting the
vimentin network [74]. DAS is another OCS of garlic that increases circulatory
antiangiogenic factors and IL-2 and TIMP in C57BL/6 mice implanted with B16F-
10 melanoma cells [75]. It can also inhibit differentiation [73] and angiogenic
features of HUVAC cells by inactivating Akt and downregulating VEGF and
VEGF-R2 [71].

Taylor et al. [92] reported that ajoene significantly inhibited lung metastasis of
cancer cells. Likewise, SAMC reduced the lung metastasis without effect on local
metastasis [93]. DATS inhibited hypoxia-dependent hematogenous metastasis by
reducing HIF-1α mRNA expression [76]. DADS suppresses cancer metastasis by
SRC/Ras/ERK signaling-dependent upregulation of miR-34a [77]. It can also inhibit
invasiveness and cancer metastasis by repressing tight-junction protein claudin and
by inactivating invasive proteins MMP-2 and -9 [78]. DADS reduces gastric cancer
cell motility and invasion by upregulating the expression of TIMP-1 and -2
[79]. DADS reduces FN-induced metastasis by reducing the activity of gelatinases.
It suppresses FN-mediated EMT by enhancing the expression of E-cadherin and
cytokeratin-18 and by reducing the expression of N-cadherin and vimentin as well as
snail, slug, and twist. It inhibits DVLS-2 and LEF-1 by preventing β-catenin
translocation into nucleus and by phosphorylation-dependent inhibition of glycogen
synthase kinase-3β [80]. DADS suppresses metastasis by modulating MMP/TIMP
ratio through blocking NF-κB and PI3K/AKT pathways [81]. DATS diminishes
cancer progression and experimental metastasis by targeting metastasis-related
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genes, and NF-κB and MMP2/9 genes mediated by thioredoxin system [82]. DATS
suppresses colon cancer stem cells by targeting colon spheres and stem cell markers
via Wnt/β-catenin pathway [83].

5 Epigenetic Regulation

DADS inhibits cell cycle, induces apoptosis and autophagy, inhibits angiogenesis,
and enhances ROS generation in cancer cells by modulating histone deacetylase
(HDAC) [84]. It can reduce the metastasis of breast cancer cells by
post-transcriptionally attenuating HIF-1α via von Hippel-Lindau (VHL)-dependent
degradation [76]. Garlic can regulate gene expression by inhibiting histone
deacetylase-mediated histone acetylation [85]. SAC inhibits proliferation of ovarian
cancer cells by DNMT1-dependent methylation of DNA [86]. DATS increases the
sensitivity of gastric cancer cells to docetaxel by diminishing NF-κB activity through
epigenetic upregulation of metallothionein 2A [87]. These studies demonstrated that
garlic compounds regulate gene expression through epigenetic mechanism.

Fig. 6.2 Mechanisms of garlic compound-induced apoptosis. DAS and DADS enhance p53 and
Bax, decrease Bcl-2 expression, and activate calpain. DADS upregulates Bax, downregulates
Bcl-xL, induces DNA fragmentation, increases intracellular Ca2+, activates Ca2+-dependent endo-
nuclease, and induces ROS-dependent apoptosis via JNK activation; DADS and DATS alter
morphology and induce DNA fragmentation. DATS decreases the expression of Bcl2- and
JNK-dependent phosphorylation of Bcl2, increases Bax and Bak, controls Akt-mediated Bad
pathway, and diminishes Bad and 14-3-3β interaction. SAMC can trigger activation of caspase
cascade. Ajoene enhances caspase-dependent cleavage of Bcl-2 via generation of ROS. Oligosulfur
compounds (OSC) increase intracellular Ca2+, induce release of H2O2, and activate caspase-3
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6 Antitumor Immunity

AGE (500 mg/day) increases the activity of natural killer (NK) cells in advanced
hepatic cancer patients [88]. ABGE-treated gastric cancer cells exhibit antitumor and
immunomodulatory activity [89] by secreting IL-2, TNF-alpha, and IFN-gamma, by
increasing the activity of NK cells and by enhancing the phagocytic activity of
macrophages [90]. Garlic compounds prevent cancer by modulating immune
response [91]. DADS inhibits cancer metastasis through modulation of tumor-
associated macrophages (TAMs) via suppression of TNFα-mediated release of
MCP-1 [92]. These studies support the anticancer activity of garlic compounds
through immunomodulation.

The organic sulfuric compounds present in the garlic inhibit major GI tract
cancers through different mechanisms. They exhibit stronger antitumor activity
against GI malignancies by inhibiting the expression of oncogenes controlling
tumor cell proliferation, cell cycle regulation, apoptosis, metastasis, and antitumor
immunity (Table 6.1).

Fig. 6.3 Effect of garlic compounds on metastasis. DAS inhibits IL-2-mediated angiogenesis.
DATS inhibits hypoxia-mediated metastasis, and reduces capillary formation and migration of
HUVEC. AGE inhibits invasiveness of cancer cells and capillary formation of endothelial cells.
DADS inhibits miR-34a-mediated metastasis. DADS and DAS inhibit MMP- and -9-mediated
metastasis. Ajoene inhibits vimentin network-dependent metastasis. Alliin inhibits VEGF- and
FGF-2-mediated and NO-mediated angiogenesis
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7 Antitumor Mechanisms in Gastric Cancer

DADS induces inhibition of migration and invasiveness by enhancing tightness of
the tight junctions, and transepithelial electrical resistance [79]. It inhibits MMP-2
and -9 activities along with repression of claudin proteins (claudin-2, -3, and -4).
DADS decreases gastric cancer cell growth by inducing apoptosis via decreased
Bcl-2 expression-enhanced Fas, and Bax expression, as well as increased activity of
casp-3 [93]. Allicin induces apoptosis by activating caspase-3 via p38 MAP kinase
signaling pathway [94]. SAMC inhibits human gastric cancer growth in xenografts
by inducing apoptosis through modulating MAPK and PI3K/Akt signaling pathways
[95]. SAMC can induce apoptosis by depolymerizing microtubule and activating
JNK-1 [36]. Allicin induces both mitochondrial dependent intrinsic and Fas/Fas
ligand-dependent extrinsic apoptosis pathways in gastric cancers [96]. Garlic oil
inhibits proliferation of gastric cancer cells by targeting the expression of cyclin E
and autocrine and paracrine loops of TGF-α [97]. Further, combination of garlic oil
and resveratrol prompts apoptosis synergistically in gastric cancer cells by increas-
ing Fas and Bax and decreasing Bcl-2 expression [98]. SAMC inhibits gastric cancer
cell growth by causing dose-dependent reduction of proliferation and induction of
DNA fragmentation and caspase-3 activity via Bax and p53. It inhibits implanted
gastric tumors in nude mice by regulating Bcl-2 and Bax expression [99].

8 Antitumor Mechanisms in Colorectal Cancer

Organosulfur garlic compounds are also reported to target metastasis. DADS
reduces colorectal cancer growth by inhibiting proliferation and enhancing apoptosis
via targeting extracellular matrix proteins [100]. For instance DAS, DADS, and
DATS reduce metastasis by targeting MMP-2, -7, and -9 via modulating PI3K, Ras,
MAP kinases, ERK1/2, and JNK1/2 pathways [101]. DADS reduces development of
colorectal tumors along with dietary factors such as short-chain fatty acids/poly-
saccharides by reducing cell proliferation, enhancing early apoptosis, activating
caspase-3 and -9, and enhancing genomic DNA degradation as well as cell cycle
arrest [102].

Allicin induces cytotoxicity and apoptosis via increased expression of Nrf2
transcription factor. DADS inhibits proliferation of colon cancer cells by enhancing
ROS-dependent G2/M arrest of cell cycle via increased activity of cyclin B1 and
apoptosis by activating p53 [103]. Allyl sulfides modulate the activity of histone
deacetylases. Allyl mercaptan (AM) is most potent in inhibiting the activity of
histone deacetylase compared to its precursors, DADS and SAMC [104]. AM
induces G1-phase arrest by increasing the p21 expression in colorectal cancer cells
[105]. DAS exhibits chemopreventive activity by increasing G2/M arrest and
STAT1-mediated PCD as well as upregulating NF-kB and caspase-3 and
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suppressing ERK-2 activity [106]. DADS treatment significantly raises the intracel-
lular Ca2+ by enhancing Ca2+ influx.

DAS, DADS, and DATS promote the expression of drug-resistant gene multidrug
resistant 1 (MDR1) while DAS and DADS promote the expression of MRP3 gene,
whereas DATS alone enhances the expression of MRP1 in colorectal cancer cells.
However, DADS and DATS induce the expression of MDR1 and MRP1 genes,
DADS promotes MRP3 gene while DADS and DATS increase MRP4 and MRP6
genes in in vivo xenograft model [107]. DATS inhibits NF-κB and COX-2 pathways
[107]. These observations suggest the antimetastatic proliferation of colon cancer
cells by targeting potentials of organosulfur garlic compounds.

9 Antitumor Mechanisms in Liver Cancer

SAC inhibits metastasis of liver cancer cells by targeting Ki-67 and PCNA and
inducing cell cycle arrest at S/G2 transition [108]. It also induces apoptosis by
downregulating Bcl-xL and Bcl-2 proteins and activating caspase-3 and -9. More-
over, SAC enhances S-phase cell arrest by downregulating Cdc25c, Cdc2, and
cyclin B1. DATS showed significantly high anticancer activity against HepG2
cells in caspase-3-dependent apoptosis compared to DAS and DADS [109]. Simi-
larly, DATS reduces viability of J5 liver cancer cells by enhancing the arrest of cells
at G2/M phase. DATS-treated group displays significant number of G2/M arrest
cells compared to DADS- and DAS-treated groups with increased Cdk7 and cyclin
B1 protein levels due to difference in the allyl groups [110]. Water-soluble garlic
extracts induced significantly marked effects on HepG2 cells compared to
oil-soluble extracts [111]. They induce p53/p21-mediated G2/M arrest of cells and
JNK-dependent apoptosis [112]. DADS affects proliferation and viability of hepatic
cells by inducing apoptosis through activation of MAPK pathway [112]. Allicin,
DAS, DADS, SAC, and AM induce genotoxicity by inhibiting CYP enzymes and
inducting phase II enzymes [113]. SAC along with cisplatin inhibits tumor progres-
sion and metastasis of liver cancer cells in orthotopic xenograft [113]. Garlic oil
reduces N-nitrosodiethylamine (NDEA)-induced liver cancer by decreasing Bcl-2,
Bcl-xl, and β-arrestin-2 as well as increasing Bax and caspase-3 [114]. DMBA-
induced liver carcinogenesis was prevented by DAS [115, 116].

10 Antitumor Mechanisms in Pancreatic Cancer

DATS reduces the viability of pancreatic carcinoma cells by enhancing G2/M phase
and apoptotic cells via increasing Fas, p21, p53, and cyclin B1 expression and
decreasing Akt, cyclin D1, MDM2, and Bcl-2 expression [117]. It also increases
cleaved caspase 3 and PARP as well as Bim-s and Bim-L isoforms in apoptotic
pancreatic cells [117]. S-propargyl-L-cysteine (SPRC) reduces pancreatic cancer
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growth by inhibiting proliferation and promoting G2/M cell arrest and
JNK-dependent apoptosis by enhancing its phosphorylation and by reducing its
ubiquitin-dependent degradation [118]. Garlicin at higher concentration inhibits
pancreatic tumor growth, while at lower concentration reduces cancer cell invasion
and migration via targeting PI3K/AKT signaling pathway [119]. Allicin enhances
apoptosis in pancreatic cancer cells by increasing caspase-3 activity, DNA fragmen-
tation, and cell cycle arrest also inducing the expression of p21 (Waf1/Cip1),
generation of ROS, and depletion of GSH [120]. Garlic oil shows remarkable
inhibition of pancreatic cancer cell proliferation by accumulating cells at G2M
phase and presenting significant level of apoptosis [121].

11 Conclusion

In recent past, there has been an increase in research on the impact of garlic and its
derivatives in the treatment of various cancers especially GI and associated cancers.
The sulfur-containing garlic compounds target multiple cellular mechanisms includ-
ing proliferation, cell cycle, apoptosis, metastasis, and angiogenesis, which infer
their anticancer activities. Garlic compounds also regulate gene expression through
modulation of genes controlling epigenetic mechanisms. Further, limited studies
demonstrated the antitumor immunity especially aged garlic extract. Additional
information on cellular and molecular mechanisms of garlic compounds is required
to understand their cancer-preventive mechanism in clinical studies.
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