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Chapter 9
Cognitive Rehabilitation 
and Neuroimaging in Stroke

Rosalía Dacosta-Aguayo and Tibor Auer

Abstract Stroke is a neurological condition, which may result in long-lasting defi-
cits on both cognitive and motor functions. Despite the increase in cognitive reha-
bilitation (CR) studies in stroke, most have focused on behavioral outcomes. As 
such, the interaction between improvement in cognitive processes following CR and 
their underlying neural systems remains limited.

This chapter provides an overview of cognitive impairment after stroke, its reha-
bilitation, and the underlying mechanisms of post-stroke neuroplasticity. Because 
individual differences in post-stroke neuroplasticity may explain often observed 
heterogeneities in cognitive recovery, this underscores the importance of under-
standing the underlying neural mechanisms in recovery as well as deploying more 
integrated rehabilitation approaches to enhance treatment outcomes.

A major focus of the chapter is on how neuroimaging studies lead to a better 
understanding of functional and structural changes in the brain after CR following 
a stroke. The chapter reviews how neuroimaging techniques can provide insight into 
the effectiveness of various rehabilitation approaches and in the development of 
future interventions. The major methodological issues confounding CR effective-
ness are reviewed, and recommendations for improved CR studies in the future 
using neuroimaging are discussed.
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 Stroke and Cognitive Impairment

Stroke is the major cause of long-term disability and the second leading cause of 
vascular dementia (Kalaria, Akinyemi, & Ihara, 2016). Improvements in health care 
have led to a considerable increase in stroke survival rate, which, in turn, results in 
more people living with disabilities and neuropsychological deficits following 
stroke (Nichols-Larsen, Clark, Zeringue, Greenspan, & Blanton, 2005). Vascular 
cognitive impairment (VCI), a term introduced to refer to the role of vascular risk 
factors in cognitive impairment (van der Flier et al., 2018), occurs in 20–80% of the 
stroke patients, and current diagnostic criteria may even underestimate its preva-
lence (Bour, Rasquin, Boreas, Limburg, & Verhey, 2010; Pendlebury, Cuthbertson, 
Welch, Mehta, & Rothwell, 2010; Sun, Tan, & Yu, 2014). Stroke lesions, cerebral 
microbleeds, and other pathologies sometimes at microscopic level may occur in 
various strategic brain areas including both gray and white matter (WM). Therefore, 
resultant cognitive symptoms can be very heterogeneous, affecting executive func-
tions, memory, language, and orientation in particular (Sachdev et  al., 2004). 
Executive dysfunction and memory disorders are the most prevalent deficits after 
stroke (Kramer, Reed, Mungas, Weiner, & Chui, 2002; Loewenstein et al., 2006) 
and are considered the main cause that precludes patients from achieving a com-
plete recovery (Sachdev et al., 2004). These deficits are present in around 61% of 
patients after acute ischemic stroke (Ballard, Rowan, Stephens, Kalaria, & Kenny, 
2003). Of these patients, 30% manifest a certain degree of cognitive impairment 
within a period between 3 and 15 months (Ballard et al., 2003).

 Post Stroke Plasticity

After a stroke, the brain experiences changes to restitute the lost functions 
(Loubinoux, Brihmat, Castel-Lacanal, & Marque, 2017). In restitution, the impaired 
function is restored, and it is usually based on neurological and/or muscular redun-
dancy. Compensation, on the other hand, involves behavioral changes and compen-
satory mechanisms, and it is based on the recruitment of both perilesional and 
distant areas (Jones, 2017). Restitution can be complete and has been shown to 
benefit from utilizing functional cognitive reserve (Di Pino et  al., 2014). 
Compensation, however, often leads to incomplete recovery, and the often- occurring 
maladaptive plasticity can even worsen deficits (Hommel, Detante, Favre, Touzé, & 
Jaillard, 2016). The complexity of these processes may also explain the lack of an 
efficient treatment (Sarraj & Grotta, 2014), and it implies the existence of a time 
window in which rehabilitative therapies should be administered to optimize out-
come. Therefore, the key question is when should (cognitive) rehabilitation (CR) 
begin after stroke when considering endogenous brain protection versus brain repair 
(Detante et  al., 2014; Gutiérrez, Merino, Alonso De Leciñana, & Díez-Tejedor, 
2009). This question is still under debate due to both the different phases in brain 

R. Dacosta-Aguayo and T. Auer



203

recovery and the substantial heterogeneity in the post-stroke population. Results 
from studies conducted with animals and, lately, human suggest that rehabilitation 
displayed permaturely (within the first 24 h after stroke) or too intensively may be 
harmful. On the other hand, rehabilitation within the first 2 weeks might be benefi-
cial (Coleman et al., 2017). Research on rehabilitation in the acute stage is quite 
scant, and the marked discrepancy between the time when rehabilitation should be 
conducted (acute-to-subacute) and the time when the most part of rehabilitation in 
stroke is really addressed (chronic) has also been highlighted (Stinear, Ackerley, & 
Byblow, 2013).

Post-stroke VCI is frequently underestimated in comparison to motor impair-
ments because cognitive impairment after stroke can be confused with age-related 
mild cognitive impariments (Corriveau et al., 2016; Sun et al., 2014). Furthermore, 
VCI is often related to poor motor recovery (Leśniak, Bak, Czepiel, Seniów, & 
Członkowska, 2008; Rand, Eng, Liu-Ambrose, & Tawashy, 2010), which means 
that motor and cognitive recovery are somewhat interrelated (Constans, Pin-Barre, 
Temprado, Decherchi, & Laurin, 2016; Leisman, Moustafa, & Shafir, 2016) and 
that an effective intervention should target both motor and cognitive improvement 
after the stroke (Constans et al., 2016).

 Stroke and Cognitive Rehabilitation

During stroke rehabilitation, patients are helped to regain skills lost due to brain 
damage, and the main goal is to achieve the highest possible level of independence 
(Belagaje, 2017; Jokinen-Salmela et al., 2015). Current approaches include indi-
vidual remediation therapy, group-based training, and computerized cognitive reha-
bilitation (CCR) (Cicerone et al., 2019).

Previous Cochrane reviews reported that the information available on CR is 
insufficient to provide specific guidelines for clinical practice (Bowen, Hazelton, 
Pollock, & Lincoln, 2013; Loetscher & Lincoln, 2013), even when certain treat-
ments have showed large effects. Based on the definition of classes of evidence, the 
latest evidence-based review on CR (Cicerone et al., 2019) found significant sup-
port for treatment of attention (Practice Standard), visuospatial deficits (Practice 
Guideline), memory deficits (Practice Standard), language deficits (Practice 
Guideline), and executive deficits (Practice Standard and Practice Option). 
Additionally, in the case of CCR, a recent review (Sigmundsdottir, Longley, & Tate, 
2016) reported that the methodological quality of the reseach conducted is low, with 
marginal studies achieving Level I evidence. Furthermore, there are limitations with 
the generalizability of the results for TBI and stroke. The only evidence that exists 
is in MS and brain tumor populations (Sigmundsdottir et al., 2016). Cicerone et al. 
(2019) also indicates that CCR should be coupled with a therapist administration, 
adapted to the level the patient needs, and the incorporation of metacognitive 
strategies.
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Despite these improvements, there is still an uncertainty about the effectivity of 
CR in stroke patients (Kalron & Zeilig, 2015). This situation is partially due to the 
fact that the biological mechanisms underlying the benefit of CR are not fully 
understood which poses a problem for the design of effective cognitive interven-
tions (Greenwood & Parasuraman, 2015). Further, none of the stroke studies cited 
in the review of Cicerone et al. (2019) used fMRI to examine potential changes in 
the brain of patients receiving CR. Moreover, randomized controlled studies con-
ducted thus far often suffer from methodological issues that should be addressed. 
These methodological issues include, for example, the use of suitable control groups 
(i.e., including a control group treated with a control intervention versus including 
only a passive, nontreated control group) (Higgins & Green, 2011), discrepancies in 
outcome measures (Bogdanova, Yee, Ho, & Cicerone, 2016), duration of the cogni-
tive intervention (Stinear et al., 2013), ignoring effects related to practice (Bartels, 
Wegrzyn, Wiedl, Ackermann, & Ehrenreich, 2010), un-assessed test–retest reliabil-
ity of the questionnaires (Baird, Tombaugh, & Francis, 2007; Buck, Atkinson, & 
Ryan, 2008), usage of tests unable to detect specific cognitive impairments 
(McDonnell, Bryan, Smith, & Esterman, 2011), lack of adjustment for primary out-
comes (Saquib, Saquib, & Ioannidis, 2013), heterogeneity in treatment effects 
(Gabler et al., 2009), large variance patient age (Gaynor, Geoghegan, & O’Neill, 
2014), lack of control to distinguish whether cognitive improvements are due to 
restitution or the use of implicitly learned approaches (van de Ven et al., 2017), and 
lack of long-term follow-up assessments including ecologically valid outcome mea-
sures (Cicerone et al., 2005). The lack of guidelines and standardized protocols, as 
well as the lack of differentiation between the severity of the injury and the chronic-
ity, often leads to heterogeneity in the sample, which makes the interpretation of the 
results more difficult (Bogdanova et al., 2016).

Finally, there are some methodological issues, which are specific for CCR which 
should be addressed. These include the relatively short training periods; the lack of 
report of the rate of adherence to the protocol, as well as the role of supervision in 
CCR (i.e., the exact amount of interaction between the therapist and the partici-
pant); the intensity of training programs (massed versus distributed); and the famil-
iarity of the participants with computers and computer games in general (for a list 
of available softwares used in stroke population see (Rabipour & Raz, 2012)).

 Neuroimaging and Stroke: The Use of Neuroimaging 
in Cognitive Rehabilitation

Routine clinical measurements applied in CR, such as neuropsychological assess-
ment, structured observation, clinical interviews, and self-report questionnaires 
may not provide specific information about what is happening in the brain in 
response to treatment. The application of various neuroimaging techniques allows 
us to monitor rehabilitation-induced plastic changes and to assess treatment 
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effectiveness. Most importantly, it can also help to explain why some patients 
response better to a certain treatment while others exhibit little or no response.

Neuroimaging techniques can investigate both structure and function of the 
human brain; however, we should keep in mind that the timescale of different 
changes is also quite distinct. Functional MRI (fMRI) has been clearly demon-
strated to capture plastic changes even after a relively short intervention period for 
instance in persons with multiple sclerosis (MS) (Chiaravalloti, Dobryakova, Wylie, 
& DeLuca, 2015; Chiaravalloti, Wylie, Leavitt, & DeLuca, 2012). Changes in struc-
tural connectivity, however, have been seen reported after motor and aphasic reha-
bilitation in longitudinal intensive intervention studies in motor and aphasia 
rehabilitation. For example, in the case of motor rehabilitation, the use of constraint- 
induced movement therapy (CIMT) has proved to increase gray matter volume in 
parietal areas associated with motor and sensory functions, in frontal areas as well 
as in the hippocampus in frontal and parietal sensory–motor areas and the hippo-
campus (Gauthier et al., 2008).

 Aphasia

The number of fMRI studies reporting changes in the activity of the brain after 
therapy for aphasia is scarce. The three main rehabilitation techniques being used 
are (1) constraint-induced language therapy (CILT), (2) melodic intonation therapy 
(MIT), and (3) speech and language therapy (SLT). The CILT (Pulvermuller et al., 
2001), also called intensive language action therapy (ILAT), has demonstrated its 
clinical effectiveness in several randomized clinical trials (RCTs) (Pulvermuller 
et al., 2001; Stahl, Mohr, Dreyer, Lucchese, & Pulvermüller, 2016). (1) It is based 
on massed practice to promote neuroplastic changes boosted by Hebb’s correlation 
learning law, (2) it draws upon the functional links between the brain’s language and 
motor systems, and (c) it guides the patients to use utterances that are still within 
their grasp (Pulvermuller & Berthier, 2008). Richter, Miltner, and Straube (2008) 
analyzed the connection between brain changes and therapy effects using fMRI in 
16 chronic motor aphasic patients and 8 healthy controls. Brain functional activity 
was assessed during the completion of word-reading and word-stem tasks. Before 
treatment, the functional activity in the right inferior frontal gyrus/insula was more 
pronounced in aphasic patients in comparison to healthy participants. While the 
therapeutic approach did not change the brain functional activity in neither of the 
two tasks in the group of chronic aphasic patients, the success of the treatment was 
associated with a small decrease of the functional activity in the right hemispheric 
regions, involving the inferior frontal gyrus and the insula. The authors reported that 
functional activation in the right hemisphere before aphasia therapy was a predictor 
of the therapeutic achievement.

In another study carried out by Breier, Maher, Novak, and Papanicolaou (2006), 
patients with chronic aphasia received CILT therapy and magneto encephalograpy 
(MEG) before and after treatment. Patients/responders to the therapy showed more 
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functional activity both in posterior areas of the left hemisphere and in homologous 
areas of the right hemisphere before the therapy than those for whom the treatment 
did not have any effect. Parallel to the study conducted by Richter et al. (2008), it 
was the right hemisphere but not the left, the determinant in the recovery of aphasia.

The MIT (Sparks, Helm, & Albert, 1974) is a structured aphasia therapy that uses 
features of language such as intonation, rhythm, and stress to enhance language 
production after stroke. Patients repeat melodically intoned functional relevant sen-
tences which increase in complexity. Several studies using this therapy have reported 
the enhancement of WM integrity of the arcuate fasciculus, which connects the right 
and left frontal and temporal regions (Breier, Juranek, & Papanicolaou, 2011; 
Schlaug, Marchina, & Norton, 2009).

Finally, in the case of SLT (Brady, Kelly, Godwin, Enderby, & Campbell, 2016), 
in a study conducted by Bonilha, Gleichgerrcht, Nesland, Rorden, and Fridriksson 
(2016) in 24 patients with post-stroke chronic aphasia, the authors concluded that 
favorable naming resulted from the spared connections between healthy cortical 
areas in the left impaired hemisphere and its connections with homologous areas in 
the right hemisphere.

Despite the encouraging results, several limitations should be considered. First, 
the vast majority of studies conducted using fMRI and structural MRI have been 
conducted with small samples (Breier et  al., 2011; Breier, Randle, Maher, & 
Papanicolaou, 2010; Crosson et al., 2005; Kakuda, Abo, Kaito, Watanabe, & Senoo, 
2010; Kurland, Pulvermüller, Silva, Burke, & Andrianopoulosa, 2012; Mohr, 
Difrancesco, Harrington, Evans, & Pulvermüller, 2014; Tabei et al., 2016), which 
prevents the generalization of the results to the stroke population. Second, stroke is 
characterized by the heterogeneity of its samples (i.e., lesion type, lesion size, lesion 
localization, post-stroke severity, time after stroke) which, in the case of small sam-
ples, hampers the generalizability and representativeness of the results to the stroke 
population. Additionally, the studies conducted ignore singular differences such as 
the individual baseline activation, or the timing after stroke, factors that are relevant 
for the efficacy of intervention. As an example, whereas in the study conducted by 
Bonilha et  al. (2016), with chronic aphasic stroke patients, favorable outcomes 
resulted from preserved connections between spared cortical areas in the left 
impaired hemisphere and its connections with homotopic areas in the right hemi-
sphere; in the study conducted by Mattioli et al. (2014) with a small sample of acute 
stroke patients (2 days after stroke), they found that favorable outcomes in aphasia 
recovery were related with brain activations in the left hemisphere, concretely in the 
left inferior frontal gyrus (Mattioli et al., 2014). As stated previously, the timing in 
which a therapy begins is of extremly relevance, as it is not the same to modulate 
and boost spontaneous recovery after stroke, that is, trying to counteract for the loss 
of function in chronic stroke, when most of the changes have already occurred. 
Lastly, the function of the right hemisphere in aphasia recovery is controversial. 
Some authors state that the disinhibition of the right hemisphere (transcallosal dis-
inhibition) is maladaptive, and it leads to the persistence of the language deficits 
rather to their recovery (Heiss & Thiel, 2006; Naeser et  al., 2004; Perani et  al., 
2003), whereas other authors maintain that the recovery of language production is 
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related with an increase in the functional activity of anatomical areas located in the 
right hemisphere (Crinion & Leff, 2007; Fridriksson, Baker, & Moser, 2009; 
Schlaug et al., 2009). Future studies with larger samples should be conducted in 
order to compare the effects of aphasia therapy in the acute stage in comparison 
with its effects when the therapy is administered in the chronic phase to discern the 
function of the right hemisphere in aphasia recovery.

 Spatial Neglect

Unilateral neglect, hemineglect, and spatial neglect are interchangeable, pointing to 
the same concept: the incapacity to notice, relate, and orient toward a stimuli placed 
in the side of the space contralateral to the side of the damage. Even when a large 
proportion of patients recover from their deficit spontaneoulsly, there is evidence 
that points out that patients who have seemengly recovered could still show deficits 
of attention when they are assessed with more sensitive tasks (Bonato, Priftis, 
Umiltà, & Zorzi, 2013) and problems in activities of daily living (Chen, Chen, 
Hreha, Goedert, & Barrett, 2015; Chen, Hreha, Kong, & Barrett, 2015). An anatomo- 
functional model for neglect has been proposed based on healthy subjects (Corbetta 
& Shulman, 2002). This model is composed by the dorsal attentional network 
(DAN) and the ventral attentional network (VAN). The DAN is comprised by the 
superior parietal lobules, the intraparietal sulcus, the precuneus, and the frontal eye 
field, which shows increased functional activity when an individual directs his/her 
attention toward a visual target. The VAN includes the temporoparietal junction and 
the middle and inferior frontal gyri and shows an increased functional activity when 
the individual tries to process a stimulus in an unanticipated spatial emplacement 
(Singh-Curry & Husain, 2009) (Table 9.1).

Two main rehabilitation techniques have been proposed for the rehabilitation of 
neglect: (1) motor imaginery (MI) and (2) virtual reality (VR). MI consists of the 
mental representation of an activity without participating in the real activity (Simon, 
Welfringer, Leifert-Fiebach, & Brandt, 2018).

Only a handful of studies have tested MI as an approach to treat visuospatial 
neglect deficits in stroke patients (Leifert-Fiebach, Welfringer, Babinsky, & Brandt, 

Table 9.1 Attentional domains and definitions

Domain Definition

Alertness/arousal Ability to be prepared to reply
Selective attention Ability to concentrate on a stimulus while disregarding 

irrelevant stimuli
Sustained attention Ability to hold the attention along an extended period of time
Spatial attention Ability to locate the attention to all sides of space
Divided attention Ability to divide the attention between different tasks

Adapted from Loetscher T, Lincoln NB. 2013. Cognitive rehabilitation for attention deficits fol-
lowing stroke. Cochrane Database of Systematic Reviews, (5), CD002842
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2013; McCarthy, Graham Beaumont, Thompson, & Pringle, 2002; Park, Choi, Kim, 
Jung, & Chang, 2015; Park & Lee, 2015; Welfringer, Leifert-Fiebach, Babinsky, & 
Brandt, 2011). None of them, however, have used structural or functional MRI to 
study the effects of MI in the brain, which prevents the understanding of the effects 
of MI therapy in the brain. Furthermore, research suggests that the implementation 
of MI to treat patients with neglect has limitations as the parietal lobe, a key region 
for MI (Hétu et al., 2013), is frequently impaired in patients with neglect (Karnath, 
Berger, Küker, & Rorden, 2004).

VR is a new innovative technique in neglect. Few studies have been conducted 
either using the record of eye movements or behavioral outcomes, respectively 
(Cameirão, Faria, Paulino, Alves, & BermúdezBadia, 2016; Yasuda, Muroi, Ohira, 
& Iwata, 2017). Only one study has applied fMRI to test the effects of VR in patients 
with neglect (Ekman et al., 2018). In this study, the authors employed the RehAtt®, 
a training system that incorporates visual, audio, and tactile stimulation to address 
the attention to the contralesional space while executing the task in the scanner 
(Fordell, Bodin, Eklund, & Malm, 2016). This system boosts the underlying mecha-
nisms related to neglect in the attention networks. The authors assessed task-fMRI 
activity changes before and after RehAtt® employing the Posner cueing task (See 
Fig. 9.1). In this study, patients improved their execution in the Posner cueing fMRI 
task, and their functional brain activity was increased after the VR internventions in 
a widespread network involving the pre-frontal and temporal lobes during atten-
tional cueing. The authors concluded that, as the strongest effects were found in 

Fig. 9.1 Increased fMRI activity before and after the Posner cueing condition task. A training- 
related fMRI increase in the ACC, the DLPFC, and the bilateral temporal cortex is observed in 
comparison with the baseline. (From Ekman et al., 2018)
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prefrontal regions associated with goal-directed behavior and in guiding attention. 
Their results indicated that changes related to the training in neglect patients mainly 
occured outside the anatomical regions related to guiding attention toward a visual 
stimulus (DAN), and to the process of a stimulus in an unexpected location (VAN). 
Further studies with larger samples and different attention paradigms should be 
conducted to compare the acute versus the chronic phase in order to conclude, if the 
recovery of neglect involves areas outside or inside the proposed anatomo- functional 
substrates.

 Attention

Attentional deficits are highly prevalent in stroke patients both in the acute phase 
and in the chronic phase (Hyndman, Pickering, & Ashburn, 2008; Stapleton, 
Ashburn, & Stack, 2001). Deficits in attention involve broad assortments such as: a 
drop in concentration, disminished error control, difficulties in multitasking, and 
mental slowness. Those deficits have, in turn, consequences on other cognitive 
domains such as memory and language (Lezak, Howieson, Loring, Hannay, & 
Fischer, 2004; Loetscher & Lincoln, 2013).

In relation to the neuroanatomical correlates associated with attention deficits 
after stroke, right hemispheric lesions have been correlated with visuo-spatial atten-
tional deficits, whereas left hemipsheric lesions placed in regions involving the 
thalamus and the basal ganglia have been associated with nonspatial attentional 
deficits (sustained, divided, and selective attention) (Murakami et al., 2014).

To increase one’s understanding of the different attentional components, 
(Loetscher & Lincoln, 2013) describe the different domains of attention in Cochrane 
review. These include alertness/arousal (ability to be prepared to reply), selective 
attention (the ability to concentrate on a stimulus while disregarding irrelevant stim-
uli), sustained attention (the ability to hold the attention along an extended period of 
time), spatial attention (the ability to locate the attention to all sides of space), and 
divided attention (the ability to divide the attention between different tasks).

Only two systematic reviews in relation to the rehabilitation of attentional defi-
cits following stroke have been published (Loetscher & Lincoln, 2013; Virk, 
Williams, Brunsdon, Suh, & Morrow, 2015). Both reviews cited the same six stud-
ies (Barker-Collo et al., 2009; Rohring, Kulke, Reulbach, Peetz, & Schupp, 2004; 
Schöttke, 1997; Sturm & Willmes, 1991; Westerberg et  al., 2007; Winkens, Van 
Heugten, Wade, Habets, & Fasotti, 2009), and the most recent of which is dated 
2009. From all these studies, only divided attention showed significant medium-to- 
large treatment effects (Virk et al., 2015). None of these studies have used neuroim-
aging as a proof of concept, though. Due to the impact that attentional deficits have 
in other cognitive domains (Lezak et al., 2004; Loetscher & Lincoln, 2013), further 
studies focused on the rehabilitation of attention should be considered adding neu-
roimaging to study the neuronal plastic changes associated with the rehabilitation of 
attention.

9 Cognitive Rehabilitation and Neuroimaging in Stroke
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 Memory and Executive Function

Compared to the vast amount of neuroimaging studies on the rehabilitation of motor 
dysfunction, aphasia and neglect, there is a paucity of studies focused on executive 
dysfunction and memory impairment. To date, only two group-based studies have 
assessed the brain effects of CR on memory and executive function in patients with 
stroke (Lin et al., 2014; Nyberg et al., 2018). In the study conducted by Lin and col-
leages (Lin et  al., 2014), the authors used a computer-assisted cognitive training 
combined with rs-fMRI to study the effects of CR on memory and executive func-
tion on the brain. Patients in the treatment group improved on the measures of mem-
ory and executive function. This improvement was positively correlated with the 
increased functional connectivity (FC) in the hippocampus and the frontal and pari-
etal lobes (see Fig. 9.2).

Nyberg and colleagues conducted a longitudinal study with 22 stroke patients 
evaluated at three time points: at baseline, after a period of 6 weeks in which the 
participants were followed without intervention, and after a 6-week training (≥18/25 
sessions) on working memory with Cogmed QM, an online program designed for 
training working memory. Diffusion tensor imaging (DTI) was acquired at baseline 
and after the training (Nyberg et al., 2018). The authors did not find any change on 
cognitive functions or WM integrity after treatment.

Fig. 9.2 Significant fMRI increase in the FC of the patients after treatment in different anatomical 
regions indicated by the arrows. The changes in activation were between (a) the left hippocampus- 
right inferior frontal gyrus and the left hippocampus-right middle frontal gyrus and (b) right 
hippocampus- left middle frontal gryus, right hippocampus-left inferior frontal gyrus, right 
hippocampus- left superior frontal gyrus and right hippocampus-left parietal lobe. (From Lin 
et al., 2014)
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 The Use of Music Therapy in Stroke

Brain is an experience-dependent structure that changes in response to the environ-
ment. In experimental studies with rats, context enrichment (CE, auditory, visual, 
and olfactory) has been shown to play an important role in the the recovery of cogni-
tion and motor functions and reducing lesion volume (Maegele et al., 2005; Maegele 
et al., 2005).

Neuroimaging studies conducted with healthy participants have reported that the 
processing of music can result in recruitment of temporal, frontal, parietal, cerebel-
lar, and limbic/paralimbic areas related to the processing of the acoustic aspects of 
music (Herdener et al., 2014; Zatorre, 2013). Voxel-based morphometry (VBM) and 
DTI studies indicate that the constant involvement in musical activities can lead to 
GM (increased volume) and WM (larger tract volume) changes (Halwani, Loui, 
Rüber, & Schlaug, 2011; James et al., 2014).

Recent clinical studies have shown that music can be effective in improving the 
connectivity of temporal auditory and frontal motor areas (Grau-Sánchez et  al., 
2013; Rodriguez-Fornells et al., 2012). In the study carried out by Särkämö and col-
leages (Sarkamo et al., 2014), a group of 49 stroke patients were randomly assigned 
to the music group (MG, listening to their favorite music 1 h/day during 6 months), 
the audiobook group (ABG, listening verbal material 1 h/day during 6 months), or 
to the control group (CG, did not receive any material). All three groups received 
standard care and rehabiliation. After treatment, the MG group showed an increase 
in GM volume (GMV) in different anatomical regions in the frontal and limbic 
areas in the contralesional hemispere and around the lesioned area in the damaged 
hemisphere (See Fig. 9.3). The observed GMV increases in frontal and limbic areas 
were associated with improvemmnets in cognition and mood (attention, memory, 
and language for the frontal areas; mood for the limbic areas). Particularly, left 
hemisphere-damaged patients showed an increase in the left and right superior fron-
tal gyrus (SFG) and in the right medial SFG.  This increase was related to the 
enhancement of verbal memory, language function, and focused attention after 
6-month follow-up.

 Implications for Cognitive Rehabilitation Practice 
and Future Directions

In this chapter, we have provided an overview of the use of CR in combination with 
functional and structural neuroimaging to assess the neural mechanisms underlying 
the effects of CR in stroke. It is important to emphasize that neuroimaging in CR 
helps to (1) better understand the impact of our therapies in terms of the neural 
changes produced in the brain after our treatment (whether they occur in the tar-
geted brain areas and they have the expected effect) and (2) potentially improve our 
therapeutic interventions.
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In comparison with other neurological conditions such as MS, the number of 
studies combining CR and neuroimaging in stroke is surprisingly low. The vast 
majority of studies with stroke patients investigate biomarkers with the aim of pre-
dicting clinical outcome, as well as to study the neural substrates underlying the 
spontaneous recovery of various cognitive functions in the first months after stroke. 
These studies have been critical in the advancement of our knowledge of the neural 
mechanisms ocurring after a stroke, whether they are adaptive or maladaptive. 
However, this knowledge does not seem to be applied in relation to the study of the 
changes in the brain neural mechanisms followed after the use of CR. Furthermore, 
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the CR studies carried out, regardless of whether they used neuroimaging or not as 
a proof of concept, suffer from the aforementiond methodological problems (e.g., 
heterogeneity of the sample, lack of a proprer randomization, lack of an active con-
trol group), which not only prevents the generalization of the results but also repre-
sents a barrier to achieve the level of evidence needed to guide future directions in 
the development of effective CR therapies in the stroke population. This situation, 
also highlighted by the corresponding Cochrane’s reviews, hinders transferring sci-
entific results into everyday practice. Therefore, there is a clear need of improving 
the design of CR studies in order to overcome the aforementioned barriers in future 
studies. In this improvement, the time in which the therapy is applied as well as the 
heterogeneity of the sample should be considered closely. First, the effect of the CR 
therapy may not be the same when applied after a few weeks than when applied 
after several months after the stroke. With the application of CR therapy after a few 
weeks, we can take the advantage of the spontaneous changes ocurring after the 
stroke stimulating the adaptive changes whereas preventing the maladaptive ones. 
In the case of chronic stroke patients, the effectiveness of the CR therapy will be 
more difficult to achieve considering the fact that maladaptive changes may have 
already occurred. Second, the heterogeneity of the sample is something that should 
also be considered. Heterogeneity does refer not only to the site and the volume of 
the lesion but also to the individual response to CR. One should consider the fact 
that even in a well-designed study, we are going to find interindividual differences 
in relation to the effectiveness of the CR therapy applied. There are several factors 
that can be exerting their influence in how an individual respond to a single treat-
ment. Therefore, the ability to identify good responders to the treatment is as impor-
tant as the identification of the nonresponders, as the nonresponders may need 
another CR approach.

As highlighted in the present chapter, studies focused on the rehabilitation of 
attention, memory, and executive functions after stroke using neuroimaging to test 
the neural effects of the rehabilitation in the brain are scarce. These cognitive func-
tions can have the same detrimental effects on the activities of daily living as other 
impairments such as aphasia or neglect. Given that attention, memory, and execu-
tive problems are prevalent following stroke, additional studies using neuroimaging 
parameters should be the focus of future research.

Finally, any treatment will be the most effective when optimized based on the 
specific deficit of the patient in the context of his/her degree of spared cognition and 
cerebral reserve. Optimization of such treatment effects also remains neglected in 
stroke CR research to date and represents an important area for future research.
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