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Biometric Gait Identification Systems: 
From Spatio-Temporal Filtering to Local 
Patch-Based Techniques

Mohammad H. Ghaeminia, Shahriar B. Shokouhi, and Abdollah Amirkhani

1  Introduction

Human’s gait or style of walking is considered to be an effective biometric measure 
for identifying the individuals in public places for surveillance programs [1]. This is 
mainly attributed to the fact that the images of the walking can be easily acquired 
from a distance. Nevertheless, any biometric system based on human’s gait identifi-
cation can be affected by certain external factors such as the type of clothing, bag-
ging condition, camera viewpoint, surface, and the aging [1, 2]. Despite these 
challenges, it is important to note that the manner of walking can still be relied upon 
as a unique biometric benchmark for solving identification problems [3]. The key 
issue in handling a gait under covariate factors is developing an efficient biometric 
system. In this paper, we propose the criteria for ranking the gait biometric systems 
and evaluating them accordingly.

Basically, the most common way to describe the gait without a predefined model 
is using template feature [1, 3–5]. For example, gait energy image (GEI) [1], general 
tensor discriminant analysis (GTDA) [6], gait flow image (GFI) [7], chrono-gait 
image (CGI) [8], and 5/3 gait image (5/3GI) [3] are some of the template features 
that have been developed by the researchers. In such methods, the sequence of sil-
houettes (or features) is aggregated into a single image called “template.” Since the 
nature of the gait is a spatio-temporal process, such conversion has three main limi-
tations [9, 10]: (1) removing temporal ordering of gait, (2) utilizing not an efficient 
human’s motion model, and (3) aggregating gait defects in the template feature.
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In order to resolve these issues, three separate algorithms have been proposed in 
this paper: (1) gait spatial image (GSI) features, (2) gait spatio-temporal image 
(GSTI) features, and (3) patch gait features (PGF). Each of these algorithms has a 
certain advantage in describing the rhythm of human walking; which will be exam-
ined in this paper. Besides the efficacy of the above methods in describing the gait, 
applying them in a real gait biometric system will be limited. Figure 1 shows differ-
ent between the algorithm-level and system-level evaluations.

As shown in Fig. 1, a method of gait recognition is a subset of biometric system 
and hence, other benchmarks rather than recognition accuracy should be considered 
for evaluating the system. In this paper, the performance of gait biometric system is 
measured according to three proposed benchmarks: (1) recognition error rate, (2) 
computational and memory complexity, and (3) scalability.

Considering the recent state-of-the-art methods in gait recognition [3, 5, 9–11], 
the main contribution of the paper is as follows:

 – Algorithm-level evaluation of the recent algorithms on three well-known datas-
ets (USF [12], CASIA-B [13] and OU-ISIR-B [14]).

 – Discussing on the benchmarks for validation of a gait biometric system.
 – Evaluation of the proposed biometric systems according to given benchmarks.
 – Providing an efficient tool for measuring the quality of gait system.

The rest of the paper is organized as follows: In next section we discuss on 
related gait recognition methods. The proposed algorithms (i.e., GSI, GSTI, and 
PGF) are explained shortly in Sect. 3. The proposed benchmarks for validating a 
gait biometric system are described in Sect. 4. Meanwhile, Sect. 5 provides the 
experimental results and discussion and the paper is concluded in Sect. 6.

Fig. 1 The main components of a gait biometric system
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2  Similar Works

The basis of efficient gait identification algorithms is gait template identification by 
means of template features [3, 5, 7, 15–18]. Therefore, the effective performance of 
a biometric system strongly depends on the type of algorithm used and the features 
selected. However, using appropriate features that are robust against the challenging 
covariates of human gait is itself a basic challenge. Moreover, some algorithms, 
despite being highly accurate in gait identification (e.g., [4, 19, 20]), have a large 
computational load and thus limited chance of development in a biometric system.

For appropriate gait identification, it is necessary to compute spatio-temporal 
features in one period and to compile them in a single image. This subject was 
investigated by Wang et al. [8] who presented a color template called chrono-gait 
image (CGI). Also, by extracting 5/3 wavelet features from silhouettes, Atta et al. 
[3] have recently proposed the 5/3 gait image (5/3GI) template, which not only has 
a small computational load but also a high gait identification accuracy. Fendri et al. 
[21] have dynamically selected the different sections of a silhouette which conform 
to gait covariates and which use the semantic classification scheme to identify dif-
ferent parts of human body. For detecting the gait template that matches human gait 
template, an effective spatio-temporal filter has been developed [9, 10, 22]. Recent 
research works have confirmed the existence of certain prominent regions in human 
gait (i.e., patches) that contain important information [11, 17]. By identifying these 
regions and describing human gait template on the basis of patches, gait identifica-
tion accuracy can be increased.

From system perspective, as was stated earlier, there are certain limitations in 
using the above approaches in a biometric system. In other words, in system-level 
comparison, the measure of superiority is not just the accuracy of a particular 
method. For quantitative comparison between various systems, different methods 
have been developed; mostly on the basis of the performance of face and fingerprint 
biometrics [23–25]. For example, Grother et  al. [23] and Olsen et  al. [26] have 
developed standard ranking criteria for fingerprint biometric systems based on the 
quality of input sample. Also, Fernandez et al. [25] have examined and developed 
different evaluation measures, such as system error, in addition to the input sample 
quality. However, in gait identification, because of using noisy images recorded 
from a far distance, it is not a good idea to perform evaluations based on the quality 
of input sample. An appropriate criterion for evaluating the performances of differ-
ent systems is to evaluate them based on system error [23, 25]. In addition to system 
error, two more criteria (i.e., computational load and scalability) will also be used in 
this paper to compare the performances of gait identification systems. The three 
selected approaches of GSI, GSTI, and PGF will be examined briefly in the next 
section and then the selection criteria will be thoroughly explained in Sect. 4.
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3  Selected Approaches

Since human gait is essentially a spatio-temporal process, its proper description 
should be based on spatio-temporal features. For this purpose, a template feature 
based on spatio-temporal features has been developed in recent years. Of these 
methods, the three approaches of GSI [10], GSTI [9], and PGF [11] have been able 
to properly exploit the properties of corresponding features. In this section, the three 
cited methods will be introduced briefly and then the most effective classification 
technique for gait identification will be explained. It should be mentioned that the 
materials stated in this section pertain to algorithm-level development.

3.1  Preprocessing of Data

For the proper extraction of features, preliminary processing of information should 
be carried out on raw video recordings. The main preprocessing steps are as fol-
lows: resolving the background, extracting the foreground, and computing the gait 
period [10]. The Gaussian mixture model (GMM) has been proposed for modeling 
the background and subtracting the foreground from it [12]. Foreground images are 
obtained by subtracting the gait sequence from the background model. Following 
the extraction of foreground images, these images are normalized and made uni-
form by considering the obtained image centers [12]. In this way, silhouette images 
(foreground) with identical sizes and aspect ratios will be obtained. Then the gait 
period can be calculated by counting the pixels in the lower half of the silhouette 
image in each frame [10]. Because the values of corresponding pixels, when a walk-
er’s two feet move away from or get closer to each other, will have local maxima 
and minima. By computing the local extremums, the gait period (T) is easily 
obtained by considering the average distance between two successive maxima 
or minima.

3.2  Gait Spatio-Temporal Filtering

As we know, the sequence of human gait is a type of spatio-temporal signal in 3-D 
space, where x and y are two spatial coordinates and t is the temporal coordinate. 
Since there is no displacement in the y direction, in the GSI approach, the gait 
sequence has been considered in the x-t space. For this purpose, a directional filter 
has been developed for determining the direction of gait in this space [10]:
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In the above equations, Dir,Li and Dir,Ri (i = 1, 2), respectively, denote the main 
kernels for determining gait directions to the left or right in two different strengths. 
Also, RAi and RBi represent the impulse responses of spatio-temporal filter; whose 
spatial part is obtained by differentiating the Gaussian signal 
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indicate the temporal order and scale). Now in each frame, the gait direction (or gait 
energy, ENL and ENR) is easily determined by the convolution of impulse responses 
in the silhouette image and the summation of directions:
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that is, RLi and RRi indicate the response of filtering obtained from convolution of 
silhouette with kernels in Eq. (1). The final gait direction in each frame is deter-
mined by subtracting the responses. Also, the GSI template is obtained by collecting 
the responses in every half-period and by averaging the responses of two successive 
half-periods:
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in which, EN represents the sum of the responses in every half-period.
In the GSI approach, because of ignoring human gait in the vertical direction and 

also using a network of nonlinear filters, the computed responses will be rather 
unrealistic. So by employing a simple and realistic template in the GSTI method, 
the researchers have attempted to obtain a more precise human gait template. First, 
it has been assumed that an input video is a circuit network and that every pixel in 
it is equivalent to a resistor which is connected to adjacent pixels in the current 
frame and preceding frame. Also, in the network, the luminosity of each pixel has 
been considered as the load of a capacitor; and the goal is to calculate current flux 
in the circuit network. By solving the relevant equations and using Fourier transfor-
mation, the spatial impulse response (SIR) and the temporal impulse response (TIR) 
for human gait are obtained as follows [9]:
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In the above equations, G(.) indicates the standard Gaussian signal, a0 and a1 are 
the coefficients of Fourier series, ωτ = π/T (T being the gait period), and τ = T/2. It 
should be mentioned that in computing Eqs. (4) and (5), some limitations have been 
applied on Fourier transform solution to make it more compatible with human gait 
model [9]. Furthermore, the temporal response of Eq. (5) is an even signal; and after 
computing its corresponding odd signal, the squares of temporal filter responses are 
added together. After calculating the impulse responses of spatial and temporal fil-
ters, the shadow image is first convoluted with a spatial filter and then with a tem-
poral filter in order to obtain the corresponding response. Eventually, similar to the 
GSI method, the responses in every half-period are collected and the average energy 
in a period is calculated as the GSTI template.

3.3  Local Patch-Based Gait Features

The idea of patch-based approach is different from the previous methods. Here we 
are trying to seek the important regions in filter responses and to keep them in the 
final template. Therefore, there are three major steps in the PGF method [11]: (1) 
filtering the silhouette images and extracting the local patches, (2) calculating the 
probability distributions of patches, and (3) computing the PGF template. In the first 
step, the local patches, p(x,y,t), are extracted by seeking the extremum points in a 
local sliding window in 3-D space. In this step, the response of Gabor filter for each 
silhouette image is calculated and becomes a basis for seeking the patches. In the 
second step, the histograms of patch distributions along the x, y, and t directions are 
computed separately:
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Here, H, W, and T are the image height and width and the gait period, respec-
tively. The above triple histogram is unique to each individual and can be used as 
gait signature [11].

Now in the third step, by considering the above probability distributions as coor-
dinate weights, the final template can be obtained. Here, the set of 40D Gabor 
responses (with five different scales and eight directions) is applied on the GEI, and 
the weighted coordinates of each pixel are added to the responses.
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in which, RG is response of the 40D Gabor filtering, k(.) is the isotropic kernel for 
allocating more weight to the pixels near the image center or half-period, and hl is 
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the weight resulting from the relevant histogram index. According to Eq. (7), the 
PGF template is an augmented Gabor template in which the spatio-temporal coor-
dinates of patches have been added to filter response based on their probability 
distribution.

3.4  Classification

The introduced methods highlighted the manner of extracting powerful features 
from behavior template. However, the usefulness of recent approaches depends not 
only on feature extraction but also on the type of classification. The simplest method 
of classifying a template is to find the closest feature to a gallery determined by 
direct template matching. For example, the 1-nearest neighbor classification tech-
nique (1-NN) assigns a label to its nearest neighbor (with the least Euclidean dis-
tance) [8]. However, since feature dimensions are much more than the number of 
test samples and some features are overlooked, we have an undersample problem 
(UPS), which diminishes the recognition accuracy [6]. A common method for deal-
ing with this problem is to use the two-step technique of PCA+LDA [10]. This 
technique is relatively simple and provides usual accuracy; because by applying the 
PCA matrix, the 2-D structure of data collapses and data turn into a one- dimensional 
vector. Despite the existence of various challenges, the random subspace method 
(RSM) has been able to identify gait templates with high accuracy [11, 27]. This 
classification method achieves weak classification by taking random samples from 
feature space and by making a decision based on a set of weak decisions. Considering 
the utility of the RMS classification technique, it has been employed in this paper. 
More details on this classification scheme can be found in the work of Guan 
et al. [27].

4  System-Level Evaluation Tools

So far, we explored the algorithms used for identifying behavior templates. However, 
quantitative measures are needed to evaluate the performances of these algorithms. 
By means of these quantitative criteria we can determine the utility and fidelity of 
different identification approaches. Every biometric system is evaluated based on 
different parameters so as to obtain its fidelity under different conditions. The exist-
ing approaches for evaluating the fidelity of biometric systems have been developed 
based on the performance of face and fingerprint biometrics [25, 28]; however, this 
procedure can also be extended to a gait biometric system.

In behavioral biometry systems the results are usually reported in terms of iden-
tification accuracy [28]; because the number of test sets is limited and the individu-
als in probe set are always a subset of the individuals in gallery. Moreover, one of 
the main challenges of behavioral biometry systems is the decline of their 
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performance in uncontrolled or unpredictable conditions [28]. Basically, the evalu-
ation of every biometric system requires three parameters [28]: (1) evaluating the 
quality of input data (sensor quality), (2) guaranteeing the performance of algo-
rithm, and (3) providing a utility benchmark. In this paper, the quality of input data 
is the same for all the evaluated algorithms; because the same standard datasets have 
been used for all of them. Also, the utility of the proposed algorithms in properly 
identifying gait templates has been confirmed. Therefore, the above three criteria 
[25], which are intra-system evaluation measures, are not sufficient for evaluating 
the performance of a gait biometric systems.

We define three important criteria for the extra-system evaluation of biometry 
systems: (1) system error, (2) execution speed and the amount of computer memory 
used, and (3) scalability. Each of these criteria will be subsequently explained.

4.1  False Match Rate (FMR) and False Non-match Rate 
(FNMR) Criteria

These two benchmarks are able to compute the amount of error for a system. The 
FMR criterion is an empirical estimation of probability (percent occurrence), by 
which a system falsely accepts an input template. Also, FNMR is an empirical esti-
mation of probability, by which a system falsely rejects a matched input sample. 
FMR and FNMR criteria are equivalent to FAR and FRR, respectively; and for their 
computation procedures one can consult the available references [25]. Ordinarily, 
when comparing two biometry systems, the system which has a lower FRR at the 
same FAR is the better performing system.

The recognition error tradeoff (DET) graph has been used to graphically display 
system error; because it is not commonplace to use the ROC diagram in the evalua-
tion of biometry systems [29]. The horizontal and the vertical axes of the DET 
graph, respectively, show the FAR and FRR values at different accuracies and 
Ranks. In DET diagram standards, the vertical axis is in percentage (%) and the 
horizontal axis has a logarithmic scale.

4.2  Computational and Memory Complexity

The time needed for identifying an individual and the amount of computer memory 
used for this purpose are determined by this criterion. In fact, time complexity and 
used memory constitute suitable measures for evaluating a system. When compar-
ing two systems with the same error, the one with higher speed and less memory 
usage is considered a better system. A biometric system needs memory to compute 
the templates and to save the features.

M. H. Ghaeminia et al.
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4.3  Scalability

This criterion expresses the performance of a system in huge set of data. To ensure 
a level of scalability that can support a very large dataset, it is necessary to use very 
strong support servers of high capacity. Assuming that the processing power of each 
server is one unit, the total processing power of ten servers with integrated process-
ing capability is not 10 units. Even by increasing hardware and software resources, 
there will be a problem with system performance at large volumes of data; because 
with the rise in the number of samples, the degree of differentiability between sam-
ples decreases severely and system error goes up. In other words, a system’s robust-
ness against scalability indicates the reliability of that system under real conditions. 
Obviously, in comparing two systems with equal errors, the one with a lower error 
in a high-population dataset is a better system. Published papers do not present a 
specific criterion for assessing a system’s robustness to scalability. In this paper, 
average Rank-1/Rank-5 accuracy achieved in three datasets will be used to evaluate 
the scalability criterion.

5  Results and Discussion

In this section, the results of algorithm- and system-level evaluations will be pre-
sented. Algorithm-level evaluation has been thoroughly discussed in the cited refer-
ences [9–11]. In this paper, the results of algorithm-level evaluations are concisely 
presented and then the results of system-level evaluations are discussed. An 
algorithm- level comparison is carried out in order to assess the quality of the exam-
ined algorithms in gait template recognition; because an exact biometric system is 
dependent on the type of algorithm designed for it. The algorithms that have been 
selected for evaluation and comparison are as follows: GEI [1], CGI [8], 5/3GI [3], 
STIP [30], locality-constrained group sparse representation (LGSR) [20], view- 
invariant multiscale gait recognition (VI-MGR) [2], RSM [27], local patch-based 
subspace ensemble learning algorithm (LPSELA) [4], two-stream generative adver-
sarial network (TS-GAN) [31], clothing-invariant gait recognition (CLIGR) [15], 
and local feature at the bottom layer based on capsule network (LBC) [18].

In this paper, three famous datasets (USF [12], CASIA-B [13], and OU-ISIR-B 
[14]) are used for algorithm evaluation. The USF dataset contains 122 individuals 
with five walking forms, CASIA-B has 124 individuals with ten walking forms, and 
the OU-ISIR-B dataset includes 48 individuals with 32 different forms of walking. 
With different test cases in the gallery and the probe sets, there are a total of 3176 
unique tests for these three datasets, (1080 tests for USF, 1240 tests for CASIA-B, 
and 856 tests for OU-ISIR-B). For evaluating the examined algorithms, each of the 
above datasets has considered several gait challenges. The USF set has addressed 
the variations of walking manner with the change of shoes, viewing conditions, 
surface, bag, and time parameters. The CASIA-B set has considered gait variations 
with respect to “normal,” “bag,” and “cloth” conditions at different video recording 
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angles. And the OU-ISIR-B set has only dealt with the change of clothing, which is 
the most important and common parameter related to gait. In the following, the 
results of algorithm-level evaluations on the three mentioned datasets will be briefly 
discussed.

5.1  Algorithm-Level Evaluations

To verify the effective performance of the proposed algorithms, the first test is car-
ried out on the CASIA-B dataset. Considering the high quality of silhouette images 
in this dataset, there is no need to use powerful classification techniques such as 
RSM; and satisfactory accuracy will be obtained by applying 1-NN. For a brief and 
accurate evaluation of the examined approaches, only Rank-1 values are presented. 
Table 1 shows the performance Rank-1 values achieved by the proposed algorithms.

Compared to the first group of algorithms, the average accuracy of Rank-1 is 
higher than that of GEI, CGI, and 5/3GI methods. The average accuracy of GSTI is 
close to that of CGI, which shows an acceptable performance. Also, in five tests (out 
of 6), the proposed approaches achieve a higher performance relative to GEI and 
CGI. The results of 5/3GI for certain experiments have not been revealed and their 
averages cannot be evaluated.

In the second part of Table 1, the satisfactory performance of the proposed algo-
rithms can be revealed by comparing the results through multiview-based methods. 
Compared to STIP algorithm, the proposed algorithms are superior in three tests out 
of six; and in some other tests the results are very close. In comparison with the 
VI-MGR method, in two cases our algorithms have achieved greater performance. 
However, because of using synthetic information and relatively powerful classifica-
tion technique, the VI-MGR algorithm has attained a higher accuracy. In summary, 
in the CASIA-B dataset, the proposed gait identification algorithms have achieved 
satisfactory or better recognition accuracies than other recent approaches.

In the second step, the performances of the proposed gait recognition algorithms 
in the OU-ISIR-B dataset are investigated. Here, the Rank-1 results obtained by 

Table 1 Evaluating the Rank-1 recognition rates achieved by the proposed algorithms and other 
approaches in CASIA-B dataset

Gall-Prb nm-nm nm-bg nm-cl bg-bg bg-cl cl-cl Avg.

GEI [1] 91.57 37.8 25.04 91.2 17.47 97.22 60.05
CGI [8] 88.06 51.93 46.88 89.81 32.52 95.37 67.43
5/3GI [3] 98 – – 73 66 – –
STIP [30] 95.4 60.9 52 73 29.8 70.6 63.62
VI-MGR [2] 100 89 76 79.03 – 71.77 –
TS-GAN [31] – – – – – – 63.1
GSI [10] 95.87 66.46 41.41 90.5 29.5 100 70.62
GSTI [9] 91.8 57.5 39.6 92.5 26.4 98 67.64
PGF [11] 92.4 65.7 50.8 91.5 33.5 97.5 71.9
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these algorithms in the probe set (which includes 31 different combinations of 
clothing) have been presented. However, due to the proximity of the results of GSI 
and GSTI algorithms, the GSI results have not been listed. Figure 2 graphically 
displays the fidelities of the examined algorithms when considering different cloth-
ing conditions. Also, Table 2 shows the average accuracies achieved by the pro-
posed algorithms in the OU-ISIR-B dataset.

According to Fig. 2, in five tests (probes D, F, G, K, and N), the VI-MGR algo-
rithm achieves a higher accuracy than GSTI. Also, in comparison with RSM, the 
results of GSTI can still be observed. Compared to the RSM approach, the GSTI 
algorithm uses a simpler filter structure; because instead of the 40-component Gabor 
functions, it exploits spatial and temporal impulse responses.

In addition, the PGF algorithm (which has a patch-based structure) enjoys a 
higher accuracy and fidelity relative to the GSTI algorithm. More precisely, in five 
tests out of 31 (probes 2, S, X, Y, and Z), the recognition accuracy of PGF is 100% 
and the algorithm has been able to identify all the individuals in the probe set. Also 
in 2 probes out of 31 (probes H and M), the patch-based methods exhibit weaker 

Fig. 2 Evaluating the performances of various algorithms in the OU-ISIR-B dataset

Table 2 Comparing the 
average Rank-1 results 
obtained by the proposed and 
more recent algorithms in the 
OU-ISIR-B dataset

Algorithms
Avg. of 
Rank-1 (%)

GEI [1] 55.6
RSM [27] 90.7
VI-MGR [2] 69.03
CLIGR [15] 81.71
LBC [18] 73.33
GSTI [9] 77.25
PGF [11] 90.62

Biometric Gait Identification Systems: From Spatio-Temporal Filtering...
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performance relative to more recent approaches (CLIGR [15] and LBC [18]). 
Nevertheless, the performance of other methods under such conditions is very low. 
The results in the above figure indicate a performance below 60% for the PGF algo-
rithm in probes H, M, R, and V. This is mainly due to the coverage of body parts 
during patch extraction. In these conditions, the proposed approaches cannot extract 
enough information from lower body parts. The results of Fig. 2 and Table 2 show 
the relative superiority of the proposed algorithms compared to the other algorithms.

In the third step of this section, the complete Rank-1 and Rank-5 results of dif-
ferent algorithms obtained for the USF dataset have been discussed.

According to Table 3, the average Rank-1 and Rank-5 results in the GSTI and 
PGF approaches have improved relative to all other methods (except RSM). Also, 
the results of PGF are very close to those of the RSM algorithm. The proposed 
methods are vulnerable to the change of “surface” and “time” (probes F, G, K, and 
L), but their performance is still comparable to all the other approaches. The Rank-5 
recognition rates of the proposed algorithms have improved in most of the tests. 
More precisely, in three tests out of 12 (probes A, H, and I), the recognition accu-
racy of PGF is 100% and all the relevant subjects have been identified. Also, in the 
rest of the tests, the Rank-5 values are close to their maximum, and subjects can be 
identified with a high accuracy. The obtained results indicate that the average recog-
nition success of PGF has increased by about 5% relative to other methods (e.g., 
LGSR [20], VI-MGR [2], and LPSELA [4]).

So the proposed algorithms are appropriate tools for human gait identification 
and provide a suitable basis for recognition of individuals under challenging and 
more complicated conditions.

Table 3 Rank-1 and Rank-5 results of different algorithms obtained for the USF dataset

Exp. A B C D E F G H I J K L Avg.

Method Rank-1 performance
LGSR 95 93 89 51 50 29 36 85 83 68 18 24 70.07
RSM 100 95 94 73 73 55 54 97 99 94 41 42 81.15
VI-MGR 95 96 86 54 57 34 36 91 90 78 31 28 68.13
LPSELA 95 91 78 66 59 46 52 93 88 69 30 27 70.49
GSI 92 95 86 38 31 17 24 79 83 76 25 19 58.44
GSTI 97 95 93 53 49 41 46 96 97 92 33 21 72.25
PGF 100 96 98 62 59 43 46 100 99 94 28 30 76.01

Rank-5 performance
LGSR 99 94 96 89 91 64 64 99 98 92 39 45 85.31
RSM 100 98 98 85 84 79 73 98 99 98 55 58 88.59
VI-MGR 100 98 96 80 79 66 65 97 95 89 50 48 83.75
LPSELA 100 96 93 84 83 73 74 95 96 89 64 52 86.09
GSI 98 95 95 67 52 43 56 97 95 95 43 37 76.60
GSTI 100 96 97 78 76 72 74 99 99 99 42 36 85.64
PGF 100 98 98 80 77 77 60 100 100 99 48 45 86.59
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5.2  System-Level Evaluations

In the previous section, the proposed algorithms for the recognition of behavioral 
templates were reviewed. However, quantitative measures are needed to evaluate 
the system-level performance of these algorithms. The utility and the fidelity of the 
proposed biometric systems can be obtained by means of these quantitative criteria. 
As it was stated in Sect. 4, the three criteria of system error, algorithm execution 
speed and the amount of required computer memory, and scalability have been used 
in this paper. The amount of system error is computed by using the FAR and FRR 
error parameters and evaluated by means of the detection error tradeoff (DET) dia-
gram. In biometric systems for face recognition, (normally in the authentication 
mode), the above errors [33] are expressed as “FRR 1% @ FAR 1/10,000”. However, 
since behavioral detection systems act in the identification mode, error calculation 
will be a bit different. Suppose the mth individual from a probe set is compared with 
all the individuals of a gallery (G individuals) and that these individuals are arranged 
descending. Now if the true (or corresponding) individual is located in the ith posi-
tion, then in computing the Rank-r parameter, the values of FAR and FRR will be 
calculated as follows:
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Now by changing the value of r and considering the values of Rank-r and by 
recalculating the error values according to the above equation, the DET graph is 
obtained. In the DET diagram standards, the vertical axis shows the FRR percentage 
and the horizontal axis has a logarithmic scale. Due to its popularity and compre-
hensiveness, the USF dataset has been used here for error estimation; and the 
obtained error values are the weighted average errors in the whole probe sets and in 
different tests. Table  4 shows the weighted average error values with respect to 
Rank-1 and Rank-5 in the proposed systems. Also, Fig. 3 illustrates the DET dia-
grams for these systems in the USF dataset.

According to Table 4, the PGF system has the least values of FRR and FAR; so 
it can be considered as a powerful and low-error system. However, a proper com-
parison cannot be made based on the values in the above table; because in compar-
ing two biometric systems, the better system will have a lower FRR at the same FAR 

Table 4 The specifications of the proposed biometric systems versus Rank-1 and Rank-5 errors

Biometric system @Rank-1 @Rank-5

GSI FRR 33% @ FAR 49/1000 FRR 16% @ FAR 51/1000
GSTI FRR 24% @ FAR 48/1000 FRR 10% @ FAR 49/1000
PGF FRR 23% @ FAR 38/1000 FRR 9% @ FAR 40/1000
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value. For a more appropriate evaluation, the DET diagram has been used. As Fig. 3 
shows, the PGF system has a much lower error than the other two systems. At a 
specific FAR (FAR = 10–1.3 ≈ 50/1000), the FRR value of PGF (2%) is less than 
that of GSTI (10%), which itself is less than that of GSI (18%). A 16% difference 
exists between the FRR values of PGF and GSI systems. So the PGF system has a 
lower gait recognition error.

Now the systems are evaluated in terms of processing time and required com-
puter memory. The most important part of the proposed systems is their input image 
filter. The GSI system uses a quadruple directional filter (Eqs. (1) and (2)), the GSTI 
system uses a dual spatio-temporal filter (Eqs. (4) and (5)), and the PGF system 
employs a 40-component Gabor filter (Eq. (7)). Now if the image dimensions are 
WxH and the kernel dimensions are wxh, the approximate computation time of 
image filter will be of order O(Ifilt) ≈ O(WHwh) and the memory used will be of 
order O(Ifilt) ≈ O(WH + wh) [10]. Therefore, the time complexities of GSI, GSTI, 
and PGF systems in a dataset with the number of training and test individuals equal 
to nte + ntr and with a gait period of T will, respectively, be O(4(nte + ntr)TWHwh), 
O((nte + ntr)TWHwh), and O(10(T + 1)(ntr + nte)WHwh) [9–11]. Also, by assuming 
WH > > wh, the amounts of memory required by these systems are O(10TWH(nte + ntr)), 
O(3TWH(nte + ntr)), and O(10(T + 1)WH(nte + ntr)), respectively [9–11]. Obviously, 
time complexity and required memory depend on three main parameters: (1) the 
size of input image (WxH), (2) the total number of individuals in the gallery and 
probe sets (n = ntr + nte), and (3) the average gait period (T). It should be mentioned 
that the dimensions of filter kernel in the examined systems have been considered as 
w × h = 39 × 39 = 1521 [9]. If the same dimensions are considered for input image 
(W = H = N), then the required execution time, t, for the proposed systems in the 
whole dataset will be as;

Fig. 3 The DET diagrams resulting from the three proposed systems
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Also, the amounts of memory (M) used by the proposed systems are as follows:
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Suppose the number of individuals in a dataset (considering the three evaluated 
datasets) has three default values of n = {150, 500, 1000}, which correspond to 
small, medium, and large datasets, respectively; and suppose the gait period has two 
default values of T = {30, 70}, which, respectively, specify small and large sequences 
of recorded human gait. With these assumptions, Figs. 4 and 5 illustrate the sys-
tems’ computational loads and required memories versus the dimensions of input 
images and in terms of predefined parameters.

Fig. 4 Computation times required by the proposed systems versus image dimensions
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According to Figs. 4 and 5, GSTI is the fastest human identification system that 
requires less memory. Also, the slowest system is PGF, which uses a memory capac-
ity which is almost equal to that of the GSI system. So in situations where system 
error is less important, the GSTI system is recommended; and in applications in 
which system error should be minimized, the PGF system will be the best choice. In 
these conditions, there should be a tradeoff between system error (Fig. 3), computa-
tion speed (Fig.  4), and the amount of memory used (Fig.  5). By executing the 
algorithms in MATLAB software (ver. 8.3.0, published in 2014) using a PC with 
Intel (R) Core i7 processor, 8 GB of RAM, and 2.39 GHz operating frequency, the 
computation times and the required memories for the GSTI, GSI, and PGF algo-
rithms were obtained as 56, 14, and 5.5 frames/s and 3.6, 1.2, and 3.75 GB, respec-
tively [9–11].

The last parameter to evaluate is system’s robustness to dataset scalability. In 
evaluating biometric gait identification systems, the criterion of scalability has not 
been usually discussed [5]. So in order to measure the degree of robustness against 
scalability, the average results of the examined systems for all the tested datasets are 

Fig. 5 The amounts of memory (in GB) required by the proposed systems at various settings

Table 5 Average system 
accuracies for all the tested 
datasets (3176 data in total)

Biometric system Rank-1 (%) Rank-5 (%)

GSI 70.89 84.32
GSTI 68.96 82.47
PGF 74.16 85.28
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computed in this section. A total of 3176 tests have been carried out (1080 tests on 
the USF dataset, 1240 tests on the CASIA-B dataset, and 856 tests on the OU-ISIR-B 
dataset). The average results have been tabulated in Table 5.

According to Table 5, the PGF system achieves a higher Rank-1/Rank-5 accu-
racy and performs better when a large dataset is involved. Also, the GSTI approach 
proves to be the weakest in this case. So the PGF system will have a better perfor-
mance in a large-volume dataset.

5.3  System-Level Performance Evaluation Criteria

In the preceding section, the proposed systems were thoroughly evaluated. From the 
perspective of FAR and FRR errors, a system may produce minimal error but have 
a large computational load and require extensive memory. Also, error optimization 
is equivalent to system’s robustness against the increase of dataset volume, and vice 
versa. In evaluating the proposed systems, Table 6 ranks the proposed biometric gait 
identification systems.

According to the above table, if the amount of computer memory used and the 
computation time are not important factors, the PGF system will be the most suit-
able, because of its lower error. Also, when the execution speed of algorithm and the 
memory it uses are of utmost importance, the GSTI system is recommended. In this 
case, the GSI system can also be used as a substitute system for GSTI; both of these 
systems have a greater computation speed and require less memory compared to the 
PGF system.

6  Conclusion

In this paper, effective gait template detection algorithms were reviewed and the eval-
uation criteria for the biometric systems related to these algorithms were presented. 
Today, there are three major challenges in properly identifying gait templates: (1) 
using temporal information, (2) making the algorithms compatible with human gait 
templates, and (3) eliminating extra information and noise from final features. As was 
previously mentioned, the three algorithms of GSI, GSTI, and PGF have been able to 
deal with the above three problems and to improve the fidelity of gait template 

Table 6 Evaluating the fidelity of the proposed biometric systems

System benchmark Superior system Second superior system Weakest system

FAR & FRR PGF GSTI GSI
Time/memory GSTI GSI PGF
Scalability PGF GSI GSTI
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recognition in most cases. However, for a more exact evaluation of performance, 
these algorithms have been compared from the standpoint of biometric systems. For 
this purpose, three criteria of system error, computational load, and scalability have 
been defined and used to evaluate system performances. The fastest and the most 
accurate biometric systems are GSTI and PGF, respectively. But when the computa-
tional load is limited and a relatively low system error is expected, the GSI system 
could be reliably used as an alternative system. In general, the criteria presented in 
this paper can be used as a standard measure to evaluate biometric gait identification 
systems and to help us choose the right system suitable for real conditions.
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