
MPCDF HPC Performance Monitoring
System: Enabling Insight via Job-Specific

Analysis

Luka Stanisic(B) and Klaus Reuter

Max Planck Computing and Data Facility,
Gießenbachstraße 2, 85748 Garching, Germany
{luka.stanisic,klaus.reuter}@mpcdf.mpg.de

Abstract. This paper reports on the design and implementation of the
HPC performance monitoring system deployed to continuously monitor
performance metrics of all jobs on the HPC systems at the Max Planck
Computing and Data Facility (MPCDF). Thereby it reveals important
information to various stakeholders, in particular to users, application
support, system administrators, and management. On each compute
node, hardware and software performance monitoring data is collected by
our newly developed lightweight open-source hpcmd middleware which
builds upon standard Linux tools. The data is transported via rsyslog,
and aggregated and processed by a Splunk system, enabling detailed per-
cluster and per-job interactive analysis in a web browser. Additionally,
performance reports are provided to the users as PDF files. Finally, we
report on practical experience and benefits from large-scale deployments
on MPCDF HPC systems, demonstrating how our solution can be useful
to any HPC center.

Keywords: HPC · Cluster monitoring · Performance analysis

1 Introduction

HPC systems are highly expensive facilities that are rapidly evolving with respect
to computational power, complexity, and size. More and more scientific disci-
plines use HPC resources in their research process to gain insight from numerical
simulations or from data analytics. Hence, it is essential to strive to maximize the
performance of the applications running on these precious resources. However,
an efficient usage requires expert knowledge in parallel algorithms and program-
ming, and a lot of effort spent on optimization and parameter tuning. This point
became more important in recent years with the advent of processors with many
cores and accelerators, which made parallel programming even more complex.
Having performance numbers available for each job is therefore essential for the
stakeholders of the HPC system, first, to make them aware of potentially subop-
timal usage of resources, and second, to enable them to take action to improve
the way these resources are used.
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 613–625, 2020.
https://doi.org/10.1007/978-3-030-48340-1_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_47&domain=pdf
https://doi.org/10.1007/978-3-030-48340-1_47


614 L. Stanisic and K. Reuter

Jobs on a HPC cluster are commonly orchestrated by a batch scheduler,
which can easily provide usage statistics based on allocated resources. These are
often quantified in terms of CPU or GPU hours, and have proven useful for
accounting purposes. However, these numbers do not carry information about
the actual resource utilization. Performance metrics measured for each job are
therefore crucial to learn, e.g., about under-utilization of allocated resources (idle
vector units, or idle cores and accelerators), or other problematic usage patterns.

Modern hardware provides a plethora of counters that can be used for perfor-
mance monitoring. In addition to the arithmetic units, CPUs have performance
monitoring units (PMUs) that can be programmed to count certain instructions
(e.g., scalar and vectorized floating point operations) with very little perfor-
mance overhead. Hardware such as GPUs and network adapters provides simi-
lar counters. These hardware-related metrics can be complemented by software-
related metrics, obtainable from the Linux kernel or from system tools. Such
metrics include information on the running processes, their memory footprint,
filesystem-related counters, etc.

Selecting and efficiently collecting these metrics is a challenge which we
address in the present work. We developed a new lightweight software daemon,
hpcmd1, that runs on each node, performs measurements periodically in the
background, and finally writes the data to the syslog. The syslog lines from all
nodes are then propagated to the Splunk framework, for which we have devel-
oped special dashboards to perform advanced interactive data analysis. As a
service to the users, we also provide PDF reports downloadable for each job.
These two main components, hpcmd and Splunk dashboards together with few
additional scripts compose a comprehensive suite designed to continuously mon-
itor the performance of all jobs on the HPC systems at the MPCDF. We believe
that other centers could also benefit from our system.

In the following, we first elaborate on the insight and benefits the various
stakeholders of an HPC system may draw from a performance monitoring sys-
tem. Second, we discuss related work before we describe in detail our solution
in the main part of the paper. Finally, we illustrate several cases in which our
system has already proven very useful, before closing with a summary.

2 Benefits from an HPC Performance Monitoring System

The following four groups of key stakeholders of an HPC system benefit from
the insight enabled by HPC performance monitoring data.

Computational scientists and other users who run jobs on an HPC system typ-
ically have to apply for CPU hours. They have a strong intrinsic motivation to
use the resources as efficiently as possible, in order to maximize the scientific
knowledge they can obtain from the results. Based on HPC monitoring data,
experienced users are often capable of identifying and fixing issues themselves,
e.g., by applying appropriate compiler optimization for a specific architecture.
1 hpcmd stands for HPC monitoring daemon.



MPCDF HPC Performance Monitoring System 615

Less skilled users might be motivated to approach application support when
facing poor performance indicated by monitoring data.

Application support at a computing center provides technical support and is
in charge of porting and optimizing applications for the HPC systems. HPC
performance monitoring data enables application support to detect problematic
jobs, and consequently, to proactively approach users who are potentially in need
of assistance.

System administrators may benefit from performance monitoring data, e.g., to
better judge the impact of software updates, security patches, and hardware set-
tings. Potential changes in application performance after some maintenance work
can be traced in an objective way based on current and historical performance
data.

Management is interested in learning performance numbers that represent the
actual resource utilization in addition to knowing the allocation of plain CPU
hours, a metric that has been widely used up to now to quantify the resource
share. Moreover, performance data gathered on present systems can be used to
steer decisions for the procurement of future HPC clusters. For example, looking
at a roofline plot with measurement data from most used applications enables
decision makers to judge quickly if these applications are limited by the memory
bandwidth or by the peak floating-point performance, and thereby if investing
in new architectures with higher memory bandwidths would pay off. Similarly,
analysis of network traffic may hint at applications that would benefit, e.g., from
higher network bandwidth or lower latency. Finally, performance data documents
to which degree GPUs are actually used, especially on multi-GPU nodes. In these
respects, HPC performance monitoring data helps to close important information
gaps.

3 Related Work

There are at least two big challenges regarding the implementation of a HPC
performance monitoring system that have been addressed by various solutions
in recent years.

The first, data-related, challenge is to choose which metrics should be tracked,
how to interpret the collected data, how to identify performance bottlenecks, and
how to ultimately detect if there is a significant problem in an application code.
There are several software tools that can be used to analyze the performance
of a running job. For example, for CPU codes, there are Linux perf [15], PAPI
[3], LIKWID [14], and VTune [7], among others. These tools provide access to
hardware counters which are then often analyzed using a “top-down” method
[17]. One compares the counter values to the theoretical peak values of the
machine and deduces how well the compute resources are utilized. However,
there are cases when utilization values appear rather low even for well-optimized



616 L. Stanisic and K. Reuter

applications, e.g., due to the nature of the problem the code is solving or the
required data structures. Hence, looking only at the utilization numbers can
be misleading, and one needs to be careful before declaring that a job has a
performance issue. To alleviate this effect, some researchers prefer to rely on
cross-comparisons between different runs and applications [5], recently proposing
machine learning techniques for such analysis [2,9].

The second, technical, challenge is to design and deploy a system that works
reliably on (multiple) large HPC clusters while introducing minimal overhead,
efficiently collects the data from many nodes into a centralized database, and
provides a powerful framework for analysis and visualization. For example, the
TACC stat framework has been developed to achieve these goals [4,5]. It com-
bines information collected by various standard Linux tools and some custom
tools, e.g., REMORA [10], to monitor resource utilization at the Texas Advanced
Computing Center. Next, the PerSyst monitoring system developed at the Leib-
nitz Supercomputing Center comprises a hierarchical system of collectors and
aggregators, a central database and a web interface to monitor large-scale HPC
systems [6]. Thanks to the data aggregation using quantiles, this tool is well
suited for jobs that run on a large number of nodes. The LIKWID Monitor-
ing Stack targets small to medium scale systems [11]. It is partly based on the
LIKWID performance tool suite developed by the same group of authors [14].
Finally, the Lightweight Distributed Metric Service (LDMS) was developed for
performance monitoring at Sandia National Labs [1]. This framework provided
very useful information for the system administrators and users, while having
minimal impact on the application performance.

All the aforementioned solutions gave us valuable ideas and helped us to
better define the goals for our approach. However, there are several reasons why
we decided to develop our own system. Most importantly, all of these systems
either rely on data-measurement software or on infrastructure setups (e.g., batch
system configuration) that are specific to the center where they have been devel-
oped, and hence, would be difficult to adapt and maintain. Moreover, many of
the existing approaches appear to rely on complex hierarchical communication
layers and custom web-based visualization platforms, while we found ourselves in
the convenient position to use rsyslog and Splunk systems that had already been
deployed at the MPCDF for other monitoring purposes, e.g., the monitoring of
the system “health” status.

4 Solution Architecture

In this section, we detail on how our system can obtain, collect, analyze, and
present performance data from HPC clusters, addressing the needs of all stake-
holder groups mentioned in Sect. 2.

Figure 1 presents a schematic overview on the architecture of the MPCDF
HPC monitoring system. The design was motivated by the principle of simplicity
and the focus on key questions which implied the reuse of existing infrastructure.
To this end, our programming efforts focused on two major components (shown
with red background in Fig. 1).



MPCDF HPC Performance Monitoring System 617

Fig. 1. Schematic showing the architecture of the MPCDF HPC monitoring system.
The hpcmd middleware and various Splunk analysis dashboards were written by the
authors, while the other infrastructure had already been existing. Automatic analysis
using machine learning techniques is under development. (Color figure online)

The first component, labeled hpcmd , is a lightweight middleware that runs as
a daemon in the background on each compute node, performs measurements at
regular intervals, and computes derived metrics if necessary. A thorough evalua-
tion of the overhead of hpcmd showed that the impact on the application perfor-
mance is negligible, e.g., being much smaller than the influence of unavoidable
machine and OS jitter on the application runtime. hpcmd is written in plain
Python (both versions 2.7 and 3 are supported) and configurable via a flexible,
hierarchical YAML configuration file. Measured values are simply written by
hpcmd to syslog messages, forwarded via rsyslog, and finally fed into a Splunk
repository.

The second major component are dashboards for Splunk written in XML,
that we have developed for performance data analysis and visualization. The
Splunk [12] platform excels in the analysis of large volumes of temporally ordered
log-line data via a powerful query language. Hence, Splunk is suitable for crunch-
ing performance data collected from many nodes over long periods of time. After
having collected performance data for nearly one year now, we do not notice any
performance degradation and do not see any reason to limit the storage lifetime
of the data. There are several viable alternatives to Splunk which could be used
similarly, such as the open-source ELK (Elasticsearch, Logstash, Kibana) stack,
the InfluxDB-Grafana stack, or even custom frameworks. However, the Splunk
infrastructure was already installed and used at MPCDF systems for system
monitoring, and thus it was the natural choice to employ it for performance



618 L. Stanisic and K. Reuter

monitoring as well. We are considering the aforementioned alternative solutions
for evaluation in the future.

In the rest of this section, we detail on the different aspects of the data flow
as depicted on the top of Fig. 1.

4.1 Data Sources

From a technical point of view, today’s HPC hardware and software offer a
plethora of metrics to look at. Given these possibilities, it is necessary to carefully
choose a set of observables essential to yield valuable insight, and at the same
time, keep the impact on the application performance negligible and the data
volume of the measured values tractable. hpcmd uses the following data sources.

CPU Core Events: State-of-the-art CPUs provide performance monitoring units
(PMUs) for each core. These can be programmed to count events, e.g., scalar
and vector instructions, cache misses, and many more. Since the PMUs are addi-
tional programmable hardware units, the event counting induces only minimal
overhead, typically not noticeable for the running scientific application.

CPU Uncore Events: In addition to the core PMUs, modern CPUs provide
uncore PMUs that enable to monitor, e.g., the memory controller traffic and
the traffic between different sockets. To access the core and uncore counters, the
Linux perf subsystem is used.

GPU: At present, monitoring GPUs is much more difficult than CPUs due to
the dependencies on proprietary tools and APIs from hardware vendors, as well
as due to the lack of publicly available counter specifications. Nevertheless, it is
possible to track some values, such as the memory occupation and the overall
utilization, which we do using the nvidia-smi tool.

I/O: Large parallel file systems are crucial components of any HPC system.
They are a shared resource, and wrong usage may affect not only a single prob-
lematic job but potentially even the whole system. Monitoring the I/O traffic
and characteristics per node can give valuable hints at harmful use patterns.
Since Spectrum Scale (GPFS) is the preferred file system at MPCDF, its CLI
tools are used for monitoring.

Network: High-speed networks represent the backbone of an HPC system. Com-
munication characteristics at per-node resolution complement many other met-
rics with valuable insight. Relevant counters can be queried using the CLI tools
that come with InfiniBand or OmniPath network adapters.

Software: The Linux kernel complemented by various system tools gives access to
a rich set of application-related metrics, e.g., the number of tasks (processes and
threads) actually launched by the job, the pinning of these tasks, the memory
usage, the job’s environment variables, and many more. The hpcmd software



MPCDF HPC Performance Monitoring System 619

accesses this kind of information using the ps and numastat tools, and the /proc
virtual filesystem in some cases.

Any of these observables can be sampled at regular intervals by hpcmd
and used directly or after some arithmetic manipulation (e.g., computing the
GFLOP/s) as performance metrics.

4.2 Data Collection

On each compute node, an instance of the hpcmd middleware is running in the
background as a systemd service, measuring at regular intervals and sequen-
tially collecting data from the aforementioned sources. The measurements are
synchronized across the nodes via the system clock, avoiding any communication
between nodes. In addition to a continuous operation mode, the hpcmd daemon
supports the widely used SLURM batch system [8], and determines the state
of a node (allocated, idle, shared) and job information automatically. We are
typically monitoring only nodes which have a single job running on them, i.e.,
data is not collected for nodes that are currently idle or shared, as such cases are
considered less relevant in our context and would be much harder to interpret.
hpcmd allows for a highly flexible configuration, e.g., to perform more frequent
sampling or per-core monitoring of performance counters. Moreover, users may
suspend the hpcmd systemd service during the runtime of a job to get exclu-
sive access to hardware counters, e.g., for running performance profilers such as
VTUNE or using libraries such as PAPI. Measured values and derived metrics
are written as log lines containing key-value pairs to the local syslog file. For
further details, we kindly refer the reader to the documentation of hpcmd [13].

4.3 Data Aggregation

From each monitored node, the hpcmd log lines are transported via rsyslog,
collected, and finally fed into a central Splunk system. At MPCDF, HPC systems
are configured such that the rsyslog traffic goes via the Ethernet link, not putting
any load on the high performance network reserved for the applications. For
large HPC systems, there may be intermediate (per-“island”) rsyslog servers.
Operating at sampling intervals on the order of minutes we do not see any
scalability issues for our present and future HPC cluster sizes. See Sect. 5 for
some practical experience.

4.4 Data Visualization and Interactive Analysis

Data visualization and analysis takes place in the Splunk system, for which we
have developed several dashboards providing views at different levels of detail.

Roofline View: The roofline model is a simple yet intuitive performance model
widely used in performance engineering [16]. This type of overview is suitable
in particular when the performance of a job needs to be condensed into only



620 L. Stanisic and K. Reuter

Fig. 2. Overview on a selection of jobs from the previous 24 h in a roofline plot on a
specific HPC system. Each circle represents a job with its average performance, where
the circle sizes are scaled by the actual CPU core hours of the jobs.

two numbers and related to the theoretical peak values of the machine. In a
2d system of coordinates, the horizontal axis denotes the arithmetic intensity
in FLOP/Byte, while the vertical axis denotes the performance in GFLOP/s.
We pragmatically chose to solely rely on CPU-RAM memory bandwidth for the
roofline plot, computed from CPU uncore events. For the application support
staff, the entry point for the inspection of performance data in Splunk is a
roofline-type of overview plot, as shown in Fig. 2. All finished jobs that fall into a
certain time frame and satisfy certain constraints, which are specified by the user
using drop-downs on the top of the web-page, are displayed as colored circles,
scaled in size by their consumption of CPU hours. This dashboard represents an
intuitive performance map showing the current or historic utilization status of
the system. Clicking on a circle in the plot or on a line in the data table below
forwards to the detailed job view.

Detailed Job Views: This dashboard provides a detailed view on the job’s per-
formance characteristics through temporal plots of the performance metrics
described in Subsect. 4.1. An excerpt from the dashboard is shown in Fig. 3.
To make the data from large jobs more comprehensible, a second dashboard is
provided that displays the data using statistical variables such as maximum,
median, and minimum curves, taken from all nodes or sockets. These two dash-
boards are intended to be used by the application support staff through the inter-
active Splunk web interface. For the users, static PDF reports are provided for
download containing the same information. Based on these detailed job views it
is typically possible to draw well-grounded conclusions about performance issues
of application codes.



MPCDF HPC Performance Monitoring System 621

Fig. 3. Excerpt from a detailed view on a specific job, showing the achieved perfor-
mance in GFLOP/s, the memory bandwidth, and the algorithmic intensity for each
socket. In addition to the averaged and maximum values shown in the table, plots over
time are available per socket. Moreover, the Splunk dashboard contains about 30 more
plots for other CPU, GPU, network, filesystem, and software metrics (not shown here).

Specialized Views: System administrators and the management of a computing
center are often interested in specific analysis of many jobs. To obtain such
information, they can submit custom queries to the Splunk database. As some
of their questions are recurrent, we have developed several dashboards to ease
their access to the data. Currently we are providing plots that show the most
executed applications by core hours, jobs that reserved GPU nodes without using
GPUs, jobs that reserved large memory nodes without using much memory, and
jobs that use less than half of the available CPU cores.

4.5 Per-job Reports for Users

To make the performance data accessible to the users, a performance report can
be generated for each job and provided as a PDF file for download via a web
server after login. We decided not to grant the users access to Splunk directly
for security, data protection, and administrative reasons.

4.6 Data Analytics and Automation

On the MPCDF HPC systems, several thousands of jobs are typically run per
day. To be able to cope with these numbers and the massive amount of generated
data, an automatic data analytics system is indispensable in order to identify



622 L. Stanisic and K. Reuter

problematic jobs on the systems, and notify both support staff and users in crit-
ical cases. The data analytics module of the HPC monitoring system is currently
under development, but goes beyond the scope of this paper.

5 Scenario- and Case-Studies

The HPC monitoring system is used to continuously monitor the HPC systems
DRACO (≈ 940 nodes, ≈ 32K cores) and COBRA (≈ 3250 nodes, ≈ 130K
cores) at the MPCDF. These HPC systems are heterogeneous, containing nodes
with different CPU micro-architectures, with different RAM sizes, and with or
without GPU accelerators of different models. The system is configured to write
performance data every 10 min which generates up to 3 KiB of raw log line
data per node. Hence, the total data volume per sample for both machines is
about 12.5 MiB, which amounts to about 1.8 GiB per day in total. Note that the
rsyslog system is able to easily cope with that data volume, making complex
custom hierarchical transport agents unnecessary in our case. In the following,
we illustrate with 4 examples how the HPC monitoring system already proved
to be helpful in practice at the MPCDF.

Suboptimal Job Scripts: We provide users with a detailed job-specific report (see
Subsect. 4.5 for more details), based on which they can quickly spot potential
errors related to their job scripts. We are aware of several cases where HPC
monitoring was already helpful in this respect.

Hanging Jobs: Even though HPC clusters are supposed to be used to run sta-
ble programs, there are still jobs that encounter problems at runtime without
shutting down in a controlled manner. For example, in cases of livelocks or dead-
locks, the processes of a job continue to run without actually executing any use-
ful instructions, thereby occupying the reserved resources. This can potentially
waste a large number of CPU hours. Such “hanging” jobs are typically mani-
fested by very low values in certain performance metrics, especially in GFLOP/s
and IPC. To report on a specific example, it was observed from the HPC mon-
itoring data that jobs from a particular user often demonstrated the aforemen-
tioned behavior. We contacted the user and showed the plots that illustrated the
performance problem. The user then investigated the code and fixed the issue.
Catching this particular case was achieved unintentionally, by manual inspec-
tion of the data, however an automatic detection system for such types of jobs
is under development.

Verification of the Utilization of Extra Resources: To satisfy the compute needs
for a broad spectrum of users, computing centers often equip parts of their HPC
systems with nodes that contain very large amounts of RAM memory or with
nodes that contain GPU accelerators. Sometimes, users with applications that
require only moderate amounts of memory or lack GPU support, by mistake or
by convenience, allocate such nodes with extra resources instead of regular ones.



MPCDF HPC Performance Monitoring System 623

This is not a problem if these nodes would otherwise be idle, but if not, such
allocations mean a waste of resources and increased queueing times for legitimate
users. HPC monitoring can easily detect this type of wrong usage and warn staff
or the users directly.

Coarse-Grain Overview for Experts: The HPC monitoring system has not been
designed for in-depth code profiling. Nevertheless, it can still provide coarse-
grain performance information that can be useful to code developers and appli-
cation support. Indeed, several members of the application support group at the
MPCDF routinely use HPC monitoring to inspect the performance of applica-
tions they personally contributed to during development. In most cases, HPC
monitoring confirmed their expectations. Interestingly, there were some occa-
sions when even these experts were surprised. In fact, the Splunk analysis of the
data showed that the performance in some stages of the application was much
worse than expected, which had notable influence on the overall runtimes of the
programs. The reason was the lack of code vectorization for some code blocks
that were initially considered less relevant. As a next step, the developers pro-
filed the code with more specialized tools which confirmed the observation from
the Splunk dashboards and were able to point to the exact lines of code that
caused the performance issue.

6 Summary and Outlook

This paper reports on the requirement analysis, the design, and the implemen-
tation of the MPCDF HPC performance monitoring system. Our solution is
simple, modular, lightweight, mostly based on standard Linux tools, and thus
it can easily be adopted by other HPC centers. The system is in operation to
comprehensively monitor the performance of all jobs running on two large HPC
systems at the MPCDF with about 4200 nodes and more than 160.000 CPU
cores in total. After several months of production we have collected a large
amount of job-related performance data, and doing data analytics on it will be
the main topic of our future work. Additionally, we plan to extend the deploy-
ment of our performance monitoring system to more (medium-sized) clusters at
the MPCDF, and will continue to develop and maintain the hpcmd middleware.

Software: The hpcmd software is free of charge and publicly available for down-
load at https://gitlab.mpcdf.mpg.de/mpcdf/hpcmd. Online documentation is
available at http://mpcdf.pages.mpcdf.de/hpcmd. The software is licensed under
the permissive MIT license. We kindly request to cite this paper in case the soft-
ware is used and reported on in publications.

Acknowledgements. We are grateful to Christof Hanke for the continuous support
with Splunk and the implementation of major parts of the PDF generation web ser-
vice. We are indebted to Alexis Huxley and Christian Guggenberger for the regular
(re)installation of the HPC monitoring software on the HPC systems at short notice.
Finally, we thank Lorenz Hüdepohl, Andreas Marek, Pavel Kus, Sebastian Ohlmann,

https://gitlab.mpcdf.mpg.de/mpcdf/hpcmd
http://mpcdf.pages.mpcdf.de/hpcmd


624 L. Stanisic and K. Reuter

and Markus Rampp from the application support group for many valuable suggestions
and fruitful discussions.

References

1. Agelastos, A., et al.: The lightweight distributed metric service: a scalable infras-
tructure for continuous monitoring of large scale computing systems and appli-
cations. In: SC 2014 Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pp. 154–165, November
2014

2. Borghesi, A., et al.: Online Anomaly Detection in HPC Systems. Preprint, February
2019. http://arxiv.org/abs/1902.08447

3. Browne, S., et al.: PAPI: a portable interface to hardware performance counters.
In: Proceedings of Department of Defense HPCMP Users Group Conference, June
1999

4. Evans, R.T., et al.: Understanding application and system performance through
system-wide monitoring. In: 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pp. 1702–1710, May 2016

5. Evans, T., et al.: Comprehensive resource use monitoring for HPC systems with
TACC stats. In: 2014 First International Workshop on HPC User Support Tools,
pp. 13–21, November 2014

6. Guillen, C., Hesse, W., Brehm, M.: The persyst monitoring tool. In: Lopes, L.,
et al. (eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 363–374. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-14313-2 31

7. Intel: Intel VTune Performance Analyzer (2008). http://www.intel.com/cd/
software/products/asmo-na/eng/vtune/239144.htm

8. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

9. Park, B.H., et al.: Big data meets HPC log analytics: scalable approach to under-
standing systems at extreme scale. In: CoRR (2017)

10. Rosales, C., et al.: Remora: a resource monitoring tool for everyone. In: Proceedings
of the Second International Workshop on HPC User Support Tools (HUST 2015),
pp. 3:1–3:8. ACM, New York, NY, USA (2015)

11. Röhl, T., et al.: Likwid monitoring stack: a flexible framework enabling job specific
performance monitoring for the masses. In: 2017 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 781–784, September 2017

12. Splunk: SIEM, AIOps, Application Management, Log Management, Machine
Learning, and Compliance (2019). https://www.splunk.com/

13. Stanisic, L., Reuter, K.: MPCDF HPC Performance Monitoring System (2019).
http://mpcdf.pages.mpcdf.de/hpcmd/

14. Treibig, J., et al.: LIKWID: a lightweight performance-oriented tool suite for x86
multicore environments. In: 2010 39th International Conference on Parallel Pro-
cessing Workshops, pp. 207–216, September 2010

15. Weaver, V.M.: Linux perf event features and overhead. In: The 2nd International
Workshop on Performance Analysis of Workload Optimized Systems, FastPath
(2013)

http://arxiv.org/abs/1902.08447
https://doi.org/10.1007/978-3-319-14313-2_31
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://www.splunk.com/
http://mpcdf.pages.mpcdf.de/hpcmd/


MPCDF HPC Performance Monitoring System 625

16. Williams, S., et al.: Roofline: an insightful visual performance model for multicore
architectures. Commun. ACM 54, 65–76 (2009)

17. Yasin, A.: A top-down method for performance analysis and counters architecture.
In: 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 35–44, March 2014


	MPCDF HPC Performance Monitoring System: Enabling Insight via Job-Specific Analysis
	1 Introduction
	2 Benefits from an HPC Performance Monitoring System
	3 Related Work
	4 Solution Architecture
	4.1 Data Sources
	4.2 Data Collection
	4.3 Data Aggregation
	4.4 Data Visualization and Interactive Analysis
	4.5 Per-job Reports for Users
	4.6 Data Analytics and Automation

	5 Scenario- and Case-Studies
	6 Summary and Outlook
	References




