
CCAMP: OpenMP and OpenACC
Interoperable Framework

Jacob Lambert1(B), Seyong Lee2, Allen Malony1, and Jeffrey S. Vetter2

1 University of Oregon, Eugene, USA
{jlambert,malony}@cs.uoregon.ed

2 Oak Ridge National Laboratory, Oak Ridge, USA
{lees2,vetter}@ornl.gov

Abstract. Heterogeneous systems have become a staple of the HPC
environment. Several directive-based solutions, such as OpenMP and
OpenACC, have been developed to alleviate the challenges of program-
ming heterogeneous systems, and these standards strive to provide a sin-
gle portable programming solution across heterogeneous environments.
However, in many ways this goal has yet to be realized due to device-
specific implementations and different levels of language support across
compilers. In this framework we aim to analyze and address the dif-
ferent levels of optimization and compatibility between OpenACC and
OpenMP programs and device compilers. We introduce the CCAMP
framework, built on the OpenARC compiler, which implements language
translation between OpenACC and OpenMP, with the goal of exploit-
ing the maturity of different device-specific compilers to maximize per-
formance for a given architecture. We show that CCAMP allows us to
generate code for a specific device-compiler combination given a device-
agnostic OpenMP or OpenACC program, allowing compilation and exe-
cution of programs with specific directives on otherwise incompatible
devices. CCAMP also provides a starting point for a more advanced
interoperable framework that can effectively provide directive transla-
tion and device, compiler, and application specific optimizations.

Keywords: OpenMP · OpenACC · Directive-based programming ·
Heterogeneous computing · CCAMP

1 Introduction

Coincident with the breakdown of Dennard Scaling and the slowing of Moore’s
law, heterogeneous programming has emerged as an alternative to traditional
homogeneous computation [11]. The explosion in popularity of GPGPU pro-
gramming, and now other devices like many-core processors and FPGAs, has led
to the development of several new low-level programming approaches in order to
map computations to these specific devices. Low-level heterogeneous program-
ming approaches like CUDA and OpenCL grant knowledgeable programmers the

c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 357–369, 2020.
https://doi.org/10.1007/978-3-030-48340-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-48340-1_28


358 J. Lambert et al.

ability to write applications catered specifically to unique devices in an attempt
to maximize performance.

However, these low-level device-specific programming approaches sacrifice
the functional and performance portability enjoyed by more traditional homoge-
neous implementations. Rewriting and maintaining different versions of the same
applications for different devices can be unsustainable and error-prone. Further-
more, the low-level device-specific approaches are intimidating and inaccessible
to less experienced programmers.

Several higher-level, directive-based, device-agnostic programming standards
have emerged to address the issues with device-specific implementations. These
standards aim to enable programmers to annotate a general, sequential applica-
tion with simple instructions for parallelism, transferring much of the low-level
specifics to the compiler. However, as we discuss in Sect. 2, these directive-based
approaches come with their own set of issues as well, and the ideal performance
and portability proposed by the standards do not match the current reality.

CCAMP, an OpenACC and OpenMP interoperability framework, exists to
bridge the gap between the current realities of performance and portability
within existing standard implementations, and initial goals and intentions of
these directive-based standards. CCAMP also provides programmers who only
have experience with one directive-based programming model an easy alternative
to learning another model by providing a translation framework.

2 Background

A primary goal of the CCAMP framework is to allow programmers to fully utilize
the OpenMP and OpenACC directive-based programming standards, which have
become a popular option for high-level heterogeneous programming.

OpenMP [3] has been an essential tool in the general parallel programming
environment for decades. With the introduction of directives in the 4.X+ stan-
dards, OpenMP has also become a viable tool for heterogeneous programming,
offering a high-level, offload programming model alternative to languages like
CUDA and OpenCL.

OpenACC [12] is a newer directive-based standard, originally developed as
a high-level alternative to CUDA for GPU computing. While OpenACC differs
from OpenMP with regard to high-level design principles, they share a com-
mon goal of providing programmers with a high-level approach to heterogeneous
programming.

While both OpenMP 4.X+ and OpenACC directives provide a method for
high-level heterogeneous programming, there exist several important issues and
setbacks to using these standards.

A primary issue in the directive-based heterogeneous programming space
is the lack of portability between programming models. Although the goal of
both OpenMP and OpenACC is to provide a portable, high-performance, cross-
platform solution, they are often at the mercy of vendor-specific compiler imple-
mentations. Many devices achieve high performance when using the vendor-
compiler tied to that device, which often supports only one of OpenACC and



CCAMP: OpenMP and OpenACC Interoperable Framework 359

OpenMP. Typically, GPU-centric and CPU-centric ecosystems prefer OpenACC
and OpenMP, respectively. However, even among compilers preferring a specific
directive-based standard, the level of support and implementation strategies for
the standard can vary greatly.

As a result of these issues, both OpenACC and OpenMP 4.X+ fail to achieve
the goal of being portable solutions for heterogeneous systems. One way to
address this gap would involve the development of an optimization that takes a
device-agnostic input code in either OpenACC and OpenMP, and automatically
generates device-optimized code specific to a target device and compiler combi-
nation. The CCAMP framework, with its baseline translation capabilities, is an
initial effort to realize such an optimization framework.

The main contributions of this work are as follows:

– We introduce a novel baseline directive-translation framework, allowing pro-
grammers to automatically flow between standards to utilize the maturity of
single-standard compilers on different devices (Sect. 3).

– We provide a commentary on the current status of the popular OpenACC
and OpenMP compilers and their levels of support for the directive-based
standards across an array of devices (Sect. 4).

– We evaluate the effectiveness of CCAMP’s baseline translation using an array
of different heterogeneous ecosystems. We demonstrate how our compiler-
translated code can perform similarly or even better than hand-written code,
and how CCAMP can allow programmers to execute translated code in
ecosystems that may not support the original source language (Sect. 5).

– We discuss the future of CCAMP and the extensions needed to develop a
fully-fledged framework capable of providing true interoperability between
OpenACC and OpenMP (Sect. 6).

3 CCAMP Framework

In it’s current state, the CCAMP framework consists of three baseline transla-
tions, built on top of the OpenARC [9] compiler framework:

– OpenMP 4.X+ to OpenACC
– OpenACC to OpenMP 4.X+
– OpenACC to OpenMP 3.0

As previous researchers have noted [1,13,14], many directives in OpenMP and
OpenACC have a straightforward, one-to-one directive mapping. These include
data movement, allocation, and update directives, entries to parallel regions, and
general clauses like if, collapse, reduction. Similarly, many of the relevant API
calls have analogous counterparts in both directive sets.

However, despite their surface-level similarities, fundamental differences in
the core of the language designs lead to some challenges in the language trans-
lation process, especially when deciding how to map parallelism to a specified
device.



360 J. Lambert et al.

3.1 OpenARC

CCAMP is built on top of the existing OpenARC [9] framework. OpenARC is
a research-focused OpenACC compiler for heterogeneous systems, and already
contains some language-translation features to generate device-specific code like
OpenCL and CUDA, and OpenMP directive parsing capabilities, inherited from
the base Cetus compiler infrastructure [4].

One of the primary strengths of OpenARC lies in its capabilities to allow
quick prototyping of code transformations, which proved crucial when developing
the transformations and optimizations for CCAMP. Essentially, CCAMP exists
as a translation and optimization layer that follows OpenARC’s initial lexical
analysis and AST generation.

3.2 OpenMP 4.X+ to OpenACC Translation

By design, OpenMP is implemented as a prescriptive set of directives, explic-
itly specifying how parallelism in a program should be mapped to CPU threads
or GPU cores. This prescriptive nature simplifies the OpenMP 4.X+ to Ope-
nACC translation pass, as the burden of specifying parallelism is placed on the
programmer instead of the compiler. Because of this, the prescriptive OpenMP
parallelism clauses can be directly translated to descriptive OpenACC counter-
parts without additional compiler analysis.

However, there are still several OpenMP language constructs that don’t allow
for a direct translation or mapping, including OpenMP critical regions and task-
ing. These non-trivial translations require some additional compiler analysis for
correct translation.

By design, the OpenACC standard does not contain a directive analogous to
the OpenMP critical region. GPUs represented the main target architecture dur-
ing the design of OpenACC, and synchronization constructs like critical regions
typically lead to poor performance on GPUs. To prevent programmers from
experiencing this pitfall, critical regions were intentionally omitted. However,
one use of OpenMP critical regions can be efficiently mapped to GPUs: array-
reductions.

Currently when encountering OpenMP critical regions in the OpenMP to
OpenACC translation, CCAMP emits an error and terminates translation. How-
ever, CCAMP is designed to detect if an OpenMP critical region is used to
encapsulate an array reduction, and can appropriately translate the reduction
using OpenACC reduction clauses.

Another OpenMP construct that does not directly translate to OpenACC is
the recently introduced task construct. OpenMP task translation is not currently
supported by CCAMP, but will likely be a focus of future extensions.

3.3 OpenACC to OpenMP 4.X+ Translation

Unlike OpenMP, OpenACC is designed with a descriptive outlook. The core
principle of OpenACC is that the directives allow a programmer to expose or



CCAMP: OpenMP and OpenACC Interoperable Framework 361

describe parallelism within a program, and shift the burden of mapping paral-
lelism to hardware from the programmer to the compiler. OpenACC also contains
prescriptive directives and clauses to allow the programmer explicitly specify the
mapping of parallelism, but these directives are not mandatory.

This difference in fundamental design complicates the OpenACC to OpenMP
4.X+ translation, as we’re required to generate a prescriptive output from a
descriptive input. In CCAMP, we tackle this issue by applying a compiler analy-
sis to automatically annotate ambiguous OpenACC directives with specific par-
allelism clauses. Using an optimizing-loop-directive-prepossessing pass, we can
automatically assign OpenACC gang and worker clauses to un-annotated loops.

More specifically, CCAMP utilizes OpenARC’s auto-parallelization pass to
mark kernel inner loops as independent when possible, exploiting available par-
allelism. Marked loops are then annotated with OpenACC parallelization clauses
before the direct substitution translations to OpenMP occur.

In addition to the differences in requirements for descriptive detail, CCAMP
also addresses several low-level syntactical differences when translating Ope-
nACC to OpenMP. For example, the requirements on the location of reduction
clauses differ between the standards, and so CCAMP performs a reduction direc-
tive migration pass. Similarly, the requirements on the OpenMP num threads
and simdlen clauses require migration of the corresponding num workers and
vector length OpenACC clauses during translation.

Interestingly, OpenMP lacks a clause analogous to the OpenACC present
clause. To mimic the behavior of the OpenACC present clause, we use an assert()
function call along with the OpenMP omp target is present() API call.

3.4 OpenACC to OpenMP 3.0

Although OpenMP 4.X+ exists as a super-set of OpenMP 3.0-only directives,
in some cases programmers may wish to restrict the translated output to only
employ OpenMP 3.0 directives. On systems without offload capabilities, or with-
out more modern compilers that support newer OpenMP directives and Ope-
nACC, this translation pass allows execution of previously unsupported applica-
tions. Also, because OpenMP 3.0 directive sets are much older and more perva-
sive across compilers, even compilers that do support OpenMP 4.X+ directives
may perform better using the older directives when targeting CPU devices.

CCAMP’s OpenACC to OpenMP 3.0 translation pass is a straight-forward
stripped-down alternative to the OpenACC to OpenMP 4.X+ pass. OpenACC
parallel regions are mapped to OpenMP parallel regions, and outermost Ope-
nACC loop parallelization clauses are mapped to OpenMP parallel for clauses.
The innermost OpenACC parallelization clause is mapped to OpenMP simd
clauses. Intermediate OpenACC parallelization clauses are ignored.

In general, this translation can be useful any time a programmer is target-
ing a CPU device with a compiler that may struggle with the OpenMP 4.X+
directives, which is far from rare. The converse of this translation, OpenMP
3.0 to OpenACC, is not currently included in CCAMP, as this would require



362 J. Lambert et al.

automatic generation of data movement directives, and more complicated anal-
ysis of multi-tier parallelism.

4 Experimental Setting

4.1 Benchmarks

We chose to evaluate the CCAMP framework using the SPEC Accel Bench-
mark Suite [7] for several reasons. Most importantly, SPEC Accel already con-
tains hand-optimized OpenACC and OpenMP implementations of the same set
of applications. This provided an ideal baseline against which to compare our
code translated by CCAMP. Additionally, SPEC Accel is well-supported, well-
documented, and representative of a wide array of common scientific program-
ming applications. While SPEC Accel contains both C and Fortran applications,
we only target the C applications, as CCAMP does not currently support Fortran
OpenACC and OpenMP codes.

We used the following SPEC Accel applications in our evaluations:

– X03 ostencil, (303 for OpenACC, and 503 for OpenMP) a thermodynamics
stencil kernel

– X14 omriq, an application widely used in the medical field
– X52 ep, an embarrassingly parallel application
– X54 cg, a conjugate gradient kernel
– X57 csp, a scalar penta-diagonal solver, and
– X70 bt, a block tri-diagonal solver for 3D PDEs

The X52, X54, X57, and X70 benchmarks are adapted from the NAS
Parallel Benchmark Suite [2], a benchmark set widely used for evaluating
performance on heterogeneous systems. We also initially explored evaluating
CCAMP using the Rodinia benchmark suite. Like SPEC Accel, Rodinia con-
tains both hand-optimized OpenACC and OpenMP implementations. However,
the OpenMP offloading implementations in Rodinia are optimized specifically
for Xeon Phi devices, and perform poorly on GPU devices. This shortcoming
further motivates the necessity of a framework like CCAMP, which can be used
to generate device-agnostic OpenMP code from the existing Rodinia OpenACC
implementations.

4.2 Devices

We evaluated CCAMP using a wide array of the most commonly used CPU and
GPU devices in heterogeneous programming. The different devices are each cou-
pled with vendor-specific compilers, which typically exhibit a preference between
OpenMP and OpenACC. This further motivates a fluid way to translate between
directive sets.



CCAMP: OpenMP and OpenACC Interoperable Framework 363

We evaluated CCAMP using three CPU systems:

– Xeon CPU: Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10 GHz, 32 CPUs, 1
thread per core, 16 cores per socket, 2 sockets

– Xeon Phi: Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40 GHz, 272 CPUs, 4
threads per core, 68 cores per socket, 1 socket

– Power9: IBM POWER9, altivec supported, 176 CPUs, 4 threads per core, 22
cores per socket, 2 sockets

We also evaluated CCAMP using two GPU systems:

– P100: Nvidia Tesla P100-PCIE-12 GB (Pascal), Xeon CPU host (as men-
tioned above)

– V100: Nvidia Tesla V100 SXM2 16 GB (Volta), Power9 host (as mentioned
above)1

4.3 Compilers

Across different devices, vendor-supplied compiler frameworks often achieve
the best performance on a specific device. In the context of directive-based
approaches, these vendor-supplied compilers may only support one of OpenACC
and OpenMP, or may strongly prefer one over the other. One of the primary goals
of CCAMP is to allow programmers to exploit this compatibility between devices
and vendor-compilers regardless of the chosen directive-based approach (using
language translation).

To evaluate the effectiveness of CCAMP, we employed a breadth of compilers,
some tied to specific devices (IBM xlc, Intel icc) and others multi-platform (Clang
clang, PGI pgcc).

IBM’s xlc C/C++ compiler is restricted to the Power9 and attached V100
devices. Currently, this compiler only supports OpenMP, although it does sup-
port both OpenMP host and OpenMP offload computation models. We use IBM
XL C/C++ for Linux, V16.1.1. For evaluations on the Power9 device, we use
the flags “-O3 -qsmp=noauto:omp -qnooffload”, and for the V100 device we use
the flags “-O3 -qsmp=noauto:omp -qoffload”.

Intel’s icc C/C++ compiler currently only supports OpenMP, with support
for both host Xeon CPU devices, and Xeon Phi devices through OpenMP offload-
ing. For CCAMP evaluations on the Xeon Phi, we use icc version 19.0.1.144
(gcc version 4.8.5 compatibility), and the following flags: “-O3 -xMIC-AVX512
-qopenmp -qopenmp-offload=host”.

The open-source LLVM-based C/C++ compiler clang is not tied to a specific
device. While clang doesn’t currently support OpenACC, it fully supports the
OpenMP host computation model, and there are ongoing efforts to develop full
support for the OpenMP offloading model. For evaluations using clang on the
Xeon CPU, we use release version 8.0.0 (git tag llvmorg-8.0.0-rc5). Support for
correct handling of math functions in clang’s OpenMP offload model has only
1 The Power9+V100 configuration is very similar that of the Summit supercomputer

nodes.



364 J. Lambert et al.

recently been added. For this reason, we installed clang directly from the master
branch (git hash 431dd94) for evaluations using clang and the P100 device.
When targeting the Xeon CPU, we use the flags “-Ofast -fopenmp -fopenmp-
targets=x86 64”, and for the P100 device we use “-Ofast -fopenmp -fopenmp-
targets=nvptx64”.

Although PGI’s pgcc C/C++ compiler is now tied to Nvidia, pgcc supports
all of the devices used in this work. However, to limit the project scope we only
evaluate CCAMP using pgcc on the Xeon CPU, P100, and V100 devices. The
pgcc compiler is the only compiler used in the evaluations that currently supports
OpenACC. PGI’s pgcc supports OpenMP 3.0 and a subset of OpenMP 4.X+
directives, although they do not yet support data transfer directives, limiting the
OpenMP evaluations to host CPU devices. On the Xeon CPU and P100 devices
we use version 18.10-0 64-bit (Community Edition). On the V100 device, we
use the slightly older 18.4 edition. On the Xeon CPU we use the flags “-V18.10
-fast -Mnouniform -acc -ta=multicore” for OpenACC programs, and “-V18.10
-fast -Mnouniform -mp -Mllvm” for OpenMP programs. On the P100 and V100
devices, which are only supported via OpenACC, we use the flags “-V18.10
-fast -Mfprelaxed -acc -ta=tesla:cc60” and “-V18.4 -fast -Mnouniform -acc -
ta=tesla:cc70” respectively.

Ideally for a more fair evaluation we would have no variations in compiler
versions across different devices. However, this became a challenge due to the
different levels of access and privileges across ecosystems, and the goal of using
the most recent compiler releases. In future extensions to CCAMP, we plan to
rectify these inconsistencies.

While a complete list of the most commonly used compilers in heterogeneous
programming would include the GNU C/C++ Compiler gcc, we chose to exclude
it from this work in progress due to difficulties with installation for OpenMP
and OpenACC offloading, and to limit the scope of the project. We fully intend
to include gcc on future works extending CCAMP.

5 Evaluation Results

We evaluated the effectiveness of the CCAMP framework using an exhaustive
approach, compiling and testing as many different applications with as many
different device+compiler combinations as possible. This required a significant
effort, including installing software across different devices, and wading through
the different levels of support for the multiple compilers.

5.1 OpenACC to OpenMP 4.X+ Baseline Evaluation

To evaluate the effectiveness of CCAMP’s OpenACC to OpenMP 4.X+ baseline
translation pass, we first evaluated the hand-coded OpenMP 4.X+ applications
in the SPEC Accel benchmark suite without applying any transformations or
optimizations. We used the resulting execution times as a baseline by which
to compare the execution times of our translated (from OpenACC) OpenMP
4.X+ code.



CCAMP: OpenMP and OpenACC Interoperable Framework 365

In Fig. 1, we see the results of this comparison. Each bar represents the
average (across all benchmarks) ratio of the translated runtime divided by the
hand-coded runtime. Values below 1 represent cases where the translated code
performed better, while values above 1 represent cases where further improve-
ments need to be made to the translation pass to match the hand-coded per-
formance. While the translation pass still has room for improvement on some
device+compiler combinations, it performs acceptably well for many of the other
combinations.

Averaging results across different benchmarks certainly results in loss of infor-
mation. However the very large number of experimental results across devices,
compilers, and benchmarks required a heavy amount of aggregation for a sim-
plistic overarching view of the relative performances between the original and
translated codes. We aim to provide more detailed evaluations focused on spe-
cific applications in future works, including profiling analysis and investigations
into differences in performance.

Fig. 1. Run-time comparison of translated OpenMP 4.X+ with hand-coded OpenMP
4.X+

5.2 OpenMP 4.X+ to OpenACC Baseline Evaluation

Similarly to the previous translation, to evaluate CCAMP’s OpenMP 4.X+ to
OpenACC translation pass we compare hand-coded OpenACC execution times
with translated code times.

In Table 1, we list runtimes (in seconds) on the devices we used to evaluate
this translation pass. Because the PGI compiler is the only compiler evaluated



366 J. Lambert et al.

that currently supports OpenACC (in this case translated from OpenMP 4.X+),
PGI is used for all of the compilations in the figure.

We see that in most cases the translated code performs very similarly to
the hand-coded counterparts. The dashed values represent cases where we failed
to correctly execute the application, primarily due to unsupported features or
errors pending correction in CCAMP.

Table 1. Run-time comparison of translated OpenACC with hand-coded OpenACC.
Time in seconds.

Device Translation X03 X14 X52 X54 X57 X70

Xeon CPU None 82.06 670.03 184.84 82.06 102.73 153.02

Xeon CPU Baseline 81.39 670.15 184.58 182.17 88.18 -

P100 None 26.45 146.22 76.09 61.66 45.17 19.31

P100 Baseline 26.67 146.37 65.57 51.48 - 42.802

V100 None 12.33 38.84 47.71 33.04 20.19 9.14

V100 Baseline 13.95 33.35 52.91 31.42 - 25.03

6 Related Work

Several previous works explore the performance and portability of directive-
based approaches across heterogeneous systems. In [8], Vergara et al. evaluate
OpenMP applications on Power8 and Tesla devices using the IBM and clang
compilers. In [10], Lopez et al. experiment with OpenACC and OpenMP imple-
mentations of core computational kernels, including Daxpy, Dgemv, Jacobi, and
HACCmk. They evaluate the performance of these implementations using the
Cray, Intel, and PGI compilers on Nvidia GPU and Intel Xeon Phi devices. In [6],
Gayatri et al. implement a single material science kernel, and evaluate OpenMP
3.0, OpenMP 4.0, OpenACC, and CUDA implementations on Xeon CPUs, Xeon
Phis, Nvidia P100s, and Nvidia V100s. This closely resembles the languages
and devices evaluated in our work, although we evaluate multiple applications.
Gayatri et al. also discuss their experiences with different compilers, including
the PGI, Intel, IBM, and GCC compilers, and the then-current status of their
directive-based language support. These works all highlight the high variabil-
ity in performance of directive-based approaches across different compiler and
device combinations, which helps to motivate the utility of a framework like
CCAMP.

There are also several previous works that research the potential of an Ope-
nACC and OpenMP translation framework. In [14], Wolfe explores this idea and
discusses some obvious and some more-subtle challenges that would arise when
implementing such a framework. He also discusses motivations and significance of
developing such a framework, which are in line with the motivations we present



CCAMP: OpenMP and OpenACC Interoperable Framework 367

here. In [1], Sultana et al. present a prototype OpenACC to OpenMP trans-
lation scheme, which consists of a combination of automated directive transla-
tion performed using the Eclipse user interface and manual user-performed code
restructuring. This work represents a promising first attempt to develop an auto-
mated translation framework, although they only evaluate a single benchmark
and support only a subset of the OpenACC standard. In [13], Pino et al. describe
a mapping between the most common directives of OpenACC and OpenMP, and
compare the performance between the two different sets of directives on several
SHOC and NAS benchmarks, but do not propose any automated scheme or
framework to perform the actual translation. In [5], Denny et al. present an
ongoing work to develop an OpenACC to OpenMP 4.5 translator (Clacc) within
the clang compiler, as a means to allow clang to support OpenACC. Clacc rep-
resents a rigorous effort to develop a translation scheme supporting the full
OpenACC standard, which accomplishes the goal of our OpenACC to OpenMP
4.5 baseline translation, but is constrained by the clang compiler, preventing it
from utilizing the maturity of device-specific back-end compilers.

In contrast to previous works, that either represent only a conceptualization
of a translation scheme, or in the case of Clacc [5] are tied to a specific device-level
compilers, CCAMP presents an actual implementation of directive translation
that is applicable across different device ecosystems and integrated with several
different back-end compilers.

7 Conclusion

As systems become more exotic and specialized, the HPC community has expe-
rienced an increased demand for high-level, portable, programming solutions.
While directive-based standards and approaches aim to provide a solution, they
fail to realize this goal due to competition between vendor compilers, and incon-
sistent levels of standard support.

In this work, we present the CCAMP framework, with the goal of allowing
programmers to seamlessly flow between different directive sets, enabling pro-
grammers to execute directive-based code on previously incompatible devices.
We introduce two primary translation passes, and show that these passes can
generate output code in a different directive context that performs similarly
to hand-coded programs. We also provide a commentary on the current sta-
tus of the different devices and compilers commonly used in heterogeneous
programming.

In the future, we plan to develop and extend CCAMP in several ways. A pri-
mary goal is to develop an optimized translation pass that can generate not only
generalized directive sets in different languages, but also directive sets specifi-
cally catered toward an indented target device. We also plan to incorporate other
compilers (GCC, Clacc), and other devices (FPGAs). Finally we would like to
expand our evaluations to include other benchmarks besides SPEC Accel.



368 J. Lambert et al.

Acknowledgements. This research was supported in part by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

This manuscript has been co-authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Govern-
ment retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan.

References

1. Arnold, G., Calvert, A., Overbey, J., Sultana, N.: From OpenACC to OpenMP 4:
toward automatic translation. In: XCEDE 2016, Miami, FL (2016)

2. Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS parallel benchmarks 2.0. Technical report, Technical Report NAS-95-020,
NASA Ames Research Center (1995)

3. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory
programming. Comput. Sci. Eng. 1, 46–55 (1998)

4. Dave, C., Bae, H., Min, S.J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-to-
source compiler infrastructure for multicores. IEEE Comput. 42(12), 36–42 (2009).
http://www.ecn.purdue.edu/ParaMount/publications/ieeecomputer-Cetus-09.pdf

5. Denny, J.E., Lee, S., Vetter, J.S.: CLACC: Translating OpenACC to OpenMP
in clang. In: IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in
HPC (LLVM-HPC), pp. 18–29. IEEE (2018)

6. Gayatri, R., Yang, C., Kurth, T., Deslippe, J.: A case study for performance porta-
bility using OpenMP 4.5. In: Chandrasekaran, S., Juckeland, G., Wienke, S. (eds.)
WACCPD 2018. LNCS, vol. 11381, pp. 75–95. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-12274-4 4

7. Juckeland, G., et al.: SPEC ACCEL: a standard application suite for measuring
hardware accelerator performance. In: Jarvis, S.A., Wright, S.A., Hammond, S.D.
(eds.) PMBS 2014. LNCS, vol. 8966, pp. 46–67. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17248-4 3

8. Larrea, V.V., Joubert, W., Lopez, M.G., Hernandez, O.: Early experiences writing
performance portable OpenMP 4 codes. In: Proceedings of the Cray User Group
Meeting, London, England (2016)

9. Lee, S., Vetter, J.: OpenARC: open accelerator research compiler for directive-
based, efficient heterogeneous computing. In: Proceedings of the ACM Symposium
on High-Performance Parallel and Distributed Computing, HPDC 2014, Short
Paper, June 2014

10. Lopez, M.G., et al.: Towards achieving performance portability using directives for
accelerators. In: 2016 Third Workshop on Accelerator Programming Using Direc-
tives (WACCPD), pp. 13–24. IEEE (2016)

11. Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing tech-
niques. ACM Comput. Surv. (CSUR) 47(4), 69 (2015)

12. OpenACC: OpenACC: directives for accelerators (2011). http://www.openacc.org

http://energy.gov/downloads/doe-public-access-plan
http://www.ecn.purdue.edu/ParaMount/publications/ieeecomputer-Cetus-09.pdf
https://doi.org/10.1007/978-3-030-12274-4_4
https://doi.org/10.1007/978-3-030-12274-4_4
https://doi.org/10.1007/978-3-319-17248-4_3
https://doi.org/10.1007/978-3-319-17248-4_3
http://www.openacc.org


CCAMP: OpenMP and OpenACC Interoperable Framework 369

13. Pino, S., Pollock, L., Chandrasekaran, S.: Exploring translation of OpenMP to
OpenACC 2.5: lessons learned. In: IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 673–682. IEEE (2017)

14. Wolfe, M.: Compilers and more: OpenACC to OpenMP (and back again), June
2016. https://www.hpcwire.com/. Accessed 29 June 2016

https://www.hpcwire.com/

	CCAMP: OpenMP and OpenACC Interoperable Framework
	1 Introduction
	2 Background
	3 CCAMP Framework
	3.1 OpenARC
	3.2 OpenMP 4.X+ to OpenACC Translation
	3.3 OpenACC to OpenMP 4.X+ Translation
	3.4 OpenACC to OpenMP 3.0

	4 Experimental Setting
	4.1 Benchmarks
	4.2 Devices
	4.3 Compilers

	5 Evaluation Results
	5.1 OpenACC to OpenMP 4.X+ Baseline Evaluation
	5.2 OpenMP 4.X+ to OpenACC Baseline Evaluation

	6 Related Work
	7 Conclusion
	References




