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Preface

Euro-Par is an annual, international conference in Europe, covering all aspects of
parallel and distributed processing. These range from theory to practice, from the
smallest to the largest parallel and distributed systems and infrastructures, from fun-
damental computational problems to full-fledged applications, from architecture,
compiler, language, and interface design and implementation, to tools, support
infrastructures, and application performance aspects. The Euro-Par conference itself is
complemented by a workshop program, where workshops dedicated to more special-
ized themes, cross-cutting issues, and upcoming trends and paradigms can be easily
and conveniently organized with little administrative overhead.

12 workshop proposals were submitted to Euro-Par 2019, and after a careful revi-
sion process, which was led by the workshop co-chairs, all of them were accepted.
11 workshops received sufficient paper contributions and took place during the two
days before Euro-Par 2019. The program included the following 11 workshops:

1. Workshop on Autonomic Solutions for Parallel and Distributed Data Stream
Processing (AUTO-DaSP)

2. Workshop on Data Locality (COLOC)
3. Workshop on Fog-to-Cloud Distributed Processing (F2C-DP)
4. Workshop on Future Perspective of Decentralized Applications (FPDAPP)
5. Workshop on Algorithms, Models, and Tools for Parallel Computing on Hetero-

geneous Platforms (HeteroPar)
6. Workshop on High Performance Computing and Networking in Aerospace

(HPCN)
7. Workshop on Large-Scale Distributed Virtual Environments (LSDVE)
8. International Workshop on Parallel Programming (ParaMo)
9. Workshop on Parallel and Distributed Computing for Life Sciences: Algorithms,

Methodologies, and Tools (PDCLifeS)
10. Performance Monitoring and Analysis of Cluster Systems (PMACS)
11. Workshop on Resiliency in High Performance Computing with Clouds, Grids, and

Clusters (Resilience)

All workshops together received a total of 77 submissions from 31 different
countries. Each workshop had an independent Program Committee, which was in
charge of selecting the papers. The workshop papers received 3.7 reviews per paper on
average. Out of the 77 submissions, 54 papers were selected to be presented at the
workshops. One of the accepted papers was not included in the final proceedings
because the authors decided to withdraw it. Thus, the acceptance rate was 70%.

This year Euro-Par 2019 also introduced a poster track as a new format to attract
young researchers to the Euro-Par community. The poster call was aimed especially at
young scientists and was accompanied by a mentoring session, which provided young
contributors the opportunity to discuss their research findings with established



researchers. 15 posters related to ongoing projects covering subjects of parallel and
distributed computing were submitted, and 10 were finally accepted leading to an
acceptance rate of 66%. Short papers for these accepted posters were submitted and are
also part of the proceedings as a separate chapter.

The success of the Euro-Par workshops and the poster track depends on the work of
many individuals and organizations. We therefore thank all workshop organizers and
reviewers for the time and effort they devoted. We would also like to express our
gratitude to the members of the Organizing Committee and the local staff, especially
the volunteer PhD students, who helped us. Sincere thanks are due to Springer for their
help in publishing the proceedings.

We would also like to thank all the participants, panelists, and keynote speakers
of the Euro-Par workshops for their contributions to a productive meeting. It was a
pleasure to organize and host the Euro-Par 2019 workshops in Göttingen, Germany.

March 2020 Ulrich Schwardmann
Christian Boehme

Dora B. Heras
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Auto-DASP - Workshop on Autonomic
Solutions for Parallel and Distributed

Data Stream Processing



Workshop on Autonomic Solutions for Parallel
and Distributed Data Stream Processing

(Auto-DaSP)

Workshop Description

Auto-DaSP is a forum for researchers and practitioners working on parallel and
autonomic solutions for Data Stream Processing applications, frameworks, and pro-
gramming support tools. The data streaming domain belongs to the Big Data ecosys-
tem, where the so-called data velocity, i.e., the rate at which data arrive at the system
for processing, represents one of the most challenging aspects to be addressed in the
design of applications and frameworks. High-volume data streams can be efficiently
handled through the adoption of novel high-performance solutions targeting today’s
commodity parallel hardware. However, despite the large computing power offered by
the affordable hardware available nowadays, high-performance data streaming solu-
tions need to be equipped with smart logics in order to adapt the framework/application
configuration to rapidly changing execution conditions and workloads. This turns out
in mechanisms and strategies to adapt the queries and operators placement policies,
intra-operator parallelism degree, scheduling strategies, load shedding rate and so forth,
and fosters novel interdisciplinary approaches that exploit Control Theory and Artificial
Intelligence methods. The workshop calls the attention of the data stream processing
and the distributed and parallel computing research communities in order to stimulate
integrated approaches between these two disciplines.

The third edition of the International Workshop on Autonomic Solutions for
Parallel and Distributed Data Stream Processing (Auto-DaSP 2019) was held in
Göttingen, Germany. Auto-DaSP 2019 and all previous editions of the workshop were
organized in conjunction with the Euro-Par annual series of international conferences.
The format of the workshop included an invited presentation by Prof. Marco Aldinucci
(University of Turin, Italy) titled “The European High-Performance Computing
EuroHPC JU initiative explained,” followed by technical presentations of accepted
papers, and concluded with a tutorial session by Dr. Daniele De Sensi (University of
Pisa, Italy) titled “Adding autonomic and power-aware capabilities to parallel
streaming applications with the Nornir framework.”

The workshop was attended by around 15 people on average. This year we received
five submissions for reviews, and all of them were accepted to be presented at the
workshop after an accurate and thorough peer-review process. The review process
focused on the quality of the papers, their scientific novelty, and applicability to
existing Data Stream Processing problems and frameworks. The acceptance of the
papers was the result of the reviewers’ discussion and agreement.

Finally, we would like to thank the Auto-DaSP 2019 Program Committee, whose
members made the workshop possible with their rigorous and timely review process.
We would also like to thank Euro-Par for hosting the workshop, and the Euro-Par
workshop chairs for the valuable help and support.
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Abstract. Joining a high number of data streams efficiently in terms of
required memory and CPU time still poses a challenge. While binary join
trees are very common in database systems, they are mostly unusable
for streaming queries with tight latency constraints when the number
of streaming sources is increasing. Multiway stream joins, on the other
hand, are very suitable for this task since they are mostly independent
of the non-optimal ordering of join operators or huge intermediate join
results.

In this paper, we discuss challenges but also opportunities for multi-
way stream joins for modern hardware, especially manycore processors.
We describe different parallelization and optimization strategies to allow
a streaming query to join up to 256 streams on a single CPU while keep-
ing individual tuple response time and also memory footprint low. Our
results show that a multiway join can perform magnitudes faster than a
binary join tree. In addition, further tuning for efficient parallelism can
improve performance again for a factor up to a magnitude.

Keywords: Multiway · Join · Stream processing · Manycore · Xeon
Phi

1 Introduction

Smart devices connected with each other are in the ascendant today, often simply
referred to as IoT. Gathering information from those devices and correlating it
for further processing can be found anywhere, like for smart homes, networks, or
industry. Current solutions often store all collected data into cloud services for
later analytics, since the amount of data and information is huge. Nevertheless,
lots of research is done recently for processing this data online in real-time via
different stream processing systems.

In this paper, we aim to join huge numbers of data streams from different
independent sources. The main challenge lies in efficient parallelism to keep
response time for individual tuples low. Binary join operator trees usually save
intermediate join results or pointers in own tables for probing at a higher level in
the tree, leading to an intense memory overhead the deeper the tree gets. Even
the response time can become very bad if a tuple has to be joined and inserted
repeatedly up the whole tree before producing any final join result.
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 5–16, 2020.
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Therefore, we focus on multiway stream join algorithms, since a join operator
that has access to all input streams provides many opportunities to optimize
latency and its memory footprint. A key for good performance is the avoidance of
materialized intermediate results as well as long join probe sequences that would
fail anyway because of a missing key match in one of the tables. Our general
approach follows the AMJoin algorithm [5], where joins are only performed when
success is guaranteed. We investigated different ways of parallelization and added
optimizations for a multiway join, leading to drastic performance improvements
overall. Our measurements are taken on a Xeon Phi Knights Landing (KNL)
manycore CPU, which allows us to scale our join implementation up to 256
concurrently running input streams, showing the effectiveness of our approach.
In this paper, we answer the following questions:

– How bad becomes a binary join operator tree compared to a multiway join
algorithm under high numbers of data streams that must be joined?

– Which opportunities are given by a multiway join to allow efficient scaling on
a manycore processor?

– How to parallelize a multiway join without harming performance through
necessary synchronization efforts?

2 Related Work

One of the first non-blocking binary join algorithms was the Pipelining Hash
Join from Wilschut et al. [11], later referred to as Symmetric Hash Join (SHJ).
It builds and probes two hash tables continuously as elements from two streams
arrive, producing results immediately. In general, the SHJ is a good choice
because of its simple but effective algorithm, further described in Sect. 3.1. In
this paper, we will use our implementation1 of the SHJ as a candidate for a
binary join between two input streams.

Based on the SHJ, the later XJoin from Urhan et al. [9] solved the problem of
hash tables that do not fit into main memory. Instead of simply storing tuples of
a stream inside one big hash table, tuples are inserted into partitions consisting of
a memory-resident and a disk-resident portion, allowing to switch tuples between
RAM and disk. The key idea behind this work is to use possible delays from a
dynamic data stream (where less or no tuples arrive) for processing disk-resident
tuples.

Other non-blocking binary join algorithms of the last decade focused on the
exploitation of modern hardware, like GPUs or multicore CPUs. The CellJoin
from Gedik et al. [3] partitions the window of one stream, assigning partitions
to available CPU cores. Teubner et al. [8] developed the Handshake Join, where
windows from both stream sources are joined in local partitions by cores close
to each other. Buono et al. [2] investigated parallelization strategies for both of
these algorithms with respect to multicore CPUs and sliding windows, however,
a demonstration of performance for a multiway join execution (hypercubes) was

1 Open source, implemented in PipeFabric: https://github.com/dbis-ilm/pipefabric.

https://github.com/dbis-ilm/pipefabric
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left for future work. On the GPU side, the HELLS-Join was proposed by Kar-
nagel et al. [4] to utilize the high bandwidth and processing power for joining
large windows.

One prominent example for early multiway stream joins is the MJoin from
Viglas et al. [10], extending the idea of the SHJ and XJoin in such a way that it
accepts more than two input streams. This allows on the one hand to avoid deep
binary trees that would possibly lead to very bad latencies of individual tuples.
On the other hand, join reordering is not necessary, which is a fundamental
optimization problem also for relational database systems until nowadays.

The AMJoin from Kwon et al. [5] picks up the idea of the MJoin, extending
it with additional data structures to guarantee join execution only when a result
can be computed successfully. In this paper, we enhanced the AMJoin algorithm
(further described in Sect. 3.2) for massive parallelism provided by manycore
CPUs, leading to the OptAMJoin algorithm. It should be mentioned that a
related join concept can also be found for relational database systems joining
tables instead of streams, using Concise Hash Tables (CHT) [1].

We decided to stick with the AMJoin, since it allows joining different2 streams
algorithmically independent from the underlying hardware. For the rest of this
work, we assume that streams have different schemas and cannot simply be
unified together into single streams.

3 Binary vs. Multiway Stream Join

The goal of both join variants is obviously the same. Two or more data streams
provide tuples continuously and the join operator has to match partners, often
based on key values. The main difference to relational joins is the requirement
to be non-blocking, which means that a stream join must produce results even
when more tuples are incoming in future. If the number of streams is more than
two, binary join operators have to cascade, where the output of a join is the
input of the next join (see Fig. 1, tables are denoted as Tx, while x describes the
stream(s) whose tuples are stored in T ).

While this is common in relational database systems even for hundreds of
tables, it poses a serious challenge for stream processing under strong latency
constraints. Multiway joins, on the other hand, can connect all inputs in one
single operator (see Fig. 2), allowing a much better scaling out theoretically.
This scaling can be achieved by addressing the order of probes as well as the
materialization of intermediate results efficiently. For the evaluation in Sect. 5, we
use the previously mentioned SHJ as a representation of a typical binary stream
join operator and the enhanced AMJoin algorithm as multiway join, along with
optimizations and different parallelization schemas to improve performance.

2 For instance, assume each of n > 2 streams has a different tuple schema.
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Fig. 1. Binary join tree (SHJ)

Fig. 2. Basic multiway stream join

3.1 SHJ

The SHJ uses two hash tables internally for storing incoming tuples. When a
tuple arrives from any of the two sources, the algorithm basically follows three
steps:

– Inserting the tuple in the corresponding hash table,
– probing the other hash table afterward for matches,
– materializing the joined result tuples, if matches were found.

If window semantics are applied, which means that a tuple is invalidated later
and will not contribute to future join results anymore, deletions are also occurring
for the hash tables. It is a simple but effective algorithm, even it is not very well
suited for joining many concurrent sources because of its limitation on exactly
two input streams, leading to deep trees otherwise (see Fig. 1). The deeper a tree
gets, the worse the individual response time and memory footprint become.

3.2 AMJoin

The key concept of the AMJoin is the complete avoidance of unnecessary join
probes as well as no materialization of intermediate results. It guarantees that
a probe is only executed when a final join result will be produced, therefore no
intermediate results are stored, overall contention is kept low, and join order-
ing does not matter (all tuples from each source are stored only once). This is
achieved by one additional data structure, the so-called Bit-vector Hash Table
(BiHT) which stores pairs of join key hash values h(k) and bit vectors v, one
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vector vk per hashed key. Each bit vector vk stores one bit per input stream,
indicating whether the join key from the stream is present (1) or absent (0).
Obviously, a join can successfully be executed only if all bits in a vector are
set to 1. Since the AMJoin extends the MJoin, it also contains a memory over-
flow mechanism where tuples are spilled to disk when the main memory size is
exceeded. However, for our later experiments, we omit this phase since it is not
notably influenced by parallelization strategies of this paper.

4 Optimization Techniques

In the original paper from Kwon et al. [5], the AMJoin was executed on a two-
core CPU with 4 GB RAM. In their experiments, they set the number of input
streams to 5. With these settings, the contention problem of concurrently run-
ning streams on different CPU cores was mostly avoided. Our implementation
follows the general idea of the AMJoin along with major additions, leading to
an optimized version being able to scale up to hundreds of streams with minimal
synchronization and memory overhead.

4.1 OptAMJoin

The main changes in our optimized implementation base on the following obser-
vations:

(1) Bit Vector vs. Atomic Counter. For a join success, all bits in the vector
must be 1. If there is a 0 anywhere in the vector, the current join step can be
aborted (mismatch) regardless of the bit position in the vector (where the 0 was
found). This leads to the possibility of using a single counter that is incremented
and decremented in a threadsafe way. This allows join probes to check if the
counter is equal to the number of input streams instead of iterating over (many)
concurrently accessed bits. In addition, it reduces the memory usage for higher
stream numbers. However, this assumption is only true for primary key join
attributes, else thread-local handling of duplicates is necessary to avoid wrong
counter results.

If a stream fails and does not deliver tuples, no join output will be produced
(since a position in the bit vector will never be 1 and the counter will miss
an increment). To solve that problem, it is also possible to specify a counter
threshold to execute outer joins (leaving a missing value as null or using dummy
elements) to enforce a join after a timeout of a stream.

(2) Hash Table vs. Array. Usually, tuples are stored in a hash table for fast
insertions, lookups, and deletions. Nevertheless, if the key distribution is dense
enough, it can be very beneficial to use a simple array instead of a hash table
[6]. Payloads of tuples can be stored at the key position in the array, greatly
reducing necessary memory usage since the key is not stored anymore. Further
redirections of pointers to buckets in the hash table are also avoided, improving
execution time. If the key distribution becomes sparse, however, many array
positions stay empty, wasting memory without compression techniques.
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(3) Locks/Latches vs. Lock-Free Containers. Under high contention of many
threads accessing and modifying the same values, synchronization via locking
reduces the parallelism advantage tremendously. Even if collisions on individual
elements may be rare, acquiring and releasing locks or latches unnecessarily hurts
performance. There are many implementations available for lock-free concurrent
data structures (e.g. Intel TBB) that are well suited to parallelize the AMJoin.

In our later experiments, we run both versions of the AMJoin, our imple-
mentation of the original work as well as our optimized version, OptAMJoin,
with further enhancements regarding parallelization.

4.2 Parallelization Strategies

To achieve good performance results on modern CPUs, it is inevitable to utilize
multiple cores for processing. This is even more important for manycore CPUs
since high core numbers usually lead to low clock rates and thus to bad single-
threaded execution times. However, the parallelization of stream joins poses new
challenges mainly because of the non-blocking property. A stream join is executed
continuously, so there are no phases that can be finished one after another.

In this section, we describe three parallelization strategies that can be applied
to a multiway stream join, namely data parallelism, the SPSC paradigm, and
shared data structures. They can also be combined basically, however, for our
evaluation we use them separately under the assumption that each stream pro-
ducing tuples has its own thread.

(1) Data Parallelism. To reduce the pressure of many concurrent data sources
delivering tuples to a single multiway join operator, it is possible to partition
incoming tuples based on their join attribute value. This allows running multiple
instances of the join in parallel, each responsible for a certain key range (see
Fig. 3).

Fig. 3. Data parallelism

The advantage of this strategy is that no synchronization between join
instances (the squared boxes in Fig. 3) is necessary and the amount of work can
easily be distributed and scaled out. On the other hand, achieving a good load
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balancing can be difficult, especially in skewed streams. There are approaches to
solve the load balancing problem, though. In addition, the partitioning step P
requires additional computations and also efficient tuple exchange to partitions
(Q), else synchronization efforts are necessary within a join instance.

(2) SPSC Paradigm. The Single Producer, Single Consumer (SPSC) concept is
well known in the field of lock-free programming. It means that only one thread
is writing into a data structure while only one other thread is reading from it.
A common example is the SPSC queue, often realized as a ring buffer, avoiding
locks on a higher level completely. Figure 4 shows the fundamental idea for the
multiway join.

Fig. 4. SPSC paradigm

When each data stream is running independently by a separate thread, it
is possible to add an SPSC queue Q per stream to efficiently exchange tuples
between streams and the join operator (run by one single thread). The advantage
is that the join can be managed without any further internal synchronization,
avoiding the contention dilemma when scaling out to many input streams. Nev-
ertheless, it adds a potential delay in processing for the SPSC queues and the
join operator thread can be overwhelmed when streams are bursty or in too high
numbers.

(3) Shared Data Structures. A very straightforward idea is to share the data
structures like hash tables and BiHT between all input streams (see Fig. 5).

Any overhead through additional data structures (like exchange queues) or
computational efforts (partitioning) can be avoided. This comes with a cost,
efficient synchronization is an absolute necessity to primarily achieve correct
results (no duplicates or missing join results) and secondarily get good scaling
performance for high stream numbers. For our experiments, we use lock-free
concurrent hash tables and vectors from Intel TBB to minimize blocking time
for threads.
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Fig. 5. Shared data structures

5 Experimental Evaluation

In this section, we demonstrate the effectiveness of our parallelization techniques
as well as our optimizations, along with the assumption that binary join trees are
not suitable for joining many concurrent data streams. To allow a high scaling
and pressure without interferences through network delays between sockets or
machines, we use a manycore CPU with 64 cores, further described below.

5.1 Setup

On the hardware side, we ran all experiments on a Xeon Phi KNL 7210 processor,
which has 64 cores supporting up to 4 threads each. It is clocked up to 1.5 GHz,
has 96 GB DDR4 main memory size, and utilizes the AVX512 instruction set.
The cluster mode is set to SNC4, while the MCDRAM is configured in flat mode.
All code is compiled with the Intel compiler version 17.0.6, most important flags
set are −O3 and −xMICAV X512. Our measurements are taken from our stream
processing engine PipeFabric3. All tuples are fully allocated in main memory (no
disk involved). The measurements start when the first tuple is produced by any
stream and stopped when all expected join results are materialized.

5.2 Workload and Test Cases

Since we focus on joining many independent data streams, the query only con-
tains the join operation and can be formulated like the following (Stream SQL):

SELECT *
FROM Stream S1, S2, ... , SN−1, SN

SLIDING WINDOW(1000000)
WHERE S1.key = S2.key

AND ...
AND SN−1.key = SN .key

For the join, we distinguish between a concatenation of SHJ operators (binary
join tree), the AMJoin, and the optimized variant, OptAMJoin, that includes
all optimization techniques from Sect. 4.1 (like using arrays instead of tables). In
addition, we use the different parallelization strategies from the previous Sect. 4.2
3 Open Source https://github.com/dbis-ilm/pipefabric.

https://github.com/dbis-ilm/pipefabric
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on all join algorithms. For reducing the possible result space going through all
combinations of joins, parallelization strategies, and parameters, we decided to
discard variants that do not contribute to new insights.

The tuples per stream are shuffled individually, therefore it is guaranteed that
each stream produces tuples in an order completely independent from other
streams. One million tuples per stream are kept relevant by using a sliding
window operator, which invalidates the oldest tuple for each new tuple that
arrives after window size is reached. Tuples from input streams are <key,value>
pairs with 8 byte each, joining directly over equal keys (equi-join4) with one
million distinct key values, beginning with zero and incrementing by one. The
binary join tree with SHJ operators is realized as an optimal left deep tree since
this structure is easily expendable without hitting performance gaps (e.g. when
the tree finally grows up a new level, becoming imbalanced) and because left
deep trees are also often found in the literature [7]. The maximum number of
streams is 256 since the KNL supports a maximum of 256 threads running in
parallel (hyperthreading).

We further distinguish between weak and strong scaling. Weak scaling is
achieved by running each stream as a single thread, increasing the number of
streams to join. For strong scaling, we fixed the stream number to 8. Based on the
scale factor, we spawn multiple instances of join queries running independently,
concatenating their results under synchronization., i.e. a scale factor of 4 means
that 4 times a join between 8 streams is performed at the same time, merging
results of all four instances.

5.3 Results and Discussion

First, we increase the number of threads and measure the overall latency per
joined output tuple, following the shared data structures parallelization. Each
input tuple produces exactly one joined output tuple independent from the
stream number. To give an example, if 100 streams are joined and each stream
produces one million tuples, the join will produce one million final results. How-
ever, for the sake of simplicity we do not consider distractions of window seman-
tics (e.g. a key is invalidated by one stream before the same key arrives on
another stream). Figure 6 contains the results of our measurements for weak and
strong scaling.

While the performance of a single SHJ operator is comparable to a 2-way join
(obviously), the average latency per output tuple increases drastically when the
binary join tree gets deeper. Each tuple that arrives from one stream has to traverse
the join operators sequentially - in the best case, it has only to join with one table
for final results (top of the tree), in the worst case it has to be probed and joined
n− 1 times (with n being the number of stream sources) for cases where the tuple
arrives at the bottom of the tree and its key has matches in all other hash tables.
After reaching 96 streams with the SHJ, the main memory capacity of 96 GB is
exceeded (out of memory) because of storing all intermediate tuples.

4 Theta-joins are possible by comparing to other bitvectors also, but they would
require more computational efforts as well as more synchronization.
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(a) Weak scaling (b) Strong scaling (8 streams)

Fig. 6. Execution of joins under varying numbers of threads

The AMJoin scales much better since it avoids unnecessary probes and just
updates the BiHT after it is inserted into its corresponding hash table. With our
optimizations, the OptAMJoin behavior is similar to the original AMJoin but
approximately one magnitude faster. It is clear that the performance can only get
worse with more data streams since the degree of contention and computational
efforts for joining is constantly rising. Adding more threads to the same join
(strong scaling) leads to a performance improvement for the optimized AMJoin,
but the SHJ, as well as original AMJoin, cannot benefit that much due to locks
and more expensive synchronized accesses. In addition, NUMA effects occur for
high numbers of threads (due to the KNL architecture), since threads share the
same tables and vectors under strong scaling.

Next, we measured the behavior for OptAMJoin using all parallelization
techniques from the previous section. We omit results of both other algorithms
for reasons of space, however, the overall performance of the different paral-
lelization strategies has similar behavior. While increasing the number of input
streams, the number of partitions for the data parallelism strategy is fixed to 4
partitions. Each of the four partitions is controlled by a single thread, while all
stream threads write their tuples into the partition queues (as shown in Fig. 3).
Our results for weak and strong scaling can be found in Fig. 7.

Interestingly, the variant of using SPSC queues is closely equal to the par-
titioning strategy in terms of performance for Fig. 7a. This means that a single
thread is able to insert and update its join state independent from the number
of streams, at least until 256. The lock-free shared data structures provide the
best performance, since the chance of collision within a hash table is rare, espe-
cially when keys are shuffled and randomly arriving. The strong scaling shown
in Fig. 7b finally shows a difference between data parallelism and the usage of
SPSC queues. For a scale factor of more than 20, however, this can be explained
by the number of real threads used. For data parallelism with 8 streams and 4
partitions, 12 threads are used per scale factor. With 256 threads on the KNL,
context switching starts when scaling to more than 256

12 (=21) query instances.
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(a) Weak scaling (b) Strong scaling (8 streams)

Fig. 7. Parallelization strategies for OptAMJoin

Finally, we analyzed the amount of memory used to run a join over a various
stream number, assuming one million tuples per input stream. The overall cal-
culated numbers can be found in Table 1. It can easily be seen that a binary join
tree with the materialization of intermediate results (SHJ) is no good candidate
for scaling out on a manycore CPU.

Table 1. Memory footprint for data structures [GB]

Streams SHJ AMJoin OptAMJoin

2 0.260 0.253 0.106

8 1.646 0.745 0.419

16 4.328 1.400 0.836

64 40.449 5.334 3.339

256 528.253 21.079 13.353

Based on our results, we can summarize that a multiway stream join with
fully shared data structures delivers the best performance overall. This may
change with skewed streams where some key values appear on a higher frequency,
increasing contention. Nevertheless, a multiway join is absolutely superior to a
binary join tree for high stream numbers that cannot simply be unified.

6 Conclusion

In this paper, we investigated stream join performance for manycore CPUs,
posing the challenge of efficient parallelization of joins on high stream numbers.
While binary join algorithms can be found in literature frequently, fulfilling their
role even for joining a few streams sequentially, they fail any latency requirements
when the number of different streams to join goes up. Based on the idea of
minimizing avoidable join steps, especially joining intermediate results that are
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never used for final join tuples, we analyzed the AMJoin from Kwon et al. [5]
since it looks very promising to scale out on modern hardware.

We optimized the implementation regarding memory usage and response
time on the basis of our insights, being able to reduce the memory footprint
by around 40% and execution time roughly up to a magnitude. In addition
to the optimizations, we described three different strategies to parallelize the
multiway join operator. Although the straightforward idea of sharing all data
structures between all threads shows superior performance, there might be use
cases (skewness, further scaling) where the other techniques will shine.

In our future work, we would like to investigate the impact of high-bandwidth
memory (HBM) on the various data structures used in the multiway join oper-
ators, since the KNL processor has 16 GB HBM available which was currently
unused for our measurements. Furthermore, instead of tuple-wise processing for
minimized individual tuple latency, we plan to add batching support for joining
where latency constraints are not that relevant overall. This allows improving
the utilization of the AVX512 registers through vectorization, ideally resulting
in an even better performance advantage.
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christoph.kessler@liu.se

2 FernUniversität in Hagen, Hagen, Germany
{sebastian.litzinger,joerg.keller}@fernuni-hagen.de

Abstract. We consider temperature-aware, energy-efficient schedul-
ing of streaming applications with parallelizable tasks and through-
put requirement on multi-/many-core embedded devices with discrete
dynamic voltage and frequency scaling (DVFS). Given the few available
discrete frequency levels, we provide the task schedule in a conservative
and a relaxed form so that using them adaptively decreases power con-
sumption, i.e. lowers chip temperature, without hurting throughput in
the long run. We support our proposal by a toolchain to compute the
schedules and evaluate the power reduction with synthetic task sets.
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1 Introduction

Data stream processing is an important computation paradigm in edge comput-
ing devices for the Internet of Things. A continuous stream of data elements
coming from data sensors should be processed as close to the data source as
possible, due to its high volume and velocity. An example is the continuous pre-
processing of camera or vehicle sensor data. Such devices are often constrained
both in power usage (battery driven and/or using passive cooling), communica-
tion bandwidth/latency, and available memory. With high raw data rates but
limited data storage available, data must be compacted at low power consump-
tion on the device before sending it to a central observer, e.g. some cloud server.
Low-power designs favor many-core designs with lots of simple cores running at
moderate frequency, which often can be selected by the application.

Stream processing programs are usually expressed as a graph of persistent
streaming tasks that read in packets of data from their input channels, process
one packet at a time, and write a packet of output data to output channels, thus
forwarding it to data consumer tasks or to the program’s result channel(s). By
providing sufficient FIFO buffering capacity along all channels (thus following
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the Kahn Process Network model [9]), the stream program execution can be
software-pipelined such that all instances of streaming tasks for different data
packets in the same round in the steady state of the pipeline can execute con-
currently (see Fig. 1). On a many-core system, these can then be scheduled to
different cores or core groups so that the makespan for one round is kept low
and the workload is well balanced. Streaming tasks perform a certain amount of
work per input packet and can be internally parallel, i.e., run on multiple cores
to speed up one instance of their execution. For example, a moldable task can
use any number of cores that must be determined before the task is executed.

We consider the static scheduling problem for the steady state of the stream-
ing pipeline, i.e., for a set of independent streaming task instances, see Fig. 1.
This problem includes three subproblems: determining the core allocation for
each moldable task, its mapping to a core subset, and selection of its execution
frequency.1 Core allocation and frequency selection impact a task’s execution
time and energy usage, while the mapping impacts the entire schedule’s load
balance and thus its makespan, which also impacts the overall energy consump-
tion (as idle cores also take some energy and imbalance may enforce higher
frequency to meet deadlines). If the program should keep a certain (average)
processing rate over time, this translates into a certain makespan per steady
state round. Given this user requirement, the goal is to minimize the overall
energy consumption.

T1

T2

T3

T4

T3

T4

T1

T2

Fig. 1. Left: A streaming task graph with 4 streaming tasks. Right: The red box shows
the steady state of the software-pipelined execution, where all task instances in one
round are independent, i.e. belong to different instances of the graph.

The three subproblems are strongly interdependent and any consecutive app-
roach considering them one at a time can thus introduce inefficiencies. Crown
scheduling [12] is a scheduling technique for one round of the steady state that
solves core allocation, mapping and frequency selection together, either by solv-
ing an integer linear programming model generated from the task and machine
descriptions, or by using heuristics. By unique temporal ordering of core sub-
set use (cf. Fig. 2), the puzzle problem is avoided. Based on previous work on
power modeling e.g. for the ARM big.LITTLE architecture [5], we found that

1 Moreover, the executions of the mapped tasks must be ordered in time in a kind of
“puzzle” such that the total execution time is minimized or below a given threshold.
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the need to select from a fixed, small set of discrete voltage/frequency levels has
the largest impact on the resulting schedule’s energy consumption.

To relax this limitation in crown scheduling, we provide two, structurally
similar, crown schedules: a conservative schedule, which respects the makespan
constraint (required average throughput rate) but possibly leads to increased
chip temperature when high frequency levels are used by many tasks, and a
relaxed schedule that slightly increases the acceptable makespan (i.e., reduces
the throughput) in favor of selecting a lower frequency level for some tasks, thus
being more energy-efficient. At runtime, a simple dynamic control mechanism
adaptively switches between the conservative and relaxed schedule to maintain,
on average, the best combination of data processing rate and energy efficiency,
thus operating on average at lower power (and thus lower chip temperature). The
dynamic switching also allows to dynamically adapt the schedule’s power usage
to the current chip temperature to avoid temperature problems when unforeseen
external factors influence temperature (e.g., direct sunshine exposure).

In particular, we make the following contributions: We identify key properties
of streaming tasks that impact throughput and energy efficiency, and present
both optimal and greedy algorithms that derive a relaxed crown schedule from a
conservative crown schedule. We present the control mechanism for dynamically
switching between the schedules, and show how to make it adaptive to the current
chip temperature. Finally, we demonstrate the potential for improving energy
efficiency over the conservative schedule for a number of synthetic benchmarks
and a real-world power model for ARM A15 cores in big.LITTLE processors.

The remainder of this paper is organized as follows: Sect. 2 introduces the
processor, task and power models and the crown scheduling principle. Section 3
explains how the conservative and relaxed crown schedule to be used in our
approach are determined. Section 4 describes the adaptive control algorithm and
extends it for temperature-aware scheduling. In Sect. 5, we present preliminary
results. Related work is discussed in Sect. 6. Section 7 concludes the paper.

2 Background

Processor Model. We are given a generic multi-/many-core CPU architecture
with p cores. Let P = {P1, ..., Pp} denote the set of all p cores available2. We
assume that the K > 1 frequency levels of each of the p cores can be set inde-
pendently at runtime to any value in the discrete frequency set F = {f1, .., fK},
with index set F ′ = {1..K}. Frequencies fk are normalized relative to the lowest
possible frequency, i.e., f1 = 1. We assume that the voltage is automatically co-
scaled for each frequency level to its minimal possible value. We assume that the
runtime of any task performing work λ scales with the frequency f ∈ F , i.e., is
proportional to λ/f , which is true for computational loads (see e.g. experiments
in Holmbacka et al. [5]). In order to model computations that are less sensitive
to frequency scaling, we will model the runtime for each task depending on the
task’s type.
2 Heterogeneous cores are possible, but we assume identical cores here for simplicity.
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Task Model. We are given n task instances T = {τ1, ..., τn} to be executed in one
round of the steady state of the software pipeline for a streaming task set. Given
an expected throughput goal such as X rounds (e.g., input images processed)
per second for the steady state of the pipeline, being faster than M = 1/X
seconds per round is of no use and we instead optimize for energy under the
(soft) deadline constraint that each round has M time units to finish execution.

A task τj performs λj work, i.e., the work it needs to achieve takes λj units
of time when running on one core at the lowest possible frequency. A task τj is
moldable, partially moldable or sequential, depending on its specified maximum
width, i.e., the maximum number Wj of cores that can participate in running
task τj in parallel. If τj is moldable, it can run on any strictly positive, unbounded
integer number of cores (Wj = ∞), but it cannot allocate more or fewer cores
dynamically, i.e., while the application is running. If τj is partially moldable,
then its maximum width Wj ≥ 2 is finite. Finally, if task τj is sequential, then it
can run only on one core (Wj = 1). Each task also has a task type ttj from a set
V of known task types. Here, we define tasks τj with ttj = 0 as memory-bound.
They are not affected by frequency switching like computation-bound tasks.

Let ej(q) be the given parallel efficiency of task τj (i.e., parallel speedup
divided by the number of used cores) when running on 1 ≤ q ≤ Wj cores.
The parallel efficiency can either be measured or derived from algorithmic task
properties, such as predicted non-parallelizable work and predicted communica-
tion/synchronization overhead in relation to parallelizable computational work
(cf. Sect. 5). By convention, we have ej(1) = 1 for any task τj ; in most cases,
we can expect 0 < ej(q) < 1 for all q > 1, but allow ej(q) ≥ 1 for q > 1 to
denote, e.g., speedup anomalies. In particular, we do not assume ej to decrease
monotonically. Where context allows, we write j to denote τj .

Time, Power and Energy Model. The optimization problem consists in assigning
to each task τj ∈ T a number wj of cores (wj ≤ Wj), a core subset Rj ∈ P
(where |Rj | = wj) and a frequency fj ∈ F so that all tasks τj complete before
the deadline M , and minimizing the overall energy consumption. We model the
average power consumption of a moldable task empirically, based on samples
taken by micro-benchmarking on a real processor (e.g. for A15 in [5]), provided
in a table indexed by task type, frequency, and number of cores used.

For task τj , the energy consumption depends on τj ’s power consumption, the
number of cores wj running it and its execution time with wj cores at frequency
fj . If task τj runs with wj cores at frequency fj ∈ F , then its execution time is

tj(wj , fj) =
λj

fj · ej(wj) · wj
(1)

if it is a computational task. We replace fj by min{fj , fK/2} for memory-bound
tasks to indicate that it will not profit from high frequencies.

A task’s energy consumption is its average power multiplied with its execu-
tion time and the number of cores it runs on. The total energy consumption of
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a scheduled task set is the sum of energy consumed at idle time3 and the accu-
mulated energy consumption of all tasks. The optimization target is to arrange
the tasks in such a way over the cores and the runtime that a non-overlapping
execution meets the deadline and minimizes energy consumption.

Fig. 2. Left: The core partitioning of a classic crown scheduler (a balanced binary
crown) for 8 cores. — Right: A crown schedule for an 8-core machine.

Crown Scheduling is a scheduling technique that introduces a structural con-
straint on core allocation in order to make the joint optimization of core alloca-
tion, mapping and frequency level assignment for the task instances in the steady
state of the streaming pipeline computationally feasible [12]. Crown schedulers
hierarchically partition the set of p cores of a target architecture by recursive
binary decomposition into 2p − 1 core groups G0, ..., G2p−2 (see Fig. 2), where a
core group includes cores and all associated hardware resources such as caches
or local memories shared or owned by cores in the group. The root group G0

includes all p cores. It is decomposed into 2 disjoint subgroups (for a balanced
binary decomposition, of p/2 cores each), and so on until we obtain p subgroups
of 1 core each. We refer to the set of all core groups defined by such tree-based
decomposition as the crown. Figure 2 shows a balanced binary crown for p = 8
cores, containing 15 core groups of 4 different sizes.

A crown schedule maps each streaming task to exactly one of the 2p− 1 core
groups, thus allocating to it all the cores of that group. The crown structure and
in particular the restriction of the number of possible core allocation sizes from
p to log2 p for each task reduces the number of possible mapping targets from
2p to 2p − 1 = O(p) different core subsets, and therefore limits considerably
the solution search space. Moreover, within one round of the steady state of
the streaming pipeline, every core group and every core execute its assigned
(instances of) streaming tasks in the (same) order of non-increasing width (see
Fig. 2 (right)), which eliminates external fragmentation (idle times due to waiting
for other cores to start a new parallel task) between tasks within the schedule
for one round of the steady state, and also makes frequency assignment of a task
mapped to one core group independent of the frequency assignment of any task
mapped to a disjoint (e.g., sibling) core group. Melot et al. [13] show that the
penalty due to this artificial restriction on core allocation may be significant in
contrived worst case scenarios but is negligible for practical task sets.

3 We do not model the idle power further as it did not play a role in our experiments.
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Like other frequency-aware static schedulers for parallel tasks (cf. Sect. 6),
crown scheduling must bow to the necessity to use one of the discrete frequency
levels for each task. The loss in energy efficiency compared to an ideal solution
based on continuous frequencies will be significant when the number of tasks
is small and there are only few DVFS levels to choose from. In this work, we
present a general method for crown schedules to overcome this limitation.

3 Relaxed Crown Schedule Adaptation

A conservative crown schedule will fulfill the deadline constraint, i.e., the time
for one round will not exceed the user-specified limit M . Due to the few avail-
able discrete frequency levels, a conservative crown schedule is likely to contain
significant idle times, especially for streaming programs with few tasks. In many
cases, this implies that the makespan is actually lower than the deadline M (i.e.,
the schedule overfulfills the throughput requirement).

Crown scheduling does not minimize makespan but energy. We denote the
energy consumption of the previous schedule by E∗. We can derive a makespan-
optimal schedule for energy budget E∗ by using an integer linear program where
energy as target function and deadline as constraint for makespan are exchanged.
From the resulting makespan M∗ = (1− ε)M , we derive ε = 1−M∗/M . We use
this Sc as the conservative crown schedule from now on. Alternatively, we could
iteratively run the crown scheduler in a binary search loop (with some timeout
limit). By that, we find the largest ε > 0 such that the makespan of some valid
crown schedule Sc does not exceed (1 − ε)M while its energy is not higher than
the energy E∗ of the initial crown schedule returned for deadline M .

Next, we derive a relaxed crown schedule Sr from Sc. We do this by first
computing M ′, the smallest makespan obtained by decreasing the operating fre-
quency level for any single task by one. We again compute an energy-optimal
crown schedule Sr for deadline M ′, with allocation and mapping of tasks iden-
tical to Sc. This makes it easier to switch between schedules and keeps the
switching overhead very low as no migration of tasks and the associated data
(e.g., channel buffers) across cores or core groups is required, which also mini-
mizes unwanted side effects such as change of cache hit rate.

Alternatively, we can also greedily reduce the frequency for one or several
tasks by one level, while keeping core allocations and the mapping unchanged
for all tasks. For that purpose, we consider some task properties in Sc that are
expected to have a possibly large impact on time and/or energy and thus can
be used as indicators to select tasks for which to decrease execution frequency:

– Number of cores wj used by a task j. This property is relevant because scaling
wider tasks affects more (ideally, all) cores, preserving load balance also in
the scaled schedule at least for the core group this task is mapped to.

– Task type. This is relevant because arithmetics-intensive tasks are more sen-
sitive to frequency scaling than memory-intensive tasks.
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– Task frequency level fj assigned in Sc. A task that is running on a high
frequency level in Sc has more potential for power and temperature reduction
than a task with a low execution frequency, as power reduces only little at low
frequency ranges e.g. due to growing importance of static power consumption.
For example, for the A15 cores in the big.LITTLE architecture we found in
earlier work [5] that only for the three topmost frequency levels (1.6 GHz,
1.4 GHz, 1.2 GHz) scaling down to a lower frequency level yields benefits
in energy consumption – when scaling further, the slight power reduction
is more than compensated by significantly longer execution time. Since we
do not consider static power, these findings do not necessarily apply here.
Therefore, we do not impose any restrictions on frequency choice.

– Task workload λj . This is relevant because tasks performing more work have
a larger impact on execution time and energy cost than lightweight tasks.

From these properties, a cumulative preference score can be computed task-
wise. Alternatively, for each task j we can compute the energy reduction

ΔEj = tj(wj , fj)P (fj , ttj) − tj(wj , fj−1)P (fj−1, ttj)

achieved by reducing the execution frequency level by one. We first sort the
tasks in decreasing order of the chosen criterion (cumulative preference score
or ΔEj), but exclude all tasks where fj is already low. Then we apply the
following greedy algorithm that treats tasks in the order just established: The
currently considered task’s frequency is lowered from fj to the next lower level,
and the increase in execution time of the schedule is determined. If the resulting
execution time exceeds max{(1+ε)M,M ′}, then the algorithm stops.4 Likewise,
we calculate the energy savings ΔEj , and if ΔEj is negative (e.g. due to static
energy), we skip this task for scaling down.

Determining the increase of the execution time involves exploring the tree
of the core groups (each node annotated with the time span from the group’s
start time till completion of all dependent leaf groups), starting from the group
comprising the currently considered task towards the root group (where the
makespan is increased), and updating parent group annotation if the group’s
increased annotation is larger than its sibling’s annotation.5 The resulting
relaxed crown schedule Sr will, in general, violate the strict makespan constraint
but use less energy as some tasks now run at a lower frequency level.

4 Checking against M ′ essentially amounts to examining whether the ranking criterion
places the task at the top of list for which the makespan increase is smallest when
lowering operating frequency by one level. Since (1 − ε)M > M ′ is possible, the
chances for a relaxed schedule differing from the conservative one increase when not
solely focusing on M ′ for the extended deadline calculation.

5 This can be avoided by treating the tasks in the order of the core group they are
mapped to, and apply the above sorting only within each group. As long as only
tasks of groups 1 and 2 are modified, one can simply add up the increase in runtimes.
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4 Adaptive Schedule Selection

At runtime we switch between the conservative and the relaxed schedule, in
the first hand in order to maintain an average throughput goal. The algorithm
maintains the sliding average throughput over the last Q > 1 rounds executed,
which ideally should be 1/M (recall that throughput is the number of rounds per
second). If the average throughput falls below a certain tolerance limit 1/M − δ,
the algorithm switches to the conservative schedule; if the average throughput
grows beyond 1/M + δ, the algorithm switches back to the relaxed schedule. We
denote by α the fraction of rounds where Sc is used: α = (M − M̂)/(M∗ − M̂),
M̂ being the makespan of the relaxed schedule. From the knowledge of E∗, M∗,
Ê, M̂ , and α, where Ê is the energy consumption under the relaxed schedule,
we can compute the average power consumption.

Some processors allow to temporarily exceed the Thermal Design Point of
the chip by high frequency levels, such as turbo-mode frequencies. The chip can
sustain the high power dissipation only for a short amount of time before it needs
to run at significantly lower frequency again to cool down. A chip temperature
sensor allows to check if the current chip temperature is still safe or close to the
critical temperature θmax where the chip material may take damage.

We can extend the simple control algorithm above to check the temperature
when deciding about the schedule variant for the next round and, if the temper-
ature is too close to θmax (by some δ), choose the relaxed schedule regardless of
the throughput penalty, as the safe operation of the chip should have priority
over a slight degradation in quality of service in soft realtime scenarios.

The temperature-aware dynamic adaptation of the schedule variant selection
also allows to react to unforeseen temporary changes in the chip temperature
that are caused by factors outside the control of the static scheduler, for example
due to fluctuations in external air cooling or high sunlight exposure of the device.

Fig. 3. Workflow for the experimental evaluation
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5 Preliminary Results

For our experiments, we have implemented the workflow described in Sect. 3 and
depicted in Fig. 3. The experiments are based on synthetic task sets of varying
cardinality and different machine sizes. We chose task sets with few tasks, i.e.,
n = 2, 3, 4, because if there are many tasks, we expect the conservative schedule’s
makespan to be very close to the deadline. We used p = 8 for most experiments,
only for n = 3 we also tested for p = 16 and 32. For each combination, we have
created 10 task sets consisting of memory-intensive tasks and 10 task sets where
the task type is randomly selected from { Branch, Fmult, SIMD, Matmul}
(uniformly distributed). The tasks’ maximum width Wj is set to the machine
size p so as to facilitate feasible schedules under tight deadline constraints. For
all tasks, the parallel efficiency is determined as follows, cf. [12]:

ej(q) =

⎧
⎪⎨

⎪⎩

1 for q = 1,

1 − 0.3 q2

(Wj)2
for 1 < q ≤ Wj ,

0.000001 for q > Wj ,

where τj is executed on q cores. The deadline M is computed in the style of [12]:

M = d ·
∑

j
λj

p·fmax
+ 2

∑
j

λj

p·fmin

2
.

Here, fmin and fmax are the A15 core’s minimum and maximum operating
frequencies, i. e. 0.6 GHz and 1.6 GHz. We set d = 0.75 for n = 2 and d = 0.65
for n ∈ {3, 4}, leading to tight deadlines and thus high operating frequencies,
which constitutes the scenario our method has been designed for. For sets of
memory-intensive tasks however, d = 1.2 for n = 2 and d = 1.05 for n ∈ {3, 4}
since higher frequencies do not yield shorter runtimes and thus deadlines cannot
be as tight as for other task types. All tools, the heuristic scheduler, and all ILPs
have been implemented in Python, the latter using the gurobipy module and the
Gurobi 8.1.0 solver. The toolchain to compute and evaluate the schedules was
executed on an AMD Ryzen 7 2700X with 8 physical cores and SMT.

It can be observed that in all cases, the second ILP does not decrease the
schedule’s makespan, which means that the conservative schedule is already
determined by the first ILP – for the task sets considered here. Furthermore,
it becomes clear that increasing the machine size does not have any influence on
energy consumption (keep in mind that ∀j : Wj = p). Accordingly, the optimal
schedulers’ behaviour does not differ (they simply scale up the schedule with
increasing machine size). This mostly holds true for the heuristic scheduler as
well, except for one task set treated differently on 8 or 16 cores as opposed to
32 cores. Since the difference between machine sizes is marginal, we restrict the
subsequent considerations to the experiments with an 8-core machine. Further-
more, the two task ordering proposals for the heuristic scheduler from Sect. 4
deliver the same results for all examined task sets of the non-memory-intensive
type. We therefore refrain from further experiments with both approaches and
exclusively use the ΔEj criterion for sets of memory-intensive tasks.
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To explore the extent to which chip temperature can be influenced by alter-
ation of the schedule, we determine the decrease in average power consumption
when alternately using Sc and Sr, compared to using Sc alone. In addition, we
compare results from the heuristic compared to the optimal scheduler. Table 1
shows the ratio of average power when switching between optimal schedules to
average power when solely running by Sc. As one can see, the fewer tasks a task
set contains, the higher a decrease in average power consumption results. It is
to be expected that for more than 4 tasks, average power consumption of the
two-schedule approach will further approximate average power consumption of
the conservative-only approach, up to the point where there is no significant dif-
ference in average power consumption which would justify proceeding with the
proposed technique. Many times though, a streaming application will contain
only a few tasks, in which case going with two schedules and switching between
them can yield moderate benefits (2–12%). Interestingly, the average ratio of
execution of Sc does not seem to be connected to the achievable reduction of
average power consumption. The task type has a notable impact on the average
power reduction potential (which decreases with growing number of tasks). This
is due to the fact that memory-intensive tasks run on lower frequency levels
from the beginning, as higher frequencies do not award a runtime advantage
but increase energy consumption. The number of relaxed schedules that equal
the corresponding conservative schedule is cleary higher for task sets comprising
memory-intensive tasks (11 vs. 3). In total, 14 out of 60 optimal relaxed sched-
ules equal their conservative counterpart. Thus, in most cases, the additional
computational resources are not spent in vain.

Table 1. Average power consumption ratios of Sc plus Sr versus Sc, and execution
ratios of the conservative schedule for various task set cardinalities and task types.

# tasks Task types Avg. power ratio Exec. ratio cons

2 Other 0.883 0.471

Memory 0.932 0.700

3 Other 0.927 0.464

Memory 0.961 0.655

4 Other 0.956 0.603

Memory 0.976 0.762

Regarding the performance of the heuristic scheduler, one must acknowledge
that often the resulting schedule does not deviate from Sc. This especially holds
true for the larger task sets. For those containing 2 tasks, 11 out of 20 schedules
delivered an advantage over Sc. It should be noted however that for another 7
cases, Sr equals Sc. When considering task sets of size 2 the heuristic scheduler
achieved optimality in 16 out of 20 cases. All in all, its performance is not satis-
factory though, and measures must be devised to strengthen its competitiveness.
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6 Related Work

Hällis et al. [4] clearly demonstrate that the ambient temperature influences core
power consumption, but do not consider reacting to changes in ambient temper-
ature. Mohaqeqi et al. [14] consider scheduling for variable ambient temperature,
and provide different schedules for different ambient temperature ranges, with
the goal to minimize the fraction of tasks that miss their deadline. In contrast,
the present work targets streaming applications with a throughput requirement
on application level, instead of different deadlines for individual tasks. Chrobak
et al. [2] study throughput optimization depending on the heat contribution of
individual tasks when the operating system tries to keep chip temperature con-
stant, but do not consider ambient temperature. Coskun et al. [3] study dynamic
scheduling algorithms at operating system level that improve the temporal and
spatial temperature profile of the chip, to increase reliability. Jia et al. [7] inves-
tigate how time slices given to tasks can be dynamically scaled depending on the
thermal characteristics of tasks, in order to decrease chip temperature. Chantem
et al. [1] use integer linear programming to assign and schedule tasks to an
MPSoC given real-time constraints, and their approach achieves lower chip tem-
perature compared to competing approaches. They use a steady-state analysis,
i.e. do not target changes in environment. Rajan and Yu [15] prove that going
at maximum possible performance until a temperature threshold is met, and
subsequent throttling, i.e. reduction of speed, is the best that can be achieved at
system level for some temperature models. Hence, they support our approach at
a more general level. Jayaseelan and Mitra [6] partition tasks into hot and cold
sets, depending on their thermal characteristics, and manage chip temperature
by controlling the amount of processor time provided to the hot and cold tasks,
while satisfying soft real-time requirements.

Krzywda et al. [10] investigate the influence of number of virtual machines
and resources per virtual machine (horizontal and vertical scaling) plus the use of
DVFS and minimization of idle time for energy reduction on the servers running
those virtual machines with a webserver application. In contrast, our research
considers energy minimization and performance adaptation on streaming appli-
cations with real-time throughput requirements. Jin et al. [8] integrate DVFS
and energy-efficient task scheduling into YARN (a Hadoop scheduler utilized
for real-time processing). In contrast, our work focuses on streaming tasks with
predictable workload and runtime. Stavrinides and Karatza [16] discuss energy-
aware scheduling of real-time workflows. Yet the tasks in those workflows are
sequential with exponentially distributed runtime. De Matteis and Mencagli [11]
consider workload fluctuation in data stream processing and present proactive
strategies to adapt number of cores and processing frequency. In contrast, we
focus on predictable workloads and allocate given processing resources.

For a review of frequency-aware schedulers for moldable parallel tasks and a
quantitative comparison with crown scheduling we refer to Melot et al. [12,13].
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7 Conclusions

For the combined problem of core allocation, mapping and DVFS scaling for
energy-optimized execution of software-pipelined streaming task graphs on a
many-core processor, we have presented a general and automatic method that
extends the static crown scheduling technique by an adaptive dynamic control
mechanism. This allows to reduce the negative impact due to the few avail-
able discrete DVFS levels on the energy usage of crown schedules by switching
between a conservative and a relaxed crown schedule that only differ in some
tasks’ frequency levels. The approach works with moldable tasks (i.e., does not
assume malleable tasks) and does not rely on preemptive scheduling of task
instances, i.e., could even be used in bare-hardware scenarios without any OS
overhead. Our experimental evaluation using energy profiles taken from a real-
world embedded multicore platform shows that there exists a moderate but
significant potential for energy savings by our adaptive method compared to the
original crown scheduling solution, which already outperformed other optimal
and heuristic scheduling methods for moldable streaming tasks of the literature
in terms of optimization time and energy efficiency [12,13].
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performance tradeoffs in data center servers: DVFS, CPU pinning, horizontal, and
vertical scaling. Fut. Gener. Comput. Syst. 81, 114–128 (2018)



Adaptive Crown Scheduling 29

11. Matteis, T.D., Mencagli, G.: Proactive elasticity and energy awareness in data
stream processing. J. Syst. Softw. 127, 302–319 (2017)

12. Melot, N., Kessler, C., Keller, J., Eitschberger, P.: Fast crown scheduling heuristics
for energy-efficient mapping and scaling of moldable streaming tasks on manycore
systems. ACM Trans. Archit. Code Optim. 11(4), 62:1–62:24 (2015)

13. Melot, N., Kessler, C., Keller, J., Eitschberger, P.: Co-optimizing core allocation,
mapping and DVFS in streaming programs with moldable tasks for energy effi-
cient execution on manycore architectures. In: 19th International Conference on
Application Concurrency to System Design (ACSD), pp. 63–72 (2019)

14. Mohaqeqi,, M., Kargahi, M., Gharedaghi, F.: Temperature-aware speed scheduling
in periodic real-time systems. CSI J. Comput. Sci. Eng. 12(2), 36–46 (2014)

15. Rajan, D., Yu, P.: Temperature-aware scheduling: when is system-throttling good
enough? In: 9th International Conference on Web-Age Information Management,
pp. 397–404 (2008)

16. Stavrinides, G.L., Karatza, H.D.: Energy-aware scheduling of real-time workflow
applications in clouds utilizing DVFS and approximate computations. In: 6th Inter-
national Conference on Future Internet of Things and Cloud, pp. 33–40 (2018)



Minimizing Self-adaptation Overhead
in Parallel Stream Processing

for Multi-cores

Adriano Vogel1(B) , Dalvan Griebler1,3 , Marco Danelutto2 ,
and Luiz Gustavo Fernandes1

1 School of Technology, Pontifical Catholic University of Rio Grande do Sul,
Porto Alegre, Brazil

{adriano.vogel,dalvan.griebler}@edu.pucrs.br, luiz.fernandes@pucrs.br
2 Department of Computer Science, University of Pisa, Pisa, Italy

3 Laboratory of Advanced Research on Cloud Computing (LARCC),
Três de Maio Faculty (SETREM), Três de Maio, Brazil

Abstract. Stream processing paradigm is present in several applica-
tions that apply computations over continuous data flowing in the form
of streams (e.g., video feeds, image, and data analytics). Employing self-
adaptivity to stream processing applications can provide higher-level pro-
gramming abstractions and autonomic resource management. However,
there are cases where the performance is suboptimal. In this paper, the
goal is to optimize parallelism adaptations in terms of stability and accu-
racy, which can improve the performance of parallel stream processing
applications. Therefore, we present a new optimized self-adaptive strat-
egy that is experimentally evaluated. The proposed solution provided
high-level programming abstractions, reduced the adaptation overhead,
and achieved a competitive performance with the best static executions.
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1 Introduction

Nowadays, the increasing number of devices producing data on real-time
demands effective programming models. Stream processing systems [2] emerged
as a potential solution for improving the processing of continuous flows of data.
The amount of stream processing applications is increasing, which requires effi-
cient solutions to meet the challenges regarding a properly exploitation of paral-
lelism and provide higher level programming abstractions. Moreover, processing
data in real time is still requiring continuous performance optimization.

The characteristics of stream processing applications vary depending on the
data source and computations but may have several common characteristics. One
of the most highlighted aspects is the continuous and unbounded arrival of data
items [2]. In stream processing, an item can be seen as a task coming from a given
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data source (e.g., camera, radar). Parallelism is an opportunity to process faster
those data items, so increasing the overall performance. In the context of this
study, we refer to parallelism as the possibility to concurrently perform different
operations over independent stream items. Currently, parallelism is important
because our computer architectures have multiple processing units placed on a
chip. Although parallelism is an opportunity to improve performance, the appli-
cations must be implemented for exploiting the available hardware parallelism.

From the application programmers perspective, introducing parallel routines
to their systems tends to be a complex and time-consuming activity. Conse-
quently, programming abstractions were provided for reducing the application
programmers’ burden. Moreover, in order to abstract the definition of error-
prone parameters, we have proposed self-adaptivity [12] and service-level objec-
tives (SLOs) [7] for autonomously managing the executions at run-time. How-
ever, performance losses (compared to the best performing static executions)
occurred in applications using the self-adaptive strategies [7,12]. Therefore, in
this work we aim at providing the following contributions:

– A new optimized strategy for self-adapting the degree of parallelism when the
programmer/user sets a target performance. The previous implementation [7,
12] was extended to better encompass the SASO(stability, accuracy, settling
time and overshoot) properties [8], mainly for stability and short settling
times. Consequently, the precision and performance were improved.

– A comprehensive validation of our solution for parallel programming abstrac-
tions. The evaluation performed compares the new strategy to static execu-
tions considering variant application characteristics and workload trends.

This paper is organized as follows. Section 2 provides the scenario of this
study. Section 3 describes the proposed solution. Then, Sect. 4 shows the exper-
imental results. Finally, Sect. 5 concludes the paper.

2 Context

This section highlights this study’s scenario. The next sections show related
works and SPar (Sect. 2.2). Then, we present SPar’s self-adaptive part.

2.1 Related Work

A set of studies have evaluated how to determine the optimal number of replicas
in parallel applications, but only a few tackled this problem considering the
specific characteristics of stream processing. The study of Sensi et al. [11] targets
stream systems, aiming to predict performance and power consumption using
linear regression learning. Their goal was to manage power consumption and
maintain proper performance. The execution is managed by their programming
interface and runtime called NORNIR, which adapts the system at run-time
(number of cores and clocks frequency). Matteis and Mencagli [9] provided elastic
properties for data stream processing, their goal was to improve performance and
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energy consumption. Their proposed model was implemented along with the
FastFlow runtime, using one controller thread for monitoring the infrastructure
and environment and for triggering changes.

Gedik et al. [3] use the term elastic auto-parallelization attempting to find
and parallelize profitable regions. They also implemented parallelism adapta-
tion at run-time. Gedik et al. [3] propose an elastic auto-parallelization solution,
which adjusts the number of parallel channels to achieve high throughput with-
out wasting resources. It was implemented by requiring the programmer to define
a threshold and a congestion index. These arguments are used in order to con-
trol the execution and apply adaptation. Selva et al. [10] introduce an approach
related to adaptation at run-time for the StreamIt language. They extended
StreamIt in order to allow the programmer to specify the desired throughput.
Moreover, the implementation covered an application and system monitor for
detecting the throughput and potential system bottlenecks.

Our research differs from existing papers because we provide a self-adaptive
degree of parallelism support to the SPar DSL. Like [11] and [9], we use the Fast-
Flow framework as the runtime library. However, [11] and [9] address energy con-
sumption while we focus particularly on stream parallelism abstractions. Another
relevant contrast of our solution is that it executes within the first stage, not
requiring an additional thread to manage the execution. Avoiding the use of an
additional thread is important for reducing the consumption of resources and
potentially causing less overhead. Moreover, our strategy is a ready-to-use strat-
egy in such a way that it does not require to install external libraries nor include
code parts. While Gedik et al. [3] and Selva et al. [10] address distributed stream
systems, our approach targets stream parallelism in shared-memory multi-core
environments for parallelism abstraction. Moreover, the algorithm implementa-
tions of related works are arguably not sufficiently abstracted for application
programmers, thus we aim at providing additional abstractions for non-experts
in parallelism. A relevant aspect addressed in our work that is not covered by the
related ones is a proper measurement of the adaptivity overhead. To assess the
actual impact of using the self-adaptive strategy, we measure the performance
and memory consumption comparing the executions to the regular static ones.

2.2 SPar Overview

SPar is a C++ internal Domain-Specific Language (DSL) that aims at simplify-
ing parallelization of sequential programs targeting multi-core systems [4]. SPar
enables parallelism in a stream fashion by providing a standard C++11 annota-
tion language, which intends to prevent sequential source code rewriting/refac-
toring. Parallel execution is enabled with a compiler that performs source-to-
source transformations generating parallel code compatible with FastFlow [1].

SPar’s language provides five standard C++ attributes representing stream
parallelism characteristics. Listing 1.1 gives a representation of the SPar’s
attributes. The ToStream attribute marks the beginning of a stream paral-
lel region, which is the code block between the ToStream and the first Stage
(lines 1 and 3). Additional Stages may be placed within the ToStream region.
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Another attribute is the Input that is used by programmers to set the data that
is processed in the given stream region. On the other hand, the Output attribute is
used to define the variable that produces a result.Replicate refers to the number of
replicas in a replicated stage, which can be seen as the degree of parallelism, conse-
quently, the number of replicas and degree of parallelism are used interchangeably.
Listing 1.1 shows a code block where the data format is “string” and the input is
received by reading a file in line 3. A given computation is performed in line 6. In
line 5, the attribute Replicate sets the second stage to use a degree of parallelism
of 4 replicas, which is static degree of parallelism used during the entire execution.
In line 8 an output is produced accordingly to the computations performed.

Figure 1 shows the respective activity graph compatible with the annotations
added on Listing 1.1. In fact, the annotations result in a runtime with a parallel
execution composed of 3 stages. Such an execution represents a Farm pattern,
where the first sequential stage is the emitter, the second stage is replicated, and
the last stage is the collector.

1 [ [ spar : :ToStream ] ] while (1 ) {
2 std : : s t r i n g data ;
3 r e ad in ( data ) ;
4 i f ( s t ream in . eo f ( ) ) break ;
5 [ [ spar : : Stage , spar : : Input ( data ) , spar : :

Output( data ) , spar : : Replicate (4 ) ] ]
6 { compute ( data ) ; }
7 [ [ spar : : Stage , spar : : Input ( data ) ] ]
8 { wr i t e ou t ( data ) ; }
9 }

Listing 1.1. SPar Language. Fig. 1. Parallel activity graph.

2.3 Self-adaptive Parallelism Management in SPar

As viewed in the previous section, in SPar the Replicate attribute is a static
value used during the entire program’s execution. However, if the stream process-
ing application presents fluctuations (e.g., performance, environment, or input
rates), this static execution can lead to inefficient resources usage (waste) or
poor performance. Consequently, we studied how to introduce profitability for
fission dynamics [2] on the SPar replicated stages.

A set of properties and interests can be included when designing a self-
adaptive strategy. SASO are the most relevant properties [8]. A system is stable
if it produces the same configurations every time under a given condition. A
system is accurate if the “measured output converges (or becomes sufficiently
close) to the reference input” [8]. A system is expected to present short settling
times by quickly responding to changes and reaching an optimal state. A strategy
should also avoid overshooting by using precisely the resources needed. Moreover,
to avoid oscillation in the number of replicas, our self-adaptive strategies are
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designed using a threshold value to compare different performance indicators. In
this study, when the strategy infers that two values are significantly different, it
is because they have a contrast higher than 20% (a threshold), such value was
ascertained in [7,12] as a suitable one for stream processing applications.

One of the most relevant performance metrics for stream processing applica-
tions is throughput, which defines how many items are processed in a given time
interval. Considering the complexities related to defining parallelism parame-
ters, provide a performance goal can be considered presumably easier for appli-
cation programmers. Consequently, we studied ways to handle the configura-
tion challenges and abstract them from programmers for a transparent degree
of parallelism. However, in the stream processing context, an effective mecha-
nism is required to change a program’s execution on-the-fly without the need to
recompile or rerun. To this end, we studied SPar’s runtime to find techniques to
change the number of replicas at run-time. Hence, we implemented a strategy
that adapts the degree of parallelism based on the application’s throughput.

In this implemented strategy [7,12], the decision whether to change the degree
of parallelism is based on the target throughput (user defined) and the actual
measured throughput. This previous strategy continuously monitors the applica-
tion throughput and, when necessary, it attempts to optimize the execution for
the next iteration. The regulator was implemented within the first stage, which
is the entity that actually applies the parallelism regulation. In Listing 1.2 is
shown an example of the SPar’s language that supports the self-adaptive part,
the difference compared to the Listing 1.1 is that the definition of the number
of replicas in the Replicate attribute is no longer required. Additionally, Fig. 2
shows a representation of the parallel runtime, with the self-adaptive strategy
that controls the application execution at run-time.

1 [ [ spar : :ToStream ] ] while (1 ) {
2 std : : s t r i n g data ;
3 r e ad in ( data ) ;
4 i f ( s t ream in . eo f ( ) ) break ;
5 [ [ spar : : Stage , spar : : Input ( data ) , spar : :

Output( data ) , spar : : Replicate ( ) ] ]
6 { compute ( data ) ; }
7 [ [ spar : : Stage , spar : : Input ( data ) ] ]
8 { wr i t e ou t ( data ) ; }
9 }

Listing 1.2. SPar code example. Fig. 2. Self-adaptive strategy.

The validation of this self-adaptive strategy showed that comparing only the
target (expected) and measured (actual) throughput sometimes resulted in too
many and frequent reconfigurations, which in some events caused performance
instability. For efficiency purpose, the number of replicas was reduced when the
actual throughput was significantly higher than the target one. The throughput
oscillations and peaks induced the regulator to reduce the number of replicas.
But, it was notable that when the unstable workload trend passed, using fewer
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replicas sometimes caused a lower performance than the target one. Also, this
previous strategy increased 1 or 2 replicas while the throughput was smaller than
the target, which resulted in settling times higher than the ideal one.

3 A New Strategy for Self-adaptive Parallelism

Here we present a new strategy that aims at reducing the overhead by better
encompassing the SASO properties. The scope of this work is limited in some
aspects, we are not discussing the problem of thread placement, which may
be tackled in the future. Also, the self-adaptive strategy works by default on
stateless replicated stages, a stateful stage would require the control by other
means. The self-adaptive strategy uses a maximum number of replicas according
to machine hardware, defining it to one application thread per hardware thread.
The strategy also counts threads used in sequential application stages.

In Sect. 2.3 we presented the first self-adaptive strategy, where we identified
opportunities for improvement. We extensively analyzed the root causes and
elaborated mechanisms to improve it, resulting in a new optimized strategy
for handling the stability and performance violations. Figure 3 shows a high-
level representation of the steps performed by the new strategy’s regulator that
performs the decision-making. In order to respond to fluctuation, the decision
is expected to periodically iterate the steps: execute, decide, apply changes, and
sleep. The time interval between iterations is set to 1 s, which a value that gives
a balance between responsiveness and stability.

The regulator checks if the current throughput is significantly lower than
the target one. If true, it enters the Decision 1 (D1) for increasing the num-
ber of replicas (R) with the following steps: 1) detects the machine processing
capabilities; 2) calculates the percentage that each processor has from the total
processing capability; 3) calculates the percentage of difference between actual
and target throughput; 4) according to the percentage of the difference and the

Fig. 3. High-level representation of the Decision-Making.
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processing power that each processor holds (from step 2), the regulator estimates
how many replicas should be added. Consequently, if the actual throughput is
extremely lower than the target, this new strategy attempts to increase the
throughput by adding several replicas in one step (the previous strategy added
1 or 2 per step), such a decision has the potential to reduce the setting time.
The regulator also checks if the current and previous throughputs are higher
than the target one. If false, it applies Decision 3 (D3) maintaining the same
number of replicas. But, if this condition is true, the regulator applies Decision
2 (D2) that decreases the number of replicas. Pursuing stability and avoiding
frequent/unprofitable changes, three previous throughputs are compared to the
target throughput (the previous strategy considered only one).

The new strategy was compared to the existing one. The adaptive part was
included in Lane Detection application, details regarding the application and
tested machine are presented in Sect. 4. Figure 4(a) shows the throughput of
a serial execution of Lane Detection with the tested video file Input-1 (260
MB), which characterizes the load and shows the usual throughput fluctuations
in stream processing, between 2 and 9 frames per second (FPS). Some frames
require more (or less) time to be processed resulting in load fluctuations, signif-
icant fluctuation can be viewed around the second 180 with throughput falling
and increasing after 600 s in another workload phase.

Figure 4(b) characterizes the previous strategy and the new one with a target
throughput of 30 FPS. The top part shows the measured throughput, where the
new strategy had a stabler throughput that resulted in less throughput viola-
tions. Moreover, the lower graph referring to the number of replicas highlights
the stability of the new strategy. The previous strategy reconfigured the number
of replicas too many times causing additional throughput instability. Regarding
the settling time, it is possible to note that between the seconds 40 and 60 of
Fig. 4(b) a new workload phase required parallelism reconfiguration. The new
strategy reacted faster by adding 9 replicas that increased the throughput. The
execution of the new strategy ended before due to its higher throughput.
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4 Self-adaptive Strategy Evaluation

In this section, we evaluate the self-adaptive strategy by comparing it to the
hand-coded static parallel applications. Here we present the final throughput
that in an entire execution is a result considering the number of processed items
divided by the total time taken. Observe that it is different from the previous
performance characterization, where the throughput was collected at run-time.

Real-world applicability was the key criterion used to select the two appli-
cations. Lane Detection, which is used on autonomous vehicles to detect road
lanes. The parallel version using SPar and the application workflow details can
be found in [5]. Bzip2: is a data compression application that uses Burrows-
Wheeler algorithm for sorting and Huffman coding. This application is built on
top of libbzip2. Its parallel version using SPar is described in [6]. Therefore, our
tested applications have different stream processing characteristics.

4.1 Test Environment

The machine used was equipped with memory 32 GB–2133 MHz and a dual-
socket Intel(R) Xeon(R) CPU 2.40 GHz (12 cores-24 threads). The operating
system used was Ubuntu Server, G++ version 5.4.0 with the -O3 flag. This envi-
ronment was dedicated to these experiments, thus no other application was exe-
cuting at the same time. All parallel code versions used the on-demand schedul-
ing policy, which provides a suitable scenario for stream processing with finer
granularity, and a better load balancing. The results presented are the arithmetic
mean of 10 executions. The standard deviation is also presented in the graphs.

4.2 Performance

The self-adaptive strategy is compared to regular parallel executions that use
a static number of replicas, ranging in this machine from 2 to 24 replicas. It is
important to note that in this evaluation we only considered performance. The
self-adaptive strategy tends to have a more elaborated execution with monitoring
and adaptations. Thus, the control overhead may reduce the overall performance.

Figure 5 shows the results of Lane Detection using Input-1, presented in
Fig. 4(a). In the static executions, the throughput increased as more replicas
were added until it reached the maximum performance of the application. It is
notable some performance oscillations in the static executions between 10 and
21 replicas. These events were caused by the combination of this input load
oscillations and the ordering performed in the last stage. When the load is too
unbalanced (items have significant computing time differences), there will be
more unordered items in the last stage, where a single thread has to reorder the
items along with its operations (e.g., write). Therefore, it becomes a bottleneck
when there is such a combination of load oscillations and ordering requirements.

In the used machine, the self-adaptive execution started using 12 replicas,
since it is the number of available physical cores collected by the parallelism reg-
ulator. The throughput from self-adaptive executions is the same for all replicas
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Fig. 5. Average throughput of Lane Detection Input-1.

since any number of replicas could be used during the execution. The perfor-
mance of the self-adaptive strategy with a target performance was as good as
the best static parallelism configurations. This demonstrates that even with the
additional parts implemented, the self-adaptive strategy can achieve a perfor-
mance similar to the best static executions that have no control or adaptability
with respect to the number of replicas.

Figure 6 shows the throughput of Lane Detection with Input-2 (a video file
5.25 MB - 640× 360 pixels). In this case, the static executions achieved the best
performance with more replicas (17 to 22). The proposed self-adaptive strategy
again achieved a throughput competitive with the best peaks of static executions.
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Figure 7 shows the throughput of the self-adaptive strategy and static execu-
tions on the Pbzip2 application. The input used on Pbzip2 is a file with 6.3 GB
with a dump of all the abstracts from the English Wikipedia, previously used
in [11]. The proposed self-adaptive strategy performed similar to 22 static repli-
cas, but with 23 replicas the static parallelism execution was slightly better. The
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static executions show the impact of the number of replicas on performance. It
is notable that in this application, the best throughput was achieved with 23
static replicas, this number of replicas in the same machine resulted in signifi-
cant performance losses in the Lane Detection application. Consequently, even
with the executions with a static degree of parallelism, it is possible to identify
contrasts in the impact of the number of replicas in applications’ performance.
Moreover, although the standard deviation was plotted, it is difficult to identify
deviation since it was minimal.
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4.3 Memory Consumption

Several aspects of the execution are relevant to evaluate the strategies’ execu-
tions. Noteworthy, the memory usage is relevant for evaluating the amount of
resources that a given program demands in order to run. The total memory
usage was collected by the UPL (Utility Performance Library)1 library and the
results are shown as an average of the executions.

Figure 8 shows the memory usage of the execution from Lane Detection using
Input-1, which is the only memory results shown due to space constraints. The
result is similar to other workload and applications. Figure 8 illustrates how
the number of replicas impacts on memory usage. Although the self-adaptive
strategy has additional processing parts that could use additional memory, it
consumed less memory than the static execution with more than 12 replicas. It
is also worth noting a variation in memory consumption on the static execution
with more than 12 replicas, this aspect is caused by a combination of the load
unbalance of threads and by the ordering constraint. The results from mem-
ory usage of the self-adaptive strategies demonstrated no additional resource
demands, which is relevant for running under a low overhead.

1 https://github.com/dalvangriebler/upl.

https://github.com/dalvangriebler/upl
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5 Conclusion

In this study, we presented a new optimized self-adaptive strategy. SASO proper-
ties were better encompassed in the new strategy’s decision making, resulting in
additional stability and performance. Furthermore, real-world applications were
used for assessing the overhead of the new strategy compared to static execu-
tions. The results show that the proposed strategy achieved a great performance,
competitive to best static cases. Hence, the self-adaptive strategy increased the
level of abstraction without compromising the performance. Consequently, real-
world stream processing applications can benefit from the proposed solution.

It is important to note that our work is limited in some aspects. For instance,
the performance trend can be different in other applications or machines. More-
over, we have seen that adding more replicas tends to increase the performance,
but in some scenarios, this may result in overhead/contention. Hence, the trend
between processing power and throughput may be reverse in specific cases.

Finally, in the future we intend to extend this study to other real-world
applications and port the strategy to run in distributed cluster environments
including cloud and fog, increasing the flexibility with an elastic infrastructure.
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Abstract. Stream Processing deals with the efficient, real-time pro-
cessing of continuous streams of data. Stream Processing engines ease
the development and deployment of such applications which are com-
monly pipelines of operators to be traversed by each data item. Due to
the varying velocity of the streams, autoscaling is needed to dynami-
cally adapt the number of instances of each operator. With the advent
of geographically-dispersed computing platforms such as Fog platforms,
operators are dispersed accordingly, and autoscaling needs to be decen-
tralized as well. In this paper, we propose an algorithm allowing for scal-
ing decisions to be taken and enforced in a fully-decentralized way. In
particular, in spite of scaling actions being triggered concurrently, each
operator maintains a view of its neighbours in the graph so as no data
message is lost. The protocol is detailed and its correctness discussed.
Its performance is captured through early simulation experiments.

Keywords: Stream Processing · Decentralized Management ·
Autoscaling

1 Introduction

The need for near real-time processing of continuously produced data led to
the development of the Stream Processing (SP) computing paradigm. A stream
processing application is typically a graph of operators that each data item will
traverse, data processing being pipelined. Stream Processing is becoming ubiqui-
tous and is being applied in many domains, ranging from social media to military
applications. Stream Processing Engines (SPEs) have been proposed to ease the
development of these applications and their deployment over utility computing
platforms [5,14,19]. From the data perspective, each data item traverses the
graph of operators. From the processing perspective, each operator collects the
data stream from its predecessors in the graph, applies its own transformation
and creates a new stream of data, sent to its successors in the graph. Operators
have different costs, for instance in terms of processing time and CPU utilization.

Parallelism within Stream Processing applications can be achieved in dif-
ferent manners. The first one, already mentioned, is pipeline parallelism: data
c© Springer Nature Switzerland AG 2020
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items can be processed concurrently on different portions of the graph. The sec-
ond one is data parallelism: if stateless or partitioned, an operator can process
several data items at the same time, provided it is scaled accordingly. Because
the input data stream generally varies in size over time, this scaling needs to be
adjusted dynamically in time so as to be able to ensure parallelism while min-
imising computing resource waste. This mechanism, referred to as autoscaling,
is commonly designed and implemented in SPEs as a side system taking glocal
decisions about the scaling (in or out) of operators based on real-time metrics
collected about operators and the current stream velocity.

Assuming a dedicated, centralized autoscaling subsystem can become diffi-
cult in geographically dispersed platforms, such as Edge or Fog computing plat-
forms. Such platforms are becoming realities and typically support mobile-based
or IoT-based applications where Stream Processing is the adequate computing
paradigm to be used [21]. Moving Stream Processing to the edge brings new
challenges due to the very essence of these platforms: they gather a lot of small,
geographically-dispersed computing resources. Accurately monitoring such plat-
forms in a centralized fashion becomes difficult due to the constraints on both
network and computing resources.

In this paper, we assume a distributed deployment of the graph of oper-
ators. The infrastructure gathers geographically-dispersed compute nodes and
each operator is placed over a compute node which is potentially distant from
the compute nodes hosting its predecessor and successor operators in the graph.
Consequently, each operator needs to maintain the addresses of the compute
nodes hosting their neighbours in the graph. We also assume no central scaling
authority is available and that operators take their own scaling decisions inde-
pendently from each others. Then, as instances (or replicas) of operators appear
and disappear at many places of the operators dynamically, one challenge is to
be able to maintain on each operator a correct view of its predecessors and suc-
cessors so that no message is lost: wrongly assume some node is still the host
of one instance of one of our successor may cause one operator to send some
message to a deleted instance, causing in turn data loss.

The contribution of this paper is a fully-decentralized algorithm where scaling
decisions are taken independently and the graph maintained so as to ensure
no data message is lost. Operators exist in a dynamically adjusted number of
instances. Each instance takes its own probabilistic scale-in or scale-out decisions,
based on local monitoring so as to globally converge towards the right number
of instances in regard to the current velocity level for this operator. Each time
it decides a scaling operator, an instance also triggers a protocol to ensure the
correct maintenance of the graph in spite of concurrent scale decisions.

Related work is presented in Sect. 2. In Sect. 3, the system model used to
describe applications and platforms considered is given. Our decentralized scaling
protocol, including the scaling policy in both in and out cases, as well as a
sketch of proof regarding correctness facing concurrency is presented in Sect. 4.
Simulation results are given in Sect. 5.
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2 Related Work

Autoscaling in stream processing has been the subject of a recent series of
works [2,12] addressing i) the dynamic nature of the velocity of the data stream,
and ii) the difficulty of estimating prior to execution the computation cost of the
operators, that can vary significantly from one operator to another. The scaling
problem can be tackled either statically, i.e., prior to the actual deployment of
the application or online, so as to dynamically adapt the amount of computing
power dedicated to each operator.

Static approaches typically rely on the prior-to-execution analysis of the
graph so as to infer its optimal parallelization. Schneider et al. [18] propose a
heuristic-based traversal of the graph so as to group operators together in differ-
ent parallel areas, each area being a contiguous set of stateless operators, state-
ful operators being considered here again as not trivial to parallelize. While this
static analysis is a necessary first step, it is unable to find a continuously accurate
level of parallelism able when facing changes in the velocity of the incoming data
stream. Accuracy refers here to the ability to find the right amount of instances,
and avoid both over and under-provisioning.

Dynamic scaling generally relies on three operations: fusion, fission, and dele-
tion [12]. Fusion refers to the merging of two contiguous operators hosted by two
different compute nodes, into a single compute node. While this increases the
load on the compute node chosen, fusion primarily targets the reduction of the
network load by keeping within one node the traffic initially traversing the net-
work links between the two nodes. Fusion is not a scaling action per se, and
relates more to a consolidation of the placement of operators over the compute
nodes. Fission (or scale-out) refers to operators’ duplication: a new instance
of operator gets started. It increases the level of parallelism of this operator
provided the new thread or process spawned to support it leverages computing
resources that were not fully used prior to the fission (Fission can rely over either
vertical or horizontal scaling, again relating to a placement problem [16,17]).
Note that, in practice, the fission mechanism is influenced by the statefulness
of the operator: Maintaining the state of a stateful operator when it is fissioned
requires to merge the partial states maintained independently over the instances.
Statefulness is an issue in scaling but not our primary concern here. Deletion (or
scale-in) is fission’s inverse operation. It consists in removing running instances
of a given operator, typically when the operator’s incoming load gets reduced.

In practice, dynamic scaling systems typically rely on two elements [8,10,11,
15,20]: i) a centralized subsystem collecting up-to-date information about the
network traffic and available resources, so as to be able to take relevant decisions
to optimize a certain performance metric, and ii) a scaling policy to decide when
to trigger a scale-out, scale-in or reconfiguration. Some of these works focus on
monitoring the CPU utilization so as to detect bottlenecks and trigger a scaling-
out phase, in particular for partitioned stateful operators, which requires to split
and migrate the state of the operator between the evolving set of instances [8].
Some works rely on a model-based predictive approach [15]. Designed as an
extension of Storm [19], T-Storm [20] introduces a mechanism of dynamic load
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rebalance triggered periodically, with a focus on trying to reduce internode com-
munication by grouping operators). Aniello et al. proposes a similar approach [1].
StreamCloud [11] provides a set of techniques to identify parallelizable zones of
operators into which the whole graph is split, zones being delimited by stateful
operators. The splitting algorithm shares some similarities with the work in [18]:
each zone can be parallelized independently. Yet, on top of this splitting mecha-
nism, dynamic scheduling is introduced to balance the load at the entry point of
each zone. Finally, some work combines fission and deletion so as to continuously
satisfy the SASO properties (Settling time, Accuracy, Stability, Overshoot) [10].
The requirement is to be able to dynamically allocate the right amount instances
ensuring the performance of the system (accuracy), that this number is reached
quickly (settling time), that it does not oscillate artificially (stability) and that
no resource is used uselessly (overshoot). While their objectives are similar to
those of the present work, they still rely over a centralized authority to monitor
the system, decide on the scaling operations and enforce them. The present work
offers a decentralized vision of the problem.

Decentralizing the management of stream processing frameworks has been
the subject of different works [4,6,7,13,17]. DEPAS [4] is not specifically targeted
at stream processing and focus on a multi-cloud infrastructure with local sched-
ulers taking decisions independently. The similarity between DEPAS and the
present work stands in that autonomous instances take scaling decisions based
on a probabilistic policy. Yet, our main focus is also different: we are mainly inter-
ested in providing a graph maintenance algorithm minimizing downtime. More
specifically targeted at stream processing, Pietzuch et al. [17] proposed a Stream-
Based Overlay Network (SBON) that allows to map stream processing operators
over the physical network. Hochreinter et al. [13] devise an architectural model
to deploy distributed stream processing applications. Finally, Cardellini et al.
[6,7] proposed a hierarchical approach to the autoscaling problem, following a
hierarchical approach combining a threshold-based local scaling decision with a
central coordination mechanism to solve conflicts between decisions taken inde-
pendently and limit the number of reconfigurations.

Autoscaling generally assumes a pause-and-restart: when a scaling opera-
tion takes place, the application is paused. It gets restarted once the recon-
figuration is over. Reconfiguration is needed in particular when dealing with
the scaling of partitioned stateful operators which requires to split and migrate
its state dynamically. In the following, assuming stateless operators, we devise
a fully-decentralized autoscaling protocol that does not require to pause data
processing during reconfigurations. While making the problem easier, assuming
stateless operators appear to be a reasonable first step. To our knowledge, no
such fully-decentralized proper protocol was proposed assuming neither stateful,
nor stateless protocols.

3 System Model

Platform Model. We consider a distributed system composed of an unbounded
set of (geographically dispersed) homogeneous compute nodes. These nodes can
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be either physical nodes or virtual machines. We do not consider how compute
nodes are allocated, we assume they are made available through some Cloud
API. We abstract out the addition of a new node through the addSibling()
primitive which implicitly knows the information about the current operator
to be instanciated. In practice, homogeneity means that all virtual machines
allocated have the same size. Compute nodes are assumed reliable: they can be
deallocated, but cannot crash. Nodes communicate in a partially synchronous
model [9] using FIFO reliable channels: A message reaches its destination in a
finite time, and two messages sent through the same channel are processed in the
same order they were sent. Sending a message is done through the send(type,
ctnt, dest) non-blocking method. type denotes the message type and ctnt its
content. ctnt actual structure varies depenting on type. dest is the address of
the destination node. The higher-level communication primitive sendAll(type,
ctnt, dests) sends the same message to all nodes in dests.

Application Model. We consider stream processing applications represented as
directed pipelines in which vertices represent operators to be applied on each
input record and edges represent streams between these operators. We assume
stateless operators. At starting time, each operator is launched on one particular
compute nodes, and each compute node hosts a single replica. Then, the scaling
mechanism can add or remove replicas. Each replica of an operator is referred
to as an operator instance (OI) in the following. OIs running the same operator
are referred to as siblings. The load of an operator is shared equally between all
of its instances. Each operator Oi can exist in several instances OIij where i
is the id of the operator and j the id of the instance. In the example of Fig. 1,
the pipeline is made of three operators. At some point, scaling out introduced
two new instances for the middle operator. The application follows a purely
distributed configuration: due to the geographic dispersion of nodes and for the
sake of scalability, the view of the graph on each instance is limited to the
instances of their successor and predecessor operators.

4 Scaling Algorithm

The algorithm proposed and described in this section enables each OI to decide
locally and independently when to get duplicated or deleted. The algorithm is
run periodically on each OI (with possibly different frequencies). The algorithm
starts with the decision phase in which the OI checks its current load. Assuming
OIs are homogeneous and the load fairly distributed amongst instances, OIs
are able to take uncoordinated decisions leading to a global accurate number of
instances. Once an OI decides to get duplicated or deleted, it actually executes
the action planned and ensures its neighbours are informed of it. Section 4.1
details the decision process and Sect. 4.2 gives the details of the maintenance
protocol enforcing the decision taken.
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4.1 Scaling Decision

OP1 OI22 OP3

OI21

OI22

Operator instances

Fig. 1. Scaling a 3-stage pipeline.

Duplication Decision. Let C denote the
capacity of the nodes, i.e. the number of
records they can process per time unit. Let
lt the current load experienced by the OI,
i.e, the number of records received during the
last time unit. r, with 0 < r ≤ 1 denotes
the desired load level of operators, typically
a parameter set by the user. It represents the
targeted ratio between load and capacity of
each node. The objective for an OI is to find
the replication factor to be applied to itself so all OIs for this operator globally
reach a load level of r. The desired load for an OI is r × C, which means that
this OI needs to be scaled with a factor of lt

r×C . Note that this factor will be
concurrently calculated and applied by each OI for this operator. This means
that the OI will need to get duplicated lt

r×C − 1 times. If p < 1, it is interpreted
as a duplication probability: the node will get duplicated with probability p.
Otherwise, the node will get duplicated �p� times and then one final time with
probability p − �p�.

Deletion Decision. The inverse decision, triggered when the load is below a
certain threshold, follows the same principle. Yet, the factor calculated in this
case is a probability. Note that there is a risk that all OIs for a given oper-
ator take this decision at the approximate same time, leading to a collective
termination, and to the disappearance of this operator. This problem is solved
by introducing a particular node (called the operator keeper) that cannot ter-
minates itself whatever its load. The deletion/duplication factor is materialized
through the getProbability(C, r, l t) function. The applyProba(p: real)
function transforms a probability into a boolean stating whether the deletion or
duplication action will actually take place.

4.2 Scaling Protocol

Algorithm 1 gives the pseudo-code of the protocol triggered once the duplica-
tion decision has been taken. It takes two extra inputs: i) thres↑, the value above
which the load level triggers the duplication policy, and ii) the list of successors
and predecessors of the current OI. The first part of the algorithm consists in
calculating the amount of duplication needed to reach the targeted load ratio
r (in Lines 2–4). From Lines 5 to Lines 7, the calculated amount of nodes get
started. Newly spawned OIs are not yet active: they are idle, waiting for a mes-
sage of the current node to initialize its neighbors and start processing incoming
data, which is stored in some entry queue in the meantime. The current node, in
Lines 9–11, spreads the information about the new nodes to its own neighbors.
A counter of the expected number of responses is initialized. To validate the
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duplication and actually initialize the new, initially idle, nodes, the OI needs to
collect the acknowledgement of all of its neighbors.

Algorithm 1. Scale-out protocol.
Input: thres↑: threshold
Input: succs, preds: arrays of successors and predecessors
1: procedure opScaleOut()
2: p ← getProbability(C, r, lt)
3: newAddrs ← []
4: n ← �p� + applyProba(p)
5: if n > 1 then
6: for i ← 1 to n do
7: newAddrs.add(addSibling())
8: end for
9: sendInformation(“duplication”, succs, preds, newAddrs)

10: nbAck ← 0
11: nbAckExpected ← |succs| + |preds|
12: end if
13: upon receipt of (“duplication”, addrs) from p
14: if p ∈ succs then
15: if isActive then
16: succs = succs ∪ addrs
17: else
18: succsToAdd = succsToAdd ∪ addrs
19: end if
20: else if p ∈ preds
21: if isActive then
22: preds = preds ∪ addrs
23: else
24: predsToAdd = predsToAdd ∪ addrs
25: end if
26: send(“duplication ack”, p)
27: upon receipt of (“duplication ack”)
28: nbAck + +
29: if nbAck = nbAckExpected then
30: for each newSibling in newAddrs do
31: send(“start”, succs, preds, newSibling)
32: end for
33: end if
34: upon receipt of (“start”, succs , preds ) from p
35: succs = succs ∪ succsToAdd \ succsToDelete
36: preds = preds ∪ predsToAdd \ predsToDelete

37: isActive ← true

Lines 14–19 shows the case of a duplication message coming from a succes-
sor: new predecessors addresses are added to the corresponding set. If the node
receiving the message is itself not yet active, i.e., it is itself a new node waiting
for its start message, it will store the new neighbour in a particular succsToAdd
set containing future neighbors: the node may store incoming data but cannot
yet send data to its successors to avoid lost tuples, as reviewed in Sect. 4.3. Then,
in Lines 20–25, the case of a duplication message received from a predecessor
is processed similarly. Finally, the node acknowledges the message to the dupli-
cating node by sending a duplication ack message. Once all acknowledgements
have been received by the duplicating OI, the new nodes can become active
and start processing records. To this end, in Line 31 of Algorithm 1, the dupli-
cating OI sends a start message to all of its new siblings. On receipt—refer to



Decentralized Autoscaling for Stream Processing 49

Lines 35–36)—the new siblings initialize the sets of their neighbors by combining
the sets sent by the duplicating OI and the possible information received in the
meantime, stored in ∗ToAdd and ∗ToDelete variables.

Let us now review the similar termination protocol, detailed in Algorithm 2.
The algorithm first shows how the current OI ensures that every node pertained
by the deletion (its neighbours) is informed. On receipt of this upcoming termi-
nation information, we again have to consider two cases, depending whether the
receiving node is active or not: if it is, then the node is simply removed from
the list of its neighbors (either from pred or succ) and an acknowledgement is
sent back. Otherwise, the node is stored in a to be deleted set of nodes, that
will be taken into account at starting time. The final step consists, on the node
about to terminate, to count the number of acknowledgements. As discussed in
Sect. 4.3, the terminating node must wait for all the acknowledgement of the
nodes it considers as neighbors. Once it is done, it flushes its data queue and
triggers its own termination.

Algorithm 2. Scale-in protocol.
Input: thres↓: threshold
1: procedure operatorScale − In()
2: p ← getProbability(C, r, lt)
3: if applyProba(p) then
4: sendInformation(“deletion”, succs, preds,me)
5: nbAck ← 0; nbAckExpected ← |succs| + |preds|
6: end if
7: upon receipt of (“deletion”, addr) from p
8: if P ∈ succs then
9: if isActive then

10: succs ← succs \ addr
11: else
12: succsToDelete ← succsToDelete ∪ addr
13: end if
14: else if p ∈ preds
15: if isActive then
16: preds ← preds \ addr
17: else
18: predsToDelete ← predsToDelete ∪ addr
19: end if
20: send(“deletion ack”, p)
21: upon receipt of (“deletion ack”)
22: nbAck + +
23: if nbAck = nbAckExpected then
24: terminate() // wait current tuples to be processed

25: end if

The global algorithm checks periodically the current load vs the thresholds
and starts the corresponding algorithm as needed, each OI, except the operator
keepers, doing that independently at possibly different times.

4.3 Correctness

A graph is said stable when for every OI, the set of its successors is equal to
the set of OI having it as a predecessor, and the same goes reversing successors
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and predecessors. In such a situation, following that nodes are reliable and that
messages reach their destination in a finite time, no tuple is lost.

Let us now review the possible perturbations in this graph. The simplest case
is a single duplication triggered in a stable graph. Recall that new nodes are first
spawned (through addSibling()) and become active once they have received a
start message. Yet, a spawned not-yet-active node can store incoming data mes-
sages: becoming active means that it will start process them and send the result
to its successors. Note that a node needs to know where to send messages (its
successors) but does not need to know its predecessors to receive messages from
them. For instance, using message-oriented middleware, does not require a node
to know where the messages are coming from to receive them. We simply need
to be sure that nodes to which messages are sent have been spawned. Clearly,
starting from a stable graph, successors of the new instances are already run-
ning when the new instances become active. Also, when predecessors of the new
instances receive the notification about them, new instances are already spawne,
since calls to addSibling() are made (and return) before the information is
sent to the predecessors. After this period of instability, everyone has received
and updated its sets of neighbours so the graph becomes stable again. Having
multiple concurrent duplication processes on different OIs of an operator does
not bring any difficulty, OIs processing messages one by one.

Let us now study the deletion of a single node at a time starting from a
stable graph. Messages could be lost in case the predecessors of the deleted node
keep sending message to it. As per the algorithm, to trigger the actual termina-
tion (calling terminate()), a node needs to receive acks from its predecessors.
These acks are sent only after the deletion message has been received. What we
assume here is that before sending the deletion ack message, an OI communi-
cates with its data processing layer so as to inform it of the upcoming deletion.
The data processing layer takes it into account by stopping emitting messages to
the about-to-be-deleted OI. Yet, the last message sent contains a particular last
message stamp. The terminate() primitive is assumed to return only after these
specifically marked messages has been received from each predecessor, ensuring
no message is lost. Neighbors of the deleting node are informed of the deletion
and their sets of neighbours are updated, so the graph becomes stable again.
Multiple concurrent deletions do not bring any more difficulty.

Let us now study the case of having concurrent duplication and deletion. If
triggered by nodes that are not neighbours, this does not bring any particular
difficulty. If they are triggered by nodes that are not neighbours, this is not a
problem either. A more difficult case to check is when two neighbouring nodes
N1 and N2 take these antagonist actions. Say N2 is amongst the successors of
N1. Assume N1 triggers a duplication while N2 triggers its own termination.
Consequently, N1 sends a duplication message while N2 sends a deletion
message at the approximate same time. Let us assume that N2’s deletion message
takes far longer to reach N1 than N1’s message to reach N2. Assuming channels
are FIFO we distinguish two cases: The first case is when N2 sends the deletion
message before processing N1’s duplication message. In this case, due to the
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FIFO assumption, N1 will first receive N2’s deletion message and remove N2
from its set of successors, so that, once N1 receives all of the duplication ack
from its neighbours (including N2), N1 will send the starting message to the
new OI with a set of successors not including N2, leading both N1 and the new
OI to not consider N2 as a successor. The second case is when N2 processes the
duplication message sent by M1 before sending its own deletion message. In
this case, N2 sends the duplication ack message before the deletion message.
So they will arrive in this order on N1. On receipt of the first message, N1 still
considers N2 as a neighbour for the future OI and may send it to the new OI at
starting time. Yet it is not a problem, as N2 now knows about the new OI and
will send its deletion message also to it. While not yet active, the new OI will
receive the deletion message and keep the information that N2 is to be deleted
from the successors at starting time, as enforced by Line 12 in Algorithm 1.

The case of two concurrent duplications is simpler. In case each duplication
message arrives before the other one is processed, each node will learn its new
neighbour independently and start its new OI with the information of that new
neighbours’ OI. The case of two concurrent deletions is solved similarly.

5 Simulation Results

We developed a discrete-time simulator in Java. Each time step t sees the follow-
ing operations: a subset of the nodes test the conditions for triggering a scaling
operation. In case the protocol is initiated, the first message (duplication or
deletion) is received by the neighbours of the initiating node. Then, messages
sent at step t are processed at step t+ 1 and new resulting messages are sent as
per the protocol, to be processed at time t+ 2, and so on. A scale-out operation
spans three steps, and a scale-in one spans two. The variation of the workload is
modelled by a stochastic process, mimicking a Brownian motion, which allows
us to evaluate our algorithm with a quick yet swift variation of the workload.
The graph tested is a pipeline composed of 5 operators, each operator having a
workload evolving independently. Initially, each operator is duplicated on 7 OIs.
Compute nodes hosting OIs have a processing capacity of processing 500 tuples
per time step. The other parameters are: r = 0.7, thres↓ = 0.6, and thres↑ = 0.8.
Nodes try to start the scaling protocol every 5 steps.

Our algorithm’s ability to quickly reach an adequate number of instances
through local decisions is illustrated by Fig. 2. The blue curve shows the aggre-
gated number of tuples globally received by all the nodes in the pipeline, and
the red curve shows how the total number of OIs (whatever the operator they
are an instance of) evolved during the experiment. Firstly, we observe that the
number of nodes decreases with the decline of the workload during the first 25
iterations. Then, it increases until reaching the peak of 114 nodes at iteration
104 quickly after the load itself reached the peak of 40396 tuples per step at
iteration 100. Then, the load (and consequently the number of OIs) does not
fluctuate significantly. Secondly, we observe that the number of nodes can scale
quickly. The delay between a variation in the load and the adaptation can is
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Fig. 2. Number of nodes vs load.

small most of the time, in spite of the decentralized and asynchronous nature of
the scaling mechanism. Nodes, without coordination, based on decisions taken
locally, are able to start or remove nodes in a batch fashion, the burden of start-
ing or removing these nodes being shared by the existing nodes. Remind also
that this graph shows the global number of instances for all the operators. This
number may vary differently from one operator to another one. More simulation
results are available in a research report [3].

6 Conclusion

This paper presented a fully decentralized autoscaling algorithm for stream pro-
cessing applications. The algorithm relies on independent, local autoscaling deci-
sions taken by operators having only a partial view of the load and maintaining
only a local view of the graph. Future work will consist in relaxing some of
the assumptions regarding the algorithm, in particular the fault model and the
statelessness of operators. On the validation side, more simulations are needed
to better capture the protocol’s behaviour, tune correctly its parameters (for
instance to avoid oscillations), and compare it to a centralized baseline. Also,
the prototype of a decentralized stream processing engine is being developed,
including the scaling algorithm presented.
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Abstract. One of the key needs of an autonomic computing system is
the ability to monitor the application performance with minimal intru-
siveness and performance overhead. Several solutions have been pro-
posed, differing in terms of effort required by the application program-
mers to add autonomic capabilities to their applications. In this work
we extend the Nornir autonomic framework, allowing it to transpar-
ently monitor OpenMP applications thanks to the novel OpenMP Tools
(OMPT) API. By using this interface, we are able to transparently
transfer performance monitoring information from the application to the
Nornir framework. This does not require any manual intervention by the
programmer, which can seamlessly control an already existing applica-
tion, enforcing any performance and/or power consumption requirement.
We evaluate our approach on some real applications from the PARSEC
and NAS benchmarks, showing that our solution introduces a negligible
performance overhead, while being able to correctly control applications’
performance and power consumption.

Keywords: Power-aware computing · Autonomic computing ·
OpenMP · Power capping

1 Introduction

Adding autonomic capabilities to applications is an important feature of mod-
ern computing systems. Indeed, being able to automatically tune the applica-
tion according to the user requirements would allow an optimal usage of the
computing resources, with a consequent reduction of their power consumption.
Autonomic capabilities are usually added to applications by having a separate
entity (a manager) which periodically monitors the application and decides the
action to take (e.g. reduce the resources allocated to the application) according
to some requirements specified by the user. Such requirements can be usually
expressed in terms of performance, power consumption, reliability, and others.

For performance monitoring purposes, interactions between the autonomic
manager and the application can be implemented in several ways. The sim-
plest solution would be to modify the application inserting some instrumentation
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calls, which would collect the performance of the application and communicate
this information to the autonomic manager, for example by using the Heartbeat
API [15] or the Nornir framework [9]. However, it is not always possible to
modify the source code of the application, and this additional effort could dis-
courage application programmers, limiting the adoption of such autonomic tools.
On the other hand, other solutions monitor application performances without
requiring any modification to the application source code. For example, this can
be implemented by modifying the application binary to add instrumentation
calls, either by using dynamic instrumentation tools like PIN [14] or by using
static istrumentation tools such as Maqao [6] or Dyninst [7]. Alternatively, appli-
cation performance may be inferred by analyzing performance counters (such as
the number of instructions executed per time unit). However, by using such
approach it would be difficult for the user to relate this performance informa-
tion to the actual application performance (for example in terms of number of
stream elements processed per time unit). Eventually, a last class of solutions
modifies neither the application source code nor its binary, while still being able
to monitor real application performance. These solutions can be used on appli-
cations implemented with specific programming frameworks, and interact with
the runtime used by the application [10,18], for example by intercepting some
runtime calls.

In this work we will focus on this last class of solutions, by extending
the Nornir autonomic framework, allowing it to transparently interact with
OpenMP applications. We will analyze our solution on different applications
from the PARSEC [8] and NAS [5] benchmarks, showing that our implementa-
tion introduces a negligible performance overhead, while at the same time allow-
ing the user to set arbitrary performance and power consumption requirements
on such applications.

The rest of this paper is structured as follows. Section 2 briefly describes some
existing works addressing autonomicity in OpenMP applications. In Sect. 3 we
provide some background about the Nornir framework and the OMPT API,
which will be used to intercept OpenMP calls. In Sect. 4 we will describe the
design and implementation of our solution and in Sect. 5 we will perform the
experimental evaluation. Eventually, Sect. 6 concludes this work and outlines
possible future developments.

2 Related Work

Different works deal with autonomic solutions for controlling performance and
power consumption of applications, according to user requirements. In this
section we will focus on the existing works targeting OpenMP applications.

Li et al. [13] target hybrid MPI/OpenMP applications, proposing an algo-
rithm which applies Dynamic Voltage and Frequency Scaling (DVFS) and
Dynamic Concurrency Throttling (DCT) to improve the energy efficiency of such
applications. However, manual instrumentation by the programmer is required,
and no explicit performance and/or power consumption requirements can be
specified by the user.
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Other works [3,17] propose extensions to the OpenMP annotations, to
express explicit requirements in terms of power consumption, energy, or perfor-
mance. Although such approaches are more expressive than the one presented
in this work, they require to modify and recompile the application source code.

Wang et al. [18] apply clock modulation and DCT to OpenMP applications
to reduce their energy consumption. On the other hand, in our work we interface
OpenMP applications to the Nornir framework, allowing to enforce arbitrary
constraints in terms of power consumption and performance, by using not only
DCT and clock modulation but also DVFS and other mechanisms provided by
the Nornir framework. Moreover, whereas in the work by Want et al. [18] the
selection of the optimal concurrency level is done through a complete exploration
of the search space, by using Nornir different algorithms can be applied to
avoid such full exploration, thus reducing the time required to find the optimal
resources configuration.

In addition to the aforementioned limitations, all the described approaches
are implemented ad-hoc and do not rely on any general purpose autonomic
framework. On the contrary, our approach relies on Nornir, extending the perks
of the framework (e.g. the possibility to easily implement new autonomic algo-
rithm) to any OpenMP application.

3 Background

In this section we provide some background about the Nornir framework and
the OMPT API.

3.1 Nornir

Nornir1 [9] is a framework for power-aware computing, providing the possi-
bility to control performance and power consumption of applications running
on shared memory multicore machines. Nornir provides a set of algorithms to
control performance and power consumption of applications, in order to enforce
requirements specified by the user. Internally, Nornir abstracts many low-level
aspects related to interaction with both the underlying hardware and the applica-
tion, and it can be easily customized by adding new control algorithms. Nornir
acts according to the Monitor, Analyze, Plan, Execute (MAPE) loop. At each
iteration of the MAPE loop (also known as control step), the application perfor-
mance and power consumption is monitored, then appropriate decisions based
on these observations are taken, and eventually these decisions are applied in
the Execute phase. The MAPE loop is executed by a manager entity, which is
executed as a separate thread/process.

To perform the Monitor and Execute phases, the Nornir manager needs
to interact both with the machine it is running on, but also with the applica-
tion it is controlling. To interact with the underlying hardware, Nornir relies

1 https://github.com/DanieleDeSensi/nornir.

https://github.com/DanieleDeSensi/nornir
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on the Mammut library [11], which abstracts in an object-oriented fashion the
available hardware control knobs and monitoring interfaces. This allows an easy
exploitation of many features required in power-aware autonomic computing,
such as scaling the clock frequency of the cores, monitoring the power consump-
tion, dynamically turning off CPUs, etc. On the other hand, to interact with the
application, multiple possibilities are provided by Nornir:

Black-box. With this kind of interaction, the source code of the controlled
application does not need to be modified, and Nornir will monitor appli-
cation performance by using hardware performance counters (e.g. number of
instructions executed per time unit).

Instrumentation. If users are willing to modify the application to be con-
trolled, they could insert some instrumentation calls in the source code of the
application, to track application progress (e.g., in streaming applications, the
number of stream elements processed per time unit). Although this is more
intrusive than the Black-box approach, in this case the user can express the
performance requirements in a more meaningful way, rather than expressing
them in terms of CPU instructions.

Runtime. In some cases, Nornir can directly interact with the runtime of the
application, not requiring any modification to the application code but at
the same time being able to collect high-level performance metrics, such as
number of stream elements processed per time unit. Moreover, in this case it
is also possible to exploit more efficient actuators, such as the concurrency
throttling knob, which allows Nornir to dynamically change the number of
threads used by the application. Currently, Nornir provides this possibility
only for applications implemented using the FastFlow framework [2]. In this
work, we will extend this possibility also to applications using OpenMP.

Nornir API. Lastly, Nornir also provides a programming API to implement
parallel applications, relying on a runtime based on Fastflow [2]. This app-
roach allows a fine-grained control on the application, but it is also the most
intrusive one, since it requires the user to rewrite the application by using a
different programming framework.

Nornir limitations mostly depend on the limitation of the algorithms used
for the Analyze and Plan phases. For example, one common assumption made
by these algorithms is that the application can reasonably balance the workload
among the threads. If this is not the case, this could affect the accuracy of these
algorithms.

3.2 OMPT

The OpenMP Tools API (OMPT) [4,12] is an Application Programming Inter-
face for first-party performance tools. By using OMPT, it is possible to track
different events during the lifetime of an OpenMP application, such as tasks
creation and destruction, OpenMP initialization, synchronizations, and others.
To intercept these events, the OMPT user must define callbacks which will be
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invoked every time one of these events occurs. Then, these callbacks can be either
statically linked to the application when it is compiled, or they can be dynami-
cally loaded by specifying the dynamic library containing such user-defined call-
backs in the LD PRELOAD environment variable. By tracking these events, it would
be possible to monitor the application progress and performance (e.g., in terms
of number of OpenMP tasks executed per time unit), which is what is needed
by Nornir to monitor an application and to apply autonomic decisions.

4 Design and Implementation

In this section we will describe how Nornir has been extended to transparently
monitor OpenMP applications. First, because the OMPT API is not yet pro-
vided by most OpenMP implementations, we rely on an experimental LLVM-
based implementation [1]. To interface the Nornir manager to the OpenMP
application, we first intercept the initialization of the OpenMP application by
using the OMPT API. When OpenMP is initialized, the manager is created
and started as an external process. The manager will execute the MAPE loop
and, at each iteration of the MAPE loop, in the monitor phase it will collect
the application performance by sending a request to the application process.
Every time a task is created, the event will be intercepted through OMPT. If a
request by the Nornir manager was present, then the number of tasks executed
per time unit will be communicated to the manager, otherwise the number of
executed tasks will be stored locally. This interaction between the application
and the manager is implemented by using the Riff library, which is a small
library (provided by Nornir) for monitoring application performance, which
was already used for Instrumentation interactions (see Sect. 3.1). This exchange
between the OpenMP application and the Nornir manager is depicted in Fig. 1.

Fig. 1. Interaction between the OpenMP application and the Nornir manager.

However, this approach would not work for applications composed only of a
single OpenMP parallel loop. In this case, the OpenMP runtime would create
a number of tasks equal to the number of cores available on the machine, and
then each task will execute different chunks of loop iterations. Since tasks are
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Listing 1.1. Nornir configuration file

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<nornirParameters>
<requ i rements>

<throughput>100</ throughput>
</ requi rements>
</ nornirParameters>

created only once, we would not be able to track application progress. To address
this problem, we also need to track the events associated to the scheduling of
chunks of loop iterations. However, this type of callbacks is not defined by the
OMPT API specification. For this reason, we extended the LLVM-based OMPT
implementation to also track the scheduling of chunks of iterations in OpenMP
parallel loops. This modified OpenMP implementation has been released as open
source [16] and is used by Nornir by default. It is worth remarking that if the
application is composed of a single parallel loop and if static scheduling is used,
then we would have the same problem, since only one chunk per thread will be
generated, and we will not be able to track application progress.

To impose specific performance and power consumption requirements, the
user needs first to build an XML file containing, among others, the minimum
performance required (in terms of tasks or loop iterations processed per second)
and the maximum allowed power consumption. The path of this file must be then
specified in the NORNIR OMP PARAMETERS environment variable. For example, if
the user wants his/her OpenMP application to execute 100 loop iterations per
second, the XML file like the one in Listing 1.1 should be provided.

Then, the user needs to specify the path of the Nornir dynamic library and
of the modified OpenMP implementation in the LD PRELOAD environment vari-
able. This process is wrapped in a script which is provided by Nornir and which
sets these paths in a proper way according to the way Nornir was installed. For
example, to run the foo OpenMP application enforcing the requirements spec-
ified in the config.xml configuration file, it is sufficient to run the command:
nornir openmp foo config.xml.

It is worth mentioning that the same approach could also be adopted for
other frameworks (e.g. Intel TBB). To do that, we should locate the points in
the runtime code where we could track application progress (e.g. where tasks
are created), and then insert instrumentation calls in the same way we did for
OpenMP. This could be either done by using similar profiling API, or by actually
modifying the runtime source code.

5 Experiments

In this section we first evaluate the overhead introduced by Nornir (which
also includes the overhead for intercepting OpenMP events). Then, we will show
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how by applying our approach it is possible to transparently enforce arbitrary
performance and power consumption requirements on OpenMP applications.
For our analysis we selected the blackscholes and bodytrack benchmarks from
the PARSEC benchmark suite [8] and the bt and cg applications from the NAS
benchmark [5]. We used the native input for the PARSEC applications, the
class B input for bt and the class C input for cg. All the experiments have been
executed on a Dual-socket NUMA machine with two Intel Xeon E5-2695 Ivy
Bridge CPUs running at 2.40 GHz featuring 24 hyper-threaded cores (12 per
socket). Each hyper-threaded core has 32KB private L1, 256KB private L2 and
30MB of L3 shared with the cores on the same socket. The machine has 64GB of
DDR3 RAM. We did not use the hyper-threading, and the applications used at
most 24 cores in our experiments. The software environment consists of Linux
3.14.49 x86 64 shipped with CentOS 7.1 and gcc version 4.8.5.

Every experiment has been executed a number of times, until the 95% con-
fidence interval from the mean was lower than the 5% of the mean. We report
the entire distribution of results as a boxplot (e.g. see Fig. 2), where the upper
and lower borders of the box represent the third (Q3) and first (Q1) quartile
respectively. Being IQR the interquartile range (i.e. Q3 – Q1), the upper and
lower whiskers represent the largest sample lower than Q3 + 1.5 · IQR and the
smallest sample greater than Q1−1.5·IQR. All the points outside these whiskers
are considered to be outliers and are plotted individually. The line inside the box
represents the median and the small diamond represents the mean.

5.1 Overhead

To measure the overhead introduced by Nornir and OMPT, we first executed
the applications in their default configuration (denoted as Default), without any
kind of instrumentation and without enabling OMPT. Then, we use OMPT but
we do not communicate any data to Nornir (denoted as OMPT ). Eventually,
we attach Nornir to the application, but we do not change its configuration.
In this way, we can separately measure the overhead introduced by OMPT to
intercept OpenMP calls and the overhead introduced by Nornir plus OMPT,
including the overhead to communicate performance information between the
application and the Nornir manager. We report the results of this analysis in
Fig. 2. We report on the x-axis the different applications, and on the y-axis the
application throughput (in terms of tasks/iterations executed per time unit). The
throughput is normalized with respect to the median throughout of the default
execution (the higher the better), so that values lower than one represent a lower
throughput with respect to the default execution.

As we can see from both the medians and the means, while for blackscholes
and bodytrack there are no relevant differences, for bt and cg we have some
performance degradation. For bt, the performance degradation is less then 10%,
which however seems to be caused by OMPT rather than by the communication
of the performance information to Nornir. On the contrary, for cg we have an
overhead lower than 5%, which the data show to be caused by Nornir.
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Fig. 2. Throughput comparison between the default execution and the execution where
Nornir and OMPT are used. Throughput is normalized with respect to the default
execution. The higher the better.

5.2 Throughput and Power Consumption Requirements

We now analyze the ability of Nornir to set explicit performance and power
consumption requirements, by using the performance information extracted with
OMPT. To enforce performance and power consumption requirements we used
one of the several algorithms provided by Nornir (ANALYTICAL FULL). This
algorithm tunes the number of cores used by the application and their clock fre-
quency, searching for a configuration which satisfies the requirements expressed
by the user. To avoid biases due to the selection of a specific requirement, we
perform our test for different requirements. For example, being T the application
throughput, we set as throughput requirements 0.2 · T , 0.4 · T , . . . , T . A similar
approach has been adopted for power consumption requirements2.

We report in Fig. 3 the results of this evaluation for performance require-
ments. We show on the x-axis the performance requirements expressed as a
percentage of the maximum performance. On the y-axis we show the obtained
performance normalized with respect to the requirement. Namely, 1.0 represents
the requirement and values higher or equal than one mean that Nornir was able
to satisfy the requirement. As shown in the plot, we were able to run the appli-
cation so that its throughput is higher or equal than that required by the user.
In almost all the cases (with the exception of bt and cg on the 40% requirement),
the achieved throughput was at most 20% higher than the user requirement.

Similarly, in Fig. 4 we report the results of the evaluation for power consump-
tion requirements. We show on the x-axis the power consumption requirements
expressed as a percentage of the maximum power consumption. On the y-axis we
report the obtained power consumption normalized with respect to the require-
ment. Namely, 1.0 represents the requirement and values lower or equal than one

2 For power consumption requirements, we do not consider the 0.2 requirement since it
can never be enforced, not even by using only one core at minimum clock frequency.
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Fig. 3. Performance of the analyzed applications under different performance require-
ments. On the x-axis the performance requirements expressed as a percentage of
the maximum performance. On the y-axis the obtained performance normalized with
respect to the requirement (i.e. values higher than one mean that Nornir was able to
satisfy the requirement).

Fig. 4. Power consumption of the analyzed applications under different power con-
sumption requirements. On the x-axis the power consumption requirements expressed
as a percentage of the maximum power consumption. On the y-axis the obtained power
consumption normalized with respect to the requirement (i.e. values lower than one
mean that Nornir was able to satisfy the requirement).

mean that Nornir was able to satisfy the power consumption requirement. Also
in this case we were able to correctly enforce the user requirements, having a
power consumption which is always lower or equal to that specified by the user.
In all the cases except one (blackscholes for the 100% requirement), Nornir was
able to find a configuration characterized by a power consumption at most 5%
lower than that required by the user.
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6 Conclusions and Future Work

When designing autonomic solutions, a relevant design decision is related to
the way in which the application performance is monitored. Several solutions
are possible, each requiring a different effort to the application programmer. In
this work we analyze the possibility to intercept different events in OpenMP
applications to track their performance. Such solution would not require any
effort to the application programmer.

To implement this process we relied on the OMPT API, which allowed us
to track OpenMP applications and to interface them to the Nornir framework,
allowing us to transparently set arbitrary performance and power consumption
requirements on existing applications. To correctly monitor applications com-
posed of a single parallel loop, we modified the OMPT backend to also track the
scheduling of chunks of iterations in parallel loops. Moreover, all the developed
code has been integrated into Nornir, which is a publicly available open-source
framework. Eventually, we showed that the introduced performance overhead is
negligible and that we can correctly enforce arbitrary requirements.

In the future, we would like to extend the interaction with OpenMP also
to the execute phase of the MAPE loop, by dynamically changing the number
of threads used by the OpenMP runtime. Moreover, we would like to monitor
the performance at a finer granularity, for example by intercepting individual
iterations of the parallel loop rather than the scheduling of chunks of iterations.
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Abstract. Earth system modeling computations use stencils extensively
while running many kernels. Optimal coding of the stencils is essential
to efficiently use memory bandwidth of an underlying hardware. This is
important as stencil computations are memory bound.

Even when the code within one kernel is written to optimally use the
memory bandwidth, there are still opportunities for further optimization
at the inter-kernel level. Stencils naturally exhibit data locality, and exe-
cuting a sequence of stencils within separate kernels could waste caching
capabilities. Interprocedural optimizations such as merging of kernels
bears the potential to improve the use of the caches. However, due to
semantic restrictions, it is difficult to achieve on general purpose languages.

Some tools were developed to automatically fuse loops instead of the
manual optimization. However, scientists still implement fusion in differ-
ent levels of loop nests manually to find optimal performance. To allow
scientists to still apply loop fusions equal to manual loop fusion, we
develop a technique to automatically analyze the code and allow scien-
tists to select their preferred fusions by providing automatic dependency
analysis and code transformation; this also bears the potential for auto-
matic tools that make smart choices on behalf of the user. Our work
is done using GGDML language extensions which enables performance
portability over different architectures using a single source code.

Keywords: HPC · Earth system modeling · Software development

1 Introduction

Earth system modeling codes consist of many kernels, in which stencil operations
are applied. Values of variables at spatially-neighboring points are read to eval-
uate some variable at some point in space. Neighborhoods give an opportunity
to use the locality of data through caches. On the other hand, the arithmetic
intensity of such computations is low, which makes them memory bound.

Efforts on optimizing operations within a kernel that applies a stencil opera-
tion is essential to optimize code performance, however, it is not sufficient. Taking
into account the relationships between the consecutive kernels, it is sometimes
possible to still improve performance. Reusing the data across stencil operations
while still in caches makes this possible.
c© Springer Nature Switzerland AG 2020
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To exploit this inter-kernel possibilities, data dependencies should be applied
to guarantee computation correctness. After making sure that a loop fusion does
not impair the code in terms of computation correctness, the code should be
transformed to apply the fusion. Instead of doing such effort by a programmer,
tools have been developed to automatically apply such optimization.

Nested loops allow fusing loops in different combinations. Automatic loop
fusions do not allow testing a specific set of loop fusions, which scientists would
evaluate, may be to try other possible optimizations. We see such cases, e.g. where
an outer loop encloses a set of consecutive second level nest each of which contains
another inner loop, with many kernels fused in more complicated structure.

To allow scientists to still exploit loop fusion possibilities, while doing mini-
mal effort, we develop a technique to apply preferred loop fusions that operates
on the higher-level code abstraction of a domain-specific language. The main
contribution of this work is a technique to automatically identify possible loop
fusions with the necessary data dependency analysis, and apply the fusions which
the user prefers. To maximize the benefit of this effort, we also allow automatic
analysis for inter-module function inlining possibilities. This allows to fuse loops
among different files within the source code.

2 Related Work

In this section, we review some research efforts which applied loop fusion in
different ways and development contexts.

Data Re-use and Loop Restructuring: An optimization algorithm to reuse
data was presented in [16], where loop nests were transformed by interchange,
reversal, skewing, and tiling. Loop fusion and distribution to improve data local-
ity was used in [9] besides to optimizing loop parallelism. A cost model that
computes the spatial and the temporal reuse of cache lines was used in [10] to
enable compiler optimizations using data locality. The authors used loop fusion
as one of the transformations besides to loop permutation, distribution, and
reversal.

Applicability of Loop Fusion: Fusion concept was used to serve optimization
in different fields where performance is a main concern. An algorithm was pre-
sented in [5] in which loop fusion is used to reduce the use of temporary arrays.
This effort was used to reduce the access to memory in data dominated appli-
cations like multimedia applications. Also, loop fusion was used for the purpose
of energy consumption optimization. Fusion was proposed also to reduce the
energy consumption [15] and improve the efficiency of power use on GPUs.

Compiler optimizations to exploit the efficiency of the GPUs computational
power for the data warehousing applications were proposed in [18]. The benefits
of the loop fission and fusion on relational algebra operators are also evaluated.
Again we see the code fissions and fusions in the same field in [17] where the split
and fused loops are dynamically scheduled on CUDA streams and dispatched to
the GPUs to improve the performance when running queries.



Optimizing Memory Bandwidth Efficiency 71

Automatic Loop Fusion Tools: Manual loop fusion is time consuming. Auto-
matic fusion was the alternative in many efforts. A source-to-source compiler was
presented in [4] to automatically apply fusion. Other efforts focused on the iden-
tification of opportunities to apply loop fusion and to estimate its benefits like
[11]. This effort presented a dataflow-based framework that analyzes a provided
code to identify multi-kernel optimization opportunities and data management.
The framework can then estimate the performance on GPUs without running it.

Finite difference method was also subject to the automatic analysis for fusion
[13], where the space of possible kernel fusions is explored to find an optimal
kernel fusion. Projections of the performance are done to get to the optimal
kernel fusion. The authors again proposed a framework [14] to automatically
transform stencil codes written in CUDA to exploit the data locality among
multiple kernels. A compiler were also used in [3] to automatically fuse loops.
CUDA kernel fusion was done on BLAS-1 and BLAS-2 routines.

Loop Fusion Through DSLs: Other efforts, e.g. [1] used DSLs which were
designed to allow code generation of fused loops. Gridtools provides a DSL to
specify stencil operations in a way that allows the user to define a computation
in stages within the source code. The code generation process makes use of this
information to exploit the data locality.

Directives are used in HybridFortran [12] to control the granularity of code.
HybridFortran was developed to allow the user to port existing CPU code to
GPUs by annotating the code with directives. The HybridFortran directives
allow the tools to generate the code with the suitable granularity based on the
target machine.

In contrast, with our method, the user does not need to manually fuse
loops to apply the desired fusions. The tools handle the data dependency anal-
ysis, and the code transformation. Users choose from a list of automatically-
detected fusion opportunities. So, in comparison to automatic, our technique
enables scientists to have the flexibility to apply preferred fusions. But also, in
comparison to manual fusion, scientists need to do less effort.

3 Methodology

We implemented the inlining and loop fusion procedures in the tool that trans-
lates GGDML [8] code to general purpose code. The tool runs automatic detec-
tion of inlining and fusion opportunities and shows a list to the user. When
the user chooses an optimization from this list, the tool transforms the code
automatically.

To evaluate the technique, we prepared a code that solves the shallow water
equations [2] using the finite difference method1. The source code is written in the
GGDML language extensions [8], which allows architecture-independent high-
level code. The GGDML source-to-source translation technique [6] was used to
generate and optimize the code for the different architectures and configurations.

1 Refer to https://github.com/aimes-project/ShallowWaterEquations.

https://github.com/aimes-project/ShallowWaterEquations
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3.1 GGDML and the Code Translation

GGDML is a set of language extensions that provides performance portability
for earth system modeling. Code is written with a high-level scientific abstraction
of the problem as seen in Listing 1.1. A single source code can be translated into
different targets by applying user-specified code schemata for different architec-
tures. Typically, these schemata are developed by scientific programmers that
understand code domain and the machine architecture. The key benefit is that
these schemata and configuration files are used by many different kernels while
the translation needs to be specified only once.

Listing 1.1. Example mixed GGDML and C code

f l o a t EDGE 2D f U ;
f l o a t EDGE 2D f UT ;
. . .
f o r each e in g r id
{

f U [ e ]= f U [ e ]+f UT [ e ]∗ dt ;
}

This code updates the value of the X component of the velocity on the edges
of the grid. It reflects the mathematical equation without optimization details.

GGDML code is translated for a specific machine based on a configuration
description. Different optimization procedures, e.g memory layout transforma-
tions [7], are applied during the code translation process. Different configuration
file sections guide the translation tool to apply the optimization procedures.

3.2 Inlining and Loop Fusion

The tools parse the different code files into AST structures. Inlining possibilities
are checked by the tool by analysis of calls and function bodies. A call to a
function, the body of which is defined even in a different code file, could be
a candidate for inlining. Close loops traversing same ranges are also analyzed
for loop fusion possibilities. This analysis includes all data dependencies within
loops, and possibilities to move code that resides between loops. If the loop
fusion analysis is found to keep consistency of code, the fusion is listed as a
candidate fusion. Inlining and fusion candidates are listed for the user to choose
what to apply. According to user choice, the tool automatically uses analysis
information to apply necessary transformations, including handling necessary
variables, moving code around, transforming loops etc.

3.3 Code Structure and Merging

The standard code is the baseline for which we compare the performance
improvements. In this modularized code, every kernel includes the necessary
mathematical operations and expressions to update exactly one field. This code
is easy to understand and maintain, and includes eight kernels updating: the two
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components of the flux: (the kernels are) flux1 and flux2, the tendencies of the
two components of the velocity: compute u tendency and compute v tendency,
the tendency of the surface level: compute h tendency, the two components of
the velocity: update u and update v, and the surface level: update h.

To create the merged code, the mathematical operations were remapped
into three kernels such that the mathematical operations still keep the order
to ensure correct computation. The merged code includes three kernels:
flux and tendencies, velocities, and compute surface.

Performance-aware users typically perform such code merging manually in
the expense of readability. E.g., in a popular numerical weather prediction model,
there is a single function with 2,000 LoC.

3.4 Performance Assessment

C codes with OpenMP/OpenACC were generated from the DSL representation
to investigate behavior on multi-core processors, GPUs, and vector engines. The
experiments are designed to understand the use of the memory bandwidth and
exploiting caching/registers. To assess the performance, we derive behavioral
models from the code and validate the models using monitoring tools. ‘Likwid’,
NVIDIA’s ‘nvprof’, and NEC’s ‘ftrace’ tools were used on multi-core CPUs,
GPUs, and vector engines respectively.

4 Evaluation

The test application solves the shallow water equations on a 2D regular grid
with cyclic boundary conditions2. The application uses an explicit time stepping
scheme in which all eight fields are updated once in each time step.

The multi-core processor experiments were run on dual socket Broadwell
nodes with Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz processor. We used
the Intel (ICC 17.0.5) C compiler. The GPU experiments are run on the Tesla
P100 with 16 GB memory and PCIe interconnect to the host. We used the PGI
(17.7.0) C compiler. The vector engine experiments were run on SX-Aurora
TSUBASA vector engine using the NCC (1.3.0) C compiler.

Various more experiments have been made on other generations of GPUs and
CPUs showing similar results – we selected the results conducted on the latest
generation of hardware that we had access to.

4.1 Multi-core Processors

First, we evaluate the code generated for Broadwell with different grid widths.
The results before and after blocking (block size of 20000) are shown in Fig. 1.

Merging the kernels results in the expected code optimization reducing the
necessary memory traffic over all grid widths. Without blocking, the results of the

2 Refer to https://github.com/aimes-project/ShallowWaterEquations.

https://github.com/aimes-project/ShallowWaterEquations
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Fig. 1. Variable grid width with/o blocking on Broadwell

measurements show that the performance decreased with wider grids since the
capacity of the caches is exhausted. Appropriate blocking eliminates performance
loss. Given that the data are stored as single precision floating point, and that
the maximum number of fields to access within a kernel is eight, the 20000 block
width means the cache holds 0.61 MB per grid row. The processor has 2.5 MB
L3 cache per core. Therefore, the 20000 blocking factor guarantees that more
than two grid rows, and hence all the elements of the stencil (both in X and Y
dimensions) are still in the L3 caches.

To better understand kernel merging and blocking relationship, we varied the
block sizes. We fixed the grid width to 100k cells in the X dimension. We tested
blocking with two categories of block sizes: powers of two ranging from 32 to
65536, and multiples of 1,000 from 1,000 to 10,000. Results are shown in Fig. 2.
Kernel merge provided performance improvement over all the tested blocking
factors except very small/large factors.

(a) Power of 2 block sizes (b) Multiple of 1000 block sizes

Fig. 2. Different block sizes on Broadwell
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Theoretical Analysis: To understand the data movement between the cores and
the main memory we instrumented the code with ‘Likwid’. The measured metrics
and values for the different kernels are shown in Table 1.

The kernels are bound by the memory bandwidth. Theoretical max. memory
bandwidth of the Broadwell processor is 76.8 GB/s3. The kernels are optimized
to read each variable only once from memory. For example the kernel flux1
accesses the memory to read two fields –reused more than once– and update
one field. Multiplying the number of bytes accessed per grid cell by the grid
dimensions and the time steps, this kernel needs to access 1491 GB during an
application run. To compare with the measured values, if we multiply the kernel’s
runtime (26.86 s) by the measured memory bandwidth (61.22 GB/s), we find that
the kernel accessed 1605 GB which is close to the theoretical calculations.

The achieved memory throughput of the code is close to the optimum. As
long as we access the minimum amount of data in the memory with a high
percentage of max memory bandwidth, the only way to optimize the code further
is to decrease number of memory accesses for the application level.

In the standard code version, we need 33 accesses to the main memory
for each grid cell in each time step. The arithmetic intensity of the code is
0.45 FLOP/Byte. Given the peak processor performance (2.3 GHz · 18 cores ·
16 Single FP/core · 2) and the memory bandwidth (76.8 GB/s), the thresh-
old arithmetic intensity to achieve the peak performance is 17.25 FLOP/Byte.
The arithmetic intensity of the code is far from this threshold intensity, which
explains why the achieved performance is far from the peak performance of the
processor. Optimizations must increase the arithmetic intensity to increase the
performance of the application.

What we gain in the merged code is reusing the values of some fields while
they are still in the caches or the processor registers instead of reading them
from the memory. This reduces the number of accesses to the main memory
from 33 accesses to 24 accesses for each grid cell in each time step. This way, we
can increase the intensity of the code to 0.63 FLOP/Byte. This is an increase by
about 37% which explains the performance gain we can observe in the diagrams.

4.2 GPUs

To understand data movement between the GPU threads and the device mem-
ory, we prepared experiments for the P100 GPU. We record the performance
measurements for the application with different grid widths (see Fig. 3). With-
out blocking, the performance decreases over the tested grid widths with and
without merge. However, merged code performance degrades faster after the
grid width of 110k. Performance drops beyond the standard code around the
grid width of 140k. This is a result of the cache limitation on the GPU as a
merged kernel accesses more variables per grid cell. A kernel that accesses 8

3 The streaming benchmark ‘stream sp mem avx’ from the ‘Likwid’ tools measured 67
GBytes/s on the processor.
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Table 1. Likwid profiles on Broadwell for all kernels and both code versions

Kernel Time (s) GFLOPS Memory bandwidth (GB/s)

flux1 26.9 11.2 59.8

flux2 26.6 11.3 62.8

compute U tendency 41.3 41.2 62.3

update U 19.5 10.3 62.8

compute V tendency 46.4 36.7 61.8

update V 19.3 10.3 63.3

compute H tendency 26.6 11.3 62.9

update H 19.8 10.1 62.4

Standard code 226.3 23.8 62.2

flux and tendencies 96.9 41.3 59.5

velocities 39.6 10.1 61.3

compute surface 40.6 12.3 60.7

Merged code 177.0 31.0 60.2

Fig. 3. Different grid widths on P100 GPU

fields on a grid that is 140k wide, where each field needs 4 bytes per cell, needs
4.27 MB, which exceeds the 4 MB L2 cache of the P100 GPU.

The blocking version (20k block size) does not exhibit the sharp drop over
wider grids, and the merged code is better over the tested grid widths. This is a
result of fitting the kernel data within the caches (remember that the 20k row
in a block needs 0.61 MB for a kernel that accesses 8 fields).

To investigate further the impact of the kernel merging along with blocking,
we test different block sizes again (see Fig. 4). In general, kernel merging improves
performance with all the tested block sizes. Optimal block sizes are around 10k.
Smaller (and larger) block sizes harm the performance for both code versions.
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(a) Power of 2 block sizes (b) Multiple of 1000 block sizes

Fig. 4. Different block sizes on P100 GPU

Theoretical Analysis: To gain a deeper understanding the ‘nvprof’ tool is used to
collect different metrics. Table 2 shows the kernels measured memory throughput
and accessed data volumes. Execution times and GFLOPS are also shown.

The measured data volumes that kernels access show data reuse at warp
level. For example, the flux1 kernel accesses the device memory to read two
fields – reused within the kernel – and updates one field. The memory access is
coalesced, thus, the theoretical estimation of the data volume that the threads

Table 2. Kernels measurements in both code versions on P100 GPU

Kernel Memory throughput
(GB/s)

Data volume
(GB)

Kernel
time (s)

GFLOPS

flux1 447 1,175 2.63 114

flux2 478 1,570 3.29 91

compute u tendency 358 3,338 9.33 225

update u 376 1,126 2.99 67

compute v tendency 374 4,195 11.22 196

update v 376 1,126 3.00 67

compute h tendency 333 1,588 4.77 105

update h 387 1,126 2.91 69

Standard code 380 15,244 40.13 149

flux and tendencies 396 5,970 15.08 325

velocities 360 2,268 6.31 63

compute surface 403 2,303 5.71 123

Merged code 389 10,542 27.11 221
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should access during the runtime of the kernel should be 12 bytes multiplied
by the grid size and by the count of the time steps, which gives 1117 GB. In
comparison, the computed value based on the ‘nvprof’ measurements is 1175
GB as shown in the table which is close to our expectation.

All kernels are memory bound. The measured memory throughput of the
P100 on the test nodes was measured with a CUDA STREAM benchmark yield-
ing about 498 GB/s. The memory throughput that was measured for the ker-
nels shows high percentages (67%–96%) of the streaming memory throughput.
Reducing device memory access leads to focus on the application-level optimiza-
tion.

The data access is coalesced in all the kernels, before and after merging.
With data reuse (coalescing means data is in cache), the standard kernels access
the device memory 38 times · grid cells · time steps in total. However, the
merged kernels reduce the accesses to 26. The numbers of the accesses look
different from those of the Broadwell because the scheduling of the work on
GPU threads is different, and hence the caching of the data is different. The
access reduction explains the performance improvement between the two code
versions (221 GFLOPS:149 GFLOPS) as the arithmetic intensity is shifted from
0.39 to 0.58 through merging.

4.3 Vector Engines

On Aurora vector engine, we vary the grid width from 10k to 100k and measure
the performance (see Fig. 5). Merging improved performance over all the grid
widths. Performance is not dropping without blocking (at least at the chosen
grid widths).

Fig. 5. Different grid widths on NEC Aurora vector engine

To understand the performance NEC’s ‘ftrace’ tool is used (see Table 3). The
theoretical memory bandwidth of the vector engine is 1.2 TB/s. Based on the
‘ftrace’ measurements, the computed values of the memory throughput show
that all the kernels run with a high percentage of the memory bandwidth (80%)
before and after the kernel merging.
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The performance ratio before and after the kernel merging is 453 GFLOPS:
322 GFLOPS. This result is roughly the ratio of the arithmetic intensities which
we discussed in the multi-core processor results (0.63:0.45).

5 Summary

With manual fusion, a 2k LOC function represents a challenge for scientists to
find and test optimal fusions, while automatic fusion does not allow this flexi-
bility. In this work, we presented a technique to replace manual and automatic
loop fusion with a new genuine alternative. Code is automatically analyzed for
fusion opportunities, and function inlining is also detected across source files.
A list of possibilities is given to the user. Based on the user preferences, code
transformation is applied based on the inlining/fusion that the user chooses.

GGDML was used to develop high-level code that can be translated into
different architectures. This shallow water equations solver was then translated
and executed on multi-core processors, GPUs, and vector engines.

Table 3. Kernel measurements of both code versions on the NEC Aurora

Kernel Time (s) GFLOPS Memory throughput (GB/s)

flux1 1.30 230 858

flux2 1.51 199 989

compute U tendency 5.29 359 986

update U 1.21 166 927

compute V tendency 5.22 384 1,001

update V 1.21 165 924

compute H tendency 1.52 330 984

update H 1.20 167 934

Standard code 18.63 322 961

flux and tendencies 8.40 500 911

velocities 2.43 165 922

compute surface 2.31 303 940

Merged code 13.25 453 911

The results show the success of the technique to improve the efficiency of
the use of the memory bandwidth on the different architectures. Scientists can
apply the fusions (even across source files) and test any set of loop fusions as
they prefer. As a future work, we plan to explore exploiting temporal locality
between timesteps using the semantics of GGDML, and to explore using machine
learning to recommend fusion sequences.
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Abstract. The emergence of non-volatile memory DIMMs such as Intel
Optane DCPMM blurs the gap between usual volatile memory and per-
sistent storage by enabling byte-accessible persistent memory with rea-
sonable performance. This new hardware supports many possible use
cases for high-performance applications, from high performance storage
to very-high-capacity volatile memory (terabytes). However the numer-
ous ways to configure the memory subsystem raises the question of how
to configure nodes to satisfy applications’ needs (memory, storage, fault
tolerance, etc.).

We focus on the issue of partitioning HPC nodes with NVDIMMs
in the context of co-scheduling multiple jobs. We show that the basic
NVDIMM configuration modes would require node reboots and expen-
sive hardware configuration. Moreover it does not allow the co-scheduling
of all kinds of jobs, and it does not always allow locality to be taken into
account during resource allocation.

Then we show that using 1-Level-Memory and the Device DAX mode
by default is a good compromise. It may be easily used and partitioned
for storage and memory-bound applications with locality awareness.

Keywords: Non volatile memory DIMM · NVDIMM · DAX ·
Partitioning · Co-scheduling · Locality

1 Introduction

Computing nodes are increasing complex, with tens of cores. Co-scheduling mul-
tiple jobs on such nodes is a useful strategy for making sure all powered-on cores
are used in HPC centers. However sharing nodes between multiple jobs also
comes with issues such as contention in the memory subsystem or cache pollu-
tion. Resource partitioning is an interesting way to avoid such issues thanks to
operating system features such as Linux Cgroups.

The emergence of non-volatile memory DIMMs such as recently announced
Intel Optane DC Persistent Memory brings new possible strategies for data man-
agement in HPC applications. Indeed they support multiple hardware and soft-
ware configurations spanning from huge volatile capacities to high-performance
storage, that may be used as burst buffers or for recovery after fault.
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We focus in this paper on the co-scheduling of jobs with different needs, and
on the partitioning of these new hardware resources between them. We compare
the possible hardware configurations and advocate for the use of the 1-Level-
Memory mode with namespaces and explicit NUMA memory management.

The rest of this paper is organized as follows. We present the upcoming
NVDIMM hardware in Sect. 2 and discuss its possible hardware and software
configurations. Co-scheduling jobs with different requirements is then discussed
in Sect. 3 before we explain how to partition resources between them in Sect. 4.
Before concluding, related works are discussed in Sect. 5.

2 Background

Non-volatile memory DIMMs is a promising emerging technology that is
expected to blur the longstanding separation between usual volatile memory
and persistent storage [5]. It supports both with good performance and offers
multiple ways to be used by software.

2.1 Hardware

Non-volatile memory DIMMs have been available for several years as DDR
DIMMs with a battery so as to save data to a flash backup on power loss. How-
ever software support was not ready until recently. Intel recently announced the
availability of Optane DataCenter Persistent Memory Module (DCPMM) and
competitors are working on offering similar technologies in the near future. These
memory DIMMs are inserted in usual memory slots just like normal DIMMs
(DDR) as depicted in Fig. 1.

Fig. 1. Dual-socket Xeon platform with 6 channels per processor, with one Optane
DCPMM and one DDR each.

Optane DCPMMs can be configured as individual Regions or as Interleaved
Regions. Interleaving implies that the entire region data is lost whenever a sin-
gle NVDIMM fails. However, interleaving is still expected to be used by default
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because it increases the memory bandwidth by using multiple channels simulta-
neously. Non-interleaved regions are expected to be useful for separating small,
independent jobs such as virtual machines.

Besides regions, Intel hardware introduces in latest Xeon processor (Cascade
Lake) a way to use Optane DCPMM as normal (volatile) memory [2]. Each
DCPMM can be partitioned between Memory Mode (to be used as a large pool of
volatile memory) and App Direct (for persistent storage) [14]. This configuration
is performed in the BIOS or using tools such as ipmctl and requires a reboot.

2.2 Memory Mode and 2-Level-Memory

Latest Xeon processors may be configured in 2-Level-Memory mode (2LM). It
exposes the Memory Mode part of NVDIMMs as volatile memory and uses DDR
as a Memory-side Cache in front of it, as shown in Fig. 2. This mode is convenient
for applications that require lots of RAM (up to 6× 512 GB DCPMM per socket
with current hardware).

Fig. 2. 2-Level-Memory mode (2LM) uses DDR as a Memory-side Cache in front of
the Memory Mode part of NVDIMMs exposed as normal volatile memory.

Unfortunately this mode does not bring the exact same performance as a
pure DDR [8]. One reason is that each DDR cache is direct-mapped, which is
known to perform inconsistently over time [12].1

In this 2LM mode, the App Direct part of NVDIMMs is exposed as storage
just like in 1LM mode. We detail this storage mode in the next section.

2.3 App Direct and 1-Level-Memory for Storage

Latest Xeon processors may also be configured in 1-Level-Memory mode (1LM)
which puts back DDR as the main volatile memory as show on Fig. 3. The
Memory Mode part of NVDIMMs is not usable anymore. The App Direct part
is exposed as a Persistent Memory Regions (called region in the reminder of this
paper) that may be used as a disk (e.g. /dev/pmem1). However this disk is directly
byte-accessible by the processor. Contrary of usual disks, there is no need to
copy disk blocks in memory (in the kernel page-cache) before actually accessing
those bytes. This mode is called DAX (Direct Access) in Linux and Windows. It
enables the mapping of the actual backend data directly in application virtual
memory and the use of load and stores. This avoids the need for intermediate
copy and page-cache allocations.
1 Linux kernel version 5.2 will mitigate this issue by shuffling the list of free pages.

https://lkml.org/lkml/2019/2/1/15.

https://lkml.org/lkml/2019/2/1/15
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Fig. 3. 1-Level-Memory mode (1LM) uses DDR as the main memory while NVDIMMs
are exposed as a persistent memory region that is usually used as storage.

1-Level-Memory has several interesting use cases for HPC applications, rang-
ing from local disks as burst buffers [7], to recovering memory contents after a
fault thanks to persistence. When a modern filesystem is used to store data in
the App Direct part of NVDIMMs, the region is actually configured in FSDAX
mode in Linux (File System DAX ). Applications may use these files as usual.
However, optimal performance requires application to be modified for DAX: they
should stop using explicit file access (read/write requires a copy) and rather map
files in virtual memory instead (to directly access data).

Accessing the App Direct part of NVDIMMs (either in 1LM or 2LM) never
goes through an intermediate DDR cache, hence performance is lower [1,8,15].
However 1LM latency is better than 2LM in case of cache-miss because there is
no need to lookup the data in the DDR cache [11].

2.4 Device DAX and kmem Additional NUMA Nodes

Although FSDAX is expected to be used in the vast majority of cases because it
exposes persistent storage as a normal filesystem, App Direct regions may also
be useful without a filesystem. This mode is called Device DAX in Linux. It
exposes a mmap’able linear space where applications may manually store their
datasets without the structure and help of a file system. It was designed to
expose large regions of non-volatile memories to specific applications such as
virtual machines, but we are going to show in this paper that it is actually much
more useful than this.

Device DAX requires significant rework of applications because they have
to manually separate independent data without the help of independent files.
However we explained in Sect. 2.3 that DAX requires applications to be rewritten
to benefit from improved performance (map files instead of read/write). Hence
we believe additional application changes for supporting Device DAX are not a
significant hurdle.

Partitioning Device DAX between different jobs indeed requires synchroniza-
tion between jobs. We will explain in Sect. 4.2 how resource managers may solve
this issue using namespaces. Partitioning between different tasks of a job is where
application developers will have to update their code to use different parts of a
Device DAX for different datasets.

Device DAX brings an important feature since Linux 5.1: the kmem DAX
driver can expose NVDIMM pages as an additional NUMA node where appli-
cations can allocate memory as usual [6], as depicted in Fig. 4. This may be
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Fig. 4. When the App Direct part of NVDIMMs is managed by the kmem device DAX
driver in Linux, it appears as an additional NUMA node.

considered similar to Intel Xeon Phi Flat mode where both fast and slow mem-
ories are exposed as separate NUMA nodes.2 It means that applications now
have to manually allocate in one of the nodes depending on the required perfor-
mance for each dataset. This requires more work from application developers but
provides more flexibility than 2LM and possibly higher performance [3]. Indeed
developers have to choose between pure DDR (faster than NVDIMMs with DDR
cache) and pure NVDIMM (slower) [8,15].

2.5 Locality of NVDIMMs

NVDIMMs being attached to processors through memory slots, their access
performance suffers from locality like normal DDR memory, i.e. accessing a
NVDIMM is faster from the CPU where it is attached. Optane DCPMM per-
formance being lower than DDR, one may expect these NUMA effects to be
negligible. Unfortunately, there are actual higher [10] which means applications
must take locality into account when choosing their target NVDIMMs.

This is obviously true for 1LM because NVDIMMs are accessed by the pro-
cessor like DDR. But it is also true for 2LM because the DDR-cache acts as a
Memory-side Cache: accesses to NVDIMMs of another CPU are cached in the
DDR cache of that CPU, they are not cached locally.

3 Co-scheduling Jobs with Memory and Storage Needs

Modern HPC nodes feature lots of cores and memory. They are therefore good
candidates for co-scheduling several small jobs. Unfortunately node sharing raises
multiple issues in terms of performance [13]. Hence we now explain how to par-
tition nodes equipped with NVDIMMs.

3.1 Hardware Partitioning in 2LM

We explained in the previous section that partitioning is possible in most con-
figurations. However we assumed the hardware configuration matches the job
2 NVDIMMs 1LM and 2LM modes are similar to KNL Flat and Cache modes. How-

ever, NVDIMMs do not enable a KNL-like Hybrid mode: KNL could partition the
fast memory (MCDRAM) between cache and normal memory. NVDIMMs rather
allow partitioning the slow memory between cached (by the fast memory, DDR) and
uncached.



Partitioning NVMDIMMs Between Co-scheduled Jobs on HPC Nodes 87

requirements. We now look at the case where some jobs want a 2LM configu-
ration (Memory Mode for large amounts of volatile memory) and some others
want 1LM (App Direct for persistent storage). The only way to have both Mem-
ory Mode and App Direct available at the same time in a machine is to configure
the processors in 2LM (see Sects. 2.2 and 2.3, and Fig. 5).

Fig. 5. 2-Level-Memory enables exposing both Memory Mode as DDR-cached main
memory and App Direct as storage.

However this configuration has major drawbacks: First, the administrators
would have to choose a good ratio for NVDIMM partitioning between Mem-
ory Mode and App Direct. This ratio depends on the needs of all jobs that will
be scheduled simultaneously on a node, and setting up the ratio requires a reboot
of the node.3

Secondly, locality issues arise as shown in Fig. 6: If a socket is allocated to a
1LM job, its local NVDIMMs should be entirely set in App Direct. However it
means there is no local memory anymore: both local DDR and NVDIMM cannot
be used as volatile memory (DDR is entirely used as a cache; NVDIMMs are
entirely used as App Direct). Cores of this socket would therefore use remote
memory, which incurs bad performance as explained in Sect. 2.5.

Fig. 6. Allocating one socket to a job that wants 100% Memory Mode and the other
socket to a job that wants 100% App Direct causes the latter to have no local memory
anymore, and its DDR cache is useless.

In the end, we believe using 2LM to share a node with such different jobs
is not a good idea and we do not expect significant improvements in future
hardware platforms. Administrators would rather create one set of 1LM nodes

3 Additionally a 32G granularity seems to constrain possible ratios in hardware.
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and a separate set of 2LM nodes4 and possibly reconfigure, reboot and move
some nodes from one set to another depending on users’ needs. However we will
now show how 1LM may actually offer a more flexible solution.

3.2 Flexible Co-scheduling with 1LM and kmem NUMA Nodes

We explained in the previous section that 2LM requirements incur too many
drawbacks. Therefore we propose not to use 2LM anymore. As explained in
Sect. 2.4, Device DAX may be exposed as additional NUMA nodes. This provides
lots of volatile memory that 2LM applications require but requires application
developers to explicitly manage allocation between fast and slow memory. We
believe that this additional work for developers is a good trade-off because of
the flexibility it provides to users and administrators.

Hence we propose the following strategy:

1) NVDIMMs are configured 100% in App Direct and processors are in 1LM
mode.

2) NVDIMM regions are configured as Device DAX by default in the Linux
configuration (may be used for persistent storage as a single file).

3a) An application that cannot work without multiple files may request the
reconfiguration of a region as FSDAX.5

3b) An application that needs lots of volatile memory may request the reconfig-
uration of a region as an additional NUMA node through the kmem driver.6

This solution does not bring locality issues because each CPU still has its
local DDR explicitly available, while its local NVDIMMs may be exposed in the
mode that matches the local job needs. Besides, this approach is on par with
current Linux kernel development towards exposing both DDR and PMEM as
explicit NUMA nodes and having ways to migrate hot pages between fast and
slow memory7.

Table 1 summarizes the advantage of our proposal compared to 2LM memory
presented in the previous Section.

Table 1. Advantages and drawbacks of 2LM and 1LM modes for co-scheduling jobs.

CPU config 2-Level-Memory 1-Level-Memory

NVDIMM config Memory Mode ratio depends on jobs

Reboot required for updating

100% App Direct

Fast/slow memory

management

Automatic (DDR Cache) Manual & Flexible

(NUMA)

Storage management Limited to App Direct ratio OK

Locality May miss local memory OK

4 This is similar to what happened in many KNL clusters: some nodes were in Cache
mode, others in Flat mode.

5 Using the ndctl command-line tool, which does not require a reboot.
6 Using the daxctl command-line tool, which does not require a reboot.
7 https://lwn.net/Articles/787418/.

https://lwn.net/Articles/787418/
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4 Fine-Grain Partitioning Between HPC Jobs

We showed in the previous section that 1LM is a good trade-off enabling flexibil-
ity with respect to application needs and memory management. We now explain
how to actually partition and expose different kinds of memory between jobs at
fine grain.

HPC resource managers may already use Linux Cgroups for partitioning
CPUs between jobs [4], as well as NUMA nodes (individual nodes or amounts of
memory may be dedicated to each group). This work may already be applied to
partition NVDIMM-based NUMA nodes, either in 2LM or kmem nodes in 1LM.

However, when a single Device DAX is used, there is no way to partition it
between multiple jobs. This is an issue that we will now address.

4.1 NVDIMM Hardware Partitioning

As explained in Sect. 2.1, each NVDIMM (its App Direct part) may be exposed as
an individual region or it may be interleaved with others (see Fig. 7). Each region
is exposed as a different FSDAX, Device DAX or NUMA node in Linux, which
may be allocated to different jobs by the administrator. However, with only 6
channels per CPU and 1 single DCPMM per channel (128, 256 or 512 GB each),
there are very few possibilities for partitioning. Moreover, modifying regions
requires a long reconfiguration process (minutes) and a reboot. Hence we do not
think this is a good way to partition NVDIMMs between jobs.

Fig. 7. Partitioning NVDIMMs using Regions and Interleaving. On the first processor
two interleaved regions use respectively 4 and 2 NVDIMMs. On the second processor,
all NVDIMMs are exposed as individual non-interleaved regions.

4.2 Multi-DAX and Namespace-Based Software Partitioning

We believe that partitioning should rather be applied in software on top of persis-
tent memory regions. Indeed, each region may be split into different Namespaces
that are configured by the administrator without requiring a reboot [14].8 Hence
we believe that the hardware configuration should consist in one interleaved

8 Using the ndctl command-line tool again.
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region per locality domain (CPU or SubNUMA Cluster, for good NUMA local-
ity). The resource manager would then use namespaces for partitioning those
static regions dynamically on job allocation. We observed a 1-gigabyte minimal
granularity for this partitioning on our platform, and we believe this is sufficient
for current HPC jobs on platforms with tens of hundreds of GB of memory.

Hence we propose to extend our strategy from Sect. 3.2:

1) NVDIMMs are configured 100% in App Direct and processors are in 1LM
mode. NVDIMM regions are interleaved at CPU level (or Sub-
NUMA Cluster).

2) Jobs request one or several region namespaces from the resource
manager. Namespaces are configured as Device DAX by default in the
Linux configuration (may be used for persistent storage as a single file).

3) Jobs specify how each namespace should be configured, as shown
in Fig. 8.

3a) An application that cannot work without multiple files may request the
reconfiguration of a namespace as FSDAX.

3b) An application that needs lots of volatile memory may request the reconfig-
uration of a namespace as an additional NUMA node through the kmem
driver.

If multiple namespaces from the same physical region are exposed as NUMA
node, they are actually exposed as a single NUMA node9 Fortunately, Linux
Cgroups may be used to partition the memory of that shared NUMA node
between jobs.

Fig. 8. Using namespaces to partition regions between jobs requiring FSDAX, Device
DAX or NUMA nodes. Each processor is configured with a single interleaved region.
Software splits them between namespaces that may be configured according to jobs
requirements.

One may wonder whether using namespaces to partition a single region into
multiple DAX incurs a performance penalty. Figure 9 shows that the overhead
is negligible. Indeed processes only map DAX pages in their virtual address
9 Each persistent memory region corresponds to a unique NUMA node in ACPI tables.
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spaces and access them as regular memory. The actual overhead of using multiple
namespaces is their creation during job prologue (a couple of minutes).

Fig. 9. Performance of the STREAM Triad benchmark when using one Device DAX
per thread (in a single region), normalized to using the same Device DAX for all
threads.

4.3 DAX Locality

Finally, we look at how locality information is exposed in our proposed strategy.
Indeed, even if the resource manager tries its best to allocate local namespaces
to jobs, there is no guarantee that it will always be possible, and we explained
in Sect. 2.5 that locality matters to performance of NVDIMMs. Hence, there is a
need for the resource manager and the application to gather locality information
about the different software handles that correspond to NVDIMMs.

When NVDIMMs are exposed as additional NUMA nodes, we implemented
in hwloc a way to find out the corresponding local CPUs and DDR by looking at
NUMA distances and memory target-initiator information in Linux.10 Figure 10
depicts an example of such configuration.

For other cases (FSDAX, Device DAX and raw namespace), the information
exposed by Linux is currently incomplete: only one local DDR node is reported
even if there are multiple of them. For instance, in Fig. 10, they would be reported
as close to NUMA node #0 only (SubNUMA Cluster) instead of both #0 and
#1 (entire Package). We are currently working with kernel developers to expose
the correct information11.

10 This code is currently in hwloc git master and will be published in the upcoming 2.1
release.

11 https://lists.01.org/pipermail/linux-nvdimm/2019-April/020822.html.

https://lists.01.org/pipermail/linux-nvdimm/2019-April/020822.html
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Fig. 10. hwloc’s lstopo representation of a platform with NVDIMMs exposed as addi-
tional NUMA nodes using the kmem DAX driver. Each processor has one local DDR
NUMA node per SubNUMA Cluster (e.g. #0 and #1) and a single NVDIMM NUMA
node (e.g. #4). Hence each core has two local memories.

5 Related Works

HPC nodes are growing, causing co-scheduling to become necessary as soon as
applications do not scale well to many cores. Indeed it is better to fill powered-
on nodes rather than powering up yet another partially-used node. However
previous work has shown than node sharing raises several performance issues,
especially in the memory subsystem [13]. Many resources may be partitioned in
software to avoid processes disturbing each others.

Resource managers such as SLURM are usually in charge of allocating cores
and memory to jobs. They now use techniques such as Linux Cgroups for par-
titioning these resources between jobs [4] or containers [17]. Cache partitioning
also appeared in recent processors as a way to also avoid co-existing cache pol-
lution between applications [9]. However it is currently not supported by DDR
caches in 2LM. Fortunately, we explained that we do not believe that 2LM is a
sensible choice for HPC nodes.

When NVDIMMs are used as persistent storage, the resource manager is in
charge of allocating this local storage to jobs. Like any local disk in computing
nodes, these FSDAX may be provisioned by the manager, for instance as explicit
or automatic burst buffers [7,16]. This local storage may also be used as a high-
performance temporary storage between different jobs [7] for instance for in-situ
analysis.
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All these techniques are compatible with our proposal for partitioning non-
volatile memory since we apply the partitioning when launching jobs (in the job
prologue) and not in hardware.

6 Conclusion and Future Work

Non-volatile memory DIMMs are a promising technology that blurs the separa-
tion between volatile memory and persistent storage. We studied the different
ways to use Intel Optane DCPMM and showed that supporting different use
cases for different application needs requires careful hardware configuration. We
explained why we think 2-Level-Memory is not a convenient solution for locality-
aware partitioning of NVDIMMs between jobs. We showed why 1-Level-Memory
looks like a better approach with more flexibility for memory allocation, easier
configuration for the administrator and resource managers, and better locality.

Future work includes exposing better locality information from the Linux
kernel to the resource managers and applications, as well as exposing in hwloc
some information about the different kinds of NUMA nodes to ease application
allocation policies. We are also looking at implementing our proposed ideas inside
a resource manager such as SLURM.
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Abstract. Security and privacy are a concern in many Internet of Things
environments, particularly when anyone can connect their device into it. We
demonstrate and discuss the security in an airport environment where users are
guided to through security, to their flight, or to shops or other points of interest,
which in turn should reduce the stress of the user’s stay in the airport. The
challenge is not just that any user can connect their phone but also to ensure that
personal data is handled correctly - in particular, users must be tracked by the
infrastructure in order to guide them. Built on a fog-to-cloud platform developed
by the Horizon2020-funded mF2C project, we discuss the steps towards a full
implementation in a real airport, and the kind of security assessment that is
required to persuade an airport to deploy a pervasive user-facing infrastructure
without compromising - and hopefully improving - airport security, fulfilling
GDPR compliance.

Keywords: Cloud computing � Fog computing � Fog-to-cloud � Distributed
systems � IoT � Proximity marketing � Security � Privacy � GDPR

1 Introduction

We are facing a tremendous advance in systems architectures and business around
Internet of Things (IoT). First, the installed base of IoT devices is growing constantly,
and the latest forecasts estimates around 31 billion devices worldwide, with an
expected annual economic impact of about $12T, by 2025 [1]. The foreseen scenario
includes smart cities, factories, transportation and logistics, large retail and healthcare.

Another aspect that has galvanized interest is the increasing capabilities of devices,
such as “smart” connection boxes deployed in many homes, high capacity mobile end-
user devices and powerful wireless networks, used at the edge of the Internet. Typi-
cally, a smart device relies on cloud services for extra processing capabilities (think of
Amazon Alexa, Google Connected Home Assistant, etc.), where data is sent to a cloud
for processing and the results sent back. This can be considered a new computing
paradigm, particularly where computation stays as close to the edge as possible, “fog
computing” (a diffuse cloud).
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In this edge-first computing approach [2, 3], edge devices are the starting point of
computing, where people work and live, and processing is done locally until the
required load in terms of processing and storage exceeds the capacity of the devices.
Then the processing and data are “osmotically” moved to more powerful devices in
proximity [4], the fog nodes, which, in turn, can offload processing onto the cloud [5].

In this paper we present a traveler guidance service, in the setting of an airport,
implemented following the fog-to-cloud approach of the mF2C project1. The service
acts as a “smart hub” to provide real time information in a public environment [5].
A prototype has been implemented that collects data from the passengers and provides
information to enable proximity marketing (shops, restaurants, etc.), while preserving
the privacy and security of data owners [6], and augmented by analytics computed in
the cloud. This setting could be reused in other public domains like train stations,
shopping centers, etc. to constitute a building block for a smart city implementation.
Initially deployed in a cloud-based testbed, the prototype was validated with data from
Cagliari airport.

This paper is structured as follows. Section 2 introduces the security and privacy
issues in the IoT ecosystem in general. Section 3 describes the mF2C system and the
Airport Use Case, Sect. 4 describes the security features coming from the mF2C
framework and the specific features implemented in the use case. Section 5 presents the
experimental results related to the security check of the Use Case, finally, Sect. 6
concludes the paper.

2 Security in an IoT Ecosystem

IoT security is important: a compromise can be expensive, embarrassing, lose cus-
tomers, or even compromise airport security. In an IoT proxy attack, IoT devices
(mobile phones, in our case) are used as entry point or resources to attack selected
targets; the hacked resource can be compromised and used to launch a DDoS2 attack. In
a IoT direct attacks, the IoT device could be subject to attacks with the aim of
disrupting the IoT itself, for instance compromising passenger information or triggering
a fire alarm.

To fully identify the whole list of threats, it’s useful to classify the type of attacks in
the following categories [7]:

• Access of information, where the only purpose of the hacker is to get private
information without any impact in the integrity and availability of such information;

• Temporarily disrupt activity, where the hacker want to disrupt accessibility to
information;

• Change code, files or information, where the hacker intends to modify code, data or
files, with a resulting relevant impact;

• Destroy the target, where the hacker intends to attack the core resources of the
target, with potentially major impact.

1 https://www.mf2c-project.eu/.
2 Distributed Denial of Service attack.
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There are many reasons that determine the growing of cybersecurity threats:

Scalability and surface of risk – with a large scale deployment of IoT devices, the
surface of attack will be wider, and the likelihood of exploit, e.g. through an unpatched
device, or a weak password, will be higher. Finding one weak point could be sufficient
for the attacker who steals information, or it could provide a springboard for further
attacks;

Energy and computing constraints – IoT devices have limited capabilities, some-
times the energy saving is a major priority in codes and protocols, leaving room to
vulnerabilities;

Physical accessibility – IoT devices are more often deployed in open environments, so
easily accessible and susceptible to be tampered;

Protocol communication weaknesses – IoT device rely on specific communication
protocols, some are IP-based mostly based on UDP, others are non-IP protocols (e.g.
Zigbee) that often have specific weaknesses like unencrypted data transmission;

Manageability and human factor - the huge number of deployed device pose a
serious issue in terms of manageability. The task of securing such a complex and
heterogeneous networks is quite challenging. Then human factors can amplify any
potential weaknesses of IoT networks;

Cognitive bias - many people underestimate risks, and may perceive their devices as
simple and not containing sensitive information.

Any IoT platform must thus provide privacy and security models that address the
relevant risks, and design countermeasures for these risks.

3 Fog Hub in Airport Use Case

The airport application is built on the mF2C platform, an open, secure, decentralized,
multi-stakeholder management framework for F2C (Fog-to-Cloud) computing. This
approach is taken in order to benefit from the platform’s features of novel programming
models, privacy and security, data storage techniques, service creation, brokerage
solutions, SLA policies, and resource orchestration methods [8–10], and thus to reduce
the effort required to build and interconnect the airport application. The mF2C project
is funded through the EC Horizon 2020 program, and brings together relevant industry
and academic players in the cloud sector.

As mentioned in the introduction, the service is designed to guide travelers through
the airport “obstacles” – check-in, security, passport control, and the departure gate,
while offering them tailored access to airport services – food, gifts, books, etc. [11, 12],
as in Fig. 1. Service offers are anonymous, based on a recommender system that groups
users with similar interests. Wi-fi signals are used to track the location of the traveler;
and a cloud service tracks departure time, time to walk to gate, gate changes, etc., thus
making the traveler’s journey less stressful.
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Conversely, the service could offer benefits to the airport as well, not just through
“optimized” use of shops, but also by helping people with special needs (limited
mobility, travelling with young children), by identifying bottlenecks as they form, and
could help handle emergencies (a passenger being sick, lost children, etc.).

3.1 The mF2C Fog-to-Cloud Platform Architecture

The mF2C fog architecture is illustrated in Fig. 2. At the cloud level, containerization,
virtualization, orchestration provide resource-efficient management in the top layer,
while the fog infrastructure below can be dynamic and heterogeneous. Processes can be
deployed by the cloud to the edges of the network, near the IoT sensors and actuators,
and computation and data is fed “upwards” in the architecture as needed.

Fig. 2. mF2C architecture

Fig. 1. Use case scenario in the airport
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An mF2C “agent” implements the management functionalities in every component
within the system which is capable of running an agent. Devices that are not able to run
the mF2C agent – typically at the very edge – send data to the nearest agent which then
collects, processes and distributes it. One agent is selected to act as “Leader” in order to
manage resources and coordinate resource usage of the fog nodes around it.

3.2 Implementing Airport System on the mF2C Platform

In the architecture described in the previous section, the airport system is implemented
as depicted in Fig. 3:

• The cloud layer is based on an OpenStack3 instance, wired connected with the fog
layers. The cloud layer provides scalable computing power for machine learning
algorithms used for the (Collaborative Filtering) recommendation system and
manage the long term data storage and analysis;

• The first fog layer acts as aggregator, based on a NuvlaBox mini4 and two U55
Mini PC both with 8 GB RAM, that provide real-time computing and storage
resources to the edge elements, manage proximity events, airport flight events and
information, recommender data cache and support admin dashboard with relevant
reports;

• A second fog layer, which acts as access node, is based on seven RaspberryPi35

with 1 GB RAM, that provide session management, communications with and fast
response to the edge devices, running the object (traveler) tracking and proximity
application;

• Finally, the edge layer consists of the travelers’ Android6 smartphones, connected to
the access node with Wi-Fi, and using an app to interact with the system.

All fog devices in the airport area are positioned in order to create a grid for Wi-Fi
coverage. Appropriate algorithms that evaluate relative Wi-Fi signal strengths are used
internally in the Android app to calculate the passenger’s position.

3 https://www.openstack.org/.
4 http://www.sixsq.com/products/nuvlabox/.
5 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.
6 Initially, only Android is supported.
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4 Security Architecture of the Airport Use Case

In Sect. 2, we briefly outlined security topics in an IoT scenario. In the airport
specifically, the mF2C platform comes with built-in security, which can be leveraged
and adapted to implement security for the application. The goals are:

• Protect the system from disruptions (network loss, denial of service).
• Protect the individual user’s privacy, by letting them choose how much data to

share and only using aggregated and anonymized data beyond the user’s domain.
• Protect the airport – the system should not compromise any of the airport’s security

features.
• Protect other participants – airport shops, airport staff – from “nefarious use” of the

mF2C application. A malicious user with knowledge of the system might try, for
example, to generate a fake discount voucher for a shop.

4.1 mF2C Platform Security

Figure 4 shows the architecture again, but highlighting the security measures. The
foundation of this is a Public Key Infrastructure (PKI) with a Certification Authority
(CA) running as a service in the cloud. In fact, in our example, there will be three
distinct PKIs which by default do not trust each other.

Fig. 3. Use case 3 system architecture
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1. Fixed infrastructure services that support the mF2C platform and applications have
their own PKI, with long-lived credentials. Examples of these services include web
services endpoints and the CA.

2. The Agents (Sect. 3.1), that provide the dynamic resources and capabilities of the
mF2C infrastructure – including a leader and backup, have credentials from a
different PKI, which, in a production environment, uses shorter-lived credentials.

3. The recommender application has access to a third PKI which generates credentials
only for the airport recommender application.

The three main reasons for separating the PKIs from each other are: First, a
compromise of an application credential does not lead directly to an attack against the
platform. Secondly, application specific data is protected with its own PKI, and the
platform could in principle serve other use cases at the same time, with the same agents,
without risking the unauthorized disclosure of application data. Finally, the CAs for the
different PKIs can have different issuance policies and access controls. For example,
anyone bringing a device into the airport with mF2C software installed on it, could
become an agent, but should not have access to recommender data (using the appli-
cation PKI), nor should they be able to impersonate a platform endpoint (which use the
infrastructure PKI).

Thus, the agent will be distributed with the trust anchors for the infrastructure and
for the other agents; whereas the application would typically come only with its own
trust anchor.

We have mentioned that the CA service (issuing credentials to applicants according
to its policy) runs in the cloud, which would allow users to get their application running
before they reach the airport – the user will register and the application obtains its
credential. In case the user has not performed this step prior to reaching the airport, it is
necessary to let their phone contact the cloud to register the user and obtain a

Fig. 4. mF2C security features
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credential. However, we cannot, in general, give a device unfettered access to the
Internet, as this may violate the airport’s security policy. For this purpose, a special
endpoint called, for historical reasons, the Control Area Unit (CAU, Fig. 4) is pro-
vided; it is able to receive a certificate signing request from an agent in the fog area and
obtain a certificate for it from the service in the cloud. Currently, a separate CAU
instance is needed for each PKI.

4.2 Use Case Security

Starting at the edge, all passengers install and use an Android app to interact with the
system. The app as a first step presents a privacy notice describing the use of personal
data done by the app, and users can decide how much data to share – sharing more data
may lead to better recommendations [12]. According to Android best practices7, neither
the device MAC address nor other hardware information are used to identify the app, so
no Personal Identifiable Information (PII) are collected without the user’s consent.
Instead, a random UUID is generated to uniquely identify the app in the system. This
identifier remains the same even if the app is killed and then restarted, while if the app
is uninstalled and then reinstalled, or if app data are cleared, a new random UUID will
be generated. The other information collected by the app are location, traveler flight
number (if they choose to share it) and a scoring on the user’s inferred interests
(Sect. 3). So the app is fully compliant with the GDPR [6] requirements; moreover, the
risk of sniffing PII data in a Wi-Fi environment is quite low, since all PII is encrypted
using the PKI (Sect. 4.1).

The Android app interacts with second fog layer nodes through an HTTPS web
service. This connection is established using both client and server certificates signed
by the application CA. The use of a client certificate allows the fog nodes to recognize
and trust the app. Once the app has logged in the system, a mechanism based on signed
JWT [13] (JSON Web Token) is used to reference the app in subsequent API server
calls. The JWT expires after 24 h, after which the app must repeat the login.

The Android apk (Android application package) file is generated according to
Google’s recommendations with code obfuscation to prevent reverse engineering. The
app is distributed as a separate apk file, thus currently not available through the Google
Play store. In a future (commercial) step, an official release of the app will be published
on Google Play store – it is expected that each airport that deploys it will want its own
customized look and feel of the app. Further best practices on app security will be
adopted, for example the use of SafetyNet APIs8.

Backend applications hosted on all fog layers nodes (including Nuvlabox) and in
the cloud instance communicate with each other for data synchronization and aggre-
gation through secure channels – and also in a private network within fog cluster -
using certificates signed by the application CA. Each backend application instance has
a unique identifier that is hashed together with a pre-shared secret to obtain an identity
key (ID key). This identity key is used when sending data to other nodes. A receiving

7 https://developer.android.com/training/articles/user-data-ids.
8 https://developer.android.com/training/safetynet.
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node takes the identifier of the sending application and computes the hash using the
pre-shared secret. If the hash matches the identity key of the sending node, the
receiving node accepts incoming data. The mechanism based on identity keys avoids
the use of a different client certificate for each node. The pre-shared secret used for
hashing is never used in communications between nodes, and could be stolen only
having access to the device in which the application is installed (Fig. 5).

On the “dashboard,” given that there are no personal data involved; the current
solution implements a simple user/password authentication, while in the future com-
mercial solution it will incorporate a hierarchy of users with roles and permissions,
authentication and authorization – for example, parents may be authorized to track their
children, and a group of friends might authorize information sharing with each other.
Another obvious extension could also let users authenticate with existing ids (e.g.
Microsoft Live, Google, Facebook, on the assumption that most users would have at
least one of these, but with username/password as a backup for users who do not want
to use these) - for our purposes, we do not need any attributes other than a persistent
identifier, but users might choose to share their email address through a social media
identity provider. Additionally, the registration could optionally register a credit card
number, or possibly even eIDAS9 if this would benefit travelers (e.g. quicker identity
checks). User authorization for use of their data would be delegated through the JWT
token [13–15].

Fig. 5. Secure communications in use-case architecture

9 https://www.eid.as/home/.
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Regarding the use of certificates, for the commercial solution we foresee the fol-
lowing options:

a) Manage an internal custom root CA (as today), using certificates signed by it both in
the client and server applications;

b) Use Open Source packages such as Let’s Encrypt, for CA management;
c) Adapt the current software to take advantage of mF2C CA/CAU built-in

capabilities.

The final point that requires attention in the use case architecture is the wireless
communications between smartphones and access nodes (RPi). In order to perform a
fraudulent usage, an intruder should be within the Wi-Fi range, have downloaded the
app and extracted the client certificate. After that, in order to act on behalf of another
device, the attacker must generate the same app identifier, but the probability to gen-
erate the same random UUID owned by another device is negligible. This probability is
further reduced by performing a periodic cleaning of identifiers and data not actively
used within a reasonable amount of time, which is a recommended practice. In any
case, however, an attacker could get only anonymized data.

5 Experimental Results and Benefits from MF2C

Supposing that the mF2C platform would guarantee the security of the system in fog
and cloud, we will run penetration tests at the edge with appropriate tools, so we will
check wi-fi communications and peer devices to demonstrate that rPIs are properly
protected.

A security testing procedure has been defined for the use case. As primary software
tool the KALI distribution has been chosen as it offers a wide range of tools for the
most common attacks and is also available on both VM and container to be easily
executed by a client on any operating environment. KALI requires a wireless network
card that can be set in monitoring mode to operate.

The security testing procedure is divided into the following steps:

• Planning – Gather Information
• Execution – Post Authentication
• Execution – Unauthorized Access Attempts
• Post Execution – Reporting

Planning – Gather Information
Testing starts with a site survey, a security specialist moves with devices and antennas
within the defined perimeter to collect information on the wireless signal within the
environment: the FERN WIFI tool is used in order to detect the scope of coverage of
the Access Points (APs) of the application, detect other AP and other boundary
information. It is useful to determine the areas outside the airport area where the wi-fi
signal is present: if these areas were available to the public they would be an area of
potential attack. In addition, the NMAP tool allows to collect info on all detected APs
in terms of hardware, OS and software on the AP, with related models and versions.
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This information is useful to determine if vulnerabilities are known on such hard-
ware and software. During this survey, all textual information should be collected and
entered into the dictionary for subsequent verification.

The KISMET tool helps in verifying if the channel is open or closed, and the signal
is transmitted in clear or encrypted, in case evaluating which data are potentially
exposed to disclosure.

Execution – Post Authentication
The next step is oriented to verify security aspects as a regular user. The policies related
to network segregation (e.g. guest network separated from internal network) have to be
verified. It also verifies the availability and security of the administrative access login.
NMAP is used in this case to determine the reachability of the various devices, open
ports and potential vulnerabilities.

Execution – Unauthorized Access Attempts
The security specialist with the appropriate tools tries to gain unauthorized access to the
wireless network, proceeding to attacks of various kinds (but, obviously, with the
authorization of the service provider.) The goal is to determine the possibility that an
unauthorized person can gain access to the wireless network, relying on one of the
weaknesses such as weak protocols, default or weak administrative credentials, soft-
ware known vulnerabilities, WPA misconfiguration, etc. or others determined in the
previous steps.

KISMET is used together with GIS Kismet for Access Control Attacks such as
MAC spoofing, AP/ Client misconfiguration, unauthorized association, or AIREPLAY-
NG for Integrity Attacks such as data frame injection, WEP injections, Data Replay,
Vector Replay Attacks.

The FERN WIFI tool allows instead Confidentiality Attacks as eavesdropping, as
well as Authentication Attacks like cracking key WEP or WPA–PreShare Key, pass-
word cracks, identity steal and information of wi-fi clients or VPN login cracking,
LEAP cracking and password speculation.

Post Execution – Reporting
At the end of tests a detailed report is generated, showing a map of the environment,
with the positions of the APs and relative coverage area and all the hardware and
software details detected, vulnerabilities detected (actions to reproduce them and any
remediation actions), risk assessment, critical elements detected, documented with
traces and screenshots.

The entire procedure was successfully run in the internal testbed; the tests will be
repeated at the airport as soon as the solution is released (provided the airport permits
it).

6 Conclusions and Next Steps

Traveling can be stressful and it is common to have to allow several hours in order to
get boarding passes, pass security, several identity checks, and, on the other end,
baggage collection, more identity checks, customs, and onward travel. Implementing a
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service which can guide the user through these necessary activities can make the
journey less stressful, particularly for users with special needs such as those traveling
with young children or people with disabilities. We have presented an early version of
such a system, intended for deployment initially in Cagliari airport. Based on the fog-
to-cloud computing paradigm implemented by the mF2C project in a general platform,
it implements an Android app which lets the users choose how much to share (e.g.
interests, flight data) and anonymously provides them with guidance and location-
aware offers. As with all IoT applications, both security and usability of the security is a
concern that must be addressed, or users would not trust the platform with their data – it
would be disastrous for the user to miss the flight or lose personal data due to a
malfunctioning or compromised airport app. We have already demonstrated security
features, and plan to continue to improve security and functionality through the real-life
deployment in Cagliari, leading, ultimately, to a commercial product that can be offered
to other airports.
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Abstract. The field of edge and fog computing is growing, but there are
still many inconsistent and loosely–defined terms in current literature.
With many articles comparing theoretical architectures and evaluating
implementations, there is a need to understand the underlying meaning
of information condensed into fog, edge, and similar terms. Through our
review of current literature, we discuss these differences and extract key
characteristics for basic concepts that appear throughout. The similar-
ities to existing IaaS, PaaS and SaaS models are presented, contrasted
against similar models modified for the specifics of edge devices and
workloads.

We also evaluate the different aspects existing evaluation and com-
parison works investigate, including the compute, networking, storage,
security, and ease–of–use capabilities of the target implementations. Fol-
lowing that, we make a broad overview of currently available commer-
cial and open–source platforms implementing the edge or fog paradigms,
identifying key players, successful niche actors and general trends for
feature–level and technical development of these platforms.

Keywords: Fog · Edge · IoT · Platform · Comparison · Overview ·
Definition

1 Introduction

Computing resources can be made available in a number of ways. Using the grid
as a somewhat low–level abstraction predates using the cloud as a more high–
level abstraction to computing resources, and the latter is, at the moment, the
most popular method of delegating computational resources. With consumer–
focused and low–powered machines becoming capable of an increasing number
of non–trivial tasks, there is often a desire to take advantage of that capacity to
perform computation more optimally, e.g. by increasing data locality.

Extending from the cloud, edge computing and, more recently, fog computing
have appeared as terms for describing such architectures. The differences are
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not immediately apparent however, and different sources have sometimes subtly,
sometimes very prominently, differing view on what each should encompass.

Our goals are to identify similarities and differences in the approaches to
handling the different layers of the fog/edge computing architectures and to
make a comparison of existing research and solutions. We will begin by exploring
and clarifying commonly used terms in Sect. 2, then continue on to explore the
levels of overall management of platforms in literature in Sect. 3. Following that,
we provide an overview of current literature in Sect. 4 and conclude with an
overview of currently available proprietary and open–source platforms in Sect. 5.

2 Commonly Used Terms

Many terms used in this field are used frequently, without a clear consensus
on what, specifically, they mean. This complicates interpreting existing litera-
ture, where different researchers have slightly different views on the boundaries
between layers, which, while always overlapping, can differ significantly.

Most of these terms are not technical and are used primarily in marketing
and, even there, are established to varying degrees. They condense many tech-
nical details into a well–recognised word that is a generally correct description
of the concept, but lacks the specificity needed to recognise and understand the
issue in–depth.

2.1 The Cloud

Although a term that is already established, it is useful to define the key char-
acteristics that researchers in the field describe with this term, as not all may
be immediately obvious when compressed into a single word.

Mainly the term concerns the abstraction of physical or virtual resources,
made available through a managed interface. The location, specific configuration
and ownership of the resources themselves should not matter, other than for their
performance characteristics or for differences in billing models.

2.2 Fog, Edge and IoT

These are terms widely used, but problematic in terms of overlap. The somewhat
recently emerged field of cloud IoT providers sometimes covers all three aspects,
seldom well–defined and mostly used interchangeably. The research into these
platforms exhibits the same, with authors’ interpretation implicit and specific
to a single application.

This work attempts to non–authoritatively define the scope of each of these
terms, based on our cumulative understanding of the field rather than based
on any specific research. The basic constraint is that we attempt to classify
devices into a single category, which provides multiple opportunities to evaluate
differences and overlaps.
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In a larger picture, the fog, edge and IoT layers, joined by the cloud, form
a hierarchical relationship with a single, likely distributed cloud at the top,
followed by multiple fogs, each containing multiple edge devices, connected to
even more IoT devices.

The only layer the standalone existence of which does not make sense is the
fog layer, as this is, usually, a bridging layer connecting multiple edge devices
and the cloud and, almost by definition, must include edge devices. IoT devices
are of little use on their own and edge computing–capable devices, on their own,
already exist in the form of personal computers.

2.3 Proposed Understanding of the Architecture

To try to establish an understanding and to define terms used in subsequent
sections, we present our definition of the above terms. This layout is summarised
in Fig. 1.

Starting from the bottom layer of IoT devices, these are commonly defined
as sensors and actuators that interact with the environment. The definition we
use is slightly stricter in that we require them to not run a traditional operating
system. This excludes powerful single board computers such as the Raspberry
Pi, but includes microcontrollers, simple sensors communicating over one wire
and Bluetooth–based sensor packages.

This is the first instance of overlap between the IoT and edge layers. The
Raspberry Pi in particular, having GPIO pins available to connect to the physical
world is often considered an IoT device because of that fact, but can also act as
an edge device. The differentiating factor is only the software that runs on them
and, subsequently, the role they take in the overall architecture.

Fig. 1. Hierarchical architecture summary.
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Edge devices are, in our definition, devices capable of IP–based networking,
running an operating system offering remote configuration, connectivity, and
being able to run applications on–demand. They also connect to devices hierar-
chically below them, possibly using non–IP–based networks such as Bluetooth
[4] or Thread [22]. Apart from bridging different connections, providing compu-
tational power is a major role of these devices because of them being relatively
computationally powerful. Examples of such devices are single board computers,
laptops and industrial gateways. Mobile phones could also be considered edge
devices, but as they are not configurable enough to be equivalent to others, we
do not include them in this definition.

The most ambiguously defined is the layer of fog devices. It is very similar
to the edge layer and can be viewed as its vertical extension—there is very little
difference between the edge and the fog. As it is used in current literature, it
most often is a general–purpose term used for devices between the topmost cloud
layer and another layer below them, with the primary differentiator being their
primary role in bridging logical connections. We believe this does not differ from
the edge layer in any significant aspect.

However, there is a distinction between a fog layer as described above and a
fog area, and that is where the term is useful. The fog area is a geographically–
based group of devices, including devices on all layers except the cloud. This
grouping may be static or dynamic, depending on the properties of the devices—
an example is inter–vehicle communication, where edge nodes are mobile. This
grouping allows reasoning about larger–scale device locality which solely edge
do not encompass.

Lastly, there is the cloud layer, which was already described. One may note
that devices such as routers, are not included, even though they must be present
for any meaningful infrastructure as described to exist. They are a support-
ing mechanism present on all layers, but are sometimes replaced by alternative
connection mechanisms that the edge layer provides.

3 Levels of Management of Edge Architectures

Apart from the overall architecture, there are also different ways of managing
devices and functionalities in edge architectures. In the cloud, IaaS, PaaS and
SaaS are the most common solution types. At the edge, no such type has emerged
to be the most prominent.

Similar terms exist in this field. Things-aaS [1] and Smart Object-aaS [6] are
concepts of exposing sensors, actuators and devices to the network by providing
managed bridges as an interface between a traditional networked component
and things that may or may not have been originally designed to connect to a
network as a managed object. Sensing-aaS [6,18] and Sensing and Actuation-
aaS [1,6,15] are similar concepts, but deal with exposing the sensing and/or
actuation capabilities of devices rather than the devices themselves, providing a
further abstraction layer between data sources and data consumers. Data-aaS,
City Infrastructure-aaS are examples of different terms for more or less the same
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concept, shared between all previously mentioned terms: making some kind of
data available over the network in a managed system. Existing research on this
will be presented in Sect. 4.

The cloud IaaS, PaaS and SaaS concepts can be somewhat extended to the
edge. With the exception of SaaS, which is focused on end–user applications,
concepts of both IaaS and SaaS can be found in, for example, Sensing-aaS, where
sensors are abstracted and exposed in the same way as computing resources.

Classically, the main difference between IaaS and PaaS is that the former
allows direct use of hardware resources, albeit virtualised or somehow isolated,
while the latter offers an abstracted development platform and software lifecycle
and hides the actual underlying hardware [8].

To transfer IaaS and PaaS to the area of edge devices, we need to know the
benefits and drawbacks to using devices not situated in traditional data centre
environments, which offer security, power management and a reliable hardware
deployment setting.

Placing devices at the edge, for example in a factory floor or throughout
an airport provides no redundancy found in a data center—there is only a sin-
gle power supply with no external management and a single network link with
potentially low-performing upstream equipment. Additionally, physical security
is an issue as devices are placed where anyone, potentially even the general pub-
lic, can access them. This presents a difficult issue in hardware and network
security, as new threat models need to be considered that have previously been
ignored.

On the other hand, there are application-specific benefits that placing devices
in situ bring. A factory often lacks the necessary infrastructure for a proper
data centre, an airport may have its own data centre but require smart sensing
devices to analyse data from customers or even manage point–of–sale terminals
[19]. Even with the lack of local device redundancy, in an event of a wider
network outage, the local network could be retained, offering a limited set of
functionalities locally.

An extension of that is a reduction of decision-making latency that can be
achieved by not contacting a distant server through a WAN but instead making
decisions on the edge device, where network latency can be several orders of
magnitude lower, enabling applications where real-time decisions are crucial.
The data security aspect could also be important: privacy constraints could
limit data transfer to a cloud service. In this case, having devices capable of
processing data in a compliant location could be the only way for an application
to operate.

4 Existing Research

Research related to the cloud computing and IoT paradigms is reasonably old,
with them being started to be widely explored in the mid 2000s. The more recent
field of fog and edge computing has emerged in the early 2010s.

On the industrial side, existing providers of cloud platforms have begun to
implement and support IoT platforms as an extension to their business, attaching
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additional IoT– and edge–focused functionalities to their existing solutions. Due
to this, work on edge computing platforms and comparisons between existing
solutions has begun to increase.

Grid computing was considered a predecessor to the IaaS, PaaS and SaaS
models. Whereas the grid was considered useful for a small number computation-
ally expensive tasks, the benefits of the cloud were considered as the capability
to provide scalability to a large number of heterogeneous tasks, not necessarily
compute–intensive. A cloud is considered to have the following properties:

– self-service, with no administrator intervention for general usage,
– broad, homogenous network access,
– resource pooling, multi-tenancy, possibly via virtualisation,
– elasticity and scalability and
– resource usage measurement, possibly used for billing.

4.1 Related Work

Recent work has been mostly focused on integration strategies for platforms.
Because comparing platforms in–depth is difficult at best, most research does not
include any comprehensive evaluation, but instead focuses on purely theoretical
methods or a simple proof of concept [6].

Papers appear mostly in workshops or conferences rather than journals, which
relates to the relative immaturity of the field. Publications are spread across
around 30 sources [6], with no single one seeming prevalent. More thorough
evaluation methods are desired, as 15% of evaluations are done on a purely
theoretical basis and another 40% are extremely simple single-purpose proof of
concept applications. Types of proposals for new platforms can be categorised
into the following groups:

– architecture: purely theoretical proposals,
– platform: implementations supporting the development and execution of

applications in hardware or in software,
– framework: software directly used in the development process and
– middleware: services applications use.

The IoT layer is nearly always included [9] within existing platform as articles—
the edge is seldom used solely for computation. This makes sense, as only relo-
cating computation, without data–generating components near it, brings little
benefit.

Approaches to integrating low–level devices are various: one project inte-
grates the sensors directly into existing modules in OpenStack [15,21], while
another tries to adhere to the UNIX philosophy of everything is a file, and maps
sensors to filesystem objects [5]. Both resemble IaaS in that they only expose
resources as primitives, but do not otherwise provide added services. Authors
claim language independence and liken their approach to the one in the Rasp-
berry Pi platform, which exposes GPIO pins as special filesystem objects.
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In research of the edge and the fog, authors largely equate the two [1,13].
This is done either explicitly, or implicitly without even mentioning the edge
layer—using the fog to include its functionalities. Sources do agree, however, on
the features a fog should provide:

– storage, or some kind of persistance mechanism for data,
– networking, or a way to connect devices between separate networks and
– computational offloading.

Providing storage can be done in many ways. The only important character-
istics are that there must be a way to submit and retrieve data to and from the
solution, as edge devices might not necessarily have the capability to have local
instances of databases.

Networking can be provided either as an overlay network for transparent
connectivity–this would provide an IaaS–like service. There may be a higher–
level mechanism for logical connections, akin to PaaS, such as a distributed
message queue, which applications could explicitly conform to and use.

An important and often overlooked aspect of edge networking is ensuring
reliability. Compared to data centres, where one can assume that while reliabil-
ity of equipment and connections is high, at the edge devices are in uncontrolled
environments with using reliable hardware. Network connections are not fault
tolerant and handling this unreliability must be done at the software level, or
more specifically, at the level of the platform devices are connected to. Appli-
cations must be able to persist through network connection loss and, ideally,
provide functionality even in cases with no connection to the global Internet.

Offloading of computation is necessarily present in fog or edge computation
scenarios for them to be useful to lower layers. How this is implemented is flex-
ible, ranging from grid computing–like solutions, to only spawning whole appli-
cations on other nodes and subsequently communicating with them, possibly
speculatively if there is a demand for responsiveness.

Data locality is frequently used in the context of this computation [11]. Used
in terms of a single computer, this means cache hits and misses but in a dis-
tributed environment that edge devices provide, it is used for processing data
that resides on the local node, without it being fetched over the network. Lessons
learned from grid distributed computing apply here—not all workloads are neces-
sarily sutable for this. Calculating an easily parallelisable task, such as the mean
value of a dataset, is simple, however if the computation is not trivially par-
allelisable, challenges due to the relatively high network latency between edge
nodes arise, which must be solved differently than grid computing problems,
which exist in controlled environments.

The reduction of latency, particularly computation and decision–making, is
most often the primary benefit pointed out for edge infrastructures [1]. While the
balance between data transfer speed and processing speed needs to be achieved,
there are use–cases where this may be useful.
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5 Existing Solutions

There are a myriad of platforms supporting IoT and edge computing workloads.
We have selected 32 for an evaluation. This will not be an in–depth comparison—
the goal is to understand the variety of functionalities, as advertised, of this
limited set of platforms. This is definitely not a comprehensive list of solutions
in this niche. The products listed have been sourced through browsing review
papers, web searches for similar platforms and through platforms already known
to the authors.

We have chosen around 25 metrics for comparison. These mostly concern
categorisation and boolean feature availability and scope, pricing scheme, and
general popularity. This information has been condensed into a table in Fig. 2.
In the following text, we will refer to these platforms by either their name or by
their sequential number in the first (index) column.

A basic comparison is the type of the platform, classified into IaaS, PaaS and
SaaS. Existing cloud provider features can easily be categorised into these three
groups, but this is not the case for edge computing platforms, where there is
not much variety. Essentially, most platforms use a PaaS model, providing tools
to the developer to explicitly use when developing, often resulting in vendor
lock–in. SaaS platforms exist for end–user solutions and IaaS platforms are the
rarest. The platform focused most on the style of IaaS was Cisco Jasper [7],
which focuses on device connectivity.

Most platforms are deployed as a service managed by the provider, with
some being available to completely self–host. The vast majority of open–source
components are able to be self–hosted, and about half of the others offer the
ability to host a component on a private infrastructure, connecting to the global
cloud deployment.

Even the platforms that offer edge computing devices (11, 15, 16, 18, 20, 22,
30, 31, 32) or software that connects to an existing cloud only allow for a single
additional layer of devices. Using the layers defined in 2, the cloud layer is always
available, with the optional gateways acting as the edge layer as an intermediary
to IoT devices. There is no platform that offers a variable number of layers, or
the ability to have more than three layers.

Integrations for platforms from providers with existing cloud solutions (10,
12, 14, 15, 29, 30, 31, 32) are mostly for inventory and access management
and data pipelines. This enables processing data and integrating into existing
applications using the wider cloud platform, but almost all solutions offer ana-
lytics, triggers and a web dashboard out–of–the–box. An interesting exception is
MathWorks ThingSpeak [14], which offers data processing through MATLAB,
an existing desktop product instead.

Most platforms, except (7, 11, 18, 21, 22, 25, 30, 31, 32), focus solely on
IoT, which means only focusing on acquiring and processing sensor data, either
without or with limited ability to run other computation or applications on the
platform. About a third are generalised to be able to operate under the edge
computing paradigm to varying degrees—these are mostly the ones also offering
an edge gateway solution. Within the IoT-focused frameworks, there is not often
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Fig. 2. Summary platform comparison table.

a focus on a specific segment of the industry, but about a quarter do: mostly
focusing on targeting Industry 4.0, with some also explicitly targeting the smart
home market.

5.1 Technical Details

Around half of the platforms (see the Official devices column in Fig. 2) offer
some kind of explicit support for IoT devices in the form of usage tutorials or
real–time operating system support. The most commonly supported platforms
are Arduino and Raspberry Pi, with larger or more focused industrial providers
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also supporting more specialised devices. Frameworks excelling in this category
are Cumulocity [20], AWS IoT [2], Google Cloud Platform IoT [10] and Azure
IoT [16], particularly the latter, offering an exceptionally large number of devices
with software and hardware integrations.

All platforms offer a programming language-agnostic way to interface with
the platform with an HTTP API. Other official programming languages dif-
fer by platform, but Java, Python, C, C# and Javascript are most frequently
supported. The presence of SDKs and examples are correlated with platform
popularity.

The most common mechanism for securing, authenticating and authorising
transmissions is the combination of an API key along with TLS encryption. This
is sometimes used in an OAuth2 context or, less frequently, with HTTP Basic
authentication. A common configuration is per–device X.509 certificates, serving
the dual purpose of inventory management.

Alternative networking protocols are seldom supported. They are, in order
of decreasing frequency of support: LoRa, Sigfox, ZigBee, Bluetooth, Z-Wave
and NB-IoT. Gateway devices offer this connection bridging capability, partic-
ularly for transmitting sensor data. Kaa IoT [12] is the only platform offering
explicit support for battery management by batching updates, while AWS IoT
and Azure IoT stand out with explicit support for intermittent connectivity,
offering a subset of functionalities locally.

5.2 Pricing and Popularity

Pricing varies greatly between the platforms. Open source components are
offered for free or with paid plans for hosted solutions, while others have various
methods of managing costs. Some have bulk packages with quotas, others have
prices scaling with the number of connected devices. Typical of platforms pro-
vided by companies with existing cloud services are very verbose pricing plans,
charging by the number of actions performed, API calls or bytes transferred in
very small increments. A number of the projects, particularly those not generally
popular, do not have public pricing plans, instead requiring a direct contact for
a pricing inquiry.

We measured popularity through Google Trends and categorised platforms
into 5 groups of popularity based on their current or historical popularity and
growth rate. The groups are descriptive with their members being fairly similar
among themselves, but their popularity quantifier is subjective. We make no
claim to the quality of the platforms through this metric, but recognise that
community support and the availability of documentation are very important
for development. The categories are, excluding platforms which do not appear
on Google Trends at all:

1. very high popularity: Node-RED, AWS IoT, GCP IoT, Azure IoT
2. high popularity: Thingworx, Mathworks Thingspeak, FIWARE
3. low popularity: ioBridge, C3 IoT, Salesforce IoT, Temboo, OpenRemote,

Cisco Jasper, Cumulocity



122 S. Stanovnik and M. Cankar

4. very low popularity: Oracle IoT Cloud, Kaa, Sitewhere
5. extremely low popularity: Grovestreams, Tempoiq, Lelylan, thethings.io,

Cloudplugs

There are a few platforms that stand out from others in particular aspects. As
mentioned before, Cisco Jasper is the only platform focused purely on infras-
tructure management. Ayla IoT Fabric [3] and OpenRemote [17] are the only
frameworks offering data sharing between users—the idea being that multiple
users connect their devices into a wider network, giving each themselves the
possibility of selectively sharing sensor data with other users.

AWS IoT, GCP IoT and Azure IoT are seemingly the most mature and
popular products, objectively offering the most features, with integrations into
the wider platforms of their respective providers.

6 Conclusion

We have discussed to different approaches to understanding cloud, fog, edge and
IoT architectures, reviewed relevant literature and investigated the platforms
currently available on the market.

The differences in the interpretation and understanding of especially the
terms of fog and edge were large, as different sources place functionalities into
different groups. These overlap, so there is no definitive agreement on a precise
definition of the terms, but we have managed to identify key features sources
use when referencing them.

Levels of conformance to established IaaS/PaaS/SaaS styles were also consid-
ered, finding a large overlap but not a definitive mapping. In existing literature,
there is a large variety of approaches to building new systems. Evaluating them
leaves much to be desired, though, as comparisons are frequently very shallow.

Existing solutions do not cover the area of fog computing, but some support
for edge computing is present, frequently in the form of edge gateways supporting
delegating functionality from the cloud. We have identified the key characteristics
of a multitude of commercial and open–source platforms and found that there are
clear leaders in functionalities, but there exist leaders in specific niches targeting
specific needs.

Our work is ongoing with these being our initial results. In the future, we
plan to make a more detailed and methodological comparison, with a PoC imple-
mentation in some of the most platforms.
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Abstract. How to effectively handle heterogeneous data sources is one
of the main challenges in the design of large-scale research computing
platforms to collect, analyze and integrate data from IoT sensors. The
platform must seamlessly support the integration of myriads of data
formats and communication protocols, many being introduced after the
platform has been deployed. Edge gateways, devices deployed at the edge
of the network near the sensors, communicate with measurement sta-
tions using their proper protocol, receive and translate the messages to
a standardized format, forward the data to the processing platform and
provide local data buffering and preprocessing. In this work we present
the TDM Edge Gateway architecture, which we have developed to be
used in research contexts to meet the requirements of being self-built,
low-cost, and compatible with current or future connected sensors.

The architecture is based on a microservice-oriented design imple-
mented with software containerization and leverages publish/subscribe
Inter Process Communication to ensure modularity and resiliency. Costs
and construction simplicity are ensured by adopting the popular Rasp-
berry Pi Single Board Computer. The resulting platform is lean, flexible
and easy to expand and integrate. It does not pose constraints on program-
ming languages to use and relies on standard protocols and data models.

Keywords: Edge computing · Sensor networks · Embedded ·
FIWARE

1 Introduction

The spread of internet-connected devices has proven to be an important and
boundless source of data for the development of new services in different
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application domains, from industry to transportation, health-care, home & com-
fort and entertainment. These devices are potentially an excellent source of data
for the scientific research too, but the use of closed and proprietary compo-
nents and the impossibility to export the acquired data makes them unsuitable
for effective research data acquisition applications. At the same time, self-built
low-budget sensors voluntarily installed and operated by private citizens are an
alternative, growing opportunity for research to access large amounts of valuable
data. While volunteer project participants cover the affordable deployment and
maintenance costs, they receive in return the results and services provided by
the research – environmental monitoring, weather and power-consumption fore-
casting, visualization and statistics. However, using these kinds of devices poses
important issues to the data collecting infrastructure from the point of view of
security, reliability and, especially, device heterogeneity.

In this paper we describe a novel architecture of an Edge Device for hetero-
geneous and distributed data acquisition that we have developed for research
applications. Its primary purpose is to translate sensor-specific data to a stan-
dard FIWARE-compliant data model [7] and form a bridge between the sensors’
native communication protocols and the computing platform. Unlike existing
platforms, the TDM Edge Gateway is designed with a lean and simple architec-
ture based on common standards and light protocols for component interaction
(e.g., FIWARE and MQTT), and it avoids defining custom APIs and restricting
the implementation options for extensions.

Various application scenarios are supported:

– edge device with no user interaction for data acquisition in buildings, plants
and farmlands;

– edge station in private home with local data viewing and possible interaction
with central facility;

– mobile edge gateway that can provide store-and-forward capabilities for
resource constrained sensors.

The fundamental requirements for this Edge Gateway are flexibility and robust-
ness. The Edge Gateway must guarantee seamless integration of future sen-
sors and applications without affecting those already present. The adoption of a
microservice-oriented approach provides the required modularity [6]: the various
functionalities provided by the device are distributed among different separate
micro applications, each only implementing one service. Microservices are deliv-
ered by means of lightweight software containers packaged with all the required
files and libraries. Microservices and containerization also provide robustness:
a broken module does not directly affect the whole system or taint others exe-
cutable contexts, while incompatible libraries are kept separated among different
containers [11]. Another point of robustness in our design is represented by the
use of the publish/subscribe paradigm for data exchange between microservices.
This asynchronous communication pattern allows the different applications to
work even if there are no sender or receiver modules alive, and addition or
removal of microservices does not require a system reboot or a message-routing
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reconfiguration. Again, module failures are not propagated by means of socket
errors, timeouts or service unavailability.

This Edge Gateway has been developed, tested and its deployment in research
context is currently underway withing the context of the “Tessuto Digitale
Metropolitano”1 (TDM) research project that aims to develop innovative appli-
cations for Smart Cities in the fields of Weather Safety and Nowcasting, Citizen
Energy Awareness, and Large Dataset Visualization for Cultural Heritage. These
vertical applications depend on a mixture of data from different sources – from
satellites to meteorological radar, and particularly to weather, air and energy
sensors distributed over the Metropolitan Area of Cagliari. To facilitate the
recruitment of volunteer sensor deployers for the project, the sensors platform
was chosen to be low-cost, ready-made and available, open source and open hard-
ware. Moreover, given that all the developed code, documentation and Reference
Designs have been made available to the public as open source, the creation and
adoption of new sensors and the interest of diverse research fields are encour-
aged too. Thus, the Edge Gateway must bridge a multitude of sensor formats
and protocols to our Lambda-architecture platform for storage and processing.
One distinctive feature of TDM Edge Gateway is that it is natively FIWARE
compliant. FIWARE [7] is “a curated framework of Open Source platform com-
ponents to accelerate the development of smart solutions”. It provides a common
set of Open Source APIs for data exchange, the Next Generation Service Inter-
face, software components for IoT and Big Data integration, and a large set of
harmonized data models. Given the portability and interoperability they provide
to the infrastructure for Smart Cities and Smart Solutions, the FIWARE NGSI
API has also been adopted by the Open and Agile Smart Cities (OASC) network
for the integration of services among the cities taking part in the initiative.

The rest of the paper is structured as follows. In Sect. 2 we describe the archi-
tecture of our Edge Gateway and its components, while the developed system,
its testbed and deployment is explained in Sect. 3. Section 4 discusses the state
of the art of this specific research field and Sect. 5 concludes the manuscript
summarizing its contribution and proposing future developments.

2 TDM Edge Gateway Architecture

The TDM Edge Gateway follows a microservice-based design. The function-
ality it provides is distributed across separate micro-applications deployed as
Docker [4] containers on the edge device. Data exchange between microservices
is performed asynchronously through the publish/subscribe MQTT protocol.
MQTT is also used to forward data from the Edge Gateway to the acquisi-
tion and processing platform using an encrypted and authenticated channel. In
addition, data is also written to a local InfluxDB instance. From here it can
be queried by applications running directly on the Edge Gateway, such as the
dashboard (Fig. 1).

1 http://www.tdm-project.it/.

http://www.tdm-project.it/
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Fig. 1. Edge Gateway architecture

TDM Edge Gateway microservices are divided into three roles: handlers, con-
sumer or dispatcher and ancillary services. These are described in the following
paragraphs.

Handlers. Handlers are the microservices that receive, translate and store the
data that arrives from sensors and stations. Handlers are specialized for each
type of sensor or station – rather than having a single service that deals with
the heterogeneity of transmission protocols and message formats. Sensors and
sensor stations may be remote, transmitting data via network, or they may be
directly connected to the Edge Gateway. The handler’s main tasks are to:

– establish and maintain communications with the sensor;
– receive and write data to the local InfluxDB database;
– translate the sensor message from the native to the cloud format;
– publish the translated messages to the local MQTT broker.

By publishing the data on the MQTT bus, the handlers make the data avail-
able to any other subscribed microservices on the Edge Gateway, making easy
to insert additional functionality. Edge Gateways can easily support multiple
stations (i.e., stations in different rooms or apartments in a building). They are
data producers and MQTT publishers.

Dispatcher. The dispatcher forwards all messages passing through the MQTT
broker to the data processing platform. It is a real-time consumer of all the data
published on the MQTT bus – since it is subscribed to all the MQTT topics.
The dispatcher is also a publisher to the MQTT broker on the data processing
platform (Fig. 2).
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(a) Station Handler (b) Dispatcher

Fig. 2. Data flow in TDM Edge Gateway micro-services.

Ancillary Services. A number of ancillary services run on the Edge Gateway
to provide supporting functionalities for application microservices and for user
interaction. The Mosquitto2 Open Source lightweight MQTT broker provides
the internal publish/subscribe MQTT bus. Second, the Open Source time series
database Influxdb3 is used to locally store data received from sensors and stations
connected to the Edge Gateway. The final ancillary service, the Grafana4 Open
Source web-based dashboard, provides visualization of data stored in the local
Influxdb database.

2.1 Software Containers

Individual microservices are run on the Edge Gateway in separate Docker con-
tainers. Deploying these components as containers enables us to better leverage
the microservice architecture, allowing each one to be independently developed,
updated, or deployed while providing better protection against compromising the
functionality of other microservices and of the system as a whole. The adoption
of software containers for our use case does not impose any significant over-
head in terms of computing resources [1,3], particularly since the services are
long-running. Using Docker container images does impose a slight storage over-
head as compared to native software installation due to the write-only layered
image storage approach – which can easily result in some degree of file dupli-
cation – but that adverse effect is obviated by compiling the images carefully.
In addition to minimizing storage requirements, reducing container image sizes
also improves container download and start-up time [5]. In our Edge Gateway,
the container-based services are composed with the Docker Compose tool. It
creates and manages the entire deployment consisting of the container-based
microservices.

2 https://mosquitto.org/.
3 https://docs.influxdata.com/influxdb/v1.7/.
4 https://grafana.com/.

https://mosquitto.org/
https://docs.influxdata.com/influxdb/v1.7/
https://grafana.com/
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3 Implementation

3.1 Edge Gateway Hardware and Operating System

Our Edge Gateway architecture has been implemented using the popular Rasp-
berry Pi Version 3, Model B+ Single Board Computer, a board that has proven
to have enough processing, memory and storage resources to be used as low-cost,
energy-efficient computation nodes [2,8]. It runs Arch Linux for Raspberry Pi
3 customized to simplify installation, configuration and maintenance by inex-
perienced users – e.g., high-school students, hobbyists. The resulting image is
prepackaged with Edge Gateway’s docker-compose definition file, all the Docker-
related components required to run it, and a number of utility scripts to help
manage the Edge Station. The Edge Gateway is programmed to automatically
configure its internal WiFi device as an Access Point on the first boot to facilitate
the configuration of the system by the user.

3.2 Handlers

The handler microservices in the Edge Gateway act as the interface between the
myriad of possible sensors and the data processing platform. Our handlers on
the Edge Gateway translate the various incoming message formats to a common
FIWARE-compliant model. Once converted, the FIWARE messages are pub-
lished on the Edge Gateway’s internal MQTT bus. The handler microservices
are implemented in Python and use few external libraries for communication
and local storage.

The current Edge Gateway implementation includes the SFDS handler,
the IotaWatt handler and the Device handler microservices.

SFDS Station Handler. The SFDS station handler microservice implements
communications and data acquisition from the Stuttgart Fine Dust Sensor5.
SFDS stations are equipped with a battery of sensors, including temperature,
humidity, barometric pressure, wind and rain, and PM2.5 and PM10 particu-
late levels. These stations can be configured to HTTP POST data to an arbitrary
InfluxDB database. We leverage this feature by implementing a compatible inter-
face in the SFDS handler. Thus, the SFDS station is configured to send its data
to the Edge Gateway as if the latter was an InfluxDB instance; the SFDS station
handler running on the Edge Gateway accepts the POST requests in InfluxDB
format, acquires the data and processes them.

IotaWatt Station Handler. The IotaWatt microservice handles interaction
with the IotaWatt Energy Monitor6. This station can measure voltage and cur-
rent, along with power and other derived electrical measures, on up to 14 different
electrical channels. Since the IotaWatt station supports sending its data to an
5 https://luftdaten.info/en/home-en/.
6 https://iotawatt.com/.

https://luftdaten.info/en/home-en/
https://iotawatt.com/
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InfluxDB instance, the data transmission mechanism between the station and
the Edge Gateway is analogous to the one used for the SFDS station.

Device Handler. The Device handler generates messages with internal teleme-
try from the Edge Gateway system and handles sensors that are physically con-
nected to our device. In the actual implementation, the handler reads data from
a HTU21D temperature/humidity sensor that was physically attached to the
Edge Gateway (through the I2C electric bus). As with all handlers, the data is
stored to the internal InfluxDB Database and published to the MQTT broker.

3.3 Dispatcher

As described in Sect. 2, the Dispatcher microservice relays the data acquired by
the Edge Gateway to the data collection platform. The external transmission
to the platform is authenticated by the remote MQTT broker and encrypted
with SSL/TLS certificates. This microservice allows the overall platform to cope
with temporary network outages and support widely differing uplink technolo-
gies – e.g., from LTE to ADSL or even GSM – even when using sensors with
very simple transmission logic. Finally, the Dispatcher also adds Edge-Gateway-
related metadata to the outgoing messages, like Edge Gateway ID, timestamp
and position.

3.4 Dashboard

The Grafana ancillary service on the Edge Gateway is used to provide a user-
accessible interface to the recorded data on the local InfluxDB instance. A conve-
nient web dashboard that summarizes data collected from the standard handlers
described in this Section is provided and preinstalled. Moreover, users can easily
generate their own views of the data leveraging Grafana’s functionality to plot
graphs, charts and create gauge widgets that visualize collected data. In addi-
tion, the Grafana service can also be configured to send email alerts in the case
of critical events.

3.5 Creating Small Docker Container Images

The size of software container images used in the Edge Gateway implementation
directly affects the time to download and launch the images [5] – which entails
effects on the time to first start the device and to deploy updates. To minimize their
size we have chosen the Alpine Linux image for the ARM32 architecture as the base
for all our container images (about 5 MB in size). The image grows quickly with the
installation of the Python interpreter and external libraries. However, the layered
storage approach used by Docker gives us the opportunity to contain the total size
of all the images used by our system by ensuring they re-use the base layers – which
are therefore downloaded and stored only once – while all the application-specific
files are added at the top of the stack. Our overall layer stack is illustrated in Fig. 3.
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Fig. 3. Container layer stack.

To produce efficiently compact top layers for our images, a multi-stage Dock-
erfile is used. The building process is split in a building stage and a final stage.
The first image contains all build-time dependencies like compilers, header files,
and so on, while the latter includes only the resulting executables (copied from
the build image) and the runtime dependencies.

Table 1 summarize the different layer sizes. Splitting handlers and dispatcher
into simple microservices that only implement a single functionality results in
code that is relatively short and readable, and facilitates debugging and cor-
recting errors. By creating these microservices on images that share the same
base layers, the storage required is reduced on average by 70%, thus avoiding
the potential pitfall of multiplying the volume of images to transfer and store.

Table 1. Containers overview.

Container Sensors Lines Layer size Container size

sdfs Weather/Air 402 20 MB 77.7 MB

iotawatt Energy 354 20 MB 77.7 MB

device Onboard 476 16 MB 73.9 MB

dispatcher Data relaying 424 11 MB 68.9 MB

alpine-python Base System and Python 58.0 MB

3.6 Deployment

A number of Edge Gateways were deployed and tested, first in a laboratory
setting and later in offices and private homes. Fig. 4 depicts the overall architec-
ture of the project TDM infrastructure spanning from sensors to the cloud-based
data processing platform. The Edge Gateways collect and relay to the processing
platform the data generated by sensors and stations. The TDM platform also
integrates data from other sources, like satellite images, weather radar images,
and various other geo-referenced data. Data are archived and indexed by a sys-
tem that combines different storing technologies (i.e., HDFS, SQL and NOSQL
databases). Various means are provided to access and process the collected data.
Jupyter7 notebooks are available for ad hoc queries and analyses. Event-driven

7 https://jupyter.org/.

https://jupyter.org/
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and periodic unattended operations can be performed using the Apache Airflow
workflow engine or through Grid Engine batch computing jobs. Finally, aggre-
gated and processed data are published as Open Data on the TDM CKAN 8

portal from where they can be downloaded.

Fig. 4. TDM Cloud architecture.

Two Open Source Open Hardware sensor and measurement stations plat-
forms were used as a starting sensor set: the SFDS weather and air station
and the IotaWatt Energy Monitor. To support the three different scenarios for
weather and air measurements – outdoor, indoor, and mobile – and to make sta-
tion construction accessible to low-skill users, we have designed and produced a
single PCB board to distribute to a number of early joiner volunteers (Fig. 5).

4 Related Work

Edge Computing is a hot topic in BigData analysis driven by the desire to
leverage IoT devices for the wealth of valuable data they can collect and the fact
that scalability, network latency and resiliency concerns make it unviable to rely
solely on centralized computing to collect the data generated.

Pace et al. [13] identified Edge Computing as a way to overcome the issues
that affect Cloud computing in Healthcare applications. Large-scale patient ser-
vices can burden the network and thus deteriorate latencies and break the real-
time constraints of critical applications. Moreover, patient data cannot always be
stored in the Cloud due to privacy and data security concerns. In addition, speed
of data analysis and response can be crucial in autonomous and semi-autonomous
decision systems. They propose the BodyEdge complete architecture for a mobile
Edge Gateway for uses in the Healthcare industry. It is composed by two com-
plementary components: a smartphone-hosted relay node for the Body Sensor

8 https://ckan.org/.

https://ckan.org/
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(a) Indoor Station (b) Edge Gateway

Fig. 5. TDM SFDS indoor station and edge gateway

Network devices and an Edge Gateway that actually provides the healthcare
services and communications to the far Cloud. Unlike the architecture we pro-
pose, BodyEdge modules seem to be monolithic applications. Microservice-based
design or containerization are not mentioned, and communication between the
modules are described as client-server.

In comparison, the AGILE framework for IoT gateways is based on a
microservices architecture [5] and its software components are delivered using
Docker containers. Various IoT high-level functionalities are provided, such as
device and protocol management, UI and SDK for IoT development. Similar to
our architecture, protocol handlers are implemented in individual containers and
communicate with each other using DBus. Differing from the TDM Edge Gate-
way, AGILE specializes handler microservices on sensor communication protocol,
instead of sensors types. The primary motivation behind this different decision
is the fact that the TDM station handlers are primarily designed to translate
sensors data to a common FIWARE format. It is not specified if AGILE uses
D-Bus publish/subscribe or in one-to-one request-response mode.

Another architecture for general purpose Edge Gateways, similar to our TDM
Edge Gateway, is the LEGIoT – Lightweight Edge Gateway for the Internet of
Things [12]. The architecture proposed is based on microservices running on
Docker containers and implemented using low-cost Single Board Computers like
Odroid (C1+, C2) and Rasbperry Pi (RPi2, RPi3). It has a modular and flexible
design similar to TDM Edge Gateway. Modules are divided in Northbound, in
charge of communication to the remote end, and Southbound that deals with the
local sensors. Modules are activated on-demand to limit power usage. Received
data are saved to a local database. Unlike in our TDM Edge Gateway, the inter-
nal data exchange is performed by a dedicated module using a custom API, while
the TDM design relies on standard asynchronous and agnostic publish/subscribe
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mechanisms. A deeper difference between the two designs is that the TDM Edge
Gateway continuously transmits the acquired data, while LEGIoT implements
a “pull” strategy, whereby data are retrieved by the remote end upon activation
of a suitable Northbound module acting as protocol server. Finally, LEGIoT
supports multi-tenancy while TDM Edge Gateway is single-tenant by design,
responding to specific demands of TDM research.

Finally, Kura [14] is an extensive IoT Edge Framework. Kura is largely con-
figurable and expandable. The framework and API are written in Java and Java
programming is needed to develop new functionality and drivers. Moreover,
the custom API is very large and the architecture quite complex. Our TDM
Edge, conversely, relies on standard publish/subscribe protocol for internal data
exchange, with a set of topics and standard data models, and a lean internal
architecture imposing no constraints on the programming language to use.

5 Conclusions and Future Work

This paper presents a flexible and scalable microservice-based Edge Gateway
architecture that facilitates integrating heterogeneous sensors in complex IoT
data acquisition applications. The architecture is particularly well suited to
research applications, given the possibility to quickly and easily add or sub-
stitute its on-board software components. The testing and deployment phases
confirm the advantages of the microservice architecture when combined with
publish/subscribe data exchange protocols.

The implementation of dynamic throttling in the dispatcher, adjusting the
transmission rate and policy based on the available network bandwidth, is cur-
rently undergoing. From the Edge Computing perspective, we are evaluating the
modular integration of algorithms for the estimation and forecasting of power
consumption as containerized applications – e.g., those by Massidda et al. [9,10].
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Abstract. Fog computing brings cloud computing capabilities closer to the
end-devices and users, while enabling location-dependent resource allocation,
low latency services, and extending significantly the IoT services portfolio as
well as market and business opportunities in the cloud and IoT sectors. With the
number of devices growing exponentially globally, new cloud and fog models
are expected to emerge, paving the way for shared, collaborative, extensible
mobile, volatile and dynamic compute, storage and network infrastructure.
When put together, cloud and fog computing create a new stack of resources,
which we refer to as Fog-to-Cloud (F2C), creating the need for a new, open and
coordinated management ecosystem. The EU Horizon 2020 program has
recently funded a new research initiative (mF2C) bringing together relevant
industry and academic players in the cloud arena, aimed at designing an open,
secure, decentralized, multistakeholder management framework for F2C com-
puting, including novel programming models, privacy and security, data storage
techniques, service creation, brokerage solutions, SLA policies, and resource
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orchestration methods. This paper introduces the main mF2C concepts, illus-
trates the need for a coordinated management ecosystem, proposes a preliminary
design of its foundational building blocks and presents results that show the
benefits mF2C may have on three key real-world scenarios.

Keywords: Cloud computing � Fog computing � Fog-to-cloud �Management �
Distributed systems � Security � IoT

1 Introduction: The F2C Concept

The emergence of IoT –the networked connection of people, process, data and things –
is expected to significantly increase the number of connected devices worldwide, from
billions of units we have today, to tens of billions of units expected to be deployed in the
coming years. Some predictions [1] suggest that 26 billion edge devices are to be
connected by 2020, collecting more than 1.6 zettabytes (1.6 trillion GB) of data.
According to Cisco reports, it is expected to have more than 50 billion devices con-
nected by 2020, paving the way to fog computing [2]. At the same time, cloud service
providers (Amazon AWS, Google Compute Engine, Microsoft Azure) today enable
customers to quickly deploy a myriad of private and corporate services at comparably
lower prices than buying and maintaining their own infrastructure. When combined, fog
and cloud computing are without doubt setting standards in flexibility, cost, economy of
scale, but also innovation in new services, devices and applications. Indeed, the com-
puting and processing capacities offered by cloud computing can perfectly complement
the comparably lower processing, storage and networking capacities of the edge devices
building a novel, coordinated scenario between edge devices and the cloud.

In the combined scenario of cloud computing and a myriad of edge devices, one
can observe that while data, users and decisions are at the edge side, processing
capacities are primarily at the cloud side. As a result, today’s systems need to address
the challenges of overloading the network and inducing latency to transfer data from
the edge to the cloud. Thus, the traditional approach of leveraging the centralized
processing in the cloud premises may require a new thinking based on these two
observations. First, the high latency values required to reach to the cloud in the cen-
tralized approach are not suitable for real time services. Second, forwarding data, stored
and collected at the edge to the cloud to be processed, is non-optimal in terms of
network resources allocation, and doubly so when results are to be returned to the
device that sent them. This has set the stage for the evolution of fog computing, that can
leverage a distributed approach based on bringing cloud capabilities closer to, or into,
the edge devices, also referred to as mini-clouds, cloudlets, or small-scale clouds.
Figure 1 illustrates the pyramid of today’s fog and cloud ecosystem integrating the
typically centralized cloud infrastructure, with various levels (or layers) of dispersed
elements starting with smaller scale clouds, over to fog computing with various degrees
of decision making and data processing capabilities [3].
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In a combined Fog-to-Cloud (F2C) system, a critical question is how can a com-
bined resource sharing and resource clustering approach efficiently extend the concept
of a cloud provider to an unknown frontier, creating innovative resource-rich proximate
infrastructures near to the user, while remaining profitable? To answer this question, we
identified the need to provide a coordinated management of the combined F2C resources
to ease and optimize the execution of existing and future services, through a myriad of
new features including reduction of execution time, parallel execution, edge processing,
fog security, locality, improved utilization of limited resources, improved energy effi-
ciency (“green computing”), etc. To this end, a comprehensive control and management
strategy is required, addressing efficient coordination and inter-operation of fog and
clouds environments, as well as the innovative combined cloud/fog architecture.

This paper proposes a new research framework to achieve the same, which we refer
to as mF2C focused at designing an open, secure, decentralized, multi-stakeholder
management framework for F2C computing. An important feature of the system pro-
posed is in its openness to integrating and supporting new functionalities and sub-
systems as they emerge, such as novel programming models, new privacy and security
features, various data storage techniques, and brokerage solutions. This paper intro-
duces the main idea behind the new mF2C concept, proposes a preliminary design of
its foundational building blocks and presents results that show the benefits mF2C may
have on three key real-world scenarios. This paper is structured as follows. Section 2
revisits the state of the art. Section 3 outlines main mF2C control and functionality,
introducing the main architectural blocks as well as the main benefits expected from
deploying mF2C in three real-world scenarios. Section 4 identifies main mF2C chal-
lenges and opportunities. Finally, Sect. 5 concludes the paper.

Fig. 1. Fog-to-cloud (F2C) layered structure: The stack of resources
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2 State of the Art

This section briefly revisits relevant contributions in four key F2C aspects (resource
management, IoT management, programming models and security), emphasizing the
need for designing innovative solutions to best match the computing demands of F2C.

2.1 Resource Management in Cloud and Fog Computing

Resource management in cloud computing has been subject to intense research with a
myriad of important aspects, such as security, data privacy, data centers management,
quality delivery, or energy consumption. Several cloud platforms are already available
to manage cloud infrastructure, be it open source (CloudStack, Eucalyptus, OpenStack,
and OpenNebula) or proprietary (Amazon EC2, Microsoft Azure, IBM Bluemix and
Aneka). While there is no global consensus facilitating their seamless interaction in
multi-cloud environment – no single, universal standard – standard APIs as well as
libraries that abstract the cloud API have already been defined.

Recently significant efforts addressed “cloudification” of network functions under
the umbrella of Network Function Virtualization Fig. 1. Fog-to-cloud (F2C) layered
structure: The stack of resources (NFV), a software implementation of the network
functions on “bare metal”. However, their optimal placement and job scheduling
especially in the cloud remains a hard problem, since network functions need to be
managed in a dynamic fashion, and virtualized instances need to be able to migrate,
grow, and shrink dynamically.

The combination of fog and cloud computing intensifies the resource management
challenge. Several contributions exist aimed at managing how services are allocated into
edge devices, or offloaded to execution, all based on meeting service level objectives,
such as latency and VM setting capacity, see for instance [4]. However, fog computing
as such is still in its infancy, lacking the standards and definitions of basic concepts. For
instance, there is no a widely accepted definition for a fog node yet, mainly due to the
diverse and heterogeneous set of edge devices. This diversity makes it very difficult to
agree even on simple concepts, such as whether fog devices should be virtualized, and if
so, whether the usage of the traditional VM concept, or containers is appropriate, etc.
References can be found in the literature (see for example [5] and [6]) with divergent
definitions of a fog node, defined to meet the needs of the specific application scenarios.

There are other contributions aimed at facilitating the management of IoT devices,
ranging from pure data management to edge devices management. In the first area we
can mention SENTILO [7] or IoT-LAB [8]. Both aim at easing the data collection from
different IoT devices by putting all data together in a single repository for easy access.
In device management, examples include the research projects FIWARE [9] and
SOFIA [10], or in the commercial sector VORTEX [11]. Briefly, FIWARE consists of
a catalogue of “enablers”, i.e., enabling the development of applications and services in
a cost-effective fashion. SOFIA’s main goal is to ease systems interoperability aiming
at promoting the development of new services and applications. The Vortex product
contains different components to support different device data sharing configurations –
Vortex Cloud for cloud data sharing, Vortex Fog for edge devices data sharing, etc.–
aimed at data sharing and easing systems interoperability.
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Overall, there is currently no coordination or integration strategy available which
addresses the need for coordination among all cloud and fog resources.

2.2 Programming Models

Despite the plethora of programming models developed for the cloud (MapReduce,
Aneka, Google app engine, etc.), applications to be executed in heterogeneous and
distributed infrastructures – the ones considered in mF2C – cannot be supported
directly. To the best of our knowledge, the only programming model that takes into
account such an infrastructure is Mobile Fog [12]. However, the programming model
proposed is very explicit with regard the infrastructure, and the availability of the
system seems to be limited.

A particularly relevant programming framework for coordinated fog and cloud
computing is COMPSs [13], a task based programming framework that enables the
development of applications to be executed in distributed environments. COMPSs has
two main aspects that may be used for mF2C deployment. First, it offers a simple
programming interface and a set of tools that support the development of applications.
Second, it comes with a powerful runtime environment able to build, at execution time,
a workflow of the tasks comprising the application and execute them in a distributed
environment. The runtime environment orchestrates the execution of the tasks in the
workflow, and handles the required data transfers. The distributed computing platform
can be composed of physical nodes or nodes in a cloud, and can include tasks deployed
as web services.

2.3 Security Aspects

Security and privacy are well-known, widely addressed aspects, but remain greatly
unsolved challenges in the cloud and fog areas, and are inherent to mF2C. Deploying
fogs in fact exacerbates the traditional cloud security issues, since usually edge devices
are located in non-controlled scenarios, and often misused by adversaries. This
assessment is even extended when bringing together fog and cloud resources.

Information security in fog infrastructure currently builds on cloud, mobile, or
network security. Many solutions are available when integrating with a single cloud
provider, and several research initiatives have researched secure brokering of, and
access to, multiple clouds. Mobile security is used by most of the apps, using either the
user’s telco account or their own app-specific security; in general, security is very
application dependent and users have little control over it: the applications today either
get all permissions they ask for, or nothing. Data confidentiality in-flight uses X.509
certificates or provider-specific symmetric keys; confidentiality at-rest is often via non-
technical controls: contractual agreement – or trust. Authorization decisions are usually
implicit – users who can access the service are authorized – or based on simple identity
mappings or roles (RBAC). Intrusion detection is done via monitoring IaaS networks
(e.g. Azure, Amazon, HPE) in addition to “traditional” methods of virus checking, etc.

We may conclude both: i) recent contributions in the security field for fog com-
puting are not solid enough to be widely adopted by mF2C, and; ii) contributions in the
cloud arena are too far from the specific mF2C needs, in terms for example of resources
dynamicity or volatility.
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3 mF2C Management Functionalities

Recognizing the need for a novel management ecosystem for F2C, this section outlines
the mF2C management architecture, and shows preliminary benefits of an mF2C
deployment in three illustrative real-world scenarios.

3.1 mF2C Management Architecture

The mF2C management architecture is structured into three architectural entities
(mF2C Controller, mF2C Gearbox and Interfaces, shown in Fig. 2), all coordinated to
work together in order to provide the different expected control and management
functionalities.

mF2C Controller
This architectural entity consists of three connected and coordinated blocks. The three
blocks share security and privacy aspects as a transversal requirement.

• mF2C Resource Controller: This function includes three main components
Semantic Adaptation, Resource Management, and Security and Privacy. In turn,
these components include methods and mechanisms implemented to guarantee both
accurate knowledge about the available resources for each device and accurate
information about the resource availability, including resource attributes, such as
virtual/real, static/mobile, sharing capacities, clustering capacities, business poli-
cies, etc. (i.e., Resources Monitoring, Discovering, Virtualization). This is rather
complex in F2C systems, due to the dynamicity inherent to its resources, the
heterogeneity foreseen for the devices and systems comprising mF2C as well as the
business relationship to be established among resources providers. To this end,
mF2C can be envisioned as an opportunistic resources.

• mF2C Service Controller: Once the service request is validated, the service is
categorized according to a dynamic taxonomy, which is yet to be designed, (i.e.,
Service Categorization and Decomposition). When required, the service can be
decomposed into sub-services, ultimately turning it into a set of atomic services
(sub-services) some of which can be executed in parallel. The set of sub-services
may be preconfigured and stored in a repository. Challenging issues in this area
include: to find the appropriate place to locate the service decomposition, to min-
imize the computing load and/or data transfer while keeping fast reaction time, to
define to what extent these functions must be associated to the aggregation points,
to define the dependency graph rules, and finally to develop strategies for sub-
services search.

• mF2C User Side: mF2C must benefit from the user-specific context information to
tailor service execution to specific user demands. To that end, a comprehensive set
of functionalities must be defined, including but not limited to authentication, pri-
vacy, location, profiling, agreement policies, etc. (i.e., User and Context Functions).
All these functionalities must meet the business policies in a real mF2C deploy-
ment. For example, a user may be willing to connect his/her smart car as a resource
which requires appropriate economic incentives. The user could restrict the car
compute system to send only anonymised data by default, as well as relay
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emergency messages, or offer additional services via social networks (location,
camera images, additional processing). A service request should be “validated” on
the user side (or in an upper control layer if the device does not embed that
functionality), checking for authentication and checking attributes release according
to the user profile and the context (i.e. User Authentication and Profiling). To that
end, novel strategies must be defined to describe the different new roles users may
play, e.g., including fog providers or the capacity and incentives to share resources.

mF2C Gearbox
The set of preliminary components defined to build the Gearbox is:

• Aggregated telemetry: Rich, intelligent instrumentation and monitoring is required
to inform decision making systems such as the service orchestration. For effective
decision making and troubleshooting, this should cover the full-stack – from
hardware up through operating system, middleware and hosted services be they
deployed in containers or virtual machines. It should also be dynamically config-
urable, and support derived or aggregated metrics at the edge for maximum scal-
ability of the overall solution.

Fig. 2. Architectural blocks for the mF2C management framework
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• Service orchestration: This component is responsible for allocating services to the
best available resources. The optimal allocation will depend on many factors.
Considerations such as an analysis of historical invocations of the service, the
precise nature and configuration of available resources in real time, and quality-of-
service expectations and commitments could all have a bearing on where services,
or elements of the service, are located. Effective abstractions and analytics will be
required to ensure service orchestration systems are scalable at runtime.

• Runtime system: Different options may be considered for the runtime system in the
F2C scenario, from traditional sequential execution to novel parallel execution. This
component enables a transparent handling of the heterogeneous resources.

• Brokerage: Responsible for handling the dynamicity inherent to the edge devices
while guaranteeing – or at least optimizing – that selected resources best match the
services demands. Different resources registration policies may be considered
depending on the context and the different devices.

• Service execution: Software execution and storage platform that unifies the model
of all data (user, application and shared) into the potentially access controlled view
seen by applications.

Interfaces
The Interfaces are key to the main feature of openness, modularity and extensibility of
the mF2C framework and the platform. Since the mF2C is designed as an open layered
framework for a customized usage by various devices and systems, the modules
implemented by a specific F2C layer are connected with the overall system over these
interfaces. Figure 3 illustrates the mF2C layered architecture (including agents and
microagents to be deployed in edge devices with limited capacities) and the role of
interfaces. The lowest layer represents the embedded devices, such as sensors with
minimal processing capability, while the smart phone is in the middle layer (shown as a
fog device), capable of processing an mF2C service on a small scale. Clouds are at the
top layer, controlling the mF2C services at large scale. The control channels and data
channels are separated. Data channels strictly follow the F2C layered hierarchy.

As it can be seen, multiple data channels connect to multiple child instances through
the “Southbound” interface to lower layers. A single data channel connects to the
(unique) parent instance through the “Northbound” interface. The “Eastbound” interface
connects to the mF2C application as well as enables multi-cloud/fog communication
within the same layer. All control channels (the “Westbound” interface) connect to the
top layer instance that controls and manages the whole mF2C environment.

In addition to the three architectural entities mentioned above, security and privacy
are cross-cutting concerns, transversal to the mF2C Controller and the mF2C Gearbox,
meaning that all components in the overall mF2C management ecosystem must be
designed, implemented, and operated to fulfill a common base set of security and
privacy requirements and policies (these policies may of course depend on the device
type or function). We expect that some security and privacy components will work in
the same way, or at least in similar ways, for many mF2C components, including
authorization decision that certain user data may be processed on a specific fog device.
The basic functionalities for security and privacy for mF2C data are information
classification, authentication, authorization, accounting, auditing, attack detection and
finally secure data processing.
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3.2 Applying mF2C to Real-World Scenarios

An mF2C coordinated resources management architecture is expected to help
increasing revenues and product innovation to the businesses in various sectors. From a
technology provider perspective this evolution (bottom-up) would boost the adoption
of IoT devices and equipment in the various depicted scenarios (cities, buildings, etc.)
and commercial development of value-added services.

With the massive adoption of these devices, the revenues and requests for more
sophisticated ones will increase as well. From a Service Provider perspective the
availability of an extended platform (coming from the Cloud + Fog Providers) –with
an elastic provisioning of resources that covers also the edge devices– offers them the
opportunity to develop even more sophisticated services, like dependable e-health, or
3D real time navigation systems, thus widening the market scenario, extending their
offering, and creating more value and revenues. Finally, from a Cloud provider per-
spective this evolution (top-down) creates ample opportunities for developing and
extending the service chain offering, by adding one more ring (the Fog) in the provision
of services, increasing the product/service portfolio and enabling new and challenging
business models. In this way Cloud Providers could soon be renamed “Cloud + Fog
Providers”.

Fig. 3. Layered scenario with agents and interfaces
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To illustrate the expected mF2C benefits and impact on these three different areas,
we give examples of three real-world scenarios that can immediately deploy the sys-
tems akin to mF2C.

Scenario 1: Emergency Situation Management in Smart Cities (ESM): This application
scenario is built upon real infrastructure developed in the city of Bogota, Colombia
[14]. It consists of an implementation of distributed elements capturing signals and
data, as well as a centralized traffic management system to integrate heterogeneous
traffic-related information in a flexible and efficient cloud platform. A potential
deployment of the mF2C management solution will enable cities to install fog com-
puting infrastructure locally, for example in bus stops, and enable new real time ser-
vices and push notifications without the need for tight connectivity infrastructure.

Scenario 2: Enriched Navigation Service (ENS): This scenario is based on the devel-
opment and extension of the family of IoT devices and sensors that are oriented to
operational support and monitoring in the marine sector, aiming at providing safer nav-
igation even for less experienced sailors [15]. The example shows a relevant potential for
making all the ship’s sensors work together, processing and correlating the collected data
in a combined fog and cloud computing system but also interacting with external data
sources as well (e.g., other ships and marine vehicles, satellites). This achievement could
lead to brand new added-value services of augmented reality in the marine sector. The
mF2C management framework looks perfect for a technology like Sentinel [15], as the
supporting technology for data processing orchestration and distribution, leveraging the
access to open data databases and ontologies and the chance to develop new predictive
models for forecast weather and travel related aspects, as part of new value-added services
to support sailors’ route planning. Currently the Sentinel devices work mainly individ-
ually but their crowd knowledge, which could be derived from combining and processing
the data obtained from all distributed sensors, is not yet exploited.

Scenario 3: Smart Fog-Hub Service (SFHS): The third scenario is looking at the IoT
evolution as a potential area where current cloud offering could be enriched and dif-
ferentiated. Scenario 3 extends the concept of a “cloud hub” to a new concept of “fog
hub”, driven by real market needs. This scenario leverages the belief that value is
generated at the business services level, particularly in spaces with recurring concen-
trations of people and objects that can communicate and interact. These scenarios are
typical of airports, railway stations, seaports, shopping centers, hospitals, sports
facilities, large parking areas, but also domestic scenarios with a communal clustering
level. The scenario proposes to set up (Fog) Hubs in such scenarios to interact with all
the objects within the scope of coverage, and to operate “in-proximity” marketing
efforts, applying predictive algorithms to track (in an anonymized form) movements,
choices and decisions of persons nearby, or even extend the hub with devices (e.g.
beacons) capable of sending input (e.g. customized advertising) and determine the
effectiveness of the specific campaign in terms of attention/visits rather than conversion
(purchasing products/services). Potentially this model could be further extended by
making different fogs, perhaps 5-15 km from each other, communicate, and by com-
bining the results in terms of behavioral predictions in adjacent fogs.
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4 Opportunities and Challenges in mF2C

There is no doubt that, to make the most out of the whole set of cloud and fog
resources, that is for the overall F2C ecosystem to work, a new coordinated, open,
secure, end-to-end management strategy must be developed to smartly orchestrate a
large-scale, distributed, heterogeneous, open, dynamic and volatile set of resources in a
decentralized, private, secure and trusted way, enabling open/multi–fog/cloud provider
business models. But, this will not be enough. Users must endorse this computing
strategy by sharing their resources (edge devices), thus enabling the collaborative
model envisioned for F2C. User engagement should, in turn, incentivize the industrial
sector to develop new business models and applications tailored to the F2C charac-
teristics and the end users’ engagement policies. We envision new cooperation modes
to appear analogous to recent ideas in “sharing economy”, such as Airbnb.

Cooperation can be fostered by shared interests and geographic proximity. For
example, a group of cars in a parking lot may “decide” to “share” some of their
resources to be offered to “other cars”, hence becoming a local cloud or fog provider
themselves (similar to the concept of micro data centers, small clouds or cloudlets) thus
setting the stage for future business models. Already today models are emerging of
negotiating and “selling” parking spaces, both on-demand use of vacant spaces outside
homes as well as peer-to-peer selling between car owners in car parks.

5 Conclusions

This paper revisits the main cloud and fog computing concepts, envisioning their
combination as next cloud evolution, making the best out of the set of distributed
resources by combining cloud and fog computing. The paper introduces the need for a
coordinated management of both systems and proposes a functional architecture of the
management ecosystem able to intelligently manage the distributed set of resources,
optimizing service execution according to resources availability and users’ demands.
The main functional blocks of the management architecture (referred to as mF2C) are
proposed, along with an in-depth description of open challenges. We envision F2C as a
key paradigm in the future as the next evolution in the cloud domain, and hence with a
strong impact not only on the industrial sector but also on society and individuals. We
believe in the prospect of collaborative computing model as foreseen for F2C, that can
extend the well-known sharing economy model to edge devices owned by users.
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Abstract. Falsification of certificates is a growing concern and the ver-
ification process can be a lengthy and challenging one. In this research,
we are proposing a distributed ledger-based solution for the storage and
verification of academic qualifications. An entity that would want to ver-
ify certificates can make use of our API service that would, in turn, scan
a certificate, find the matching certificate template, extract the necessary
data and verify it from a blockchain stored copy. In this research, we also
propose an improved manner of verifying the ownership of a blockchain
public address which also does not allow a user to present an address of
a third party, this being one of the common security concerns of similar
solutions. We also calculate the possible costs to adopt this system in
all EU countries taking into consideration different gas prices, which is a
determining factor to the transaction cost of a blockchain network. We
conclude that a blockchain based certificate verification system addresses
various issues related to document forgery and is a viable solution even
with the current state of technology.

Keywords: Blockchain · Smart contracts · Certificates · User-access
control · OCR

1 Introduction

Academic background and merit misinformation in CV have become a problem
as people are more inclined to provide wrong information to seek advantage over
the ever-growing competition. In addition, such information has become more
difficult and bureaucratic to validate due to the ever-increasing security and pri-
vacy policies adopted by organisations. Falsification of such information not only
sheds bad light on graduates, but also damages the reputation of the providing
institution. Therefore, automated, easy and instant validation is required.

In this research, distributed ledger technology is used to publish academic
achievement information on a peer-to-peer distributed network, known as the
blockchain, such that this crucial information is protected thanks to advanced
cryptographic techniques. Provided that both the academic institution and cer-
tificate holder have public blockchain addresses, a smart contract is used to
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publish the recognition across parties, this equivalent to the graduation cere-
mony. Thus, the purpose of storing the certificate information on the blockchain
is purely to serve any verification requests in a fully automated and instant man-
ner, and not as a datastore to support such a system, so a mix of off-chain and
on-chain data is needed. When a 3rd party receives a certificate and needs to ver-
ify its authenticity they can use our proposed API through which they can send
a scanned image of the physical certificate together with the public blockchain
address of the certificate holder. OCR and regular expression patterns make it
ever more possible to extract the necessary information from existing documents,
thus, further automating and improving the process flow. The extracted informa-
tion would include the institution, for which the public blockchain address would
have been previously registered. If the extracted data matches what is found on
the blockchain then the certificate is verified instantly. One of the common chal-
lenges in having a blockchain based system is the verification of ownership for
a blockchain public address, which is mostly of a concern in this scenario with
regards to a certificate holder should an individual want to impersonate another
to claim ownership of their achievements. We propose an adaptation of other
research to solve this problem, which will be addressed further in Sect. 3. We
also study the financial viability of our solution by identifying the low cost for
registering the smart contract and evaluating our solution with the total num-
ber of tertiary qualifications in Europe. Given that there is no real rush to have
certificates published instantly, these can be staged over a prolonged period in
order to reduce the gas price and thus the actual financial cost for publishing cer-
tificates. The verification of academic achievement is technically free, in terms of
blockchain transaction costs, yet computational power is needed for the extrac-
tion of data from scanned certificates as well as for bandwidth so to offer a good
quality of service.

This paper is structured as follows, in Sect. 2, we present the Literature
Review. The proposed solution is showcased in Sect. 3, the Research Methodol-
ogy. In Sect. 4 the results are presented and discussed in detail, with concluding
arguments and recommendations in Sect. 5.

2 Literature Review

2.1 Problems of Printed Certificates

Even though printed certificates are still preferred and seen as the most secure
form of certificates, paper documents have a few notable disadvantages to keep
in mind such as [5]: 1) Not being immune to forgery; 2) Awarding bodies are
the single point of failure, meaning that certificates can still be valid, however
the ability to validate them would be lost; 3) Secure certificates are costly (pass-
ports, routinely cost between e20 and e150); 4) No way to revoke the certificate
without having the owner relinquish control; 5) Verification process is time con-
suming.
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2.2 The Blockchain

A blockchain can be used to minimise the authority an intermediary has within a
centralised service, such as validation of academic certificates [8]. For the purpose
of this research, we shall be limiting the scope to public blockchain networks. By
using a public blockchain, the data is not stored in a centralised location, instead,
it is distributed between all participants in the network. By using this design,
data is accessible to any participant in the network and secure at the same time,
which means that the participants do not need to trust each other, including
the owner of the data. This is because every participant in the network holds a
ledger which contains every transaction taken place since the genesis block, and
each participant can contribute to the creation of new blocks. Adding new blocks
to a blockchain is an irreversible operation, meaning that once a block has been
added to the chain in a validated state, this block or the data contained within
the block can never be removed, even by the original author of the data. This
is done by the way the blockchain structure is built, as every block contains
two hash values, one for the previous block and one for itself. Any attempts
to tamper with a block would invalidate the entire chain due to mismatches
in hash values. As [8] stated, a consensus algorithm is used to achieve mutual
trust between every participant in the network, as the creation of new blocks on
the chain has to follow a strict protocol. At the time of writing, the two most
popular consensus algorithms are: proof-of-work, and proof-of-stake. Bitcoin and
Ethereum currently both operate with proof-of-work, however proof-of-stake is
being considered by Ethereum as it is more cost effective and wastes a lot less
energy. The number of research publications is greatly increasing and spreading
around the globe [14], a few notable researches will be reviewed next.

2.3 Blockchain in Education

[10] stated that an application for blockchain in education would be to store
records of achievement and credit, which would be added by the awarding institu-
tions and be later accessed by the students. Having certificates published on the
blockchain provides solutions to the issues regarding paper certificates, by pro-
viding public information regarding whether a certificate has been truly awarded
to a certificate holder. However, as [10] mentioned, the blockchain does not verify
the honesty of either party. Hashing techniques can also be used on the document
such that rather than publishing private information, a digest of the document
could be uploaded to act as a signature of the document while preserving the
privacy of the document itself [5].

Various solutions to store certificates on the blockchain have been applied
to several educational institutions, and the majority are built on the Bitcoin
blockchain [11]. In Malta, the Blockcerts platform which was developed by MITs
Media Lab and Learning Machine has been launched and will be used to issue
and verify credentials using the Bitcoin network [7], and is currently the only
open standard for issuing and verifying records using the blockchain [5]. In [11]
the researchers have presented a proof of concept prototype, implemented on
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the open-source ARK blockchain platform, which grants academic credits to
students, according to the European Credit Transfer and Accumulation System
(ECTS), after they have successfully completed a course. This prototype is built
on a consortium based distributed ledger, which will allow 3rd parties to easily
validate a student’s credits, after being granted access permission.

A solution for mitigating falsification of certificate documents has been pre-
sented by [13], in which the prototype is built by using a central server acting
as a database, such that institutions publishing certificates communicate with
this server to obtain a QR code, and 3rd parties communicate with this server to
validate a certificate by simply scanning the QR code found on the document.
The authors also mention that after validation testing, problems with treat-
ing user credentials were identified and later rectified from the system to avoid
other major issues. A method for confirming ownership of an address has been
presented by [11], in which the untrusted entity is given a randomly generated
number, via private channels, representing a value amount, such that if the num-
ber was 1234, the value amount would be 0.001234 ETH. Having received the
randomly generated number, the untrusted entity has to issue a transaction to
the known party with the correct value amount. The known party then checks
the transaction, and if the transaction amount is equal to the randomly gen-
erated number, the entity is proven to be the true owner of the address. Even
though this method works, it does not stop entities working together by sharing
the randomly generated number to validate their addresses for each other. [9]
explains the importance of having participants protect, store, and backup their
private keys not only digitally, but also in the physical world due to identity
fraud. One solution to this issue would be to implement digital private keys into
physical keys, such as magnetic stripe cards, devices with embedded ROM chips,
and smart cards. This would allow the participant to use the application without
having to remember the secret key, and if compromised, the adversary would not
be able to retrieve the private key. In the event of losing the private key, the
owner could personally contact the awarding body and transfer the awards to
a new blockchain address, provided his/her identity is successfully proven [11].
Splitting the private key into two halves, and storing each half in a different
medium is a solution to this, should one get lost, the private key is not compro-
mised and can be easily changed [9]. Another solution would be to implement
multi-signature wallets where a group blockchain addresses could be combined
into one. Therefore, if one of the addresses was lost and unrecoverable, a new
address could be generated as a replacement by using signatures from other
addresses. This also improves security in the event of having a compromised
secret key, this is because if the adversary attempts to impersonate the original
owner, he/she would require official signatures from the other addresses.

2.4 Image Processing and Hard-Copy Documents

A method for evaluating the quality of certificate and bill images, such that
images with poor quality are filtered out, keeping only the high-quality ones
was proposed by [6]. However, this research does not consider optical character
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recognition (OCR) accuracy, which is an important requirement for bills and
certificate recognition systems. [1] and [3] have proposed similar solutions, which
mitigate forgery in hard copy documents by means of OCR, cryptography and
2D bar-codes (QR codes). The proposed solutions are very similar and follow
three important steps when creating secure physical documents, which are: 1)
Retrieve textual data from the document; 2) Generate a QR code based on
the data to be validated; 3) Affix QR code on original certificate for validation
process. However, when generating the QR codes [3] uses the selected text to be
validated, while [1] uses the digest of the specified region of interest, thus having
less data to be put into a QR code. [1] stated that the main challenge in the
proposed system was the accuracy of the OCR, and thus experiments regarding
the accuracy in terms of error occurrence were performed. The researchers outline
two major factors which affect the accuracy of OCR, which are: 1) The font used;
2) Character weight. Their results indicate that the font “Times New Roman”
performed the best by showing minimum error and using bold characters in
the specified region of interest gives maximum performance. Tesseract OCR was
used by [3] and concluded that overall recognition with case insensitivity was
considerably better than case sensitivity.

3 Research Methodology

This research focuses on the verification of physical certificates, which informa-
tion has been published on a blockchain network by the rewarding academic
institution via a smart contract to the certificate holder on the respective public
blockchain address. This research has been staged into three phases: 1) Institu-
tion registration and setup; 2) Issue of certificates; 3) Automatic verification and
validation of certificates. From previous research [2], it was noted that the struc-
ture of the system should be implemented in a way that would allow academic
organisations to publish certificates on their own smart contracts rather than
one centralised smart contract. With this design academic organisations have
several benefits, such as: 1) Complete control over smart contract containing
certificates; 2) Complete freedom in choosing which information to be published
as validation material.

Every academic organisation deploys a smart contract, with which all infor-
mation about academic achievements found on physical certificates are published
as a transaction between the academic organisation, certificate holder and actual
smart contract, the equivalent of the physical certificate. This research mostly
focuses on the third stage, more specifically: 1) Extraction of textual information
from the scanned certificate image; 2) Creation of data structure from textual
information; 3) Validation and verification from academic certificates and cer-
tificate holder (via the corresponding public blockchain address on which the
certificate is registered). It is thus the aim of this research to determine whether
the proposed solution, will improve the verification and validation process needed
by academic institutions and/or employers. To implement the prototype several
questions had to be answered beforehand: 1) What machine learning techniques
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can allow the extraction of textual information from scanned certificates? 2) How
will the system handle different document layouts? 3) How will the blockchain
be used to verify and validate academic certificates and the award holders?

The first step is extraction of textual information from the scanned certifi-
cate image, and for this we have opted to use Tesseract OCR. This is because,
several research, [1] and [3], have shown that OCR, more specifically Tesseract
OCR, is able to extract textual data contained within images of documents at
a good accuracy level of 84% with Times New Roman font. One major problem
encountered was that whenever logos were present in the academic certificates,
the Tesseract was producing very inaccurate results. Some academic certificates
prove to be problematic, due to having objects being unrecognised as letters or
symbols, or due to having very small lettering. To address this problem, we have
opted to use the OpenCV library to perform multi-scale template matching in
order to identify the locations of the logos such that they can be removed by
setting the logo area to white.

For the solution to be scaleable, a repository holding a large number of logos is
required, such that when any party starts the certificate verification process, the
application performs a sequential pattern matching and logo removal process.
We have given the OCR different academic certificates having different text,
image quality, noise levels, designs and also used different devices for scanning,
being mobile devices and dedicated scanners, such that we could qualitatively
analyse and identify limitations when opting for such a system. After having
obtained a clean version of the academic certificate and having performed OCR
on the academic certificate, the next task was to extract key information and
organise it into a data structure.

In order to extract important information from an OCR result, we have opted
for regular expression patterns (RegEx). Every institution uploads their own
template files, which must match the certificates they will be uploading. Since
there will be no standard certificate layout, the system will not know which infor-
mation is important and which information is redundant on its own, therefore
tags were used. The tags are customisable by the institution, however special
non-customisable tags exist such as institution name, award holder name, day,
month, and year. These tags are then converted into named group capture RegEx
pattern strings, such that useful information can be extracted with these tags.
During extraction, a value representing the similarity between the template and
the text is measured by using the difflib python library, which makes use of the
Gestalt pattern matching technique, such that, the output with highest simi-
larity is selected to be the correct output. In order to test this feature we have
created multiple templates files for different awarding organisations in order to
analyse how rigid pattern matching is when combined with OCR.

After having a complete dictionary, the next task is to verify and validate the
certificate holders public address and the information found within the scanned
certificate. This is needed so that an individual A, does not impersonate an indi-
vidual B and claim the latter’s certificates as one’s own, especially since we are
dealing with a public blockchain network. The certificate holders public address
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has to be verified using the CertificateChain smart contract while an academic
certificate requires the academic organisations smart contract for verification. In
order to conduct this research, we have chosen to develop and deploy multiple
smart contracts, using the Truffle framework and Ganache. The CertificateChain
smart contract acts as the main smart contract for this solution, as awarding
organisations and third parties both make extensive use of this smart contract
for registration, verification and validation. Several other smart contracts have
been developed to act as smart contracts deployed, by fictitious academic organ-
isations, with the purpose of storing academic certificate information from the
respective academic organisation.

Fig. 1. Address verification process

In order to verify that the certificate holder truly owns a given address, we
have adapted a solution similar to [3], which pipeline can be seen in Fig. 1,
and involves the following steps: 1) 3rd party create a confirmation request on
the CertificateChain smart contract; 2) 3rd party generates a random number
between 1 and 65,535 and communicates this privately with the certificate holder;
3) the certificate holder logs-into the platform with his public key and proceeds
to validate his/her pending request with the given randomly generated number;
4) 3rd party checks the status and code of the confirmation response and if the
codes match, the certificate holder is trusted to be the true owner of the given
address. The next step is to validate the certificate information from the previ-
ously created dictionary, however, some issues had to be evaluated beforehand: 1)
The current version of Solidity, version 0.5.7, does not allow functions to return
an array of structures; 2) Validation depends on the template keys chosen by
the academic organisation. Since the template keys are different for every insti-
tution, every smart contract is required to expose a pure function which returns
an array of strings representing the list of template keys, and also, since we are
not able to get the list of certificates belonging to an address with one call, the
smart contract is also required to expose a function which returns the number
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of certificates belonging to a specific address. The idea is that after validating
the identity of the address received, the application gets the keys from the smart
contract and gets the number of certificates owned by the address. Afterwards,
the application starts to get the certificates owned by the address in a sequential
manner and match the information stored on the blockchain with the informa-
tion obtained by the OCR, giving every certificate a similarity score, very similar
to how we choose a template. The certificate with the highest similarity, given
that the highest similarity score is higher than a pre-determined threshold level,
is shown on screen such that the third party can make some final checks before
making their decision.

4 Results

4.1 Certificate Image Pre-processing and OCR

The removal of logos found within academic certificate images uses a multi-
scale template matching approach. This is because OpenCV template matching
requires the template to be very similar to a section within an image, therefore,
if the size of the template does not match the size of the logo found within the
image, the template matching operation could fail to operate as intended. Also,
another limitation with template matching is that the operation will return a
region in the image with highest similarity to the template, however, this does
not always mean that the region is correct, which means that performing the
operation with a template which is not found within the image still returns a
region. The orientation of the certificate image must match the orientation of the
logo for template matching and must be upright for the OCR to produce a valid
result. Using different scanning devices, being dedicated scanners and mobile,
made little difference in the result, as long as the certificate image result is clear
for the OCR to process. Most certificates having a hand signature generated an
invalid result when performing OCR due to two reasons being: 1) The signature
overlapped some of the characters, thus the OCR could not identify properly the
character; 2) The signature was being misread as a character to process.

When analysing the increase in time taken (in seconds), for the OCR to pro-
cess certificates with different word counts, and having 300 dots per inch (dpi),
a strong linear relationship can be observed, having correlation value of 0.95,
thus, an increase in word count causes an increase in the time taken. Scalability
is an issue with the proposed solution because each logo removal will take on
average 4.32 s, thus, if each logo has to be stored in a repository, approximately
every 830 logos stored will increase the time taken to automatically remove logos
by one hour. A linear relationship is also present between the pixel count of the
template and the time taken to perform logo removal, having correlation of 0.85.
Possible solutions to such limitations shall be addressed in the final section.

4.2 Pattern Matching

To extract the useful information from the OCR result, we firstly need to identify
the institution the certificate belongs to, which is done by performing a linear
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search for all registered institutions in the OCR result, thus scalability is also a
problem in the event of having a large number of academic institutions registered.
One major limitation with the proposed solution is that this stage depends on
an API and database to retrieve the institutions and respective template files,
therefore in the events of having the service go down, the validation process is
halted until services are back online. The RegEx patterns in the template file
had to be an almost perfect match, which means that in the event of having
the OCR read an extra white space or spell something incorrectly, some of the
information to be extracted could not be extracted. This problem can partially
be solved by creating more elaborate RegEx patterns which caters for extra or
missing white spaces.

4.3 Smart Contracts

To validate the certificates on the blockchain, the CertificateChain smart con-
tract and our institution smart contracts were deployed which require money to
pay for gas used by the Ethereum virtual machine (EVM). This solution has
been developed solely on Ethereum not because there are technical limitations
not met on other networks, but purely as a proof of concept, which can easily
be migrated to other. The gas usage for CertificateChain is of 2,309,099 whilst
for two local Universities renamed as A and B is of 1,853,264 and 1,658,387
respectively based on their respective certificate data. The costs are found in
Table 1, this shows the low initial cost for deploying the smart contract on the
blockchain.

Table 1. Costs in ETH and EUR for deploying prototype smart contracts

ETH costs

Gas price (Gwei) CertificateChain University A University B

15 0.034636 (e4.95) 0.027799 (e3.97) 0.024876 (e3.56)

10 0.023091 (e3.30) 0.018533 (e2.65) 0.016584 (e2.37)

4 0.009236 (e1.32) 0.007413 (e1.06) 0.006634 (e0.95)

2 0.004618 (e0.66) 0.003707 (e0.53) 0.003317 (e0.47)

EVM gas consumption uses Gwei, in which 1 ETH is equal to 1,000,000,000
Gwei, and the exchange rates are dated 2nd of April 2019 16:00, in which 1 ETH
is e142.93. Increasing the gas price will increase the speed of confirmation for
the transaction, however, not all transactions should be created with a high gas
price. In this case a lower gas price is ideal as both deployment of smart contract
and publishing of academic certificates do not need to be done at instant speeds
(Table 2).

When analysing gas fees for publishing 128-byte certificates according to num-
ber of graduates at University of Malta for the 2017–2018 scholastic year [12],
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Table 2. Costs in ETH and EUR for publishing certificates with different sizes

ETH costs

Gas price (Gwei) 32 bytes/130,041 Gas 64 bytes/132,089 Gas 128 bytes/216,864 Gas

15 0.001951 (e0.28) 0.001981 (e0.28) 0.003253 (e0.46)

10 0.001300 (e0.19) 0.001321 (e0.19) 0.002169 (e0.31)

4 0.000520 (e0.07) 0.000528 (e0.08) 0.000867 (e0.12)

2 0.000260 (e0.04) 0.000264 (e0.04) 0.000434 (e0.06)

it was observed that the difference in price between 2 Gwei and 15 Gwei is
e1,420.01. Gas fees for publishing 128-byte certificates is shown in Table 3 accord-
ing to the number of tertiary education graduates per EU country in 2016 [4]. As
can be seen in the results, the gas price makes a critical difference in the total costs.
Case in point is the e2,297,168.14 difference between 2 Gwei and 15 Gwei. Having
a high gas price is unnecessary for publication of certificates as these do not need
to be available within seconds of graduation, thus, if a large number of certificates
needs to be published, it is best to plan ahead of time and stage publishing with
lower gas prices in order to avoid unnecessary costs.

4.4 Verification and Validation of Certificates and Addresses

To verify the owner of an address, a transaction must be made by both parties,
therefore gas consumption must be paid to verify securely on the blockchain. The
proposed solution uses 156,278 gas to create a request, which is 0.00067 ETH
(e0.09), while 48,884 gas is used to confirm the request, which is 0.00021 ETH
(e0.03) assuming the gas price is 4.3 Gwei and 1 ETH is e142.93. The speed of
this process depends on the gas price of the transactions, if the verification party
requires faster confirmation, a higher gas price such as 20 Gwei can be set and
in return, higher transaction fees. The proposed solution has been adapted from
[11], however, instead of using an inbuilt token, such as the EduCTX token, we
are using a smart contract transaction and only pay for gas consumption. As the
address verification process has very low gas consumption, the gas consumption
fee is not refunded. To verify and validate an academic certificate, no transac-
tions need to be created, this process is free and performed instantly without
confirmation time. This process makes use of multiple function calls to the aca-
demic organisations smart contract due to limitations in the Solidity language.
The academic certificates belonging to a certificate holder need to be fetched
individually because the language does not support functions to return an array
of structures, therefore, this process takes O(n) time where n is the number of
academic certificates belonging to a certificate holder stored in the academic
organisations smart contract. Both verification and validation processes are not
immune to malicious activity. In the case of owner verification, multiple users
can work together by sharing the private key such that they would verify the
address for each other. The proposed solution for academic certificate verification
and validation crucially depends on the certificate data being published by the
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Table 3. Gas fees for tertiary education certificates per EU country in 2016

Gas price (Gwei) for 128 byte certificates

Total 2 4 10 15

EU-28 4,695.980 e291,116.68 e582,233.36 e1,455,583.41 e2,183,375.11

Belgium 119.141 e7,385.88 e14,771.75 e36,929.39 e55,394.08

Bulgaria 60.383 e3,743.31 e7,486.62 e18,716.54 e28,074.81

Czech Republic 90.725 e5,624.29 e11,248.58 e28,121.46 e42,182.19

Denmark 85.290 e5,287.36 e10,574.72 e26,436.81 e39,655.21

Germany 556.800 e34,517.56 e69,035.12 e172,587.80 e258,881.69

Estonia 10.262 e636.17 e1,272.34 e3,180.85 e4,771.27

Ireland 65.362 e4,051.97 e8,103.94 e20,259.85 e30,389.77

Greece 69.929 e4,335.09 e8,670.18 e21,675.45 e32,513.18

Spain 438.661 e27,193.80 e54,387.60 e135,968.99 e203,953.49

France 772.779 e47,906.69 e95,813.38 e239,533.45 e359,300.17

Croatia 34.028 e2,109.49 e4,218.98 e10,547.45 e15,821.17

Italy 373.775 e23,171.34 e46,342.68 e115,856.69 e173,785.03

Cyprus 8.420 e521.98 e1,043.96 e2,609.89 e3,914.84

Latvia 15.796 e979.24 e1,958.47 e4,896.19 e7,344.28

Lithuania 29.683 e1,840.13 e3,680.26 e9,200.65 e13,800.98

Luxembourg 1.682 e104.27 e208.54 e521.36 e782.04

Hungary 68.110 e4,222.33 e8,444.65 e21,111.63 e31,667.44

Malta 4.576 e283.68 e567.36 e1,418.39 e2,127.59

Netherlands 148.942 e9,233.32 e18,466.65 e46,166.62 e69,249.92

Austria 83.396 e5,169.95 e10,339.89 e25,849.73 e38,774.60

Poland 487.640 e30,230.14 e60,460.28 e151,150.71 e226,726.06

Portugal 73.086 e4,530.80 e9,061.60 e22,654.01 e33,981.01

Romania 121.788 e7,549.97 e15,099.94 e37,749.86 e56,624.79

Slovenia 30.967 e1,919.73 e3,839.46 e9,598.65 e14,397.97

Slovakia 56.280 e3,488.95 e6,977.90 e17,444.76 e26,167.14

Finland 56.066 e3,475.69 e6,951.37 e17,378.43 e26,067.64

Sweden 78.112 e4,842.38 e9,684.75 e24,211.89 e36,317.83

United Kingdom 754.301 e46,761.19 e93,522.38 e233,805.94 e350,708.91

Iceland 4.564 e282.93 e565.87 e1,414.67 e2,122.01

Liechtenstein 0.191 e11.84 e23.68 e59.20 e88.80

Norway 49.010 e3,038.26 e6,076.53 e15,191.32 e22,786.98

Switzerland 87.479 e5,423.06 e10,846.13 e27,115.32 e40,672.97

Macedonia 10.465 e648.75 e1,297.51 e3,243.77 e4,865.66

Serbia 50.326 e3,119.85 e6,239.69 e15,599.23 e23,398.85

Turkey 802.822 e49,769.14 e99,538.28 e248,845.69 e373,268.53

5,700.837 e353,410.52 e706,821.05 e1,767,052.62 e2,650,578.92
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academic organisations and cannot prevent such organisations from publishing
false certificates in the first place, thus, if the academic organisation publishes
false certificates, the proposed solution will identify it as a valid certificate.

5 Conclusion

We concluded that the proposed solution will improve the verification and val-
idation process needed by academic institutions and/or employers. Using the
proposed blockchain solution, academic institutions have the ability of having
their academic certificates published on the blockchain network, having full free-
dom on the implementation of their smart contract. Institutions are required to
pay gas fees in order to deploy their smart smart contracts, this fee depends on
the size of the smart contract, however for our prototype the average cost for
deploying smart contracts for the institutions was found to be e0.50 with gas
price set to 2 Gwei. Gas fees also have to be paid when publishing new certifi-
cates onto the blockchain, and it was found to be e353,410.52 and e2,650,578.92
when publishing certificates to all 2016 tertiary education graduates in Europe
when selecting 2 Gwei and 15 Gwei as gas prices respectively. In this case, trans-
action speed is not important, thus, low gas prices can be selected in order to
cut a lot of extra costs. Since the proposed solution makes use of the blockchain
network as the primary storage medium, the platform is immune to corruption
and unauthorised alterations due to advanced cryptographic techniques. From
these findings we have concluded that the proposed solution is very cost effective,
when selecting lower gas prices, for the security benefits offered.

However, several scalability issues, discussed in the previous section, are
found with the proposed solution, which need to be improved upon before imple-
menting such a platform. The logo removal process takes approximately 4.32 s
per logo, thus, approximately every 830 logos added to the logos repository
will increase the time taken by one hour. From this finding we have concluded
that template matching is not ideal as this requires us to store every logo as a
template. One possible solution for this would be to train a neural network to
identify the position of logos from the given image. The logo removal process
also depends on the pixel count of the template image, such that the correlation
between the linear relationship of the pixel count and time taken is 0.85. One
possible solution for this issue would be to downscale the template and certificate
images, such that the time taken is reduced.
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Abstract. This paper presents the definition and the implementation
of a decentralized system for the energy trading managed by blockchain
technology. The system, called Crypto-Trading, is composed by three
interacting subsystems: the trading platform, the blockchain, and the
smart meters system. It is conceived to exploit the IoT technology of
smart meters and the decentralization of smart contracts working inside
the blockchain technology for managing exchange and trading of energy
by means of specific tokens. The paper defines the system as a decentral-
ized application, identifying system actors and describing user stories.
Then provides the description of the use case concerning the recharge-
able token, one of the main feature of our system, and its interaction
with the other components of the system. Finally, the paper compares
our implementation choice with other ongoing projects in the field of
energy trading.

Keywords: Energy trading · Blockchain · Smart contracts · Smart
grid · BOSE

1 Introduction

In the scenario of a growing proliferation of electricity production sites from
renewable sources, the need of new forms of trading of self-produced energy
emerges. More and more energy consumers are becoming prosumers, creating
a distributed renewable energy supply. According to the Fraunhofer Institute
for Solar Energy Systems, the global annual rate of new installed photo voltaic
power was equal to 40% between the 2010 and 2017 [4]. The creation of free and
decentralized markets could open to new change of profit for prosumers. The
challenge is to create a trading system that captures the interest and answers
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the needs of prosumers and also provides a data infrastructure that meet the
necessity of electric service operators to govern the energy grid. The new busi-
ness opportunity can help overcoming barriers that slow the growth of adoption
of new technologies in the field of smart grids. We conceived Crypto-Trading
to create a new typology of free and decentralized energy market, based on the
blockchain technology. It is a blockchain oriented software system [13] compat-
ible with the existent product of the Internet of Things (IoT) technologies and
works in combination with the technology used in the energy sector by service
operators, such as energy smart meters. The design of decentralized application
can make use of recent design patterns of the software engineering, conceived for
this typology of software system [7]. This paper follows the previous project pre-
sentation [6] and presents the definition of the system in terms of a decentralized
application and provides a description of the implementation of the decentralized
core of the system Crytpo-Trading. The following section provides a discussion
about recent related works that frame our system in the sector of decentralized
energy trading. Section 3 defines Crypto-Trading as a decentralized application,
providing system description, actors and users stories. Section 4 describes the
use case of energy production and consumption, which allow us to describe the
role of the rechargeable energy token. Section 5 describes the implementation of
the system as smart contract. Section 6 summarizes and concludes the paper.

2 Related Works

In the research area of the energy market, the last two years are characterized
by the growing interest in development opportunities offered by the blockchain
technology. This is well documented in a recently published systematic review
on the use of blockchain technology in the energy sector by Andoni et al. [2].
They summarized the impact of blockchain technology in ten aspects of the busi-
ness models of energy company operators such as billing, sale and management,
trading and markets, automation, smart grid applications and data transfer, grid
management, security and identity management, sharing of resources, competi-
tion, and transparency.

Decentralized energy trading is made possible thanks to the progress in
energy smart grid deployment. Several works studied blockchain based systems
able to govern smart grids to physically carry the energy from the seller to the
buyer. Mengelkamp et al. [8] proposed an energy market based on several “micro-
markets” extabilished in local “microgrids”. Differently from Crypto-Trading, in
this system each micromarket has its own rules and energy prices. The market is
conceived as virtual layer of the system and is implemented on top of the phys-
ical layer (the energy smart grid). The smart grid will be programmed to make
effective the energy transfer. Disadvantages of this approach are to be found
in the technological complexity to create an efficient and reliable system [9,14].
To solve this problem, according to Pop et al. [12], blockchain can be used to
govern smart grids. In particular, users’ habits and global energy demand can
be profiled in the decentralized ledger. Using these data, specific smart contracts
are able to control smart grid units and to direct efficiently the energy supply.
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Nehai et al. [10] described a scenario similar to ours, in which a transmis-
sion and distribution (T&D) service operator is present. Adopting decentralized
energy markets, energy prosumers gains in possibility of choice that are self
production or consume, production or consume in the decentralized market, or
product and consume in the T&D network.

Studies on decentralized trading platform for the energy market describe the
crucial role of Smart Contracts in the system development. Pee et al. [11] pro-
posed a solution based on the Ethereum improvement ERC20 token. Yu et al.
[16] described the layers of an energy auditing platform and describe the role of
smart contract in the transactive mechanism. Castellanos et al. [3] put the atten-
tion on the origin of the energy, as required by the EU directive 2009/28/EC.
They used Ethereum smart contracts to develop a system to trade the energy
and register the origin and then examined price formation issues. Privacy issues
in decentralized market have been studied by Aitzhan and Svetinovic [1] for what
concerns the trading communication and by Guan et al. [5] for what concerns
the use of blockchain as data layer to control smart grids.

Given this scenario, Crypto-Trading is a project which impacts especially in
the first three sectors: “billing” concerns the use of smart contracts and smart
metering to realize automated billing, “sales and marketing” concerns the com-
bination with artificial intelligence to identify prosumer energy patterns, and
finally, “Trading and Market” concerns the creation of distributed trading plat-
forms for market management and commodity trading transactions.

3 System Definition

Crypto-Trading system is a system obtained as a result of the integration of
three different subsystems. The main components are the blockchain subsystem,
the smart metering subystem and the trading platform subystem. To these is
added the energy transmission and distribution system, based on smart grids.
Each subsystem has a specific role. The blockchain subsystem is in charge of
the creation, the purchase and sale, and the circulation of tokens. The smart
metering subsystem is an IoT system which acts both as a certified reference
for monitoring the energy production and consumption, and as the physical
interface between the first component of the Crypto-Trading system and the
energy transmission grid, managed by the Transmission and Distribution system
operators (T&DSO). The trading platform subsystem allows the trading of the
Crypto-Trading tokens by means of artificial intelligence tools conceived for an
easier and more profitable trading. Figure 1 represents the three subsystems and
their interactions with Prosumers and with the physical layer of energy Smart
Grid. Each subsystem can be described as a stand alone system, each with its
own “actors”, and in turn may be considered as an actor of one of the other
subsystems. For instance, the smart metering subsystem must be considered as
an actor of the blockchain subsystem. In this work we mainly focus and define
the blockchain subsystem, which represents the decentralized core of the Crypto-
Trading system.
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Fig. 1. Representation of the three subsystem of Crypto-Trading and their interactions.

3.1 Actors

The objective of the blockchain subsystem is to provide a decentralized infras-
tructure which creates and manages the Crypto-Tranding Energy Tokens. The
main element of the blockchain subsystem is a smart contract we call Crypto-
Trading Token (CTT) and we bound the blockchain subsystem to all its func-
tions and responsibilities. The actors of this subsystem are all the entities who
interact with the blockchain subsystem. The actors are: the System Admin, the
Prosumer, the Smart Meter, and the Trading Platform.

– System Admin: he is the administrator of the CTT. He can set the param-
eters of the CTT contract. He is identified with an Ethereum address.

– Prosumer: he is the actor who can buy and sell CTT tokens. He has an
associated list of Smart Meters which can interact with its token content.
He is a person or a society responsible of consuming or producing electrical
energy. He is identified with an Ethereum address.

– Smart Meter: it is an IoT device associated to a Prosumer. It measures the
energy production and consumption, and send messages to the CTT whenever
the production and the consumption reach a given threshold or whenever is
triggered by the prosumer. It is identified by an Ethereum address and it
knows the address of the Prosumer who owns it.

– Trading Platform: it is a decentralized application which provides a user
interface to simplify the reading of the Prosumer account and provides tools
for the trading of energy token.
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3.2 User Stories

User stories describe how the actors act within the system. The User Stories of
the blockchain subsystem are summarized in Table 1. The CTT is the Crypto-
Trading Token, namely a smart contract which contains the Crypto-Trading
Energy Tokens which can be sold, bought, consumed and recharged, by means
of the interaction of the Prosumer and the Smart meter. Figure 2 shows the
sequence diagram concerning the user stories which involve the Prosumer and
the Smart Meter in the CTT. In this diagram the billing period is the reference
period of time for the computation of a new energy bill.

Table 1. User stories of the Crypto-Trading blockchain subsystem.

User story Name Description

CRC Create CTT The system admin deploys the contract CTT in the
blockchain and its address is registered as the admin
in charge. Actor: System Admin

USA Update
System Admin

The System Admin in charge chooses a new System
Admin, specifying its address. Actor: System Admin

STS Set Tokens
max Supply

The System Admin sets the maximum number of
Crypto-Trading Energy tokens. Actor: System Admin

STC Set Token
Capability

The System Admin sets the max amount of kWh
which can be recorded in one Energy token. Actor:
System Admin

ST Sell Token The Prosumer puts a token on sale, establishing
price of the token and the price of the quantity of
energy. Actors: Prosumer

BT Buy Token The Prosumer chooses and buys a token for sale (or
from another prosumer or from the CTT, if empty
tokens still available). He uses the trading platform.
The contract CTT records the buying. Actor:
Prosumer, Trading Platform

ASM Authorize
Smart Meter

A Prosumer authorizes a Smart Meter to modify the
energy amount of his Energy tokens and triggers the
smart meter to execute the transaction to confirm
the ownership. Actor: Prosumer, Smart Meter

CEA Consume
Energy
Amount

The Smart Meter accesses and consumes the content
of the Crypto-Trading Energy tokens associated with
its owner (a Prosumer), according to the settings of
its owner. Actors: Smart Meter, Prosumer

REA Recharge
Energy
Amount

The Smart Meter accesses and increases the content
of the Crypto-Trading Energy tokens associated with
its owner (a Prosumer), according to the settings of
its owner. Actors: Smart Meter, Prosumer
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Fig. 2. Sequence diagram of the interaction between the actors Prosumer and Smart
Meter through the CTT

4 Rechargeable Energy Token

First of all, our system relies on an external energy transmission and distribu-
tion system so that there exist already a physical network of electrical power
distribution owned and managed by a public or private authority. The roles of
such authority are: to distribute the energy through the network; to provide
smart meters to prosumers or, alternatively, to check and asseverate that smart
meters used by prosumers satisfy some basic requirements, so that the measured
production of energy be reliable (the authority has the right of access to smart
meters and can seal them in order to avoid cheating from prosumers); to measure
from its own side the energy produced by each prosumer and injected into the
power network; to measure energy consumption by each consumer (including
prosumers); to request payments for energy consumption and for smart meter
usage in case these are loaned to prosumers. Given these premises the exchange
and trade of energy is managed by Ethereum tokens emitted by a Smart Con-
tract (CTT), which could be owned by a specific system admin or by the same
energy authority which controls the power distribution network.

For the sake of simplicity we chose to emit a large enough but limited number
of tokens (user story STS in Table 1) which can be traded themselves and that
are created empty. Tokens are sold into the energy market both by means the
initial offering of empty tokens and by other prosumers, and prosumers must
buy tokens and fill them with the energy they produce before selling them into
the trading market. Consumers must buy filled tokens and consume the energy
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carried by them. The tokens will be then emptied and can be resold into the
market, creating a trading parallel to the energy one (user stories BT, CT, CEA,
REA in Table 1).

First we examine the energy production phase and the energy injection into
the trading market. We set our system so that the tokens can be “charged” with
discrete amounts of “energy” (but this choice is not restrictive) by the smart
meters (SMs) through Ethereum transactions. Such discrete amounts can be
released after the token is sold to a consumer and the corresponding energy con-
sumed. As a consequence SMs must have associated an Etehreum address and
some Ethers to pay transactions. Each prosumer decides when the energy pro-
duced can be injected into the tokens by activating the transaction governed by
the SM using the usual public-private key pair associated to Ethereum addresses
(to each SM). We set 1 kWh as the quantum, or the discrete amount of energy,
that can be loaded into a token. When a SM produces more than N.M kWh of
energy, where N is the integer part and M is the fractional, the prosumer can
load N quantum into its tokens launching the opportune Ethereum transaction.
Such amount of energy has been already injected into the power network, as
measured by the SM, and is available to every consumer. The energy author-
ity can easily acknowledge the injections by looking at its own measurements.
At this point the prosumer holds a token with N quantum of energy (N kilo-
watt hours in our scheme) and sets a price for the ensemble token+energy. The
tokens+energy on sale are exposed into a “web-shelf”, or a reading table, where
buyers can chose which token to buy at their own convenience. An intelligent
robo-advisor ca be devised to optimize trading. The value carried by each token
is the value of the energy at the price set by the prosumer plus the value of the
token itself which has been bought by prosumers at the beginning and can be
traded into the market like all Ethereum tokens even when it carries no energy.

The trading and exchange of tokens is managed by a ERC721 Ethereum
Smart Contract. Prosumers can buy more than one token and, in order to be
able to set an arbitrary number of quantum of energy in each token they hold,
they can distribute the produced energy among all tokens they own. With this
architecture one token is set for being charged by transactions activated by smart
meters in discrete amounts. The tokens are then coloured by integer numbers
(the kilowatt hours) and these amounts can be redistributed among the tokens
owned by the same prosumer.

All the processes and events are recorded into the Ethereum blockchain and
all the actors, (prosumers, consumers, and also the energy authority), can verify
at any moment, in a transparent fashion, with publicly available data, that all
tokens charged with energy correspond to actually produced energy and injected
into the power network. Tokens are the containers, and have an associated value
determined by the tokens trading market, and energy is the content, and has
another associated value determined by the energy market.

Now we examine the energy consumption phase, assuming that a consumer
bought some tokens with energy. Each consumer has a meter which is usually
owned by the energy authority and which measures the total energy consumed by
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the consumer during a given period of time. The energy consumed, as measured
by the meter, is composed by two parts, one associated to the quantum in the
tokens and another which is simply energy consumed and never payed in the
trading market. We here assume that the consumer has not enough quantum to
cover all the energy consumption, which is the more complicated case.

Once a consumer has bought some tokens, the quantum into it must be
consumed and tokens must be emptied. Consumers, the token’s new owners,
activate an Ethereum transaction to erase the quantum units carried by tokens
(a partial consumption can be also set). To each energy kilowatt hour corre-
sponds a deleted quantum and each quantum deletion is recorded permanently
and is publicly available in the blockchain. The public authority has access to
all the data and transactions and can easily associate the token ownership for
consumed energy to the amount of consumed energy. The authority can produce
a bill where the total of consumed energy is decreased by the amount of energy
corresponding to the quantum erased from the tokens. In fact, such energy has
not been produced by the energy authority but by the prosumers and has already
been payed by consumers when they bought the corresponding tokens at a price
determined by the market. The authority may eventually include a fee in the bill
for transporting and delivering the energy through the physical infrastructure. If
the energy consumed is all covered by the tokens then the due price is zero, since
the consumer has already payed in Ether the energy to the prosumer who filled
the tokens. A third implicit pattern, included in our approach, is the trading
of filled tokens. Once an actor buy a token with some amount of energy, it can
resell the token at any given price, inserting it once again into the “web-shelf”
with a price set according to a best profit strategy. This operation can be done
at any stage, even in the case where part of the energy originally carried by the
token has been consumed, so that the token is resold with a lower energy content.
Finally tokens emptied are re-sold into the market using the ERC721 contract,
so that consumers do not waist money for the “energy containers” and to ensure
tokens recycling into the market. In this way: there is no need to produce new
tokens; the total number of circulating tokens can be set at the beginning; tokens
have an intrinsic value determined by the market.

5 Implementation

In the following, the implementation of the blockchain subsystem of Crypto-
Trading as a Smart Contract, and the Ethereum-compatible Tobalaba network
is described.

Solidity Smart Contract. We implemented the Crypto-Trading blockchain sub-
system by means of an Ethereum Smart Contract. We wrote the source code
in Solidity language and we call CTT (abbreviation for Crypto-Trading Token)
the main contract of the system. In short, CTT is the ERC721 compliant token
of the Crypto-Trading platform. It implements the tracking and the manage-
ment of an arbitrarily large number of non-fungible and rechargeable Energy
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tokens. Each CT token is characterized by a unique ID that allows the asso-
ciation between the given token and its owner. Token ownership is guaranteed
by the ERC721 token. CTT is conceived to exploit the security level and fea-
tures of standardized solidity frameworks of approved “Ethereum Improvement
Proposal”. In particular, CTT inherits the ERC721 implementation provided by
the Openzeppelin framework1 and uses the SafeMath library to protect form
overflow and underflow.

Global variable maxTokenSupply records the Maximum number of Energy
Tokens (MET), and energyCapacity records the Capacity of each Energy Token
(CET) expressed in number of energy quantum (fixed equal to 1 kWh). Both
variables can only be modified by the administrators of the Crypto-Trading
system. The value of these two variables defines the total energy supply (TES)
that can be traded in Crypto-Trading, as:

TES = MET ∗ CET. (1)

The inverted formula can be used to compute MET given TES and CET. For
instance, considering CET equal to 10 kWh (order of magnitude of the average
daily energy consumption of a family) and TES equal to 1 TWh (about the
energy consumed in Italy in one day [15]), MET is equal to one hundred million
tokens.

Two main data structures are implemented in the contract namely Energy-
Token and Prosumer. The struct EnergyToken defines a specific token with the
price of the token (TP), the price of one energy quantum (EP) and the energy
amount (EA). A prosumer who owns a given token he wants to sell, can set the
value of TP and EP of the token, according to his trading preferences. For each
token we can compute the selling price (SP) as:

SP = TP + (EA ∗ EP ). (2)

The struct Prosumer includes the address of the associated Smart Meter
and the ID list of tokens he owns. We implemented User Stories described in 1
defining specific functions and appropriate solidity modifiers. Table 2 lists public
and external function implemented in the smart contract. In the table, OSMP
stands for onlySmartMeterOfProsumer which assert that the message sender is
a smart meter associated to a given prosumer.

Network. We identified in Energy Web (EW)2 the Ethereum platform that better
fits the purposes of the project. EW is a project which aims to provide an
“open-source, scalable blockchain platform specifically designed for the energy
sector’s regulatory, operational, and market needs”. Tobalaba3 is the testing

1 https://github.com/OpenZeppelin.
2 Energy Web Foundation https://energyweb.org/.
3 On May 2019, Energy Web announced the release of a new testnet

called Volta. https://energyweb.atlassian.net/wiki/spaces/EWF/pages/702677023/
Chain+Volta.

https://github.com/OpenZeppelin
https://energyweb.org/
https://energyweb.atlassian.net/wiki/spaces/EWF/pages/702677023/Chain+Volta
https://energyweb.atlassian.net/wiki/spaces/EWF/pages/702677023/Chain+Volta
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Table 2. External and public functions implemented in CTT.

Function Type Parameters Modifiers User story - Action

setMaxTokenSuppy Public maxSupply:uint onlyOwner STS

setTokenCapability Public capability:uint onlyOwner STC

consume External MaxAmount: uint;
prosumer: address

OSMP CEA

refill/recharge External amount:uint;
prosumer:address

OSMP REA

register Public smartMeter: address ASM

confirm Public prosumer:address OSMP ASM

buyEmptyToken Public
Payable

BT

setOnSale Public tokenID:uint ST

blockchain in which blocks are mined in average every 3 s. This blockchain is
ruled by the Aura (Authority Round)4 Proof-of-Authority algorithm, already
implemented in the Parity client. Special nodes called “authority” nodes can

Table 3. Comparison between Crypto-Trading and three other notable ongoing project
of energy trading systems

Feature Crypto-Trading Enerchain Exergy Power ledger

Blockchain Ethereum
Tobalaba

Tenedermint
Wormhole

Exergy Ethereum

Consensum Proof-of-
Authority

Byzantine-fault
tolerant

Proof-of-
Ownership

Proof-of-Stake

Policy Public Permissioned Private Public and
private

Token EnergyToken
(non-fungible
ERC721 token)

EnerCoin Exergy Power (ERC20)
and Sparks
(ERC20)

Token aim Marketable
token and
rechargeable
energy account

Purchasable
Euro based
token for energy
exchange

Function
enabler
purchasable
token

Power:
marketable
token; Sparks:
marketable
energy quantum

Trading functions AI aided energy
and token
trading

Openbazar
based market

Transactive
market and
adaptive price
formation

Double trading
system
(application
host platform
to trade starks)

Business model Token selling Transaction fees
or subscription
fee

Token
Pre-selling

Token selling

4 https://wiki.parity.io/Aura.

https://wiki.parity.io/Aura
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validate transactions and create new blocks. Only “affiliate” organizations that
join EWF can run authority nodes entitled to validate and sign blocks. EW
provides a network client suitable to smart meter systems to allow a direct
connection with the blockchain.

Projects Comparison. We summarize in Table 3 some features of the Crypto-
Trading system, in comparison with the features of three ongoing projects namely
EnerChain5 (by Ponton), Exergy6 (by Lo3 Energy), and PowerLedger7. To the
best of our knowledge, Crypto-Trading is the only one projects that incorporates
in a single token both the enabler, energy accounting, and marketable token
functionality.

6 Conclusion

This paper describes the implementation and the features of the Crypto-Trading
system, a system designed to exploit the blockchain technology for support-
ing trading in the energy market. We identified system actors and their inter-
action with the different components as well as the main distinctive features
of Crypto-Trading and its rechargeable energy token. In particular, we start
from the hypothesis that an external actor, namely a Transmission and Dis-
tribution system operator, is the authority responsible of managing the energy
grid and providing certificated smart meters. In Crypto-Trading, smart meters
represent the subsystem which is connected to the internet and, periodically
or on demand, sends data about energy production and consumption to the
blockchain subsystem. The Crypto-Trading blockchain subsystem is based on
newly designed energy token, which exploits and extends the Ethereum ERC721
token. In particular, each Crypto-Trading Token contains an energy amount
that can be recharged by means a local energy production, or consumed to save
money. A dedicated smart contract in the Ethereum blockchain accounts for
tokens exchange, tokens energy refill and tokens energy consumption. The token
owner can trade the token by setting the energy price and the token price and
tokens can be traded in the trading platform subsystem. The blockchain subsys-
tem is conceived to run on the Ethereum based Tobalaba blockchain platform,
specifically designed for the energy sector. Crypto-Trading offers a new way to
trade not only the energy but also the energy carriers (the tokens) and it is fully
compatible with the existing technologies.

Acknowledgements. The work presented in this paper has been partially funded by
Regione Autonoma della Sardegna, under project “Crypto-Trading” - Programmazione
unitaria 2014–2020 POR FESR Sardegna 2014–2020.

5 https://ponton.de/focus/blockchain/enerchain/.
6 https://exergy.energy/.
7 https://powerledger.io/.

https://ponton.de/focus/blockchain/enerchain/
https://exergy.energy/
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Abstract. Blockchain technologies can safely and neutrally store and process
transaction data (including smart contracts) on the chain. Based on smart con-
tracts, a special type of applications can be deployed, known as Decentralized
Applications (DApps). Within existing Blockchain platforms, Ethereum is the
most popular one adopted for DApp developments. The performance constraints
of Ethereum dramatical impact usability of DApp. In this paper, we experi-
mentally evaluate the performances of Ethereum from 3 types of tests: 1)
Account balance query latency 2) Block generation time and 3) End-to-end
transaction acceptance latency. The results show that the end-to-end transaction
time in Ethereum is unstable. Consequently, the applications with low latency
constraints and high frequency transaction requirements are not ready to be
deployed unless off-chain transaction methods are considered.

Keywords: Blockchain � Ethereum � Transaction � DApp � Performance

1 Introduction

Blockchain, a secure and trustless decentralised database, enables recording information
using linked “blocks”. Since the data structure used in Blockchain is naturally immune
to tampering, the 1st-generation approaches rise up first in cryptocurrency applications,
e.g. Bitcoin [1] is a decentralised ledger to record transactions, the characteristics are
decentralisation, anonymous and transparent [2]. As a superset of ledgering, generic
computations are supported by the 2nd-generation Blockchain. Ethereum [3] is a typical
approach which supports Turing-complete computations through smart contracts [4]
thus enabling Decentralised Applications (DApps) [5]. In other words, DApps are
software that rely on smart contracts operating through Blockchain as backend services.

Comparing with Blockchain platforms that support DApps (E.g. EOS, Steem, POA
and xDai), the majority of DApp approaches are developed and published for Ethereum
(2486 DApps in Ethereum out of 2667 DApps in total till 21/May/20191) which enables
converging various aspects of life such as energy, healthcare, finance, entertainment and
insurance. However, more than 21% of the DApps have been broken or abandoned on

1 State of the DApps—DApp Statistics, DApp Statistics, 21-May-2019. [Online]. [Accessed: 21-May-
2019].
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the Ethereum platform. The high requirements and insufficient achieving ratio of DApps
motivate us to further investigate the performances of Ethereum. The experimental
results and learnt insights presented in this paper aims to guide DApp developers to
better design their products.

In literatures, a few works evaluated the performances of Ethereum through private-
nets. Specifically, Aldweesh et al. [7] tested the private chain using both Parity and
Geth clients; Pongnumkul et al. [8] evaluated Hyperledger Fabric and Ethereum also
through private-nets. Although existing works studied the performance of Ethereum
using theoretical analysis without real-world generalizable experiments, to the best of
the authors’ knowledge, no works have tested the performance of Ethereum while
considering practical use cases and constraints. To close this gap, we select Ethereum
test-nets for comparative evaluations for the following reasons:

• Some test-nets, e.g. Ropsten, acts like main-nets, which use the same consensus
scheme (Proof-of-Work, PoW).

• Kovan and Rinkeby use Proof of Authority (PoA) [9] consensus schemes, which are
a potential direction of Ethereum evolutions.

In this paper, three test-nets (Ropsten, Kovan and Rinkeby) with popular consensus
schemes are selected for evaluations. the experiments are designed, to measure:

• Account balance query latency: The access delay is obtained by inquiring account
balances multiple times, which is the time interval between the point that an inquiry
is sent out and the point that balance is received.

• Block generation time: The transaction confirmation speed through measuring the
time duration of generation a block. To avoid rolling back of Ethereum Blockchain
states, we continuously measure the time durations of generating 12 consecutive
blocks.

• End-to-end transaction acceptance latency: Four levels of transactions (TXs) loads
are considered: 1 single TX; 25 concurrent TXs; 50 concurrent TXs; 100 concurrent
TXs.

The structure of the paper is as follows. Section 2 illustrates the related works about
Ethereum. Evaluation methodology is developed and shown in Sect. 3. We present the
experimental results in Sect. 4. Finally, Sect. 6 concludes this paper.

2 Related Work

2.1 Ethereum Overview

Ethereum [10] borrows heavily from the Bitcoin protocol and its Blockchain design,
but tweaks it to support applications beyond money, in which Ethereum improves the
concept of scripting and online meta-protocols.

From the perspective of ledgering transactions, different from the inefficient
Unspent Transaction Output (UTXO) scheme [1] used in Bitcoin for estimating
account balances, accounts are introduced in Ethereum, which formulate the states of
the whole network. In addition, the state transitions are defined as the value transfers or
data records between accounts (including smart contract).
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The signed data package that stores a message to be sent from an account is defined
as a transaction which contains the recipient, the sender’s signature, the number of
tokens and the data to send. In addition, Ethereum introduces gas which is to pay
miners who execute transactions and smart contracts inside.

Both Ethereum and Bitcoin store the entire transaction histories in their respective
networks. The difference is that Ethereum embeds smart contracts in the transactions in
which contracts enable Turing-complete programming to support feature rich appli-
cations. These transactions are grouped ‘block’, every block being chained together
with its previous blocks. But before the transaction can be added to the ledger, it needs
to validate through a consensus algorithm, e.g. PoW or PoA.

In theory, the block gas limits in Ethereum is usually set to 7,999,992, where each
transaction will cost 21,000 gas without smart contracts. This means Ethereum can
store and execute around 380 pure transactions using each block. Because the block
generation is around 14.37 s2, this gives the transaction speed 25.346 TX/s
approximately.

2.2 Ethereum Test Network (Test-Net)

Test networks [12] facilitates individual developers and companies to test their business
logic by deploying smart contracts before delivering their products to the Ethereum
main-net. The test-nets provides the exact same service without needs of exchanging
monetary tokens. We’ll be covering the most popular 3 test-nets, they are:

• Ropsten: The test-net in Ropsten, its Ether is mined following the same scheme as
the main-net. Ropsten resemble the current main-net the most due to its PoW
consensus algorithm which is the same to the real main-net.

• Kovan: Different from the main-net, Kovan supports the Parity3 client only and uses
PoA as the consensus algorithm. Thus, Kovan cannot be considered a very accurate
simulation to the current main-net. Despite this, it is immune to spam attacks,
reliable and stable, so it is convenient or public testing.

• Rinkeby: Rinkeby shares the advantages of Kovan, supporting the Geth4 client
only.

2.3 Distributed Consensus

PoW (Proof of Work) and PoA (Proof of Authority) are the main consensus algorithms
using in Ethereum and test-nets. The details of PoW and PoA are listed below:

• PoW: In Bitcoin and Ethereum, PoW is employed to confirm transactions in the
world and to prevent cyber-attacks on the network. The principle of PoW is to
allocate the accounting rights and monetary rewards according to the computation

2 Ethereum Network Status, Available: https://ethstats.net/. [Accessed: 24-May-2019]. Ethereum
Network Status, Available: https://ethstats.net/. [Accessed: 24-May-2019].

3 Blockchain Infrastructure for the Decentralised Web, Available: https://www.parity.io/.
4 Go Ethereum, Available: https://geth.ethereum.org/.
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power that is contributed by each node [14]. The workload as the safeguard in PoW.
The new block will be connected to the previous block. If someone wants to tamper
with the Blockchain that will difficult, all of nodes trust the longest chain and the
cost can be less than gains from tampering. The PoW can protect the safety of the
Blockchain.

• PoA: PoA consensus can be viewed an efficient deviation of Proof of Stake
(PoS) where known validators will confirm transactions. It also includes a
governance-based penalty system to punish malicious behavers. In practice, PoA
can provide faster transaction rates than PoW without mining processes.

2.4 Existing Works of Performance Evaluation on Ethereum

According to the authors’ study, only two paper experimentally evaluate the perfor-
mance of Ethereum. Specifically, Aldweesh et al. [7] deploys private chains using both
Parity and Geth clients with different consensus algorithms. The result demonstrates that
Parity can handle concurrent transactions significantly better than Geth. Different from
our work, Rouhani’s work focuses on the intrinsic performance of Ethereum but does
not study Ethereum which operates in the wild, i.e. with time-varying transaction bur-
dens and numbers of users. In other words, its results cannot reflect the performance of
the main-net. Pongnumkul et al. [8] comparatively evaluated Hyperledger Fabric and
Ethereum by building private-nets, the experimental results indicate that Ethereum
cannot achieve both higher throughput and lower latency but is able to handle more
number of concurrent transactions. The paper lacks a discussion on why the perfor-
mance of Ethereum is more unstable, and the test results captured from private-nets
cannot reflect the performance of the main-net. Xu et al. [6] proposed a taxonomy
method to compare blockchains and blockchain-based systems thus assisting the design
and assessment of their impact on software architectures. Macdonald et al. [13] dis-
cussed how the blockchain can be used outside of Bitcoin, then presented a comparison
of five general-purpose blockchain platforms which include Ethereum, IBM Open
Blockchain, Intel Sawtooth Lake, BlockStream Sidechain Elements, Eris. Recently,
Maple et al. [11] introduced a format for outlining a generic blockchain anatomy which
ranges from permissions to consensus and can be referenced when assessing blockchain
solutions architecture, to assist in the design and implementation of business logic.

In this paper, to capture the performance of Ethereum from a more reliable and
generalisable manner, we select the test-nets that are popular and have strong links to
the main-net. This experimental results targets to better understand Ethereum con-
straints and give advices on DApp development.

3 Evaluation Methodology

This section will discuss and present experimental design and testing results that are
used for evaluating Ethereum through Ethereum test-nets (Ropsten, Kovan and Rin-
keby). The performance of each test-net is evaluated through three aspects: 1) Account
balance query latency 2) Block generation time and 3) End-to-end transaction accep-
tance latency. Each test is repeated 10 times to guarantee reliability.
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Steps for Evaluating Transaction Acceptance Latency:

1 User Operation: A set of N (1, 25, 50 and 100) signed transactions, i.e. TX = {TX0,
TX1, TX2,… TXN−1}, are created.

2 User Operation: The user node sends the created transactions to an Ethereum
network and captures the current time point t.

3 Ethereum Internal Process: The Ethereum’s P2P network distributes the transac-
tions to miners. The mining process (e.g. PoW or PoA consensus algorithms) will
confirm the valid transactions and broadcast them to all the nodes in Ethereum.

4 User Operation: The user node will continuously query the confirmation of each
transaction through Etherscan API until all transactions in TX are confirmed. This
is because Ethereum never returns the status of any transaction without queries.

5 User Operation: When a transaction TXn 2 TX is confirmed, the user node captures
the current time Tn then calculate and records the transaction time of TXn,Dtn = Tn – tn.

6 User Operation: If no transactions are confirmed, GOTO Step 4.

Steps for Evaluating Ethereum Block Generation Time:

1 User Operation: The user node sends a query to check the block number N (i.e. the
total number of confirmed blocks at the initial time) of the Ethereum network then
record it with the current time point tN.

2 User Operation: The user node continuously queries the block number n of the
current time point tn until the block number is increased by 12.

3 User Operation: If the change of block number is detected, e.g. n = N + 1, the user
node calculates and records the time interval between generating two adjacent
blocks, i.e. Dtn = tn – tN. Then, it updates N using n and tN using tn, i.e. the block
generation time is measured for each block.

4 User Operation: If no changes are detected, GOTO Step 2.

Steps for Evaluating Account Balance Query Latency:

1 User Operation: The user node sends a query to get the balance for its account and
captures the current time point t.

2 User Operation: When the queried balance is received, the user node captures the
current time point T, and then calculates and records the time interval Dt = T – t.

3 User Operation: The process is repeated 10 times to perform balance queries.

4 Experimental Results and Analysis

The experimental results first present the Blockchain’s block generation time and
transaction acceptance latency for each test-net separately. Then, the last sub-section
will demonstrate the Blockchain’s query latencies for the three test-nets.
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Ropsten
Figure 1 shows that the time to produce blocks varies significantly (from 8.25 to
19.16 s for 12 blocks, and between 2 and 53 s per block) Fig. 2, 3, 4 and 5 present the
transaction acceptance speeds with different loads (1, 25, 50 & 100 concurrent trans-
actions), which show that the transaction time is between 21 and 418 s for 1 trans-
action, between 52 and 750 s for 25 transactions, between 31 and 463 s for 50
transactions, and between 4.79 and 186 s for 100 transactions.

In PoW, the averaged time interval between generating two hash values is prede-
fined (15 s). However, due to the randomness of hitting a hash that meets the condition
(to generate a block), the real time intervals between generating two blocks can be very
different. The randomness of block generation speed potentially leads to longer
transaction queues even when Blockchain is not congested [15]. This may be the
culprit of fluctuations in transaction acceptance rates (Fig. 2, 3, 4 and 5). Furthermore,
transaction acceptance rates depend on the transaction generation speed of the network
and miners’ policy for including a transaction in a block.

Kovan
Figure 6 shows that the total times for generating 12 blocks are similar (about 143 s),
however, there is a large variation for each block (from 2 to 20 s, in Fig. 6 (a)).
Figure 7, 8, 9 and 10 show the transaction acceptance latencies for different concurrent
transactions (1, 25, 50, & 100). The transaction acceptance time is between 12 and 34 s
for 1 transaction, between 5 and 29 s for 25 concurrent transactions, between 6.8 and
30 s for 50 concurrent transactions, and between 6.22 and 19.33 s for 100 concurrent
transactions.

Figure 6 displays that the time of block generation is more stable than Ropsten.
Kovan employs an authority round PoA algorithm (Aura) [9] instead of PoW. PoA is
much more stable in block generation because the authority to generate a block is
assigned to a node with more stable time intervals. The end-to-end transaction accep-
tance time is also more stable than that of Ropsten as shown in Fig. 7, 8, 9 and 10.

Rinkeby
Figure 11 displays that the time to produce 12 blocks is relatively stable (around 180 s
for total 12 blocks, 13–16 s per block). Figure 12, 13, 14 and 15 show the transaction
acceptance latencies for different transaction concurrencies (1, 25, 50, & 100). The time
to accept the transactions is between 6 and 31 s for 1 transaction, between 11 s and
27 s for 25 concurrent transactions, and between 13.88 and 50 s for 50 transactions,
and between 2.55 and 18 s for 100 transactions.

Like Kovan, Rinkeby uses PoA instead of PoW to prevent wasting of computational
resources, which leads to stable transaction time. Notably, the consensus scheme used
by Rinkeby is Clique PoA. According to Fig. 11 Rinkeby show better stabilities than
Kovan which is using Aura PoA. However, it is observed that the time interval con-
figuration of block generation is set to 15 s. This results the end-to-end transaction
time, as shown Fig. 12, 13, 14 and 15, to be longer than those in Kovan.
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EXP# 1 2 3 4 5 6 7 8 9 10 
B#1 9 7 34 4 2 6 2 2 6 7 
B#2 24 2 15 12 31 13 23 34 19 9 
B#3 4 19 6 6 10 16 20 15 5 17
B#4 11 9 12 3 18 24 37 31 10 10
B#5 3 3 22 4 9 9 24 3 2 27 
B#6 4 53 2 5 3 7 3 3 4 18 
B#7 27 2 4 25 24 17 16 12 2 7
B#8 12 27 31 25 3 4 21 10 16 30 
B#9 4 4 18 16 37 21 6 4 3 19 
B#10 22 8 2 3 4 24 3 8 16 3 
B#11 5 4 25 4 6 13 7 14 2 45
B#12 22 18 10 9 18 4 30 43 14 38

(a) EXP: Experiments; B: Block (b) Bar Plot

Fig. 1. Time of generating 12 blocks in Ropsten

Fig. 2. Time of 1 transaction in Ropsten Fig. 3. Time of 25 concurrent transac-
tions in Ropsten

Fig. 4. Time of 50 concurrent transac-
tions in Ropsten

Fig. 5. Time of 100 concurrent trans-
actions in Ropsten
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EXP# 1 2 3 4 5 6 7 8 9 10 
B#1 16 19 16 19 15 15 16 16 15 16 
B#2 3 14 2 2 15 6 3 3 4 2 
B#3 16 3 16 15 3 16 19 15 14 20
B#4 18 16 17 16 19 15 15 12 19 14
B#5 4 16 4 6 15 3 4 14 3 4 
B#6 14 2 15 15 3 19 15 15 15 15 
B#7 16 26 16 15 16 14 14 15 16 18
B#8 6 16 6 6 16 4 7 7 6 4 
B#9 15 5 15 16 6 5 6 15 16 15 
B#10 16 16 15 16 16 16 14 16 15 15 
B#11 3 16 4 2 14 6 4 2 2 6 
B#12 19 2 15 19 7 16 19 18 20 16

(a) EXP: Experiments; B: Block (b) Bar Plot

Fig. 6. Time of generating 12 blocks in Kovan

Fig. 7. Time of 1 transaction in Kovan Fig. 8. Time of 25 concurrent trans-
actions in Kovan

Fig. 9. Time of 50 concurrent trans-
actions in Kovan

Fig. 10. Time of 100 concurrent
transactions in Kovan
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EXP# 1 2 3 4 5 6 7 8 9 10
B#1 15 16 15 15 16 16 15 15 16 13
B#2 16 12 16 16 16 15 16 15 15 14 
B#3 14 15 14 15 15 12 15 13 15 15
B#4 16 16 16 15 14 16 15 15 15 16 
B#5 15 15 15 16 16 14 16 15 16 16 
B#6 15 14 15 15 16 15 15 16 12 15 
B#7 15 16 16 16 14 16 12 15 15 14
B#8 15 15 16 12 16 15 16 15 16 16
B#9 16 16 14 16 15 15 14 16 15 15
B#10 15 16 13 14 16 16 16 14 16 16 
B#11 14 14 15 15 14 15 15 16 14 14
B#12 16 15 16 16 13 16 16 15 15 16

(a) EXP: Experiments; B: Block (b) Bar Plot

Fig. 11. Time of generating 12 blocks in Rinkeby

Fig. 12. Time of 1 transaction in Rinkeby Fig. 13. Time of 25 concurrent trans-
actions in Rinkeby

Fig. 15. Time of 100 concurrent
transactions in Rinkeby

Fig. 14. Time of 50 concurrent trans-
actions in Rinkeby
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Balance Query Latency
Figure 16, 17 and 18 show the test results about the time of account balance query in
Ropsten, Kovan & Rinkeby. The figures show that the time to check the balance is
between 0.173 and 0.375 s in Ropsten, between 0.215 and 0.225 s in Kovan, and
between 0.177 and 0.259 s in Rinkeby. The results show that the balance query
latencies in all the test-nets are in the same order of magnitude with Kovan showing the
least variations and Ropsten showing the largest variations.

5 Discussion

The experimental results will quantize the impacts of consensus schemes on transaction
performances such as throughputs and latencies. In consequence, we summaries the
certainty and randomness of the Ethereum Blockchain. For PoW (Ropsten), although
the average block generation time is around 15 s with high variances, the time duration
from submitting a transaction to confirming it by miners can be more than 400 s, i.e. it
is longer than generating 10 new blocks. For PoA (Kovan and Rinkeby), the stability of
block generation time is dramatically improved, however the time cost of confirming a
single transaction can be larger than the time of generating 3 new blocks (>45 s). As
we can seem, for the experiments of 100 concurrent transactions for all the three test-
net, the end-to-end latencies are slightly lower than the others. The reason is considered
as the proportion of 100 transactions over the total transactions is higher than that of 1,
25, 50 transactions over the total transactions, thus it brings a higher probability to

Fig. 16. Time of account balance query
in Ropsten

Fig. 17. Time of account balance query
in Kovan

Fig. 18. Time of account balance query in Rinkeby
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record more transactions in the most recent block and less in upcoming blocks, which
reduces averaged latencies. However, the reduced latencies are trivial, which have little
impacts on total latencies.

In short, the results demonstrate that the current Ethereum approaches with PoA
and PoW consensus schemes suffer from long transaction time and instability issues. In
other words, the existing on-chain consensus scheme can hardly support the applica-
tions (DApps) with frequent data submission requirements and low-latency constraints.

6 Conclusion and Future Work

In this paper, we present the performance evaluation results of Ethereum from different
perspectives through three sets of experiments for Ropsten, Kovan and Rinkeby. The
results show that the account balance query time is quite low and stable, which means
that the time to access the latest Blockchain status and data is not the bottleneck.
Nevertheless, for Ropsten, the transaction latencies fluctuate significantly in different
experimental groups (with different transaction loads). This pattern also happens to the
block generation time of Ropsten, i.e. the time to generate a new block is unstable.
Note that Ropsten employs the same operating scheme (e.g. the PoW consensus
algorithm) as Ethereum, which can be considered as the best approximation to the
Ethereum main-net. In other words, the instability of Ropsten reflects the volatile
performance of the current Ethereum.

As a conclusion, we consider that the current Ethereum approach is not powerful
enough to support the applications (i.e. DApps) with low-latency constrains and high-
frequency transaction submission requirements. For example, online games which
requires a timely consensus on consistency among players cannot be supported by
existing Ethereum approaches due to the inherent large time intervals (>10 s) of block
generations. In the future work, we are going to investigate how off-chain transactions
can tackle this problem, aiming at reducing transaction latencies and better supporting
high-frequency transaction submission.

In future works, we plan to evaluate the performance of Ethereum for online game
applications using real game datasets, especially focusing on consistency. In addition,
we will extend the proposed experiments to the Ethereum main-net to capture more
comprehensive results.
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Abstract. Today’s cross-organizational deliveries of high value and per-
ishable goods are difficult to monitor in a reliable and trustful way. Every
logistics organization operates its own track and trace system, usually in
an isolated manner and with most being incompatible to each other. In
order to provide better end-to-end insights and to speed-up conflict man-
agement processes, we propose to let all involved parties mutually confirm
cross-organizational handovers of a parcel and to log the event immutably
within a common distributed ledger. Smart sensors within or attached to
parcels will in addition act as independent oracles to monitor environmen-
tal variables with respect to parcel-specific service level agreements. Viola-
tions of service level agreements will be trustfully detected and logged by
the smart sensors directly on the distributed ledger, without potentially
compromising legacy systems being involved. The proposed concept will
serve as the base for future implementations and opens up new ways to
analyze and optimize inter-organizational logistics.

Keywords: Distributed ledger · Blockchain · Supply chain ·
Peer-to-Peer logistics

1 Introduction

The delivery of a parcel across organizations or even beyond country borders
requires a tight collaboration of multiple independent logistics organizations with
commonly-coordinated business processes. Despite the existence of international
standards with respect to the exchange of information related to cross-border par-
cel traffic, the tracking and tracing of parcels beyond organizations and country
borders still remains an open issue. The risk of lost or significantly delayed parcels
might be acceptable for goods of lowvalue, but it poses amajor hurdle for the trans-
port of perishable high value goods such as medical products. To achieve a high
customer intimacy, a trustable unified end-to-end tracking and tracing system is
needed across organizations and beyond country borders as a first step towards
improved coordinated cross-organizational business processes. This would make
it possible to analyze the event log of cross-organizational deliveries in order to
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 191–202, 2020.
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optimize business process flows and to reduce costs. The need of such a system
is underlined by the fact that globalization, visibility, customer intimacy, risk and
cost containment pose the five key challenges most international supply chains face
today [1]. Currently, most of these challenges are addressed by each participant in
a logistics chain focusing on their own aims, independently of the others. Since
subgranted partners and their subprocesses are hidden to a certain extent to the
contradicting organizations, legal disputes due to damaged or lost parcels are dif-
ficult to resolve. But in case of incidents, logistics organizations need to justify and
prove to their customers, who was responsible for what subprocess at what point in
time. This is a complex and time-consuming task, since the single steps of a logis-
tics chain are not visible from the outside and information is usually kept in silos.
Data can even be tampered by one organization within the logistics chain in order
to push responsibility to another.

Since the concept of a blockchain, as a specific distributed ledger technol-
ogy, provides possibilities to share data in trusted and immutable way across
organizations, logistics organizations started to leverage the advantages of this
technology to improve cross-organizational business processes. While the first
implementation of a blockchain provided possibilities to store data in a pub-
lic, trusted and immutable way, newer developments opened up opportunities
for new application scenarios. Especially for emerging smart contract platforms,
where Turing-complete code can be executed, logistics is among the most attrac-
tive business applications. Further, the addition of sensor monitoring with Inter-
net of Things devices provides a valuable benefit in measuring the environmental
conditions under which freight is exposed to in real time. This makes it exactly
traceable and comprehensible which damage was caused by which environmental
condition or incident.

We propose a concept to support the operation of cross-organizational deliv-
eries of sensor-equipped parcels with a domain-specific blockchain platform in
order to provide a traceable and tamper-proof log of process steps and respon-
sibilities. Within the proposed approach, smart sensors act as independent ora-
cles, verifying previously defined service level agreements (SLAs) and logging
their violation to the blockchain. Also tracking ownership and changes to it
in a tamper-proof way is realized using the blockchain. The remainder of the
paper is structured like the following: In Sect. 2, different approaches to supply
chain management with sensors and logging with distributed ledgers, which have
seen implementation in the past, are analyzed. In Sect. 3, our concept to exe-
cute trusted cross-organizational deliveries of sensor-equipped parcels backed by
the blockchain technology, is presented and discussed with respect to privacy,
organizational and transparency aspects in Sect. 4. Concluding remarks and an
outlook are given in Sect. 5.

2 Related Work

The blockchain and other distributed ledger technologies are being used as a
tool to maintain consensus on the state of a particular piece of information
shared among a set of peers within a network. Such approaches have seen rapid
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evolution in recent years. Bitcoin [3] implemented a blockchain in the domain of
digital money, addressing the core challenges of networks, where peers can poten-
tially exhibit Byzantine behavior [4] to provide a way to securely exchange cryp-
tocurrency in a decentralized manner. Platforms such as Ethereum [6], enabling
users to deploy and execute arbitrary pieces of Turing-complete programming
logic in a decentralized way, called Smart Contracts [5], have seen increasing
adoption in different application domains. Permissioned blockchain approaches
such as Hyperledger Fabric [8] provide different concepts to mitigate privacy
and governance issues, caused by the openness of permissionless platforms. This
makes them attractive to a new segment of business use cases.

A prime use case, which can largely benefit from the inherent properties a
blockchain provides such as immutability, integrity, transparency, decentraliza-
tion and accessibility, is supply chain management [9]. Within that context logis-
tics is a subdomain of any supply chain dealing with the transport of physical
goods. For such supply chains with logistics processes a permissioned blockchain
enables data to be stored in a trusted and traceable way, while still maintaining
privacy. This data can also serve as a base to optimize cross-organizational busi-
ness processes on a large scale involved in supply chains. Past work has focused
on modeling digital strategies for a blockchain based approach towards supply
chain management [10], business process modeling [7] and its technical transla-
tion into smart contracts [15] in general. Thus, the blockchain can also be seen
as an approach towards data integration [16], used as a many-to-many interface
between different parties and different systems [17].

From an application point of view, concepts for e-commerce involving dis-
tributed ledger technologies in decentralized autonomous companies have been
proposed [11]. Work in the domain of supply chain management using distributed
ledger technologies have been proposed to model different roles throughout the
whole supply chain process [18], to trace compound products back to their
sources, employing token recipes to model manufacturing processes [19] as a next
step to enhance general traceability and transparency in supply chains [17,20].
Focusing on the logistics part of supply chain management, previous work has
been conducted, utilizing the linkage-mechanism provided by a blockchain in
order to track ownership and responsibilities in an anti-counterfeiting way for
high value goods, through the use of the RFID technology [12]. Such a trusted
linkage, backed by sensors in the Internet of Things, can be a tremendous bene-
fit for any high value item such as medicine [2] or for the post delivery chain in
general [12].

Smart IoT devices can act as oracles in blockchain networks. An Oracle
serves as the sources of information, which is present off-chain, but needs to be
available on-chain in order to execute certain business processes. In many other
application domains, the Internet of Things has been applied to act as such an
interface towards the real-world, for instance in health care, communications and
5G, the automotive industry as well as in the energy domain [22]. In the supply
chain domain empirical studies show that employees, working in the field see
the biggest potential for a blockchain in operating the Internet of Things, easing
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paperwork, the identification of counterfeit products as well as origin tracking
[2]. A general framework for the realization of supply chain quality management
on the blockchain has been proposed in [13]. IBM started a pilot study on track-
ing a supply chain use case focusing on tracing the way of mangoes and pork
from producer the to the consumer [21] using a blockchain. For monitoring of
the items’ current states, sensors within different transportation vehicles and
warehouses have been utilized. As a different solution to the monitoring prob-
lem, the study of Gallay et al. [14] have utilized “talking containers” equipped
with IoT sensors and a blockchain to log the results of the observation process.
Both approaches provide ways to monitor freight throughout the majority of its
journey, but leave gaps in the monitoring process. For example when the phys-
ical goods are brought out of the containers or when they are generally not in
an tracked environment, fraudulent behavior could remain unnoticed.

This work goes a step further and proposes a concept where the sensors are
directly attached to the smallest packaging of physical products, by putting them
directly into the same primary package. It also presents a conceptual business
process to track handovers between logistics organizations in an immutable way
as well as a concept to operate smart IoT devices autonomously in order to
monitor violations of independently registered SLAs. In the proposed approach,
the placement of autonomously operated smart IoT sensors within parcels leads
to a different governance and minimizes needed trust far beyond the capabilities
of existing work. The blockchain acts hereby as a software connector between
existing systems rather than as a replacement of traditional business structures
by decentralized autonomous companies. Its utilization ensures data integrity
between logistics companies regarding ownership and responsibility and, in addi-
tion, between end-customer and logistics company with respect to the adherence
to predefined SLAs. This addresses end-customer intimacy and delivery trans-
parency challenges of the logistics domain today.

3 Concept

We propose a blockchain-based cross-organizational delivery process where smart
sensors are acting as independent oracles verifying service level agreements
(SLAs) and their violations in a trusted way. Therefore, the blockchain tracks
ownership changes, as emitted by handover events in the real world in an
immutable manner. Mutual dependencies and smart contracts, enforcing logi-
cal process flows, prevent fraudulent behavior. The smart sensors are acting as
independent but trusted oracles within the network. Through their time of use in
the delivery process these smart sensors are monitoring violations of previously
registered SLAs to the current state and log exceptions autonomously on the
distributed ledger and reside in the same physical package as the goods.

3.1 Tamper-Proof Event Logging

A distributed ledger in the logistics domain can be utilized to track informa-
tion such as ownership as well as violations of SLAs, in order to maintain data
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integrity and immutability of information in a network of different parties with
different interests.

As a base for any execution of an inter-organizational business process, all
involved parties need to agree on a certain state of particular pieces of informa-
tion. In our context, the most important information regards the ownership of
a parcel as well as the condition of a parcel and possible violations of SLAs. To
store this information in a trusted way, we utilize a blockchain as a distributed
linearly ordered event log. Hence, we interpret every parcel as a non-fungible
asset, with properties for ownership, a list of delivery agreements, a list of agree-
ment validations and a list of attached sensors creating persisting link between
a parcel and a sensor. For modeling the blockchain we use an abstraction, which
can be implemented in most real world blockchains with smart contract sup-
port. Essentially our abstraction consists of assets, which have a certain state at
any given point in time and transactions executed by authorized participants,
modifying properties of assets, hence transitioning to a new state. While this
abstraction can be implemented in most smart contract platforms, the used ter-
minology is aligned to Hyperledger Fabric’s Composer modelling.

In the cross-organizational parcel delivery process, needed transactions are
the registration of a new parcel registerParcel, which includes linking of smart
sensors and SLAs. This enforces that later nobody can manipulate SLA status
checks by adding a dummy smart sensor and neglecting the intended smart
sensor. The handoverFrom and handoverTo transactions are utilized to track
handover attempt and acknowledgment between different parties in the business
network. Therefore, the ownership transfer can only be executed and persisted
in the current state of the ledger when both the sender and the receiver during a
particular handover acknowledge the handover event, preventing situation where
a parcel is without an owner at any time. The logging of SLA violations is realized
with the logViolation transaction. In the end it is needed to delete the parcel
with a deregisterParcel transaction from the current state of the ledger after
the deliver process has been finished.

For this concept we are assuming technical implementation with a permis-
sioned solution with different peers and clients, where a peer’s purpose is to
validate transactions submitted by clients, as utilized with a BFT protocol in
the implementation of Hyperledger Fabric. The validations include replaying the
execution of the programming logic of the five transactions, encoded in smart
contracts as well as ordering transactions linearly, so that consensus over the cur-
rent global state can be reached. From a governance point of view, new validators
are elected by the supervisory board of the network. There all logistic organi-
zations are represented and each of them is maintaining at least one validator
node, to ensure trust. Smart Sensors act as clients, submitting transactions. To
ensure trust not only between logistics organizations, but also between consumers
(sender/receivers) and the logistic organizations, these also have the possibility
to become validators. It is envisioned that the supervisory board of logistics
organizations also elects fully independent nodes outside the business processes
to run validations and have the possibility to grant the rights to become valida-
tors also to major customers, with a large volume of transactions, to establish
more trust in the smart contracts and the blockchain.
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3.2 Smart Sensors as Autonomous Oracles

In order to make parcel condition monitoring more private, secure and trustful,
we introduce smart sensors. These are packed into the parcel in the beginning of
the delivery process to monitor the parcel conditions and log violations of pre-
viously defined SLAs autonomously to the blockchain, hence acting as trusted
oracles. The packing of sensors in the packages rather than having sensors con-
necting to them dynamically, addresses problems in current solutions with gaps
in the monitoring process.

Verifying the conditions of items within a parcel during a handover has two
main issues: privacy and trust. If a shipper wants check if an item inside a parcel
is not damaged, without the invocation of any sensor, it is necessary to open the
parcel, assess the condition of the objects inside and close it again. This exposes
all objects to the eyes of the post man, hence violating any privacy agreements.
But this execution is also prone to manipulation, since the validation is done
by “eyeballing”. For a more private and less manipulable approach we equip
every parcel with at least one smart sensor, which will stay there throughout the
whole delivery process. We define a smart sensor as an IoT device, which can
measure at least one value (e.g. temperature), store SLAs to measurable values,
monitor the current values and log potential SLA violations to the blockchain
using a light weight client. Therefore, the sensor also needs to be provided with
some connectivity for example through cellular capabilities, narrow-band IoT
connections or LTE.

In the beginning the sender is responsible for packing at least one smart
sensor into the parcel and define SLAs to the sensor. The sensor checks if the
desired agreements are not already violated, registers the SLAs afterwards and
starts monitoring. This process needs to be repeated for all smart sensors and
all desired SLA supervision tasks which can be measured by the respective sen-
sors. In that way, a parcel might have a smart sensor measuring humidity and
another smart sensor measuring temperature at the same time. Once the mon-
itoring process is started, the smart sensor logs autonomously violations to the
blockchain, immediately after a violation is detected. These violations are signed
with the key of the sensor, in order to ensure integrity of the logging. In that
way, later retrieval of this information provides the largest amount of trust, since
the possibilities for fraudulent behavior or corruption are minimized.

During the handover process from a participant A to a participant B, A first
checks if no SLA, monitored by any smart sensor inside the parcel has been
violated since the last check by lookups on the blockchain. Then A attempts to
handover to B. Participant B then also, checks the state of SLA violations. B
again uses as only source of violation information the blockchain, scanning the
log for violations. Based on that participant B can decide to accept or decline
the parcel. With the invocation of the handoverTo transaction, reflection B’s
acceptance of the parcel, smart contract logic gets triggered, changing the own-
ership state of the parcel. The smart contract is also employed to enforce that
ownership changes need to be mutually agreed, so that every parcel has always
exactly one owner and ownership cannot be changed in case the receiver declines.
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In this proposed concept smart sensors interact with the blockchain as a
trusted oracle, autonomously logging violations of SLAs. Without that, another
actor would have to log violations to the chain. Sender and receiver or middle
man acting as intermediate senders and receivers have in certain cases incentives
to log false information about the parcel condition to the blockchain. For exam-
ple, in a Situation where an agent A wants to hand over a parcel to agent B,
with both agents working for two different logistics organizations, A might want
not log SLA violations, which occurred while being responsible for the parcel,
even though they happened. Or in another case B might want to log a violation,
which in fact never happened, if company B knows, that there will be a violation
once B is responsible. In case B notices that the delivery truck is too hot to keep
the parcel cool enough to not violate SLAs. In that situation B might want to
blame A for the violation which is about to happen during B’s time of responsi-
bility. Therefore, we take these possibilities of fraud away from the biased actors
to a smart sensor, operating independently.

From a governance point of view, the smart sensors are in the possession of
the sender, which might have rented the device itself from an independent third
party. This independent party might take care of maintenance of such devices
such as (re-)charging or repairing defect devices but does not have an active
role in the shipment process. Regarding trust, everyone relying on information
originating from a sensor, needs to trust the autonomy of the sensor and the
organization maintaining the sensors. It is beneficial to have several companies
maintaining sensors, to make them as independent as possible and to incentivize
them not to fake measured values. If one actor notices that a sensor is corrupted,
due to bribe of the smart sensor’s maintainer, the actor can refuse to participate
in a process involving any sensor from a known to be corrupt maintainer. In that
way maintainers are less likely to fake sensor measurements. With the established
trust in the smart sensors, we are employing a blockchain to make transactions
visible and traceable in case of disputes.

3.3 Conflict Resolution Based on Blockchain Logs

In a collaborative delivery chain across different companies any parcel can poten-
tially be lost, damaged or delayed. By retrieving and examining blockchain logs,
any of these situations can be analyzed and responsibility can clearly be allo-
cated to the respective parties. In case of a lost parcel one can always trace back
who is the current owner of a parcel, since the structure of our process enforces
a parcel to always be in the possession of exactly one owner. Transactions can
change the owner but never unset the owner through the time a parcel is regis-
tered in the current state of the ledger. The contents of a parcel can get damaged
by a variety of different incidents. Smart sensors are utilized to manage these
damages on a certain level, implemented by the verification of predefined SLAs.
By the retrieval of violation logs from the blockchain it can be retraced in which
time frame the damaging has occurred and who was the owner of the parcel
at that point in time. Therefore, responsibility can be allocated for a conflict
resolution process. However, the trusted detection of damage is limited to the
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monitoring capabilities of the used smart sensor and the borders provided within
the SLAs. The fact that every transaction in a blockchain is timestamped and
totally ordered, makes it traceable who in the delivery process caused the end
delay to which extend. Therefore, only the handover event have to be observed
in order to calculate how long a certain party in the network was responsible for
time delays.

Transaction logs of the blockchain, originating from independent sensors and
mutually accepted handover events can serve as an excellent base for any legally
binding conflict resolution process as long as all provided entities acknowledge
the blockchain as the trusted source of truth.

3.4 A Trusted Cross-organizational Delivery Process

The proposed trusted cross-organizational delivery process is in Fig. 1. A tradi-
tional BPMN 2.0 diagram is annotated with the addition of logging information,
which must not be changed nor corrupted and which benefits from being open
accessible to any participant in the case of disputes and sensor monitoring to val-
idate parcel conditions. We introduce this small extension to BPMN by adding
grey shaped boxes to symbolize logging to a distributed ledger.

The process starts with the sender packing the high value objects into a parcel
and tagging it with information. At least one smart sensor needs to get packed
into the parcel, SLAs need to get registered accordingly and the monitoring
process needs to get started. The entire initialization process gets logged includ-
ing the parcel id, attached smart sensors and their respective agreements with
the registerParcel transaction to the blockchain. On the side of the smart
sensor, the sensor is monitoring the registered SLAs and logs potential viola-
tions directly with the logViolation transaction to the blockchain. Once the
first delivery agent is in the physical same location as the initial sender, the han-
dover attempt takes place. This gets logged to the ledger with the handoverFrom
transaction. The delivery agent then validates the state of SLAs by searching
on the blockchain for logged SLA violations. Based on the validation of the
SLA status the receiving delivery agent either rejects or accepts the incoming
parcel. If no SLAs have been violated, the agent accepts the parcel, commits
the ownership of the parcel with the handoverTo transaction and delivers it to
the next point. There, the handover subprocess gets repeated until the parcel
reached its final destination. After the last handover has been accepted and the
process reached finality, the parcel gets deregistered from the blockchain with
the deregisterParcel transaction. This process can also be executed without
the inclusion of smart sensors, solely providing the trusted logging of ownership
information, enforced by mutual handover acceptance.
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Fig. 1. The business process modeling the delivery of a high value item from a sender
to a receiver using the BPMN 2.0 syntax, incorporating the proposed approach. The
collapsed lane shipper N stands for an arbitrary amount of other shippers with the same
business logic as shipper M, symbolizing business processes of an arbitrary amount of
intermediate handovers between shippers. The gray shaded tasks stand of logging of a
particular piece of information on the blockchain. A smart sensor is here monitoring
parcel conditions and logging violations of registered SLAs onto the blockchain.

4 Discussion

Despite the advantages of a common cross-organizational ledger for the storage
of parcel-related events, this concept carriers always the risk of revealing internal
processes to a wider audience. Since in logistics, competitive organizations are
obliged to collaborate according to international contracts of the Universal Post
Union, it needs to be technically guaranteed that intra-organizational handovers,
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even if they are logged on a common distributed ledger, are not readable to a
competitive organization. A distributed ledger for logistics and supply chain
management must therefore provide ways to persist various kinds of events but
to restrict its visibility only to those participants that in the future might get
involved in a conflict in which the persisted events could potentially be used
as evidence. In any case, the advantages of a higher level of transparency such
as a more fine grain traceability and its related cost savings need to be traded
off against the loss of the competitive advantage due to the possibility to infer
internal business processes from the entries of a common distributed ledger.

So far, parcel-related incidents such as damaged goods due to shocks or tem-
porary undercuts of minimum temperature are only detected by the recipient of
a parcel. The introduction of a continuous end-to-end monitoring through the
attachment of sensors to parcels enables the senders, the logistics organizations
or the targeted recipients to react to critical incidents in an early stage. The end-
to-end character of the proposed approach increases trust in comparison to pre-
viously proposed solutions where sensors are dynamically attached and detached
and monitored by a dependent party, so gaps in the monitoring timeline could
exist. In case goods are getting unusable due to critical incidents, parcels could
be returned before they are forwarded to the recipient and with the proposed
approach, it is evident that there existed no observation gaps in the monitoring
process. Nevertheless, sensors need to be developed, reliably attached, detached,
monitored and well maintained. Besides the need for new business processes for
the provision, operation and redistribution of sensors, they need to be technically
connected to the distributed ledger in trustworthy way because in contrast to
the handover, transactions originating from the sensors are not mutually checked
for correctness by two parties. For that, each smart sensor must act indepen-
dently by monitoring sensor-specific SLAs and by logging each violation as an
incident directly onto the ledger. Otherwise, SLA violations could be on purpose
omitted by not publishing them onto the ledger by a middleman. But in prac-
tice, sensors cannot provision, maintain and redistribute themselves. At least
one stakeholder, either a logistics organization or even an external independent
sensor operator, owns and operates these sensors and will therefore break the
chain of trust between the physical sensor readings and SLA violation entries in
the ledger. The concept allows to add multiple sensors to a parcel originating
from potentially different stakeholders for redundancy reasons in order to detect
intentional misuse or sensor failures. Since attaching a single or multiple sensors
to the parcel increases the costs of the shipment, an economically viable solution
for an end-to-end monitored delivery between organizations is currently only
possible for goods of high value.

5 Conclusion

This work presented an integrated concept for logistics delivery chains to make
use of smart sensors to sense and distributed ledger technology to persist and
share state-related information of parcels in a tamper-proof way. State changes of



Blockchain-Based Trusted Cross-organizational Deliveries 201

a parcel representation within the distributed ledger such as ownership change or
parcel-specific SLA violations are thereby triggered by handovers as initiated by
humans or by environmental incidents as detected by smart sensors. Handover-
initiated state changes are mutually confirmed by at least two independent par-
ticipants of the distributed ledger network while sensor-initiated state changes
are caused by oracles, representing the independent sensors. Since both types
of triggers do not depend on each other, it is also possible to support only one
of them within a concrete implementation to immutable log either ownership
changes or SLA violations. But to leverage the full power of the proposed con-
cept, with handovers that confirm SLA violations, both types of state-changing
events should be considered in a real world setup. The concept is not meant to
replace legacy track and trace systems but to extend them with the functionality
to enable end-to-end cross-organizational track and tracing of sensor-equipped
parcels in a transparent and tamper-proof way. This opens up possibilities to
provide the end-costumer a more fined-grained history of parcel-related events
and the shippers the opportunity to detect weak points in the logistics chain and
to resolve potential parcel-related conflicts between organizations on the basis
of immutable and tamper-proof data within the common distributed ledger.
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Abstract. HR tech is a new trend in the hiring process, still facing some
inefficiencies and limits. This paper sketches a high level architecture of
a trusted support platform for the job placement task. Our design is
based on a multifaceted analysis of current practices and requirements
from technical, legal, and social perspectives. Relying on the proper-
ties of intelligent data analysis approaches, blockchain technology, and
distributed identity management, this solution will enable optimisation,
compliance, and improvements of the candidate selection process for job
openings. The outcomes of the current work will be further applied for
the identification of data formats and specific technologies to be used for
the implementation. Practical use-cases are currently under development
with industry partners.

Keywords: HR tech · Job placement · Distributed ledger ·
Blockchain · Data validation · People analytics · Automatic matching ·
Self-sovereign identity

1 Introduction

In the today highly dynamical digital era, a curriculum vitae (CV) - written
overview of someone’s life’s work including a complete career record, academic
formation, publications, qualifications, etc. - can appear not anymore as an opti-
mal and reliable source of information about a future employee. First, informa-
tion can be falsified [4,13], and it is time-consuming, often impossible, to obtain
reliable confirmation regarding the qualification of the applicant, due to, for
instance, the original language of education certificate, or difficulty to reach out
to a previous employer. Second, process of matching candidate’s CV with the job
description is performed by hiring company and can be very costly and not very
efficient. One reason is limited capacities of HR personnel regarding the num-
ber of the applications they can analyse, combined with the attempts of some
applicants to maximise their job opportunities by submitting many applications
simultaneously. At the same time, an applicant with a perfectly matching profile
may be just not aware of a job opening due to variety of the open positions cur-
rently available and the different platforms on which the openings can be listed.
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Third, as, at the time being, HR tasks are usually conducted by personnel, any
decision taken, especially at the selection and matching process, can be sub-
jective and can introduce bias regarding gender, age, ethnicity, etc. Moreover,
unintentional human-made mistakes can also take place. In our approach, these
aspect are mainly considered for the pre-selection phase, in order to ensure a
fair panel of candidates for the human task. All the above are currently affecting
and making the job openings filling an ineffective and inefficient task.

This leads us to the question on how to structurally improve these ineffi-
ciencies by using approaches from distributed ledgers, from artificial intelligence
and from data science. The main initial challenges identified are as follows: what
other data sources can be of interest to the companies when looking for the
new employees? Are there available technologies that can be used to optimise
the candidates selection and matching their profile to the job description? Is it
possible to remove the bias of a human decision-making, and if yes, what is the
impact of such automatisation? How can a partially automated solution be inte-
grated in the intrinsically human-based task of balancing soft and hard skills to,
frequently unwritten or unsaid, job opening constraints and soft/organisational
requirements?

Companies often use multiple third-party providers (e.g., Linkedin, Glass-
door) to advertise the information about open careers opportunities and attract
the applicants. While being very helpful for the applicants to search for a job in
specific areas, and even providing interfaces for data extraction from a CV (“Easy
Apply” in Linkedin, CV upload in Glassdoor), the main benefit for the company
lays in the increased visibility of an advertisement; nevertheless no proof of
data-authenticity and accuracy can be provided, and even higher increase in
received application load requires further matching effort and more manpower.
Some partial solutions already exist in supporting the tasks of employee selec-
tion and management, e.g. people analytics, and in simplifying and promote the
interaction with complex information, such as gamification. In fact, techniques
used to mine consumer and industry data can help managers and executives to
make decisions about their employees. By applying data science and machine
learning techniques to large sets of talent data, people analytics can result in
better decision-making. On the other hand, gamification approaches allowing
data scientists to collect focused information, aim to build a picture of indi-
vidual employees’ personalities and cognitive skills [17]. However, use of such
third-party service providers and people analytics, apart form bringing some
functional benefits, can create serious threats from the perspective of individ-
ual’s privacy. Additionally, no support for information validation and accuracy
checking is provided by such solutions.

Using blockchain technology (BCT) has been recently proposed to ensure
authenticity of human resource information, taking into account privacy con-
cerns [16]. There also exist the approaches to employ blockchain technology for
verifying authenticity of diplomas and certificates [4], and for setting up a global
higher education credit platform [13]. Michaelides provides an interesting general
discussion about how combining BCT with artificial intelligence (AI) techniques
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will enable more accurate approaches to hiring employees [10]. However, no spe-
cific solution or implementation of BCT-based system, that is able to address
all the concerns mentioned above, has been proposed yet.

The use of BCT is here of paramount importance to enforce trust creation
inside an otherwise untrusted network, composed by companies, universities,
students and applicants. Even though BCT is not enough to guarantee truth-
fulness in the data, the trustfulness is one of its precondition. For its additional
requirement, we point the reader to the paragraph about the Oracle, in the next
Section. Building on the existing generic ideas, such as combining BCT and
AI [5], current practices of HR analytics [17], and taking into account identified
problems, this work envisions a blockchain-based solution for a trusted support
platform for the job placement task.

We propose to employ matching algorithms over a subset of the verifiable
data in the distributed settings, while preserving privacy of the applicants. In the
next section, we analyse the need for efficient and trustworthy HR information
management system, define its design goals, and present a potential solution
sketch. Section 3 provides a short overview of the related work, whether Sect. 4
discusses the proposed architecture and considers some expected effects and
some foreseeable issues by its application, from a technological, legal, and social
perspectives. Finally, Sect. 5 concludes the paper by wrapping up the idea and
the next steps of this work.

2 Requirements and Solution Sketch

In this section, we first formulate the problem statement and, based on them,
define desirable design goals of the system. Second, we present the design of our
proposed solution.

2.1 Problem Statement and Design Goals

The goal of this work is to address inefficiencies and limits in the current process
of selecting and matching candidates for a job opening, from legal and economical
perspectives. In particular, we focus on the following research questions (RQs):

RQ-1: How to ensure trust to the data that are provided by the applicants?
RQ-2: How to optimise the process of selection of the candidates for the
companies?
RQ3: How to facilitate the process of targeted dissemination of the infor-
mation about the candidate, such as the skills, education, and previous work
experience?
RQ-4: How to ensure candidate’s privacy and the data security?
RQ-5: Is it possible to remove possible discrimination and bias of human-
made decision? What would be possible consequences of such an automatisa-
tion?
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In order to address the questions defined above, we formulate the properties
that the system we intend to design should hold in a form of design goals (DGs).
For each DG, we also specify which research question(s) the property is aiming
to solve:

DG-1: Distributed architecture with direct involvement of the trustworthy
data sources (RQ-1 ).
DG-2: Traceability and verifiability of the data - namely, each single atomic
entry of a CV - provided by the applicants (RQ-1 , RQ-2 ).
DG-3: Flexible and interoperable data-expressiveness layer for (I) the defi-
nition of the desired skills (singleton expressing expertises) on the company
side and (II) the data model for management of the applicants’ data (RQ-3 ).
DG-4: User-centric control over the data provided by the applicants, data
privacy and security (RQ-4 ).
DG-5: Discrimination- and bias-free system that provides efficiency in selec-
tion of candidates and their matching to the corresponding job description
(RQ-2 , RQ-5 ).

2.2 Solution Sketch

Striving to ensure the desired properties, we propose to employ blockchain tech-
nology and artificial intelligence techniques to enhance how currently “HR tech”
is approached.

Figure 1 presents the design of the proposed solution. Below, we depict each
component and the step-by-step process flow. Then, we discuss possibilities
(alternative approaches) for employing gamification, distributed matching algo-
rithm and identity management, and distributed ledger technology/blockchain
in our solution.

Applicant is a user that is looking for an employment. They register in the
system and provide the data about themselves, which will be verified later on,
and will be used to extract some structured information to be hashed and stored
on the blockchain. All the entries composing the personal records are provided
solely by the users; they are the only subjects entitled to create new information
about themselves.

Company is another type of actor with the aim of finding/selecting employees.
Additionally, the firm is also in charge of validation of the applicants data,
whenever the working experience entry is related to a job position hosted by
it. To build trustworthy data sources, a company can be a participant of the
permissioned blockchain network (such as Hyperledger Fabric [1]), set up to
provide a possibility to verify the information about the applicants, including
work and education history, using the hashes generated from the structured
anonymous data and stored on the blockchain. This actor also needs to provide a
well suited description of the position offered, by means of a ranked and weighted
set of skill. Universities and training institutions are specific types of company,
and are also expected to provide validation of the parts of the applicant records
related to education.
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Fig. 1. The design of the proposed solution towards a trusted support platform for the
job placement task.

Oracle is a verification platform that can perform proofing tasks, to establish
the truth. Different approaches for validation of the applicant provided data can
be employed: (i) company, where applicant worked previously, validates data,
(ii) validation is outsources to a third party, (iii) crowd-based method, where
other actors in the system (peers) can support the applicant claim. Obviously,
there are decreasing reputation levels connected with those types of validation:
from a fully credible ones, when the confirmation of an experience entry and its
evaluation is performed by the company itself, to intermediate trustworthiness,
achieved through the use of third-party paid validation services, till a basic
validation provided by majority voting amongst large enough group of peers.
The latter is the faster approach and can provide a solution for the cold-start
problem, even if it results in the lowest data authenticity level guarantee.

Matching algorithm is the application of AI techniques to provide ranked list
of matches to the declared skillset of a job opening. Given the relative stabil-
ity and low frequency in job posting, it is possible to pre-compute a suitable
representation of all the available openings, to make the solution scalable. We
expect to be able to compute the matching between the applicants data and jobs
profiles in distributed settings. The matching algorithm will be based on natu-
ral language processing (NLP) and document semantic similarity estimation [9],
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and will benefit also from some AI-based concepts identification improvement
for multi-grams [15]. This approach can support fairness by construction and
bias-free results, at least from individual person prejudices.

Web-Interfaces. We define the following web-interfaces: (i) an interface for the
applicant to register and input the information related to his education and
employment history (after verification, these data will be used as an input to the
matching algorithm); (ii) an interface for the company to define and adjust the
desired profile of the future employee in terms of the skills and their importance
(this information will also be used as an input to the matching algorithm), as well
as for after-matching selection of the candidates; (iii) an interface for the oracle
(i.e., crowd-based or for the previous employers/institutions) for the verification
of the data provided by the applicant. Via these interfaces it will also be possible
to query the information stored on the blockchain, to verify the authenticity of
the applicant data. We will also leverage gamification techniques for the users, in
order to simplify the initial matching process between applicants and companies
(more details will be provided further in this section).

In the following step-by-step process description, we present our vision on
the system behaviour:

1. Applicant registration. An applicant needs to be registered in the system in
order to provide his education and employment history, and therefore to be
able to release his data for potential job posting matching. At the registration
phase, the verification, whether an applicant has already an account in the
system, is performed. Also, companies need to be registered as well, in order
to guarantee their unique identification and responsibility for the job posting
provided. A Self Sovereign Identity (SSI) approach is a good candidate for
this function, as it can naturally manage distribute data while helping to
comply with the increased difficulties stemming from the full conformity to
GDPR.

2. Data authenticity verification. In order to ensure that provided data are trust-
worthy, a verification platform (Oracle) is employed.

3. Information extraction. After the data verification, the factual structured
data about the participants are being extracted. The sources of such data
must be the companies and education institutions.

4. Ledger updates. The ledger then can be updated directly by the data sources
ensuring authenticity for the data and for the source, using hash function and
digital signature for each transaction.

5. Job profile definition and adjustment. To introduce a new job position avail-
ability, a registered company must define a job profile, by specifying the
expected skills, and their importance.

6. Matching algorithm. The input to the algorithm is formed by the structured
data, extracted from the verified information about the applicant and the job
profile generated by a company. When a match happens, both sides should
be notified, still without revealing personal information.

7. Creation of the channel between the company and the applicant. A channel
can be created automatically, or initiated by the company/applicant based on
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the top results of the output of the matching algorithm. Before this channel
materialisation, the identity of the applicant is hidden from the company, yet
the matching data authenticity is provided.

As already mentioned above, blockchain technology can be used to ensure
authenticity and traceability of the HR information. However, choosing a tech-
nical solution that can effectively support the legal requirement in this domain
is of paramount importance: a DTL (distributed ledger) should provide support
for information revocation. Additionally, the economic aspect (cost of transac-
tions) should be also considered, for a real scalability of the solution. Therefore,
we propose to employ a permissioned blockchain technology, in order to cre-
ate a network of peers, which will serve as a source of the trustworthy data
related to the employment history of the candidate. Based on the properties of
the permissioned blockchain technology, the access to the network and to the
data stored on the ledger is governed by the membership service, thus, we can
ensure that only legitimate companies can participate in the network. Moreover,
we intend to store only hashes of the structured data about the candidates to
enable verification and to ensure privacy (anonymity) of the candidates. Digi-
tal signature of every transaction submitting a hash as an update of the ledger
will ensure authenticity of the data source. We envision to use Hyperledger Fab-
ric - an implementation of the permissioned blockchain technology - to gain on
the maturity of the framework, its flexibility in terms of the consensus protocol
choice and the identity management approaches, and the built-in possibility to
employ privacy-preserving mechanisms (channels, private collections, etc.) [1].
We will confirm our choice based on the business requirements of the use case.

Identity Management. To ensure that an applicant can create only one account
in the system, identity verification and management mechanisms must be put in
place. However, the account management has to be flexible to reflect multiple affil-
iations and guarantee the user’s privacy. For this, one can employ distributed self-
sovereign identity management approach (SSI). SSI systems combine distributed
ledger and cryptographic primitives to create immutable identity records. The
individual maintains a number of claims or attributes (that define the used iden-
tity) received fromanynumber of organizations, including the state, in a networked
ecosystem that is open to any organization to participate (e.g., to issue credentials)
[12]. Each organization can decide whether to trust specific credentials based on
which organization verified or attested them. Difference with other identity man-
agement approaches such as centralized or federated identity management solu-
tions, is that once the claims are generated, a user is controlling what to reveal, and
he can now be authorized without involving an intervening authority every time,
andwithout being tied to a single provider.Anonymous credential systems [3], such
as the ones that are based on zero-knowledge proofs (ZKP) [2], are already inte-
grated in the suggested blockchain technology implementation [1] and can provide
strong protection of user privacy.

Distributed Matching Algorithm. Task execution using centralized approach (i.e.,
executing a piece of code on a single machine) often introduces a single point of
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failure in a system and can represent a bottleneck for its scalability. Blockchain
technology aims at addressing these issues by performing independent execu-
tion of a code/smart contract on multiple nodes. Performing computations on
every node enables to ensure trustworthy and reliable execution of matching
algorithm and elimination of a bias, but can be highly inefficient depending on
the complexity of the task, data volume, and network structure. We, therefore,
plan to leverage multi-agent systems approach to define an adaptive mechanism
to choose a fraction of nodes that will do the computational task independently
to avoid a single point of failure and to ensure certain task execution confidence
level in an efficient manner.

Gamification. This approach can be used to foster the applicant engagement and
promote his participation in the system. A very simple interface can support the
applicant assessment of interest towards a good match with an opening, also
for automatic channel settlement. The applicants can additionally be rewarded
for providing trustworthy information, for example by having more possibilities
for channel creation or for being allowed to explicitly initiate a channel with a
company for an open position, even if there is not a perfect match.

3 State of the Art

Solutions that partially address the problems listed in the previous section are
not entirely novel. HR tech already exists and aims at optimising the internal
HR processes in the companies, as well as automatising the matching algorithms.

People analytics methods are application of procedure from big data to clas-
sify and better match skills hold by a, current or potential, employee with open
positions and critical areas of development [7]. This approach is internal to
the company, and it is currently seen as an extension of the competences of
the HR department. Despite the added value of providing a series of advan-
tages for the people management, meaning finding better applicants, supporting
smarter hiring decisions, promoting employee performance and increasing exper-
tise retention, it normally requires the companies to hire people well-trained in
the domain; and the hiring department may lack some in-depth knowledge in
the specific domains.

On another level, leveraging on the vast amount of data they own, plat-
forms such as Glassdoor1, and LinkedIn2 propose an external one-stop solution
for companies, by providing as a service an attempt to optimise HR processes
and increase job openings reachability. They support matches between the skills
defined in the job description and the skills of the candidate (defined based on
his own input or the recommendations of his peers); while providing automatic
data extraction from CV uploaded to the platform, feedback management sys-
tem from the employees (Glassdoor), and an “Easy Apply” service, that enables
to directly apply for a position using only the data already uploaded into the
platform.
1 https://de.glassdoor.ch/index.htm.
2 https://www.linkedin.com/.

https://de.glassdoor.ch/index.htm
https://www.linkedin.com/
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These concrete approaches, despite being already realities, allow to address
only few of the research questions defined before. Such third parties store and
process sensitive information of the individuals, therefore, they are required to
be compliant with a number of international and local laws and regulations
regarding personal data management. In addition, privacy of the individuals can
be violated. For instance, LinkedIn proposes a service that allows to indicate that
the candidate is in an active search for the new employment, while there is no
guarantees, that this information will not be known by the current employer. In
addition, from our point of view, one of the most important limitations is the
lack of independent validation of the data, submitted by the user or his peers.

There exist already some propositions that aim at automatising and improv-
ing the process of validation of the education certificates, including some
blockchain-based approaches [6]. To address the need of the employers to have
manually verified all the diplomas that confirm the education history of the can-
didate by the corresponding issuer, Gresch et al. propose a blockchain based
system for managing diplomas. The authors review existing initiatives and pro-
pose to use public Ethereum blockchain to store the hashes generated over the
diplomas in PDF format, issued by the corresponding institutions. While using
public permissionless blockchain network allows for the availability and auto-
mated verification of diplomas, the fundamental role of a verification mechanism
for an institution eligibility to issue such certificates was only mentioned in the
proposed solution, yet not addressed. Additionally, all the solutions existing in
literature either aim at validating a single diploma or certificate or a full profile
as an elementary unit of information (meaning an image or an encrypted PDF).
Instead, we propose a different approach: (i) we consider each entry as a single
experience stored in a raw textual format, as a part of the user record, (ii) hash is
generated separately for each singly entry and stored for validation purposes on
the distributed ledger. This enables more effective smart integration and usage
of the matching algorithms.

EduCTX [13], a blockchain based higher education credit and grading plat-
form, addressed aforementioned issue of validation of a new network node by
requiring the members of the EduCTX distributed ledger network on receiv-
ing a registration (joining) request from a node (institution), to verify official
information about this institution. Yet, there is no further details regarding the
process of confirming the eligibility to issue the education certificates, and the
number of the network members that must perform the verification.

BCDiploma3 initiated the creation of a new global certification standard,
with the first use case dedicated to diplomas certification. BlockFactory4 pro-
poses a solution for increasing diploma security using blockchain technology.
However, no information about both of the aforementioned solutions can be
found in scientific publications, therefore, a rigorous analysis of such platforms
is missing.

3 https://www.bcdiploma.com.
4 https://www.blockfactory.com.

https://www.bcdiploma.com
https://www.blockfactory.com
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4 Discussion

Before the implementation and integration of a system design, presented in
Sect. 2, multiple matters have to be considered from the technical, legal, and
social points of view. In what follows, we highlight specific questions to be
addressed.

HR Tech and Blockchain-Based Intelligent Data Management. Further
developing HR tech, employing people analytics and using intelligent automa-
tised approaches to filter potential candidates and execute matching tasks, - all
these aim at ensuring optimization, fairness, and bias-free HR processes. Due
to the fact that the algorithms are normally designed and reviewed by multiple
actors, single bias tends to be limited, reducing the effect of bias in case of auto-
matic matching compare to a single-view approach. However, the models and
logic employed in these approaches are still developed and implemented by the
humans, thus, it is not possible to ensure the absence of accidental mistake and
malicious behaviour that can influence the desired fairness of the aforementioned
approaches. The same considerations are also relevant for the blockchain tech-
nology, in particular for the smart contracts. Regardless the fact that they are
deployed and executed on multiple nodes, it can be very challenging to ensure
that the implementation corresponds to the desired logic of the contract.

It is challenging to define the right format and granularity of the data, such as
evaluations provided by the previous employer, so that sufficient level of expres-
siveness and desired level of anonymity are ensured simultaneously. Additionally,
currently during the evaluation of previous working experience, there is a need to
employ de-fuzzification approaches, especially when comparison between candi-
dates takes place. Having an access to appropriately formatted structured data
will allow to avoid the need for de-fuzzyfication, often leading to introducing
bias in the evaluation.

Compliance and Other Legal Aspects. The EU General Data Protection
Regulation (GDPR) [11] aims at regulating the way personally identifying data
are being gathered and consumed and to define the legal rights of people to
the use of their data. The data related to the education and working history,
especially including evaluation of the candidate’s skills, fall into a category of per-
sonally identifiable data [8]. Therefore, compliance with GDPR is required. Man-
agement of sensitive data is expensive, as it requires dedicated infrastructure,
security and compliance specialists, and in case of data breaches, a company’s
reputation can be damaged, which can result into additional money losses. Com-
panies often look for outsourcing the data management, which is also expensive
and can lead to even more challenges when trying to ensure practical compliance
with the GDPR.

Employing blockchain technology can bring certain benefits such as keeping
a complete history of all the actions performed over the data (the obligation to
keep records of processing activities, Article 30). However, in case of blockchain
technology, as well as the other types of machine data processing algorithms,
including the use of artificial intelligence techniques, it is not an obvious task to
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ensure the right to erasure (Article 17) that states that the data controller (the
entity in charge of processing personal data) must erase without undue delay
the data, if requested by the data owner [14]. Mechanisms for data extraction,
encryption and anonymisation are some measures required to ensure GDPR
compliance, together with the adoption of SSI approach and the use of hash
functions, to avoid storing raw data on the blockchain.

Social Implications. While attempting to attain fair and bias-free matching
between candidates and job profiles and employing intelligent approaches for
the data management, we do not aim to devalue and/or completely remove
the social component of HR processes. The goal of a framework, such as the one
proposed in this paper, is to optimise the process of matching and selection, thus
enabling more quality time for the personal assessment of the chosen candidate,
i.e., person-to-person interaction between the candidate and HR employee.

In order to benefit from an added value brought by such framework, it is
important to ensure wide adoption, which is only possible if the easiness of
usage is guaranteed. Thus, developing intuitive interfaces that allow to express
requirements and provide required information in a simple way is of paramount
importance. The algorithms may need to be adapted to ensure proper reachabil-
ity and matching without overwhelming the candidates and the companies with
too many job offers or applicants to consider, respectively.

Blockchain technology enables trustworthiness of the data regarding the eval-
uation of an employee by the company. However, it is important to provide a
possibility for the employee to express his opinion about the company as well.
The reviews provided by the employees can then be used in order to build the
reputation of the companies and weight their validations. Providing such func-
tionality, however, is one of the directions of our future work.

5 Conclusion

This paper proposes a high-level architecture of a framework providing trusted
support for the job placement task. Relying on the properties of intelligent data
analysis approaches, blockchain technology, and self-sovereign identity manage-
ment, we aim at optimising and limiting bias in the process of candidate selection,
while ensuring the candidate’s data privacy. We aim at achieving optimisation
by removing the need to search in multiple sources and making use of struc-
tured verified data and distribute matching algorithm; fairness and privacy by
employing an SSI system and by relying on matching algorithm that enables
reproducibility and bias-free execution (thus, ensuring objectivity of the algo-
rithm, and therefore candidate selection). However, as discussed in the previous
section, there is still a number of the open questions to be considered before
such system can be implemented and widely adopted.
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Abstract. Blockchain, often treated as a next transforming general-purpose
technology (GPT), might have the potential to revolutionize economic, political
and social structures in the subsequent years. However, the actual impact of
Blockchain will ultimately depend on the pace and direction of its diffusion
process throughout the economy. Being currently in the nascent phase, the
diffusion process of Blockchain remained largely neglected in the academic
literature so far. The study at hand covers this research gap by investigating the
forces affecting Blockchain diffusion leading to its materialization as a GPT.
Identified from the broad literature on technological change, the various factors
influencing diffusion patterns of GPTs are conceptualized in a framework of
three interrelated groups: advancements in the GPT itself, advancements in its
application sectors, and environmental factors. This conceptual framework is
then applied to structure the current studies of Blockchain technology and reveal
unexplored blind spots. In such a way, the present paper serves as a basis for
further research on diffusion patterns of Blockchain and its materialization as a
general-purpose technology.

Keywords: General purpose technologies � Blockchain � Diffusion

1 Introduction

Blockchain, widely known as an underlying technology of Bitcoin since 2008 [42],
gained attention over the last years as a disruptive and game changing technology in
several aspects. Its functional features, such as decentralization, immutability and
transparency of record, reduce the cost of verification of transactions and cost of
networking [13]. This cost saving potential makes Blockchain potentially beneficial for
numerous industrial sectors. In fact, proofs of concept for Blockchain-based use cases
exist, among others, in supply chain, healthcare, identity management, financial
transactions, energy distribution, and other areas [46]. Along with its potential per-
vasiveness within the industry, Blockchain is expected to have disruptive impact on
society. As an institutional technology, it enables decentralization of governance
structures [4], thus provides an alternative for coordinating people and economic
decision-making [17].

In a scientific debate regarding the economic nature of Blockchain, it is important
to mention a recent empirical evidence of Blockchain as a general-purpose technology
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in the making [19, 20]. As an emerging GPT, Blockchain is expected to have a long-
term effect on macroeconomic dynamics [9], and to play an essential role in shaping
economic, social and institutional structures in the next decades [35]. However, the
actual impact of Blockchain, analogous to other GPTs over the history [26], will
ultimately depend on the pace and direction of its diffusion throughout the economy
[21, 26]. The current low diffusion rates of Blockchain, as acknowledged in various
studies [6, 15] might be explained by its early stage [39]. To gain an understanding of
the diffusion process at the beginning, an in-depth examination of the factors affecting
Blockchain materialization as a transforming GPT is required.

Prominent scholars of technological change described various forces that hampered
or accelerated materialization of historical GPTs [21, 35, 43, 45, 51], however, did not
systematize them. Works of [45] and [26] represent the first important attempts to
summarize ex-post the factors affecting technological diffusion in general based on
numerous historical examples. The aim of the present study, which focuses on general-
purpose technologies, is (1) to conceptualize ex-post identified factors that influence the
materialization of general-purpose technologies from a broad literature on technolog-
ical change, and (2) to map Blockchain-related papers based on the created conceptual
framework to reveal the current focus areas and blind spots in Blockchain diffusion
patterns and its materialization as a GPT. The results of the study, therefore, open up
multiple research opportunities for economists and provide a structured overview about
the known unknown for policy makers. Insights on forces affecting GPT diffusion
might assist the comprehensive analysis of reasons, underlying Blockchain diffusion
rates and, therefore, the materialization of its promises as a transforming GPT.

The next sections are structured as follows. (1) Derivation of a general conceptual
framework to structure general literature about the materialization of technologies as a
GPT: the identified factors affecting the materialization of GPTs are arranged in three
focus areas. (2) Detailed comparison of the focus areas in the general conceptual
framework with those of current Blockchain studies, including identification of the
potential blind spots in Blockchain literature and recommendations for further research
activities. (3) The study concludes with the summary of the findings.

2 Conceptual Framework

It is an intuitively clear and widely acknowledged fact, that the real value of GPTs can
be captured only when they diffuse throughout the economy [9, 12, 47, 53]. The
importance of the diffusion process in the realization of an impact from GPTs is due to
the definition of the term ‘general-purpose technology’ itself. According to Bresnahan
and Trajtenberg [9], who coined the term, GPTs have the following features: they are
applied across numerous industries (pervasiveness), generate innovations in the down-
stream application sectors (innovation spawning effects), and provide solutions to
complex problems that remained unsolved before with existing technologies (scope for
improvement). The GPT literature focuses mainly on two research streams: (1) identi-
fication of GPTs (see, for example, [27] and [53] for quantitative GPT identification;
and [35] for an overview of qualitative approaches to recognize GPTs); and (2) the
modelling of GPT-induced economic growth (see [11] for an overview of various
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models). Though being not an explicit focus of the GPT literature (studies [9, 12, 26,
33, 50] are exceptions), various forces affecting GPT diffusion are featured in numerous
studies of evolutionary paths of many important technologies throughout the history
[26, 31, 35, 45]. Some of these ex-post identified factors are common to many tech-
nologies, while others are relevant only for a particular case [35]. Nonetheless, in order
to enable analysis of technological change from multiple perspectives it is necessary to
make an effort in creating a “conceptual apparatus”, or, put differently, a sort of
categorization of these factors [45]. Therefore, the next paragraphs are dedicated to the
summary of the forces affecting materialization of GPTs from a broad literature in
evolutionary economics, new growth theory, economic history, industrial organization,
and structural change.

A so-called ‘dual-inducement mechanism’, a model developed by Bresnahan and
Trajtenberg [9] in order to explain the diffusion mechanisms of GPTs, provides a good
starting point for understanding how GPTs function. According to this model, the
advancements in a GPT in terms of its quality and price trigger its diffusion across
down-stream application sectors, while the advancements in these application sectors,
such as, for example, formation of complementary assets and skills, foster the
advancements in GPT itself. This mechanism is essential to explain why GPTs are
different from other technologies, as the very existence of ‘linked payoffs’ between
GPTs and application sectors generates a coordination game, subject to failure and
externalities. Consistent with the evolutionary theory of technological change, the
discovery of new GPT-using application domains also influences the investment levels
in the emerging GPT [2, 47].

The later studies from the GPT literature built upon the dual-inducement mecha-
nism model and extended it to some degree [12, 47]. [47] proposed a GPT reciprocal
causality model, where advances in the GPT are “both a cause and a result” of advances
in its application sectors and complementary technologies. [12] extended the original
model of Bresnahan and Trajtenberg to a scenario where more than one GPT at a time
struggle to gain pervasiveness in the economy.

In addition to improvements in a GPT and advancements in its application sectors
[9], a range of other forces played an important role in shaping the evolutionary path of
major technologies of the past [51]. Mentioned to some extent in the works of all major
scholars of technological change, these forces include regulation [8, 26], public pro-
curement [12, 18], social aspects [30, 51], and market structure [18, 28]. Consideration
of the above listed factors is especially important when investigating the materialization
of GPTs, since these technologies lead to paradigm shifts, and therefore, have
important implications for economic, societal and institutional structures [35, 53]. In
the conceptual framework of the present study, these factors are summarized in a focus
area ‘environmental factors’. The term ‘environmental’, used in the overview of dif-
fusion of technologies in [26] indicates, that these forces affecting the materialization of
GPTs do not directly relate neither to GPT itself, nor to its distinct downstream
application sectors.

The three interrelated focus areas of the forces that affect the materialization of
GPTs are graphically represented below in Fig. 1: (1) Environmental factors,
(2) Improvements in the GPT, and (3) Advancements in its application sectors. Lit-
erature further shows that interaction effects can be found between these categories.
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3 Factors Affecting Materialization of Blockchain as a GPT

3.1 Advancements in the GPT Itself

The factors in this category reflect primarily the technological development of an
emerging GPT, which in further consequence influences its economic success or
failure. The historical observations point out that almost all technologies, especially
radical innovations and GPTs, first appear in crude and primitive form, therefore, can
often poorly compete with existing technologies [31, 45]. The capabilities of the
telephone around 1880, productivity of computers in 1950s, the weight of the first
IBM-invented hard-disk drive, or the 14-step process required to make one single copy
with the early xerographic machine are just a few historical examples for a poor initial
efficiency of new technologies [2, 14, 31]. Blockchain, being at the early stages of its
technological maturity [39], is no exception in this regard. Current technical challenges
of Blockchain, summarized by [48] and complemented by [54] include throughput,
latency, size and bandwidth, security, usability, waste of resources, and privacy leak-
ages. In fact, Blockchain does currently have issues with data malleability and data
storage, needs a long time before a transaction is seen as committed, lacks of support
for developers and end-users, and is characterized by high power consumption related
to the proof-of-work consensus [48, 54].

The subsequent performance improvements, being an important factor affecting the
diffusion rate of technology, are often subject to secondary innovations, representing
essential improvements and modifications over the initial form of technology [26, 43].
Steam engine, an acknowledged example of a transforming GPT [35], gained its sig-
nificance largely due to Watt’s improvements, and its subsequent advancements
embodied in the Corliss model are known fora “major re-organization process of
industrial machinery” [45]. Blockchain does also undergo a continuous technological
development. In addition to numerous literature, that suggests improvements in tech-
nology (see [49] for an overview), scholars examined potential solutions for the major
technical challenges of Blockchain in the academic literature [52] and in patent
applications [20].

The continuous improvements of a GPT itself lead to an increase in its relative
advantages or benefits of the new technology over existing solutions [18]. Numerous
scholars (for example, [41]), refers to general advantages of Blockchain technologies:
they enable decentralization, can increase operational efficiency, reduce transaction costs
and provide advanced security. Others investigate relative advantages of Blockchain

Advancements in the GPT application sectors 

GPT Materialization

Advancements in GPT itself Environmental factors 

Fig. 1. Groups of factors affecting materialization of general-purpose technologies
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within particular application scenarios (for example, [22]). Network effects that influence
relative advantages, thus, diffusion rate of a GPT [26], are particularly relevant in case of
Blockchain, since this technology is subject to network effects. Though conceptually
mentioned by several authors [22], the empirical investigation is, to the best of my
knowledge, currently limited only to network effects of cryptocurrencies (for example,
[36]).

The relative advantages of an emerging GPT and their evolution over time deserve
detailed investigation of scholars, since they represent one of the most important
determinants for GPTs diffusion [9, 12]. Other determinants, related to the GPT down-
stream application sectors, are described in the next paragraph.

3.2 Advancements in the Application Sectors

The technological advancements alone are not able to determine the success of an
emerging GPT. Gallium arsenide, a technology that could have replaced silicon in
semiconductors in the 1980s due to the higher speed it enabled, never expanded beyond
the initial application domain and, therefore, did not realize its GPT potential despite
the superior technological features [2]. This and other examples of so-called ‘failed
GPTs’ throughout the history [35] demonstrate, how important it is to shed light on the
factors, which affect diffusion patterns of GPTs at the application level. As Dosi
mentions in his work on technological paradigms, these factors, “acting as selectors,
define more and more precisely the actual paths followed inside a much bigger set of
possible ones” [18].

In the beginning a new GPT is most commonly applied to only one sector – the one
that benefits most from distinctive functionality and accepts the initial technical
imperfections [2], and thereafter gradually expanding to other application domains.
This process of discovery of new applications for a GPT, often compared to a speci-
ation event in the evolutionary theory [2, 12], presents an essential step toward tech-
nological maturity. Since considerable adaptation of a technology to each particular
application sector is needed, the process, leading to an establishment of a pervasiveness
of a GPT, is not costless [40]. Various scholars and practitioners, addressing Block-
chain as “an innovative technology in search of use cases” [24], do have concerns
regarding its applicability. The expansion of Blockchain from its initial application
domain – Bitcoin – has already started [41]. This process can be supported by further
research on the development of decision frameworks for Blockchain use cases ([32]
provide an overview of current frameworks), and on the requirements for Blockchain-
based solutions within various application areas (see [34] for an example of such an
investigation within the e-agriculture domain).

Complementarities, or all the assets and capabilities needed to exploit the new
technology, play an important role in shaping its diffusion patterns [26, 30, 43, 47]. The
need of numerous complementarities and the long timeframe until they are set-up, often
with periods of trial and error [18, 40], might explain the relatively slow diffusion of the
electric dynamo, steam engine, information and communication technology, and other
major technologies over the history [16]. The materialization of a GPT is especially
subject to complementarities: these technologies foster advancements in the down-
stream application sectors (innovation spawning effects), which are, in turn, crucial for
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the successful implementation of a GPT itself. There are numerous examples, when
complementary technologies are required for the successful implementation of
Blockchain. In use cases, that involve the transaction of physical assets, internet-of-
things technologies might be necessary to guarantee secure Blockchain-based transfers
of not only ownership, but also possession of assets [1]. Mature identity solutions,
multiple signature wallets, and other complementarities a required for land registry on
Blockchain.

The implementation of a GPT requires not only the use of complementary tech-
nologies, but also other complementarities, such as business process redesign [39],
investments into human capital, and transformations of business models [10]. Bringing
this into the Blockchain context, two questions seem to be of relevance: (1) what
complementarities are necessary for the successful Blockchain implementation within a
certain use case; and (2) what specifics need to be considered in the Blockchain context
to build them up? With an overall dearth of research on these topics, it is worth to
mention several recent studies. Milani and Garcia-Banuelos conceptually explained the
redesign of current business processes induced by Blockchain [39]. Clohessi et al.
categorized the skills required by organizations to implement Blockchain [15]. Holotiuk
et al. examined strategies of firms to build Blockchain-related technological knowledge
[29]. These include the involvement in Blockchain consortia, external partnerships with
start-ups, and engagements in open innovation activities [29]. Beck and Müller-Bloch
conducted one of the first case studies within a bank to shed light on how financial
organizations acquire capabilities to engage with Blockchain in different phases [7].
This line of research will probably grow in the subsequent years. Numerous literature on
strategies employed by organizations to gain technological knowledge, their absorptive
capacity, organizational readiness and their ability to adjust business models ([23, 26],
and [47]) provide starting points for further Blockchain-related research about the set-up
of complementarities.

3.3 Environmental Factors

In addition to technological improvements of GPTs and the necessary adjustments in
their downstream application sectors, a large group of other socio-economic factors –
addressed as ‚environmental factors’ in the present framework – play an important role
in shaping the evolutionary path of GPTs in the making [26, 45]. Rosenberg pointed
out that “any technology is never independent of its institutional context and therefore
needs to be studied within that context” [45]. The similar conclusion is drawn in the
works of Dosi [18] on technological trajectories and Perez [43] on techno-economic
paradigms. Hall and Khan included environmental and institutional factors, in partic-
ular market structure and regulation, in their investigation of factors affecting diffusion
of new technologies [26]. The investigation of the impact of socio-economic factors on
technological development is further central to the sociological study of technology
[51], more specifically to research on the social shaping of technology [38]. Numerous
scholars of technical change acknowledge in their technology diffusion analyses the
relevance of environmental factors, which can mainly be segmented into social factors,
regulatory conditions, institutional factors, market structure [18, 26, 43, 45, 50].
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The relationship between market structure and its influence on innovation incen-
tives and technology diffusion has been widely discussed in the literature [18]. On the
one side, big market players have a lot of capital embedded in the old technologies and
complex bureaucratic structures that may slow the diffusion of an emerging technology
[28]. On the other side, large firms under oligopolistic conditions are more likely to
invest into new technologies due to the availability of funds, the possibility to spread
the potential risks that cames along with a new technology, and the higher probability
to benefit from innovation [18, 26]. Currently there is a lack in Blockchain research that
focus on the investigation of market structures and its influence on Blockchain diffu-
sion. The early stage of Blockchain might be an explanation for the current gap.

Governmental bodies and regulations play an essential role in the materialization of
technologies [8, 26, 30]. Numerous empirical studies in healthcare, paper and pulp
industries, nanotechnology [47], and others, confirm the power of regulations in fos-
tering or hindering the diffusion process. Due to a radically different logic embedded in
the new GPTs, these technologies require new regulation rules that, in turn, influence
the evolutionary path of GPTs in a long term [43]. Blockchain regulation is a widely
discussed topic in the last years (see [25] for an overview of legal challenges of
Blockchain). However, it remains a certain “mismatch between technological promise
and legal reality” [25], which represents one of the major hurdles for the adoption of
Blockchain-based applications [49]. While efforts on Blockchain regulations are cov-
ered in the academic literature, the relationship between legal environment and
Blockchain diffusion is still a nascent topic to pay attention to in further research.

Public procurement, in addition to regulation, is a powerful facilitator of GPTs in
the pervasiveness gaining process [12]. In fact, a public demander might not only foster
the design and development efforts around an emerging GPT [9] as happened, for
example, with the synthetic chemistry and electronic industry in Germany [18], but also
become provider of a GPT with network effects [26] and encourage the creation of
complementary innovation in the application sectors [50]. Blockchain represents a
promising technology for the public sector [5], and there already exist numerous
examples of governmental support: Blockchain-based land registry in Sweden, moni-
toring of government expenditures in Canada, just to point out two among many others.

Consistent with the central idea behind social shaping of technology, the social
factors, along with the other factors listed above, should be considered in detail in
technological path forecasting [21, 51]. Freeman states, that “the realm of technically
feasible is enormously wider than the realm of the economically profitable, and both
are wider than the realm of the socially acceptable” [21] and [51] address innovation as
a “garden of forking paths” [51], where the direction of technological development is
inevitably shaped by society. Youtie et al. pointed out that the analysis of social factors
accompanying the materialization of an emerging GPT is of especially importance due
to paradigm shifts induced by this technology and the potentially transforming effects
on society [53]. Blockchain might enable a paradigm shift from ‘trusting humans’ to
‘trusting machines’, as well as from ‘centralized control’ to ‘decentralized control’ [4].
The technology enables decentralization of governance structures, therefore, provides
“institutional alternative for coordinating the economic actions of groups of people”
[17]. The works of Allen [3] and Davidson [17] framed Blockchain as an institutional
technology and suggested to consider this in future research. First analyses were made
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with the investigation of social perceptions of Blockchain through studies of tech-
nology’s representation in news [20] and social media [37]. These studies represent an
integral part of analyses of social factors affecting the technological diffusion [30].
However, they address only a part of the social context in which a GPT can evolve.
More research on social trends and their impact on Blockchain diffusion, the percep-
tions of trust, and other social factors might emerge within the next years to fill this
gap.

3.4 Interdependencies Affecting the Materialization of a GPT

All three categories – improvements in the GPT itself, advancements in its application
sectors, and environmental factors – are influencing not only the materialization of
GPTs directly but also indirectly through interdependencies between all three cate-
gories. As modelled by Bresnahan and Trajtenberg [9], technological improvements in
the GPT lead to advancements in its application sectors, and vice-versa: the more
adapted the application domains are to a new technology, the more investments flow
into its further development. According to the studies [21] and [43], environmental
factors, such as regulation, market structure, social acceptance and others, influence
and, at the same time, are influenced by both the GPT advancements, and strategies of
the application sectors.

The investigation of evolutionary path of Blockchain in the subsequent years
cannot be limited to analysis of only one single particular category of factors but should
also be aware of the interrelations between all the three categories. The conceptual
framework and the identified main factors are graphically summarized below in Fig. 2.

The few current studies on Blockchain diffusion mainly focused on factors that
affected the diffusion of Blockchain at the application level, and therefore, lead to a
research gap in the examination of environmental factors and technological advance-
ments of Blockchain. Batubara et al. [5] and Holotiuk and Moormann [29] focused on
the diffusion of technology within certain domains – e-Government [5] and financial
service sector [29]. Clohessy et al. [15] and Post et al. [44] summarized factors that
influence Blockchain diffusion within organisations with the help of literature review
and semi-structured interviews respectively. Perez [44] differentiated between strategic,
tactical and operational factors important for the diffusion of Blockchain. Clohessy
et al. represents one of the first Blockchain studies that consider, based on the TOE
framework, various groups of factors, potentially affecting the Blockchain diffusion
[15]. The used approach to examine factors from different categories supports the
multi-perspective results of the conceptual framework at hand, however, still lacks in
considering all GPT-relevant factors or interdependencies.
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3.5 Summary

Table 1 below summarizes the current body of research on factors affecting Blockchain
materialization as a GPT, based on the conceptual framework represented in the Fig. 2.

Table 1. Blockchain-related literature in line with studies on diffusion

Category Factors General literature Blockchain
literature

Advancements in GPT Performance
improvements

[26, 43, 45] [20, 52]

Relative advantages
of GPT

[9, 12, 18, 26, 33, 50] [22, 36, 41]

Advancements in
application sectors

Complementarities
s.l.

[10, 16, 18, 26, 30,
40, 43, 47]

[1, 15, 39]

Organizational
readiness

[10, 23, 47] [7]

Absorptive capacity [10, 33] [29]
Environmental factors Market structure [18, 26, 28] No studies

currently
Regulation [8, 30, 43] [25]
Public procurement [9, 12, 50] [5]
Social factors [18, 21, 51] [17, 20, 37]

Interdependency of factors [9, 12, 21, 43, 47] [15]

Advancements in the application sectors:
Complementarities 

(technologies, skills, business processes) 
Organizational readiness 

Absorptive capacity 

GPT Materialization

Advancements in the GPT itself:
Performance improvements 
Relative advantages of GPT 

(cost saving potential, network ef- 
fects, etc.)

Environmental factors:
Market structure

Regulation 
Public procurement 

Social factors 

Fig. 2. Detailed conceptual framework with categories and main factors, that affect the
materialization of Blockchain (as a general-purpose technology)
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As evident from the table, research on factors affecting diffusion patterns of
Blockchain is currently in its nascent phase. Some of the factors, sketched within the
previous sections, have not or only very rarely been investigated in the context of
Blockchain, and therefore, might be very promising fields for future research
directions.

4 Conclusion

The current low diffusion rates of Blockchain [6, 15] might be explained in a number of
ways: the technology is in its early development stage [39]; not many purposeful
application scenarios have been identified yet [24]; there exist serious technical issues
to overcome [52]; there is a discrepancy between technological promise and regulatory
environment [25]; and others. In the context of this scientific debate, the study at hand
provides structured evidence of the factors, which, analogous to the other general-
purpose technologies throughout the history, influence the materialization of Block-
chain as a transforming GPT. Furthermore, it gives an overview about the fields already
addressed in current studies and the blind spots that can be seen as a potential research
agenda in the area.
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Abstract. The need for a Blockchain Oriented Software Engineering
(BOSE) has been recognized in several research papers. Design Patterns
are considered among the main and compelling areas to be developed in
BOSE. Anyway, design patterns need to be enhanced with some addi-
tional fields to better support the specific needs of Blockchain develop-
ment. In this paper, we discuss the use of Solidity design patterns applied
to a water management use case and we introduce specific fields in their
description, aiming at offering to Blockchain developers more support in
the critical decisions to build efficient decentralized applications.

Keywords: Design patters · Blockchain Oriented Software
Engineering (BOSE) · Use case · Smart contracts · Solidity

1 Introduction

Since the release of Ethereum, there have been many cases in which the execu-
tion of Smart Contracts managing Ether coins has led to problems or conflicts.
Probably, the most well known example of such issues is “The DAO” [13,15].
The DAO, decentralized autonomous organization, was a concrete attempt to
implement a funding platform, similar to Kickstarter, running over Ethereum. It
went live in 2016 with between 10–20 thousand investors (estimation) providing
the equivalent of about US$ 250 million in funding and thus breaking all existing
crowdfunding records. However, after few months an unintended behavior of the
DAO’s code was exploited draining the fund of millions of dollars’ worth of ETH
tokens. The DAO experience makes clear the importance of suitable Blockchain
Software Engineering (BOSE) techniques, capable to reduce the risks connected
to “poorly” designed and implemented smart contracts. However, a discipline of
Smart Contract and Blockchain programming, with standardized best practices
is yet in its infancy and requires new approaches since smart contracts rely on a
non-standard software life-cycle; as an example, once deployed applications can
hardly be updated or bugs resolved by releasing a new version of the software.
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In [12] the authors discuss the need for BOSE and propose three main areas
for the initial development of this discipline: a) Best practices and development
methodology, b) Design patterns and c) Testing.

Our work is focused on the use of Design Patterns for the development of
Decentralized Applications (DApps) [25].

DApps are a new class of applications coded in programs running on the
blockchain. DApps may provide a variety of services over the underlying P2P
infrastructure that up to now have only been provided in the dominant Clien-
t/Server architectures. The Peer-to-Peer (P2P) nature of DApps and the lack
of a central authority as in the Client/Server paradigm, is the key ingredient to
implement infrastructures supporting new forms of democratic engagement of
the users. A recent report by Fluence Labs [17] presents the state of the DApps
ecosystem surviving 160 projects. The main findings can be summarized in the
following points: a) DApps is a modern trend: 72% of the projects started in
2018, b) 87% of the projects run on Ethereum c) A quarter of the surveyed
projects are gaming DApps. d) About half of the projects used a centralized
tools to connect to the Ethereum blockchain. e) Transactional fees prevailed as
the central monetization model for most projects. f) New user onboarding was
mentioned by more than three quarters of the respondents as the major obstacle
to adoption.

Problem Statement. Design Patterns are undoubtedly a useful tool to improve
the development of DApps. Due to the nature of the Blockchain, more than in
other contexts DApps are at risk of generating problems, which are hard to
recover from. However, most of the available Design Patterns for Blockchain do
not consider some useful information that can help the developer to implement
correct and efficient solutions.

Contribution of the Paper. In this paper we analyse and evaluate best prac-
tices in the use of Design Patterns for a typical DApp. Moreover, we refine the
format description of design pattern specific for blockchain with other fields,
namely Cost of execution and Decentralization level and On-chain/Off-chain
components, capable to help developers in trading-off between critical design and
implementation choices. As a running example, we develop a DApp interacting
with Internet Of Things devices to monitor and manage resource consumption,
and encourage the democratic engagement and empowerment of citizens. In par-
ticular, our use case focuses on a DApp for the management of urban water
resources. However, the Design Patterns employed in this specific use case are
of general interest and can support a variety of other application scenarios.

2 Use Case: Decentralized Management of Urban Water
Resources

The interactive statistics portal by the International Water Association (IWA)
[8] provides data on water consumption, tariff structure and regulation of water
services in 198 cities in 39 countries from all 5 continents. The IWA report
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stresses the importance of adopting modern emerging technologies and smart
metering to improve the overall water management process in the city.

In nowadays cloud solutions, data on water consumption is collected by smart
meters and delivered to a cloud service allowing live monitoring of the consump-
tion and providing evidences on consumption patterns to the users in the hope
that citizens will consequently act to reduce their water consumption.

It is worth noting that the overall success of such resource management
strongly depends on the active and collective participation of citizens. The virtu-
ous behaviour of an individual is commendable, but the risk is that it is literally
“a drop in the ocean” if not accompanied by the joint action of the community.

Nowadays, the Client/Server paradigm dominates the cloud services market.
However, decentralized applications (DApps), an emerging P2P framework, have
the potential to revolutionize this market and democratize the whole process.
The hope is that the empowerment of the citizen, guaranteed by this democratic
process, will improve the participation and thus the overall chances of success of
smart cities initiatives. As observed in [22], smart cities often do not optimally
reach their objectives if the citizens are not suitably involved in their design.

We assume the availability of suitable Internet of Things (IoT) devices, i.e.
smart water meters, capable to measure the performance of a target process, i.e.
reducing water consumption. However, we want then to have citizens engaged in
pursuing behavioural changes. It is well-known that behavioural changes are the
effective way to better performances in resource management, e.g. closing the
water while brushing teeth can save up to 20 L, and taking a shower can save
up to four times the water necessary for a bath.

To support the active engagement and democratic participation of users, our
proposed DApp will implement two main principles:

– Citizens propose smart contracts that encode measures of the effectiveness of
water management policies. Typically, such smart contracts relies on IoT data
to monitor the application of policies. Citizens also select a smart contract by
a fair vote. Such smart contracts, capable of attracting the greater consensus
from citizens, becomes currently operative. Selection may occur regularly, on
demand, or on specific conditions.

– To further encourage the participation of citizens, the operative smart con-
tract will also be in charge of distributing incentives to virtuous citizens,
namely citizens that most actively contribute to fulfill policies, i.e. success-
fully reduce the water consumption.

2.1 Reference Architecture

The full implementation of the Proof of Concept (PoC) is available in the GitHub
repository [2] and a simplified reference architecture is shown in Fig. 1.

Smart Contracts. The smart contracts have been developed in Solidity [11],
the object-oriented, high-level language for implementing smart contracts on
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Fig. 1. A simplified picture of a DApp for water management. Contrary to central-
ized architectures the back-end of this architecture is implemented on smart contracts
running on the P2P decentralized blockchain infrastructure.

Ethereum, using Remix [4], the browser-based compiler and IDE that enables
users to build Ethereum contracts and to debug transactions.

The manager smart contract, implemented in the ManagerContract class,
is in charge to a) manage the interface with IoT sensors and safety of data, b)
manage the voting process at each occurrence of it, and c) make operational the
most voted proposal, which will monitor the application of policies and devolve
incentives accordingly. Several variations to this general scheme are possible,
of course, but for the sake of this paper such a general formulation will be
adequate. In the next section we discuss the design patterns involved in the
design of the proposed DApps for urban water management. The voting process
code is inspired by the example on ballot available on Solidity documentation
[5]. The vote starts and finishes, respectively, with the methods startVote and
winningProposal. The latter, takes also care of counting the votes and electing
the winner. The addProposalContract method allows users to propose a new
contract, while the method vote allows user to vote for a proposal. Note that
this method is payable because it has to collect the funding during the voting
process and to transfer the accumulated funding to the winning proposal using
the method trasferToWinner.

The proposal smart contract must essentially define a) how to measure the
contribution by each citizen to the reduction of water consumption as measured
by IoT sensors, and b) how to distribute incentives according to that contribu-
tion. Citizens are free to present proposals, namely alternative solutions that
are democratically voted by the citizens themselves. The class ProposalContract
represents a proposal of a citizen. The owner variable maintains the owner of
the contract (this is crucial for the implementation of the access restriction pat-
tern, see Sect. 3). As already observed, the ManagerContract manages all the
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key phases of the process and consequently, before starting the voting phase,
every participating contract should change its ownership to the ManagerCon-
tract calling changeOwner method.

Fig. 2. Interaction with the smart contracts

Finally, the proposal that wins the election phase become runnable and the
corresponding smart contract is executed invoking the method runContract. This
results in a call to the smart contract in charge of collecting the data on water
consumption interacting with the oracle. This data are stored in the Proposal-
Contract by the insertConsumption method. Each citizen is allowed to access
only its own consumption data. The hash table consumers maintains the asso-
ciation between the user credentials that are used by the oracle to access the
data, and their address in the blockchain.

WaterOracle is the smart contract that collects the data on the water meters
from a source of data external to the blockchain.

The whole process, summarized in Fig. 2, which allows the citizens to select
the smart contract that will become operative can be divided in three phases:
1) the proposal phase, 2) the selection phase and 3) the running phase. During
the proposal phase, proposal contracts are submitted by the community. In the
selection phase, proposal contracts are voted by the community. For the sake of
simplicity, we assume that citizen can access the vote only by providing a fee
that is used to accumulate the incentives. More realistic fee policies are scope for
future work. The voted contract becomes operative in the running phase, and
will actually distribute the accumulated incentives according to its own policies.
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Web UI. Users can access the functions of the system by a web application
running on his/her premises that interacts with the blockchain. This app is
developed in Nodejs and web3.js [6], which is a collection of libraries allowing
to interact with a local or remote Ethereum node, through HTTP, WebSocket
and IPC connection. While in principle citizens can make their proposals in
the form of free smart contracts encoded in solidity, in this paper we focus on
a template smart contract where the proposals are characterized by different
parameters that users can freely select accessing the Proposal page of the Web
UI. Examples of the parameters defining the smart contracts are: What will be
monitored (e.g. apartment, building), the Criteria to distribute the incentive
(e.g. ≤ a given threshold) and the Interval in which the monitoring activity is
performed and incentives are distributed (e.g. semester).

Once a proposal has been formalized, it can be voted accessing the Vote page,
showed in Fig. 3, where users can inspect the proposals and finally vote for the
most liked one. After a suitable time interval, that allows each voter to express
their preferences, the winner proposal is elected and starts the running phase.

In the Run page the user can finally allow the selected smart contract to
access its data on water consumption. If the criteria defining a virtuous behaviour
embodied in the smart contract are meet, the corresponding incentives are auto-
matically sent to the user.

Fig. 3. The voting interface

3 Smart Contract Design Patterns

We used some of the Solidity design and programming patterns [9,24,25] col-
lected by Franz Volland in his github repository [23]. The aim of this section is
double: to discuss how these design patterns have been employed to implement
the methods and the smart contracts in the proposed decentralized system for
water management; to describe how a design pattern is expanded in the case of
a blockchain design pattern (BDP).
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The documentation for a design pattern describes the context in which the
pattern is used, the forces within the context that the pattern seeks to resolve,
and the suggested solution. A variety of different formats [14] have been used by
different pattern authors. [23] uses one of these approaches. We intend to add
two additional fields for describing a BDP:

– The first is cost of execution - gas, i.e. the unit to measure the amount of com-
putational effort to execute certain operations. Its presence is fundamental
and necessary for public blockchains such as Ethereum: this in fact avoids that
an operation performs forever on the blockchain blocking the entire network.

– Secondly, there are the blockchain specific features which are a set of prop-
erties that highlights how BDP are related with peculiar characteristics of
blockchains. We have identified decentralization and on-chain or off-chain
properties.

For the sake of space we don’t sketch the code of all patterns, the interested
reader is referred to [2] and we do not report the formal description of the pat-
terns already available at [23], but we focus our attention to the two additional
descriptive fields presented above.

Ownership and Access Restriction Pattern. During the proposal phase,
users make contract proposals. In order to participate to the next selection phase,
users have to release contract ownership to the manager smart contract. This is
done by implementing the Access Restriction pattern which allows the ownership
of a contract to be changed. The proposer invokes the changeOwner function,
providing as input the address of the manager that consequently becomes the
owner. We stress here that at each instant in time there is only one owner for a
contract and some functions can be invoked only by the owner because they are
critical for the correct execution of the contract.

Cost of execution - gas

changeOwner() 28595

Blockchain specific features

Decentralization of the BDP Decentralized BDP

On-chain or off-chain solution The owner is stored into a variable of the
smart contract, so it is an on-chain
solution

State Machine Pattern. In each phase, a proposal contract can be in one
of three possible states: proposal, selection and running. Only the owner of a
contract can change the status of the contract.

The State Machine pattern [23] allows a contract to go through different
states, with different functions enabled in the different states. A function modifier
checks if the contract stage is equal to the required stage before executing the
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called function. Note that the manager, becoming the owner of the contracts, is
the only one capable to change the state of a contract during the selection phase
(see Access Restriction pattern: onlyBy(owner)).

Cost of execution - gas

nextStage() 27632

Blockchain specific features

Decentralization of the BDP Decentralized BDP

On-chain or off-chain solution It changes the internal state of a smart
contract that lives on-chain

Oracle Pattern. Once in a running state, the winning smart contract needs
to collect data from the smart meters to correctly dispense incentives to the
users. This requires the communication with an Oracle, a centralization point,
to gain access to data outside the blockchain. An Oracle is hence a trusted entity
providing a unique view on a source of data considered credible.

Each node in the blockchain has to validate every computation performed in
a smart contract. When this requires the interaction with off-chain sources of
data, as in our case with smart meters, this becomes unpractical because, due
to network issues (e.g. delays), there are not guarantee that all the node will
access the same information as expected thus leading to a possible break in the
consensus algorithm.

In our PoC, we use the oracle service provided by Oraclize [3], see Listing 1
(recently Oraclize changed its name to Provable).

Listing 1. The call of an Oracle to acquire the water meter readings and send them
back to ProposalContract.
contract WaterOracle is usingOraclize {

uint public water;

function () public payable {}
function getWaterConsumption (string input_for_API )
public {

if (oraclize_getPrice ("URL") > this.balance) {
emit LogError ("Put more ETH");

}
else {

//call the oracle and save the request
}

}
function __callback(bytes32 myid ,

string _result) public
{

// update consumption

}
}

The function getWaterConsumption is invoked by the ProposalContract and
performs the query to the oracle. The fallback function is necessary to support
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the necessary payments to the Oracle: only if the balance of the WaterOracle
smart contract is sufficient, the query is delivered to the Oraclize contract that
access the data interacting with the data source API. Once data are available
a callback function is called to store the values on the ProposalContract in
the public variable water. The value of water is finally used to distribute the
incentives.

Cost of execution - gas

WaterOracle deployment
getWaterConsumtion()

1362206
144520

Blockchain specific features

Decentralization of the BDP Most oracles are points of centralization within
the network. However projects on decentralized
Oracles exists, such as ChainLink [1] which
Provable, the new brand behind Oraclize, now
supports

On-chain or off-chain solution This pattern can be implemented either partly
on-chain and off-chain (an oracle smart
contract with external state injected by an
off-chain injector) or totally off-chain (external
server signing transactions) [25]

3.1 Discussion

Design Patterns are descriptions or templates to solve problems that can emerge
in many different situations, and consequently are usually not a finished design
that can be transformed directly into code [14]. However, in the Blockchain,
the implementation details have direct consequences on the execution costs of a
given pattern that are crucial to determine the feasibility and the success of a
project. If the costs of running a system are higher than the expected benefits,
users will possibly not participate in the initiative.

As far as concerns the level of decentralization this is crucial to support the
democratization of an initiative and thus the active participation of the users,
but can have a cost. Let’s consider the oracle example. The simplest solution
that relies on a single “centralised” oracle is likely the most cost effective. We
can reduce the centralization requiring the same information to n independent
oracles, but even assuming that we can get the exact same information (e.f. time
and source) from all of them, this will result in a cost n-times higher.

The introduction of quantitative metrics (i.e. gas) to evaluate design patterns
is not novel (see [7] and [10]) and necessarily require the implementation of the
considered design patterns.
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4 Related Work

The need for a blockchain-oriented software engineering (BOSE) is recognised in
[19] where the authors suggest that ensuring effective testing activities, enhanc-
ing collaboration in large teams, and facilitating the development of smart con-
tracts all appear as key factors in the future of blockchain-oriented software
development. Compared to traditional Software Engineering, BOSE is not yet
well developed and Smart Contracts rely on a non-standard software life-cycle.
As an example, once delployed, they can be hardly updated and even simple
bugs are difficult to fix. [12] suggests to focus on three main areas for the devel-
opment of BOSE: a) Best practices and development methodology, b) Design
patterns and c) Testing.

In [9] the authors quantify the usage of smart contracts on Bitcoin and
Ethereum in relation to their application domain and analyse the most com-
mon programming patterns in Ethereum.

Due to the inherent nature of blockchain based contract execution, missing
low level programming abstractions, and the constant evolution of platform fea-
tures and security considerations, writing correct and secure smart contracts
for Ethereum is a difficult task. In [24] the authors mined a number of design
patterns providing design guidelines and showed that those patterns are widely
used to address application requirements and common problems.

The literature on blockchain technologies in the smart cities has been recently
reviewed in [21]. The paper analyses a number of sectors where the blockchain
can contribute to build a smarter city, including water management. A privacy-
friendly blockchain-based gaming platform aiming at engaging users in reducing
water or energy consumption at their premises is proposed in [20], but this paper
does not explicitly use smart contracts.

In [18] the authors stress that lack of transparency and trust on a centralized
network infrastructure could be a key factor that hinders the true realization of
the citizen participatory governance model. Our proposed DApp is an example
of smart urban collaboration implemented over a P2P network thus overcom-
ing most of the limits of traditional centralized networks and guaranteeing an
unprecedented level of transparency and trust. In the blockchain, the trust shift
from a single and centralized third party to the whole P2P infrastructure, that
is decentralized in its nature.

Voting is considered among the most important application of the blockchain
technology in the public sector [16]. In our proposed approach, voting is used
to select which among the proposed contracts will become actually operative. A
fully aware vote requires the understanding of smart contracts and their implica-
tions and we cannot expect this is within everyone’s reach. The research on the
methods to wider the audience capable of understanding smart contracts is out
of the scope of this paper. In our implementation, we propose a smart contract
template where users can simply and freely select some of the key parameters
defining the contract.
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5 Conclusion

In this paper we discussed the applicability of solidity design patterns to the
development of decentralized application (DApp) for urban water management.
The decentralized nature of DApp implements a democratic process that will
hopefully encourage the active participation of the citizen to the actions nec-
essary to reduce the water consumption. Design patterns are among the key
ingredients that have been identified to develop a blockchain-oriented software
engineering (BOSE) capable to reduce the risks connected to the unique life-cycle
of smart contracts. The main contribution of the paper can be summarized in
the following points:

– Moving from a centralized Client/Server architecture, typical of current
implementations of smart city service, to DApps will remove the necessity
of trusting central authorities, which is considered one of the most relevant
factors that limit the true realization of citizen participatory governance [18].

– The code of the proposed DApp is available on the github repository [2].
– We propose an extension of the design patterns considering two additional

fields, namely cost of transaction and blockchain specific feature that helps
developers in implementing a more effective DApp.

– The proposed extension has been discussed in the implementation of the three
design patterns [23] employed in the proposed DApp.
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Abstract. The advent of hardware accelerators over the past decade has
significantly increased the complexity of modern parallel applications.
For correctness, applications must synchronize the host with accelera-
tors properly to avoid defects. Considering concurrency defects on accel-
erators are hard to detect and debug, researchers have proposed several
correctness tools. However, existing correctness tools targeting accelera-
tors are not comprehensively and objectively evaluated since there exist
few available micro-benchmarks that can test the functionality of a cor-
rectness tool.

In this paper, we propose DataRaceOnAccelerator (DRACC), a
micro-benchmark suite designed for evaluating the capabilities of cor-
rectness tools for accelerators. DRACC provides micro-benchmarks for
common error patterns in CUDA, OpenMP, and OpenACC programs.
These micro-benchmarks can be used to measure the precision and recall
of a correctness tool. We categorize all micro-benchmarks into different
groups based on their error patterns, and analyze the necessary runtime
information to capture each error pattern. To demonstrate the effec-
tiveness of DRACC, we utilized it to evaluate four existing correctness
tools: ThreadSanitizer, Archer, GPUVerify, and CUDA-MEMCHECK.
The evaluation results demonstrate that DRACC is capable of revealing
the strengths and weaknesses of a correctness tool.

Keywords: Micro-benchmark Suite · Error classification · Accelerator

1 Introduction

Hardware accelerators are becoming increasingly popular within high perfor-
mance computing area since the last decade. On the Top500 list, six out of the
top ten most powerful supercomputers are equipped with GPGPU or many-core
co-processors1. To leverage accelerators when developing parallel applications,
1 https://www.top500.org/.
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programmers utilize parallel programming models such as CUDA, OpenACC,
and OpenMP. Those programming models ease the access to accelerators by their
built-in APIs and compiler directives, while exposing enough low-level details to
help tuning parallel applications. Nevertheless, the increasing complexity of pro-
grams results in higher chances of concurrency defects caused by incorrect usage
of underlying programming models. Due to the lack of suitable correctness tools
considering accelerators, concurrency defects may remain undetected in well-
tested parallel applications. As an example, our group just recently identified
and reported a mapping bug in the SPEC ACCEL OMP benchmark application
503.postencil [8], which we condensed to the reproducer in Listing 1. The code
mimics an iterative solver with a dynamic break condition and works on two
arrays where the output of one iteration is the input for the next iteration. In
this code, the swap in line 6 has no effect on the map clause and therefore for
the map-from at the end of the target data region. The code always maps the
array originally addressed by p1 back to the host; for odd numbers of iterations,
p2 points to that array afterwards, while p1 points to the unmodified original p2
array. Because of the pointer swap, the code expects p1 to point to the result of
this kernel.

Over the past years, a handful of correctness tools targeting concurrency
defects on accelerators were presented, for example, GPUVerify [3], BAR-
RACUDA [5], CUDA-MEMCHECK, and CURD [15]. Those correctness tools
demonstrate the feasibility of detecting concurrency defects on accelerators. In
this paper, we present DataRaceOnAccelerator (DRACC), a micro-benchmark
suite designed to evaluate correctness tools objectively. DRACC focuses on possi-
ble concurrency defects in CUDA, OpenACC, and OpenMP programs. It covers
common error patterns of concurrency defects incurred by conflicting memory
accesses.

In summary, we make the following contributions:

– We present the micro-benchmark suite DRACC to evaluate correctness tools
targeting accelerators;

– We thoroughly analyze the coverage of error patterns in DRACC by describ-
ing the mapping between micro-benchmarks to error pattern classifications
proposed in previous work [11,14] and extending upon them by introducing
mapping defects and a new categorization;

1 #pragma omp target data map(to:p2[0:N]) map(tofrom:p1[0:N])

2 { do {

3 #pragma omp target parallel for

4 for (int i = 0; i < N; i++)

5 p2[i] = 42 + p1[i];

6 std::swap(p1 , p2); // executed on the host

7 } while (!done());

8 } // end of target data region: map(from:p1[0:N])

Listing 1. Mapping bug found in a SPEC ACCEL benchmark
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– We introduce five levels of available information to understand the require-
ments and possibilities of analyzing each error pattern;

– We used DRACC to evaluate existing correctness tools: ThreadSanitizer [16,
17] and Archer [1], GPUVerify, and CUDA-MEMCHECK.

2 DataRaceOnAccelerator

Liao et al. [9,10] developed a benchmark suite, DataRaceBench, for data races
in OpenMP. DataRaceBench is designed to test data race detectors for their
capabilities of finding data races in OpenMP programs. This benchmark suite
has been widely applied in the development and evaluation of OpenMP data
race detectors [2,7].

Inspired by DataRaceBench, DRACC covers common memory driven defects
on heterogeneous systems in CUDA, OpenMP, and OpenACC programs.
DRACC provides a group of micro-benchmarks, developed upon following pro-
gramming models and compilers: CUDA 9.1 with NVCC, OpenACC 2.6 with
PGI compiler 18.4 and OpenMP 4.5 with Clang 7.0. The micro-benchmarks for
DRACC are synthesized instances of the error patterns discussed in Sect. 3.

The complete micro-benchmark suite is available at Github2 and can be
compiled with the given Makefile for each programming model. All micro-
benchmarks are designed based on specifications of abovementioned program-
ming models. Thus, erroneous runtime implementations violating specifications
may lead to unexpected results.

Listing 2 shows three kernels encountering an atomicity violation on the
accelerator. Each of these kernels implements the same error pattern leading to
an undefined value of the countervar variable. This failure is caused by the con-
current increment of the same variable countervar/d countervar. For OpenMP
and OpenACC the variable is globally accessible on the accelerator, causing a
data race among the individual steps of the increment: read to a register, incre-
ment in a register, write to global memory. A further explanation of the error
pattern is presented in Sect. 3.

The CUDA implementation in Listing 2 behaves differently from the
OpenMP and OpenACC implementations. The device variable d countervar is
not explicitly defined as a global variable for CUDA, thus, each thread creates
a thread-private copy of the variable, which is incremented accordingly. Due to
CUDA’s memory model, the result from each thread will then be copied back to
the original variable. This results in a data race between the copy operations and
a result of exactly d countervar = 1 for each execution regardless of grid and block
dimension. Similar to the OpenMP and OpenACC kernel, the CUDA kernel also
implements an atomicity violation.

2 https://github.com/RWTH-HPC/DRACC.

https://github.com/RWTH-HPC/DRACC
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1 __global__ void count_kernel(int *d_countervar){

2 d_countervar [0]++;

3 }

4 void count (){// Launch CUDA Kernel

5 count_kernel <<<100,512>>>( d_count);}

1 void count (){// OpenACC Kernel

2 #pragma acc parallel copy(countervar) num_workers (256)

3 #pragma acc loop gang worker

4 for (int i=0; i<N; i++)

5 countervar ++;}

1 void count (){// OpenMP Kernel

2 #pragma omp target map(tofrom:countervar) device (0)

3 #pragma omp teams distribute parallel for

4 for (int i=0; i<N; i++)

5 countervar ++;}

Listing 2. Examples of an atomicity violation on the accelerator in CUDA, OpenACC
and OpenMP.

3 Classification

To understand the coverage of micro-benchmarks in DRACC, in this section we
introduce a defect classification for application errors on heterogeneous systems.
The classification shown in Fig. 1 is based on the study of Shan Lu et al. on
concurrency defects [11] and the error classification by Münchhalfen et al. [14].
The classification focuses on common application errors to provide a foundation
for future tool support on accelerators. Additionally, to differentiate between
cause and effect of an error, we utilize the notation by A. Zeller [19] that failure
is the manifestation of an error, e.g., non-deterministic results or a blocking
application; and defect is the source of an error, e.g., incorrect source code.

The classification is designed to cover defects for application-programming
purposes, especially regarding CUDA, OpenACC, and OpenMP programs. Syn-
tactic correctness of the code as well as the validation of the programming model
implementation, i.e., compiler and runtime, are out of scope for this work.

3.1 Overview

Using parallel programming paradigms can introduce new kinds of defects
which are finally observed as failures. These are either segmentation faults or
non-deterministic results. In Fig. 1 an overview of the defect classification is
presented. All accelerator application defects belong to one of the following
categories:
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Memory Access Issue

On Accelerator

Inter Team

Concurrency Defect:
-Atomicity Violation

-CUDA: 3
-OACC: 5
-OMP: 13

-Order Violation
-CUDA: 2
-OACC: 8
-OMP: 5

Intra Team

Concurrency Defect:
-Atomicity Violation

-CUDA: 4
-OACC: 5
-OMP: 15

-Order Violation
-CUDA: 2
-OACC: 8
-OMP: 7

Non-
Concurrency
Defects:

-CUDA: 1
-OACC: 1
-OMP: 3

Between Multiple
Accelerators

Concurrency Defect:
-Atomicity Violation
-Order Violation

Between Host and
Accelerator

Mapping
Defect

Stale Data Access

Outdated
Data:

-CUDA: 3
-OACC: 4
-OMP: 4

Missing
Data:

-CUDA: 3
-OACC: 4
-OMP: 4

Wrong Data
Allocation

Missing
Memory
Allocation:

-CUDA: 2
-OACC: 1
-OMP: 1

Failed
Allocation:

-CUDA: 1
-OACC: 1
-OMP: 1

Out of Bounds
Mapping:

-CUDA: 2
-OACC: 4
-OMP: 4

Missing
Memory
Deallocation:

-CUDA: 1
-OACC: 1
-OMP: 1

Concurrency Defect:
-Atomicity Violation

-CUDA: 1
-OACC: 1
-OMP: 1

-Order Violation
-CUDA: 2
-OACC: 1
-OMP: 1

Fig. 1. A classification of common memory access defects in heterogenous comput-
ing. The number behind CUDA, OACC and OMP describes the number of micro-
benchmarks that expose the corresponding defect class for the given programming
model. Each micro-benchmark contains only a single defect.

1. On Accelerator: defects on the accelerator, independent of any other device.
2. Between Host and Accelerator: defects within the communication between

host and device.
3. Between Multiple Accelerators: defects within the communication between

multiple devices.

In this paper, we focus on the first two categories. Figure 1 provides an overview
of the number of micro-benchmarks for each defect pattern per programming
model. Since OpenMP allows the use of critical sections and locks on the device,
we find more different error patterns for OpenMP.

3.2 Concurrency Defects

Concurrency defects as defined in [11], classify defects caused by concurrency. A
non-deadlock concurrency defect can either be an atomicity violation or an order
violation. Atomicity violation means that the intended atomicity of a group of
memory accesses is not enforced. Order violation means that the intended order
of two groups of memory accesses is potentially inverted, i.e., the intended order
is not enforced. In this context memory accesses include memory reads, writes,
allocations, and deallocations.

3.3 On Accelerator

Accelerator programming models typically provide similar high-level abstrac-
tions for program execution. An application is executed by a number of threads
which are further divided into multiple groups. Threads belonging to the same
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group can synchronize with each other, while threads from distinct groups exe-
cute independently. In this paper, we use the term team from OpenMP to refer
to the notion of group (OpenMP team, OpenACC gang, and CUDA thread block
express the same notion as group).

For defects on accelerators we define three classes: Intra team concurrency
defects are bugs that occur within the same team of threads. In contrast, inter
team concurrency defects are bugs between multiple teams of threads. Finally,
non-concurrency defects are those defects that are not caused by concurrency,
e.g., stack buffer overflows.

In general, defects occurring on CPUs may also happen on accelerators. Con-
sidering the overall architectures of hardware accelerators are vastly different
from CPUs, we distinguish inter and intra team concurrency defects to clarify
differences of corresponding failures.

3.4 Between Host and Accelerator

Defects between host and accelerator include order violations in the synchroniza-
tion between host and accelerator, and atomicity violations for asynchronous ker-
nels. In addition, for OpenMP atomicity violations may reside in synchronous
kernels due to memory abstraction. The memory abstraction might hide the
actual usage of unified or separate memory. Therefore an application relying on
a specific implementation of OpenMP runtime may encounter atomicity viola-
tions.

Another defect class between host and accelerator are mapping defects. Map-
ping defects cover all defects related to data movement between host and accel-
erator. In different paradigms data movement is expressed by API functions or
clauses for copy or mapping.

Some defects can be classified into both stale data access and wrong data
allocation, for example, an asynchronous data movement conflicting with con-
current memory accesses. For those defects we treat it as concurrency defects.

Stale Data Access. Defects where data was not copied to or updated at
the desired destination are defined as stale data access. Therefore, on host or
accelerator data is missing. We distinguish missing data, where necessary data
is not copied to the device; and outdated data, where data is changed on one
device but not updated to the other device before accessing the data there.
The example in Listing 1 shows the latter pattern, although it is not the root
cause. Concurrent access to the same memory by both sides can be understood
as outdated data in case of separate memory or concurrency defect in case of
unified memory.

Wrong Data Allocation. Defects related to the allocation or deallocation of
memory, that are not already covered by concurrency defects, are defined as
wrong data allocation. We identified four different kinds of defects. When the
application misses to check for a failed allocation and tries to use this memory
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afterwards we call this failed allocation. We find out of bounds mapping, when
the memory allocation on either side is smaller than the requested size for the
mapping or copy. On missing memory deallocation, allocated memory is not
deallocated at the end of execution which results in memory leaks. We call it
missing memory allocation if no memory is allocated for transferred data before
the first access on the device.

4 Information Usage

To analyze and detect the various defects described in the previous section and
exposed in the provided micro-benchmarks, more or less detailed information
is necessary. In this section, we discuss different levels of information which
can be observed by an analysis tool. Although this might be obvious to tool
developers, we believe, the following might help tool users to better understand
the possibilities, limitations, and runtime overhead of specific tools. The different
levels of information come with different runtime overhead and different impact
on the execution. Furthermore, we classify the previously introduced defects for
their necessary levels of observable information.

4.1 Five Levels of Observable Information

The five levels of observable information are a classification of the information
needed to detect the defined defect classes from the prior section. An overview of
the levels is given in Fig. 2. Each level consists of information about events in a
program, whereby an event can be any observed instruction during the execution
of a program. The different levels build up a hierarchy, i.e., each higher level
includes all information of the corresponding lower levels. The five levels cover
the following information:

1. Ordering: Information on the causality of events is available such that a tool
can derive a happened-before relation for the events of an execution.

2. Memory Management: Memory allocations and data movement are tracked;
this includes source, destination, and size (if applicable).

1. Ordering

2. Memory Management

3. Data Access

a. Intra Team b. Inter Team

4. Host Level Granularity

5. Merged Level Granularity Tool Level

CUDA-MEMCHECK 1 - 4aa

Archer 1 - 4
ThreadSanitizer 1 - 4
GPUVerify Noneb

a shared memory only
b static tool

Fig. 2. The five levels of observable information and their dependencies on the left.
Supported levels for all evaluated tools on the right.
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3. Data Access: Memory location accesses are tracked on host and accelerator
(read or write).

4. Host Level Granularity: In this level we distinguish Intra Team Granularity,
when events within a group of threads (thread block/team/gang) can be
attributed to the individual thread; and Inter Team Granularity when events
within different groups of threads can be attributed to the group of threads.

5. Merged Level Granularity: The system is monitored as a whole allowing the
differentiation between all threads on all devices when accessing the unified
memory space.

4.2 Pattern Identification

In most cases, a tool will not be able to identify the concrete defect in the code,
but in the best case pinpoint its location. The different defects result in different
suspicious behavior which a tool is able to detect. This section presents for each
level of information which of the previously discussed error patterns it can detect.

1. Ordering. Information on the causality of events enables a tool to detect
simple order violations between host and device events. An example could be a
program moving data from the host to device before any memory is allocated on
the device. Since there is no further information on the address and size of the
allocated memory regions, the detection capabilities of a tool with this restricted
information are limited.

2. Memory Management. In case a tool tracks memory allocations and data
movement in addition to just the ordering of events, it can detect all subclasses
belonging to the Wrong Data Allocation class.

A tool can identify Missing Memory Allocation defects by testing if trans-
ferred memory at the destination has been allocated before the actual data
movement. If the corresponding memory is only allocated afterwards, an order
violation between host and accelerator could be diagnosed. Missing Data Deal-
location defects can be detected by testing if the memory is released before the
connection to the accelerator is closed. Failed Allocation defects can be detected
by tracking if memory allocations result in errors. Subsequent null pointer access
could be diagnosed as a potentially unhandled failed allocation. Out of bounds
mapping defects can be detected by comparing the size of the data to be trans-
ferred, the size of allocated memory on source and destination, respectively.

3. Data Access. Tracking all memory accesses including their ordering on both
host and device allows a tool to identify all patterns of the Stale Data Access
class: Missing data defects can be diagnosed if data is read on the accelerator
which is neither initialized nor copied from the host. If either is done after the
access, an order violation is observed. Outdated data defects can be detected,
when data is altered (write access) on one side but not updated to the other side
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before access. In both cases, information from the data access level is necessary
to detect stale data access.

The data access level is also sufficient to detect order violations related to
data mappings between host and accelerator, because no attribution to certain
threads or groups of threads is required to identify this issue.

4. Host Level Granularity. In case of concurrency defects, namely atomicity
violations and order violations, it is not enough to just track memory location
accesses on the accelerator: A tool also has to attribute them to the originating
thread within a group of threads (intra team) or to attribute them to the group
of threads in case of multiple teams (inter team). If this information is available
and additionally all kinds of possible synchronization constructs are tracked
(e.g., exclusive accesses), then atomicity violations and order violations on the
accelerator can be detected. If a concurrency defect within a group of threads
should be detected, then intra team granularity is required. If a concurrency
defect between groups of threads should be identified, then inter team granularity
is required.

5. Merged Level Granularity. This granularity level is only required for
atomicity violations and computation related order violations in case of unified
memory between host and accelerator. Since any thread on any device can be
synchronized to another thread on another device, differentiation of memory
accesses and synchronization between all threads on all devices accessing the
unified memory space must be possible.

5 Tool Evaluation

To understand the support level of correctness tools for accelerator program-
ming, we used DRACC to evaluate a set of existing tools, namely: Thread-
Sanitizer [16,17] delivered with LLVM 7.0, Archer [1] in a development version
compatible with LLVM 7.03, GPUVerify [3] in version 2016-03-284, and CUDA-
MEMCHECK5 as delivered with CUDA 9.1. We carried out the experiments on
Tesla P100 graphic cards on the CLAIX cluster at the RWTH Aachen Univer-
sity. Considering the supported programming models of these tools, we tested
ThreadSanitizer and Archer with OpenMP micro-benchmarks, GPUVerify with
CUDA micro-benchmarks, and CUDA-MEMCHECK with all three groups of
micro-benchmarks. The supported levels of observable information for each tool
are presented in Fig. 2.

Table 1 gives an overview of the evaluation results. It lists the counts of
correct alerts (true positives, TP), false alerts (false positives, FP), error free

3 https://github.com/PRUNERS/openmp/tree/archer 70 (303a691).
4 http://multicore.doc.ic.ac.uk/tools/GPUVerify/download.php.
5 https://docs.nvidia.com/cuda/cuda-memcheck/index.html.

https://github.com/PRUNERS/openmp/tree/archer_70
http://multicore.doc.ic.ac.uk/tools/GPUVerify/download.php
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
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(true negatives, TN), and omission (false negative, FN). Based on these counts,
we calculated the metrics Precision (P = TP

TP+FP ) and Recall (R = TP
TP+FN ).

Since ThreadSanitizer and Archer do not support data race analysis on
the accelerator, we force the OpenMP target regions in the OpenMP micro-
benchmarks to be executed on the host. For both tools we compile the bench-
mark with the flag -fsanitize=thread, and for Archer we additionally load the
Archer runtime library during execution. 20 out of 50 OpenMP error patterns
are detected by both Archer and ThreadSanitizer, and they identify the same
group of error patterns. The LLVM OpenMP implementation decides to only
run a single team for the teams construct, therefore no issues in the inter team
concurrency micro-benchmarks can be observed. Mapping defects are not under-
stood by the tools, but can lead to segmentation faults. No false alerts are
reported by either tool. The error patterns detected by the tools are the kind
of errors which would also be detected for host code, which could be derived by
removing the target regions from these micro-benchmarks.

CUDA-MEMCHECK does not detect any defect in the CUDA version of
DRACC, although some micro-benchmarks result in CUDA errors. Thus, 0 of
the 26 CUDA pattern implementations are detected by this tool. According to
the documentation this tool can detect data races in shared device memory.
For the same reason, the tool cannot detect most data races in OpenMP or
OpenACC micro-benchmarks of DRACC. However, for OpenMP tests CUDA-
MEMCHECK detects a generic defect during the initialization of the target
region, which is disregarded in Table 1. CUDA-MEMCHECK can detect out of
bounds memory mapping from the device to the host in OpenMP and OpenACC.

Since GPUVerify supports two usage modes, -findbugs and -verify, we tested
these two modes on DRACC irrespectively. In both two usage modes, GPUVerify
correctly detected 7 out of 26 CUDA error patterns, reported one false alarm,
and failed to tackle the remaining 18 CUDA error patterns. For intra team
and inter team atomicity violations, GPUVerify pinpointed these concurrency
defects and generated a counter example for each concurrency defect. When
analyzing the micro-benchmark for stack overflow, GPUVerify reported a false
alarm that the micro-benchmark may encounter null-pointer memory access.
A possible explanation for this false alarm is that GPUVerify does not model
memory accesses in recursive function invocations correctly. For the remaining
18 CUDA error patterns, GPUVerify reported internal errors when analyzing the
corresponding micro-benchmarks. The reason for internal errors is these CUDA
error patterns are related to stale data access and wrong data allocation, while
GPUVerify currently only checks data races and barrier divergence. In addition,
some micro-benchmarks use new atomic operations introduced in CUDA 8.0.
Since the 2016-03-28 version of GPUVerify is released earlier than CUDA 8.0,
GPUVerify cannot recognize these atomic operations, which leads to internal
errors.

In summary, DRACC successfully evaluated the functionality of four correct-
ness checking tools. The observed result matches our expectation based on the
description in the documentation.
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Table 1. Analysis results of DRACC on four different tools, values given for CUD-
A/OpenACC/OpenMP

Tool TP FP TN FN P[%] R[%]

ThreadSanitizer -/-/26 -/-/0 -/-/7 -/-/23 -/-/100 -/-/53

Archer -/-/26 -/-/0 -/-/7 -/-/23 -/-/100 -/-/53

GPUVerify 7/-/- 1/-/- 3/-/- 18/-/- 87.5/-/- 28/-/-

CUDA-MEMCHECK 0/2/3 0/1/0 3/9/7 26/31/46 0/67/100 0/6/6

6 Related Work

Münchhalfen et al. [14] published an error classification of OpenMP programs
and solutions for the detection. The main focus of their work is OpenMP. Offload-
ing with OpenMP is also considered in their classification, as part of data trans-
fer errors and data races. The classification in our work covers offloading with
OpenMP, OpenACC, and CUDA.

Friedline et al. [6] developed a test suite to validate OpenACC implementa-
tions and corresponding features in OpenACC 2.5. Their work provides a vali-
dation test suite for compiler architects and programmers. This validation test
suite is designed for multiple hardware architectures to test the portability of
OpenACC code between these architectures.

Similar test suites for OpenMP have been developed by Müller et al. for
OpenMP 2.0 [12] and OpenMP 2.5 [13]. These two test suites aim to cover
the complete standard and valid combinations of OpenMP constructs. Wang et
al. [18] developed a validation test suite for OpenMP 3.1. For OpenMP 4.5 Diaz
and Pophale et al. [4] provided a validation test suite. These two validation test
suites can verify the correctness of runtime implementation according to the
specification.

7 Conclusion and Future Work

This paper introduced DRACC, a micro-benchmark suite containing common
concurrency defects in CUDA, OpenACC, and OpenMP programs. DRACC was
designed as a test suite for correctness tools to evaluate their functionalities. To
cover as many error patterns as possible, DRACC was developed based on error
pattern classifications from previous studies on concurrency defects. The eval-
uation of existing correctness tools demonstrates that DRACC can reveal the
strengths and limitations of a correctness tool being tested. The evaluation fur-
ther shows that proper tools supporting different levels of observable information
are required to detect the discussed error patterns in accelerator programming.

For future work, we plan to extend DRACC to other parallel programing
models which also support accelerators, for example, Kokkos and OpenCL. Fur-
thermore, we also plan to test correctness tools on other accelerators in addition
to Nvidia GPUs to conduct a more comprehensive evaluation.
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Abstract. Nowadays, high-performance computing (HPC) not only
faces challenges to reach computing performance, it also has to take
in consideration the energy consumption. In this context, heterogeneous
architectures are expected to tackle this challenge by proposing a mix of
HPC and low-power nodes. There is a significant research effort to define
methods for exploiting such computing platforms and find a trade-off
between computing performance and energy consumption. To this pur-
pose, the topology of the application and the mapping of tasks onto phys-
ical resources are of major importance. In this paper we propose an iter-
ative approach based on the exploration of logical topologies and map-
pings. These solutions are executed onto the heterogeneous platform and
evaluated. Based on these results a Pareto front is built, allowing users
to select the most relevant configurations of the application according to
the current goals and constraints. Experiments have been conducted on a
heterogeneous micro-server using a video processing application running
on top of a software-distributed shared memory and deployed over a mix
of Intel i7 and Arm Cortex A15 processors. Results show that some coun-
terintuitive solutions found by the exploration approach perform better
than classical configurations.

Keywords: Heterogeneous architectures · Tasks mapping · Solutions
space exploration

1 Introduction

Numerical simulation requires the efficient use of computing resources and leads
to a growing demand in performance to provide more accurate results or to
decrease the computing time. High-performance computing centers usually scale
up to offer more computing power and, despite significant R&D efforts on the
hardware side to limit the energy consumption, the power efficiency has become
an important constraint in the design and management of such centers. Hetero-
geneous computing platforms combines high-performance and low-power com-
putation nodes and are not only intended to be deployed in HPC but also in
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 258–269, 2020.
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embedded HPC as in autonomous vehicles, IoT and smart manufacturing. The
efficient use of heterogeneous platforms is a complex task since it is the result
of several intricated sub-problems including application sizing, task mapping
and scheduling. The design of high-level tools to help users and platform man-
agers has become an important field of research in the heterogeneous computing
community.

One of the issues in such architectures is the deployment of distributed appli-
cations in respect of performance constraints and goals. Distributed applications
can usually be configured prior to deployment by setting the number of tasks
and the placement of tasks onto computing resources. The combination of appli-
cation sizing and task mapping provides different computing performance (eg.
computing time, latency, bandwidth..) and energy consumption (eg. instanta-
neous power in W or total consumption in kJ) for the same functionality. In this
work we propose an exploratory approach to automatically evaluate different
application configurations and relieves the user from manually configuring the
deployment of applications. Configurations are evaluated on the heterogeneous
platform when needed and a Pareto front is built according to constraints and
objectives of interest. This representation is given as a decision tool for the user,
from which it is possible to pick a particular configuration that meets at best
the current requirements.

As a motivating example, we consider applications running on top of a
software-distributed shared memory (S-DSM) and deployed over a heterogeneous
computing platform. S-DSM is basically a runtime that aggregates distributed
physical memories into a shared logical space. It is inherently a distributed sys-
tem with different roles: S-DSM servers for managing data and metadata and
application clients to run the user code. These roles can be instantiated, orga-
nized into topologies and mapped onto physical resources, hence leading to per-
formance and energy consumption trade-off when deploying onto the heteroge-
neous platform. We use a video processing application on top of the S-DSM and
evaluate the exploratory approach to build a Pareto front using an heterogeneous
Christmann RECS|Box Antares Microserver as for testbed.

The paper is organized as follows: Sect. 2 describes the S-DSM model and
deployment context. Section 3 introduces the S-DSM topology definition prob-
lem, the resolution approach and the results of the deployment on heterogeneous
architectures. Section 4 defines the mapping problem, the developed strategies
and the deployment on heterogeneous architectures results. Section 5 gives some
references on previous works. Finally, Sect. 6 concludes this paper and gives new
perspectives.

2 Topologies and Mappings for DSM

Shared memory is a convenient programming model in which a set of tasks can
concurrently allocate and access data in a global memory space. While the imple-
mentation is quite straightforward in a single memory system, shared memory
requires a tight design to be deployed on a complex architecture with physically
distributed memories.
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2.1 Distributed Shared Memory

The distributed shared memory (DSM) provides such a completely hardware-
independent layer, at the price of hiding complexity into the runtime. The run-
time is in charge of transparently managing local and remote data while mini-
mizing the processing and communication costs. DSM have been studied since
the late eighties with systems such as Ivy [9] and later adapted to new com-
putation contexts such as clusters [1], grids [2] and many-core processors [11].
There is a price for offering hardware abstraction and code portability: most of
DSM systems come with a significant overhead compared to distributed applica-
tions that use explicit communications. The contribution proposed in this paper,
while based on a generic approach, is applied to the DSM context and aims at
finding efficient configurations for the deployment of distributed shared memory
applications.

2.2 Topology for DSM

In this work [3], a Software-DSM (S-DSM) is proposed to federate memories over
heterogeneous architectures. The system can be seen as a regular distributed
application with state machines to implement data coherence protocols. The S-
DSM is organized as a semi-structured super-peer network as presented in Fig. 1.
A set of clients are connected to a peer-to-peer network of servers, mixing both
client-server and peer-to-peer topology types. Servers are in charge of the shared
data and metadata management while clients stand as the interface between the
application user code and the S-DSM API. Building constraints for topologies
include: (1) a minimal topology is made of one server, (2) there is a fully con-
nected graph between servers, (3) each client is connected to one and only one
server and (4) connections are not allowed between clients.

2.3 Application Model and Description

Applications running on this S-DSM are defined as a set of roles. Roles can be
instantiated into clients using a given implementation. For each role, the appli-
cation description defines the following constraints: the minimum and maximum
numbers of instances (clients) and the available implementations. A description
example is given in Fig. 2. This application requires one client to decode the input
video stream, at least one client to process the stream and one client to encode
the output. From this description it is possible to build different functionally-
equivalent S-DSM topologies by setting the number of S-DSM servers, the num-
ber of processing clients and the way it is connected.

In this paper we consider a video processing application as presented in Fig. 2.
Video frames are decoded by the input role, assigned to one of the process role
using an eager scheduling strategy and encoded by the output role. Frames
are stored into shared buffers within the Distributed Shared Memory: one input
buffer and one output buffer for each processing task. The processing task applies
an edge detection algorithm (a convolution using a 3× 3 kernel) and a line
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Fig. 1. S-DSM semi-structured super-peer topology.

ROLE MIN MAX IMPLEM
sdsm server 1 ∞ C, Pthread
video input 1 1 OpenCV
video process 1 ∞ C, Pthread, OpenMP
video output 1 1 OpenCV

Fig. 2. Video processing application description.

detection algorithm (a Hough transform implemented in double precision). For
technical reasons, the input and output roles are implemented using the OpenCV
library and always deployed on the Core i7 processors. The processing role can
be instantiated in C, Pthread (4 threads) and OpenMP. The input is a 1-min
video file, with a total of 1730 frames and a resolution of 1280 × 720 pixels.

2.4 Heterogeneous Platform

Previous results in [3] have shown that building relevant topologies and mappings
are of major importance when it comes to efficiently use computing resources.
This is particularly true when considering heterogeneous resources. The plat-
form used in [3] is close to the one that is used in this work. It is a Christmann
RECS|Box micro-server with heterogeneous processing elements. This server is
a 1U rack composed by a backplane that provides power supply and network-
ing capabilities to a set of slots. Each slot can host a computing node such
as high-performance processors, low-power processors, accelerators, GPGPUs
and FPGAs. Processing elements are different in terms of computing power
and energy consumption. In this configuration, and for our own applications, a
Cortex A15 is nearly 4 times slower than a Core i7. Instantaneous power con-
sumption is around 7W for A15 and 30W for i7 at full load. The network also
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presents disparities in terms of bandwidth and latency due to different medi-
ums and network architectures. For example, the Ethernet over USB is common
for embedded devices and the Cortex A15 processors that rely on this interface
are loosely connected compared to the i7 processors. In this work, we limited
resources to a subset of the computations nodes available on the RECS|Box
Antares micro-server. Figure 3 gives details of the nodes used in this paper as
well as the number of processing units and supported implementations.

Node PU IMPLEM
Intel I7 8 C, OpenMP, Pthread, OpenCV

Cortex A15 2 C, OpenMP, Pthread
Cortex A15 2 C, OpenMP, Pthread
Cortex A15 2 C, OpenMP, Pthread
Cortex A15 2 C, OpenMP, Pthread

Fig. 3. Computing nodes used in the experiments.

Consequences on Heterogeneous Resources. In Fig. 4, processing times
are given for an image processing application with different topologies and map-
pings. S-DSM servers are represented with green cylinders, image input and out-
put clients with orange arrows and processing clients with blue arrows. For each
client, an horizontal segment indicates to which server it is connected. Topolo-
gies and mappings lead to very different results, even when comparing similar
configurations. Even with a tight knowledge of the application, the S-DSM run-
time and the hardware, it is difficult to find efficient hand-made solutions based
on the sole expression of intuition.

Fig. 4. S-DSM performance results for different topologies.

In this context, an automatic design space exploration should be used to
build application configurations. This is particularly important when consider-
ing adversarial metrics such as computing time and power consumption, while
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Fig. 5. Automatic design space exploration flow for efficient use of heterogeneous
resources

targeting heterogeneous resources. In that case, the exploration system should
propose different trade-off solutions and help the user to take an appropriate
decision. Furthermore, this has to be done quite transparently for the applica-
tion, without any code modification such as pragmas.

In this work, we propose to automatically explore application configurations
and mappings over heterogeneous resources. Figure 5 illustrates the proposed
design space exploration flow. Topologies and mappings are generated from given
application and hardware descriptions. Solutions are evaluated by deploying and
monitoring the application on the targeted computing hardware platform. The
results are then used to build a Pareto front allowing a user to select relevant
configurations corresponding to his objectives and constraints.

3 Space Exploration for Topologies

Generating all possible configurations is not acceptable because it is a time con-
suming operation. However, in order to generate a relevant set of topologies,
we have been inspired by approximate methods. This class of methods, called
also heuristics, gives a trade-off between the computation time and the quality
of solutions. Neighborhood search (local search), is a meta-heuristic method for
solving computationally hard optimization problems. This type of algorithms is
widely applied to various computational problems in several fields. This algo-
rithms move from a solution to another in the space of candidate solutions (the
search space) by applying local changes, until a solution deemed as optimal is
found or a time bound is elapsed.

In this work, we instrument a multi-starts local search to investigate the
search space. This approach involves starting from several solutions and per-
forming as much parallel local searches in order to generate a set of new solu-
tions. The key point of this approach is the generation of starting solutions. The
starting solutions have to be sufficiently scattered in the search space to explore
it at best.
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We chose to implement this approach among others because of its simplic-
ity. Moreover, it can be a good starting point for building more sophisticated
approaches such as simulated annealing algorithm. This method involves two
steps. The first step is the generation of initial solutions. The second one cor-
responds to the neighborhood exploration. Initial solutions and those generated
using local search were deployed on the RECS|Box Antares micro-server for
evaluating their execution times and their energetic costs. For the rest of the
document, “solution” designates a topology.

3.1 Initial Solutions Generation

Initial solutions are built using a greedy approach. To build a solution we have to
set the number of servers, the number of tasks for each role and the connections
between servers and clients. To obtain various starting solutions, we varied the
number of servers and the number of tasks for each role. The server number has
been varied from one to the number of nodes available on the targeted computing
platform (5 in our example), to obtain a set of partial solutions. Then for each
partial solution, we varied the number of the processing role instances to obtain a
new set of partial solutions. Once the number of servers and the number of tasks
for each role are set, a function is in charge of randomly establishing connections
between servers and tasks preserving the uniqueness constraint. This last step
leads to the completion of all the solutions. The generated topologies are not
necessarily valid solutions: at this stage we can not guarantee that each topology
will have at least one possible mapping on the target computing platform.

Deployment of Initial Solutions on Heterogeneous Platform
Figure 3 gives details on the resources used while the application is described on
Fig. 2. Figure 6 shows the performance and energetic costs of initial solutions.
First, the energy consumption increases according to the number of nodes. Sec-
ond, the execution time does not necessarily decrease if we use more computing
nodes, hence falling beyond speedup. Figure 7 gives details of the solutions used
to build the Pareto front (Solutions A and B). Solution B takes less time to com-
plete its execution thanks to the extra processing task and the load distribution
between the two S-DSM servers. However this has an additional cost for energy
consumption and solution B is not as efficient as solution A when comparing
frames per second per KJ (FPS/KJ).

Solution A’ (Fig. 7) is obtained by adding to solution A a processing instance
mapped on the Intel processor. Adding this processing task should intuitively
decrease the application execution time, but that is not what happens. The
Open MPI runtime implementation is intended to be deployed on HPC systems.
In order to be as responsive as possible, the receive function busy-waits and
continuously polls for new messages, the latter being CPU-demanding. When
deploying several MPI processes on the same CPU, the local OS scheduler has
to cope with legitimate MPI processes running user code and falsely busy MPI
processes waiting for messages, the first being slowed down by the second.
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Fig. 6. Initial topologies

Solutions Nodes nbs nb tasks Time (s) FPS KJ FPS/KJ
solution A 1 Intel 1 4 398 4.3 11.5 0.38
solution B 1 Intel + 1 Cortex A15 2 5 375 4.6 13.5 0.34
solution A’ 1 Intel 1 5 375 4.6 13.5 0.34

Fig. 7. Solutions of the initial Pareto front (A and B) and solution A’ obtained by
adding a processing task onto the Intel node. nbs stands for the number of S-DSM
servers. Frames per second (FPS). Energy is given in KJ.

3.2 Neighborhoods Description

A neighborhood is obtained by applying a given number of modifications such
as sub-topology swapping to the original solution. This generates several new
solutions. In our context, several modifications are used such as adding or delet-
ing S-DSM servers, adding or deleting a role instance (in respect with the min
and max constraints), deleting a connection between a task and a server and
establishing a connection with a new server. A first neighborhood is obtained
by moving a client from the clients’s list of a server to a clients’s list of another
server. The second neighborhood is obtained by merging all servers clients’s lists
into a single list, shuffling the clients, splitting the list according to the initial
number of servers, and finally randomly assigning new lists to servers.

Deployment of Local Solutions on the Heterogeneous Platform
In Fig. 8a the performance and the energy consumption of the initial solutions
are compared with the solutions generated by the local search. For these exper-
iments we have discarded solutions that overrun 16 minutes of execution time.
This figure reveals that the local search allowed to conquer empty spaces in
which solutions are of better quality in terms of both energy cost and execution
time, compared to those generated initially. The best solution found using the
neighborhood exploration regarding the performance metric is 16% better than
the best solution of the initial set. Figure 9 gives details about the solutions used
to build the Pareto front with local search.
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(a) Initial vs. neighborhoods topologies (b) ’mapping 1’ vs. ’mapping 2’ strategies

Fig. 8. Topologies and mapping solutions spaces exploration.

Fig. 9. Solutions building the Pareto front using local search.

Solution C takes less time to complete its execution thanks to an efficient
load distribution between 4 S-DSM servers. The Pareto front solutions have the
following pattern: a server, the I/O clients and the processing tasks are mapped
onto the Intel i7 node and additional servers are mapped on the Cortex A15
nodes. The more servers we have, the lower the processing time is. This rule
stops being true for solutions having 5 and more servers. Increasing the number
of S-DSM servers balances the load of access requests from the clients, and
avoids the centralized bottleneck server issue. However, after reaching a given
number, the benefit vanishes because of the increasing probability for a server to
forward the request to another one, leading to additional communication delays
(multi-hop). Using more Cortex A15 to manage shared data increases the energy
consumption and solution C is not efficient considering FPS/KJ.

4 Mapping Problem

In this section, we evaluate the impact of the mapping step on the execution
time and energy consumption of the generated topologies. The mapping step
consists in assigning servers and tasks instances to computing resources, tak-
ing into consideration the heterogeneous aspect of the platform and the avail-
able implementations (a role can provide different implementations, eg. pthread,
OpenMP, OpenCL). A complete mathematical formulation of tasks mapping on
heterogeneous system problem is available in [13]. In this work, two straightfor-
ward mapping strategies were developed for the experiments. The first strategy
mapping 1 attempts to co-localize the clients with their corresponding servers
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in order to benefit from data locality. The second mapping strategy mapping 2
randomly assigns servers and clients to computing nodes. For both strategies
we limit the exploration to one server per node at most. Figure 8b shows the
impact of the two mapping strategies on performance and energy consump-
tion. Blue dots in the Pareto indicates solutions with the mapping 1 strategy
while the yellow dots are for solutions with mapping 2. This figure reveals that
the solutions coming from mapping 2 are better in both execution time and
energy consumption. Intuitively, collocating processing tasks together with their
attached S-DSM servers sounds to be an efficient strategy to benefit from data
locality. This does not appear to be an efficient strategy: processing tasks that
are mapped onto Cortex A15 severely slow down the entire computation as this
kind of processor is not suited for executing high performance tasks. Conversely,
Cortex A15 are better used to host S-DSM servers only, as application helpers,
which is quite counterintuitive at first given the poor network communication
capabilities. In conclusion, as applications and heterogeneous computing plat-
forms become more complex, the automatic exploration of configurations appear
to be a steady approach towards an efficient use of resources.

5 Related Works

The idea of using the most suitable hardware resource for a specific application
is not new and has been explored in previous works. However, the two different
subjects of exploring the application topology and the task mapping are usually
addressed separately. Some works have targeted regular MapReduce-based appli-
cations. For instance, the TARA [8] system uses a description of the application
to allocate the resources. However, this work is tailored for a very specific class
of applications and does not address hardware details. In [6] the authors intro-
duce a new topology-aware resource selection algorithm to determine the best
choice among the available processing units of the platform, based on their posi-
tion within the network and taking into account the applications communication
matrix. However this work does not study the methodology impact on energy
consumption. In mARGOt [5] the authors propose a design space exploration
method leading to the building of a Pareto front. Their method requires code
transformations and code variants called software knobs. In this work, there is
no need to modify the application. The tasks mapping problem has been exten-
sively studied in the last decade and numerous methods have been reported in
the literature under various assumptions and objectives. In [4] the authors aim
at finding a trade-off between energy consumption and execution time using
genetic algorithm heuristic to build a Pareto front. In [12] the authors resolve
task assignment problem on heterogeneous platform attempting to minimize the
total execution time and the communication cost. In [10] an iterative algorithm
is proposed for the mapping problem on heterogeneous computing platforms
with load balancing as a goal. In [13] the authors model both task scheduling
and mapping in a heterogeneous system as a bi-objective optimization problem
between energy consumption and system performance.
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Previous works have not established a relationship between the application
sizing, the application topology building and the task mapping problems, and
their impact on both performance and energy consumption. In our work we
propose to combine these problems and explore different configurations without
relying on user hints, code modifications, pragmas or a specific dataflow pro-
gramming model. We evaluate the solutions on the heterogeneous platform and
build a Pareto front allowing users to select the most relevant configuration as
in a decision system. In the early 2000, a definition of autonomic computing
has been introduced by IBM [7] including self-managing attributes. This work
contributes to the self-configuring and self-optimizing attributes.

6 Conclusion

The new great challenge for today’s high-performance computing stands in
the energy savings. Innovative heterogeneous computing platforms such as the
Christmann RECS|Box offers several computing units with different specifica-
tions in order to offer to the users the possibility to optimize the execution of
their applications in terms of performance and energy consumption. However,
the efficient use of these platforms remains an open topic for both the academic
and the industrial worlds. In this work we have presented some experiments
using a video processing application on heterogeneous computing machine to
analyze the impact of the S-DSM topology definition and mapping steps on the
execution time and energetic cost. To achieve this, we have proposed a local
search method to generate several topologies that have been evaluated in order
to build a Pareto front. This Pareto allows users to choose the solution that
matches at best their current goals and constraints in terms of execution time
and energy consumption. Thanks to this approach we were able to find coun-
terintuitive solutions that perform surprisingly well for both performance and
energy. Future work will include a model for energy and performance estimation
to evaluate topology and mapping solutions at a higher level and avoid as much
as possible the deployment of the generated solutions onto the hardware.
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Abstract. This paper introduces our research on investigating the pos-
sibility of using heterogeneous all-MPI programming for the efficient par-
allelization of real-world scientific applications on clusters of multicore
SMP/ccNUMA nodes. The investigation is based on verifying the effi-
ciency of parallelizing a CFD application known as MPDATA, which
contains a set of stencil kernels with heterogeneous patterns. As the first
step of the research, we consider the level of SMP nodes, and compare
the performance achieved by the MPI Shared Memory model of MPI-3
versus the OpenMP approach. In contrast to other works, this paper aims
to evaluate these two programming models in conjunction with the par-
allelization methodology recently proposed [1] for performance portable
programming across multicore SMP/ccNUMA platforms. We show that
the shared memory extension of MPI delivers portable means for imple-
menting all steps of this methodology efficiently, to take advantages of
emerging multicore ccNUMA architectures.

Keywords: MPI shared memory · Multicore SMP/ccNUMA ·
MPDATA

1 Introduction

The Message Passing Interface (MPI) [2] is a dominant parallel programming
model for distributed memory systems, including large clusters with tightly cou-
pled SMP nodes. In the recent past, applications written with nothing except
MPI were able to deliver an acceptable and portable performance, as well as scal-
ability. However, as the number of cores per node has increased, programmers
have increasingly took advantage of the hybrid (heterogeneous) parallel pro-
gramming with MPI for internode communications in conjunction with shared
memory programming systems, such as OpenMP, to manage intranode paral-
lelism [3]. While this hybrid model, known as MPI+X [4], provides a lot of flex-
ibility and performance potential, it burdens programmers with the complexity
of using two parallel programming systems in the same application [5]. Apart
from problems with a proper work of interface between two systems, there are
other open issues, e.g., who manages the cores and how is that negotiated?
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Version 3.0 of the MPI standard introduces another option for hybrid pro-
gramming that uses the new MPI Shared Memory (SHM) model [6] to build
MPI-everywhere codes for clusters with SMP nodes. In this MPI+MPI model,
the MPI SHM extension enables programmers to create regions of shared mem-
ory that are directly accessible by MPI processes within the same shared mem-
ory domain. Also, several functions were added that enable MPI ranks within
a shared memory region to allocate shared memory for direct load/store access.
The ability to directly access a region of memory shared between ranks can
improve performance in comparison with the pure MPI option, by reducing
memory motion and footprint [3,5].

This paper introduces our research on investigating the possibility of using
heterogeneous all-MPI programming for the efficient parallelization of real-world
scientific applications on clusters of multicore SMP/ccNUMA nodes. The inves-
tigation is based on verifying the efficiency of parallelizing a CFD application
known as MPDATA (Multidimensional Positive Definite Advection Transport
Algorithm) [7]. It contains a set of stencil kernels with heterogeneous patterns.

As the first step of our research, we consider the level of SMP nodes, and
compare the performance achieved by the MPI SHM model versus the OpenMP
approach. The latter has become [4] a dominant choice for parallel programming
of modern shared memory systems used as cluster nodes. The capabilities of
such systems are constantly growing as a result of quick progress in multicore
technology. It is quite easy to build SMP nodes with 112 or even 224 cores (2×56
cores with Intel Xeon Platinum 9282 or 8×28 with Intel Xeon Platinum 8280, see
https://ark.intel.com). Thus, efficient harnessing of multicore SMP nodes with
high degree of parallelism becomes of vital importance for the total performance
of applications.

This paper is organized as follows. Section 2 discusses related works, while
Sect. 3 presents a brief comparison of MPI SHM and OpenMP models. The
MPDATA application is introduced in Sect. 4, which presents also the paral-
lelization methodology for shared memory multi- and manycore architectures.
Mapping MPDATA decomposition onto OpenMP and MPI Shared Memory is
revealed in Sect. 5, while results of experimental evaluation of these two options
are presented and discussed in Sect. 6. The paper is concluded in Sect. 7.

2 Related Work

The MPDATA code has been recently re-written and optimized for execution on
HPC platforms with multicore CPUs and Intel MIC accelerators. The new C++
implementation proposed in [8] allows a more efficient distribution of computa-
tions across the available resources. It makes use of the (3+1)D decomposition
strategy for heterogeneous stencils, that transfers the data traffic from the main
memory to the cache hierarchy by reusing caches properly. Also, to improve the
efficiency of computations, the algorithm groups the cores/threads into indepen-
dent work teams in order to reduce inter-cache communication overheads due to
transfers between neighbor cores.

https://ark.intel.com
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Next, to harness the heterogeneous nature of communications in shared mem-
ory systems with ccNUMA architecture, the islands-of-cores approach was pro-
posed in [9]. It allows a flexible management of the trade-off between computa-
tion and communication costs in accordance with features of multicore ccNUMA
architectures. Finally, to reduce the synchronization overheads, an innovative
strategy for the data-flow synchronization in shared memory systems was devel-
oped in [10]. As all designed codes were implemented with OpenMP, their direct
extension on clusters with multicore SMP nodes requires utilizing the hybrid
MPI+OpenMP approach.

This approach has already been applied quite successfully to real scientific
applications [11,12]. For the CFD simulation considered in [11], the hybrid code
can outperform a pure MPI version by up to 20%, while pure MPI still outper-
forms hybrid MPI+OpenMP in modeling of granular materials [12]. Recent sci-
entific works enlighten the complexity of many aspects of the hybrid model that
affect the overall performance and development costs of hybrid programs [2,3,5].
Thus, choosing a right option for parallel programming of real-world applica-
tions on clusters requires further research. In particular, there are surprisingly
few works on performance comparison between MPI+MPI and MPI+OpenMP
approaches. An example is work [13] on a performance evaluation of the MPI
SHM model compared to OpenMP, using two relatively simple case studies: the
matrix-matrix multiplication and Conway’s game of life. The latter is an exam-
ple of an 8-point stencil application. In contrast to this work, our research aims
at evaluating these two programming models in conjunction with the paralleliza-
tion methodology proposed recently [1] for performance portable programming
across multicore SMP/ccNUMA systems. What is important, this methodology
is not tailored to a particular programming approach.

3 MPI Shared Memory Model Compared to OpenMP

By default MPI codes are executed under the distributed memory model that
assumes the private data allocation for each MPI process. In consequence, all
processes have to communicate with each other using calls to MPI functions
that typically moves data explicitly or perform some collective operations [14].
In this memory model, data are not shared automatically across MPI processes.

The MPI-3 RMA (Remote Memory Access) interface extends the default
memory model with a new unified model [3] that is exposed through the MPI
window. An MPI window object can be used to allocate shared memory regions
[14] using the collective MPI routine MPI Win allocate shared. It enables also
the non-contiguous shared memory allocation by specifying the key info parame-
ter alloc shared noncontig in order to fully utilize ccNUMA architectures. In
addition, the function MPI Win shared query is provided to query pointers to
the memory allocated on MPI processes, that enable them immediate load/store
operations with automatically propagated updates of data. As a result, data are
automatically shared between MPI processes in a similar fashion as for OpenMP
codes, where all OpenMP threads access data in parallel and coherent way [15].



Toward Heterogeneous MPI+MPI Programming 273

MPI requires the explicit control of data parallelism. It is responsibility of
programmers to formulate explicitly the workload distribution strategy. Nev-
ertheless, the richness of the MPI library makes this shortage relatively easy
to overcome. In contrast, OpenMP offers a straightforward mechanism for data
parallelism that can automatically split the workload across available threads.
However, as shown in [1], the parallel efficiency of an application can be signifi-
cantly improved by replacing the standard solution for data parallelism, such as
#pragma omp for, by a custom strategy for workload distribution adapted to
the application, as well as to a target architecture. As a result, the data or loop
parallelism with threads often requires a specific parallelisation strategy which
in fact is similar to that of MPI, especially for shared memory programming.

4 Overview of MPDATA Parallelization

4.1 Introduction to MPDATA Application

The MPDATA application implements a general approach to modeling a wide
range of complex geophysical flows on micro-to-planetary scales [7]. MPDATA
belongs to the class of methods for the numerical simulation of fluid flows that
are based on the sign-preserving properties of upstream differencing. It is mainly
used to solve the advection problems on moving grids for a sequence of time
steps, that classifies MPDATA into the group of forward-in-time algorithms. In
this paper, we consider solving 3D problems. The MPDATA numerical scheme
is described in detail in [7].

MPDATA is typically used for long simulations that run thousands of time
steps. A single step operates on five input matrices (arrays), and returns a single
output array that is used in the next step. Each MPDATA step performs a
collection of 17 kernels that depend on each other (the outcomes of prior kernels
typically are inputs for the subsequent ones). Each kernel is a stencil code that
updates elements of its 3D output array, according to a specific pattern.

4.2 Parallelization Methodology for Shared Memory Systems

In the basic version of MPDATA (Listing 4.1) all kernels are executed sequen-
tially, one by one, with each kernel processed in parallel using OpenMP. This
version exploits data parallelism across i-dimension, based on distributing data
across available resources by #pragma omp for directive, and then incorporates
vectorization along k-dimension using #pragma vector directive [16].

The operational intensity of each MPDATA kernel is not high enough [1,17]
to utilize computing resources of modern processors efficiently. Since the code
is not optimized for cache reusing, the performance of this MPDATA version
is limited by the main memory bandwidth. To alleviate these constraints, we
developed [1,8–10] a parallelization methodology for MPDATA heterogeneous
stencil computations. It contributes to ease the memory and communication
bounds, and to better exploit resources of multicore ccNUMA/SMP systems.

This methodology consists of the following parametric optimization steps:
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Listing 4.1. Part of 3D MPDATA basic version, corresponding to the 4-th kernel

/* ... */

// Kernel 4

#pragma omp for

for( ... ) // i - dimension

for( ... ) // j - dimension

#pragma vector

for( ... ) // k - dimension

x[i,j,k]=XIn[i,j,k]-(((F1[i+1,j,k]-F1[i,j,k])+(F2[i,j+1,k]

-F2[i,j,k])+(F3[i,j,k+1]-F3[i,j,k]))/H[i,j,k]);

/* ... */

• (3+1)D decomposition of MPDATA [8] – the prime goal of is to take advantage
of cache reusing by transferring the data traffic between kernels from the main
memory to the cache hierarchy. For this aim, a combination of loop tiling and
loop fusion optimization techniques is used, that allows reducing the main
memory traffic at the cost of additional computations.

• Data-flow strategy of synchronization [10] – the main purpose is to synchro-
nize only interdependent threads instead of using the barrier approach that
typically synchronize all threads. This strategy reduces the cost of synchro-
nization. Implementing this strategy for MPDATA needs to reveal the scheme
of inter-thread data traffic during execution of MPDATA kernels.

• Partitioning cores into independent work teams [9] – this strategy delivers
two scenarios for executing MPDATA kernels: the first one performs less
computations but requires more data traffic, while the second scenario allows
us to replace the implicit data traffic by replicating some of computations.
As a result, the second scenario is successfully used to reduce inter-processor
communications between caches in ccNUMA systems, while the first scenario
is applied inside each processor.

• Vectorization – the last step is responsible for ensuring the performance porta-
bility of vectorizing MPDATA computations. In paper [1], we proposed the
7-step procedure for the MPDATA code transformation to allow the compiler
to perform the vectorization automatically.

Figure 1 illustrates the hierarchical decomposition of MPDATA according to
the proposed methodology. In general, the MPDATA domain is partitioned into
p sub-domains that are processed by p processors of a given ccNUMA platform
(Fig. 1a). Now each processor embraces a work team of cores, where each work
team processes a sub-domain following the (3+1)D decomposition (Fig. 1b). Fur-
thermore, each sub-domain is decomposed into blocks of size that enables keeping
all the required data in the cache memory. The successive blocks are processed
sequentially, one by one, where a given block exploits data parallelism across i-
and j-dimensions (Fig. 1c) to distribute workload across available cores/threads.
Each core of a given work team executes computations corresponding to all
MPDATA kernels, that are performed on appropriate chunks of data arrays.
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Fig. 1. Decomposition of MPDATA: a) domain partitioning into sub-domains, b) sub-
domain decomposition into blocks of size adjusted to cache capacity, c) parallel exe-
cution of kernels within a single block by a given work team, and d) synchronization

Finally, the data layout used for storing arrays enforces performing the vector-
ization along k-dimension.

Because of data dependencies between the kernels, two synchronization levels
have to be considered: inside every work team (first level), and between all
work teams (second one). The parallelization of every block requires providing
five synchronization points inside every work team. To improve the efficiency
for the first level, only interdependent threads are synchronized according to
data dependencies of kernels (Fig. 1d). Additionally, all work teams have to be
synchronized after each time steps to ensure the correctness of simulation.

In order to implement the parallelization methodology automatically, we pro-
posed [1] the parameterized transformation of the MPDATA code to achieve
the high sustained and scalable performance for ccNUMA shared memory sys-
tems. As a result, the adaptive MPDATA code follows along with parameters of
hardware components such as memory hierarchy, multi-/manycore, threading,
vectorization, and their interaction with MPDATA computations.

5 Mapping MPDATA Decomposition onto Shared
Memory Programming

5.1 Data Parallelism

The complexity of the proposed hierarchical decomposition (see Fig. 1) makes
it impossible to efficiently implement parallelization across available cores using
general approaches for data parallelism, such as #pragma omp for construct of
OpenMP. Instead, based on the four-step procedure for MPDATA code cus-
tomization [1], we developed a dedicated scheduler that is responsible for the
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management of workload distribution and data parallelism. The main assump-
tion is to calibrate the developed hierarchical domain decomposition for a given
computing platform, before the execution of a specific numerical simulation.

Following the proposed customization, our scheduler explicitly define the
scope of work for all available computing resources of a given ccNUMA system.
As a result, each physical core is assigned to a given work team that process
all MPDATA blocks from its sub-domain, and then is linked to appropriately
selected pieces of distributed data for all MPDATA kernels within every block.
This is achieved by providing a suitable loop-level management of loop itera-
tions distributed across computing resources. A simplified structure of loop-level
management for the proposed hierarchical decomposition is shown in Listing 5.1.

Since the scope of work for each core is individually determined, the proposed
methodology can be successfully implemented for any shared memory model that
supports data parallelism. To map efficiently the proposed decomposition onto
shared memory programming systems, such as OpenMP and MPI SHM, each
OpenMP thread or MPI process has to be associated with the workload defined
for a given physical core, using its ID (OpenMP thread ID or MPI rank). A part
of this issue is selecting a correct policy for binding OpenMP threads or MPI
processes to physical cores that can guarantee optimality of both data parallelism
and inter-core communication paths. Both Intel MPI and Intel OpenMP offer a
flexible interface to control thread/process affinity [14,16].

5.2 Memory Allocation and Data Sharing

The MPDATA code distinguishes two groups of data: (i) a large set of 3D arrays
(matrices) of floating-point type processed during MPDATA computation, and
relatively small packages of data of various types required for the loop-level
management with the proposed scheduler. For performance reasons, it is of vital
importance to allocate the first group of data closest to a physical core on which
a given OpenMP thread or MPI process is executed. For the OpenMP version,
achieving this goal is based on utilizing the first-touch policy with parallel ini-
tialization. For the MPI version, specifying the alloc shared noncontig info
key enables to allocate the first group of data in noncontiguous memory regions,
and as a result allow eliminating negative ccNUMA effects.

The noncontiguous memory allocation strategy also permits us to avoid repli-
cations of data of the first group between MPI processes. In contrast, we propose
replicating the read-only data of the second group to expose their copies indi-
vidually to each MPI process. Because of heterogeneity and fine-grain nature
of these data, this replication data strategy definitely simplifies the structure of
code at the negligible cost of extra memory consumption.

5.3 Synchronization

Besides solving issues of data parallelism, memory allocation and data sharing,
the new version of MPDATA requires also providing an efficient synchronization
mechanism. We solved [10] this issue for the OpenMP code by developing the
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Listing 5.1. Structure of loop-level management of new 3D MPDATA implementation

for (...) // i-dim for sub -domains

for (...) // j-dim for sub -domains

for (...) // i-dim for MPDATA blocks

for (...) // j-dim for MPDATA blocks

for (...) // k-dim for MPDATA blocks

{

// Parallelization across cores

for (...) // i-dim for sub -blocks of 1st kernel

for (...) // j-dim for sub -blocks of 1st kernel

// Vectorization

for( ..) // k-dim for sub -blocks of 1st kernel

/*.... Kernel 1 ...*/

/*... Synchronization Points ...*/

/*... and other MPDATA kernels ...*/

}

custom mechanism for our data-flow strategy. This mechanism uses low-level
compiler intrinsincs such as fetch-and-add instruction. This solution negatively
affects the code portability across emerging compilers and CPU architectures,
due to the need for validation of the correctness of code before its real use.

In contrast, the MPI-3 version delivers programming solutions that allow the
portable implementation of the proposed synchronization strategy. This imple-
mentation is based on the non-blocking barrier MPI ibarrier and corresponding
MPI Waitall routine used for the subsequent completion. Following the scheme
of inter-core data traffic in the MPDATA application outlined in [10], the exe-
cution of computations by a given core depends on outcomes generated by two
neighbor cores placed on its right and left sides (see also Fig. 1d). As a result, the
data-flow strategy can be successfully implemented by starting the non-blocking
synchronization for the left neighbor of every core, next for its right neighbor,
and afterward waiting until all of the cooperated cores complete the synchro-
nization operations identified by MPI requests (Listing 5.2).

The MPI SHM interface assumes also an explicit use of synchronization to
ensure memory consistency, as well as the visible of changes in memory to the
other processes [14]. In consequence, we select the passive target synchronization
model, defined by the pair of MPI Win lock all and MPI Win unlock all func-
tions. These functions specify the time interval, called an RMA access epoch,

Listing 5.2. A code snippet for MPI version of data flow strategy

MPI_Win_sync(MPDATA_Win_to_Sync );

MPI_Ibarrier(MPDATA_LEFT_MEMBERS_COMMUNICATOR , MPIreq +0);

MPI_Ibarrier(MPDATA_RIGHT_MEMBERS_COMMUNICATOR , MPIreq +1);

MPI_Waitall(2, MPIreq );
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when memory operations are allowed to occur. Afterward, the MPI Win sync
function has to be used to ensure completion of memory updates before using
the MPI ibarrier that synchronize all processes in time [14].

6 Benchmarking MPDATA Codes

We benchmark four versions of MPDATA: (A) basic, non-optimized implemen-
tation; (B) code with (3+1)D decomposition of MPDATA domain; (C) version
B with data-flow synchronization; (D) version C with partitioning cores into
independent work teams. All versions are implemented using both MPI and
OpenMP shared memory programming. A series of experiments is performed on
three shared memory ccNUMA platforms (Table 1). Among them are 2-socket
servers with either Cascade Lake-SP (CLX-SP) or Skylake-SP (SKL-SP) Intel
Xeon CPUs, and 4-socket server with Broadwell (BDW-EX) Intel Xeon CPUs.
The MPDATA codes provide vector-friendly data structures that enable us to
easy switch between AVX 2.0 and AVX-512, by setting a properly chosen com-
piler arguments [1]. All experiments are compiled using Intel compiler version
18.0.5 with the optimization flag -O3 and properly chosen compiler arguments
for enabling auto-vectorization. The MPI codes are developed with Intel MPI
Library 2018 Update 4. All tests are repeated 10 times, and average execution
times are used to obtain statistically sound results, with the relative standard
deviation (RSD) less than 1%.

Figure 2 depicts comparison of execution times (in seconds) for OpenMP
and MPI codes of all MPDATA versions, achieved on three computing platforms
outlined in Table 1 for the domain of size 2048 × 1024 × 64. In addition, both
OpenMP and MPI implementations of all MPDATA versions are compared for
different sizes of domain. An example of such comparison is illustrated in Fig. 3.

Table 1. Specification of computing platforms (https://ark.intel.com)

Computing resources 2× Intel Xeon
Platinum 8280L
(CLX-SP)

2× Intel Xeon
Platinum 8168
(SKL-SP)

4× Intel Xeon
E7-8890v4
(BDW-EX)

Scalar/SIMD Turbo freq. [GHz] 3.3/2.4 3.4/2.5 2.6

Sockets 2 2 4

Cores/Threads 56/112 48/96 96/192

SIMD AVX-512 AVX-512 AVX2 (256
bits)

Main memory 2× 6× 16GB
DDR4-2933

2× 6× 16GB
DDR4-2666

4× 4× 16GB
DDR4-2400

Memory bandwidth [MB/s] 281.5 255.9 204.8

Peak performance* [Gflop/s] Scalar 369.6 326.4 499.2

SIMD 2150.4 1920.0 1996.8

*Refers to multiplication instructions performed with Turbo frequency

https://ark.intel.com
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The presented performance results correspond to the double precision floating
point format, and 5000 time steps.

Fig. 2. Comparison of execution times of different MPDATA versions (A, B, C and D)
achieved for both OpenMP and MPI, assuming the domain of size 2048 × 1024 × 64,
while using various computing platforms: a) 2× CLX-SP, b) 2× SKL-SP, and c) 4×
BDW-EX

Fig. 3. Comparison of execution times of different MPDATA versions obtained for both
OpenMP and MPI with various problem sizes on the platform equipped with two Intel
Xeon Cascade Lake-SP CPUs (2× CLX-SP)
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The benchmark results achieved for the first version ((A)) confirm a slightly
high performance of the MPI code against the OpenMP implementation. This
is an effect of overheads introduced by OpenMP runtime scheduling, while the
MPI implementation from the beginning uses our scheduler that performs the
loop distribution before computations.

In contrast, the OpenMP implementation of the version B returns better
performance results for all performed tests. In fact, this benchmark reveals
a negative impact of large number of synchronization points required by the
(3+1)D decomposition of MPDATA [9] on the overall performance, with the
MPI barrier resulting in greater performance losses than the OpenMP barrier.

The version C allows us to solve the synchronization issue for both MPI and
OpenMP. As a result, the achieved performance is kept on a similar level for both
programming models, with some advantage of MPI on the platforms with two
CPUs. Finally, MPI and OpenMP implementations of the resulting version D
feature practically the same performance, since the differences in the execution
time between OpenMP and MPI models do not exceed 4% in favour of OpenMP.

7 Conclusions and Future Works

This paper demonstrates that the shared memory extension added in MPI-3 is
efficient enough to take advantages of emerging multicore ccNUMA architec-
tures. An example of such architectures is the newest Cascade Lake Intel Xeon
Platinum 9282 processor, which packs two whole processors in a single socket
offering 56 cores totally. Another remarkable example is the second generation
of AMD EPYC processors, known as Rome. Using the multi-chip design with 4
modules interconnected via AMD Infinity Fabric, these emerging architecture is
expected to deliver up to 64 cores per CPU.

The presented benchmarks show very similar performance results for both
OpenMP and MPI shared memory implementations of the MPDATA CFD appli-
cation on ccNUMA platforms with 2 and 4 CPUs. What is important is that
MPI SHM delivers portable means to implement efficiently all steps of the paral-
lelization methodology recently proposed for performance portable programming
across multicore SMP/ccNUMA platforms. As a result, the resulting MPI code
allows us to accelerate the MPDATA application more than 9 times as compared
to the original version, achieving the sustained performance of 583 Glop/s for
the server with two Cascade Lake Intel Xeon processors (each with 28 cores).

The aim of our future paper is to extend these results on the cluster level,
in order to verify if heterogeneous MPI+MPI programming is able to success-
fully replace the common MPI+OpenMP hybrid programming model, providing
portable application programming across forthcoming HPC platforms.
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Abstract. Even though parallel programs, written in high-level lan-
guages, are portable across different architectures, their parallelism does
not necessarily scale after migration. Predicting a multicore-application’s
performance on the target platform in an early development phase can
prevent developers from unpromising optimizations and thus significantly
reduce development time. However, the vast diversity and heterogeneity
of system-design decisions of processor types from HPC and desktop PCs
to embedded MPSoCs complicate the modeling due to varying capabili-
ties. Concurrency effects (caching, locks, or bandwidth bottlenecks) influ-
ence parallel runtime behavior as well. Complex performance prediction
approaches emerged, which can be grouped into: virtual prototyping, ana-
lytical models, and statistical methods. In this work, we predict the per-
formance of two algorithms from the field of advanced driver-assistance
systems in a case study. With the following three methods, we provide a
comparative overview of state-of-the-art predictions: GEM5 (virtual pro-
totype), IBM Exabounds (analytical model), and an in-house developed
statistical method. We first describe the theoretical background, describe
the experimental- and model-setup, and give a detailed evaluation of the
prediction. In addition, we discuss the applicability of all three methods
for predicting parallel and heterogeneous systems.

Keywords: Performance prediction · Virtual prototyping ·
Parallelization · Advanced driver-assistance systems · Scalability ·
MPSoC

1 Introduction

Due to the gap between theoretically provided and practically gathered perfor-
mance of parallel systems, the development of multicore applications requires
proper hardware-software co-design. In order to prevent developers from imple-
mentation errors and to reduce development time and costs, an early estimation
of an application’s performance and bottlenecks is necessary. Performance pre-
diction enables software optimization even in early development phases. Modern
architectures have superscalar out-of-order instruction pipelines, feature specu-
lative execution, and are influenced by concurrency effects (e.g., caching effects)
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due to parallelism. Therefore, modeling a modern processor’s performance, espe-
cially for heterogeneous systems, became a complex task. Parallel software, writ-
ten in high-level languages, aims to be portable across different processor types.
In fact, a parallel program, developed on system A, does not necessarily scale on
system B that may exhibit a different microarchitecture, component compilation,
and resulting capabilities. Because of this diversity in hardware design decisions
and heterogeneity of used components, it is key to have a generic prediction
method that is able to deal with all platform types.

This paper addresses the prediction of characteristics and scalability of paral-
lel programs on unavailable target platforms. Because of the complexity of com-
paring varying platform types, many approaches focus on certain architecture
types (e.g., GPGPUs). In contrast, the prediction methods compared in this work
cover multicore platforms of varying instruction-set architectures ranging from
embedded- over desktop- to HPC-processors. Thereby, some approaches require
detailed knowledge about processor internals, while others only use abstract
parameters (see Fig. 1). While differing in their models, simulation time, and
accuracy, prediction methods can be grouped into three categories:

1. Virtual prototyping: full functioning software-simulator of the hardware.
To predicted the runtime, software is executed on the emulated hardware.

2. Analytical models: use characteristics of the target platform and the soft-
ware as input and calculate the performance with mathematical models.

3. Statistical methods: train machine learning or regression from datasets of
independent hardware and software characteristics to obtain a model.

Virtual prototyping fully simulates each processor operation in software and
is the most precise but also the slowest method. An analytical model, realized
with a mechanistic processor model, uses higher abstractions in parameterization
of the hardware (e.g., pipeline depth) and software (e.g., branch-miss rate). Sta-
tistical prediction methods use the most abstract mathematical models, which
are not specialized to simulate processor behavior. But, through the use of large
databases, a higher complexity of the model is achieved (e.g., machine learning).

In this work, we present a comparative performance prediction of two real-
world algorithms from the field of advanced driver-assistance systems: Semi-
Global Matching (SGM) for stereo-vision and Histograms of Oriented Gradients
(HOG) for pedestrian detection. Predicting these algorithms is particulary rele-
vant because they represent examples for algorithms with real-time requirements,

Fig. 1. Different abstraction levels of modeling hardware and software independently.
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and high computational demands. This even more complicates architecture map-
ping on heterogeneous platforms. We make use of three prediction methods, each
as a representative of one of the above mentioned approaches: GEM5 (virtual
prototype), IBM Exabounds (analytical model), and an in-house developed sta-
tistical method [6]. As prediction target platform, we use the ARM Cortex-A53
cores of the heterogeneous Zynq Ultrascale+ MPSoC. This work presents:

• Description of the model setup for all three prediction methods
• Evaluation of differences in simulation speed and accuracy
• Discussion on the applicability of different prediction methods

Section 2 introduces the different prediction approaches. Section 3 describes the
concrete prediction setups and modeling processes. Section 4 evaluates the results
of our competitive case study and Sect. 5 concludes the paper.

2 Prediction Methods

Traditional performance prediction is the task of estimating the runtime char-
acteristics of a given software on an unavailable target platform. Prediction
approaches differ in the abstraction level of the models as well as simulation
speed, modeling effort, and prediction accuracy. Virtual prototypes can offer a
high precision with the disadvantage of a long simulation time. Analytical models
are fast, but offer less accurate results. Statistical methods fill the gap between
virtual prototypes and analytical models in terms of speed and accuracy.

2.1 Virtual Prototyping

A virtual prototype is a full functioning software model of a specific hardware sys-
tem. It can cover the whole range from singlecore microcomputers over complex
homogeneous and heterogeneous MPSoCs up to high performance computers. In
order to predict the performance of an application, a simulator fully emulates the
behavior of a system on instruction level. On a virtual prototype, the applica-
tion can run in system emulation mode directly on the system, or in full system
mode with an underlying operating system (e.g., Linux or Android). Further,
approaches vary in their level of hardware details from function accurate up to
cycle accurate. Function accuracy enables the user to evaluate, whether their
applications execute correctly. Cycle accuracy enables a very precise prediction
of runtime parameters and provides a comprehensive view into internals like
status of pipeline-stages and caches, at the cost of time consuming simulation.

To create a virtual prototype, domain specific high-level language like SystemC
(for system components) and TLM (for component connections) are often used.
Figure 2 shows a prediction workflow using a virtual prototype with a qualitative
time classification. QEMU is a tool, which can be used for regular virtualization or
for full-system and user-mode emulation of a specific architecture. The full-system
mode can emulate whole MPSoCs like Xilinx Ultrascale+ EG. To execute applica-
tions, QEMU uses function accurate dynamic translation of instructions. QEMU
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Table 1. Overview of different frameworks for virtual prototyping.

Framework Accuracy Processor architectures

QEMU [7] Function ARM, x86, microblaze, ...

ARM FVP [2] Function ARM

Imperas OVP [13] Instruction ARM, MIPS, POWERPC, RISCV, ...

GEM5 [8] Function to cycle ARM, MIPS, x86, ...

Cadence VSP [9] Function to instruction ARM, MIPS, Renesas, PowerPC

can be extended by SystemC models and TLM and so enables small timing sup-
port. GEM5 is an open source event driven simulator, which consists of the full-
system simulator M5 and the memory centric simulator GEMS [8]. GEM5 uses
C++ for creating system components and Python for assembling all components
to a final system. GEM5 offers the options to simulate homogeneous and heteroge-
neous multicore systems with the possibility to run a fast function accurate up to a
slow cycle accurate simulation. Power et al. [18] present the GEM5-gpu simulator,
which offers the possibility to simulate heterogeneous platforms with CPUs and
GPUs by adding GPU simulators. GEM5 comes with a set of ready-to-use models
and system parts but also offers the possibility to be extended it with new modules
written in SystemsC or TLM. Therefore, Menard et al. [16] present how GEM5 can
be extended by SystemC and TLM to cover a larger design space without loosing
much performance. In Table 1, we present a short overview of some virtual proto-
typing frameworks.

2.2 Analytical Models

Analytical models describe the architectural behavior by mathematical equations
using hardware parameters and software characteristics. A generalized approach
is to express the performance of an application on a specific hardware as cycles
per instruction (CPI) or its reciprocal instructions per cycle (IPC). The CPI
or IPC is effected by events like cache misses, branch misses and pipeline stalls.
Thereby, in analytical models the CPI can be expressed in a function of processor
internal design features and software characteristics:

CPI = f(L1dCacheMisses, L1iCacheMisses, branchMisses, ILP...). (1)

Each of these effects is described either with hardware independent software
description models, or software independent architecture properties. These

Fig. 2. Virtual prototyping using a platform model and precompiled software.
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models use architectural parameters like cache size, pipeline configuration, or
count of floating point units, and software properties like parallelization calls,
count of floating point operations, or count of vector operations (Fig. 3).

Eyerman et al. [11] describe a mechanistic model to predict the perfor-
mance of a superscalar out-of-order singlecore. For predicting the performance
of a multithread application, Pestel et al. [10] extended the singlecore model of
Van de Steen et al. [19]. Combining different analytical models, Jongerius et al.
[15] present the prediction framework IBM Exabounds. IBM Exabounds can
predict in-order and out-of order multicore processor systems with the restric-
tion of a fixed processor structure. To characterize the software, IBM Exabounds
uses the LLVM based IBM PISA toolchain, which produces a microarchitecture-
independent profile of the software. IBM PISA support parallelization with
OpenMP and MPI. The processor structure in IBM Exabounds is a hierarchical
architecture with a core-model (pipeline with functional units, L1 and L2 cache),
processor model (core-model and L3 cache), and compute-node (processor-model
and main memory) and can be parameterized in a JSON file. Figure 3 shows the
three steps with a qualitative time specification. IBM Exabounds predict the
singlecore performance of a Xeon E5-2697 v3 and an ARM Cortex A15 with an
average error of 59% and the influence of multicore performance with a maxi-
mum of 11% [14]. The Silexica toolchain not only supports the development and
optimization of parallel programs, but also offers a prediction of the runtime
of sequential software on a target architecture as well as the potential speedup
of automatically parallelized sections in the software code. Next to automatic
parallelization, it can also offload software sections to accelerators like GPUs.

2.3 Statistical Methods

Statistical prediction approaches use separate, ideally independent, characteris-
tics of hardware and software as descriptive features to train machine learn-
ing or regression models from a database of features to predict the perfor-
mance. Therefore, statistical predictions rely on the quality of extracted features
to gain good prediction accuracy. But, the extraction of independent charac-
teristics is complex as runtime parameters mostly interfere between hardware
and software. Also, many parameters like performance counters lack of inter-
pretability because of variations between architectures, such that many predic-
tion approaches focus on specific architecture families like GPUs. Ardalani et al.
[1] use microarchitecture-independent characteristics [12] as software features of
CPU code to predict the corresponding GPU-kernel performance using ensemble

Fig. 3. Analytical prediction using a software profile and platform parameter.
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Fig. 4. The in-house developed statistical prediction using scalability characteristics.

techniques with an error of 27% (Maxwell) and 36% (Keppler). Another app-
roach uses skeletons from CPU code to predict the according performance on a
GPU [17]. Using two common CPU benchmarks, deep neural networks as well
as linear regression was used to predict singlecore execution times on new core
configurations with an average error of 5% (SPEC) and 11% (Geekbench).

In our in-house developed statistical prediction method [6] used in this case
study (see Fig. 4), scalability metrics are used to form descriptive feature vec-
tors. The scalability of a parallel program describes its capability of distributing
work over increasing numbers of cores n and the tendency of simultaneously
involving parallelization overhead, finally resulting in an individual paralleliza-
tion speedup. In fact, we split the parallel runtime behavior that is extracted
from profiles into the following parameters, which are observed over increasing
numbers of cores:

• Redundancy: Percentage increase of the summed execution time of all parallel
tasks

∑
i ti(n) due to memory bottlenecks/caching effects (tlock excluded).

• Synchronization: Percentage of the time tlock(n) that a task spends on waiting
for a lock in relation to the available CPU time.

• Work imbalance: Percentage of the available CPU time, which can not be
used for effective task execution due to improper work split (idle time).

• Scheduling overhead: Fraction of the available CPU time, which was needed
to manage tasks: creation, distribution, switch, and synchronization (join).

A simple mathematical curve is fitted into the scaling parameters’ trends to
receive quantitative numbers, which characterize the entire scalability. The final
feature vector is concatenated of scaling parameters and performance counters.
These features include interfering characteristics that are not separable between
hardware and software effects. Therefore, a regular machine learning is not fea-
sible. Instead, we directly predict new performance numbers from related candi-
dates from database, which we determine using distance metrics. The prediction
of the sequential execution and the scalability (parallelization speedup) is sepa-
rated, but uses the same methodology, which is structured into three steps:

1. Distance estimation: Normalized geometric distance metrics are used to
estimate distances between prediction candidates.

2. Candidate selection: One or more prediction candidates with low distances
to the target get selected for prediction.

3. Target reconstruction: In an interpolating transformation, the target scal-
ability vector (and the scalability trend and speedup) is reconstructed.
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3 Prediction Setup

The modeling procedure and required effort varies between prediction methods.
In the following, we show the established workflows to build a virtual prototype
with GEM5, to setup an analytical processor model with IBM Exabounds, and
to create a comprehensive database for our statistical prediction approach.

3.1 Target Platform and Algorithms

We use the four ARM Cortex-A53 cores of the Xilinx Zynq Ultrascale+ EG SoC
as target platform, which run at 1.2 GHz. Each core has its private L1 cache. The
SoC features 1MB shared L2 cache and 4 GB DDR4 RAM (Fig. 5). Nevertheless,
to this static platform parameters virtual prototypes as well as analytic mod-
els require more detailed internals (dynamic information) like pipeline structure
and cache latencies. According to our experience, a high precision of dynamic
information is key for good prediction accuracy, but can be hard to achieve.
For some architectures, vendors provide precise details in datasheets, other plat-
forms’ parameters need to be extracted from micro-benchmarks.

We use parallel implementations of stereo vision (SGM ) and pedestrian
detection (HOG) algorithms from the field of advanced driver-assistant systems.
Both implementations consist of a series of consecutive algorithm-stages, each
with its own parallelization that splits the work by domain decomposition [3,5].
We consider each stage as an individual workload, since they potential exhibit
varying execution characteristics. To enable an automated profiling, they are
parallelized using the MPAL abstraction layer [4], which measures the execution
time of all individual parallel sections without including measurement overhead.

3.2 Virtual Prototyping

Representing a common and widely used state-of-the-art framework, we use the
cycle-accurate simulation of GEM5 as exemplary virtual prototyping approach.
The preparation and prediction with GEM5 covers the following three steps:

Create the Virtual Architecture: Given the beforehand mentioned target
platform, we make use of a generic ARMv8 in-order processor model (GEM5

Fig. 5. Platform overview of the Xilinx Zynq Ultrascale+ EG ARM Cortex-A53 SoC.
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internal HPI-model) and configure it with core specifications and cache parame-
ters. The selection of suitable simulators for system components not only requires
deep knowledge of the target architecture, but insights of the simulator’s inter-
nal structures as well. We use standard components of GEM5 for RAM, RTC,
serial console, etc. The interconnect between system components (AXI-Bus) is
realized using the TLM-like, abstract, and message-event driven bus-system of
GEM5. The component composition and high-level parameterization (e.g., clock
frequency and memory size) is configured in Python.

Software Environment: As we simulate in full system mode, a regular Linux
Kernel is used, which we customized to be compatible to the simulated platform.
Therefore, an adapted headless Ubuntu 16.04 is used as root-filesystem. Using
the QEMU user emulation mode (chroot), the same root-filesystem could be
used to compile software (no cross compilation) and to test and modify the
environment directly on the host-PC. Through the use of MPAL even inside
the virtual prototype, the execution of individual stages could be easily profiled
without modifying the code.

Prediction Toolchain: To avoid a long startup procedure the simulator is
booted with function accuracy and the simulation changes to cycle accuracy
when executing relevant workload. The cycle accurate simulation is very time
consuming and lasts up to 10 h for both algorithms, while the execution on the
physical target-platform takes 550 ms. Unfortunately, even parallel components
(e.g., parallel CPU cores) are simulated in a single sequential process. In this
case study, the simulation of parallelized algorithms (four cores) takes 20% longer
than the simulation sequential workloads.

3.3 Analytical Model

In order to evaluate a recent analytical model, we use IBM Exabounds (Jongerius
et al. [15]). The prediction process of IBM Exabounds includes the following
steps:

Processor Parameterization: The fixed analytical processor model is con-
figured to an in-order-pipelined core with multiple floatingpoint, integer, and
vector functional units. We also configured parameters like individual latencies
for pipeline stages and bandwidth of the memory. The only restriction is the
differing L2 Cache, which is private in the analytical model but shared in our
target platform. Therefore, we set the size and latencies of the L2 cache to zero
and used the shared L3 cache of the model to substitute the shared L2 cache.

Software Profiling: As described in Sect. 2.2, we extract software characteris-
tics with IBM PISA. To predict each algorithmic stage, a time consuming profil-
ing of each stage needs to be performed with manual changes in the software code
(separation of code sections). Presupposed that the algorithm is parallized with
OpenMP or MPI the profiling can be executed on parallel cores. The profiling
time lineary scales with the runtime of the algorithms.
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Prediction Calculation: The performance prediction is performed in a Wol-
fram Mathematica Notebook. Thus, we load the hardware description, a pre-
configured memory model, and the profile in the Notebook. The prediction is
performed in a few seconds per workload (algorithm stage) and the results like
predicted runtime, system statistics (e.g., cache misses and used bandwidth),
and power consumption is shown in textual and graphical form.

3.4 Statistical Method

Because the statistical prediction is based on the existence of a database of
profiling measures of scalability characteristics, we assume to have a sufficient
set of benchmarks available [6].

Setup the Database: The requirement of the statistical method is a database
that contains profiles of several platforms and workloads. We use a prepared
and ready-to use benchmarkset of 18 workloads, each with an individual par-
allelization strategy and characteristics. Therewith, we profile six x86-servers,
three x86 desktop pcs, and two ARM platforms. The benchmarks show a vary-
ing execution behavior on different platforms. Because we also spent much effort
on tuning parameters of the virtual prototype and the analytical description, we
added profiles of an Amlogic S905 SoC to the database, which contains a sim-
ilar quadcore ARM Cortex-A53 processors at 1.5 GHz and 2 GB DDR3 RAM.
In addition, the target platform has to be characterized by profiling the bench-
marks as references. The process of extracting scaling parameters and adding
descriptive features to the database is fully automated.

Perform the Prediction: The statistical prediction is implemented in a python
script. The prediction is called by passing the database that contains the new
profiles of the target platform respectively the target algorithm. The prediction
always returns the entire predicted scalability curves, all scaling parameters (i.e.,
locks, work-imbalance, redundancy, etc.), and the predicted runtime.

4 Evaluation

In the previous sections, we described the background and modeling setup for
all three prediction methods. To now evaluate the prediction accuracy and
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Fig. 6. Errors of the statistical method, virtual prototype, and analytical model.
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Fig. 7. Max and mean prediction errors related to the number of used processor cores.

applicability of the methods to be used for parallel systems, we predict the
runtime behavior of all parallelized algorithmic stages of SGM and HOG (Sn –
each representing a separate workload with individual characteristics and par-
allelization strategies) and compare the results with the profiled data from the
physical architecture. Figure 6 shows the percentage prediction error at the use
of all four cores. On average, the virtual prototype achieves the highest accu-
racy of 16.1% error. This results from the combination of the cycle accurate
simulator GEM5, the detailed processor model, as well as the identical soft-
ware environment running on the simulator and target platform. The statistical
method predicts the performance with an average error of 19%, which can be
reached because of the comprehensive database with varying workloads profiled
on different parallel architectures. The parameterized analytical model predicts
with the highest error of 23% on average, due to missing influences of the OS,
the differing cache model (L2 configured as L3 cache), and the mismatch of the
number of instructions between the profiling system (x86) and the target plat-
form (ARM). To verify the accuracy, we also determine the standard deviation,
which is 6% for the virtual prototype, 10% for the statistical method, and 18%
for the analytical model.

In addition, we investigate the trend of the prediction error from sequential
to full parallelized execution to analyze the capability of the methods to predict
parallelization influences. Figure 7 emphasizes the trend of mean and maximum
error (over all stages Sn) in a logarithmic scale over the discrete number of used
cores. The rising mean and maximum error of IBM Exabounds can be attributed
to the differing L2/L3 cache configuration that caused a mispredicted behavior
especially for inter-core communication (also described in [14]). Whereas, the
low deviation of the virtual prototype is due to the relative exact replication of
the reference platform. This can be verified by using micro-benchmarks, which
stress caches and interconnects on the virtual prototype. Results of the micro-
benchmarks show a good correlation with low deviations by about 15%. Because
the statistical method is focused on the prediction of parallel workloads with
a database of various optimized implementations with varying parallelization
strategies, it also shows a low variability for varying numbers of cores. For further
evaluations of the prediction methods, it is planned to extend our benchmark-set
with parallel benchmarks from e.g., SPEC or NPB.



292 M. Lüders et al.

Table 2. Summary of the comparative case study.

Flexibility Accuracy Prediction

time

Modeling

effort

Single

core

Multi

core

Physical

platform

Heterogeneity

GEM5 ++ + −−(10 h) −−(32 days)
√ √

X
√

IBM

Exabounds

− o ++(few sec.) −(10 days)
√ √

X X

Statistical

method

o + ++(few sec.) +(few hours)
√ √ √

X

As we verified in this case study, virtual prototypes perform detailed predic-
tions a the cost of a high modeling effort (here 32 days) and long simulation
times (here 10 h). Thereby, virtual prototypes are not limited to multicore or
multiprocessor systems, but can also be extended to large and heterogeneous
systems equipped with accelerators like GPUs or DSPs. Analytical models can
perform a fast prediction with the restriction of a slow profiling. The profiling
time in this case study was about 6 h, because every algorithmic stage has to
be profiled separately by contrast the prediction is performed in a few seconds.
Consequently, analytical models can be used for a fast exploration of a multi-
tude of platforms for a single workload in an early development step. Statistical
methods can be used to predict varying workloads on multiple platforms with
the requirement of benchmark-profiles of a physically existing platform, which
are included in the database. Table 2 summarizes the results of the case study.

5 Conclusion

This paper presents a comparative case study, consisting of exemplary predic-
tions of two parallelized real-world algorithms from advanced driver-assistance
systems using a virtual prototype, an analytical model, and a statistical method.
Based on the initial qualitative classification that differentiates the methods by
their accuracy and prediction speed, we introduced backgrounds and discussed
particularities to show the individual eligibility on predicting the design-space of
parallel heterogeneous processors. Further, we gave a detailed illustration on the
setup for each prediction approach (GEM5, IBM Exabounds, and our in-house
developed statistical method). The evaluation shows that the virtual prototype
has the smallest mean error of 16.1%, followed by our statistical method with a
mean error of 19%, and the analytical model with a mean error of 25.3%. We also
evaluated the accuracy of the prediction of the scaling behavior, which results
in an identical order of the accuracy. Analytical models offer the possibility to
predict the behavior of an application on a large set of processors. Statistical
methods can perform a fast prediction with a good precision without user input,
but only with profiling information. Virtual Prototypes can predict the behav-
ior of an application with high precision and enables a deep view into system
internals. Additionally, they can predict the performance of heterogeneous mul-
ticore platforms, and accelerators like GPUs or DSPs. Table 2 lists the results
of this case study and important properties of the different prediction methods.
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Thereby, this paper shows, that all prediction methods are capable to predict the
runtime of parallel algorithms for varying multicore platforms and architectures.
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Abstract. Autotuning, the practice of automatic tuning of code to pro-
vide performance portability, has received increased attention in the
research community, especially in high performance computing. Ensuring
high performance on a variety of hardware usually means modifications
to the code, often via different values of a selected set of parameters, such
as tiling size, loop unrolling factor or data layout. However, the search
space of all possible combinations of these parameters can be enormous.
Traditional search methods often fail to find a well-performing set of
parameter values quickly.

We have found that certain properties of tuning spaces do not vary
much when hardware is changed. In this paper, we demonstrate that it
is possible to use historical data to reliably predict the number of tun-
ing steps that is necessary to find a well-performing configuration, and
to reduce the size of the tuning space. We evaluate our hypotheses on a
number of GPU-accelerated benchmarks written in CUDA and OpenCL.

Keywords: Autotuning · Prediction of tuning cost · Tuning space
pruning · Sensitivity analysis

1 Introduction

With ever-changing hardware architectures, it is difficult and costly to keep
applications performing well on a wide range of hardware – in order to retain
high performance, the implementation needs to be modified to adapt to a new
execution environment. In a well-written code, it is often sufficient to change
the values of a few pre-selected parameters, such as block size or loop unrolling
factor. Since the manual search for the right combination of parameter values can
be tedious and error-prone, an automatic method, called autotuning, has been
developed to search the space of possible implementations and find the best one
(a comprehensive survey of autotuning can be found in [2]). This search can
be performed before the application is launched (offline tuning), or at runtime,
switching implementations on-the-fly whenever a faster configuration is found
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(dynamic tuning) [2] – the latter approach being particularly useful in cases
where changing the characteristics of the input affects optimization choices.

However, the tuning spaces of many problems are difficult to navigate [1,9,15]
– discrete values of parameters influence each other in a non-linear way, and the
tuning spaces have low locality (two similar configurations can perform very
differently). Therefore, traditional search methods usually perform similarly to
random search [7,9,13].

In this paper, we analyze the spaces of tuning parameters and search for
properties which do not change significantly across different hardware devices.
We show two ways this information can be used to improve autotuning.

Firstly, we can estimate how many tuning iterations are needed to achieve rea-
sonable performance. Such information is essential if we need to decide whether
tuning time can be amortized. We demonstrate that the portion of a tuning space
composed of well-performing configurations remains stable for a given problem
across different hardware for a majority of cases.

Secondly, we can prune the tuning space, helping an autotuner to find a well-
performing implementation more quickly. We propose that certain tuning param-
eters are more significant than others when it comes to performance, depending
on the application, and their significance is portable across hardware. As a result,
we are able to remove insignificant parameters and thus reduce the dimension-
ality of the tuning space without losing well-performing configurations.

Our methods are evaluated on ten GPU kernels and five generations of GPU
accelerators. We believe that the method can also be used for different hardware
devices, such as CPUs.

We are using the following terminology in the paper. A tuning parameter is a
variable which affects the code in a user-defined way (e.g. determines loop unroll
factor). The tuning space is a space composed of all the possible values of all
tuning variables. Configuration is a single point in the tuning space, which fully
determines one possible implementation of the tuned code.

The rest of the paper is organized as follows. The overview of the bench-
mark set and used hardware is given in Sect. 2. Our methods are described and
evaluated in Sect. 3 (prediction of the portion of tuning space which needs to be
searched) and Sect. 4 (pruning the tuning space). The comparison with related
work is given in Sect. 5. We conclude and outline future research in Sect. 6.

2 Benchmark Set

To show that our proposed hypotheses are not problem- or application-specific,
we have developed a rather wide set of benchmark problems implemented in a
way that enables autotuning. In this section, we introduce the benchmarks and
hardware that we have used for evaluation.

2.1 Benchmarks

An overview of the benchmarks, including the size and dimensionality of their
tuning spaces, is given in Table 1. To produce as many diverse benchmarks as
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Table 1. A list of the benchmarks, and the size and the dimensionality of their tuning
spaces.

Benchmark name Configurations Dimensions

BiCG 5 122 11

2D convolution 3 928 10

3D Coulomb sum 1 260 8

GEMM 241 600 15

GEMM batched 424 11

Hotspot 480 6

Matrix transpose 5 916 9

N-body 9 408 8

Reduction 175 5

3D Fourier reconstruction 430 7

possible, we have collected autotuned computation kernels which are either pub-
licly available or developed by ourselves in several previous projects. We believe
that the benchmark set is representative for HPC problems, and its assembly
requires less manual effort than re-implementation of an entire existing bench-
mark set such as Rodinia [4] for autotuning. The benchmarks are composed of
important computational kernels spanning across multiple application domains:
3D Fourier reconstruction [14] and 2D convolution (adopted from [9]) are image
processing kernels, BiCG, GEMM (adopted from [9]), GEMM batched, Matrix
transpose and Reduction [6] are linear algebra kernels, Direct Coulomb sum-
mation [6] is a computational chemistry kernel, N-body (autotuned version of
NVIDIA CUDA SDK sample) and Hotspot (based on implementation from
Rodinia benchmark [4]) are differential equation solvers. These benchmarks auto-
tune a variety of tuning parameters, changing implementation properties such
as work-group size, cache blocking, thread coarsening, explicit caching in local
memory, loop unrolling, explicit vectorization or data layout optimization (i.e.
array of structures vs. structure of arrays). These tuning parameters were deter-
mined by the programmer during development – we did not add or remove any
tuning parameters afterwards, e.g. after the analysis of parameters’ importance.

All the benchmarks have been evaluated on sufficiently large inputs, so that
the available parallelism of a GPU was utilized. The 3D Fourier benchmark pro-
cesses a large number of small images and its performance is highly sensitive
to the size of the images. Therefore, we have autotuned 3D Fourier Reconstruc-
tion for multiple image sizes: 32 × 32, 64 × 64 and 128 × 128, referred to as
Fourier (32), Fourier (64) and Fourier (128) in the following text. The GEMM
Batched benchmark performs batched matrix multiplication of small matrices
– we have measured the performance on 16 × 16 matrices. All benchmarks use
single-precision arithmetic.
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The 3D Fourier reconstruction [14] is available in Xmipp software1, the rest
of the benchmarks are available in Kernel Tuning Toolkit as examples installed
with the tuner2. The Kernel Tuning Toolkit [6] has been used to obtain the
results for this paper.

2.2 Hardware

We have evaluated all of the benchmarks on five GPUs of different architectures
and performance, see Table 2.

Table 2. A list of the GPUs used in our tests.

GPU Architecture SP performance Bandwidth Released

AMD Radeon RX Vega 56 GCN 5 8,286GFlops 410GB/s 2017

NVIDIA Tesla K20 Kepler 3,524GFlops 208GB/s 2012

NVIDIA GeForce GTX 750 Maxwell 1,044GFlops 80GB/s 2014

NVIDIA GeForce GTX 1070 Pascal 5,783GFlops 256GB/s 2016

NVIDIA GeForce RTX 2080Ti Turing 11,750GFlops 616GB/s 2018

3 Estimating the Number of Tuning Steps

In theory, autotuning makes a program faster when it is executed on new hard-
ware or with changed input characteristics. However, to achieve that, the perfor-
mance improvement must outweigh the time it takes to find a well-performing
configuration – the tuning process needs to be amortized. Whereas in some sce-
narios the tuning time is amortized in almost any case (e.g. long execution on
supercomputers), in other scenarios the tuning time matters (e.g. when an appli-
cation is not supposed to use many CPU hours, or tuning decisions are sensitive
to input data, which are changing). Therefore, knowing how long it will take to
find such a configuration is vital in order to decide if autotuning is worthwhile.

To predict the tuning time, we need to know the number of tuning steps
and the average time of a tuning step. Additionally, the amortization of tuning
time is determined by how many times we need to execute the tuned kernel and
how much speedup will be achieved by tuning. In this paper, we target the first
question: predicting the number of steps required to search a tuning space.

3.1 Prediction Method

Application parameter autotuning allows tuning parameters to be translated
into virtually any property of the source code, from changing loop unrolling
factor to selecting an entirely different algorithm. Therefore, tuning spaces can
1 https://github.com/I2PC/xmipp.
2 https://github.com/Fillo7/KTT/tree/master/examples.

https://github.com/I2PC/xmipp
https://github.com/Fillo7/KTT/tree/master/examples
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vary in their size and also in the effect of each tuning parameter. Whereas some
tuning spaces may contain a high number of configurations with near-optimal
performance [7], other tuning spaces may contain only a few well-performing
configurations [9,15]. The performance distribution among all various configu-
rations on our benchmark set is shown in Fig. 1. Here, the benchmarks’ tuning
spaces are shown using violin plots – histograms of computation times are plot-
ted on the y-axis (the wider the graph, the more configurations fall within the
given performance range), with the better-performing configurations at the bot-
tom. The histograms vary significantly for different computational problems – for
example, many implementations of the Batched GEMM benchmark have very
good performance, whereas the Hotspot benchmark only has a few fast imple-
mentations. Therefore, an estimation of the number of tuning steps required to
reach sufficient performance is not straightforward.

Fig. 1. Violin plots of computation times for various benchmarks, measured on GeForce
GTX 1070. X-axis shows the amount of configurations, Y-axis shows computation time
(in ms).

We hypothesize that the number of well-performing configurations remains
similar for a computation problem across different hardware devices. The intu-
ition behind this hypothesis is as follows. For a given processor, autotuning needs
to balance many tuning variables. Some of them are very critical and must be set
to an optimal value, while others may have a wider interval of well-performing
values. When we change the processor, the optimal values may be shifted (e.g.
by adding more cache, the optimal cache blocking factor may change), but the
required precision of selection will be similar. Of course, hardware development
may change the number of well-performing values – for example, adding more
registers to the processor may lead to a wider range of efficient loop unrolling
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factors. However, those changes are not expected to be drastic, as hardware
development is limited by the manufacturing process. In contrast, changes of
tuning parameters may have a much higher impact on the shape of the tuning
space and hence the relative amount of well-performing configurations. There-
fore, the amount of well-performing configurations should be more stable with
respect to the changing hardware than to the changing computational problems.

If the portion of well-performing configurations remains stable across differ-
ent hardware – and therefore it can be predicted using historical data – we can
use this to estimate the number of configurations we need to evaluate in order
to find a good one. When random search is used, we can easily infer Formula 1
– let pb be the portion of the tuning space that is well-performing, and ps be
the desired probability of finding a well-performing configuration. Then the rela-
tionship between them is defined as (1 − ps) = (1 − pb)nconf , where nconf is the
number of random attempts needed to reach a certain probability of finding
a good-enough configuration. Therefore, to determine the number of attempts
(i.e. the number of autotuning steps) required, we only need to calculate the
corresponding logarithm:

nconf = log(1−pb)(1 − ps) (1)

For example, if historical data show us that well-performing configurations
comprise 1% of the tuning space, then in order to have a 90% chance of reaching
a good solution, we need to explore log(1−0.01)(1 − 0.9) ≈ 230 configurations.

3.2 Evaluation

To support our hypothesis, we have prepared the following experiment. We con-
sider a configuration well-performing if it achieves at least 90% of the perfor-
mance of the best configuration. We have executed an exhaustive search on all
benchmarks using all GPUs. The result is shown in Table 3. For each combina-
tion of GPU and benchmark, the table shows the portion of the tuning space
comprised of well-performing configurations (e.g. 0.05 means that 5% of all con-
figurations are well-performing)3.

It can be seen in Table 3 that the variation of well-performing configurations
is usually not high across GPU architectures – they are not in orders of magni-
tude, excepting some outliers (GEMM on 2080Ti, Matrix transpose on 1070 and
Reduction on Vega56). Therefore, when the portion of tuning space containing
well-performing implementations is known for at least one hardware device, we
can use it to predict the number of tuning steps on other devices. Note that

3 Note that some numbers are missing in the table: the 3D Fourier Reconstruction is
implemented in CUDA and is therefore not measured on Radeon Vega56. It is also
not measured on Nvidia Tesla K20, because we were unable to install Xmipp on
the system. Some benchmarks have been executed with a smaller tuning space on
Radeon Vega56, because AMD ROCm driver crashed with some tuning configura-
tions (mainly using vectors of size 16 and higher loop unrolling factors). Therefore,
we have omitted those benchmarks as their tuning spaces differ significantly.
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Table 3. The portion of each tuning space consisting of well-performing configura-
tions (i.e. reaching 90% of the best performance). The average portion with standard
deviation for each problem is shown in the last column.

Vega56 K20 750 1070 2080Ti Avg ± Std dev

BiCG 0.00459 0.00527 0.00332 0.0168 0.0181 0.00962± 0.0072

Convolution 0.00280 0.00321 0.00117 0.00204 0.00175 0.00274± 0.00082

3D Coulomb sum N/A 0.06032 0.0405 0.0389 0.0476 0.0468± 0.0098

Fourier (32) N/A N/A 0.0190 0.0286 0.0357 0.0278± 0.0084

Fourier (64) N/A N/A 0.0595 0.119 0.0357 0.0714± 0.043

Fourier (128) N/A N/A 0.0167 0.0571 0.0119 0.0286± 0.025

GEMM N/A 0.000791 0.00107 0.00231 0.00793 0.00302± 0.0033

GEMM batched 0.120 0.0943 0.151 0.818 0.642 0.365± 0.34

Hotspot 0.0169 0.00743 0.00495 0.00495 0.0149 0.00983± 0.0057

Matrix transpose 0.0210 0.0461 0.0413 0.150 0.0101 0.0492± 0.052

N-body N/A 0.0207 0.0576 0.0277 0.0492 0.0388± 0.017

Reduction 0.0775 0.3272727 0.463 0.715 0.368 0.390± 0.23

even if there may be several-fold misprediction, the method still provides valu-
able information – without the prediction, we would have absolutely no idea
how difficult the search process is. For example, if we try to guess the number of
well-performing configurations on a GPU using data from different benchmarks
on the same architecture, the difference in the portion of tuning space containing
well-performing configurations can reach two orders of magnitude.

4 Tuning Space Pruning

Autotuning of a computational kernel can take a long time if the tuning space
is large and full of low-performing configurations. Pruning of the tuning space
can accelerate the search. In [12], authors proposed a method based on the
assumption that biasing search towards configurations which perform well on
one processor can speed up the search on another processor. The method works
well if the relative performance of the tuned codes correlates across different
hardware (at least for the well-performing configurations). Often, this seems to
be the correct assumption. However, we have found cases where the correlation
is not good – this is demonstrated in Fig. 2, where well-performing configura-
tions have high correlation for Matrix transposition, but low correlation for the
Fourier (128) benchmark.

4.1 Proposed Pruning Method

Here, we propose an alternative method of tuning space pruning, which is based
on the importance of tuning parameters. Even though the optimal values for
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Fig. 2. The correlation between kernel runtime on GeForce GTX 750 and GeForce RTX
2080Ti for the Matrix transposition benchmark (left) and the Fourier (128) benchmark
(right) in milliseconds. Each dot represents a configuration.

parameters change from hardware to hardware, we hypothesize that the sig-
nificance of parameters (how much they influence the resulting performance)
remains more stable. For example, if a problem is cache-sensitive on one GPU,
it will probably remain cache-sensitive on any other GPU, even though the exact
value of optimal cache blocking size will change.

When the tuning space is known for a hardware device, we can compute
mutual information4 between tuning variables and runtime. We propose to prune
the less significant parameters (i.e. those with low mutual information with run-
time) from the tuning space by fixing their values on a median and not changing
them during the search. The pruning of insignificant parameters will lower the
dimensionality of the tuning space, while keeping the well-performing config-
urations. It should be noted that our pruning approach is not designed as a
brand new search method – rather, it can be used to improve the performance
of already existing search algorithms.

4.2 Evaluation

To evaluate the proposed pruning method, we first computed mutual information
for data measured on GPU-10705. Then, we pruned the tuning space by fixing
dimensions with mutual information lower than 20% of the highest mutual infor-
mation value.

Table 4 shows state space reduction (SSR), the number of pruned parameters,
and performance retention (PR) in all the benchmarks after the less significant
parameters have been pruned (e.g. SSR of 16 means that the state space has
been reduced 16-fold, and PR of 0.92 means that the best configuration in the
pruned tuning space performs at 92% of the best performance reachable from
the original tuning space).
4 A sensitivity analysis metric which measures the dependency between variables –

higher values mean higher dependency.
5 Analyzing data from that GPU mimics the situation when the developer has knowl-

edge of tuning space on that GPU only.
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Table 4. State space reduction (SSR), the number of pruned/all parameters (PP) and
performance retention for all tested hardware/benchmark combinations, after pruning
all the parameters with low mutual information.

SSR PP Vega56 K20 750 1070 2080Ti

BiCG 16.34 5/11 0.92 0.99 0.97 0.99 1.0

Convolution 285.33 4/10 1.0 0.51 0.50 0.59 0.55

3D Coulomb sum 10.0 4/8 0.99 1.0 0.97 0.97 0.97

Fourier (32) 4.0 3/7 N/A N/A 1.0 0.98 0.99

Fourier (64) 4.0 3/7 N/A N/A 1.0 0.98 1.0

Fourier (128) 4.0 3/7 N/A N/A 1.0 0.99 0.99

GEMM 47.19 6/15 0.97 0.92 0.90 1.0 0.97

GEMM batched 22.32 8/11 0.96 0.92 0.99 1.0 0.99

Hotspot 6.97 2/6 0.83 0.98 1.0 1.0 0.99

Matrix transpose 6.0 2/9 1.0 1.0 1.0 1.0 1.0

N-body 2.22 2/8 1.0 1.0 1.0 0.98 1.0

Reduction 1.0 0/5 1.0 1.0 1.0 1.0 1.0

As we can see in Table 4, our method is able to significantly reduce the
size of the state space, while sacrificing only a few percent of performance in
most cases. For example, we can reduce the tuning space of BiCG more than
16× with 0–8% performance loss. The only example where performance loss
is significant is Convolution, where the reduction of state space is enormous,
but reachable performance is within 50% of the optimum only. Note, however,
that the reachable performance is also low on GPU-1070, which has been used
to select the parameters to be pruned. This suggests that the performance loss
was not caused by low correlation of parameter significance across hardware, but
rather by poor choice of parameters – in this case, a more sophisticated selection
of pruned dimensions would be needed.

The pruned space can be used in two scenarios. Firstly, we can execute
exhaustive search on it, reducing the number of tuning iterations by a factor
of SSR (see Table 4). Excluding the Convolution example, we can reach good
performance with a lower number of tuning iterations. Secondly, we can search
iteratively within the pruned space. We elaborate on the second use case in the
rest of this section.

We expect the search method to converge faster to a well-performing config-
uration on the pruned space with lower dimensionality, but to be outperformed
by a search on the full space after the majority of the pruned space has been
searched (because the pruned space may not include the optimal configuration).

To confirm this, we have prepared the following experiment. We have exe-
cuted autotuning with random search on both the full and the pruned space
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1000× to get statistically significant results6. To get results on the complete
problem set, we have measured how quickly the tuning process converges to
90% of the best performance for all combinations of GPUs and problems. The
results are given in Table 5. Although the pruned space contains well-performing
configurations for Radeon Vega56 in most cases, the search method performs
better on the full space. We suppose this is due to significant differences in the
AMD architecture. For NVIDIA GPUs, the random search is usually faster when
working on the pruned space (in 27 out of 37 cases).

The drawback of our method is that it prunes dimensions of low significance,
so the relative amount of well-performing configurations is not increased in the
pruned space. Since random search is known to perform well on spaces containing
dimensions of low significance [3], we hypothesize that the pruning method can
bring better speedups for more sophisticated search methods.

Table 5. The number of tuning steps required (on average) to reach 90% of the best
performance. The full and the pruned spaces are compared. The Convolution bench-
mark is omitted (no well-performing configurations are available in the pruned space),
as is the Reduction benchmark (no dimensions have been pruned).

Vega56 K20 750 1070 2080Ti

Full Pruned Full Pruned Full Pruned Full Pruned Full Pruned

BiCG 200 142 113 47 204 92 49 29 71 52

3D Coulomb sum 2 2 23 21 33 26 31 24 28 51

Fourier (32) N/A N/A N/A N/A 39 22 25 15 23 16

Fourier (64) N/A N/A N/A N/A 17 11 5 5 20 13

Fourier (128) N/A N/A N/A N/A 35 17 13 17 47 39

GEMM 200 302 2108 911 761 N/A 303 153 89 84

GEMM batched 10 12 9 11 6 3 1 1 2 2

Hotspot 88 N/A 126 33 108 22 131 31 74 24

Matrix transpose 255 267 35 30 51 57 18 16 160 98

N-body 9 6 37 37 18 16 32 25 19 33

5 Related Work

Numerous autotuning frameworks allow for the tuning of implementation param-
eters for heterogeneous computing [1,6,9,11,15]. All of these tuners are able to
autotune OpenCL or CUDA code by altering their implementations, but the
papers evaluate tuning spaces on rather limited benchmark sets.

6 We have used the rapid testing of the search method implemented in Kernel Tuning
Toolkit – first, all of the configurations are executed and their performance data are
gathered, then during searcher testing the autotuner reads measured times instead
of performing empirical tuning. This allows for performing many experiments in
reasonable time.
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To the best of our knowledge, there is no previous work attempting to predict
the number of tuning search steps. Therefore, we limit the comparison of our
work to methods improving tuning space search.

Search methods can be model-based or model-free. Considering model-free
methods, most autotuning papers show that random search performs similarly
to more sophisticated search methods, such as simulated annealing or particle
swarm optimization [7,9,13]. A promising improvement of model-free search has
been introduced recently in [15], outperforming other local and global search
methods in most cases. Tuning space pruning introduced in this paper can be
combined with any model-free search method.

Model-based methods attempt to take advantage of existing knowledge of the
tuned system to predict the performance of a given implementation. Analytical
solutions, which construct a mathematical model of performance, are specialized
to a particular problem domain. A more scalable approach is to leverage empiri-
cal data, either from previous tuning runs or from concurrent profiling, to guide
the tuning process.

Methods based on machine learning use historical data to build a performance
model. In [10], authors built regression trees from an already explored part of
the tuning space to steer a search method towards exploring more promising
configurations. However, no historical data from previous tuning runs have been
used. Data from previous runs are used for learning in [8] and [5]. Those papers
focus on dynamic selection from a very limited number of code variants [8],
or optimization of a single tuning parameter at compilation time [5]. We are
focusing on the usage of historical data in more complex tuning spaces.

Probably the closest method to our work uses historical data to prune tuning
space or bias search towards a configuration which performs better on another
hardware device [12]. The method is based on the assumption that configurations
which perform well on one device also perform well on another (see Sect. 4 for a
deeper discussion). In contrast, our method assumes that tuning space dimen-
sions which have a low impact on performance on one device will also have a low
impact on another.

6 Conclusion and Future Work

In this paper, we have introduced methods using historical data gained from
previous tuning of the same problem on different hardware, allowing us to:

– predict the number of search steps necessary for tuning;
– accelerate the tuning by pruning the tuning space.

We have prepared a set of ten benchmarks and demonstrated the usability
of the proposed methods. The benchmark set is available to the community
together with the Kernel Tuning Toolkit.

In the future, we plan to further analyze the tuning spaces. We plan to
categorize tuning parameters and study their importance for particular types of
hardware, as well as their interactions. We also plan to test more search methods
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and more advanced pruning (e.g. using profiling counters) in order to speed up
the tuning process.

Another possible research direction would be to use the historical data from
benchmarks to build a machine learning model which might actually predict the
correct optimizations for a new set of hardware, or at least to guide the search
of the configuration space instead of using random search.
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Abstract. The performance of agent-based simulations has been shown
to benefit immensely from execution on hardware accelerator devices
such as graphics processing units (GPUs). Given the increasingly het-
erogeneous hardware platforms available to researchers, it is important
to enable modellers to target multiple devices using a single model spec-
ification, and to avoid the need for in-depth knowledge of the hardware.
Further, key modelling steps such as the definition of the simulation
space and the specification of rules to resolve conflicts among agents
should be supported in a simple and generic manner, while generating
efficient code. To achieve these goals, we extend the OpenABL mod-
elling language and code generation framework by three aspects: firstly,
a new OpenCL backend enables the co-execution of arbitrary agent-based
models on heterogeneous hardware. Secondly, the OpenABL language is
extended to support graph-based simulation spaces. Thirdly, we specify a
generic interface for specifying conflict resolution rules. In a performance
comparison to the existing OpenABL backends, we show that depending
on the simulation model, the opportunity for CPU-GPU co-execution
enables a speedup of up to 2.0 over purely GPU-based simulation.

Keywords: Agent-based simulation · Parallel and distributed
simulation · Heterogeneous hardware · OpenABL · OpenCL

1 Introduction

Agent-based simulation (ABS) is widely used for system analysis and the answer-
ing of what-if questions in domains such as transport, computer networks, biol-
ogy, and social sciences [17]. Each agent, e.g., a vehicle or a pedestrian, is an
autonomous entity that makes decisions based on its environment, other agents,
c© Springer Nature Switzerland AG 2020
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and a number of behavioural models. Due to increasingly complex models and
large numbers of agents, large-scale ABS often suffer from long execution times.

There exists an ample body of methods to speed up agent-based simulation to
meet increasing performance needs, commonly based on parallel and distributed
simulation techniques. In the last decade, the increasing prevalence of heteroge-
neous hardware composed of CPUs and accelerators such as GPUs or FPGAs
opens up new possibilities to accelerate ABSs [28]. For instance, computationally
intensive segments can be offloaded to run on an accelerator where they can be
executed faster or ran in parallel to other parts being executed on the CPU.

However, placing the burden of tailoring the simulation to the target hard-
ware platform on the simulationist degrades the maintainability of the simulation
code as well as the portability to other hardware platforms. To avoid these issues,
the modelling language OpenABL [6] has been proposed to enable code genera-
tion from high-level model and scenario specifications using a C-like syntax. A
number of backends are provided to generate parallelised code targeting CPUs,
GPUs, clusters, or cloud environments.

Previous to the work presented in this paper, each backend supported by
OpenABL targeted one specific type of hardware platform, i.e., co-execution on
combinations of CPUs, GPUs, FPGAs was not possible. This leaves a large range
of computational resources untapped, even though previous work has demon-
strated high hardware utilisation using co-execution [2]. Further, the simulation
environment was limited to continuous 2D or 3D spaces, which excludes graph-
based simulation spaces as commonly used in domains such as road traffic and
social sciences. Lastly, OpenABL did not provide a mechanism for conflict resolu-
tion, requiring modellers to manually provide code to detect and resolve conflicts
in situations where multiple agents request the same resources.

We address these limitations and contribute to the state of the art as follows:

– We extend OpenABL by an OpenCL backend to support automatic code
generation for heterogeneous hardware.

– We provide new syntactic elements to support graph-based simulation spaces.
– We define an interface that enables conflict resolution code to be generated

from user-specified rules.

Our extensions are open-source and available online1. The remainder of the paper
is organised as follows: In Sect. 2, we introduce OpenABL as well as OpenCL and
give an overview of related work in the field. In Sect. 3, we describe our extensions
to OpenABL. We evaluate the performance of the extended OpenABL in Sect. 4.
Section 5 summarises our work and concludes the paper.

2 Related Work and Background

The acceleration of ABS through parallelisation has received wide attention from
the research community. A number of frameworks simplify the process of devel-
oping ABSs, e.g. MASON [15], Repast [19], Swarm [18], or FLAME [11]. Sim-
ulator variants that exploit CPU-based parallelisation or distributed execution
1 https://github.com/xjjex1990/OpenABL Extension.

https://github.com/xjjex1990/OpenABL_Extension
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Fig. 1. An overview of the OpenABL.

1 agent Agent {

2 position float2 coordinate; }

3

4 param int num_of_agents = 1000;

5 param int sim_steps = 100;

6 param float env_size = 100;

7

8 environment { max : float2 (

env_size) }

9

10 step move(Agent in -> out) {..}

11

12 void main() {

13 .../* initialise the agents */

14 simulate(sim_steps) {move} }

15

Listing 1. Example OpenABL code.

include D-MASON [5] and Repast-HPC [4]. Making full use of those frameworks
requires modellers to be knowledgeable in parallel or distributed computing.

A comprehensive review of existing techniques to overcome the challenges
of ABS on hardware accelerators is found in [28]. One important method is to
abstract from hardware specifics to simplify porting to hardware accelerators.
FLAME GPU [23] is an extension to FLAME that provides a template-driven
framework for agent-based modelling targeting GPUs based on a state machine
model called X-machine. The Many-Core Multi-Agent System (MCMAS) [12]
provides a Java-based tool-kit that supports a set of pre-defined data struc-
tures and functions called plugins to abstract from native OpenCL code. Agent
models can be implemented using these data structures or plugins. In contrast
to our work, MCMAS and FLAME GPU target GPUs only. Several previous
works focus on the generation of performance-portable code targeting hetero-
geneous hardware by pattern-matching parallelisable C snippets [9], relying on
code templates [13], or using domain-specific languages [24]. Some works per-
form pattern-matching procedures on intermediate representations instead of
high-level code [25,26]. Unlike OpenABL, which can exploit the parallelisable
structure shared by most ABS, the above works focus on automatically detect-
ing parallelisable computations such as nested loops with predictable control
flows.

In parallel ABS, conflicting actions may occur, e.g., when two agents move to
the same position at the same point in time. Approaches proposed to detect and
resolve such conflicts typically rely either on the use of atomic operations during
the parallel agents updates [16] or on enumerating the agents involved in conflicts
once an update cycle has completed [22]. In both cases, the winner of each conflict
is determined according to a tie-breaking policy, which may be stochastic or rely
on model-specific tie-breaking rules. A taxonomy and performance evaluation of
the conflict resolution methods from the literature is given by Yang et al. [29]. In
the present work, we provide a generic interface to define a conflict search radius
and a tie-breaking policy from which low-level code is generated automatically.
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Fig. 2. Co-execution on devices A and B. Each work-item of device A processes the
step functions assigned to A. After that, the data is transferred to Device B (via host)
for processing the step functions assigned to B.

2.1 OpenABL

OpenABL is a domain-specific language to describe the behaviour of agent-
based simulation and a framework to generate code targeting multiple execution
platforms. It acts as an intermediate layer to generate parallel or distributed
time-stepped ABS, given sequential simulation code written in the C-like Open-
ABL language. An overview of the OpenABL framework is depicted in Fig. 1.
The framework consists of a frontend and a backend. Listing 1 shows an exam-
ple of frontend OpenABL code, where users can define agents with a mandatory
position attribute (keyword agent, L.1-2), constants (keyword param, L.4-6),
simulation environments (keyword environment, L.8), step functions (keyword
step, L.10), and a main function (keyword main(), L.12-14).

The OpenABL compiler parses OpenABL code and compiles it to an Inter-
mediate Representation (IR) called Abstract Syntax Tree (AST). The AST IR is
then further relayed to one of the available backends. The backend reconstructs
simulation code from the AST IR and parallelises the step functions targeted for
CPUs, GPUs, clusters or cloud environments. OpenABL supports the following
backends: C, FLAME [11], FLAME GPU [23], MASON [15], and D-MASON [5].

2.2 OpenCL

The Open Computing Language (OpenCL) is a framework that allows users to
write parallel programs in a C-like syntax without considering low-level hard-
ware specifics. An OpenCL execution environment is comprised of a host (usu-
ally CPUs) and one or multiple devices (e.g., CPUs, GPUs). A host program
initialises the environment, control, memory, and computational resources for
the devices. A device program consists mainly of so-called kernels that imple-
ment the computational tasks. Threads that process the tasks are referred to
as work-items. Parallelism is achieved by processing many work-items in paral-
lel. OpenCL is supported by a wide range of hardware including CPUs, GPUs,
APUs, and FPGAs, allowing it to target heterogeneous hardware environments.

3 Extending OpenABL

In this section, we propose extensions to the OpenABL language and framework
to support a wider range of simulation models as well as additional types of
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Fig. 3. Coalesced memory access in the generated OpenCL code.

hardware. We first provide an OpenCL backend to support code generation
targeting heterogeneous hardware environments, enabling the execution on a
variety of devices as well as a multi-device co-execution, e.g., combining a CPU
and an FPGA. Further, we extend the OpenABL language to allow for the
definition of graph-based simulation spaces. Finally, we introduce a mechanism
for automated resolution of inter-agent conflicts based on user-defined rules.

3.1 Code Generation for Heterogeneous Hardware

OpenABL enables the addition of new backends without modifying the frontend,
which allows us to target heterogeneous hardware by adding an OpenCL back-
end. The existing backends only allow for the execution on a single platform,
e.g., a GPU. In contrast, OpenCL enables co-execution across multiple devices
of different types. Our aim is to allow modellers to fully utilise the available
hardware without specifying simulation code for each device manually.

The OpenCL backend takes as input the AST IR generated by the OpenABL
frontend. The output of the OpenCL backend consists of a host program and
a device program for each available device. Agents, the environment, constant
declarations and all auxiliary functions are duplicated in both the host and
device programs, as they may be referenced on either side.

The generated host program initialises the devices, allocates the required
memory, and initialises the agent state variables as well as the environment. In
a co-execution setting, the host program also orchestrates the data exchange
between devices. After each simulation iteration, data processed by differ-
ent devices is transferred back to the host. In the simulate statement, each
step function is annotated with the identifier of the OpenCL device on which
the step function should execute, e.g.: simulate(sim steps) {stepFunc1(0),
stepFunc2(1)}.

One compute kernel function is created in the device program for each
device, where the designated step functions are called in sequence. On each
device, the work-items execute in parallel with each one processing one step
function.
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The main loop of the simulation calls the compute kernel of each device
iteratively until the step count defined in the parameter of simulation() has
been reached. As shown in Fig. 2, the execution of subsequent compute kernels
across devices is serialised to guarantee that data dependencies across kernels are
respected. In the future, additional merging steps based on the model-specific
dependencies could allow kernels to execute in parallel across devices.

3.2 User-Specified Environments

The original OpenABL limits the simulation environment to continuous 2D
or 3D spaces, parametrised by the max, min, and granularity attributes in
the environment declaration. Furthermore, user-defined types can only be used
within agents, and not in function bodies or the environment, complicating the
model specification. We extend the OpenABL syntax and frontend to lift these
limitations. User-defined types for arbitrary variables in function bodies as well
as in the definition of the simulation environment can be specified as follows:
Lane {

int laneId;
float length;
int nextLaneIds[MAX LANE CONNECTIVITY]; }

environment { env : Lane lanes[env size] }
The keyword env inside the environment declaration defines the simulation

environment. It accepts an environment array of all native types supported by the
original OpenABL as well as user-defined types. In this example, the environment
is defined as an array of the user-defined type Lane. The Lane type encapsulates
a lane’s identifier, its length, and its connections to other lanes.

Accelerators typically employ a memory hierarchy composed of global mem-
ory accessible to all work-items and one or more types of memory accessible
to groups or individual work-items. Due to the high latency of global memory
accesses, data locality is an important consideration in ABS development [6]:
accesses of adjacent work-items to adjacent memory addresses can frequently
be coalesced, i.e., translated to a single memory transaction, allowing for peak
memory performance on OpenCL devices such as GPUs. In common ABS mod-
els, agents tend to interact only with agents within a certain radius or on the
same edge in a graph environment. To achieve data locality during execution,
we implemented the efficient neighbour search method by [14]. Spatial locality
is exploited by partitioning the simulation space into a grid of cells. Each cell’s
side length equals the largest search radius that appears in the model. In the
original OpenABL, data locality is achieved in 2D or 3D space by specifying a
radius using the following neighbour search query:
for (AgentType neighbours : near (currentAgent, radius))

We extend the language to allow for a similar neighbour search query for
graph-based models: for (AgentType neighbours : on (env))

In the example of a traffic simulation with graph edges representing road
lanes, the following query retrieves all agents on a lane:
for (Vehicles neighbours : on (lanes[currentVehicle.currentLane]))
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Coalesced memory access is achieved by always keeping the array of agents in
the global memory sorted according to the individual dimensions of the position
attributes. Each element in the environment array keeps track of its start and
end address in global memory. As illustrated in Fig. 3a, two attributes mem start
and mem end record the start and end address of each single lane in the global
array of agents. The two attributes are updated after all step functions have ter-
minated. When the neighbour search query is called, instead of iterating through
global memory, only a chunk of memory is loaded. In a graph-based setting, the
chunk of memory is indicated by env.mem start and env.mem end. For 2D or
3D simulation spaces, we load chunks of memory holding the agents in current
partition and all the neighbouring partitions (cf. Fig. 3b).

3.3 Conflict Resolution

In parallel ABS, simultaneous updates of multiple agents can result in multiple
agents being assigned the same resource at the same time, e.g., a position on a
road or consumables [7]. Unlike desired spatial collisions, e.g., in particle collision
models, conflicts introduced purely by the parallel execution must be resolved
to achieve results consistent with a sequential execution.

Conceptually, conflict resolution involves two steps: First, conflict detection
determines pairs of conflicting agents, and second, tie-breaking determines the
agent that acquires the resource. The loser of a conflict can be rolled back to its
previous state. Since roll-backs may introduce additional conflicts, the process
repeats until no further conflicts occur. A number of approaches for conflict
resolution on parallel hardware have been proposed in [29]. Here, we propose a
generic interface to specify a spatial range for conflict detection and a policy for
tie-breaking, from which low-level implementations are generated.

The conflict resolution is specified as follows:
conflict resolution(env, search radius, tie breaking)

All pairs of agents residing on the same element in the env array are checked
for conflicts based on the agents’ state variables. When considering 2D and 3D
environments, the environment array is comprised of the internally generated
partitions of the simulation space, with search radius specifying the search
radius. tie breaking is a binary predicate that, given two agents A and B as
arguments, returns true if A should be rolled back. If the agents are not in
conflict or agent B should be rolled back, tie breaking returns false.

As an example, in a traffic simulation scenario, the env is the environment
array roads[]. Assuming the desired position of an agent is indicated by the
state variables (LaneID, PositionOnLane), the tie breaking function can be
defined so that the agent with larger PositionOnLane wins the conflict. The
position and velocity of the other agent involved in the conflict are reverted to
their previous values. The generated conflict resolution code is executed once all
step functions have been executed. The conflict detection relies on the neigh-
bour search methods introduced in Sect. 3.2. As the step functions may change
the agents’ positions, the environment array is sorted and the mem start and
mem end pointers are updated after each iteration (cf. Sect. 3.2). Currently, the
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Fig. 4. Performance of the C, FLAME GPU, MASON and OpenCL code.

conflict resolution code is based on a user-specified tie-breaking rule. Our future
work includes the automatic generation of model-agnostic resolution code [29].

4 Experiments

We evaluate the extended OpenABL on a system equipped with a 4-core Intel
Core i7-4770 CPU, 16 GB of RAM and an NVIDIA GTX 1060 graphics card
with 6 GB of RAM. We rely on GCC version 5.4, OpenCL version 1.2, and
NVIDIA CUDA 10.0.292. We compare the performance of the OpenCL backend
and the other backends: C with OpenMP, FLAME GPU, MASON. We consider
three existing models: Circle, a benchmark for accessing neighbours within a
certain radius provided in [3]; Conway’s Game of Life [8]; and Boids [21], which
simulates the flocking behaviour of birds. We based our implementation on the
code provided in the OpenABL repository2. During preliminary experiments,
we observed that FLAME GPU’s performance is severely affected by file system
I/O to store simulation statistics, which we disabled in our measurements. We
run the simulations in two scenarios: “low agent density” generates agents evenly
throughout the simulation space, whereas “high agent density” generates agents
only in the upper left quadrant. We run all simulations for 100 time steps to
allow for comparison with the existing results in [6].

As illustrated by Fig. 4a, 4c, 4d, the C variant is slow in all cases. This is
because it iterates through all agents to search neighbours while the other back-
ends rely on grid-based approaches to limit the search space. The performance of

2 https://github.com/OpenABL/OpenABL.

https://github.com/OpenABL/OpenABL
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Table 1. Breakdown of simulation runtime [s] for Circle (216 agents)

Backend Agent updates Neighb. search Other Total

C 308.5 (100.0%) 0.00 (0.0%) 308.5

OpenCL 0.32 (33.3%) 0.61 (63.5%) 0.03 (3.2%) 0.96

FLAME GPU 0.24 (28.9%) 0.17 (20.5%) 0.42 (50.6%) 0.83

MASON 45.00 (100.0%) 0.00 (0.0%) 0.08 (0.0%) 45.08

OpenCL, high density 2.64 (81.2%) 0.58 (17.8%) 0.03 (1.0%) 3.25

FLAME GPU, high density 2.52 (54.1%) 1.74 (37.3%) 0.40 (8.6%) 4.66

Fig. 5. Performance of the CPU-GPU co-execution.

the OpenCL backend is on par with the FLAME GPU backend and outperforms
the other backends for low agent densities. As shown in the first four rows of
Table 1, this is mainly owing to the massive parallelism on the GPU and the
efficient neighbour search implemented by both backends. Despite the relatively
long initialisation time as shown in Table 1 (the ‘Other’ column), FLAME GPU
performs the best in low agent density scenarios. This is owing to FLAME GPU’s
message passing mechanism that generates one message per agent in the cur-
rent cell. However, the performance is sensitive to the agent density. In contrast,
the OpenCL backend sorts all agents in global memory after each simulation
iteration to ensure their correct assignment to cells. The performance of sorting
is barely affected by the density of agents. Thus, with high agent density, the
OpenCL backend outperforms FLAME GPU in all cases, as depicted in Fig. 4b
and the last two rows of Table 1. The other two models follow the same trend.

Our extensions to the OpenABL enable modellers to generate graph-based
ABSs. As a proof of concept, we developed a traffic simulation akin to a previous
manual implementation [27]. The agent behaviour is governed by two models: the
Intelligent Driver Model determines the agents’ longitudinal movement, whereas
Ahmed’s lane-changing model [1] determines the lateral movement. The gen-
eration of the conflict resolution code is enabled, the winner of each conflict
being the agent further ahead on the same lane. We evaluate two execution
schemes: executing purely on a GPU as well as CPU-GPU co-execution. In the
co-execution scheme, the car-following model is offloaded to the CPU, while the
lane-changing model and conflict resolution remain on the GPU. In all tested
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cases, the time spent on conflict resolution occupies less than 0.1% of the overall
runtime with on average 0.86 rollbacks per agent in 100 simulation steps. As
shown in Fig. 5a, with a small number of agents, the C variant outperforms the
others due to the conflict resolution overhead and the data transfers between the
CPU and the GPU in the co-execution case. As the number of agents increases,
the GPU and co-execution variants produce better results than the C variant.
The absolute runtime of the pure GPU and co-execution variants is similar. The
co-execution achieves a maximum speedup of 1.78x over the C variant while the
purely GPU-based execution achieves a maximum speedup of 2.29x. To further
demonstrate the benefit of co-execution, we developed a crowd simulation based
on the building evacuation behaviour described in [20]. Agents are divided into
two groups based on their high-level behaviour: Leaders, which are assumed to
have a floor plan of the building, conduct path finding to search for the exits.
Followers flock to the nearest leader and follow the leader’s movement. If there
is no leader within a defined radius, the followers move in a random direction.
All agents follow the Social Force Model [10] as their low-level behaviour. In
the co-execution scheme, the memory-intensive path finding based on Dijkstra’s
algorithm is executed on the CPU, while the computationally intensive Social
Force Model is executed on the GPU. Similar to the traffic simulation, with a
small number of agents, the C backend variant outperforms the others, as illus-
trated in Fig. 5b. As the number of agents increases, the co-execution variant
outperforms the other variants. A maximum speedup of 3.5x over the C variant
and 2.03x over pure GPU is achieved through co-execution.

Finally, the OpenCL backend also opens up the possibility of executing on
OpenCL-enabled FPGA devices. For instance, Intel offers an SDK to compile
OpenCL code for FPGAs3. While in preliminary experiments, the considered
models exceeded the hardware resources of a Terasic DE10-Standard, we plan
to explore the area of FPGA-based acceleration in future work.

5 Conclusion and Future Work

In this paper, we presented our work towards automatic code-generation of
agent-based simulations for heterogeneous hardware environments. We extended
the OpenABL framework to overcome limitations in terms of the supported
hardware platforms and the representation of the simulation space to support
portable high-performance ABS for various model types. Our extensions are fully
open-source and available online. Furthermore, we presented a semi-automated
conflict resolution mechanism required to maintain the correctness of the paral-
lelised simulation. Our addition of an OpenCL backend to the OpenABL frame-
work not only enables the execution on CPUs and accelerators such as GPUs and
FPGAs, but also opens up new possibilities such as multi-device co-execution.

We evaluated the performance of the OpenCL backend using three existing
simulation models. It was observed that on a GPU, our approach outperformed
the existing C and MASON backends, mainly due to a more efficient neighbour
3 http://fpgasoftware.intel.com/opencl/.

http://fpgasoftware.intel.com/opencl/
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search method. In a high agent density scenario, our backend also delivers better
performance than the FLAME GPU backend. In addition, we demonstrated
our approach by developing two proof-of-concept traffic and crowd simulations,
showing the performance benefits of a CPU-GPU co-execution.

Our future work will focus on the automated assignment of computational
tasks to the available hardware devices.
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Research Foundation under its Campus for Research Excellence And Technological
Enterprise (CREATE) programme.
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Abstract. Energy is one of the most important objectives for optimiza-
tion on modern heterogeneous high performance computing (HPC) plat-
forms. The tight integration of multicore CPUs with accelerators in these
platforms present several challenges to optimization of multithreaded
data-parallel applications for dynamic energy.

In this work, we formulate the optimization problem of data-parallel
applications on heterogeneous HPC platforms for dynamic energy
through workload distribution. We propose a solution method to solve
the problem. It consists of a data-partitioning algorithm that employs
load imbalancing technique to determine the workload distribution min-
imizing the dynamic energy consumption of the parallel execution of an
application. The inputs to the algorithm are discrete dynamic energy
profiles of individual computing devices.

We experimentally analyse the proposed algorithm using two multi-
threaded data-parallel applications, matrix multiplication and 2D fast
Fourier transform. The load-imbalanced solutions provided by the algo-
rithm achieve significant dynamic energy reductions (on the average
130% and 44%) compared to the load-balanced ones for the applications.

Keywords: High performance computing · Heterogeneous platforms ·
Energy of computation · Multicore CPU · GPU · Xeon Phi

1 Introduction

Energy consumption is one of the main challenges hindering high performance
computing (HPC) community from breaking the exascale barrier [9].
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Energy optimization in HPC context is studied briefly in connection with
bi-objective optimization for performance and energy. State-of-the-art solution
methods for bi-objective optimization problem can be broadly classified into
system-level and application-level categories. System-level solution methods aim
to optimize performance and energy of the environment where the applications
are executed. The methods employ application-agnostic models and hardware
parameters as decision variables. The dominant decision variable in this cate-
gory is Dynamic Voltage and Frequency Scaling (DVFS). Majority of the works
in this category optimize for performance with energy budget as a constraint.
Application-level solution methods proposed in [2,12–14] use application-level
parameters as decision variables and application-level models for predicting
the performance and energy consumption of applications. The application-level
parameters include the number of threads, number of processors, loop tile size,
workload distribution, etc. Chakraborti et al. [2] consider the effect of hetero-
geneous workload distribution on bi-objective optimization of data analytics
applications by simulating heterogeneity on homogeneous clusters. The perfor-
mance is represented by a linear function of problem size and the total energy
is predicted using historical data tables. Research works [13,14] demonstrate
by executing real-life data-parallel applications on modern multicore CPUs that
the functional relationships between performance and workload distribution and
between energy and workload distribution have complex (non-linear) properties.
They target homogeneous HPC platforms.

Modern heterogeneous HPC platforms feature tight integration of multicore
CPUs with accelerators such as graphical processing units (GPUs) and Xeon Phi
coprocessors to provide cutting-edge computational power and increased energy
efficiency. This has resulted in inherent complexities such as severe resource
contention for shared on-chip resources (Last Level Cache, Interconnect) and
Non-Uniform Memory Access (NUMA). One visible manifestation of these com-
plexities is a complex functional relationship between energy consumption and
workload size of applications executing on these platforms where the shape of
energy profiles may be highly non-linear and non-convex with drastic variations.
This, however, provides an opportunity for application-level energy optimization
through workload distribution as a decision variable.

Consider the dynamic energy profiles of multithreaded matrix-matrix mul-
tiplication (DGEMM) and 2D fast Fourier transform (2D-FFT) application
executed on two connected heterogeneous multi-accelerator NUMA nodes,
HCLServer1 (Table 1) and HCLServer2 (Table 2). The multicore CPU in
HCLServer1 is integrated with one Nvidia K40c GPU and one Intel Xeon Phi
3120P. The multicore CPU in HCLServer2 is integrated with one Nvidia P100
GPU. DGEMM computes the matrix product, C = α × A × B + β × C, where
A, B, and C are respectively dense matrices of size m × n, n × n, and m × n
and α and β are constant floating-point numbers. 2D-FFT computes the Fourier
transform of a complex matrix of size m × n.

A data-parallel application executing on this heterogeneous platform, consists
of a number of kernels (generally speaking, multithreaded), running in parallel on
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Table 1. HCLServer1 specifications.

Intel Haswell E5-2670V3 Nvidia K40c Intel Xeon Phi 3120P

Socket(s), Cores per socket 2, 12 No. of processor
cores

2880 No. of processor
cores

57

Main memory 64GB Total board
memory

12 GB Total main
memory

6GB

Idle Power (W) 60 Idle Power (W) 68 Idle Power (W) 91

Table 2. HCLServer2 specifications.

Intel Xeon Gold 6152 Nvidia P100 PCIe

Socket(s), Cores per socket 1, 22 No. of processor cores 3584

Main memory 96 GB Total board memory 12 GB

Idle Power (W) 60 Idle Power (W) 30

Fig. 1. Dynamic energy functions for the five abstract processors on HCLServer1 and
HCLServer2. (a) DGEMM, and (b) 2D-FFT.

different computing devices of the platform. In order to apply our optimization
algorithms, each group of cores executing an individual kernel of the applica-
tion is modelled as an abstract processor [21] so that the executing platform is
represented as a set of abstract processors. HCLServer1 is modelled by three
abstract processors, CPU 1, GPU 1, and PHI 1. CPU 1 represents 22 (out of
total 24) CPU cores. GPU 1 involves the Nvidia K40c GPU and a host CPU
core connected to this GPU via a dedicated PCI-E link. PHI 1 is made up of one
Xeon Phi 3120P and its host CPU core connected via a dedicated PCI-E link. In
the same manner, HCLServer2 is modelled by two abstract processors, CPU 2
and GPU 2. Since there should be a one-to-one mapping between the abstract
processors and computational kernels, any hybrid application executing on the
servers should consist of five kernels, one kernel per computational device.

The dynamic energy profiles for the applications are shown in the Fig. 1. Each
profile presents the dynamic energy consumption of a given processor versus
workload size executed on the processor. In the figure for 2D-FFT, the dynamic
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energy profile for Phi 1 is ignored since it consumes 10 times more energy and
dominates the other profiles. The dynamic energy consumptions are measured
using Watts Up Pro power meter. We will elaborate the practical methodology
to construct the discrete dynamic energy profiles in a following section.

Consider the execution of DGEMM for the workload size 2496 × 10112
employing all the five abstract processors, {CPU 1,CPU 2,GPU 1,GPU 2,
PHI 1}. The solution determined by load-balanced algorithm is {64,320,64,
2048,0} and its dynamic energy consumption is 84 J. The optimal workload
distribution assigns the whole workload to GPU 2 resulting in dynamic energy
consumption of 24 J and thereby providing 150% reduction in energy. Con-
sider the execution of 2D-FFT for the workload size 9120 × 51200 (2D sig-
nal) employing all the five abstract processors. The solution (workload dis-
tribution) determined by load-balanced algorithm is {1200,5376,1024,1472,0}
and its dynamic energy consumption is 82 J. The load-balancing algorithm
employs horizontal decomposition of the rows of the 2D signal. The opti-
mal workload distribution assigns the whole workload to CPU 2 result-
ing in dynamic energy consumption of 40 J and thereby providing 105%
reduction in energy. Our proposed solution finds these optimal workload
distributions.

In this work, we propose a novel data-partitioning algorithm, HEOPTA, that
determines optimal workload distribution minimizing the dynamic energy con-
sumption of data-parallel applications executing on heterogeneous platforms for
the most general shapes of dynamic energy profiles of the participating pro-
cessors. To model the performance of a parallel application and build its speed
functions, the execution time of any computational kernel can be measured accu-
rately using high precision processor clocks. There is however no such effective
equivalent for measuring the energy consumption. Physical measurements using
power meters are accurate but they do not provide a fine-grained decomposition
of the energy consumption during the application run in a hybrid platform. We
propose a practical methodology to determine this decomposition, which employs
only system-level energy measurements using power meters. The methodology
allows us to build discrete dynamic energy functions of abstract processors with
sufficient accuracy for the application of HEOPTA.

We experimentally analyse the accuracy of our energy modelling method-
ology and the performance of HEOPTA using two data-parallel applications,
DGEMM and 2D-FFT, on a cluster of two heterogeneous nodes. We show
that the load-imbalanced solutions provided by the algorithm achieve signifi-
cant dynamic energy reductions compared to the load balanced solutions.

Our main contribution of this work is a novel data-partitioning algorithm
that determines optimal workload distribution minimizing the dynamic energy
consumption of data-parallel applications executing on heterogeneous platforms
for the most general shapes of dynamic energy profiles of the processors.

The paper is organized as follows. Section 2 presents related work. Section 3
presents the formulation of the heterogeneous dynamic energy optimization
problem. Section 4 describes our algorithm solving the problem. In Sect. 5, the
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device-level approach for dynamic energy modelling is illustrated. Section 6
presents the experimental results. Finally, Sect. 7 concludes the paper.

2 Related Work

In this section, we will cover research works on bi-objective optimization for
performance and energy and notable works model the energy of computation.

Analytical studies of bi-objective optimization for performance and energy
are presented in [3,5,15]. Choi et al. [3] extend the energy roofline model
by adding an extra parameter, power cap, to their execution time model.
Drozdowski et al. [5] use iso-energy map, which are points of equal energy con-
sumption in a multi-dimensional space of system and application parameters,
to study performance-energy trade-offs. Marszalkowski et al. [15] analyze the
impact of memory hierarchies on time-energy trade-off in parallel computations,
which are represented as divisible loads. The works reviewed do not consider
workload distribution as a decision variable.

Basmadjian et al. [1] constructs a power model of a server using the summa-
tion of power models of its components: the processor (CPU), memory (RAM),
fans, and disk (HDD). A model representing the energy consumption of a multi-
core CPU by a non-linear function of workload size is developed in [13]. Nagasaka
et al. [16] propose PMC-based statistical power consumption modelling tech-
nique for GPUs that run CUDA applications. Song et al. [20] present power and
energy prediction models based on machine learning algorithms such as back-
propagation in artificial neural networks (ANNs). Shao et al. [19] develop an
instruction-level energy consumption model for a Xeon Phi processor.

3 Formulation of Heterogeneous Dynamic Energy
Optimization Problem

Consider a workload size n executing on p processors with dynamic energy func-
tions, E = {e0(x), ..., ep−1(x)} where ei(x), i ∈ {0, 1, · · · , p − 1}, is a discrete
dynamic energy function of processor Pi with a cardinality of m. The heteroge-
neous dynamic energy optimization problem can be formulated as follows:

Heterogeneous Dynamic Energy Optimization Problem, HEOPT(n,
p, m, E, Xopt, eopt): The problem is to find a workload distribution, Xopt =
{x0, ..., xp−1}, for the workload n executing on p heterogeneous processors so
that the solution minimizes dynamic energy consumption during the parallel
execution of n. The parameters (n, p, m, E) are the inputs to the problem. The
outputs are Xopt, which is the optimal solution (workload distribution), and eopt,
which represents the dynamic energy consumption of the optimal solution. The
formulation below is a integer non-linear programming (INLP) problem.

eopt = min
X

p−1∑

i=0

ei(xi) Subject to
p−1∑

i=0

xi = n,

where p,m, n ∈ Z>0 and xi ∈ Z≥0 and ei(x) ∈ R>0

(1)
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The objective function in Eq. 1 is a function of workload distribution X,
X = {x0, ..., xp−1}, for a given workload n executing on the p processors. The
number of active processors (processors that are assigned non-zero workload size)
in the optimal solution (Xopt) may be less than p.

4 HEOPTA: Algorithm Solving HEOPT Problem

In this section, we will introduce HEOPTA, a branch-and-bound algorithm solv-
ing HEOPT. The bounding criteria in HEOPTA are energy threshold and size
threshold, which are explained below.

Fig. 2. (a) Dynamic energy functions of a sample application executing on four het-
erogeneous processors. (b) The same functions stored in arrays.

First, the algorithm is informally explained using a simple example. Consider
a workload n = 12 executing on a given platform consisting of four heteroge-
neous processors (p = 4). Figure 2 (a) shows the discrete dynamic energy func-
tions, E = {e0(x), · · · , e3(x)}, with a cardinality of 14 (m = 14), as inputs to
HEOPTA. Figure 2 (b) shows the discrete dynamic energy functions which are
stored as arrays in non-decreasing order of energy consumption.

To solve the HEOPT problem and find the optimal workload distribution, a
straightforward approach is to explore a full solution tree in order to build all
combinations and finally select a workload distribution that its dynamic energy
consumption is minimum. The tree explored by such a naive approach is shown
in Fig. 3 which contains all the combinations for n = 12 and p = 4. Due to the
lack of space, the tree is shown partially.

The naive algorithm starts tree exploration from the root at the level L0 of
the tree. The root node is labelled by 12 which represents the whole workload
to be distributed between 4 processors {P0, P1, P2, P3}. Then, fifteen (= m + 1)
problem sizes, including a zero problem size along with all problem sizes in the
dynamic energy function e0(x), are assigned to the processor P0 one at a time.
Therefore, the root is expanded into 15 children. The value, which labels an
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Fig. 3. Applying naive approach to examine all combinations and select a workload
distribution with the minimum dynamic energy consumption.

internal node at level L1 (root’s children), determines the remaining workload
to be distributed between processors {P1, P2, P3}.

Similarly, each child of the root in the next level L1 turns into a root of a
sub-tree, which is a solution tree to solve HEOPT for the remaining workload
between three processors {P1, P2, P3}. Each edge, which connects the root and its
child, is labelled by the problem size assigned to P0 and its energy consumption.

In Fig. 3, the leaf node at level L1 labelled by 0 represents a solution leaf.
Generally, any leaf node labelled by 0 illustrates one of the possible solutions,
where its dynamic energy consumption is calculated as the summation of the
consumed energies labelling the edges in the path connecting the root and the
solution leaf. No-solution leaves are labelled by �.

In this example, the distribution {(0, 0), (7, 4), (5, 1), (0, 0)}, highlighted in
blue, with the consumed dynamic energy of 5, represents the optimal solution.

The cost of this naive algorithm is exponential. HEOPTA utilizes two bound-
ing criteria, energy threshold and size threshold, and saving the intermediate
solutions to find optimal solutions in a polynomial complexity of O(m3 × p3).

The energy threshold, represented by ε, is the dynamic energy consumption
of load-equal distribution, allocating each processor the same workload of size n

p

(assuming n is divisible by p). HEOPTA will not examine data points with the
dynamic energy consumption greater than or equal to the energy threshold.

The size threshold assigns each level of the tree a threshold, σi, i ∈ {0, . . . , p−
1}, which represents the maximum workload that can be executed in parallel on
processors {Pi, · · · , Pp−1} so that the dynamic energy consumption by every
processor {Pi, · · · , Pp−1} is less than ε.

HEOPTA explores solution trees in the left-to-right depth-first order as
shown in Fig. 3. Before exploring a branch, the branch is checked against two
upper estimated bounds, energy threshold and size threshold, and is discarded if
it cannot result in a better solution than the best one found so far. All subtrees,
not explored by applying the bounding criteria, are highlighted in red in Fig. 3.
We call this key optimization operation Cut.
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When a solution is found, the following operations are performed: (i) The
energy threshold ε is updated, (ii) If ε decreases, the vector σ of size thresholds
is updated, and (iii) The solution is saved in the memory. Green nodes in the
tree highlight ones whose solutions are saved. We call this key operation, Save.
Before exploring a node, HEOPTA read the memory to retrieve its solution (if
it have already been saved). This key operation is called ReadMemory. The
solution of the orange node in the tree is retrieved from the memory.

In summary, HEOPTA uses three key operations, Cut, Save, and ReadMem-
ory, to find the optimal solutions. In supplemental available online in [11], we
elucidate using an example how these key operations reduce the search space of
solutions. The pseudocode of HEOPTA, its correctness and complexity proofs
are also presented in the supplemental in [11].

5 Device-Level Dynamic Energy Decomposition
in Heterogeneous Hybrid Platforms

We describe our practical approach here to construct the discrete dynamic energy
profiles of the abstract processors in a hybrid heterogeneous server. The method
is based purely on system level measurements. The approach comprises of two
main steps. The first step is the identification or grouping of the computing
elements satisfying properties that allow measurement of their energy consump-
tions to sufficient accuracy. We call these groups as abstract processors. The
second step is the construction of the dynamic energy models of the abstract
processors where the principal goal apart from minimizing the time taken for
model construction is to maximize the accuracy of measurements.

5.1 Grouping of Computing Elements

We group individual computing elements executing an application together in
such a way that we can accurately measure the energy consumption of the group.
We call these groups abstract processors. We consider two properties essential to
composing the groups:

– Completeness: An abstract processor must contain only those computing ele-
ments which execute the given application kernel.

– Loose coupling: Abstract processors do not interfere with each other during
the application. That is, the dynamic energy consumption of one abstract
processor is not affected by the activities of other abstract processor.

Based on this grouping approach, we hypothesize that the total dynamic
energy consumption during an application execution will equal the sum of
energies consumed by all the abstract processors. So, if ET is the total
dynamic energy consumption of the system incorporating p abstract processors
{AP1, · · · , APp}, then ET =

∑p
i=1 ET (APi), where ET (APi) is the dynamic

energy consumption of the abstract processor APi. We call this our additive
hypothesis.
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5.2 Energy Models of Abstract Processors

We describe here the second main step of our approach, which is to build the
dynamic energy models of the p abstract processors. We represent the dynamic
energy model of an abstract processor by a discrete function composed of a
set of points of cardinality m. The total number of experiments available to
build the dynamic energy models is (2p − 1) × m. Consider, for example, three
abstract processors {A,B,C}. {A,B,C, {AB,C}, {A,BC}, {AC,B}, ABC}. The
category {AB,C} represents parallel execution of application kernels on A and B
followed by application kernel execution on C. For each workload size, the total
dynamic energy consumption is obtained from the system-level measurement
for this combined execution of kernels. The categories {AB,C} and {BA,C} are
considered indistinguishable. There are m experiments in each category. The
goal is to construct the dynamic energy models of the three abstract processors
{A,B,C} from the experimental points to sufficient accuracy. We reduce the
number of experiments to p × m by employing our additive hypothesis.

6 Experimental Results

We employ two connected heterogeneous multi-accelerator NUMA nodes,
HCLServer1 (Table 1) and HCLServer2 (Table 2). HCLServer1 is modelled by
three abstract processors, CPU 1, GPU 1 and PHI 1, as described earlier.
HCLServer2 is modelled by two abstract processors, CPU 2 and GPU 2.

We employ two popular data-parallel applications, matrix-matrix multipli-
cation (DGEMM) and 2D fast Fourier transform (2D-FFT). Each application
executing on the servers in parallel consists of five kernels, one kernel per com-
putational device. Figure 1 shows discrete dynamic energy functions for the five
abstract processors for DGEMM and 2D-FFT. For the DGEMM application,
workload sizes range from 64 × 10112 to 28800 × 10112 with a step size of 64 for
the first dimension m. For the 2D-FFT application, workload sizes range from
1024 × 51200 to 10000 × 51200 with a step size of 16 for the first dimension m.

For measuring dynamic energy consumption, each node is facilitated with
one WattsUp Pro power meter which sits between the wall A/C outlets and the
input power sockets of the node. Each power meter captures the total power con-
sumption of one node. We use HCLWattsUp API [8], which gathers the readings
from the power meter to determine the dynamic energy consumption during the
execution of an application. HCLWattsUp has no extra overhead and therefore
does not influence the energy consumption of the application execution. Fans
are significant contributors to energy consumption. To rule out the contribution
of fans in dynamic energy consumption, we set the fans at full speed before
executing an application.

For each data point in the functions, the experiments are repeated until
sample means of all the five kernels executing on the abstract processors fall in
the confidence interval of 95%, and a precision of 0.1 (10%) is achieved.

Our approach on how to instrument computational kernels in a hybrid appli-
cation and measure their execution times and dynamic energies is explained
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in detail in [11]. We also present our analysis of the accuracy of the additive
approach to constructing discrete dynamic energy profiles in [11].

While the proposed method is rather expensive and requires significant time
to build the energy profiles, the alternative approaches, namely, on-chip power
sensors, such as Intel RAPL [7], Nvidia NVML [17], or AMD APM [4], and
software models using performance counters as predictor variables, are still too
inaccurate for the use in application-level optimization for energy [6,18].

6.1 Analysing HEOPTA

HEOPTA is analysed using two sets of experiments. For the first set, we com-
pare the dynamic energy consumption of solutions determined by HEOPTA
with the dynamic energy of load-balanced solutions. Load-balanced solutions
are workload distributions with equal execution times for each abstract pro-
cessor. The number of active processors in a solution (those assigned non-zero
workload size) may be less than the total number of available processors. The
dynamic energy saving against load-balancing algorithm is obtained as follows:
Energy Savingbalance(%) = ebalance−eheopta

eheopta
×100, where ebalance and eheopta are

the dynamic energy consumptions of solutions determined by load-balancing and
HEOPTA algorithms.

For the second set, we examine the interplay between dynamic energy opti-
mization and performance optimization using the workload distribution deter-
mined by HPOPTA. HPOPTA [10] is a data-partitioning algorithm for opti-
mization of data-parallel applications on heterogeneous HPC platforms for per-
formance. The energy saving of HEOPTA against HPOPTA is obtained as fol-
lows: Energy Savinghpopta(%) = ehpopta−eheopta

eheopta
× 100, where ehpopta represents

the dynamic energy consumption of the solution determined by HPOPTA. The
inputs to HPOPTA are discrete speed (or performance) functions.

The experimental dataset for DGEMM contains the workload sizes, {64 ×
10112, 128 × 10112, · · · , 57600 × 10112}. The minimum, average, and maxi-
mum reductions in the dynamic energy consumption of HEOPTA against load-
balancing algorithm, Energy Savingbalance, are 0%, 130%, and 257%. Zero per-
centage improvement represents the same workload distribution is determined by
HEOPTA and load-balancing algorithm. These values for Energy Savinghpopta
are 0%, 145%, and 314%. Figure 4 compares HEOPTA against the dynamic
energy consumption of solutions determined by load-balancing and HPOPTA.
Performance optimization increases dynamic energy consumption by an average
of 145%.

The experimental data set for 2D-FFT includes workload sizes, {1024 ×
51200, 1040 × 51200, · · · , 20000 × 51200}. The minimum, average, and maxi-
mum dynamic energy reductions of HEOPTA against load-balancing algorithm,
Energy Savingbalance, are 0%, 44%, and 105%. The minimum, average, and
maximum of Energy SavingHPOPTA are 0%, 32%, and 77%. Figure 5 compares
HEOPTA against the dynamic energy consumption of solutions determined by
load-balancing and HPOPTA. Optimization for performance increases dynamic
energy consumption by an average of 32%.
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Fig. 4. Dynamic energy consumption of DGEMM executed using HEOPTA in com-
parison with (a) Load-balanced solutions (b) HPOPTA.

Fig. 5. Dynamic energy consumption of the 2D-FFT application executed using
HEOPTA in comparison with (a) Load-balanced solutions, (b) HPOPTA.

We conclude that HEOPTA demonstrates considerable improvements in
average and maximum dynamic energy consumptions for the two applications
in comparison with the load-balancing and HPOPTA algorithms. Performance
optimization also increases dynamic energy consumption for both applications.

7 Conclusion

Modern heterogeneous HPC platforms feature tight integration of multicore
CPUs with accelerators, which resulted in inherent complexities. One visible
manifestation of these complexities is a complex functional relationship between
energy consumption and workload size of applications executing on these plat-
forms thereby providing an opportunity for application-level energy optimization
through workload distribution as a decision variable.

We proposed HEOPTA that determines optimal workload distributions min-
imizing the dynamic energy consumption of data-parallel applications running
on heterogeneous HPC platforms. We showed that the load-imbalanced solutions
provided by the algorithm achieve significant dynamic energy reductions com-
pared to the load balanced solutions. As future work, we will study the impact
of dynamic energy optimization on performance.

The software implementation for HEOPTA is available at [11].
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Abstract. Scheduling is a widely used method in parallel computing,
which assigns tasks to several compute resources of the parallel environ-
ments. In this article, we consider parallel tasks as the basic entities to
be scheduled onto a heterogeneous execution platform consisting of mul-
ticores of different architecture. A parallel task has an internal potential
parallelism which allows a parallel execution for example on multicore
processors of different type. The assignment of tasks to different multi-
cores of a heterogeneous execution platform may lead to different exe-
cution times for the same parallel tasks. Thus, the scheduling of parallel
tasks onto a heterogeneous platform is more complex and provides more
choices for the assignment and for finding the most efficient schedule.
Search-based methods seem to be a promising approach to solve such
complex scheduling problems. In this article, we propose a new task
scheduling method HP* to solve the problem of scheduling parallel tasks
onto heterogeneous platforms. Furthermore, we propose a cost function
that reduces the search space of the algorithm. In performance measure-
ments, the scheduling results of HP* are compared to several existing
scheduling methods. Performance results with different benchmark tasks
are shown to demonstrate the improvements achieved by HP*.

Keywords: Search-based scheduling · Heterogeneous platforms ·
Parallel tasks

1 Introduction

The execution time of compute-intensive applications depends strongly on the
efficient utilization of compute resources. Task-based applications are partitioned
into a set of tasks each of which can be assigned to different execution units.
Independent tasks can be executed concurrently on the execution units which
may lead to a significant reduction of the execution time of the application. For
such a reduction of the execution time an efficient utilization of all execution
units is needed. A common approach to determine such an assignment of tasks
to compute resources is the use of task scheduling methods.
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Parallel computing environments within or across institutions are often com-
posed of nodes with different capabilities. Achieving a high efficiency when exe-
cuting parallel applications on such a heterogeneous system strongly depends on
the methods used to schedule the tasks of a parallel application. The heteroge-
neous compute resources considered in this article consist of several multicore
nodes. Each node may have a different architecture which leads to differences
in the performance. For the scheduling of parallel tasks two properties of the
compute nodes are particularly important, the number of processor cores and
the computational speed of each node.

Many proposed task scheduling methods focus on sequential tasks that are
assigned to exactly one processor of a compute node. Large applications that are
based on parallel programming models may be decomposed into a set of parallel
tasks. The term parallel task describes a task that can be executed on a single
compute node using an arbitrary number of processor cores. Since the tasks
are independent from each other, a flexible execution order and a concurrent
execution on one compute node are possible. The parallel execution time of each
parallel task depends on the number of cores utilized. Thus, for the assignment
of parallel tasks to heterogeneous platforms, the particular compute node and
the number of processor cores to be used on this node have to be determined for
each task. The resulting scheduling problem becomes increasingly complex due
to the increasing number of options for placing tasks. Consequently dedicated
scheduling methods are required.

Since task scheduling is a NP-complete problem, many of the proposed
scheduling methods are based on heuristics [1,2,4,12,18]. Heuristic scheduling
methods may find solutions that are acceptable for a specific use case but finding
an optimal solution is not guaranteed. In certain scenarios the optimal solution
of a scheduling problem is needed, e.g. for evaluating the quality of heuristic
scheduling methods. In the worst case, a search of the entire solution space is
required to find such an optimal solution. For the proposed scheduling problem,
the search space contains all possible assignments of tasks to compute nodes.
Additionally, for each node, all possible combinations for assigning tasks to a
number of processor cores have to be considered. Since the computation time
required to find an optimal solution can be extremely long, informed search-
based algorithms which prune the search space are advantageous. It has been
shown that informed search algorithms, such as the A* search algorithm [8], find
an optimal solution if an admissible and consistent cost function is used [5].

In this article, we propose a new task scheduling method HP* for assigning
parallel tasks to heterogeneous platforms which is based on the A* search algo-
rithm. The goal of HP* is to find an assignment that provides a total execution
time that is as low as possible. Furthermore, a cost function is proposed that is
able to reduce the solution space searched by HP*. Experiments with programs
from the SPLASH-3 benchmark suite [14] used as parallel tasks are performed
on a heterogeneous compute cluster and show the competitive behavior of HP*.

The rest of the article is organized as follows: Section 2 defines a scheduling
problem for parallel tasks and describes the modeling of the task execution
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times. Section 3 proposes a the new search-based scheduling algorithm HP* for
parallel tasks and the cost function used. Section 4 presents experimental results.
Section 5 discusses related work and Section 6 concludes the article.

2 Scheduling of Parallel Tasks on Heterogeneous
Platforms

In the following, the considered scheduling problem for the execution of parallel
tasks on heterogeneous platforms is described. Furthermore, a cost model for
parallel tasks with unknown program structure is presented.

2.1 Scheduling Problem

The scheduling problem considered in this article comprises of nT parallel tasks
Ti, i = 1, . . . , nT that are independent from each other. A parallel task can be
executed on a single compute node utilizing an arbitrary number of processor
cores. The number of cores used by each task is fixed during the task execution.
The tasks are non-preemptive, i.e. their execution can not be interrupted. For
each task Ti, i ∈ {1, . . . , nT }, its parallel execution time using p cores of compute
node Nj , j ∈ {1, . . . , nN} is denoted by ti,j(p).

The considered heterogeneous platform consists of nN multicore compute
nodes N1, . . . , NnN

. The heterogeneity of the platform results from the differ-
ent architectures of each node. Thus, each compute node Nj , j ∈ {1, . . . , nN}
might have a different computational speed and a different number of processor
cores pj . It is also stated that each processor core can execute only one task at a
time. Thus, each parallel task might be executed on 1 to pj cores of a node Nj ,
j ∈ {1, . . . , nN}. However, several tasks can be executed on a node at the same
time depending on the number of cores utilized on a compute node.

A solution for the scheduling problem described above is an assignment of the
tasks Ti, i = 1, . . . , nT to the compute nodes Nj , j = 1, . . . , nN . For each task
Ti, i ∈ {1, . . . , nT }, the resulting schedule S provides the following information:

– the compute node and the number of cores to be utilized,
– the calculated start time si and finish time ei.

The total execution time T (S) of a schedule S is the difference between the ear-
liest start time and latest finish time of all tasks. We assume that the execution
of the first task starts at time 0, thus, the total execution time is identical to
the latest finish time of all tasks. This can be expressed as T (S) = max

i=1,...,nT

ei.

The goal is to determine a schedule S such that the total execution time T (S)
is minimized.
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2.2 Cost Model for Parallel Tasks

The decisions made by scheduling methods are usually based on predictions of
the execution times of single tasks. These predictions can be completely deter-
mined by benchmark measurements or can be calculated using a specific cost
model. Since the program structures of the parallel tasks are unknown, existing
cost models for parallel programming, such as PRAM [7], BSP [16], or LogP [3],
can not be used for the considered scheduling problem. Thus, we use the following
runtime formula to model the execution time ti,j of each task Ti, i = 1, . . . , nT on
a compute node Nj , j = 1, . . . , nN depending on the number of utilized processor
cores p:

ti,j(p) = fj · (ai/p + bi + ci · log p) (1)

The parameter fj denotes the performance factor of node Nj that describes the
computational speed of the compute node Nj . It is defined as the ratio between
the sequential execution time of a task on a reference node Nr and the compute
node Nj . The remaining part of Eq. (1) represents the execution time of task
Ti on the reference node Nr. The structure of this part was chosen to cover the
runtime behavior of typical parallel tasks. It consists of a parallel computation
time ai that decreases linearly with the number of cores p, a constant sequential
computation time bi and a parallelization overhead ci that increases logarithmi-
cally with the number of cores p (e.g. for synchronization or communication).
To determine the parameters ai , bi and ci of a task Ti, first, the execution times
are measured on the reference node with different numbers of cores. Then the
concrete values of the parameters are calculated based on a least squares fit of
these execution times. Table 1 summarizes the notations used to describe the
scheduling problem.

Table 1. Notation of the scheduling problem

Notation Meaning

nT Number of parallel tasks

T1, . . . TnT Independent shared memory tasks

nN Number of compute nodes in the heterogeneous cluster

N1, . . . NnN Compute nodes of the cluster

pj Number of processor cores of compute node Nj , j = 1, ..nN

fj Performance factor of compute node Nj

ti,j(p) Parallel execution time of task Ti on p cores of node Nj

T (S) Total execution time of schedule S

3 Search-Based Scheduling Algorithm

In this section, we propose a new task scheduling method HP* for assigning
parallel tasks to heterogeneous platforms, which is based on the A* search algo-
rithm. First, a short description of the A* search algorithm is given.
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Algorithm 1: A* search algorithm.
1 Mark s ‘open’ and calculate f(s)
2 Select the open node n with the smallest value f(n)
3 if (n ∈ T ) then Mark n ‘closed’ and terminate the algorithm
4 else
5 Mark n ‘closed’
6 for (each successor u of n) do
7 Calculate f(u)
8 if (u is not marked ‘closed’) then Mark u ‘open’
9 else if (the current value of f(u) is lower as when u was ‘closed’) then

10 Mark u ‘open’
11 end if

12 end for
13 Proceed with line 2

14 end if

3.1 The A* Search Algorithm

The A* search algorithm is commonly used to find the shortest path in a directed
graph with positive edge weights. The goal of the algorithm is to find the shortest
path in a graph G from a start node s to a nonempty set of goal nodes T . For its
search, the algorithm uses a function f(n) representing the cost of a path from
s to a goal node via node n. The function f(n) consists of two parts: the actual
cost g(n) from s to n and the estimated cost h(n) from n to a goal node. The
cost function f(n) = g(n) + h(n) is called admissible if the heuristic function
h(n) underestimates the exact cost h∗(n) for each node n, i.e. h(n) ≤ h∗(n).
For any pair of adjacent nodes x and y with edge weight d(x, y), f(n) is called
consistent if the following holds:

h(x) ≤ d(x, y) + h(y) (2)

In [5], it was shown that using an admissible and consistent function f(n) the
A* search algorithm is guaranteed to find an optimal solution.

Algorithm 1 shows the pseudocode of the A* search algorithm presented
in [8]. First, the start node s is marked ‘open’ and the cost function f(s) is
evaluated. Then, the ‘open’ node n with the smallest cost f(n) is selected and
marked ‘closed’. Each unmarked successor u of n is marked ‘open’ and f(u) is
calculated. Nodes u that are ‘closed’ are marked ‘open’ if the current cost f(u)
is lower than the cost when they were marked ‘closed’. The algorithm continues
selecting the next node n with the smallest cost f(n) (line 2) until a goal node
is reached.

3.2 Scheduling Parallel Tasks with HP*

For the scheduling of parallel tasks onto heterogeneous platforms, we propose a
new scheduling method HP* (Heterogeneous Parallel task scheduling
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Fig. 1. Illustration of the calculation of the cost function f(n) with scheduled tasks
(gray) and remaining workload (blue) that is lower (left) or greater (right) than the
computational capacity.

based on A*) based on the A* search algorithm. As in the A* search algorithm,
a directed graph with positive edge weights is used as an input for HP*. There-
fore, the considered scheduling problem described in Sect. 2.1 is transformed
into such a graph where each node n represents a partial schedule Sn. The ini-
tial node s is an empty schedule, i.e. where no tasks have been scheduled yet.
The successors of a node are created by adding all possible assignments of a
task to the respective schedule. The weight d(n, u) of the edge between a node
n and its successor u is the difference between the total execution times of the
corresponding schedules Sn and Su, i.e. d(n, u) = T (Su)−T (Sn). Each complete
schedule is a goal node in terms of the A* search algorithm. A schedule is called
complete if all tasks are assigned to compute nodes.

According to the A* search algorithm the cost function f(n) = g(n) + h(n)
consists of two parts:

– g(n) which is the total execution time T (Sn) of the schedule Sn corresponding
to node n,

– h(n) which is a heuristic for the total execution time of the remaining tasks.

For the calculation of the function h(n) it is assumed that the remaining tasks
can be distributed ‘optimally’ to all cores. It is also assumed that in a node n
the tasks Tx, ..., TnT

|x ∈ {1, ..., nT } have not been scheduled yet. The remaining
sequential workload Ws is then calculated as

Ws =
nT∑

i=x

ti,r(1) (3)

using Eq. (1) considering the reference node Nr. The computational capacity avail-
able on all cores of the compute nodes regarding to a schedule Sn is defined as

K(Sn) =
nN∑

j=1

pj∑

k=1

(T (Sn) − max
Ti∈Cj,k

ei). (4)
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Algorithm 2: Pseudocode of the HP* method.
1 Let Lopen and Lclosed be empty lists
2 Let sinit be a node with an empty schedule
3 Add sinit to Lopen and calculate f(sinit)
4 while (Lopen is not empty) do
5 Let scur be the node in Lopen with the smallest value f(scur)
6 Remove scur from Lopen

7 if (scur is a complete schedule) then Terminate the algorithm
8 if (scur /∈ Lclosed) then
9 Select an unscheduled task T

10 Add scur to Lclosed

11 for (j = 1, . . . , nN and p = 1, . . . , pj) do
12 for (each assignment of task T to p cores of compute node Nj) do
13 Create a new node s as a copy of scur
14 Add the assignment to s and calculate f(s)
15 Add s to Lopen

16 end for

17 end for

18 end if

19 end while

For a compute node Nj , j = 1, . . . , nN , the set Cj,k denotes all tasks that have
been assigned to core k of this node. For each node n, the function h(n) can be
computed as follows:

h(n) =

⎧
⎨

⎩
(Ws − K(Sn))/

nN∑
j=1

(pj · fj), if Ws > K(Sn)

0, otherwise
(5)

If the remaining workload is bigger than the available computational capacity,
then h(n) is set to the difference divided by the total compute power, i.e. the sum
of pj · fj over all nodes Nj , j = 1, . . . , nN . Otherwise, there is enough compu-
tational capacity available for the remaining workload which leads to h(n) = 0.
Figure 1 shows an illustration of the calculation of the proposed cost function
f(n) = g(n)+h(n) with tasks scheduled already (gray) and the remaining work-
load (blue). In this example, the remaining workload is either lower (left) or
greater (right) than the computational capacity.

In Algorithm 2 the pseudocode of the HP* method is shown. HP* maintains
two lists, Lopen and Lclosed. Lopen contains all nodes that have been created
but not visited yet. The list Lclosed is used to avoid that nodes are revisited.
At the beginning, both lists are empty and the initial node sinit represents
an empty schedule. f(sinit) is calculated and the node is added to Lopen. In
each step of the main loop (lines 4–19), the node scur with the smallest value
f(scur) is selected and removed from Lopen. If scur represents a complete sched-
ule, the solution is found and the algorithm terminates. If scur is already part of
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Lclosed, scur is skipped and the algorithm continues with the next node. Other-
wise, scur is added to Lclosed and a task T is selected that has not been scheduled
in scur yet. For each possible assignment of task T , a new node s is created. This
is done by an iteration over all compute nodes Nj , j = 1, . . . , nN and all numbers
of cores p from 1 to pj . In each step of this iteration, all possible assignments
of task T to p cores of node Nj are generated. Each assignment is added to the
schedule used in scur and the resulting schedule is represented by a new node s.
Then value f(s) of this new node s is calculated and s is added to Lopen.

4 Experimental Results with Parallel Tasks
on a Heterogeneous Compute Cluster

In the following, we present experimental results of the scheduling method for
the execution of parallel tasks on a heterogeneous compute cluster.

4.1 Experimental Setup

The heterogeneous compute cluster used consists of 3 nodes with a total of 16
processor cores. Table 2 lists the properties of these compute nodes. The com-
pute node sb1 is used as reference node for the determination of the parameters
described in Sect. 2.2. The scheduling method described in Sect. 3.2 is imple-
mented in C++ using the gcc compiler with optimization level 2. Additionally,
we have implemented three existing heuristic scheduling methods which are suit-
able for the scheduling of parallel tasks on heterogeneous platforms:

HCPA: The Heterogeneous Critical Path and Allocation method [11]
transforms a heterogeneous compute cluster with individual computational
speeds of the processors into a “virtual” homogeneous cluster with equal
speed. Then, an existing method for homogeneous compute clusters (i.e.,
CPA [13]) is used for the scheduling.

Δ -CTS: The Δ-Critical Task Setmethod [17] is an extension of an existing
scheduling method for sequential tasks on heterogeneous compute clusters
(i.e., HEFT [19]) to parallel tasks. In each step, the method selects a set
of tasks with similar sequential execution time. For each of these particular
tasks, the compute node and number of cores are determined separately such
that the earliest finish time of the task is minimized. The maximum number
of cores to be used by each task depends on the number of selected tasks.

WLS: The Water-Level-Search method [6] combines list scheduling with
a search based approach. The method uses a limit for the predicted total
execution time that must not be exceeded by the finish time of any task.
First, a list scheduling approach is applied several times while the limit is
increased until all tasks are scheduled. All computed finish times of all tasks
are collected in a set of limits. Then a binary search on this list is performed
to find the smallest limit where all tasks can be scheduled.
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Table 2. List of nodes of the utilized heterogeneous compute cluster.

Nodes Processors Number of cores Total RAM GHz

skylake1 Intel i7-6700 4 16 GB 3.40

hw1 Intel i7-4770K 4 16 GB 3.50

sb1 Intel Xeon E5-2650 8 32 GB 2.00

A separate front-end node of the compute cluster is responsible for the
scheduling and for starting the task execution using SSH connections to the
compute nodes. The tasks are executed according to the determined schedule
and the total execution time is measured. The measurements are performed five
times and the average result is shown.

As parallel tasks two application tasks and two kernel tasks from the
SPLASH-3 benchmark suite [14] are used. Unless otherwise stated, the default
parameters or the provided “parsec-simlarge” parameter sets are used for the dif-
ferent benchmark tasks. The following application and kernel tasks were selected:

– BARNES (application): Simulation of a particle system using the Barnes-
Hut algorithm. The number of particles is set to 218.

– FMM (application): Simulation of a particle system using the Fast Multi-
pole Method. The number of particles is set to 219.

– CHOLESKY (kernel): Cholesky factorization of a sparse matrix. The
input matrix “tk29.O” of size 13 992 × 13 992 is used.

– LU (kernel): LU factorization of a dense matrix. The size of the input matrix
is set to 4096 × 4096.

4.2 Performance Results with Benchmark Tasks

In the following, the search-based scheduling method (HP*) proposed in Sect. 3.2
and the scheduling methods (HCPA, Δ-CTS, WLS) described in the previous
subsection are investigated in several measurements. These methods are used
to determine schedules for the execution of the SPLASH-3 benchmark tasks
on a heterogeneous cluster. The heterogeneous cluster used for the following
measurements consists of all compute nodes listed in Table 2.

Figure 2 (top) shows the measured total execution times of the BARNES
application tasks (left) and FMM application tasks (right) of the SPLASH-3
benchmark depending on the number of tasks. For both types of application
tasks the measured times using the HP* method are lower or equal than the
results of the three heuristic scheduling methods (HCPA, Δ-CTS, WLS). The
results of WLS and HP* show a more steady increase compared to HCPAand
Δ-CTS. Especially for Δ-CTS, a strong increase of the execution times for 7
and 13 tasks can be observed. This behavior might be caused by the heuristics
used by Δ-CTS. Using HP* leads to slightly lower or equal measured execution
times compared to WLS, except for 7 and 8 tasks where HP* achieves up to
23% lower execution times.
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Fig. 2. Top: Measured total execution times of BARNES application tasks (left) and
FMM application tasks (right) depending on the number of tasks using all compute
nodes of Table 2. Bottom: Measured total execution times of CHOLESKY kernel tasks
(left) and LU kernel tasks (right) depending on the number of tasks using all compute
nodes of Table 2.

Figure 2 (bottom) shows the measured total execution times of CHOLESKY
kernel tasks (left) and LU kernel tasks (right) depending on the number of tasks
using all compute nodes of Table 2. For the CHOLESKY tasks, the execution
times using HCPAare up to 87% higher than the best results. A reason for these
significant differences might be that HCPAfavors a parallel task execution that
uses many cores for each task. However, the execution times of the CHOLESKY
tasks are too small to achieve a proper reduction of the parallel execution time
for increasing numbers of cores. The other methods achieved very similar results,
except for task numbers between 3 and 7 where Δ-CTS leads to execution times
that are up to 42% higher. For the LU tasks, the differences between the results
of the methods used are smaller. The execution times using HCPAand Δ-CTS
are slightly higher than for WLS and HP* with large increases for 7 and 13
tasks. As for the application tasks, the execution times for 7 and 8 tasks are
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up to 11% lower using HP* compared to WLS. All in all, HP* leads to lower
or equal execution times with a more steady increase compared to the other
methods.

5 Related Work

Search-based approaches have been applied to many task scheduling problems. A
comparison of search-based and heuristic approaches for scheduling independent
tasks onto heterogeneous systems can be found in [2]. An experimental compari-
son of several scheduling algorithms including A*, genetic algorithms, simulated
annealing, tabu search as well as popular list scheduling heuristics is given in [9].
The work considers the problem of mapping sequential tasks with dependencies
onto a homogeneous cluster. A few algorithms for solving the task scheduling
problem based on the A* search algorithm have been reported in the literature.
Kwok and Ahmad [10] proposed a scheduling algorithm for the assignment of
sequential tasks to homogeneous platforms based on the A* search algorithm. A
number of pruning techniques to reduce the search space as well as a paralleliza-
tion of the algorithm are presented. Sinnen [15] proposed a scheduling algorithm
based on the A* search algorithm using an improved cost function along with
several pruning techniques to reduce the search space. In contrast to these works,
we consider the scheduling of parallel tasks to heterogeneous platforms.

6 Conclusion

In this article, we have proposed a task scheduling method HP* for assigning
parallel tasks to heterogeneous platforms, which is based on the A* search algo-
rithm. In addition, a cost function has been proposed that is able to reduce the
search space of our algorithm. Measurements with benchmark tasks have been
performed and the scheduling results of HP* have been compared to several
existing scheduling methods. Our performance results demonstrate that the use
of HP* can lead to a reduction of the total execution times of the resulting
schedules in comparison with known algorithms.
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Abstract. Function-as-a-Service is a novel type of cloud service used
for creating distributed applications and utilizing computing resources.
Application developer supplies source code of cloud functions, which are
small applications or application components, while the service provider
is responsible for provisioning the infrastructure, scaling and exposing
a REST style API. This environment seems to be adequate for running
scientific workflows, which in recent years, have become an established
paradigm for implementing and preserving complex scientific processes.
In this paper, we present work done on adaptation of a scheduling algo-
rithm to FaaS infrastructure. The result of this work is a static heuristic
capable of planning workflow execution based on defined function pric-
ing, deadline and budget. The SDBCS algorithm is designed to determine
the quality of assignment of particular task to specific function configu-
ration. Each task is analyzed for execution time and cost characteristics,
while keeping track of parameters of complete workflow execution. The
algorithm is validated through means of experiment with a set of syn-
thetic workflows and a real life infrastructure case study performed on
AWS Lambda. The results confirm the utility of the algorithm and lead
us to propose areas of further study, which include more detailed analysis
of infrastructure features affecting scheduling.

Keywords: Serverless · Cloud functions · Workflow scheduling ·
Infrastructure testing

1 Introduction

Scientific workflows are an established paradigm of implementing and preserving
a scientific process. Workflows allow for modeling complex scientific procedures
with help of abstractions over infrastructure or implementation details. Work-
flows are usually represented by an Directed Acyclic Graph (DAG) which enables
to analyze them and determine the relations and dependencies between individ-
ual tasks. This allows for parallelization and execution planning.

In most cases, scientific workflows are executed by a Scientific Workflow Man-
agement System [5], which provides features required to execute the process.
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 345–356, 2020.
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Additionally, management systems usually provide features aimed at automat-
ing and streamlining the process, like basic infrastructure management and some
fault tolerance. In order to execute the workflow we need two additional compo-
nents, data to operate on and a computing infrastructure. The data is usually
provided by the scientist or is an artifact produced by or directly included in
the workflow. The infrastructure can be a personal computer, a HPC computing
cluster or the cloud. Due to the features like: availability, pricing models and
possibility to dynamically adapt to the workloads, cloud infrastructure seems
to be a natural choice. One of the newest additions in cloud service provider’s
portfolios is the Function-as-a-Service. FaaS infrastructures provide computing
power while taking the responsibility for on-demand provisioning of execution
environments. Additionally FaaS offers an attractive pricing model where user
is billed only for the actual time spent on computing, usually with 100 ms granu-
larity. In case of such infrastructure, a developer is responsible only for supplying
the application code and declaring memory requirements. Applications destined
to run of FaaS are called Serverless Applications in order to emphasize the lack
of operating on traditional servers or virtual machines, during the deployment
and operation of the application. In contrast to Platform-as-a-Service a server-
less application doesn’t directly manage scaling and provides a limited run time
for individual tasks. While those characteristics are a limitation, they allow the
provider to supply a significantly greater scaling potential and speed of infras-
tructure provisioning.

Due to the unique features of FaaS we need to revisit some of the aspects
of workflow execution and scheduling, as explained in [11]. One of such topics
is the preparation of an execution plan. FaaS provides a highly elastic infras-
tructure, with unique performance characteristics, where CPU cycles are tied
to the declared amount of memory and user is billed per 100 ms of execution
time. Furthermore functions don’t have a persistent local storage, so each task
needs to explicitly manage its inputs and outputs. This combination of features
justifies the need for a dedicated scheduling algorithm. In this paper, we pro-
pose a Serverless Deadline-Budget Constrained Scheduling (SDBCS) algorithm,
a heuristic which aims to prepare an execution plan satisfying budget and time
constraints, while not introducing a high cost of plan preparation. SDBCS was
implemented with help of HyperFlow [3], a proven and extensible workflow exe-
cution engine, written in JavaScript.

This paper is structured as follows. Section 2 elaborates on current body of
knowledge related to scheduling workflow applications in FaaS infrastructures.
Described references include analysis of the infrastructure, applications and pos-
sible scheduling algorithms. Section 3 describes in detail the used procedure of
scheduling a workflow for FaaS. The environment, tooling and solution archi-
tecture is presented. The proposed scheduling algorithm is shown in Sect. 4.
Scheduling problem is formally stated and methods for obtaining a plan are
described in detail. Section 5 contains experiment results based on synthetic test
package and a real life experiment involving usage of AWS Lambda functions.
The paper concludes with Sect. 6 which give a summary of the paper and provide
outlook for future work.
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2 Related Work

FaaS was originally designed to host event-based asynchronous applications,
coming from Web or mobile usage scenarios. However, there is an ongoing work
on finding other alternative use cases for FaaS, as shown in [2], which include
event processing, API composition and various flow control schemes.

There are efforts which aim to implement frameworks, like pywren [7], which
allow performing general purpose computing on FaaS clouds. One of the main
features would be to enable dynamic transformation of applications to FaaS
model while simultaneously providing deployment services, which would allow
for seamless migration to cloud functions. The result would be a workflow appli-
cation consisting of tasks which represent parts of the original application.

FaaS infrastructures, as a novelty, are subject to rapid changes. Work done
in [10] describes the current details of FaaS provider offerings, service types, lim-
itations and costs. The performance of cloud functions was further studied in [6]
and [13]. Included results allow to construct the model the available performance
and infrastructure provisioning characteristics like efficiency and limits.

In our earlier work [12] we proposed means to adapt scientific workflows
to FaaS, using HyperFlow1. In [9] we proposed and validated a FaaS specific
scheduling algorithm, which is used as a reference point for validating algorithm
presented in this paper.

There is a plethora of workflow scheduling algorithms available for clouds
based on virtual machines. Those algorithms can be adapted to FaaS, which
would allow to benefit from the available body of knowledge. We chose the
Deadline-Budget Constrained Scheduling algorithm [1] as a suitable for adapta-
tion, due to its low complexity and good performance.

Workflow applications are a well studied field. In the case of this paper we
evaluated the proposed algorithm with the help of available workflow test data
set for Pegasus system, which is described in more detail in [8].

3 Serverless Workflow Execution

3.1 Scheduling the Workflow

As presented in [9], executing workflows on FaaS is significantly different from
execution on virtual machines. From the application’s point of view, we need
to distribute individual tasks across functions, so that the whole process can
be executed with the imposed per task time limit. While the cloud provider is
responsible for provisioning of the infrastructure, we need to declare suitable
function configurations, so that the deadline and budget requirements are met.
In case of the proposed algorithm, the output of the planning process is the
assignment of tasks to function configurations. Each configuration is character-
ized by an amount of memory, which is proportional to available computing
cycles per second, which in turn determines the execution time of tasks. If the

1 HyperFlow repository: https://github.com/hyperflow-wms/hyperflow.

https://github.com/hyperflow-wms/hyperflow


348 M. Pawlik et al.

cost of running the application is lower than the budget, and the makespan is
shorter than the deadline, the scheduling is considered successful.

3.2 The Environment, Tools and Solution Architecture

In the course of our studies of FaaS infrastructures, we tested and evaluated mul-
tiple FaaS providers [6]. For the scope of this work we chose to work on Amazon
infrastructure. We used AWS Lambda for running cloud functions and AWS S3
for cloud storage. The tight integration of both services, namely support for cre-
dential delegation greatly simplifies the deployment process, as cloud functions
can hold delegated credentials required to access storage. At the time of writing
this paper AWS Lambda imposes several limits on cloud functions. Functions
are limited by time to 900 s, the amount of declared and used memory must
be in the range of 128 MB to 3008 MB, which translates to available computing
performance. Local storage available within a function environment is limited
to 512 MB, and deployment package (function code and auxiliary applications)
need to fit in a 250 MB package. Concurrent function executions are limited to
1000 instances. Table 1 includes function configurations used during the evalu-
ation of the proposed algorithm. For the sake of simplicity of the application
model some features of FaaS, like cold starts, are not directly addressed.

Table 1. Function configurations and prices. Note that memory size affects available
CPU time (computing performance).

Memory size Cost per 100ms of execution

256MB $0.000000417

512MB $0.000000834

1024MB $0.000001667

1536MB $0.000002501

2048MB $0.000003334

2560MB $0.000004168

3008MB $0.000004897

HyperFlow served as a workflow execution engine. Workflows are represented
as JSON structures containing a DAG. HyperFlow keeps track of the state of the
application and is responsible for transforming tasks to function calls. Function
calls are implemented as simple REST Calls, where REST APIs are exposed by
the FaaS deployment. The deployment consists of prepared functions (part of
HyperFlow package) which handle incoming calls and execute bundled compo-
nents of the application.

The scheduler was implemented as a set of components, which include tools
used to perform application test runs to gather performance characteristics of the
tasks and the main scheduler module. The scheduler parses performance data,
pricing, user defined constrains: deadline and budget, the output is an execution
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plan in form of a decorated workflow. The output workflow is a HyperFlow
compatible DAG, which includes mapping of each task to a target function type.
Scheduler module is open source and its repository is publicly available2.

Figure 1 presents the architecture used during the development and evalu-
ation of the proposed algorithm. The whole process can be described as fol-
lows. Workflow application, in form of a JSON DAG, is supplied to the sched-
uler, which is responsible for producing an execution plan. The plan, a deco-
rated DAG, is supplied to HyperFlow, which executes the application according
to plan. Workflow manipulation, planning and execution management are per-
formed outside of FaaS, on a dedicated machine. The execution of application’s
tasks is performed by calling a function with proper arguments. Each task is
executed inside of individual function instance. Tasks share a common storage,
which is available remotely, through a S3 protocol.

Fig. 1. Deployment diagram of workflow execution system

4 The Scheduling Algorithm

As mentioned in Sect. 1, there is a variety of available scheduling algorithms for
workflow applications. We chose the Deadline-Budget Constrained Scheduling
algorithm [1] as suitable for adapting to serverless infrastructures. The algorithm
is a list scheduling algorithm applicable to cloud environments and operates on
heterogeneous resources. The adaptation consisted of reimplementing the algo-
rithm with the notion of functions instead of virtual machine oriented processors.
This removed the need for part of algorithm responsible for selecting an available
processor. Required functions are supplied by the FaaS provider in an on demand
manner. Additionally calculation of storage and transfer costs were removed, as
those basic functions are supplied and not directly contributing to costs.

4.1 Serverless Deadline-Budget Constrained Scheduling Algorithm
(SDBCS)

The problem of scheduling can be defined as assigning individual tasks of work-
flow application to resources available from a heterogeneous environment. In this
2 https://github.com/PawelBanach/CloudFunctionOptimizer.

https://github.com/PawelBanach/CloudFunctionOptimizer
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case resources are represented by cloud functions, available function configura-
tions are listed in Table 1, where the number of functions in limited only by con-
currency constraint. User supplies the application in form of a Directed Acyclic
Graph (DAG), which can be represented by a tuple G = 〈T,E,Data〉 where
T = t1, t2, ..., tn represents a set of tasks of workflow, and E represents edges
connecting tasks, which model dependencies and control flow between tasks.
Data represents input and intermediate information needed to run the applica-
tion. Scheduling problem becomes a matter of finding a map G : T → F , where
F denotes the mentioned set of functions. The algorithm is a single step heuris-
tic which meets the budget constrain and may or may not achieve the required
deadline. Successful scheduling is achieved when all constraints are meet. The
core functionality of the algorithm is based on sorting tasks according to upward
rank, calculating sub-deadlines and quality score for each task on each resource.
Sub deadline is inferred from user supplied makespan deadline. Quality is cal-
culated based on task execution time on a given resource. Description of the
algorithm uses notation presented in Table 2.

Table 2. Symbols and notation used for algorithm description.

Symbol Description

tcurr Currently scheduled task

ranku(t) Rank of task t

ET (t) Execution time of task t

succ(t) Successors of task t

FT (t, r) Finish time of task t on resource r

FTmin(t, r) Minimum finish time of task t on resource r

FTmax(t, r) Maximum finish time of task t on resource r

Cost(t, r) Cost of executing task t on resource r

Costmin(t) Minimum cost of executing task t

Costmax(t) Maximum cost of executing task t

Costbest(t) Cost of fastest execution of task t

Costcheapest Minimum cost of executing all tasks

AC(t) Assigned cost of running task t

ΔCost Spare budget

Specific elements of the algorithm operate base on the following rules. The
spare budget is calculated with the formula:

ΔCost = ΔCost − [AC(tcurr) − Costmin(tcurr)] (1)

where the spare budget is the difference between available budget and the
cheapest assignment for unscheduled tasks. The initial spare budget is expressed
as:

ΔCost = BUDGETuser − Costcheapest (2)
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and
Costcheapest =

∑

ti∈T

Costmin(ti) (3)

Task selection and priority is based on a computed rank of tasks. The rank
represents the length of longest path from task to the exit node with addition
of average execution time of task:

ranku(ti) = ET (ti) + maxtchild∈succ(ti){ranku(tchild)} (4)

Where ET (ti) represents the average execution time of task over available
resources and the latter part of equation represents the maximum of ranks of all
immediate successors of task ti.

The budget available for task execution is expressed as:

CL(tcurr) = Costmin(tcurr) + ΔCost (5)

which represents the minimum execution cost with addition of spare budget.
The sub-deadline is defined for each task as:

DL(tcurr) = mintchild∈succ(tcurr)[DL(tchild) − ETmin(tchild)] (6)

where tasks’ individual deadline is calculated as the minimum of difference
between subsequent tasks’ deadline and minimum execution time of current task.

The TimeQ and CostQ represent time and cost quality of assigning task to
resource, quality measures are expressed as:

TimeQ(tcurr, r) =
Ω ∗ DL(tcurr) − FT (tcurr, r)
FTmax(tcurr) − FTmin(tcurr)

(7)

CostQ(tcurr, r) =
Costbest(tcurr) − Cost(tcurr, r)
Costmax(tcur) − Costmin(tcur)

∗ Ω (8)

and:

Ω =

{
1 if FT (tcurr, r) < DL(tcurr)
0 otherwise

(9)

Time and Cost qualities aim to represent the distance of studied solution in
the range between best and worst case scenarios. In case of time, the range of
values spans between the sub-deadline and minimum execution time, while in
case of cost boundaries are set at the minimum and maximum execution costs.
The Ω parameter is responsible for complying with the deadline set for current
task.

The final quality measure is expressed as:

Q(tcurr, r) = TimeQ(tcurr, r) + CostQ(tcurr, r) ∗ Costcheapest
BudgetUnconsumed

(10)

the equation combines both quality measures with addition of weighting the
CostQ with the ratio of cheapest execution cost to unconsumed budget.
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SDBCS is presented as Algorithm 1. The process included in algorithm can
be described as follows. Initialization of the algorithm requires user to supply
a workflow graph, a deadline and available budget. If the budget is less than
the lowest possible cost of executing the workflow the algorithm indicates it is
impossible to create an appropriate plan. Next step (lines 3–4) determines if the
supplied budget is more than the highest possible cost of execution, in that case
each task is scheduled to execute on the fastest resource. Line 6. is responsible
for assigning the initial value of spare budget, next step is to calculate ranks and
task priority. Lines 8–15 contain the main scheduling loop, which iterates over
task in order of priority. Quality measure is computed for currently scheduled
task against all available resources, based on that the best resource is selected.
The final part of the loop is the update of spare budget which is calculated
according to Eq. 1.

Algorithm 1. Serverless Deadline-Budget Constrained Scheduling algorithm
Require: DAG, time (Duser), budget (Buser)
1: if Buser < Costmin(DAG) then
2: return no possible schedule
3: else if Buser > Costmax(DAG) then
4: return schedule map on the most expensive resource
5: end if
6: ΔCost ⇐ BUDGETuser − Costcheapest
7: Compute upward rank (ranku) and sub-deadline for each task
8: while there is unscheduled task do
9: tcurr ⇐ t next ready task with highest rank

10: for r ∈ resources do
11: Calculate quality measure Q(tcurr, r)
12: end for
13: rselected ⇐ r with highest quality value
14: assign tcurr to rselected
15: ΔCost ⇐ ΔCost − [AC(tcurr) − Costmin(tcurr)]
16: end while
17: return schedule map

5 Evaluation and Results

5.1 Scheduling Performance

The proposed algorithm was evaluated in a series of experiments. Experiments
are meant to test the scheduling success rate for a set of test workflow applica-
tions in multiple input parameters. Tests were designed with the use of Montage,
which in recent years became an established benchmark application for workflow
scheduling systems. Montage is a astronomical mosaic application, which com-
bines an array of smaller images into larger mosaics. The application is composed
of several steps and contains many tasks executed in parallel, thus it is suitable
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to validate scheduling performance. Testing workflows were obtained from the
workflow repository available at Pegasus system homepage3, described in more
detail in [4] and [8]. It is important to note that Montage was chosen as a util-
ity to verify algorithm’s performance and not as an ideal application to run in
FaaS environment. Test package contains 220 workflows, with task counts rang-
ing from 50 to 1000. Workflows were converted to HyperFlow format and task
run time for each resource was estimated. The estimation was made based on
package-supplied synthetic run time and function performance metrics from our
earlier work [6]. Synthetic run time was treated as time taken by task execution
on slowest cloud function. Other run times, for faster function configurations,
were obtained by simply scaling it by expected function performance. In a real
world use case, one would be required to supply run time of each task on each
function configuration.

The experiments were conducted for Serverless Deadline-Budget Constrained
Scheduling (SDBCS) and Serverless Deadline-Budget Workflow Scheduling
(SDBWS) algorithm. SDBWS is described in more detail in [9]. The main differ-
ence of SDBWS is that it operates on tasks grouped in levels, which are assigned
a global sub-deadline, whereas SDBCS treats each task as a separate entity.
Additionally SDBWS utilizes different formulas to calculate quality. SDBCS can
be treated as a more general derivative of SDBWS and is expected to provide
better performance. Due to the focus of this paper, experiments were narrowed
to test only two mentioned algorithms.

The set of deadline and budget parameters were generated based on minimal
and maximal possible values. Specific values at 0.3, 0.5 and 0.7 points of range
were chosen. The final values of deadline and budget were calculated for each
workflow with the following equations:

Deadlineuser = Deadlinemin + aD ∗ (Deadlinemax − Deadlinemin) (11)

Budgetuser = Budgetmin + aB ∗ (Budgetmax − Budgetmin) (12)

The results of scheduling experiments are presented in Figs. 2, 3 and 4. Each
figure contains results for a specified value of budget parameter, whereas the X
axis spans across multiple values of aD parameter. Results show that SDBCS
overall performance is better than SDBWS, with exception of smaller value of
deadline, where both algorithms presented low success rate. In case of aD = 0.5
SDBCS clearly delivers better performance and for aD = 0.7 SDBCS advantage
over SDBWS is present but not as significant. The case of aD = 0.7 and aB = 0.7
results in both algorithms succeeding at scheduling all test workflows.

3 https://download.pegasus.isi.edu/misc/SyntheticWorkflows.tar.gz.

https://download.pegasus.isi.edu/misc/SyntheticWorkflows.tar.gz
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Fig. 2. Scheduling success rate with
budget aB = 0.3 and deadline aD ∈
{0.3, 0.5, 07}

Fig. 3. Scheduling success rate with
budget aB = 0.5 and deadline aD ∈
{0.3, 0.5, 07}

Fig. 4. Scheduling success rate with budget aB = 0.7 and deadline aD ∈ {0.3, 0.5, 07}

5.2 Tests on Physical Infrastructure

As part of validation of the proposed algorithm, we performed a real life exper-
iment. The test used physical infrastructure in order to prove the applicability
of the solution. Procedure included scheduling a sample workflow, namely Mon-
tage application containing 43 tasks. The next step was to run the application on
setup described in Sect. 3.2, where tasks were executed on AWS Lambda. Figure 5
contains a Gantt chart depicting the trace of execution, X axis represents time,
each bar represents run time of a single task. Task types are distinguished by
color, distinction between types allows to determine dependencies between tasks.
Transparent bars represent planned execution while opaque are executions mea-
sured in real life. The chart allows to visually inspect the accuracy of planning.
In the presented case, plan closely matched the real life execution, and only with
4 tasks, the execution was started slightly after the planed time.
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Fig. 5. Gantt chart depicting a trace of Montage execution. Execution of each task is
represented by a opaque bar, while a transparent bar represents scheduled execution.

6 Conclusions and Future Work

Presented adaptation of scheduling algorithm was made after careful analy-
sis of target infrastructure and provided insight into characteristics of running
workflows on FaaS infrastructures. Obtained results confirm, that the presented
Serverless Deadline-Budget Constrained Scheduling algorithm is capable of pro-
ducing valid execution plans according to supplied parameters. Experiments with
scheduling a Montage workflow proven that SDBCS achieves better results than
the previously studied SDBWS algorithm. Real life infrastructure tests also illus-
trate, that the generated execution plan is valid in practical applications.

Future work includes further study of workflow scheduling algorithms and
exploring new methods of adapting them to FaaS infrastructures. Additionally,
our work on studying commercially available infrastructures, led us to conclusion
that the behaviour of FaaS is still not completely explored. Functions tend to
experience phenomena like execution throttling or delays, which have an impact
on workflow execution and could be accounted for in scheduling algorithms.
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Abstract. Heterogeneous systems have become a staple of the HPC
environment. Several directive-based solutions, such as OpenMP and
OpenACC, have been developed to alleviate the challenges of program-
ming heterogeneous systems, and these standards strive to provide a sin-
gle portable programming solution across heterogeneous environments.
However, in many ways this goal has yet to be realized due to device-
specific implementations and different levels of language support across
compilers. In this framework we aim to analyze and address the dif-
ferent levels of optimization and compatibility between OpenACC and
OpenMP programs and device compilers. We introduce the CCAMP
framework, built on the OpenARC compiler, which implements language
translation between OpenACC and OpenMP, with the goal of exploit-
ing the maturity of different device-specific compilers to maximize per-
formance for a given architecture. We show that CCAMP allows us to
generate code for a specific device-compiler combination given a device-
agnostic OpenMP or OpenACC program, allowing compilation and exe-
cution of programs with specific directives on otherwise incompatible
devices. CCAMP also provides a starting point for a more advanced
interoperable framework that can effectively provide directive transla-
tion and device, compiler, and application specific optimizations.

Keywords: OpenMP · OpenACC · Directive-based programming ·
Heterogeneous computing · CCAMP

1 Introduction

Coincident with the breakdown of Dennard Scaling and the slowing of Moore’s
law, heterogeneous programming has emerged as an alternative to traditional
homogeneous computation [11]. The explosion in popularity of GPGPU pro-
gramming, and now other devices like many-core processors and FPGAs, has led
to the development of several new low-level programming approaches in order to
map computations to these specific devices. Low-level heterogeneous program-
ming approaches like CUDA and OpenCL grant knowledgeable programmers the

c© Springer Nature Switzerland AG 2020
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ability to write applications catered specifically to unique devices in an attempt
to maximize performance.

However, these low-level device-specific programming approaches sacrifice
the functional and performance portability enjoyed by more traditional homoge-
neous implementations. Rewriting and maintaining different versions of the same
applications for different devices can be unsustainable and error-prone. Further-
more, the low-level device-specific approaches are intimidating and inaccessible
to less experienced programmers.

Several higher-level, directive-based, device-agnostic programming standards
have emerged to address the issues with device-specific implementations. These
standards aim to enable programmers to annotate a general, sequential applica-
tion with simple instructions for parallelism, transferring much of the low-level
specifics to the compiler. However, as we discuss in Sect. 2, these directive-based
approaches come with their own set of issues as well, and the ideal performance
and portability proposed by the standards do not match the current reality.

CCAMP, an OpenACC and OpenMP interoperability framework, exists to
bridge the gap between the current realities of performance and portability
within existing standard implementations, and initial goals and intentions of
these directive-based standards. CCAMP also provides programmers who only
have experience with one directive-based programming model an easy alternative
to learning another model by providing a translation framework.

2 Background

A primary goal of the CCAMP framework is to allow programmers to fully utilize
the OpenMP and OpenACC directive-based programming standards, which have
become a popular option for high-level heterogeneous programming.

OpenMP [3] has been an essential tool in the general parallel programming
environment for decades. With the introduction of directives in the 4.X+ stan-
dards, OpenMP has also become a viable tool for heterogeneous programming,
offering a high-level, offload programming model alternative to languages like
CUDA and OpenCL.

OpenACC [12] is a newer directive-based standard, originally developed as
a high-level alternative to CUDA for GPU computing. While OpenACC differs
from OpenMP with regard to high-level design principles, they share a com-
mon goal of providing programmers with a high-level approach to heterogeneous
programming.

While both OpenMP 4.X+ and OpenACC directives provide a method for
high-level heterogeneous programming, there exist several important issues and
setbacks to using these standards.

A primary issue in the directive-based heterogeneous programming space
is the lack of portability between programming models. Although the goal of
both OpenMP and OpenACC is to provide a portable, high-performance, cross-
platform solution, they are often at the mercy of vendor-specific compiler imple-
mentations. Many devices achieve high performance when using the vendor-
compiler tied to that device, which often supports only one of OpenACC and
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OpenMP. Typically, GPU-centric and CPU-centric ecosystems prefer OpenACC
and OpenMP, respectively. However, even among compilers preferring a specific
directive-based standard, the level of support and implementation strategies for
the standard can vary greatly.

As a result of these issues, both OpenACC and OpenMP 4.X+ fail to achieve
the goal of being portable solutions for heterogeneous systems. One way to
address this gap would involve the development of an optimization that takes a
device-agnostic input code in either OpenACC and OpenMP, and automatically
generates device-optimized code specific to a target device and compiler combi-
nation. The CCAMP framework, with its baseline translation capabilities, is an
initial effort to realize such an optimization framework.

The main contributions of this work are as follows:

– We introduce a novel baseline directive-translation framework, allowing pro-
grammers to automatically flow between standards to utilize the maturity of
single-standard compilers on different devices (Sect. 3).

– We provide a commentary on the current status of the popular OpenACC
and OpenMP compilers and their levels of support for the directive-based
standards across an array of devices (Sect. 4).

– We evaluate the effectiveness of CCAMP’s baseline translation using an array
of different heterogeneous ecosystems. We demonstrate how our compiler-
translated code can perform similarly or even better than hand-written code,
and how CCAMP can allow programmers to execute translated code in
ecosystems that may not support the original source language (Sect. 5).

– We discuss the future of CCAMP and the extensions needed to develop a
fully-fledged framework capable of providing true interoperability between
OpenACC and OpenMP (Sect. 6).

3 CCAMP Framework

In it’s current state, the CCAMP framework consists of three baseline transla-
tions, built on top of the OpenARC [9] compiler framework:

– OpenMP 4.X+ to OpenACC
– OpenACC to OpenMP 4.X+
– OpenACC to OpenMP 3.0

As previous researchers have noted [1,13,14], many directives in OpenMP and
OpenACC have a straightforward, one-to-one directive mapping. These include
data movement, allocation, and update directives, entries to parallel regions, and
general clauses like if, collapse, reduction. Similarly, many of the relevant API
calls have analogous counterparts in both directive sets.

However, despite their surface-level similarities, fundamental differences in
the core of the language designs lead to some challenges in the language trans-
lation process, especially when deciding how to map parallelism to a specified
device.
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3.1 OpenARC

CCAMP is built on top of the existing OpenARC [9] framework. OpenARC is
a research-focused OpenACC compiler for heterogeneous systems, and already
contains some language-translation features to generate device-specific code like
OpenCL and CUDA, and OpenMP directive parsing capabilities, inherited from
the base Cetus compiler infrastructure [4].

One of the primary strengths of OpenARC lies in its capabilities to allow
quick prototyping of code transformations, which proved crucial when developing
the transformations and optimizations for CCAMP. Essentially, CCAMP exists
as a translation and optimization layer that follows OpenARC’s initial lexical
analysis and AST generation.

3.2 OpenMP 4.X+ to OpenACC Translation

By design, OpenMP is implemented as a prescriptive set of directives, explic-
itly specifying how parallelism in a program should be mapped to CPU threads
or GPU cores. This prescriptive nature simplifies the OpenMP 4.X+ to Ope-
nACC translation pass, as the burden of specifying parallelism is placed on the
programmer instead of the compiler. Because of this, the prescriptive OpenMP
parallelism clauses can be directly translated to descriptive OpenACC counter-
parts without additional compiler analysis.

However, there are still several OpenMP language constructs that don’t allow
for a direct translation or mapping, including OpenMP critical regions and task-
ing. These non-trivial translations require some additional compiler analysis for
correct translation.

By design, the OpenACC standard does not contain a directive analogous to
the OpenMP critical region. GPUs represented the main target architecture dur-
ing the design of OpenACC, and synchronization constructs like critical regions
typically lead to poor performance on GPUs. To prevent programmers from
experiencing this pitfall, critical regions were intentionally omitted. However,
one use of OpenMP critical regions can be efficiently mapped to GPUs: array-
reductions.

Currently when encountering OpenMP critical regions in the OpenMP to
OpenACC translation, CCAMP emits an error and terminates translation. How-
ever, CCAMP is designed to detect if an OpenMP critical region is used to
encapsulate an array reduction, and can appropriately translate the reduction
using OpenACC reduction clauses.

Another OpenMP construct that does not directly translate to OpenACC is
the recently introduced task construct. OpenMP task translation is not currently
supported by CCAMP, but will likely be a focus of future extensions.

3.3 OpenACC to OpenMP 4.X+ Translation

Unlike OpenMP, OpenACC is designed with a descriptive outlook. The core
principle of OpenACC is that the directives allow a programmer to expose or
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describe parallelism within a program, and shift the burden of mapping paral-
lelism to hardware from the programmer to the compiler. OpenACC also contains
prescriptive directives and clauses to allow the programmer explicitly specify the
mapping of parallelism, but these directives are not mandatory.

This difference in fundamental design complicates the OpenACC to OpenMP
4.X+ translation, as we’re required to generate a prescriptive output from a
descriptive input. In CCAMP, we tackle this issue by applying a compiler analy-
sis to automatically annotate ambiguous OpenACC directives with specific par-
allelism clauses. Using an optimizing-loop-directive-prepossessing pass, we can
automatically assign OpenACC gang and worker clauses to un-annotated loops.

More specifically, CCAMP utilizes OpenARC’s auto-parallelization pass to
mark kernel inner loops as independent when possible, exploiting available par-
allelism. Marked loops are then annotated with OpenACC parallelization clauses
before the direct substitution translations to OpenMP occur.

In addition to the differences in requirements for descriptive detail, CCAMP
also addresses several low-level syntactical differences when translating Ope-
nACC to OpenMP. For example, the requirements on the location of reduction
clauses differ between the standards, and so CCAMP performs a reduction direc-
tive migration pass. Similarly, the requirements on the OpenMP num threads
and simdlen clauses require migration of the corresponding num workers and
vector length OpenACC clauses during translation.

Interestingly, OpenMP lacks a clause analogous to the OpenACC present
clause. To mimic the behavior of the OpenACC present clause, we use an assert()
function call along with the OpenMP omp target is present() API call.

3.4 OpenACC to OpenMP 3.0

Although OpenMP 4.X+ exists as a super-set of OpenMP 3.0-only directives,
in some cases programmers may wish to restrict the translated output to only
employ OpenMP 3.0 directives. On systems without offload capabilities, or with-
out more modern compilers that support newer OpenMP directives and Ope-
nACC, this translation pass allows execution of previously unsupported applica-
tions. Also, because OpenMP 3.0 directive sets are much older and more perva-
sive across compilers, even compilers that do support OpenMP 4.X+ directives
may perform better using the older directives when targeting CPU devices.

CCAMP’s OpenACC to OpenMP 3.0 translation pass is a straight-forward
stripped-down alternative to the OpenACC to OpenMP 4.X+ pass. OpenACC
parallel regions are mapped to OpenMP parallel regions, and outermost Ope-
nACC loop parallelization clauses are mapped to OpenMP parallel for clauses.
The innermost OpenACC parallelization clause is mapped to OpenMP simd
clauses. Intermediate OpenACC parallelization clauses are ignored.

In general, this translation can be useful any time a programmer is target-
ing a CPU device with a compiler that may struggle with the OpenMP 4.X+
directives, which is far from rare. The converse of this translation, OpenMP
3.0 to OpenACC, is not currently included in CCAMP, as this would require
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automatic generation of data movement directives, and more complicated anal-
ysis of multi-tier parallelism.

4 Experimental Setting

4.1 Benchmarks

We chose to evaluate the CCAMP framework using the SPEC Accel Bench-
mark Suite [7] for several reasons. Most importantly, SPEC Accel already con-
tains hand-optimized OpenACC and OpenMP implementations of the same set
of applications. This provided an ideal baseline against which to compare our
code translated by CCAMP. Additionally, SPEC Accel is well-supported, well-
documented, and representative of a wide array of common scientific program-
ming applications. While SPEC Accel contains both C and Fortran applications,
we only target the C applications, as CCAMP does not currently support Fortran
OpenACC and OpenMP codes.

We used the following SPEC Accel applications in our evaluations:

– X03 ostencil, (303 for OpenACC, and 503 for OpenMP) a thermodynamics
stencil kernel

– X14 omriq, an application widely used in the medical field
– X52 ep, an embarrassingly parallel application
– X54 cg, a conjugate gradient kernel
– X57 csp, a scalar penta-diagonal solver, and
– X70 bt, a block tri-diagonal solver for 3D PDEs

The X52, X54, X57, and X70 benchmarks are adapted from the NAS
Parallel Benchmark Suite [2], a benchmark set widely used for evaluating
performance on heterogeneous systems. We also initially explored evaluating
CCAMP using the Rodinia benchmark suite. Like SPEC Accel, Rodinia con-
tains both hand-optimized OpenACC and OpenMP implementations. However,
the OpenMP offloading implementations in Rodinia are optimized specifically
for Xeon Phi devices, and perform poorly on GPU devices. This shortcoming
further motivates the necessity of a framework like CCAMP, which can be used
to generate device-agnostic OpenMP code from the existing Rodinia OpenACC
implementations.

4.2 Devices

We evaluated CCAMP using a wide array of the most commonly used CPU and
GPU devices in heterogeneous programming. The different devices are each cou-
pled with vendor-specific compilers, which typically exhibit a preference between
OpenMP and OpenACC. This further motivates a fluid way to translate between
directive sets.
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We evaluated CCAMP using three CPU systems:

– Xeon CPU: Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10 GHz, 32 CPUs, 1
thread per core, 16 cores per socket, 2 sockets

– Xeon Phi: Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40 GHz, 272 CPUs, 4
threads per core, 68 cores per socket, 1 socket

– Power9: IBM POWER9, altivec supported, 176 CPUs, 4 threads per core, 22
cores per socket, 2 sockets

We also evaluated CCAMP using two GPU systems:

– P100: Nvidia Tesla P100-PCIE-12 GB (Pascal), Xeon CPU host (as men-
tioned above)

– V100: Nvidia Tesla V100 SXM2 16 GB (Volta), Power9 host (as mentioned
above)1

4.3 Compilers

Across different devices, vendor-supplied compiler frameworks often achieve
the best performance on a specific device. In the context of directive-based
approaches, these vendor-supplied compilers may only support one of OpenACC
and OpenMP, or may strongly prefer one over the other. One of the primary goals
of CCAMP is to allow programmers to exploit this compatibility between devices
and vendor-compilers regardless of the chosen directive-based approach (using
language translation).

To evaluate the effectiveness of CCAMP, we employed a breadth of compilers,
some tied to specific devices (IBM xlc, Intel icc) and others multi-platform (Clang
clang, PGI pgcc).

IBM’s xlc C/C++ compiler is restricted to the Power9 and attached V100
devices. Currently, this compiler only supports OpenMP, although it does sup-
port both OpenMP host and OpenMP offload computation models. We use IBM
XL C/C++ for Linux, V16.1.1. For evaluations on the Power9 device, we use
the flags “-O3 -qsmp=noauto:omp -qnooffload”, and for the V100 device we use
the flags “-O3 -qsmp=noauto:omp -qoffload”.

Intel’s icc C/C++ compiler currently only supports OpenMP, with support
for both host Xeon CPU devices, and Xeon Phi devices through OpenMP offload-
ing. For CCAMP evaluations on the Xeon Phi, we use icc version 19.0.1.144
(gcc version 4.8.5 compatibility), and the following flags: “-O3 -xMIC-AVX512
-qopenmp -qopenmp-offload=host”.

The open-source LLVM-based C/C++ compiler clang is not tied to a specific
device. While clang doesn’t currently support OpenACC, it fully supports the
OpenMP host computation model, and there are ongoing efforts to develop full
support for the OpenMP offloading model. For evaluations using clang on the
Xeon CPU, we use release version 8.0.0 (git tag llvmorg-8.0.0-rc5). Support for
correct handling of math functions in clang’s OpenMP offload model has only
1 The Power9+V100 configuration is very similar that of the Summit supercomputer

nodes.
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recently been added. For this reason, we installed clang directly from the master
branch (git hash 431dd94) for evaluations using clang and the P100 device.
When targeting the Xeon CPU, we use the flags “-Ofast -fopenmp -fopenmp-
targets=x86 64”, and for the P100 device we use “-Ofast -fopenmp -fopenmp-
targets=nvptx64”.

Although PGI’s pgcc C/C++ compiler is now tied to Nvidia, pgcc supports
all of the devices used in this work. However, to limit the project scope we only
evaluate CCAMP using pgcc on the Xeon CPU, P100, and V100 devices. The
pgcc compiler is the only compiler used in the evaluations that currently supports
OpenACC. PGI’s pgcc supports OpenMP 3.0 and a subset of OpenMP 4.X+
directives, although they do not yet support data transfer directives, limiting the
OpenMP evaluations to host CPU devices. On the Xeon CPU and P100 devices
we use version 18.10-0 64-bit (Community Edition). On the V100 device, we
use the slightly older 18.4 edition. On the Xeon CPU we use the flags “-V18.10
-fast -Mnouniform -acc -ta=multicore” for OpenACC programs, and “-V18.10
-fast -Mnouniform -mp -Mllvm” for OpenMP programs. On the P100 and V100
devices, which are only supported via OpenACC, we use the flags “-V18.10
-fast -Mfprelaxed -acc -ta=tesla:cc60” and “-V18.4 -fast -Mnouniform -acc -
ta=tesla:cc70” respectively.

Ideally for a more fair evaluation we would have no variations in compiler
versions across different devices. However, this became a challenge due to the
different levels of access and privileges across ecosystems, and the goal of using
the most recent compiler releases. In future extensions to CCAMP, we plan to
rectify these inconsistencies.

While a complete list of the most commonly used compilers in heterogeneous
programming would include the GNU C/C++ Compiler gcc, we chose to exclude
it from this work in progress due to difficulties with installation for OpenMP
and OpenACC offloading, and to limit the scope of the project. We fully intend
to include gcc on future works extending CCAMP.

5 Evaluation Results

We evaluated the effectiveness of the CCAMP framework using an exhaustive
approach, compiling and testing as many different applications with as many
different device+compiler combinations as possible. This required a significant
effort, including installing software across different devices, and wading through
the different levels of support for the multiple compilers.

5.1 OpenACC to OpenMP 4.X+ Baseline Evaluation

To evaluate the effectiveness of CCAMP’s OpenACC to OpenMP 4.X+ baseline
translation pass, we first evaluated the hand-coded OpenMP 4.X+ applications
in the SPEC Accel benchmark suite without applying any transformations or
optimizations. We used the resulting execution times as a baseline by which
to compare the execution times of our translated (from OpenACC) OpenMP
4.X+ code.
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In Fig. 1, we see the results of this comparison. Each bar represents the
average (across all benchmarks) ratio of the translated runtime divided by the
hand-coded runtime. Values below 1 represent cases where the translated code
performed better, while values above 1 represent cases where further improve-
ments need to be made to the translation pass to match the hand-coded per-
formance. While the translation pass still has room for improvement on some
device+compiler combinations, it performs acceptably well for many of the other
combinations.

Averaging results across different benchmarks certainly results in loss of infor-
mation. However the very large number of experimental results across devices,
compilers, and benchmarks required a heavy amount of aggregation for a sim-
plistic overarching view of the relative performances between the original and
translated codes. We aim to provide more detailed evaluations focused on spe-
cific applications in future works, including profiling analysis and investigations
into differences in performance.

Fig. 1. Run-time comparison of translated OpenMP 4.X+ with hand-coded OpenMP
4.X+

5.2 OpenMP 4.X+ to OpenACC Baseline Evaluation

Similarly to the previous translation, to evaluate CCAMP’s OpenMP 4.X+ to
OpenACC translation pass we compare hand-coded OpenACC execution times
with translated code times.

In Table 1, we list runtimes (in seconds) on the devices we used to evaluate
this translation pass. Because the PGI compiler is the only compiler evaluated
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that currently supports OpenACC (in this case translated from OpenMP 4.X+),
PGI is used for all of the compilations in the figure.

We see that in most cases the translated code performs very similarly to
the hand-coded counterparts. The dashed values represent cases where we failed
to correctly execute the application, primarily due to unsupported features or
errors pending correction in CCAMP.

Table 1. Run-time comparison of translated OpenACC with hand-coded OpenACC.
Time in seconds.

Device Translation X03 X14 X52 X54 X57 X70

Xeon CPU None 82.06 670.03 184.84 82.06 102.73 153.02

Xeon CPU Baseline 81.39 670.15 184.58 182.17 88.18 -

P100 None 26.45 146.22 76.09 61.66 45.17 19.31

P100 Baseline 26.67 146.37 65.57 51.48 - 42.802

V100 None 12.33 38.84 47.71 33.04 20.19 9.14

V100 Baseline 13.95 33.35 52.91 31.42 - 25.03

6 Related Work

Several previous works explore the performance and portability of directive-
based approaches across heterogeneous systems. In [8], Vergara et al. evaluate
OpenMP applications on Power8 and Tesla devices using the IBM and clang
compilers. In [10], Lopez et al. experiment with OpenACC and OpenMP imple-
mentations of core computational kernels, including Daxpy, Dgemv, Jacobi, and
HACCmk. They evaluate the performance of these implementations using the
Cray, Intel, and PGI compilers on Nvidia GPU and Intel Xeon Phi devices. In [6],
Gayatri et al. implement a single material science kernel, and evaluate OpenMP
3.0, OpenMP 4.0, OpenACC, and CUDA implementations on Xeon CPUs, Xeon
Phis, Nvidia P100s, and Nvidia V100s. This closely resembles the languages
and devices evaluated in our work, although we evaluate multiple applications.
Gayatri et al. also discuss their experiences with different compilers, including
the PGI, Intel, IBM, and GCC compilers, and the then-current status of their
directive-based language support. These works all highlight the high variabil-
ity in performance of directive-based approaches across different compiler and
device combinations, which helps to motivate the utility of a framework like
CCAMP.

There are also several previous works that research the potential of an Ope-
nACC and OpenMP translation framework. In [14], Wolfe explores this idea and
discusses some obvious and some more-subtle challenges that would arise when
implementing such a framework. He also discusses motivations and significance of
developing such a framework, which are in line with the motivations we present
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here. In [1], Sultana et al. present a prototype OpenACC to OpenMP trans-
lation scheme, which consists of a combination of automated directive transla-
tion performed using the Eclipse user interface and manual user-performed code
restructuring. This work represents a promising first attempt to develop an auto-
mated translation framework, although they only evaluate a single benchmark
and support only a subset of the OpenACC standard. In [13], Pino et al. describe
a mapping between the most common directives of OpenACC and OpenMP, and
compare the performance between the two different sets of directives on several
SHOC and NAS benchmarks, but do not propose any automated scheme or
framework to perform the actual translation. In [5], Denny et al. present an
ongoing work to develop an OpenACC to OpenMP 4.5 translator (Clacc) within
the clang compiler, as a means to allow clang to support OpenACC. Clacc rep-
resents a rigorous effort to develop a translation scheme supporting the full
OpenACC standard, which accomplishes the goal of our OpenACC to OpenMP
4.5 baseline translation, but is constrained by the clang compiler, preventing it
from utilizing the maturity of device-specific back-end compilers.

In contrast to previous works, that either represent only a conceptualization
of a translation scheme, or in the case of Clacc [5] are tied to a specific device-level
compilers, CCAMP presents an actual implementation of directive translation
that is applicable across different device ecosystems and integrated with several
different back-end compilers.

7 Conclusion

As systems become more exotic and specialized, the HPC community has expe-
rienced an increased demand for high-level, portable, programming solutions.
While directive-based standards and approaches aim to provide a solution, they
fail to realize this goal due to competition between vendor compilers, and incon-
sistent levels of standard support.

In this work, we present the CCAMP framework, with the goal of allowing
programmers to seamlessly flow between different directive sets, enabling pro-
grammers to execute directive-based code on previously incompatible devices.
We introduce two primary translation passes, and show that these passes can
generate output code in a different directive context that performs similarly
to hand-coded programs. We also provide a commentary on the current sta-
tus of the different devices and compilers commonly used in heterogeneous
programming.

In the future, we plan to develop and extend CCAMP in several ways. A pri-
mary goal is to develop an optimized translation pass that can generate not only
generalized directive sets in different languages, but also directive sets specifi-
cally catered toward an indented target device. We also plan to incorporate other
compilers (GCC, Clacc), and other devices (FPGAs). Finally we would like to
expand our evaluations to include other benchmarks besides SPEC Accel.
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Workshop on High Performance Computing
and Networking in Aerospace (HPCN)

Workshop Description

The HPCN workshop has a long history at the German Aerospace Center (DLR) where
it was initiated and organized by T-Systems since 1999. The two drivers for its
introduction were the information of HPC-users in DLR about the latest developments
and trends in HPC hard- and software on the one hand, and, showing the applications
and usage of HPC at DLR to familiarize technology-providers with DLRs’ needs in the
field, on the other hand. Organizing this workshop for the first time as a Euro-Par
workshop offered an excellent opportunity to enhance the visibility of the aerospace-
related HPC-activities within the HPC-community and the Euro-Par conference within
the aerospace community.

The focus of the workshop was on High Performance Computing as a key enabler
for numerical simulation of aerodynamics of air- and spacecraft and their components.
The essential need of tailored HPC-systems in aerospace requires a close cooperation
with providers of these systems. Thus the workshop was comprised of contributions
from aerospace research and from HPC-hard- and software providers. The presenta-
tions from (aerospace) research were on larger-scale applications employing HPC and
emphasizing specific requirements, achievements, and limitations related to HPC. The
keynotes given by the providers covered current and future developments in HPC-
hardware and software.

Compared to former DLR-internal HPCN workshops, only a small number of
contributions was submitted to the Euro-Par workshop, partly due to the different
community and partly due to an Euro-Par-conformal review process involving the
submission of full papers for the review instead of abstracts only. From the five papers
submitted, two were from DLR-institutes and three from universities, one from outside
Germany, namely Sweden. The review process focused on the quality of the papers and
their relevance to High Performance Computing, avoiding any conflicts of interest
when selecting the reviewers. Only three papers were of suitable quality regarding the
workshop subjects and thus accepted.

As planned from the beginning, the number of accepted scientific papers was then
matched against an equal number of invited talks (no paper) from companies providing
HPC-hard- and software. The six talks were then organized as a half-day work-
shop. The workshop was very successful from the PC point of view as many partici-
pants from the Euro-Par community (45 in total) were drawn to the lecture hall.

Last, but not least, the HPCN workshop chairs would like to thank the members of
the HPCN Program Committee as well as all invited speakers, who made the workshop
possible. We would also like to thank Euro-Par for hosting the event, and the general
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Abstract. This paper relates the computational demand of turbulence-
resolving flow simulations for aircraft aerodynamics to the parallel scal-
ability of the DLR flow solvers TAU and THETA, as well as the new
CODA solver optimized for many-core HPC systems. Based on exist-
ing lower-fidelity simulations, the computational requirements for wall-
resolved LES are first estimated for single aircraft components at wind-
tunnel scale. It is shown that such simulations at reduced Reynolds num-
bers would be realizable within days to weeks with the current methods,
if the largest available HPC clusters with more than 100,000 cores were
used. However, an extrapolation to the HPC requirements of LES for
a full 3D wing of an aircraft at flight Reynolds numbers highlights the
urgent need for larger HPC resources and adapted parallel code designs,
as well as more efficient numerical algorithms and physical models.

Keywords: High-Performance Computing · Large-Eddy Simulation ·
Aircraft aerodynamics · TAU · THETA · CODA

1 Introduction

Today’s aerodynamic design, optimization and analysis of modern transport air-
craft relies on a combination of flight test, wind tunnel testing and numerical
simulation. Depending on the aircraft operation mode the contribution of numer-
ical simulation, i.e. Computational Fluid Dynamics (CFD) to these disciplines
varies within the flight envelope: while current CFD methods exhibit high matu-
rity in cruise flight close to the design point of the aircraft, less confidence exists
for low-speed take-off and landing configurations as well as for certain high-speed
operation conditions [10]. State-of-the-art CFD codes employ a Finite Volume
discretization of the Navier-Stokes equations. At present, turbulent flow is usu-
ally modelled with a Reynolds-Averaged Navier-Stokes (RANS) ansatz through
additional transport equations. These RANS turbulence models were derived
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and calibrated mainly for attached and steady flow conditions, as appear in
cruise flight. During low-speed take-off and landing, the turbulent flow near the
aircraft’s surface experiences strong adverse pressure gradients, leading to flow
separation. In these situations standard RANS turbulence models fail to predict
the flow with sufficient accuracy [7]. For high-speed operation, the flow around
the aircraft is susceptible to the buffet phenomenon, an unsteady periodic shock
wave oscillation involving shock-induced separation. The accurate prediction of
buffet is of significant importance, as the latter marks the limit of operation
before structural damage of the aircraft may occur. Solutions obtained using
RANS turbulence models to predict these flow conditions are strongly depen-
dent on simulation parameters and grid resolution [3] and suitability or correct
application of these models are still under investigation [10].

Recently, NASA published the CFD Vision 2030 Study [9] to highlight the
current status of CFD in aerodynamics and to set up a roadmap for meeting
present and future requirements in the field. The Vision emphasizes the short-
comings of current RANS turbulence models for certain flow phenomena and
identifies the need for developing suitable turbulence resolving methods, e.g.
Large Eddy Simulation (LES) methods, in which turbulence is partly modelled
and partly resolved. To underline the importance of this development goal, the
first of a total of four Grand Challenges that were proposed in the Vision is
the LES of a powered aircraft configuration across the entire flight envelope.
However, while the application of LES promises accurate predictions at the bor-
der of the flight envelope, it also requires large High Performance Computing
(HPC) resources and significantly increases the computational effort compared
to RANS turbulence models.

This paper gives an overview of the different turbulence modelling approaches
applied at DLR to perform computations on industrially relevant aerodynamic
configurations. The basics of these methods are introduced, as well as DLR’s
CFD codes and their respective HPC concepts. The HPC requirements for the
simulation of flows around two aircraft components are assessed depending on the
employed turbulence modelling approach. This assessment is used for estimating
the computational effort of wall-resolved LES applied to a full 3D aircraft wing,
both on wind-tunnel scale and for the real aircraft in different flight conditions.
The paper concludes with required improvements and developments to achieve
these simulations with acceptable computational cost.

2 Aerodynamic Flow Simulation

The computational effort of a flow simulation is governed by the resolution
requirement of the spatial and temporal discretization of the partial differential
equations to be solved. One key factor is the treatment of turbulence, i.e. small
quasi-random unsteady fluctuations which emerge above a certain Reynolds
number (defined as Re = U∞lref/ν) and which strongly affect the aerodynamic
performance of air vehicles (e.g. drag force, stall behaviour).

While all relevant physics of turbulence can be captured by a Direct Numeri-
cal Simulation (DNS) based on the Navier-Stokes equations, the requirement to
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fully resolve the turbulent fluctuations in both space and time yields extremely
large number of grid points (i.e. small mesh-cell sizes) and small physical time
steps. Moreover, DNS resolution increases dramatically with the Reynolds num-
ber, i.e. the number of grid points N scales with ∼Re37/14 in wall-bounded flow
[1]. At relevant (flight) Re-numbers of aircraft (Re = 107 − 108) DNS will there-
fore remain beyond available computing capacities in the foreseeable future, see
Fig. 1. This encouraged the development of less demanding methods to compute
turbulent flow, which are briefly outlined in the following.

Fig. 1. Schematic relation of turbulence resolution level and computational cost in
different flow simulation approaches.

RANS Modelling. The Reynolds-averaged Navier-Stokes (RANS) approach
applies a temporal averaging to the Navier-Stokes equations which converts the
unsteady turbulent fluctuations into mean statistical quantities, i.e. the Reynolds
stresses. These stresses describe the effect of turbulence on the (steady) mean
flow and need to be modelled by additional physical closure assumptions, called
turbulence models. Such models usually consist of partial differential equations
which pose no particular resolution requirements compared to the steady RANS
equations. However, they often lack accuracy in complex turbulent flows, e.g.
near the border of the flight envelope of aircraft.

Large-Eddy Simulation. In Large-Eddy Simulations (LES) the Navier-Stokes
equations are formally filtered (often using a top-hat filter based on the local
mesh-cell size) so that turbulence is decomposed into an unsteady resolved part
and a smaller modelled part, the latter being usually provided by algebraic
sub-grid scale models. LES requires high temporal and spatial resolution of the
resolved turbulent fluctuations to meet the commonly accepted criterion [5] of
at least 80% resolved turbulent kinetic energy (see Fig. 1). For wall-bounded
flow, this leads to the number of grid points scaling roughly as N ∼ Re13/7 [1].
However, due to the reduced empirical modelling, the mean-flow predictions of
LES often approach DNS accuracy.
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Hybrid RANS/LES. Hybrid RANS/LES Methods (HRLM) combine the spe-
cific benefits of both methods by locally adapting the applied modelling to
the flow topology and available grid resolution. For instance, the well-known
Detached-Eddy Simulation aims to apply RANS modelling, where usually suffi-
cient (i.e. attached near-wall flow) and LES, where needed (i.e. separated flow).
More elaborate variants of DES offer wall-modelled LES capabilities [8] by apply-
ing RANS close to the wall and consistent transition to LES in the outer bound-
ary layer, thus reducing the Re-number-dependency to N ∼ Re [1]. Note that
the physical time step is not easily adapted to the local modelling, i.e. the time
resolution in the local LES regions dictates the global time step. Due to the flex-
ible localization of RANS and LES regions, HRLM covers a wide intermediate
regime of turbulence resolution and effort, as depicted in Fig. 1.

3 Parallel Scaling Characteristics of DLR Flow Solvers

Numerical simulation tools for aeronautical flows classically rely on the finite-
volume approach. At DLR two different finite-volume solvers for unstructured
meshes have been developed: the TAU code for compressible flow and the
THETA code for incompressible flow. Although both codes are written in C
and share common data structures as well as similar implementations of the
modelling approaches described in Sect. 2, the specific solution algorithms for
flows with variable and constant density lead to different parallel scalability
characteristics.

3.1 Parallel Scalability of Present Codes TAU and THETA

For decades, MPI-based domain decomposition has been the dominating par-
allelization paradigm for mesh-based CFD to make use of HPC resources for
flow simulation. The computational domain is statically split into a number of
parts, called domains. Each domain maps one-to-one with an MPI process. The
domain-local calculations are often stencil-based, for instance the flux balance for
each finite (control) volume. As a consequence, data from neighboring domains
are needed for control volumes touching a domain boundary. These data are often
called the domain’s halo. Halo data allow for a complete stencil for each domain-
local control volume. As the simulation proceeds, halo data need to be frequently
updated. TAU as well as THETA use a lock-step approach: before each stencil
loop, halo data gets communicated using point-to-point communication. Namely,
each process (domain) posts an MPI Irecv for each neighboring domain, followed
by an MPI Isend to each neighbor, and finalized by an MPI Waitall on all these
immediate MPI calls. The number of neighbors of a domain can be considered
limited, say around the order of 10, independent of the number of domains used
(given the mesh is large). The smaller the domains, the fewer halo data is con-
tained in a message, resulting in halo communication becoming latency and/or
message-rate bound. In contrast to point-to-point communication for the halo
update, global reduce operations result in a communication time growing log-
arithmically in the number of processes involved. And what is more (actually
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worse), load imbalances accumulate at such process-synchronization points. In
particular for THETA, which makes use of full implicit time-integration schemes
in combination with multi-grid acceleration, global reductions limit the parallel
scalability. Due to the different time-integration schemes used for the compress-
ible equations, TAU’s scalability is less affected in this regard.

The scalability of both TAU and THETA is examined in exemplary LES
computations of the periodic turbulent channel flow at Reτ = 395 on the same
mesh. The goal of this study was to determine the lowest achievable wall-clock
time for one physical time step on currently installed HPC hardware at DLR
(Intel Xeon@2.8GHz, Ivy Bridge EP, Infiniband Connect). Due to its more effi-
cient solution algorithm for this incompressible flow, THETA needs more than a
magnitude less time to compute one time step on a given domain decomposition
(number of grid points per CPU core) than TAU, see Fig. 2 (left).1 With increas-
ing parallelization, i.e. fewer points per core, both codes initially yield a linear
reduction in wall-clock time before gradually departing from the ideal scalability
curve. With minimum values of about 2 s for TAU and 0.15 s for THETA at 4800
points/core, TAU slightly reduces the initial (relative) wall-time margin thanks
to its somewhat better scalability. This is also reflected in the relative parallel
efficiency (reciprocal of wall-clock time × number of CPU cores) of both codes,
as depicted in Fig. 2 (left).

Fig. 2. Left: Parallel efficiency (solid lines) and wall-clock time per simulated time step
(dashed lines) from LES of a channel flow with DLR-codes TAU and THETA. Right:
Parallel efficiency of TAU and CODA in a generic (non-LES) benchmark case.

1 Note on the other hand, that incompressible solvers are not generally applicable to
aeronautical flows.
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3.2 Potential of New CODA Solver

In 2014, DLR started from scratch a new flexible unstructured CFD solver
(“Flucs”) [4], which has by now become the basis for a common CFD capa-
bility for/of Onera (the French Aerospace Lab), DLR, and Airbus (“CODA”).
Just as TAU/THETA, also CODA uses domain decomposition to make use of
distributed-memory parallelism. In contrast to TAU/THETA, however, CODA
features overlapping halo-data communication with computation to hide network
latencies and, thus, improve scalability. As an alternative to MPI, the GASPI
implementation GPI-2 can be used for halo communication. This Partitioned
Global Address Space (PGAS) library features highly efficient one-sided com-
munication, minimizing network traffic as well as latencies. Moreover, CODA
features sub-domain decomposition, i.e., each domain can again be partitioned
into subdomains to make use of shared-memory parallelism. Each subdomain is
processed by a dedicated software thread that is mapped one-to-one to a hard-
ware thread, maximizing data locality. In contrast to the 1st level decomposi-
tion, this 2nd level (sub)decomposition does not use halo data (but makes use
of shared memory). Just as on process level, also for the thread level, the SPMD
paradigm is applied, trying to reduce thread synchronization to a minimum. For
CODA, running one process per multicore chip has turned out best practice. If a
chip features multiple (Non-)Uniform Memory Access ((N)UMA) domains, how-
ever, depending on the performance of the cache-coherence logic, running one
process per UMA domain may be beneficial. For each process, as many threads
(subdomains) are run as hardware threads are available. CODA’s 2-level domain
decomposition just described in combination with communication/computation
overlap allows for a significantly improved parallel efficiency and scalability, see
Fig. 2 (right). Note that a parallel efficiency of more than 100% corresponds to
a super-linear speed-up. This effect, in particular observed for CODA in Fig. 2
(right), is due to the distributed simulation fitting into the total L3 cache mem-
ory of the HPC-cluster nodes utilized. Also note that a wall-clock time analysis
of LES with CODA as in Fig. 2 (left) has not yet been conducted.

4 HPC Requirements of LES for Aircraft - Case Studies

As discussed in Sect. 1, the increasing demand for accurate border-of-envelope
simulations has stimulated an interest in LES of full aircraft configurations. To
approach the question of feasibility, we first consider two exemplary aircraft com-
ponents in wind-tunnel conditions and estimate the respective computational
effort for LES. Then we discuss possible extrapolations to a full 3D wing of an
aircraft in different regimes of the flight envelope (low-/high-speed borders).

4.1 Delta Wing

The nacelle strake is an important component for the aircraft performance at
high-lift. We consider a delta wing as a generic generator of a longitudinal vortex
with similar properties as for a strake vortex.
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Fig. 3. Top view on the delta wing: Distribution of the viscous length scale and surface
streamtraces (top); surface mesh for the RANS computation (bottom).

For a large-eddy simulation, the largest computational costs arise for the
resolution of the smallest vortices in the boundary layers of the delta wing. Their
size is of the order of the viscous length scale δν = ν/uτ , which is computed
from the kinematic viscosity ν and the local friction velocity uτ . The surface
flow pattern together with the viscous length scale computed with RANS are
shown in Fig. 3. The aim is to use an anisotropic surface mesh in the region of
attached flow in the inner part of the wing and an isotropic surface mesh in the
region of the separated flow in the outer part of the wing. To estimate a spatial
resolution sufficient to resolve the near-wall vortices, the grid spacings Δxi are
expressed in wall units, i.e. Δx+

i = Δxi/δν . Based on commonly accepted criteria
for wall-resolved LES [5] the estimated normalized grid spacings in streamwise
direction Δx+, wall-normal direction Δy+ and spanwise direction Δz+ as well as
the associated number of mesh points Nx, Ny, and Nz are given in Table 1. The
estimate is based on a chord length c = 0.3m, onflow velocity U∞ = 55.5m/s
and an average viscous length scale of δν = 5×10−6 m. The total number of mesh
points in the boundary layers on both sides of the delta wing is Npnt = 6.75×108.

For the temporal resolution, we assume a total simulation time of 25 CTUs
(convective time units) with CTU = c/U∞. For the resolution of the boundary
layers we adopt a normalized time step size of Δt+ = 0.4 as suggested in [2],
leading to Δt = Δt+νu−2

τ = 1.6 × 10−7 s. The number of physical time steps
becomes Nt = 8 × 105.
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To estimate the HPC requirements and wall-clock times for such a simulation
with TAU and THETA2, we consider the LES of a channel flow from Sect. 3 and
assume that the parallel efficiency and wall-clock times per physical time step
from Fig. 2 (left) apply to any LES with these flow solvers. For appropriate HPC
usage, we further demand ≥90% parallel efficiency, which allows distributing
6,500 points/core with TAU, and 20,000 points/core with THETA. The resulting
wall-clock times and total core usage for an LES of the delta wing would be 19.3
days on 104,000 cores with TAU, and 2.3 days on 34,000 cores with THETA.

Table 1. Estimated spatial resolution for LES of a delta wing (upper and lower side).

Grid region Mesh type Δx+ Δy+ Δz+ Nx Ny Nz Npnt in 106

Inner wing Anisotropic 40 1 20 1500 100 1500 225

Outer wing Isotropic 20 1 20 3000 100 1500 450

4.2 High-Lift Wing Section

Due to the low speed of an aircraft during take-off and landing, the lift of the
wings needs to be increased by deploying slats at the leading edge and flaps at the
trailing edge. Simulating the flow around such a wing in high-lift configuration is
a crucial but challenging task, since complex interactions of turbulent boundary
layers, co-fluent shear layers and flow separation may occur. In this case study, we
consider a section of the 3-element DLR-F15 airfoil [12] at wind-tunnel conditions
(Re = 2.1·106 and M = 0.15), which is inclined with an angle of attack of α = 6◦.

Requirements of RANS and Hybrid RANS/LES. Present experience on
this case comprises TAU simulations using the RANS approach with different
turbulence models as well as hybrid RANS/LES with Improved Delayed DES
(IDDES) applying wall-modelled LES in the attached boundary layers.

For an unswept wing section (airfoil), the RANS approach can be applied on
a two-dimensional mesh in the xy-plane, yielding just about 0.2×106 grid points
in the given case. Moreover, the simulation can be conducted in steady mode,
i.e. omitting temporal resolution of the RANS equations. For illustration, Fig. 4
(top-left) shows the normalized vorticity and the streamlines from the RANS
simulation in the vicinity of the deployed flap.

In contrast, the IDDES requires adequate spanwise resolution of the resolved
three-dimensional turbulence and a sufficient spanwise domain extent in order
not to restrict the resolved structures, visible in Fig. 4 (bottom-left). The largest
occurring structures can be estimated by the maximum boundary layer thickness
(including displacement due to separation), leading in this case to a minimum
span of 8% of airfoil chord in combination with periodic boundary conditions.

2 With an onflow Mach number of M = 0.16, the flow is mostly incompressible.
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The spatial discretization for wall-modelled LES using IDDES requires full wall-
normal resolution down to the wall, i.e. Δy+ ≈ 1, whereas the tangential (stream-
and spanwise) spacing scales with the boundary layer thickness. Figure 4 (right)
shows the resulting distribution of the wall-tangential (stream- and spanwise)
spacings normalized in wall units for a block-structured grid used in [6] on all
three airfoil elements. This adequate (yet not highly-resolved) IDDES grid con-
tains Nxy = 0.27 × 106 grid points in the xy-plane and Nz = 100 equidistant
spanwise layers in z-direction, yielding Npnt = 27×106 points in total, cf. Table 2.

The physical time step was chosen as 5000 steps per CTU (=c/U∞) which
yields a mean normalized timestep in wall-units of about Δt+ = 0.55, but with
maxima up to 1.6 near the leading edges. Due to the rather small-scale flow
phenomena (boundary layers with local separations), which bear only limited
impact on the global flow field, an overall simulation time of about 10 CTU is
considered sufficient, corresponding to Nt = 5 × 104 physical time steps.

Fig. 4. DLR-F15 airfoil. Left: Snapshot of normalized vorticity and time-averaged
streamlines around the flap from different modelling approaches. Right: Wall-tangential
grid spacing in wall-units in the IDDES grid (colors indicate different airfoil elements).
(Color figure online)

Extrapolation to LES. For a wall-resolved LES, the domain size and the
overall simulation time can be kept as for IDDES. However, the wall-tangential
spacing needs to be refined to meet common LES requirements for wall-bounded
flow, i.e. Δx+ ≈ 40 and Δz+ ≈ 20. Considering Fig. 4 (right), this (roughly)
leads to a 10× refinement in stream-, and a 5× refinement in spanwise direc-
tion, yielding Npnt = 1.35 × 109 total grid points for the same block-structured
topology. To ensure a sufficient temporal resolution of Δt+ ≤ 0.4 in the all flow
regions [2], the time step should be divided by 4 compared to IDDES, resulting
in Nt = 2 × 105 time steps for 10 CTU, cf. Table 2.
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With these data and demanding ≥90% parallel efficiency according to
Sect. 3.1, a total number of around 210,000 cores could be used efficiently with
TAU, and the simulation would take 4.9 days. For THETA, with a lower (effi-
cient) core number of around 70,000 the simulation would take 0.6 days (if the
local compressibility effects at this Mach number are neglected).

Table 2. Spatial and temporal resolution of different simulation approaches for the
DLR-F15 airfoil.

Modelling Δx+ Δy+ Δz+ Nxy in 106 Nz Npnt in 106 Δt/(c/U∞) Nt in 103

RANS “∞” 1 “∞” 0.2 1 0.2 – (steady)

HRLM 500 1 100 0.27 100 27 2 × 10−4 50

LES 40 1 20 2.7 500 1350 5 × 10−5 200

4.3 3D Wing of Aircraft in Flight

The previous sections show the enormous computational cost associated with
wall-resolved LES of the flow around aircraft components at wind-tunnel scale.
In this section we extrapolate the computational cost for the main aerodynamic
device of a full aircraft in flight conditions, i.e. the wing. Details strongly depend
on the operating point of the aircraft, e.g. low-speed take-off and landing or high-
speed operation. Note that such a range of flow conditions can only be handled
with compressible flow solvers like TAU (or CODA in the future).

First we extrapolate the above estimate for the three-element wing-section
of 8% span for the small wind-tunnel Reynolds number of Re = 2.1 × 106 to
a full wing. For modern transport aircraft, the aspect ratio of wing half span
to mean aerodynamic chord is around 4.5 to 5. Using the former, the number
of nodes in spanwise direction on a single wing side increases by a factor of 56
compared to the 8%-span wing-section, leading to a total number of 7.6 × 1010

mesh points. Using the same number of time steps (Nt = 2 × 105) and cores
(210,000) as given in the previous section, the simulation time with TAU can be
linearly extrapolated (i.e., assuming perfect weak scaling) to 250 days.

In the second step we include the Reynolds number effects. We assume a
take-off speed of 77m/s and a mean aerodynamic chord length of cMAC = 5.8m,
close to the values for an A350, together with ν = 1.5×10−5 m2/s. The Reynolds
number is thus Rec,MAC = 30 × 106. Then the viscous length scale δν = ν/uτ is
decreasing according to δν,high/δν,low ∼ √

cf,high/cf,low Rehigh/Relow. For the Re-
dependence of cf we use the Coles-Fernholz correlation with cf,low/cf,high ≈ 1.5
and together with Rehigh/Relow = 15 we obtain δν,high/δν,low ≈ 1./12.2. This
leads to an increase of the number of grid points by a factor of (δν,low/δν,high)

2 =
150 for Nx × Nz, and we neglect a possible small increase of Ny. This leads to a
total number of 1.1 × 1013 grid points for a single wing. Note that this estimate
agrees well with the Re-based extrapolation according to [1], see Sect. 2.
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For temporal discretization, the condition Δt+ = 0.4 [2] implies that the
physical time step needs to be decreased by a factor of (δν,low/δν,high)

2 ≈ 150.
Then the number of time steps becomes Nt = 3 × 107 and the wall-clock time
would rise by a factor of 1502 compared to the low-Reynolds-number case, yield-
ing more than 15 thousand years on 210,000 cores. But even with exclusive access
to the largest existing cluster of Xeon-CPUs comparable to DLR’s, i.e. “Tianhe-
2A” with almost 5 million cores [13], such a TAU simulation would take around
650 years, when extrapolated linearly. As a final remark, for a full aircraft a sim-
ulation time of 10 CTUs may not be sufficient. Following [11], the trailing-vortex
system needs to be resolved over 50 cMAC downstream of the wing, increasing
the simulation time by another factor of 5.

High-speed buffet occurs at even higher Reynolds numbers. The oscillating
shock wave and the involved shock-induced flow separation not only requires
highly robust numerical algorithms but extensive LES regions to resolve tur-
bulence for the complete buffet region. For an estimate of the flow conditions
representative for the boundary of the flight envelope in the high-speed regime,
we assume Ma∞ = 0.9 and that the local flow speed can reach U∞ = 400m/s
in the supersonic flow regions above the wing. On the other hand, at 10 km alti-
tude, the small density of air of around 0.41 kg/m3 leads to larger values of the
kinematic viscosity of ν ≈ 3.5 × 10−5 m2/s. Therefore Rec,MAC ≈ 66 × 106 is
increased by a factor of approximately 2 compared to low-speed high-lift condi-
tions. Therefore the mesh resolution is increased roughly by a factor of 22, and
the physical time step needs to be decreased by a factor of 22.

5 Conclusion

Various aspects affecting the feasibility and HPC requirements of high-fidelity
flow simulations around aircraft at the border of the flight envelope were dis-
cussed. Due to the large resolution requirements of wall-resolved LES at high
Reynolds numbers, even the flow around isolated aircraft components at wind-
tunnel scale, e.g. narrow wing sections or nacelle strakes, were shown to yield
grid-point numbers in the order of 109. Even though the present DLR codes
with MPI-based inter-process communication could theoretically make use of
up to ∼200, 000 CPU cores3 for such problem sizes (assuming perfect weak scal-
ing), the time integration over sufficiently long simulation intervals still leads to
wall-clock times in the order of days to weeks.

The subsequent extrapolation to a full 3D wing of an aircraft in take-off con-
ditions (but still at wind-tunnel scale) adds a factor of >50 to either the core
number or the wall-clock time, both being infeasible for nowadays industrial use.
Finally, with wall-clock times of more than 600 years using one of the largest
existing HPC clusters exclusively, the extrapolation to flight Reynolds numbers
clearly reveals the inability of present methodologies to resolve all relevant tur-
bulent scales with LES around aircraft flying at the border of the envelope.
3 Consuming more than half of Germany’s top-ranked HPC cluster ‘SuperMUC-NG’

with 305,856 cores [13].
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Based on these estimates the following complementary requirements for future
turbulence-resolving simulations of aircraft can be formulated:

– Further expansion of available HPC resources, allowing the regular use of
>100, 000 computing cores in a single flow simulation.

– Modern parallel code designs beyond classical MPI (as the new CODA solver)
to further increase parallel efficiency on many-core HPC hardware.

– More efficient and yet robust numerical algorithms to reduce the wall-clock
time for one physical time step in a given distributed simulation.

– Finally, despite the appeal of minimized turbulence modelling, the local use
of classical RANS in regions with less complex flow physics appears inevitable
for industrial use. This leads to hybrid RANS/LES methods with wall mod-
elling in resolved flow regions, possibly supplemented by model-based effi-
ciency improvements like locally-embedded LES regions (using synthetic tur-
bulence injection) or wall functions to bridge the near-wall region.
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Abstract. In the aerospace sciences we produce huge amounts of data.
This data must be arranged in a meaningful order, so that we can analyze
or visualize it. In this paper we focus on data that is distributed among
computer processes and then needs to be sorted by a single root process
for further analysis. We assume that the memory on the root process is
too small to hold all sorted data at once, so that we have to perform
the sorting and processing of data chunk-wise. We prove the efficiency
of our approach in weak scaling tests, where we achieve a near constant
bandwidth. Additionally, we obtain a considerable speed up compared to
the standard parallel external sort. We also demonstrate the usefulness
of our algorithm in a real-life aviation application.

Keywords: Parallel sorting · High-performance computing · Merge
sort · Data analysis · Aerospace sciences

1 Introduction

In the German Aerospace Center (DLR - Deutsches Zentrum für Luft- und
Raumfahrt) huge amounts of data arise day by day. On the one hand this data
is produced by scientific and engineering simulations, e.g. from the full numerical
simulation of an aircraft. On the other hand, lots of data is collected for Earth
observation or the exploration of other planets.

Very often the accumulated data needs to be sorted to become useful. In this
work, we focus on data that is at first distributed among different processes of
a supercomputer but then needs to be processed in a sorted order by a single
root process. Furthermore, we assume that the memory on the root process is
too small to hold all sorted data at once, so that we have to perform the sorting
and processing of data chunk-wise.

The contribution of this paper is as follows: We present a new parallel merge
sort algorithm that can skillfully handle arbitrary unsorted data sets that are
distributed on a large number of processes. We dynamically adjust the size of
the buffer for each process depending on the distribution of data. Compared
to a fixed buffer size, we reduce the number of necessary messages and can
use the dynamic buffer very efficiently. In particular we optimize the routine to
account for pre-sorted parts of the data and for imbalanced loads. In a benchmark
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 388–399, 2020.
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study on the JUWELS supercomputer at FZ Jülich [4] we test our algorithm
on up to 768 MPI ranks sorting up to 240 GiB of data. In weak scaling tests,
we achieve a near constant bandwidth. Compared to the well-known parallel
external sort [1,3] we demonstrate an up to 2 times speed-up on randomized
data sets and up to 4.6 times on partly sorted data. In the latter case, we reduce
the number of MPI messages to a constant that does not depend on the number
of processes anymore.

Furthermore, on the DLR internal C2A2S2E-2 cluster [2], we show that intro-
ducing our new algorithm in the DLR application code CODA [9] reduces the
runtime of the complete mesh output operation by a factor of over 4 in the
average case and by a factor of 100 in the (previous) worst case.

The remainder of this paper is organized as follows: In Sect. 2 we introduce
the details of our data-adapted merge algorithm and point out the difference to
the parallel external merge algorithm. Section 3 presents benchmark results with
different sorting scenarios computed on JUWELS at FZ Jülich [4]. In addition,
we focus on a specific case CFD application for which the algorithm was devel-
oped. For the scenario of a complete HDF5 export, we also show scaling results.
We conclude our paper in Sect. 4 with a summary and suggestions for further
research.

2 Data-Adapted Merge Algorithm

Let I = { id0, . . . , idN−1 } ⊆ N0 be a set of N = |I| so called Ids (or keys) and
D = { d0, . . . , dN−1 } be a set of N data items. We say that idj is the Id of item
dj , writing idj = Id(dj). The sets I and D are distributed across P processes
{ p0, . . . , pP−1 } in an arbitrary order. Thus, for each 0 ≤ p < P we have a set
Ip ⊆ I, such that

⋃

p

Ip = I, and (1)

Ip ∩ Iq = ∅, for p �= q, (2)

and each process p holds the index set Ip and the corresponding data set Dp =
{ dj ∈ D | idj ∈ Ip }. We denote the number of items on process p by Np.

In this paper we are concerned with the following task:

Task 1. A single designated process r, which we call the root process, needs
to access all data items in D once in ascending order of their Ids. Thus, first
d0, then d1, and so on. Furthermore, we assume that due to limited memory
resources the number of Ids and data items that r can store simultaneously is
bounded and significantly smaller than N .

Our particular application is in the context of computational fluid dynamics.
Here, the Ids correspond to the elements of a computational mesh and the data
represents the state of the simulation. The j-th data item is associated with
the j-th mesh element and can for example store coordinates, fluid velocities,
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concentrations, or other relevant data1. We then want to output this simulation
state to a file, for example to visualize the simulation or to have a checkpoint to
restart the simulation in the future. In order to have this output independent of
the partition, we want to store our data in order, sorted by the Ids. Furthermore,
in some situations we are limited to using serial file I/O through a single process
r. Therefore, we are in the setting described by the task above.

Of the different approaches to solve these kinds of sorting problems, we aim
for one similar to a parallel merge sort, where the data is sorted locally on the
processes and then merged to sorted data on the root2.

From now on we assume that the processes’ local sets Dp and Ip are sorted.

2.1 The Parallel External Merge Sort

The parallel external merge sort algorithm is a common method [3,7,10] that
proceeds as follows. Given a chunk size C (divisible by P ), the root process
allocates memory for C many data items and assigns each process a portion of
C/P many items. Each process then sends its next C/P items to the root. In a
P -way merge step, the root process merges the data from the P buffers into a
sorted array of size C, the output chunk. As soon as the root has merged all data
items from process p a new communication is requested and process p sends its
next C/P data items to the root. If the output chunk is full, this chunk of data
can be passed on for further processing (serial data analysis, file I/O, etc.) and
the root clears the output chunk to sort the next C items; see Fig. 1.

We observe two drawbacks of this method.
First, the number of messages that each process sends to the root is always

the same, regardless of the distribution of the data. We can calculate this number
for a process p as the amount of data on p divided by the size of p’s buffer on
the root, C/P :

|{ Messages from p to r }| =
NpP

C
. (3)

In particular, this number increases with the number of processes P .
However, if large portions of the data on a process p are contiguous, we

could use much fewer messages. In the extreme case the data is already sorted
on the processes. In this situation the optimal strategy is to send packs of C data
items from process 0 to the root until all items on process 0 are processed, then
continue with packs of C many items from process 1, and so on. Each process
then sends Np

C messages, a reduction by a factor of P .
The second issue arises during the algorithm if a process p has sent all its

elements to the root, but other processes still have data left. In this situation

1 Data may also reside on a subset of the mesh elements, in which case gaps in the
Ids I occur.

2 A related problem is the so called external sort problem. Here the data resides
unsorted on a hard drive and has to be written back to the hard drive in sorted
order, while only a limited amount of data can fit into the memory of the calculating
process [10].
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P-way Merge

C/P C/P C/P C/P

p0 p1 p2 pP−1

process r

Fig. 1. In the classical external merge sort, the root allocates a buffer of size C/P for
each process and receives the current portion of data from each process into this buffer.
These buffers are then merged into the sorted output chunk. As soon as all C/P items
from one process are merged, this process sends its next C/P items to the buffer.

the segment of the root’s buffer associated to p is not used in the remaining
part of the algorithm, having the same effect as shrinking the buffer size and
thus increasing the effective runtime of the algorithm. This effect is of particular
interest when the data is not distributed evenly among the processes or, in the
extreme case, when some processes do not have any data at all.

2.2 The Data-Adapted Parallel Merge

We propose a new data-adapted parallel merge algorithm to overcome these
issues. Instead of assigning a fixed buffer on the root for each process we dynam-
ically adjust its size depending on the distribution of the data. Thus, we ensure
that the buffer on the root is utilized more efficiently and that fewer messages
have to be send for sorted parts of the data.

For a thorough understanding of our approach, we provide pseudo-code in
Algorithms 2.1, 2.2, and 2.3: In a setup step ‘InitNextID’ each process sends
the smallest element of Ip to the root, where these Ids are stored in an array
NextIDs. During the algorithm NextIDs[p] will be updated to always contain
the smallest Id on process p for which no data was sent to the root yet.

The algorithm then enters its main loop. In each iteration the root collects
data from the other processes to fill the output chunk with the next C many
data items. To achieve this, we proceed in three steps.

UpdateDataRange (see Algorithm 2.2): The root determines the Ids of the
data items that will be processed in this iteration. This range starts at the
smallest non-processed Id m := min NextIDs and ends at m + C. This range is
then broadcasted across all processes.

GatherData (see Algorithm 2.3): In this step, the root collects the data from
the processes. Each process whose next Id is within the data range, sends all
data in the data range to root. Thus, process p sends dj if and only if m ≤ idj <
m + C. In particular, processes with no data in the data range do not send
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Algorithm 2.1: data adapted parallel merge (ID Array Ip, Data Array
Dp, Chunk size C, root r)

1 pos ← 0 /* Current position in Ip and Dp */

2 if p == r then
3 Allocate Id and data buffer to hold C items respectively.
4 Allocate Output chunk to hold C data items.

5 InitNextID()

6 while Data left on any process do
7 UpdateDataRange()

8 GatherData()

9 MergeData()

/* Application on r processes data in ouput chunk */

messages to the root. If a process sends data to the root it additionally sends its
next unprocessed Id to the root or, if no data is left, an End of data flag.

Algorithm 2.2: UpdateDataRange()
1 if p == r then /* This process is root */

2 minId ← min { NextIDs } /* Smallest next Id */

3 data range[0] ← minId
4 data range[1] ← minId + C
5 Broadcast data range to all other ranks

6 else
7 Receive data range from root

At the end of this routine the root process determines from which processes
it receives messages using the information in NextIDs and the data range, and
then receives the data into its receive buffer. For these processes the root also
updates the NextIDs array. If the sending process is the root itself (p == r), we
do not need to send an MPI message here, but instead copy the data locally.

MergeData: In GatherData, the root received k ≤ P messages of sorted data.
These are now merged in a k-way merge step into the output chunk.

After the MergeData step the output chunk represents the next sorted portion
of the complete data set and can be processed by the calling application.

In Fig. 2 we depict the first two loop iterations of a small example with three
processes p0, p1, and p2. The first items of the sets Ip are given as

I0 = { 0, 3, 100, . . . } , I1 = { 1, 4, 7, 101, . . . } , I2 = { 5, 6, 110, . . . } , (4)

and the sets Dp contain the corresponding data items. As chunk size we choose
C = 4 (Certainly, C would be much larger in realistic applications; see Sect. 3).
We show the Ids and data of each process on the left hand side and the data
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Algorithm 2.3: GatherData()
1 if Ip[pos] ≥ data range[1] then
2 return /* This process does not send data */

3 Find j, such that Ip[pos + j] < data range[1] ≤ Ip[pos + j + 1]
4 S0

p ← { Ip[pos], Ip[pos + 1], . . . , Ip[pos + j] }
5 S1

p ← {Dp[pos], Dp[pos + 1], . . . , Dp[pos + j] }
6 pos ← pos + j + 1 /* Update position in Ip */

7 NextIDp ← Ip[pos] /* The next unused Id */

8 Send S0
p , S1

p and NextIDp to the root process.
9 if p == r then /* This process is root */

10 for q ∈ { q̂ |NextID[q̂] < data range[1] } do
11 Receive S0

q and S1
q and store into Id- and Data-Chunk.

12 Receive NextIDq

13 NextIDs[q] = NextIDq

on the root on the right hand side of Fig. 2. The initial InitNextID step is not
depicted and was already performed.

We observe that only the processes that hold data of the current requested
chunk send data to the root and that additionally the size of the messages may
differ. The root receives all data for the current chunk in one go and does not
need to wait for multiple sends from the same process.

By determining the minimum of the next Ids, gaps in the Id array can be
skipped. Observe that from step 2 to step 3 the requested data range jumps from
[4,8) to [100, 104), since the root knows that there are no Ids in between 8 and
100. However, gaps in the Id range within the currently requested data range lead
to less than C items received on the root. We observe this in step 1 where one
slot in the chunk remains unused. Nevertheless, this drawback has only minor
influence on the runtime of our algorithm as we demonstrate in Sect. 3.1.

Remark 1. In our description of Task 1 we explicitly assume that different data
items have different Ids. We use this in the algorithm when we determine the
next data range. It is possible to adapt the algorithm to cope with duplicated
Ids if we know a bound n̂ on the number of usages of the same Id beforehand.
In this case, UpdateDataRange may request a range from m to m + C

n̂ instead.

3 Results and Discussion

3.1 Data-Adapted Parallel Merge

In this section we test our algorithm for four scenarios. The first is a random
distribution of Ids, in the second the Ids are sorted, in the third blocks of 10,000
contiguous Ids are randomly distributed, and in the fourth the data is not dis-
tributed evenly among the processes and has large gaps (half the processes have
twice as much data as the others). The random distributions are generated by
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Fig. 2. Graphical description of our proposed data-adapted parallel merge algorithm.
We show the first two loop iterations of an example with three processes and chunk
size C = 4. On the left hand side we depict the Ids and data sets Ip and Dp of the
processes. On the right hand side, we show how the root process receives and stores
the different messages. Note that the root process will be one of p0, p1, p2.

using the random number generator from [8]. For the results in Table 1 and Fig. 3
we have 8.388.608 Ids per process, 4 double entries (4 × 8 = 32 Byte) per Id
and a chunk size of C = 32.768 on the root process. Since we keep the problem
size per process constant while increasing the number of processes, this can be
seen as a weak scaling study. In a further step, we compare our algorithm with
a reference implementation of the external parallel merge sort.

Our results were obtained on JUWELS at FZ Jülich [4]. Each node consists
of a Dual Intel Xeon Platinum 8168 with 2 × 24 = 48 cores at 2.7 GHz each and
12 × 8 = 96 GB of RAM.

Table 1 lists the results of our new data adapted parallel merge algorithm
with 48 to 768 processes on JUWELS for the first three scenarios. Since the
problem size per process is kept constant, the total amount of data to be merged
in GiB increases with the number of processes. In particular, we have a 15 GiB
per compute node throughout our tests.

If we compare the number of messages per process between our algorithm and
the external sorting algorithm in the second column of Table 2, we see that the
number of messages per process is distinctly lower for our algorithm than for the
external sorting algorithm in the scenarios Sorted and Contiguous. We achieve
this advantage by the dynamic chunk size in our algorithm. In the scenario
Random, the numbers of messages sent per process are exactly the same for
our algorithm and the classical external sorting algorithm. Here, the number
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of messages is given by Eq. (3). For this scenario, the advantage of a dynamic
chunk size in our algorithm can not be exploited. In most application use cases,
however, we do not expect a totally random distribution of IDs.
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Fig. 3. Runtime (left) and bandwidth (right) for our four test scenarios compared with
the parallel external merge.

Figure 3 compares runtimes and bandwidths achieved for all four scenarios
between our algorithm and the external sorting algorithm for 48 to 768 pro-
cesses on JUWELS. In the scenarios Sorted and Contiguous the runtimes of our
algorithm are significantly shorter than the runtimes of the external sorting algo-
rithm. The main reason is the distinctly reduced number of messages per process
by exploiting a dynamic chunk size in our algorithm. In addition the number of
messages in our algorithm stays nearly constant with increasing process num-
ber, cf. Table 2. In the sorted case, we even have an exactly constant number of
messages, 256.

Table 1. Scaling results for our four test cases Random, Sorted, Contiguous, and Gaps
compared with the original parallel external sort. We show the runtimes (left) and
bandwidth (right) for our experiments for P = 48 up to P = 768 processes on JUWELS.

Runtime [s]

# ranks GiB External Random Sorted Contiguous Gaps

48 15 92.3 58.0 29.1 31.9 55.8

96 30 198.8 152.3 57.3 66.5 90.3

192 60 399.7 258.0 115.6 133.6 264.8

384 120 873.8 417.9 225.0 275.8 440.5

768 240 2,118.0 2,604.3 457.6 561.7 511.6

Bandwidth [GiB/s]

External Random Sorted Contiguous Gaps

0.16 0.26 0.52 0.47 0.30

0.15 0.20 0.52 0.45 0.37

0.15 0.23 0.52 0.45 0.25

0.14 0.29 0.53 0.44 0.31

0.11 0.09 0.52 0.43 0.53

Note that we expect a linear increase in the total runtime for both algo-
rithms since the total amount of data rises and all data has to be processed
on the root process. This linear increase is indicated by the ‘Ideal scaling’ line
in Fig. 3. We also observe a clear advantage of our algorithm in the case of not
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Table 2. Left: Number of messages per process for the external sorting algorithms
and our algorithms for the first three scenarios (Random, Sorted, Contiguous). Right:
Runtimes for different chunk sizes with 768 MPI ranks of the external sorting algorithms
and our proposed algorithm for the Random scenario.

# messages/proc

# ranks External Random Sorted Contiguous

48 12,288 12,288 256 1,060.85

96 24,576 24,576 256 1,078.35

192 49,152 49,152 256 1,086.90

384 98,304 98,304 256 1,089.76

768 196,608 196,608 256 1,093.00

Runtime [s]

Chunk size External sort Data-adapted

32,768 2,118.0 2,601.0

131,072 1,909.6 1,572.8

262,144 1,866.9 1,358.0

evenly distributed data, scenario Gaps. Here, the dynamic chunk size is of partic-
ular advantage, since with increasing process number more and more processes
become idle after some iterations due to the load imbalance in this scenario. For
the scenario Random, our algorithm still shows superior runtime behavior com-
pared with the external sorting algorithm except for 768 processes. In the latter
case the overhead of managing the parallel messages is a possible explanation
for the slower runtimes. However, if we increase the chunk size as in Table 2, we
can also for 768 processes achieve distinctly shorter runtimes with our algorithm
than with external sorting algorithm. Larger chunk sizes improve the computa-
tion to communication ratio and are advantageous for both algorithms, but can
be more efficiently exploited in our data-adapted parallel merge implementation.

Figure 3 displays the bandwidth behavior of our algorithm in comparison to
the external sorting algorithm. We observe that with increasing processor num-
bers the bandwidth stays more or less constant for our algorithm in the scenarios
Sorted and Contiguous, while the bandwidth of the external sorting algorithm
decreases. Moreover, the bandwidth of our algorithm is distinctly higher than
that of the external sorting algorithm, in the best case by a factor of about 5.
The only exception is again scenario Random with 768 processes, but as for the
runtime this can be changed by adapting the chunk size according to Table 2.

3.2 Application: File I/O with FlowSimulator

One of DLR’s ongoing goals in aviation is the virtual design of an aircraft. A
key element in the aerodynamic design process is the numerical flow simula-
tion for which the DLR develops its next-generation CFD (computational fluid
dynamics) software code CODA [9].

CODA is developed as part of the FlowSimulator (FS), which is an HPC
platform for the integration of multiple parallel components into a process chain.
All components (“plug-ins”) are integrated via a Python interface so that the
whole simulation process chain can be controlled by a Python script; see Fig. 4,
left. For a detailed description of FS, we refer to [11] and [12].

The storage and the parallel management of data in FS is performed by an
HPC-library called FlowSimulator Data Manager (FSDM). FSDM stores data
in a collection of C++ container classes that are all wrapped to Python. It has a
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Fig. 4. Left: Basic architecture of the FlowSimulator framework. Right: Illustration of
an unstructured grid that is used for a CFD simulation around an airplane. (Color
figure online)

wide range of import and export filters for the most common file formats such as
HDF5, CGNS, NetCDF and Tecplot. After the import, FSDM decomposes the
data and distributes it over the different MPI domains. Here, FSDM makes use
of popular partitioning algorithms such as ParMETIS or RGB (Recursive Graph
Bisection) [5,6]. Other ingredients of FSDM include geometry operations, mesh
deformation and interpolation to only name a few.

Due to the various export formats that are supported by FSDM, we often
encounter a situation as described in Task 1 in the case that the export filter
only supports sequential file I/O. In the following, we benchmark the file I/O of
a CFD simulation into an HDF5 file using FSDM. Note that we are aware of the
fact that the HDF5 library [13] supports parallel file I/O. However, the current
HDF5 export is performed by the root process only.

In the following, we consider an unstructured mesh that models an airplane
as illustrated in Fig. 4 and that contains various simulation datasets, e.g. the
velocity and the pressure field. The mesh is adaptively refined at the region
of interest close to the airplane’s wing and consists of nodes, surface elements
(triangles, quadrangles) and volume elements (tetrahedrons, hexahedrons). Each
mesh element is identified by a unique Id integer number. As an example, the
color of the mesh elements in Fig. 4 represent their associated Id number. Here,
on the one hand the mesh elements that model the airplane have low Ids (colored
in blue) and on the other hand the mesh elements of the far field have high Ids
(colored in red).

Table 3 shows the results of the HDF5 file export in FS on the DLR C2A2S2E-
2 [2] cluster. Each cluster node consists of two Intel Xeon E5-2695v2 processors
with 2 × 12 = 24 cores, 2.4 GHz per core and 8 × 16 = 128 GiB of RAM.
The exported dataset has a size of 7.2 GiB and consists of a mesh with 17
CFD subdatasets that are exported one after another. The table compares the
runtime of the original file I/O implementation in FSDM with the proposed new
algorithm described in Sect. 2. In this case, the chunk size of the new algorithm
is C = 106. We explicitly note that file I/O is performed by the root process r
in all cases so that the increase in runtime with larger processor numbers is to
be expected.
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Table 3. Runtime comparison of the original HDF5 file export with the proposed
algorithm in FlowSimulator.

Runtime [s]

#ranks Old export Old export
+ Ids invert.

New export

24 742 19,536 182

48 1,104 32,907 278

96 1,575 34,602 356

192 2,126 – 534

384 2,995 – 803

768 4,524 – 1,052

In the old export routine, r performs the data exchange with one pro-
cess after another and then writes a contiguous block of m data elements
{ dj , dj+1, . . . , dj+m } with m as large as possible to file. Since the dataset Dp on
each process p has been sorted locally, we usually obtain contiguous block sizes
m in the order of several thousand elements. The runtime results for this case are
listed in the second column of Table 3. The third column considers the situation
that the local order on each process has been destroyed since we deliberately
invert the list of local Ids. This reduces the number of elements m that can be
written in one operation by r and increases the total runtime by a factor of 20–
30. Due to the enormous increase in runtime, we have only computed the results
up to four nodes on C2A2S2E-2. Finally, the last column states the results with
our proposed new algorithm. In this case, there is always a local sort on each
process so that the runtime results do not depend on the initial local order. We
observe that the new implementation reduces the runtime compared to the old
export (second column) by a factor of four. This underlines the usefulness of the
algorithm for sequential file I/O on moderate processor numbers.

4 Conclusion

In this paper we introduce a new algorithm to solve a parallel sorting problem,
where data resides on distributed processes and needs to be accessed by a single
root process in sorted order. Due to limited memory resources the root can
only access this data chunk-wise. We optimize our network communication to
automatically adapt to the data distribution among the processes. Compared to
the common parallel external sort approach, we obtain speed-ups of factors 2 to
4. With our method we are able to exploit pre-sorted parts of the data and can
handle unbalanced loads.

Additionally to our results in benchmark studies, we applied our approach
to sequential file I/O in the DLR FlowSimulator environment. Here, we demon-
strated speed-ups of the complete I/O routine of a factor of 4 in the general
case and up to 100 in our previous worst case. We are certain that many more
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applications can benefit from our work, especially in the areas of data-analysis
and visualization, and in situations where parts of a tool-chain are serial. Future
work on the techniques presented in this paper may include improved handling
of duplicated keys and a generalization of the algorithm to multiple root pro-
cesses. The latter could be promising on clusters with many compute nodes and
a limited number of I/O nodes.
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Abstract. This paper aims at investigating the feasibility of using Par-
aView as visualization software for the analysis and optimization of par-
allel CFD codes’ performance. The currently available software tools for
reading profiling data do not match the generated measurements to the
simulation’s original mesh and somehow aggregate them (rather than
showing them on a time-step basis). A plugin for the open-source per-
formance tool Score-P has been developed, which intercept an arbitrary
number of manually selected code regions (mostly functions) and send
their respective measurements – amount of executions and cumulative
time spent – to ParaView (through its in situ library, Catalyst), as if they
were any other flow-related variable. Results show that (i) the impact of
mesh partition algorithms on code performance and (ii) the load imbal-
ances (and their eventual relationship to mesh size/simulation physics)
become easier to investigate.

Keywords: Parallel computing · Performance analysis · In situ
processing

1 Introduction

Many tools for analyzing the performance of parallel applications exist; one
example of them is Score-P11 [11], whose development the University of Dresden
participates in. It acts as a wrapper which encapsulates the original code, thus
can be easily turned on or off by the user at compilation stage. This is illustrated
in Fig. 1 below.

The original version of this chapter was revised: The two videos were added. The cor-
rection to this chapter is available at https://doi.org/10.1007/978-3-030-48340-1 64

1 Scalable Performance Measurement Infrastructure for Parallel Codes – an open-
source “highly scalable and easy-to-use tool suite for profiling, event tracing, and
online analysis of HPC applications”: https://www.vi-hps.org/projects/score-p/.
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parallel application performance add-on output

Fig. 1. Schematic of software components for performance analysis tools.

parallel application in-situ add-on output

Fig. 2. Schematic of software components for in situ visualization.

As a separate category of add-ons, tools for enabling in situ visualization [5]
of applications’ output data (like temperature or pressure in a CFD simulation)
already exist too; one example is Catalyst2 [3]. It also works as an optional
add-on to the original code and can be activated upon request, by means of
preprocessor directives at compilation stage (Fig. 2).

This paper’s goals are two-fold. First, unify the overlapping functionalities of
both kinds of tools insofar as they augment a parallel application with additional
functionality which is not strictly required for the application to work in the first
place. Both collect or “steal” data from the parallel application and transfer it
out via a side channel. Second, make use of the advanced visualization function-
alities of dedicated visualization software tools for the purpose of performance
analysis. With this we propose to map parallel performance properties to the
simulation geometry as it is already done for flow-related properties. Figure 3
illustrates the idea.

The high-performance computing (HPC) performance tools usually output
either performance profiles or event traces. In the case of Score-P, they are:

– performance profiles in the Cube4 format to be visualized at Cube3 [14];
– parallel event traces in the OTF2 format to be visualized at Vampir4 [10].

But neither of them, nor the other currently available performance tools (to
be explained in Sect. 2), match their measurements to the original simulation’s
geometry; what makes the proposal novel. On the other hand, the proposal is
2 An open-source “in situ use case library, with an adaptable application program-

ming interface (API), that orchestrates the delicate alliance between simulation and
analysis and/or visualization tasks”: https://www.paraview.org/in-situ/.

3 A free, but copyrighted “generic tool for displaying a multi-dimensional performance
space consisting of the dimensions (i) performance metric, (ii) call path, and (iii)
system resource”: http://www.scalasca.org/software/cube-4.x/download.html.

4 An “easy-to-use framework that enables developers to quickly display and analyze
arbitrary program behavior at any level of detail”: https://vampir.eu/.

https://www.paraview.org/in-situ/
http://www.scalasca.org/software/cube-4.x/download.html
https://vampir.eu/
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parallel application

performance add-on

in-situ add-on flow variables

performance variables

output

Fig. 3. Schematic of the software components for a combined add-on.

deemed also useful as, especially in CFD applications, the partitioning of the
compute mesh for parallelization has direct influence on performance and load
balancing. Hence for performance analysis and optimization a combined view
into simulation properties and performance properties is helpful.

A design requirement is that the combined solution must be able to be inte-
grated into a parallel code easily, yet without becoming a permanently required
component. Instead, it needs to be easy to switch on and off on demand, as it
is for each of its constitutive parts. As evaluation case, the Rolls-Royce in-house
CFD code (Hydra) [12] will be used.

2 Related Work

Apart from Score-P → Cube and Score-P → Vampir (mentioned above), other
workflows – with graphical support – used for performance analysis include:

– HPCToolkit5 [1], whose outputs are visualized through hpcviewer (profiling)
and hpctraceviewer (tracing);

– Periscope6 [7], whose outputs are visualized through Pathway (an Eclipse-
based graphical user-interface);

– Tau7 [18], whose outputs are visualized through ParaProf [6] (profiling) and
Vampir (tracing), among others;

– Paraver8 [13] and Dimemas9 [4], with integrated visualization capabilities;

5 An open-source “integrated suite of tools for measurement and analysis of program
performance on computers”: http://hpctoolkit.org/.

6 A free “suite of tools designed to assist the HPC application developer in the opti-
mization of their application”: https://periscope.in.tum.de/.

7 A “portable profiling and tracing toolkit for performance analysis of parallel pro-
grams written in Fortran, C, C++, UPC, Java, Python”: http://www.cs.uoregon.
edu/research/tau/home.php.

8 A “very powerful performance visualization and analysis tool based on traces that
can be used to analyse any information that is expressed on its input trace format”:
https://tools.bsc.es/paraver.

9 A “simulation tool for the parametric analysis of the behaviour of message-passing
applications on a configurable parallel platform”: https://tools.bsc.es/dimemas.

https://github.com/HPCToolkit/hpcviewer
https://github.com/HPCToolkit/hpcviewer
https://www.readex.eu/index.php/pathway/
http://hpctoolkit.org/
https://periscope.in.tum.de/
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/home.php
https://tools.bsc.es/paraver
https://tools.bsc.es/dimemas
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– SLOG-2 , a drawable logging format visualized through Jumpshot10 [8];
– Scalasca11 [9] as an optional add-on to either Score-P or Tau;
– READEX 12 [17], with a bunch of visualization options.

None of them, however, currently match the generated data back to the
simulation’s geometry. Furthermore, displaying profiling results on a time-step
basis is not straightforward. This paper would like to address those issues.

3 Prerequisites

The goal aimed by this research depends on the combination of two basic, scien-
tifically established methods: performance measurement and in situ processing.

3.1 Performance Measurement

When applied to a source file’s compilation, Score-P automatically inserts probes
between each code “region” (mostly function calls, but also constructors, destruc-
tors etc.), which will at run-time measure:

– the number of times that region was executed, and;
– the total time spent in those executions.

By each rank/thread within the simulation. Its application is done by simply
prepending the word scorep into the compilation command, e.g.: scorep mpicc
foo.c. The tool is also equipped with an API, which allows the user to extend
its functionalities through plugins [15]. The combined solution proposed by this
paper takes the form of such a plugin.

3.2 In Situ Processing

In order for Catalyst to interface with the simulation code, an adapter needs to be
built, which is responsible for exposing the native data structures (mesh and flow
properties) to the coprocessor component. Its interaction with the simulation
code happens through three function calls, illustrated in Fig. 4.

Once implemented, the adapter allows the generation of post-mortem files (by
means of the VTK 13 [16] library) and/or the live visualization of the simulation,
both through ParaView14 [2].
10 A “Java-based visualization tool for doing postmortem performance analysis”:

https://www.mcs.anl.gov/research/projects/perfvis/.
11 A “a software tool that supports the performance optimization of parallel programs

by measuring and analyzing their runtime behavior”: http://www.scalasca.org/.
12 A tool suite that “supports users to improve the energy-efficiency of their HPC

applications”: https://www.readex.eu/.
13 An open-source “software for manipulating and displaying scientific data”: https://

www.vtk.org/.
14 An open-source “multi-platform data analysis and visualization application”:

https://www.paraview.org/.

https://www.mcs.anl.gov/research/projects/perfvis/software/log_format/index.htm#SLOG-2
https://www.mcs.anl.gov/research/projects/perfvis/
http://www.scalasca.org/
https://www.readex.eu/
https://www.vtk.org/
https://www.vtk.org/
https://www.paraview.org/
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Fig. 4. Illustrative example of changes needed in a simulation code due to Catalyst.

4 Combining Both Tools

A Score-P plugin has been developed, which allows performance measurements
for an arbitrary number of manually selected code regions to be pipelined to
the simulation’s Catalyst adapter. It must be activated at run-time through
an environment variable (export SCOREP SUBSTRATE PLUGINS=Catalyst), but
works independently of Score-P’s profiling mode being actually on or off. Figure 5
illustrates the modifications needed in the source.

Apart from the three basic calls (initialize, “run” and finalize; like with the
Catalyst adapter), a call must be placed immediately before each function to be
pipelined; e.g.:

#ifdef CATALYST_SCOREP
! add this region to the list of plugin variables
CALL cat_sco_pipeline_me()

#endif

CALL desired_function(argument_1, argument_2...)

The above layout ensures that the desired function will be captured when
executed at that specific moment and not in others (if the same routine is called
multiple times – with different inputs – throughout the code, as it is usual for
CFD simulations). The selected functions may or not be nested.

Finally, the user needs to add a small piece of code into the Catalyst adapter’s
source, in order for the plugin-generated variables to be pipelined (together with
the traditional simulation variables), as shown in Fig. 6. It contains two vectors
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Fig. 5. Illustrative example of further changes needed in the code due to the plugin.

because for each selected region inside the simulation’s code, the plugin will
generate two variables (which correspond to the two basic measurements made
by Score-P; see above).

5 Early Evaluation

5.1 Settings

Hydra is Rolls-Royce’s in-house CFD code [12]. Figure 9 shows the test case
selected for this paper: it represents a generic Q3D idealized model for a turbine
stage. Preliminary analyses with Score-P → Cube revealed two code functions
to be especially time-consuming: iflux edge and vflux edge (both mesh-related);
they were selected for pipelining.

All simulations were done using an entire node in Dresden University’s HPC
cluster (Taurus), with 12 ranks (i.e. pure MPI, no OpenMP), one per core,
each with the entire core memory (3875 MB) available. One full engine’s shaft
rotation was simulated, comprised of 100 time-steps (i.e. one per 3,6°), each
internally converged through 40 iteration steps. Catalyst was generating post-
mortem output files every fifth time-step (i.e. every 18°), what led to 20 “stage
pictures” by the end of the simulation. Finally, version 4.0 of Score-P was used
in association with release 2018a of Intel® compilers.

5.2 Results

Hydra supports multiple mesh partition algorithms, selectable at run-time. We
compared them with our newly proposed approach. Figure 7 shows the time spent

https://www.mpls.ox.ac.uk/research-section/the-hydra-code-rolls-royces-standard-aerodynamic-design-tool
https://tu-dresden.de/zih/hochleistungsrechnen/hpc
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Fig. 6. Addition needed in the Catalyst adapter’s code due to the plugin.

inside the two chosen functions in two different grid partitions: the upper images
refer to geometric mesh partitioning and the lower ones were produced using
ParMETIS;15 the left-hand side pictures refer to function iflux edge, whereas
the right-hand side to vflux edge. Here only one time-step is represented, but –
as opposed to the traditional way of visualizing profiling results (which aggregate
multiple time-steps into one single measurement) – in ParaView it is possible
to see each time-step individually and even play them (as frames of a video).
Finally, the minimum and maximum thresholds in each of the four pictures’
scales are adjusted to comprise all time-steps.

The analysis of the results reveals that, when compared against the geometric
mesh partition, using ParMETIS brings slight benefits to the selected functions’
performance: the overall maximum execution time (per time-step) drops in both
of them, the overall minimum in vflux edge; and the max/min ratio of the exe-
cution time (per time-step) for both of them is also decreased.

Playing the saved time-steps in ParaView reveals a trend in all four lay-
outs: the slowest/fastest rank to execute each function is always the same. This
means there are still load imbalances when using ParMETIS; otherwise, the
slowest/fastest rank should randomly change each time-step (due to stochastic
phenomena at hardware-level during run-time). See the respective video.

Figure 8 compares the results when profiling is activated (below) or not
(above). They let clear that doing simultaneous code profiling significantly slows
each region’s execution time, but the max/min ratio remains roughly the same:

15 An open source “MPI-based parallel library that implements a variety of algo-
rithms for partitioning unstructured graphs, meshes, and for computing fill-reducing
orderings of sparse matrices”: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
overview.

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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Fig. 7. Comparison between two code functions in two mesh partitions.

– from 0.57/0.46 ≈ 1.24 to 0.75/0.60 = 1.25 in iflux edge;
– from 0.85/0.69 ≈ 1.23 to 0.97/0.78 ≈ 1.24 in vflux edge.

This means the overhead associated with each feature (Score-P’s profiling
and/or the plugin) is linear, hence the results are valid from a comparative
point of view. Indeed, playing the respective video reveals the same trend (slow-
est/fastest rank) as in the previous comparison.

Finally, the generated performance variables are accessible also live (interac-
tively) in ParaView. In Fig. 9, notice the “catalyst” icon on the Pipeline Browser,
as well as the presence of the selected code regions’ measurements among the
Data Arrays.

5.3 Overhead

Table 1 analyses the impact of the proposed plugin on the code’s performance.
ParMETIS was used for mesh partitioning.

Memory. The “memory” row in Table 1 refers to the peak memory consumption
per rank, reached somewhen during the simulation. From the numbers it is clear
that the memory overhead introduced by Score-P is negligible (less than 10%);
and that the memory overhead introduced by the plugin is also negligible. It
may even require less memory than doing the traditional profiling (depending
upon the number of code regions being pipelined) and, in our case, was below
the statistical margin of oscillation (given profiling + plugin took less memory
than profiling only). Indeed, in order to pipeline the two code functions shown
above, it was not necessary to increase the default amount of memory (16 MB)
that Score-P reserves for itself.
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Fig. 8. Comparison between two code functions when profiling is activated (below) or
not (above).

Table 1. Analysis of time and memory overhead of the plugin.

Profiling + plugin Profiling only Plugin only Without Score-P

Memory (kB) 290432 (6%) 294120 (7%) 284440 (4%) 273956 (-)

Run-time lightweight 4m18 s (8%) 4m10 s (5%) 4m06 s (3%) 3m58 s (-)

Run-time heavyweight 8m30 s (114%) 7m05 s (79%) 6m48 s (71%) 3m58 s (-)

Time. The run-time overhead is more critical and is shown in Table 1 with two
cases. The light-weight instrumentation case shows the overhead of the presented
approach with a sensible set of instrumented subroutines as it may have been
achieved with carefully selecting the most interesting subroutines for the per-
formance analysis process. This is the suggested way according to the Score-P
documentation. In that case, the plugin produces a run-time overhead of 3%.
This is less than Score-P in profiling mode with 5%. If both are used together, the
overhead adds up. This is a sensible overhead and suitable for practical perfor-
mance analysis. The second case with heavy-weight instrumentation reflects the
worst-case scenario where some short subroutines are called very frequently (sev-
eral billion times in this example). In that case, the overhead can dominate the
entire run-time and the performance analysis insights are not reflecting the pris-
tine parallel performance behavior. However, this scenario in Table 1 shows that
our plugin behaves similar to Score-P in profiling mode; actually even slightly
better with 71% overhead compared to 79%.
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Fig. 9. Geometry used in the simulations.

6 Conclusions and Future Work

Visualization techniques are usually not the specialization field of researches
working with code performance: it is more reasonable to take advantage of the
currently available graphic programs (like ParaView) than attempting – from
scratch – to equip the existing profiling tools with their own GUIs. In this
threshold, the developed plugin adds to the currently available spectrum of per-
formance optimization resources the capacity to:

– match performance-related measurements against the simulation’s mesh,
what makes the impact of grid partition algorithms on code performance
easier to investigate;

– analyze performance-related measurements on a time-step basis, what makes
the load imbalances (and their eventual relationship to mesh size/flow
physics) easier to diagnose.

We plan to extend this work in multiple directions:

More Extensive Evaluation Cases. To run the plugin in bigger test cases, as
the difficulty in matching each parallel region’s id number with its respective grid
part (hence the benefit of matching performance data back to the simulation’s
mesh) increases with scaling. Concomitantly, to run the plugin in test cases
which comprise regions with distinct flow physics, when the computational load
becomes less dependent on the number of points/cells per domain and more
dependent on the flow features themselves (given their non-uniform occurrence):
chemical reactions in the combustion chamber, shock waves in the inlet/outlet
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(at the supersonic flow regime), air dissociation in the free-stream/inlet (at the
hypersonic flow regime) etc.

Improve and Further Integrate Tool’s Runtime Components. To
automatize the selection of code regions to be pipelined, what currently needs
to be manually done by the user at compile time (as shown in Sect. 4).

Develop New Visualization Schemes for Performance Data. To take
advantage of the multiple filters available in ParaView for the benefit of the per-
formance optimization branch, e.g. by recreating in it the statistical analysis –
display of average and standard deviation between the threads/ranks’ measure-
ments – already available in other tools.
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Workshop on Large Scale Distributed Virtual
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Workshop Description

The 7th International Workshop on Large Scale Distributed Virtual Environments
(LSDVE 2019) was held in Gottingen, Germany, in August 2019. For the seventh time,
this workshop was organized in conjunction with the Euro-Par annual series of inter-
national conferences.

The main focus of the workshop has always been on large scale networked
applications: distributed social networks, cryptocurrencies, blockchain technology,
collaborative work, and so on. The workshop welcomes contributions both in the area
of applications, and in that of the infrastructures, like peer-to-peer, fog, IoT, and so on.
This year, the workshop was a venue for researchers to present and discuss important
aspects of large scale networked collaborative applications and of international projects
related to these topics. In particular, several contributions were presented in the area of
blockchain technology which has recently been applied to different areas, like IoT,
e-health, financial services, etc. In this area, important challenges are, for instance,
exploitation of the classical blockchain technology to support collaborative applica-
tions, discussion on alternative distributed consensus algorithms, as well as privacy and
security issues.

This year, the workshop has provided two sessions. In the first session, the paper
“Bitcoin price variation: an analysis of the correlations” presents a methodological
framework for the analysis of the bitcoin transaction graph which shows interesting
dynamics of the bitcoin price in short time periods. The last two papers “A novel Data-
Centric Programming Model for Large-Scale Parallel Systems” and “Auto-Scaling for
a Streaming Architecture with Fuzzy Deep Reinforcement Learning” present some
preliminary results obtained in the ASPIDE European Project. The first one shows the
main features and the programming constructs of a new programming model designed
for the implementation of data-centric large-scale parallel applications on Exascale
computing platforms. The second one presents a streaming architecture for processing
and storing data in real-time or nearly real-time for Big Data analytics and IoT.

The second section includes papers presenting contributions from the ARTICONF
H2020 project. The paper “ARTICONF: towards a Smart Social Media Ecosystem in a
Blockchain Federated Environment” summarizes the initial architecture of the
ARTICONF ecosystem and the industrial pilot use cases for validating it. The second
paper “Co-located and Orchestrated Network Fabric (CONF): An Automated Cloud
Virtual Infrastructure for Social Network Applications” introduces an automated cloud
virtual infrastructure solution for social network applications, while the third paper
“A Semantic Model for Self-Adaptive and Autonomous Relevant Technology for
Social Media Applications” describes an adaptive microservice-based design capable
of finding relevant communities by extracting semantic information and applying role-
stage model while preserving anonymity.
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Abstract. The ARTICONF project funded by the European Horizon
2020 program addresses issues of trust, time-criticality and democratisa-
tion for a new generation of federated infrastructure, to fulfil the privacy,
robustness, and autonomy related promises critical in proprietary social
media platforms. It aims to: (1) simplify the creation of open and agile
social media ecosystem with trusted participation using a two stage per-
missioned blockchain; (2) automatically detect interest groups and com-
munities using graph anonymization techniques for decentralised and
tokenized decision-making and reasoning; (3) elastically autoscale time-
critical social media applications through an adaptive orchestrated Cloud
edge-based infrastructure meeting application runtime requirements; and
(4) enhance monetary inclusion in collaborative models through cogni-
tion and knowledge supply chains. We summarize the initial envisaged
architecture of the ARTICONF ecosystem, the industrial pilot use cases
for validating it, and the planned innovations compared to related other
European research projects.

Keywords: Decentralized social media · Privacy · Trust · Blockchain ·
Semantic network · Auto-scaling · Cloud and edge computing

1 Introduction

Social media platforms are key technologies for next generation connectivity
with the potential to shape and mobilise patterns of communication, practices of
exchange and business, creation, learning and knowledge acquisition. Typically,
social media platforms are centralised with a single proprietary organisation
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controlling the network. This poses critical issues of trust and governance over
created and propagated content. This is particularly problematic when data
breaches, at the hands of centralised intermediaries, are a regular phenomenon.
In order to facilitate global reach, improved trust, and decentralised control
and ownership, innovative solutions at the user level (i.e. consumers, prosumers,
businesses) and the underlying social media environment level are required.

The ARTICONF project funded by the Horizon 2020 programme of the Euro-
pean Union researches and develops a novel set of trustworthy, resilient, and
globally sustainable decentralised social media services. ARTICONF addresses
issues of trust, time-criticality and democratisation for a new generation of fed-
erated infrastructure, to fulfil the privacy, robustness, and autonomy related
promises that proprietary social media platforms have failed to deliver.

Objective 1: Transparent and Decentralised Infrastructure Creation and Control.
The ultimate aim is to simplify transparency in the creation, integration and fed-
eration of agile decentralised social media platforms. We achieve this by creating
a novel permissioned blockchain with anonymized identities with two benefits.
First, it improves users control with a secure, permanent and unbreakable link
to their data and controls content ownership shared further down the network
through an adaptive state transition modelling. Second, it allows users content
be secured from any central authority, third parties or unauthorised individuals.

Objective 2: Improved and Trusted Participation. ARTICONF will deliver
technologies to improve trust and eliminate malicious actors in participatory
exchanges throughout the collaboration lifecycle. It will research heuristics cou-
pled with blockchain to ensure verifiable and traceable content ownership, while
preserving anonymity. It will provide abstractions to characterise diverse sets
of anonymised participants and to maintain their traceability and ownership
activity down the network. Through these heuristics, ARTICONF will not only
be able to identify bad actors, but will also improve collaboration and trust in
the environment without violating users privacy. Moreover, it will simplify and
optimise maintenance costs and identify users with fake profiles to prevent the
spread of malicious content.

Objective 3: Democratic and Tokenized Decision-Making. To improve demo-
cratic participatory exchanges and collaborative decision making in social media
through its collective human-agent decentralised reasoning approach, ARTI-
CONF will research heuristics to enable crowd-cooperative applications and
engage with the correct audience in an anonymised ecosystem. It will also employ
role-stage programming techniques and semantic abstractions to conceptualise
and map the diverse geographically distributed characteristic entities. This will
bring three key benefits. First, it will improve the quality of content using a
collective problem solving approach with the correct subset of users. Second, it
will optimise the costs of finding interest groups and communities through smart
matching with precise targeting without violating users privacy and anonymity.
Finally, it will provide incentivisation to the users participating in decision-
making.
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Objective 4: Elastic Resource Provisioning. To improve efficiency for customising,
provisioning and controlling distributed peer-to-peer and Cloud virtual infras-
tructures required by time-critical social media applications, ARTICONF aims
to deliver technologies providing a self-adaptive and self-monitored infrastructure
over orchestrated networked services bringing two benefits. First, it will optimise
QoS performance metrics (e.g. distribution time, latency) with proximity-based
geo-profiling through seamless provisioning of a customised infrastructure across
multiple geographical locations. Second, it will ensure fast recovery in the pres-
ence of faults or performance drops through rapid deployment and/or migration
of application resources close to problem areas.

Objective 5: Cognitive Analytics for Improved Collaborative Economy. ARTI-
CONF develops tools to improve efficiency and inject intelligent insights into
operational and mission-critical social media businesses, achieved through guided
analytics with social and predictive models for consumers, prosumers and busi-
ness markets. The tools will enable contextualised socially aware and spatial-
temporal data aggregation, knowledge extraction, cognitive learning about users
behaviour, and risk quantification for business markets. This is seamlessly cou-
pled with distributed blockchain-based services for early alert, real-time tracking
and updated data triggers for reach and engagement analysis of events. This will
allow users to analyse, control and track their return-on-investment to enhance
monetary inclusion in collaborative social media.

2 Architectural Design

Given these requirements, ARTICONF researches and validates a ubiquitous
social media ecosystem and platform around four important services, displayed
in Fig. 1. Trust and Integration Controller (TIC), Co-located and Orchestrated
Network Fabric (CONF), Semantic Model with self-adaptive and Autonomous
Relevant Technology (SMART), and Tools for Analytics and Cognition (TAC).

2.1 Trust and Integration Controller (TIC)

TIC provides support for creating a decentralised social media interface around
three modules. First, a federated consortium blockchain which provides a set
of third party authentication providers for verification of each new user with
a unique identity joining the network. Second, a relationship system, which is
a Turing-complete programmable unit, features the transaction states between
actors and allows users define conditions on data-sharing through smart con-
tracts. Third, personal certificate authority which is a client software and man-
ages user groups, securely shares the keys with their members, keeps records of
shared keys, and encrypts shared data before broadcasting and storing it on the
blockchain and the Cloud. By design, TIC provides agreement in nearly real-time
between actors by applying byzantine fault tolerant consensus mechanism.



420 R. Prodan et al.

Port monetized social 
    media application 

Join monetized social 
    media application

Personal certificate 
              authority

User native 
    environment

TIC

Blockchain consortium

Relationship system Distributed storage

User context
         model

SMART

Application context
                model

Smart matching

Anonymized community detection

Anonymized 
trace abstraction

CONF

   Adaptive infrastructure 
planning and customization

Migration and 
   deployment

Recovery

Monitoring

Democratic decision
making and reasoning

TAC

Aggregation

Geospatial Temporal

Cognitive reasoningGuided 
 analytics

Pareto-trust 
        SLA

ARTICONF EcosystemTokens

Private Cloud Public Cloud

ARTICONF orchestration of federated Cloud-edge infrastructure

Fig. 1. ARTICONF architecture.

Permissioned consortium blockchain is the fundamental service of TIC for
developing consistency, accountability and traceability of shared data. A set
of third party authentication providers needs to be integrated for verification
of each new user who joins the network for a given use case, providing them
with a unique identity. Additionally, TIC designs and evaluates mechanisms
for byzantine fault tolerant consensus algorithms able to provide agreement in
nearly real-time between the different organisations, part of the permissioned
blockchain network. To maintain the same federated truth for the users and
improve upon the trusted collaboration, consortia of distinct organisations will
equally own and maintain the blockchain seamlessly coupled with trust-based
heuristics (e.g. game theoretic), and validate the transaction history for all users.

Cloud-based Big Data storage allows distributed storage of shared large data
items, stored in a distributed manner with efficient indexing and traversals. This
is important, as all participating nodes in the network must maintain a copy
of the blockchain ensuring availability of the same version of truth. To reduce
replication and network throughput, the blockchain only contains transactions
logs referring to the fingerprints of the data items stored in the Cloud.

Relationship system is a Turing-complete programmable unit of the blockchain
that features loops, internal states, and makes transactions with other actors. The
computation executes on every participating node in the network to verify the
validity of the shared transactions.This allows users define conditions ondata shar-
ing and use rights through smart contracts, and enable them complete control over
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their content. Although the blockchain removes the need for centralised authorities
by entrusting the network and its peers with validation and maintenance of social
interactions as transactions, it still requires mechanisms for validating user-defined
conditions and successful transactions.

Certificate authority is a client software that manages user groups, securely
shares the keys with their members, keeps records of shared keys, and encrypts
shared data before broadcasting and storing it on the blockchain and the Cloud.
It allows creation of a separate communication channel for exchange of encrypted
keys between data owners and individuals with whom they share their content.
It also provides identity management for users participating in the network,
and ensures anonymised recording of all transactions in the blockchain, with the
ability to couple them back with the original identities within local environment.

2.2 Co-located and Orchestrated Network Fabric (CONF)

CONF provides adaptive infrastructure provisioning for social media applica-
tions over an orchestrated network. It seamlessly integrates with the Cloud
edge infrastructure, able to intelligently provision services based on abstract
application service requirements, operational conditions at infrastructure level,
and time-critical event triggering. The distribution of the networked infrastruc-
ture provisioned by CONF receives information from the intelligent community
analytics of SMART and TAC services, and improves the infrastructure plan-
ning and customization of time-critical applications through predictive deploy-
ment, migration and failure-recovery. CONF extends the work developed in the
SWITCH project [19] with support for blockchain [20] and social network busi-
ness services.

Adaptive Infrastructure Planning Driven by Application-Level Requirements and
Time-Critical Events. CONF plans an infrastructure based on social media appli-
cation requirements and adapts it in response to changing conditions, ensuring
a continued and sustained satisfaction of QoS requirements.

Seamless Provisioning of Customised Infrastructure Across Multiple Sites.
CONF provisions services and resources based on performance and reliability,
taking into account locality of data sources to minimise transfers and delays,
while ensuring a smooth operation of the distributed application.

Rapid Deployment, Migration and Recovery of Application Services. Given a dis-
tributed multi-site social media infrastructure, CONF ensures efficient deploy-
ment of application services on resources close to the active infrastructure, for
fast recovery in the presence of faults or performance drops.

Self-Monitoring and Self-Adaptation Based on Internal and External Stimuli.
The infrastructure provisioned by CONF monitors its own state, taking timely
adaptation responses to failures, performance losses or other trigger conditions.
CONF also provides interfaces required by application managers for manual
adaptation, and learns how to best respond to various events based on historical
data and machine learning.
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2.3 Semantic Model with Self-Adaptive Autonomous Relevant
Technology (SMART)

SMART service provide the semantic link network (SLN) abstraction model
for contextualizing diverse social media actors and applications by exploiting
anonymized activity traces recorded by TIC. Moreover, SMART utilizes seman-
tic links in SLN through graph anonymisation [9] heuristics capable of detecting
relevant interest group and communities without violating users privacy and
anonymity. The autonomously evolving SLN model provisions SMART adap-
tively respond to the changing requirements, and provide inputs to CONF.
SMART also researches decentralised decision making and reputation mecha-
nisms together with TIC for solving disputes in collaborative models. To pre-
serve the trustful environment, SMART formalizes Pareto-trust metric as a part
of SLA which quantifies the quality of implicit and explicit trust-based collab-
oration considering various conflicting parameters, such as content accuracy,
timeliness, low latency ownership verification, and high anonymity preservation.

Semantic Framework for Federated Social Media Abstraction. SMART develops
a conceptual model for federated social media involving large-scale entities with
three abstraction levels, exploiting decentralised reasoning and relevant commu-
nities with interest groups: concrete perception of users and of associated smart
objects in a global domain, structure of the perceived relationships, and commu-
nication among entities. SMART provides abstractions in representing diverse
sets of participants over an anonymised social media through descriptions of
classes of self-sovereign networked entities.

Autonomous and Adaptive User-Centric Model. SMART utilises and researches
role-stage programming techniques integrating various facets of social media
for the design and development of a flexible, adaptive, user-centric ecosystem,
involving three essential building blocks called stages, roles and agents. For this,
it develops a human-agent collective-based model describing, reasoning and con-
ceptualising consumer, prosumer and business processes at model description
and at runtime. Together with TIC, SMART researches novel and efficient algo-
rithms to preserve the autonomous interaction between diverse agents and enti-
ties with varying roles, so that one entity can rely on the others’ actions.

Anonymised Trace Abstraction. SMART develops a framework to exploit the
experiential anonymised activities embedded in blockchain. Henceforth, it pro-
vides effective and quick comparison and retrieve activity traces represented at
different abstraction levels, interfaced to the TAC analytic operational support.

Smart Matching with Community Detection. SMART researches graph anony-
mization techniques for social media businesses to engage with the correct set of
audience and relevant communities based on semantic abstraction and application
requirements, interfaced to the CONF immersive networking support service. It
also provides techniques to shift through a large number of entities, focussing on
the appropriate ones through a selection of relevant, reachable and credible chan-
nels with optimised business costs.
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Decentralised Decision Making and Reputation Mechanism. Through its decen-
tralised reasoning, SMART provides opportunities for each entity irrespective
of its role to be a part of decision-making process for enhancing the efficiency
of collaborative business and prosumer models. Henceforth, it provisions sub-
jectively viewed quality and immersive content creation by eradicating disputes
and dissatisfaction between entities through decentralised participation. More-
over, it provides incentivisation opportunities for all social media participants
for participating in such a decentralised process through its unique ripples-based
reputation mechanisms, defined through evolutionary semantics abstraction and
changing entity roles at varying stages during the collaborative lifecycle.

2.4 Tools for Analytics and Cognition (TAC)

TAC provides guided analytics by coupling with inputs from TIC to social
media consumer, prosumers and businesses, aggregating contextualised data over
spatial-temporal boundaries based on socio-cultural abstraction and extracting
knowledge. Its goal is to provide automated cognitive learning to predict user
engagement with inputs from TIC, CONF and SMART, and evaluate the risk
quantification for all participants to enable, track and control the return-of-
investment for each participant.

Geospatial, Social-Contextual and Temporal Data Aggregation. Aggregation and
visualisation of geographical and socially diverse data are an important part of
digital platforms data mining, adaptive infrastructure modelling, and manage-
ment. TAC develops and integrates aggregation and data-synthesis tools using
state-of-the-art technologies exploiting qualitative mapping and specification of
geospatial and temporal data built upon a cross-contextualised socially aware
model both internal and external to ARTICONF ecosystem.

Augmented Cognition and Reasoning Model. TAC develops robust tools for mon-
itoring and reasoning social and cognitive states and integrate them with the
ARTICONF ecosystem providing social media consumers with enhanced cogni-
tive abilities, especially under complex collaborative participation scenarios using
active and automated learning methods. Through this intelligent process, TAC
reduces uncertainty, double-checks validity of information and their sources in a
hostile environment, and models cross-check analytical inferences in a complex
and rapidly changing social media network, requiring increased collaboration
and communication. This improves collaboration amongst intelligently defined
communities elaborating over the shared knowledge acquisition and learning,
reduces biases, and gains additional benefits by drawing on the unique set of
expertise and knowledge of each participant in a non-intuitive scenario.

Guided Analytics for Collaborative Economy. TAC develops an interactive inter-
face to assist the social media consumers, prosumers and businesses inject intelli-
gent insights in data aggregation and cognition. This guided analytics approach
goes beyond a simple review of trends in sales figures by identifying techniques
for increasing revenue and predicting future outcomes for an improved collabora-
tive economy. Moreover, it provides real-time tracking of mentions, engagements,
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true reach and ROI. TAC is a fundamental part of ARTICONF enhancing pro-
ductivity by tracking updated data triggers. TAC also allows users analyse and
control their ROI through real-time cost per engagement analysis.

3 Pilot Use Cases

ARTICONF gathered four complementary social media use cases to pilot and
validate its technology.

Crowd journalism with news verification is an application providing oppor-
tunities to independent journalists and news broadcasting industry to create
content outside mainstream media by gathering crowdsourced news with public
participation. Two of the main challenges faced by application providers are to
validate the crowdsourced news with a requirement to find precise and trustwor-
thy participation avoiding fake news, and to provision time-critical infrastructure
resources closer to news location.

Car sharing is a form of person-to-person lending or collaborative consump-
tion, part of the sharing economy, whereby car owners rent their vehicles to other
people for short periods of time. Two challenges faced by this application are low
public awareness on shared mobility, and geographical constraints with precise
route, types offering precise planning, reliability and optimised business costs.

Co-creation of financial value with video is a collaborative platform for pub-
lishing and subscribing to online videos, allowing non-professional users to record
videos, share them on platforms and earn rewards when their video gets watched.
Two challenges faced by this application are the contextualised and thematic
search of audio-visual metadata in a large video library, and the security and
privacy of a scalable business model that rewards users for their interactions,
including but not limited to content generation.

Smart energy uses a peer-to-peer monetised utility platform to reduce the
energy bill of the prosumers by stimulating energy sharing and demand response,
such that with the increasing installation of distributed generation at the demand
side, more consumers become prosumers and can both generate and consume
energy. Such human-agent models face two challenges: lack of intelligent tech-
niques to identify the behavioural convergence of the prosumer decisions over
a specific smart appliance, and lack of efficient data management plan to keep
track of the amount of energy produced by each user for efficient rewards allo-
cation.

4 Social Media Application Development and Integration

The TIC, CONF, SMART and TAC services are integrated part of a single
coherent ARTICONF social media development platform, depicted in detail in
Fig. 1. Each service encapsulates part of the overall functionality of the plat-
form, ensuring a high-level of modularity. We aim to define a high-level abstract
and generic application-programming interface between each service to ensure
portability and sustainability, so that new implementations works with the rest
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as the technology evolves. The application development occurs in three phases,
each phase consisting of seven steps.

Collaborative application porting has seven steps:

1. Social media application providers begin by porting their application using
TIC, configuring their suitability and integration to the underlying permis-
sioned blockchain;

2. Providers define application and event scenarios, scale, goals and trust
requirements for performance and crowd-cooperative participation.

3. SMART service exploits specific requirements to contextualize application’s
trust and time-critical constraints and map them onto self-organized semantic
link network (SLN) data model allowing the ecosystem to link applications
with similar characteristics;

4. SMART interacts with turing-complete programmable unit of TIC to obtain
the logged transactional activities of anonymised users and map them onto
SLN model of the ecosystem;

5. SMART triggers the CONF’s network orchestrator with the virtual infras-
tructure hosting the application by providing inputs with regards to precise
targeting of users and communities with customised geo-profiling;

6. SMART configures TAC by providing inputs to aggregation, cognition and
learning modules that analyse the behaviour and engagement of the applica-
tion and social media actors, diagnose performance risks, and provide guided
analytics to consumer prosumers and application providers to improve col-
laboration and return of investment (ROI);

7. SMART provide a decision making and reasoning model integrated to TIC’s
consensus mechanism based on the automatically evolving SLN based contex-
tualization model, provided constraints, exploiting diverse cognitive states of
all social objects and their characteristics generated within the SMART envi-
ronment, throughout the ARTICONF ecosystem lifecycle.

Collaborative elastic provisioning has three steps:

1. CONF receives application specification inputs from the SMART distributed
knowledge base and customises a microservices-based virtual infrastructure
based on the applications requirements;

2. CONF interacts with SMART and TIC to obtain information about the avail-
able and trusted Cloud edge resources obtained from subscribed infrastruc-
ture providers or users in the permissioned consortium, and creates a cus-
tomised infrastructure that best meets the application needs;

3. CONF provisions the planned virtual infrastructure on selected edge providers
closest to the event location, deploys all applications in cooperation with
SMART, and finally schedules the execution of the application.
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Table 1. ARTICONF innovations.

Obj. EU project State-of-the-art Innovation

1 BLOOMEN [1] Monetized content creation

and sharing with distributed

database

Novel time-to-transform metric

Decentralised and anonymised ecosystem

V4Design [16] Personalized data retrieval Two-stage configurable permissioned

consortium blockchain with relationship

system and PCA

2 InVID [8] Verified and rights-cleared

video content

Pareto-trust metric (tradeoffs - accuracy,

timeliness, low latency ownership

verification high anonymity

preservation)

SHARE4RARE [14] Unverified data co-creation

FuturePulse [6] Social media discussions

3 REVEAL [12] Community detection Decentralized decision making and

regulation mechanisms for improved

collaboration

X5gon [18] Homogeneous network,

learning and knowledge

aquisition

SAUCE [13] Contextualization, semantic

labelling

CrowdRec [4] Crowd engagement

SAM Content syndication Smart matching and community

detection without de-anonymization

FINE [5] Tools for professional media

producers

4 IcoSOLE [7] Content extraction from

heterogeneous sources

Co-located and orchestrated networked

infrastructure, planning, configuration

and adaptation

SWITCH [15] Time-critical applications

NUBOMEDIA [10] Time-critical Cloud

applications

Grassroot Wavelength [17] Scalability Resilient and elastic provisioning with

focus on time-critical social media

applications

CPN [3] Inelastic platform

5 ReTV Data collection and retrieval;

semantic knowledge

Novel ROC metric (operational,

productivity, strategic)

PTwist [11] Plastic reuse application

centric; circular economy

Improved monetary inclusion in a

collaborative economy through smart

aggregation, cognition and guided

analytics

COMPACT [2] Improving skills guidelines in

participatory model

Application execution has two steps:

1. Through its byzantine consensus approach to maintain truth, TIC monitors
the trusted behaviour of actors transaction over execution of the runtime
system. It provides dynamic information to SMART and TAC, and activates
the analytics and learning components in TAC for cognition and knowledge
extraction via its deployed services and diagnose the runtime status when
events related to cooperation, performance and security occur;

2. TIC in cooperation with SMART decides when the system is in danger of
trust violations, drops in performance, or failures of the application or host
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infrastructure. It then invokes the infrastructure control interface provided
by CONF to adapt the infrastructure accordingly. TIC records the control
and adaptation solutions of CONF and SMART, further used by TAC for
analysis and guided analytics.

5 Innovation

ARTICONF innovative solutions to problems not yet covered in sufficient depth
by EU-funded projects, as summarised in Table 1.

6 Conclusions

We presented the ARTICONF project and its envisioned architecture, research-
ing and developing a novel social media ecosystem and development platform
focusing on achieving a major breakthrough in transparent, decentralised infras-
tructure creation for social media networks; with anonymous trusted participa-
tion and democratic decision-making with underlying permissioned blockchain,
peer-to-peer, and elastic Cloud edge-based technologies. The project plans to
validate its results on a carefully selected set of industrial applications targeting
crowd journalism with news verifications, car sharing, co-creation of financial
value with videos, and smart energy sharing. The project started in January
2019 and expects to achieve its first prototype results by 2020.
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Abstract. The Bitcoin system is attracting a huge community both
from specialists and common people, who see in it a great opportunity
of investment. Thanks to the fact that the Bitcoin blockchain in publicly
available, and considering that it shows properties of a real economy,
Bitcoin is becoming more and more often subject of a number of studies.
One of the hardest task in this field, yet interesting also from a non spe-
cialist point of view, is the bitcoin price correlation and prediction. In this
paper we present a methodological framework for the bitcoin exchange
graph analysis which helps in focusing only on restricted time spans that
show interesting dynamics of the bitcoin price. We also present our study
on three separate time spans and show that empirical correlations can
be found between the bitcoin price and some bitcoin exchange graph
measures. Lastly, with our framework we are also able to detect some
unexpected behaviour from particular users which tend to pile up big
amounts of bitcoin over the selected time spans.

Keywords: Bitcoin · Blockchain · Graph analysis · Cryptocurrency

1 Introduction

During the last decades we witnessed to the birth of numerous cryptocurrencies,
which had a huge impact on the economic systems. Contrary to the well known
currencies, a cryptocurrency is not issued by a bank or government, but instead
rely on a set of cryptographic tools and distributed consensus protocols used by
the users. Therefore, there is no more a central entity, usually a bank, which
checks that a payment is valid, but instead all the users of the system have to
cooperate such that only valid payments are accepted. Up to date, the most
famous cryptocurrency is Bitcoin [17], which is based on the blockchain technol-
ogy. For the sake of clarity, we use the term Bitcoin, with capital B, to refer to
the whole distributed system, and we use the term bitcoin, with lower case b, to
refer to the currency unit. Bitcoin came out in early January 2009 as the first
functioning cryptocurrency, and over time attracted a lot of interest, both from
specialists, coming mainly from computer science and economics fields, and also
common people. This widespread interest gathered a very big community, which
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resulted in the first example of worldwide cryptocurrency economy, thus mak-
ing it worth to be studied. Contrary to what one may think, the whole history
of transactions of Bitcoin is public, meaning that one can read all the transac-
tions issued without even being a Bitcoin user. This attracted a lot of interest
in studying the properties of the system from a usage point of view. In fact, we
find several studies in literature that try to characterise the system from a purely
economic point of view [4,6,10]. From computer scientists a lot of effort was put
in the study of the transaction graph for various purposes [9,12,13,18]. The most
studied topic on Bitcoin is the bitcoin price prediction, which was proven to be a
very difficult task. Despite the fact that this problem was tackled with the most
various techniques [1,7,8,14], the prediction accuracy is very limited.

In this paper we present a different kind of study, in which we try to find cor-
relations between the bitcoin price and some relevant measures of the transaction
graph. Our contribution consists of:

– A methodological framework for studying the transaction graph in terms of
users and the transactions among them;

– A study of the transaction graph using some efficient techniques in order
to determine possible correlation between the bitcoin price and the bitcoin
exchanges among users;

– The detection of particular users, which follow an irregular pattern of acqui-
sition of bitcoin.

With respect to similar studies [2,10,19], we make our framework self-contained,
meaning that it does not need information coming from outside the Bitcoin
blockchain, and focused on very specific time spans which show particular char-
acteristics. Restricting the study on specific time spans, rather than on the whole
blockchain, helps in having a focused view, which buries out previously unde-
tected correlations and users with unexpected behaviours.

The rest of this paper is organised as follows: Sect. 2 presents the state
of the art regarding the main studies on the Bitcoin transaction and bitcoin
price. Section 3 contains the proposed framework from the information stored
on the Bitcoin blockchain to the results, while Sect. 4 presents and discusses the
obtained results. Concludes the paper Sect. 5 pointing out some possible future
works.

2 State of the Art

Blockchain based systems, and Bitcoin in particular, attracted a lot of inter-
est from researchers, especially computer scientists and economists. The Bitcoin
blockchain has been studied for the sake of a number of different purposes, includ-
ing P2P network analysis and the de-anonymization [11,18], anomaly detection
[13], or quantitative analysis [9,12]. Yet, the most interesting aspects to be stud-
ied, from a multidisciplinar point of view, are the ones related to the bitcoin
price, that is the amount of dollars one has to pay to buy a bitcoin. In particular
bitcoin price prediction has attracted a lot of interest, with techniques coming
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machine learning [14], time series analysis [1] or theory of signals [7]. We also
find studies about bitcoin price volatility [8], and studies that try to determine
the factors that drives the bitcoin price, such as supply and demand [4], attrac-
tiveness [10], or a combination of them [6]. Some interesting studies also find
good correlations between bitcoin price and Google Trends or Wikipedia queries
[10], or attempts in speculative trading [2].

However studies in which author try to correlate the bitcoin price with mea-
sures from the transaction graph are lacking. In [19] authors study the whole
blockchain, up to block at height 317,000 (October 2014), with the aim of trying
to find correlations between the Bitcoin graph of transaction and the bitcoin
price. In particular, they studied the α value of the power-law distribution of
the transactions, the number of nodes and edges of the transaction graph, the
size of the blocks, and lastly the bitcoin gains distribution. The findings show a
positive correlation between bitcoin price and number of edges, and number of
nodes of the transaction graph, and a similar result for the block size. Instead
authors observe no correlation with the α values of the power laws, and a nega-
tive correlation with the bitcoin gains.

3 Bitcoin Rate Study: Methodology

The aim in this paper is to analyse the evolution over time of the bitcoin exchange
rate, possibly showing a correlation with other properties of the Bitcoin system.
As a major novelty introduced in this paper, we will only focus on some specific
time spans. The idea of focusing the study on short time spans comes from
the fact that analysing the whole blockchain may not show specific behaviours
happening during particular events. Restricting the study to very short time
spans will help us in having a more detailed view. Before venturing forward in
the description of the methodology used, we introduce some basic concepts to
help the reader understand the process.

3.1 Transaction Graph and User Graph

In order to analyse the Bitcoin price variation and the correlation with other
characteristics, we need to model the activity of Bitcoin. Within the Bitcoin
blockchain, payments are stored in transactions which can have multiple inputs
and multiple outputs. Therefore, the most natural modelling tool to model the
set of all transactions is an hypergraph. An hypergraph H = (X,E) is a general-
ization of a graph in which edges, or hyperedges, have as source and destination
sets of nodes. With this model, we can easily model transactions as hyper-edges:
the set of input addresses makes the source of the edge, and the set of output
addresses makes the destination of the edge. In this way we are able to build the
so called Transaction graph. It is important to point out that in the Transaction
graph the set X of nodes is made of the Bitcoin addresses of the users, not the
users themselves. In fact, users are also encouraged to create more addresses so
that their privacy is protected. Analysing the Transaction graph is not trivial
for the following reasons:
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– The Transaction graph is an hypergraph, and therefore the well known mea-
sures and algorithms must be adapted;

– The two ends of the edges are Bitcoin addresses, not Bitcoin users, so when
we perform the analysis we also must take into account this fact.

It is important for us not to consider the transactions of the Bitcoin system,
but actually how users of the Bitcoin system exchange bitcoins. We introduce a
different model, called the User graph G = (V,E) as a multigraph in which the
set of vertices V is used to model the users of Bitcoin and the set of edges E is
used to model the bitcoin exchanged by the users. In this model, each user v ∈ V
is associated with one or more addresses and each transaction is associated with
one or more edge e ∈ E if the User graph.

3.2 From the Transaction to the User Graph

Switching from the Transaction graph to the User graph is not an easy task. The
biggest challenges are strictly related to the process used to determine which
addresses belong to the same user. In literature there are several heuristics to
cluster addresses belonging to the same user based on change analysis [15,20], on
temporal information [16], or other features [5]. The most well known heuristic
is the common-input-ownership heuristic [17], formulated by Satoshi Nakamoto
himself. This heuristic states that all the inputs of a transaction are likely to
belong to the same user. This is because Bitcoin expects that each input of a
transaction is signed by the respective owner, and since a private key is needed to
sing inputs, it is unlikely that inputs of the same transaction belong to different
users. The common-input-ownership is just an heuristic, meaning that even if it
makes sense to consider the addresses appearing as input of a transaction belong-
ing to the same user, we have no certainty that this process exactly associates
users to their addresses. On the other hand, new techniques are rising, such as
CoinJoin, Mixcoin [3], and Blindcoin [21], based on mixing different payments
in the same Bitcoin transaction, which cause these heuristics to produce a lot
of false positives. However, for what concern this work, we stick to the applica-
tion of the plain common-input-ownership heuristic [17], as it shows good results
while remaining very simple and intuitive.

If we apply recursively the common-input-ownership heuristic to the Trans-
action graph we observe two effects:

– The resulting nodes of the hypergraph are the users of Bitcoin;
– The resulting hyper-edges have a single node as source of the edge.

At this point, it is enough to split the hyper-edges in simple edges to obtain a
multigraph where nodes model the users and edges model the bitcoin exchange
between the users, or, in other words, the User graph.

3.3 Study of the User Graph

In this paper we are interesting in the study of the User graph, with the particular
intent of finding correlation between the bitcoin exchange rate and measures of
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(a) Bitcoin exchange rate
between the 7th and 13th of
December 2017

(b) Bitcoin exchange rate
between the 16th and 23rd

of December 2017

(c) Bitcoin exchange rate
between the 5th and 7th of
September 2018

Fig. 1. Bitcoin exchange rate in the three considered time spans

the graph. For bitcoin exchange rate we mean the number of dollars needed to
buy one bitcoin from a reference exchanger. To carry on this study, we firstly
detected interesting time spans where the bitcoin exchange rate is extremely
volatile. At this point, we built the Transaction graph limited to that time span,
and then we created the User graph derived from it.

Before venturing forward in presenting the analyses performed and the intu-
ition behind them, we briefly present and motivate the three time spans chosen.
The three spans have two main characteristics:

– They show high fluctuation of the bitcoin exchange rate;
– They are shorter than 7 days.

The request of having an high fluctuation of the bitcoin exchange rate during
the time span comes from the fact that we expect to detect unusual behaviours
in these cases, rather than when the bitcoin exchange rate is stable. Having
spans shorter than 7 days help us to concentrate our efforts in time proximity
of such events, so that a causality relation between the fluctuation of the bitcon
exchange rate and possible unexpected behaviour can be established.

The first analysed time span starts on the 7th and ends on the 13th of Decem-
ber 2017. As we can see from Fig. 1a, the fluctuation of the bitcoin exchange rate
is quite high during all the week. The rate starts just below 13,000$ per bitcoin
on the 7th, then raises to 17,000$ in just one day. In the following three days
we observe the rate continuously rise and fall, often by over 1,000$ per bit-
coin, reaching 13,500$ per bitcoin on the 10th. In the last few days the bitcoin
exchange rate increases once again, reaching the time span maximum of almost
17,500$ per bitcoin on the last day.

The second time span considered starts on the 16th and ends on the 23rd

of December 2017, just a few days later than the first one. Figure 1a shows the
bitcoin exchange rate in this time span. At the beginning of the time span,
a bitcoin is exchanged for 18,000$, and the rate has a steep increase at the
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beginning of the 17th, reaching the all-time high of 19,783.06$ per bitcoin at the
end of the same day. Then we observe a gradual decrease of the bitcoin exchange
rate, with two big drops on the 20th, from 19,000$ to 16,000$ per bitcoin, and
on the 22nd, from 17,000$ to 12,000$ per bitcoin.

The last time span analysed starts on the 5th and ends on the 7rd of Septem-
ber 2018. This last time span is several months further in time, with respect
to the first two, and it is shorter, lasting only three days, but contains a very
steep drop, which was of relevant interest for our particular study. The bitcoin
exchange rate of this time span is shown in Fig. 1c. As we observe, the exchange
rate is much more stable in this time span, except for the two sharp drops.
The first one happens on the 5th, around midday, and consist of the drop from
7,400$ to 7,000$ per bitcoin, while the second one happens on the 6th, around 1
AM, and consist of the drop from 7,000$ to 6,400$ per bitcoin. After this steep
two-step drop, we observe that the bitcoin exchange rate remains stable around
6,400$ per bitcoin for the rest of the time span considered. We decided to keep
also this two days long tail to possibly observe users acquiring a big amount of
bitcoin after the drop of the day before.

4 Bitcoin Exchange Rate Correlation Studies

In this section we present the results of our study in which we try to find corre-
lation between the bitcoin exchange rate and some properties of the User graph.
It is important to point out that in this paper we will only focus on empirical
correlation found in the various plots we produced.

4.1 Number of Bitcoin Exchanged

Our first idea is to study the correlation between the bitcoin exchange rate and
the number of bitcoin exchanged over the same time span. The results we present
are aggregated every six hours. Figures 2a, b, and c show the bitcoin exchange
rate (black) and the number of bitcoin exchanged (grey) during the three time
spans considered. Due to different orders of magnitudes, the bitcoin exchange
rate is plotted using the left scale, while the number of bitcoin exchanged is
plotted using the right scale. In all three cases we see that the number of bitcoins
exchanged follows a periodic pattern of 24 h, which suggests us that this is highly
correlated with human life. With respect to the rate, instead, we observe that
there is some positive correlation, especially in the two December spans. In detail,
in the first December span (Fig. 2a), we see that when the bitcoin exchange
rate is high, also the number of exchanged bitcoin is high and vice versa. This
correlation is much more clear in the second half of the time span. Also in the
second December span (Fig. 2b) we can see this correlation: when the exchange
rate is high, the number of bitcoin exchanged ranges between 50,000 and 85,000,
while when the exchange rate is low, the number of bitcoin exchanged ranges
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(a) Correlation graph be-
tween the bitcoin exchange
rate and the number of bit-
coin exchanged from the 7th

to the 13th of December
2017

(b) Correlation graph be-
tween the bitcoin exchange
rate and the number of bit-
coin exchanged from the
16th to the 23rd of Decem-
ber 2017

(c) Correlation graph be-
tween the bitcoin exchange
rate and the number of bit-
coin exchanged from the 5th

to the 7th of September
2018

(a) Correlation graph be-
tween the bitcoin exchange
rate and the number of bit-
coin exchanged from the 7th

to the 13th of December
2017

(b) Correlation graph be-
tween the bitcoin exchange
rate and the number of bit-
coin exchanged from the
16th to the 23rd of Decem-
ber 2017

(c) Correlation graph be-
tween the bitcoin exchange
rate and the number of bit-
coin exchanged from the 5th

to the 7th of September
2018

Fig. 2. Correlation graph between the bitcoin exchange rate and the number of bitcoin
exchanged in the three considered time spans

between 20,000 and 50,000. In the last time span (Fig. 2c), due to its low length,
there seems to be not a clear correlation, however we can see that, one day after
the steep drop of the bitcoin exchange rate, also the number of bitcoin exchanged
seem to drop accordingly.

4.2 Number of Transactions and Number of Users

Having seen that there is a certain degree of correlation between the bitcoin
exchange rate and the number of bitcoin exchanged, we analyse the User graph
to check if there is a similar correlation found in Sect. 4.1, but this time with
the number of nodes and edges in the user graph. Nodes and edges in the User
graph correspond to the number of users involved in at least one transaction
(nodes) and to the number of transactions (edges). Figures 3a, b, and c show the
bitcoin exchange rate (black), and the number of nodes and edges in the User
graph (grey) during the three time spans considered. Due to different orders of
magnitudes, the bitcoin exchange rate is plotted using the left scale, while the
number of nodes and edges are plotted using the right scale. Also the number of
nodes and edges in the User graph seem to follow a 24 h recurring pattern, lust
like the bitcoin exchange rate, confirming that the Bitcoin ecosystem is highly
related to human activities. Concerning possible correlations, what we expected
was to find a good degree of correlation, also according to similar studies present
in literature. However, what we can see from the three plots is that there is no
clear correlation as in all cases the number of nodes and edges in the graph tend
to remain much more stable in time. In any case, we observe that during the
first two spans, when the bitcoin exchange rate is always higher than 13,000$
per bitcoin, the number of nodes and edges in the User graph fluctuates around
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(a) Correlation graph be-
tween the bitcoin exchange
rate and the number of
nodes and edges in the User
graph from the 7th to the
13th of December 2017

(b) Correlation graph be-
tween the bitcoin exchange
rate and the number of
nodes and edges in the User
graph from the 16th to the
23rd of December 2017

(c) Correlation graph be-
tween the bitcoin exchange
rate and the number of
nodes and edges in the User
graph from the 5th to the
7th of September 2018

Fig. 3. Correlation graph between the bitcoin exchange rate and the number of nodes
and edges in the User graph in the three considered time spans

(a) Indegree distribution of
the User graph from the
7th to the 13th of December
2017

(b) Indegree distribution of
the User graph from the
16th to the 23rd of Decem-
ber 2017

(c) Indegree distribution of
the User graph from the
5th to the 7th of September
2018

Fig. 4. Indegree distribution of the User graph in the three considered time spans

20,000, while in the last span, when the exchange rate is halved, the number of
nodes and edges in the User graph is also lower. Finally, we also notice that the
number of nodes is similar to the number of edges in the User graph, suggesting
us that the degree distribution may be a power law.

This expectation was fully met, as we can see from the distribution of in
degree, Fig. 4, and out degree, Fig. 5, for the three time spans in log-log plots. It
is also interesting to see that the distribution of both degrees of the September
time span, Fig. 4c for the indegree and Fig. 5c for the outdegree, present some
possible outliers which are worth to be investigated.
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(a) Outdegree distribution
of the User graph from the
7th to the 13th of December
2017

(b) Outdegree distribution
of the User graph from the
16th to the 23rd of Decem-
ber 2017

(c) Outdegree distribution
of the User graph from the
5th to the 7th of September
2018

Fig. 5. Outdegree distribution of the User graph in the three considered time spans

4.3 Bitcoin Gain Distribution

After having detected some possible anomalies in the out degree distribution
of the User graph, we tried to further concentrate our effort in discovering the
source of this effect. In particular, we study the bitcoin gain distribution, that is
the number of bitcoin gained by the users. It is important to point out that the
gain distribution has nothing to do with the exchange rate, as we are not mea-
suring how many dollars each user gained. Measuring the gain distribution sums
up to count, for each user separately, the number of bitcoin on the incoming
edges and subtracting the number of bitcoin on the outgoing edges, and then
plotting the distribution of the obtained values. The distribution of the bit-
coin gain, during the three time spans considered, are presented in Figs. 6a, b,
and c. Also in this case, the y axis has a logarithmic scale while the x axis has a

(a) Bitcoin gain distribu-
tion from the 7th to the 13th

of December 2017

(b) Bitcoin gain distribu-
tion from the 16th to the
23rd of December 2017

(c) Bitcoin gain distribu-
tion from the 5th to the 7th

of September 2018

Fig. 6. Bitcoin gain distribution in the three considered time spans
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linear scale. Moreover, for readability reasons, we skipped some values on the x
axis because they were empty, and we grouped the distribution values in bins of
1,000 bitcoin each. The three distributions follow a Gaussian law centered on 0
with not much variance, showing us that the vast majority of the users does not
gain any bitcoin. Considering how we built the User graph, almost all users that
acquire bitcoin usually spend them within one week or less. While in this case we
see no clear correlation between the bitcoin exchange rate and the bitcoin gain
distribution, as the three plots do not show any particular difference, we observe
that in all the cases we have an outlier. The outlier is located in all three cases
on the right side of the distribution, meaning that he gained bitcoin, rather than
giving them away. The address of the outlier is different in each case, meaning
that it is not the same user. Moreover, we observe that the amount of bitcoin
gained is sensibly higher compared to all the other users: more than 250,000
bitcoin in the two December spans, and 65,000 in the September span.

4.4 Gain Outliers

As final step of this analysis, we study the bitcoin gain outliers. The aim is to
see if they adopt a particular pattern to acquire bitcoin, and if the pattern is
correlated in some way to the bitcoin exchange rate. Figures 7a, b, and c show the
bitcoin exchange rate (black), and the number of bitcoin gained by the outlier
(grey) during the three time spans considered. Each plot shows only the outlier
found in the same time span, considering the outliers as different users. Due to
different orders of magnitudes, the bitcoin exchange rate is plotted using the left
scale, while the number of bitcoin gained by the outlier is plotted using the right
scale. From these plots we observe that the outliers tend to acquire most of the
bitcoin in a very short time span. In fact, in the first December span, Fig. 7a,
70,000 bitcoins, roughly 22% of the total amount of bitcoin acquired by the
outlier in the whole time span, are acquired between 6 AM and midday on the

(a) Bitcoin outlier gain
from the 7th to the 13th of
December 2017

(b) Bitcoin outlier gain
from the 16th to the 23rd of
December 2017

(c) Bitcoin outlier gain
from the 5th to the 7th of
September 2018

Fig. 7. Bitcoin outlier gain in the three considered time spans
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9th of December. We have a similar situation, although less highlighted, in the
second December span, Fig. 7b, with 25,000 bitcoin in six hours, out of almost
300,000 acquired in the whole span. Also in the third span, Fig. 7c, we observe
that the outlier gathered almost 28% of the total amount of bitcoin in just six
hours. Anyway, while there is a clear pattern with which the outliers acquire
bitcoin, there seems to be not a clear strategy. In fact, in the first and third
spans we observe that the peak is very close to the lowest point of the bitcoin
exchange rate. This is not true in the second time span, in which the peak is
instead close to the highest point of the bitcoin exchange rate. However, in the
second case, the bitcoin acquired by the outlier are more evenly distributed over
time, which, joint to the fact that the exchanged rate reached its all time high
value, makes us think that there was high uncertainty whether the exchange rate
would grow even further or not.

5 Conclusion and Future Works

In this paper we tackled the problem of finding correlations between the bitcoin
exchange rate and measures on the User graph. We proposed a methodological
framework that, starting from the transactions stored on the Bitcoin blockchain,
let us study the User graph in a temporal way, focusing only on specific time
spans. In detail, the framework consist of starting from the Transaction graph,
an hypergraph where nodes are sets of Bitcoin addresses and edges are the
Bitcoin transactions. On the Transaction graph, the common-input-ownership
[17] heuristic is applied so that in the resulting graph nodes can be identified
with the users of Bitcoin. The resulting graph, called User graph, is a multigraph
where each node correspond to a Bitcoin user, and each edge models a bitcoin
exchange. We studied several topological measures of the User graph built on
limited time spans, which let us identify previously undetected correlations which
may also help in the price prediction task. We, moreover, detected some users
with unusual behaviour which stockpile bitcoin with unusual patterns.

As future works, we plan to deepen our studies in three directions. At first, we
want to replicate our studies on more time spans, possibly characterising them
in few categories based on the bitcoin exchange rate, such as “big increase”, “big
decrease”, “stability”, or “high volatility”. A second direction to follow is the
one of analysing the User graph in more detail, studying more measures, using
more advanced techniques or at a finer granularity, but also different heuristics
used to detect the users of Bitcoin. One last direction to follow is to study more
in depth the outliers and, in particular, use some advanced de-anonymization
technique to discover if the user corresponds to a person or an entity, or find out
more of the piling up of bitcoin by these users.
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Abstract. With the rapidly increasing popularity of social media appli-
cations, decentralized control and ownership is taking more attention to
preserve user’s privacy. However, the lack of central control in the decen-
tralized social network poses new issues of collaborative decision making
and trust to this permission-less environment. To tackle these problems
and fulfill the requirements of social media services, there is a need for
intelligent mechanisms integrated to the decentralized social media that
consider trust in various aspects according to the requirement of ser-
vices. In this paper, we describe an adaptive microservice-based design
capable of finding relevant communities and accurate decision making
by extracting semantic information and applying role-stage model while
preserving anonymity. We apply this information along with exploiting
Pareto solutions to estimate the trust in accordance with the quality of
service and various conflicting parameters, such as accuracy, timeliness,
and latency.

Keywords: Semantic information · Community detection ·
Pareto-trust · Decentralized social media · Role-stage model

1 Introduction

Recently, decentralized social media applications (e.g. crowd journalism, car shar-
ing, collaborative video creation) is gaining traction. Such systems with underlying
decentralized socialmedia orchestrate diverse actors into a permission-less peer-to-
peer network with threefold benefits. First, it improves users control with a secure,
permanent and unbreakable link to their data. Second, it allows users’ content to
be secured from any central authority, third parties or unauthorized individuals
through a smart contract. Third and foremost, it provides a democratic environ-
ment where a user can join or leave the network at any time (based on peer-to-
peer principle) with the same right for decision making and voting for a consen-
sus. This will facilitate global availability and decentralized control and ownership.
Although such systems truly democratize the technical world of social media, yet
they pose some serious challenges [3,8].
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Essentially, decentralized social media is often described as a trust-less sys-
tem. While inherently they do not actually eliminate trust, they instead minimize
the amount of trust required from any single actor in the system. Primarily, such
permission-less based social media hinder the process to tackle prominent issues
such as fake news, cultural barriers, biased propaganda, trolling, identifying mali-
cious content, and bad social media actors. To mitigate such challenges, there is
a need to research for intelligent design addressing trust based on various social
media requirements [18]. By contrast, in most previous works trust does not
address all the service requirements [2]. Hence, we propose a Semantic Model
with self-adaptive and Autonomous Relevant Technology (SMART) architec-
tural framework applying trust through various parameters according to qual-
ity of service (QoS) metrics such as accuracy, timeliness, and latency. SMART
exploits Pareto solutions and game-theory based optimization approach to find
the right and trustworthy subset of users participating in consensus process and
social media applications.

However, integrating trust in a permission-less network requires utilizing the
contextualized activity traces over the time [8,11]. More precisely, if activity
traces are semantically linked at contextual levels, this would (i) significantly
improve detection of the correct set of audience, interested groups and relevant
communities, (ii) provide adaptive infrastructure provisioning for time-critical
events (e.g. corresponding to an accident via news) across the right subset of
user’s geo-location, and (iii) inject intelligent insights across different commu-
nities, groups, and users into pattern prediction, recommendation and decision
making. Finally, it will significantly improve trusted participation in collabora-
tive social media applications.

Several studies were proposed to analyze decentralized network and identify
network construction. To the best of our knowledge, those methods mostly focus
on link analysis without content analysis to infer activity traces [9,13,17], while
network topology alone can not precisely reveal peers behavior pattern in the
network. Hence, SMART adopts a novel community detection approach based
on a role-stage model to precisely identify implicit and explicit behaviors and
interactions of participants in the network by dynamically extracting semantic
information along with network topology while preserving peers privacy and
anonymity. In order to give better control over the design, implementation and
evolution of the system, we design SMART based on microservices [5].

The paper is organized as follows. Initially, we survey in Sect. 2 the research
background related to our work. Section 3 outlines the architecture of the pro-
posed model, further discussed in Sect. 4 and followed by possible future direc-
tions and open issues. We conclude the paper in Sect. 5.

2 Related Work

In this section we introduce the state of the art barriers existing in the social
networks with relation to our research.
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Decentralized Social Media. Centralized social media creates critical issues
of trust and privacy [3,6,8]. Towards this issue, decentralized social media have
been proposed to provide more control over private data. While decentralized
social media is widely documented to demonstrate availability, democratic deci-
sion making, and ownership in the social media, they face their own problems
and challenges such as identifying malicious content and bad social media actors,
tracking peers behavior pattern and network analyses, and Trust in social media
platforms [3,8,11]. Here, we briefly review some recent proposed solutions to
address these problems.

Identification of Malicious Actors. The anonymization of identities across
self sovereign identity in decentralized network make them vulnerable to misbe-
haviour in the network for illegal interests. Therefore, several studies were pro-
posed to analyse decentralized network for identifying malicious actors. Maesa
et al. [14] inferred unusual behavior of outliers by analyzing the Bitcoin users
graph. The authors illustrated that these behaviours are a consequence of unusual
chains of transactions, which indicated the existence of outliers in the in-degree
of frequency distribution and the high diameter of the users graph. To identify
attacks, Meiklejohn et al. [15] grouped Bitcoin users by adopting a heuristic based
on changed addresses to cluster addresses belonging to the same user. However,
this approach considered static network which is in conflict with the reality.

Tracking Peers Behavior Pattern and Network Analyses. To provide
appropriate services, it is crucial to have a clear understanding of evolving rela-
tionships among data and predict their future trend. However, tracking users
behavior in an anonymized heterogeneous environment is very challenging as
illustrated by several decentralized network studies. Most of them extracted the
user link graph to track users behavior, while transaction graph alone does not
declare all of the relationships in the network. The authors in [9,17] introduced
a method for tracing users behavior in decentralized network based on the sim-
ilarity of sequences extracted from the transactions over the time.

The authors in [17] clustered nodes by exploiting a behavior pattern cluster-
ing algorithm after measuring the sequences similarity, while in [9] they adopted
an end-to-end neural network to classify peers. The work in [13] provided analy-
ses of the user link graph in Bitcoin to trace users behavior and derived the user
graph from the transaction graph by a clustering process. The research in [7]
provided a community detection approach (SONIC-MAN) within ego-network
of the users to track peers behavior pattern in distributed online social networks.
SONIC-MAN is based on a Temporal Trade-off approach adopting a set of super-
peers, chosen from the nodes in the ego networks, to the manage communities
over time.

Trust in Social Media Platforms. Trust plays an important role in decision
making, recommendations and consensus reached between multiple users [18].
Therefore, there have been several researches that introduced trust based on
different value to offer more relevant services. Azadjalal et al. [2] proposed a
method to identify the most trustworthy users for the recommendation process
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by exploiting a reliability measure and Pareto solution. The authors calculated
the unknown rating values to identify trust relationships, however, they did not
take into account QoS factors to identify trustworthy users. Alhanahnah et al. [1]
provided a trust framework considering factors according to both service char-
acteristics and user perspective in making recommendation, however, they did
not assumed dynamic nature of the network, while trust in such dynamic net-
work is a dynamic concept which changes over the time and requires continuous
updates [11].

3 SMART Architecture Design

We propose a framework underlying decentralized social media called SMART,
capable of finding relevant interest communities without violating users’ privacy
and anonymity. Its objective is to improve trust and eliminate malicious actors in
participatory exchanges and collaborative decision making. To fulfill this goal, we
adopt a role-stage model inspired by [12] integrating various facets of social media
to define users based on social information and content attributes. We apply this
information to estimate trust using game theoretic approaches in accordance
with various QoS conflicting parameters, such as accuracy, timeliness, latency,
and anonymity preservation. The output of the SMART architecture enables
social media applications engage with the correct subset of users based on their
QoS requirements. The architecture also improves democratic decision making
by choosing trustworthy agents to vote for consensus and reduce cost and latency
by analyzing previous voting outcomes and preferences.

Coping with the heterogeneous and dynamic social media infrastructure
requires continuous updates and integration of new features without interrupting
system operation [5]. To achieve this goal and overcome the limits of a monolithic
architecture, we designed the SMART architecture shown in Fig. 1 using sixteen
different sets of microservices: two for input transactions hub, nine for evolu-
tionary semantic contextual data hub as the main part of architecture, and five
for smart results in SMART transaction hub (out). The API gateway takes all
the requests and routes them to the message broker for transparent transaction
management and communication through message validation, transformation,
routing and guaranteed delivery.

3.1 SMART Transaction Hub (In)

SMART transaction hub provides an input interface to schedule and manage
input queries and information to SMART framework consisting of trace retrieval
and network metrics retrieval microservices.

Trace Retrieval Microservice provides an input interface to extract the expe-
riential anonymized activity traces required by SMART framework.
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Fig. 1. SMART architecture proposal.

Network Metrics Retrieval Microservice provides an interface for the
network-related QoS and quality of experience metrics and runtime informa-
tion, including their physical network distribution to calculate the Pareto trust.
Additionally it will help the event detection service by assigning geo-locations
to events.

3.2 Evolutionary Semantic Contextual Data Hub

This hub represents as the main part of the SMART architecture offering intelli-
gent heuristic outputs for crowd-cooperative applications through nine following
microservices.

Semantic Linking Microservice explores complex and evolving relationships
among data to have a clear understanding of the network and predict their trend
in the future. We formulate the problem to extract semantic data combining
event and link analysis for representing peer behaviors in decentralized social
media considering dynamic network. Several sequences are usually extracted
as the roles and stages for each user over the time to gain valid and valuable
insights and information from user patterns, while guaranteeing for preserv-
ing users anonymity and privacy when releasing aggregate statistical personal
information of individuals. This microservice improves community detection and
reveals network properties and role of users in social media by defining implicit
and explicit behaviors and interactions of participants in the network.
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Agent Discovery Microservice defines the concept of agents as users and par-
ticipants in decentralized social networks, where they usually have equal rights in
querying, sending transactions, and participating in decision making. We apply
this microservice for identifying users to understand the network more deeply
and assigning tasks to them in accordance with their roles in the social network.

Role Discovery Microservice aims to precisely discover communities by spec-
ifying agents according to their roles in the social network. The concept of roles
improves the conceptualization and community detection in social media since
roles can reveal semantic information and interaction between agents. There-
fore, we define roles as properties and behaviors assumed by agents over time
and place. In this microservice, we characterize agents by multiple roles as also
taken by people in the real world [10]. For example, a person usually belongs to
several social groups such as family, friends, and colleagues.

Stage Discovery Microservice detects the interaction between different roles
in the social media represented as sequences of stages, where each stage contains
the details of the role’s actions. Detection of these stages can be beneficial for
discovering communities and agents based on their role in the social media.

Community Detection Microservice helps in deeper network understand-
ing and reveals interesting properties shared by the members [7,8]. Detection
of these communities can be beneficial for numerous topics such as recommen-
dation systems, link prediction, anomaly detection, information spreading, and
finding of like minded marketing users [10]. Existing studies on community detec-
tion mainly focus on link analysis or topological network structure that ignores
content analysis for community finding. The drawback is that each community
identified by these methods can only reflect the strength of the connections,
while in reality a social network community is a group of users not only sharing
common events and friends, but also having similar interests [16]. Moreover, the
amount of covert information extracted from a network is very limited. On the
other hand, most of these studies assume that every node belongs to exactly
one non-overlapping community, while people in a real social network naturally
belong to multiple community. Thus, it is more reasonable to cluster users into
overlapping communities [10]. We propose a novel approach that combines event
clustering and link analysis to detect communities along with clustering users
into overlapping communities via agent, role, stage discovery microservices.

Reputation Calculation Microservice that increases trust is an essential
factor of a successful social network [18]. Generally, the security provided by
decentralized social media is better than by a centralized data management,
however, there are still trust issues as attacks are inevitably growing by exploiting
decentralized ownership vulnerabilities. The reputation measures the amount of
community trust achieved based on previous interactions.

Nevertheless, integrating trust in complex and dynamic scenarios where users
are heterogeneous and anonymous is very difficult. Moreover, trust is a dynamic
concept which changes over the time [11]. Hence, we provide a model for trust
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computing in accordance with the temporal factor of user’s interactions. Repu-
tation systems on decentralized social media have different goals, from choosing
reliable resources to the quality of content of a shared file [18]. Therefore, the
reputation needs to be addressed in many different ways according to the var-
ious services over time. For example, in crowdsourced journalism reporting on
recent events, (in contrast to other informational content shared online), news
is valued much more in terms of timeliness, accuracy, geo-location. Therefore,
we propose efficient trust based heuristics using a game theoretic approach and
community detection to estimate devices’ trustworthiness considering various
conflicting parameters, such as accuracy, timeliness, latency, and high anonymity
preservation.

Pareto Trust Microservice considers trust through various parameters
according to domain of services and QoS performance metrics such as accu-
racy, timeliness, and latency. However, these conflicting trust-based factors need
to be simultaneously optimized to achieve an optimal solution.

To solve this multi-objective optimization problem where there is a trade-off
between trust-based elements, we adopt cooperative game-theory based opti-
mization algorithm to obtain the true Pareto-optimal frontier. Cooperative game
theory is a mathematical model providing multi-objective optimization where
multiple decision makers are involved in decision-making exploiting learning
approaches to find an elitist spread of solutions [4].

Democratic Reasoning Microservice serves as a central knowledge-based
component providing all facts and rules for other microservices. Hence, other
microservices follow this rules for evaluation and execution.

Geo-profiling Microservice provides a mapping of agents location in the net-
work over the time. This microservice will help classify agents depending on their
locations to improve community detection and enable social media applications
engage with smart devices closest in proximity to the event locations.

3.3 SMART Transaction Hub (Out)

This hub offers outputs and elicit solutions for various social media applications
taking advantage of evolutionary semantic contextual data hub as an input to
facilitate and improve trustworthiness and democratic decision-making.

Tokenized Decision-making Microservice is essential in public decentral-
ized social media, where everyone is open to join or leave and all entities have the
same power. Therefore, in a trustless environment, nodes need to run a consensus
protocol to ensure that they all agree on the transactions. A consensus algorithm
helps deciding the validity of the transactions and avoid the forking problem in
decentralized social media. However, decision-making to reach consensus in such
anonymized environments without any centralized authorities is a challenge and
current algorithms still have many shortages. To address this issue, we provide
heuristic decision-making algorithm for the decentralized social media consor-
tium that predicts future results and helps the decentralized social media reduce
costs and latency by analyzing previous voting outcomes and preferences.
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Trust SLA Microservice needs to take optimized decisions according to con-
flicting objectives to suggest relevant communities for various services over the
time, in order to improve the recommendation quality and eliminate malicious
actors in participatory exchanges. Service level agreements (SLAs) are contracts
between agents in social media to guarantee expected quality levels of services via
elitist solutions [1]. Therefore, we offer SLA trust microservice adopting Pareto
solution to negotiate trustworthy agents with precise targeting in decentralized
social media. This microservices enabling social media applications engage with
the right subset of users based on system requirements and QoS over the time.

Smart-matching Microservice preserves security in this distributed environ-
ment through decentralized consensus based on voting among the recommended
list of reputable agents to express their acceptance of valid transaction [3,18].
However, finding such nodes is another challenge in decentralized social media.
Towards this issue, we apply Pareto-trust microservice as an input and intro-
duce appropriate agents for voting in consensus through a selection of relevant,
reachable and credible ones.

Event Detection Microservice publishes information about events to its sub-
scribers. If new communities are detected, for instance if the geo-profiling algo-
rithm assigns a group of users to a physical location, this event of forming a
physical group is broadcast to consumer services.

Data Access Microservice offers the heuristics and data from SMART to
enable other components apply evaluation and cognition for different use-cases.

4 Discussion

Centralized social media do not offer a sufficient level of privacy due to singular
data management. This leads to critical trust and privacy concerns across the
large scale social media user-base. Decentralized social media can keep privacy
over the network [3,8], however, data distribution among peers in the decentral-
ized network poses new issues. To preserve system security, the nodes need to run
a consensus protocol to ensure that they all agree on the transactions. However,
finding trustworthy nodes to vote for the valid transactions makes a challeng-
ing issue in decentralized environment. In addition, in such anonymized system
without any central authority, malicious actors have more freedom to spread
fake information over the network. Thus, decentralized social media needs to
consider trust as an important factor to ease users interactions. As different
applications may have different requirements in social media, trust needs to be
addressed in different ways according to the requirement of services [18], while in
most previous works trust does not address all the service requirements [2]. To
tackle with this problem, we apply a Pareto-trust microservice enabling consen-
sus process and social media applications engage with the right subset of users.
Our model applies trust through various parameters according to domain of ser-
vices and QoS performance metrics such as accuracy, timeliness, and latency.
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Nevertheless, integrating trust in complex social networks scenarios with uncer-
tain knowledge is not achievable without having a clear understanding of the
network. Therefore, a system needs to extract the users behavior to discover
the networks more deeply. Discovering community structures can help us reveal
network properties, role of users, and their interactions. The existent studies
on community detection mainly focus on one non-overlapping community for
each node and only link analysis without content analysis [9,13,17], while these
can not reflect whole information of the network. To do so, we propose a novel
approach clustering users into overlapping communities which combines event
clustering and link analysis to detect communities precisely through role-stage
model considering various aspect of social media. Our proposed model improves
community detection in social media by defining implicit and explicit behaviors
and interactions of participants in the network without disclosing individual‘s
information.

5 Conclusion

Nowadays, decentralized social media attract many attention to maintain users
privacy. However, in the absence of a central authority, it is difficult to identify
malicious actors and reach a consensus agreement. In this paper, we proposed an
adaptive framework to improve trust and group decision making in decentralized
social media through applying multi-objective trust model. To do so, we applied
different microservices enabling social media applications engage with relevant
and most trustworthy users based on services requirements. We provided a role-
stage model to precisely infer network construction and communities based on
semantic information, users roles, and their transactions while preserving users
privacy and anonymity.
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11. Kaläı, A., Zayani, C.A., Amous, I., Abdelghani, W., Sèdes, F.: Social collabora-
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1 University of Calabria, Rende, Italy
talia@dimes.unical.it

2 University Carlos III of Madrid, Madrid, Spain
3 Atos BDS R&D Data Management, Échirolles, France
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Abstract. This paper presents the main features and the programming
constructs of the DCEx programming model designed for the implemen-
tation of data-centric large-scale parallel applications on Exascale com-
puting platforms. To support scalable parallelism, the DCEx program-
ming model employs private data structures and limits the amount of
shared data among parallel threads. The basic idea of DCEx is struc-
turing programs into data-parallel blocks to be managed by a large
number of parallel threads. Parallel blocks are the units of shared- and
distributed-memory parallel computation, communication, andmigration
in the memory/storage hierarchy. Threads execute close to data using
near-data synchronization according to the PGAS model. A use case is
also discussed showing the DCEx features for Exascale programming.

Keywords: Large-scale parallelism · Exascale systems · Data-centric
applications

1 Introduction

High-level parallel programming models assist designers accessing and exploiting
high-performance computing (HPC) resources abstracted from physical entities
such as storage, memory, and cores. Their main goal is facilitating the pro-
gramming task, increasing programmer productivity, achieving scalability, and
improving software portability. Exascale systems refers to highly parallel com-
puting systems capable of at least one exaFLOPS. Therefore, their implementa-
tion represents a big research and technology challenge. The design and devel-
opment of Exascale systems is currently under investigation with the goal of
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building by 2020 high-performance computers composed of a very large number
of multi-core processors expected to deliver a performance of 1018 operations
per second. Programming paradigms traditionally used in HPC systems (e.g.,
MPI, OpenMP, OpenCL, Map-Reduce, and HPF) are not sufficient/appropri-
ate for programming software designed to run on systems composed of a very
large set of computing elements [1]. To reach Exascale size, it is required to
define new programming models and languages that combine abstraction with
both scalability and performance. Hybrid models (shared/distributed memory)
and communication mechanisms based on locality and grouping are currently
investigated as promising approaches. Parallel applications running on Exascale
systems will require to control millions of threads running on a very large set
of cores. Such applications will need to avoid or limit synchronization, use less
communication and remote memory, and handle with software and hardware
faults that could occur. Nowadays, no available programming languages provide
solutions to these issues, specially when data-intensive applications are targeted.
In this scenario, the EU funded Horizon 2020 project ASPIDE is studying mod-
els for extreme data processing on Exascale systems, starting from the idea that
parallel programming paradigms must be conceived in a data-driven style espe-
cially for supporting for Big Data analysis on HPC systems.

This paper introduces the main features and the programming constructs
of the DCEx programming model designed in the ASPIDE project. DCEx is
based upon data-aware basic operations for data-intensive applications support-
ing the scalable use of a massive number of processing elements. The DCEx
model uses private data structures and limits the amount of shared data among
parallel threads. The basic idea of DCEx is structuring programs into data-
parallel blocks, which are the units of shared- and distributed-memory parallel
computation, communication, and migration in the memory/storage hierarchy.
Computation threads execute close to data, using near-data synchronization
based on the Partitioned Global Address Space (PGAS) model, which assumes
the memory is partitioned into a global shared address space and a portion that
is local to each process [3]. In the DCEx model, three main types of parallelism
are exploited: data parallelism, task parallelism, and Single Program Multiple
Data (SPMD) parallelism. A prototype API based on that model will be imple-
mented.

The rest of the paper is structured as follows. Section 2 presents principles and
features of the data model used in DCEx. The data block concept is presented
and data access and management operations are discussed. Section 3 introduces
the principles and the kinds of parallelism exploited in DCEx. Section 4 presents a
use case designed using the programming mechanisms of DCEx. Finally, Sect. 5
outlines related parallel models and languages recently proposed for scalable
applications on Exascale systems.

2 The DCEx Data Model

The role of data management and processing is central in the DCEx program-
ming model. The data model used in the DCEx is based on the data parallel block
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(DPB) abstraction. DPBs are the units of shared- and distributed-memory paral-
lel computation, communication, and migration. Blocks and their message queues
are mapped onto processes and placed in memory/storage by the ASPIDE run-
time. Decomposing a problem in terms of block-parallelism (instead of process-
parallelism) enables migrating blocks during the program execution between dif-
ferent locations in the hardware. This is the main idea that lets us integrate in- and
out-of-core programming in the same model and change modes without modifying
the source code.

A DPB is used for managing a data element in the main memory of one or
multiple computing nodes. In particular, a DPB d can be composed of multiple
partitions:

d = [ part 0 ][ part 1 ][ part 2 ][ part 3 ]...[ part n-1 ]

where each partition is assigned to a specific computing node.
Notation d[i] refers to the i-th partition of DPB d. However, when a DPB is

simply referred by its name (e.g., d) in a computing node (e.g., the k-th node),
it is intended as a reference to the locally available partition (e.g. d[k]).

A DPB can be created using the data.get operation, which loads into main
memory some existing data from secondary storage. This operation is specified
by the following syntax:

d = data.get(source, [format], [part|repl], ...) at [Cnode|Carea];

where:

– d: is the DPB created to manage in main memory the data element read from
secondary storage;

– source: specifies the location of data in secondary storage (e.g., an URL);
– format: is an optional parameter specifying the format of data;
– part|repl: is an optional parameter, which should be specified only if the

optional Carea directive is included (see below). If part is used, d must be
partitioned across all the computing nodes in Carea. If repl is used, d must
be replicated in all the computing nodes of the Carea;

– the ellipsis indicate further parameters to be defined;
– Cnode|Carea: is an optional directive to specify how d should be mapped on

a single computing node or on an area of computing nodes. In particular, if a
Cnode is specified, d is loaded in the main memory of that specific computing
node; if a Carea is specified, d is partitioned (if the part flag is used) or
replicated (if the repl flag is used) in the main memory of the computing
nodes included in that area.

In addition to data.get, it is also possible to use the data.declare operation,
which declares a DPB that will come into existence in the future, as a result of
a task execution. Here is an example of DPB declaration:

d = data.declare();

The use of data.declare in association with task operations allows to store
the output of a task.

A DPB can be written in secondary storage using the data.set operation,
which is defined as follows:
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data.set(d, dest, [format]);

where:

– d: is the DPB to be stored in secondary storage;
– dest: specifies where of data must be written in secondary storage (e.g., an

URL);
– format: is an optional parameter specifying the format of data.

3 The DCEx Parallelism Model

In the DCEx model, data are the fundamental artifact and they are processed
in parallel. In particular, DCEx exploits three main types of parallelism for
managing the data parallel blocks: data parallelism, data-driven task parallelism,
and SPMD parallelism.

To simplify the development of applications in heterogeneous distributed
memory environments, large-scale data- and task-parallelism techniques can be
developed on top of the data-parallel block abstractions divided into partitions.
Different partitions are placed on different cores/nodes where tasks will work in
parallel on data partitions. This approach allows computing nodes to process in
parallel the data partitions at each core/node using a set of statements/library
calls that hide the complexity of the underlying operations. Data dependency
in this scenario limits scalability, thus it should be avoided or limited to a local
scale.

Some proposals for Exascale programming are based on the adaptation of
traditional parallel programming languages and on hybrid solutions. This incre-
mental approach is conservative and often results in very complex codes that
may limit the scalability of programs on many thousands or millions of cores.
Approaches based on a partitioned global address space (PGAS) memory model
appear to be more suited to meeting the Exascale challenge [5]. PGAS is a par-
allel programming model that assumes a global memory address space that is
logically partitioned. A portion of the address space is local to each task, thread,
or processing element. In PGAS the partitions of the shared memory space can
have an affinity for a particular task, in this way data locality is implemented.
For these reasons PGAS approaches have been analyzed and adopted in the
DCEx model for partitioning of the address space using locality to limit data
access overhead.

3.1 Basic Features

As mentioned before, the DCEx model for managing a very large amount of
parallelism exploits three main types of parallelism: Data parallelism, task par-
allelism, and SPMD parallelism. Those forms of parallelism are integrated with
PGAS features taking into account computing areas and other data and com-
puting locality features.

Data parallelism is achieved when the same code is executed in parallel on
different data blocks. In exploiting data parallelism, no communication is needed,
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therefore this type of parallelism allows for the independent execution of code
processing in parallel different partitions of data without suffering of communi-
cation or synchronization overhead.

Task parallelism is exploited when different tasks that compose an application
run in parallel. The task parallelism in DCEx is data driven since data depen-
dencies are used to decide when tasks can be spawn in parallel. As input data
of a task are ready its code can be executed. Such parallelism can be defined
in two manners: i) explicit, when a programmer defines dependencies among
tasks through explicit instructions; ii) implicit, when the system analyses the
input/output of tasks to understand dependencies among them.

SPMD parallelism is achieved when a set of tasks execute in parallel the
same code on different partitions of a data set (in our case parallel data blocks);
however, differently from data parallelism, processes cooperate to exchange par-
tial results during execution. Communication occurs among the processors when
data must be exchanged between tasks that compose an SPMD computation.
Tasks may execute different statements by taking different branches in the pro-
gram and it is occasionally necessary for processors to synchronize, however
processors do not have to operate in locksteps as in SIMD computations.

In DCEx, these three basic forms of parallelism can be combined to express
complex parallel applications. This can be done by programming Exascale appli-
cations in a Directed Acyclic Graph (DAG) style that corresponds to workflow
programming, where a parallel program is designed as a graph of tasks. As data-
intensive scientific computing systems become more widespread, it is necessary
to simplify the development, deployment, and execution of complex data analy-
sis applications. The workflow model is a general and widely used approach for
designing and executing data-intensive applications over high performance sys-
tems or distributed computing infrastructures. Data-intensive workflows consist
of interdependent data processing tasks, often connected in a DAG style, which
communicate through intermediate storage abstractions. This paradigm in the
DCEx model can be exploited to program applications on massively parallel
systems like Exascale platforms.

The combination of the three basic types of parallelism allows developers to
express other parallel execution mechanisms such as pipeline parallelism, which
is obtained when data is processed in parallel at different stages. Pipeline par-
allelism is in particular appropriate for processing data streams as their stages
manage the flow of data in parallel [6]. As mentioned before, the types of par-
allelism discussed here are combined in DCEx with the features of the PGAS
model that support the definition of several execution contexts based on separate
address spaces. For any given task, this allows for the exploitation of memory
affinity and data locality that provides programmers with a clear way to distin-
guish between private and shared memory blocks, and determine the association
to processing nodes of shared data locations [7]. In fact, in the PGAS model,
the computing nodes have an attached local memory space and portions of this
local storage can be declared private by the programming model, making them
not visible to other nodes. A portion of each node’s storage can be also shared
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with others nodes. Each shared memory location has an affinity, which is a com-
puting node on which the location is local, with the effect that data access rate
is higher for code running on that node. Therefore, through data affinity mech-
anisms a programmer can implement parallel applications taking into account
local data access and communication overhead facilitating high performance and
scalability.

3.2 Programming Constructs

This section introduces the main programming concepts and constructs designed
in the DCEx model. The description is focused on the two main components of
the model: i) computing nodes and areas that identify single processing elements
or regions of processors of an Exascale machine where to store data and run tasks;
ii) tasks and task pools that represent the units of parallelism.

Computing Nodes and Computing Areas. The DCEx model defines two
basic constructs to refer to computing nodes and computing areas:

– Cnode representing a single computing node, and
– Carea representing a region (or area) including a set of computing nodes.

In general, Cnodes and Careas are used to implement data and task locality
by specifying a mapping between data loading operations and (the main memory
of) computing nodes, and task execution operations and (the processors of)
computing nodes.

A Cnode variable may be used to specify in a data loading operation the
computing node that should be used to store (in its main memory) a given data
element read from secondary storage. It can be used also in a task execution
operation to specify the computing node on which a task should be executed.

A Carea variable may be used to specify in a data loading operation the set
of computing nodes that should be used to store (in their main memory) a given
data element read from secondary storage, by partitioning data on all the nodes.
In a task execution operation a Carea is used to specify the computing nodes
on which a pool of tasks should be executed. A Cnode is declared as follows:

node = Cnode;

where node is a variable used to refer to the computing node.
Through this declaration, the runtime chooses which computing node will be
assigned to variable node. Alternatively, it may be specified by annotations to
help the runtime in choosing the computing node, e.g.:

node = Cnode({hardware annotation parameters})

A Carea can be defined as an array of computing nodes. For instance, the
example below defines nodes as an array of 1000 computing nodes:

nodes1 = Carea(1000);

Similarly, the following examples defines a two-dimensional array of 100 ×
100 computing nodes:

nodes2 = Carea(100,100);
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Referring to the last example, the following notation:
nodes2[10][50]

identifies the computing node at row 10 and column 50 in the nodes Carea.
It is also possible to create a Carea as a view of a larger Carea:

nodes3 = Carea(nodes2,10,10);

which extracts a 10 × 10 matrix of computing nodes from the Carea defined
by nodes2.

Tasks and Task Pools. In DCEx, tasks are the basic elements for implement-
ing concurrent activities. To manage the parallel execution of multiple tasks, a
task data dependency graph is generated at runtime. Each time a new task is
executed, its data dependencies are matched against those of the other tasks. If
a data dependency is found, the task becomes a successor of the corresponding
tasks. Tasks are scheduled for execution as soon as all their predecessors in the
graph have produced data they need as input. The programming model allows
to express parallelism using two concepts: task and task pool.

A task can be defined according to the following syntax:
t = Task(f_name,f_param_1,...,f_param_n) [at Cnode|Carea] [on failure ignore

|retry|...];

where:

– t: is a numeric identifier to the task being created;
– f name: is the name of the function to be executed;
– f param i: the i-th parameter required by the function identified by f name;
– at Cnode|Carea: is an optional directive that allows to specify on which given

computing node the task should be executed (if a Cnode is specified), or to
execute the task on any computing node from a set of computing nodes (if a
Carea is specified).

– on failure: is an optional directive that allows to specify the action (for
instance, ignore or retry with it) to be performed in case of task failure.

According to the basic assumptions about concurrent task execution men-
tioned above, the Task keyword allows to concurrently execute a method in the
future, as soon as its data dependencies are resolved (i.e., its input data are
ready to be used). Moreover, the at directive that specifies the execution of a
task on a given Cnode is intended as request/suggestion to runtime that can
be satisfied or not, depending on available hardware resources, their status and
load, and the runtime execution optimization strategy.

As an example, let assume we defined the following function:
partitioner(in:dataset, out:trainset, out:testset);

that takes as input a dataset and returns (by reference) a trainset and a testset
extracted from the dataset. The following code shows how that function may be
executed:

dsURL = ‘‘some url’’; trainURL = ‘‘some url’’; testURL ‘‘some url’’;
node = Cnode; ds = data.get(dsURL) at node;
train = data.declare(); test = data.declare();
t = Task(partitioner, ds, train, test);
data.set(train, trainURL); data.set(test, testURL);
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Tasks can be used in a for loop to exploit data-driven task parallelism. For
example, a set of tasks can be executed in parallel in such a way:

N = 10; vec = [];
for (i=0; i<N; i++) {
if (cond)
vec[i] = Task(f1, f1_par_1, ..., f1_par_n);

else
vec[i] = Task(f2, f2_par_1, ..., f2_par_n);

}

In this code example we assume functions f1 and f2 have been already defined.
To implement SPMD parallelism in DCEx, the Task Pool abstraction is

defined to represent a set of tasks. In fact, tasks in a pool are activated to execute
the same function that implements the algorithm executed by the Task Pool in
an SPMD parallel style. The basic syntax for declaring a pool of tasks is as
follows:

tp = Task_Pool([size]);

where:

– tp: is an identifier of the task pool being defined, it can be also used with an
index to identify a single task of the pool; and

– size: is an optional parameter specifying the number of tasks in the pool.

The statement above declares a task pool but does not spawn its execution.
Each task in the pool must be activated explicitly using a for loop as in the
following example:

N = 10; nodes = Carea(N);
for (i=0; i<N; i++) {
f_param_1 = ...; f_param_n = ...;
tp[i] = Task(f_name, f_param_1, ..., f_param_n) at nodes[i];

}

If there are no dependencies among the tasks initialized in the loop, they execute
concurrently. On the other hand, if a task works on some data that is not yet
available, it waits until that data becomes available, according to the execution
model outlined before. On a Task Pool tp some operations such as the following
listed here can be defined:

– size(tp) to access the number of tasks in a pool.
– structure(tp) to know how the tasks in a pool are structured (e.g., in a

vector, a two-dimensional matrix, a tree).
– zone(tp) to know in which Carea the tasks of a pool are mapped.

4 Use Case

To show through a real data-intensive application how the DCEx constructs
can be used, in the following is described a trajectory data analysis application
coded in DCEx. The workflow shown in Fig. 1 represents the main steps of the
applications (some of them are optional):
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A. Crawling : multiple crawlers are instantiated and run in parallel for gathering
data from social media. If data have already been downloaded and stored in
files, a specific crawler (FileCrawler) is used to load the data.

B. Filtering : filtering functions are run in parallel to verify if social media items
meet or not some conditions.

C. Automatic keywords extraction and data grouping : the keywords that identify
the places of interests are extracted; these keywords will be used to group
social media items according to the places they refer to.

D. RoIs extraction: a data parallel clustering algorithm is used to extract
Regions-of-Interest (RoIs) from social media data grouped by keywords [2].
RoIs represent a way to partition the space into meaningful areas; they are
the boundaries of points-of-interest (e.g., square of a city).

E. Trajectory mining : This step is executed to discover behaviour and mobility
patterns of people by analyzing geotagged social media items. Highly par-
allel versions of the FP-Growth (frequent itemset analysis) and Prefix-Span
(sequential pattern mining) algorithms are used here.

Fig. 1. Workflow of the urban computing use-case.

Listing 1.1 shows the DCEx pseudo-code for the trajectory data analysis use
case introduced above. Initially the dataset “FullFlickrData.json” is loaded (line
2), a Carea of 16,000 nodes is defined (lines 3–4), then the dataset is split into
16,000 partitions and mapped onto the computing nodes (line 5). After that,
filtering tasks are executed in parallel on the partitions to filter out Flickr posts
that are not geotagged or do not refer to the city of Rome (lines 6–12). Filtering
data is processed in parallel to extract keywords in each cell (lines 13–19). Then,
such keywords are aggregated to find the top keywords in the area (lines 20–
30). Afterward, filtering data have been used again and aggregated based on top
keywords (lines 31–39). Finally, the RoI extraction (lines 40–48) and trajectory
mining tasks (49–51) are executed concurrently.



A Novel Data-Centric Programming Model for Large-Scale Parallel Systems 461

Listing 1.1. DCEx code for the urban computing use-case.
1 //Crawling

2 source="/home/UNICAL/FullFlickrData.json";

3 numNodes = 16000;

4 nodes = Carea(numNodes);

5 dd = data.get(source, FILE, part) at nodes;

6 //Filtering

7 filterTasks = Task_Pool(nodes.size);

8 ddfilt = []; f_param_0 = "IsGeotagged"; f_param_1 = "IsInRome";

9 for(i=0; i<nodes.size; i++){

10 ddfilt[i] = data.declare();

11 filterTasks[i] = Task(filteringFunc, dd[i], ddfilt[i], f_param_0, f_param_1) at nodes[i];

12 }

13 //Keywords extraction

14 keywordsInCellTasks = Task_Pool(nodes.size);

15 keywordsInCellParts = []; cell_width = "500m";

16 for(i=0; i<nodes.size; i++){

17 keywordsInCellParts[i] = data.declare();

18 keywordsInCellTasks[i] = Task(findKeywordsInCell, ddfilt[i], keywordsInCellParts[i],

cell_width) at nodes[i];

19 }

20 keywordsInCell = groupByKey(keywordsInCellParts);

21 numCells = keywordsInCell.size;

22 topKeywordsInCellTasks = Task_Pool(numCells);

23 nodes = Carea(numCells);

24 topKeywordsInCell = []; numTopKeywords = 5;

25 for(j=0; j<numCells; j++){

26 topKeywordsInCell[j] = data.declare();

27 topKeywordsInCellTasks[j] = Task(findTopKeywords, keywordsInCell[j], topKeywordsInCell[j],

numTopKeywords) at nodes[j];

28 }

29 topKeywords = data.declare();

30 aggregateKeysTask = Task(aggregateKeywords, topKeywordsInCell, topKeywords);

31 //Data grouping

32 splitDataPerKeywordsTasks = Task_Pool(numNodes);

33 nodes = Carea(numNodes);

34 dataPerKeywordsParts=[];

35 for(i=0; i<numNodes; i++){

36 dataPerKeywordsParts[i] = data.declare();

37 splitDataPerKeywordsTasks[i] = Task(assignDataToKeywords, ddfilt[i], dataPerKeywordsParts[i],

topKeywords) at nodes[i]);

38 }

39 dataPerKeywords = groupByKey(dataPerKeywordsParts);

40 //RoIs extraction

41 numRoIs = dataPerKeywords.size;

42 roiTasks = Task_Pool(numRoIs);

43 nodes = Carea(numRoIs);

44 rois=[]; eps = 50; minPts=150; splits = 32;

45 for(k=0; k<numRoIs; k++){

46 rois[k] = data.declare();

47 roiTasks[k] = Task(findRoI, dataPerKeywords[k], rois[k], eps, minPts, splits) at nodes[i];

48 }

49 //Trajectory mining

50 trajectories = data.declare();

51 trajectoryTask = Task(trajectoryMining, ddfilt, trajectories, rois);

5 Related Work

This section discusses a few parallel programming models and languages that
have been proposed for the implementation of scalable applications on Exascale
machines [9]. The approach and the main features of those models and languages
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are briefly discussed. To manage programming issues of data-intensive applica-
tions, different scalable programming models have been proposed [4]. Several
parallel programming models, languages and libraries are currently under devel-
opment for providing high-level programming interfaces and tools for imple-
menting high-performance applications on future Exascale computers. Here we
introduce the most significant proposals and outline their main features.

The programming models for Exascale systems can be classified according to
four categories: distributed memory, shared memory, partitioned memory, and
hybrid models. Since Exascale systems can be composed of millions of processing
nodes using large distributed memory, message passing programming systems,
such as MPI, are candidate tools for programming applications for such class
of systems. However, traditional MPI all-to-all communication does not scale
well in Exascale environments. Hence to solve this issue new MPI releases (like
MPI+X) have been proposed to support neighbor collectives for providing sparse
“all-to-some” communication patterns that limit the data exchange on limited
regions of processors [5]. Other distributed-memory languages for Exascale are
Legion1 and Charm++2. On the other side, the shared-memory paradigm offers
a simple parallel programming model although it does not provide mechanisms
to explicitly map and control data distribution and it includes non-scalable syn-
chronization operations that are making very challenging its implementation on
massively parallel systems.

As a trade-off between distributed and shared memory organizations, PGAS
model [8] has been designed for implementing a global memory address space
that is logically partitioned and portions of it are local to single processes. The
main goal of the PGAS model is to limit data exchange and isolate failures in
very large-scale systems. DASH3 offers distributed data structures and parallel
standard template library algorithms via a PGAS approach. A variant of the
PGAS model, Asynchronous PGAS (APGAS) [7] that has been adopted by
some programming languages, such as X104 and Chapel5, supports both local
and remote asynchronous task creation. Differently for the PGAS model, the
APGAS model does not require that all processes run on similar hardware and
supports dynamically spawning of multiple tasks. In fact, multiple threads be
active simultaneously in a place, using either local or remote data. In addition, it
does not require that all the places in a computation must be homogeneous [10].
PGAS-based languages proposed recently are X10, Chapel and UPC6. They
share some concepts with DCEx, although they are not specifically designed
for data-centric applications. In fact, in exploiting the PGAS approach, DCEx
integrates PGAS with local communication mechanisms and data parallel blocks.

1 https://legion.stanford.edu/.
2 https://charmplusplus.org/.
3 https://www.dash-project.org/.
4 https://x10-lang.org/.
5 https://chapel-lang.org/.
6 https://upc-lang.org/.

https://legion.stanford.edu/
https://charmplusplus.org/
https://www.dash-project.org/
https://x10-lang.org/
https://chapel-lang.org/
https://upc-lang.org/
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6 Conclusions

Traditional parallel programming paradigms are not appropriate for program-
ming scalable software designed to run on systems composed of a very large set
of computing nodes. Therefore, to reach Exascale size it is required to define
new programming models, languages and APIs that combine abstraction with
scalability and performance. Hybrid models (shared/distributed memory) and
locality-based communication mechanisms are currently investigated as promis-
ing approaches. The main goal of the ASPIDE project is the design and devel-
opment of a new Exascale programming model for extreme data applications.
The designed DCEx programming model includes data parallel blocks and data-
driven parallelism for the implementation of scalable algorithms and applications
on top of Exascale computing systems with a special emphasis on the support of
massive data analysis applications. We presented here the language features and
a use case. The implementation of the DCEx language is an ongoing activity.
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Abstract. Cloud environments can provide virtualized, elastic, control-
lable and high-quality on-demand infrastructure services for supporting
complex distributed applications. However, existing IaaS (Infrastructure-
as-a-Service) solutions mainly focus on the automated integration or
deployment of generic applications; they lack flexible infrastructure plan-
ning and provisioning solutions and do not have rich support for the high
service quality and trustworthiness required by social network applica-
tions. This paper introduces an automated cloud virtual infrastructure
solution for social network applications, called Co-located and Orches-
trated Network Fabric (CONF), which was conducted in a recently
funded EU H2020 project ARTICONF. CONF aims to improve the
existing infrastructure support in the DevOps lifecycle of social network
applications to optimize QoS performance metrics as well as ensure fast
recovery in the presence of faults or performance drops.

Keywords: Cloud · Virtual infrastructure · Social network
applications

1 Introduction

With the wide deployment of smart objects, mobile devices and increased connec-
tivity, many applications nowadays operate on an ever-growing scale with high
rates of churn and unpredicted peak demand. In this environment, social net-
work applications allow for cooperative interactions among many participants,
whether via mass public engagement (e.g., in crowdsourcing content creation) or
as part of a persistent online community (e.g., car sharing services). Those appli-
cations have critical time constraints and strict trust requirements and therefore
require a dynamic, adaptable infrastructure for hosting system components and
supporting application users.
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By providing elastic capacity and flexible pay-as-you-go business model, the
virtualized infrastructure offered by cloud environments can significantly reduce
the operational cost for resource-intensive applications like big data, deep learn-
ing and the Internet of Things (IoT). To effectively deploy social network appli-
cations in the cloud, the capacity of planning, provisioning, monitoring and
adaptation of the application’s virtual infrastructure needs to be automated
and seamlessly integrated into the whole process of the development and oper-
ation (DevOps) lifecycle. Moreover, such a virtual infrastructure solution has
to effectively address the increased demand for Quality of Service (QoS) and
Quality of Experience (QoE). However, existing cloud infrastructure services,
e.g., provided by the DevOps environment of public providers, mainly focus on
the automated integration or deployment of the generic applications; they have
minimal support for the high performance and quality requirements of social
network applications.

In this paper, we present an automated cloud virtual infrastructure solution
for social network applications, called Co-located and Orchestrated Network
Fabric (CONF). The work is conducted in a recently funded EU H2020 project
ARTICONF. We will first analyze the requirements for the infrastructure auto-
mated solutions and then review the state of the art. After identifying the gaps,
we will present the architecture design of the CONF system, and demonstrate
the functional components of the system using a car sharing use case.

2 State of the Art

In this section, we will first introduce the problem context of social network
applications for infrastructure services and then review the related work as well
as opportunities and challenges for future research.

2.1 Problem Context

Cloud and edge/fog platforms provide a virtualized infrastructure solution that
can significantly optimize application usages and reduce operational costs of
social network application [2]. However, in a large-scale heterogeneous and frag-
mented social network with smart objects spanning geographical boundaries,
resource exploitation is challenging with respect to time-critical constraints,
failovers, and QoS requirements. More specifically, current social network appli-
cations and PaaS (Platform as a Service) platforms lack flexible infrastructure
planning and provisioning solutions. For example, if an application or platform
needs to be deployed on the cloud and scale vertically or horizontally, current
infrastructure services have the problem of vendor lock-in and cannot provide
efficient resources to meet QoS requirements in an economical way. Moreover,
existing social media cloud services lack of pervasive monitoring services to QoS
metrics, as well as a self-adaptive mechanism to recover quickly from sudden
failures. Monitoring QoS related metrics is necessary to improve efficiency for
customizing, provisioning and controlling heterogeneous virtual infrastructures
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required by time-critical social network applications. An effective self-adaptive
mechanism specifically to ensure fast recovery in the presence of faults or per-
formance drops is also needed for quality-critical social network applications.

2.2 Related Work

In the DevOps lifecycle of cloud applications, infrastructure solutions are
required in the whole process of infrastructure planning, provisioning, deploy-
ment, and monitoring [2]. Based on this idea, we identified the following four
research topics to review the current related work.

Infrastructure Planning. Deploying the same application on different cloud
infrastructures with the same specification may lead to entirely different
results [11]. Therefore, developing an infrastructure planner that is bound to a
specific budget without sacrificing performance is quite essential. A good cloud
infrastructure planner should generate an optimal infrastructure strategy that
not only meets the QoS requirements of the application but also achieves addi-
tional objectives such as minimizing monetary cost and power consumption,
low latency, etc. For this reason, cloud infrastructure planning is often more
challenging than scheduling application workflows onto fixed infrastructure [18].
Existing solutions about planning infrastructures for time-constrained applica-
tions typically have a global deadline. For example, IaaS Cloud Partial Critical
Paths (IC-PCP) and Critical Path-based Iterative (CPI) are two typical algo-
rithms that calculate the critical paths for VM services. To address the problem
of multiple time constraints when responding to new events, Wang et al. [13]
proposed a Multi-dEadline workflow Planning Algorithm (MEPA) to plan the
most cost-effective virtual infrastructure for an application workflow.

Infrastructure Provisioning. Most IaaS clouds provide dedicated virtual
infrastructure resources to applications with limited programmability and con-
trollability, which enlarges the management gap between infrastructures and
applications [17,19]. To bridge this gap, there have been substantial academic
research as well as commercial tools. Zhou et al. [19] designed CloudsStorm,
which is an application-driven DevOps framework that allows cloud users to
program and control the cloud infrastructure directly. SWITCH is a software
workbench for interactive time-critical and highly self-adaptive cloud applica-
tions. It also provides a programming model and toolkit to help programmers
specify the QoS and QoE metrics of their distributed applications [19]. Cloud-
Perfect [9] is another toolkit-based architecture for optimizing cloud infrastruc-
ture management, evaluating performance, and providing selection processes.
The trustworthiness of the service quality is crucial to guarantee the run-time
performance of the virtual infrastructure; smart contracts and blockchains have
been used to enforce the SLA between providers and infrastructure users as
well [20].
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Software Deployment for Social Network Applications. Typically, social
networks are centralized platforms with a single proprietary organization control-
ling the network. This poses critical issues of trust and governance over created
and propagated content. To solve this problem, some scholars put the idea of
deploying social network applications and platforms on distributed cloud sys-
tems [6]. In this respect, Tan and Su [12] first proposed a new architecture for
the media cloud and made some suggestions on how to build a media cloud in the
future. Kim and Lee [7] presented their Social Media Cloud Computing (SMCC)
model, which aims to provide flexible computing resources for processing large
social media data and platforms. Wu et al. [14] proposed some algorithms
for dynamic, optimal scaling of a social network application in geo-distributed
clouds. Moreover, Chakravorty and Rong [3] put the idea of blockchain-based
social network applications. Their platform, called Ushare, can support decen-
tralization, anonymity, and traceability properties for future social network net-
works.

Infrastructure Monitoring and Self-adaptation. Due to the dynamic
nature of the cloud, continuous monitoring of QoS attributes is necessary to
optimize cloud infrastructure operations or data transfer [8]. In this respect,
Bleikertz et al. [1] established an automated security system called Cloud Radar,
which could continuously monitor virtualized infrastructures for changes. Based
on these changes, Cloud Radar updates a graph model representation of the
infrastructure and maintains a dynamic information flow graph to determine
isolation properties. Yuriyama and Kushida [16] proposed a new infrastructure
model called Sensor-Cloud Infrastructure which can manage physical sensors
on IT infrastructures. Yang et al. [15] proposed and validated an extensible
SDN and NFV-enabled network traffic monitoring system. Mohammed et al. [10]
developed a monitor and failure prediction model with Auto-Regressive Moving
Average (ARMA) which focused on high-performance cloud data center infras-
tructure.

When some data centers are not accessible or some part of the comput-
ing resources crashed, the adaptability of infrastructure is therefore essential
for these applications to recover quickly from sudden failures. Evans et al. [4]
presented an approach to application reconfiguration scenarios of a distributed
real-time social network application, called Sentinel. Zhou et al. [19] proposed a
co-provisioning mechanism to improve the automatic recovery capability of the
cloud infrastructure. More recently, Gill et al. [5] introduced their CHOPPER
model, which offers self-configuration of applications and self-optimization for
maximum resource utilization.

2.3 Challenges and Opportunities

In conclusion, during the DevOps lifecycle of social network cloud applications,
application developers and managers need to plan and provide virtual infrastruc-
tures based on application requirements, deploy software platforms and applica-
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tion components on the virtual infrastructure, schedule and monitor the appli-
cation execution, and adapt the infrastructure when performance declines. How-
ever, current infrastructure supporting mechanisms for social network applica-
tions are inefficient. Existing cloud infrastructure services, e.g., provided by the
DevOps environment of public providers, mainly focus on generic applications,
or the automated integration or deployment; they have minimal support for
the high performance and quality requirements of social network applications.
Besides, they lack techniques to provision resources geographically closer to a
specific event, which can lead to failovers such as service failures or performance
drops, as the number of streaming users varies together with the processing needs
corresponding to an event trigger. Therefore, there is an urgent need to design
a complete set of infrastructure framework to provide resources support for the
lifecycle of DevOps of social network applications.

3 Architecture and Prototype

The CONF component of ARTICONF project provides a suite of micro-services
that collectively perform the planning, provisioning, monitoring, and adapta-
tion of customized virtual infrastructures for federated time and quality crit-
ical social network applications. It seamlessly integrates with the cloud/edge
infrastructure, able to intelligently provision services based on abstract applica-
tion service requirements, operational conditions at the infrastructure level, and
time-critical event triggering. In this section, we will first introduce the system
architecture and then discuss the development and implementation plan of the
CONF system.

3.1 System Architecture

Based on the current technical requirements for social network applications, we
designed our CONF framework, which is shown in Fig. 1. In general, CONF
will adopt a microservice architecture and will be composed of the following
components:

– Manager. This component is implemented as a REST web service that allows
CONF functions to be invoked by external clients. Each request is directed
to the appropriate component by the manager, which is responsible for coor-
dinating the individual components. Although the service of a single compo-
nent can be called directly, it is common to perform all operations through
the manager to simplify the interaction between sub components.

– Message broker. This component facilitates communications between the
manager and the different components. The message brokering is an architec-
tural pattern for message validation, transformation, and routing. It can help
compose asynchronous, loosely coupled applications by providing transparent
communications to independent components.
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– Application Specifications. Each social media application will store and mod-
ify its specifications in a social network. Here we need to define QoS/QoE
attributes for social network applications to check if they are satisfied for the
given scenarios and if there have some potential bottlenecks.

– Metrics Database. This component is used by application and infrastructure
agents to store predefined metrics. Here we plan to use time series databases
(e.g., Cassandra and InfluxDB) because they are capable of collecting large
amounts of data and are easy to provide monitoring services.

– Planner. This component encapsulates the infrastructure planning function-
ality. It will use several state-of-the-art scheduling and planning algorithms
to produce efficient infrastructure topologies based on application retirements
and constraints and will select optimal cost-effective virtual machines.

– Provisioner. This component will automate the provisioning of infrastructure
plans provided by the planner onto underlying infrastructure services. The
provisioner can decompose the infrastructure description and provision it
across multiple clouds, edge or fog infrastructure with transparent network
configuration.

– Deployer. This component deploys application components onto provisioned
cloud/edge infrastructures. The deployer is able to schedule based on net-
work bottlenecks and maximize the satisfaction of deployment deadlines. It
is also responsible for deploying blockchain applications and a monitor system
required to monitor the application as well as its underlying infrastructure
autonomously.

– Controller. This component will swiftly take measures to control and change
the infrastructure solutions based on the QoS metrics of social network appli-
cations and their infrastructures. These decisions shall be executed via the
whole process of planning, provisioning, and deployment when some actions
are needed to ensure system self-adaptability.

3.2 Development and Implementation

For CONF development and implementation, we will follow DevOps practices.
Contentious testing and integration tools (e.g., Travis CI) will be leveraged for
each development stage. We will define the external APIs with their documen-
tations at first. For example, the planner API returns a concrete plan with
resources (e.g., the number and size of VMs) based on the abstract plan for
the applications. Similarly, given a concrete application plan, the provisioner
API returns a document with provisioned resources and their specifications (IP
addresses, etc.). Moreover, the deployer API returns a list of application compo-
nents that need to be deployed based on the application specification documents
produced by provisioner. And, given a deployed application, the controller API
sets rules that will scale any part of the application (software components, VMs,
etc.).

Next, we will define some tests for the APIs together with a suitable test
environment. For each of the API endpoint, we will define tests to ensure the
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Fig. 1. The system architecture of CONF.

correct functionality of the API. Besides, it is necessary to define a simple rep-
resentative application with well defined behavior to make sure the REST API
performs as expected. And, a communication model should be defined between
the components and the manager. This communication model should include
action messages and status messages, in which the action messages are requests
from the manager to the components while the status messages are responses
about an action to the manager and will be available to users via the API.

Finally, we will implement each component of CONF one by one. More specif-
ically, Message Broker will configure and define message queues that satisfy the
communication model. Manager will implement the REST APIs and implement
message queue dispatchers for each service according to the internal message
model. Planner will implement parser to extract requirements from an abstract
application specification and implement algorithms to achieve the optimal infras-
tructure plan. Provisioner will define abstract API that encapsulates the func-
tionality of clouds (e.g. start, stop, delete and scale VMs) and implement drivers
for specific cloud providers (ExoGENI, Amazon, etc.). Deployer will implement
orchestration engine capable of configuring and installing any kind of social
network applications onto VMs or other provisioned resources. Controller will
implement error measuring and scaling decision making for changing the number
and type of resources to achieve self-adaptation.

4 Case Study

Car sharing is a new collaborative model providing an alternative solution to
private car ownership. This model allows customers to temporarily use a vehicle
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(on-demand) at a variable fee, charged depending on the distance traveled or time
used. This sharing economy example, which can be business-to-consumer (B2C)
or consumer-to-consumer (C2C), intends to satisfy transportation demand in
a sustainable way by lowering emissions per city (due to fewer vehicles) and
per vehicle (encouraging the use of electric or hybrid cars) and reducing traffic
and parking congestion. In this section, we will leverage car sharing as a use
case to show how our CONF solution meet the requirements for social network
applications.

Fig. 2. The car sharing application scenario of AGI.

4.1 Application Scenario

The car sharing use case scenario of AGI (Agilia Center) is shown in Fig. 2.
AGI is currently designing a new platform based on the blockchain and smart
contracts to face this recent market and meet the appropriate requirements of
the service. For this purpose, AGI deploys a social network platform for each
city, used by customers to interact, plan (where and when a vehicle is available),
hire a service, or share contents like photos and short videos. The platform allows
the deployment of smart contracts in blockchain and verifies their compliance. A
secondary system tracks the vehicle in service (by user) through a geo-location
monitoring system that verifies the time and location in real-time, and the clauses
of the contract. This business model suits car-renting companies too, as they use
social networks to manage their vehicle fleet according to information provided
by customers (e.g. for cleaning, repair, maintenance services). Moreover, the
customer service obtains valuable information through data analysis to improve
the offered service, forecast budgets, and procurement, design new services, or
manage issues with unsatisfied customers. A problem is the unpredictability of
the service that often leads to inefficient provisioning of resources. City events
or bad weather conditions are examples that involve unexpected service demand
peaks and high resource consumption, currently solved by over provisioning to
maintain a time-critical response.
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4.2 CONF Solutions and Benefits

The car sharing use case evaluates and takes advantage of the CONF impact in
the following steps, which is shown in Fig. 3: The owners of vehicles and potential
renting users together build a car sharing social network, in which the owners
can post their rental advertisements while the users can interact with owners to
find available vehicles. New users need to authenticate their identities to enter
this social network. At the same time, the car owners need to authorise AGI
to manage and track the real-time locations of vehicles. Next, the car sharing
social network collects and submits the user information, the geographical loca-
tion information of vehicles, and the application description data of the car rental
behaviour (e.g. renting time, the departure place and the destination) to CONF.
Based on these data, CONF calculates the optimal infrastructure support solu-
tion through planning algorithms and then triggers public/private cloud service
providers to launch corresponding virtualized infrastructures. Besides, some edge
resource stations that close to the geographical locations of the problem areas will
also be triggered to ensure fast recovery in the presence of faults or performance
drops. In this process, CONF has sufficient programmability and controllabil-
ity to provide flexible infrastructure solutions, and it also avoids vendor lock-in
problem for cloud providers in this process.

Then, CONF deploys car sharing blockchain applications on the cloud/edge
virtual resource to provide real-time Blockchain-as-a-Service. The blockchain-
based platform also supports penalties for contract breaches implemented in
the smart contract. Moreover, when new transactions occur, CONF will con-
tinuously monitor the real-time status of cloud/edge computing resources and
return the results to a metrics database. In this way, CONF can automatically
control and adjust the computing resources when some unexpected happened.
For example, when there are too much car rental transactions at a certain time
and the existing computing resources cannot satisfy the car sharing blockchain
applications, CONF will automatically start new cloud/edge infrastructures to
meet the needs. Finally, CONF returns data from the cloud and blockchain to
the social network so that all historical records of previous car rental transac-
tions can provide a reference for new transactions. In conclusion, the benefits of
CONF can be summarized as the following three:

Agile Infrastructure Planning and Provisioning. CONF provides opti-
mized planning and seamless provisioning of customized infrastructure across
multiple cloud providers while ensuring a smooth horizontal and vertical scaling
of the car sharing social network applications. More specifically, CONF optimize
infrastructures solutions for car sharing social network applications in cloud/edge
environments through the following actions: 1) Develop new algorithms for plan-
ning virtual infrastructure for a given social network application based on con-
straints on security, performance, locality and budget. 2) Develop an automated
infrastructure provisioning engine able to deploy car sharing applications on a
federated cloud infrastructure (over multiple sites if necessary). 3) Provide a
secure API for the other services to invoke and query the provisioning engine.
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Fig. 3. The sequence diagram of the CONF solutions in car sharing use case.

Pervasive Monitoring of Applications and Infrastructures. The moni-
toring services offered by CONF allowing systematic collection of information
about the runtime status of the car sharing applications and of their underly-
ing infrastructure and network. CONF also provide the analytic necessary to
process the monitoring information in real-time and to identify indicators of
reduced performance or faults through the following actions: 1) Provide an API
for application integration and monitoring of key quality attributes. 2) Develop
tools for monitoring the runtime state of the virtual infrastructure hosting an
application. 3) Deploy a monitoring database service alongside applications with
full integration.

Self-learning Autonomous Infrastructure Adaptation. CONF will imple-
ment an infrastructure control model for time and trust-critical car sharing appli-
cations that captures the dependencies between infrastructure programmability
and the applications performance. This autonomously adapts the infrastructure
in response to the threats identified via the CONF’s monitoring framework, or
to changes in requirements triggered by the other services through the following
actions: 1) Research of performance models for time and trust-critical federated
social network applications. 2) Development of a control model for adapting
the virtual infrastructure based on the interplay between the requirements and
the metrics provided via monitoring. 3) Provision of an agent-based service for
autonomous adaptation of the CONF-deployed infrastructure.
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5 Conclusion and Future Work

In conclusion, to improve the efficiency for customising, provisioning and control-
ling distributed cloud virtual infrastructures required by time-critical social net-
work applications, CONF aims to deliver technologies providing a self-adaptive
and self-monitored infrastructure over orchestrated networked services bringing
two benefits. First, it will optimize QoS performance metrics (e.g. distribution
time, latency) with proximity-based geo-profiling through seamless provisioning
of a customised infrastructure across multiple geographical locations. Second, it
will ensure fast recovery in the presence of faults or performance drops through
rapid deployment and/or migration of application resources close to problem
areas. As we mentioned before, the CONF solution is implemented in the ARTI-
CONF project. Currently, some features of CONF are still under development.
CONF will work with other components such as the Semantic Model with self-
adaptive and Autonomous Relevant Technology (SMART), Trust and Integra-
tion Controller (TIC), and Tools for Analytics and Cognition (TAC) to provide
integrated services of ARTICONF. For the future work, we will focus on con-
tinue to optimize the service components of CONF and design better algorithms
to provide better infrastructure services for social network applications.
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{dong.nguyen10,daniela.zaharie,dana.petcu}@e-uvt.ro

2 Institute e-Austria Timişoara, Timişoara, Romania

Abstract. A streaming architecture is aiming to transport, process and
store data and acts on real-time or nearly real-time for Big Data analytics
and Internet of Things (IoT). The main requirement for such architec-
ture to achieve its aim is the elasticity. Cloud computing is an excellent
solution to satisfy the elasticity requirement. Its auto-scaling processes
are allowing to automatically acquire or release resources according to
the arriving workload. However, the fluctuation in scaling up and down
resources is still not fully solved. We propose a novel approach called
Fuzzy Deep Reinforcement Learning to scale the resources effectively
and efficiently. The experimental results show that our proposed app-
roach outperforms the existing approach based on Fuzzy Q-Learning.

Keywords: Cloud computing · Auto-scaling · Fuzzy Logic ·
Reinforcement Learning

1 Introduction

The rise of social media, IoT and multimedia have yielded an enormous data flow
in term of volume and data types [17]. With the growth rate in the volume of
data, an appropriate platform for data storage and analysis the data is needed.

The streaming architecture is widely used for Big Data analytics and IoT.
The data is transported from data sources for processing, filtering, enriching and
storing. The elasticity is a strong requirement for such architecture.

Cloud computing is a computing paradigm offering services to users on
demand [27]. It is a promising solution to facilitate Big Data storage and pro-
vide the requested processing capacity [21]. One of the key features in Cloud
Computing is the elasticity allowing the resources to be acquired and released
dynamically. However, deciding on the appropriate amount of resources to be
provisioned/de-provisioned is still problematic. An auto-scaling process is able
to scale the amount of resources automatically in response to the change of
workload to fulfill the Quality of Service (QoS) parameters namely, minimizing
response time or cost for availability. In this work, we refer to the resources as
being Virtual Machines (VMs) and the workload is referred as inputs for a given
system [11].
c© Springer Nature Switzerland AG 2020
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There have been many approaches proposed recently for auto-scaling. Their
methodologies are related to Threshold-based rules, Time series analysis, Queu-
ing Theory, Control Theory, and Reinforcement Learning (RL). Unfortunately,
the threshold-based rules can lead to instability with the high variation in work-
load. The time series analysis is utilized by predicting workload or resources
but the uncertainty of predictions is a major obstacle. Queuing theory can be
used as a reactive or proactive approach, but a deep understanding of systems
is required, and its assumption is unrealistic. Control theory is appropriate for
workload with low variation, but it will fail in case of a sudden burst in workload.

RL is a solution for auto-scaling problem in the case when the various types
of workload are involved. RL can be combined with Fuzzy Logic Control in
the self-adaptive mechanism: RL can tune the conclusions of Fuzzy Inference
System (FIS) and Fuzzy Logic can generalize the state space in RL. Fuzzy Q-
Learning (FQL) approaches have been applied successfully in capacity control
[25] and auto-scaling problem [6] on clouds. However, the fluctuation in provi-
sioning resources with the high variation in workload is still not fully solved.

The aim of this study is to investigate the auto-scaling efficiency of the FQL
approach for a streaming architecture based on Cloud and propose and investi-
gate the benefits of another approach using Fuzzy Logic and Deep RL1.

The rest of this paper is organized as follows. The next section discusses
the related work. Section 3 discusses the Big Data streaming architecture, FIS,
and RL. The FQL and the proposed approach for auto-scaling are introduced
in Sect. 4. Section 5 is about experimental setup and simulations. Finally, the
conclusions are in Sect. 6.

2 Related Work

The auto-scaling approaches can be classified according to criteria such as archi-
tectures, policies, and techniques.

The architectures can be centralized or decentralized [2]. Most of the
researches and business solutions focus on the centralized architecture. In cen-
tralized architectures, there is only one controller in charge of provisioning and
de-provisioning the resources. Whereas, decentralized architecture has many
controllers, as in [10,12]. The auto-scaling action policies can be grouped into
two classes: reactive and proactive [23]. The reactive one uses the last value
obtained from the environments for the system to react. The proactive systems
take the predicted demands to make the decisions. In term of the techniques,
the approaches are divided into five groups: Threshold-based rules, Time series
analysis, Control theory, Queuing theory, and RL [2,23].

The threshold-based rules are popularly used by cloud providers namely
Amazon EC2 or RightScale. This technique can be seen as a reactive approach.
The rules contain conditions defined based on several metrics namely request
rates, CPU loads, and average response time. This approach is very intuitive

1 https://github.com/doandongnguyen/autoscaling.

https://github.com/doandongnguyen/autoscaling
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and simple but it requires a good knowledge of systems to be setup. The work in
[15] uses threshold-based rules and RL for horizontal scaling. The authors also
propose a method to prevent oscillations by using the cool-down time.

In auto-scaling, time series analysis is used to detect the patterns in workloads
and forecast future values. The authors of [28] used an Auto-Regressive model to
predict workload. An optimization algorithm uses the response time estimated by
the predicted workload to compute the best resource allocations. The algorithm
considers the SLA violation, configuration and leasing resources. In [18], a sliding
window of history values is used as inputs of a Neural Network (NN) to predict
future values to decrease the SLA violations by initializing the VMs boot in
advance for the demand in resources. The main drawback of time series analysis
is the reduced accuracy of predictions that is highly dependent on the workload
pattern, and history windows [23].

Queuing theory is a mathematical study for queues or waiting lines. The met-
rics used in queuing are arrival rate, waiting time or service rate. The Queuing
Network is used in [31] to model applications. Based on the predicted workload,
the number of servers for each layer can be calculated. In [4], a queuing model is
developed for a Cloud-hosted application to estimate the resource based on the
parameters such as a given workload and the mean response time. The queuing
theory-based approaches are invalid for complex and real systems because they
usually do not satisfy the stationarity assumption [5]. Besides, it requires a good
knowledge of systems to be modelled [13].

Control theory enables the dynamic systems to maintain the output or con-
trolled variable close to the desired value by adjusting the input or manipulated
variable. The manipulated variable can be the number of VMs, and the con-
trolled variable can be the SLA value, CPU load and so on. Control theory is
used as a reactive approach, but it can be proactive if it is combined with a
predictive model. In [3] a hybrid controller is proposed for adaptive control to
scale up and down, in which the workload is estimated by using a queuing model.
In [9], an adaptive controller is combined with a statistical model to predict the
performance of systems and minimize the number of resources. The use of con-
trol theory as the reactive approaches are suitable in case of the slow change in
workload. For proactive approaches, finding a reliable predictive model is still a
challenge [23].

RL is a type of machine learning where an agent is learning by interacting
with an environment to maximize its rewards. In the context of auto-scaling, an
agent is considered as an auto-scaler. The agent makes a decision to scale based
on the current state that can be the workload or the current number of VMs.
The popularly used approaches are Q-Learning algorithm and SARSA. In [30],
a SARSA approach is used for resource allocation, in which the workload and
the number of allocated VMs are considered as the states. The authors of [6]
propose an approach for horizontal scaling in Openstack where Q-Learning tunes
FIS conclusions. The used workloads in experiments are bursting, variation and
fast growth patterns. The paper [24] reports the use of Deep RL to learn how to
allocate and schedule computer resources to waiting jobs in order to minimize
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Fig. 1. The streaming architecture and the workload evolution

the average job slowdown. The difficulties in RL approach are time-consuming
in training and the exploration-exploitation trade-off.

The fluctuations in provisioning (or oscillations) comes from scaling the
resources up/down too frequently. That would lead to a negative impact on
the systems. The main reason is due to the high variation in workload. Most of
the work focused on the effectiveness of auto-scaling to ensure the QoS param-
eters namely minimizing the response time or cost. In this paper, we propose a
novel approach aiming to tackle these difficulties of RL and the fluctuations of
auto-scaling with the high variation of workload.

3 Theoretical Background

3.1 Big Data Streaming Architecture

A streaming architecture is an architecture that has a capability of ingesting
the incoming data [7]. The architecture is illustrated as in Fig. 1a. The data are
transported from Data Source by a Shipping part to a message broker or buffer
layer. The roles of the buffer layer are decoupling the architecture between the
shipping part and the processing part and ensuring that the data will not be
lost. The processing part has several roles such as transforming, validating and
enriching data. The ELK architecture (ElasticSearch, Logstash and Kibana) is
an example of a streaming architecture which is used in our monitoring platform
[14].

There are some existing obstacles in the streaming architecture. On one hand,
a problem is the system degradation and the loss of incoming data due to the
bottleneck at the broker. The processing part usually requires a lot of comput-
ing resources and is time-consuming. This might lead to the explosion for the
buffer due to accumulating data over time when the incoming data exceeds the
processing capacity of the system. On the other hand, if the incoming data is
low, it requires few processors to consume the data. Hence, there is a need for
a mechanism to acquire and release automatically the computation resources
according to the change in incoming data.
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3.2 Fuzzy Inference Systems

In the context of RL, Fuzzy Logic can be used as an approach to cope with
continuous spaces of states and actions. On the other hand, in the context of
Fuzzy Logic, machine learning can be used to tune fuzzy controllers [20].

Let x be the input variable, x = (x1, x2, . . . , xM ), and o the output variable
o = (o1, o2, . . . , oK). A rule Rj , j ∈ J in a FIS has the following form:

Rj : IF (x1 is L1
j ) . . .AND (xi is Li

j) . . .AND (xM is LM
j ) THEN a = oj

where Rj is the j-th rule in the rule base, Li
j is a fuzzy label (linguistic term)

of the input variable xi and oj is a vectorial output variable.
The first step in a FIS is to map the input variables into fuzzy sets by the

membership functions μLi
j
(x). The fuzzy set values are computed corresponding

to the fuzzy labels. After that, the degree of truth values for a given input vector
x is calculated as in Eq. 1. Finally, based on the degree of truth values, the output
will be calculated and tuned by using RL (described in Sect. 4.1).

αj(x) =
M∏

i=1

μLi
j
(xi) (1)

In our proposed approach, we use Fuzzy Logic as a data representation for the
input variables. Therefore, we are interested in the degree of truth values.

3.3 Reinforcement Learning

RL [29] is based on a trial-and-error process. At the time step t, an agent observes
a state st, then it chooses an action at to interact with the environment to get the
next state st+1 and a reward rt+1. The objective of the agent is to find a policy
which the optimal action (a) is mapped to the state (st) in order to maximize
the expected cumulative discounted reward:

∑∞
k=0 γkrt+k+1, where γ ∈ [0, 1] is

a discount factor that determines the relative importance of future rewards.
The policy is based on the function Q(st, a), a so-called Q-value function,

that represents the goodness of an action a taken in state st. The most used
approach to construct the Q-value function is the Q-Learning algorithm.

4 Algorithms for Auto-scaling

4.1 Fuzzy Q-Learning

Fuzzy Q-Learning (FQL) [20] is a method in which the conclusions of FIS are
tuned by using RL. FQL has been successfully applied to auto-scaling prob-
lems [6]. Therefore, we use FQL as a baseline. The algorithm is described in
Algorithm 1.

The RL formulations are defined as follow:



Autoscaling for a Streaming Architecture with Fuzzy Deep RL 481

(a) Workload (b) Buffer

Fig. 2. Membership functions for Workload and Buffer

State Space. Fuzzy Inference maps the set of inputs to a set of outputs through
fuzzy rules [6]. In our case, the input is x = (w, b), where (w) is the workload and
(b) is the occupied buffer percentage. The membership functions will partition
the state space of each input variable into fuzzy sets. The linguistic terms for
workload (w) are {very low, low, normal, high, very high}, and for the occupied
buffer (b) are {low, normal, high}. The membership functions are triangular
and trapezoidal as in Fig. 2 and they have been selected by fine-tuning and by
using prior knowledge on the data. Consequently, there are 15 states by fully
combining membership functions of the variables w and b.

Action Space. An action specifies a change in the number of VM instances and
the possible values are in {−2,−1, 0, 1, 2} corresponding to decrease/increase (1
or 2 VMs) or keep the number unchanged. An example of a rule is:

IF w is high AND b is high THEN a = 2

where a is the control signal.
Reward. We consider two criteria to design the reward function rt. Firstly, it is
the occupied buffer percentage violations. The purpose is to keep this percent-
age in a safe zone which can be in a range [low threshold, high threshold] such
as [30, 70] or [40, 60]. Another criterion is to minimize the number of resources.
Thus, following [6], the reward function can be defined by combining these cri-
teria as in Eq. 2:

rt = w1 · BUt + w2 ·
(

1 − vmt

vmmax

)
(2)

where BUt is estimated using Eq. 3, vmt is the current number of VMs and
vmmax is the maximum number of VMs. w1, w2 are weights to indicate the
relative importance of each term in the reward function. Their values are in
[0, 1] and w1 + w2 = 1.

BUt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−(b(t) − hi thres)/(bmax − hi thres) if b(t) > hi thres

−2(b(t) − hi thres)/(hi thres − lo thres) if b(t) ∈ [mid thres, hi thres]

(b(t) − lo thres)/lo thres if b(t) < lo thres

2(b(t) − lo thres)/(hi thres − lo thres) if b(t) ∈ [lo thre, mid thres]

(3)
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Algorithm 1. FQL Algorithm
Require: Discount factor γ and learning rate η
1: Initialize q-values table, q[i, k].
2: Observe the current state, st.
3: Choose an action,ai for each rule for state st based on ε − greedy policy

ai = argmax
k

q[i, k] with probability 1 - ε

ai = random({1, 2, . . . , K}) with probability ε
4: Select the rule i∗ for which αi∗(st) (in Eq.1) is maximal and set the action a to ai∗

5: Approximate the Q function using:
Q(st, a) =

∑

i∈J

(αi(st) · q[i, ai])

6: Execute action a and observe the reward, rt+1, and the new state st+1. The value
of the new state st+1 is calculated by:

V (st+1) =
∑

i∈J

αi(st+1) · max
k

(q[i, k])

7: The error signal is calculated as following formula:
ΔQ = rt+1 + γ · V (st+1) − Q(st, a)

8: Update the q-values:
q[i, ai] ← q[i, ai] + η · ΔQ · αi(st)

9: Set the state st to the new state st+1

10: Repeat from step 3 until converged

where b(t) is the current value for the buffer, bmax is the maximum value (100),
lo thres, hi thres is the low threshold and high threshold to be controlled. In our
experiments, we chose the range [30, 70]. The mid threshold value is 50. The
computation of BUt is a refined version of that proposed in [6].

4.2 Deep Q-Network

The drawback of Q-Learning method is that it cannot cope with a large number
of states. To overcome this problem, there are some methods to approximate
the Q-value function such as Support Vector Machines and NNs. The Deep Q-
Network (DQN) [26] is one of the most widely-used methods. Recently, there
have been many new variants aiming to improve the DQN performance.

For the basic DQN, the Q-values tend to be overestimated. In the Double
DQN [32], a target network is used to calculate the Q(st+1, a) and then updated
with the trained network after a given step. The ε − greedy policy is the most
used method for exploration-exploitation in RL. The ε value is decreased over
time from 1.0 to a small value such as 0.1 or 0.05. This method is efficient for a
simple environment, but it is still hard to control in the learning process. In [16],
a method is proposed for exploration-exploitation. The idea is to put noise into
the fully connected layers of the NN and then adjust the network weights and
biases using back-propagation during training. In dueling DQN [33], the Q(st, a)
is divided into two quantities: the state value V (st) and the advantage of the
action A(st, a). Therefore, dueling DQN takes the features and process them in
two paths: one path is to predict V (st) and the other is to predict individual
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advantage value A(st, a). Then, Q(st, a) is the sum of V (st) and A(st, a) [22].
Another improvement of DQN performance is obtained by using the Distribu-
tional DQN [8]. The Q-values are replaced with a probability distribution.

4.3 Fuzzy Deep Reinforcement Learning

In this subsection, we describe our Fuzzy Deep RL method which is based on
using Fuzzy Logic to generate features from data and on using the recent tech-
niques mentioned previously to improve performance.
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Fig. 3. Fuzzy deep RL framework

The framework of the proposed approach for auto-scaling in a streaming
architecture is depicted as in Fig. 3. The monitor part is to collect the metrics
including the current workload, percentage of occupied buffer values and the
number of VMs, from the streaming architecture. The fuzzifier is responsible with
the transformation of the crisp values (w, b) into degree of truth values based
on the predefined membership functions. The DQN will take the transformed
values as an input and then, make decisions. The RL elements are defined as
follow:

State Space. The workload and occupied buffer values can be considered as the
time series data. Using a sliding window of history values is a common technique
to process time series data for forecasting and classifying. Therefore, instead of
taking a single value for each input variable as in FQL algorithm, we use N
recent past values as the sliding window for both workload w and buffer occupied
percentage b. These values will be fuzzified, thus the result is a L × N matrix
containing the degrees of truth values (Eq. 1), where L denotes the total number
of rules. Using Fuzzy Logic to generate meaningful features also can be applied
for time series classification and prediction.

Action Space. We also consider five actions {−2,−1, 0, 1, 2} as in Sect. 4.1.

Reward. The reward function is designed as in Sect. 4.1.
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DQN Model. We use a Deep NN as in Fig. 3 with several Convolution 1D and
MaxPooling 1D layers to extract features from the generated states. These layers
are used popularly for time series forecasting and Natural Language Processing.
We also use the Noisy layers, Double, Dueling and Distributional DQN in our
model. The combination of the variants in DQN has been proved to improve
significantly the performance [22].

5 Experiment Settings and Results

5.1 Experiment Settings

Simulation Tool. The workload used in the experiment is the Clarknet Trace [1]
as in Fig. 1b that describes the number of HTTP requests to the servers. This
workload is highly varying in time.

Our simulation tool for the streaming architecture contains three parts. The
first part is the generator which is responsible to generate the workload and
ingest to the buffer. The generator is considered as the shipping part in the
streaming architecture. The buffer or message broker collects the incoming data.
The last part is the processor which will take data from the buffer and process
it.

The amount of processed requests follows a Beta distribution with parameters
a = 20 and b = 2 [19]. The maximum number of VMs in the simulation is 5.

The simulation tool also considers the latency for scaling up decisions. Typ-
ically, it takes 5 − 10 minutes to turn on a VM; therefore, after 10 iterations
(one iteration corresponds to one minute), a new instance will be brought up.
In addition, the cool-down time is set to 10 for each scaling decision.

A monitoring part is used to record the data when conducting experiments.
The recorded data includes the workload, occupied buffer percentage and current
number of VMs. The models will take these data from the monitor to learn but
the taken workload data will be smoothed by a sliding window with a size of 5.

Parameter Settings for Algorithms. For FQL algorithm settings, we set the dis-
count factor γ = 0.99 to take into account on future rewards and the learning
rate η = 0.1 to have less impact on the recent one. For the ε − greedy policy,
we set the maximum value for ε to 1.0 and decrease to the minimum value of
0.1 since we consider less fluctuations in provisioning VMs. The learning process
will be stopped when the changing in Q-values table is small or after enough
iterations (the maximum iteration value is 280 was used).

For the Fuzzy DQN settings, the discount factor γ is chosen to be 0.99. We
set the window size for the number of recent series values, N , to 10. In the DQN
architecture, we used two Convolution 1D layers with 32 filters (the kernel size
of 2 for the first layer and 3 for the second), two MaxPooling 1D layers with
the kernel size of 3 and stride size of 2 and Noisy layers with the size of 128
for exploration. Also, we utilize the Double, Dueling and Distributional DQN.
The learning process also will be stopped when the mean reward is high enough
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(the threshold value of 140 was used) or after enough epochs. The used param-
eters have obtained by fine-tuning during conducting experiments.

We choose the values for the weights w1 = 0.8 and w2 = 0.2 in Eq. 2 to put
more importance on the buffer percentage term.

5.2 Experimental Results

Figure 4 and 5 show the behaviors of the proposed approach and of the FQL
model after training with the Clarknet set and the mean of 50 recent cumulative
rewards after training, respectively. It is clear that the Fuzzy DQN outperforms
the FQL model in term of scaling behavior (Fig. 4a and 5a) and training time
as the Fuzzy DQN converges much faster than the FQL (Fig. 4b and 5b). Fur-
thermore, the mean rewards during FQL model training have fluctuations while
in the case of Fuzzy DQN, they are much smoother.

Although the occupied buffer percentage is in the control range, the resources
are scaled frequently in the FQL approach due to the high variations of workloads
and the dynamic of systems namely, the delay in scaling VMs, in which the
monitor does not record the metrics during turning on VMs. Therefore, the time
axis in Fig. 5a is less than the one in Fig. 4a. Furthermore, Fuzzy Logic is to divide
the input values into parts, so it can be seen as a smoothing approach to make
the workload less fluctuated, but it seems to be insufficient for FQL approach.
The results on FQL model, reported in [6], have been obtained for data with
much less frequent changes in the workload which might be unrealistic.

On the contrary, by taking series of workloads and buffer values, the Con-
volution filters used in the Fuzzy DQN model are able to extract appropriate
features to allow the DQN to learn well the particularities of the data. Therefore,
the scaling behavior of Fuzzy DQN approach is more stable than FQL approach.

In a real world context, we can use the original workload to train the model
without changing or tweaking it; so the setup and training time can be reduced
with respect to those corresponding to the case when the model in [6] is used.

(a) Fuzzy DQN scaling behavior (b) Mean rewards vs. Iterations

Fig. 4. Fuzzy DQN results
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(a) FQL scaling behavior (b) Mean rewards vs. Iterations

Fig. 5. FQL results

6 Conclusions and Future Work

In this paper, we propose a novel approach applied in auto-scaling for a streaming
architecture. The results show that our approach outperforms the existing one
with respect to the training time, setup cost and scaling behavior. As in the
common case of RL, finding optimal configurations and convergence thresholds
is still a challenge also in the proposed approach. The hyper-parameters involved
in the DQN need to be tuned carefully. Also, designing the reward functions is
nontrivial because the parameters used in the rewards functions also need to be
tuned. However, we believe that the proposed approach is a promising solution
not only for auto-scaling but also for scheduling problems.
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Abstract. Data that often contain unchanging records is becoming
increasingly important. Many data sources, such as historical archives,
sensor readings, health systems, and machine logs, do not change fre-
quently but are constantly increasing. For this reason, the need to pro-
cess such datasets more quickly has emerged. Bitmap index that can
benefit from multicore and multiprocessor systems is designed to pro-
cess data that has grown over time but does not change frequently. It
has a well-known advantage, particularly in low cardinality data queries.
Data such as gender, age, marital status, postal code and even date
with low cardinality occupy an important place in datasets. Further-
more, the bitmap index using the compression algorithm can be applied
efficiently even if the data has a high cardinality. In this study, bitmap
index is introduced to improve queries and it has been shown to perform
up to 20x faster queries with an appropriate encoding for data contain-
ing frequently unchanging records in a performance comparison against
a commonly used relational database system.

Keywords: Data retrieval · Bitmap index · Bitmap encoding ·
Parallel query · Query optimization · Multicore

1 Introduction

Nowadays, data containing records that are not frequently changed are becom-
ing increasingly important. Many sources produce data that steadily grove but
do not change frequently. Health systems, Internet of Things (IoT) devices, Log-
ging Systems produce data progressively. In general, these generated data are
rarely changed. However, over time, accumulating data produce a need for faster
processing.

The most common process for analyzing large data is to get a small subset
of the data for further analysis. This small part, which is usually obtained by
queries, opens the door to the explored answer. It is common practice to use
an indexing technique to speed up queries. Database systems designed for the
transactions use indexing techniques such as B-tree and hash-based indexes to
increase the query speed. One of the noteworthy features of the transactional
data is that it frequently changes, and hence the corresponding indexes must be
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 493–505, 2020.
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updated quickly. The use of frequently updatable indexes, therefore, has made
significant contributions to database systems.

Bitmap index has been used successfully in scientific domain due to the major
characteristics of scientific data such as being written once and not changing
frequently [1–3]. In addition, the bitmap index provides very high performance
because it can be paralleled [4,5]. Bitmap index can use parallel processing
to expedite indexing and queries. This is achieved by breaking the data into
non-overlapping subarrays. MPI and OpenMP can be used for communication
between processes depending on the use of shared memory. For data that are
not frequently changed, bitmap indices are efficient because they benefit from
the stable structure of data [6,7]. A bitmap index processes queries faster than
a B-tree index, but it takes longer to modify a bitmap index when an existing
record is updated. Adding new records to a bitmap index usually takes less time
than updating a B-tree index because the time to add to bitmap index is a linear
function of the number of new records. However, the time required to update
B-tree index is always higher because of sorting [8]. For these reasons, bitmap
indexes are often more suitable for data that are not frequently changed.

Bitmap index technologies are very efficient because queries can be performed
using bitwise logical operations that are very efficient at the hardware level. The
advantages of using bitmap indexes are greatest for columns where the number of
distinct values is smaller than the number of rows in the table. This ratio is called
the degree of cardinality. However, thanks to the compression techniques, the
bitmap index can also provide good performance in higher cardinality columns.

We use FastBit [9], an open source software tool that uses Word-Aligned
Hybrid (WAH) compressed bitmaps to support SQL-like queries. FastBit ’s
design options have proven to be effective when compared to other bitmap
indexing methods [10]. Developed in Lawrence Berkeley National Laboratory
(LBNL), FastBit is software that implements most of the encoding schemes, bin-
ning methods, and compression strategies. It supports basic encoding schemes
such as equality, range, and interval encoding. It also uses multi-level and multi-
component encoding methods that increase query efficiency while maintaining
theoretical space-time optimization.

The main contribution of this paper is the introduction of an algorithm to
use the most appropriate bitmap encoding in the query process according to
the most commonly used query type. The performance of the queries varies
according to the bitmap index encoding scheme. Choosing the most appropriate
encoding provides a great benefit in the performance of the queries. Therefore,
we have created an algorithm to generate and use indexes using the optimal
bitmap encoding scheme. We applied bitmap indexing to the Archive System,
which contains more than 3 million unique documents. The number of documents
is constantly increasing due to the addition of new documents despite the fact
that the documents in the archive are not changed when they are added.

The rest of this article is organized as follows: Sect. 2 describes the related
work. Detailed information about the bitmap indexing is presented in Sect. 3.
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We state the experimental methodology in Sect. 4. Experiments and results are
discussed in Sect. 5. We conclude in Sect. 6.

2 Related Work

In the literature, we encounter several studies using the bitmap index for dif-
ferent purposes. Stockinger et al. presented a strategy to effectively respond to
joint queries on structured data and text data. Using an efficient compression
algorithm, bitmap indexes were effectively applied to hundreds of thousands
of terms over millions of documents. In the performance comparison, proposed
indexing is claimed to be much faster than the full-text index utilized by a com-
monly used database system [8]. Madduri and Wu presented a parallel strategy
to parse raw RDF data, making dictionaries of unique entities, and generate
compressed bitmap indexes. In the study, bitmap indexes were used to effec-
tively respond to SPARQL queries that simplify join evaluations. It was shown
that the bitmap index-based approach runs faster than various SPARQL queries
on RDF datasets [12]. Stockinger et al. evaluated the performance of the bitmap
index and MySQL database index during the analysis of the e-mail traffic of the
Enron dataset. Bitmap indexing provided much more performance than MySQL
indexing. The join results of several tables revealed that the performance of
the query increased significantly [13]. Singh and Agrawal designed an interactive
focused crawler, a special purpose search engine that aimed to search the relevant
pages. Bitmap indexing using WAH compression were utilized to implement the
interactive focused crawler that calculated the relevance of the web pages [14].
Indexing high-speed streams of network measurement data in real-time creates
significant performance challenges. Fusco et al. introduced algorithms for gener-
ating compressed bitmap indexes in real time on GPUs and showed that indexing
throughputs of up to 185 million records per second could be achieved. Thus,
the study claimed that achievement of wire-rate multi-10-Gbps packet indexing
using commodity hardware was very likely [15].

A bitmap index is also used for data warehouse systems to improve per-
formance. A data warehouse system often contains unchanging data. Prakash
and Prathap studied different indexing strategies for data warehouses. With the
experimental results, they concluded that the bitmap indexing technique was
the appropriate choice for the data warehouse query operation [16]. Ni et al.
proposed a new integrated index model for data warehouses. The core of the
approach was an integrative index, taking the advantage of a bitmap index,
b-tree index, an inverted index. The inverted index embodied by the bitmap
was adopted for fast results with intersection operations. In the meantime, the
tree structure was used to speed up the range queries [17]. In a data warehouse,
Abdulhadi et al. measured the performance of the Bitmap indexes by comparing
it with the B-tree indexes using the Oracle environment that utilizes B-tree as
the default indexing. When the column had low cardinality, they showed that
bitmap indexes were more efficient than B-tree indexes. In addition, bitmap
indexes provided better performance than B-tree indexes when there was a com-
bination of multiple conditions with and/or operators [18].
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3 Bitmap Index

Bitmap indexes can provide very efficient performance for queries because of the
fast bitwise logical operations over the bitmaps efficiently supported by hard-
ware. Hardware-enabled bitwise logical operation is one of the most important
features of using bitmap index. In addition, the results of bitwise logical oper-
ations can be effectively combined. Since bitwise logical operations on bitmaps
create a new bitmap, the results of the logical operations can also be processed
by applying bitwise logical operations.

Bitmap indexes are very effective for queries that contain multiple conditions
in a where statement. An equality query with multiple conditions is performed
by applying and operation to the resulting bitmap vectors of each condition.
For example, finding the answer that corresponds to a query of (where A = 1
and A = 2) is only a matter of applying and operation to the two relevant
bitmaps. Range or interval queries are executed by first applying or operation
to all bit vectors specified by each range or interval condition and then applying
and operation to the answers.

Each bit in a bitmap corresponds to a row id. If a bit is set, it means that the
row with the corresponding row id has a matching value. A bitmap index provides
the same function as a normal index because a mapping function converts the bit
position to a row id. Nevertheless, there is a significant deficiency of bitmap index
such that index size increases linearly with the number of distinct values. One
of the procedures controlling the increase in index size due to high cardinality,
and consequently the deterioration of query performance, is encoding.

Bitmap encoding is important for efficient indexing, which creates bitmaps to
reduce the total number of bitmaps or the number of bitmaps needed to answer
a question. There are three types of basic bitmap encoding methods: equality
encoding, range encoding, and interval encoding. Equality encoding is the most
basic bitmap encoding. The number of distinct values, called as cardinality,
defines the number of columns. A bit for an attribute value is typically added to
a bitmap vector that contains as many bits as the cardinality. Table 1 illustrates
equality, range and interval encodings for 8 records. RID is the row identifier
for the values of the attribute. The size of the equality encoding depends on the
cardinality value c. Hence, each line requires c number bitmaps. If an attribute
has ni possible values, the bitmap size becomes

∑c
n=1 ni without any compres-

sion. The equality encoding is known as a very efficient method for an equality
query because the query needs to look at only one bitmap. For example, A = 1
requires to check whether bitmap 1 is set to 1. Nonetheless, the size of the index
can be a burden for high cardinality attributes. The second basic encoding tech-
nique is the range encoding, optimized for a one-sided query such as A ≤ 1.
The size of the bitmap index for an attribute is

∑c
n=1(ni − 1), which is less

than equality encoding. A range query takes at most 1 bitmap processing for a
range encoding, which is similar the equality queries on the equality encoding.
The third basic encoding technique is the interval encoding to process efficiently
two-sided queries such as 2 ≤ A ≤ 5 [19]. Each bitmap of interval encoding is
calculated by using range encoding bitmaps; bitmap of ith bit in the internal
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encoding is the result from xor operation on the ith range encoding bitmap and
i+ (�C/2� − 1) range encoding bitmap. Interval encoding guaranties evaluating
any interval queries by accessing at most 2 bitmaps. It also reduces the size of
bitmap index almost by a factor 2 comparing to the previous basic encoding
schemes.

Table 1. A sample bitmap indexes using equality, range and interval encoding

RID A Equality Range Interval

5 4 3 2 1 0 4 3 2 1 0 2 1 0

1 2 0 0 0 1 0 0 1 1 1 0 0 1 1 1

2 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1

4 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1

5 4 0 1 0 0 0 0 1 0 0 0 0 1 0 0

6 3 0 0 1 0 0 0 1 1 0 0 0 1 1 0

7 2 0 0 0 1 0 0 1 1 1 0 0 1 1 1

8 4 0 1 0 0 0 0 1 0 0 0 0 1 0 0

Chan and Ioannidis discuss the optimality of encoding schemes [19]. While
the range encoding is optimal for the range query, it indicates that the equality
encoding is best suited for equality queries for all cardinality values. However,
the range encoding is not optimal for an interval query. The study compares
equality, interval and range queries. It is stated that the range encoding is not
effective for an equality query. However, it provides the best results for one-sided
range queries. Interval encoding is the most space efficient between three basic
schemes that require almost only half the number of bitmaps of the other two
schemes.

Each bitmap index is essentially an attribute representation using a num-
ber of bits that are specific to an encoding scheme. This observation resulted in
new encoding schemes to reduce index size and/or improve query performance.
Almost all proposed encoding methods in the last decade can be classified as
multi-level encoding or multi-component encoding. In multi-component encod-
ing, attribute values are divided into several components. Each component that
can be of different size is encoded using one of the basic encoding schemes.
Single-component encoding produces the largest bitmap size similar to the basic
encoding scheme. In contrast, the size of the bitmaps decreases when the num-
ber of components increases. In an earlier study of Chan and Ioannidis [20],
the number of optimal components was 2. However, this may be different when
using compression. Instead of fixing the number of components, the size of each
component can be set to a value. For example, the size of each component can
be fixed to a value of 2. This special case is also known as binary encoding and
bit-sliced encoding. It constructs the least number of bitmaps, which requires
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�log2 c� bitmaps. The disadvantage of binary encoding is the need to access each
bitmap to answer a question. Therefore, responding to a query using a binary
encoding index may take more CPU time than other indexes. Another encoding
is multi-level coding, worth mentioning [21,22]. Each level can be encoded using
one of the three basic encoding schemes. The finest level can have a distinct value
that results in the creation of a precise bitmap index for each value. Although
the finest level can always answer any question, coarse levels can be used to
answer a query without accessing the finest level. This results in a reduction in
the amount of work for a query.

4 Experimental Methodology

We applied bitmap index using optimal encoding to an archive system that
contains more than 3 million unique documents. New records that were added
continuously had not been changing after they were added. We conducted the
experiments on Ubuntu 16.04 LTS virtual machines having 8 Cores, 16GB Mem-
ory, and 2 TB storage. PostgreSQL 9.6 were used for the experiments. If more
computing power was needed, cloud environment could be used with parallel
processing procedures [23–25].

We first compared the performance of bitmap index with the PostgreSQL
environment. Then, the performance comparison of bitmap indexes created by
using different encoding schemes were investigated. Equality encoding, range
encoding, interval coding and interval-equality multi-component encoding were
used to create bitmap indexes for each database attribute. Specifically, the equal-
ity query was applied to the location attribute, and the range and interval queries
were applied to the date attribute. A combination of queries such as the equality
query for the location and the interval query for the date has also been tried. We
created an algorithm that uses optimal encoding by monitoring the frequency
of query types of each attribute and evaluating the query performance of the
relevant indexes generated. Finally, we compared the number of queries that can
be done using a bitmap index, B-tree index, and scanning within a second to
show the improvement that our contribution brings.

5 Experimental Results

Firstly, the performance comparison of the equality query using scanning the
whole data, the B-tree index and the bitmap index was conducted to show the
benefit of using bitmap index, shown in Fig. 1. The query that uses the B-tree
indexes has been found to work much faster than the query that scans the data.
Queries that use a bitmap index generated by an equality encoding are better
than queries using the PostgreSQL database either with a B-tree index or with-
out an index. We can clearly see the advantage of the bitmap index against the
B-tree index using the same hardware. The advantage lies in hardware support
for bitwise logical operations, which are used very often by bitmap indexing and
in parallel execution of queries. A bitmap index can be divided into subarrays
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Fig. 1. Comparison of an equality query.

so that each subarray can be processed by a separate core or processor. The
bitmap index execution permits the use of multiple cores or processors. There
are many encoding schemes to generate a bitmap index. Equality, range and
interval encoding are the basic encoding schemes. In addition, the multi-level
and multi-component encodings can be formed as a combination of these three
basic schemes. The difference in the number of comparisons in a query causes
bitmap encoding schemes to affect the query processing time. For this reason,
we have experimented to show that there is a more appropriate bitmap encod-
ing than the reminders for a query type, such as the equality query, the range
query, and the interval query. Figure 2 shows the difference between queries made
on the indexes created using with equality encoding, range encoding and inter-
val encoding, and interval-equality encoding. Depending on the type of query,
execution times vary according to the type of encoding. We applied 4 differ-
ent queries to the bitmap indexes created by using different encoding schemes.
Equality encoding gives the best results for equality queries, while the interval
encoding is faster for interval queries, as well as it provides good performance
for range queries. We cannot see that the range encoding makes a much better
contribution than others for any query type except for the range query. We have
also observed that the multi-component interval-equality encodings gives a good
result for Query 4, combining an equality and interval query.

Apparently, bitmap encoding affects query performance. Therefore, we use an
algorithm to generate and store the most appropriate bitmap encoding as shown
in Algorithm 1. The frequency of the query type for each attribute is maintained
in the nxm matrix A; where n is the number of query types and m is the
number of data columns. Rows represent query types such as equality, range,
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Fig. 2. Query execution times in milliseconds for various bitmap encodings.

and interval, and columns represent the attributes of data. When processing
a query, the query parser determines the types of queries that apply to the
attributes. For example, the query “select ∗ where A1 = 0 or 1 ≤ A2 ≤ 2”
includes 1 equality query in attribute A1 and 1 interval query in A2. After
each query, A is updated to track the query frequency for each column. The
bitmap encoding of an attribute is determined by the maximum value of the
query types. For example, if an attribute has the highest value for the equality
query relative to other query types, the equality encoding is selected to create
an index for that attribute. This is due to the fact that the equality encoding is
most suitable for the equality query. In general, basic encodings are best known
for relevant queries. For example, interval encoding is best suited for interval
queries, as equality encoding is best for equality queries. However, an attribute
does not always encounter a single query type. An attribute that is frequently
encountered with a query type may be encountered with other types of queries
less frequently. For example, an attribute that is frequently encountered with
a interval query may also be encountering an equality query less frequently.
Therefore, it may be best to use multi-component interval-equality encoding for
optimal indexing. Therefore, the performances of the encodings are measured
and the indexes generated are compared to optimize the encodings.

After optimizing the bitmap indexes for each column, we measured the
improvement by applying the queries continuously at a fixed rate to deter-
mine the number of queries processed per second. We evaluated three different
queries that return a different number of rows as the query result and have
different complexity. Each query used in the experiments consists of combined
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Algorithm 1: Creating indexes using optimal encoding

1: procedure CountColumnQueryType(A, Query)
2: i ← FindQueryType
3: j ← FindQueriedColumn
4: A[i][j] ← A[i][j] + 1
5: end procedure

6: procedure CreateIndex(A)
7: for i ← 1,m do
8: columnName ← i
9: for j ← 1, n do

10: mostQueryTypeOfColumn ← max(A[i][j])
11: end for
12: Create an index according to the most frequent query type for columnName
13: EvaluateIndexes(oldIndex, createdNewIndex)
14: end for
15: end procedure

16: procedure EvaluateIndexes(firstIndex, secondIndex)
17: Run predefined benchmark queries
18: firstIndexPerformance ← FirstIndex
19: secondIndexPerformance ← SecondIndex
20: if firstIndexPerformance >= secondIndexPerformance then
21: Keep the first index
22: else
23: Keep the second index
24: end if
25: end procedure

equality queries and interval queries. Query number increases while the number
of query results and the complexity of the query increase. Query 3 has more
complexity and the highest number of query results, while query 1 has lower
complexity and the smallest query results. We collected the results of the queries
using bitmap indexes and PostgreSQL database, shown in Fig. 3. Bitmap indexes
were generated with equality encoding, range encoding, interval encoding and
interval-equality multi-component encoding. These encodings were applied to
both location attribute and date attribute. We also generated bitmap index by
applying equality encoding to location attribute and interval-equality encoding
to date attribute. PostgreSQL queries were processed with a B-tree index as well
as without an index. We use the best performing encoding among the bitmap
indexes.

Bitmap indexed queries perform much better because of the advantages of
bitmap indexing such as very few comparisons for a single query, hardware sup-
port and parallel execution using many cores. Equality encoding is known to be
very efficient for an equality query because it is sufficient for a query to check only
for one bitmap to be evaluated. Similarly, an interval query using the interval
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Fig. 3. Query comparison for various bitmap encodings.

encoding can be answered by accessing up to 2 bitmaps. As a result, any query
that uses a bitmap index can be processed with very few comparisons so that
bitmap indexed queries perform much higher than other traditional indexes such
as B-tree index. The best query performance for Query 3 is achieved with the
bitmap indexes using equality encoding for the location column and the interval-
equality encoding for the date column. The worst performance of bitmap indexed
queries happens for range encoding. This is because the range encoding is not
optimal for interval and equality queries.

PostgreSQL queries perform worse than bitmap indexed queries for every
type of queries. A PostgreSQL query that does not use an index cannot compete
with any bitmap indexed queries. It can be clearly seen that PostgreSQL, which
uses the B-tree index, scales badly as well for an increasing number of the query
results and the performance degradation increases especially as the complexity of
the queries increases. Therefore, we see close performance result for PostgreSQL
queries using B-tree and using scanning. If an index does not provide sufficient
performance improvement, PostgreSQL can choose scanning instead of using an
index. However, the bitmap indexed queries are not affected that much worse
from the queries that return more number of rows and have more complexity.
It can be deduced that a very small performance decrease is encountered due to
high I/O volume originated from the high number of return data.

6 Conclusion

Bitmap indexes provide high performance for queries because of fast bitwise logi-
cal operations supported by hardware and parallel processing ability. In addition,
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queries that contain multiple conditions are performed very efficiently because
the results of bitwise logical operations on bitmaps are effectively combined. The
use of efficient hardware and a few comparisons, which are often 1 comparison,
contribute to the high performance of bitmap index. Moreover, the introduced
algorithm that uses the optimal encoding for an attribute makes a significant
contribution to overall performance because the execution time of a query varies
according to the used encoding to create an index.

For queries that use bitmap indexes, multicore and multiprocessor environ-
ments using MPI and/or OpenMP eliminate performance barriers. With more
cores or processors, performance can be improved to the point where the cost
of communication exceeds the gain. Communication costs between computing
nodes affect overall performance. Therefore, the shared memory option may be
preferred for the parallel environment. Otherwise, virtual machines in the cloud
should be carefully selected so as not to adversely affect performance.

One of the important advantages of a bitmap index is that it can be applied to
an application with minor changes. This makes bitmap index very easy to use.
We showed that an archive application performance can be improved almost
seamlessly by using a bitmap index. We measured up to 20 times better per-
formance comparing to PostgreSQL. Easy integration of bitmap index allows
us to improve the performance of an application without introducing any new
computing node.

The bitmap index is particularly suitable for queries applied to static data.
Since archive data did not change frequently, we used bitmap indexing to speed
up queries an archive system. There was a significant need for performance where
a large number of users are querying a large number of archive documents. In
this study, we achieved performance improvement using bitmap indexing for
the location and date fields of documents, which were relatively low cardinality
columns, that are frequently queried in an archive system. However, bitmap
index does not only provide high performance for low cardinality data but is
also highly efficient due to compression algorithms in high cardinality data.
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Abstract. Deep learning practices have a large impact on many areas. Big data
and key hardware developments in GPU and TPU are the main reasons behind
deep learning success. The recent progress in the text analysis and classification
using deep learning has been significant as well. The quality of word repre-
sentation that has become much better by using methods such as Word2Vec,
FastText and Glove has been important in this improvement. In this study, we
aimed to improve Word2Vec word representation, which is also called
embedding, by tuning its hyperparameters. The minimum word count, vector
size, window size, and the number of iterations were used to improve word
embeddings. We introduced two approaches, which are faster than grid search
and random search, to set the hyperparameters. The word embeddings were
created using documents with approximately 300 million words. A deep
learning classification model that uses documents consisting of 10 different
classes was applied to evaluate the quality of word embeddings. A 9% increase
in classification success was achieved only by improving hyperparameters.

Keywords: Deep learning � Machine learning � Text analysis � Text
classification � Word embedding � Word2Vec

1 Introduction

The data produced in the digital world is increasing overwhelmingly. As a result of the
development and widespread of the Internet, the data produced and served by internet
applications such as social media have given a different impetus to the speed of data
production. Text data have a significant share of these vast data. With the increasing
volume, tasks performed on the text such as classification [1, 2], clustering, sentiment
analysis, information extraction, information retrieval, and searching have become
more important. Moreover, the success rate of text processing has significantly
increased by deep learning methods in the advent of more data and better computing
power.

Text processing requires text representation. Therefore, various methods have been
introduced for text representation. One of the important obstacles of text processing has
been feature extraction which has been recently eased by deep learning methods. There
are different studies in which words, word grams, word roots and bodies, character
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grams are used as features to represent text [3–6]. By using a set of word and context
pairs extracted from the corpus, vector representations of words can be derived by
applying various estimation methods, such as predicting words given their contexts
(CBOW), predicting the contexts from the words (Skip-Gram), or factorizing the log of
their co-occurrence matrix. Word2Vec [7, 8] implements both Continuous Bag of
Words (CBOW) and Skip-Gram (SG) methods. FastText [3] also provides these two
models to compute word representations. Although Word2Vec treats each word in
corpus like an atomic entity and generates a vector for each word, FastText, which is
essentially an extension of word2vec model, considers each word as composed of
character n-grams. Therefore, the vector for a word is the sum of these character n-
grams. For example, the word vector “orca” is a sum of the vectors of the n-grams such
as “or”, “orc”, “orca”, “rca”, “ca”. Glove [9], on the other hand, factorizes the log of the
co-occurrence matrix. In these methods, picking the right context is a critical factor that
affects the quality of the resulting vector representations. The most common method for
defining this context is to rely on a window positioned around the word. The context
window decides which contextual neighbors are taken into consideration to produce the
vector representations.

The empirical variations between representation models, which is also called
embedding, are basically because of differences in hyperparameters rather than dif-
ferences in the embedding algorithms [10]. Hence, it is likely that different results are
obtained while constructing word embedding with different corpus containing different
topics in different dimensions because the size and content of the corpus will cause the
words to take on semantically and syntactically different vector values [11]. Addi-
tionally, the quality of word representations is significantly affected by hyperparameters
such as minimum word count, vector size, window size and the number of iterations.

In this study, we present two approaches to evaluate the important hyperparameters
of Word2Vec which are faster than grid search and random search. In general, the
quality of the word embedding is not enough because the default hyperparameter
values are used to create the word embedding. In addition, unlike well-known deep
learning models such as Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN), hyperparameter tuning for word embedding has not been well
studied. Moreover, to the best of our knowledge, there isn’t a study extensively
measuring the accuracy of Word2Vec representations for the Turkish language.
3 million Turkish texts which consist of totaling 300 million words were used to create
Word2Vec word embedding.

To evaluate the quality of the word embedding, a deep learning model developed
for text classification was used. The classification model and the data are kept
unchanged to examine the effect of Word2Vec hyperparameters on the quality of word
embedding. Text classification with deep learning model was performed by using
different word embeddings created by changing Word2Vec hyperparameters.
According to the accuracy of the classification process, the quality of the word
embeddings has been measured. We used multi-core and CUDA-enabled GPU envi-
ronments to create and evaluate word embeddings. Cloud base TPU and GPU can be
used to accelerate word embedding, as the number of documents used and the number
of unique words requires more processing power.
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In the second section, related works are explained. Information about Word2Vec
word embedding and used environment will be given in Sect. 3. Section 4 consists of
measurements and evaluation. We conclude and give “rules of thumb” in Sect. 5.

2 Related Work

There are several studies investigating the hyperparameters of word embedding
methods. Caselles-Dupré et al. investigated the importance of hyperparameters through
large hyperparameter grid searches on various datasets [12]. The results revealed that
optimizing the hyperparameters significantly improved the performance of a recom-
mendation task.

Levy et al. claimed that most of the word embedding performance gains were due
to specific system design choices and hyperparameter optimizations rather than
embedding algorithms [10]. Although it is advisable to adjust the entire hyperparam-
eters for the task at hand, this approach may be expensive in terms of calculation.
Therefore, they provided some “thumb rules” for the solution.

In general, the quality of word representation was measured using either a model or
an analogy and similarity datasets. The quality of Word2Vec word embeddings is
assumed to affect the accuracy of the classification model. Embedding models often
associate each word with a single vector representing its properties. Therefore, eval-
uation methods should analyze the accuracy and completeness of these properties.
Multi-label classification is a convenient way to carry out this evaluation [13]. Noor-
alahzadeh et al. conducted evaluations of both general and domain-specific embeddings
[14]. Evaluation of embedding models was provided by the task of domain-specific
sentence classification.

Analogy and similarity datasets were often used to measure the quality of word
representations, consisting of questions and answers that query the semantic and
syntactic relations of words. Mikolov et al. used 8869 semantic, 10675 syntactic
questions in total, consisting of 5 semantic question types and 9 syntactic question
types to measure the quality of word vectors [7]. Lia et al. experimented on Word-
Sim353 and the TOEFL dataset to measure semantic and syntactic relationships [11].
In their study, they compare the methods used for representing words as vectors.

3 Word2Vec Word Embedding and Used Environment

Word2Vec was proposed by Mikolov et al. in 2013 to represent a word as a vector [8].
It takes a large corpus as input and usually produces vectors of several hundreds of
dimensions. Word2Vec represents words in vector space based on the unsupervised
prediction. Word2Vec aims to minimize the distance value of words that are the same
or semantically and syntactically close to maximize the similarity value. CBOW and
SG are commonly used methods. The CBOW method estimates the center word by
using adjacent words. Rather, the SG attempts to predict neighboring words using the
center word. The SG model consists of input, hidden and an output layer. The input
layer uses a one-hot encoding. In one-hot encoding, an index is assigned to each word.
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The value corresponding to the word index in the vector is set to 1, and the others to 0.
The output layer uses a softmax classifier. The number of neurons in the hidden layer
determines the size of the Word2Vec vector because weights in the hidden layer are
used to represent words as vectors.

Deep learning models benefit from parallel processing. However, it can be argued
that no learning algorithm is really embarrassingly parallel, but some are almost
embarrassingly parallel. As with previous parallel applications [15–17], procedures
such as parallel processing, pipelining and orchestration should be used in the best way.
In addition, deep learning, word embedding as well, is basically an optimization
problem. In other words, optimizing hyperparameter is one of the most important
functions.

We investigated important hyperparameters that affect the quality of Word2Vec
word representation. Minimum word count, vector size, window size and number of
iterations were the hyperparameters on which experimented. The quality of Word2Vec
word embeddings is assumed to affect the accuracy of the classification model in which
word embeddings are used. From this hypothesis, a deep learning classification model
was used to evaluate the word embeddings. The classification was performed with the
word embeddings created with different hyperparameter sets. The classification model
and the data were kept unchanged and only the Word2Vec hyperparameters were
adjusted. Based on the success of the classification model, we concluded the successful
hyperparameters to create better word embeddings. Keras library and TensorFlow
infrastructure were utilized for the classification. Gensim library [18] was used to
construct Word2Vec word vectors. We created the word vectors by choosing combi-
nations of 5, 10, 15, 20, 25 values as window size; 1, 2, 5, 10, 20, 30 values as the
minimum word count; 50, 100, 150, 200, 250, 300 values as the vector size; 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55, 60 values as the number of iterations.

Grid search and random search are among the well-known parameter optimization
methods. In both methods, the processing can take a very long time to determine the
hyperparameter values. For the grid search, when the hyperparameter values mentioned
above are used, the 2160 combinations must be tried. A single word embedding can
take more than a day depending on the hyperparameters. Therefore, we used two
approaches to set up Word2Vec hyperparameters.

In the first approach, we initially started with the default values in Table 1. In each
step, only one of the Word2Vec hyperparameters was updated to create word
embeddings. For a single hyperparameter, we created as many word embeddings as the
number of values of the hyperparameter. After evaluating each hyperparameter, the
most appropriate word embedding was obtained with the hyperparameter set using the
best hyperparameter values.

Table 1. Default values of Word2Vec model hyperparameters.

Minimum word count 5 Window size 5
Vector size 100 Number of iterations 5

Learning Quality Improved Word Embedding with Assessment of Hyperparameters 509



The second approach similarly starts with the default hyperparameters. In each step,
a hyperparameter value that produces the best result is determined and used in place of
the default value of that parameter in the next steps. This model continues progres-
sively. At the last stage, parameters that produce the best results are saved as the best
hyperparameter set.

3.1 Classification Model

To investigate Word2Vec word representation using text classification, we constructed
a model by using CNN, which is a deep learning model. Two convolutional layers, two
maximum pooling layers, one flatten layer, two fully connected (dense) layers were
used. Like the input layer, the embedding layer has dimensions of 160 x “vector size”.
The maximum text length was set to 160 words. For shorter texts containing fewer than
160 words, a vector of zeroes was added. In the first CNN layers, 64 filters with ReLU
activation function were used. Kernel size was set to 5 for the first CNN layer, and 2 for
the second CNN layer. Maximum pooling size was set to 2 for the first maximum
pooling layer and was set to 3 for the second maximum pooling layer. Stride size was
set to 1 for both layers. 0.5 value for the dropout layer was used to prevent overfitting.
A fully connected layer of 128 units was used with ReLU activation function. Softmax
activation function was used in the output layer consisting of 10 units. Adam was used
as the optimization function and categorical cross entropy was used as the loss
function.

3.2 Dataset

3 million Turkish texts with approximately 300 million words were used to create
Word2Vec word embeddings. Corpus consists of about 2.8 million unique tokens.
From the texts used for Word2Vec creation, 149504 text documents for classification
were selected. The documents were labeled with 10 different classes. 104448 docu-
ments corresponding to 70% of the total documents were used for training, 22528
documents corresponding to 15% of the total documents were used for verification and
22528 documents corresponding to 15% of the total documents were used for testing
purposes.

3.3 Hyperparameters

Words that appear only very few times in the hundreds of million words corpus are
probably uninteresting typos or mistakes. Moreover, there is insufficient data to make a
reasonable training on these words, so it is best to throw them away. Minimum word
count hyperparameter is used to remove words by the number of appearance in the
documents. For example, if the minimum word count parameter is set to 5, which is the
default value of the Gensim library used, words that are presented less than 5 times will
be discarded.

The vector size hyperparameter defines the vector dimension of Word2Vec. This
hyperparameter also specifies the number of units in the hidden layer of the Word2Vec
model. Therefore, the vector size also affects the cost of computation. Increasing the
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vector size will also increase the cost. However, the larger vector size may lead to
better and more accurate models even though it may require more training data.

The window size indicates how many words to use for prediction from the left and
right of the input word. The window size is the most noteworthy hyperparameter
associated with the context. When it is set to 5, which is the default value of the Gensim
library, 5 words will be used to the left and right of the input word for content
prediction. Larger window size tends to capture more topic and domain information
while smaller window size tends to capture more about ‘functional’ and ‘synonymic’
models, which may lead to better performance on similarity measurements [19, 20].

The number of iteration determines how many times the data is to be trained.
Increasing the number of iterations generally improves the quality of word represen-
tation, but also significantly increases the duration of training.

4 Measurement and Evaluation

We investigated the quality of the word embedding by using a classification model.
Word2Vec word embeddings created with the hyperparameters using the SG method
were evaluated by using the classification model and dataset that were kept both
unchanged. The classification was repeated with the word embeddings obtained by
changing the value of one of the hyperparameters at a time. The optimum values of the
hyperparameters were determined by evaluating the accuracy and loss values of the
classification.

The two approaches mentioned in the methodology section were used for the
classification to determine the hyperparameters. The results obtained by the first and
second approaches will be explored below. Since the experiment of the minimum word
count hyperparameter is the same for both approaches, the results are given only in the
first approach. The second approach is continued using this result.

4.1 Decisive Approach

In Decisive Approach (DA), only the value of hyperparameter examined was changed.
We started evaluating Word2Vec’s minimum word count because it influenced the
number of words of the Word2Vec dictionary. We created six models by setting the
minimum word count hyperparameter to 1, 2, 5, 10, 20 and 30. The remaining
parameters are fixed to the values given in Table 1.

We did not take any action to correct the misspelled words or typos because we
want to make sense of the words that people wrote incorrectly. Depending on the
geographical region, there are also some local forms of words that can be seen as a
misspelled word. Therefore, we will use “token” instead of “word” to indicate any
original word form in the documents. Because a token contains a regular word as well
as a prefixed, affixed or misspelled word, the number of unique tokens may signifi-
cantly exceed the number of words in a language. We saw this situation in our
Word2Vec dictionary because there were 2.895.675 unique tokens. When the tokens
used once or twice were examined, it was found that the vast majority of these tokens
were misspelled. Very few tokens were very rarely used words.
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The statistical details of the tokens for Word2Vec models using different values of
minimum word count are given in Table 2. When the value of minimum word count is
set to 1, all 2.895.675 unique tokens are used and the total number of tokens in the
dictionary is 297.149.774. When the minimum word count is given as 2, 1.537.529
tokens that repeat once are removed from the vocabulary. The remaining 1.358.146
unique tokens correspond to about 47%. However, the total number of tokens does not
change significantly. Less than 1% of all tokens are removed in the dictionary. This is
better seen when the minimum word count is 30; while only 7,72% of the unique
tokens remain, the percentage of the remaining total tokens is 96,97%. The sudden
drop in the number of unique tokens is primarily due to misspelled words. The fre-
quency of a word in documents used when training the Word2Vec model affects its
correct positioning in the vector space. Less repetitive words in the corpus are thought
to be not positioned correctly in the vector space. Accuracy and loss values of the
classification model trained using the word vectors are significantly affected by the
correct placement in this space. Therefore, the removal of very few repetitive words has
a positive effect on classification success. When the value of minimum word count is
increased, the accuracy of the classification model increases and the value of loss
reduces, shown in Fig. 1.

Table 2. Word2Vec vectors and statistics

Minimum
word
count

Removed
unique
tokens

Remaining
unique
tokens

Percentage of
remaining
unique tokens

Removed
total
tokens

Remaining
total tokens

Percentage of
remaining
total tokens

1 0 2.895.675 100 0 297.149.774 100
2 1.537.529 1.358.146 46,9 1.582.536 295.567.238 99,46
5 2.236.456 659.219 22,76 3.002.271 294.147.503 98,98
10 2.493.595 402.080 13,88 4.916.341 292.233.433 98,34
20 2.611.046 284.629 9,82 7.138.619 290.011.155 97,59
30 2.672.127 223.548 7,72 8.994.314 288.155.460 96,97

Fig. 1. Classification accuracy and loss for the various values of minimum word count
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After the minimum word count, the effect of vector size hyperparameter of
Word2Vec was examined. Word2Vec vectors were created by using hyperparameters
of experiment 2 column in Table 3. When the classification was applied by using the
same model and dataset, we obtained the accuracy and loss rates shown in Fig. 2.
Keeping the vector size too large or too small affects the success of the classification
negatively. It should be aimed to find an optimum vector size according to the available
datasets. We observed that vector size, ranging from 50 to 300, has an impact on the
classification accuracy of about 2%. The most appropriate value of the vector size for
the dataset used in this study was 250. But when the amount of data is increased, using
a larger-sized vector would be a more accurate approach [7].

Window size is an important hyperparameter to detect the context of a word.
Therefore, it is expected that it will significantly affect the classification success. Using
the same model and dataset, we used Word2Vec embeddings prepared using the
hyperparameters of the experiment 3 column in Table 3 for classification. A higher
value of window size appears to have a positive effect on the classification success
shown in Fig. 2. While the value of window size increases, the classification accuracy
also increases. When the window size increases from 5 to 25, a 5% improvement in
classification success is achieved. Therefore, it can be deduced that context is important
for classification and significantly affects the classification accuracy.

The hyperparameters of the experiment 4 column in Table 3. were used to examine
the effect of the number of iterations used to train Word2Vec model. The classification

Table 3. Hyperparameters for DA after minimum word count experiment

Parameters Experiment 2 Experiment 3 Experiment 4

Minimum
word count

5 5 5

Vector size 50, 100, 150,
200, 250, 300

100 100

Window
size

5 5, 10, 15, 20 ,25 5

Number of
iterations

5 5 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

Fig. 2. Effect of vector size and window size on classification accuracy and loss for DA
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results obtained using word vectors are given in Fig. 3. While the number of iterations
increased from 5 to 60, the success of classification increased by about 6%. This
improvement shows that the number of iterations is an important hyperparameter.
However, the contribution of the number of iterations to the classification success starts
to slow down after 15 iterations. Therefore, an iteration value that gives a certain
success can be selected because each iteration requires extra time for training.

4.2 Progressive Approach

In Progressive Approach (PA), after determining the value of parameters that give the
best result for classification, unlike DA, the best value is used instead of the default
value for the subsequent steps. Since the minimum word count parameter was inves-
tigated in DA, we did not repeat this step and used the results of the minimum word
count from DA. Minimum word count will be 30 as the best value for the subsequent
experiments.

Fig. 3. Effect of number of iteration on classification accuracy and loss for DA

Table 4. Hyperparameters for PA after minimum word count experiment

Parameters Experiment 2 Experiment 3 Experiment 4

Minimum
word count

30 30 30

Vector size 50, 100, 150,
200, 250, 300

250 250

Window
size

5 5, 10, 15, 20, 25 25

Number of
iterations

5 5 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
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The effect of vector size was examined using the hyperparameters of experiment 2
in Table 4. The results are given in Fig. 4. The best result is when the vector size is
250, which is the same as in DA. With the best minimum word count value, the vector
size provides an almost 1.5% improvement with a value of 250. This was almost 2%
for DA. We will use the 250 for the vector dimension parameter for the next steps.

The hyperparameters of experiment 3 in Table 4 were used to measure the effec-
tiveness of the window size. The results are shown in Fig. 4. Increasing the window
size value increases the classification success by less than 4%. In DA, the rate of
improvement was 5%. As PA uses the best values in the past steps, the success of
classification is seen to be increased at a lesser rate. The window size value will be used
as 25 for the next steps because the best result is obtained with the value of 25.

The hyperparameters of experiment 4 in Table 4 were used to examine the effect of
the number of iterations. The results are shown in Fig. 5. The increase in the number of
iterations increases the success of classification by about 1%. In the first method, the
contribution of the number of iterations to the classification success was about 6%.
Since other parameters contribute to the improvement of classification in the previous
steps, the number of iterations in this method seems to be less effective. The best result
was taken at 45 iterations. However, the value of 60 also showed a very close success.

Fig. 4. Effect of vector size and window size on classification accuracy and loss for PA

Fig. 5. Effect of iteration number on classification accuracy and loss for PA
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4.3 Comparing Word2Vec Models Using the Best and Default
Hyperparameters

In PA, the parameters that produce the best result in the final stage are chosen as a
successor. The best parameters obtained by DA were the same as the best parameters
obtained with the second method, except the number of iterations.

Table 5 shows the parameters for the best and worst cases in terms of the loss and
accuracy of Word2Vec parameter evaluations. When we applied the classification
model to classify the documents into 10 classes by using different parameters of
Word2Vec, we got about 9% improvement in the classification accuracy.

5 Conclusion

In this study, we evaluated Word2Vec hyperparameters that affect the quality of word
representation. A classification model was used to determine the Word2Vec hyper-
parameters. The results clearly show that Word2Vec hyperparameters affect the clas-
sification accuracy and thus the quality of word representation. We observed a 9%
increase in the accuracy of our classification model. Considering that the classification
process is done in 10 classes, the success rate achieved by setting only Word2Vec
hyperparameters cannot be ignored. The Progressive Approach has been observed to
offer faster convergence and more efficient performance improvement. Therefore, using
the best value of each hyperparameter in the next steps is a wise choice for Word2Vec
hyperparameter tuning.

We must state that there are no rules-of-thumb for a good word embedding
applying to every purpose. However, we make the following conclusions for better
word embedding. It was observed that the vector size, window size, and iteration
number were the main hyperparameters affecting the word representation quality.
Setting these parameters too large or too small can adversely affect success. The larger
window size captures the topic and semantic better, but the smaller window size is
more relevant to the syntactic relationship. The optimum vector size depends on the

Table 5. Word2vec parameters set for best and worst classification accuracy

Method Min.
word
count

Vector
size

Window
size

Number of
iterations

Loss Accuracy

Default
values

5 100 5 5 0,5817 83,07

Decisive
approach

30 250 25 60 0,3397 91,42

Progressive
approach

30 250 25 45 0,3408 91,46
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size of the datasets. Larger datasets require a larger vector size. Although the higher
number of iterations requires more computing time, it is generally better for word
representation quality.

The minimum word count determines the number of unique words in the dictionary
and affects the amount of memory used. Very few repetitive words are often misspelled
or very rare. Training these words in the Word2Vec model does not contribute to the
quality of word representation. As can be seen in the results, with the small increase in
the minimum word count, the number of the unique word in the dictionary is halved.
This helps to remove words that are insignificant for the model. Therefore, performance
gains are achieved by decreasing very rare and misspelled words.

The frequency of words affects the optimal value of hyperparameters. More fre-
quent words may not require a larger window size for a good representation of the
words. Therefore, the smaller window size value may be as good as the larger values
when the dataset grows.
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Abstract. Distributed data processing systems like MapReduce, Spark,
and Flink are popular tools for analysis of large datasets with cluster
resources. Yet, users often overprovision resources for their data pro-
cessing jobs, while the resource usage of these jobs also typically fluctu-
ates considerably. Therefore, multiple jobs usually get scheduled onto the
same shared resources to increase the resource utilization and through-
put of clusters. However, job runtimes and the utilization of shared
resources can vary significantly depending on the specific combinations
of co-located jobs.

This paper presents Hugo, a cluster scheduler that continuously learns
how efficiently jobs share resources, considering metrics for the resource
utilization and interference among co-located jobs. The scheduler com-
bines offline grouping of jobs with online reinforcement learning to pro-
vide a scheduling mechanism that efficiently generalizes from specific
monitored job combinations yet also adapts to changes in workloads.
Our evaluation of a prototype shows that the approach can reduce the
runtimes of exemplary Spark jobs on a YARN cluster by up to 12.5%,
while resource utilization is increased and waiting times can be bounded.

Keywords: Data-parallel processing · Cluster scheduling · Resource
management · Distributed dataflows · Reinforcement learning

1 Introduction

Distributed data-parallel processing systems such as MapReduce [4], Spark [27],
Flink [3], and Dataflow/Beam [1] enable users to take advantage of clusters of
bare-metal or virtual machines for analysis of large datasets. These systems have
become popular tools for workloads that range from data aggregation and search
to relational queries, graph processing, and machine learning [8,9,15,17]. Jobs
from these diverse domains stress different resources, while the resource demands
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 519–530, 2020.
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typically also fluctuate significantly over the runtime of jobs [16,18,21]. There-
fore, multiple jobs usually share cluster resources without isolation, so they can
benefit from statistical multiplexing [20,23,26]. This is implemented by using
resource management systems like YARN [24] and Mesos [10]. These systems
allow users to reserve fractions of cluster nodes via the notion of containers, in
which users then run one or multiple jobs using the frameworks of their choice.
By default the resource management systems use simple scheduling methods such
as round-robin, FIFO, greedy approaches, and other reservation-based methods
such as dominant-resource fairness [2,10,24,27], while low resource utilization
remains a major problem in industry [6,19,20]. Yet, since jobs differ consider-
ably in which resources they stress and how much utilization fluctuates, sched-
ulers should actively co-locate jobs that share resources efficiently. The benefits
of such approaches have been demonstrated before, including by the authors
[12,22], with multiple schedulers that explicitly take combined resource utiliza-
tion and interference among co-located workloads into account [5,6,16] or learn
the impact of this indirectly [13,14], taking advantage of the recurrence of a
majority of jobs [11]. However, previous efforts fall short in at least one of the
following dimensions:

– Learning Efficiency: Multiple systems require extensive training data as they
learn the sharing efficiency on the level of individual jobs or using completely
generic learning methods [13,14,16,22].

– Continuous Learning: Some systems do not update their models continuously
and therefore do not adapt to changes in workloads [5,12].

– Solution Practicality: Some systems do not incorporate objectives besides
throughput [13,14,22], while others assume control over more than just job
order [5,6,14] or require instrumentation not generally supported [12].

Addressing these limitations, we present Hugo, a cluster scheduler that effi-
ciently learns from collected resource usage metrics to co-locate those jobs
that have complementary resource demands and therefore share resources effi-
ciently, building on our previous work [12,22]. Hugo first clusters jobs by their
resource utilization, yielding multiple groups of jobs that contain jobs with sim-
ilar resource demands. Subsequently, our scheduler uses reinforcement learning
to continuously evolve its knowledge on which groups of jobs are sharing the
resources of a particular cluster environment efficiently. That is, the scheduler
learns for each workload and cluster from the experiences of scheduling particu-
lar job combinations onto the same cluster nodes, assessing which groups of jobs
produce a high resource utilization yet low interference when co-located. This
combination of generalization across a fixed number of groups of jobs with rein-
forcement learning of co-location benefits provides learning efficiency, a reduced
scheduling complexity, and adaptation to changes in workloads. Furthermore,
we show how additional scheduling requirements are integrated into Hugo with
the example of balanced waiting times.
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Contributions. The contributions of this paper are:

– We propose the scheduler Hugo, which efficiently learns how different groups
of cluster jobs of a data processing workload utilize shared resources.

– We implemented a prototype of our approach as a job submission tool for
Spark jobs in YARN clusters.

– We evaluated our prototype on a cluster with 34 nodes, using different work-
loads and in comparison to YARN’s default scheduling.

Outline. The remainder of the paper is structured as follows. Section 2 discusses
the related work. Section 3 explains our scheduling approach. Section 4 presents
our evaluation of our approach. Section 5 concludes this paper.

2 Related Work

In this section we describe related work on scheduling distributed data-parallel
workloads based on resource utilization and interference.

Paragon [5] profiles incoming jobs and matches them with jobs that are
similar with regard to the impact of different hardware and interference with co-
located workloads. Paragon then assigns jobs to available resources using its job
classes and collaborative filtering, aiming to minimize interference and maximize
resource utilization. In comparison, Hugo targets distributed data-parallel jobs
and employs more resource utilization metrics for its co-location goodness.

Quasar [6] uses classification to assess the impact of resources and inter-
ference with co-located workloads when scheduling jobs. It takes performance
requirements of users into account, monitors job performance at runtime, and
adjusts models and allocations dynamically. Quasar does assume full control over
both resource allocation and assignment, while Hugo’s scope is only scheduling
of distributed data-parallel jobs.

Gemini [16] uses a model that captures the tradeoff between performance
improvement and fairness loss for jobs scheduled in shared clusters. The model
quantifies the complementarity in the resource demands of jobs and is trained on
historic workload data. Gemini then decides automatically whether the fairness
loss of a computed schedule is valid under a user’s setting of required fairness
and in relation to Dominant Resource Fairness [7]. In comparison, Hugo uses a
reinforcement learning algorithm and groups of jobs.

DeepRM [13] is a scheduler that relies on deep reinforcement learning. The
scheduler models the state of a cluster system, taking into account the already
allocated resources along with resource profiles for the queued jobs. It then uses
a neural network to obtain a probability distribution over all possible scheduling
actions, using the rewards obtained after every action to update the parame-
ters of the neural network. In comparison, DeepRM is a generic reinforcement
learning framework for job scheduling, whereas Hugo particularly targets job
co-location effects. Consequently, DeepRM might require more training effort.

Similar to DeepRM, Decima [14] also uses reinforcement learning along with
a neural network for job scheduling. The system focuses on dataflow jobs that are
described as directed acyclic graphs. Decima does not only perform scheduling,
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but also learns job parameters such as task parallelism. In comparison, Hugo
does not make assumptions about a job’s structure and configuration options.

We used reinforcement learning to co-locate cluster jobs based on the resource
usage and interference before, including the same measure of co-location good-
ness [22]. However, the previous approach maintains preferences of individual
jobs, while Hugo learns and schedules on the level of job groups for efficiency
and scalability. Other related previous results include CIAPA [12] and IntP [25].
CIAPA uses an interference- and affinity-aware performance model based on
detailed system-level metrics to improve the placement of jobs. IntP is a profil-
ing tool that extracts fine-grained resource metrics from hardware counters and
system structures. Both these approaches use classification to generalize from
individual jobs similar to Hugo’s job groups.

3 Approach

Hugo is an adaptive cluster job scheduler that utilizes resource usage profiles of
jobs to select and co-locate combinations of jobs that efficiently share the avail-
able resources. It combines offline clustering and online reinforcement learning
for efficient learning, scalability, and adaptation to changes in workloads.

Fig. 1. Scheduling jobs onto shared cluster resources based on continuously learned
co-location preferences among groups of jobs.

Figure 1 shows an overview of Hugo’s approach. It consists of the following
main steps as annotated by the numbers in the figure:

1 Resource usage metrics of historic job runs are used to group jobs. For
instance, two groups could distinguish CPU- and I/O-intensive jobs. The
groups can be computed offline and can be updated periodically. Clustering
methods can be used to establish a number of distinct groups automatically.
Grouping provides an abstraction for the scheduling algorithm which then
operates on job group level.
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2 Each incoming job is assigned to the job group it matches best. For this,
either a profiling run on samples of the input or available historic monitoring
data is used to match the job to one group.
3 Using the groups, Hugo forms and continuously updates a preference
matrix that quantifies the co-location goodness for pairs of job groups. The
measure of co-location goodness is based on metrics that capture the com-
bined resource utilization and the interference of co-located jobs.
4 Based on the preference matrix, the scheduler selects those jobs from
the queue that have a high co-location goodness with the currently running
jobs in the cluster. The selected jobs are then scheduled onto the available
resources. After a job is executed, the preference matrix is updated for the
combination of jobs that were co-located via reinforcement learning.

Utilizing reinforcement learning allows to learn the efficiency of different
schedules during and through actual scheduling decisions. That is, scheduling
decisions can be made right away on the basis of preferences, yet the scheduler
learns continuously and, therefore, adapts to changes.

3.1 Grouping Jobs Based on Resource Metrics

Grouping of the jobs is the key idea to ensure scalability and improve the learn-
ing efficiency of the scheduler, since it reduces the size of the preference matrix
to k groups. Considering that we already have job resource usage statistics for
all previously executed jobs we group them into k groups. Depending on the
clustering method, and the job profiling information, the groups can have dif-
ferent meaning. For example, there could be groups for jobs that predominantly
stress the CPU, memory, disks, or network, while jobs of others groups could also
exhibit mixed high usage of multiple resources such as both, CPU and memory.

Once we have the initial groups formed using the historic data for a specific
cluster workload, the jobs in the queue need to be assigned to these groups. Jobs
in the queue can be recurring jobs or new jobs. For recurring jobs we can use
the previously recorded monitoring data to match the job to one of the available
k groups, for instance by averaging the utilization metrics of recent previous
runs. For new jobs, a profiling run is executed on a small sample of the entire
input data to collect resource usage metrics and match the jobs to the available
groups. Using the resource usage profiles of the queued jobs each job is assigned
to its representative group.

3.2 Learning to Schedule Job Combinations

We learn the co-location goodness on the level of job groups. Therefore, our
preference matrix contains a goodness measure for pairs of job groups. The co-
location goodness measure assesses how specific combinations of job groups uti-
lize resources, using metrics that capture the resource utilization and interference
among co-located jobs. We use the same measure of co-location goodness and rein-
forcement learning algorithm we proposed previously for cluster scheduling [22].
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Typically, we have multiple jobs queued and with these jobs also multiple
job groups. Simultaneously, there are jobs already running on the shared cluster.
We use reinforcement learning to select the jobs for scheduling and updating the
preferences in the matrix based on the currently running as well as the queued
jobs. In the following we explain the job selection and the updates, which depend
on each other. We denote the preference matrix as H. Its elements Heg contain
the preference of job group e when co-locating jobs of it with jobs of group g. The
probability of picking job group g to run concurrently with an already running
job of group e is denoted as πe(g) = exp(Heg)∑

b∈S exp(Hbg)
. The probability of choosing

a job group g to select and schedule next on the cluster then is

Π(g) =
∑

e∈C Πe(g)
∑

i∈Q

∑
e∈C Πe(i)

where Πe(g) = πe(g)∑
i∈Q πe(i)

, C is the set of job groups with jobs currently running
on the cluster, Q is the set of job groups with jobs currently in the queue and S
is the set of all groups.

To represent the relative goodness among the set Q, the probability for each
job group Πe(g) is normalized. Job group Cnext is chosen to be scheduled next by
sampling from a distribution where the probabilities of each group are propor-
tional to their co-location goodness with the existing job groups on the cluster.

After Cnext is chosen, the scheduler scans the waiting queue and picks the jobs
assigned to Cnext. If there is only one job match, it is scheduled next. Otherwise,
if there are multiple options, a randomize function is used to choose one of the
jobs in the group to schedule next. Finally, for every node n in the cluster the
preferences between job groups of the co-location job pairs are subsequently
updated as follows:

Hij := α(Rn − R
i
)
(
1 − πi(j)

) −
∑

a∈Ωn\{i,j}
α(Rn − R

i
)πi(a) ∀i, j ∈ Ωn

where α is the learning rate, Ωn is the set of job groups containing jobs placed
on the node n, Rn represents the co-location goodness for node n, and R

i
is the

mean goodness across all nodes containing jobs in the job group i.

3.3 Integrating Additional Scheduling Constraints

In practice, there are other requirements for scheduling beyond resource utiliza-
tion and throughput. Examples of these are fairness among users and priorities
with particularly critical jobs. To highlight the practical applicability of Hugo
we integrated a mechanism that balances waiting times and prevents job starva-
tion. As explained, when a job group is chosen as the next one to be scheduled,
Hugo randomly chooses among the currently waiting jobs of that group with
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equal probabilities. To balance waiting times the choosing probabilities can be
modified by the waiting times. The probabilities of choosing a job a within the
chosen job group G is subsequently calculated by

πa =
wa∑
i∈G wi

where wi is the waiting time of job i.
The above usage of job waiting time only takes effect if the job group is even-

tually selected to schedule next. However, if the co-location goodness preference
of the job group itself is low compared to most of the other job groups, the jobs
in that group are still at risk of not getting selected. We therefore further define
the global parameter waiting limit for the scheduler. When a job’s waiting time
reaches this limit, it is scheduled regardless of the co-location preferences. In
case of multiple jobs with waiting times above the limit, one of them is chosen
with probabilities according to the waiting time using the formula as above. We
denote this version of the algorithm as Hugo*.

4 Evaluation

We tested our approach with four experiments using a prototype implementa-
tion, a commodity cluster, and various exemplary jobs. In the following sections
we describe the prototype implementation, the cluster setup, the test workload,
and the four experiments along with the respective results.

4.1 Prototype Implementation

We implemented Hugo in Python as a job submission tool for YARN. We use the
combination of Telegraf and InfluxDB to monitor and persist the CPU, memory,
disk, and network usage as well I/O wait data of each node. Spark is chosen as
the data processing engine. All the benchmarking jobs are implemented with
Spark’s APIs.

4.2 Cluster Setup

The experiments were executed on a cluster consisting of 34 nodes. Each node is
equipped with an Intel Xeon E3-1230 V2 @ 3.30 GHz (4 physical cores, 8 virtual
cores) and 16 GB of RAM, connected through a 1 Gbit/s Ethernet connection
and running a Linux-based OS (kernel version 4.15.0).

Among the 34 nodes, one server was used to run YARN’s resource manager.
YARN was configured such that each container occupied one logical CPU and
1800 MB of RAM, resulting in maximum of 8 containers per node. From the 33
nodes managed by YARN, one node was used to run Spark’s driver programs,
while the remaining 32 nodes were used as worker nodes.
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4.3 Test Workload

For simulating a mixed data processing workload, nine Spark analytic jobs are
used throughout the experiment. The jobs and their datasets used for bench-
marking are specified in Table 1. For further reference each job is annotated by
its own letter, while a number the annotated number denotes the job’s group.
We grouped the jobs into six distinct groups by their utilization of CPU, disk,
and memory, including groups of mixed utilization and overall low resource uti-
lization. The sizes of the input data are chosen so that the runtime of all jobs
is similar and lasts approximately ten minutes. The jobs were chosen such that
they cover different application domains like machine learning (A, D, E, F),
graph processing (B, C), relational queries (G), and text processing (H, I).

Table 1. Dataflow jobs used in the experiment

Job (job, group) Data source Data parameters

K-Means (A, 1) KMeansDataGeneratora 100,000,000 points,
80 clusters

PageRank (B, 3) Graph Challenge data setsb 46,656,000 edges,
2,174,640 vertices

Connected
Components (C, 6)

Graph Challenge data setsb 38,880,000 edges,
1,812,200 vertices

Linear Regression
(D, 1)

LinearDataGeneratora 90,000,000 samples,
20 features per sample

Logistic Regression
(E, 2)

LogisticRegressionDataGeneratora 11,000,000 samples,
10 features per sample

SVM (F, 2) SVMDataGeneratora 70,000,000 samples,
10 features per sample

TPC-H (G, 4) DBGENc 100 GB generated DB

Sort (H, 5) DBGENc 143,999,787 records

Word Count (I, 1) Wikipedia backup datad 53 GB text document
a from the org.apache.spark.mllib.util package
b Graph Challenge datasets provided by Amazon, https://graphchallenge.mit.edu/
data-sets
c included in TPC-H tool package, http://www.tpc.org/tpch/
d Wikipedia database dump, https://dumps.wikimedia.org

4.4 Experiments

We conducted four experiments. Each experiment shows how our scheduler per-
forms in a different scenario in comparison to the baseline round-robin scheduler
in terms of makespan and resource utilization. In the following we describe and
motivate each of the experiments and present the results.

https://graphchallenge.mit.edu/data-sets
https://graphchallenge.mit.edu/data-sets
http://www.tpc.org/tpch/
https://dumps.wikimedia.org
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Learning Phase. The aim of this experiment is to gain insights into how our
Hugo scheduler compares to the baseline round-robin scheduler when there is no
preference data available when the scheduler starts. That is, we start with an
empty preference matrix. The algorithm then populates and updates the prefer-
ence matrix, continuously evaluating the resource usage of pairs of jobs. To speed
up the learning process, the job queue contains a job from each job group. The
jobs are placed in a repeating pattern as follows: C B G A F H × 10.

Results. Using the Hugo scheduler all queued jobs took 169 m 13 s to finish as
opposed to the round-robin scheduler with 180 m 40 s, an improvement by 6.3%.
This result indicates that using the Hugo scheduler is beneficial in comparison to
the round-robin scheduler, even without any prior preference data and therefore
while training, when the workload contains periodically recurring jobs.

Prior Preference Data. In the follow-up experiment, the preference matrix
output from the first experiment is used as the input for the Hugo scheduler.
However, in this experiment we exchange some of the jobs in the queue with
jobs that did not appear in the queue of the previous experiment. This way, we
want to evaluate how well the grouping of our scheduler generalizes to unseen
jobs. The jobs are placed in a repeating pattern as follows: D E B C H G I × 5.

Results. The Hugo scheduler again yields a faster running time: 114 m 49 s com-
pared to the running time of the round-robin scheduler of 128 m 17 s. It thus
produces a schedule that needs 10.5% less time to finish all jobs. Considering
the job queue in this experiment has the same diversity of job groups as in the
first experiment, the result suggests that the improvement is due to the prior
knowledge of preferences between job groups. Also, the result indicates that it is
possible to have beneficial co-location of new jobs on the basis of the calculated
co-location goodness of previously executed similar jobs.

Randomized Queues. In this experiment, we included all nine dataflow jobs.
The output preference matrix from the previous experiment is used as input
preference data for our Hugo scheduler in this experiment. With this experiment
we want to gain insights into how our scheduler behaves with a more realistic
queue as opposed to the manually created queues of the previous experiments.
For this, we generated the following two randomized job queues: C B B E A E
E B I H H C B I H C E G F F A F C I G D A G I C G A F F D E G D A I D
B H D H (Queue 1) and E I A B C H G C A H E G C B F F G D B A C G D
D H F I G C D B A F I F E I E E A H H B D I (Queue 2).

Results. The results of this experiment are summarized in Table 2. Our Hugo
scheduler does not only improve the utilization for each of the resources but
also results in an improvement of up to 12.42% in total processing time over
the baseline round-robin scheduler. This experiment, again, indicates that our
scheduling approach is capable of finding advantageous co-locations that yield
shorter execution times.
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Table 2. Queue processing time for randomized queues

Queue Scheduler CPU [%] Mem [%] Disk [%] Net [%] Duration δ [%]

1 RR 10.44 38.52 16.86 22.65 163 m 15 s –

Hugo 12.45 40.74 17.36 28.85 142 m 58 s −12.42

2 RR 10.90 39.64 17.14 23.18 158 m 48 s –

Hugo 12.84 41.46 18.54 25.33 141 m 06 s −11.14

Online Job Arrival. The primary goal of the previous experiment was to
assess whether our Hugo scheduler succeeds in placing those jobs onto shared
nodes that run well together. With the main focus being the co-location quality,
however, the experiments disregarded the waiting times of jobs in the queue. In
this experiment, we evaluate how effective our extended scheduler, Hugo*, deals
with job queues where jobs have different waiting times.

The preference input data for this experiment is the output of the second
experiment. The job queue used for this experiment is the same randomized Job
Queue 1 from the previous experiment. However, in contrast to the previous
experiments, the whole queue is not known to the scheduler right away. Instead,
jobs join the queue after every scheduling round. We look at two arrival patterns.
With constant arrival rate (CAR), a single job is added to the queue after every
scheduling round. With arbitrary arrival rate (AAR), 1 to 3 new jobs are added
to the queue after every scheduling round. The exact amount of jobs added to
the queue follows a probability distribution where the probability of adding 1,
2, or 3 jobs equals 60%, 20%, and 20%, respectively.

Table 3. Queue processing time with arbitrary arrival rate

Scheduler Duration δ [%]

RR 163 m 15 s –

Hugo* (CAR) 145 m 44 s −10.73

Hugo* (AAR) 154 m 29 s −5.37

Results. Table 3 summarizes the outcome of this experiment. Our Hugo sched-
uler is faster than the baseline for every constellation. However, we also see a
significant drop in performance with AAR. A trade-off has to be made between
job starvation and efficient job order. This demonstrates the pitfall of when the
scheduler is not able to submit jobs onto the cluster as fast as they arrive.

Figure 2 shows how the waiting time is distributed with Hugo and Hugo*. For
Hugo there is a significantly higher number of jobs with or exceeding the waiting
time limit of 20. Hugo*, on the other hand, is able to successfully reduce the
amount of jobs exceeding the waiting time limit. However, since Hugo* gives jobs
that are waiting longer than the global limit the highest preference, the schedules
exhibit less optimal co-locations, reflected in longer total running time.
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Fig. 2. Comparison of job waiting times between the Hugo and the Hugo* scheduler.

5 Conclusion

This paper presented Hugo, a cluster scheduler for distributed data-parallel pro-
cessing workloads that selects jobs based on the resource usage of co-located jobs.
Hugo uses a reinforcement learning algorithm to learn over time which combina-
tions of jobs best utilize shared resources. To efficiently generalize its knowledge
and thus co-locate even new jobs effectively, the approach learns preferences not
for single jobs but for groups of jobs that exhibit similar resource demands. Hugo
selects among the queued jobs using these learned preferences, choosing types of
jobs that complement the jobs currently running on the shared infrastructure.
It thereby aims to schedule those jobs jointly onto shared nodes that yield the
best overall resource utilization and runtimes. We implemented a prototype of
Hugo for Spark and YARN, showing that given mixed workloads with recurring
jobs, our approach can reduce job runtimes, increase resource utilization, and
still balance waiting times.
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Abstract. Cloud Computing is widely recognized as distributed computing
paradigm for the next generation of dynamically scalable applications. Recently
a novel service model, called Function-as-a-Service (FaaS), has been proposed,
that enables users to exploit the computational power of cloud infrastructures,
without the need to configure and manage complex computations systems. FaaS
paradigm represents an opportunity to easily develop and execute extreme-scale
applications as it allows fine-grain decomposition of the application with a much
more efficient scheduling on cloud provider infrastructure.

We introduce FLY, a domain-specific language for designing, deploying and
executing scientific computing applications by exploiting the FaaS service model
on different cloud infrastructures. In this paper, we present the design and the lan-
guage definition of FLY on several computing (local and FaaS) back-ends: Sym-
metric multiprocessing (SMP), Amazon AWS Lambda, Microsoft Azure Func-
tions, Google Cloud Functions, and IBM Bluemix/Apache OpenWhisk. We also
present the first FLY source-to-source compiler, publicly available on GitHub,
which supports SMP and AWS back-ends.

Keywords: Domain-Specific Languages · Scientific computing · Parallel
computing · Distributed computing · Serverless computing · Functions as a
Service (FaaS)

1 Introduction

Cloud computing [2] is widely recognized as distributed computing paradigm for the
next generation of dynamically scalable applications. Since the dawn of the practice
of the cloud, many service models are competing to become the leading model of
cloud infrastructures. Nowadays, Cloud computing is undergoing a service-model shift,
moving the computation on the Serverless computing model, superseding the popu-
lar service-models as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS). Serverless computing model is a novel paradigm for
deployment of cloud applications, in which code snippets are executed over the cloud
infrastructure without having to manage or configure the machines running the code.

c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 531–544, 2020.
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Serverless computing architecture is the natural evolution of microservices archi-
tecture [3], in which the developers do not have to mind about the configuration and
management of the servers executing the back-end of their applications. Cloud appli-
cations based on serverless computing are event-triggered: programmer-defined events
rule the independent execution of modular pieces of code on the cloud environment.
This novel service model, named Function-as-a-Service (FaaS), was first introduced
and made available to the world by hook.io in late 2014 and was shortly followed by
AWS Lambda, Google Cloud Functions, Microsoft Azure Functions and many others.

FaaS can be seen as a finegrained computing partitioning of a cloud applications,
which enables to scale according to the provider capacity. FaaS has been designed for
easily build and deploy scalable applications that are business-oriented such as Mobile
and Internet of Things (IoT) Back-end, Real-time File/Stream Processing, Web Appli-
cations as well as service oriented applications.

In this work we take a novel approach by exploiting FaaS cloud service-model to
develop scalable computing-intensive applications for scientific and data science. In
fact, since the very beginning of Cloud, it was clear how the paradigm represented an
opportunity to easily develop and execute extreme-scale applications maintaining their
costs extremely low compared to High Performance Computing solutions, as shown by
the experiments in [4]. On the other hand, although cloud providers offer solutions with
a high level of scalability, very often the migration of a scientific application on IaaS or
PaaS represents a humongous and complex task, which can conceal serious cost consid-
erations, thereby often preventing scientific application developers to fully exploit the
scalability and cost effectiveness of cloud computing in their own application domain.
This work aims at reconciling Cloud and High Performance Computing by providing
an efficient, effective and price-aware tool for the development of scalable scientific
computing application on several FaaS environments through the design and imple-
mentation of a domain-specific language (DSL) named FLY. FLY is efficient because it
enables to exploit the computing capabilities of different cloud providers at once, in a
single application, and, then, the most efficient solutions can be merged together. FLY

is effective because it consists of a user-friendly programming language that frees the
programmer from the management and configuration of several complex computation
systems. Finally, FLY is price-aware because the programmer becomes conscious of the
maximum computing costs, based on the prices provided by various cloud providers.
In this way, the programmer also has the possibility to choose the service that provides
the best value for money, based on the characteristics of the computation that is going
to perform.

1.1 The Motivations for a Parallel Language for FaaS

Cloud infrastructure provides several services in an accessible fashion through web
endpoints, and/or APIs. Designing and developing scientific applications typically does
not require general purposes services (for instance access to database or providing web
pages), but it requires ad-hoc coding that implements algorithms, which solve specific
problems.

Scientific computing applications are commonly developed using general-purposes
languages or parallel languages/frameworks such as C, Java, Python, Fortran, Julia,

http://www.hook.io
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Table 1. Cloud Computing infrastructures API and FaaS programming languages fragmentation.

Cloud
infrastructure

FaaS service API
languages

FaaS
languages

Pricing and limitations

Amazon
Web
Servicesb

AWS
Lambda
function

Java, .NET,
Node.js,
PHP, Python,
Ruby, Go,
C++, REST

JavaScript,
Java, Python,
Go, C#

1 M functions and 400.000
GB/s of execution time free
per month
The execution time of a single
function is limited at 300 s

Microsoft
Azureb

Azure
function

.NET, Java,
Python, Go,
Node.js,
REST

C#, F#,
JavaScript,
Java

1 M functions and 400.000
GB/s of execution time free
per month
The execution time of a single
function is limited at 300 s

Googleb Google
function

REST, RPC JavaScript 2 M functions, 1 M seconds
of execution and 5 GB of net-
work traffic free per montha

The execution time of a single
function is limited at 540 s

IBM
Bluemix/A-
pache
OpenWhiskb

Action REST JavaScript,
Python, Java,
PHP, Swift,
Docker and
native
binaries, Go

5 M of functions and 400.000
GB/s of execution time free
per monthb

The execution time of a single
function is limited at 600 s

Fissionb Fission
function

REST C#, Go,
JavaScript,
PHP, Python

Fn Projectb Fn function REST Java,
Go,Ruby,
Python, PHP,
JavaScript

Kubelessb Kubeless
function

REST Python,
JavaScript,
Ruby, PHP,
Go, .NET,
Ballerina

a1Amazon AWS Lambda pricing. 2Microsoft Azure Function pricing.
3Google Function pricing. 4IBM Bluemix pricing.
bAmazon AWS Lambda, aws.amazon.com/lambda.
Microsoft Azure Functions, azure.microsoft.com/services/functions.
Google Cloud Functions, cloud.google.com/functions.
IBM Bluemix, www.ibm.com/cloud-computing/bluemix.
Apache OpenWhisk, openwhisk.apache.org.
Fission, docs.fission.io.
Fn Project, fnproject.io.
The Kubernetes Native Serverless Framework, kubeless.io.

https://aws.amazon.com/it/lambda/pricing/
https://aws.amazon.com/it/lambda/pricing/
https://cloud.google.com/functions/pricing
https://console.bluemix.net/openwhisk/learn/pricing
http://aws.amazon.com/lambda
http://azure.microsoft.com/services/functions
http://cloud.google.com/functions
http://www.ibm.com/cloud-computing/bluemix
http://openwhisk.apache.org
http://docs.fission.io
http://fnproject.io
http://kubeless.io
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Limbo, Chapel, MPI, Swift and many others (see Sect. 3 for more details). Moreover,
scientific computing problems are typically computing-intensive and requires the com-
putational power of a distributed system (clusters or HPC). Since 2017, Amazon Inc.
company provides, in their IaaS offer, machines with high number of virtual processors
and memory, which enables users to execute applications on a high performance clus-
ter “de facto”. According to the IaaS model, in such cases, the user is responsible for
deploying and managing of such virtual clusters.

Although many cloud computing companies are recently providing MapReduce [5]
programming paradigm as a cluster of machines running MapReduce compliant frame-
work such as Apache Hadoop (e.g., AWS’s Elastic Map Reduce), many computing-
intensive problems do not fit well the MapReduce paradigm.

FLY also addresses another issue about the nature and prices of the services offered
by Cloud computing providers. In fact, in some cases, it would be extremely convenient,
either in terms of efficiency or cost, to be able to develop cloud scientific applications
exploiting different services coming from different providers. Our result, then, enables a
scientific application designer to write computing-intensive applications that can scale-
up among different computing providers at the lowest costs, selecting the services that
best fit the requirements of the considered problem.

2 Preliminaries

This section presents and discusses the research and state-of-the-art for the cloud
computing service-models domain as well as a short introduction to domain specific
languages.

2.1 Cloud Computing Service-Models

Cloud computing enables companies to use computing resources as a service (like
electricity) rather than having to buy, set-up and maintain computing infrastructures
in house. Several cloud computing service-models [6] has been proposed during the
last two decades. Three models are mainly used by cloud providers:

• Software-as-a-Service (SaaS), when applications are hosted by a cloud providers
and made available on the web.

• Platform-as-a-Service (PaaS), which is a paradigm for delivering applications
frameworks on the Internet without downloading or installing it.

• Infrastructure-as-a-Service (IaaS), which can be seen as the outsourcing of com-
puting power required by the customers. This involves disk space, hardware, and
networking components.

At a first sight, Cloud service models look promising for the Scientific Computing
community, as they may take advantage of the adoption of cloud computing, in their
compute-intensive applications and workflows, in each of the service models described
above. It is possible, for example, to use IaaS for executing application on high perfor-
mance machine or huge clusters, or a cloud computing provider can offer either PaaS
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or SaaS, dedicated domain specific services for scientific and data analysis purposes
(like machine-learning or data-mining services, MapReduce frameworks, etc.). But the
scenario does not come without effort and costs, as, for example, the developers still
need to manage (complex) virtual machines (IaaS), or configure the services (PaaS and
SaaS). Moreover, the scalability of these systems depends on the configuration adopted
and the overall performances and costs saving are strictly dependent on the fluency and
skills of the developers in the Cloud Computing realm.

Serverless computing service-model (or Function-as-a-Service, Faas) [7–9] answers
to the needs of new scalable price-effective cloud applications, by providing an easy
framework for deploying extremely scalable, functionally partitioned applications.
FaaS enables developers to run their back-end applications on complex computing sys-
tems, without a thorough knowledge of the management and configuration of such
systems. Indeed, using FaaS, the user is able to execute independent piece of code
(functions), written in different languages, over the cloud infrastructure, without taking
care about which is and what kind of configuration has the server running the code.
FaaS service-model architecture is event-triggered, which means that developers must
deploy the functions on the cloud infrastructure, and those functions are executed in
response to events generated on the cloud infrastructure (e.g., insert a new record in a
database, send a message on a queue, etc.). Table 1 shows some of the most popular
Cloud Computing infrastructures (open-source and private companies) that provide the
FaaS service-model. Our proposal is guided by the vision to adopt this service-model
in a different context, that is for computing-intensive applications.

2.2 Domain-Specific Languages

Domain-Specific Languages (DSLs) are designed to provide a notation tailored toward
an application domain that is based only on the concepts and features that are relevant
for the domain. DSLs enable solutions to be expressed at the same level of abstraction of
the problem domain and can be of significant help in shifting the development of busi-
ness information systems from software developers to a larger group of domain-experts
who, despite having less technical expertise, have deeper knowledge of the domain and,
therefore, if an easy-to-use, tailored tool is provided, can be much more effective. Fur-
thermore, DSLs are much easier to learn, given their limited scope. It must be said that
DSLs have specific design goals that contrast with those of general-purpose languages:
DSLs are much more expressive in their domain and should exhibit minimal redun-
dancy. Examples of DSL include SQL [10] (for relational database query), HTML [11]
(for website definition), R [13] (for statistics), OpenABL [12] (for simulation).
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Fig. 1. FLY compilation workflow.

3 Related Work

Parallel and distributed languages have been actively investigated for decades [15]. Here
we describe several languages and frameworks that are suitable for developing scalable
applications in the scientific computing (SC) research area.

General-Purpose Languages. Fortran is a programming language designed for
numeric computation and scientific computing. It is widely used in scientific fields (such
as numerical weather prediction, computational dynamics and physics). Programmers
are moving toward modern programming languages like Python [17] and Julia [18]

Parallel Languages. Limbo [19] is a programming language intended for applications
running distributed systems on small computers. Chapel [20] is a programming lan-
guage designed for productive parallel computing on large-scale systems. Its design
and implementation have been undertaken with portability in mind, enabling Chapel to
run on different environments. Cilk [21] is a general-purpose programming language
designed for multithreaded parallel computing. Cilk is a C/C++ extension that supports
nested data and task parallelism.

Frameworks Designed for Compute-Intensive Applications. Apache Hadoop [22] is
a framework that enables the distributed processing of large data sets across clusters of
computers using a simple programming model. Apache Spark [23] is a fast and general-
purpose cluster computing system.

Scripting Languages for Workflow. Swift [24] is a featured data-flow oriented coarse
grained scripting language, which is designed for scientists, engineers, and statisticians
that need to execute domain-specific application programs many times on large col-
lections of file-based data. Swift/T [25] is the high-performance computing version of
Swift languages, in which the Swift programs are translated in MPI based programs to
be executed on HPC systems. Swift and Swift/T provide set-up on cloud IaaS1. Open-
Mole [26] offers tools to run, explore, diagnose and optimize numerical models, taking
advantage of distributed computing environments.

1 http://swift-lang.org/tutorials/cloud/tutorial.html.

http://swift-lang.org/tutorials/cloud/tutorial.html
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Listing 1.1: PI Montecarlo Estimation on Amazon AWS

1 va r aws = [ type : ” aws ” , a c c e s s k e y : ” amazon aws acce s s key ” ,
s e c r e t k e y : ” amazon aws s e c r e t k ey ” , r e g i o n : ” us−e a s t −2” ]

2 va r ch = [ type=” channe l ” ] on aws
3 func h i t ( ) {
4 va r r = [ type=” random” ]
5 va r x = r . nex tDoub le ( )
6 va r y = r . nex tDoub le ( )
7 va r msg=0
8 i f ( ( x∗x ) +( y∗y ) < 1 . 0 ){ msg=1 }
9 ch !msg

10 }
11 func e s t i m a t i o n ( ) {
12 va r sum = 0
13 va r c r t = 0
14 f o r i i n [ 0 : 1 0 000 ] {
15 sum += ch ? as In t eg e r
16 c r t += 1
17 }
18 p r i n t l n ” PI a pp r ox ima t i o n i s ”+ ( sum∗4 . 0 ) / c r t
19 }
20 f l y h i t i n [ 0 : 1 0 000 ] on aws t h e n a l l e s t i m a t i o n

4 FLY Design

The goal of FLY is to provide a portable, scalable and easy-to-use programming envi-
ronment for scientific computing. FLY perceives a cloud computing infrastructure as a
parallel computing architecture on which it is possible to execute some parts of its exe-
cution flow in parallel. FLY enables the domain developers (i.e., domain experts with
limited knowledge about complex parallel and distributed systems) to design their appli-
cations exploiting data and task parallelism on any FaaS architecture. This is achieved
by a rich language that provides domain-specific constructs, that enable the developers
to easily interact, using an environment abstraction, with different FaaS back-ends.

FLY provides implicit support for parallel and distributed computing paradigms and
memory locality, enabling the users to manage and elaborate data on a cloud environ-
ment without the effort of knowing all the details behind cloud providers API. A FLY

program is executable either on a SMP or a cloud infrastructure (supporting FaaS) with-
out a deep knowledge of the underlying computing resources.

FLY is compiled in native code (Java code) and it is able to automatically exploit
the computing resources available that better fit its computation requirements. The
main innovative aspect of FLY is represented by the concept of FLY function. A FLY

function can be seen as an independent block of code, that can be executed concur-
rently. FLY functions can be executed in sequential mode, in parallel on SMP or on a
FaaS back-end. The language provides programming constructs for functions defini-
tion, execution, synchronization and communication. Communication among different
environments/back-ends is obtained through some virtual communication path named
channels. Along these lines FLY has been designed as an enhanced scripting language
and is composed by a sequence of standard instructions integrated with a number of
FLY functions invocation, which interact via channels.

Figure 1 depicts the FLY compilation workflow. On the left side, the FLY program is
given in input to the compiler (written using XText). The intermediate AST representa-
tion is translated in a Java native program. Each FLY function is translated into different
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executable codes (one for each back-end). Therefore FLY provides compiled functions
code that can be executed on each cloud infrastructure back-end (see Fig. 1).

Fig. 2. FLY execution workflow.

Figure 2 shows a general execu-
tion flow of a FLY program along
the execution time. First of all, the
program initializes all the back-
ends required by the FLY code, and
deploys the generated code on the
corresponding back-end. We notice
that the FLY functions are already
compiled when the main FLY pro-
gram is executed, thereby avoid-
ing run-time compilation overheads.
After these initialization steps, the
main program is executed follow-
ing the FLY code instructions. Each
time the fly keyword is used, the
program generates events on the
corresponding SMP and/or FaaS
back-end, in order to execute the
FLY functions. FLY supports syn-
chronous and asynchronous execu-
tion models.

Before presenting the FLY lan-
guage design, Listing 1.1 shows a
simple example of a FLY program,
which computes a PI estimation
through the Montecarlo Method on

an Amazon AWS Lambda back-end. Briefly, the PI Monte Carlo estimation algorithm
generates a set of random points on a two dimensional Cartesian systems, and counts
the number of points that are inside the positive quadrant of a circle of diameter 1.0
centered in the origin. Then, it computes the estimation of PI as S∗4.0

N , where S is the
number of points inside the positive quadrant of the circle and N is the total number
of generated points. First of all, FLY PI code defines, at line 1, a new Amazon AWS
FaaS back-end. Line 2 declares a new channel on the environment aws that enables the
main program to communicate with the FLY function hit, defined at line 3. The hit
function generates a random point and evaluates whether it belongs to the circle. This
information is sent on the channel ch. Another function estimation reads the out-
puts of the function hit and writes on the standard output the estimation of PI. Line 20
launches 10000 hit functions synchronously on the aws back-end. When all functions
terminate, the function estimation is performed on the SMP back-end. It is worth
to notice that FLY functions cannot use variables declared outside the function scope,
excepts for variables of type channel (see Sect. 5).
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5 FLY Language Definition

The FLY syntax and concepts are inspired by different languages such as Java,
JavaScript, Python, and R. This ensures familiarity with most powerful and famous
general purposes/data science languages. FLY is statically, strongly typed and uses type
inference to determine the initial type of all your variables (using the keyword var) and
constants (using the keyword const). Moreover, FLY provides several domain specific
constructs for parallel/distributed task/data based parallelism and supports inter-process
(and inter-FLY-functions) communications using channels according to communicating
sequential processes (CSP) definition [16].

5.1 Data Models and Types

FLY provides two sets of types named basic and domain types. Basic types, inherited
by Java, comprises boolean, integer, real (double point precision floats) and string.
Moreover, FLY supports one/bi/three-dimensional array definition for basic types. In
addition to basic types, FLY provides several domain types that enable the users to
interact and communicate with the computing back-ends.

Object Domain Type. The main domain type is the object type. A FLY object is a het-
erogeneous collection of basic and/or domain types elements. Essentially a FLY object
is a mixture between an array and map data structure, which stores data in key/value
pair. The value of an element can be accessed in two different ways: by position (like
arrays) or by key (like maps). When a new value is assigned to a given key/position
a new element is created, otherwise the new value replaces the previous one. More-
over, all FLY domain specific type are an instance of the object type, which means are
build in similar fashion, specifying the object type using the parameter keyword type =
“object type”.

Environment Domain Type. The Environment type represents an abstraction of a
execution environment. It provides the ability to interact with a cloud provider or a
SMP system. Different environments are treated in the same way by FLY, leaving the
details relating to the specific use of each execution environment to the FLY compiler.

Environments are declared as an object using several parameters that characterize
a back-end. In this preliminary version of the FLY compiler, the SMP (using the type
smp) and AWS back-end (using the type aws) are supported (see Sect. 6).

va r name = [ type=” ( smp , aws , . . . ) ” , n t h r e a d s = In teger , acce s skey=Str ing ,
s e c r e tk ey=Str ing , l im i t =Floa t ]

The first parameter specifies the desired back-end. The simplest back-end is smp, and
enables the user to exploit the local SMP architecture. The second parameter (threads)
indicates the maximum number of concurrent tasks allowed on the back-end. The
remaining parameters are used to manage the authentication on the back-end. Even-
tually, the parameter limit enables the user to set an usage cost limit according to the
used back-end.

File Domain Type. File object is the abstraction of file in FLY. The language supports
four file formats: csv, json, img, and txt, defined by the parameter type. A new file object
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is defined using also additional parameters: path (the file system path) or a reference to
the file, and by the separator sep, that is an optional parameter defined for CSV files.

The language provides two methods to access files, which depend on where the file
is stored: local or remote.

va r name = [ type=” ( csv , j son , img , t x t ) ” , path=Str ing , sep=Str ing ] on env ( o p t i o n a l )

FLY has a specific focus on csv files managing them as a Dataframe (similar to R
language dataframes). The memory is seen as a matrix structure, allowing the user to
access to rows and columns, while it provides dedicated operations for querying, filter-
ing, random access, etc. Dataframe operations are described in details in the language
documentation.

Communication Statement. Channel type is a domain type that enables the synchro-
nization and communication between FLY functions and/or the main program, defined
by the type = “channel”. Channels follow the Communicating Sequential Processes
(CSP) definition [16]. A new channel is defined on an environment, and can be used
for the communication between functions executing on the same back-end or from the
main program to a back-end and viceversa. Channels are blocking message queues, that
is, when the main program or a function tries to receive a message from a channel, the
execution is blocked until a new message arrives on the channel. Messages are sent on a
channel using the character ‘!’ (e.g., the instruction ch!VAL sends a message V AL on
the channel ch), while the character ‘?’ is used to receive messages, (e.g., the instruc-
tion x=ch? reads a message from the channel ch and assigns the obtained value to the
variable x). Channels use network infrastructures to communicate with the cloud envi-
ronment and for this reason a serialization mechanism is required for sending/receiving
messages. FLY defines the serialization for objects, files, images and basic types. It is
not allowed to send messages containing environments, channels, and random objects.

5.2 Control Structures

FLY conditional and iterative controls structures are standard and follows the same state-
ments of languages like Java. Two kinds of for loops can be used in FLY, the former
uses a range definition, and enables the program to loop in a range of integer values,
defined using square parenthesis ([x:y]). The latter, enables the program to iterate over
a FLY object or a file.

5.3 Execution Control Structures

Functions. FLY functions are quite different from other scripting languages and follow
a functional programming inspired definition. A FLY function represents a task or inde-
pendent job of the main program and it is defined as a code block that can be executed
concurrently. FLY functions are declared using the keyword func. Each FLY function
can have a set of input parameters and may return a value using the word return. FLY

functions have a private scoping, that is only function parameters and local variable
are visible in the body of the function. The input parameters are passed by copy, and
they are considered as immutable. However, functions can avoid this limitations using
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channels or constants. A channel declared in the main program or in a function running
on the same environment can be directly used by a function, the same behavior is also
defined for the constants.

Notice that, the FLY language does not ensure that operations are admitted: if a
function is executing on a back-end B, the function can use only channels and objects
available on the back-end B. FLY functions can be executed, like for standard languages,
using their ID and parameters (in this case functions are executed sequentially). In order
to execute functions concurrently, FLY provides the fly statement that will be described
in the following. The fly statement is not admitted in the body of a function (i.e.,
recursion is not allowed).

Parallel/Distributed Statement. The definition of FLY functions is the consequence
of the explicit parallel execution model of FLY. The language provides the keyword
fly that enables the user to execute concurrently a set of functions (the number of
concurrent functions will depend on the back-end used and the user needs). The fly

statement is similar to the for statement but the fly statement allows to specify the
back-end environment (using the keyword on) and, possibly, callback functions.

f l y ID i n [ x : y ] | Object | F i l e on Env t h en ID t h e n a l l ID

The fly statement supports two kinds of function callbacks, declared using the
keywords then and thenall. The then callback is executed after each FLY function
execution, instead the thenall callback is executed after all FLY function executions.
Then and thenall functions have to take only one input parameter that, for then cor-
responds to the return value of a function execution, while for thenall is a FLY object
containing all the return values obtained by all the function executions.

FLY explores synchronous and asynchronous execution models. The previous con-
struct defines the synchronous mode, in which the main program waits all functions ter-
mination. It is possible to execute functions asynchronously using the keyword async

before the fly construct.

Asynchronous Execution. The async statement returns a special FLY object, named
async-object, that enables the user to control and interact with the asynchronous execu-
tion. The async FLY constructor invocation immediately returns the control to the main
program and the execution can continue. The user can control the status of the asyn-
chronous functions invoking the method status() on the async-object and can wait
the termination of all functions using the method wait().

Types Casting. FLY uses a dynamic type checking, that is variable types are automat-
ically inferred at run time during the first assignment. Moreover, FLY typing is strong,
the type of a variable cannot change during the execution time. FLY provides support for
explicit types casting as in Java and C#. Types casting is admitted on basic and domain
types, but it is forbidden on environments and channels.

Native Code. FLY is also able to include external libraries (using the keyword require,
which enables to include and install, in the selected environment, an additional library)
and supports the execution of native code (using the keyword native). For instance, the
FLY functions running on the aws back-end are translated in Javascript, which means
that it is possible to include in these functions all JS libraries.
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6 Compiler Implementation

We present, in this Section, the preliminary version of our source-to-source compiler
for FLY language. An implementation of the language grammar and code generators for
the SMP and AWS FaaS back-ends have been developed.

Cloud computing infrastructures expose their FaaS service model through APIs in
several languages, as show in Table 1. We deployed our compiler in order to generate a
Java program, which is able to support all back-ends. We decided to design our language
compiler using Xtext [14], which enables the user to create JVM based DSL. The FLY

code is translated in a pure Java program that exploits FaaS APIs in order to use FaaS
services. Xtext leverages the powerful ANTLR parser which implements an LL parser.

We designed an LL grammar for FLY language that provides the complete language
definition, presented in the Sect. 5. Xtext has been also used to develop a code generator
that, given the intermediate AST program representation (the output of the first compi-
lation phase), generates a FLY Java program. The code generation phase is the core of
our compiler, it generates different codes according to the back-end where the FLY code
has to be executed. The code generation phase is designed to be specialized according
to the considered back-end:
1) SMP back-end. A Java Thread Pool is used to implement the back-end for the SMP
architecture. The FLY main program is executed as Java code on a JVM, which executes
also the SMP back-end. In details, all FLY types are mapped on a particular Java type
and the FLY functionality are provided exploiting the Java language.
2) FaaS back-ends. The back-ends for Faas architectures have been developed using the
Java API of each cloud providers. In order to support different back-ends, our FLY com-
piler translates each FLY function in JavaScript (JS) using the specific JS cloud provider
API to realize FLY operations on channels and remote files. For each back-end and each
FLY function the compiler generates a binary package containing: the JS code and the
used JS libraries. The generated package is used to deploy the function code on a cloud
provider. The alpha release of the FLY compiler as well as the compiler guide is avail-
able for download on the GitHub github.com/spagnuolocarmine/FLY-language releases
page. The FLY compiler produces: a Java Maven project including all FLY dependen-
cies, the FLY main program (a Java class with the same name of the FLY source code),
and the FLY functions code.

7 Conclusion

This paper introduces FLY, a domain specific language for scientific computing on FaaS
cloud computing service model. The contributions of this paper are: (i) the design
of FLY, a novel domain-specific scripting language for computing-intensive scientific
applications; (ii) the language design and specification for SMP and four FaaS cloud
computing architectures, and (iii) the FLY source-to-source compiler. Future works
and studies are already planned to improve FLY language definition including: library
and namespaces definitions, compiler optimizations (according to the FaaS execution
model), derived data types (as Java class) and data visualizations. The actual version
of the FLY compiler will be extended in order to support the improvements on the lan-
guage definition as well as other cloud providers. We plan to extend the compiler in

http://github.com/spagnuolocarmine/FLY-language
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order to generate function code in other FaaS languages like Python. Furthermore, FLY

will provide specific libraries of algorithms (optimized for FaaS environments), such
as machine learning, data mining, and discrete-event simulation. In particular we will
focus on graphs algorithms and mining providing support for big networks [1].
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Abstract. The Human Phenotype Ontology (HPO) is a standardized
vocabulary of terms related to diseases. The importance and the speci-
ficity of HPO terms are estimated employing the Information Content
(IC). Thus, the analysis of annotated data is a critical challenge for bioin-
formatics. There exist several approaches to support ontology curators
in maintaining and analysing data. Among these, the use of Association
Rules (AR) can improve the quality of annotations. In this paper, we
present an algorithm for the parallel extraction of Weighted Association
Rules (WAR) from HPO terms and annotations, able to face high dimen-
sion of data. Experiments performed on real and synthetic datasets show
good speed-up and scalability.

Keywords: Human Phenotype Ontology · Gene Ontology · Weighted
Association Rules · Parallel computing

1 Introduction

In computer science an ontology refers to a set of representational primitives
employed to model a domain of knowledge [10]. In particular, bioinformatics
and computational biology in the last decades made extensive use of ontologies.

For instance, Gene Ontology (GO) points to provide a common language
to describe genes product [7]. More recently, the annotation efforts have also
focused on the description of the relation among molecular biology and disease,
leading to the introduction of different ontologies such as Human Phenotype
Ontology (HPO) [21] and Disease Ontology (DO) [23].

HPO aims to provide a structured repository of phenotypic abnormalities
found in human diseases. A HPO annotation links a condition with phenotypic
abnormality. The Online Mendelian Inheritance in Man (OMIM) [11] provides
identifiers to link diseases and phenotypic abnormality. OMIM is a broad, author-
itative compendium of human genes and genetic phenotypes that are freely avail-
able and updated daily [11]. The Disease Ontology (DO) has been developed as
a standardized ontology for human disease to provide stable and sustainable
descriptions of human disease terms and phenotype characteristics [23].
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The amount of annotations is regularly growing, raising new challenges to
face, related to ambiguous or incomplete annotations and ontology terms [9].
The annotation task is becoming an even troublesome challenge in the genomic
era, which is characterized by unprecedented growth in the production of genes,
gene products, and also other information. Thus, the development of automatic
computational approaches can speed up the updating and maintenance processes
of ontologies, since several current strategies of annotation are carried out man-
ually by the curators. The literature contains several computational methods
developed to aid GO curators to improve GO annotations consistency [8,17,25].
Conversely to GO, in literature, there are few automatic methodologies able to
support the HPO curators to improve annotations consistency and retrieve link
between terms not explicitly related.

As shown in some recent works by Faria et al. [8], by Manda et al. [16],
and by Agapito et al. [1–4], Association Rules (AR) may be used to improve
annotations consistency and highlight correlations among terms did not appear
explicitly related.

In this work, we present PHPOMiner (ParallelHPOMiner) the parallel ver-
sion of our previous works in which we introduced HPO-Miner. PHPOMiner
is a tool for parallel mining of weighted association rules (WAR) to control
annotation consistency and to identify unknown relationships between two phe-
notype abnormalities from HPO. Traditional association rule methods cannot
distinguish between items relevance, yielding to the generation of rules with low
specificity. The information content (IC) measures the specificity of a term as
reported in [12,18]. The use of IC computed for each HPO term, is a measure
of the specificity of a term, producing the IC-weighted annotation as conveyed
in the following: OMIM100100: (HP:0000126, 11.18), (HP:0000144, 9.57). The
main contributions of PHPOMiner are:

– i) a customized multi-threading version of PFP-Growth [15] to mine Weighted
Association Rules (WAR), and

– ii) a novel dataset-partitioning able to produce independent computational
tasks that can be run concurrently on several separate threads.

The rest of the paper is organized as follows. Section 2 introduces the AR and
WAR mining main concepts, as well as describes the HPO ontology. Section 3
describes the PHPOMiner algorithm, and Sect. 4 concludes the paper.

2 Materials and Methods

2.1 The Human Phenotype Ontology

HPO is a structured and controlled vocabulary, available at the website1, that
includes more than 13,000 terms describing the phenotypic abnormalities in
human diseases. HPO provides annotations of more than 15,000 human heredi-
tary syndromes and other phenotypic abnormalities that characterize the disor-
ders. HPO includes three independent sub-ontologies:
1 https://hpo.jax.org/app/.

https://hpo.jax.org/app/
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– the mode of inheritance: describes the transmission of the hereditary
attributes from a generation to another;

– the onset and clinical course: in medicine refers to the first symptoms of
sickness and the medical treatments involved to cure them;

– the phenotypic abnormalities: the abnormal traits of a living organism that
are possible to observe;

– the clinical modifier : the typical modifier that are present in clinical symp-
toms, such as severity;

– the frequency : the frequency related to clinical feature presented by patient,
i.e frequent/occasional.

As other ontologies, HPO presents a direct acyclic graph (DAG) terms orga-
nization. The relations among DAG’s terms are modelled by means of is a
and part of edges “relations”, in order to distinguish between general or pre-
cise terms. Besides, terms are arranged hierarchically in HPO, where each path
respects the true-path-rule. To each HPO class is provided a stable and individual
identifier (e.g. HP:00010438 ), a label and a list of synonyms, describing a phe-
notypic abnormality i.e. “Abnormality of the Ventricular Septum” as depicted
in Fig. 1.

Fig. 1. HPO graph Example. The term “Abnormality of the Ventricular Septum” is the
root and the terms “Inlet Ventricular Septal defect” and “Non restrictive Ventricular
Septal defect” represent the leaves. By proceeding from the root to the leaves the
information content of the terms increases, from a general term to more specific ones.

The HPO terms linked to diseases listed in the OMIM (Online Mendelian
Inheritance in Man) database are available at the website. Diseases are anno-
tated with terms of the HPO, meaning that HPO terms are used to describe
all the signs, symptoms, and other phenotypic manifestations that characterize
the disease in question. Since HPO contains information related to phenotypic
abnormalities, the computation of semantic similarities among concepts anno-
tated with HPO terms may enable database searches for clinical diagnostics or
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computational analysis of gene expression patterns associated with human dis-
eases [14,19]. The annotations of OMIM entries are a mixture of manual anno-
tations performed by the HPO curators team and automated matching of the
OMIM Clinical Synopsis to HPO term labels. In particular, HPO is an ontol-
ogy designed to provide qualitative information and not to capture quantitative
data such as body weight or height. Multiple HPO terms can be used to annotate
a disease, consequently the need for the definition of methodologies and tools
to support HPO curators to improve annotation consistency and the structure
of the ontology arises. For these reasons, we proposed in the past HPO-Miner,
a data-mining strategy based on weighted-association rule mining to support
HPO curators. Furthermore, the literature reports different approaches based
on associative rules mining (ARM) from annotated data [1,8,17].

2.2 Association Rules

Association Rule (AR) mining is a common task in data mining; it is employed
to discover hidden associations in market basket analysis and unknown relations
among features in databases. Historically, it was proposed by Agrawal [5] to
learning associations to support marketing decision. Formally, the association
rules extraction problem may be stated as follows: let I = {i1, i2, . . . , in} be a
set of items, and D = {t1, . . . , tm} a transactional database that contains a set
of transactions, where a transaction tj is a subset of items belonging to I. The
number of items contained in a transaction is defined as transaction width. An
association rule is a relationship of the form A → B, where A and B are two
disjoint sets. ARs are based on two fundamental properties to define the relevance
of the mined rules, Support and Confidence. The formal Support definition is:

Definition 1.

S(A → B) =
σ(A ∪ B)

N

Where N is the total number of transactions contained in D, the transactional
database, and σ is called support count, that is the number of transactions that
contain a particular item.
The Confidence is defined as:

Definition 2.

C(A → B) =
σ(A ∪ B)

σ(A)
.

Where σ(A) is the number of transactions in D, the transactional database,
containing A and σ(A ∪ B) is the number of transactions in D that contains
both items A and B.

A shortcoming with the use of standard AR procedure is that it prevents
the production of certain rules in which the items have very different levels of
support. In several areas it does not make sense to assign equal importance to
all items included in the dataset. For example in the basket market analysis,
some items like computers, smartphones have much more value than small items
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like ice-creams or butter. Rules including smartphones or computers have less
support than those involving butter or ice-cream but are much more significant
in term of profit by the store. In the ontology context, the term HP:0000924 (An
abnormality of the skeletal system) has a relevance value (IC value) lower than
HP:0011803 (Bifid nose) although it is much more frequent. Rules involving
the term HP:0000924 are less interesting (as it is a more general term) than
rules involving the term HP:0011803 (as it is a more specific term) in terms of
actionable knowledge.

This weakness of classical AR approach can be overcome by introducing the
weighted association rules (WAR). WAR models the importance of a term by
means of a weight (ω). A weight (ω) is a non-negative real number that reflects
the relevance of an HPO term, for which high values represent essential items
as reported in [6,24]. In our case, the relevance can be expressed by using the
information content (IC ).

Starting from the HPO dataset depicted in Fig. 2, we created a new HPO
dataset by adding for each term the related value of IC as shown in Fig. 3 and
called weighted HPO dataset. The weighted HPO dataset presents a transaction
data structure, can easily dig with the weighted transactions of HPO terms, as
depicted in Fig. 3.

Fig. 2. An example of HPO dataset.

Fig. 3. An example of weighted transaction HPO dataset.

We define as WeightedSupport, (ωS), obtained combining the classical for-
mulation of the support of an item by its weight. The weighted Support ωS of
a generic item xi is defined as: ωS(xi) = wi ∗ σ(xi) where ωi is the information
content of the i-th term and σ(xi) is the number of transaction containing xi.
Let I = {i1 . . . im} be a set of weighted items (HPO terms) and let WD be
a set of weighted transactions database, where each transaction tj is a sub-set
of weighted items such that tj belongs to I. We defined the weighted minimum
support (mωS) as:

mωS =

(∑|WD|
i=1 σ(xi) ∗ ωi

|WD|

)
∗ p. (1)
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Where, |WD| is the cardinality of the weighted database nominally, the num-
ber of transactions into the dataset, p is a threshold value given in input by the
user in order to define which items are significant in percentage. Thus only the
items for which the following constraint ωS(I) ≥ mωS is verified, are significant
and can be used as candidates to generate frequent item-sets and rules. There
are different possible methods to solve the conflict between the frequency and
the weight of each item. However, we have chosen to use the sum of the multipli-
cation between weight and frequency because this balances the effects of weight
and frequency.

2.3 Weighting HPO Term with Information Content

There exist different IC conceptualization that can be gathered into two classes,
intrinsic and extrinsic methods. Intrinsic methods rely on the topology of the
ontology graph, analyzing the positions of terms in a taxonomy. In this way,
the methods define the information content for each term. Various topological
characteristics as ancestors, number of children, depth (see [12] for a complete
review) can be used to estimate the Intrinsic IC calculation. Instead, the extrinsic
approaches involve the annotation data for a considered corpus. In literature
exist different intrinsic methods proposed by Sanchez et al. [22], Harispe et al.
[12], Resnick et al. [20], Seco et al. [13], Zhou et al. [26].

The measure of Sanchez employs only the number of leaves and the set of
ancestors of a including itself, subsumers(a) and introduce the root node as the
number of leaves max leaves in the IC assessment. Leaves are more informative
than root concepts, so the leaves are more suited to describe and distinguish any
concept.

ICSanchez et al.(a) = −log

⎛
⎝ |leaves(a)|

|subsumers(a)| + 1

max leaves + 1

⎞
⎠ (2)

Harispe et al., to point out the specificity of leaves according to the num-
ber of ancestors, consider leaves(a) = a concept when a is a root and assensing
max leaves as the number of enclosed ancestors of a node varying the IC assess-
ment suggested by Sanchez et al.

ICHarispe et al.(a) = −log

⎛
⎝ |leaves(a)|

|subsumers(a)|
max leaves

⎞
⎠ (3)

The formulation provided from Resnick et al. computes the IC of a concept
evaluating all the top-downs path from a concept a to the reachable leaves, p(a),
and then calculates the log yielding to the formula:

ICResnik(a) = −log(p(a)). (4)

Seco et al. measure the IC of a term by regarding the rate between the
number of hyponyms in ontology, for instance, the number of descendant with
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respect to the whole number of ontological concepts.

ICSeco et al.(a) =
log

(
hypo(a)+1
max nodes

)
log

(
1

max nodes

) (5)

The formulation provided from Zhou et al. examines the depth of a term in
a taxonomy, depth(a), and the maximum depth of the taxonomy max depth.

ICZhou et al.(a) = k −
(

1 − log(hypo(a) + 1)

log(max nodes)

)
+ (1 − k)

(
log(depth(a))

log(depth nodes)

)
(6)

In this formulation K is a factor which enables to weight the contribution of the
two evaluated features.

In this work we used the IC implementation proposed by Harispe et al.

3 The PHPOMiner Algorithm

In this section we describe the PHPOMiner algorithm, developed to extract
weighted association rules form HPO datasets implementing a parallel strategy,
by means of a multi-thread paradigms. The target physical architecture is a
multi-processor multi-core system. The main steps of PHPOMiner are summa-
rized in Fig. 4.

Fig. 4. PHPOMiner pseudocode

PHPOMiner’s core algorithm is based on independent Workers (threads) that
allow to compute association rules in parallel. In each run of PHPOMiner, there
are a supervisor worker and c−1 workers. We choose c−1 as a number of workers
because, c is the real number of cores available on the machine, and 1 core is
used to map the supervisor worker, avoiding to introduce overhead costs due to
the physical cores saturation.

To mine association rules in parallel, it is necessary to convert the input
HPO dataset in a transactional database, where the transactions are indepen-
dent among them. Independent transactions makes it possible to mine AR
locally to each worker. In this way, each workers can analyze its slice of dataset
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independently without to be necessary to share information with other work-
ers. The supervisor worker receives as input the dataset, the minimum sup-
port minSupp and the minconf values that are used to mine association rules.
Whereas, the number of available cores #cores is automatically detected by
PHPOMiner using an opportune system call. The first step of the supervi-
sor worker is to distribute to each worker a virtual slice of the dataset
(e.g., the indexes of the starting and ending transaction) to compute the occur-
rences of the items, that will be stored in the OccurrencesWeightedList (OWL).
OWL contains only the frequent items, for which the computed weighted-
occurrences are greater than the weighted minimum support. The items within
the OWL list are employed to remove the meaningless items from each transac-
tion, to reduce the probability to generate trivial association rules.

Table 1. Independent transaction construction. weightedSupport ≥ 20

Transaction FrequentWeightedItems TailsDetected

{a:10}, {f:9}, {g:8}, {t:7}, {x:1} a, f, t, g g

{a:10}, {b:9}, {g:8}, {t:7}, {w:1} a, b, t, g g

{a:10}, {b:9}, {h:1}, {j:1} a, b b

c, {f:9}, {g:8}, {i:1} c, f, g g

Table 2. The execution times are obtained by analyzing an input dataset composed
by 100 subjects, and using Confidence = 0 and Minimum Weighted Support = 20%
respectively.

Number of processors Execution time (sec)

1 3.198

2 1.59

4 0.793

6 0.553

In addition, the elements in each transaction are sorted in descending order of
weighted-occurrence, to facilitate the creation of the independent transactions.

An independent transaction is obtained collecting together all the transac-
tions comprising the same tail, i.e., the item with the lower value of weighted-
occurrence as conveyed in Table 1.

It is worthy to note that now, each item with low value of weighted-occurrence
become the identifier of a sub-set of independent transactions. Thus, the super-
visor worker can partition the transactions among the workers running on the
available cores (see Table 1). Then the Supervisor concurrently starts #cores-1
instances of workers and as a last step, the supervisor worker collects and merges
the results.
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Fig. 5. Figure shows the speedup and execution times obtained by PHPOMiner for the
analysis of dataset of HPO terms and annotations using 1, 2, 4, 6 cores. PHPOMiner
presents good response times and speedup using 1, 2, 4, 6 slaves thread.

In detail, each worker receives a set of transactions in input, with which it can
locally mine weighted association rules, and as a last step each worker returns
to the supervisor worker the mined weighted association rules.

Figure 5 reports the execution times and the speedup obtained analyzing a
dataset of HPO terms and annotations using 1, 2, 4, 6 cores respectively.

Table 2 shows the time obtained varying the number of cores.
Analyzing the Fig. 5 it is worthy to note that, the proposed parallel algorithm

shows good response times and speedup.

4 Conclusion

We proposed PHPOMiner a multi-thread parallel algorithm for the parallel
extraction of weighted association rules from HPO terms and annotations data,
taking into account the relevance of a term. The significance of an HPO term by
computing the IC value related to each term is obtained. PHPOMiner through
an iterative process can figure out the tail of each transaction. Decomposition
that makes it is possible to analyze input dataset in parallel among the available
workers. In this way, workers can locally mine the weighted association rules
without to be necessary to share information with the other workers. Finally,
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experiments performed on real and synthetic datasets show good speed-up and
scalability.
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Abstract. Non-linear mixed effects models (NLMEM) are frequently
used in drug development for pharmacokinetic (PK) and pharmacoki-
netic-pharmacodynamic (PK-PD) analyses. Parameter estimation for
these models can be time-consuming due to the need for numerical inte-
gration. Additionally, the structural model is often expressed using differ-
ential equations requiring computationally intensive time-stepping ODE
solvers. Overall, this often leads to long computation times in the order
of hours or even days.

Combining the right mathematical tools as well as techniques from
computer science, the computational cost can be significantly reduced.
In this paper, several approaches are detailed for improving the perfor-
mance of parameter estimation for NLMEM. Applying these, often easy,
techniques can lead to an order of magnitude speedup.

Keywords: Non-linear · Mixed effects models · High-performance
computing · Parallel

1 Introduction

Non-linear mixed effects models (NLMEM) are frequently used in drug develop-
ment for pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PK-
PD) analyses [8]. On top of the structural model explaining the individual
PK/PD observations, the statistical components allow the modeller to charac-
terize the within-subject variability (the variability within each individual pro-
file) as well as the between-subject variability (the variability of the individual
parameters) to quantify the unexplained variability [32].

The estimation of both fixed and random effects parameters involve complex
estimation methods due to non-linearity preventing closed-form solutions to the
integration over the random effects. While different algorithms and software can
be employed for estimating the parameters, most require repeated evaluation of
the structural model for all individuals.

Additionally, the structural models are often expressed using ordinary dif-
ferential equations (ODEs) as a way of describing a biological process in terms
of simple input-output equations. In some cases these ODE systems cannot be
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 560–571, 2020.
https://doi.org/10.1007/978-3-030-48340-1_43
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expressed with exact closed-forms due to the inclusion of non-linear terms where
input or output is dependent on the response. These non-linear systems are
usually solved with computationally intensive time-stepping ODE solvers, com-
pounding the cost of the parameter estimation process.

Estimating parameters for such models in a reasonable amount of time
requires the combination of the right mathematical tools as well as techniques
from computer science. In this paper, several approaches are detailed for improv-
ing the performance of parameter estimation for NLMEM.

2 Non-linear Mixed-Effects Model

Mixed-effects models (MEM) can address a wide class of data, including contin-
uous, count, categorical and time-to-event data. The following description will
focus on continuous data models. A mixed-effects model is a hierarchical model:
at the first level, each individual has its parametric regression model (the struc-
tural model) with unknown individual parameters. At the second level, each set
of individual parameters is assumed to be randomly drawn from an unknown
population distribution. The model can be defined as follows:

yij = f(xij ;φi) + g(xij ;φi, Σ)εij

where

– yij denotes the j-th observation from the i-th individual, 1 ≤ i ≤ N and
1 ≤ j ≤ ni.

– N is the number of individuals and ni the number of observation for the i-th
individual.

– xij denotes a vector of regression variables.
– φi is the vector of individual parameters for individual i, drawn from the

same population distribution. We limit ourselves to the Gaussian model:

φi ∼ N (μ,Ω)

– εij ∼ N (0, 1) denotes the residual errors.
– f is a function describing the structural model and g a function defining the

residual error model.
– θ = {μ,Ω,Σ} is the set of unknown population parameters.

While different estimation algorithms exist (e.g. FOCE [19], SAEM [17]),
their structure is very similar: one of the main steps involves integration over
the individual parameters φi for all individuals. Due to the non-linearity of
the models, algorithms need to resort to approximation or numerical integra-
tion through for example Gaussian Quadrature [27] or Markov-Chain Monte
Carlo [17] (MCMC). Both solutions require many evaluations of the structural
model. The next step aggregates the information for all individuals and then
makes an update of the population parameters θ.
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Algorithm 1 gives a rough outline of the Stochastic Approximation Expec-
tation Maximization (SAEM) algorithm from Kuhn et al. [17]. SAEM is an
extension of the popular expectation-maximization (EM) algorithm for situa-
tions where the expectation step cannot be performed in closed-form. The basic
idea is to split this step into a simulation and an integration step.

Algorithm 1: Stochastic Approximation Expectation Maximization
Input: Y1, . . . , Yn, θ, f , g
Result: θ�

S0, S1, S2 = 0 � Sufficient statistics
while not converged do

for i = 1 . . . n do
ηi = GenerateSample(f , g, θ, Yi)

end
S0, S1, S2 = UpdateStatistics(S0, S1, S2, {η1, . . . , ηn})
θ = OptimizeTheta(θ, S0, S1, S2)

end

3 Load-Balanced Parallel Scheduling

Parallel computing can easily be applied to the estimation algorithms outlined
in Sect. 2: the integration step can be divided into independent tasks per indi-
vidual and executed in parallel [11]. This approach has been applied by sev-
eral implementations, either in a multi-core (nlmixr [9] and Monolix [21]) or
distributed (NONMEM [2]) setting (using MPI). However, scalability can be
severely limited by statically partitioning the individuals between the process-
ing units: it is unreasonable to assume that evaluating the structural model for
some parameters takes a constant amount of time. Load imbalance is caused
by the characteristics of the model itself, but also due to factors at the level of
the operating system and the communication network between the processing
units [35]. Consider the ratio between the sequential execution time, Ts, and
the parallel execution time, Tp, with p processors [11]. For a specific integration
step, the speedup is limited by Eq. 1. Here, δi is the time required to perform
the integration for individual i and δmax = maxi {δi} = T∞, is the execution
time with infinite processors. Not considering the effects of load imbalance could
theoretically leave a factor n/S on the table.

S =
Δ

δmax
, where Δ =

n∑

i=1

δi (1)

In the case where the structural model is expressed as a differential equation,
the time-stepping ODE solvers can cause large deviations in evaluation times.
Depending on the parameters, the solver might require more or less steps to
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Fig. 1. Runtime distribution of the integration of ordinary differential equations in
three cases: a PK-PD model with repeated administration, a PBPK model with and
without repeated administration. The histograms only include the 25–75 quantiles for
clarity.
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Fig. 2. Speedup due to load-balancing in terms of number of processors p. Evalua-
tion times were simulated from the distribution of the PK-PD model with repeated
administration. Mean and 95% confidence intervals are displayed.

evaluate the same model. Figure 1 shows histograms of evaluation times for three
different cases and are based on actual runs using the SAEM algorithm. Firstly, a
PK-PD model by Dunne et al. [37] with repeated administration. This non-linear
ODE model is complicated by the fact that the solver needs to repeatedly stop
to handle the administration events and therefore cannot take large steps. The
distribution of evaluation times is fairly spread out with a ratio of 3× between the
slowest and the average. The whole-body physiologically-based pharmacokinetic
(PBPK) model by Wendling et al. [36] make up the last two cases. First without
and then with repeated administration. This linear ODE model is easier to solve,
but also more affected by system noise. The ratio between slowest and average
is 1.4× and 1.9× respectively.

Load-balancing in a multi-core environment can be achieved using a shared
task queue (OpenMP [7]) or through work-stealing (Cilk [4], TBB [29]). In a dis-
tributed setting [6,18,33,38], it is much more involved due to the unpredictable
nature of the imbalance and the network latency between the processors espe-
cially when evaluation times are in the same order as the latency.
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Figure 2 demonstrates the speedup achievable due to load-balancing: n =
1024 evaluation times were simulated from the distribution of the PK-PD model
(see Fig. 1) and speedup was computed for static partitioning versus load-
balanced cases. Note that for small number of processors, the improvement is
limited as the sum of tasks executed by each processor

∑
i∈P δi approaches

1
n

∑n
i=1 δi as n � p.

4 Adjoint-State Method

An integral part of optimization and MCMC is typically the calculation of (first
and second order) derivatives. Newton or Quasi-Newton methods are popular
and fast algorithms for finding local minima and maxima of functions [26]. The
Laplacian approximation used in the FOCE [19] and LAPLACE methods require
the maximization of the conditional individual posterior and the computation
of the Hessian in the maximum. On the other hand, the MCMC step in SAEM
can be efficiently performed using Metropolis Adjusted Langevin algorithm [30]
(MALA) or Hamiltonian Monte Carlo [24] (HMC) which depend on the evalua-
tion of gradients.

In the presence of differential equations, these derivatives cannot be easily
derived. Statistical software therefore resorts to finite differencing (FD) or sen-
sitivity analysis [5]. The complexity of these methods is O(p) and O(p2) for
gradients and Hessians respectively, where p is the number of parameters. This
is not such an issue for models with only few parameters, but the calculation of
derivatives can become a huge performance problem with increasing number of
parameters. For any of the algorithms described above, the computation of the
derivatives is the key operation and typically the most time-consuming step. For
example, in the case of HMC, every sample requires L gradient evaluations (L
might be in the order of 10 or 100). Any speedup would thus result in a direct
speedup of the whole algorithm.

The adjoint-state method (ASM) allows writing the derivatives of models
involving differential equations in a simpler form that is inexpensive to evaluate.
In many different fields, ASM is a classical method and sometimes even the
only viable method to compute gradients, such as the optimal control of partial
differential equations [20]. Its application in statistics, however, is rather limited:
partly due to lack of necessity given only few parameters and partly due to the
discrete nature of measurements in the statistical setting. Melicher et al. [22]
derive an ASM in the statistical context when discrete data is coupled with a
continuous ODE model. Using this method, gradients can be computed at a cost
that is independent of the number of parameters and Hessians with a linear cost
instead of quadratic.

Figure 3 compares the runtime and accuracy of gradients computed using
FD, sensitivity analysis and the adjoint-state method. A simple linear ODE
model is used and scaled in number of parameters. The runtime of FD and
sensitivity analysis is fairly similar as expected: both methods need the ODE
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to be simulated roughly p times. Conversely, the adjoint method requires the
ODE to be solved twice: first forward in time and then backwards. Starting
from around 10 parameters, the method outperforms the other methods for this
model by a factor up to 10. The accuracy of the method is similar to that of
sensitivity analysis. The accuracy of FD is extremely sensitive to the employed
step-size.
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Fig. 3. Comparison of the runtime and accuracy of gradients computed using FD,
sensitivity analysis and the adjoint-state method for a simple linear ODE model scaled
in number of parameters.

5 Early Rejection

When derivative-free optimization or Metropolis-Hastings MCMC algorithms are
employed in combination with differential equations, a simple non-approximate
trick can substantially improve the model evaluation time. By inverting the
order of simulation and likelihood evaluation, the evaluation can be terminated
early as soon as can be concluded that the candidate will be discarded by the
algorithm. While this idea has appeared previously in literature [3,25,34], it is
still underutilized and yet extremely useful.

To demonstrate the idea, Metropolis-Hastings MCMC [14,23] (MH) will be
used, however it can be easily extended to optimization algorithms. MH works by
first proposing a candidate parameter value θi+1 given the current value θi, and
accepting the proposal with probability α = min(1, π(θi+1)/π(θi)). Practically, a
uniform random number u ∼ U(0, 1) is drawn and θi+1 is accepted when u < α.

In general, the posterior can be written as π(θ) ∝ p(θ)
∏N

i=1 p(yi|θ, y1...i−1).
Denoting the part of the unnormalized posterior considering only the first k
measurements by πk(θ) = p(θ)

∏k
i=1 p(yi|θ, y1...i−1) and assuming that πk(θ) is

monotonically decreasing with respect to k, a proposal can be rejected as soon
as πk(θi+1)/π(θi) < u for some k. While monotonicity is not the case in general,
many common cases exhibit this behavior. For example when measurements
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are independent and identically distributed with a Gaussian distribution. In
other words, the sampling algorithm can be sped up by just switching up the
order of the calculations: first generate u, perform the simulation and likelihood
evaluation in an interleaved and part by part fashion while checking whether the
proposal will be rejected and stopping early. In extreme cases, proposals can be
rejected based on the prior and initial value alone without any need for expensive
simulation.

Since only rejections benefit from this idea, the improvement is closely related
to the acceptance rate of the sampler. Low acceptance rate due to the complexity
of the posterior distribution or bad tuning of the proposal distribution can lead
to potentially large performance improvements. A disadvantage of this method
is that it can increase the load-imbalance discussed in Sect. 3 which can be a
disadvantage in the distributed case when load-balancing is difficult/expensive.

Figure 4 demonstrates the effect of early rejection: the PK-PD model by
Dunne et al. [37] was fitted using SAEM and evaluation times were recorded
with and without early rejection. Speedup was computed for all 1000 individuals
and the distribution is shown. Speedups of up to 6× can be observed for some
individuals with an average of 1.5×. The average acceptance rate recorded was
33%. The amount of load-balance can be represented by 1/n

∑n
i δi

maxi {δi} . A value of 1
is perfect balance whereas lower values indicate increasing degrees of imbalance.
Figure 4 shows how the application of early rejection can create a shift in load-
imbalance.
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Fig. 4. Left: the distribution of the speedup of early-rejection measured on all 1000
individuals in a PK/PD study. Speedups up to 6× can be observed with an average
of 1.5×. Right: the resulting shift in load-imbalance (a value of 1 representing perfect
balance).
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6 Avoiding Jacobian Calculation

An ordinary differential equation is defined by an initial value y0 ∈ R
N and a

function f : RN → R
N describing the derivative of y(t).

dy

dt
= f(t, φ, y), y(t0) = y0

To compute y(t), the following non-linear system must be solved at each
integration step:

F (yn) = yn − yn−1 − hnf(tn, yn) = 0

This equation can be solved using fixed-point iteration or Newton’s method.
This discussion will focus on Newton’s method which requires the solution of
the linear system:

M × (ym − ym−1) = −F (ym−1) (2)

in which M = (I + hnJ) and J = ∂f/∂y, the Jacobian.
Popular packages for ODE solving such as LSODA [15] and CVODE [16]

provide a way for the user to implement the Jacobian calculation, either analyti-
cally or through automatic differentiation [12]. Internally, the packages typically
use direct methods to solve Eq. 2. For example, the matrix M ∈ R

N×N is com-
puted, factored and inverted. These operations have complexity O(N3) and can
become expensive as N increases.

Instead of direct methods, iterative methods such as Biconjugate gradient
method [28] or GMRES [31] can be used. One of the powerful features of the
iterative approach is that the matrix J does not need to computed and stored
explicitly. Instead it requires only the matrix-vector product J ×v. Additionally,
an iterative method might need less than N steps to reach a solution within the
specified error-tolerances and therefore faster.

As demonstrated in Fig. 5, the computational cost of the matrix-vector prod-
uct J × v can be much lower than computing the full matrix J . Even when
repeatedly evaluating J ×v, the overall performance can differ significantly. The
CVODE [16] package allows the use of an iterative linear solver (ILS) instead
of the default direct approach. Figure 6 compares performance of solving a com-
plete ODE system using a direct and iterative method. The package amortizes
the cost of computing and factorizing the matrix M by reusing it during mul-
tiple iterations. Therefore the different methods of computing the Jacobian do
not make much of a difference in runtime. As the dimensionality of the ODE
system increases, it is evident that the ILS method outperforms the (default)
direct approach.
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Fig. 5. Comparison of the cost (in log-scale) in terms of growing ODE complexity
between the calculation of the full Jacobian J and the matrix-vector product J × v
using automatic differentiation (AD) or analytically.
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through finite-differencing (FD), analytically or automatic differentiation (AD).

7 Conclusion

Parameter estimation for non-linear mixed effects model can be an expensive
and time-consuming process. Especially when structural models are expressed
using differential equations, this cost can grow to hours and even days. In this
paper, several ideas were presented that can significantly improve the perfor-
mance of these estimation algorithms. While the ideas have appeared elsewhere
in literature, they are underutilized and potentially unknown within the statis-
tics community involved in implementing the estimation software.

The results in Sects. 4 and 6 indicate a growing computational cost of more
complex models (either in number of parameters or differential equations). The
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methods described in this paper may help alleviate these computational problems
to some extent. The increase of complexity can already be observed in whole-
body physiologically-based pharmacokinetic models [36], microbiome dynamics
models [10] and systems pharmacology [1].

All the methods discussed have been implemented in DiffMEM : an open-
source package for rapid pharmacometric model estimation [13].
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Abstract. Innovative experimental protocols from Molecular Biology provided
in recent years quantitative data about the structure of the cell nucleus. These
technologies, such as Hi-C, GAM or SPRITE, revealed that the genome has a
non-random three-dimensional (3D) spatial organization, which serves func-
tional purposes. In order to dissect the complexity of chromosome folding,
models from Polymer Physics have been employed, highlighting many key
aspects of large-scale chromatin organization. A deep understanding of the
molecular mechanisms underlying the genome architecture is currently a crucial
problem in Biology, since chromatin misfolding or structural variants can
reconfigure chromatin domains, thereby resulting in pathogenic phenotypes and
disease. Here, we discuss a numerical Polymer-Physics-based approach
(PRISMR), able to model 3D chromatin folding by using Machine Learning
strategies informed with experimental data. Using as a case study the Pitx1
locus, a genomic region critically involved in hindlimb development, we show
that the PRISMR algorithm reproduces in silico with high accuracy the exper-
imental contact data, thus providing a powerful computational tool for analyzing
and predicting the 3D chromatin structure.

Keywords: Polymer Physics � Machine Learning � Chromatin organization

1 Introduction

Understanding the three-dimensional (3D) structure of the genome is one of the most
challenging problems in Biology, currently open and debated. Innovative experimental
technologies that measure genome-wide contact frequencies between distal DNA
regions, such as Hi-C [1], GAM [2] or SPRITE [3], envisaged a scenario where the
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chromatin folds non-randomly within the cell nucleus, giving rise to spatial confor-
mations deeply linked to gene activity and transcriptional regulation [4–7]. Indeed,
genome-wide Hi-C data have shown that mammalian genomes are compartmentalized
in topologically associating domains (TADs) [8, 9], megabase-sized genomic regions
displaying an interaction enrichment and largely conserved across species, cell types,
and tissue types. Moreover, TADs exhibit a hierarchical higher-order organization,
spanning across genomic scales up to the range of entire chromosomes. These higher-
order interactions, called metaTADs, are relatively conserved through cell differenti-
ation and their rearrangement is linked to gene expression changes [10–12]. Therefore,
the genome-folding problem goes far beyond the simple need for packing efficiency,
due the intimate link between chromosome spatial organization and gene activity. In
this framework, models from Polymer Physics have been successfully employed to
dissect the organization of chromosomes within the cell nucleus [13–18], highlighting
the possible molecular mechanisms driving the folding of the genome [19–29].

In the present work, we focus on the Strings and Binders Switch (SBS) model [19,
20], a polymer physics approach able to recapitulate a great variety of experimental
data [2, 20, 26, 30–32]. In this model, briefly recalled in Sect. 2, chromatin is repre-
sented as a polymer chain and the chromosome conformations arise through attachment
of diffusible molecular factors to binding sites arranged along the polymer. To estimate
the minimal number of model parameters needed to explain the experimental datasets,
we developed a Polymer-Physics-based algorithm [33], named PRISMR, discussed in
detail in Sect. 3. PRISMR is a numerical method based on a standard simulated
annealing Monte Carlo optimization procedure that minimizes the distance between the
predicted polymer model and the input experimental data, thereby returning the best
SBS model describing a given genomic region. In Sect. 4, we illustrate an application
of our model to a real DNA locus, known as Pitx1, which plays a critical role in
hindlimb development [34]. Here, we consider experimental data from mouse forelimb
and hindlimb tissues and we show that the PRISMR algorithm recapitulates with high
accuracy in both cases the different Pitx1 functional conformations observed in the
experiments [35]. Moreover, we discuss how, by implementing massive parallel
Molecular Dynamics (MD) simulations of the PRISMR polymer, ensembles of single-
molecule 3D structures of the locus can be produced, that reveal biological key aspects
of the regulation of the Pitx1 gene in the two different tissues. In this context, we
highlight the benefit obtained by adopting High-Performance-Computing (HPC) ap-
proaches, which allow to efficiently simulate polymer models with increasing level of
complexity. Notably, as recently shown [33], our hybrid Machine Learning and
Polymer Physics approach allows not only dissecting chromatin tissue-specific
arrangements (such as gene-enhancer interaction), but also predicting the effects of
genomic mutations, i.e. deletions, inversions or duplications, on chromatin architecture.
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2 Overview of the Strings and Binders Switch (SBS) Polymer
Model

In this section, we review some key features of the Strings and Binders Switch
(SBS) model, a phase-separation based polymer model broadly discussed in previous
works [20, 26, 27]. In the SBS framework, the chromatin is represented as a Self-
Avoiding-Walk (SAW) chain having attachment points for diffusing binding molecules,
called “binders”, which can form loops by bridging pairs of polymer sites (Fig. 1a).
Therefore, the model envisages a scenario where the architecture of chromosomes is
shaped by their interactions with other molecular factors, biologically related to DNA
binding molecules (e.g., Transcription Factors), the nuclear envelope or other nuclear
bodies (e.g., the lamina). In our SBS model, the polymer sites, called “beads”, and the
binders are subject to a Brownian motion, described by the Langevin equation. Given
the huge number of interacting particles (about ten thousand for the modeling of a real
genomic region), we numerically integrate the motion equations by using the Ver-
let algorithm, a symplectic integrator [36], in the LAMMPS package [37]. The binders
are placed in the box simulation at a given concentration and their interaction with the
polymer beads is described by an energy affinity. Quantitative details concerning the
interaction potentials between beads and binders can be found in [38].

The SBS model provides a phase diagram where different folding classes emerge
[16]. In fact, by varying the molecular concentration of the binders and their affinity to
the polymer, distinct thermodynamic phases are established (Fig. 1b). These stable
emergent phases correspond to different conformational classes of Polymer Physics
[39], ranging from open-SAW to compact-closed conformations in a switch-like
transition. Conformation changes can be obtained by crossing the phase boundary, with
no need of parameter fine-tuning. In the SBS view, a given polymer model is fully
assigned by the arrangement of binding sites along the chain. In order to explain the
complexity of the experimental data, as Hi-C contact frequencies of real genomic loci,
it is necessary to introduce different types of binding sites along the polymer, each one
interacting with only a “cognate” (i.e., same-type) binder. We schematically represent
different types of beads, and correspondingly cognate binders, by different colors,
giving rise to a complex “multicolor” SBS polymer model [26, 33]. In the next section,
we describe a hybrid Machine Learning and Polymer-Physics based approach [33] to
estimate the minimal number of colors and parameters for a given SBS model able to
describe with high accuracy a real genomic region.
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3 PRISMR: A Machine Learning Strategy to Identify
the Optimum SBS Polymer Model

PRISMR (Polymer-based RecursIve Statistical inference Method) [33] is a Machine
Learning procedure developed in order to infer the factors that shape chromatin folding.
Based on polymer physics principles, it aims to find the polymer model best describing
an input contact matrix, obtained e.g. by Hi-C, GAM or SPRITE experiment. Although
our method can be readily generalized to a wide range of different paradigms, here we
focus on its application to the previously described SBS polymer model.

A crucial parameter of the PRISMR method is the number n of different types of
allowed interactions (different SBS colors). Given n, the algorithm scans through the
huge space of all possible polymer models via a Simulated Annealing Monte Carlo
optimization procedure to find the model with the colors arrangement, i.e. the distri-
bution of the different binding sites, best describing the contact matrix given as input
(INPUT in Fig. 2). This is performed by searching for the minimum of a specific cost
function H = H0 + Hk, where H0 considers the distance between the experimental and
the model-predicted contact matrices, while Hk is a Bayesian term proportional to the
number of colored sites of the polymer through a parameter k. The first term only
accounts for the necessity to fit well the input data, and it gets small when the predicted
frequencies are similar to the experimental ones. The second term penalizes the
addition of new colored beads, and it is needed to avoid overfitting, i.e. to select the
minimum number of interacting beads required to explain the input within a fixed
accuracy [33].

The PRISMR procedure starts with an initial configuration of the SBS polymer
where the beads have been randomly colored. At each Monte Carlo step, we select at
random a polymer bead, change its color, compute the average contact matrix of the

Fig. 1. a) Schematic overview of the SBS model: a chromatin filament is represented by a Self-
Avoiding-Walk (SAW) chain having binding sites for Brownian diffusing binders. The
interaction between the polymer and the molecular binders can produce loops, shaping in this
way the chromosome spatial organization. Adapted from [26]. b) The SBS phase-diagram
includes a phase where the polymer folds in a random-open conformation (in the SAW
universality class) and a phase where it spontaneously folds into a compact-closed conformation.
At the phase transition point, there is the H-point state. Adapted from [26].
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new polymer, evaluate the new cost function and accept or reject the color change
based on the cost function variation (see Fig. 2). This step is replicated many times and
the simulation stops when the cost function reaches the convergence (OUTPUT in
Fig. 2). The entire procedure is repeated (varying the polymer initial configuration)
with different parameters n and k to find their optimal value (the minimum of n, n* and
the maximum of k, k*). The final output of PRISMR is the best positioning of the n*
different binding site types along the SBS polymer that describe the experimental
matrix within a given accuracy [33] (Fig. 2).

4 A Case Study: The Pitx1 Gene Region

4.1 PRISMR Optimal Polymer Models

As a case study, here we review the application of PRISMR on a real genomic locus,
Pitx1, located on the chromosome 13 of the mouse genome. The Pitx1 gene regulation
is crucial to ensure a correct identity and differentiation of hindlimbs [34] (limbs that
are found in the back part of an animal’s body). Indeed, during limb development,
Pitx1 is only expressed in hindlimbs, but not expressed in forelimbs (limbs that are
found in the front part of an animal’s body). In ref [35] we showed that the Pitx1
regulatory landscape extends over 400 kb and forms several chromatin loops termed
regulatory anchors (RA) 1–5. In particular, Pitx1 activity is mainly regulated by the
genomic element RA5/Pen, located about 300 kb downstream [35]. The DNA
sequences which control the activation of genes are called enhancers and they carry out
their function by coming into physical proximity with the genes they activate [7].

Fig. 2. Key steps of the PRISMR minimization procedure. An experimental contact matrix is
given in input to the algorithm. Once initialized the polymer in a random state, the colors of the
different beads are changed to find the best distribution of binding sites able to reproduce the
input. Adapted from [33]
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In order to study the spatial conformation of such a system we considered a 1 Mb
wide genomic sequence encompassing the Pitx1 regulatory region where the differ-
ences between the forelimb and hindlimb contact patterns are marked. To obtain the 3D
structures of these loci, we first derived our best SBS polymer models running
PRISMR on forelimb and hindlimb pair-wise contact data from capture Hi-C (cHi-C, a
variant of Hi-C) experiments. In both cases we obtained as best estimate of the number
of different colors n* = 14 [33]. Our results are summarized in Fig. 3 where we show
the experimental contact matrices (panel a top), the matrices inferred from the model
(panel a bottom) and the position and abundance of the 14 different binding domains in
each studied case (panel b). The contact pattern is well recapitulated by our model in
both cases, as also shown by the high values of the Pearson correlation coefficient
r between the experimental and model matrices (r = 0.98 in both forelimb and in
hindlimb).

4.2 3D Structures by Molecular Dynamics Simulations and the Role
of High Performance Computing

Next, to simulate such complex biological systems in 3D space, we ran massive parallel
Molecular Dynamics simulations of our inferred SBS polymers using LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator), a broadly used efficient
MD open-source software. Model interaction potentials were set as in classical studies
of polymer physics [40] and previous works [26, 37]. The initial state of the polymer
was a Self-Avoiding Walk (SAW) and the binders were randomly distributed in the
simulation box whose size was at least two times larger than the self-avoiding polymer
gyration radius to minimize finite-size effects [26]. LAMMPS was built to run in
parallel using the MPI (message-passing interface) protocol and parallelization
achieved by domain decomposition, i.e. by partitioning the simulation box into cells,
each assigned to a different processor. In general, the optimum number of processors
depends on the complexity of the polymer model in the first place, but also on other
factors such as queuing time and resource availability [41]. Here we used 8 MPI
processes, gaining a speed-up of approximately 10x, for both forelimb and hindlimb
cases. Simulations were run on the CINECA HPC “MARCONI Broadwell” infras-
tructure. In both tissues, we obtained at least 102 independent configurations, each
evolved up to 5 � 108 simulation time steps to reach stationarity, as monitored by the
gyration radius Rg of the polymer [20, 38, 39], that is the radius of a sphere enclosing
the polymer 3D structure (Fig. 4a). All the details about the interaction energies and
binder concentrations can be found in ref [35].
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The 3D structures, produced by POV-Ray software [42], give rise to a clear bio-
logical interpretation. As we can see from Fig. 4b, in forelimb the locus segregates into
two chromatin hubs, one containing Pitx1, RA3 and Neurog1 (blue, pink and red
spheres, respectively) and the other one containing Pen and RA4 (dark green and light
green spheres, respectively). In such a spatial conformation Pen and Pitx1 are separated
from each other and the repressed gene Neurog1 is close to Pitx1, so preventing its
activation. Conversely, the hindlimb 3D structure is organized in three major hubs, one
containing RA1, another one containing Pitx1 and RA3, and the last one RA4, Pen and
Neurog1 (see Fig. 4b). In this conformation, the Pitx1 gene and its enhancer Pen are
physically closer, so ensuring a correct activation of the gene in hindlimb.

Fig. 3. a) Top: Experimental cHi-C maps [35] of forelimb and hindlimb E11.5 tissues restricted
to the considered genomic region. Bottom: SBS model-derived contact maps show high
similarity to the experimental ones. The Pearson correlation values are r = 0.98 in forelimb and
r = 0.98 in hindlimb. b) Histograms displaying the abundance and position along the genome of
the different binding site types in forelimbs (left) and hindlimbs (right). Each binding domain is
represented with a different color. Adapted from [35].
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The spatial reconstruction obtained by the PRISMR method enables us to interpret
the different behavior of the Pitx1 locus in the forelimb and hindlimb tissues. The key
point is the different spatial positioning of the gene relative to its enhancer Pen and the
repressed Neurog1 gene. While in hindlimb Pitx1 is in close spatial vicinity of Pen and
segregated from Neurog1, an opposite situation turns out in forelimb, where Pitx1 is
physically disconnected from its enhancer and associated with Neurog1. These tissue-
specific arrangements of the Pitx1 landscape can restrict (forelimb) or assist (hindlimb)
the enhancer activity, playing an important role in the correct development of the
tissue.

5 Conclusions

Polymer Physics models are becoming an important tool to study the complex genome
spatial organization [20, 21, 23, 25, 29, 30]. Here, we focused on the Strings and
Binders Switch (SBS) model, a phase-separation based polymer model where the
folding of real genomic loci is driven by a specific arrangement of binding domains and

Fig. 4. a) Folding dynamics of the forelimb and hindlimb SBS polymer models. Equilibrium is
reached at nearly 108 time steps in both cases as measured by the plateauing of gyration radius
(Rg) of the system. b) Representative 3D structure of the locus in each studied case showing the
two-hub structure in forelimb (left) and the three-hub structure in hindlimb (right). The colored
spheres represent the key regulatory regions whose genomic positions are showed in the bar
below. Adapted from [35]. (Color figure online)
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molecular factors along the polymer chain [26, 27, 33, 43]. We described a Machine-
Learning-based algorithm, named PRISMR, to infer the best SBS polymer explaining a
given input experimental data, typically chromosome conformation capture data. We
took as a case study the Pitx1 genomic region in mouse, deeply involved in hindlimb
development, and we showed that our model recapitulates with high accuracy (Pearson
correlation >95%) the experimental contact data of the locus. Furthermore, we dis-
cussed how massive parallel Molecular Dynamics simulation have been employed in
order to provide the 3D structure of the Pitx1 locus, highlighting key biological aspects
of the Pitx1 gene regulation.

Due the progressive increase in the number of published databases and their
available resolution, Polymer Physics models describing the 3D genome organization
could take into account finer details in order to provide increasingly accurate predic-
tions. Indeed, novel experimental technologies [2, 3, 44–46], such as super-resolution
chromatin imaging approaches, are allowing to dissect the genome well beyond the
population level, revealing TAD-like structures and multiway interactions also in
single-cells. To refine the biological realism of the models, strong computational efforts
are needed in order to manage the major complexity of the simulated systems.
Therefore, High-Performance-Computing resources are crucial to model datasets with
higher resolution and to highlight new insights on the structure and molecular mech-
anisms underlying the spatial organization of chromosomes in the cell nucleus.
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Abstract. We present a parallel Data Assimilation model based on an
Adaptive Domain Decomposition (ADD-DA) coupled with the open-
source, finite-element, fluid dynamics model Fluidity. The model we
present is defined on a partition of the domain in sub-domains with-
out overlapping regions. This choice allows to avoid communications
among the processes during the Data Assimilation phase. However, dur-
ing the balance phase, the model exploits the domain decomposition
implemented in Fluidity which balances the results among the processes
exploiting overlapping regions. Also, the model exploits the technology
provided by the mesh adaptivity to generate an optimal mesh we name
supermesh. The supermesh is the one used in ADD-DA process. We prove
that the ADD-DA model provides the same numerical solution of the cor-
responding sequential DA model. We also show that the ADD approach
reduces the execution time even when the implementation is not on a
parallel computing environment. Experimental results are provided for
pollutant dispersion within an urban environment.

Keywords: Data Assimilation · Fluidity · Domain Decomposition ·
Adaptive mesh · Big data

1 Introduction and Motivation

Numerical simulations are widely used as a predictive tool to better understand
complex air flows and pollution transport at the scale of individual buildings,
city blocks and entire cities. The strongly nonlinear character of many physical
processes results in the dramatic amplification of even small input uncertainties
producing large uncertainties in the system behavior [7]. To reduce these uncer-
tainties and increase the accuracy of predictions, Data Assimilation (DA) tech-
niques are used [15]. Data Assimilation (DA) is the approximation of the true
state of some physical system at a given time by combining time-distributed
observations with a dynamic model in an optimal way. DA can be classically
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approached in two ways: as variational DA [6] and as filtering, such that Kalman
Filter (KF) [14]. In both cases, the methods are computed as an optimal solution:
statistically, KF methods try to find a solution with minimum variance, while
variational methods compute a solution that minimises a suitable cost func-
tion. In certain cases, the two approaches are identical and provide exactly the
same solution [15]. While the statistical approach it is often complex and time-
consuming, it can provide a richer information structure. Variational approaches
are relatively rapid and robust instead [6]. In DA, one makes repeated correc-
tions to data during a single run, to bring the code output into agreement with
the latest observed data. In operational forecasting there is insufficient time to
restart a run from the beginning with new data then, DA should enable real-time
utilisation of data to improve predictions. This mandates the choice of efficient
methods to opportunely develop and implement DA models.

Due to the necessity to have DA in real time, we introduce in this paper an
efficient Adaptive Domain Decomposition approach for variational Data Assim-
ilation (ADD-DA). The ADD-DA model is presented to assimilate data from
sensors into the open-source, parallelised fluid dynamics model Fluidity (http://
fluidityproject.github.io/). It is estimated that by 2050, around four-million
deaths per year will be attributable to outdoor air pollution (twice the cur-
rent mortality rate) [16]. This mandates the development of techniques that can
be used for emergency response, real-time operational prediction and manage-
ment. A variational DA model (VarDA) to assimilate air pollution data has been
introduced in [4] in which it has been shown that the use of an optimal space for
solving DA can reduce the execution-time. However, the interface between this
VarDA and Fluidity present a big bottleneck due to the gathering of the data
after Fluidity to run DA (as shown in Fig. 1-left).

Fig. 1. Comparison of the sequential VarDA coupled with Fluidity (left) and ADD-DA
coupled with Fluidity (right)

http://fluidityproject.github.io/
http://fluidityproject.github.io/
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Parallelisation of data assimilation has been previously used in oceanogra-
phy, however its application for urban air pollution is novel. Previous works on
parallelised data assimilation include domain decomposition (DD) in a regional
ocean model of Australia [20] and a parallel implementation of data assimilation
for operational oceanography by [9,22]. A different approach which introduce
a reduction on the execution time is presented in [10] where the authors use
a recursive filter (RF) with the third order of accuracy (3rd-RF) to approxi-
mate horizontal Gaussian covariances. A domain decomposition approach for
data assimilation has been presented in [2] where the authors implemented a
geographical decomposition made of sub-domains (of fixed same sizes) with over-
lapping.

In this paper, we developed a DA model based on the same domain decom-
position (DD) implemented in Fluidity such that the DA process can be coupled
with Fluidity in a straight forward way (Fig. 1-right). We propose a DD approach
which does not include any interaction/communication among the sub-domains,
thus removing the interaction/communication overhead. We prove that the solu-
tion of the ADD-DA model is the same of the VarDA model without any decom-
position introduced in [4]. We also show that the approach reduces the execution
time even when the implementation is not on a parallel computing environment.

This paper is structured as follows. The ADD-DA model is presented in
Sect. 2. The set-up of the test case is detailed in Sect. 3 where results using
ADD-DA to improve the results of the pollutant concentration are presented.
The scalability of the ADD-DA approach is also discussed in Sect. 3. Finally,
conclusions and future work are provided in Sect. 4.

2 The ADD-DA Model

In this section we present a Data Assimilation model based on an Adaptive
Domain Decomposition to be coupled with Fluidity.

One of the key and innovative aspects of Fluidity is its mesh-adaptivity
capability on unstructured meshes. The use of the mesh-adaptivity allows to have
fine mesh in regions where small-scale and important physical processes occur,
while keeping a coarser mesh elsewhere, and then allowing to considerably reduce
the total computation time [21]. Fluidity was running with mesh adaptivity for
an enough long time for the flow statistics to reach a quasi-steady state. From
this point onwards, the mesh is fixed and considered as the optimal mesh. This
mesh will be referred as the supermesh in the following.

Let Ω = {xj}j=1,...,n be the discrete spatial domain representing the super-
mesh and let P(Ω) = {Ωi}i=1,...,s be a partition of Ω in subdomains as imple-
mented in Fludity [1]. In Fluidity, the decomposition of the domain into sub-
domains is based on the number of nodes xj . The number of nodes assigned
to a partition/processor is assumed to be a good proxy for the expected com-
putational load on that processor and, hence, one aim of the algorithm is to
equidistribute the nodes. Other requirements include a minimization of edge cut
and data migration. The number of nodes is balanced to be more or less the
same on each processor, even if it is not a strict constraint.
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For a fixed time t, according to this decomposition, let

uM
i ≡ ui(t) (1)

be the vector denoting the state of the dynamical system. At time t, we get
u(t) = M (u(t − 1)) where M is the forecasting model, in our case represented
by Fluidity. Let be

vi = Hi(ui) (2)

the vector of observations where Hi is an interpolation operator collecting the
observations at time t. The aim of DA problem is to find an optimal trade-off
between the current estimate of the system state (the background) in (Eq. 1)
and the available observations vk in (Eq. 2).

ADD-DA computational model is a system of s non-linear least square prob-
lems:

uADD−DA
i = argminui

‖ui − uM
i ‖2Bi

+ ‖Hi(ui) − vi‖2Ri
(3)

where Ri and Bi are the covariance matrices providing the estimate of the errors
on vi and on uM

i , respectively.
As the background error covariance matrix Bi is ill-conditioned [19], in order

to improve the conditioning, only Empirical Orthogonal Functions (EOFs) of the
first largest eigenvalues of the error covariance matrix are considered. Since its
introduction to meteorology [18], EOFs analysis has become a fundamental tool
in atmosphere, ocean, and climate science for data diagnostics and dynamical
mode reduction. Each of these applications basically exploits the fact that EOFs
allow a decomposition of a data function into a set of orthogonal functions, which
are designed in such a way that only a few of these functions are needed in lower-
dimensional approximations [13]. Furthermore, since EOFs are the eigenvectors
of the error covariance matrix [12], its condition number is reduced as well.
Nevertheless, the accuracy of the solution obtained by truncating EOFs exhibits
a severe sensibility to the variation of the value of the truncation parameter,
so that a suitably choice of the number of EOFs is strongly recommended. This
issue introduces a severe drawback to the reliability of EOFs truncation, hence to
the usability of the operative software in different scenarios [3,12]. In this paper,
we set the optimal choice of the truncation parameter as a trade-off between
efficiency and accuracy of the DA algorithm as introduced in [4]. The Optimal
ADD-DA model as implemented in this paper is summarised in Algorithm 1.
Eq. (3) is linearised around the background state [17]:

ui = uM
i + δui (4)

where δui = ui − uM
i denotes the increments. The ADD-DA problem can then

be re-formulated by the following form:

δuADD−DA
i = argminδui

{
1
2
δuT

i B
−1
i δui +

1
2
(Hδui − di)TR−1

i (Hδui − di)
}

(5)
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where
di = [vi − H

(
uM

i

)
] (6)

is the misfit between the observation and the solution computed by Fluidity and

H (ui) � H
(
uM

i

)
+ Hδui (7)

denotes the linearised observational and model operators evaluated at ui = uM
i

where H is the Hessian of H.
In Eq. (5), the minimisation problem is defined on the field of increments [8].

In order to avoid the inversion of Bi, as Bi = ViVT
i , the minimisation is com-

puted with respect to a new variable [17] wi = V+
i δui , where V+

i denotes the
generalised inverse of Vi, yielding to:

wADD−DA
i = argminwi

Ji(wi)

= argminwi

{
1
2
wT

i wi +
1
2
(HViwi − di)TR−1

i (HViwi − di)
}

(8)

The ADD-DA process, on each sub-domain of the partition, is described in
Algorithm 1.

Algorithm 1: ADD-DA
Input: vi and uM

i

1 Define Hi � interpolation operator

2 Compute di ← vi − Hiu
M
i � compute the misfit

3 Define Ri � covariance matrix of the observed data vi
4 Define Vi � deviance matrix of background data

5 Define the initial value of δuADD−DA
i

6 Compute Vi ← TSV D(Vi, m) � m is the truncation parameter

7 Compute wi ← V T
i δuADD−DA

i

8 while Convergence on wi is obtained do
9 Compute Ji ← Ji(wi)

10 Compute gradJi ← ∇Ji(wi)
11 Compute new values for wi � L-BFGS step

12 end

13 Compute uADD−DA
i ← uM

i + Viwi

Output: uADD−DA

We prove that the solution computed on this partitioning does not affect
the accuracy of the DA process as the solution of the ADD-DA problem is the
same than the DA algorithm coupled with Fluidity in [4]. In the following, wDA

denotes the solution of the DA process computed without any decomposition
[4], i.e. defined on the whole domain Ω and such that:

wDA = argminwJ(w) = argminw

{
1
2
wT w +

1
2
(HVw − d)TR−1(HVw − d)

}

(9)
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The functionals Ji(wi) (for i = 1, . . . , s) defined in Eq. (8) are restrictions of
the functional J(w) in Eq. (9), i.e. J(w)/Ωi = Ji(wi). It has also to be noted
that the functionals J(w) and Ji(wi) are convex [6]. Hence, the following result
helds.

Theorem 1. Let wDA be the solution of the DA process computed without
any decomposition and let wADD−DA

i be the solution of ADD-DA as defined
in Eq. (3), we have:

wDA/Ωi = wADD−DA
i , ∀i = 1, . . . , s. (10)

Proof: As wDA is the minimum of J(w) as defined in Eq. (9), it yields:

∇J(wDA) = 0 ⇔ ∇J/Ωi

(
wDA/Ωi

)
= 0, ∀i = 1, . . . , s

As J/Ωi = Ji, we have:

∇Ji

(
wDA/Ωi

)
= 0, ∀i = 1, . . . , s

As Ji is a convex function, the minimum is unique. Then the Eq. (10) is satisfied.

The Eq. (10) ensures that the accuracy obtained by the decomposition is main-
tained.

In Sect. 3, we validate the results provided in this section. We also show that
the ADD approach reduces the execution time even if the implementation is not
on a parallel computing environment.

3 Experimental Test Case

This work uses the three dimensional incompressible Navier-Stokes equations:
continuity of mass (Eq. (11)) and momentum equations (Eq. (12)) as the full
physical system.

∇ · u = 0, (11)

∂u
∂t

+ u · ∇u = −1
ρ
∇p + ∇ · τ (12)

where u ≡ (u, v, w)T is the velocity, p = p̃/ρ0 is the normalised pressure (p̃
being the pressure and ρ0 the constant reference density) and τ denotes the
stress tensor. Further details of the equations solved and their implementation
can be found in [1,5,11]. The dispersion of the pollution is described by the
classic advection-diffusion equation such that the concentration of the pollution
is seen as a passive scalar (Eq. (13)).

∂c

∂t
+ ∇.(uc) = ∇.

(
κ∇c

)
+ F (13)

where κ is the diffusivity tensor (m2/s) and F represents the source terms
(kg/m3/s), i.e. the pollution generated by a source point for example.
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The capability of ADD-DA has been estimated using a realistic case repre-
senting a real urban area located in London South Bank University (LSBU) in
Elephant and Castle, South London, UK (Fig. 2). The computational domain
includes 767,559 nodes (Fig. 2b). In air pollution problems, we are interested in
optimising the concentration field of the pollutant as well as the spread of it
into the domain. In this work, a point source of pollution, mimicking pollution
generated by traffic in a busy intersection, is located into the domain (red sphere
in Fig. 2a) with a source term equal to 1 kg/m3/s and the dispersion behaviour
of it is simulated for a westerly wind (blue arrows in Fig. 2a). Observed values
of the state variable are provided by sensors from positions randomly located
among the buildings.

Fig. 2. (a) Computational domain and (b) surface mesh of the test site: the London
South Bank University (LSBU), London (UK) area. In (a) the red sphere denotes the
location of the source and the blue arrows the wind direction. (Color figure online)

ADD-DA combined with Fluidity is a fully-parallel program, using the Mes-
sage Passing Interface (MPI) library to communicate information between pro-
cessors. The supermesh is decomposed into sub-domains *.vtu files and *.halo
files, the latest ones containing information on overlapping regions. The *.vtu
files are read in the ADD-DA algorithm. In each of these sub-domains, ADD-
DA computes the background covariance matrices (Step 4 in Algorithm 1) and
computes the solution of the assimilation process (Steps 9-13 in Algorithm 1).
Algorithm 1 has been implemented and tested on 3 high performance nodes
equipped with bi-Xeon E5-2650 v3 CPU and 250 GB of RAM.

The accuracy of the ADD-DA results is evaluated by the mean squared error
on each subdomain:

MSE(ui) =
‖ui − uC

i ‖L2

‖uC
i ‖L2

(14)

computed with respect to a control variable uC
i , for i = 1, . . . , s and s still denotes

the number of sub-domains. The global mean squared error is then defined by:
MSE(u) = meani{MSE(ui)}.
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Figure 3a shows the values of MSE(uM) and MSE(uADD−DA) as a function
of the number of sub-domains which constitute the decomposition. The sub-
domains are labeled by the ID of processors p, i.e. s = p. For each domain
decomposition made of p = 4, 8, 16, 32 sub-domains, the value of MSE(uM) is
greater than the MSE(uADD−DA). It has also confirmed in Fig. 3b which shows
the values of the difference between MSE(uM) and MSE(uDA).

Fig. 3. (a) MSE of model background (uM) and ADD-DA (uADD−DA) as a function
of the number of processors. The markers depict the MSE, and the error bars their
standard deviations, for the assimilation of pollutant concentration, and (b) Error
reduction as a function of the number of processors.

We evaluated the execution time needed to compute the solution of the ADD-
DA model by Algorithm 1. Let Ts(n) denotes the execution time of the Algo-
rithm1 for a domain decomposition made of s sub-domains. We still assume that
p = s, where p denotes the number of processors and we pose

Ts(n) = max{Tsi
(ni)}i=1,...,s (15)

where Tsi
(ni) denotes the execution time for each processor on each sub-domain.

The total execution time is shown in Table 1. There is a clear decreasing trend
in the total execution time with the increase of number of processors. Is is also
confirmed by the values of speed-up computed as Ss = T1(n)/Ts(n).

Table 1. Execution times for s = p.

p Tp (seconds) Ss Ŝp

1 2.80 × 103 – –

4 8.04 × 102 3.48 4

8 3.63 × 102 7.71 8

10 3.06 × 102 9.15 10

16 1.96 × 102 14.3 16

32 3.35 × 102 11.9 32
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As described in the Fluidity manual [1], it is suggested to have at least 50, 000
nodes per processor in Fluidity to have full advantage of the parallelisation.
It is due to the surface-to-volume ratio [2] which becomes too big for small
sub-domains. As the number of nodes in our simulation is n = 767, 559, the
optimal number of processors to use to run Fluidity is supposed to be less than
p = 767,559

50,000 � 15. The optimal number of processors computed and suggested
by Fluidity [1], for the computational domain in Fig. 2b, is made of p = 10 sub-
domains. This constraint affects the ADD-DA execution time as confirmed by
the results of speed-up in Table 1. In fact, the total execution time of ADD-DA
using 10 processors is 306 s, while using one processor is 2800 s with a speed-up
of 9.15. Increasing the number of processors, we start to lose gain in terms of
speed-up compared with the theoretical one Ŝp = p. We observed a reduction
of the execution time even if ADD-DA implements a decomposition of s sub-
domains but Algorithm1 runs on one processor, i.e. s �= p. In fact, we tested
ADD-DA implementing a First In First Out (FIFO) queue processing the sub-
domains of the decomposition on p = 1 processor and we have seen that the
total execution time of ADD-DA for a decomposition of s = 32 sub-domains
is 9.48 × 102 s. Even if the gain in terms of Speed-Up is only 2.95, this result
underlines the gain we have in introducing Adaptive Domain Decomposition on
top of the math stack, i.e. in the mathematical model. This results is due to the
complexity of the numerical model which decreases when we introduce the ADD.
In fact, the time complexity of Algorithm1 is τ(n) � m × n2 where m is the
truncation parameter for the TSVD (Step 6 of Algorithm1) and n is the number
of points of the supermesh. If we assume that the time needed to perform τ(n)
floating point operations is T (n) = τ(n) × tflop, where tflop denotes the unitary
time required for the execution of one floating point operation, we have in our
case

T (n) = m × n2 × tflop (16)

Assumed that n =
∑s

i=1 ni and assuming a fixed truncation parameter m, the
(16) gives:

T (n) = m ×
(

s∑
i=1

ni

)2

× tflop (17)

Due to the properties of the square of a polynomial, the (17) gives

T (n) = m ×
(

s∑
i=1

ni

)2

× tflop > m ×
s∑

i=1

n2
i × tflop (18)

=
s∑

i=1

m × n2
i × tflop =

s∑
i=1

Tsi
(ni) > max{Tsi

(ni)} = Ts(n)

which gives Ts(n) < T (n) where Ts(n) still denotes the execution time defined
in (15) and T (n) is the execution time when the algorithm does not implement
any decomposition.
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(a) uM: predicted pollutant concentration field

(b) v: observed pollutant concentration field

(c) uDA: assimilated pollutant concentration field

Fig. 4. Iso-surface, in white, of the pollutant concentration for 5.10−1 kg/m3 computed
in parallel with p = 10 and generated by a point source.
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Figure 4 shows the impact of ADD-DA on the iso-surface of the pollutant
concentration for 5.10−1 kg/m3 computed in parallel with p = 10 processors and
generated by a point source. Figure 4a shows the results predicted by Fluidity,
i.e. uM, while Fig. 4b shows the observed data, i.e. v. Values v are assimilated in
parallel by ADD-DA to correct the forecasting data uM. The assimilated data
after the ADD-DA process, i.e. uADD−DA, are then obtained (Fig. 4c).

Conclusions and future works are presented in next section where we propose
the next steps towards the development of a scalable data assimilation software
for accurate air pollution prediction in big cities.

4 Conclusions and Future Work

We presented a parallel Data Assimilation model based on Adaptive Domain
Decomposition (ADD-DA) coupled with the open-source, finite-element, fluid
dynamics model Fluidity. The model is defined on a partition of the domain in
sub-domains without overlapping regions. We provided experimental results for
pollutant dispersion within an urban environment. We proved that the ADD-DA
model provides the same numerical solution of the sequential model. We have
also shown that the ADD approach reduces the execution time even when the
implementation is not on a parallel computing environment. An implementation
of ADD-DA for improving air pollution prediction in big boroughs of London
(as the one shown in Fig. 5) has been developed as future work. In that case we
are implementing a multi-level parallelism. Starting from the Adaptive Domain
Decomposition, the sub-domains are distributed on parallel processing units and,
each sub-domain, is decomposed in sub-sub-domains to implement a First In
First Out (FIFO) queue as we have seen it provides a further improvements in
terms of reduction of the execution time.

Fig. 5. Computational domain in the South West London area. The corresponding
surface mesh is made of 12,9 millions of nodes.
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and Analysis of Cluster Systems



Workshop on Performance Monitoring
and Analysis of Cluster Systems (PMACS)

Workshop Description

For a long time, hardware performance monitoring was used on a small scale to
measure and analyze data of single application runs in order to detect performance
limitations caused by hardware and/or software. Monitoring the whole cluster system
for observing hardware failures has been the duty of system administrators with
emphasis on operating the system and changes in the system parameters. In recent
years, many HPC providers have extended or replaced their monitoring system to
additionally track performance data from hardware monitoring facilities and even from
the applications. The analysis of the data provides deeper insight in resource utilization
and the quality of software. In addition, system administrators use performance data to
track the causes of system instabilities to specific user codes. Due to the diversity of
HPC centers, many tailored solutions for collection, storage, evaluation, and visual-
ization exist today.

The goal of this workshop was the exchange of experience about various solutions
on the collection, transmission, storage, evaluation, and visualization of runtime data
about the hard- and software of whole cluster systems. Indeed, the presentations
covered a lot of aspects:

– Luka Stanisic et al. presented MPCDF, a performance monitoring system that offers
a lightweight open-source middleware to collect hardware and software perfor-
mance monitoring data on compute nodes. After collecting the data, the system can
aggregate and process it, enabling detailed per-cluster and per-job interactive
analysis in a web browser. Additionally, the system can generate performance
reports as PDF files so that users, system administrators, application support, and
management can obtain and study the information.

– Philipp Neumann described a method for predicting run-times of simulation codes
based on sparse grid regression. The ultimate goal of such prediction is to improve
balance in the execution of parallel multi-model codes on HPC clusters. The run-
time prediction uses on various dynamic and runtime-dependent parameters. Based
on measurements using three applications in the domains of molecular dynamics
and weather & climate, the approach shows good runtime prediction for up to five-
dimensional parameter spaces using only a relatively low number of training
samples.

– Gence Ozer et al. developed a resource-aware scheduling mechanism that can
balance performance and fairness even in the presence of complex inter-job
dependencies and highly variable resource requirements, as is the case in Electronic
Design Automation workloads.

– Saurav Nanda et al. presented a supervised learning model which enables optimal
selection of CPU frequency during the execution of a job, with the objective of
minimizing the energy consumption of a HPC system.



These systems address different aspects of the monitoring and analysis challenges
described above, yet all are related to performance evaluation, data management, and
analytics, which were the main focus of the PMACS workshop. Hopefully, by bringing
together the developers and users of such infrastructure we enabled ways for them to
collaborate and exchange ideas for further developments.
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Abstract. We employ sparse grid regression to predict the run time in
three types of numerical simulation: molecular dynamics (MD), weather
and climate simulation. The impact of algorithmic, OpenMP/MPI and
hardware-aware optimization parameters on performance is studied. We
show that normalization of run time data via algorithmic complexity
arguments significantly improves prediction accuracy. Mean relative pre-
diction errors are in the range of few percent; in MD, a five-dimensional
parameter space exploration results in mean relative prediction errors of
ca. 15% using ca. 178 run time samples.

Keywords: Performance modeling · Sparse grids · Regression

1 Introduction

Increasing complexity of simulation software is observed in various science and
and engineering disciplines. Examples comprise multi-component million-lines-
of-code climate models [1] or multiscale multi-model simulations which combine
several solver components with applications in biology [2], fusion [3], or fluid
dynamics [4]. This complexity translates into a multitude of run time-relevant
parameters and parameter dependencies, such as

– algorithmic parameters (convergence criteria, mesh sizes, time steps, etc.),
– hardware-aware optimization parameters (blocking parameters for cache

reuse, contiguous data alignment settings, etc.),
– parallelization settings (number of MPI processes/OpenMP threads, etc.),
– scenario-dependent parameters (domain size, number of particles, etc.).

For example, sampling vapor-liquid equilibria in molecular dynamics (MD)
requires parallelized simulations, executed at various density values and particle
numbers. This already yields three dependencies (parallelization, density, par-
ticle number). Knowledge and prediction of the actual run time is beneficial
in this case to optimally distribute the required MD simulation ensembles on
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 601–612, 2020.
https://doi.org/10.1007/978-3-030-48340-1_46
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a HPC cluster. Another example is given by high-resolution weather ensemble
simulations. These simulations come with many physical and technical parame-
ters influencing performance, and they require extreme-scale HPC capacity for
execution. Also, accurate performance predictions allow to efficiently distribute
and schedule the ensembles on a supercomputer, while still obeying to tight
production schedules of, e.g., the underlying systems of a weather service.

In the following, we show that regression on sparse grids combined with local
refinement allows to sufficiently discretize high-dimensional parameter spaces
and yields accurate run time predictions.

We present sparse grid regression in Sect. 2 which follows the methodology
from [5]. Related work on performance prediction and sparse grid regression is
discussed in Sect. 3. We detail our parametrization and evaluation procedure for
the performance prediction in Sect. 4.1 and provide the analysis for the MD sim-
ulation SimpleMD [4] and a weather/climate model ICON [6] in Sects. 4.2, 4.3.
We summarize our findings and give an outlook to future work in Sect. 5.

2 Sparse Grids

2.1 Regular Sparse Grids

In the following, the space spanned by the performance-relevant parameters is
scaled to the unit hyper-cube. The native form of d-dimensional sparse grids
arises from a smart combination of anisotropic Cartesian grids and d-linear hat
functions ϕl,i as basis functions, with the latter defined over the Cartesian grid
points xl,i := (2−l1i1, ..., 2−ldid) [5,7]. Given subspaces Wl := span{ϕl,i(x) : i ∈
Il} and index vectors Il := {i : 1 ≤ ij ≤ 2lj − 1, ij odd, 1 ≤ j ≤ d}, a level-n
sparse grid arises from the following combination of the subspaces:

Vn :=
⊕

|l|1≤n+d−1

Wl . (1)

The finest grid point distance (i.e., mesh size) in Vn is given by hn := 2−n.
Figure 1(a) illustrates this discretization for a level-3 grid (i.e., showing V3 in
terms of grid points). In the following, x contains the run time-relevant parame-
ters, and we search for a function u(x) ∈ Vn which approximates the run time of a
program t(x) ≈ u(x). Sparse grids are powerful for high-dimensional, sufficiently
smooth problems: while the number of grid points and hat functions at level n is
O(h−d

n ) for a regular Cartesian grid, sparse grids only require O(h−1
n (log h−1

n )d−1)
functions while still exhibiting accurate approximation properties [5,7].

The given discretization only covers inner parts of the hyper-cube and, thus,
results in zero boundary values. We follow [5] by defining the constant basis
function 1 =: ϕ1,1 ∈ W1 and extrapolating values towards the outer boundaries
for all other basis functions that are closest to it.
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Fig. 1. (a) Two-dimensional, level-3 sparse grid. The grid points are colored according
to their basis function’s subspace Wl . (b) Local refinement for a 2D, level-2 sparse
grid. One refinement step is carried out in which m = 3 marked grid points are refined
(Color figure online)

2.2 Regression

Given a set of simulation run times yj for parametrizations xj , j = 1, ...,M , we
aim at training the sparse grid and optimizing a function v(x) :=

∑
i αiϕi(x),

with i looping over the span of Vn (for simplicity, ϕi(x) corresponds to each hat
function), to match the run times:

u = arg min
v∈Vn

⎛

⎝ 1
M

M∑

j=1

(yj − v(xj))2 + λC(v)

⎞

⎠ , (2)

with regularization terms C(v), λ ∈ R+, to enforce smoothness of the solution;
we use C(v) := ‖α‖22 due to its simplicity and effectiveness [5]. Minimization in
Eq.(2) results in a linear system

(
1
M

BB� + λ1

)
α =

1
M

By, (3)

with Bi,j := ϕi(xj) and identity matrix 1.

2.3 Adaptivity

To further improve function approximations, sparse grids can be extended by
adaptivity [8,9]. We employ local adaptivity [9]: given training data points xj ,
the pointwise error ej := t(xj ) − v(xj) = t(xj) − ∑

i αiϕi(xj) is computed and
the contribution of each basis function ci :=

∑M
j=1 |ϕi(xj)αie

2
j | is calculated.
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Given a number of local refinements m per iteration, m grid points are refined,
which exhibit the largest contributions ci. A refinement example is shown in
Fig. 1(b). Instead of searching for u ∈ Vn, we thus search in the following for
u ∈ V r,m

n , with V r,m
n denoting all spaces that arise from r successive refinement

steps applied to Vn with m grid point refinements per step.

3 Related Work

Performance modeling for individual applications based on hardware and soft-
ware characteristics is widely employed, see amongst others [10,11]. Generating
and combining performance models for different hardware and software compo-
nents via a performance modeling framework is presented in [12], with a focus
rather on predicting the performance of a complex application on another hard-
ware than under different parameter settings. Cache miss counts and run times
are predicted in [13] across different pieces of hardware through a toolkit, which
semi-automatically measures and models application characteristics. Analytical
performance models and their automatic generation are addressed in [14] to
detect scalability bugs in complex applications. Regression methods and neural
networks for performance prediction are discussed in [15–18], achieving predic-
tion errors of typically few percent—a similar accuracy as targeted in this work,
yet it is hard to compare the methods due to different applications under con-
sideration. Neural networks have further been used predict the run time for
combinatorial problems in artificial intelligence, which is a highly non-trivial
task due to high run time variations [19]. Deep learning has been shown to
yield accurate run time predictions over a multitude of applications running on
a HPC cluster, considering a dataset with 300,000 job executions [20]. In the
following, sparse grid-based run time predictions are particularly considered for
single applications that respond rather smoothly to parameter changes.

The motivation to consider locally refined sparse grids for performance data
regression is two-fold. First, sparse grids hierarchically cover the parameter space
and, thus, locally adapt their resolution to run time features. Sparse grid-based
regression [5,21] has been used in various applications, including option pric-
ing [5,22], or the photometric estimation of cosmological redshifts [5]. Second,
convergence rates and upper error bounds for least squares regression on sparse
grids have been investigated in [23], allowing for a mathematical explicability of,
in our case, the runtime predictions. A variant of sparse grid regression based
on the optimized combination technique is presented in [24].

4 Results

4.1 Evaluation Procedure

We evaluate the regression methodology from Sect. 2 in three cases: SimpleMD,
ICON Node-Level and ICON Multi-Node. All run time samples were measured
on a system equipped with dual-socket Broadwell nodes, each node comprising
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2 × 18 cores at 2.1 GHz. We make use of the sparse grid toolbox SG++ [5], ver-
sion 2.1.0, and its Python bindings to implement the regression. To avoid overfit-
ting, we set the maximum number of sparse grid points to ≤50% of the number
of run time samples t(xj ) that are used for training. We further restrict our
initial grids to level-2 and level-3 grids, which are subsequently locally refined.
Level-3 grids are only considered for bigger sample counts. We set the number of
points to be refined to m = 3 which provides–given rather small-sized sparse grid
structures–a compromise between improved accuracy while (mostly) abstaining
from creating regular level-n grids through the refinement procedure. The maxi-
mum number of refinement steps is set to r = 3. The adaptivity criterion and the
50%-rule from above imply that a level-2 or level-3 grid may be refined once or
several times, or not at all. For example, given a number of run time samples for
training (named learning size in the following), a level-2 solution might be based
on a level-2 grid with several levels of refinement and thus a rather high level of
local accuracy, while a corresponding level-3 grid might not have been refined
at all and thus does not feature any kind of local improvements. We solve the
linear system from Eq. (3) with the CG solver provided by SG++. Its accuracy
parameter is set to 1e − 4, and we allow a maximum of 1000 CG iteration steps
to ensure that convergence errors are negligible in all experiments. Sensitivity
studies for the smoothing parameter λ did not reveal significant influence on the
solutions (not reported in the following); we use λ = 1e − 6.

Given a number of samples, we split this set into a fraction 0.1 ≤ s < 0.9 to
train our sparse grid by solving the regression problem. The remaining fraction
1 − s is used for validation. To investigate the prediction accuracy, we evaluate
the relative error on validation and training samples and compute the average
relative error (averaged over all samples in either validation or training set).
Average relative errors on training/validation set are considered separately to
check for potential overfitting/accuracy. To assess the effects of the random split-
ting, we carry out this evaluation 10 times for different splittings and compute
the mean of the average relative error, referred to as mean relative error, and
its standard deviation. Consecutive random splittings will automatically result
in differently refined grids. Therefore, we report on two takes Take1 and Take2
of this procedure, with each take consisting of 10 repetitions of the sparse grid
regression on randomly split data with mean and standard deviation evaluation.

4.2 SimpleMD

This case considers the parallel execution of the single-site Lennard-Jones short-
range MD simulation SimpleMD [4]. Particles within a prescribed cut-off radius
rc interact via force fields. This procedure is implemend in SimpleMD through
the linked cell algorithm [25]. Considerations are restricted to homogeneous 3D
particle systems in a cubic, periodic domain. Although simplistic, this scenario
allows to study the influence of various important parameters on performance:

Density ρ: the particle density corresponds to the number of molecules per vol-
ume. Linearly increasing the number of particles (and, thus, density) within the
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cut-off region implies a locally linear increase in computational cost and run time
t, t ∝ ρ. However, depending on the vectorization and underlying implementa-
tion, other scalings may be observed, see, e.g., [26].

Number of molecules N : The linked-cell method results in an O(N) algorithm
with N being the number of molecules, suggesting a run time t ∝ N . Yet, per-
formance may deviate from the linear behavior due to cache effects or threading
(the latter is not considered in this work).

Cut-off radius rc: Increasing rc is similar to increasing density, implying a run
time t ∝ r3c . Yet, the actual application and its accuracy constraints dictate how
rc and ρ must actually be chosen.

Blocksize: this parameter determines the level of contiguous memory allocation
and denotes the number of molecules that are allocated en bloque. If additional
particles need to be inserted (for example due to boundary conditions) and all
blocks are entirely filled, at least one block of blocksize particles is allocated.

Number of MPI processes P : SimpleMD employs a regular domain decomposi-
tion. Optimal parallel efficiency suggests a run time dependency t ∝ 1/P .

We generated 357 random configurations for this parameter space, see
Table 1; min/max run times per time step reach from 7.3e-4 s to 1.1 s. Each
configuration was executed 3× and run times were averaged to provide denoised
run time data.

Table 1. Randomized sampling procedure for the case SimpleMD

Parameter Parameter range Random sampling

Density [0.3; 0.9] Uniform distribution

Number of molecules [1 000; 100 000] Uniform distribution

Cut-off radius [1.2; 4.5] Uniform distribution

Block size [10; 1 000] Uniform distribution

Processes {1, 2, 4, 8} Uniform sampling from index set
{0, 1, 2, 3}

Performing regression directly on the run time data resulted in very poor
approximations due to the high ratio of max/min run time 1.1 s/7.3e − 4 s =
1507. We therefore normalized the run time t according to all aformentioned
proportionalities and use these values tc := tρ−1r−3

c N−1P in the regression
process. This results in a max/min run time ratio of 7 and a much smoother,
sparse grid-friendly run time representation. The mean relative errors for two
takes in Fig. 2 indicate minor variability between the takes. The mean relative
error (incl. standard deviation bars) on the validation data drops below 15%
for a learning size of ca. 50%, corresponding to ca. 178 training samples to
approximate the 5-dimensional parameter space. Differences between level-2 and
level-3 adaptively refined sparse grids are rather marginal for larger training sets,
with the level-3 grid performing worse for smaller training sets.
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Take1 Take2

(a) (b)

(c) (d)

Fig. 2. Mean relative error analysis for two takes of SimpleMD. The errors on train-
ing/validation sets and their standard deviations are shown in (a),(b)/(c),(d) with
regard to 10 repetitions per take. Each plot shows the dependency of the errors on the
learning size s for spatially adaptive sparse grids, that are locally refined from either
level 2 or level 3

We compared the sparse grid regression to polynomial regression with first-
and second-order polynomials using Python’s module sklearn, cf. Fig. 3. Expect-
edly, polynomial and sparse grid regression perform equally well on small learning
sizes. For bigger learning sizes, sparse grids outperform the other two approaches.
Note that the degree of approximation remains fixed in the polynomial regres-
sions (with 5/20 degrees of freedom for first- and second-order polynomials),
while the number of sparse grid points increases with increasing learning size: a
learning size s ≤ 20%, 45% resulted in 11, 38–39 grid points.

4.3 ICON

The ICOsahedral Nonhydrostatic (ICON) model [6] is used for climate and
weather predictions, amongst others in the production schedules of the Ger-
man Weather Service. ICON computes these predictions on triangular horizontal
meshes that arise from a successive refinement of an icosahedron. The horizon-
tal grid cells are blown up to prism-like columns of cells to incorporate vertical
physics. We restrict considerations to configurations of global atmosphere-only
simulations, employing the dynamical core to solve the atmospheric equations
of motion, radiation, and particular physics parametrizations.
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(a) (b) (c)

Fig. 3. Comparison of different regression techniques for SimpleMD, considering the
mean relative error on the validation set. (a) Take 1 of the sparse grid regression, (b)
regression with first-order polynomials, (c) regression with quadratic polynomials

ICON Single-Node. The climate case ICON Single-Node uses the ICON V16.0
benchmark1 and considers an Earth-like planet without any land mass. The
planet is resolved horizontally with a mesh size of 160 km and its atmosphere
(i.e., vertically) by 90 levels. We consider (1) the number of OpenMP threads
(1/2/4/6/8/12/18/36 threads) and (2) the parameter nproma ∈ {8, 16, 24, 32},
which is an ICON-specific blocking parameter for the vertical columns. Every
configuration was executed twice, and the averaged run time was used for the
regression. We saturate one full dual-socket Broadwell node including hyper-
threading in every experiment (the choice of OpenMP threads prescribes the
number of MPI processes). Such experiments are useful to determine the optimal
node-level configuration, which would outperform the other potential configura-
tions typically by few percent. The full node saturation implies a rather flat
(smooth) performance profile over all 32 configurations. Note that, in contrast
to SimpleMD which aims to explore the entire parameter space, ICON Single-
Node shall rather investigate, if and to what extent the sparse grid regression can
accurately predict marginal performance differences: while errors of 10–20% are
perfectly acceptable in SimpleMD, such accuracies would not deliver any insight
into the performance data of ICON Single-Node which exhibit a max/min run
time ratio of 1.14. Due to the small number of ICON Single-Node configurations,
the prescribed sparse grid parametrization for spatial adaptivity always results
in a two-dimensional, level-3 sparse grid. Figure 4 shows that mean relative errors
decay to ≤3%. More run time data (i.e., bigger learning sizes) only marginally
improve accuracy since the overall number of available data is very limited.

ICON Multi-node. This case corresponds to a global high-resolution weather
simulation using a horizontal 5 km mesh; this is a cutting-edge simulation setup
in terms of resolution and corresponding physics parametrization [11,27] and it
is subject to current research and analysis. We consider the following parameters
in our performance prediction method:

1 https://redmine.dkrz.de/projects/icon-benchmark/wiki/Instructions on download
execution and analysis ICON Benchmark v160.

https://redmine.dkrz.de/projects/icon-benchmark/wiki/Instructions_on_download_execution_and_analysis_ICON_Benchmark_v160
https://redmine.dkrz.de/projects/icon-benchmark/wiki/Instructions_on_download_execution_and_analysis_ICON_Benchmark_v160


Sparse Grid Regression for Performance Prediction 609

Take1 Take2

(a) (b)

(c) (d)

Fig. 4. Mean relative error analysis for two takes of ICON Node-Level. The errors
on training/validation sets and their standard deviations are shown in (a),(b)/(c),(d).
Each plot shows the dependency of the errors on the learning size s for level-3, non-
adaptive sparse grids (created through the refinement applied to level-2 grids)

Number of OpenMP threads: the number of threads (1/2/4/6/12/18 threads)
is varied. To fully saturate each compute node, the number of MPI ranks is
adapted correspondingly as in ICON Single-Node.

Total number of nodes P : the number of nodes is varied in the strong scaling
sense, P ∈ {100, 200, 300, 400}, resulting in a run time t ∝ 1/P .

Number of vertical levels L: approaching the kilometer-resolving regime in these
weather simulations, it is unclear how many vertical levels are required for an
accurate representation of atmospheric physics. We varied L ∈ {60, 70, 80, 90}
and assume a linear relation to run time, t ∝ L.

The parameter nproma: a blocking parameter, cf. ICON Single-Node.
Every configuration was executed twice, and the averaged, normalized run

time tc = tL−1P was used for the regression, showing a max/min run time ratio
of 1.94. Training with only 40 configurations (that is a learning size s = 0.1) is
sufficient to achieve mean relative errors (incl. standard deviation bars) of ≤10%,
cf. Fig. 5. The errors basically drop to 6% for >200 training configurations.
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Take1 Take2

(a) (b)

(c) (d)

Fig. 5. Mean relative error analysis for two takes of ICON Multi-Node. The errors
on training/validation sets and their standard deviations are shown in (a),(b)/(c),(d).
Each plot shows the dependency of the errors on the learning size s for spatially adap-
tive sparse grids, that are successively refined from either level 2 or level 3

5 Conclusions and Future Work

We have investigated sparse grid regression to predict run times for numeri-
cal simulations that depend on the choice of algorithmic, MPI/OpenMP and
hardware-aware optimization parameters, resulting in a (potentially) high-
dimensional parameter space. Considering single- and multi-node experiments,
we are confident that the sparse grid regression is an effective approach for
a variety of prediction problems. To obtain sufficiently smooth run time data
to make sparse grids feasible, we normalized the run times according to com-
plexity arguments, which is similar to dimensional analysis. This normalization
can be substantial—for the case SimpleMD with a five-dimensional parame-
ter space, it reduced the max/min run time ratio by more than two orders of
magnitude. Most regressions yielded mean relative run time prediction errors
of few percent–which is more than sufficient for applications such as efficient
scheduling and distribution of simulation ensembles, considering the fact that
performance reproducibility is a difficult topic on its own. Compared to poly-
nomial regression, sparse grids performed equally well for moderate numbers of
training samples. They do, however, pay off for bigger numbers of samples and
in higher-dimensional problem settings such as the case SimpleMD, since they
allow to locally adapt to the given run time data at acceptable discretization
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cost. Locally refined level-2 grids slightly outperformed refined level-3 grids, as
level-2 grids feature a higher level of local adaptation to the run time profiles
while using the same order of number of grid points.

Future work comprises, amongst others, comparisons with other methods
such as neural networks, random forests or Gaussian process regression. Current
work concentrates on collecting performance data on-the-fly and augmenting a
sparse grid predictor with this information, resulting in a dynamically refining
sparse grid and a continuously improving predictor.
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Abstract. This paper reports on the design and implementation of the
HPC performance monitoring system deployed to continuously monitor
performance metrics of all jobs on the HPC systems at the Max Planck
Computing and Data Facility (MPCDF). Thereby it reveals important
information to various stakeholders, in particular to users, application
support, system administrators, and management. On each compute
node, hardware and software performance monitoring data is collected by
our newly developed lightweight open-source hpcmd middleware which
builds upon standard Linux tools. The data is transported via rsyslog,
and aggregated and processed by a Splunk system, enabling detailed per-
cluster and per-job interactive analysis in a web browser. Additionally,
performance reports are provided to the users as PDF files. Finally, we
report on practical experience and benefits from large-scale deployments
on MPCDF HPC systems, demonstrating how our solution can be useful
to any HPC center.

Keywords: HPC · Cluster monitoring · Performance analysis

1 Introduction

HPC systems are highly expensive facilities that are rapidly evolving with respect
to computational power, complexity, and size. More and more scientific disci-
plines use HPC resources in their research process to gain insight from numerical
simulations or from data analytics. Hence, it is essential to strive to maximize the
performance of the applications running on these precious resources. However,
an efficient usage requires expert knowledge in parallel algorithms and program-
ming, and a lot of effort spent on optimization and parameter tuning. This point
became more important in recent years with the advent of processors with many
cores and accelerators, which made parallel programming even more complex.
Having performance numbers available for each job is therefore essential for the
stakeholders of the HPC system, first, to make them aware of potentially subop-
timal usage of resources, and second, to enable them to take action to improve
the way these resources are used.
c© Springer Nature Switzerland AG 2020
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Jobs on a HPC cluster are commonly orchestrated by a batch scheduler,
which can easily provide usage statistics based on allocated resources. These are
often quantified in terms of CPU or GPU hours, and have proven useful for
accounting purposes. However, these numbers do not carry information about
the actual resource utilization. Performance metrics measured for each job are
therefore crucial to learn, e.g., about under-utilization of allocated resources (idle
vector units, or idle cores and accelerators), or other problematic usage patterns.

Modern hardware provides a plethora of counters that can be used for perfor-
mance monitoring. In addition to the arithmetic units, CPUs have performance
monitoring units (PMUs) that can be programmed to count certain instructions
(e.g., scalar and vectorized floating point operations) with very little perfor-
mance overhead. Hardware such as GPUs and network adapters provides simi-
lar counters. These hardware-related metrics can be complemented by software-
related metrics, obtainable from the Linux kernel or from system tools. Such
metrics include information on the running processes, their memory footprint,
filesystem-related counters, etc.

Selecting and efficiently collecting these metrics is a challenge which we
address in the present work. We developed a new lightweight software daemon,
hpcmd1, that runs on each node, performs measurements periodically in the
background, and finally writes the data to the syslog. The syslog lines from all
nodes are then propagated to the Splunk framework, for which we have devel-
oped special dashboards to perform advanced interactive data analysis. As a
service to the users, we also provide PDF reports downloadable for each job.
These two main components, hpcmd and Splunk dashboards together with few
additional scripts compose a comprehensive suite designed to continuously mon-
itor the performance of all jobs on the HPC systems at the MPCDF. We believe
that other centers could also benefit from our system.

In the following, we first elaborate on the insight and benefits the various
stakeholders of an HPC system may draw from a performance monitoring sys-
tem. Second, we discuss related work before we describe in detail our solution
in the main part of the paper. Finally, we illustrate several cases in which our
system has already proven very useful, before closing with a summary.

2 Benefits from an HPC Performance Monitoring System

The following four groups of key stakeholders of an HPC system benefit from
the insight enabled by HPC performance monitoring data.

Computational scientists and other users who run jobs on an HPC system typ-
ically have to apply for CPU hours. They have a strong intrinsic motivation to
use the resources as efficiently as possible, in order to maximize the scientific
knowledge they can obtain from the results. Based on HPC monitoring data,
experienced users are often capable of identifying and fixing issues themselves,
e.g., by applying appropriate compiler optimization for a specific architecture.
1 hpcmd stands for HPC monitoring daemon.
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Less skilled users might be motivated to approach application support when
facing poor performance indicated by monitoring data.

Application support at a computing center provides technical support and is
in charge of porting and optimizing applications for the HPC systems. HPC
performance monitoring data enables application support to detect problematic
jobs, and consequently, to proactively approach users who are potentially in need
of assistance.

System administrators may benefit from performance monitoring data, e.g., to
better judge the impact of software updates, security patches, and hardware set-
tings. Potential changes in application performance after some maintenance work
can be traced in an objective way based on current and historical performance
data.

Management is interested in learning performance numbers that represent the
actual resource utilization in addition to knowing the allocation of plain CPU
hours, a metric that has been widely used up to now to quantify the resource
share. Moreover, performance data gathered on present systems can be used to
steer decisions for the procurement of future HPC clusters. For example, looking
at a roofline plot with measurement data from most used applications enables
decision makers to judge quickly if these applications are limited by the memory
bandwidth or by the peak floating-point performance, and thereby if investing
in new architectures with higher memory bandwidths would pay off. Similarly,
analysis of network traffic may hint at applications that would benefit, e.g., from
higher network bandwidth or lower latency. Finally, performance data documents
to which degree GPUs are actually used, especially on multi-GPU nodes. In these
respects, HPC performance monitoring data helps to close important information
gaps.

3 Related Work

There are at least two big challenges regarding the implementation of a HPC
performance monitoring system that have been addressed by various solutions
in recent years.

The first, data-related, challenge is to choose which metrics should be tracked,
how to interpret the collected data, how to identify performance bottlenecks, and
how to ultimately detect if there is a significant problem in an application code.
There are several software tools that can be used to analyze the performance
of a running job. For example, for CPU codes, there are Linux perf [15], PAPI
[3], LIKWID [14], and VTune [7], among others. These tools provide access to
hardware counters which are then often analyzed using a “top-down” method
[17]. One compares the counter values to the theoretical peak values of the
machine and deduces how well the compute resources are utilized. However,
there are cases when utilization values appear rather low even for well-optimized
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applications, e.g., due to the nature of the problem the code is solving or the
required data structures. Hence, looking only at the utilization numbers can
be misleading, and one needs to be careful before declaring that a job has a
performance issue. To alleviate this effect, some researchers prefer to rely on
cross-comparisons between different runs and applications [5], recently proposing
machine learning techniques for such analysis [2,9].

The second, technical, challenge is to design and deploy a system that works
reliably on (multiple) large HPC clusters while introducing minimal overhead,
efficiently collects the data from many nodes into a centralized database, and
provides a powerful framework for analysis and visualization. For example, the
TACC stat framework has been developed to achieve these goals [4,5]. It com-
bines information collected by various standard Linux tools and some custom
tools, e.g., REMORA [10], to monitor resource utilization at the Texas Advanced
Computing Center. Next, the PerSyst monitoring system developed at the Leib-
nitz Supercomputing Center comprises a hierarchical system of collectors and
aggregators, a central database and a web interface to monitor large-scale HPC
systems [6]. Thanks to the data aggregation using quantiles, this tool is well
suited for jobs that run on a large number of nodes. The LIKWID Monitor-
ing Stack targets small to medium scale systems [11]. It is partly based on the
LIKWID performance tool suite developed by the same group of authors [14].
Finally, the Lightweight Distributed Metric Service (LDMS) was developed for
performance monitoring at Sandia National Labs [1]. This framework provided
very useful information for the system administrators and users, while having
minimal impact on the application performance.

All the aforementioned solutions gave us valuable ideas and helped us to
better define the goals for our approach. However, there are several reasons why
we decided to develop our own system. Most importantly, all of these systems
either rely on data-measurement software or on infrastructure setups (e.g., batch
system configuration) that are specific to the center where they have been devel-
oped, and hence, would be difficult to adapt and maintain. Moreover, many of
the existing approaches appear to rely on complex hierarchical communication
layers and custom web-based visualization platforms, while we found ourselves in
the convenient position to use rsyslog and Splunk systems that had already been
deployed at the MPCDF for other monitoring purposes, e.g., the monitoring of
the system “health” status.

4 Solution Architecture

In this section, we detail on how our system can obtain, collect, analyze, and
present performance data from HPC clusters, addressing the needs of all stake-
holder groups mentioned in Sect. 2.

Figure 1 presents a schematic overview on the architecture of the MPCDF
HPC monitoring system. The design was motivated by the principle of simplicity
and the focus on key questions which implied the reuse of existing infrastructure.
To this end, our programming efforts focused on two major components (shown
with red background in Fig. 1).
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Fig. 1. Schematic showing the architecture of the MPCDF HPC monitoring system.
The hpcmd middleware and various Splunk analysis dashboards were written by the
authors, while the other infrastructure had already been existing. Automatic analysis
using machine learning techniques is under development. (Color figure online)

The first component, labeled hpcmd , is a lightweight middleware that runs as
a daemon in the background on each compute node, performs measurements at
regular intervals, and computes derived metrics if necessary. A thorough evalua-
tion of the overhead of hpcmd showed that the impact on the application perfor-
mance is negligible, e.g., being much smaller than the influence of unavoidable
machine and OS jitter on the application runtime. hpcmd is written in plain
Python (both versions 2.7 and 3 are supported) and configurable via a flexible,
hierarchical YAML configuration file. Measured values are simply written by
hpcmd to syslog messages, forwarded via rsyslog, and finally fed into a Splunk
repository.

The second major component are dashboards for Splunk written in XML,
that we have developed for performance data analysis and visualization. The
Splunk [12] platform excels in the analysis of large volumes of temporally ordered
log-line data via a powerful query language. Hence, Splunk is suitable for crunch-
ing performance data collected from many nodes over long periods of time. After
having collected performance data for nearly one year now, we do not notice any
performance degradation and do not see any reason to limit the storage lifetime
of the data. There are several viable alternatives to Splunk which could be used
similarly, such as the open-source ELK (Elasticsearch, Logstash, Kibana) stack,
the InfluxDB-Grafana stack, or even custom frameworks. However, the Splunk
infrastructure was already installed and used at MPCDF systems for system
monitoring, and thus it was the natural choice to employ it for performance
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monitoring as well. We are considering the aforementioned alternative solutions
for evaluation in the future.

In the rest of this section, we detail on the different aspects of the data flow
as depicted on the top of Fig. 1.

4.1 Data Sources

From a technical point of view, today’s HPC hardware and software offer a
plethora of metrics to look at. Given these possibilities, it is necessary to carefully
choose a set of observables essential to yield valuable insight, and at the same
time, keep the impact on the application performance negligible and the data
volume of the measured values tractable. hpcmd uses the following data sources.

CPU Core Events: State-of-the-art CPUs provide performance monitoring units
(PMUs) for each core. These can be programmed to count events, e.g., scalar
and vector instructions, cache misses, and many more. Since the PMUs are addi-
tional programmable hardware units, the event counting induces only minimal
overhead, typically not noticeable for the running scientific application.

CPU Uncore Events: In addition to the core PMUs, modern CPUs provide
uncore PMUs that enable to monitor, e.g., the memory controller traffic and
the traffic between different sockets. To access the core and uncore counters, the
Linux perf subsystem is used.

GPU: At present, monitoring GPUs is much more difficult than CPUs due to
the dependencies on proprietary tools and APIs from hardware vendors, as well
as due to the lack of publicly available counter specifications. Nevertheless, it is
possible to track some values, such as the memory occupation and the overall
utilization, which we do using the nvidia-smi tool.

I/O: Large parallel file systems are crucial components of any HPC system.
They are a shared resource, and wrong usage may affect not only a single prob-
lematic job but potentially even the whole system. Monitoring the I/O traffic
and characteristics per node can give valuable hints at harmful use patterns.
Since Spectrum Scale (GPFS) is the preferred file system at MPCDF, its CLI
tools are used for monitoring.

Network: High-speed networks represent the backbone of an HPC system. Com-
munication characteristics at per-node resolution complement many other met-
rics with valuable insight. Relevant counters can be queried using the CLI tools
that come with InfiniBand or OmniPath network adapters.

Software: The Linux kernel complemented by various system tools gives access to
a rich set of application-related metrics, e.g., the number of tasks (processes and
threads) actually launched by the job, the pinning of these tasks, the memory
usage, the job’s environment variables, and many more. The hpcmd software
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accesses this kind of information using the ps and numastat tools, and the /proc
virtual filesystem in some cases.

Any of these observables can be sampled at regular intervals by hpcmd
and used directly or after some arithmetic manipulation (e.g., computing the
GFLOP/s) as performance metrics.

4.2 Data Collection

On each compute node, an instance of the hpcmd middleware is running in the
background as a systemd service, measuring at regular intervals and sequen-
tially collecting data from the aforementioned sources. The measurements are
synchronized across the nodes via the system clock, avoiding any communication
between nodes. In addition to a continuous operation mode, the hpcmd daemon
supports the widely used SLURM batch system [8], and determines the state
of a node (allocated, idle, shared) and job information automatically. We are
typically monitoring only nodes which have a single job running on them, i.e.,
data is not collected for nodes that are currently idle or shared, as such cases are
considered less relevant in our context and would be much harder to interpret.
hpcmd allows for a highly flexible configuration, e.g., to perform more frequent
sampling or per-core monitoring of performance counters. Moreover, users may
suspend the hpcmd systemd service during the runtime of a job to get exclu-
sive access to hardware counters, e.g., for running performance profilers such as
VTUNE or using libraries such as PAPI. Measured values and derived metrics
are written as log lines containing key-value pairs to the local syslog file. For
further details, we kindly refer the reader to the documentation of hpcmd [13].

4.3 Data Aggregation

From each monitored node, the hpcmd log lines are transported via rsyslog,
collected, and finally fed into a central Splunk system. At MPCDF, HPC systems
are configured such that the rsyslog traffic goes via the Ethernet link, not putting
any load on the high performance network reserved for the applications. For
large HPC systems, there may be intermediate (per-“island”) rsyslog servers.
Operating at sampling intervals on the order of minutes we do not see any
scalability issues for our present and future HPC cluster sizes. See Sect. 5 for
some practical experience.

4.4 Data Visualization and Interactive Analysis

Data visualization and analysis takes place in the Splunk system, for which we
have developed several dashboards providing views at different levels of detail.

Roofline View: The roofline model is a simple yet intuitive performance model
widely used in performance engineering [16]. This type of overview is suitable
in particular when the performance of a job needs to be condensed into only
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Fig. 2. Overview on a selection of jobs from the previous 24 h in a roofline plot on a
specific HPC system. Each circle represents a job with its average performance, where
the circle sizes are scaled by the actual CPU core hours of the jobs.

two numbers and related to the theoretical peak values of the machine. In a
2d system of coordinates, the horizontal axis denotes the arithmetic intensity
in FLOP/Byte, while the vertical axis denotes the performance in GFLOP/s.
We pragmatically chose to solely rely on CPU-RAM memory bandwidth for the
roofline plot, computed from CPU uncore events. For the application support
staff, the entry point for the inspection of performance data in Splunk is a
roofline-type of overview plot, as shown in Fig. 2. All finished jobs that fall into a
certain time frame and satisfy certain constraints, which are specified by the user
using drop-downs on the top of the web-page, are displayed as colored circles,
scaled in size by their consumption of CPU hours. This dashboard represents an
intuitive performance map showing the current or historic utilization status of
the system. Clicking on a circle in the plot or on a line in the data table below
forwards to the detailed job view.

Detailed Job Views: This dashboard provides a detailed view on the job’s per-
formance characteristics through temporal plots of the performance metrics
described in Subsect. 4.1. An excerpt from the dashboard is shown in Fig. 3.
To make the data from large jobs more comprehensible, a second dashboard is
provided that displays the data using statistical variables such as maximum,
median, and minimum curves, taken from all nodes or sockets. These two dash-
boards are intended to be used by the application support staff through the inter-
active Splunk web interface. For the users, static PDF reports are provided for
download containing the same information. Based on these detailed job views it
is typically possible to draw well-grounded conclusions about performance issues
of application codes.
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Fig. 3. Excerpt from a detailed view on a specific job, showing the achieved perfor-
mance in GFLOP/s, the memory bandwidth, and the algorithmic intensity for each
socket. In addition to the averaged and maximum values shown in the table, plots over
time are available per socket. Moreover, the Splunk dashboard contains about 30 more
plots for other CPU, GPU, network, filesystem, and software metrics (not shown here).

Specialized Views: System administrators and the management of a computing
center are often interested in specific analysis of many jobs. To obtain such
information, they can submit custom queries to the Splunk database. As some
of their questions are recurrent, we have developed several dashboards to ease
their access to the data. Currently we are providing plots that show the most
executed applications by core hours, jobs that reserved GPU nodes without using
GPUs, jobs that reserved large memory nodes without using much memory, and
jobs that use less than half of the available CPU cores.

4.5 Per-job Reports for Users

To make the performance data accessible to the users, a performance report can
be generated for each job and provided as a PDF file for download via a web
server after login. We decided not to grant the users access to Splunk directly
for security, data protection, and administrative reasons.

4.6 Data Analytics and Automation

On the MPCDF HPC systems, several thousands of jobs are typically run per
day. To be able to cope with these numbers and the massive amount of generated
data, an automatic data analytics system is indispensable in order to identify
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problematic jobs on the systems, and notify both support staff and users in crit-
ical cases. The data analytics module of the HPC monitoring system is currently
under development, but goes beyond the scope of this paper.

5 Scenario- and Case-Studies

The HPC monitoring system is used to continuously monitor the HPC systems
DRACO (≈ 940 nodes, ≈ 32K cores) and COBRA (≈ 3250 nodes, ≈ 130K
cores) at the MPCDF. These HPC systems are heterogeneous, containing nodes
with different CPU micro-architectures, with different RAM sizes, and with or
without GPU accelerators of different models. The system is configured to write
performance data every 10 min which generates up to 3 KiB of raw log line
data per node. Hence, the total data volume per sample for both machines is
about 12.5 MiB, which amounts to about 1.8 GiB per day in total. Note that the
rsyslog system is able to easily cope with that data volume, making complex
custom hierarchical transport agents unnecessary in our case. In the following,
we illustrate with 4 examples how the HPC monitoring system already proved
to be helpful in practice at the MPCDF.

Suboptimal Job Scripts: We provide users with a detailed job-specific report (see
Subsect. 4.5 for more details), based on which they can quickly spot potential
errors related to their job scripts. We are aware of several cases where HPC
monitoring was already helpful in this respect.

Hanging Jobs: Even though HPC clusters are supposed to be used to run sta-
ble programs, there are still jobs that encounter problems at runtime without
shutting down in a controlled manner. For example, in cases of livelocks or dead-
locks, the processes of a job continue to run without actually executing any use-
ful instructions, thereby occupying the reserved resources. This can potentially
waste a large number of CPU hours. Such “hanging” jobs are typically mani-
fested by very low values in certain performance metrics, especially in GFLOP/s
and IPC. To report on a specific example, it was observed from the HPC mon-
itoring data that jobs from a particular user often demonstrated the aforemen-
tioned behavior. We contacted the user and showed the plots that illustrated the
performance problem. The user then investigated the code and fixed the issue.
Catching this particular case was achieved unintentionally, by manual inspec-
tion of the data, however an automatic detection system for such types of jobs
is under development.

Verification of the Utilization of Extra Resources: To satisfy the compute needs
for a broad spectrum of users, computing centers often equip parts of their HPC
systems with nodes that contain very large amounts of RAM memory or with
nodes that contain GPU accelerators. Sometimes, users with applications that
require only moderate amounts of memory or lack GPU support, by mistake or
by convenience, allocate such nodes with extra resources instead of regular ones.
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This is not a problem if these nodes would otherwise be idle, but if not, such
allocations mean a waste of resources and increased queueing times for legitimate
users. HPC monitoring can easily detect this type of wrong usage and warn staff
or the users directly.

Coarse-Grain Overview for Experts: The HPC monitoring system has not been
designed for in-depth code profiling. Nevertheless, it can still provide coarse-
grain performance information that can be useful to code developers and appli-
cation support. Indeed, several members of the application support group at the
MPCDF routinely use HPC monitoring to inspect the performance of applica-
tions they personally contributed to during development. In most cases, HPC
monitoring confirmed their expectations. Interestingly, there were some occa-
sions when even these experts were surprised. In fact, the Splunk analysis of the
data showed that the performance in some stages of the application was much
worse than expected, which had notable influence on the overall runtimes of the
programs. The reason was the lack of code vectorization for some code blocks
that were initially considered less relevant. As a next step, the developers pro-
filed the code with more specialized tools which confirmed the observation from
the Splunk dashboards and were able to point to the exact lines of code that
caused the performance issue.

6 Summary and Outlook

This paper reports on the requirement analysis, the design, and the implemen-
tation of the MPCDF HPC performance monitoring system. Our solution is
simple, modular, lightweight, mostly based on standard Linux tools, and thus
it can easily be adopted by other HPC centers. The system is in operation to
comprehensively monitor the performance of all jobs running on two large HPC
systems at the MPCDF with about 4200 nodes and more than 160.000 CPU
cores in total. After several months of production we have collected a large
amount of job-related performance data, and doing data analytics on it will be
the main topic of our future work. Additionally, we plan to extend the deploy-
ment of our performance monitoring system to more (medium-sized) clusters at
the MPCDF, and will continue to develop and maintain the hpcmd middleware.

Software: The hpcmd software is free of charge and publicly available for down-
load at https://gitlab.mpcdf.mpg.de/mpcdf/hpcmd. Online documentation is
available at http://mpcdf.pages.mpcdf.de/hpcmd. The software is licensed under
the permissive MIT license. We kindly request to cite this paper in case the soft-
ware is used and reported on in publications.
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Abstract. High-Performance Computing systems collect vast amounts
of operational data with the employment of monitoring frameworks, often
augmented with additional information from schedulers and runtime sys-
tems. This amount of data can be used and turned into a benefit for
operational requirements, rather than being a data pool for post-mortem
analysis. This work focuses on deriving a model with supervised learning
which enables optimal selection of CPU frequency during the execution
of a job, with the objective of minimizing the energy consumption of a
HPC system. Our model is trained utilizing sensor data and performance
metrics collected with two distinct open-source frameworks for monitor-
ing and runtime optimization. Our results show good prediction of CPU
power draw and number of instructions retired on realistic dynamic run-
time settings within a relatively low error margin.

Keywords: Energy efficiency · Monitoring systems · Random forest ·
DVFS · Runtime systems

1 Introduction

The primary goal of High-Performance Computing (HPC) centers is to provide
computational resources to their users, a feat that is paid proportional to the
center’s size in terms of energy consumption. Over the past decade, relevant
concerns have arisen for the massive amount of power necessary for operating
such systems at all levels, from the building infrastructure, past the hardware
and software layers, to the application code run by users [5–7,18]. Significant
emphasis has been placed into optimization of the software stack layer, particu-
larly with the development and adoption of comprehensive sensor monitoring
tools and efficient optimization mechanisms for scheduling and runtime sys-
tems [1,2,4]. Improvements in processor design made CPU-level measurements
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and tuning widely available, thanks to different power management techniques,
such as Dynamic Voltage and Frequency Scaling (DVFS) and the Intel’s Run-
ning Average Power Limit (RAPL) interface. Combined with fine-granularity
acquisition of sensor and hardware counter data, the features offered by these
technologies can support both scheduling systems and runtime frameworks. The
measurements are mapped to characteristics of the running application to adapt
operational modes (i.e., selecting an optimal CPU frequency) appropriate for
optimizing objectives such as power consumption, thus reducing operational
costs. In this regard, machine learning techniques have been very promising
for forecasting and evaluating hardware metrics and ultimately optimize such
decisions [16,19].

Related Work. Amongst the different proposed machine learning techniques to
forecast hardware metrics for power management, reinforcement learning is often
regarded as one of the most promising and widely adopted [10,12,15]. Despite
its advantages, as the state-space expands exponentially with the core count,
most of the traditional models trained with this technique are limited to a sin-
gle processor and a small number of cores. Improvements in this direction have
been achieved using modular reinforcement learning [16]. However, the training
process in these models is online, which is significantly challenging outside of
a full system simulator. In this regard, alternative approaches based on super-
vised learning introduce less overhead and may be more suitable for implemen-
tations in realistic scenarios. Yang et. al. [19] developed a runtime model using
linear regression to map an application task on a computing resource during run-
time, ensuring minimum energy consumption for a given application performance
requirement. A branch of research employs time series analysis to characterize
the history of an application and forecast its behavior. This research shows that
time series analysis with Autoregressive Moving Average and Singular Spectrum
Analysis can be used with runtime traces to achieve good prediction [8]. Kunkel
et al. [9] analyzed the quality of monitoring data and applied Principal Compo-
nent Analysis to identify the counters required for power prediction.

Wang et. al. [14] have built and evaluated a model for performance predic-
tion for power-capped applications. This approach is very valuable and shows the
feasibility of modeling approaches of performance with variable power. Tuncer
et al. [13] applied supervised machine learning for anomaly detection using sta-
tistical features of monitoring data. While our model is similar, its scope is
different: the former work focuses on classification of system states at coarse
time scales, while we perform time series regression at a very fine scale, in the
order of milliseconds, using high-fidelity data both from monitoring and runtime
systems.

Contributions. In this paper we propose a case study for predicting hard-
ware metrics with supervised learning in HPC systems. Specifically, we derive a
machine learning model based on random forest regression focusing on the pre-
diction of CPU power and total number of instructions retired. Data acquisition
is performed by using two distinct data sources, specifically the Intel GEOPM
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runtime framework and the Data Center Database (DCDB) monitoring tool of
the Leibniz Supercomputing Center (LRZ). We demonstrate that our model is
capable of predicting the selected hardware metrics with high accuracy. Results
are obtained by executing a set of benchmarks covering a wide range of HPC
application behaviours of interest to LRZ in terms of compute intensity and
memory utilization. We then propose a theoretical model to use the predictions
as input to support runtime decisions for selecting efficient CPU frequencies,
with the objective of reducing the energy consumption of a HPC system.

Organization. The remainder of the paper is organized as follows: the adopted
methodology, along with a description of the modeling process, are described in
detail in Sect. 2. In Sect. 3 we briefly introduce the tools employed for collecting
data while Sect. 4 presents an experimental evaluation of our model. Finally,
conclusions and future work are discussed in Sect. 5.

2 Methodology and Modeling

In the following, we propose a conceptual framework to adapt CPU frequency
during the execution of an application using hardware metrics. First, we convert
the problem to the forecasting of two hardware metrics, namely CPU power
and instructions retired : these are used as an overall power consumption and
performance indicator respectively. We then develop a machine learning model
to forecast these metrics using the high-granularity sensor data made available by
GEOPM and DCDB. The DVFS control mechanism allows to realize a feedback
loop, by changing the CPU frequency at runtime, and subsequently making
efficient frequency decisions which reduce energy consumption. Figure 1 shows
the framework’s workflow from feature processing up to training of the model,
while Fig. 2 outlines how online inference at runtime can be performed.

Fig. 1. Training (offline)
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Fig. 2. Inference (at runtime)

2.1 Overview

We consider the problem of energy minimization for an application with arbitrary
execution time, running on a fully-saturated single node. Our domain of control
is the CPU and the node level. All other energy consumers can be considered
static or directly proportional to CPU usage, for safe operation of the system.
Under such assumption, the total energy consumed by an application is the
total power consumed integrated over the execution time. We further simplify the
problem by assuming that node-level hardware metrics are enough to sufficiently
characterize the application behavior, greatly reducing the dimensionality of
data, since DVFS usually operates at the node level.

Supervised learning techniques are well-suited for real-time, online imple-
mentations, due to their low computational overhead in training and inference.
This work focuses on the training and validation of such a model. Specifically,
we explore an offline training approach, in which the machine learning model
is trained “a priori”, and can later be used for online inference of power and
instructions. Such a model can also be re-trained online, with recent data, so as
to cope with changing system behavior over time. The evaluation of real-time
inference against new data is left for future work.

2.2 Mathematical Model

We quantify the efficiency of frequency decisions for each point in time based
on the following model: first, we assume that a generic application, with total
execution time T , is divided into N time intervals (also referred to as lags) of
equal duration δt = T

N . Such δt duration is assumed to be independent from the
current CPU frequency setting, and is calculated from a clock source such as
NTP. We then define the power consumption for each interval i at time ti as the
function P (fi, ζ(ti−1), ζ(ti−2), ..., ζ(ti−W )), where ζ(tk) is a vector of hardware
metrics for time interval k at time tk ∈ [ti−W , ti−1]. W is the length of the
historical time window used to determine P at time ti, and its value depends



630 G. Ozer et al.

on the application and system being analyzed. fi is the CPU frequency to be
used at time ti: since frequency decisions are taken at each time interval i using
DVFS, affecting the power consumed by the CPU as well as the time taken to
progress in the application, observed frequency will also change.

Given the above, in this work we focus on minimizing the energy of each time
interval i separately, instead of the application as a whole, neglecting the influ-
ence of different decisions on one another. This simplifies the underlying opti-
mization process, at the expense of sub-optimal solutions which do not consider
long-term effects. Application throughput at each time interval can potentially
decrease when decreasing frequency as the application executes less instructions
per unit of time. We approximate this relation by assuming that the throughput
of an application in a time interval is inversely proportional to the number of
retired instructions. We thus use the latter to compute the energy associated
with time interval i by introducing the Inst function, which depends on the
same variables as P . The minimum energy for a time interval i is then given by:

MinEnergy(i) = minfi

P (fi, ζ(ti−1), ζ(ti−2), ..., ζ(ti−W ))
Inst(fi, ζ(ti−1), ζ(ti−2), ..., ζ(ti−W ))

(1)

Using the mathematical formulation of minimum energy above, we can esti-
mate the most efficient frequency of a time interval i by finding which frequency
fi minimizes the function in Eq. 1. This is expressed as the following:

fopt
i = argminfi

P (fi, ζ(ti−1), ζ(ti−2), ..., ζ(ti−W ))
Inst(fi, ζ(ti−1), ζ(ti−2), ..., ζ(ti−W ))

(2)

Given that frequency lies in a small discrete space of values, online tuning can
be performed by evaluating the P and Inst functions for all available frequency
values and picking the one which generates the lowest energy value.

2.3 Machine Learning Model

We assume the CPU power (P ) and Instructions retired (Inst) for any interval i
at time ti in Eq. 1 to be functions of the frequency at time ti, and of the sequence
of hardware metrics in the historical time window [ti−1, ti−2, ..., ti−W ] of size
W . After statistical analysis of traces, partial auto-correlation [3] of power and
instructions retired indicated that only the most recent 3–5 lags in the sequence
are significant. In general, a temporal machine learning model must be used to
capture the causal relationships existing in sequence data, which is assumed to
be non-independent. Auto-regressive time series models are not suitable as the
series is non-stationary. However, instead of using the sequence of time lags as
input in our model, we can generate statistical features from the time series of
each hardware metric, preserving information content in the temporal dimension.
The main benefit is that a simpler supervised learning model can be used, which
comes at an expense of generating the features from data before actual inference
can be performed. Since our machine learning model should predict the optimum
frequency in real-time, the computational effort of generating the features should
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be as low as possible. Due to this limitation, feature set selection was done prior
to evaluation, instead of performing exhaustive generation and “a posteriori”
elimination.

The features used in this work are exponentially weighted mean, exponen-
tially weighted gradient, standard deviation, skewness, kurtosis, quantiles (0.25,
0.5 and 0.75), absolute sum of changes and sample entropy. The mean and
gradient values are exponentially weighted to give more importance to recent
data, which is fundamental for performing regression, as opposed to classifi-
cation tasks [13]. Extracted features were then employed to train a model for
estimating the power consumption and instruction retired metrics for the cor-
responding set of input features. Considering the non-linearity of the problem,
a multi-output random forest regressor was used as learning method. Random
forests were chosen due to their robustness against unbalanced, noisy and non-
normalized data, and because of their efficient operation in the presence of large
feature vectors. Moreover, random forests supply information about the impor-
tance of each single feature in the regression process, which is useful for our
study.

3 Data Collection

In the following we introduce two tools used at LRZ which we employ for data
acquisition. Both have a slightly different scope: GEOPM, a runtime system
designed for monitoring and optimizing performance and power control at job
execution, and DCDB, a continuous monitoring system collecting operational
data with complete compute clusters as scope.

3.1 GEOPM

The Global Extensible Open Power Manager (GEOPM) is a framework designed
to provide scalable abstractions to hardware controls and performance counters
for power and energy optimization [4]. The GEOPM runtime executes alongside
a regular MPI job to observe application and hardware characteristics, which
serve as input for GEOPM’s optimization algorithms, called “agents”. The oper-
ating agent can be selected from a set of readily available or self-implemented
plugins for center-specific use-cases. It was crucial for our models to observe the
behavior of applications under different frequencies to make correct energy and
work load predictions. Thus, for this work we implemented a GEOPM agent that
samples hardware metrics every 50 ms and changes the frequency to a random
available setting every third sampling (150 ms). The benchmarks are run with
this GEOPM agent multiple times so as to extract characteristics arising from
the different frequencies in the same section of an application.

3.2 DCDB

LRZ researchers developed DCDB with the objective of providing a holistic
solution for fine-grained monitoring of sensor and performance metrics in HPC
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systems [11]. Support for large cluster deployments is ensured by storing data
in a NoSQL wide-column database, while low latency and minimal overhead
are achieved by transmitting telemetry data with MQTT messages. DCDB is
designed following a plugin-based architecture, with each plugin supporting a
specific type of protocol for retrieving data. In the scope of this work, we used
DCDB to collect sensor data (through SysFS) and in-band performance metrics
(through perfevents [17] and ProcFS1). Applications that are executed alongside
GEOPM were monitored by DCDB, by sampling each metric every 100 ms.

3.3 Fitting Two Data Sources

DCDB and GEOPM originally have two different scopes. GEOPM is job-centric,
and is able to sample CPU hardware counters at rates of ∼10 ms. DCDB’s intent
is to persistently store time series data of the complete cluster, including hard-
ware counters from compute nodes, but also information from the operating
system. Since the tools access different counters via different methods exposed
by the kernel or directly by the hardware, and at different time resolutions, the
respective readings are not synchronized. To be able to utilize both data sets for
evaluation of a job execution the excess readings before and after the actual run
had to be removed. The sliced time series set of DCDB was then upsampled via
linear interpolation to fit the GEOPM sampling rate to complete the dataset.
Linear interpolation was also used to fit the DCDB data points to the GEOPM
time stamps, and to have consistently-aligned and evenly-spaced data. By using
both DCDB and GEOPM, we can assess how useful the combination of different
metrics collected from different tools is and if these can be brought together for
a specific use-case.

4 Experimental Evaluation

In this section we evaluate the performance of our model when predicting the
CPU power and instruction retired metrics. We first present our experimental
setup and methodology, and then give insights on our results.

4.1 Experimental Setup

The collection of data was performed by monitoring different runs of a set of
benchmarks from the Coral-22 suite on the CooLMUC-33 system hosted by LRZ.

1 http://man7.org/linux/man-pages/man5/proc.5.html.
2 https://asc.llnl.gov/coral-2-benchmarks/.
3 https://www.lrz.de/services/compute/linux-cluster/coolmuc3/.

http://man7.org/linux/man-pages/man5/proc.5.html
https://asc.llnl.gov/coral-2-benchmarks/
https://www.lrz.de/services/compute/linux-cluster/coolmuc3/
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Test Environment. CooLMUC-3 consists of 148 nodes each equipped with Intel
Xeon Phi CPU 7210 processors, operating at frequencies ranging from 1.0 GHz
to 1.5 GHz, 96 GB of RAM and Intel OmniPath network interfaces. We desig-
nated a single node for data acquisition, to ensure consistency of measurements.
Each node runs SUSE Linux Enterprise Server 12 SP3 and comes with Intel per-
formance libraries and compilers, which were used to compile the applications.
Intel GEOPM 0.6.0, MPI 17.0.6 and an early version of DCDB were used during
our experiments. All models were implemented with the open-source Scikit-learn
library for Python.

Applications. In order to obtain organic data reflecting the behavior of real HPC
workloads and exhibiting different application characteristics, we employed a
series of applications from the Coral-2 suite. These are AMG, Kripke, LAMMPS,
Quicksilver and Nekbone. All applications are configured to run with one MPI
rank and 62 threads for full node saturation, with two cores reserved for the
operating system and the GEOPM controller, and are tuned for an execution
time of approximately 8 min. For the purpose of this initial model evaluation, and
thanks to the diversity of the benchmark programs, we assume these single-node
runs to be representative enough of the large-scale runs done at LRZ.

Table 1. Summary of the two approaches with the corresponding relative error values.

GEOPM GEOPM + DCDB

Number of features 81 417

Overall training error 3.9% 2.4%

Overall validation error 9.1% 6%

Validation error (Power package) 3% 2.2%

Validation error (Instruction retired) 15.3% 9.7%

Model Configuration. The random forest regressor chosen for our application
was trained using two distinct approaches: first, we train the model using only
features from GEOPM data, whereas in the second case we enrich the dataset
with DCDB data for further analysis, as discussed in Sect. 3.3. In both cases, we
used data from 5 traces of each application and 5-fold cross validation to test the
model’s performance, with 53 k training samples and 23 k validation samples for
each combination of folds. We report average results from each pair of training
and test sets. When DCDB data is included, the size of input feature vectors to
the model was significantly increased. The input statistical features composing
the feature vectors at each time step were built using a sliding, overlapping
temporal window of the most recent 9 lags, whereas the target CPU power (in
the following referred to as power package) and instruction retired values are
the average of the next 3 lags. We also supply the average CPU frequency of
the next 3 lags as an input feature to make the model suitable for the control
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algorithm described in Sect. 2.2. The details of the datasets used to train the
model with the two approaches described above are outlined in Table 1.

Fig. 3. Model performance in predicting the instruction retired (left) and power pack-
age (right) with different data sources.

4.2 Overview of the Results

Results for regression on acquired data are presented in Fig. 3. Specifically, the
heatmaps indicate the predicted values from the regressor for instruction retired
(left) or power package (right), compared to the actual values, when using only
GEOPM data (Fig. 3a) or DCDB data as well (Fig. 3b). Darker areas indicate
higher density of points. In Table 1 we also show the average relative training
error and validation error for each separate target as well as combined.

It can be seen that in all cases the results are very positive, with an average
relative error lower than 15.3%, and metric values are predicted correctly across
the whole range. The power package metric is predicted more accurately than
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the instruction retired metric, likely because the latter corresponds to an inher-
ently noisier sequence, and is influenced by unpredictable factors such as OS
interference. Moreover, adding DCDB data leads to slightly more precise pre-
diction. This last result is more pronounced when observing the average relative
error for each target, which is shown in Table 1. For comparative purposes we
also implemented a baseline predictor, which uses the average of the latest three
lags as prediction for the power package and instruction retired metrics. Using
this naive implementation, we observed an average relative error of 23.7% and
168.6% respectively, proving the intrinsic complexity of this regression problem.

Fig. 4. Model performance in predicting the instruction retired and power package for
each benchmark.

4.3 Per-application Analysis

Here we show regression results for each application in the dataset separately,
so as to expose artifacts and effects that may be associated to their behavior.
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Results are shown in Fig. 4: the scatter plots depict predicted values against the
actual ones, like in Fig. 3, and are color-coded for each application.

The results reflect those discussed in Sect. 4.2. However, some interesting
effects can be observed: the LAMMPS and AMG applications, for example, show
two distinct operational behaviors, which translate into two separate clusters
visible in the scatter plots. This behavior is successfully captured by our model.
It can also be seen that the Kripke application shows a comparatively higher
spread in the predicted instruction retired values, which is mitigated when using
both GEOPM and DCDB data. However, it can be seen that overall performance
for our model is equally good for all applications, implying that it is generic
enough to characterize the diversity of HPC work loads.

Table 2. Most important features as quantified by a random forest regressor.

GEOPM GEOPM + DCDB

Score Name Score Name

0.208 geopm inst-retired mean exp weighted 0.376 geopm inst-retired mean exp weighted

0.171 geopm cycles thread kurtosis 0.144 dcdb hfi0temp grad exp weighted

0.071 geopm cycles reference quantile 0.25 0.121 dcdb col idle grad exp weighted

0.060 geopm frequency 0.098 dcdb hfi0temp diff sum

0.048 geopm energy dram quantile 0.25 0.055 dcdb references quantile 0.5

0.047 geopm energy pkg quantile 0.75 0.052 dcdb energy quantile 0.75

0.045 geopm power pkg quantile 0.75 0.042 dcdb hfi1temp grad exp weighted

0.044 geopm power pkg quantile 0.5 0.040 dcdb intr quantile 0.25

0.040 geopm power pkg kurtosis 0.022 dcdb col idle diff sum

0.038 geopm inst-retired quantile 0.5 0.014 geopm frequency

4.4 Evaluation of Feature Importance

As mentioned in Sect. 2.3, random forest regressors are capable of extracting
the most dominant features for generating the model. Table 2 indicates the most
important features in training the model with the corresponding weight, when
using only GEOPM data (left) and DCDB data as well (right).

As it can be seen, the most important feature in both cases is associated
to past instruction retired observations, which is expected. The average CPU
frequency of the next 3 lags (frequency) also plays an important role, proving
the validity of the model discussed in Sect. 2.2. When using GEOPM data alone,
the remaining most important features are mostly related to past observations of
the power package and energy metrics. When using DCDB data as well, the set
of important features is more heterogeneous: metrics indicating time spent by
the CPU in idle (col idle) operation can be seen, as well as temperature sensors
(hfi0temp and hfi1temp) and interrupt counters (intr). This, coupled with the
results discussed in Sect. 4.2, shows the importance of using diverse monitoring
data for our regression problem.
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5 Conclusions

In this paper we developed a machine learning model to predict the CPU power
and instruction retired metrics, designed to support efficient frequency decision
during the execution of HPC applications. We first collected data by running a
set of applications on a production HPC system using the DCDB and GEOPM
frameworks, which was later combined. We then derived a mathematical model
to predict CPU power draw and instructions retired, based on the hardware
metrics available, and thus make appropriate frequency decisions to minimize
energy consumption. The model is suitable for online training and inference. For
this study, we evaluated the generated model offline using training data obtained
on LRZ’s CooLMUC-3 system, using various applications from the Coral-2 suite.

The results show that the model is generic, with high accuracy in both pre-
dicted power as well as instructions retired across all applications. Moreover,
we show the effectiveness of combining data from cluster monitoring and high-
fidelity runtime systems: the monitoring system has access to data not accessible
by the runtime and, on the other hand, the runtime system brings a scalable
infrastructure to implement agents for online optimization. As future work, we
plan to evaluate our model with data from multiple HPC nodes, and further
test its effectiveness by implementing an agent for online frequency tuning using
predictions from new data as captured in real time.
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Abstract. Typical Integrated Circuit (IC) design projects use Elec-
tronic Design Automation (EDA) tool flows to launch thousands of
regressions every day on shared compute grids to complete the IC design
verification process. These regressions in turn launch compute jobs with
varied resource requirements and inter-job dependency constraints. Tra-
ditional grid schedulers, such as the Univa Grid Engine (UGE) [12] pri-
oritize fairness over performance to maximize the number of jobs run
with equal distribution of resources at any time. A constant challenge
in day-to-day operations is to schedule these jobs for minimum overall
job completion time so that developers can expect predictable regression
turn-around time (TAT).

We propose a resource-aware scheduling mechanism that balances per-
formance and fairness for real-word EDA-centric workloads. We present
an analysis of historical profile information from a set of regressions with
complex inter-job dependencies and highly variable resource require-
ments to show that many of these regression jobs are well suited for
efficient packing on grid machines.

We formulate the regression scheduling problem as a variant of the
bin packing problem, where the size of bins and balls may vary accord-
ing to job-resource requirements and differing server configurations on
the grid. We propose using two analytic techniques – namely k-means
clustering [8] and adaptive binning [10], to solve this problem. We then
evaluate the performance of our proposed solution using real workloads
from daily regressions on an enterprise compute grid.

Keywords: Job scheduling · Machine learning · K-means · Adaptive
binning · Regression testing · Electronic Design Automation

1 Introduction

Compute and license resources are the two prime elements of infrastructure
and resources to enable the full cycle of the chip design process in a large-
scale electronic design automation (EDA) company as described by Hao et al.
[3]. These resources include hardware infrastructure (CPU, storage, memory,
and network) set up as a shared pool of compute resources (compute-grid),
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software licenses, and other software/hardware utilities. The amount of compute
resources needed by an end-to-end chip design and verification process is directly
proportional to the complexity of design and to the challenges related to final
stage of shipping these designs for manufacturing. Figure 1 shows a simplified
flow of the Integrated Chip (IC) design process. The design described in Register-
Transfer Logic (RTL) code goes through iterative simulation steps that also
takes input from pre-silicon validation. Verified RTL code goes through gate-
level synthesis with various libraries as collateral and is also an input to the
formal verification process. Typical next steps are static timing analysis among
other low-level design analysis and verification steps; and finally, floor planning
and routing steps before moving from the gate-level to a silicon implementation
process. Various tools used in these steps employ significant parallelization (as
shown in the Fig. 1). The parallel jobs related to this IC design flow differ from
standard HPC jobs since many of them have various dependencies between stages
in the flow. Jobs spawned in a typical IC design flow form a directed acyclic graph
(DAG) as opposed to pipelines seen in typical HPC jobs.

Fig. 1. Simplified view of a modern Integrated Circuit design flow

This illustrates one of the main challenges in any large-scale IC design com-
pany with large EDA tool flows – i.e., efficient utilization of compute resources
to conduct chip design and verification processes in parallel. This problem has
grown to be a significant cost driver in today’s competitive IC design market [6].

CPU run-time (i.e. sum of user time and system time) and memory utilization
are the two main metrics of any job execution. Optimal use of these resources is
critical to enhance the overall performance of the design/verification process and
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maintain the turnaround time within tight service level agreements (SLA). If a
regression job requests more memory than the available memory on any machine
in the compute grid, it stops other jobs and pushes them to a pending state.
Similarly, a regression job may abort abruptly due to system constraints if it tries
to consume more memory than that currently available on the machine. Hence,
an effective job scheduling technique is necessary to ensure that all the jobs
get their expected memory requirement for proper execution, while balancing
machine utilization and TAT.

We map the regression job scheduling problem to the classic job-shop schedul-
ing problem with precedence and resource constraints. This is an NP-hard prob-
lem and a great deal of research has gone into finding tractable variants and
solutions to these variants, as described by Lawler et al. [7] and Gen et al. [1]. In
this paper, we first analyze historical resource consumption of regression jobs for
a sample IC design flow and construct a predictive model of resource utilization
using a classic statistical method of adaptive binning [10]. We then use a greedy
bin-packing method to develop a job scheduling system on a compute grid, based
on the predictions from the statistical model. Our model is capable of handling
large volumes of data in near real-time so that we can schedule jobs at scheduler
speed.

2 Motivation

The motivation behind this work is based on the amount of reduction that
we can bring in overall job completion time (makespan). We assume that the
infrastructure is designed such that these jobs are placed on a grid machine using
Univa Grid Engine (UGE) that schedules each mapper and reducer task as per
the resource requirement. Our goal is to construct and evaluate a scheduling
algorithm that packs these jobs efficiently and places them on suitable grid
machines.

(a) Fairness algorithm (b) Resource-aware packing

Fig. 2. Job scheduling using fairness versus multi-resource packing methods

We explain our motivation using an example inspired by Grandl et al. [2].
Consider a cluster with a total resource capacity of 36 CPU cores, 72 GB of
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memory, and 6 Gbps of network bandwidth. Also consider a scenario where the
cluster is used to execute 3 map-reduce jobs job-1, job-2 and job-3. Job-1 has 18
mapper tasks, job-2 and job-3 have 6 mapper tasks each, and each of them has 3
reducer tasks. Each mapper task for job-1 needs 2 CPUs and 4 GB memory, and
6 CPUs and 2 GB memory for job-2 and job-3. Each reducer task also needs a
negligible amount of CPU and memory but requires 2 Gbps of network resources.

Typical fairness algorithms schedule these jobs such that every job gets an
equal amount of resources, so the 6 mappers of job-1, the 2 mappers of job-2
and the 2 mappers of job-3. Therefore, all mapper tasks are completed by time
3t. However, this results in 40 GB of unused memory in the mapper phase. The
fair scheduler runs one reducer from each job during the execution of reducer
tasks, such that each job gets an equal network resources and all reducer tasks
complete by time 6t as shown in Fig. 2a.

Now consider a scheduler that packs these jobs/containers based on their
resource requirement rather than fairness. We see the following based on
resource-aware scheduling:

1. All 36 mappers of job-1 are scheduled first so that all available memory in
the cluster is utilized

2. All 12 mapper tasks of job-2 are scheduled along with 6 reducer tasks job-1
3. All jobs complete by time 4t as shown in Fig. 2b

Hence, such a resource-aware packing algorithm can reduce the total job com-
pletion time of the cluster by 33%. In addition, we can free up more physical
machines by consolidating these mappers and reducers tasks.

3 Problem Formulation

In this section, we formulate the problem statement using a list of variables and
assumptions related to resource-aware packing of jobs placing them optimally
on grid machines to minimize the makespan, which is defined as the time taken
to complete the processing of all jobs. The derivation steps we present below
for our multi-resource bin-packing problem follows the derivation developed and
described by Grandl et al. [2] to solve a job scheduling problem using their Tetris
scheduler. We consider a grid computing center responsible for executing multiple
jobs, such as batch jobs, map-reduce jobs, and other types of high-performance
compute jobs.

Our work primarily focuses on compute jobs for EDA regression test-cases
for an IC design flow that takes an RTL design from synthesis to hardware.
Every job may be executed on a local machine or on a remote machine assigned
by the UGE job scheduler. Our target is to schedule these jobs so that the
makespan is minimal which is equivalent to maximizing the efficiency of packing
these jobs. Current grid schedulers tend to schedule these jobs based on a fair-
share algorithm so that each job gets an equal amount of computing resources.
However, fair schedulers are inefficient when given dynamically changing resource
demands as they do not consider the individual resource demands of each job.
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EDA regression jobs typically have different resource requirements – some
of them are CPU intensive, some are memory intensive, some are I/O inten-
sive, some are network intensive jobs, and some need some combination of
each resource. Current job scheduling algorithms do not consider the resource
demands of individual jobs, which leads to resource fragmentation and over
allocation of resources. Thus, current scheduling algorithms based on fairness
can schedule all jobs of comparable size (example: pack of all memory intensive
jobs) on the same physical machine to maintain fairness, but may block other
resources, such as CPU. Prior scheduling algorithms, such as Smallest Remain-
ing Time First (SRTF) [4] do not have an optimal job packing process and
Fair Schedulers have a higher job completion time. Also, these prior scheduling
techniques does not consider the size of job and the overhead of launching it on
a remote machine. The problem we target differs from the classic bin packing
problem since the resource demands of all the jobs may vary slightly vary from
one regression to another due to minor changes in the actual test-case and/or
code changes in the underlying EDA tools. This may also depend upon the actual
physical machine that is allocated. Therefore, we have twin goals, i.e., 1) Adap-
tive learning of resource requirements of each job, and 2) Monitoring of available
resources.

Hence, we need a scheduling algorithm that is packing efficient and can
dynamically decide whether the job should be launched on the local machine
or on the remote machine depending upon the job size. In addition, we consider
the practical case where the number of machines in the grid may change because
of system failures, new additions/removals, and routine IT maintenance. We dis-
count network latency effects in our model by assuming that network resources
are uniform throughout the grid.

Table 1. Functionality of current state-of-the-art scheduling techniques and the pro-
posed approach.

LoadLeveler PBS SLURM Our proposed approach

Job characterization � � � �
Inter-dependent Jobs
(DAG)

�

Scheduling based on
historical job utilization
data

�

Resource aware job
packing

�
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State-of-the-art grid engines, such as IBM LoadLeveler1, PBS2, SLURM3 and
UGE/SGE4 are currently used by many HPC data centers effectively. They can
manage both single and batch jobs efficiently in the HPC world. However, the
EDA workload is different from regular HPC workloads as we described in Sect. 1.
Table 1 presents a functional comparison between default job scheduling tech-
niques available in various grid management engines, such as IBM LoadLeveler,
PBS, SLURM, and our proposed approach that is agnostic to any specific grid
engine. We have implemented our proposed approach and demonstrate experi-
mental results in UGE, but not all the described grid engines. We believe that the
experimental results in UGE should transport well to all the above-mentioned
systems.

4 System Architecture

In this section, we describe our resource-aware adaptive binning approach to solve
this job scheduling problem for EDA regression jobs. Figure 3 shows the overall
architecture of our system that uses a Feature Manager to analyze the profile
logs related to regression runs. A regression run is defined as a standardized set of
test-cases selected from a pool of test-cases maintained for an IC tool-flow. The
feature manager collects and processes all the profile logs from regression runs.
These logs are parsed to extract test-case names along with the job-level resource
utilization parameters per regression run. The log parser also captures the job
name and execution command from the qrsh command used in the profile logs
for each job, which are hashed to create a hash-value. The hash-value provides
a unique key corresponding to each job as related to a specific test-case that is
stored in an in-memory database (Redis5).

When a list of test-cases runs in real time, each test-case spawns multiple
jobs that goes through the UGE grid scheduler, which allocates an appropriate
machine from a pre-allocated pool to each job. We implement a separate UGE
driver that reads all the incoming jobs from any given test-case and replaces the
actual qrsh command with a custom command script that does the following:

1. Parse the incoming grid command to create a hash in the same manner used
to populate data in our feature manager;

2. Probe the computed hash value from in-memory database; and
3. If the hash value of current grid command matches the hash value stored in

in-memory database that contains all the small job instances (less than 1 s
CPU/100 Mb mem), then we launch these jobs on the local machine. Oth-
erwise we use the standard UGE schedule to launch the job on a remote
machine.

1 https://www.ibm.com/support/knowledgecenter/en/SSFJTW 5.1.0.
2 https://www.pbspro.org/.
3 https://slurm.schedmd.com/.
4 http://www.univa.com/products/.
5 https://redis.io/.

https://www.ibm.com/support/knowledgecenter/en/SSFJTW_5.1.0
https://www.pbspro.org/
https://slurm.schedmd.com/
http://www.univa.com/products/
https://redis.io/
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Fig. 3. Simplified flow of the proposed approach.

Finally, we have a resource manager module that is responsible for reporting
the resource utilization of each physical host and the total number of available
hosts. If the current host does not have enough resources to accommodate the
predicted resources for an incoming job (however small), then the resource man-
ager forces the customized driver script to send the job directly to the standard
UGE scheduler.

5 Adaptive Packing and Scheduling Techniques

Given resource requirement estimates, we should ideally be able to place jobs
precisely on those machine that meet those resource requirements. However, the
majority of the jobs in our target data-set that need to be placed require less
than 5 cpu-seconds of run-time. It would be prohibitively expensive to measure
the current state of machines in the grid at such fine-grain intervals using UGE
or other commonly available monitoring infrastructure, such as metricbeat6.

In absence of such infrastructure, we cluster similar jobs into buckets such
that we can dedicate machines to jobs with similar resource requirement char-
acteristics. This must be done dynamically since job characteristics can change
from run to run depending on the state of the tools in the EDA flow. Therefore,
we investigate fast unsupervised learning techniques to bucketize historical job
run-time features – namely k-means clustering and discretization-techniques.

5.1 K-means Clustering

The k-means method of clustering [8] is one of the simplest and most popular
unsupervised learning algorithms to solve the clustering problem since it is intu-
itive and computationally efficient as compared to other clustering methods. It
6 https://www.elastic.co/products/beats/metricbeat.

https://www.elastic.co/products/beats/metricbeat
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operates on distances between feature vectors in n-dimensional space. k-means
generates a fixed number of centroids, k, that it uses to define clusters. A data
point is considered to be in a given cluster if it is closer to that cluster’s centroid
than the centroid of any other cluster.

Fig. 4. K-means clustering using elbow method to verify the number of bins

However, in general, the optimal value of k is unknown and often difficult
to estimate. We cannot simply use the centroid distance as a measure of cluster
quality since increasing k will always decrease the centroid distance used in the
clustering step to the limit of zero when k is the same as the number of data
points. Therefore, we use the well-known elbow -method where mean distance to
the centroid as a function of k is plotted and the elbow point, where the rate of
decrease sharply shifts, is used to estimate the optimal value of k. Based on the
elbow point shown in Fig. 4, we see that the value k lies between 3 and 4, which
implies that we should either bin the jobs in this data-set into 3 or 4 bins. Other
methods such as the gap-statistic method [11] are also reliable in cases where
the shifts in the rate of decrease are well defined.

5.2 Adaptive Binning

As we saw in the previous section, a straight-forward application of k-means
seems to work well in determining a close-to optimal number of clusters. There-
fore, we use a method traditionally used in machine learning – discretization,
(also known as quantization or binning), which partitions continuous valued fea-
tures into discrete labels or bins. We use a variant of one of the simplest methods
of descretization – that of Holte [5], which greedily divides the observed values
of a continuous feature into bins that contain instances of one particular class,
such that each bin contains a strong majority of that class. The variant is simply
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using the metric that all values in each bin have the same nearest center of a 1D
k-means cluster in this procedure.

We use the python-based open-source KBinsDiscretizer package in scikit [9]
for our experiments. This implements the discretization method described above
with some additional heuristics such as removing buckets that are too small to
be useful. Figure 5 shows the final output from KBinsDiscretizer algorithm to
generate unequal-width bins that covers all the jobs. As we can see, the bulk of
the jobs are placed in four bins. This is similar to the results from the result from
iterative k-means-clustering that produced a well-defined elbow at 4 clusters.

Fig. 5. Adaptive Binning approach to find the near-optimal number of bins

6 Experimental Results

In this section, we describe our experiments that demonstrate the results of our
adaptive binning approach. The UGE driver and all other components of our
proposed approach are implemented in Python-3.

6.1 Initial Validation

We conducted an initial set of experiments using 10 homogeneous physical hosts
of 200 CPU slots, 2.5 TB of memory, and 20 TB of disk storage set up as a private
UGE grid project to validate our approach in a controlled setting.

We evaluated our system by conducting a set of experiments to present the
preliminary results. Initially, we collected profile log data for a sample set of test-
cases (400) for training our model. After parsing the profile logs, we collected
all the resource utilization features, such as CPU and memory utilization. We
created clusters based on the resource requirements of these jobs. For example,
the data-set in the prior discussion resulted in four different categories: ≤1 s,
≤2 s, ≤5 s, and ≥5 s. As discussed in Sect. 5, we have already verified these four
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Standard UGE Scheduler

Mean TAT 2.46
Median TAT 2.28
Sample Variance 0.55
Minimum TAT 1.36
Maximum TAT 4.75

Adaptive Scheduler

Mean TAT 1.22

Median TAT 1.19

Sample Variance 0.03

Minimum TAT 0.93

Maximum TAT 1.70

Fig. 6. Adaptive scheduler v/s the standard UGE scheduler in isolated grid.

bins using the elbow-based k-means clustering method. We also found that more
than 50% of jobs are in the category of ≤1 s. Based on our historical training
information, the UGE driver in our architecture checks the incoming job and
chooses to run it locally (which is a separate pool of machines) or pass it directly
to UGE grid machines based on the other bins that we have calculated. We also
reduce the load on grid queue as this approach reduces the submission rate of jobs
on the UGE scheduler, which significantly improves the overall job scheduling
efficiency.

We started with two fundamental goals: 1) achieve near-optimal job pack-
ing/scheduling to improvise the total turn-around time; and 2) improve the over-
all grid machine utilization. We conducted our experiment in two different grid
environments to ensure that the solution works well in a controlled environment
as well as on real life grid infrastructure. In the first experiment, we ran ≈550
test-cases in a controlled grid environment, where no other jobs were running,
with standard UGE scheduler (without our enhancement) and then with our
adaptive scheduler.

Figure 6 shows that the total turn-around time (TAT) has significantly more
variance if we use standard UGE scheduler (0.55) compared to our adaptive
scheduler (0.03). In addition, we see a major improvement (almost half) in the
average TAT using our adaptive scheduler. We note that this kind of improve-
ment is not practical in real-world scenarios when the grid is loaded with multiple
users running thousands of jobs at any time.

6.2 Real-World Workload Evaluation

Next, we conducted an evaluation of real workloads comprising regressions
of ≈550 EDA test-cases submitted by different users asynchronously on a
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Fig. 7. TAT comparison of adaptive scheduler v/s the standard UGE scheduler

multi-user shared-resource real-world grid. The grid consists of 49 heterogeneous
physical hosts that provides compute resources of 900 CPU slots, 12 TB of memory
and 80 TB of disk storage.

Figure 7 shows the overall performance improvement in the real-world grid
environment that we have achieved using our adaptive scheduling technique
over standard UGE scheduler for running ≈550 test cases in each iteration.
The total execution time of running these test-cases using adaptive scheduler
is 2.33 h, whereas the total execution of the running same number of test-cases
with only UGE scheduler is 3.33 h and that shows a promising improvement
of ≈40%, which completes our first goal. Now, we present the data on overall
grid utilization in Fig. 8 that shows a major improvement in resource utilization.
Figure 8a shows that we can maintain an average CPU utilization (user time) of
≈41% using our adaptive job scheduling approach, whereas the standard UGE
scheduler maintains an average CPU utilization (user time) of ≈26% – which is
a promising improvement of more than 50%.

(a) Utilization with our optimization (b) Utilization without our optimization

Fig. 8. Improvement in grid resource utilization with the proposed approach.
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7 Conclusion

In this paper, we proposed a method to track job resource requirement history
and use this data to pack jobs having highly diverse resource requirements into
unequal size bins so that they can be efficiently placed on a partitioning of the
machines in the grid. The assumption behind the approach is that job packings
with similar resource requirements will yield lower variance in TAT, and higher
resource utilization than those from a traditional round-robin scheduler. This is
borne out by our experimental results.

The placement is lazy in the sense that machines in a set are selected by the
initial placement of the job in the EDA tool flow for a design. Additional jobs in
the flow for that design are placed either on the local machine based on estimated
resource consumption and currently available resources or on remote machines
if the estimated resources overflow current resources on the local machine. This
prevents over/under-allocation problems that arise from a static partitioning of
the machines in the grid. Based on preliminary results, we observe that our
resource aware static scheduling algorithm achieves an improvement of ≈34%
compared to standard algorithm used by UGE job scheduler.

However, there are several limitations in our work. The current work restricts
the freedom of the adaptive scheduler to choose machines in the grid, while we
will need true dynamic partitioning and placement to achieve maximum effi-
ciency. This cannot be done without accurate measurement of resource utiliza-
tion across the grid whenever we need to spawn a job. This necessitates building
custom low-overhead measurement utilities outside the standard grid infrastruc-
ture and methods to generate close-to-optimal packing given the dynamic state
of the grid. We will address this as part of our future work.
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Workshop Description

Clouds, Grids, and Clusters are three different computational paradigms with the
potential to support High Performance Computing (HPC) and enterprise IT infras-
tructure. Currently, they consist of hardware, management, and usage models particular
to different computational regimes (e.g., high performance cluster systems designed to
support tightly coupled scientific simulation codes that typically utilize high-speed
interconnects and commercial cloud systems designed to support software as a service
(SAS) which typically do not). However, in order to support HPC, all must at least
utilize large numbers of resources and hence effective HPC in any of these paradigms
must address the same issue of resiliency at a very large-scale.

Recent trends in HPC systems have clearly indicated that future increases in per-
formance, in excess of those resulting from improvements in single-processor perfor-
mance, will be achieved through corresponding increases in system scale, i.e., using a
significantly larger component count. As the raw computational performance of the
world’s fastest HPC systems increases from today’s current multi-petascale to next-
generation exascale capability and beyond, their number of computational, networking,
and storage components will grow from the ten-to-one-hundred thousand compute
nodes of today’s systems to several hundreds of thousands of compute nodes in the
foreseeable future. This substantial growth in system scale, and the resulting compo-
nent count, poses a challenge for HPC system and application software with respect to
reliability, availability, and serviceability (RAS).

Resilience is a critical challenge as HPC systems continue to increase component
counts, individual component reliability decreases, and software complexity increases.
Application correctness and execution efficiency, in spite of frequent faults, errors, and
failures, is essential to ensure the success of the extreme-scale HPC systems, cluster
computing environments, Grid computing infrastructures, and Cloud computing services.

Resilience for HPC systems encompasses a wide spectrum of fundamental and
applied research and development, including theoretical foundations, fault detection
and prediction, monitoring and control, end-to-end data integrity, enabling infrastruc-
ture, and resilient solvers and algorithm-based fault tolerance. This workshop brings
together experts in the community to further research and development in HPC resi-
lience and to facilitate exchanges across the computational paradigms of extreme-scale
HPC, cluster computing, Grid computing, and Cloud computing.

The goal of this workshop is to bring together experts in the area of fault tolerance
and resilience for HPC to present the latest achievements and to discuss the challenges
ahead. The Resilience 2019 workshop program included presentations of four high-
quality peer-reviewed papers as well as an opportunity for discussions among the
participants from research, academia, and industry.
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Abstract. Concern about memory errors has been widespread in high-
performance computing (HPC) for decades. These concerns have led
to significant research on detecting and correcting memory errors to
improve performance and provide strong guarantees about the correct-
ness of the memory contents of scientific simulations. However, power
concerns and changes in memory architectures threaten the viability of
current approaches to protecting memory (e.g., Chipkill). Returning to
less protective error-correcting codes (ECC), e.g., single-error correction,
double-error detection (SECDED), may increase the frequency of mem-
ory errors, including silent data corruption (SDC). SDC has the poten-
tial to silently cause applications to produce incorrect results and mis-
lead domain scientists. We propose an approach for exploiting unnec-
essary bits in pointer values to support encoding the pointer with a
Reed-Solomon code. Encoding the pointer allows us to provides strong
capabilities for correcting and detecting corruption of pointer values.

In this paper, we provide a detailed description of how we can exploit
unnecessary pointer bits to store Reed-Solomon parity symbols. We eval-
uate the performance impacts of this approach and examine the effective-
ness of the approach against corruption. Our results demonstrate that
encoding and decoding is fast (less than 45µs per event) and that the
protection it provides is robust (the rate of miscorrection is less than
5% even for significant corruption). The data and analysis presented in
this paper demonstrates the power of our approach. It is fast, tunable,
requires no additional per-pointer storage resources, and provides robust
protection against pointer corruption.

Keywords: Resilience · Error-correcting codes · Silent data corruption

1 Introduction

Concern about memory errors has been widespread in high-performance com-
puting (HPC) for decades, see e.g., [15]. As result, significant research has been
dedicated to detecting and correcting memory errors to improve performance and
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to provide strong guarantees about the correctness of the memory contents of sci-
entific simulations. In HPC systems, powerful error-correcting codes (ECC), e.g.,
Chipkill [8], have been widely deployed. However, power concerns and changes
in emerging memory architectures threaten their continued viability.

Chipkill can protect against the loss of a complete memory device, but at the
cost of 4 times as many memory devices as less protective ECC1. Reducing the
number of activated memory devices from 36 to 9 can reduce memory power by
up to 45% [14]. Given the increasing total memory capacity of next-generation
HPC systems, it is not clear that there will continue to be room in the power bud-
get for Chipkill. Moreover, the emergence of new categories of memory devices,
e.g., high-bandwidth memory (HBM), that may not easily support Chipkill may
also limit its use.

Returning to less protective ECC, e.g., single-error correct, double-error
detect (SECDED), may increase the frequency of memory errors, including silent
data corruption (SDC), cf. [18]. SDC occurs when a memory corruption is not
corrected or detected by the hardware (e.g., hardware ECC). SDC is particu-
larly pernicious because it has the potential to silently produce incorrect results,
thereby misleading the domain scientists that rely on data from simulations to
understand important physical phenomena. SDC also has the potential to result
in poor resource utilization because the application terminates abnormally (i.e.,
it crashes) and has to be restarted. Moreover, many existing techniques that can
tolerate data corruption, e.g., [5,9], remain vulnerable to pointer corruption.

Pointer corruption can result in abnormal application termination (e.g., if
the corrupted value no longer refers to a valid memory address) or in the wrong
answer (e.g., if the corrupted value refers to an incorrect, but valid, memory
address). C/C++ pointer values are distinct from other data types in that
their semantics are clear: they contain a memory address. As a result, we can
exploit the structure in memory addresses to repurpose bits that are easily recon-
structed. We therefore propose an approach for using unnecessary bits in pointer
values to provide correction and detection of silent data corruption of pointer
values.

In this paper, we describe our proposed approach and evaluate its perfor-
mance characteristics. Specifically, we make the following contributions:

– We provide a detailed description of how we can use Reed-Solomon encoding
to protect against pointer corruption by repurposing unnecessary pointer bits
to store parity symbols2 Sect. 3;

– We evaluate the time required to encode and decode pointers using this app-
roach, Sect. 4.2; and

– We demonstrate that for some encodings, we can reduce the rate of miscorrec-
tion (silent data corruption) to less than 5% even when significant corruption
is introduced, Sect. 4.3.

1 36×4 devices for Chipkill compared to 9×8 devices for single-error correct, double-
error detect (SECDED).

2 A small, constant amount of memory, less than 1 KiB per process, is required but it
is independent of the number of pointers included.
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Fig. 1. Illustration of Linux C pointer values.

The data and analysis presented in this paper demonstrates the poten-
tial of our proposed approach to provide significant protection against pointer
corruption. Our approach is fast, tunable, and requires no additional per-pointer
storage resources.

2 Background

2.1 Linux Virtual Memory Addresses and C Pointers

In the C and C++ programming languages, pointers are used to store virtual
memory addresses. Linux currently uses 48-bit virtual memory addresses for
64-bit processors. Because instruction sets of modern CPUs are designed to
manipulate data in powers-of-2 numbers of bytes, pointers are stored as 64-bit
quantities. Figure 1 illustrates the breakdown of a Linux C pointer. For x86 and
ARM processors operating in 64-bit mode, addresses must be in canonical form:
the most significant 16 bits must be set equal to bit 47 (i.e., all ones or all zeros),
see [13, §3.3.7.1], [3,4]. The least significant 48 bits contain the actual virtual
memory address. For the purposes of this paper, we have subdivided the virtual
memory address into the memory region, the most significant 16 bits of the vir-
tual memory address; and the low-order address, the least significant 32 bits of
the virtual memory address. In Linux, the stack and the heap have discoverable3

addresses. Additionally, anonymously mapped memory (e.g., acquired by calling
mmap()4) are, in many cases, assigned to a discoverable range of addresses. As a
practical matter, many memory addresses will have many of their most signifi-
cant bits in common. We can potentially exploit this fact to repurpose additional
bits of the pointer for error protection.

2.2 Reed-Solomon Codes

Reed-Solomon Codes are linear block codes that are commonly used for error
correction. A Reed-Solomon Code operates on m-bit symbols to generate a code-
word whose length can be no longer than 2m −1 symbols long. A Reed-Solomon
3 Because of the widespread use of address space layout randomization (ASLR) to

guard against exploits by malicious code, the range of the stack and heap are dis-
coverable at runtime but are not known in advance.

4 Standard memory allocators (e.g., malloc()) will also map memory to satisfy large,
e.g., more than 128 KiB, memory allocation requests.
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Fig. 2. Illustration of leveraging unnecessary bits in pointer values to provide additional
protection against memory errors.

Code, RS(n, k), transforms a k-symbol message into an n-symbol codeword by
adding n−k parity symbols.5 An n-symbol codeword is n×m bits long (e.g., an
RS(15, 4) code will generate 60-bit codewords). Errors affecting � (n−k)

2 � or fewer
symbols can be corrected. In principle, errors affecting (n− k) or fewer symbols
can be detected. As a practical matter, open source Reed-Solomon decoders can-
not always meet this theoretical limit. In particular, errors that affect between
� (n−k)

2 � and (n − k) symbols are not always detected as errors.6

3 Approach

Our proposed approach is to use the unnecessary bits in pointer values to store
parity symbols generated by a Reed-Solomon Code. The basic idea is that a pro-
grammer can encode a pointer when it is not being frequently de-referenced and
5 Generally, n is the maximum codeword length. Shorter codewords can be obtained

by padding the message with well-known symbols (e.g., zeroes) during encoding,
dropping the pad symbols to transmit/store the codeword, and then adding the pad
symbols back during decoding.

6 For example, we have demonstrated that cases exist for RS(15, 10) where both
Schifra [1] and EZPWD [2] miscorrect codewords with four or five corrupted symbols.
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decode it when it needs to be dereferenced. By leveraging these unnecessary bits,
we can provide protection without requiring additional storage resources.7 The
protective benefit of this approach is in addition to existing hardware protection
(e.g., error correcting codes (ECC)). The benefit of this additional protection
will only be realized when the hardware protection is exceeded (e.g., when a
detected, uncorrectable error (DUE)8 or SDC occurs).

Figure 2a illustrates the simplest and most widely applicable approach. In
this case, we simply leverage the unused bits that occupy the 16 most significant
bits of the pointer. We use an RS(15, 13) code as our error-correcting code and
divide the pointer value into the following fields:

– Unused (bits 63-60): An RS(15, 13) code uses 15 4-bit symbols to create
60-bit codewords. Because the codeword contains fewer bits than the pointer
value, the most significant 4 bits are left unused. However, because these bits
are unnecessary to reconstruct the pointer, errors that occur in these four
bits do not affect our ability to successfully decode the pointer value.

– Parity Symbols (bits 59-52): The two parity symbols generated by our
RS(15, 13) code. Two parity symbols means that we can correct any error
that is confined to a single symbol and detect any set of errors that affect no
more than two symbols.

– CRC-4 (bits 51-48): Given the practical limitations of existing open source
Reed-Solomon decoders (see Sect. 2.2) and the difficultly of detecting errors
when the number of erroneous symbols exceeds (n − k), including a 4-bit
cyclic redundancy check (CRC) adds additional detection capabilities. The
CRC-4 is included as one of the Reed-Solomon data symbols. As a result,
it is itself protected against errors. If the codeword is successfully decoded
(i.e., the Reed-Solomon decoder believes that all errors have been successfully
corrected), the CRC-4 provides an additional check of the correctness of the
decoded value, cf. [19].

– Low-order Address Bits (bits 47-0): The least significant bits of the
virtual memory address.

By exploiting additional information about the way that virtual memory
addresses are assigned, we can potentially provide even more protection. As
a practical matter, the most significant bits of a virtual memory address will
frequently take on a small number of values based on how the memory was
allocated. By grouping similarly valued addresses we can reduce the number of
low-order address bits that we need to store. Exploiting virtual memory addresses
in this way allows us to encode pointer values as shown in Fig. 2b. In this format,
the low-order address has been reduced to 32 bits, the number of parity symbols
has been increased to 5, and an additional 4-bit field has been added:
7 A small (less than 1 KiB), constant amount of additional storage is required, addi-

tional storage is not necessary when a pointer is “at rest”. During encoding and
decoding, additional memory will be required, likely in the form of stack memory.

8 In the case of a DUE, our approach may enable the underlying error to be corrected.
The detailed mechanisms for making this approach work are beyond the scope of
this paper.
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– Memory Region (bits 35-32): We currently identify three memory regions:
stack, heap, and anonymous mappings. The region that a particular pointer
belongs to is recorded in this field. The 16 most significant bits of the base
virtual memory address are stored separately (e.g., in a global variable). As a
result, pointers can refer to up to 4 GiB of memory in each of these regions.
Although it is not implemented in our current prototype, it is also possible
to add additional memory regions dynamically. Up to 16 different memory
regions can be identified with this field.

In our prototype implementation, we discover the addresses of the stack and heap
by parsing /proc/<pid>/maps. We discover the virtual address of anonymous
mappings by calling mmap() and extracting the most significant bits from the
assigned address. Reducing the number of bits required to store the memory
region9 allows for the addition of 3 parity symbols. As a result, this encoding
can correct errors that affect two or fewer symbols and detect errors that affect
five or fewer symbols.

Adding a CRC to the encoding reduces the number of parity symbols that
we can include. To understand the implications of trading a parity symbol for
a CRC, we examine a third encoding, see Fig. 2c, that uses 6 parity symbols to
protect the pointer.

4 Experimental Results

4.1 Prototype Implementation

To evaluate the potential costs and benefits of this approach, we created a pro-
totype implementation using Schifra [1], an open-source Reed-Solomon library
and CRC-4 source taken from Linux kernel version 4.20.4.10

4.2 Performance Evaluation

To evaluate the performance of our approach, we constructed a benchmark that
obtains a pointer value, encodes it, corrupts it, and then attempts to decode
it. We encode the pointer using each of the three encodings shown in Fig. 2
and discussed in Sect. 3. We corrupt the pointer by corrupting n symbols of
the codeword, for 0 ≤ n ≤ 15.11 Each symbol is corrupted by changing the
value of every bit in the symbol (i.e., XORing the 4-bit symbol with 0xF ). We
also consider all

(
15
k

)
combinations of corruptions, for 0 ≤ k ≤ 15. For each

combination of corruptions we encode and decode at least 100, 000 pointers; the
9 Storage for the 16 bits that identify the memory region are effectively amortized

over all of the virtual memory addresses in the region.
10 The CRC4 source is available in lib/crc4.c and lib/crc4.h of the Linux kernel

source.
11 We do not corrupt the four most significant bits, since their contents are entirely

ignored during decoding, i.e., we can tolerate any combination of errors in these bits
without affecting our ability to correctly decode the codeword.
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actual number is the smallest multiple of
(
15
k

)
that is greater than 100, 000.12

Each pointer is obtained by requesting 1 KiB of memory using malloc().13

Fig. 3. Arithmetic mean of time required to encode and decode pointers (Color figure
online)

4.3 Encoding and Decoding Performance

In this subsection, we consider the time required to encode a pointer and to
decode the resulting codeword as a function of the number of symbols that are
corrupted. All performance measurements were obtained from a Linux worksta-
tion with a 3.30 GHz, quad-core Intel Core i5 (Sandy Bridge) processor that is
running Red Hat Enterprise Linux (RHEL) version 6.10.

Figure 3 shows the arithmetic mean of the time to encode a pointer using a
CRC-4 and 5 parity symbols (blue bars), and to decode corrupted versions of
the resulting codewords (orange bars) as a function of the number of corrupted
symbols. These data show that the time to encode a pointer is (unsurprisingly)
consistent across trials: approximately 26.4µs per encoding with less than a 4%
difference between the minimum and maximum mean values. Encoding a pointer
with 6 parity symbols is approximately 10.5% slower. Encoding a pointer with
a CRC-4 and 2 parity symbols is approximately 25.5% faster.

The time required to decode a corrupted codeword is slower on average than
encoding, averaging approximately 45.0µs per decoding event, and is depen-
dent on the number of corrupted symbols. Decoding an uncorrupted symbol
is approximately 29.1% faster than the overall average. Uncorrupted symbols
allows for the bypass of the algorithms that attempt to identify the nearest

12 The reason for this is to ensure that our results weight the different arrangements
of corrupted symbols equally.

13 Because of memory limits, we periodically free the acquired memory. As a result, it
is possible that multiple trials use the same pointer value.
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codeword to the corrupted value. Additionally, decoding a codeword with all 15
symbols corrupted is approximately 8% faster. We have not been able to identify
the precise reason for this speedup. Decoding a pointer with 6 parity symbols is
11.7% slower on average. Encoding a pointer with a CRC-4 and 2 parity symbols
is 18.9% faster on average.

These performance results show that this approach to encoding and decoding
pointers is fast; the overhead of a Corrected Machine Check Interrupt (CMCI)
in response to a memory error corrected in hardware (775µs) [11] is many times
greater. However, the total overhead is tunable: the programmer chooses when to
encode and decode the pointer. The benefit of this approach will be maximized
when a pointer is encoded at the beginning of an interval when it is unlikely to
be accessed and decodes it when a period of likely access begins.

4.4 Decoding Outcomes

Decoding may result in one of three possible outcomes: (i) corrected, the decoded
pointer exactly matches the original pointer value; (ii) detected, the decoded
pointer cannot be decoded but the error is detected; or (iii) miscorrected, the
decoded pointer does not match the original pointer value and the error was not
detected during decoding. Further, decoding errors can be detected in one of three
ways, depending on the encoding that is used: (i) the Reed-Solomon algorithm
will return an error (e.g., because the error appears to exceed its correction and
detection capability); (ii) the CRC-4 in the decoded codeword (if present) is
not consistent with the contents of the remainder of the codeword; or (iii) the
memory region field (if present) does not represent a valid value. Currently, we
support three memory regions, see Sect. 3. As a result, we know that the memory
region in a valid codeword will match one of those three values.14

Figures 4, 5, and 6 show the breakdown of outcomes for decoding corrupted
codewords. Outcomes are each assigned a color, the length of each colored region
represents the fraction of our trials that resulted in a particular outcome. Each
stacked bar corresponds to the number of symbols that were corrupted.

Figure 4 shows the breakdown of outcomes for decoding codewords that were
encoded using a CRC-4 and two parity symbols, see Fig. 2a. With zero or one
corrupted symbols, the Reed-Solomon algorithm matches its theoretical capa-
bilities and successfully reconstructs the pointer. With two corrupted symbols,
it detects all of the corrupted codewords. In this case, corrupting three or more
symbols exceeds the theoretical limits of the algorithm. However, if we corrupt
between 3 and 13 symbols, the Reed-Solomon algorithm is still able to detect
the corruption in many cases (e.g., more than 94% of the trials with eight cor-
rupted symbols). In this case, the Reed-Solomon algorithm appears to be much
more effective at detecting an even number of corrupted symbols than an odd
number of corrupted symbols. However, even for an odd number of corrupted

14 This approach is potentially fragile because it may become necessary to support
more memory regions. As a result, the number of invalid values will decrease and
limit the effectiveness of this approach.
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Fig. 4. Outcomes of decoding corrupted codewords (CRC+ 2 parity symbols). (Color
figure online)

symbols, verification of the CRC-4 detects many of the instances of corruption
that the Reed-Solomon algorithm does not. For example, more than 83% of tri-
als with five corrupted symbols are detected by the CRC-4, in fewer than 6%
of these trials is the corruption detected by the Reed-Solomon algorithm itself.
For a large number of corrupted symbols, a non-trivial number of miscorrections
are possible, e.g., more than 22% of our trials with thirteen corrupted symbols
resulted in a miscorrection. All of the trials with extreme corruption (i.e., 14 or
15 corrupted symbols) resulted in detection by the Reed-Solomon algorithm.

Fig. 5. Outcomes of decoding corrupted codewords (CRC+ 5 parity symbols). (Color
figure online)

Figure 5 shows the breakdown of outcomes for decoding codewords that were
encoded using a CRC-4 and five parity symbols, see Fig. 2b. With zero to two cor-
rupted symbols, the Reed-Solomon algorithm successfully recovers the pointer.
The trials with three corrupted symbols all result in detection by the Reed-
Solomon algorithm. For the trials with four or five corrupted symbols, the Reed-
Solomon is theoretically capable of detecting all of the corruption but these
results show that, in practice, the algorithm falls short of the theoretical limit,
cf. Sect. 2.2. We also observe that the algorithm in this configuration is much
better at detecting corruption in trials with an odd number of corrupted sym-
bols than in trials with an even number of corruptions. However, the fraction
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of trials in which corruption is detected is, on the whole much higher than we
observed for CRC-4 and two parity symbols, see Fig. 4. Additionally, for this
encoding (CRC-4 and five parity symbols) it is also possible to detect corrup-
tion by checking for a valid memory region. For example, with eight corrupted
symbols, corruption is detected using this method for approximately 3% of the
trials. Overall, this encoding significantly reduces the miscorrection rate relative
to CRC-4 and 2 parity symbols: no more than 4.5% of trials for a given number
of corrupted symbols result in miscorrection.

Fig. 6. Outcomes of decoding corrupted codewords (6 parity symbols). (Color figure
online)

Figure 5 shows the breakdown of outcomes for decoding codewords that were
encoded using six parity symbols, see Fig. 2c. Fundamentally, these data allow us
to compare the relative protective benefit of using 4 bits for a CRC-4 with using
those 4 bits for an additional parity symbol. As these data show, adding a parity
symbol allows the Reed-Solomon algorithm to correct up to three corrupted
symbols. However, the frequency of miscorrection is much greater than for the
CRC-4 and 5 parity symbols encoding: more than 29% of trials with 7 corrupted
symbols resulted in miscorrection. For many trials, corruption can be detected
by checking for a valid memory region encoding, but the value of this approach
may diminish if more than three memory regions have to be supported. Although
this encoding has a higher rate of miscorrection when significant corruption (i.e.,
5 or more corrupted symbols) occurs, if DUEs are a larger concern than SDC
then its ability to correct a larger number of corrupted symbols may recommend
it over CRC-4 and 5 parity symbols.

5 Related Work

FlipSphere [10] uses a hash and ECC to detect SDC. When an application
accesses a memory page that has not been recently accessed, the integrity of its
contents are verified using a CRC-32 detect unexpected modifications. Single-bit
errors are corrected with SECDED. While FlipSphere provides strong protection,
it is expensive (every protected page requires 516 additional bytes of memory)
and slow (up to 70% runtime overhead).
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PointGuard [7] protects pointers against malicious corruption by using a
compiler extension to XOR pointers with a random, fixed key each time they are
transferred to, or from, memory. This prevents attackers from reliably corrupting
pointers (e.g., return addresses) to get the target to execute malicious code.
Similarly, Watchdoglite [16] protects against malicious pointer corruption by
maintaining metadata to verify its validity (e.g., the bounds of the memory
region it can refer to). These approaches detect some pointer corruption, but they
can not correct corrupted pointers. Moreover, Watchdoglite requires additional
per-pointer memory to store metadata. Casas et al. [6] uses pointer triplication
to detect and correct pointer corruption. While this approach can detect and
correct corrupted pointers, it triples the memory required to store each pointer.

Gottscho et al. [12] and Poulos et al. [17] have proposed strategies for using
knowledge about the hardware ECC to correct DUEs. Our approach can also
potentially correct DUEs, but also provides strong protection against SDC.
Moreover, it may be possible to combine our approach with theirs to provide
additional protection.

6 Future Work

Based on the promising results presented in this paper, we intend to construct
a software framework to simplify developer use of these ideas. Given this infras-
tructure, we intend to study the performance impact of this approach on impor-
tant scientific workloads. A compiler extension may also be able to automate
the encoding and decoding of pointers.

7 Conclusion

In this paper, we provide a detailed description of a space-efficient approach to
using Reed-Solomon encoding to protect against pointer corruption. We demon-
strate that our approach is fast, less than 45µs per encoding/decoding event,
robust, the rate of miscorrection (silent data corruption) is less than 5% even
when significant corruption is introduced, space-efficient, no additional per-
pointer memory is required, and tunable, the programmer (or perhaps the com-
piler) uses program knowledge to decide when to encode and decode pointers.
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Abstract. Desktop clouds (DC) provide services in non-stationary envi-
ronments that face reliability and performance threats not found in tra-
ditional clusters and datacenters. The idle resources available on com-
puters can be claimed by users, turned off and faulted any time. For
instance, platforms such as CernVM and UnaCloud harvest idle resources
on computer labs to run virtual machines and support scientific applica-
tions. These platforms deal with interruptions and interferences caused
by both users and applications. This non-stationarity is one of the main
sources of issues in the design of reliable desktop cloud infrastructures
that are capable of mitigating their own faults and errors. Based on a
fault analysis that we have been carrying out and refining for a couple
of years, we have found that reliability problems begin as the number
of virtual machines that are going to be executed increases; these vir-
tual machines must first be provisioned in the physical machines where
they will be hosted. On the one hand, the main factors that can affect
the provisioning of virtual machines in a DC are: the use of disk space,
and the transmission of virtual images over the network. On the other
hand, the applications and actions performed by users in the desktops
may cause the virtual machine malfunction. In this paper, we propose
an strategy based on known techniques applied to a particular environ-
ment: the scalable provisioning of virtual machines in desktop clouds. In
addition, we describe the implementation and analyze its effectiveness.

Keywords: Reliability · VM provisioning · Fault tolerance · Chain of
threats

1 Introduction

Desktop clouds (DC) are opportunistic platforms based on virtualization that
offer cloud computing services on common desktop computers [2]. They take
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advantage of idle resources in computers when their users perform regular activ-
ities. A DC manages these resources to execute virtual machines (VMs), with
their operating systems and applications, without the users of these physical
machines (PMs) perceiving a slowdown in the performance of the computer or
feeling that their security is compromised. DC is a rugged platform in which
resources (computing capacity, network and disk), are shared with the user of
the physical machine.

DCs, such as CernVM 1 [13] and UnaCloud2 [12], execute VMs on desk-
top computers located on university or business campuses where the aggregate
capacity of idle resources is significant [7]. Typically, these DCs offer a subset of
the infrastructure services provided by private and public cloud platforms based
on dedicated infrastructure, such as OpenStack3 and Amazon Web Services4.
Researchers can use DCs to execute scientific and academic tasks just like they
use traditional cloud platforms. These tasks run on VMs on desktops, at the
same time as the programs launched by the users of these computers [8].

DCs are more susceptible to failures than other cloud platforms because their
infrastructure is not based on dedicated data centers nor on dedicated hardware.
Considering our analysis of faults in a DC, presented in [9], we have found that
the faults that affect the reliability of this class of systems occur mainly in two
moments: in the provisioning, and in the execution of the VMs. On the one hand,
provisioning of VMs has significant limitations in its scalability. The disk images
used by the VMs, a.k.a. virtual images (VI), are large files whose transmission
may take a while and is failure-prone. On the other hand, executing VMs in
the presence of users in the same computers may affect their normal operation.
Tasks executed by a DC can be interrupted by applications run by the users. As
a result, the DC user may lose the work done so far.

Typically, a DC offers a best effort service without warranties on the execu-
tion of the tasks sent to the platform. The cloud users must check if the tasks
were executed satisfactorily and, if necessary, start again their execution. The
platform reliability is one of its most important aspects to improve in DCs.

This paper revisits our previous work [9] characterizing the faults that could
occur in DC platforms. Here, we present a more comprehensive analysis that
considers, not only the UnaCloud platform, but also other DC platforms such
as BOINC, cuCloud and CernVM. We propose an improved mitigation strategy
to overcome the detected failures. This paper describes a new approach for pro-
visioning VMs by using pre-loaded templates of virtual images and customized
images configured as multiattach disks. These techniques are well known and
used in other contexts. Now, we are going to apply them in the provisioning
of VMs in DCs. According to our preliminary evaluation, this strategy reduces
the required transmission time and disk space, which allows us to provision and
deploy multiple VMs for each host in a very short time and without failures.

1 https://cernvm.cern.ch/.
2 https://sistemasproyectos.uniandes.edu.co/iniciativas/unacloud/.
3 https://www.openstack.org/.
4 https://aws.amazon.com/.
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The rest of this paper is organized as follows. Section 2, gives a background,
describing how the DC platforms work. Section 3 includes related work regard-
ing reliability on DC systems. With respect to our contributions, Sect. 4 talks
about our revisited fault analysis, Sect. 5 introduces a new approach for scalable
provisioning of VMs, and Sect. 6 presents the preliminary evaluation. Finally,
Sect. 7, concludes the paper and discusses the future work.

2 Background About Desktop Cloud Systems

Desktop clouds take advantage of the idle capacity in a set of computers to
provide Infrastructure as a Service (IaaS), a form of cloud computing. For DC
users, the system offers infrastructure just like any other cloud platform. Behind
the scenes, DCs run VMs on desktop computers, such as those found in university
computer labs [4]. This section presents a background on the DCs and their
operation.

DC is a computational paradigm that combines volunteer computing and
cloud computing [2,6,12]. Its goal is to make shared resources available to users
in order to provide cloud computing services without using dedicated resources.
DCs use idle computing resources of the participant computers to provide ser-
vices for processing, storage, networking, and applications using VMs running
operating systems and their respective applications.

In contrast to traditional cloud platforms, DCs do not rely on specialized
hardware or data centers. They use non-dedicated resources, typically hetero-
geneous, obtained from diverse computers such as those found in the computer
labs and offices in a university. In addition, DCs typically do not offer solutions
aimed to meet service-level agreements (SLA), nor do they offer advanced tools
for monitoring or billing. Traditionally, a DC offers a best effort service that may
run computing tasks at lower costs than other dedicated platforms [1].

Operation of a Desktop Cloud. Typically, a DC uses a client-server architec-
ture: there is a DC server program in charge of receiving and processing requests
from users and a DC client program running on each desktop computer. The DC
server has (or builds) an inventory of PMs that can be used and a mechanism
for allocating VMs on these machines. Basically, each PM has a computational
capacity in use and an idle computational capacity that can be exploited. When
a request for deploying VMs is received, the DC server determines which PMs
can run them. The DC client software on each PM receives instructions from the
DC server to copy the required files, create, configure and execute the requested
VMs.

The functioning of a DC comprises two phases: (1) a conditioning phase
and, (2) an operation phase. The conditioning phase groups four activities: (1.1)
Preparing the virtual images. It consists in the creation of the virtual images,
including the operating system, libraries and the applications properly configured
and customized by the user for its execution. (1.2) Requesting the deployment of
one or more VMs from a virtual image. (1.3) Scheduling the resource allocation.
The system selects, by means of a location algorithm, the PMs that will be used
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for the execution of the VMs. As a result, multiple VMs can be assigned to the
same PM. (1.4) Provisioning the VMs. The DC copies the virtual images in the
PMs, creates the VMs and then configures them. During the operation phase,
the DC platform (2.1) controls the VMs, e.g. starting, pausing or stopping a
VM; and (2.2) monitors their execution.

There are many problems that may occur at provisioning the VMs. Provision-
ing implies tasks such as transmitting the virtual image to the desktop, creating
the VM o VMs based on that virtual image, configuring the hypervisor to use
that virtual image, starting the VM and copying data and installing additional
software in that VM. Any of these tasks may fail. In a previous work [5] we
noted a large number of requested machines that were not deployed by a DC.
We are interested in analyzing the failures that may occur in that phase and
provide means to detect, at runtime, the type of problem that is occurring and
the proper strategy that must be used.

3 Related Work

Many authors have analyzed reliability problems that occur on DC platforms
at provisioning VMs. This section presents some extensions and strategies that
overcome these limitations.

Volunteer based DC platforms are systems where desktop users donate their
idle computing resources. An agent in each computer, when detecting some
idle capacity, requests a task to the platform and runs a VM to do it. These
systems have inherent problems of volatility and availability because users on
the desktops may claim idle resources and stop assigned tasks at anytime [10].
These systems typically replicate the same tasks for running on multiple
desktops. If one desktop fails, the other desktops may report results.

Appliance based DC platforms are volunteer based platforms where desk-
top computers run optimized virtual images. Instead of using typical vir-
tual images that must be transmitted each time, these platforms use cus-
tom images and specialized provisioning software to reduce transmission and
improve starting time. Unlike other platforms that must transmit large virtual
images before running VMs, appliance based systems such as CernVM [13]
use the same small-sized virtual image for all the users and run any additional
software using CernVM-FS, a set of remote read-only file-systems. These solu-
tions reduce the space required in each desktop, but increase the use of the
network and require a team responsible for maintaining and configuring the
virtual image and the file-systems with the software.

Private-cloud based DC platforms extend existing cloud platforms to inte-
grate physical computers when they are idle. Private-cloud based DCs must
manage the volatility of these physical machines. Several works have extended
the monitoring tools existing in the private-cloud platforms to support dif-
ferent strategies. cuCloud [11], for instance, predicts future availability and
reliability based on historical information from volunteers to allocate the VMs
considering its probability to fail.
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Opportunistic DC platforms are systems designed to run VMs on desktops
while the users on these computers do not notice it. UnaCloud, for instance,
runs one or more VMs on the same PM at the lowest possible priority to
minimize interference to applications started by the desktop users. UnaCloud
has been used to run HPC and grid computing applications, and this platform
has experienced problems related to the VMs provisioning. To overcome them,
for instance, UnaCloud has been extended to transmit virtual images using
peer-to-peer protocols [5]. They found that using protocols such as BitTorrent
it is possible to reduce the time required to transmit files and the number of
failures caused by transmission errors and timeouts.

4 A Revisited Fault Analysis for Desktop Cloud
Platforms

Recently, we have updated our fault analysis [9] regarding the provisioning of
VMs, considering not only UnaCloud but also other of DC platforms. We used
the extended chain of threats to analyze faults, errors, failures and mitigation
strategies. As a result, we identified two main types of errors: when (1) the DC
cannot copy the virtual image to the desktop and when (2) DC cannot configure
and start the VM.

E1: The DC can not copy the virtual image. It can fail due to commu-
nication errors, timeouts and insufficient disk space in the desktop. Network
congestion and the large size of the files to transmit, i.e. the files for the virtual
image and the software packages to install, are some of the causes. Figure 1 shows
the extended chain of threats for the error E1. Mitigation strategies include:

• M1: Using efficient transmission protocols, such as P2P file sharing imple-
mented in UnaCloud [5].

• M2: Using mechanisms to reduce the files to transmit, such as the use of
small-sized virtual images used in CernVM [13].

• M3: Using mechanisms to reduce the need for transmitting files, such as the
caching of frequently used virtual images, used in CernVM [13].

In addition, we are proposing other two strategies distilled from some exper-
iments performed on UnaCloud :

• M4: Using efficient disk space management, such as the linked clone disks and
the multiattach virtual disks available on hypervisors such as VirtualBox5,
KVM 6 and VMware7. These techniques can be used to run multiple VMs
sharing disks among them and, therefore, to optimize disk space on desktops.

• M5: Using allocation methods that considers disk space, that prevent the
systems to assign desktops without enough space.

5 https://www.virtualbox.org/.
6 https://www.linux-kvm.org/.
7 https://www.vmware.com/products/workstation-pro.html.
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Fig. 1. Fault propagation: The desktop cloud cannot copy the virtual image.

E2: The DC cannot configure and start the VM. It can fail when the
virtual image is incompatible with the hypervisor installed in the desktop or
does not include some required software. In some DCs such as UnaCloud and
BOINC, the configuration may fail if the virtual image does not satisfy some
requirements or does not have configured some predefined user accounts. For
instance, these DCs use special types of networking and require specific settings
in the virtual image. If the virtual image does not satisfy these requirements,
the VMs cannot be configured nor started. Figure 2 shows the extended chain of
threats for the error E2. Mitigation strategies include:

• M6: Using preconfigured templates of virtual images, already tested by DC
administrators and staff, instead of arbitrary images customized by cloud
users. For instance, this strategy is used by CernVM and cuCloud, platforms
that offer catalogs of images that the users may select to create their VMs.

• M7: Provision additional VMs than those needed to have backup VMs in case
that some VMs can not be configured and started correctly. This strategy is
used, for instance, by BOINC [3]. It assigns the same task to many nodes
expecting that some, probably not all of them, may process the task and
provide a response.

Fig. 2. Fault propagation: The desktop cloud cannot provision the VM.
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5 Implementing Strategies to Improve UnaCloud
Reliability at Provisioning Virtual Machines

Based on our fault analysis, we have extended UnaCloud to implement three
strategies to improve the reliability during the provisioning of VMs. Previously,
we implemented the use of efficient transmission protocols [5]. Now, we are imple-
menting: (1) using preconfigured virtual images, (2) using efficient disk space
management by running VMs using multiattach disks, and (3) using mecha-
nisms to reduce the files to transmit, by preloading base images in the desktops
where the VMs will run. The implementation of these strategies is described
below.

5.1 Using Preconfigured Templates of Virtual Images

We reviewed the diverse applications we are running on UnaCloud. Nowadays,
our users create clusters of VMs to run MPI-based applications, especially GRO-
MACS for computational chemistry and other HPC custom applications. Almost
all the users run Debian or Ubuntu Linux Operating System, using some distri-
bution of MPI. Instead of requiring users to create their own virtual image, we
created a single virtual image that can be used by them.

We created a customized virtual image based on Ubuntu 16.04 by installing
software such as NFS servers and clients, MPI libraries and some other utility
programs. We defined some scripts that run at startup and that can be used to
request data from servers or to install additional software when a VM starts.

5.2 Using Efficient Disk Space Management Mechanisms

Instead of having multiple copies of the same virtual image, one for each VM
running on a desktop, we are using multiattach virtual disks. Using this writing
mode, we define a single virtual disk that is shared across multiple VMs running
at the same time. The content of the shared disk is not modified. Each VM
creates a differential disk storing only its own changes. Typically, because our
DC users only creates some configuration files and connect to different NFS
remote disks to obtain their data, this results in relatively small files that do not
consume large amounts of disk space on the desktops.

Note that this strategy, which we did not found in the other DCs, help to
minimize problems related to consuming unnecessary disk space in the desktops.

5.3 Using Mechanisms to Reduce the Need for Transmitting Files

As a complement to the two previous strategies, we propose to copy, in advance,
the files of the template virtual image in the desktops where the VMs will run.
Considering that almost all the users can run MPI-applications using our tem-
plate and we use the computers in the labs of the university. We copied the
templates in these computers and modified the UnaCloud agents to check the
existence of templates before requesting a copy.
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We implemented this copying process as an on-demand task. We are consid-
ering a new extension where the most-used templates or the required templates
for scheduled experiments are copied automatically at low-congestion times.
UnaCloud may determine upfront the templates to be used in some labs and
perform the copies at night or at times where the network has low usage rates.

6 Preliminary Evaluation

We have been working on improving the UnaCloud reliability at provisioning
VMs. In the past we had many difficulties to achieve successful implementa-
tions of more than 20 machines. In 2017, after some improvements, we pro-
visioned clusters of 100 nodes with 98% success [5]. Now, by applying the pro-
posed strategies, we can deploy consistently, and without failures, fully successful
deployments of up to 400 VMs.

6.1 Provisioning Large Clusters Using Our Approach

To analyze the time and errors provisioning clusters in UnaCloud, we conducted
an experiment using up to 50 desktop computers and provisioned up to 200 VMs.
We used a 3.51 GB Ubuntu Server 16.04 virtual image to deploy VMs with 1 GB
RAM, 5 GB of virtual hard disk and 1 processing core. The VMs ran on desktops
with an Intel Core i7-4770 processor, 20 GB of RAM and 500 GB of hard disk.
We used a computer lab with 78 desktops. All of them connected to a 1 GB
Ethernet network.

Table 1 shows the average provision time. Since when using the proposed
strategies, it is not necessary to transmit files to the desktop, the provisioning
time is the time used in creating the VM and making the necessary configuration
so that it is ready for execution. It is important to note that in our experiments
we created up to four VMs in the same PM, and 100% of the VMs were provi-
sioned successfully, without failures during the process.

Table 1. UnaCloud behavior after implementing the mitigation strategies

#V/PMs Time #V/PMs Time #V/PMs Time #V/PMs Time

1/1 0,98 2/1 9,45 3/1 18,55 4/1 28,38

2/2 1,04 4/2 10,32 6/2 19,90 8/2 28,98

5/5 1,02 10/5 10,24 15/5 20,89 20/5 30,72

10/10 1,09 20/10 11,33 30/10 20,40 40/10 31,09

20/20 1,10 40/20 11,32 60/20 21,27 80/20 31,39

50/50 1,10 100/50 11,38 150/50 21,75 200/50 31,38

(a) (b) (c) (d)

Table 1 includes the maximum provision time of the experiment. In (a), we
see the time from 1 to 50 VMs using 1 PM to host 1 VM. In (b), (c) and (d),
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the ratios are 2 VMs in 1 PM, 3 VMs in 1 PM and 4 VMs in 1 PM. Using a
1VM/1PM ratio, we can note that provisioning from 1 to 50 VMs vary from 0.98
to 1.10 s.

Table 1 (b) shows that when changing the proportion of VMs/PMs, the times
increase, because a VM is first created and connected with a preloaded disk in
multiattach mode, and subsequently the following VMs are created one by one
on the same host. When the ratio is 2 VMs on 1 host, the VMs can be provisioned
between 9.45 and 11.38 s. It is remarkable that we can provision 100 VMs in 50
PMs in just 11.38 s, using a classic 1 Gbps Ethernet shared with the students’
regular browsing activities.

Table 1 (c) presents the provisioning time of 3 to 150 VMs in 1 to 50 PMs
with a ratio of 3 VMs in each 1 host. The times obtained were from 18.55 to
21.75 s. In this experiment, the provisioning time for 150 VMs was only 21.75 s.

Finally, Table 1 (d) reports the provisioning times by using a ratio of 4 VMs
in each PM, supplying between 4 and 200 VMs in times between 28.38 and
31.38 s.

6.2 Errors at Provisioning Virtual Machines

Regretfully, our previous monitoring systems reported failed deployments but did
not identify the errors that caused the failures. We are implementing now a new
monitoring system that identifies, with some level of confidence, the cause of the
errors. However, we cannot compare the efficiency of our strategies. This section
presents a discussion of the errors prevented by the three strategies implemented
in UnaCloud and reported in this paper. The following are the faults described
in the extended chain of threats in Sect. 4.

Network congestion and errors. The mentioned strategies reduce (or elim-
inate) the need of transmitting virtual images. Typical users can start VMs
using a preloaded templates of a virtual images in the desktops. These deploy-
ments do not need to transfer any files.

Insufficient space on desktop’s hard disks. Considering that VMs use muti-
attach disks, the space required in the desktops is reduced. For instance,
according to the results obtained in our experiments, instead of requiring
3.51 GB for each VM running in a desktop, using the mutiattach disks requires
0.29 GB for each additional VM running in the same desktop.

The virtual image does not meet required specifications. Given that we
provide a tested virtual image for running the VMs, we are assuring that it
will meet all the requirements of the system. In our tests, we have been able
to configure and start all the VMs using our predefined virtual image.

There are two faults that cannot be prevented by the strategies discussed in
this paper: (1) when desktops are turned off or restarted and (2) when desktops
are disconnected from the network at that same time that some virtual images
are being copied or VMs are being configured. These faults are inevitable given
the not-dedicated nature of the hardware used in DCs.
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6.3 Discussion

The proposed strategies are easy to apply and the benefits can be obtained by
carrying them out together.

The preload of a disk implies that it contains a virtual image. Although a
normal disk can be preloaded, and thus prevent the network consumption that
would be used in the transfer of the virtual image, this type of disk requires
cloning mechanisms that consume time in the creation of VMs and inefficiently
occupy the disk space.

We suggest that the same platform provide the virtual images in the form
of a catalog with images ready to be used in the provisioning of VMs. Although
it is a task that seems simple, it is necessary to have a team in charge of creat-
ing the images and implementing the changes when necessary. Modifications to
the virtual image are a challenge due to the impact that the modifications can
have on the VMs that have been created. Therefore, we understand that in the
future it will be necessary to develop a version control system to deal with this
circumstance.

By using multiattach writing mode disks preloaded with preconfigured virtual
images, that can be connected to multiple VMs at runtime, we not only manage
the space more efficiently, but we also prevent the transfer of voluminous files
over the same network through which users access the Internet.

This, on the one hand, decreases the provisioning time and, on the other,
significantly improves the performance of the network for users.

In addition, since after creating a VM, it is connected to the disk with the
operating system and the applications installed and configured, the VM is quickly
ready for execution. Therefore, the creation of one or more VMs in the same PM
is a much faster process, compared to the equivalent process of creating VMs by
cloning existing ones.

In addition, to have virtual images ready to use on disks in multiattach
writing mode, our strategies enable the possibility of migrating VMs at run
time. In this case it is sufficient to move the files of the differential disks to the
PM in which a VM will run and it will quickly be running again.

Finally, to implement this strategy in Oracle VirtualBox, it was necessary to
develop applications not available in the hypervisor. The created applications
allow us to preload the disk in the PM and register it at the hypervisor, create a
virtual machine from an image stored in a multiattach disk, and create an VM
from another one that is connected to a disk multiattach, among other tools.

7 Conclusion and Future Work

In this paper, we present (1) a revisited reliability analysis for desktop cloud
systems and (2) a UnaCloud extension that implements strategies to improve
reliability at provisioning VMs.

On the one hand, we extended our analysis of faults experienced in UnaCloud
to consider faults and mitigation strategies that occur in desktop cloud platforms
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such as BOINC, CernVM and cuCloud. Our analysis, based on extended chains
of threats, includes information not only of failures, errors and faults, but also
of the mitigation strategies that can help us face these faults. With respect to
the analysis published a year ago, this time we have included new mitigation
strategies and redefined others. For instance, using efficient disk space manage-
ment, such as the linked-clones and the multiattach disks, is a new strategy,
and educate the desktop cloud user in the creation of their virtual images was
redefined.

On the other hand, we implemented the following three strategies in
UnaCloud. We (1) defined a template of a virtual image that can be used by
almost all the users, (2) used multiattach disks to efficiently manage the disk
space in desktops, and (3) preloaded the virtual image in the desktops to reduce
the need for transmitting files.

As future work, we are considering to use the information gathered in mon-
itoring to improve decisions regarding VMs allocation and scheduling. We are
also considering new analyses and experiments to validate the findings presented
in this paper and to improve the strategies already implemented.
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7. Gómez, C.E., Dı́az, C.O., Forero, C.A., Rosales, E., Castro, H.: Determining the
real capacity of a desktop cloud. In: Osthoff, C., Navaux, P.O.A., Barrios Hernan-
dez, C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 62–72. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26928-3 5

https://doi.org/10.1007/978-3-642-36781-6_18
https://doi.org/10.1007/978-3-319-73353-1_28
https://doi.org/10.1007/978-3-319-73353-1_28
https://doi.org/10.1007/978-3-319-26928-3_5


680 C. E. Gómez et al.
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Abstract. Wediscuss techniques for efficient local detection of silent data
corruption in parallel scientific computations, leveraging physical quanti-
ties such as momentum and energy that may be conserved by discretized
PDEs. The conserved quantities are analogous to “algorithm-based fault
tolerance” checksums for linear algebra but, due to their physical founda-
tion, are applicable to both linear and nonlinear equations and have effi-
cient local updates based on fluxes between subdomains. These physics-
based checksums enable precise intermittent detection of errors and recov-
ery by rollback to a checkpoint, with very low overhead when errors are
rare.Wepresent applications to both explicit hyperbolic and iterative ellip-
tic (unstructured finite-element) solvers with injected memory bit flips.

Keywords: Silent errors · Partial differential equations · Linear
algebra · Algorithm-based fault tolerance · Checkpoint/restart

1 Introduction

The effects of faults at extreme scale are a growing concern for high-performance
computing (HPC) applied to scientific simulation [4]. Much resilience work deals
with recovery from hard failures, such as a node that crashes. However, erroneous
behavior can manifest in other ways. For example, an error may not immediately
cause a crash, but may lead to an insidious wrong answer or cascade to a costly
wider failure, which could be avoided if caught earlier. Thus, detecting errors
with locality in space and time provides the best opportunity to mitigate them.

In scientific computations, error detection at the application level is facili-
tated by properties that are common in these simulations and are typically vio-
lated when errors occur: smoothness, conservation, and other numerical charac-
teristics. In the face of uncertainty about likely error types and rates at extreme
scale, improved algorithmic detection can aid both diagnosis and recovery.

Silent hardware errors, such as silent data corruption, are a prime example
where precise detection is important. The future prevalence of these errors is

Under the terms of Contract DE-NA0003525, there is a non-exclusive license for use
of this work by or on behalf of the U.S. Government.

c© National Technology & Engineering Solutions of Sandia, LLC. 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 681–693, 2020.
https://doi.org/10.1007/978-3-030-48340-1_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_52&domain=pdf
https://doi.org/10.1007/978-3-030-48340-1_52


682 M. Salloum et al.

unclear, but there is concern that they will be significant at extreme scale [4]. In
addition, improved algorithmic detection could help diagnose and localize subtle
software issues such as numerical instability and race conditions [2,9].

Existing work on algorithm-based fault tolerance (ABFT) has developed
approaches for application-level error detection. Generic ABFT for linear algebra
solvers can be achieved using checksums [13]. In addition, scientific computations
often feature physical conserved quantities such as energy or momentum, which
can be viewed as a type of checksum, even for nonlinear problems. Such check-
sums and conserved quantities enable detecting errors reliably. However, in their
standard form, they are defined globally, so in a parallel solver they require
expensive collective communication [1] and do not localize errors to specific pro-
cesses or tasks.

Spatially local error detection offers the potential for greater scalability of
resilience, reducing communication and allowing more efficient local (rather than
global) recovery, just as is sought for other localized failures in parallel program-
ming models [6,14]. Techniques explored for detecting errors locally in scien-
tific computations include machine learning [12], comparison between different
numerical methods [2], and outlier detection [11], but these techniques are empir-
ical and inexact, with significant risk of false positives and false negatives.

Here we present a “physics-based checksum” (PBC) approach that builds on
ABFT checksums and physical conservation laws applicable to scientific com-
putations, and enables precise and efficient local error detection when such
conserved quantities exist. As long as some form of checkpoint/restart remains
viable, focusing purely on detection can allow recovering from occasional silent
errors by rollback, as for hard failures. This is efficient for rare errors because it
avoids the cost of more complex checksums that would support not only detec-
tion but also correction (roll-forward).

While the greatest expected benefit of the PBC approach is in conjunction
with local recovery (restarting only the processes or tasks with errors) [14], the
present work uses global checkpoint/restart (driven by local PBC detection) to
illustrate the effectiveness in a familiar resilience setting. We demonstrate the
approach in simple MPI-based solvers for partial differential equations (PDEs)
and evaluate the effect on solver completion time and accuracy in the presence
of emulated silent errors.

An abstract of this work was presented previously [10].

2 Checksum Approaches for Resilience

2.1 Error Detection Concepts

Checksums aim to introduce efficient redundancy in a solver via a smaller “side”
computation that remains consistent with the solver state if all computations
are correct (Fig. 1). State-of-the-art linear algebra checksums (LACs) [13], when
verified after a series of linear algebra operations, can indicate with very high
probability whether an error (processor or memory error) occurred somewhere in
those operations (including in the checksum itself). Even if multiple errors occur,
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precise cancellation of their effects so that the checksum still matches is very
unlikely. Thus, the verification of consistency can be performed intermittently,
e.g., just before each checkpoint.

Fig. 1. Data flow in a solver using checksums. An error introduced in an intermediate
step (red x) can be detected when the checksums are verified, and the solver can then
restart from a valid state. (Color figure online)

The checksum for a floating-point vector u is typically taken as the sum of
its entries, Q(u) = eT u, where e = {1, . . . , 1}. When an operation is performed
on u, the linearity of such a checksum allows it to be updated in a way other
than directly recomputing it, thus providing the redundant error check. Even
with correctly functioning hardware and software, algebraic checksum relations
hold numerically only to the level of floating-point roundoff. Silent errors in low-
order bits whose numerical magnitude is within the roundoff level will be false
negatives (undetected). When a checksum is verified by recomputing it from the
underlying data, it is prudent to re-initialize (refresh) the checksum to remove
accumulated roundoff drift.

From a different perspective, physical conserved quantities can be used in a
similar way. Global conservation laws of the form

Q =
∫
space

dV ρ = const, (1)

where ρ is a density expressible in terms of solver variables, are an exact prop-
erty of many continuum equations, including nonlinear ones. We here consider
the preferred case of a “conservative discretization”, where a version of the con-
servation law holds independent of the mesh size or time step and is exact up to
roundoff. As with standard LACs, these conserved quantities can detect errors
reliably (via comparison of Q at an initial time and a later time) but involve
global communication and do not localize errors in space.

To better leverage the benefits of conservation laws and create efficient local
PBCs, we consider the more fundamental, local form of a continuum conservation
law, ∂ρ/∂t = −∇ ·J, where J is the flux density of the conserved quantity. Then,
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defining the conserved quantity in a spatial region R (e.g., a computational
subdomain), Q(R) =

∫
R

dV ρ, we find the integrated conservation law

dQ(R)
dt

= −
∮

∂R

dS · J. (2)

Thus, Q(R) changes only due to the flux through the boundary ∂R. The
flux is much faster to compute than Q(R) itself because the integral in (2) is
lower-dimensional. When a discretized form of the local conservation law holds,
Q(R) is a local PBC that can be updated efficiently and verified intermittently,
in contrast to generic LACs [13] that are as costly to update as to verify. While
this conservation derivation applies to time-dependent problems, we show in
Sect. 4.1 that PBCs of the same form also apply to iterative elliptic solvers.

2.2 Injecting and Recovering from Errors

To demonstrate the practical effectiveness of PBC error detection, we test par-
allel solvers in a simple resilience framework with emulated silent errors. As in
previous work [11], each solver process includes a concurrent thread that per-
forms asynchronous, uniformly distributed bit flips in the large memory regions
in use (floating-point data arrays) at an adjustable rate. Such a memory error
model is representative of other error types also [3], such as processor errors.

We use a simple global checkpoint/restart scheme where verification of local
checksums and writing of checkpoints occur periodically after a certain number
of solver time steps or iterations, termed the verification interval. In our solvers,
to establish a baseline given ideal checkpoint reliability and performance, check-
points are stored in memory and are not subject to error injection, and time
spent in checkpointing is not included in our measurements of resilience over-
head. Rather, we measure the cost of updating and verifying the checksums and
of redoing the computations from the previous checkpoint (global rollback) when
an error is detected by any process based on a local checksum discrepancy. Check-
sum verification occurs together with each checkpoint, so the verification cost
has the same effect as checkpointing cost. The cost could be adjusted to reflect
any specific checkpoint storage technology. We seek resilience efficiency similar
to that seen in standard global checkpoint/restart usage, which can achieve very
low overhead using long intervals when failures are rare [5].

The impact of silent errors should be judged in relation to existing numerical
inaccuracies (roundoff, discretization, and incomplete convergence) that solvers
exhibit even on perfect hardware. An error rate is considered tolerated by a
solver, and overhead results are reported, only when the solver reliably finishes
with accuracy similar to that of an error-free run. Silent errors are stochastic
and vary from run to run, so the results must be considered as a distribution.
A solver is deemed to fail in the presence of errors if, in >10% of runs, it takes
longer than a cutoff time or returns a solution for which the residual or error
compared to an analytic solution is more than 3 times that obtained by a run
without error injection.
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3 Application to 1D Hyperbolic Solvers

We describe the application of PBCs to a linear advection equation and to the
nonlinear Burgers equation, and present test results for the latter.

3.1 Algorithm

The 1D linear advection equation is written as

∂φ(t, x)
∂t

+ ν
∂φ(t, x)

∂x
= 0, (3)

where ν is a constant. The explicit finite-difference Lax-Wendroff scheme for the
linear advection equation is determined by the stencil

φn+1
j =

c(c + 1)
2

φn
j−1 + (1 − c2)φn

j +
c(c − 1)

2
φn

j+1, 0 ≤ j ≤ N − 1, (4)

where the CFL number is c = ν Δt/Δx. This can be thought of as a linear algebra
operation, a sparse matrix-vector product φn+1 = Aφn, where the tridiagonal
matrix A is not explicitly stored.

The vector checksum Q(φ) = eT φ =
∑

j φj , where e is a vector of ones, is
the discrete version of the quantity

∫
dx φ conserved by the continuum PDE

(3). The checksum computed for each update φn+1 should correspond to the
matrix-vector product. A general LAC formula for such a checksum update is

Q(φn+1) =
(
eT A − deT

)
φn + dQ(φn), (5)

where d is an arbitrary scalar constant, whose choice may affect the detectability
of propagated errors [13]. In general, this approach incurs the cost of the dot
product of (eT A−deT ) with φn, the former being a constant precomputed vector.

However, based on our physical reasoning, it must be possible to compute the
update more efficiently. The natural PBC is obtained with the choice d = 1. For
global conservation (e.g., a periodic closed domain), all columns of A have sum 1,
as is seen by adding the coefficients of the three terms in (4); so (eT A − eT ) = 0
and the update is trivial: Q(φn+1) = Q(φn). For local conservation (e.g., a
subdomain within a parallel computation), the column sums of the local matrix
A differ from 1 only at the boundaries where fluxes occur, i.e., (eT A − eT ) is a
sparse vector, and the update is much more efficient than a general dot product.
For the parallel Lax-Wendroff scheme, the local PBC update is

Q(φn+1) = Q(φn) +
c(c + 1)

2
(φn

−1 − φn
N−1) +

c(c − 1)
2

(φn
N − φn

0 ), (6)

where φn
−1 and φn

N are values communicated from neighboring subdomains.
PBCs can also be constructed for nonlinear equations where LACs do not

apply. The 1D inviscid Burgers equation is written as

∂u(t, x)
∂t

+ ν u(t, x)
∂u(t, x)

∂x
= 0. (7)
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The explicit finite-difference MacCormack scheme for the Burgers equation is
determined by the stencil

un+1
j =

1
2
(un

j + u∗
j ) − c

4
(
(u∗

j )
2 − (u∗

j−1)
2
)
, 0 ≤ j ≤ N,

u∗
j = un

j − c

2
(
(un

j+1)
2 − (un

j )2
)
. (8)

This stencil cannot be cast purely in terms of linear algebra operations.
However, the conservation principle is still valid for the MacCormack scheme,
which is conservative by construction. The checksum Q(u) = eT u =

∑
j uj

corresponds to the momentum
∫

dx u conserved by the Burgers equation, with
the continuum flux density J = 1

2νu2. The corresponding PBC update is

Q(un+1) = Q(un) +
c

4
(
(u∗

−1)
2 + (un

0 )2
) − c

4
(
(u∗

N−1)
2 + (un

N )2
)
. (9)

Here again, the checksum can be updated from the previous time step by only
adding contributions from boundary terms.

3.2 Evaluation

Fig. 2. Left: Example overhead behavior of global checkpoint/restart predicted by an
analytic model [5]. Checkpointing and restarting each have a cost of 1 time unit, and
the global failure rate per time unit varies from 10−3 (bottom curve) to 10−1 (top
curve). Right: Overhead due to the detection algorithm and additional computations
upon restarts when the PBC technique is used in solving the 1D Burgers equation.
Results are reported for runs performed on 1024 cores with 100,000 mesh points per
core for 25,000 time steps, at several bit-flip rates expressed as probability p per bit
per standard time step.

Alongside a typical behavior of global checkpoint/restart for hard failures as a
comparison, the overhead results for the Burgers equation are shown in Fig. 2.
Upon completing a given verification interval (VI), a global restart is performed
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if any subdomain’s recomputed “true” checksum Qt differs from its efficiently
updated checksum Q by more than 10−2. The cost of checksum verification is
reduced with a longer VI, leading to the initial decreasing trend of overhead
with VI, but as VI increases further, the overhead increases due to more restarts
and more wasted work. The optimal VI increases at lower error rates. Error
injection is also performed on the non-robust version of the solver without error
detection, to determine the maximum error rate tolerated. As shown, error rates
significantly higher than this level can be tolerated by the robust solver with
overhead of ∼10% or less.

4 Application to 3D Elliptic Solver

To illustrate the applicability of PBCs to iterative unstructured applications,
we consider a conjugate gradient solver modeled on the HPCCG and MiniFE
mini-apps [7].

4.1 Algorithm

The 3D Laplace equation is a linear elliptic PDE often solved using a finite-
element method. The solution is represented as a vector x encoding a superposi-
tion of basis functions (elements) defined on a mesh, and the PDE is discretized
as a linear system Ax = b. Here A is a sparse, symmetric “stiffness matrix”
determined by the basis functions, and b is a vector determined by the boundary
conditions. In a parallel solver, the mesh is partitioned into subdomains and
the corresponding blocks of A, b, and x are distributed among the processes. A
typical iterative solver approach is the conjugate gradient method, which repeat-
edly updates an estimate of the solution x using linear algebra operations until
the residual b − Ax becomes sufficiently small. HPCCG implements an unpre-
conditioned conjugate gradient solver for the Laplace equation using a notional
hexahedral mesh.

A key operation in the conjugate gradient solver is a sparse matrix-vector
product Ap, where p is a vector generated within the algorithm. As discussed in
Sect. 3.1, the generic LAC update for this operation is

Q(Ap) =
(
eT A − deT

)
p + dQ(p), (10)

requiring a dot product that is as costly as recomputing the checksum. Again, a
more efficient update is possible with the PBC approach. In our problem, e (a
vector of ones) represents a superposition of elements into a constant function,
and A represents a differential operator constructed from gradients; thus eT A,
corresponding to the derivative of a constant, is a sparse vector (zero except at
boundaries). We can take d = 0 and obtain the simpler PBC update

Q(Ap) =
(
eT A

)
p. (11)
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Even though elliptic equations do not involve time advancement and so a con-
servation law does not literally apply, the solver operations are mathematically
analogous to time steps and PBCs can still be used.

To obtain a somewhat more generic example, we replace HPCCG’s simple
cubic mesh by a cylinder composed of wafers with an unstructured cross-section.
Our solver reads in a corresponding stiffness matrix computed offline using basis
functions that interpolate between values assigned to each mesh node (trilinear
hexahedral elements). Each process operates on a subset of the wafers. The
curved surface of the cylinder uses a standard Neumann zero-flux boundary
condition, so fluxes in and out of subdomains occur on the boundaries between
wafers. The mesh, stiffness matrix, and PBC update are visualized in Fig. 3.

Fig. 3. Top: Schematic 3D unstructured mesh of a cylinder; each wafer (side view
not to scale) corresponds to a block in the stiffness matrix. Bottom: In the physics-
based approach, the vector of ones (e) is used to form the checksum of solution vectors;
the vector on the right is used to update checksums when performing matrix-vector
products. The vector on the right is nonzero only on the boundary where fluxes occur,
reflecting conservation properties of the Laplace operator.

In this case, due the uniformity of the cylinder, the above-diagonal blocks
are copies of a square matrix B and the below-diagonal blocks are BT . The
nonzero entries in eT A arise from these B and BT blocks that couple adjacent
subdomains. If pi denotes the part of the vector p on process i, which can span
several wafers, then let pi,l and pi,r be the sub-vectors corresponding to the
leftmost and rightmost of these wafers. The local PBC update on process i for
the vector q = Ap is then

Qq = (eT BT )pi−1,r + (eT B)pi+1,l − (eT BT )pi,l − (eT B)pi,r. (12)

The full conjugate gradient method including local error detection and global
checkpoint/restart is shown in Algorithm 1. Steps in blue are PBC updates
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performed during every iteration, while steps in green are error detection and
checkpointing operations performed only after each verification interval. The
basis for detection is the relative discrepancy in each local checksum, e.g., ηx =
(Qx −Qx,t)/‖xi‖1, upon computing the true checksum Qx,t = eT xi on process i.

Algorithm 1. Conjugate gradient method with PBCs. Checksums Qx, Qp, Qq,
and Qr correspond to local portion of vectors on each process i.

x0 := 0 {Initial guess of solution}
r0 := b − Ax0, p0 := r0 {Initial residual and direction vectors}
(R0)

2 := rT0 r0
for n = 0, 1, . . . until convergence do

qn := Apn

Qq := (eTBT )pn,i−1,r + (eTB)pn,i+1,l − (eTBT )pn,i,l − (eTB)pn,i,r

α := (Rn)2/
(
pT
n qn

)

xn+1 := xn + αpn

Qx += αQp

rn+1 := rn − αqn
Qr −= αQq

(Rn+1)
2 := rTn+1rn+1

β := (Rn+1)
2/(Rn)2

pn+1 := rn+1 + βpn

Qp := Qr + βQp

if mod(n + 1, vi) = 0 then
Qx,t := eTxn+1,i, Qp,t := eT pn+1,i, Qr,t := eT rn+1,i {Recompute checksums}
Compute errors η between recomputed and separately updated checksums
if η ≥ ε on any process then

n −= vi {Restart}
Read xn+1, pn+1, and rn+1 from checkpoint
Read Qx, Qp, and Qr from checkpoint

else
Checkpoint xn+1, pn+1, and rn+1

Checkpoint Qx, Qp, and Qr

Refresh checksums
end if

end if
end for
Return xn

We note several details of error detection:

– Verifying the x, p, and r checksums is sufficient because an error in q propa-
gates to an error in r that remains detectable.

– The PBC update (11) does not itself preserve the detectability of an error in
p, because Qp is not used in computing Qq. However, because a multiple of p
is subsequently added to x, the consequence would still be a detectable error
in x. Our results support that errors are detected well with d = 0.



690 M. Salloum et al.

– The dot products pT q and rT r require special consideration because dot prod-
ucts do not have checksums [13]. In our memory error model, this is not a
problem because an existing error in p, q, or r that affects a dot product will
also affect the subsequent use of the same vectors in a detectable way.

– Error injection is not performed on the stiffness matrix A itself. If corruption
of static data like A is a concern, then there are simple protection schemes
that can be used [8], but we do not consider this here.

4.2 Evaluation

Error detection thresholds are chosen based on the maximum roundoff-induced
checksum discrepancies observed in the solver in the absence of any injected
errors. These accumulated errors in the checksum updates increase with VI due
to the nonlinear feedback in the conjugate gradient algorithm over iterations
and between processes. We have fitted thresholds for our cylinder example as a
function of subdomain size and VI.

Fig. 4. Error detection overhead is plotted for LACs and PBCs (percent overhead
of each technique on left, ratio of LAC to PBC overhead on right) in the conjugate
gradient solver on 32 processes with no bit flips injected. Different subdomain sizes are
indicated by the volume-to-boundary ratio Rvb.

We now examine the overhead induced by our error detection mechanism.
With no error injection, we compare the overhead of PBC-based detection to a
version where the LAC with d > 0 [13], but computed locally, is used for the
matrix-vector product. As shown in Fig. 4, the PBC approach has significantly
lower overhead for larger computational subdomains and larger VI (infrequent
verification, expected to be feasible for low error rates). This difference occurs
because the LAC update requires a dot product with cost proportional to the
subdomain volume at every iteration, whereas the PBC update requires compu-
tations only along the subdomain boundaries, which are smaller by a ratio Rvb.
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In the remaining results, we set Rvb = 8, corresponding to a subdomain size of
8840 mesh points per process.

The results of overhead measurements with error injection and local PBC
detection, shown in Fig. 5, are similar to the those for explicit solvers and like-
wise reflect the similarity to hard-failure checkpoint/restart (left plot in Fig. 2).
A difference is that the conjugate gradient solver cannot afford as large a VI,
because roundoff in the checksum updates propagates more strongly through the
algorithm and error detection becomes less precise. Error rates and VIs plotted
in Fig. 5 are those for which the accuracy criteria in Sect. 2.2 are met.

Fig. 5. For the conjugate gradient solver on 32 processes, overhead is plotted versus
VI for several rates of memory bit flips. At relatively low error rates, the overhead is
<10% for suitable VI. At larger error rates, the optimal VI decreases and overhead
increases due to greater rollback costs, but the solver can still complete.

5 Conclusion

We have demonstrated a streamlined approach to silent-error detection that
shows promise for physics simulations. Physics-based checksums (PBCs) enable
precise and efficient local error detection with intermittent verification. In con-
junction with recovery by rollback, PBCs fit into a typical checkpoint/restart
resilience technique. Moreover, PBCs can apply to a range of solvers and error
types that may occur at extreme scale. The approach has generality for scientific
computing due to its physical foundation.

While existing ABFT linear algebra checksums correspond to conserved
quantities in special cases, the conservation viewpoint leads to a general and effi-
cient method for updating subdomain checksums using boundary fluxes, includ-
ing for nonlinear equations. The local detection provided by these checksums
can be further leveraged with local recovery [14].
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Reliable algorithmic error detection provides a risk mitigation for future HPC
systems and opens a broader space for co-design in which hardware reliability
requirements could be relaxed. The conditions under which resilience techniques
are effective can provide useful guidance for these future system designs.
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Abstract. This paper proposes a new approach to checkpointing MPI
applications that use long-running CUDA kernels. It becomes possible to
take snapshots of data residing on the GPUs without waiting for kernels
to complete. The proposed technique is implemented in the context of the
state of the art high performance fault tolerance library FTI. As a result
we get an elegant solution to the problem of developing resilient MPI
applications where GPU kernels run longer than the mean time between
hardware failures. We describe in detail how we checkpoint/restart col-
laborative MPI-CUDA applications, and we provide an initial evaluation
of the proposed approach using the Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics (LULESH) application as a case study.
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1 Introduction

The use of GPUs for scientific applications is on the rise. High levels of parallelism
of GPU architectures offer impressive performance and naturally fits the domain.
When incorporating the use of GPUs into MPI programs, which is the de-facto
standard when using clusters, making such applications resilient becomes even
more challenging than before.

As the architecture of GPUs is based on the idea of CPU-managed non-
interruptible kernel executions, current checkpointing practice assumes that all
data has been taken off the GPUs and kernel execution is finished. Such a
restriction does not constitute a major problem when applications only have
short-running kernels all of which are being run synchronously. However, as
kernels become more complex, we can observe that data increasingly often is
maintained on the GPU only, and multiple kernels are launched asynchronously.
Typical cluster designs provide fewer GPUs than CPU cores at individual nodes.
Consequently, MPI+CUDA applications usually require several MPI processes
to share GPUs, which increases their utilisation. Such high GPU utilisations
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make it more challenging to identify or create application states where all rel-
evant data is on the host and no kernel is running. If these states occur less
frequently than the Meantime Between Failure (MBTF) of the given hardware,
resilience becomes problematic.

In this paper we propose a novel approach to deal with this challenge. We
enable checkpointing of MPI+CUDA applications in a way that allows snap-
shots to happen in states where kernels are only partially finished and where
snapshot-relevant data still resides on the GPUs of the system. We achieve this
by extending the MPI checkpointing library Fault Tolerance Interface (FTI) [2]
with a mechanism1 for soft interrupts for GPU kernels proposed in [1]. The
individual contributions of the paper are:

– we extend FTI to enable data on GPUs to be part of checkpoints;
– we extend FTI to mark kernels so that checkpoints can be performed before

those kernels are completed;
– we demonstrate the practical applicability of the proposed approach2 on a

given MPI+CUDA implementation of the Livermore Unstructured Lagrange
Explicit Shock Hydrodynamics (LULESH) application [9];

– we provide some indicative performance evaluations quantifying the effects of
the proposed extensions on the LULESH MPI+CUDA application.

2 Interrupting a Kernel

Checkpointing with a GPU kernel comes with two problems: saving/restoring
the GPU context and interrupting a long-running kernel. The CUDA runtime
implicitly creates an underlying context for communication between the host
process and device. Once created, the context remains attached to the host
process for its lifetime. If a process is checkpointed with an active context, restart
from that checkpoint will fail because the restored context will be invalid. FTI
does not preserve process states, so this work is not concerned with the GPU
context save/restore problem and CUDA does not facilitate the interruption of
a running GPU thread. Nevertheless, threads can be instrumented to interrupt
themselves; this is done by ensuring that the first step of a thread’s execution
is to check a host-controlled flag for permission to continue or to return. At
runtime, CUDA threads are partitioned into groups called blocks, so a boolean
array is used to keep track of executed blocks and is examined after the kernel
returns. If all blocks have executed then the kernel is complete; otherwise, the
kernel is relaunched. Figure 1 illustrates how a kernel is transformed into an
interruptible one. For more details refer to [1]. Note that this approach does not
work for kernels with explicit intra-block synchronisation.

1 Available at https://bitbucket.org/maxbaird/cuda backup.
2 The FTI extension is available at https://github.com/leobago/fti/tree/cuda-dev-

kernel-interrupt.

https://bitbucket.org/maxbaird/cuda_backup
https://github.com/leobago/fti/tree/cuda-dev-kernel-interrupt
https://github.com/leobago/fti/tree/cuda-dev-kernel-interrupt
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Fig. 1. How to apply the technique to an original application.

3 FTI

FTI is a multilevel checkpointing library for large scale supercomputers. At
extreme scale, supercomputers suffer from frequent failures due to the increased
number of components. As scientific applications grow in scale, they are more
prone to failures forcing to restart the execution. At the same time, they also
use more data, and therefore the state to be saved upon a checkpoint is also
increasing. This leads to an I/O bottleneck that could render scientific appli-
cations unable to make progress. To alleviate this problem, FTI makes use of
multiple storage levels, including the global parallel file system (GPFS), as well
as local storage inside the compute nodes. In particular FTI has four levels of
checkpointing, providing a good trade-off between resilience and performance.

All the complexity of erasure coding, asynchronous transfer and managing
multiple storage levels is hidden by FTI behind a simple interface that can be
summarized in only four functions:

– FTI Init: This function initializes FTI with the configuration provided by
the user in the configuration file.

– FTI Protect: This function is used to tell to FTI which are the variables that
need to be checkpointed.

– FTI Snapshot: This function actually takes the checkpoint according to the
frequency provided in the configuration file.

– FTI Finalize: This function frees the memory and clean up the different
storage levels.

For most MPI applications, it suffices to insert calls to these FTI functions
in order to render unprotected codes resilient against the majority of possi-
ble faults. Most scientific applications have one or more long running itera-
tive computations at their core where over 90% of the runtime is being spent.
These loops typically successively recompute the values of several key data struc-
tures until either a pre-determined number of iterations or a certain degree of
data stability is being reached. The LULESH application that we use as our
case study throughout this paper is no different. Consequently, adding resilience
using FTI can be achieved by means of a few added function calls. The full FTI
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enabled code can be found at https://github.com/maxbaird/luleshMultiGPU
MPI/blob/integrating-fti/lulesh.cu. The core structure of that code looks like
this:
int main(int argc , char *argv [])
{

...
MPI_Init (&argc , &argv) ;
FTI_Init(fti_config_path , MPI_COMM_WORLD );
...

FTI_Protect (1, its , 1, FTI_INTG );
...
FTI_Protect (19, domain ->elemBC.raw(), domain ->numElem , FTI_INTG );
...

while(locDom ->time_h < locDom ->stoptime)
{

res = FTI_Snapshot ();
LagrangeLeapFrog(locDom) ;
checkErrors(locDom ,its);
its++;

}
FTI_Finalize ();
MPI_Finalize ();
return 0 ;

}

The calls to FTI protect inform FTI which data needs to be checkpointed.
Here, we only show the protection of the iteration variable its as well as one of
the data carrying arrays elemBC.raw(). Within the main computational loop,
FTI Snapshot is being called. It globally synchronises all MPI ranks to estab-
lish a global time and, provided the checkpoint interval has been exhausted, it
triggers the actual checkpointing operation.

In case a failure happens, the same program is started. However, during the
execution of FTI Init the library notices that this is actually a restart and the
data is restored to the latest checkpoint values, effectively skipping the loop
iterations that had been completed before the fault had occurred. More details
on FTI can be found in [2].

4 Extending FTI

4.1 Checkpointing GPU Data

The first extension enables the checkpointing of data that reside on the GPU
rather than the CPU. This extension does not require any new FTI functions;
instead, it suffices to extend the functionality of FTI protect.

FTI protect obtains a pointer to the data to be saved whenever a snapshot is
being taken. Therefore, handling data residing on the GPU requires determining
whether such a pointer is a valid host or device pointer. Conveniently, the CUDA
API provides the cudaPointerGetAttributes function which makes it possible
to distinguish host and device pointers. For device pointers, a device to host
transfer is made prior to making a snapshot, and correspondingly on restart, the
data is copied back to the device.

https://github.com/maxbaird/luleshMultiGPU_MPI/blob/integrating-fti/lulesh.cu
https://github.com/maxbaird/luleshMultiGPU_MPI/blob/integrating-fti/lulesh.cu
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Things get slightly more involved due to the variety of memory models that
CUDA supports. Unified Virtual Addressing (UVA) and Unified Memory (UM)
introduced in CUDA versions 4.0 and 6.0 correspondingly, present a programmer
with a coherent view of host and device memory [12]. In those cases explicit
transfers are not required. Our extension to FTI protect reflects this through
further pointer attribute inspections.

4.2 Adding Kernel Suspension to FTI

Our second extension adds the ability to perform checkpoints during kernel exe-
cution. This constitutes the main technical contribution.

The key challenge here is that the underlying concept of FTI Snapshot can-
not easily be extended so that it could be used within GPU kernels. In compar-
ison to MPI ranks, GPU kernels have several orders of magnitude higher levels
of parallelism. Executions through millions or billions of threads on single GPUs
are the norm and not the exception. Running the equivalent of FTI Snapshot
as part of such a massively parallel kernel would introduce massive overheads
due to the increased synchronisation and the need to transfer back control to
the host. Therefore, we execute FTI Snapshot on the host, asynchronously to
the kernel executions on the GPU. In case a snapshot needs to be performed,
we use a technique for soft-interrupts of GPU-kernels as described in [1] to stop
the current kernel and to initiate the snapshot process which is performed on
the host.

To achieve this with a suitably simple interface extension of FTI, we add
three new API functions:

1. FTI Protect Kernel: replaces the normal kernel launch;
2. FTI Kernel Def: wraps around the kernel header; and
3. FTI Continue: needs to be inserted into the beginning of each protected

kernel.

FTI Protect Kernel is responsible for the host-side code that manages the
kernel launch. It triggers the initial kernel launch, potentially issues an interrupt
from the host followed by the execution of a snapshot and repeats this activity
until the kernel is completed.

FTI Kernel Def rewrites the kernel’s definition to add some extra parameters
to handle the soft interrupts. Lastly, FTI Continue check adds code that is
needed inside the kernel to enable soft-interrupts.

For the LULESH example, this means that we replace kernel invocations
such as
CalcVolumeForceForElems_kernel <true >

<<<dimGrid ,block_size ,0,domain ->streams [1]>>>(...);

by a call
FTI_Protect_Kernel (&domain ->snapshotCount , 1, 0.08,

(CalcVolumeForceForElems_kernel <true >),
dimGrid ,block_size ,0,domain ->streams [1], ...);
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From the user’s perspective this is merely the addition of a wrapping function
call with three additional parameters. Our complete version of LULESH with ker-
nel protection can be found at https://github.com/maxbaird/luleshMultiGPU
MPI/blob/integrating-fti-protecting-kernels/lulesh.cu.

4.3 Implementing FTI Protect Kernel

Roughly, FTI Protect Kernel translates into the following pseudo code:
FTI_Protect_Kernel (delta_t , kernel)
{

FTI_kernel_init ();
while (! all_complete) {

if (! my_rank_complete) {
<<<kernel >>>;
FTI_wait (delta_t );
FTI_stop_kernel ();

}
FTI_Snapshot( );
MPI_allgather (all_complete );

}
}

FTI Protect Kernel first makes a call to FTI kernel init which initializes an
object of type FTIT KernelInfo with information on how to interrupt, check-
point and restart the kernel. For efficiency, a kernel’s metadata is initialized
once and cleared and reused as necessary if the kernel with same ID is launched
again. The initialisation call is made irrespective of normal application execution
or failure, if a kernel has associated metadata, this metadata will be restored.

After initialisation we have the kernel launch in a loop which only terminates
after it has been executed by all MPI processes. This ensures consistency as it
guarantees that all snapshot images stem from the same call to FTI Snapshot
across all MPI ranks. Once the kernel has been asynchronously launched the
host waits for some period δt (delta t) before stopping the kernel and invoking
FTI Snapshot. The choice of δt is tricky. The smaller δt is the finer granular is
the capability to stop protected kernels. While this is desirable, it comes for a
price: whenever we invoke FTI Snapshot, we synchronise across all MPI ranks
which introduces noticeable overhead. On the other hand, choosing a large δt
could mean that (a) we heavily overrun our checkpointing interval or (b) the
host is idly waiting while the kernel has already terminated. The former can be
avoided by choosing δt as a sufficiently small fraction of the checkpoint interval.
We avoid the latter by implementing the waiting through an internal function
FTI wait which polls the GPU for the kernel’s completion status every 0.5 ms.
Finally, after FTI Snapshot has terminated, a call to MPI allgather ensures
that all ranks know about the completion status of all other MPI ranks.

4.4 What Happens at Checkpoint Time

Additional to the data that have been declared by the user for protection, FTI
also saves metadata that contain information about the state of execution. For
GPU kernels, this entails information about the degree of kernel completion

https://github.com/maxbaird/luleshMultiGPU_MPI/blob/integrating-fti-protecting-kernels/lulesh.cu
https://github.com/maxbaird/luleshMultiGPU_MPI/blob/integrating-fti-protecting-kernels/lulesh.cu
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which needs to be transferred from the GPU to the CPU and accumulated in
the standard way of FTI.

4.5 What Happens at Restart Time

A previously failed application may be restored if at least one checkpoint was
successful prior to failure. When executed, FTI will detect the execution as a
restart and try to recover the most recent checkpoint data. The corresponding
metadata of the recovered checkpoint is also loaded as part of the restart. The
initialization phase of FTI triggers the restart process and subsequently calls a
setup function for kernel protection. If the setup function detects the application
is in recovery mode it attempts to load the metadata for all protected kernels.
For an interruptible kernel, FTI Protect Kernel will rewrite the kernel launch
as described, this time however, the kernel’s associated metadata will be restored
instead of newly allocated. The restored metadata contains information about
the kernel execution state which the kernel uses to accurately resume.

A previously complete kernel will have its metadata reset so that it can be
launched again. However, If there are multiple kernels to be restored, a check is
performed to ensure that all protected kernels are complete. Since at this point,
whether the kernel is being relaunched immediately after failure or again through
iteration cannot be determined. For the former case, execution must resume from
the incomplete kernel. For the latter case, complete kernels that are not reset
will still launch but do nothing since all blocks are marked as complete.

5 Experimental Setup

From LULESH we used a kernel that is called once for each iteration of its
main executing loop and sufficiently oversubscribes the GPU. For our experi-
ments only level 1 checkpoints were permitted. The other levels were effectively
disabled by configuring their interval to be greater than longest running exper-
iment, this was done as the time taken for checkpointing is not consistent for
each level. Interruptions were simulated by prematurely terminating the appli-
cation (via ctrl + c) during its execution with a minimum of one successful
checkpoint. The amount of data captured at each checkpoint varies in relation
to the application’s input, for our experiments the checkpoint data size ranged
from 500 MB to 1 GB.

All experiments were executed using an AMD Opteron 6376 CPU running
Scientific Linux Release 7.6 (Nitrogen), kernel version 3.10.0. The system has
1024 GB of RAM and an NVIDIA TITAN-XP GPU with 12 GB of global memory
connected via PCIE x16. For our experiments CUDA version 10.0 was used with
driver version 410.79.

6 Case Study

In this section we seek to examine the practical impact of our extension on the
use case of LULESH. To this end, we have run experiments to examine three
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effects, the first experiment is aimed at figuring out whether we can stop a kernel
prematurely. The second experiment demonstrates how much more interruptibil-
ity is possible with our proposed approach and the final experiment looks at the
incurred overhead.

Restarting after the Checkpoint. Our first experiment is a sanity check for the
extended FTI. We verify that when protecting a single kernel of our test applica-
tion, which includes snapshotting of the data residing only on a GPU, we can use
the saved data to successfully restart. We verified that the modified application
successfully restarted, and that the result it computes is identical to the one com-
puted by the original application. We also verified that the snapshot happened
before the kernel completed, and that the GPU data have been actually stored
in the snapshot. This raises our confidence that the proposed implementation
works as expected.

Counting Snapshots. Our second experiment is concerned with the changes in
the minimal snapshotting interval. The method used to verify this change is by
counting the number of snapshots that we can do after we have protected the
kernel. If the minimal snapshotting interval is determined by the runtime of the
kernel, then the factor we decrease that interval is exactly the same as the factor
by which the number of taken snapshots increased. This experiment includes two
separate parts. In Fig. 2a we explore the limit case—how many more snapshots
we could possibly do after protecting one kernel. In Fig. 2b we investigate a more
realistic scenario when running resilient version of our application.

Fig. 2. Reducing checkpoint interval

Let us assume a simplistic execution model of the application with one pro-
tected kernel, one MPI process, and all the kernel launches are synchronous.
In this case, the snapshot count is determined by the number of kernel inter-
rupts we can make. The latter is determined by the oversubscription factor of
a kernel—the number of threads divided by the number of threads the GPU
can simultaneously execute. Therefore, in Fig. 2a we have related the number
of snapshots we can possibly take with the oversubscription factor. For that we
set δt to a very small value of 1 ms. We can observe two things. First we can
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clearly see that with more kernel oversubscription, more snapshots are possible.
Secondly, the number of snapshots is noticeably larger than the oversubscrip-
tion factor. This becomes possible due to asynchronous kernel launch. As kernel
launches are queued, the actual launch on the GPU is delayed, and it might
happen so that the interrupt comes before the kernel managed to execute any
blocks. This means that in the asynchronous case, the kernel interrupts may
happen even in the undersubscribed cases.

In Fig. 2b we investigate the snapshot increase when running our application
with a realistic snapshotting interval of 4 min. We observe a similar pattern: the
larger data set we use, the more threads we allocate per GPU kernels, therefore
the number of snapshots we do increases as we would expect. The graphs shows
average increase after running the same application 10 times.

Fig. 3. Overhead analysis

Overhead Analysis. Our third experiment examines the overhead that comes
with our extension. As it turns out, measuring the overhead is tricky because
it very much depends on the value chosen for δt. As Fig. 3a shows, if δt is very
small the overhead is quite noticeable. This is due to the MPI synchronization
that must occur for the call to FTI Snapshot at each interrupt. However, Fig. 3b
shows that if δt increases this overhead is significantly reduced. The remaining
observable overhead is attributed to each kernel thread always having to first
check for the host’s permission to continue.

7 Related Work

GPU Proxies CRUM [4] achieves transparent CR by using a proxy process to
decouple the application process’ state from the device driver state. This allows
for checkpoints to be made without recording any active driver state. CRUM is
geared toward applications with large memory footprints which make use of Uni-
fied Virtual Memory (UVM). The proxy process creates a shadow UVM region
for each allocation made by the application process and then makes a corre-
sponding real allocation via the CUDA driver. This setup is necessary because
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UVM has no API calls that can be intercepted. However, the restart process
is based on the assumption of deterministic memory allocations that are made
by the CUDA driver libraries which is not guaranteed by CUDA. It also raises
the question of what happens if a restart needs to occur on a different device;
while the allocations may be deterministic it does not mean they are consis-
tent across devices. CRCUDA [17] and CheCL [19] are proxy based approaches
that target CUDA and OpenCL respectively. Like CRUM, CRCUDA is trans-
parent to the application process. Unlike CRUM, CRCUDA does not rely on
deterministic memory allocations. Instead, it logs and replays CUDA API calls
where BLCR [7] is responsible for saving and restoring the application’s state.
CRCUDA does not support MPI or applications that make use of UVM. CheCL
provides its own OpenCL library to intercept and redirect API calls to decouple
the process from the OpenCL runtime.

GPU Virtualisation. A lot of related work is based on GPU Virtualisation such
as [3,5,6,13]. Virtual Machines (VMs) are attractive as they inherently serve as a
buffer between the application and the physical device. This decoupling from the
hardware makes checkpointing easier especially in the realm of CUDA where the
GPU context cannot be checkpointed along with the application. VMGL [10] is
marketed as an OpenGL cross-platform GPU independent virtualisation solution
with suspend and resume capabilities. Suspend and resume is enabled through
a shadow driver which keeps track of OpenGL’s context state. While OpenGL
is supported by all GPU vendors, in reality it is used chiefly for rendering and
not well suited for general purpose GPU computing. vCUDA [16] follows the
identical approach of VMGL using CUDA instead of OpenGL. Unfortunately,
VMs typically add more overhead via extra communication ultimately degrading
performance.

Application Specific. CheCUDA [18] and NVCR [11] are currently obsolete
CUDA based libraries because they depend on the CUDA context detaching
cleanly before a checkpoint. Recent versions of CUDA no longer have this prop-
erty. Consequently, correct restarts can not be guaranteed. CudaCR [15] is a CR
library that is capable of capturing and rolling back the state within kernels in
the event of a soft error. Similarly for soft errors, VOCL-FT [14] offers resilience
against silent data corruption for OpenCL-accelerated applications. VOCL-FT
is a library that virtualises the layer between the application and the acceler-
ators to log commands issued to OpenCL so that they may be replayed later
in case of failure. HiAL-Ckpt [20] is a checkpointing tool for the Brook+ lan-
guage with directives to indicate where checkpoints should be made. However
the development on Brook+ seems to have stopped with the last official release
in 2004. HeteroCheckpoint [8] is a CUDA library and mainly focuses on how
efficient checkpoints can be made by optimising the transfer of device data.

8 Conclusions and Future Work

This paper demonstrates a system that makes it possible to checkpoint/restore
MPI applications with long running GPU kernels. Its distinctive feature is the
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ability to take snapshots without the necessity to wait for kernels completion.
To our knowledge, none of the existing resilience tools can do this automatically.

The system is based on the FTI library—one of the standard resilience tools;
and it is extended with the kernel interruption mechanism that we have described
in [1]. As a result, by using the proposed tool, we significantly reduce the min-
imal interval at which the snapshots can be taken, making it possible to align
the snapshot frequency with the MTBF of the system of interest. We apply our
system to the real-word numerical MPI/CUDA application named LULESH.
We verify that the proposed system is operational by running a number of snap-
shot/restores that include GPU data; and we demonstrate that the minimal
snapshotting interval actually decreases.

Despite our system being fully operational and production-ready, it comes
with a few limitations that immediately guide our future work. Currently, we
do not verify that automatic kernel interruption mechanism is safe, assuming
that this is a job of a programmer. For example, if a kernel uses explicit intra-
block synchronisation, our mechanism may introduce a deadlock. This is less of a
problem for CUDA systems prior to the version 9, as intra-block synchronisation
was not supported, and use of manual spinlocks are not advised by the manual.
Latest CUDA architectures allow for such synchronisations which we would like
to attempt to detect by means of analysing CUDA kernels. Work is also required
to identify and reduce the overhead observed from our extension.

Currently, the time we have to wait to interrupt the running kernel is equal
to the time it takes to execute one thread of a kernel. If this time happens to
be too large, we need to make our interruption mechanism smarter—we can
check for interrupts not only at the beginning of each block, but also while the
thread is running. This would require a more sophisticated analysis of kernels,
that would take into account dataflow and controlflow.
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Abstract. In this paper, we propose and study the hybrid (MPI and OpenMP)
parallelization for our novel approach to 3D numerical simulation of elastic
waves with Krylov-type iteration method. The quality of the parallelization is
justified by weak and strong scaling analysis.

Keywords: Parallelization � MPI � OpenMP � Elastic equation

1 Introduction

Accurate and fast estimation of the subsurface parameters is of vital importance in the
oil and gas industry. A potential candidate to handle this task is a frequency-domain
full waveform inversion (FWI) (see e.g. [6]) that has been actively developing in the
last decades. Due to advances in supercomputing technology, even 3D elastic inver-
sion, that may bring the most valuable information about the subsurface, seems to be
feasible. The most time consuming part of this process is the forward modeling per-
formed several times at each iteration. The efficiency of this process is strongly
dependent on how optimally the process is parallelized.

In this effort, we consider a frequency-domain elastic iterative solver proposed in
[3]. It is based on a Krylov-type iteration method [5] with a special preconditioner. This
method demonstrates a fast convergence at low frequencies, needed for FWI appli-
cations. In this paper, we explain an approach to parallelize it using a hybrid paral-
lelization: MPI and OpenMP. Its quality is justified by weak and strong scaling
analysis. We also illustrate, that this parallel method allows simulation in big models,
including a modified 2.5D Marmousi model comprising 90 million cells, for a feasible
time.
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2 A Preconditioned 3D Elastic Equation

Consider an elastic equation written in the velocity-stress form, describing propagation
of a monochromatic component of a wave in a 3D isotropic heterogeneous medium
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where vector of unknowns v comprises nine components. These components include
the displacement velocities and components of the stress tensor. x is the real time
frequency, q x; y; zð Þ is the density, I3�3 is 3 by 3 identity matrix, P̂, Q̂ and R̂ are
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Coefficients a x; y; zð Þ, b x; y; zð Þ and c x; y; zð Þ are related to the Lame parameters. f is the
right-hand side representing the seismic source. c zð Þ is an attenuation function.
Equation (1) is solved in a cuboid domain of Nx � Ny � Nz points with free surface top
boundary and attenuation layers on the other boundaries.

Introducing preconditioner L0 (for details refer to [3]), we arrive at equation

I � dLL�1
0

� �
~v ¼ f ; with v ¼ L�1

0 ~v; dL ¼ L� L0; ð3Þ

We solve Eq. (3) via the biconjugate gradient stabilized method (BiCGSTAB) [7].
This assumes computing several times per iteration the product of the left-hand side
operator of Eq. (3) by a particular vector w, i.e. computing w� dLL�1

0 w
� 	

. Compu-
tations of L�1

0 w takes the most of runtime. To solve L0q1 ¼ w we assume that function
w x; y; zð Þ is expanded into a Fourier series with respect to x and y with coefficients
ŵ kx; ky; z
� �

, where kx and ky - spatial frequencies. ŵ are solutions to equation
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with the same boundary conditions as for Eq. (1). Here q0 and S0 are some averaging
of q and S. We solve it numerically, applying a finite-difference approximation,
resulting in a system of linear algebraic equations with a banded matrix. Computation
of ŵ we perform via the 2D Fast Fourier Transform (FFT) and after v̂ are found, L�1

0 w
is computed via the inverse 2D FFT.
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3 Parallelization

Four computational processes including BiCGSTAB, the 2D FFTs and solving (4),
mainly drive the solver. We decompose the computational domain along one of the
horizontal coordinates and parallelize these processes via MPI: using parallel BiCG-
STAB function from PETSc [2], 2D FFT from Intel Math Kernel Library [4], and each
MPI process, corresponding to a certain subdomain, solves boundary value problems
(4) for its own set of spatial frequencies kx and ky, independently of other MPI pro-
cesses. The main exchanges between the MPI processes are while performing FFTs.

Following this strategy, each MPI process would independently solve its own set of
Nx � Ny=N (N – number of MPI processes) problems. We solve them in a loop, par-
allelized via OpenMP. Schematically, our parallelization strategy is presented in Fig. 1.

To investigate the properties of this parallelization we construct a 2.5D land model
(left image of Fig. 2) from the open source 2D Marmousi model. It is discretized with a
uniform grid of 551� 700� 235 points. In the right image of Fig. 2 we illustrate the
10 Hz monochromatic component of the computed wavefield for this model. Using 9
nodes with 7 MPI processes per node and 4 cores per process, the total computation
time is 348 min.

Fig. 1. Parallelization scheme.

Fig. 2. Left - 2.5D P-velocity model; right - 3D view of a computed wavefield.
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MPI strong scalability of the solver is defined as ratio tM=tN , where tM and tN are
elapsed run times to solve the problem with N and M[N MPI processes each cor-
responding to a different CPU. Using MPI, we parallelize two types of processes. First,
those scaling ideally (solving problems (4)), for which the computational time with N
processes is T

N. Second, the FFT, that scales as
TFFT
a Nð Þ, with coefficient 1\a Nð Þ\N. The

total computational time becomes T
N þ TFFT

a Nð Þ (here we simplify, assuming no need of

synchronization) with scaling coefficient T þTFFT
T
Nþ

TFFT
a Nð Þ

, that is greater than a Nð Þ. This is why,
we expect very good scalability of the algorithm, somewhere between the scalability of
the FFT and the ideal scalability. We did not take into account OpenMP, which can be
switched on for extra speed-up. It is worth noting, that we can not use MPI instead of
OpenMp here, since then the scaling would degrade. MPI may have worked well if
T � TFFT , but this is not the case.

We estimate the strong scaling for modeling in two different models, both of 200�
600� 155 points: a subset of depicted in Fig. 2 and the overthrust model [1]. From the
left image of Fig. 3 we conclude that our solver scales very well up to 64 MPI processes.

For weak scaling estimation, we assign the computational domain to one MPI
process and then extend the size of the computational domain along the y-direction,
while increasing the number of MPI processes. Here, we use one MPI process per

CPU. The load per CPU is fixed. For the weak scaling, we use function fweak Nð Þ ¼
T Nð Þ
T 1ð Þ ; where T Nð Þ is the average computational runtime per iteration with N MPI

processes. The ideal weak scalability corresponds to fweak Nð Þ ¼ 1.
To estimate it in our case, we considered a part of themodel presented in Fig. 2 of size

200� 25� 200 points with a decreased 4 m step along the y-coordinate. After extending
the model in the y-direction 64 times, we arrive at a model of size 200� 1600� 150
points. The right image of Fig. 3 demonstrates that for up to 64 MPI processes, weak
scaling of our solver has small variations around the ideal weak scaling.

Fig. 3. Left - strong MPI scaling of the solver: blue dashed line - for the Marmousi model, red
line - for the overthrust model, the dashed grey line - ideal scalability; right - weak MPI scaling
measurements: the blue line - the solver and the dashed grey - ideal weak scaling. (Color figure
online)
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With OpenMP we parallelize the loop over spatial frequencies for solving (4). To
estimate the scalability of this part of our solver, we performed simulations in a small
part of the overthrust model comprising 660� 50� 155 points on a single CPU having
14 cores with hyper-threading switched off and without using MPI. Figure 4 shows that
our solver scales well for all threads involved in this example. It is worth mentioning,
that we use OpenMP as an extra option applied when further increasing of the number
of MPI processes doesn’t improve performance any more, but the computational
system is not fully loaded, i.e., there are free cores.

4 Conclusions

Further improvement of the MPI scaling may be achieved by incorporating a domain
decomposition along two horizontal directions into the current MPI parallelization
scheme. Moreover, the parallelization using domain decomposition along the vertical
direction for solving boundary value problems 4 may be applied for accelerating the
computational runtime.

Acknowledgments. Two of the authors (Dmitry Neklyudov and Vladimir Tcheverda) have
been sponsored by the Russian Science Foundation grant 17-17-01128.
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Abstract. OODIDA (On-board/Off-board Distributed Data Analytics)
is a platform for distributing and executing concurrent data analytics
tasks. It targets fleets of reference vehicles in the automotive industry
and has a particular focus on rapid prototyping. Its underlying message-
passing infrastructure has been implemented in Erlang/OTP. External
Python applications perform data analytics tasks. Most work is per-
formed by clients (on-board). A central cloud server performs supple-
mentary tasks (off-board). OODIDA can be automatically packaged and
deployed, which necessitates restarting parts of the system, or all of it.
This is potentially disruptive. To address this issue, we added the ability
to execute user-defined Python modules on clients as well as the server.
These modules can be replaced without restarting any part of the system
and they can even be replaced between iterations of an ongoing assign-
ment. This facilitates use cases such as iterative A/B testing of machine
learning algorithms or modifying experimental algorithms on-the-fly.

Keywords: Distributed computing · Code replacement · Erlang

1 Introduction

OODIDA is a modular system for concurrent distributed data analytics for the
automotive domain, targeting fleets of reference vehicles [5]. Its main purpose
is to process telemetry data at its source as opposed to transferring all data
over the network and processing it on a central cloud server (cf. Fig. 1). A data
analyst interacting with this system uses a Python library that assists in cre-
ating and validating assignment specifications. Updating this system with new
computational methods necessitates terminating and redeploying software. How-
ever, we would like to perform updates without terminating ongoing tasks. We
have therefore extended our system with the ability to execute user-defined code
both on client devices (on-board) and the cloud server (off-board), without hav-
ing to redeploy any part of it. As a consequence, OODIDA is now highly suited
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 715–719, 2020.
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for rapid prototyping. The key aspect of our work is that active-code replace-
ment of Python modules piggybacks on the existing Erlang/OTP infrastructure
of OODIDA for sending assignments to clients, leading to a clean design. This
paper is a condensed version of a work-in-progress paper [6], giving an overview
of our problem (Sect. 2) and its solution (Sect. 3), followed by an evaluation
(Sect. 4) and related work (Sect. 5).

Fig. 1. OODIDA overview and details: In (a) user nodes u connect to a central cloud
b, which connects to clients c. The shaded nodes are implemented in Erlang/OTP; the
other nodes are external Python applications, i.e. the user front-ends f , the external
server application a, and external client applications a. In (b) the core of OODIDA
is shown with permanent nodes (dark) and temporary handlers (light) in an instance
of a whole-fleet assignment. Cloud node b spawned an assignment handler b′. After
receiving an incoming task, clients x, y and z spawned task handlers x′, y′, and z′ that
interact with external applications. Nodes x and x′ correspond to c1 in (a) etc.

2 Problem

OODIDA has been designed for rapid prototyping, which implies that it fre-
quently needs to be extended with new computational methods, both for on-
board and off-board data processing. To achieve this goal, Python applications
on the cloud and clients have to be updated. Assuming that we update both, the
following steps are required: The user front-end f needs to be modified to recog-
nize the new off-board and on-board keywords for the added methods, including
checks of assignment parameter values. In addition, the cloud and client appli-
cations have to be extended with the new methods. All ongoing assignments
need to be terminated and the cloud and clients shut down. Afterwards, we can
redeploy and restart the system. This is disruptive, even without taking into
account potentially long-winded software development processes in large orga-
nizations. On the other hand, the turn-around time for adding custom methods
would be much shorter if we could do so at runtime. Active-code replacement
targets this particular problem, with the goal of further improving the suitability
of OODIDA for rapid prototyping.



Active-Code Replacement in the OODIDA Data Analytics Platform 717

3 Solution

With active-code replacement, the user can define a custom Python module for
the cloud and for client devices. It is implemented as a special case of an assign-
ment. The front-end f performs static and dynamic checks, attempting to verify
correctness of syntax and data types. If these checks succeed, the provided code
is turned into a JSON object and ingested by user node u for further process-
ing. Within this JSON object, the user-defined code is stored as an encoded text
string. It is forwarded to cloud node b, which spawns an assignment handler b′ for
this particular assignment. Custom code can be used on the cloud and/or clients.
Assuming clients have been targeted with active-code replacement, node b′ turns
the assignment specification into tasks for all clients c specified in the assignment.
Afterwards, task specifications are sent to the specified client devices. There, the
client process spawns a task handler for the current task, which monitors task
completion. The task handler sends the task specification in JSON to an external
Python application, which turns the given code into a file, thus recreating the
Python module the data analyst initially provided. The resulting files are tied to
the ID of the user who provided it. After the task handler is done, it notifies the
assignment handler b′ and terminates. Similarly, once the assignment handler
has received responses from all task handlers, it sends a status message to the
cloud node and terminates. The cloud node sends a status message to inform the
user that their custom code has been successfully deployed. Deploying custom
code to the cloud is similar, the main difference being that b′ communicates with
the external Python application on the cloud.

If a custom on-board or off-board computation is triggered by a special key-
word in an assignment specification, Python loads the user-provided module.
The user-specified module is located at a predefined path, which is known to the
Python application. The custom function is applied to the available data after
the user-specified number of values has been collected. When an assignment uses
custom code, external applications reload the custom module with each iteration
of an assignment. This leads to greater flexibility: Consider an assignment that
runs for an indefinite number of iterations. As external applications can process
tasks concurrently, and code replacement is just another task, the data analyst
can react to intermediate results of an ongoing assignment by deploying custom
code with modified algorithmic parameters while this assignment is ongoing. As
custom code is tied to a user ID, there is furthermore no interference due to
custom code that was deployed by other users. The description of active-code
replacement so far indicates that the user can execute custom code on the cloud
server and clients, as long as the correct inputs and outputs are consumed and
produced. What may not be immediately obvious, however, is that we can now
create ad hoc implementations of even the most complex OODIDA use cases in
custom code, such as federated learning [3].

Inconsistent updates are a problem in practice, i.e. results sent from clients
may have been produced with different custom code modules in the same iter-
ation of an assignment. This happens if not all clients receive the updated cus-
tom code before the end of the current iteration. To solve this problem, each
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provided module with custom code is tagged with its md5 hash signature, which
is reported together with the results from the clients. The cloud only uses the
results tagged with the signature that achieves a majority. Consequently, results
are never tainted by using different versions of custom code in the same iteration.

4 Evaluation

The main benefit of active-code replacement is that code for new computational
methods can be deployed right away and executed almost instantly, without
affecting other ongoing tasks. In contrast, a standard update of the cloud or client
installation necessitates redeploying and restarting the respective components of
the system. In an idealized test setup, where the various workstations that run
the user, cloud and client components of OODIDA are connected via Ethernet,
it takes a fraction of a second for a custom on-board or off-board method to
be available for the user to call when deployed with active-code replacement, as
shown in Table 1. On the other hand, automated redeployment of the cloud and
client installation takes roughly 20 and 40 s, respectively. The runtime difference
between a standard update and active-code replacement amounts to three orders
of magnitude. Of course, real-world deployment via a wireless or 4G connection
would be slower as well as error-prone. Yet, the idealized evaluation environ-
ment reveals the relative performance difference of both approaches, eliminating
potentially unreliable data transmission as a source of error.

This comparison neglects that, compared to a standard update, active-code
replacement is less bureaucratic and less intrusive as it does not require inter-
rupting any currently ongoing assignments. Also, in a realistic industry scenario,
an update could take days or even weeks due to software development and organi-
zational processes. However, it is not the case that active-code replacement fully
sidesteps the need to update the library of computational methods on the cloud
or on clients as OODIDA enforces restrictions on custom code. For instance,
some parts of the Python standard library are off-limits. Also, the user cannot
install external libraries. Yet, for typical algorithmic explorations, which users
of our system regularly conduct, active-code replacement is a vital feature that
increases user productivity far more than the previous comparison may imply.
That being said, due to the limitations of active-code replacement, it is comple-
mentary to the standard update procedure rather than a competitive approach.

5 Related Work

The feature described in this paper is an extension of the OODIDA plat-
form [5], which originated from ffl-erl, a framework for federated learning
in Erlang/OTP [4]. In terms of descriptions of systems that perform active-code
replacement, Polus by Chen et al. [1] deserves mention. A significant difference is
that it replaces larger units of code instead of isolated modules. It also operates in
a multi-threading environment instead of the highly concurrent message-passing
environment of OODIDA. We also noticed a similarity between our approach
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Table 1. Runtime comparison of active-code replacement of a moderately long Python
module versus regular redeployment in an idealized setting. The former has a significant
advantage. Yet, this does not factor in that a standard update is more invasive but can
also be more comprehensive. The provided figures are the averages of five runs.

Cloud Client

Active-code replacement 20.3 ms 45.4 ms

Standard redeployment 23.6 s 40.8 s

and Javelus by Gu et al. [2]. Even though they focus on updating a stand-alone
Java application as opposed to a distributed system, their described “lazy update
mechanism” likewise only has an effect if a module is indeed used. This mirrors
our approach of only loading a custom module when it is needed.
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Abstract. In this work we provide a quick overview of our ongoing effort
to derive an open-source framework for detailed architectural simulation
of the inference procedure of CNN hardware accelerators. Our tool, called
CNN-SIM, exposes the values computed during the inference procedure
of any CNN model using real inputs, which allows the investigation of
architectural techniques for optimized inference. As a use case, we show
the percentage of communicated zero values for two possible dataflows.

Keywords: Convolutional Neural Network · DNN accelerators ·
Simulation · Hardware architecture · Scale-Sim

1 Introduction and Motivation

The recent popularity of Deep Neural Networks (DNNs) in general, and convo-
lutional Neural Networks (CNNs) in particular, to solve very complex problems
such as image classification and object recognition in real time [5], has given
birth to a fruitful research field on the design of novel architectures to ensure
efficient support for their entailed computational load. Thus, several accelerator
architectures have appeared in the literature, such as the Google’s TPU [2], the
MIT’s Eyeriss [1], or more recently, the MAERI fabric that ensures adaption to
a variety of DNN partitions and mappings [3].

These accelerators are typically designed as spatial architectures based on
systolic arrays, as they have long been proved to excel at matrix-matrix/vector
multiplications – integral operations in CNN processing. A systolic array is typi-
cally composed of a 2D-mesh network of processing elements or PEs, where each
PE is equipped with an ALU, local memory and control logic, and implements
some flavor of dataflow processing (e.g., output stationary or weight station-
ary [5]) in order to maximize data reuse within the network, thereby saving
costly memory accesses and energy consumption.

Traditionally, one of the first steps in the design, implementation and opti-
mization of a new computer architecture has been to simulate it in great detail.
Unlike what happens for traditional general-purpose architectures, there is still
no detailed simulation tool that can be employed to analyze the behavior of
c© Springer Nature Switzerland AG 2020
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such CNN accelerator architectures. The only CNN accelerator simulator pub-
licly available to date is SCALE-Sim [4]. However, its limitations (explained in
Sect. 2) impede using it for exploration of architectural techniques to improve
the efficiency of the training and inference procedures based on the computed
values. To fill this gap, in this work we provide a quick overview of our ongoing
effort to derive an open-source framework for detailed architectural simulation
of the inference procedure of hardware CNN accelerators. As an example of use,
we show the percentage of communicated zero values for two possible dataflows.

2 CNN-Sim

As already mentioned, CNN-Sim is based on SCALE-Sim, which is a cycle-
accurate simulator written in Python that allows insight into design trade-offs
and mapping strategies for systolic-array based CNN accelerators. This simulator
can conduct experiments based on the weight stationary (WS), output stationary
(OS) and input stationary (IS) dataflows [5]. To do so, SCALE-Sim models an
array of PEs and three SRAM modules to read in and write out the three data
types (i.e., input activations, weights and output activations) used by each CNN.

For the design-space exploration of this accelerator model, the tool is setup
with a user-defined configuration file where users can specify architectural details
such as the number of PEs (i.e., the array shape), the SRAM memory size for
each type of data, and the dataflow to use. Based on these inputs and a CNN layer
specification provided through a separate network configuration file, SCALE-Sim
simulates the processing of the CNN layer and reports some statistics such as
the resulting latency (i.e., number of cycles), array utilization, number of SRAM
accesses and DRAM accesses, as well as the demand of DRAM bandwidth.

However, since the tool is just designed to gain insight into the impact of
a certain dataflow in the context of a configured accelerator design, these out-
puts cannot be utilized to truly understand the actual inference procedure of a
CNN processing for a given input from the real world (e.g., an image). Another
important limitation of SCALE-sim is that users cannot analyze the particular
computed values during the processing of the CNN’s layers, i.e., the layers are
not actually executed but they rely on an analytic model that simply outputs
the number of processing cycles per convolution layer. This fact seriously limits
the design-space exploration of CNN accelerators since value-based architectural
techniques, such as those based on skipping the useless multiplications by zero [1],
cannot be explored. To fill this gap, we present CNN-SIM, an extended version
of SCALE-Sim that allows the research community to truly simulate the actual
inference procedure of a certain CNN with different dataflows.

With this aim, we first extend the well-known Caffe DL framework so that
users can now choose SCALE-Sim as the target computing platform to exe-
cute the inference. More specifically, as illustrated in Fig. 1, users can setup any
inference procedure by means of the typical configuration files in Caffe: the CNN
model with the model.prototxt file, the values of the learned CNN’s weights
in weights.caffemodel file, and the real input data to predict (e.g., an Image
Database). Besides, users need to configure the desired accelerator architecture
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Fig. 1. High level description of CNN-Sim.

with the very same input parameters from SCALE-Sim: as shown in the figure,
the architecture.cfg file that lists the array dimensions of PEs and type of
dataflow (e.g., OS). On the other hand, we modify SCALE-Sim to truly execute
the arithmetic operations involved when processing a CNN. In particular, while
CNN-Sim is running, each PE is modeled and its particular operation computed,
so that the real dataflow is simulated (the user can know at any time the result
of the operation executed by each PE, as well as the input data being used).

Once CNN-Sim is configured, the interaction between Caffe and our tool
works as follows: First, Caffe starts the execution of the first image from the
Image Database loading the input data needed into the SRAM modules of the
simulator. After that, the simulator runs the entire dataflow and tracks the data
that passes through the PE array. After the simulator finishes the computation
for all the output activations, it sends the results back to Caffe, allowing it to
continue normally. Apart from the original SCALE-Sim’s output statistics (see
Simulation Summary and Read&Writes traces), CNN-Sim is also capable of
reporting all the values passed through the network per clock cycle in three
different files (i.e., input activations, weights and output activations).

3 Case Study: Dataflows and Useless Network Traffic

The existence of useless operations (i.e., multiplications by zero) in the execution
of the inference procedure of a CNN is widely demonstrated by the state-of-the-
art. However, studying the resulting network traffic composed of zeroes across
the array of PEs depending on a dataflow has not been thoroughly studied yet.
The reason is that, before CNN-SIM, the research community lacked an accurate
simulator capable of analyzing computed values in different dataflows.

To show the potential of our tool, we carry out a case study in which we utilize
the third convolution layer of AlexNet CNN (i.e., an input of size 256× 27× 27
and 384 filters of size 256 × 3 × 3) and an accelerator consisting of a 32 × 32
array of PEs. Then, we analyze the useless network traffic for both WS and OS
dataflows using one particular input image.
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Fig. 2. Percentage of zeroes passed through the interconnection network when the 3rd
layer of AlexNet CNN is executed on CNN-SIM using both WS and OS dataflows.

Figure 2 depicts the percentage of zeroes that are read and written through
the network of PEs for both OS and WS dataflows at 20,000-cycle time intervals.
More specifically, we plot the percentage of zeroes that all the PEs in the array
receive either from memory or from other PE neighbors. As it can be noticed,
zero values account for a significant fraction of the network traffic, ranging from
31% to 34%. Also, it is worth noting that the amount of zeroes tends to be
superior for WS dataflow. This is due to it keeps the weights stationary in the
PEs, thus reducing the total memory traffic while the amount of traffic due to
activations (which contain most of the zeroes) is kept. Note also that the number
of cycles required by WS is noticeably higher than that of OS.

4 Conclusions and Ongoing Work

We have presented CNN-SIM, a simulation tool aimed to ease the exploration
of architectural techniques for optimized inference procedures in CNN hardware
accelerators. Inspired by MAERI [3], we are currently extending the type of
hardware elements that are supported. The ultimate goal is to provide the user
with a framework that can be employed to configure and simulate a myriad of
CNN architectures, so that direct comparisons between them can be carried out,
also fostering the exploration of CNN design-oriented optimizations.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their critical assessment of our work and constructive comments that have helped
improve the manuscript. This work has been supported by the Spanish MCIU and
AEI, as well as European Commission FEDER funds, under grants “RTI2018-098156-
B-C53” and “TIN2016-78799-P”. Francisco Muñoz-Mart́ınez is supported by fellowship
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Abstract. In this paper, we propose duality-based locality-aware stream par-
titioning (LSP) in distributed stream processing engines (DSPEs). In general,
LSP directly uses the locality concept of distributed batch processing engines
(DBPEs). This concept does not fully take into account the characteristics of
DSPEs and therefore does not maximize cluster resource utilization. To solve
this problem, we first explain the limitations of existing LSP, and we then
propose a duality relationship between DBPEs and DSPEs. We finally propose a
simple but efficient ping-based mechanism to maximize the locality of DSPEs
based on the duality. The insights uncovered in this paper can maximize the
throughput and minimize the latency in stream partitioning.

Keywords: Distributed processing � Data stream � Locality � Duality

1 Introduction

A distributed stream processing engine (DSPE) is a real-time processing framework
that guarantees high throughput and low latency by processing continuously generated
data streams in a cluster of multiple servers. Each DSPE application is defined as a
directed acyclic graph (DAG). Figure 1 shows an example of such a DAG. In the
example, Samplen receives a data stream, Extractn extracts a keyword, and Countn
aggregates the number of keywords. In the DAG, vertices are processing operators
(POs), and they transmit the data stream through edges. Each PO replicates multiple
instances (POIs), and they are deployed on a distributed server. If there are multiple
receiver POIs, the sender POI changes the edges frequently. Therefore, DSPEs require
a stream partitioner for sender POIs to select receiver POIs. In this case, the receiver
POIs may be deployed in the local machines as well as the remote machines. The basic
idea for reducing the network communication cost, which is the largest proportion of
the turnaround time in stream processing, is to select the POI placed on the local
machine as the receiver. This idea is called locality-aware stream partitioning (LSP).
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Many studies have already introduced locality and achieved high-performance
benefits. In particular, Apache Hadoop [1], a representative distributed batch pro-
cessing engine (DBPE), introduces locality into the MapReduce framework [2–5]. The
advantage of this locality can also be applied to DSPEs, and a few studies deal with
LSP [6–8]. However, most studies do not fully exploit the characteristics of DSPEs
because they apply the locality of DBPEs to DSPEs in the same way. In this paper, we
define the relationship between DBPEs and DSPEs as duality. The contributions of this
paper can be summarized as follows. First, we theoretically analyze the use cases of
existing LSP methods. Second, we present the duality relationship between DBPEs and
DSPEs and explain the limitation of stream partitioning methods considering only
locality in DSPEs. Third, we present a simple but efficient ping-based mechanism for
the duality-based LSP.

2 Related Work

Apache Hadoop [1] is a widely used DBPE that stores large data blocks on HDFS servers
and allocatesmultiple tasks to each server to process the data. If the required blocks are not
on the same server as the task, the task copies the blocks from the other server over the
network. To reduce this network bottleneck, many works introduce locality to task par-
titioning. In particular, binary locality [2, 3] and discrete locality [4, 5] are proposed
according to the locality-awareness. This locality concept of DBPE is well adapted to the
characteristics of processing large data, and thus leads very high performance.

As a representative DSPE, Apache Storm [9] provides several stream partitioning
methods [6]1. Among them, Local-or-Shuffle Grouping (hereinafter referred to LoSG)
does not generate network communication since sender POIs select receiver POIs
operating in the same process by introducing binary locality of DBPEs. However, due
to the lack of consideration of the characteristics of DSPEs, the locality is reduced or
cluster utilization is lowered. Caneill et al. [7] propose an LSP method for stateful
applications. However, since stateful partitioning requires a lot of user knowledge and
restricts applications, we focus on stateless partitioning. We have studied the LSP of
the ping-based mechanism in the previous work [8], and this paper presents its rationale
in terms of locality and duality.

Fig. 1. An illustration of duality between DBPEs and DSPEs.

1 Apache Storm describes stream partitioning as grouping method.
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3 Duality-Based Locality-Aware Stream Partitioning

In this section, we show how to apply locality effectively in DSPEs based on the
duality concept between DBPEs and DSPEs. First, we classify the existing LSP of
DSPEs (i.e. LoSG) into four use cases. To this end, we assume the followings: (1) only
a single process runs per server, and (2) all tasks are allocated as evenly as possible.
These assumptions are for simple modeling of use cases and do not affect the duality
described below. If we denote the number of sender POIs as S, the number of receiver
POIs as R, and the number of servers as N, LoSG can be classified into four use cases:

1. Best locality: locality and load balancing are maximized,
if SmodN ¼ 0 and RmodN ¼ 0.

2. Strong locality: locality is maximized but load balancing is not,
if RmodN 6¼ 0 and R [ Nð Þor RmodN ¼ 0 and SmodN 6¼ 0ð Þ.

3. Weak locality: only partial locality is guaranteed, if R\N and SþR [ N.
4. Worst locality: no node guarantees locality, if S þ R � N.

Best locality and strong locality show high performance because no network
communication occurs in data transmission. On the contrary, weak locality and worst
locality have relatively low performance because they require network communication.
Based on this observation, DSPE applications can place S and R in best locality or
strong locality according to N for high performance. However, these use cases are
extremely classified to show the benefits of locality, and only horizontal task parti-
tioning is considered.

Next, we explain the duality concept between DBPEs and DSPEs. DBPEs require
task partitioning which distributes tasks to each server in order to process the data
distributed and stored in the cluster. On the contrary, DSPEs require stream parti-
tioning which selects the task to transmit data among the tasks distributed in the cluster.
Thus, DBPEs and DSPEs are similar but have a duality relationship with each other.
Figure 2 shows their duality relationship, and Table 1 describes the duality between
DBPEs and DSPEs in terms of locality.

Fig. 2. An illustration of duality between DBPEs and DSPEs.
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By considering data locality, DBPEs deploy the tasks on the server where the data
requested by each task is located. This approach is used where the data blocks that
DBPE handles are very large (e.g. the default block size of HDFS is 128 MB), which
requires a high communication cost. Similar to DBPEs, DSPEs can also select the
receiver POI located in the same server as the sender POI, taking into account the task
locality (i.e. LoSG). However, the data size of DSPEs is relatively small compared to
DBPEs (e.g. Twit messages are less than 1 KB). This characteristic of DSPEs increases
the load of the receiver POI and wastes computing power of the other receiver POI if
we transmit the messages only to the receiver POI of the same server. In addition, the
following variables can cause performance degradation despite best locality due to high
load on the receiver POI:

1. TA: vertical, horizontal, and hierarchical task allocation in a job.
2. MJ: multiple job assignment in a distributed stream processing engine.
3. NC: network capacity in a hierarchical cluster.
4. OP: other CPU- and memory-bounded processes in a cluster.
5. FS: fluctuation of message size and occurrence interval of data stream.
6. HS: heterogeneity of resources among servers in a cluster.

These variables have a significant effect on stream partitioning considering only
locality. In other words, although it is efficient to transmit the messages to the idle
receiver POI of another server, the messages are transmitted only to the receiver POI of
the same server. Therefore, based on the duality relationship between DBPEs and
DSPEs, the LSP should be able to select an optimal receiver including not only the
same server but also other servers considering various variables at the time of trans-
mitting messages.

We classify the six variables described above into two categories in terms of stream
processing. First, TA, MJ, and NC are classified as Network Distance (ND), which
represents the relative distance between a sender POI and receiver POIs. Second, OP,
FS, and HS are classified as Receiver Load (RL), which represents the computing
power of each receiver POI. Therefore, we need ND and RL measurements for optimal
stream partitioning. We can estimate ND as discrete locality [4, 5], but ND may be
changed from time to time in large clusters. We can estimate the RL by local load
estimation [10], where each sender POI aggregates the amount of transmission locally,
but cannot accurately measure the load by considering only a part of the RL of the
receiver POI. Therefore, the most accurate way is for the stream partitioner to measure
ND and RL directly.

Table 1. Duality between DBPEs and DSPEs for supporting locality.

DBPE DSPE

Static object Data (block) Task (POI)
Dynamic object Task (map or reduce) Data stream (messages)
Data unit size Large (hundreds of MB to GB) Small (hundreds of bytes to MB)
Partitioning policy Task partitioning Stream partitioning
Optimization factor Data locality Task locality
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The simplest and most efficient way to measure both ND and RL is to use ping.
Ping measures the round-trip time (RTT) by sending and receiving packets small
enough to not affect the system to the remote server, and this RTT includes ND and RL.
In other words, with ND, RTT of the same server is the lowest, and RTT increases as
the number of network hops increases. Also, with RL, the higher the server’s com-
puting power, the lower the RTT. Therefore, the ping-based RTT measurement is very
suitable for duality-based LSP. In actual preliminary experiments [8], the ping-based
method showed up to 1.6 times faster transmission time than Shuffle grouping [6] in the
best locality, and 8.6 times higher resource utilization than LoSG in the strong locality.

4 Conclusions and Future Work

In this paper, we presented the duality between DBPEs and DSPEs in LSP. The
existing LSP, LoSG, applied the locality of DBPEs as it was, and transmitted the
messages only to the receiver POI of the same server. This did not take into account the
characteristics of the DSPEs. Therefore, we analyzed the duality relationship between
DBPEs and DSPEs, and explained that it was efficient to transmit some messages to the
receiver POIs of other servers in DSPEs. We also proposed a ping-based mechanism to
solve the limitations of existing LSP. In future work, we will (1) theoretically present
the optimal model for performing stream partitioning, and (2) analyze the effect of the
ping-based mechanism on LSP and the comparison with existing stream partitioning.
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Abstract. Apache Kafka is a distributed message queuing platform that
delivers data streams in real time. Through the distributed processing
technology, Kafka has the advantage of delivering very large data streams
very fast. However, when the data explosion occurs, the message latency
largely increases and the system might be interrupted. This paper pro-
poses a load shedding engine of Kafka that solves this message latency
problem. The load shedding engine solves the data explosion problem by
introducing a simple mechanism that restricts the transmission of some
messages when the latency exceeds the given threshold in the Kafka’s
producer. Experiments with Apache Storm-based real-time applications
show that the latency does not continuously increase due to the load
shedding function in both single and multiple data streams, and main-
tains a constant level. This is the first attempt to apply a load shedding
technique to Kafka-based real-time stream processing, providing simple
and efficient data explosion control.

Keywords: Big data · Data stream · Apache Kafka · Load shedding

1 Introduction

Apache Kafka [1] is a distributed message queuing platform that delivers large
data streams [6] very fast across multiple servers, ensuring scalability and high
availability [5]. However, when data explosion occurs, there is a problem that
the latency of messages loaded on Kafka gradually increases. If this situation
continues, there would be a lot of messages waiting on Kafka and the real time
nature of data streams could not be guaranteed, and in the worst case, the
system might be shut down. Therefore, in this paper, we apply a load shedding
mechanism to the Kafka-based real-time processing environment. Load shedding
[7] is a overload control technique that discards some messages so that the system
is not overloaded if the data stream instantly explodes and exceeds the processing
capacity of the system.

The proposed load shedding technique uses a simple concept that measures
message latency in Kafka and discards some messages based on the latency. That
is, when the latency exceeds the user-given threshold (ε), the Kafka’s producer
c© Springer Nature Switzerland AG 2020
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restricts the transmission of some messages. The latency threshold and message
transmission ratio are determined by the system administrator who knows the
data characteristics well. This latency-based mechanism has the advantage of
easy implementation with the simple concept while performing the load shedding
function efficiently.

In the experiment, we use Apache Storm [3,4] for processing real-time appli-
cations. Storm is a real-time distributed stream processing platform, and in the
experiment it runs a sorting application for continuous array streams. Experi-
mental results show that the latency increases gradually in the existing system,
while the latency does not continuously increase in load shedding applied sys-
tem and maintains a constant level. In addition, even for multiple input sources,
it performs load shedding of each source in parallel correctly. This is the first
attempt to apply load shedding to Kafka-based real-time data stream processing,
providing simple and efficient data explosion control.

2 Related Work

In this section, we explain the concept of load shedding and its recent tech-
nologies. Load shedding maintains an appropriate load by ignoring some of the
input data when more data than the system’s processing capacity is introduced.
Load shedding techniques are classified into two categories: random selection and
semantic-based techniques. Random selection load shedding randomly ignores
the input data regardless of the data content. On the other hand, semantic-
based load shedding weights to the data and ignores some data based on their
importance. In this paper, we use random selection because all input data are
assumed to be equivalent.

Recent load shedding techniques consider the relationship between data
items, computation processing time, and system power consumption. CoD [8]
estimates the relationship between input data items and ignores relatively irrel-
evant items. LAS [9] calculates the latency based on the computation processing
time and the amount of tuples. After then, if the total latency of the input
data stream is longer than a user-specified threshold, it ignores some data of the
stream. E-DLS [10] is effective in reducing the power consumption and communi-
cation bandwidth, and it reduces the usage of system resources while maintaining
the maximum throughput.

The above recent techniques have advantages and disadvantages compared
to the random selection load shedding used in this paper. First, CoD shows bet-
ter results in latency and relative error ratios than the random selection, but
is complex to process and implement. Also, CoD has an additional overhead,
which requires a separate implementation of the window sample and the data
buffer. Second, LAS yields better results than the random selection at average
processing time and average queuing time. But, it is difficult to implement with-
out sufficient experience with the system because it needs to know the processing
time and the data characteristics. Third, E-DLS uses power and communication
bandwidth efficiently, but due to use of the cluster, we need to know exactly the
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role of the cluster nodes. In particular, Kafka, which manages the cluster through
Zookeeper, doesn’t know exact roles of cluster nodes. Based on the above obser-
vations, we use simple and efficient random selection despite the advantages of
the new techniques.

3 Latency-Based Load Shedding Engine in Apache Kafka

This section describes the load-shedding mechanism in Apache Kafka-based real-
time processing systems. The proposed engine determines the three major issues
[7] of load shedding as follows. First, the load shedding time is determined when
the message latency exceeds the given load shedding threshold. Since the input
rates of data streams change dynamically, we need to keep the message latency
below a certain level to guarantee real-time processing. Thus, the proposed load
shedding engine measures message latency and starts load shedding when the
latency exceeds a given threshold. Second, the load shedding position is deter-
mined as a Kafka producer delivering the data stream between the data stream
source and the real-time processing system. This is because the real-time sys-
tem does not perform unnecessary processing by discarding the message before
handling the data stream. Third, the load shedding quantity is determined by
the system administrator. This is to maintain the load of the whole system con-
stantly by setting an approprite load shedding ratio under the recognition of the
system administrator.

Figure 1 shows an example architecture of the proposed Kafka-based load
shedding engine. As shown in the figure, the data input and output of the real-
time message processing system correspond to Kafka’s producer and consumer.
It then processes and analyzes stream data through a real-time message process-
ing system such as Apache Storm [3,4] and Apache Spark Streaming [2]. The
load shedding manager operates independently of the real-time message process-
ing system and cooperates with the Kafka consumer to determine whether the
data explosion occurs. If data explosion occurs, it discards message at a preset
load shedding rate. In Fig. 1, steps 1© to 8© show the procedures for message
processing and load shedding.

Fig. 1. A real-time processing system adopting the Kafka-based load shedding engine.
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Our load shedding engine manages the data stream on a source basis, so it
can support load shedding function for each source for multiple sources. Figure 2
shows the operation procedure for handling multi-source streams. First, when
the Kafka consumer requests a socket communication to the load shedding man-
ager, the manager accepts the request ( 1©), passes the connected socket, and
creates a managing thread ( 2©). After establishing the communication, the con-
sumer delivers message sending/receiving times to the managing thread ( 3©).
Each thread computes the latency from the sending/receiving times and deter-
mines whether load shedding is required for the corresponding source.

Fig. 2. Operation procedure of handling multiple sources in the load shedding manager.

4 Experimental Evaluation

The experimental application is to input an array of real numbers as a stream,
sort it and output it again. We use Apache Storm as a real-time processing
system and construct a Storm topology for sorting the arrays. The hardware
platform consists of one master and eight slave nodes, each equipped with Xeon
E5-2630V3 2.4 GHz 8Core CPU and 32 GB RAM. We configure the load shedding
manager on an HP workstation with Intel i7 3.60 GHz CPU and 8.0 GB RAM.

The first experiment is the latency comparison in a single source. We set the
latency threshold (ε) to 5 s and the load shedding ratio to 0.01. We then input
an array of 1000 real numbers every 1 ms. Figure 3(a) shows the latency of the
system with and without load shedding. In the figure, if load shedding is not
applied, the unprocessed messages continue to accumulate, and the latency also
continues to increase. In this case, the latency reaches several tens of seconds,
and the real-time property cannot be guaranteed at all. On the other hand, if
load shedding is applied, we can control the system load by temporarily limiting
the messages. The latency is continuously increased until it exceeds the threshold
of 5 seconds, but when it exceeds 5 seconds, it is shortened by the load shedding
and it is increasing again. By applying load shedding in this way, we can control
the latency below the threshold, although it discards some messages.

Figure 3(b) shows the latency for each source for multiple input sources.
Similarly, we set the latency threshold to 5 seconds and the load shedding ratio
to 0.01. We input an array of 700, 1, 000, and 1, 500 real numbers every 1 ms
to Src1, Src2, and Src3, respectively. As shown the figure, although there is a
slight difference depending on the array size, the latency of all sources tends
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to repeat increasing and decreasing without increasing continuously. It means
that the load shedding engine works well for multiple sources as well as a single
source.

(a) Single source. (b) Multiple sources.

Fig. 3. Comparison of latency with and without load shedding.

5 Conclusions

In this paper, we proposed a Kafka-based load shedding engine in a data stream
environment. Our method performed load shedding when the latency exceeded
the threshold, and discarded messages in the Kafka producer for quick overload
control. Experiments using Apache Storm showed that load shedding worked
efficiently for both single and multiple sources. Future research will explore an
intelligent mechanism for self-tuning the load shedding ratio for non-experts.
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Abstract. CoAP (Constrained Application Protocol) with block-wise
transfer (BWT) option is a known protocol choice for large data transfer
in general lossy IoT network environments. Lossy transmission environ-
ments on the other hand lead to CoAP resending multiple blocks, which
creates overheads. To tackle this problem, we design a BWT with net-
work coding (NC), with the goal to reducing the number of unnecessary
retransmissions. The results show the reduction in the number of block
retransmissions for different values of block size, implying the reduced
transfer time. For the maximum block size of 1024 bytes and total loss
probability of 0.5, CoAP with NC can resend up to 5 times less blocks.

Keywords: CoAP · Block-wise transfer · REST HTTP

1 Introduction

One of the most known IoT (Internet of Thing) protocols, CoAP [2], integrates
BWT [1] as a good choice to transmit large amount of data. Since CoAP oper-
ates over User Datagram Protocol (UDP) and is thus fundamentally unreliable,
it introduces a mode operation confirmable where a message is considered deliv-
ered once the acknowledgment has been received. This mode is often combined
with BWT implementation where a large resources are divided into blocks for
transferring. The receiver needs to send an acknowledgment after each received
block. In lossy environments, which is typically the case in IoT, these acknowl-
edgments can fail to arrive at the client, resulting in unnecessary retransmissions.

This paper addresses this problem of unnecessary retransmission by combin-
ing BWT in CoAP with NC (NC BWT). Similar approach has been done for
REST HTTP in [5]. Since REST HTTP and CoAP follow the same request-
reply paradigm, the REST HTTP algorithm was modified for the specific CoAP
requirements. Instead of adding a NC layer for REST, in this paper we introduce
a novel design which adds NC technique in form of a so called option value for
BWT. It is a simple coding scheme with only XOR operations for the normal
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coded blocks, except the additional blocks using random linear network cod-
ing (RLNC) to better operate in constrained devices and environments. The
numerical results show that additional retransmission of blocks can be reduced.

2 Related Work

The authors in [3] extend BWT using NC, while authors in [4] propose a scheme
where multiple blocks can be retrieved by one request, focusing more on the
problem of reducing latency. The goal of these schemes is to reduce communi-
cation time. Our paper focuses on another approach, combining NC and BWT
based on the work in [5] to reduce the amount of traffic that needs to be resent,
therefore improving bandwidth utilization.

3 System Design

3.1 Scenario

This section shows our scenario using NC method to apply for BWT in CoAP.
Our scenario considers a CoAP client-server communication as shown in Fig. 1a.
The client sends a large resource divided into 5 blocks. Our scheme uses BWT
with stop-and-wait mechanism. BWT without NC in Fig. 1a.1 allows the blocks
to be retransmitted when the client does not receive their acknowledgment in
timeout interval. However, resending blocks p1 is unnecessary because it has
arrived at the server. To address this issue, we design a NC scheme in Fig. 1a.2.
We observe the acknowledgment of block p1 is lost, but the client is unaware of
what is happening at the server. So, the client should perform NC among blocks
after each timeout. In our scenario, one new block is only presented by one
coded block at a time. Therefore, coded blocks are always linearly independent
[6]. Taking advantage of this feature, we perform NC with only XOR operations,
instead of RLNC as [5], to reduce coding/decoding overhead. With simple XOR
operations, we can remove coding coeffcients from the option value. As a result,
we can dramatically reduce the protocol overhead. At the time of arriving coded
block (p1 +p2 +p3 +p4), along with block p1 received before, the server operates
Gauss Jordan Elimination(GJE) to identify seen blocks p1 and p2 (please refer
to [5] to understand seen packets). The acknowledgment R(sn,htp,rdts)=(2,4,2)
can be responded even when the original blocks have not been decoded yet, where
sn = 2, htp = 4 and rdts = 2 are the newest seen block, highest block ID that
the server has, and number of additional blocks, respectively. The two additional
blocks (δ1p3 + δ2p4) and (δ3p3 + δ4p4) are resent using RLNC, since they are
coded from the previous blocks. Observe Fig. 1a.2, the first additional block is
lost. When R(3,4,1) comes, based on the option value presented below, the client
can identify this one responded from the second additional block with the symbol
of two stars in the figure, and decide to send the native block p4 instead of coded
block δ5p4 + δ6p5 as [5] to decrease coding/decoding complexity. Observe that
BWT with NC can shorten 1 block cycles compared to BWT.
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3.2 Option Value

(a) Scenario of BWT with and without NC (b) Option value

Fig. 1. Scenario BWT with and without NC, and option value for BWT with NC.

Figure 1b.3 shows the option value of request block. The typical sizes (in bits) of
various fields are written inside. Not and Noe are the minimum and maximum
block index, respectively, involved in the random linear combination (RLC),
where Noe = D + Not. Cc is the number tagged for each coded block to dis-
tinguish the acknowledgment of which the transferred block is. M denotes more
flag, M = 0 and M = 1 show the coded block contains and does not contain the
last block, respectively. SZX is the block size. δi is the coding coefficient of ith

block involved in RLC.
Figure 1b.4 represents the option value of acknowledgment. Cs is copied from

Cc received from the client side. sn is the newest seen block. rdts denotes the
number of additional blocks. The highest block index htp exists at the server,
which is indirectly represented via U , where htp = U + sn.

3.3 Coding and Decoding, and Computing Additional Blocks

The coding process is similarly performed as [5], but one new feature of Algo-
rithm 1 is added to distinguish which acknowledgement responds for correspond-
ing block. Note that all blocks of a resource are only dropped from the buffer
when that resource is successfully transacted.

if Acknowledgement (Ack) received for the additional blocks then
if Cs < Cc then

Ack of previous additional block; perform as [5], but use XOR;
else

if rdts > 0, detect losses; Resend using RLNC as [5];
end

else
if htp < Noe, Ack of previous normal block: No transmission;

end
Algorithm 1: Acknowledgement identification.
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For decoding process, acknowledgement method, decoding and delivery
method, buffer management method are similarly performed same as [5].

Let N , R and B be the total number of blocks of a resource, size of a resource
and size of each block, respectively. The total number of blocks sent is N =

⌈
R
B

⌉
.

Based on analysis in [5], the number of additional blocks of BWT AWoNC =
N

1−p − N and of NC BWT AWNC = N
1−(α·p) − N , where p is the total loss

probability for both request block and acknowledgement, and α is the loss rate
when the client transfers block to the server.

4 Numerical Results

This section shows numerical results to compare block-wise transfer in CoAP
with network coding (NC BWT) with traditional block-wise transfer in CoAP
(BWT) in term of the number of redundant blocks in Fig. 2. For our example, we
consider an application with size R = 512000 bytes, where three types of block
size B are chosen: 1024 bytes, 512 bytes, and 256 bytes. With an application
size R = 512000 bytes, the number of blocks for block size B = 1024 bytes is
N =

⌈
R
B

⌉
=

⌈
512000
1024

⌉
= 500 blocks, for block size B = 512 bytes is N =

⌈
R
B

⌉
=⌈

512000
512

⌉
= 1000 blocks, for block size B = 256 bytes is N =

⌈
R
B

⌉
=

⌈
512000
256

⌉
=

2000 blocks. The total loss probability p is considered in [0; 0.9]. We assume that
all types of block size B have the same total loss probability p. Three values of
the request block loss rate α = 0.3; 0.7 and 1 are selected. AWoNC = N

1−p − N

and AWNC = N
1−(α·p) −N are used to compute the number of redundant blocks

for BWT and NC BWT, respectively.
Examples of NC BWT and BWT in term of the number of redundant blocks

shown in Fig. 2. Figure 2a, Fig. 2b and Fig. 2c present the scenario with request
block loss rate α = 0.3, α = 0.7 and α = 1, respectively. We see that for
both BWT and NC BWT when the total block loss probability p increases,
the number of redundant blocks also increases because the higher total block
loss probability p is, the more retransmissions happen. We also observe that
the number of retransmissions with block size B = 256 bytes is the highest for
both BWT and NC BWT because under the impact of block loss, if a smaller
block size is selected, the resource is divided into more blocks, therefore leading
to more block losses, and resulting in more retransmissions. NC BWT always
outperforms BWT term of the number of redundant blocks. We consider an
example of p = 0.5, B = 1024 bytes, BWT needs to resend 500 blocks for all
values of request block loss rate α, but NC BWT only resends 88.235 blocks for
α = 0.3, and 269.231 blocks for α = 0.7. In addition, we observe that the smaller
the loss rate value α, the more the benefit from NC BWT is. We can explain
for this that the client with NC BWT only performs to re-dispatch for the lost
request blocks. As a result, the request block loss rate α = 0.3 is the best case for
using network coding, compared to α = 0.7 and α = 1. Figure 2c with the request
block loss rate α = 1 shows that NC BWT does not have any benefit from NC
for all total loss probability p, it even makes bandwidth utilization worse, if we
take coding coefficients in the option value into account when sending redundant
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(a) α = 0.3 (b) α = 0.7 (c) α = 1

Fig. 2. Number of additional blocks with network coding NC BWT and without BWT

blocks. With these analyses, we can give a conclusion that NC BWT is totally
better than BWT for all cases, except the request block loss rate of α = 1.

5 Conclusion

Network coding is a concept for enhancing bandwidth utilization. In this paper,
we consider a combination between block-wise transfer with network coding
in CoAP. We shows how our algorithm can reduce the number of redundant
blocks and enhance bandwidth utilization in lossy and unreliable environments.
In future works, we will do simulation for our design to see the impact of network
coding on large resource transfer.
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Abstract. There is a disconnect between the structure and behavior
of computer systems, and the way they are described and instructed in
applications and system software. To each application, the structure of
the system is presented as a homogeneous collection of memory and com-
pute resources and peripherals to be utilized in full, while the operating
system attempts to provide a layer of abstraction from the specifics of
the devices, and the resource contention inherent to multiprocessing sys-
tems. This simplified and abstract view allows applications to function
correctly with little regard to the specifics of the underlying hardware,
and scale up with relative ease. However, disregarding the inherent het-
erogeneity of the hardware comes at the cost of degraded performance
and reduced interoperability.

This work attempts to identify sources of heterogeneity common in
multiprocessing systems, or emerging through new hardware or interac-
tion paradigms, and discusses how these effects impact the performance
and interoperability of applications on such systems.

Keywords: Heterogeneity · Multiprocessing · Classification

1 Introduction

In this work, we focus on the effects of heterogeneity in resources where software
either expects homogeneity, or is presented the illusion thereof by the oper-
ating system. Traditional Symmetric Multiprocessing (SMP) systems contain
two types of resources with that property. The first instance is main memory,
where through the ubiquitous virtual memory abstraction to the application all
bytes are presented equally, forming an isolated, apparently homogeneous vir-
tual address space for each process. The second instance is compute resources,
or Cores, on the homogeneity of which the symmetry of SMP relies.

Both of these types of resources have in common that their apparent homo-
geneity as presented to the application is disconnected from properties of the real
hardware, and no portable standard operating system APIs for resource discov-
ery exists, making the creation of portable applications capable of mitigating
or even utilizing the heterogeneity of the hardware exceedingly difficult, which
is especially egregious in cases where the mitigation that an operating system
abstraction can provide is limited.
c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 742–745, 2020.
https://doi.org/10.1007/978-3-030-48340-1_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_60&domain=pdf
https://doi.org/10.1007/978-3-030-48340-1_60


A Classification of Resource Heterogeneity in Multiprocessing Systems 743

2 Classification

The following sections outline four types of resource heterogeneity, two of
which are concerning main memory, and two are concerning the systems com-
pute resources. We build on the term Non-Uniform Memory Access (NUMA),
which is already well established in literature, and introduce the similar terms
Non-Uniform Memory Segments, Non-Uniform Compute Capabilities and Non-
Uniform Instruction Set Architecture to describe other types of heterogeneity.

2.1 Non-Uniform Memory Segments

Each addressable physical memory cell has functional and non-functional prop-
erties that are caused by the hardware memory module that backs it. Some of
these properties, such as access throughput and latency, directly impact the per-
formance of the application process, while others, such as error correction (ECC),
change how the overall system responds to external events.

In systems with Non-Uniform Memory Segments, the hardware modules
backing physical memory cells differ in their functional and non-functional prop-
erties in a way that is not mitigated by the systems hardware and firmware. A
currently emerging example for such a configuration is a system that contains
both volatile, and non-volatile memory DIMMs that share the same physical
address space. Further examples can be found in the Internet of Things (IoT)
domain, where the main memory of embedded controllers may be backed by
modules with differing access latency behaviour, for example as it is found in
Flash and SDRAM technology.

Historically, this issue is solved in the operating system through a virtual
memory abstraction and the knowledge of the operating system about the mem-
ory layout, or in systems without that abstraction through explicit references to
memory locations in the embedded application. This is possible because the dif-
ferent types of memory have specific purposes and their properties are leveraged
accordingly, for example by directing all dynamic memory allocations of appli-
cation processes to heap space located in SDRAM, which restores the illusion of
homogeneity.

With the availability of non-volatile memory technologies, this is starting to
change. In systems with general-purpose heterogeneous memory modules, the
application process needs to indicate what types of memory are suitable for
each allocation, which is not possible with existing standard memory allocation
interfaces, and while Schwalb et al. and others are working on new APIs for
NVRAM allocations [3,6], no approach has yet been adopted into the Portable
Operating System Interface (POSIX) standard to fill this gap.

2.2 Non-Uniform Memory Access

Beyond backing separate regions of the physical main memory with modules of
different properties, the distribution of these modules in the system also intro-
duces access heterogeneity, as described by the well established NUMA architec-
ture that is widespread in modern SMP systems.
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NUMA was created to mitigate the starvation effects in memory access in
multiprocessing systems with a shared memory bus, where resource contention is
a limiting factor for scalability [1]. In NUMA systems the memory is distributed
across the compute nodes and access to memory not local to the compute node
is provided through the processor interconnect.

While this approach reduces the congestion on the memory bus and as a con-
sequence improves the memory throughput of multiprocessing systems, it intro-
duces heterogeneity into the memory access, where the latency and throughput
of memory access for a process depends on the locality of the physical memory
cell with respect to the executing processor. An unaware parallel application
can be caught off-guard by these effects and suffer severe performance degrada-
tion, to the extent that it performs worse and consumes more resources than an
instance of the same program run on a smaller machine.

Operating systems try to mitigate these issues through predictive task and
memory placement and migration to increase data locality. Additionally, a wealth
of approaches trying to establish NUMA-aware allocation APIs exists, such as
the PGASUS Project by Hagen et al. [2] and libnuma by Kleen [5], but again
none have been adopted into POSIX.

Lastly, the emerging GenZ architecture specification introduces more degrees
of freedom into the structure of the memory communication, which is expected
to further complicate the existing problems by introducing even more levels of
locality.

2.3 Non-Uniform Computing Capabilities

The mobile and IoT ecosystem has given rise to the ARM big.LITTLE architec-
ture, in response to conflicting demands for high peak performance in contrast
with battery efficiency during phases of low utilization. In this configuration,
a system contains processing units with varying performance and energy con-
sumption characteristics, allowing the operating system to switch between a
power-hungry high performance mode, and a battery saving mode on demand.

In big.LITTLE, the operating system can switch between pairs of cores, or
between the entire cluster at runtime, but it is also possible to operate all of the
cores at once in a heterogeneous multiprocessing configuration. The successor
of this architecture is ARM DynamIQ, which provides more degrees of freedom
in the configuration of the cores. Additionally, Intel has announced a similar
architecture with Lakefield.

Scheduling on heterogeneous multiprocessing systems faces unique problems,
since tasks behave differently on the heterogeneous cores, and optimal placement
is difficult to predict. A task waiting for IO completion in a spinlock will waste
resources on a faster core, while a task busy with calculations will have a longer
turnaround time on a smaller core. As a consequence, the throughput and the
energy efficiency of the system will degrade unless a heterogeneity aware sched-
uler is used, which constantly monitors and migrates workload to appropriate
cores.
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While work on improving scheduling on heterogeneous systems is ongoing,
for example by Kim et al. [4], POSIX and the C standard again provide no means
to explicitly annotate a program or a subroutine with regards to its requirements
to the executing compute unit.

2.4 Non-Uniform Instruction Set Architectures

The technologies discussed in the previous section rely on cores that are binary
compatible, to enable seamless migration of tasks between the cores. It is also
possible to configure a system with heterogeneous cores that are not binary
compatible, and that have different Instruction Set Architectures (ISAs).

This includes many types of accelerators, where tasks are explicitly offloaded,
and interoperability with applications often achieved through message passing
and shared memory. However, devices with cores adhering to separate ISAs that
could be operated in a true SMP configuration do exist, such as the RV32M1
SoC, which contains an ARM and a RISC-V core, or the parallella SoC, which
contains an FPGA that can be configured as a soft core running in an SMP
configuration with the boards ARM core. This poses even more unique challenges
to the operating system scheduler and kernel in maintaining interoperability
between the ISAs and is worthy of further investigation.

3 Conclusions and Future Work

In this work, we have distinguished four types of heterogeneity that are existing
in multiprocessing system, as well as their relevance for applications and system
software. We have shown that operating systems interface standards are not suit-
ably adapted to these effects to allow portable applications to behave optimally
on both homogeneous and heterogeneous systems, but that new programming
approaches and APIs are emerging to mitigate the issues and allow applications
to utilize the strengths of the heterogeneous hardware.
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Abstract. Schedulers have improved and optimized the performance
of various multi-threaded applications over many years. Schedulers are
conceived as a part of user space task or realized as an algorithmic imple-
mentation within the operating system scheduler. However, there is no
generic design in place to enforce a scheduler design targeting a selected
group of tasks in the operating system.

In this paper, we present a novel approach to generalize an abstract
decision engine, which would select the appropriate scheduler design
based on the user and system constraints. This paper also provides a
case study on IRS(Iterative Relaxed Scheduling) framework. The eval-
uation of this case study provides a foundation for the generic decision
engine, which would alter the behavior of selected tasks in the operating
system.

1 Motivation

In operating system, we have process scheduling and thread scheduling. Task is
the generic term used within Linux based operating system to refer to a process
or a thread [7]. In the rest of this document, we would use the terms process and
thread inferring the same, which is task.

Thread scheduling is a method used to exhibit efficient resource sharing
among multiple threads on a single machine. A scheduler is a thread in the oper-
ating system, which deals with scheduling. A scheduler is evaluated based on the
following metrics: throughput, waiting time, response time, fairness [7]. There
are many working models and designs addressing thread scheduling in an oper-
ating system. However, those models/designs are primarily aimed at addressing
the entire system rather than tailor-made for each multi-threaded application.
In this proposal, we mainly focus on a design, which is motivated from using
two design paradigms. These paradigms are based on user-level and kernel-level
scheduling designs. In user-level scheduling, we have a scheduler designed in
the user land primarily as a user level thread, which makes scheduling deci-
sions for a given multi-thread application. However, there are many limitations
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to such an approach. One disadvantage is the possibility of getting context-
switched by the operating system scheduler. In Linux operating system, we have
the ability to design kernel modules which has the capability to be used as
a plug-and-play feature. There are many publications, which address the abil-
ity to use this plug-in-play feature for enabling custom process scheduling in
Linux [2,4]. LKM(Loadable Kernel Module) based scheduler implementation is
motivated from the above idea [5]. LKM based scheduler was adapted to be
used in the thesis work, which dealt on software verification for multi-threaded
applications [6]. Preliminary evaluations and conclusions from this work suggest
a need for an abstract decision engine to get the best out of both the design
choices.

An abstract decision engine is a novel engine, which makes a single selection
between two scheduling designs based on the user’s multi-threaded program and
the scheduling constraints persistent with the given program.

2 Case Study

The idea presented in this paper is validated by implementing a proof of con-
cept on the IRS framework [6]. The proof of concept works as a case study for
this paper. Iterative Relaxed Scheduling(IRS) is a software verification frame-
work designed for verifying multi-threaded applications for concurrency bugs [3].
Figure 1 depicts a comparison between IRS and conventional verification app-
roach.

Fig. 1. Comparison between conventional
and IRS approach [3]

IRS consists of a scheduler and
a verifier. The scheduler in IRS is
intended to enforce schedules generated
from the verifier on a multithreaded
program. The verifier generates safe
schedules (Schedules which are deemed
to be safe from concurrency bugs) for
a given multithreaded program. The
scheduler within IRS enforces the above
mentioned safe schedules on a given
multithreaded program. The scheduler
for IRS is implemented in three differ-
ent ways: user space scheduler, kernel
space scheduler and kernel space sched-
uler with a proxy decision making in the
user space [6]. Different evaluations are
conducted on top of these three design

choices to determine the best option among them. Execution overhead is the met-
ric used in these evaluations. The execution overhead is the additional execution
time consumed by the benchmark when enforcing the scheduling constraints
over plain execution of the benchmark(benchmark run without any scheduling
constraints). The scheduling constraints are primarily the constraints provided
in the safe schedules.
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Table 1. Fibonacci - execution overhead(%)

mem const user sched kernel sched(no proxy) kernel sched(with proxy)

24 381.5 333.704 152.425

44 1220.398 352.506 160.266

98 2078.221 385.416 277.793

Evaluations are conducted with benchmarking programs such as Indexer,
LastZero, Dining Philosopher’s Problem and Fibonacci. These evaluations are
conducted with varying number of processor cores with core count of 2, 4 and 8.
Table 1 depicts the evaluation of the Fibonacci benchmark. The evaluations are
performed over two threads, where the first 200 fibonacci numbers are gener-
ated among the two threads. The number of memory constraints considered for
this benchmark include 24, 44 and 98. From Table 1, it is clearly evident that
with increase in the number of memory constraints(mem const) the overhead
becomes larger for user space scheduler design. Similarly, with decrease in the
number of memory constraints the kernel space solution creates overhead due
to unnecessary communication to the kernel space. From this evaluation, it is
abundantly clear to formulate a solution with the best of two worlds(user space
and kernel space) [6]. Kernel space with proxy is one such solution, which uses a
proxy checking for a valid memory event and the validity of the event with the
provided memory constraints. Based on Table 1, this solution(kernel sched with
proxy) showcases a very low execution overhead compared to the other scheduler
designs.
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Fig. 2. Dining philosopher’s problem

A scaled evaluation of different
scheduling approaches for the din-
ing philosopher’s problem(number
of threads = 16) is depicted in
Fig. 2 with different number of pro-
cessor cores. The evaluation clearly
shows that the user level scheduler
is better than LKM based sched-
uler when the number of scheduling
constraints (Constraints are decision
parameters, based on which schedul-
ing decisions are made. For exam-
ple, these constraints can be shared-
memory access of a variable in
a multi-threaded application. Here
we have considered memory con-
straints.) were negligible compared
to overall shared memory events. However, user-level scheduler performed poorly
when the number of scheduling constraints were increased. For detailed infor-
mation about the evaluations kindly refer the thesis work [6].
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3 Design

In this paper, we address an abstract decision engine perceived with a decision
function for assisting the selection of a right scheduling design in place for a
given multi-threaded application. The design overview is visualized in Fig. 3.

Let C be the context space for all possible context information, which is
available from a given computational node N and a given multi-threaded appli-
cation am. An element c ∈ C states one of the relevant information, which is
obtained from N or am.

Abstract
Decision
Engine
(ADE)

Multi-
Threaded
Program

pm

Different
Schedule/s

S

LKM
based

Scheduler

User
Space

Scheduler

Context
Information

C

Fig. 3. Design overview

For example, c can be the number of pro-
cessor cores available in the computational
node N , number of threads for the application
am, CPU load exerted by other processes on
the node N , or the number of relevant depen-
dency constraints within the application am.

Let us consider pm as the program used for
running the application am. Let us consider
nr as the number of relevant shared memory
constraints provided for a multi-threaded pro-
gram pm and nt is the total number of shared
memory events within the multithreaded pro-
gram pm. If the condition depicted in equa-
tion (1) holds for an application am, this is an
indicator that usage of user space scheduler
provides a better execution overhead. Whereas, if condition does not hold, such
a scenario implies the use of a LKM based scheduler.

nr << nt (1)

Let us consider S as the set of schedules deemed consistent with the exe-
cution of program pm and the selection set G = {“LKM based Scheduler”,
“User Space Scheduler”}. G corresponds to the set, which contains the avail-
able scheduler choices for an application am. The abstract decision engine can
be realized as a mathematical function making use of inputs C , S, pm to provide
an inference g ∈ G . The target function of this mathematical design is to select
the scheduler design g, which has relatively less execution overhead. Other pos-
sible context information include the amount of spread for relevant dependencies
across the application am.

Such an engine would serve the user to alter execution pattern of his multi-
threaded application without affecting the entire operating system. The engine
would be able to adapt to various system load and resource constraints. The
efficiency of the engine depends upon the amount of evaluations done during
the empirical study. This engine would aid many multi-threaded application
developers to develop their applications without worrying about the underlying
scheduler.
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4 Conclusion and Future Outlook

The evaluation of IRS [6] showcased a need for a design, which could exploit
the benefits of both the worlds(user space and kernel space). In this paper,
we have showcased a novel idea of using the combination of different scheduler
designs based on a mathematical formulation. To built an extensive mathemat-
ical function, it is needed to conduct an empirical study of both the scheduler
designs. Such an empirical study requires an extensive use of different bench-
marking frameworks. Benchmarking frameworks include PARSEC, Splash2 [1,8].
A mathematical function would be derived from the recordings obtained for dif-
ferent performance metrics associated with different bench-marking frameworks
and additional thread conditional programs. The future objective is to find the
right scheduling design, which can minimize the execution overhead.
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Abstract. We present a scientific workflow data management solution
that combines global data access with a block-level optimization of data
transfer, wherein only the data blocks that are used by a remote job are
transferred over the network, significantly reducing data movement for
specific common data access patterns. We propose the implementation of
the solution based on the HyperFlow workflow management system and
the Onedata data management platform. Preliminary results confirm the
advantages of the proposed solution.

Keywords: Scientific workflow management · Scientific data
management · Container clouds

1 Introduction

Deployment and execution of scientific workflows across multiple distributed
computing infrastructures such as clouds benefit greatly when considering cost
and infrastructure requirements. Private and public cloud infrastructures are
the first choice when compute resources are needed temporarily and immedi-
ately and for running a computation. A common approach for data-intensive
distributed computing is to stage the needed data to a remote computing infras-
tructure’s local storage [3]. Depending on the data access patterns this may
result in needless transfers large data sets, even if the computational jobs will
only use a fraction of it – a pattern typical for data-parallel algorithms. However,
transferring only the required portion of a file may not be trivial if the legacy
application running the jobs (a common case in scientific computing) expects
the entire file to be provided. Re-engineering the legacy application could be the
solution, but it may not always be trivial or even possible. In the worst case, the
exact data access pattern may only be known at run-time, so dividing some data
sets into chunks before the execution is impossible. The problem grows linearly
when adding additional nodes or even computing infrastructures – each of them
may need a replica of a large input file.
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In this paper, we report on a work in progress solution for scientific workflow
data management providing a transparent global data access and block-level
optimization of data transfer. We implement the solution based on the Hyper-
Flow workflow management system [1] and Onedata data management platform
[5] deployed in a Kubernetes cluster. The main contributions can be summarized
as follows:

– we propose a solution for scientific workflow data management that offers
transparent global data access and block-level data transfer optimization;

– we present initial integration of the Hyperflow WMS and Onedata running
on multiple distributed Kubernetes clusters;

– we report preliminary results evaluating the optimized data transfer method.

2 Related Work

Scientific workflow data management is a multi-aspect problem with a variety of
existing approaches. In a typical system, exemplified by Pegasus [4], data either
exists on a shared file system, or the WMS tracks all files produced in a workflow
run and transfers them between nodes. Pegasus has a dedicated catalog for this
and adds special data-transfer nodes into the executable workflow graph. In [7],
a tiered storage architecture is proposed for scientific workflow data management.
Data placement strategies are also developed to minimize data movement [6].
Some general studies of data access patterns in scientific workflows and their
consequences for data management design include [8] and [2]. Overall, none the
existing works we are aware of studies data access patterns of scientific workflows
at the block level and uses this mechanism for optimization of data access.

3 Solution Description

An example deployment diagram of the proposed solution is depicted in Fig. 1.
The solution spans across three cloud infrastructures: in-house Openstack cloud
infrastructure; an Amazon AWS and EGI Cloud. On Openstack and Amazon
Kubernetes clusters are deployed using Terraform to provide a uniform infras-
tructure layer. On Kubernetes on Openstack, we setup core services including
monitoring services, high-speed CEPH storage and the Hyperflow workflow man-
agement system. Hyperflow can schedule workflow tasks on a Kubernetes – main
Hyperflow service is deployed on a Openstack Kubernetes and the task can be
deployed on either Kubernetes cluster. Each task is deployed with a monitoring
agent and accompanying Oneclient – which provides transparent data access by
mounting a POSIX FUSE virtual filesystem. Global data access layer is realized
by deploying two Oneproviders – one on each Kubernetes cluster. Oneproviders
provide an abstraction layer over physical storage: CEPH and S3. Oneclient
connects to a local Oneprovider instance and transfers data from a Oneprovider
to a task. Both Oneproviders are registered with EGI Onezone service, which
provides authentication, authorization over data access.
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Fig. 1. Scientific workflow execution in hybrid cloud environment.

Upon workflow execution, a Workflow Description is loaded into Hyperflow.
Workflow tasks are labelled which is to be scheduled on which Kubernetes clus-
ter. For example, less resource-intensive pre- and post-processing tasks are exe-
cuted on in-house Openstack Kubernetes cluster, while CPU and data-intensive
tasks are scheduled to a remote cloud. Initially, all the data needed by the work-
flow is stored on a CEPH storage and no data is present on Amazon S3. When
a CPU intensive task is scheduled on a remote cloud and tries to access the data,
Oneclient connected to a Oneprovider on the remote cloud requests data trans-
parently. Data is transferred from the Openstack Oneprovider to the Amazon
Oneprovider in a P2P fashion.

Table 1. Comparison of execution times of a job reading 25% of a 1 GB file with and
without block-level data transfer optimization. Without the optimization, the entire
file is transferred. With the optimization, only the required 25% is transparently trans-
ferred; two cases are shown: data in continuous block vs. data scattered throughout
the file.

Test case Exec time (s)

100% file data transfer 71
25% continuous block read data transfer 19
25% random read data transfer 22

Onedata operates on blocks, not entire files, so in the case when a job reads
part of a file, only the appropriate blocks are transferred from Oneprovider to
Oneclient (or, in the case of remote data access, between Oneproviders). This
may lead to a significant reduction of data transfer, depending on the job’s data
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access patterns. Table 1 shows a comparison of execution times of a job reading
25% of a 1GB file in three cases: transfer of the entire file, transfer of 25% of
the file data in a continuous block, and transfer of 25% of the file data scattered
randomly. Note that the mechanism is fully transparent: the job accesses the file
as if it existed in a local file system. However, the actual data blocks are only
transferred just-in-time, when requested through read operations.

4 Conclusions and Future Work

The proposed transparent data access for scientific workflows across multi-cloud
offers significant advantages for scientific workflow data management. The global
data access layer allows the execution components to use the POSIX interface
for file operations transparently. The block-level data transfer allows optimizing
data movement for specific common data access patterns.

Future work includes experimental studies involving running different real
scientific workflows characterized by various data access patterns to evaluate
advantages of Onedata block-based data access integrated with the HyperFlow
scientific workflow management system.
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Abstract. Reaching consensus is fundamental in distributed comput-
ing. For each execution of a consensus algorithm, there is no difference
between the proposed values by different nodes with respect to their
proposed times. By presenting a realistic application scenario related to
distributed asynchronous mobile robots in dynamic environments, we
argue some safety-critical, real-time systems require reaching consensus
on the newest proposed values when the old proposed values may not be
valid anymore. Afterward, we formulate a new type of consensus prob-
lem called time-based consensus, which requires to take into account the
times of proposed values. Finally, to tackle such a consensus problem, we
determine an essential characteristic which should be considered.

Keywords: Consensus algorithm · Distributed mobile robot ·
Safety-critical application · Real-time system · Dynamic environment

1 Introduction

Reaching consensus is a primitive of distributed computing [3]. Consensus, infor-
mally, refers to an agreement among a group of nodes in which each node pro-
poses a value, and the goal is to agree on exactly one value. There are several
reasons why, in distributed systems, consensus is required, like to agree on who
is the leader, to agree on who gets access to a shared resource, synchronizing
nodes’ clocks, to agree on an ordering of events/operations among nodes, or
achieving formation control [2].

There are different types of consensus problems. Each type is presented for
specific purposes and has its own characteristics but satisfying agreement and
termination properties is common among all the types. Based on validity prop-
erty, which means the decided value is one of the proposed values, the consensus
problems can be divided in two types. The first type satisfies validity property
which is the case in distributed data stores. For the other type of consensus prob-
lems, validity property is stated differently or not defined. For example, validity
property for average consensus [1] and max-min consensus [8], which are mostly
used in robotics, is not defined. In this paper, we focus on a subset of the first
type which is subject to FLP [4] (it is leader-based and should provide strong
consistency in addition to satisfying validity).

Formally, a consensus algorithm which is subject to FLP is correct when it
satisfies three properties– agreement, termination, and validity [3]. Also, it has
c© Springer Nature Switzerland AG 2020
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some characteristics– each node proposes exactly one value, all the proposed
values should be taken into account to reach consensus, there is no difference
between the proposed values with respect to their proposed times because the
system’s model is asynchronous and failures eventually occur, and if the nodes
want to propose other values, they have to execute the algorithm again. Paxos
[6] and Raft [7] are two well-known examples for such an algorithm.

For some safety-critical, real-time systems, the nodes have to consider the
times of proposed values and reach consensus on the newest proposed values.
Note that determining which proposed values are new is a challenging problem
in asynchronous distributed systems when occurring failures are possible. In
this paper, we formulate a new type of consensus problem called time-based
consensus, which requires to take into account the times of proposed values.
The structure of the paper is as follows. In Sect. 2, we argue that having such
a time-based consensus is crucial for some safety-critical, real-time systems, like
distributed asynchronous mobile robots in dynamic environments. We explain
the limitations of consensus algorithms that lead to not reaching consensus on the
newest proposed values in Sect. 3. Finally, (i) we formulate time-based consensus
problem and (ii) finish the paper by presenting ongoing works to tackle such a
problem.

2 Motivation

There are some safety-critical, real-time systems in which consensus is required,
and in the process of reaching consensus, it is important to consider the times
of proposed values. For an instance of such systems, suppose that there are n
mobile heterogeneous robots located in a burned building in which some persons
need help to rescue (Fig. 1(a)). The robots have two responsibilities– detecting
and counting the persons and rescue some of them by creating a formation. Since
the robots are mobile, and the environment is dynamic

(
which means if there

are nt detected persons at time t, it is possible that at time t′ (t′ > t), there are
nt′ (nt �= nt′) detected ones due to finding new alive ones, dying some of them,
etc.

)
, the number of detected persons can be different for each robot and is not

constant during the rescue process (Fig. 1(b)). Control formation means that
some of the robots create a determined formation around the detected persons
(Fig. 1(c)). After creating a formation, they spread fire extinguishers to rescue
the persons.

To create a formation for rescuing p persons, np robots is required. Robots
for creating the formation need to reach consensus on the number of detected
persons. Its reason is two-fold. First, some of the robots do not know the correct
number of detected persons (Fig. 1(b)). Thus, when a robot detects a new person,
it needs to broadcast the number of persons. Second, if more than np robots are
allocated, it is not optimized. Note that the number of robots is limited, and
here, taking into account optimization is crucial because what robots are doing is
a critical task, and the remaining non-allocated robots can continue the rescue
process. Therefore, the robots need to know the exact number of persons to
decide how many of them have to participate in creating the formation.
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Fig. 1. Circles and squares correspond to robots and persons respectively. The first
and second digits written in each circle are its unique identifier and detected persons
respectively t < t′ < t′′.

3 Consensus Algorithms’ Limitations

Suppose that two nodes n1 and n2 execute a consensus algorithm (for the sake
of generality, suppose that the algorithm is Paxos) and are measuring/sensing
a critical data. In what follows, by presenting two scenarios, we show Paxos’
limitations that lead to not reaching consensus on the newest measured values.
Consider xi

1 and xj
2 (i, j ∈ N) are the measured values by n1 and n2 respectively.

n1 and n2 measure two values– x1
1 and x1

2. n1 by sending a prepare message to
n2 starts a consensus execution. In the first scenario, suppose that they reach
consensus on x1

1. Then, n1 measures a new value, x2
1 (x2

1 �= x1
2). It is clear that

if they execute the algorithm for another time, they can reach consensus on x1
2

while it is not correct (i.e, they have to reach consensus on x2
1 because it is the

newest measured value). This scenario is depicted in Fig. 2(a).
In another scenario which is depicted in Fig. 2(b), n1 measures a value like

x2
1 (x2

1 �= x1
2) in the time period t2 started after receiving some prepare message

of n2. They can reach consensus on x1
2 which is not correct. Indeed, what we

can do to distinguish the measured values with respect to their proposed times
is using the executions and phases of a consensus algorithm.
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4 Time-Based Consensus and Ongoing Works

To tackle the problem explained in the previous sections, we model the system by
a dynamic asynchronous distributed system with n nodes, where each node is a
mobile robot. Each node has a sensor, which can be used to measure/sense some
critical data, and can send (receive) messages to (from) the other nodes located
in its communication range. Crash and link failures are possible. A correct node
and link is a non-failed one. Being dynamic, here, means the set of correct nodes
and links between a correct node and other correct nodes are not constant during
the rescue process. Here, we formulate time-based consensus. When an algorithm
satisfies three following properties, we say it can solve time-based consensus.

– Termination. Each node eventually should decide a value.
– Agreement. The decided values of all nodes should be the same. The decided
value is the last distinguishable proposed value (or among the last
distinguishable proposed values) before deciding a value.

– Validity. Each node can propose one or more than one values before
deciding a value by all nodes. The decided value should be proposed by
at least one node.

To tackle time-based consensus, we are using Paxos as a baseline because most
consensus algorithms which are subject to FLP are variants of Paxos [5]. By
changing some of its phases and adding an (some) additional phase(s) to it,
we want to present an algorithm for time-based consensus. One of the essential
characteristics of this algorithm is when a leader proposes a value measured at
pth phase of eth execution to some node, and the measured value of the node was
measured at p′th phase of e′th execution, the node cannot propose its measured
value where e′ < e or (e′ = e) ∧ (p′ < p).
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