
Materialization of OWL Ontologies
from Relational Databases: A Practical

Approach

Sergio Alejandro Gómez1,2(B) and Pablo Rubén Fillottrani1,2

1 Laboratorio de I+D en Ingenieŕıa de Software, Departamento de Ciencias e
Ingenieŕıa de la Computación, Universidad Nacional del Sur, San Andrés 800,

Bah́ıa Blanca, Argentina
{sag,prf}@cs.uns.edu.ar

2 Comisión de Investigaciones Cient́ıficas de la Provincia de Buenos Aires
(CIC-PBA), La Plata, Argentina
https://lissi.cs.uns.edu.ar/

Abstract. Providing both end-users and applications with a uniform
way to query legacy databases through a high-level ontology that models
both the business logic and the underlying data sources is the main con-
cern in Ontology-based Data Access (OBDA). Our goal in this research is
providing tools for performing OBDA with relational and non-relational
data sources. Within the OBDA framework, in this work, we present
a prototype tool that can access an H2 database, allowing the user to
explicitly express mappings, and populating an ontology that can be
saved for later querying. We report on the current functionality of our
tool, which includes creating, loading, saving a global ontology populated
with a database or a CSV file. For the latter, we devised a language for
specifying the underlying schema of the CSV file. We argue that this lan-
guage is better suited than current alternatives such as JSON. Also, the
system allows the user to visually express mappings from the database to
the ontology and the ability to create databases for testing the behavior
of the system in the presence of increasing workloads. Our tests indicate
that the system can handle a moderate workload of tables of tens of
thousands of records but fails to handle tables of millions of records.

Keywords: Ontology-based data access · Ontologies · Description
Logics · Web Ontology Language · Relational databases

1 Introduction

Ontology-based Data Access (OBDA) [1,2] is concerned with providing end-
users and applications with a way to query legacy databases through a high-level
ontology that models both the business logic and the underlying data sources.
Modern knowledge-based applications have replaced the representation of busi-
ness logic by using a high-level representation of the business intelligence which
is decoupled from the application code. This allows for improved flexibility. In
Semantic Web applications [3], the business intelligence is represented by ontolo-
gies expressed in the Web Ontology Language 2 (OWL 2) [4]. Briefly, an ontology
c© Springer Nature Switzerland AG 2020
P. Pesado and M. Arroyo (Eds.): CACIC 2019, CCIS 1184, pp. 285–301, 2020.
https://doi.org/10.1007/978-3-030-48325-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48325-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-48325-8_19

286 S. A. Gómez and P. R. Fillottrani

is a logical theory formed by a collection of concepts and roles and also a set
of concept and role assertions [5]. The relationship holding among the concepts
and roles in the ontology are described in terms of inclusion and equality axioms.
Ontologies used to represent business logic are then used by ontology reasoners
to conclude implicit knowledge (i.e. not present in the database). The conclu-
sions that can be got include making explicit the implicit terminology of concepts
defined by the ontology, determining if a certain individual is a member of a con-
cept, or determining if two individuals are related through a role, determining if
a concept is subsumed by another concept, or if a role is subsumed by another
role.

Thus, the classic OBDA architecture [1] is composed of a global database,
a legacy database and a bridge between the ontology and the database. The
bridge between the ontology and the data sources is addressed by mappings that
define how to express records of the database as ontological assertions. Relational
databases are comprised of relations (tables), that in term are defined by data
schemas, which define the names and domains of table attributes as well as any
integrity constraints that might apply to them, and are composed of records.
Ontologies, on the other hand, are composed of axioms, and concept and roles
assertions. The mappings define how to populate the ontology in terms of the
elements of the database. Basically, the concept and role fillers are defined by
SQL queries that indicate how to populate them. Notice that in the case of
having several databases, a federation system can be used that allows to see the
set of databases as a unified database. In this work, however, we will not take
this possibility into account.

In this research, we are concerned with providing tools for performing OBDA
with relational and non-relational data sources. Several tools have been devel-
oped by other research groups (see for instance [6–9] that we reviewed in [10]).
Some of those tools are closed-source while others are open-source, some are
downloadable and can be used as stand-alone applications or as programming
libraries. While many times they are a good starting point for building applica-
tions, many times they are not flexible enough. In that regard, we are developing
a tool, which nowadays is in a prototypical state, that can access an H2 database,
allowing the user to explicitly formulate mappings, and populating an ontology
that can be saved for later querying and visualization. See [10,11] for previous
reports on the functionality of the application and its prospective application
areas.

We present the advances we have made on the development of such a tool. In
particular, we have added a form that allows end-users to fully specify in a high-
level manner the nature of mappings and by writing SQL queries as well. We
also added a module that allows testing on how our application behaves in the
presence of increasing demands. We introduce a language that allows the user to
precisely define the contents of a CSV file, we use that information to interpret
the contents of a CSV file and then translating into OWL. We also discuss
how this materialization tool could be used in the context of an e-government
application. We provide with a downloadable prototype and a user manual at

Materialization of OWL Ontologies from Relational Databases 287

http://cs.uns.edu.ar/~sag/obda-v4. We assume that the reader has a basic
knowledge of Description Logics (DL) [12], relational databases [13] and the Web
Ontology Language [4].

This work consolidates and extends results presented in [14]. We have
included a new language for specifying the underlying schema of a CSV file, its
implementation and an analysis of its performance. Also, we have also included
an analysis of how this prototypical application could be integrated with an elec-
tronic government setting where public open data has to be machine processed.

The rest of the paper is structured as follows. In Sect. 2, we briefly reca-
pitulate the concepts associated with materializing ontologies from tables. In
Sect. 3, we present a novel development in the system that allows a näıve user
to define a mapping from tables to ontologies in a visual manner. In Sect. 4, we
present an alternative language for describing CSV meta information. In Sect. 5,
we show an empirical evaluation of the performance of the prototype creating
tables and ontologies. In Sect. 6, we present a case study where we show how
the proposed application could be used for supporting data handling in an e-
government application in a municipality. In Sect. 7, we review related work. In
Sect. 8, we conclude and foresee future work.

2 Materialization of OWL Ontologies from Relational
Databases

An ontology is a logical theory formed by set of axioms and assertions describing
the business logic. The mappings describe how to map relational views into onto-
logical vocabulary. Given a data access instance formed by a relational database
D, an ontological vocabulary V, a set of ontological axioms O over V, and a set
of mappings M between V and D, there are two approaches to answer a query
Q over V: (i) materialization: ontological facts are materialized (i.e. classes and
properties participating in mappings are populated with individuals by evaluat-
ing SQL queries participating in mappings) and this gives a set of ontological
facts A and then Q is evaluated against O and A with standard query-answering
engines for ontologies, or (ii) virtualization: Q should be first rewritten into SQL
using O and M and then SQL should be executed over D.

In this work, we will only use the materialization approach. Materializing an
OWL ontology from a relational database requires exporting the database con-
tents as a text file in OWL format. For doing this, we need to export the schema
information of each table as Tbox axioms and the instance data of the tables
as Abox assertions. Here, we review the formalization for exporting database
relations as ontologies as we presented it in [10] according to the directions
given by [1,15]. Building an ontology from a database requires creating at least
a class CT for every table T , and for every attribute a of domain d in T we
need two inclusion DL axioms CT � ∃a and ∃a− � d. Primary key values ki
serve the purpose of establishing the membership of individuals to classes as DL
Abox assertions of the form CT (CT#kj). For indicating that aj is the value of
attribute a, we will use a role expression of the form CT#a(CT#kj , CT#aj).

288 S. A. Gómez and P. R. Fillottrani

When it is clear from context, we might drop the prefix CT# for simplifying our
notation. A foreign key fk in table T1 referencing a primary key field in table T2

will also require to add two Tbox axioms CT1 � ∃ref fk and ∃ref fk− � CT2 and
an Abox assertion ref fk(kj , fkt) for expressing that the individual named kj in
CT1 is related to the individual named fkt in CT2 . Besides, in any case, if we
want to consider a subset of a table for its mapping into an ontology, we might
define an SQL query that will act as an SQL filter. In this work, we will only
deal with the translation into OWL of single tables and one-to-many relations
(see [10] for details):

Definition 1 (Mapping of a table with a single primary key). Let T
be a table with schema T (k, a1, . . . , an) and instance {(k1, a11, . . . , a

1
n), . . . , (km,

am1 , . . . , amn)}. To map T into a DL terminology T , we have to create a class T
and for each attribute ai of domain Di we have to add two axioms: T � ∃ai,
indicating that every T has an attribute ai, and ∃a−

i � Di, meaning that the
domain of ai is Di. The assertional box A for T will contain {T (k1), . . . , T (km)}.
Given a key value kj, j = 1, . . . ,m, for every attribute ai, i = 1, . . . , n, of
the schema and instance value aji (i.e. the value of i-th attribute of the j-th
individual), produce a property ai(kj , a

j
i).

Example 1. Consider a table for representing people with schema Person
(personID, name, sex, birthDate,weight) and instance as on the left side of Fig. (1).
This table is created by the SQL script presented in the right side of Fig. (1).

personID name sex birthDate weight
1 John true 2010-01-01 100.0
2 Mary false 2009-01-01 60.0

create table ”Person” (
”personID” int unsigned not null
auto increment primary key,
”name” varchar(20) not null,
”sex” boolean, ”birthDate” date,
”weight” real);

insert into ”Person”(”name”, ”sex”, ”birthDate”,
”weight”) values (’John’, true, ’2010-01-01’, 100.0);

insert into ”Person”(”name”, ”sex”, ”birthDate”,
”weight”) values (’Mary’, false, ’2009-01-01’, 60.0);

Fig. 1. On the left, relational instance of the table Person and, on the right, SQL script
for creating the table Person

The table Person is interpreted in Description Logics according to Defini-
tion 1, as Σ = (T ,A) in Fig. 2. Description Logic ontologies are implemented
in the OWL language, which includes an XML serialization which we partially
present in Fig. 3 by showing the representation for John.

We now recall how to map two tables participating in a one-to-many rela-
tionship.

Definition 2 (Mapping of a one-to-many relationship). Let A(k1, a1, . . . ,
an) and B(k2, b1, . . . , bm, k1) be two tables participating in a one-to-many rela-
tionship where k1 is both the primary key in A and a foreign key in B.

Materialization of OWL Ontologies from Relational Databases 289

T =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Person � ∃personID, ∃personID− � Integer,
Person � ∃name, ∃name− � String,
Person � ∃sex, ∃sex− � Boolean,
Person � ∃birthDate, ∃birthDate− � Date,
Person � ∃weight, ∃weight− � Real

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

A =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Person(Person#1), personID(Person#1, 1),
name(Person#1, John), sex(Person#1, true),
birthDate(Person#1, 2001-01-01), weight(Person#1, 100.0),
Person(Person#2), personID(Person#2, 2),
name(Person#2,Mary), sex(Person#2, false),
birthDate(Person#2, 2009-01-01), weight(Person#2, 60.0)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

Fig. 2. Ontology Σ = (T ,A) representing the table Person from Example 1

<owl:Class rdf:about="http://cs.uns.edu.ar/~sag#Person"/>
<!-- http://cs.uns.edu.ar/~sag/Person/personid=1 -->

<owl:NamedIndividual rdf:about="http://cs.uns.edu.ar/~sag/Person/personid=1">
<rdf:type rdf:resource="http://cs.uns.edu.ar/~sag#Person"/>
<Person:birthDate rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
2010-01-01T00:00:00</Person:birthDate>
<Person:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">John</Person:name>
<Person:personID rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">1</Person:personID>
<Person:sex rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</Person:sex>
<Person:weight rdf:datatype="http://www.w3.org/2001/XMLSchema#double">100.0</Person:weight>
</owl:NamedIndividual>

Fig. 3. Part of the OWL code for the definition of the class Person from Example 1

Tables A and B are translated in DL according to Definition 1. Besides, the
two axioms are added: B � ∃ref k1.A and ∃ref k−

1 .B � A. And for every tuple
(ki1, a

i
1, . . . , a

i
n) of A related to a tuple (kj2, b

j
1, . . . , b

j
m, ki1) in B, an assertion

ref k1(k
j
2, k

i
1) is added.

Example 2 (Continues Example 1). Consider a one-to-many relation of table
Person from Example 1 with a table Phone(phoneNumber, personID), populated
as shown in Fig. 4. Notice that personID is a foreign key referencing table Person.

phoneNumber (pk) personID (fk)
555-0000 1
555-0001 1

Fig. 4. Relational instance of table Phone from Example 2

Notice that phoneNumber is the primary key while personID is a foreign key
referencing key-values of the table Person. Concerning the one-to-many relation
and according to Definition 2, two axioms are added to the ontology: Phone �
∃ref personID.Person and ∃ref personID−.Phone � Person. Let p1 = Phone#
555-0000 be an IRI for the first phone and p2 = Phone#555-0001 for the sec-
ond one. The assertions Phone(p1), phoneNumber(p1, 555-0000), personID(p1, 1),

290 S. A. Gómez and P. R. Fillottrani

ref personID(p1, Person#1), Phone(p2), phoneNumber(p2, 555-0001), personID
(p2, 1), ref personID (p2,Person#1), are then added to the ontology indicating that
555-0001 and 555-0002 are phone numbers and that the person with id 1 owns these
phone numbers. Notice how the IRIs for the phones are built concatenating both
the name of the class and the value of the respective key values. Assertions pre-
fixing the name of the field with ref that relate the person and his/her phone are
added too.

3 Visual Mapping Specification

The specification of the mappings for obtaining the fillers of concept from a table
is usually a complex matter for näıve end-users. Remember that a mapping is
basically a SQL query that defines how the fillers of concept, property or role are
computed in terms of the contents of a database. When there is no support for
composing mappings, the user has to write such SQL from scratch. We believe
that adding support for building the mappings will improve the user experience
of a prospective user of OBDA technology.

With the idea of providing support to end-users in their quest of creating
concepts for populating ontologies from database contents, we created a module
that allows to visually specify a mapping from a table. The module retrieves the
tables from the database, and allows to select a table. Once the table is selected,
its fields can be selected too. The user can then introduce what conditions each
field of the table has to satisfy. Besides, one field (usually the key field of the
table) has to be selected to fill the concept. The module then will automatically
generate the SQL filter for filling the concept by extracting the records from the
table, and will also add a subclass axiom to the ontology.

Example 3. Consider again the table Person from Example 1 and suppose that
some user of the system wants to define the concept “heavy, young, male indi-
vidual”. Suppose also that the user models a heavy individual as somebody
who weighs at least a hundred kilograms, a young individual as someone who
was born after 2001, and a male individual as someone of male sex. People of
male sex are codified as having the column named sex as true while females are
codified as false. Although this is a trivial example, it shows the complexities
that run into database modeling that produce a degradation of the represen-
tation of the world and that are unretrievable afterwards. The user will then
visually specify the conditions for an individual to be a member of the concept
YoungHeavyMalePerson in a form like the one presented in Fig. 6. Notice how
the user specifies which database field corresponds to the key (i.e. the name of
the individuals), in this case personID. In turn, the system will generate a SQL
query as shown in Fig. 5.

After the execution of the query that will compute the individuals that fill
the concept, the system will add to the current ontology the triples express-
ing that those individuals are the fillers of the concept YoungHeavyMalePerson.
Besides, in order to relate this concept to its superconcept, the axiom
YoungHeavyMalePerson � Person will be added to the current ontology as well.

Materialization of OWL Ontologies from Relational Databases 291

SELECT ”Person”.”personID” FROM ”Person”
WHERE ”Person”.”birthDate” >= ’2001-01-01’
AND ”Person”.”weight” >= 100 AND ”Person”.”sex” = true

Fig. 5. SQL query for the specification of the concept YoungHeavyMalePerson of
Example 3

Fig. 6. Visual concept specification of the concept YoungHeavyMalePerson

This will lead to the situation presented in Fig. 7. The new class YoungHeavy-
MalePerson is defined as a subclass of Person and John, whose personID role is “1”
becomes a member of YoungHeavyMalePerson. Notice also that no new individu-
als are defined as John is already present in the ontology because he is a Person.
In this sense, we adhere to the unique name assumption as much as we can
although this is not required by the formalism. Also notice how the intensional
definition of the concept is lost in the ontology (other than being a subclass of
Person) and only its extension is maintained in the ontology (as the set of its
fillers).

Person

YoungHeavyMalePerson

p1:YoungHeavyMalePerson

John, who has personID=1, is an instance of
YoungHeavyMalePerson because he was born
after 2001, weighs at least 100kg and is a male

John, who has personID=1, is an instance of
YoungHeavyMalePerson because he was born
after 2001, weighs at least 100kg and is a male

� instanceOf �

Fig. 7. Situation arisen by specifying a subclass of Person named YoungHeavyMale
Person

Another feature that the current version of the system includes is the possi-
bility of specifying a subclass by means of an explicit SQL query.

292 S. A. Gómez and P. R. Fillottrani

Example 4. Continuing Example 3, the concept FemalePerson (which defines a
subset of the table Person formed by women) is specified by means of the SQL
query:

SELECT “personID” FROM “Person” WHERE “sex” = false

This can be done by using the form presented in Fig. 8. Notice the additional
OWL code in the ontology generated by out tool which is presented in Fig. 9
expressing that a female person is a person (i.e. FemalePerson � Person is an
axiom in the ontology) and that Mary is both a female person and a person (i.e.
FemalePerson(Mary) and Person(Mary) are assertions in the ontology).

Fig. 8. Specification of the subclass FemalePerson of Person by a SQL query

<owl:Class rdf:about="http://cs.uns.edu.ar/~sag#FemalePerson">
<rdfs:subClassOf rdf:resource="http://cs.uns.edu.ar/~sag#Person"/>
</owl:Class>
...
<owl:NamedIndividual rdf:about="http://cs.uns.edu.ar/~sag/FemalePerson=2">
<rdf:type rdf:resource="http://cs.uns.edu.ar/~sag#FemalePerson"/>
...
</owl:NamedIndividual>

Fig. 9. Portion of OWL code for introducing subconcept FemalePerson

4 Specification of Schemas for CSV Files

A comma-separated values (CSV) file is a delimited text file that uses a comma to
separate values. Each line of the file is a data record. Each record consists of one
or more fields enclosed in delimiters and separated by commas. A CSV file stores
tabular data (numbers and text) in plain text, in which case each line will have
the same number of fields. Comma separated files are used for the interchange
of database information between machines of two different architectures. The
plain-text character of CSV files largely avoids incompatibilities such as byte-
order and word size. The files are human-readable, so it is easier to deal with
them in the absence of perfect documentation or communication.

Materialization of OWL Ontologies from Relational Databases 293

Example 5. In Fig. 10, we show the CSV table for the table Person of Example 1.

”personID”,”name”,”sex”,”birthDate”,”weight”
”1”,”John”,”true”,”2010-01-01”,”100.00”
”2”,”Mary”,”false”,”2009-01-01”,”60.00”

Fig. 10. CSV file for the table Person of Example 1

Despite its simplicity, the lack of both standardization and schema informa-
tion in CSV files poses a disadvantage, forcing application programs to guess
or ask the user for delimiter and field-separators characters. For solving this
problem, the W3C Working Group has proposed a format for specifying CSV
metadata [16] based mostly in JSON (JavaScript Object Notation)1. Although
this solution works in practice, we think that JSON files, although their human
readability, are not simple enough for naive users. We then propose a simpler
language for specifying the schema (or meta information) of a CSV file as defined
by the BNF grammar presented in the left side of Fig. 11. We believe that our
language is simple enough to be human-readable and complex enough for its
purpose. The declarations have to be sound (i.e each declared field in CSV Meta
information file must be present in the CSV file), complete (i.e. each field in
the CSV file must be declared in the CSV meta information file) and ordered
(i.e. the order in which fields appear in both the CSV file and the CSV meta
information file must be the same).

In the right side of Fig. 11, we provide an example of a file for defining the
schema of a CSV file that would represent the data provided in Example 5.
Although the declarations for number-of-key-fields and number-of-fields seem
redundant, we think that they offer a way for validating that the user is doing
things correctly. Valid identifiers begin with a letter and continue with letters
and numbers. For now we consider only the types: integer, real, string, boolean
and date, but this can be easily extended. If the number of rows to be translated
is not specified then all is assumed by default. If no field separator is specified,
the comma is assumed by default. If no quotation character is specified, the
double quotation mark is assumed by default. The parser validates that both
the number of key-fields and fields declared matches those that were defined.

The contents of the CSV file are validated and processed according to the
definitions given in the CSV schema file. Then the contents of the CSV file are
loaded into an H2 database which is translated into OWL as explained in Sect. 2.
Our implementation approach parses first the meta-information schema file and
then the CSV file; it then generates a SQL script that is used to create an H2
table, that is translated into OWL.

1 See https://www.w3schools.com/js/js json intro.asp (checked on 2020-02-20).

https://www.w3schools.com/js/js_json_intro.asp

294 S. A. Gómez and P. R. Fillottrani

〈list-commands〉 ::= 〈command〉
| 〈command〉〈list-commands〉

〈command〉 ::= 〈field-separator-def 〉
| 〈quote-separator-def 〉
| 〈class-def 〉
| 〈number-of-key-fields-def 〉
| 〈number-of-fields-def 〉
| 〈key-field-def 〉
| 〈field-def 〉
| 〈number-of-rows-def 〉

〈field-separator-def 〉 ::= field-separator 〈character〉

〈quotation-separator-def 〉 ::= quotation-character-for-fields 〈character〉

〈class-def 〉 ::= class-name 〈identifier〉

〈number-of-key-fields-def 〉 ::= number-of-key-fields 〈positive-integer〉

〈number-of-fields-def 〉 ::= number-of-fields 〈positive-integer〉

〈key-field-def 〉 ::= keyfield 〈identifier〉 type 〈type-id〉

〈field-def 〉 ::= field 〈identifier〉 type 〈type-id〉

〈number-of-rows-def 〉 ::= number-of-rows-to-translate 〈quantity-def 〉

〈type-id〉 ::= integer
| real
| string
| boolean
| date

〈quantity-def 〉 ::= all
| 〈positive-integer〉

field-separator ,
quotation-character-for-fields ”
class-name Person
number-of-key-fields 1
key-field personID type integer
number-of-fields 4
field name type string
field sex type boolean
field birthDate type date
field weight type real
number-of-rows-to-translate all

Fig. 11. On the left, BNF grammar for the meta information language for defining
CSV schemas, and, on the right, example of providing schema information for the CSV
file in Fig. 10

5 Experimental Evaluation

We now discuss some of the tests we have performed in order to test how our
application handles increasing demands in database size. The performance of
our system is affected mainly by the fact that we chose to materialize tables
as triples (i.e. class membership, property and roles assertions) and also by
three factors: (i) the system is implemented in the JAVA programming language;
(ii) the database management system that we use is H22, and, (iii) the handling
of the global ontology is done via the OWL API [17,18].

Our tests were conducted on an ASUS notebook having an Intel Core i7,
3.5 GHz CPU, 8 GB RAM, 1 TB HDD, Windows 10. They involved the creation
of simple databases composed by a single table containing 100 fields of text type
filled with an increasing number of records. Table 1 summarizes our results. As it
can be seen, our implementation starts having problems at tables with 100,000
records; although an ontology can be generated and saved to the disk, when we
try to load the ontology we saved previously, we get an error inside the code of the
OWL API, indicating that library cannot handle such a data load. When running
a test for creating a database of a million records, the H2 database produces
an error (which is understandable as it is maintained in RAM). Likewise, in

2 See http://www.h2database.com.

http://www.h2database.com

Materialization of OWL Ontologies from Relational Databases 295

Table 1. Running times for ontology generation from H2 database

Number of
records

Database
file size
[Megabytes]

Time for
creating the
ontology
[seconds]

Ontology
file size
[Megabytes]

Time for
loading the
ontology
[seconds]

1,000 0.80 1.029 8.65 4.014

10,000 8.82 5.345 87.26 15.106

100,000 98.11 66.48 19,053.36 Out of memory
error

1,000,000 1,080.60 Out of memory
error

– –

Table 2. Running times for ontology generation from CSV file

Number of
records

CSV file
size
[Megabytes]

Time for
loading CSV
file [seconds]

Time for
creating
ontology
[seconds]

Size of
ontology
file
[Megabytes]

Time for
loading
ontology from
disk [seconds]

100 0.048 1.313 0.437 0.871 1.579

1,000 0.568 1.764 1.111 8.560 4.784

10,000 6.636 9.161 3.743 8.215 12.577

100,000 75.987 85.855 37.137 872.883 Out of
memory error

1,000,000 856.188 936.473 – – –

Table 2, we can see the times for loading CSV files of 100 fields containing integer
values and also an increasing number of records. Therefore, we conclude that
our application can only handle tables with a size tens of thousands records and
is not able of handling tables of a hundred thousand records. Because of this
limitation, we think that we will be forced to use query-rewriting techniques [1]
for delegating the evaluation of queries to the database management system
instead of the ontology management library.

6 Case Study: Support for e-Gov in Municipalities

The importance of social policies has grown in recent years at all levels of gov-
ernment (whether municipal, provincial, national and international), since they
represent one of the main tools to combat economic inequalities that occur glob-
ally [19] and serve to meet the needs of many vulnerable groups. The provision
of public social action services to citizens become an obligation for governments,
just as such services are a human right, such as are access to water, energy,
health, education and other services.

296 S. A. Gómez and P. R. Fillottrani

Despite the global relevance, universality in the provision of public services
is a challenge for each government due to the variety of contexts in which such
services are provided, including the needs of specific social groups, the capaci-
ties of each government, and the context-specific conditions (such as territory,
political, cultural, economic, etc.) [19,20]. In some municipalities of the province
of Buenos Aires in Argentina, the following challenges are observed for the pro-
vision of public social action services: (i) the services are provided by several
municipal government agencies and there is no consolidated information on how
the services are being delivered; (ii) currently, there are ad hoc applications that
support the process for the delivery of each service, these applications work in
isolation, without sharing data; (iii) there is no strategy for the delivery of these
services using multiple channels; (iv) the digital channels that could be used
are not being exploited properly; (v) there is no software infrastructure that
allows the rapid development of applications for the delivery of social action
services [21].

Based on these challenges, it is necessary to find a way to publish data con-
tained in legacy and current applications and used in various state institutions
in a way that can be integrated, accessed, modified and consulted in a format
that is uniform, distributed and scalable. In this sense, the technologies of the
Semantic Web have matured enough to be considered as a viable solution for the
publication and integration of institutional data. In particular, using semantics
implies conceiving systems where the meaning of the data is explicitly specified
and is taken into account to design their functionalities. This idea has become
crucial for a wide variety of information processing applications and has received
much attention in the artificial intelligence, database, web and data mining
communities.

As a case study of the operation of the application developed, we present an
example loosely based on the public data available in the Municipality of Bah́ıa
Blanca. A preliminary version was presented in [11]3. Let us take as an example
three tables, presented in Fig. 12 with the details of the beneficiaries of all social
assistance in the period selected in the Municipality of Bah́ıa Blanca4, where
we have a table called Program representing social assistance programs, another
with the beneficiaries called Beneficiary and a third called Person with the data
of the people enrolled in the aid programs.

The program table schema contains the identifier (which is the primary key)
and program name. The table of beneficiaries of aid programs contains the iden-
tification (id) of the benefit (which is the primary key of the table), the document
number of the beneficiary (which is a foreign key), the amount received, the date
of reception and the help program for which the help was received (which is a for-
eign key). The people table contains the person’s social ID (personal document)
number (which is the primary key) and his/her last and first name.

3 The authors would like to thank funding from Comisión de Investigaciones Cient́ıficas
(Project Herramientas para el desarrollo y la entrega de servicios públicos digitales
de acción social para municipios bonaerenses – PIT-AP-BA 2016).

4 See http://datos.bahiablanca.gob.ar/dataviews/74266/social-aids.

http://datos.bahiablanca.gob.ar/dataviews/74266/social-aids

Materialization of OWL Ontologies from Relational Databases 297

Program table
id(pk) name
0001 Municipal Occupational Training Program

Beneficiary table
id(pk) dni(fk) amount date receiving help program(fk)

1 22,000,000 12000 2019-03-10 0001
2 26,000,000 16000 2019-05-04 0001
3 22,000,000 13000 2019-05-04 0001

Person table
dni(pk) name

22,000,000 Smith, John
26,000,000 Doe, Jane

Fig. 12. Relational tables from Bahia Blanca municipality public information site

The Tbox axioms in Fig. 13 represent the schema information of the tables
in Fig. 12 and the Abox assertions in Fig. 14 represent the relational instance.

Program � ∃id, ∃id− � String, Program � ∃name,
∃name− � String, Beneficiary � ∃id, ∃id− � Integer,
Beneficiary � ∃dni, ∃dni− � Integer, Beneficiary � ∃ref dni.Person,
∃ref dni− � Beneficiary, Beneficiary � ∃amount, ∃amount− � Real,
Beneficiary � ∃dateReceivingHelp, ∃dateReceivingHelp− � Date, Beneficiary � ∃program,
∃program− � Integer, Beneficiary � ∃ref program.Program, ∃ref program− � Program.
Person � ∃dni, ∃dni− � Person, Person � ∃name,
∃name− � String.

Fig. 13. Terminology for the schema of the data from the municipality

Next, we present the technology for querying the OWL ontologies materi-
alized from this database. SPARQL (SPARQL Protocol and RDF Query Lan-
guage) [22] is a declarative query language for RDF that allows to retrieve and
manipulate data stored in the Semantic Web represented as RDF statements. A
SPARQL endpoint accepts queries for any web-accessible RDF data and returns
results via HTTP. The results of SPARQL queries can be returned in a variety
of formats such as XML, JSON, RDF and HTML. Then, with this solution, data
from the municipality’s administration can be published in an uniform, public,
modern, open format that can be queried both by people and by applications.
For instance, finding who were the ten people who, during the year 2019, col-
lected the most of a plan of at least $15, 000 could be done by means of the
SPARQL query as shown in Fig. 15. This would allow both applications to use
it as a web service or end-users users to query the data in a web page.

7 Related Work

With ViziQuer, Cerans et al. [23] provide an open source tool for web-based cre-
ation and execution of visual diagrammatic queries over RDF/SPARQL data.
The tool supports the data instance level and statistics queries, providing visual
counterparts for most of SPARQL 1.1 select query constructs, including aggre-
gation and subqueries. A query environment can be created over a user-supplied
SPARQL endpoint with known data schema. ViziQuer provides a visual interface

298 S. A. Gómez and P. R. Fillottrani

for expressing user queries in SPARQL posed against an ontology. In contrast,
we provide the user with an interface for describing subclass expressions and
inclusion axioms by means of restrictions imposed on records of a relational
table with the aim of populating an ontology that could later be exposed and
queried as an SPARQL endpoint.

Program(0001), name(0001,′ MunicipalOccupationalTrainingProgram′),
Beneficiary(1), id(1, 1), dni(1, 22000000),
amount(1, 12000), dateReceivingHelp(1, ’2019-03-10’), program(1, 0001),
Beneficiary(2), id(2, 2), dni(2, 26000000),
amount(2, 16000), dateReceivingHelp(2, ’2019-05-04’), program(2, 0001),
Beneficiary(3), id(3, 3), dni(3, 22000000),
amount(3, 13000), dateReceivingHelp(2, ’2019-05-04’), program(2, 0001),
Person(22000000), name(22000000,′ Smith, John′), Person(26000000),
name(26000000,′ Doe, Jane′).

Fig. 14. Relational instance from the data of the municipality

PREFIX mbb <http://www.mbb.gov.ar/>
SELECT ?name ?date ?amount
FROM <http://www.mbb.gov.ar>
WHERE
{

?beneficiary mbb:ref_dni ?person .
?beneficiary mbb:amount ?amount .
?beneficiary mbb:date_receiving_help ?date .
?person mbb:name ?name .
BIND (YEAR(?date) as ?year)
FILTER (?year = 2019 && ?amount >= 15000)

}
ORDER BY DESC(?amount)
LIMIT 10

| name | date | amount |
=======================================
| "Doe, Jane" | 2019-05-04 | 16,000 |

Fig. 15. On the left, the SPARQL query for finding who were the ten people who,
during the year 2019, collected the most of a plan of at least $15, 000; and, on the right,
the result of the execution of the query by a SPARQL engine against the ontology data
in Fig. 14

Christodoulou et al. [24] make the case that structural summaries over linked-
data sources can inform query formulation and provide support for data inte-
gration and query processing over multiple linked-data sources. To fulfil this
aim, they propose an approach that builds on a hierarchical clustering algo-
rithm for inferring structural summaries over linked-data sources. Thus, their
approach takes as input an RDF repository and then reverse engineers an ontol-
ogy using clustering techniques to detect prospective classes. In contrast, we take
a database and the user proposes SQL queries to express subconcepts intension-
ally; when the SQL queries are executed, the fillers of the concept populate
the ontology building an extensional de facto definition of the concept. In that
regard, the work of Christodoulou et al. can be considered complementary to
ours.

Barrasa et al. [25] propose R2O, an extensible and declarative language to
describe mappings between relational DB schemas and ontologies implemented
in RDF(S) or OWL. R2O provides an extensible set of primitives with well
defined semantics. This language has been conceived expressive enough to cope

Materialization of OWL Ontologies from Relational Databases 299

with complex mapping cases arisen from situations of low similarity between the
ontology and the DB models. R2O allows the user to express complex queries
in terms of ontologies in a language that is similar to the relational algebra but
aimed at ontologies. Therefore, this approach is complementary to ours because
it allows to query the ontology once it is published in OWL format.

8 Conclusions and Future Work

We presented a framework for performing ontology-based data access by means
of performing a materialization approach. Our implementation is JAVA-based
and relies on a H2 database management system and a JAVA library called OWL-
API for accessing and querying databases and maintaining an OWL database
in main memory, respectively. We presented several enhancements that we have
made to the previous iteration of our prototype implementation, which now
includes a visual mapping specification functionality and allows to maintain a
global database that can be either created from scratch or loaded from disk,
modified and later saved again to disk. From the experimental evaluation to
which we subjected our system, we conclude that our application is able to handle
a moderate workload of a table of tens of thousands of records but fails to handle
table of the order of millions of records. In this regard, we think that we will be
forced to use query-rewriting techniques for delegating the evaluation of queries
to the database management system instead of the ontology management library.
Part of our current research efforts are aimed in this direction. Other form of
improvement lies in the possibility of addressing the federation of databases for
performing integration of multiple heterogeneous data sources. We introduced
a language for defining the schema information of a CSV file, and then how to
interpret the contents of a CSV file for performing its translation into OWL.
We discussed how this materialization tool could be used in the context of an
e-government application showing how relational data can be publish as open
data in OWL.

Acknowledgments. This research is funded by Secretaŕıa General de Ciencia y
Técnica, Universidad Nacional del Sur, Argentina and by Comisión de Investigaciones
Cient́ıficas de la Provincia de Buenos Aires (CIC-PBA).

References

1. Kontchakov, R., Rodŕıguez-Muro, M., Zakharyaschev, M.: Ontology-based data
access with databases: a short course. In: Rudolph, S., Gottlob, G., Horrocks,
I., van Harmelen, F. (eds.) Reasoning Web 2013. LNCS, vol. 8067, pp. 194–229.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39784-4 5

2. Xiao, G., et al.: Ontology-based data access - a survey. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI
2018), pp. 5511–5519 (2018)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284(5),
34–43 (2001)

https://doi.org/10.1007/978-3-642-39784-4_5

300 S. A. Gómez and P. R. Fillottrani

4. Bao, J., Kendall, E.F., McGuinness, D.L., Patel-Schneider, P.F.: OWL 2 Web
Ontology Language Quick Reference Guide, 2nd edn. W3C Recommendation, 11
December 2012

5. Gruber, T.R.: A translation approach to portable ontologies. Knowl. Acquisition
5(2), 199–220 (1993)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Savo, D.F.: The MASTRO system for
ontology-based data access. Semantic Web 2(1), 43–53 (2011)

7. Jimenez-Ruiz, E., et al.: BootOX: practical mapping of RDBs to OWL 2. In: The
14th International Semantic Web Conference, pp. 113–132 (2015)

8. de Medeiros, L.F., Priyatna, F., Corcho, O.: MIRROR: automatic R2RML mapping
generation from relational databases (2015)

9. Pinkel, C., et al.: RODI: benchmarking relational-to-ontology mapping generation
quality. Semantic Web, 1–26 (2016)

10. Gómez, S.A., Fillottrani, P.R.: Towards a framework for ontology-based data
access: materialization of OWL ontologies from relational databases. In: Pesado,
P., Aciti, C. (eds.) X Workshop en Innovación en Sistemas de Software (WISS
2018), XXIV Congreso Argentino de Ciencias de la Computación, CACIC 2018,
pp. 857–866 (2018)

11. Gómez, S.A., et al.: Desarrollo de herramientas para acceso a bases de datos het-
erogéneas basado en ontoloǵıas en el contexto de la entrega de servicios públicos
digitales. Primer Encuentro de Centros Propios y Asociados de la Comisión de
Investigaciones Cient́ıficas de la Provincia de Buenos Aires, pp. 235–238 (2018)

12. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

13. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 6th edn.
McGraw-Hill Education, New York (1983)

14. Gómez, S.A., Fillottrani, P.: A framework for OBDA - current state and per-
spectives. In: Actas del XXV Congreso Argentino de Ciencias de la Computación
(CACIC 2019), pp. 920–929 (2019)

15. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A Direct Mapping of
Relational Data to RDF. W3C Recommendation, 27 September 2012

16. Tennison, J.: CSV on the Web - A Primer, W3C working group note, 25 February
2016

17. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semantic Web 2(1), 11–21 (2011)

18. Matentzoglu, N., Palmisano, I.: An Introduction to the OWL API. Technical
report, The University of Manchester (2016)

19. Bertot, J., Estevez, E., Janowski, T.: Universal and contextualized public services
- digital public service innovation framework. Gov. Inf. Q. 33, 211–222 (2016)

20. Estévez, E., Fillottrani, P., Janowski, T., Ojo, A.: Government information shar-
ing - a framework for policy formulation. In: Pin-Yu, C., Yu-Che, C. (eds.) E-
Governance and Cross-boundary Collaboration - Innovations and Advancing Tools,
pp. 23–55. IGI Global (2011)

21. Fillottrani, P., Estévez, E., Cenci, K., Pesado, P., Pasini, A., Thomas, P.: Her-
ramientas para el desarrollo y la entrega de servicios públicos digitales de acción
social para municipios bonaerenses. In: IV Congreso Internacional Cient́ıfico y Tec-
nológico-CONCYT 2017 (2017)

22. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language for RDF W3C recommen-
dation, 21 March 2013. https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/

Materialization of OWL Ontologies from Relational Databases 301

23. Čerāns, K., et al.: ViziQuer: a web-based tool for visual diagrammatic queries
over RDF data. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp.
158–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5 30

24. Christodoulou, K., Paton, N.W., Fernandes, A.A.: Structure inference for linked
data sources using clustering. In: Proceedings of the Joint EDBT/ICDT 2013
Workshops, EDBT 2013, pp. 60–67 (2013)

25. Barrasa, J., Corcho, Ó., Gómez-Pérez, A.: R2O, an extensible and semantically
based database-to-ontology mapping language. In: Proceedings of the Second
Workshop on Semantic Web and Databases, SWDB 2004, vol. 3372 (2004)

https://doi.org/10.1007/978-3-319-98192-5_30

	Materialization of OWL Ontologies from Relational Databases: A Practical Approach
	1 Introduction
	2 Materialization of OWL Ontologies from Relational Databases
	3 Visual Mapping Specification
	4 Specification of Schemas for CSV Files
	5 Experimental Evaluation
	6 Case Study: Support for e-Gov in Municipalities
	7 Related Work
	8 Conclusions and Future Work
	References

