
Chapter 2
Transient Convection-Diffusion-Reaction
Problems with Variable Velocity Field by
Means of DRBEM with Different Radial
Basis Functions

Salam Adel Al-Bayati and Luiz C. Wrobel

2.1 Introduction

The solution of convection-diffusion-reaction problems is a difficult task for all
numerical methods because of the nature of the governing equation, which includes
first-order and second-order partial derivatives in space [PaEtAl92, AlWr17, Wr02,
Al02, BrEtAl12, AlWr18a, AlWr18b, AlWr19]. The convection-diffusion equation
is the basis of many physical and chemical phenomena, and its use has also
spread in economics, financial forecasting and other fields [Mo96]. The DRBEM,
initially applied to transient heat conduction problems by Wrobel et al. [WoEtAl86],
interprets the time derivative in the diffusion equation as a body force and employs
the fundamental solution to the corresponding steady-state equation to generate a
boundary integral equation. When the steady-state fundamental solution is used
in the DRBEM to approximate transient problems, other techniques should be
employed to approximate the solution’s functional dependence on the temporal
variables. Aral and Tang [ArTa89] used the fundamental solution of the Laplace
equation, but made use of a secondary reduction process, called SR-BEM, to arrive
at a boundary-only formulation. They presented the results of transient convection-
diffusion problems with or without first-order chemical reaction for low to moderate

S. A. Al-Bayati (�)
College of Sciences, Department of Mathematics and Computer Applications, AL-Nahrain
University, Baghdad, Iraq
e-mail: salam_ahmed@sc.nahrainuniv.edu.iq

L. C. Wrobel
Institute of Materials and Manufacturing, Brunel University London, Uxbridge, UB8 3PH, UK

Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de
Janeiro (PUC-Rio), Brazil
e-mail: Luiz.Wrobel@brunel.ac.uk

© Springer Nature Switzerland AG 2020
C. Constanda (ed.), Computational and Analytic Methods in Science
and Engineering, https://doi.org/10.1007/978-3-030-48186-5_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48186-5_2&domain=pdf
mailto:salam_ahmed@sc.nahrainuniv.edu.iq
mailto:Luiz.Wrobel@brunel.ac.uk
https://doi.org/10.1007/978-3-030-48186-5_2


22 S. A. Al-Bayati and L. C. Wrobel

Péclet numbers. Martin [Ma05] proposed a Schwartz waveform relaxation algorithm
for the unsteady diffusive-convective equation, which uses domain decomposition
methods and applies an iterative algorithm directly to the time-dependent problem.
Partridge and Sensale [PaSe00] have used the method of fundamental solution with
dual reciprocity and subdomain approach to solve convection-diffusion problems.
The time integration scheme is the FDM with a relaxation procedure, which is
iterative in nature and needs a carefully selected time increment. Regarding the
DRBEM formulation presented in this work, a backward finite difference scheme
is adopted, Smith [Sm85].

In this article, the DRBEM is also employed to discretise the spatial par-
tial derivatives in the two-dimensional diffusive-convective-reactive type problem.
Thus, the problem is ultimately described in terms of boundary values only,
consequently reducing its dimensionality by one [WrDe91]. We use the fundamental
solution to the steady-state convection-diffusion-reaction equation and transform
the domain integral arising from the time derivative term using a set of coordinate
functions and particular solutions which satisfy the associated non-homogeneous
steady-state convection-diffusion-reaction problem. Further, only a simple set of
cubic radial basis functions has been previously used in this formulation. We con-
sider two other sets of coordinate functions, non-augmented thin-plate spline (TPS)
and multiquadric (MQ) radial basis functions, and analyse their performance in
conjunction with the order of time integration algorithms for convection-diffusion-
reaction problems. This work also focuses on the search for the optimal shape
parameter when utilising the multiquadric radial basis function (MQ-RBF). This
is due to the lack of information on choosing the best shape parameter, forcing the
user having to make an ‘ad-hoc’ decision. Recent numerical experiments available
in the literature, nevertheless, showed that the MQ-RBF has shown great potential
when dealing with complicated PDEs in two dimensions if an adequate shape value
is provided.

A brief outline of the rest of this paper is as follows. Section 2.2 reviews the
mathematical representation of convection-diffusion- reaction problems. Section 2.3
derives the boundary element formulation of the governing equation using the
steady-state fundamental solution of the corresponding equation. In Sects. 2.4
and 2.5, the DRBEM formulation and its discretisation are developed for the
2D transient convection-diffusion-reaction problem. A two-level time marching
procedure for the proposed model is implemented in Sect. 2.6. Section 2.7 gives
the description of the coordinate functions and the choice of the three radial
basis functions. Section 2.8 compares and investigates the solution profiles for
the present numerical experiments with the analytical solution of the tested cases.
Computational aspects are included to demonstrate the performance of the approach
in Sect. 2.9. Finally, some conclusions and remarks are provided in the last section.
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2.2 Governing Equation

The two-dimensional transient convection-diffusion-reaction problem over a
domain Ω in R

2 bounded by a boundary Γ , for isotropic materials, is governed by
the following PDE:

D∇2φ (x, y, t) − vx (x, y)
∂φ (x, y, t)

∂x
− vy (x, y)

∂φ (x, y, t)

∂y
− k φ (x, y, t)

= ∂φ (x, y, t)

∂t
, (x, y) ∈ Ω, t > 0.

(2.1)

In Eq. (2.1), φ represents the concentration of a substance, treated as a function of
space and time. The velocity components vx and vy along the x and y directions are
assumed to vary in space. Besides, D is the diffusivity coefficient and k represents
the first-order reaction constant or adsorption coefficient. The boundary conditions
are

φ = φ̄ over ΓD

q = ∂φ

∂n
= q̄ over ΓN,

where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary with Γ =
ΓD ∪ ΓN , and ΓD ∩ ΓN = ∅ (see Fig. 2.1). The initial condition over the domain Ω

is

φ (x, y, t = 0) = φ0 (x, y) , (x, y) ∈ Ω.

Fig. 2.1 Definition of domain, boundary and constant elements
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The parameter that describes the relative influence of the convective and diffusive

components is called the Péclet number, Pé = |v| L/D, where v =
(
v2
x + v2

y

)1/2

is the velocity and L is a characteristic length of the domain. For small values of
Pé, Eq. (2.1) behaves as a parabolic differential equation, while for large values the
equation becomes more like hyperbolic. These changes in the structure of the PDE
according to the values of the Péclet number have significant effects on its numerical
solution.

2.3 BEM Formulation of Transient
Convection-Diffusion-Reaction Problems

Let us consider a region Ω ⊂ R
2 bounded by a piecewise smooth boundary Γ .

The transport of φ in the presence of a reaction term is governed by the two-
dimensional transient convection-diffusion-reaction Eq. (2.1). The variable φ can be
interpreted as temperature for heat transfer problems, concentration for dispersion
problems, etc., and will be herein referred to as a potential. For the sake of
obtaining an integral equation equivalent to the above PDE, a fundamental solution
of Eq. (2.1) is necessary. However, fundamental solutions are only available for the
case of constant velocity fields. At this stage, the variable velocity components
vx = vx(x, y) and vy = vy(x, y) are decomposed into average (constant) terms
v̄x and v̄y , and perturbations Px = Px (x, y) and Py = Py (x, y), such that

vx (x, y) = v̄x + Px (x, y) vy (x, y) = v̄y + Py (x, y) .

Now, we can re-write Eq. (2.1) to take the form

D∇2φ (x, y, t) − v̄x

∂φ (x, y, t)

∂x
− v̄y

∂φ (x, y, t)

∂y
− k φ (x, y, t)

= ∂φ (x, y, t)

∂t
+ Px

∂φ (x, y, t)

∂x
+ Py

∂φ (x, y, t)

∂y
.

(2.2)

Next, one can transform the differential equation (2.2) into an equivalent integral
equation as follows [WrDe91]:

φ (ξ) − D

∫

Γ

φ∗ ∂φ

∂n
dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φ φ∗ v̄n dΓ

= −
∫

Ω

[
∂φ

∂t
+

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)]
φ∗ dΩ, ξ ∈ Ω, (2.3)
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where v̄n = v.n, n is the unit outward normal vector and the dot stands for scalar
product and v = (

vx, vy

)
. In the above equation, φ∗ is the fundamental solution of

the steady-state convection-diffusion-reaction equation with constant coefficients.
For two-dimensional problems, φ∗ is given by

φ∗ (ξ, χ) = 1

2πD
e
−

(
v̄.r
2D

)
K0 (μr) , r = |ξ − χ | ,

where

μ =
[( |v̄|

2D

)2

+ k

D

] 1
2

, v̄ = (
v̄x, v̄y

)
,

in which ξ and χ are the source and field points, respectively, and r is the modulus
of r, the distance vector between the source and field points. The derivative of the
fundamental solution with respect to the outward normal is given by

∂φ∗

∂n
= 1

2πD
e
−

(
v̄.r
2D

) [
−μK1 (μr)

∂r

∂n
− v̄n

2D
K0 (μr)

]
.

In the above, K0 and K1 are Bessel functions of second kind, of orders zero and one,
respectively. The exponential term is responsible for the inclusion of the correct
amount of ‘upwind’ into the formulation [RaŠk13]. Equation (2.3) is valid for
source points ξ inside the domain Ω . A similar expression can be obtained, by
implementing Green’s second identity and a limit analysis, for source points ξ on
the boundary Γ , in the form

c (ξ) φ (ξ) − D

∫

Γ

φ∗ ∂φ

∂n
dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φ φ∗ v̄n dΓ

= −
∫

Ω

∂φ

∂t
φ∗ dΩ −

∫

Ω

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
φ∗ dΩ, ξ ∈ Γ, (2.4)

in which c (ξ) is a function of the internal angle the boundary Γ makes at point ξ .

2.4 Standard Approach: DRBEM

In this section, we will discuss the transformation of the domain integral in
Eqs. (2.3) and (2.4), and the DRBEM will be implemented to approximate the two
domain integrals appearing in this formulation, first the domain integral of the time
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derivative, and second the domain integral related to the velocity perturbation parts.
Now, we start by expanding the time derivative ∂φ

∂t
in the form

∂φ (x, y, t)

∂t
=

n∑
i=1

fi (x, y) α1,i (t) . (2.5)

The above series involves a set of known coordinate functions fi and a set of
unknown time-dependent coefficients α1,i . With this approximation, the first domain
integral in Eq. (2.4) becomes

∫

Ω

∂φ

∂t
φ

∗
dΩ =

n∑
i=1

α1,i

∫

Ω

fiφ
∗
dΩ. (2.6)

The next step is to consider that, for each function fi , there exists a related function
ψi which is a particular solution of the equation:

D∇2ψ − v̄x

∂ψ

∂y
− v̄y

∂ψ

∂x
− kψ = f. (2.7)

Now, the domain integral (2.6) can be recast in the form:

∫

Ω

∂φ

∂t
φ∗dΩ =

M∑
k=1

α1,k

∫

Ω

(
D∇2ψk − v̄x

∂φk

∂y
− v̄y

∂φk

∂x
− kψk

)
φ∗dΩ.

(2.8)

Substituting expression (2.8) into (2.4), applying integration by parts to the right
side of the resulting equation and doing some simplifications, one finally arrives at
a boundary integral equation of the form

c (ξ) φ (ξ) − D

∫

Γ

φ∗ ∂φ

∂n
dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φ φ∗ v̄n dΓ

=
M∑

k=1

α1,k

[
c (ξ) ψk (ξ) − D

∫

Γ

φ∗ ∂ψk

∂n
dΓ + D

∫

Γ

[(
∂φ∗

∂n
+ v̄n

D
φ∗

)
ψk

]
dΓ

]

−
∫

Ω

(
Px

∂φk

∂x
+ Py

∂φk

∂y

)
φ∗ dΩ, ξ ∈ Γ. (2.9)



2 DRBEM for Transient Convection-Diffusion-Reaction 27

2.5 Discretization

To discretise the spatial domain, boundary elements were employed. The integrals
over the boundary are approximated by a summation of integrals over individual
boundary elements. For the numerical solution of the problem, Eq. (2.9) is dis-
cretized in the form

ci φi − D

N∑
j=1

∫

Γj

φ∗ ∂φ

∂n
dΓ + D

N∑
j=1

∫

Γj

(
∂φ∗
∂n

+ v̄n

D
φ∗

)
φ dΓ

=
M∑

k=1

α1,k

[
ci ψik (ξ) − D

N∑
j=1

∫

Γj

φ∗ ∂ψk

∂n
dΓ + D

N∑
j=1

∫

Γj

[(
∂φ∗
∂n

+ v̄n

D
φ∗

)
ψk dΓ

]]

−
∫

Ω

(
Px

∂φk

∂x
+ Py

∂φk

∂y

)
φ∗ dΩ, (2.10)

where the index i means the values at the source point ξ and N elements have been
employed. The domain integral on the right-hand side prevents us from obtaining a
boundary-only equation.

Now, in order to obtain a boundary integral which is equivalent to the domain
integral in expressions (2.9) and (2.10), a dual reciprocity approximation is again
implemented [AlWr17]. Applying this to the domain integral of Eq. (2.10), the
expression will be expanded in the form

Px (x, y)
∂φ

∂x
+ Py (x, y)

∂φ

∂y
=

N∑
k=1

α2,k (t) fk. (2.11)

Expression (2.11) contains two diagonal matrices Px = (
Px (xi, yi) δi,j

)
i,j=1,M

and

Py = (
Py (xi, yi) δi,j

)
i,j=1,M

while

∂φ

∂x
=

(
∂φ (xi, yi)

∂x

)T

i=1,M

,
∂φ

∂y
=

(
∂φ (xi, yi)

∂x

)T

i=1,M

are column vectors and δi,j is the Kronecker delta symbol. Integrating Eq. (2.11) we
obtain

∫

Ω

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ =

M∑
k=1

α2,k (t)

∫

Ω

fk φ∗dΩ. (2.12)
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Now, substituting Eq. (2.12) into (2.10), we obtain

ci φi − D

N∑
j=1

∫

Γj

φ∗ ∂φ

∂n
dΓ + D

N∑
j=1

∫

Γj

(
∂φ∗
∂n

+ v̄n

D
φ∗

)
φ dΓ

=
M∑

k=1

α1,k

[
ci ψik (ξ) − D

N∑
j=1

∫

Γj

φ∗ ∂ψk

∂n
dΓ + D

N∑
j=1

∫

Γj

[(
∂φ∗
∂n

+ v̄n

D
φ∗

)
ψk dΓ

]]

−
M∑

j=1

α2,j (t)

∫

Ω

fk φ∗dΩ.

The next step is to consider that, for each function fk , there exists a related function
ψk which represents the particular solution as in Eq. (2.7). We get

∫

Ω

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ =

M∑
k=1

α2,k

∫

Ω

(
D∇2ψk − v̄x

∂φk

∂y
− v̄y

∂φk

∂x
− kψk

)
φ∗dΩ.

(2.13)

Substituting Eq. (2.13) into expression (2.9), and applying integration by parts to the
domain integral of the resulting equation, one finally arrives at a boundary integral
equation of the form

ci φi − D

N∑
j=1

∫

Γj

φ∗ ∂φ

∂n
dΓ + D

N∑
j=1

∫

Γj

(
∂φ∗
∂n

+ v̄n

D
φ∗

)
φ dΓ

=
M∑

k=1

α1,k

[
ci ψik (ξ) − D

N∑
j=1

∫

Γj

φ∗ ∂ψk

∂n
dΓ + D

N∑
j=1

∫

Γj

[(
∂φ∗
∂n

+ v̄n

D
φ∗

)
ψk dΓ

]]

−
N∑

k=1

α2,k

[
ciψik (ξ) − D

N∑
j=1

∫

Γj

φ∗ ∂ψk

∂n
dΓ +

N∑
j=1

∫

Γj

(
∂φ∗
∂n

+ v̄n

D
φ∗

)
ψk dΓ

]
.

(2.14)

Applying Eq. (2.14) to all boundary nodes using a collocation technique, taking
into account the previous functions, results in the following system of algebraic
equations:

Hφ − Gq = (Hψ − Gη) α1 (t) + (Hψ − Gη) α2 (t) . (2.15)
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In the above system, the same matrices H and G are used on both sides. Matrices ψ

and η are also geometry-dependent square matrices (assuming, for simplicity, that
the number of terms in Eq. (2.5) is equal to the number of boundary nodes), and φ,
q, and α are vectors of nodal values. The next step in the formulation is to find an
expression for the unknown vectors α. By applying expressions (2.5) and (2.11) to
all boundary nodes and inverting, one arrives at:

α1 = F−1 ∂φ

∂t
,

and

α2 = F−1
(

Px (x, y)
∂φ

∂x
+ Py (x, y)

∂φ

∂y

)
,

which, substituted into (2.15) results in:

Hφ − Gq = (Hψ − Gη) F−1 ∂φ

∂t
+ (Hψ − Gη) F−1

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
.

Calling:

C = (Hψ − Gη)F−1,

gives

Hφ − Gq = C
∂φ

∂t
+ C

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
. (2.16)

Next, we shall explain how to deal with the convective terms in Eq. (2.16).

2.6 Handling Convective Terms

In the present section, emphasis will be placed on the treatment of the convective
terms. A mechanism must be established to relate the nodal values of φ to the nodal
values of its derivatives.

Let us assume that the function φ can be represented by

φ (x, y) =
M∑

k=1

γk (x, y) βk, (2.17)

where γk (x, y) are known functions and βk are constants. The upper bound M

stands for the total number of terms in the series, i.e. boundary and internal points.
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Now, by differentiating it with respect to x and y produces

∂φ

∂x
=

M∑
k=1

∂γk

∂x
βk and

∂φ

∂y
=

M∑
k=1

∂γk

∂y
βk. (2.18)

Applying Eq. (2.17) at all M nodes, a set of equations is produced that can be
represented in matrix form by

φ = γ β

with corresponding matrix equations for expressions (2.18) given as

∂φ

∂x
= ∂γ

∂x
γ −1 φ and

∂φ

∂y
= ∂γ

∂y
γ −1 φ. (2.19)

Therefore, substituting Eq. (2.19) into Eq. (2.16), the new expression will be

(H − P) φ − Gq = C
∂φ

∂t
, (2.20)

where

P = C

(
Px

∂γ

∂x
+ Py

∂γ

∂y

)
γ −1.

The coefficients of the diagonal perturbation matrix P are all geometry-dependent
only. The differential algebraic system (2.20) has a form similar to the one obtained
using the finite element method (FEM) and hence, can be solved by any standard
time integration algorithm by incorporating suitable modifications to account for its
mixed nature. It should be stressed that the coefficients of matrices H , G and C

all depend on geometry only, thus they can be computed once and stored.

2.7 Time Marching Solution Scheme

This section will show how to handle the linear algebraic system (2.20) adopting
time marching schemes [PaEtAl92, CaEtAl10, DiKa04]. A finite difference approx-
imation for the time derivative term is given by

∂φ

∂t
= φi+1 − φi

Δt
.
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Let us assume a linear variation of φ and q according to

φ (t) = (
1 − θφ

)
φi + θφφi+1,

q (t) = (
1 − θq

)
qi + θqqi+1,

where θφ and θq are parameters which position the values of φ and q between time
levels m and m+ 1, and take values in the interval 0 ≤ θφ, θq ≤ 1. Next, employing
a general two-level time integration scheme for solution of Eq. (2.20), the following
discrete form is obtained:

[
1

Δt
C + θφ {H − P }

]
φm+1 − θq Gqm+1

=
[

1

Δt
C − {(

1 − θφ

)
(H − P ) }

]
φm + (

1 − θq )G qm,

(2.21)

where φm+1 and qm+1 represent the potential and flux at the (m + 1) th time step,
Δt is the time step, φm and qm are the potential and flux at the mth time step.
Several tests were done here to choose the best values for θ and we decided to
select the backward-difference scheme θφ = 1 and θq = 1. In the time marching
computation, the unknown quantities φm are updated at each time step by the new
values obtained after solving Eq. (2.21). At the first time step, the concentration φ

and heat flux q at all boundary and internal points are specified with initial values.
The computation ends when all time steps are fulfilled [Wr02] or a steady state
is reached. The right side of Eq. (2.21) is known at all times. Upon introducing
the boundary conditions at time (m + 1) Δt , the left side of the equation can be
rearranged and the resulting system solved by using standard direct procedures such
as Least Squares, Gauss elimination and LU decomposition. More details of the
element properties, interpolation functions, time integration and equation system
formulation used in this paper are described in Brebbia et al. [BrEtAl12].

2.8 The Choice of Radial Basis Functions

In recent years, the theory of radial basis functions (RBFs) has undergone intensive
research and enjoyed considerable success as a technique for interpolating multi-
variable data and functions. A radial basis function, Ψ

(
x − xj

) = ψ
(∥∥x − xj

∥∥)
,

depends upon the separation distances of a subset of data centres,
(
xj

)
j=1,N

. The

distance,
∥∥x − xj

∥∥, is usually taken to be the Euclidean metric, although other
metrics are possible (for more details see Golberg and Chen [GoCh94]). The type
of RBF used in the interpolation of the unknown variables normally plays an
important role in determining the accuracy of the DRM [OoPo13]. Partridge et al.
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[PaEtAl92] have shown that a variety of functions can in principle be used as
global interpolation functions fk . The approach used by Wrobel and DeFigueiredo
[De90] was based on practical experience rather than formal mathematical analyses
and motivated by a previous successful experience with axisymmetric diffusion
problems in which a similar approach was used [Te87]. In the present work, decision
has been made to follow [De90] by starting with a simple form of the particular
solution ψ and finding the related expression for function f by substitution directly
into Eq. (2.7). The resulting expressions are

ψ = r3,

η = 3 r
[
(x − xk) nx + (y − yk) ny

]
,

f = 9 D r − 3 r
[
(x − xk) vx + (y − yk) vy

] − k r3,

in which (xk, yk) and (x, y) are the coordinates of the kth boundary or internal
point and a general point, respectively. It is important to notice that the set of
functions f produced depend not only on the distance r but also on the diffusivity
D, velocity components vx and vy as well as the reaction rate k, therefore, it
will behave differently when diffusion or convection is the dominating process.
The most popular RBFs are labelled as: r2m−2 log r (generalised thin-plate spline),(
r2 + c2

)m/2
(generalised multiquadric) and e−β r (Gaussian) where m is an integer

number and r = ∥∥x − xj

∥∥. Duchon [Du77] derived the thin-plate splines (TPS)
as an optimum solution to the interpolation problem in a certain Hilbert space via
the construction of a reproducing kernel. It is interesting to observe that Duchon’s
thin-plate splines function with m = 2 corresponds to the fundamental solution
commonly used in the BEM technique to solve biharmonic problems.

Another popular RBF for the DRM is the multiquadric (MQ). However, despite
MQ’s excellent performance, it contains a free parameter, c, often referred to as
the shape parameter that describes the relative ‘flatness’ of the RBFs about their
centres. When c is small the resulting interpolating surface is pulled tightly to the
data points, forming a cone-like basis functions. As c increases, the peak of the
cone gradually flattens. The Hardy multiquadric functions with values of m = 1
and c = 0 are often referred to as conical functions and, with m = 3 and c = 0,
as Duchon cubic. Even though TPS have been considered optimal in interpolating
multivariate functions, they do only converge linearly, Powell [Po94]. On the other
hand, the multiquadric (MQ) functions converge exponentially as shown by Madych
and Nelson [MaNe90]. The tuning of the free parameter c can dramatically affect the
quality of the solution obtained. Increasing the value of c will lead to a flatter RBF.
This will, in general, improve the rate of convergence at the expense of increased
numerical ill-conditioning of the resulting linear system [MaNe90]. Much effort
has been made to search for the ideal shape parameter c when utilising the MQ-
RBF. This is due to the lack of information on choosing the best shape parameter
available in the literature, forcing the user having to make an ‘ad-hoc’ decision. It
should also be noted that, following the procedures discussed in this section, the
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Table 2.1 Radial basis
functions

Name Function

Multiquadric MQ
(
r2 + c2

)1/2

Thin-Plate Spline TPS r2 log r

Cubic RBF r3

MQ-RBF is used to approximate the function ψ , not the function f . After a process
of investigation, the authors found the optimal value of the non-dimensional shape
parameter for the current problems to be c = 75, and this value is used for all
simulations.

The RBFs presented in Table 2.1 have been examined in this paper. Thin-plate
splines and the multiquadric are conditionally positive definite functions (for more
details see [OrEtAl11]).

2.9 Numerical Results and Discussions

The present section is concerned with the numerical application of the DRBEM for
the solution of two-dimensional transient convection-diffusion-reaction problems
with variable velocity. We shall examine some test examples to assess the robustness
and accuracy of this new proposed formulations. For the validation and the
performance of the proposed procedure, two benchmark problems with known
analytical solution are considered.

2.9.1 Transient Convection-Diffusion-Reaction over a Square
Channel with Time-Dependent Dirichlet Boundary
Conditions and Tangential Velocity Field

In the first example, the domain is considered to be a unit square. We focus on
solutions predicted all over the domain by using 19 internal nodes and fixed values
of D = 1 m2/s, k = 0, and variable velocity vx (x) and vy (y) (m/s) as follows:

vx (x) = tan (x) ,

vy (y) = tan (y) .

The test results are obtained for Eq. (2.1) with the following initial and boundary
conditions. The initial condition is chosen as the analytical value of Eq. (2.22) for
t = 0:

φ (x, y, t = 0) = sin (x) + sin (y) .
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Boundary conditions are chosen as:

φ (x = 0, y, t) = (sin (y)) e−2t , φ (x = 1, y, t) = (sin (1) + sin (y)) e−2t

φ (x, y = 0, t) = (sin (x)) e−2t , φ (x, y = 1, t) = (sin (x) + sin (1)) e−2t .

The analytic solution for the present case can be obtained from the following
expression:

φ (x, y, t) = (sin (x) + sin (y)) e−2t . (2.22)

Figure 2.2 shows the geometrical mesh of the BEM model over a square channel.
The boundary is discretised into 50 equally spaced constant elements per side.
The analytical and the numerical solutions of this problem are shown in Fig. 2.3
at several time levels utilising the MQ-RBF and implementing a fully implicit
scheme when θ = 1 and time step Δt = 0.05. The result is obtained for the
time evolution of the concentration profile along the centre line of the domain.
Comparison between the above analytical solution and the numerical results shows
an excellent agreement.

Figures 2.4 and 2.5 consider the results using the thin-plate spline TPS-RBF
and Cubic RBF also with time step Δt = 0.05 s. Similar results as for the MQ-
RBF have been obtained in both cases. Figure 2.6 shows the time evolution of the
concentration distribution in comparison with the analytical solution at the centre
points of the computational domain, i.e. x = y = 0.5 using the backward-difference
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Fig. 2.2 Geometrical mesh of convection- diffusion problem with side length 1 m
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Fig. 2.3 Concentration profile for every 10 time steps using MQ-RBF: comparison between the
analytical (solid line) and numerical (star points) solutions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis(m)

0

0.2

0.4

0.6

0.8

1

1.2

C
on

ce
nt

ra
tio

n 
(k

g/
m

3
)

Analytical
DRBEM

t=0

t=1

t=0.5

t=1.5

Fig. 2.4 Concentration profile for every 10 time steps using TPS-RBF: comparison between the
analytical (solid line) and numerical (star points) solutions

procedure and TPS-RBF. Table 2.2 shows a comparison between the three different
RBFs with time step value Δt = 0.05 s at time level t = 0.5. It can be seen
that the results obtained by the multiquadric, thin-plate spline and cubic RBFs are
reasonably similar. In order to estimate the simulation error, the root mean square
norm is utilised as shown in Table 2.3. It is based on the difference between the
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Fig. 2.5 Concentration profile for every 10 time steps using Cubic RBF: comparison between the
analytical (solid line) and numerical (star points) solutions
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Fig. 2.6 Concentration distribution with time using TPS-RBF: comparison of analytical (solid
line) and numerical solution (star points) for at x = y = 0.5

simulation results φnumer and the analytical solution φexact as

RMS =
√√√√ 1

N

N∑
i=1

(
φi,numer − φi,exact

)2

φ2
i,exact

,
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Table 2.2 Results for
convection-diffusion-reaction
at t = 0.5 for Δt = 0.05

x Cubic MQ TPS Analytical

0.055 0.1962 0.1939 0.2000 0.1965

0.15 0.2304 0.2285 0.2395 0.2313

0.25 0.2662 0.2680 0.2773 0.2673

0.35 0.3013 0.3020 0.2951 0.3025

0.50 0.3515 0.3490 0.3601 0.3527

0.60 0.3829 0.3847 0.3893 0.3840

0.75 0.4259 0.4258 0.4287 0.4271

0.85 0.4517 0.4509 0.4535 0.4527

0.95 0.4751 0.4759 0.4756 0.4756

Table 2.3 RMS error of
DRBEM at t = 2 for
decreasing Δt

θ = 1, f = r2 log (r) , Problem 1

Δt = 0.1 Δt = 0.05 Δt = 0.025

RMS error in φ 0.0091 0.0067 0.0058

Table 2.4 Results for convection-diffusion-reaction problem using MQ-RBF with different values
of the shape parameter c

x c=100 c=75 c=50 c=25 c=5 Analytical

0.055 0.1970 0.1939 0.1861 0.1852 0.3752 0.1965

0.25 0.2678 0.2680 0.2468 0.2284 1.4938 0.2673

0.50 0.3524 0.3490 0.3185 0.3025 −3.5933 0.3527

0.75 0.4268 0.4258 0.3984 0.3909 −7.3263 0.4271

0.95 0.4759 0.4759 0.4708 0.4662 −1.6469 0.4756

where i denotes a nodal value, φi,exact is the analytical solution, φi,numer is the
numerical solution and N is the total number of internal nodes. In Table 2.3 the
error is seen to reduce as Δt decreases, as expected. Table 2.4 shows a comparison
between five different values of the shape parameter c for MQ-RBF with time step
value Δt = 0.05 s at time level t = 0.5. It is clear that the results obtained are
reasonable and laying at same level of accuracy when the parameter c = 75 or 100.
On the other hand, the results appear to lose their accuracy for smaller values of c.

From another point of view, taking a very high value of the shape parameter
c creates collocation matrices which are poorly conditioned and require high-
precision arithmetic to solve accurately. Using a relatively high non-dimensional
shape parameter of 75, the collocation matrices are sufficiently well conditioned to
be solved using quad-precision arithmetic (see [Ch12, StEtAl13, StPo15] for more
details on the shape parameter c).
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2.9.2 Transient Convection-Diffusion-Reaction Problem over
Rectangular Region with Mixed (Neumann–Dirichlet)
Boundary Conditions

As a final example, we investigate a convection-diffusion-reaction problem with
linear reaction term. The velocity field is considered to be along the longitudinal
direction and all the coefficients in the governing equation are constant. The
numerical and analytical solutions are compared for different time steps Δt and
reaction coefficient k. The geometry is considered to be [0.7 m × 1 m] as shown in
Fig. 2.7. Potential values are imposed at the ends of the cross-section, i.e., at x = 0,
φ = 300 and at x = 1, φ = 10. On the sides parallel to x, the lateral fluxes q = 0,
the problem thus having mixed Neumann–Dirichlet boundary conditions:

∂φ

∂n
(x, 0, t) = ∂φ

∂n
(x, 0.7, t) = 0, 0 ≤ x ≤ 1, t > 0,

φ (0, y, t) = 300, φ (1, y, t) = 10, 0 ≤ y ≤ 0.7, t > 0

and the initial conditions are φ(x, y, 0) = 0 at all points at t = 0. The values of the
reaction parameter k are assumed to be k = 1, 5, 10, 20 and 40 s−1, vy = 0 while
vx is considered to vary according to the formula:

vx = kx + log

(
10

300

)
x − k

2
. (2.23)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

vx = kx + log
10
300

x− k

2

Domain
Boundary Node
Nodal Coordinate
Internal Point

Fig. 2.7 Schematic representation of the rectangular channel model with side length 1 m
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The steady-state solution is given in [PaSe00]

φ (x, y) = 300 exp

[
k

2
x2 + log

(
10

300

)
x − k

2
x

]
.

In the numerical simulation with a fully implicit scheme, a diffusion coefficient
D = 1 m2/s, a variable velocity vx as described in Eq. (2.23), and a time step Δt =
0.05 s were used with the results shown at t = 2 s, by which time the solution has
converged to a steady state. Comparison between the above analytical solution and
our numerical results are given in figures below, showing excellent agreement.

Case (i): k = 1 The first case is considered with the reaction value k = 1, which
is analysed with the computational domain discretised into 80 constant
elements and using 19 internal points. For the DRBEM model, only the
TPS-RBF has been applied in all cases. Figure 2.8 shows the exact and
numerical solutions, with 10 constant elements along the vertical sides
and 30 along each horizontal side.
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k: Comparison between the analytical (solid line) and numerical (star points) solutions, for every
5 time steps, Problem 2



40 S. A. Al-Bayati and L. C. Wrobel

Case (ii): k = 5 In the second case, the contribution of the reactive term in
Eq. (2.1) is increased to k = 5. In Fig. 2.8, results are compared for
the same time-stepping scheme considered in the previous case. The
results are still very reasonable for the discretisation employed, which
is the same as for k = 1.

Case (iii): k = 10 For this case, the contribution of the reactive term in Eq. (2.1)
is increased to k = 10. Figure 2.8 displays the results time for the same
time-stepping scheme considered in the previous case.

Case (iv): k = 20 To see the effect of further increasing the value of k, the
reaction coefficient is now k = 20. In this case, the maximum global
Péclet number is equal to 10 (see Fig. 2.9).

Case (v): k = 40 The final test considers the reaction coefficient k = 40. A plot
of the variation of the concentration φ along the x-axis is presented in
Fig. 2.9. In this case, the maximum global Péclet number is 20. It is
obvious that the agreement with the corresponding analytical solution
is still very good.
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2.10 Concluding Remarks

In this paper, we present a novel formulation of the DRBEM for solving two-
dimensional transient convection-diffusion-reaction problems with spatial variable
velocity field. This new formulation for this type of problems has been implemented
to handle the time derivative part and the variable velocity field. The fundamental
solution of the corresponding steady-state equation with constant coefficients has
been utilised. The DRBEM is used to transform the domain integrals appearing
in the BEM formulations into equivalent boundary integrals, thus retaining the
boundary-only character of the standard BEM. Numerical applications for 2D
time-dependent problems are demonstrated to show the validity of the proposed
technique, and its accuracy was evaluated by applying it to two tests with different
velocity fields. Moreover, numerical results show that the DRBEM does not present
oscillations or damping of the wave front as may appear in other numerical
techniques.

The results presented in Sect. 2.9 show the versatility of the method to solve
time-dependent convection-diffusion-reaction problems involving variable velocity
fields. We can note a distinct advantage of the present approach, which demonstrates
very good accuracy even for high reaction values which increase the Péclet number
for the cases studied. It is obvious that, as the velocity increases, the concentration
distribution becomes steeper and more difficult to reproduce with numerical models.
However, all BEM solutions are still in good agreement for moderate Péclet number
(Pé = 10 and Pé = 20 ), but oscillations appear for high Péclet number; thus,
more refined discretisations are required for these cases. We have made an extensive
investigation for the last case studied by considering many different values of the
reaction coefficient k. For all these various values of k the backward time-stepping
scheme produces very good results in general. We have derived and implemented
three RBFs and tested them with different types of problems.
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