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Preface

The international conferences on Computational and Mathematical Methods in
Science and Engineering (CMMSE) are annual events where professionals of a
variety of denominations who use analytic and numerical methods of investigation
communicate the most recent results of their research.

The latest edition of this well-established series of meetings took place in the
resort of Costa Ballena, Rota, Cadiz, Spain, June 30–July 6, 2019, and included a
special session on the applications of integral methods to scientific developments
in a variety of fields, such as pure analysis, numerical techniques, mathematical
biology, petroleum engineering, and continuum mechanics. The chapters in this
volume, arranged alphabetically by first author’s name, represent a collection of
selected, peer-reviewed articles presented in that session.

On behalf of the participants, I wish to express my appreciation to the organizing
committee—in particular, to its chairman, Jesús Vigo Aguiar—for underwriting the
success of the conference by providing an environment conducive to the forging
of good interpersonal relationships and the creation of synergies that will lead to
further advancements in the construction and use of an essential class of techniques
for the qualitative and quantitative study of mathematical models.

Finally, I would also like to thank the reviewers for their thorough and timely
responses and Christopher Tominich and his team at Birkhäuser–New York for their
courteous and professional handling of the publication process.

Tulsa, OK, USA Christian Constanda
March 2020
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Chapter 1
New Numerical Results
for the Optimization of Neumann
Eigenvalues

Daniel Abele and Andreas Kleefeld

1.1 Introduction

We will discuss the optimization of interior Neumann eigenvalues with respect
to the shape of the domain. To state the problem precisely, consider an open,
possibly disconnected set Ω ∈ IR2 with smooth boundary ∂Ω . The normal onto the
boundary at point x ∈ ∂Ω directed into the exterior is ν := ν(x). Interior Neumann
eigenvalues are values λ = κ2 ∈ IR for which the boundary value problem (BVP)

Δu+ κ2u = 0 in Ω (1.1a)

∂u

∂ν
= 0 on ∂Ω (1.1b)

has non-trivial solutions. Precisely, Eq. (1.1a) is the Helmholtz equation with
wavenumber κ in the interior of Ω and Eq. (1.1b) is the homogeneous Neu-
mann boundary condition. The problem arises in the study of acoustic scattering
[CoKr13]. It is well-known that the eigenvalues are discrete, real, and nonnegative:

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . .

The eigenvalues depend on the domain. The optimization problem for the k-th
eigenvalue is

max
Ω
{λk(Ω)}

s.t. |Ω| = 1

D. Abele · A. Kleefeld (�)
Forschungszentrum Jülich, Jülich Supercomputing Centre, Jülich, Germany
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2 D. Abele and A. Kleefeld

Table 1.1 Recent results for
the numerical optimization of
interior Neumann eigenvalue
λk

k [AnFr12] [AnOu17] [Kl19]

1 – 10.66(2) –

2 – 21.28(4) –

3 32.79 (3) 32.90(3) 32.9018 (3)

4 43.43 (5) 43.86(3) 43.8694 (3)

5 54.08 (7) 55.17(3) –

6 67.04 (4) 67.33(4) –

7 77.68 (6) 77.99(6) –

8 89.22 (4) 89.38(4) –

9 101.73 (4) 101.83(4) –

10 113.86 (5) 114.16(5) –

The value in parentheses is the multiplicity

with |Ω| denoting the area of the domain. The area must be constrained as the
eigenvalues are inversely proportional to the area. So the goal is to find the shape of
the domain that maximizes λk for k > 0 among all domains of constant area. The
eigenvalue λ0, for which (1.1) has only constant solutions, is ignored here as it is
always zero.

There has been some theoretical and numerical work in this area. Szegö and a
little later Weinberger have shown that the first eigenvalue is maximized by a disk
[Sz54, We56]. The second eigenvalue is maximized by the union of two disjoint
disks of the same size [GiNaPo09]. It is so far unknown if maximizers for higher
eigenvalues exist. However, it has been shown that disjoint unions of disks do
not maximize all eigenvalues [PoRo10], so there is room for exploration. Recent
numerical results suggest that maximizers for the first ten eigenvalues exist and
follow a certain system [AnOu17, AnFr12]. That system has been exploited to
get more precise results for some eigenvalues [Kl19]. Those numerical results are
summarized in Table 1.1.

1.1.1 Contribution

This work expands on the idea of [Kl19]. We show that the parametrization of
shapes presented there is not very successful beyond the fourth eigenvalue. By
introducing additional parameters we managed to get improved optimization results
for some eigenvalues, while still using fewer parameters than a general Fourier
series approach. As the performance of the eigenvalue solver directly affects the
achievable precision, we discuss the employed methods and the implementation in
greater detail and explain some adaptations that make optimization feasible on a
larger scale than before: more eigenvalues, more degrees of freedom and greater
precision. In particular, we developed a strongly scaling parallelization scheme.
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1.1.2 Outline

In Sect. 1.2 we present the method of computing the eigenvalues and its imple-
mentation. The numerical methods—boundary element method to discretize the
BVP and the contour integral method of Beyn to solve the nonlinear eigenvalue
problem—are discussed in detail in Sects. 1.2.1 and 1.2.2. That discussion motivates
the parallelization scheme that is explained in Sect. 1.2.3. Section 1.3 is dedicated
to the actual optimization. After a quick summary of the shape parametrization
of [Kl19] we present the disappointing results of using that parametrization in the
maximization of further eigenvalues. We then extend the parameter space and show
the much improved results. Finally we will give our conclusion and a small outlook
in Sect. 1.4.

1.2 Computation of Eigenvalues

The process to compute eigenvalues is the same as in [Kl19] with the exception of
parallelization and some other important modifications that have major implications
on the required computational effort. First, the BVP (1.1) is discretized using
the boundary element method. The resulting homogeneous linear system is a
nonlinear eigenvalue problem that is solved with the method of Beyn. To motivate
the parallelization, we will give a quick summary of these methods while the
modifications are highlighted and discussed in detail.

1.2.1 The Boundary Element Method

The theory of this method is covered in [CoKr83]. Using a single layer potential
ansatz, the BVP (1.1) is first converted into the integral equation of the second kind

1

2
ψ(x)+

∫
∂Ω

∂

∂ν(x)
Φκ(x, y)ψ(y) ds(y) = 0 , x ∈ ∂Ω (1.2)

whose solution ψ ∈ C(∂Ω) is the density of the solution of the BVP. The kernel

Φκ(x, y) := i

4
H

(1)
0 (κ ‖x − y‖)

with H
(1)
0 the Hankel function of the first kind of order zero is the fundamental

solution of the PDE (1.1a). We choose n points xi, i = 1, . . . , n on the boundary
that form n/2 boundary elements with two endpoints and one midpoint. The integral
equation (1.2) is discretized using piecewise quadratic interpolation of ψ and the
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boundary. Collocation results in a homogeneous linear system

(
1

2
I+M(κ)

)

︸ ︷︷ ︸
T(κ)

�ψ = 0 (1.3)

with system matrix T(κ) and identity matrix I ∈ Cn×n. The entries of matrix
M(κ) ∈ Cn×n are integrals over the quadratic boundary elements of the form

∫ 1

0

∂

∂νi,k
Φκ(xi, gk(t))Lj (t)

∥∥g′k(t)
∥∥ dt (1.4)

with xi the collocation point, k = 1, . . . , n/2 the index of the boundary element,
gk : [0, 1] � t �→ L1(t)x2k−1 + L2(t)x2k + L3(t)x2k+1 the quadratic interpolation
polynomial of the k-th boundary element, νi,k some approximation of the normal
onto the boundary at xi that may depend on the boundary element (see below),
and Lj , j = 1, 2, 3 the j -th quadratic Lagrange basis polynomial. The integral
describes the influence of the j -th point of boundary element k on collocation point
xi , thus index i is the row index of the matrix entry and indices j and k depend
on the column index. Elements in odd indexed rows correspond to the endpoints of
boundary elements (x1, x3, . . .) and as such are the sum of two such integrals with
different j, k as they belong to two different boundary elements. The kernel

∂

∂νi,k
Φκ(x, y) = − iκ

4
H

(1)
1 (κ ‖x − y‖) 1

‖x − y‖
〈
x − y, νi,k

〉
(1.5)

has a singularity at x = y the type of which depends on the choice of νi,k .

Handling of the Singular Kernel

The singularity of the kernel (1.5) must be handled correctly when evaluating the
integrals (1.4) numerically. Note first that there is only a singularity in integral (1.4)
if collocation point xi is part of boundary element k, i.e. gk(t0) = xi for some
t0 ∈ [0, 1]. Otherwise the integrand is continuous and does not present any specific
challenge to numerical quadrature. Let us now assume that there is a singularity in
the k-th boundary element. We will examine the limit of the kernel by isolating the
singular part. First the Hankel function is replaced by H

(1)
1 (z) = J1(z) + iY1(z)

where J1 and Y1 are the Bessel functions of the first and second kind of order one.
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As z→ 0, J1(z) tends to zero, so we have

lim
y→x

(
− iκ

4
H

(1)
1 (κ ‖x − y‖)

〈
x − y

‖x − y‖ , νi,k
〉)

= lim
y→x

(
κ

4
Y1(κ ‖x − y‖)

〈
x − y

‖x − y‖ , νi,k
〉)

. (1.6)

We replace Y1 with its power series expansion

Y1(z) =− 2

πz
+ 2

π
ln(

1

2
z)J1(z)

+ 1

π

∞∑
k=0

(−1)k

k!(k + 1)! (ψ0(k + 1)+ ψ0(k + 2))

(
1

2
z

)2k+1

with ψ0 the digamma function. Of this expansion only the first summand is infinite.
The remaining summands again tend to zero as z→ 0. This reduces (1.6) to

lim
y→x

(
− 1

2π

〈
x − y

‖x − y‖2
, νi,k

〉)
. (1.7)

The limit does not exist for any general vectors x, y, and νi,k , so further constraints
are applied. The points x and y lie on the graph of gk with x = g(t0). By Taylor’s
theorem there exists a function h : IR → IR2 with limt→t0 h(t) = 0 such that

gk(t) = gk(t0)+ g′k(t0)(t − t0)+ 1

2
g′′k (t0)(t − t0)

2 + h(t)(t − t0)
2 .

Inserting this into (1.7), the remainder term vanishes as it tends to zero. Let νi,k
be the normal vector onto gk at t0. Then, the linear term vanishes as g′k(t0) is the
tangent onto gk at t0 and

〈
g′k(t0), νi,k

〉 = 0. The constant terms cancel and only the
quadratic term remains. Hence, we are left with

lim
t→t0

(
1

4π

〈
g′′k (t0)(t − t0)

2

‖gk(t0)− gk(t)‖2 , νi,k

〉)
.

The difference quotient tends to the derivative and we find the result

1

4π

〈
g′′k (t0)∥∥g′k(t0)

∥∥2 , νi,k

〉
.

So under the assumptions from the beginning that xi is part of element k, the
singularity in the kernel (1.5) is removable and the integrals (1.4) are proper if〈
g′k(t0), νi,k

〉 = 0. Note that the existence of the integral in (1.2) can be shown
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with the same argument. In [Kl19], the normal onto the exact boundary, which is
generally not normal to gk , was used in the numeric computation. This results in
infinite singularities that are difficult to handle. Here, we will use normals onto
the interpolation polynomials. We denote the normal onto gk at t0 as g⊥k (t0). For
even indices i (which correspond to the midpoint of element i/2), we always use
g⊥i/2(1/2). For odd indices i, the point xi is part of two boundary elements and we
have g(i+1)/2−1(1) = g(i+1)/2(0) = xi . We have a choice of two different normals at
xi . When we integrate over element (i + 1)/2− 1, we need to choose g⊥(i+1)/2−1(1)
and analogously for element (i + 1)/2. Otherwise the choice is arbitrary, so we
alternate to avoid introducing bias. In summary

νi,k =

⎧⎪⎪⎨
⎪⎪⎩

g⊥i/2(
1
2 ) if i mod 2 = 0

g⊥(i+1)/2−1(1) if i mod 2 = 1 and k mod 2 = ( i+1
2 − 1) mod 2

g⊥(i+1)/2(0) if i mod 2 = 1 and k mod 2 = i+1
2 mod 2

.

Now the integrals can be evaluated without any special handling of the singular-
ity. This makes the quadrature less expensive. We have used a routine that uses the
15 point Gauss–Kronrod rule to solve the integrals to within a relative and absolute
tolerance of 10−10.

Exploiting Symmetries of the Domain

The shapes considered in this work are all symmetric to some degree. This fact can
be exploited to reduce the required work. In the integrand of the integrals (1.4) with
kernel (1.5), the collocation point xi , normal νi,k , and integration point y = gk(t)

exclusively exist in norms and scalar products. Those are invariant under rotation:

‖Rv‖ = ‖v‖
〈Rv,Rw〉 = 〈v,w〉

for all v,w ∈ IR2 and all rotation transformations R. Under reflection, scalar
products switch signs but this is compensated by the switching of the integration
bounds, so the resulting integral is again invariant. Thus, if xa is the image of xb and
xc is the image of xd under reflection or rotation, then M(κ)ac = M(κ)bd . For this
to work, n must be divisible by two times the degree of symmetry and the boundary
elements must have the same symmetries as the shape itself (Fig. 1.1).

As an example for what effect this has on matrix M(κ) we will discuss the
suspected shape maximizer of λ3, which has degree of symmetry six (three rotations
times two for reflection symmetry, Fig. 1.1). For simplicity, we assume that the first
collocation point x1 lies on a symmetry axis. Threefold rotational symmetry and the
corresponding shifting of rows and columns by n/3 lead to the matrix having 3× 3
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xaxb

xc

xd xe

x f

Fig. 1.1 Suspected shape maximizer of λ3, discretized using n = 24 points that form 12 boundary
elements. Long ticks mark the endpoints, short ticks the midpoints. The shape has degree of
symmetry six, three rotations times two for reflection symmetry. The discretization parameter n is
divisible by 12, two times the degree of symmetry. The boundary elements have the same symmetry
as the shape itself. The points xa , xb, xc, xd , xe, and xf are images of each other

block structure

M(κ) =
⎛
⎝A B C

C A B
B C A

⎞
⎠

with some blocks A,B,C ∈ Cn/3×n/3 that each have to be evaluated only once,
reducing the required work to a third. Reflection symmetry and the corresponding
reflection of both rows and columns of the matrix lead to the matrix being centrally
symmetric with respect to the entry at row and column n/2 + 1, e.g. for n = 4 the
matrix

⎛
⎜⎜⎝
a e b e

f g h i

c j d j

f i h g

⎞
⎟⎟⎠

is point symmetric with respect to entry (3, 3) using periodic indices. Note that this
example is just for illustration as n = 4 would not be valid for degree of symmetry
six due to the restrictions mentioned above. Each value repeats twice except where
row index and column index both correspond to fixed points of the reflection, i.e.
to points that lie on the symmetry axis. As the boundary elements are symmetric
and x1 lies on the axis, so does xn/2+1. In our example, values of entries (1, 1),
(1, n/2+ 1), (n/2+ 1, 1), and (n/2+ 1, n/2+ 1) (or a, b, c, and d) do not repeat.
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Rotation and reflection symmetry combine so that all values repeat six times, except
for the fixed points of reflection which only repeat three times.

Rotation symmetry of degree r reduces the number of matrix entries that must
be evaluated to n2/r . Reflection symmetry further reduces the amount to n2/2r+4.
Except for infinitely symmetric shapes like a circle we usually have n � r , so the
complexity of the method with respect to the number of collocation points does not
change, but the total amount of work is reduced by a factor approaching 2r .

1.2.2 Beyn’s Contour Integral Method

The eigenvalues of the nonlinear eigenvalue problem (1.3) are computed using the
contour integral method W.-J. Beyn presented in [Be12]. For simplicity, we assume
here that all eigenvalues are simple, but the method works identically for multiple
eigenvalues. Given an operator T : Γ → Cn×n that is holomorphic on a domain
Γ ⊂ C and a closed contour C ⊂ Γ with its interior int(C) ⊂ Γ , the method
computes all eigenvalues of T in the interior int(C).

Let κi, i = 1, . . . , k be the eigenvalues of T in the interior int(C) and vi
and wi the corresponding left and right eigenvectors that are normalized so that
wH
i T′(κi)vi = 1. Then the equation

1

2π i

∫
C

f (κ)T(κ)−1 dκ =
k∑
i=1

f (κi)viw
H
i (1.8)

holds for all holomorphic functions f : Γ → C [Be12, Theorem 2.9]. We
additionally assume that k < n, which is sufficient for our purposes. Beyn describes
an extension to the method for k ≥ n. Applying (1.8) to the functions f0(κ) = 1 and
f1(κ) = κ and multiplying with a random matrix Z ∈ Cn×m from the right yields
two equations

A0 =
∫
C

T(κ)−1Z dκ = VWHZ (1.9a)

A1 =
∫
C

κT(κ)−1Z dκ = VKWHZ (1.9b)

with V = (v1, . . . , vm), W = (w1, . . . , wm), and K = diag(κ1, . . . , κm). The
dimension m is an initial guess for k with k ≤ m ≤ n. Therefore, the matrix Z
reduces the dimensions of A0 and A1 without reducing the rank k. Singular value
decomposition (SVD) of A0 in reduced form yields

A0 = V0S0WH
0
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with matrices V0 ∈ Cn×k and W0 ∈ Cm×k and the diagonal matrix of singular
values S0 = diag(σ1, . . . , σk). With this, the correctness of the initial guess m can
be confirmed by comparing it with the actual computed rank. In case the check is
failed, the method is started again with a higher guess m. Finally a matrix

B = VH
0 A1W0S−1

0 = QKQ−1

is computed. The matrix is diagonalizable by construction with Q = VH
0 V and has

eigenvalues κi, i = 1, . . . , k. Thus, the nonlinear eigenvalue problem is converted
into a linear eigenvalue problem. If the eigenvalues are not simple, the method
works identically but K will have Jordan normal form. The structure of multiplicity
is preserved. We have enough knowledge about the location of eigenvalues to
make the choice of C trivial. All that is left is the discretization of the contour
integrals (1.9). Let the contour be described by a smooth mapping h : [0, 2π ] → C

with h(0) = h(2π), e.g. the simplest contour, a circle with center μ and radius r ,
is described by h(t) = μ + reit . The interval [0, 2π ] is partitioned by the equally
spaced nodes tj = 2πj/N, j = 1, . . . , N with N a chosen discretization parameter.
The approximations

A0 ≈ 1

N i

N∑
j=1

T(h(tj ))−1Zh′(tj ) (1.10a)

A1 ≈ 1

N i

N∑
j=1

h(tj )T(h(tj ))−1Zh′(tj ) (1.10b)

are obtained by transforming the integrals onto the partitioned interval and applying
the trapezoidal quadrature rule. Beyn shows that the error in the eigenvalues decays
exponentially with N [Be12, Corollary 4.8].

The operator T must be evaluated N times. This is by far the most expensive
part of the algorithm. As k is usually much smaller than n, the introduction of the
random matrix Z makes the matrices small enough so that the effort required for
linear algebra operations is small. While the solving of linear systems T(h(tj ))−1Z
is still noticeable, the other operations (SVD, solving the linear eigenvalue problem)
are completely negligible.

1.2.3 Parallelization

For optimization with many iterations, the eigenvalue solver is required to be fast.
The evaluation of both the matrix M(κ) and the contour integrals in Beyn’s method
are well suited for parallelization. This covers almost the entire computation. In
our implementation for n = 1152 and N = 48, almost 100% of the time is spent
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Fig. 1.2 Time required to
evaluate each entry of M(κ)

for a domain with threefold
rotational symmetry. Vertical
stripes correspond to
alternating end- and
midpoints of boundary
elements. The singularity of
the kernel of the integral
equation causes a band
around the diagonal whose
boundary follows the shape of
the domain 0 20 40 60
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on the evaluation of the contour integrals (1.10), of which the evaluation of M(κ)

requires 98.8% and solving the linear systems T(κ)−1Z requires 1.2%. Everything
else is completely negligible. While the exact gains that can be expected depend
on the implementation and the system, the principles outlined here are universal.
Most relevant for performance are the routines that evaluate the Hankel function
and perform quadrature. Our program is implemented in C, using GNU Scientific
Library (GSL) [Ga09] as a general framework and for quadrature specifically. For
the Hankel function we use the FORTRAN routine provided by Amos [Am86].

Each entry of the n× n matrix can be evaluated independently without any syn-
chronization or communication. Row cyclical distribution is a simple and effective
way to balance the workload (Fig. 1.2). Columns that correspond to an endpoint
of a boundary element require the evaluation of two integrals, whereas columns
that correspond to a midpoint require only one. Additionally, the time necessary to
evaluate a single integral depends strongly on the distance from the singularity of
the kernel, i.e. the diagonal. Row distribution removes both these imbalances. For
shapes less regular than a disk and collocation points that are not perfectly evenly
spaced, the number of collocation points that are close to the singularity varies
smoothly between rows. So the rows need to be distributed cyclically. Without any
communication or synchronization and with 98.8% of the computation parallelized,
strong scaling is expected for this strategy. The implementation, e.g. using OpenMP,
is trivial.

Each of the N summands of the trapezoidal rule that approximates the contour
integrals in Beyn’s method can also be evaluated independently without any
communication except for one sum reduce operation at the end. In regards to
workload balancing, the time to evaluate T(κ) in our implementation depends
mainly on the sign of the imaginary part of wave number κ (Fig. 1.3). The integrals
involving the Hankel function are more expensive for Im(κ) < 0. The eigenvalues
are real, so a contour that is centered on the real axis is used. Cyclical distribution
of summands is generally solid, although not very flexible regarding the number of
tasks. Some tasks may end up with fewer summands from one half space than the
other. The parallelized part is slightly larger than for the first strategy as basically
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Fig. 1.3 Time required to evaluate T(κ) for different wave numbers κ . The evaluation of integrals
involving the Hankel function H

(1)
1 is significantly more expensive for arguments with negative

imaginary part. The singularity at the origin is of no concern as we are not interested in zero
eigenvalues

100% of the computation is covered. This improves scaling compared to the first
strategy. However, the parameter N is typically not very high (<50) so the degree
of parallelism is severely constrained. It is advisable to employ both strategies,
e.g. in a hybrid (mixed shared memory and distributed memory) application. Our
implementation achieves a speedup of ~520 with 576 physical/1152 virtual cores
on the JURECA cluster [Ju18] which likely can be further improved. The time to
evaluate the eigenvalues is reduced to below one second, which allows large scale
optimization.

1.3 Optimization of Eigenvalues

Recall that the constrained optimization problem we are trying to solve is

max
Ω
{λk(Ω)}

s.t. |Ω| = 1
(1.11)

for some fixed k ∈ IN with |Ω| denoting the area of the domain Ω . By applying the
known relations

λk(aΩ) = a−2λk(Ω)

|aΩ| = a2 |Ω|
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with aΩ denoting the homothety of Ω by the factor a, we can convert (1.11) into
the equivalent unconstrained problem

max
Ω
{λk |Ω|} .

In the numeric treatment, it is sufficient to consider connected domains. The
spectrum of a disconnected domain Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅ is the ordered
union of the spectrums of the component domains Ω1 and Ω2. If the maximums
λ∗i = maxΩ{λi} and corresponding maximizers Ω∗

i (connected or disconnected) for
i = 1, . . . , k− 1 are known, then the maximum of λk over disconnected domains is

λ∗k = max
1≤i≤ n

2

{λ∗i + λ∗k−i} (1.12)

and the corresponding disconnected maximizer is

Ω∗
k =

⎛
⎝
√√√√ λ∗j
λ∗j + λ∗k−j

Ω∗
j

⎞
⎠ ∪

⎛
⎝
√√√√ λ∗k−j
λ∗j + λ∗k−j

Ω∗
k−j

⎞
⎠

where j is the integer that maximizes (1.12). If the maximum over all domains is
greater than (1.12), then the maximizer must be connected [PoRo10].

In [Kl19], Kleefeld introduced equipotentials to parametrize the domain. They
are described by the implicit function

m∑
i=1

1

‖x − pi‖2α = c (1.13)

with m fixed base points pi and free parameters c and α. To match the shapes
reported in [AnOu17, Fig. 2], the base points are chosen so they form equilateral
triangles of side length

√
3/2, three points on one triangle to maximize λ3 and four

points on two triangles to maximize λ4 (see first row of Fig. 1.4). Points on the
boundary required by the boundary element method are generated by transforming
the equation into polar coordinates and using a root finding algorithm to compute the
radiuses ri for evenly spaced angles φi . The points (ri, φi) are then transformed back
into Cartesian coordinates. The area of the domain is computed to high accuracy
by approximating the domain as a polygon with 100 · n sides. With this method,
Kleefeld improved on the values found by Antunes and Oudet with the maximum
of λ3 to 32.9018 over 32.90 and the maximum of λ4 to 43.8694 over 43.86.

With the improvements for the method of computation presented above, we can
now try the scheme on the higher eigenvalues. Unless otherwise noted, we have
used discretization parameters n = 1152 and N = 48. Convergence experiments
suggest this is generally enough for six significant digits in the eigenvalues. To
be safe, we check the results of optimization with finer discretization. As the
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Fig. 1.4 Arrangement of base points for equipotentials to maximize λ3, λ4, λ5, and λ6. The points
form a regular triangular grid. A cross marks the origin and rotation center

gradient of the objective function is not trivially computable, we use a routine
provided by GSL that implements the Nelder–Mead simplex method. To avoid local
maximums, we try different starting values. For two parameters, it is possible to
exhaustively probe the parameter space to find good starting values. The extended,
higher dimensional parameter space that is presented later is randomly probed
instead. Simplex algorithms are known to terminate prematurely even without the
presence of local minimums. So after the optimization routine terminates, it is
restarted with the step size reset to its initial value. If the previous result is indeed the
maximum (or close enough), the restarted optimization routine quickly terminates
again. Eigenvalues are truncated to six significant digits. Shape parameters are given
with more significant digits so that the results can be reliably reproduced. The
precise error propagation is unknown.

We use the results of Antunes and Oudet [AnOu17] as references for comparison.
But there is some uncertainty regarding the precision of those values. The first
eigenvalue λ1 has been proven to be maximized by a disk. The spectrum for the
disk can be stated analytically. It is composed of values πj ′2pq where j ′pq is the
q-th positive zero of J ′p, the first derivative of the Bessel function of the first
kind of order p. These values can be computed very accurately with root finding
algorithms. The first eigenvalue is approximately 10.649866. The second eigenvalue
λ2 is maximized by the union of two disks of the same size. Following the rules for
spectrum of disconnected shapes outlined above, the maximum is precisely 2λ1 or
approximately 21.299733. However, the values given in [AnOu17] are 10.66 for λ1
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and 21.28 for λ2. This discrepancy is not discussed in their paper. While a value
lower than the analytical value could be simply caused by incomplete optimization,
a higher value calls into question the precision of the eigenvalue solver. This has
direct implications for λ7 as well, for which the maximizer found by Antunes and
Oudet is a disjoint union of the maximizers of λ1 and λ6. The maximum value for λ7
therefore should be the sum of maximums for λ1 and λ6. It appears like the authors
used their own inaccurate value for λ1, so λ7 is inaccurate as well. Of course all
their results could be affected by an inaccurate solver, so any comparison can only
be tentative.

The base points for the maximizers of λk, k = 5, 6, 8, 9, 10 are k points on a
regular equilateral triangular grid as they were for k = 3, 4 (see Fig. 1.4). For λ7,
Antunes and Oudet did not find a connected shape maximizer. The maximizer can
then be constructed from the maximizers for k < 7, so it is improved automatically
with those. The positive results from [Kl19] have been confirmed with 32.9018,
32.9018, 32.9018 for λ3 and 43.8693, 43.8693, 43.8693 for λ4. The parameters
differ slightly from [Kl19] with c = 1.687730810, α = 2.019822714 and c =
2.084610015, α = 2.541256146, respectively. This might be explained by the finer
discretization used. Unfortunately, equipotentials work less and less well for higher
k and less symmetric shapes. For λ5, which in [AnOu17] has multiplicity three,
we have 54.5401, 54.5401, 56.0889 for c = 2.380671137 and α = 3.914738607.
This is significantly lower than the reference value 55.17 and the multiplicity is
not reproduced. For λ6 (multiplicity four), where the suspected shape is more
regular, we get 67.0440, 67.0440, 67.0440, 67.0440 with c = 2.849410261, α =
0.660868556, which is a bit closer to the reference value of 67.33 but still some
distance away. For λ10 (multiplicity five), we even get 109.988 109.988 109.988
118.955 118.955 instead of the previous value 114.16 with c = 1.567009307, α =
5.196376634. The eigenvalues for k = 7, 8, 9 that have been skipped have not been
tried as there was no reason to believe they would fare better.

The results strongly suggest that equipotentials as they are in (1.13) are not
general representations of the shape maximizers. They have shown potential but
need refinement. So far, the base points of the equipotentials have been arranged
on a completely regular triangular grid and all base points are weighted equally. As
there is no particular reason for this regularity other than visual intuition, breaking
it might prove beneficial. So the base points will be allowed to deviate slightly from
their regular position. The weight for the base points in the sum of potentials will
be allowed to deviate from the regular weight of one. The imagined balls around
base points expand as their weight increases. In general, the boundary of the shape
moves away from such points. This final equation reads

m∑
i=1

1+ δ̂i∥∥x − (pi + ε̂i )
∥∥2α

= c

where ε̂i ∈ IR2 is the irregularity of position and δ̂i ∈ IR is the irregularity of weight
of base point i.
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Some of the new parameters are fixed so that the shapes are unique and there
are no dependencies between parameters. The eigenvalues do not depend on the
absolute position of the domain in space, only on the relative position of its
base points, so at least one base point should remain fixed during optimization.
One weight should remain fixed to avoid a dependency between the weights and
parameter c. It is always possible to normalize one weight to a value of one without
changing the shape by dividing all weights and c by that weight. The degrees
of freedom are further reduced by a requirement that no rotation or reflection
symmetries of the regular base points are broken. It must be said that at this point
the conjecture that the symmetries are meaningful is unproven. However, based on
the results of Antunes and Oudet, the conjecture seems reasonable and it keeps the
number of parameters low. So most of the parameters δ̂i and ε̂i will be fixed to
zero. For example, the shape for λ3 will have no additional free parameters. One
point must be fixed for uniqueness, the others to preserve rotation symmetry. The
shape for λ4 consists of two pairs of points that are images of each other. One pair
must be fixed. The other is free but can only move along the symmetry axis. So
there is one free coordinate and one free weight. The free, non-zero parameters will
be denoted as εi, i = 1, . . . , fε and δi, i = 1, . . . , fδ with fδ and fε the number
of degrees of freedom (Table 1.2). The free parameters can be assigned to base
points almost arbitrarily as long as symmetry is conserved. We included our chosen
assignment in the tables of results (Tables 1.3 and 1.4). Due to rotation symmetry,
some irregularities of position εi are not axis aligned but point toward the rotation
center. For convenience of implementation we avoided irregularities of position that
point away from the domain so that a positive first optimization step does not tear
the shape apart.

The introduction of ε and δ drastically improves the results over just two
parameters. Figure 1.5 shows the shapes and optimized eigenvalues. Tables 1.3
and 1.4 show the full numerical results including parameters. The maximum for
λ3 remains unchanged as it did not gain any additional free parameters. The
value of λ4 got another small boost to 43.8700. For k = 4, 6, 8, 10, we achieved

Table 1.2 Degree of
freedom of positions fε (each
coordinate is counted
separately) and weights fδ
and total degree of freedom f

(including c, α) of the
equipotential that is used to
maximize λk after symmetry
and uniqueness of the shape
and independence of
parameters is handled

k fε fδ f

3 0 0 2

4 1 1 4

5 3 2 7

6 1 1 4

8 6 4 12

9 7 4 13

10 1 2 5

Degree of freedom
is generally greater
for shapes with
fewer symmetries
or more base points



16 D. Abele and A. Kleefeld

Table 1.3 Optimization results for interior Neumann eigenvalues λk, k = 3, . . . , 7 using
extended equipotentials

k Reference Maximum Parameters Base points and irregularities

3 32.90 (3) 32.9018

32.9018

32.9018

c = 1.687730810

α = 2.019822714

4 43.86 (3) 43.8700

43.8700

43.8700

c = 1.942568636

α = 2.751523202

ε1 = −1.314531646 ·10−2

δ1 = −4.623467053 ·10−2

δ1 δ1
ε1 ε1

5 55.17 (3) 55.1498

55.1498

55.1498

c = 1.548694899

α = 2.231247849

ε1 = −8.845230330 ·10−2

ε2 = −4.509337199 ·10−2

ε3 = −4.354727490 ·10−2

δ1 = −1.979312992 ·10−1

δ2 = −1.671890335 ·10−1

δ1δ1

δ2

ε1
ε2

ε1
ε2

ε3

6 67.33 (4) 67.3364

67.3364

67.3364

67.3364

c = 2.027170345

α = 1.706097040

ε1 = 1.577407017 ·10−1

δ1 = 6.001214705 ·10−3

δ1

δ1 δ1

ε1

ε1 ε1

7 77.99 (6) 77.9862

77.9862

77.9862

77.9862

77.9862

77.9862

– –

The second column gives the reference value of [AnOu17] with multiplicity in parentheses. The
third column contains the maximal eigenvalue that was found by us and as many of the following
eigenvalues as the multiplicity requires. The third column contains the equipotential parameters of
the shape maximizer. The figures in the fourth column show the base points of the equipotential and
the assignment of free irregularity parameters ε and δ. The shape maximizer for λ7 in [AnOu17] is
a disconnected shape that is a union of the shape for λ6 with a disk and we did not run numerical
optimization on it. The values are the sum of the analytical maximum for λ1 and our new maximum
for λ6
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Table 1.4 Optimization results for interior Neumann eigenvalues λk, k = 8, 9, 10 using extended
equipotentials

k Reference Maximum Parameters Base points and irregularities

8 89.38 (4) 89.8620

89.8620

89.8620

89.8621

c = 1.942964474

α = 1.810828390

ε1 = 1.219776174 ·10−1

ε2 = −9.776658965 ·10−2

ε3 = −4.652290511 ·10−2

ε4 = −6.000769737 ·10−2

ε5 = −7.584457864 ·10−2

ε6 = −2.247915505 ·10−1

δ1 = 5.396514489 ·10−1

δ2 = 2.082674393 ·10−1

δ3 = 1.353703658 ·10−1

δ4 = 9.643159176 ·10−2

δ1

δ2

δ3

δ4 δ4

δ3

δ2

ε1
ε2

ε3
ε2

ε3
ε4

ε5

ε4
ε5

ε6 ε6

9 101.83 (4) 101.752

101.752

101.752

101.752

c = 1.506287804

α = 1.928595020

ε1 = −2.021261311 ·10−1

ε2 = −1.184995442 ·10−1

ε3 = −1.272843752 ·10−1

ε4 = −1.075608953 ·10−1

ε5 = −3.596435931 ·10−2

ε6 = 7.343083116 ·10−3

ε7 = 8.586462162 ·10−2

δ1 = −3.306712889 ·10−2

δ2 = 5.598216794 ·10−1

δ3 = 7.664620451 ·10−3

δ4 = 1.043695363 ·100

δ1δ1

δ2

δ3 δ4 δ4 δ3

δ2

ε1
ε2

ε1
ε2
ε3

ε4
ε3

ε4

ε5

ε6
ε5

ε6ε7 ε7

10 114.16 (5) 114.187

114.187

114.187

114.187

114.187

c = 0.899837214

α = 2.708323325

ε1 = −4.458971106 ·10−2

δ1 = 1.150148658 ·100

δ2 = −2.824155602 ·10−1

δ2

δ1

δ1

δ2 δ1 δ1 δ2

δ1

δ1

ε1

ε1 ε1

The second column gives the reference value of [AnOu17] with multiplicity in parentheses. The
third column contains the maximal eigenvalue that was found by us and as many of the following
eigenvalues as the multiplicity requires. The third column contains the equipotential parameters of
the shape maximizer. The figures in the fourth column show the base points of the equipotential
and the assignment of free irregularity parameters ε and δ
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λ1 = 10.6498 λ2 = 21.2997 λ3 = 32.9018 λ4 = 43.8700 λ5 = 55.1498∗

λ6 = 67.3364 λ7 = 77.9862 λ8 = 89.8620 λ9 = 101.752∗ λ10 = 114.187

Fig. 1.5 Shape maximizers for interior Neumann eigenvalues λk, k = 1, . . . , 10. An asterisk
marks values where the reference value by [AnOu17] has not been matched or exceeded.
The first two eigenvalues, which are proven theoretically, are included for completeness. For
k = 3, 4, 5, 6, 8, 9, 10 the maximizers were found by optimizing the (extended) parameters of
equipotentials. The maximizer for the seventh eigenvalue is a union of the scaled maximizers for
the first and sixth eigenvalues and was not optimized on its own. All shapes have been scaled so
they have the same area

higher maximums than the reference value, sometimes by a small amount like
λ6 = 67.3364 over 67.33 that could be interpreted as just an increase in precision,
sometimes significantly so with λ8 = 89.8620 over 89.38 and λ10 = 114.187 over
114.16. Using the improved value for λ6 and the precise value for λ1 (see above),
λ7 can also be considered improved even though the reference value is higher. The
result for λ5 is now much closer than it was using just two parameters but is still
short of the reference value by about 2 · 10−2. The difference is small enough that it
may still be caused by an inaccurate reference value. For λ9, which is also too small,
the distance to the reference value is almost certainly too big to be explained in that
way. Maybe coincidentally, similar trapezoid shapes are used in both cases (λ9 and
λ5) where the reference value has not been matched or exceeded.

The multiplicities given in [AnOu17] have not been precisely reproduced in all
cases. For example there is a small gap in between the values for λ8. For almost all
shapes, the eigenvalues have multiplicities one or two. With changing shapes, some
of those groups of identical eigenvalues increase, others decrease. In most cases,
both Antunes and Oudet and us have found the optimum where two groups merge,
producing multiplicities of three or four. Note that for unions of disjoint shapes,
higher multiplicities are expected, as the multiplicities of the component shapes
accumulate. Connected shapes where more than two groups merge may not exist
and the values for λ8 may simply be a near miss, where three groups almost merge.
On the other hand it is possible that we are simply not able to represent such shapes
with the chosen parametrization or that the optimization routine missed them.
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1.4 Conclusion

We have presented a way to efficiently and precisely compute interior Neumann
eigenvalues for two dimensional domains. Along the way, we highlighted a few
techniques to reduce the time to solution. The strongly scaling parallelization in
particular allowed us to use the implemented solvers in the optimization of the
eigenvalues with respect to the shape of the domain. We refined the parametrization
of the shapes developed by previous research and found improved maximums for
most of the first ten eigenvalues.

The very specialized parametrization we presented requires fewer parameters
than more general approaches like Fourier series. This makes numerical optimiza-
tion much cheaper. But the new parametrization is unfortunately far from compact,
especially for higher eigenvalues. It is therefore unlikely to be helpful in any
theoretical proof of shape maximizers. Numerical optimization was also not equally
successful in all cases. The general idea seems promising, but further adaptations
will be necessary. Ultimately, an entirely new idea might be called for.

It should prove insightful to study even higher eigenvalues than in this work.
Both the method of solution and the parametrization can also be extended without
great modifications to three dimensions. Similar results as for the interior Neumann
problem also exist for Dirichlet boundary conditions. So research similar to the one
in this work is possible in that area. We have concentrated on acoustic scattering.
One could also study electromagnetic or elastic problems.

The source code for the program is available at the URL below. We invite
researchers to check the program, extend it, or use it in their own research.

https://gitlab.version.fz-juelich.de/abele2/shapeopt
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Chapter 2
Transient Convection-Diffusion-Reaction
Problems with Variable Velocity Field by
Means of DRBEM with Different Radial
Basis Functions

Salam Adel Al-Bayati and Luiz C. Wrobel

2.1 Introduction

The solution of convection-diffusion-reaction problems is a difficult task for all
numerical methods because of the nature of the governing equation, which includes
first-order and second-order partial derivatives in space [PaEtAl92, AlWr17, Wr02,
Al02, BrEtAl12, AlWr18a, AlWr18b, AlWr19]. The convection-diffusion equation
is the basis of many physical and chemical phenomena, and its use has also
spread in economics, financial forecasting and other fields [Mo96]. The DRBEM,
initially applied to transient heat conduction problems by Wrobel et al. [WoEtAl86],
interprets the time derivative in the diffusion equation as a body force and employs
the fundamental solution to the corresponding steady-state equation to generate a
boundary integral equation. When the steady-state fundamental solution is used
in the DRBEM to approximate transient problems, other techniques should be
employed to approximate the solution’s functional dependence on the temporal
variables. Aral and Tang [ArTa89] used the fundamental solution of the Laplace
equation, but made use of a secondary reduction process, called SR-BEM, to arrive
at a boundary-only formulation. They presented the results of transient convection-
diffusion problems with or without first-order chemical reaction for low to moderate
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Péclet numbers. Martin [Ma05] proposed a Schwartz waveform relaxation algorithm
for the unsteady diffusive-convective equation, which uses domain decomposition
methods and applies an iterative algorithm directly to the time-dependent problem.
Partridge and Sensale [PaSe00] have used the method of fundamental solution with
dual reciprocity and subdomain approach to solve convection-diffusion problems.
The time integration scheme is the FDM with a relaxation procedure, which is
iterative in nature and needs a carefully selected time increment. Regarding the
DRBEM formulation presented in this work, a backward finite difference scheme
is adopted, Smith [Sm85].

In this article, the DRBEM is also employed to discretise the spatial par-
tial derivatives in the two-dimensional diffusive-convective-reactive type problem.
Thus, the problem is ultimately described in terms of boundary values only,
consequently reducing its dimensionality by one [WrDe91]. We use the fundamental
solution to the steady-state convection-diffusion-reaction equation and transform
the domain integral arising from the time derivative term using a set of coordinate
functions and particular solutions which satisfy the associated non-homogeneous
steady-state convection-diffusion-reaction problem. Further, only a simple set of
cubic radial basis functions has been previously used in this formulation. We con-
sider two other sets of coordinate functions, non-augmented thin-plate spline (TPS)
and multiquadric (MQ) radial basis functions, and analyse their performance in
conjunction with the order of time integration algorithms for convection-diffusion-
reaction problems. This work also focuses on the search for the optimal shape
parameter when utilising the multiquadric radial basis function (MQ-RBF). This
is due to the lack of information on choosing the best shape parameter, forcing the
user having to make an ‘ad-hoc’ decision. Recent numerical experiments available
in the literature, nevertheless, showed that the MQ-RBF has shown great potential
when dealing with complicated PDEs in two dimensions if an adequate shape value
is provided.

A brief outline of the rest of this paper is as follows. Section 2.2 reviews the
mathematical representation of convection-diffusion- reaction problems. Section 2.3
derives the boundary element formulation of the governing equation using the
steady-state fundamental solution of the corresponding equation. In Sects. 2.4
and 2.5, the DRBEM formulation and its discretisation are developed for the
2D transient convection-diffusion-reaction problem. A two-level time marching
procedure for the proposed model is implemented in Sect. 2.6. Section 2.7 gives
the description of the coordinate functions and the choice of the three radial
basis functions. Section 2.8 compares and investigates the solution profiles for
the present numerical experiments with the analytical solution of the tested cases.
Computational aspects are included to demonstrate the performance of the approach
in Sect. 2.9. Finally, some conclusions and remarks are provided in the last section.
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2.2 Governing Equation

The two-dimensional transient convection-diffusion-reaction problem over a
domain Ω in R

2 bounded by a boundary Γ , for isotropic materials, is governed by
the following PDE:

D∇2φ (x, y, t)− vx (x, y)
∂φ (x, y, t)

∂x
− vy (x, y)

∂φ (x, y, t)

∂y
− k φ (x, y, t)

= ∂φ (x, y, t)

∂t
, (x, y) ∈ Ω, t > 0.

(2.1)

In Eq. (2.1), φ represents the concentration of a substance, treated as a function of
space and time. The velocity components vx and vy along the x and y directions are
assumed to vary in space. Besides, D is the diffusivity coefficient and k represents
the first-order reaction constant or adsorption coefficient. The boundary conditions
are

φ = φ̄ over ΓD

q = ∂φ

∂n
= q̄ over ΓN,

where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary with Γ =
ΓD ∪ΓN , and ΓD ∩ΓN = ∅ (see Fig. 2.1). The initial condition over the domain Ω
is

φ (x, y, t = 0) = φ0 (x, y) , (x, y) ∈ Ω.

Fig. 2.1 Definition of domain, boundary and constant elements
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The parameter that describes the relative influence of the convective and diffusive

components is called the Péclet number, Pé = |v|L/D, where v =
(
v2
x + v2

y

)1/2

is the velocity and L is a characteristic length of the domain. For small values of
Pé, Eq. (2.1) behaves as a parabolic differential equation, while for large values the
equation becomes more like hyperbolic. These changes in the structure of the PDE
according to the values of the Péclet number have significant effects on its numerical
solution.

2.3 BEM Formulation of Transient
Convection-Diffusion-Reaction Problems

Let us consider a region Ω ⊂ R
2 bounded by a piecewise smooth boundary Γ .

The transport of φ in the presence of a reaction term is governed by the two-
dimensional transient convection-diffusion-reaction Eq. (2.1). The variable φ can be
interpreted as temperature for heat transfer problems, concentration for dispersion
problems, etc., and will be herein referred to as a potential. For the sake of
obtaining an integral equation equivalent to the above PDE, a fundamental solution
of Eq. (2.1) is necessary. However, fundamental solutions are only available for the
case of constant velocity fields. At this stage, the variable velocity components
vx = vx(x, y) and vy = vy(x, y) are decomposed into average (constant) terms
v̄x and v̄y , and perturbations Px = Px (x, y) and Py = Py (x, y), such that

vx (x, y) = v̄x + Px (x, y) vy (x, y) = v̄y + Py (x, y) .

Now, we can re-write Eq. (2.1) to take the form

D∇2φ (x, y, t)− v̄x
∂φ (x, y, t)

∂x
− v̄y

∂φ (x, y, t)

∂y
− k φ (x, y, t)

= ∂φ (x, y, t)

∂t
+ Px

∂φ (x, y, t)

∂x
+ Py

∂φ (x, y, t)

∂y
.

(2.2)

Next, one can transform the differential equation (2.2) into an equivalent integral
equation as follows [WrDe91]:

φ (ξ)− D

∫

Γ

φ∗ ∂φ
∂n

dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φ φ∗ v̄n dΓ

= −
∫

Ω

[
∂φ

∂t
+
(
Px

∂φ

∂x
+ Py

∂φ

∂y

)]
φ∗ dΩ, ξ ∈ Ω, (2.3)
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where v̄n = v.n, n is the unit outward normal vector and the dot stands for scalar
product and v = (

vx, vy
)
. In the above equation, φ∗ is the fundamental solution of

the steady-state convection-diffusion-reaction equation with constant coefficients.
For two-dimensional problems, φ∗ is given by

φ∗ (ξ, χ) = 1

2πD
e
−
(
v̄.r
2D

)
K0 (μr) , r = |ξ − χ | ,

where

μ =
[( |v̄|

2D

)2

+ k

D

] 1
2

, v̄ = (
v̄x, v̄y

)
,

in which ξ and χ are the source and field points, respectively, and r is the modulus
of r, the distance vector between the source and field points. The derivative of the
fundamental solution with respect to the outward normal is given by

∂φ∗

∂n
= 1

2πD
e
−
(
v̄.r
2D

) [
−μK1 (μr)

∂r

∂n
− v̄n

2D
K0 (μr)

]
.

In the above, K0 and K1 are Bessel functions of second kind, of orders zero and one,
respectively. The exponential term is responsible for the inclusion of the correct
amount of ‘upwind’ into the formulation [RaŠk13]. Equation (2.3) is valid for
source points ξ inside the domain Ω . A similar expression can be obtained, by
implementing Green’s second identity and a limit analysis, for source points ξ on
the boundary Γ , in the form

c (ξ) φ (ξ)− D

∫

Γ

φ∗ ∂φ
∂n

dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φ φ∗ v̄n dΓ

= −
∫

Ω

∂φ

∂t
φ∗ dΩ −

∫

Ω

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
φ∗ dΩ, ξ ∈ Γ, (2.4)

in which c (ξ) is a function of the internal angle the boundary Γ makes at point ξ .

2.4 Standard Approach: DRBEM

In this section, we will discuss the transformation of the domain integral in
Eqs. (2.3) and (2.4), and the DRBEM will be implemented to approximate the two
domain integrals appearing in this formulation, first the domain integral of the time
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derivative, and second the domain integral related to the velocity perturbation parts.
Now, we start by expanding the time derivative ∂φ

∂t
in the form

∂φ (x, y, t)

∂t
=

n∑
i=1

fi (x, y) α1,i (t) . (2.5)

The above series involves a set of known coordinate functions fi and a set of
unknown time-dependent coefficients α1,i . With this approximation, the first domain
integral in Eq. (2.4) becomes

∫
Ω

∂φ

∂t
φ
∗
dΩ =

n∑
i=1

α1,i

∫
Ω

fiφ
∗
dΩ. (2.6)

The next step is to consider that, for each function fi , there exists a related function
ψi which is a particular solution of the equation:

D∇2ψ − v̄x
∂ψ

∂y
− v̄y

∂ψ

∂x
− kψ = f. (2.7)

Now, the domain integral (2.6) can be recast in the form:

∫

Ω

∂φ

∂t
φ∗dΩ =

M∑
k=1

α1,k

∫

Ω

(
D∇2ψk − v̄x

∂φk

∂y
− v̄y

∂φk

∂x
− kψk

)
φ∗dΩ.

(2.8)

Substituting expression (2.8) into (2.4), applying integration by parts to the right
side of the resulting equation and doing some simplifications, one finally arrives at
a boundary integral equation of the form

c (ξ) φ (ξ)−D

∫

Γ

φ∗ ∂φ
∂n

dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φ φ∗ v̄n dΓ

=
M∑
k=1

α1,k

[
c (ξ) ψk (ξ)− D

∫

Γ

φ∗ ∂ψk
∂n

dΓ +D

∫

Γ

[(
∂φ∗

∂n
+ v̄n

D
φ∗
)
ψk

]
dΓ

]

−
∫

Ω

(
Px

∂φk

∂x
+ Py

∂φk

∂y

)
φ∗ dΩ, ξ ∈ Γ. (2.9)
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2.5 Discretization

To discretise the spatial domain, boundary elements were employed. The integrals
over the boundary are approximated by a summation of integrals over individual
boundary elements. For the numerical solution of the problem, Eq. (2.9) is dis-
cretized in the form

ci φi −D

N∑
j=1

∫

Γj

φ∗ ∂φ

∂n
dΓ +D

N∑
j=1

∫

Γj

(
∂φ∗
∂n

+ v̄n

D
φ∗

)
φ dΓ

=
M∑
k=1

α1,k

[
ci ψik (ξ)− D

N∑
j=1

∫

Γj

φ∗ ∂ψk
∂n

dΓ +D

N∑
j=1

∫

Γj

[(
∂φ∗
∂n

+ v̄n

D
φ∗

)
ψk dΓ

]]

−
∫

Ω

(
Px

∂φk

∂x
+ Py

∂φk

∂y

)
φ∗ dΩ, (2.10)

where the index i means the values at the source point ξ and N elements have been
employed. The domain integral on the right-hand side prevents us from obtaining a
boundary-only equation.

Now, in order to obtain a boundary integral which is equivalent to the domain
integral in expressions (2.9) and (2.10), a dual reciprocity approximation is again
implemented [AlWr17]. Applying this to the domain integral of Eq. (2.10), the
expression will be expanded in the form

Px (x, y)
∂φ

∂x
+ Py (x, y)

∂φ

∂y
=

N∑
k=1

α2,k (t) fk. (2.11)

Expression (2.11) contains two diagonal matrices Px =
(
Px (xi, yi) δi,j

)
i,j=1,M and

Py =
(
Py (xi, yi) δi,j

)
i,j=1,M while

∂φ

∂x
=
(
∂φ (xi, yi)

∂x

)T
i=1,M

,
∂φ

∂y
=
(
∂φ (xi, yi)

∂x

)T
i=1,M

are column vectors and δi,j is the Kronecker delta symbol. Integrating Eq. (2.11) we
obtain

∫

Ω

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ =

M∑
k=1

α2,k (t)

∫

Ω

fk φ
∗dΩ. (2.12)
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Now, substituting Eq. (2.12) into (2.10), we obtain

ci φi −D

N∑
j=1

∫

Γj

φ∗ ∂φ

∂n
dΓ +D

N∑
j=1

∫

Γj

(
∂φ∗
∂n

+ v̄n

D
φ∗

)
φ dΓ

=
M∑
k=1

α1,k

[
ci ψik (ξ)− D

N∑
j=1

∫

Γj

φ∗ ∂ψk
∂n

dΓ +D

N∑
j=1

∫

Γj

[(
∂φ∗
∂n

+ v̄n

D
φ∗

)
ψk dΓ

]]

−
M∑
j=1

α2,j (t)

∫

Ω

fk φ
∗dΩ.

The next step is to consider that, for each function fk , there exists a related function
ψk which represents the particular solution as in Eq. (2.7). We get

∫

Ω

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ =

M∑
k=1

α2,k

∫

Ω

(
D∇2ψk − v̄x

∂φk

∂y
− v̄y

∂φk

∂x
− kψk

)
φ∗dΩ.

(2.13)

Substituting Eq. (2.13) into expression (2.9), and applying integration by parts to the
domain integral of the resulting equation, one finally arrives at a boundary integral
equation of the form

ci φi −D

N∑
j=1

∫

Γj

φ∗ ∂φ

∂n
dΓ +D

N∑
j=1

∫

Γj

(
∂φ∗
∂n

+ v̄n

D
φ∗

)
φ dΓ

=
M∑
k=1

α1,k

[
ci ψik (ξ)− D

N∑
j=1

∫

Γj

φ∗ ∂ψk
∂n

dΓ + D

N∑
j=1

∫

Γj

[(
∂φ∗
∂n

+ v̄n

D
φ∗

)
ψk dΓ

]]

−
N∑
k=1

α2,k

[
ciψik (ξ)−D

N∑
j=1

∫

Γj

φ∗ ∂ψk
∂n

dΓ +
N∑
j=1

∫

Γj

(
∂φ∗
∂n

+ v̄n

D
φ∗

)
ψk dΓ

]
.

(2.14)

Applying Eq. (2.14) to all boundary nodes using a collocation technique, taking
into account the previous functions, results in the following system of algebraic
equations:

Hφ −Gq = (Hψ −Gη) α1 (t)+ (Hψ −Gη) α2 (t) . (2.15)



2 DRBEM for Transient Convection-Diffusion-Reaction 29

In the above system, the same matrices H and G are used on both sides. Matrices ψ
and η are also geometry-dependent square matrices (assuming, for simplicity, that
the number of terms in Eq. (2.5) is equal to the number of boundary nodes), and φ,
q, and α are vectors of nodal values. The next step in the formulation is to find an
expression for the unknown vectors α. By applying expressions (2.5) and (2.11) to
all boundary nodes and inverting, one arrives at:

α1 = F−1 ∂φ

∂t
,

and

α2 = F−1
(
Px (x, y)

∂φ

∂x
+ Py (x, y)

∂φ

∂y

)
,

which, substituted into (2.15) results in:

Hφ −Gq = (Hψ −Gη)F−1 ∂φ

∂t
+ (Hψ −Gη)F−1

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
.

Calling:

C = (Hψ −Gη)F−1,

gives

Hφ −Gq = C
∂φ

∂t
+ C

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
. (2.16)

Next, we shall explain how to deal with the convective terms in Eq. (2.16).

2.6 Handling Convective Terms

In the present section, emphasis will be placed on the treatment of the convective
terms. A mechanism must be established to relate the nodal values of φ to the nodal
values of its derivatives.

Let us assume that the function φ can be represented by

φ (x, y) =
M∑
k=1

γk (x, y) βk, (2.17)

where γk (x, y) are known functions and βk are constants. The upper bound M

stands for the total number of terms in the series, i.e. boundary and internal points.



30 S. A. Al-Bayati and L. C. Wrobel

Now, by differentiating it with respect to x and y produces

∂φ

∂x
=

M∑
k=1

∂γk

∂x
βk and

∂φ

∂y
=

M∑
k=1

∂γk

∂y
βk. (2.18)

Applying Eq. (2.17) at all M nodes, a set of equations is produced that can be
represented in matrix form by

φ = γ β

with corresponding matrix equations for expressions (2.18) given as

∂φ

∂x
= ∂γ

∂x
γ−1 φ and

∂φ

∂y
= ∂γ

∂y
γ−1 φ. (2.19)

Therefore, substituting Eq. (2.19) into Eq. (2.16), the new expression will be

(H − P) φ −Gq = C
∂φ

∂t
, (2.20)

where

P = C

(
Px

∂γ

∂x
+ Py

∂γ

∂y

)
γ−1.

The coefficients of the diagonal perturbation matrix P are all geometry-dependent
only. The differential algebraic system (2.20) has a form similar to the one obtained
using the finite element method (FEM) and hence, can be solved by any standard
time integration algorithm by incorporating suitable modifications to account for its
mixed nature. It should be stressed that the coefficients of matrices H , G and C

all depend on geometry only, thus they can be computed once and stored.

2.7 Time Marching Solution Scheme

This section will show how to handle the linear algebraic system (2.20) adopting
time marching schemes [PaEtAl92, CaEtAl10, DiKa04]. A finite difference approx-
imation for the time derivative term is given by

∂φ

∂t
= φi+1 − φi

Δt
.
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Let us assume a linear variation of φ and q according to

φ (t) = (
1− θφ

)
φi + θφφ

i+1,

q (t) = (
1− θq

)
qi + θqq

i+1,

where θφ and θq are parameters which position the values of φ and q between time
levels m and m+ 1, and take values in the interval 0 ≤ θφ, θq ≤ 1. Next, employing
a general two-level time integration scheme for solution of Eq. (2.20), the following
discrete form is obtained:

[
1

Δt
C + θφ {H − P }

]
φm+1 − θq Gqm+1

=
[

1

Δt
C − {(

1− θφ
)
(H − P ) }

]
φm + (

1− θq )G qm,

(2.21)

where φm+1 and qm+1 represent the potential and flux at the (m+ 1) th time step,
Δt is the time step, φm and qm are the potential and flux at the mth time step.
Several tests were done here to choose the best values for θ and we decided to
select the backward-difference scheme θφ = 1 and θq = 1. In the time marching
computation, the unknown quantities φm are updated at each time step by the new
values obtained after solving Eq. (2.21). At the first time step, the concentration φ

and heat flux q at all boundary and internal points are specified with initial values.
The computation ends when all time steps are fulfilled [Wr02] or a steady state
is reached. The right side of Eq. (2.21) is known at all times. Upon introducing
the boundary conditions at time (m+ 1)Δt , the left side of the equation can be
rearranged and the resulting system solved by using standard direct procedures such
as Least Squares, Gauss elimination and LU decomposition. More details of the
element properties, interpolation functions, time integration and equation system
formulation used in this paper are described in Brebbia et al. [BrEtAl12].

2.8 The Choice of Radial Basis Functions

In recent years, the theory of radial basis functions (RBFs) has undergone intensive
research and enjoyed considerable success as a technique for interpolating multi-
variable data and functions. A radial basis function, Ψ

(
x − xj

) = ψ
(∥∥x − xj

∥∥),
depends upon the separation distances of a subset of data centres,

(
xj
)
j=1,N . The

distance,
∥∥x − xj

∥∥, is usually taken to be the Euclidean metric, although other
metrics are possible (for more details see Golberg and Chen [GoCh94]). The type
of RBF used in the interpolation of the unknown variables normally plays an
important role in determining the accuracy of the DRM [OoPo13]. Partridge et al.



32 S. A. Al-Bayati and L. C. Wrobel

[PaEtAl92] have shown that a variety of functions can in principle be used as
global interpolation functions fk . The approach used by Wrobel and DeFigueiredo
[De90] was based on practical experience rather than formal mathematical analyses
and motivated by a previous successful experience with axisymmetric diffusion
problems in which a similar approach was used [Te87]. In the present work, decision
has been made to follow [De90] by starting with a simple form of the particular
solution ψ and finding the related expression for function f by substitution directly
into Eq. (2.7). The resulting expressions are

ψ = r3,

η = 3 r
[
(x − xk) nx + (y − yk) ny

]
,

f = 9D r − 3 r
[
(x − xk) vx + (y − yk) vy

]− k r3,

in which (xk, yk) and (x, y) are the coordinates of the kth boundary or internal
point and a general point, respectively. It is important to notice that the set of
functions f produced depend not only on the distance r but also on the diffusivity
D, velocity components vx and vy as well as the reaction rate k, therefore, it
will behave differently when diffusion or convection is the dominating process.
The most popular RBFs are labelled as: r2m−2 log r (generalised thin-plate spline),(
r2 + c2

)m/2
(generalised multiquadric) and e−β r (Gaussian) where m is an integer

number and r = ∥∥x − xj
∥∥. Duchon [Du77] derived the thin-plate splines (TPS)

as an optimum solution to the interpolation problem in a certain Hilbert space via
the construction of a reproducing kernel. It is interesting to observe that Duchon’s
thin-plate splines function with m = 2 corresponds to the fundamental solution
commonly used in the BEM technique to solve biharmonic problems.

Another popular RBF for the DRM is the multiquadric (MQ). However, despite
MQ’s excellent performance, it contains a free parameter, c, often referred to as
the shape parameter that describes the relative ‘flatness’ of the RBFs about their
centres. When c is small the resulting interpolating surface is pulled tightly to the
data points, forming a cone-like basis functions. As c increases, the peak of the
cone gradually flattens. The Hardy multiquadric functions with values of m = 1
and c = 0 are often referred to as conical functions and, with m = 3 and c = 0,
as Duchon cubic. Even though TPS have been considered optimal in interpolating
multivariate functions, they do only converge linearly, Powell [Po94]. On the other
hand, the multiquadric (MQ) functions converge exponentially as shown by Madych
and Nelson [MaNe90]. The tuning of the free parameter c can dramatically affect the
quality of the solution obtained. Increasing the value of c will lead to a flatter RBF.
This will, in general, improve the rate of convergence at the expense of increased
numerical ill-conditioning of the resulting linear system [MaNe90]. Much effort
has been made to search for the ideal shape parameter c when utilising the MQ-
RBF. This is due to the lack of information on choosing the best shape parameter
available in the literature, forcing the user having to make an ‘ad-hoc’ decision. It
should also be noted that, following the procedures discussed in this section, the
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Table 2.1 Radial basis
functions

Name Function

Multiquadric MQ
(
r2 + c2

)1/2

Thin-Plate Spline TPS r2 log r

Cubic RBF r3

MQ-RBF is used to approximate the function ψ , not the function f . After a process
of investigation, the authors found the optimal value of the non-dimensional shape
parameter for the current problems to be c = 75, and this value is used for all
simulations.

The RBFs presented in Table 2.1 have been examined in this paper. Thin-plate
splines and the multiquadric are conditionally positive definite functions (for more
details see [OrEtAl11]).

2.9 Numerical Results and Discussions

The present section is concerned with the numerical application of the DRBEM for
the solution of two-dimensional transient convection-diffusion-reaction problems
with variable velocity. We shall examine some test examples to assess the robustness
and accuracy of this new proposed formulations. For the validation and the
performance of the proposed procedure, two benchmark problems with known
analytical solution are considered.

2.9.1 Transient Convection-Diffusion-Reaction over a Square
Channel with Time-Dependent Dirichlet Boundary
Conditions and Tangential Velocity Field

In the first example, the domain is considered to be a unit square. We focus on
solutions predicted all over the domain by using 19 internal nodes and fixed values
of D = 1 m2/s, k = 0, and variable velocity vx (x) and vy (y) (m/s) as follows:

vx (x) = tan (x) ,

vy (y) = tan (y) .

The test results are obtained for Eq. (2.1) with the following initial and boundary
conditions. The initial condition is chosen as the analytical value of Eq. (2.22) for
t = 0:

φ (x, y, t = 0) = sin (x)+ sin (y) .
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Boundary conditions are chosen as:

φ (x = 0, y, t) = (sin (y)) e−2t , φ (x = 1, y, t) = (sin (1)+ sin (y)) e−2t

φ (x, y = 0, t) = (sin (x)) e−2t , φ (x, y = 1, t) = (sin (x)+ sin (1)) e−2t .

The analytic solution for the present case can be obtained from the following
expression:

φ (x, y, t) = (sin (x)+ sin (y)) e−2t . (2.22)

Figure 2.2 shows the geometrical mesh of the BEM model over a square channel.
The boundary is discretised into 50 equally spaced constant elements per side.
The analytical and the numerical solutions of this problem are shown in Fig. 2.3
at several time levels utilising the MQ-RBF and implementing a fully implicit
scheme when θ = 1 and time step Δt = 0.05. The result is obtained for the
time evolution of the concentration profile along the centre line of the domain.
Comparison between the above analytical solution and the numerical results shows
an excellent agreement.

Figures 2.4 and 2.5 consider the results using the thin-plate spline TPS-RBF
and Cubic RBF also with time step Δt = 0.05 s. Similar results as for the MQ-
RBF have been obtained in both cases. Figure 2.6 shows the time evolution of the
concentration distribution in comparison with the analytical solution at the centre
points of the computational domain, i.e. x = y = 0.5 using the backward-difference
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Fig. 2.2 Geometrical mesh of convection- diffusion problem with side length 1 m
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Fig. 2.3 Concentration profile for every 10 time steps using MQ-RBF: comparison between the
analytical (solid line) and numerical (star points) solutions
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Fig. 2.4 Concentration profile for every 10 time steps using TPS-RBF: comparison between the
analytical (solid line) and numerical (star points) solutions

procedure and TPS-RBF. Table 2.2 shows a comparison between the three different
RBFs with time step value Δt = 0.05 s at time level t = 0.5. It can be seen
that the results obtained by the multiquadric, thin-plate spline and cubic RBFs are
reasonably similar. In order to estimate the simulation error, the root mean square
norm is utilised as shown in Table 2.3. It is based on the difference between the
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Fig. 2.5 Concentration profile for every 10 time steps using Cubic RBF: comparison between the
analytical (solid line) and numerical (star points) solutions
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Fig. 2.6 Concentration distribution with time using TPS-RBF: comparison of analytical (solid
line) and numerical solution (star points) for at x = y = 0.5

simulation results φnumer and the analytical solution φexact as

RMS =
√√√√ 1

N

N∑
i=1

(
φi,numer − φi,exact

)2

φ2
i,exact

,
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Table 2.2 Results for
convection-diffusion-reaction
at t = 0.5 for Δt = 0.05

x Cubic MQ TPS Analytical

0.055 0.1962 0.1939 0.2000 0.1965

0.15 0.2304 0.2285 0.2395 0.2313

0.25 0.2662 0.2680 0.2773 0.2673

0.35 0.3013 0.3020 0.2951 0.3025

0.50 0.3515 0.3490 0.3601 0.3527

0.60 0.3829 0.3847 0.3893 0.3840

0.75 0.4259 0.4258 0.4287 0.4271

0.85 0.4517 0.4509 0.4535 0.4527

0.95 0.4751 0.4759 0.4756 0.4756

Table 2.3 RMS error of
DRBEM at t = 2 for
decreasing Δt

θ = 1, f = r2 log (r) , Problem 1

Δt = 0.1 Δt = 0.05 Δt = 0.025

RMS error in φ 0.0091 0.0067 0.0058

Table 2.4 Results for convection-diffusion-reaction problem using MQ-RBF with different values
of the shape parameter c

x c=100 c=75 c=50 c=25 c=5 Analytical

0.055 0.1970 0.1939 0.1861 0.1852 0.3752 0.1965

0.25 0.2678 0.2680 0.2468 0.2284 1.4938 0.2673

0.50 0.3524 0.3490 0.3185 0.3025 −3.5933 0.3527

0.75 0.4268 0.4258 0.3984 0.3909 −7.3263 0.4271

0.95 0.4759 0.4759 0.4708 0.4662 −1.6469 0.4756

where i denotes a nodal value, φi,exact is the analytical solution, φi,numer is the
numerical solution and N is the total number of internal nodes. In Table 2.3 the
error is seen to reduce as Δt decreases, as expected. Table 2.4 shows a comparison
between five different values of the shape parameter c for MQ-RBF with time step
value Δt = 0.05 s at time level t = 0.5. It is clear that the results obtained are
reasonable and laying at same level of accuracy when the parameter c = 75 or 100.
On the other hand, the results appear to lose their accuracy for smaller values of c.

From another point of view, taking a very high value of the shape parameter
c creates collocation matrices which are poorly conditioned and require high-
precision arithmetic to solve accurately. Using a relatively high non-dimensional
shape parameter of 75, the collocation matrices are sufficiently well conditioned to
be solved using quad-precision arithmetic (see [Ch12, StEtAl13, StPo15] for more
details on the shape parameter c).
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2.9.2 Transient Convection-Diffusion-Reaction Problem over
Rectangular Region with Mixed (Neumann–Dirichlet)
Boundary Conditions

As a final example, we investigate a convection-diffusion-reaction problem with
linear reaction term. The velocity field is considered to be along the longitudinal
direction and all the coefficients in the governing equation are constant. The
numerical and analytical solutions are compared for different time steps Δt and
reaction coefficient k. The geometry is considered to be [0.7 m× 1 m] as shown in
Fig. 2.7. Potential values are imposed at the ends of the cross-section, i.e., at x = 0,
φ = 300 and at x = 1, φ = 10. On the sides parallel to x, the lateral fluxes q = 0,
the problem thus having mixed Neumann–Dirichlet boundary conditions:

∂φ

∂n
(x, 0, t) = ∂φ

∂n
(x, 0.7, t) = 0, 0 ≤ x ≤ 1, t > 0,

φ (0, y, t) = 300, φ (1, y, t) = 10, 0 ≤ y ≤ 0.7, t > 0

and the initial conditions are φ(x, y, 0) = 0 at all points at t = 0. The values of the
reaction parameter k are assumed to be k = 1, 5, 10, 20 and 40 s−1, vy = 0 while
vx is considered to vary according to the formula:

vx = kx + log

(
10

300

)
x − k

2
. (2.23)
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Fig. 2.7 Schematic representation of the rectangular channel model with side length 1 m
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The steady-state solution is given in [PaSe00]

φ (x, y) = 300 exp

[
k

2
x2 + log

(
10

300

)
x − k

2
x

]
.

In the numerical simulation with a fully implicit scheme, a diffusion coefficient
D = 1 m2/s, a variable velocity vx as described in Eq. (2.23), and a time step Δt =
0.05 s were used with the results shown at t = 2 s, by which time the solution has
converged to a steady state. Comparison between the above analytical solution and
our numerical results are given in figures below, showing excellent agreement.

Case (i): k = 1 The first case is considered with the reaction value k = 1, which
is analysed with the computational domain discretised into 80 constant
elements and using 19 internal points. For the DRBEM model, only the
TPS-RBF has been applied in all cases. Figure 2.8 shows the exact and
numerical solutions, with 10 constant elements along the vertical sides
and 30 along each horizontal side.
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Fig. 2.8 Concentration profile φ distribution for bounded domain with different values of reaction
k: Comparison between the analytical (solid line) and numerical (star points) solutions, for every
5 time steps, Problem 2
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Case (ii): k = 5 In the second case, the contribution of the reactive term in
Eq. (2.1) is increased to k = 5. In Fig. 2.8, results are compared for
the same time-stepping scheme considered in the previous case. The
results are still very reasonable for the discretisation employed, which
is the same as for k = 1.

Case (iii): k = 10 For this case, the contribution of the reactive term in Eq. (2.1)
is increased to k = 10. Figure 2.8 displays the results time for the same
time-stepping scheme considered in the previous case.

Case (iv): k = 20 To see the effect of further increasing the value of k, the
reaction coefficient is now k = 20. In this case, the maximum global
Péclet number is equal to 10 (see Fig. 2.9).

Case (v): k = 40 The final test considers the reaction coefficient k = 40. A plot
of the variation of the concentration φ along the x-axis is presented in
Fig. 2.9. In this case, the maximum global Péclet number is 20. It is
obvious that the agreement with the corresponding analytical solution
is still very good.
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2.10 Concluding Remarks

In this paper, we present a novel formulation of the DRBEM for solving two-
dimensional transient convection-diffusion-reaction problems with spatial variable
velocity field. This new formulation for this type of problems has been implemented
to handle the time derivative part and the variable velocity field. The fundamental
solution of the corresponding steady-state equation with constant coefficients has
been utilised. The DRBEM is used to transform the domain integrals appearing
in the BEM formulations into equivalent boundary integrals, thus retaining the
boundary-only character of the standard BEM. Numerical applications for 2D
time-dependent problems are demonstrated to show the validity of the proposed
technique, and its accuracy was evaluated by applying it to two tests with different
velocity fields. Moreover, numerical results show that the DRBEM does not present
oscillations or damping of the wave front as may appear in other numerical
techniques.

The results presented in Sect. 2.9 show the versatility of the method to solve
time-dependent convection-diffusion-reaction problems involving variable velocity
fields. We can note a distinct advantage of the present approach, which demonstrates
very good accuracy even for high reaction values which increase the Péclet number
for the cases studied. It is obvious that, as the velocity increases, the concentration
distribution becomes steeper and more difficult to reproduce with numerical models.
However, all BEM solutions are still in good agreement for moderate Péclet number
(Pé = 10 and Pé = 20 ), but oscillations appear for high Péclet number; thus,
more refined discretisations are required for these cases. We have made an extensive
investigation for the last case studied by considering many different values of the
reaction coefficient k. For all these various values of k the backward time-stepping
scheme produces very good results in general. We have derived and implemented
three RBFs and tested them with different types of problems.
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Chapter 3
On a Parametric Representation of the
Angular Neutron Flux in the Energy
Range from 1 eV to 10 MeV

Luiz F. F. Chaves Barcellos, Bardo E. J. Bodmann, and Marco T. Vilhena

3.1 Introduction

Neutron transport is relevant in a variety of applications, such as nuclear cancer
therapy (for instance, Boron Neutron Capture Therapy), design and characterisation
of new materials by the use of neutron scattering, energy production by nuclear
reactions and many others. From a theoretical point of view, the neutron trans-
port equation, i.e. the Boltzmann equation, and its solution is still a challenge
[FeEtAl17, Ga08, La06]. Because of difficulties in determining the solution in full
phase space with its seven variables (space, time, direction and energy) approaches
in the literature resort to simpler models based on the diffusion equation, where
the continuous energy dependence is approximated by multi-group models and
the directional information integrated out so that the solution is the scalar neutron
flux [OlEtAl17, OlEtAl19]. It is worth to mention also that works on the original
transport equation for a stationary case make use of a discretisation of the spatial,
the directional and the energy variable, known as the Lattice Boltzmann approach
[BiPa12, ErHe13, WaEtAl17, WaEtAl18, WaEtAl19, YaEtAl17].

Methods that maintain the spatial variable as a continuous quantity but discretis-
ing the angular variable are based on the so-called SN approximation [LaEtAl18,
SeEtAl12, VaEtAl19]. There also exist approaches with continuous angular vari-
ables, the so-called PN approximation [GhEtAl19], where the angular dependency
is approximated by Legendre polynomials. None of these treats the transport
problem in full three spatial dimensions, nevertheless, there do exist numerical
transport codes that give up properties such as symmetries (geometrical as well
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as dynamical) of the original problem due to the approximation of the differential
operators in the transport equation.

The present work is an attempt to solve the transport problem using a physical
Monte Carlo method. Physical means that all the interaction terms present in the
Boltzmann equation such as scattering, capture and fission are considered in the
simulation [BaEtAl17].

1

v(E)

∂

∂t
Φ(r,Ω, E, t)+Ω ·∇Φ(r,Ω, E, t)+Σt(r, E, t)Φ(r,Ω, E, t)

=
∫ ∞

0
dE′

∫
4π
dΩ ′

{
Σs(r, E′ → E,Ω ′ → Ω)Φ(r,Ω ′, E′, t) (3.1)

+ ν(E)

4π
χf (E)ΣfΦ(r,Ω ′, E′, t)

}
+ S(,Ω, E, t).

As a matter of fact, there do exist other simulators in the literature that solve the
transport equation, but they differ in their adopted philosophy, many of them solve
the problem by a mathematical Monte Carlo implementation, where the quantity of
interest (scalar or angular flux among others) is determined as a result of the Monte
Carlo simulation (see, for instance, [WeEtAl18]). Due to the fact that our method
mimics neutron physics in the microscopic scale, the generated data set by the
Monte Carlo simulation may be evaluated in a posterior analysis where the neutron
density important for kinetics, the scalar neutron flux important for diffusion models
or the angular neutron flux, solution of the transport equation may be obtained.

It is noteworthy that transport problems with dimension D ≥ 2 need known
angular fluxes at the boundary, so that a unique solution may be determined. These
type of approaches usually use adhoc hypothesis for these angular fluxes, which
can be replaced when determined by Monte Carlo simulations such as the one
discussed in this contribution. Moreover, the resulting distributions of the simulation
are parameterised so that the quantity of interest is represented as a formula and thus
may be used directly in analytical approaches. Note that in the present approach,
all the variables are continuous so that symmetries of the physical problem are
preserved and no artefacts due to discretisations arise.

3.2 The Simulation

As a scenario we consider the following problem. The world of the simulation is
defined by a domain in the form of a cube with edges of 100 cm length, where
72.0% of the volume is occupied by water H2O and the remaining part is filled
with uranium oxide with 0.895% U-235 enrichment and the medium is assumed
to be in thermal equilibrium with T = 568.9 K . The focus of this simulation is
the spectral neutron distribution as well as the spectral neutron flux. To this end we
simplify the data set by considering neutron tallies generated within a sphere with
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Fig. 3.1 Microscopic absorption cross section of Uranium-238

radius R = 50 cm in the centre of the cube and thus suppress influences of the cube
boundary, which otherwise might spoil isotropy.

By virtue of the energy range stretching from 10−14 MeV to 101 MeV the
task of finding an acceptable parametrisation is significantly more difficult than
determining the spatial and angular distributions. Due to the restriction of the
volume where tallies are sampled from, the spatial distribution in the sphere is
approximately homogeneous and the angular distribution compatible with isotropy.
In the further focus is put on the energy dependence of the neutron flux in the
aforementioned energy range.

As reported in previous works, the microscopic interaction cross sections are
provided by a library of sectionally continuous functions [BaEtAl17, CaEtAl13].
An example is given in Fig. 3.1, where the parameterised microscopic absorption
cross section for Uranium-238 is shown in the energy range between 10−14 MeV
and 101 MeV. The initial neutron number at simulation start was 106 and the neutron
energies of the initial neutron population follows the Watts distribution [Re08, St07]
as shown in Fig. 3.2.

χ(E) = 0.453e−1.036 MeV−1E sinh
√

2.29 MeV −1E.

After a transient of approximately 10−5 s to 10−4 s the shape of the neutron
distribution stabilises and remains unaltered so that a steady state condition prevails.
The time evolution of the spectrum starting from a fission spectrum as initial
condition is shown in Fig. 3.3, where for approximately 10−4 s the shape of the
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spectrum apparently does no longer change. In this figure the initial condition
spreads over two orders in magnitude and the time and energy dependent surface
represents the time evolution of the energy spectrum, which corresponds to the
frequency per second and MeV for neutrons to appear in the intervals (t, t +Δt] ⊗
(E,E+ΔE]. For large enough times, which allow to assume a steady state regime,
the shape of the neutron spectrum is the one shown in Fig. 3.4.
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This time scale for the transient phase of the simulation until an approximate
steady state is attained is also in agreement with findings in the established literature
for light water moderated reactors (see, for instance, [Re08, SpEtAl97, St07]). Two
regions of the energy distribution are physically understood, the low energy region
up to roughly 1 eV, which is dominated by a thermal equilibrium condition between
the neutrons and the surrounding medium and the high energy end beyond 0.1 MeV
where the fission distribution contributes to the observed shape. For the intermediate
energy region, so far there does not exist an analytical representation, which is the
principal issue of the present discussion.

For this reason, one of the tally information recorded in the created simulation
data set is a tag which identifies the distribution a specific neutron belongs to, the
thermal regime, the intermediate regime where down-scattering dominates and the
fission region beyond approximately 0.1 MeV as shown in Fig. 3.4. It is noteworthy,
that in the energy interval between 10−6 MeV and 100 MeV the neutron spectrum
follows with considerable accuracy a power law, which is expected from the
dominating down-scattering interactions. Below roughly 1 eV up-scattering is to be
taken into account which is also in agreement with the cut between thermal and fast
neutrons in a two energy group approach where 1 eV is considered the transition
energy [Re08, St07].

The evolution of the neutron population per Monte Carlo step for the total and
the three distributions (thermal, intermediate and fission) is shown in Fig. 3.5. From
the MC step 500 onward the ratios between two distributions remains constant until
the end of the simulation. Also the variation in the neutron population is sufficiently
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small so that the steady state hypothesis is a valid approximation, which is further
supported by the fact that the energy spectrum maintains its shape.

A further criterion to evaluate the regime of the simulation is criticality,
or equivalently the effective multiplication factor keff . Upon using the neutron
population balance definition for the multiplication factor, then the neutron life cycle
has to be identified. The fact that the simulation method is a physical Monte Carlo
implementation, allows for neutrons and their respective generation to be directly
tagged. The effective multiplication factor as extracted from the simulation data for
the sequence of generations is shown in Fig. 3.6, where up to the 50th generation
an approximate steady state regime holds, while changes in the multiplication
factor beyond generation 50 are due to the fact, that the simulation terminates
and new neutrons are no longer created. The numerical values for the effective
multiplication factor keff fluctuate around ≈0.995, which shows that the simulated
system is close to critical, so that absorbed and leaked out neutrons are replaced by
neutrons produced by fission. These considerations indicate that the configuration
of the system is close to a true steady state and neutron data may be extracted for
data evaluation between Monte Carlo steps 500 and 3000 (see Fig. 3.5). From one
generated data set a variety of physical information may be obtained in a post-
simulation analysis and it is also possible to extend the data set with additional
simulations, a clear advantage of having chosen the physical Monte Carlo method.
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3.3 Results

In the following we show some results that refer to analysing specific terms in the
Boltzmann equation, where for the further discussion scattering contributions were
considered especially interesting. Down-scattering of neutrons with initial energies
E′ to a specific final energy E is a substantial contribution in the integral term and
moreover crucial for the shaping of neutron or flux distributions in the intermediate
energy range (see Fig. 3.4). A second contribution from scattering is hidden in the
total cross section Σt which also contains absorption terms, however, the former is
more robust with respect to influences on the shape of the distributions since the
initial energy is E and all possible final energies E′ are integrated. Formally, the
integral term plays the role of a source term increasing the angular neutron flux in
the energy interval [E,E + dE), while the scattering contribution to the total cross
section has the effect of a drain reducing the angular flux.

Two scenarios were filtered from the simulation data set, scattering of neutrons
with Uranium-238 and with Hydrogen-1. As a Uranium target is very much heavier
than the neutron projectile, neutrons need an exorbitant number of collisions (more
than 2000) in order to reduce their initially high energy from fission in the average
∼2 MeV to thermal energies below 1 eV. As a consequence one observes in Fig. 3.7
the sharp line from the initial to final energy correlation in this type of scattering



52 L. F. F. Chaves Barcellos et al.

10−11

10−8

10−5

10−2

101
10−11

10−8

10−5

10−2

101

Fi
na

l e
ne

rg
y 

[M
eV

]

Initial energy [MeV]

Fig. 3.7 Probability distribution dependence of initial and final energy for down-scattering of
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reaction. At energies of approximately eV and below for both the initial and final
energy, the neutrons enter in thermal equilibrium with the surrounding medium.
As a consequence the spectral neutron distribution remains the same, since in the
average neutrons gain energy in collisions as much as they lose energy. This property
of the distribution is visible in the lower left part of Fig. 3.7, where for any initial
energy the final energy follows approximately the shape of a Maxwell–Boltzmann
distribution. The other extreme of a possible scattering scenario is the collision of
neutrons with Hydrogen. Since neutrons and protons have a relative mass difference
in the order of magnitude 10−3, a collision has by far more possibilities for energy
and momentum transfer than Uranium. In the average already 15 collisions are
sufficient to bring neutrons down to thermal energies. Note, that for initial energies
above eV up to MeV there is a considerable spread in the distribution for final
energies after collision. The probability profile for down-scattering as well as
the thermal region is shown in Fig. 3.8. The respective plots for the scattering
reactions Figs. 3.7 and 3.8 may also be read in the reverse fashion. Considering
one specific final energy one may analyse, what are possible initial energies. For
Uranium-238, only in the thermal region a broad distribution relates the spectrum
for initial energies to one final one. This property allows to simplify considerably the
scattering integral for Uranium-238 since for higher energies than∼1 eV there exists
only a narrow peaked ridge, which makes it possible to approximate the integral
by a one to one relation between the initial and final energies. This is different for
Hydrogen-1, where the distribution for possible initial energies that lead to a specific
final energy is broad and independent of the specific energy scale considered, which
in our considerations spans from 10−13 MeV up to 10 MeV.

As already mentioned in the introduction, many approaches discretize the energy
spectrum into a finite set of energy groups. Evidently, in such approaches average
values for each energy group are used, but these work out fine when the fluxes vary
only smoothly with energy. Though, in the energy regions, where the constituents
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of the medium have resonances, this property is hardly complied with. It is notable,
that many transport codes which are used in nuclear engineering tasks work with
energy groups so that the knowledge of the spectral angular flux could help to
improve the determination of the averaged nuclear parameters in these type of
approaches. Recalling, that the present Monte Carlo implementation mimics some
part of real micro physics, one may use the tags and filter the energy dependence
of the neutron flux, which may then be approximated by a parameterised formula.
The present configuration was chosen such that angular and spatial contributions do
not interfere in the energy distribution, for this reason only neutrons in the spherical
centre of the whole domain were sampled, which left the spatial and solid angle
distribution approximately homogeneous (not shown in this work). The comparison
of the spectral neutron flux resulting from the Monte Carlo simulation together with
its parametrisation is shown in Fig. 3.9. The parametric representation of the spectral
neutron flux was obtained first dividing the whole energy interval in four sub-
intervals (0 MeV, 10−10 MeV], (10−10 MeV, 10−6 MeV], (10−6 MeV, 0.01 MeV]
and (0.01 MeV, ∞). In each interval for log(E) the results of the Monte Carlo
simulation were fitted by four polynomial functions fi(E) (i ∈ [1, 4] with degrees
1, 4, 1 and 6, respectively. The found coefficients are shown in Table 3.1. Since the
simulation data span an energy interval over 14 orders in magnitude, it is convenient
to represent the spectral neutron flux Φ in a double logarithmic scale and further
as one formula instead of sectionally defined functions. To this end we define the
energy window functions wi for the four intervals and introduce the parameters
a and b, which define the smoothness or abruptness of the transition between the
intervals.

w1(log(E), a) = 1

2

(
− tanh(a log(E/10−10))+ 1

)
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Table 3.1 Fit coefficients of the spectral neutron flux in log–log scale and in the respective sub-
domains

Function

f1 f2 f3 f4

Intervals in [MeV ]
(0 , 10−10] (10−10 , 10−6] (10−6 , 0.01] (0.01 ,∞)

E0 12.4706 −228.186 −5.48732 −1.32801 in log
[
MeV −1m−2s−1

]

E1 0.565077 −38.641 −0.477512 0.27156 in log
[
MeV −2m−2s−1

]

E2 – −2.2306 – −0.353689 in log
[
MeV −3m−2s−1

]

E3 – −0.0513524 – −0.130745 in log
[
MeV −4m−2s−1

]

E4 – −0.000376707 – −0.0363351 in log
[
MeV −5m−2s−1

]

E5 – – – −0.00903293 in log
[
MeV −6m−2s−1

]

E6 – – – −0.000867472 in log
[
MeV −7m−2s−1

]

w2(log(E), a, b) = 1

2

(
tanh(a log(E/10−10))− tanh(b log(E/10−6))

)

w3(log(E), a, b) = 1

2

(
tanh(a log(E/10−6))− tanh(b log(E/0.01))

)

w4(log(E), a) = 1

2
(tanh(a log(E/0.01))+ 1) .
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The spectral flux in a double linear scale is then given by

Φ(E) = 10w1(log(E),1)f1(log(E))+w2(log(E),1,5)f2(log(E))+w3(log(E),5,100)f3(log(E)) ×
×10w4(log(E),100)f4(log(E))

which may be directly used now for analytical approaches. In the further we analyse
this parametrisation as a possible solution of the Boltzmann equation.

Due to the fact that all terms of the Boltzmann equation are taken care of in the
physical Monte Carlo simulation one shall expect that apart from approximations
that were made the parameterised spectral neutron flux interpolated from the
result of the simulation data shall represent to a certain extent the solution of the
Boltzmann equation. The terms that were neglected in Eq. (3.2) were the explicit
time variation, the directional divergence and a possible external source. Then the
removal term is represented by the total reaction rate (last term on the left-hand
side of Eq. (3.2)), more explicitly the absorption rate and the scattering rate from an
initial energy E to any other energy E′ and the emission term is given by the fission
rate times the neutron multiplicity and spectral weight together with the scattering
rate from any initial energy E′ to a specific final energy E (first and second term on
the right-hand side of Eq. (3.2)).

Recalling that the simulation is not a perfect steady state and also isotropy is
only approximate and on the other hand the evaluation of the scattering integral
was done numerically using scattering probabilities (Uranium-235, Uranium-238,
Oxygen-16 and Hydrogen-1) which for Uranium-238 and Hydrogen-1 are shown
in Figs. 3.7 and 3.8, respectively, one cannot expect a perfect match between the
left and right-hand side contributions presented in Fig. 3.10. This is especially a
consequence of the huge energy interval that defines the limits on the integration
(10−13 MeV and 101 MeV). As was to be expected, emission and removal are in
perfect coincidence at the high energy end where fission contributions dominate.
In the intermediate range emission has larger values in comparison to removal.
Nevertheless an encouraging detail is the identification of the resonance region of
Uranium-238 between roughly 101 eV and 102 eV, which is an essential feature
of the neutron life cycle. One of the possible discrepancies between the simulated
emission and removal part of the balance equation is the spectral flux and its
implication in the scattering integrals, since the latter was solved numerically and
thus is subject to inaccuracies.

The emission curve shows considerable fluctuations in the thermal region which
may be understood from the fact that the only way to get to these energies is from
down-scattering which suffers from limitations by not sufficiently high sampling.
On the contrary the removal curve is smooth because of the larger cross sections in
this energy range and thus higher reaction rates and consequently better statistics.
For lower energies the sampling of emission contributions is poorer manifest in
larger fluctuations. According to statistical standards one has to accept that values
from the removal curve are statistically compatible with the emission curve within
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Fig. 3.10 Comparison of the removal and emission terms in the Boltzmann equation

the fluctuations in this energy range. A larger sampling will certainly improve the
comparison in this range, which is a future work in progress.

In the intermediate energy range we face the problem of adequately approximat-
ing the scattering integral. Recalling, that the integral represents the balance for a
specific final energy after scattering but summing up all possible initial energies,
uncertainties in the initial energy contribution may influence significantly in the
reaction rates and thus the balance of the left- and right-hand side in the Boltzmann
equation, i.e. the comparison of the emission and removal contributions.

Another influence for inaccuracies in the obtained results was caused by the fact,
that a steady state was only attained approximately. The adopted philosophy for
the implementation of the physical Monte Carlo simulator has the disadvantage
that it is difficult to adjust the system configuration such as to obtain a specific
state, because this property appears as a result of the simulation as a consequence
of a specific system configuration. In the presented simulation the evolution of the
neutron population per Monte Carlo step showed a slightly sub-critical condition.
As a consequence, the variation of the neutron population and the divergence of
the fluxes change and may contribute to a discrepancy in the removal and emission
terms comparison. Also the spatial distribution is not perfectly homogeneous and
isotropic, which yields another contribution that may uneven the balance in the
Boltzmann equation. Another aspect that shall be taken into account is that in order
to adjust exact criticality one would need an iteration of Monte Carlo simulations,
where from variations of the geometric and physical parameters the desired state
could be matched for a specific case in consideration.
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3.4 Conclusion

With the stage of the development of the present physical Monte Carlo simulator
(built from scratch) and the generated results, we hopefully showed by our presented
results, how an implementation following the paradigm of power computing may
contribute to approach transport challenges such as the stationary Boltzmann
equation. Although, the implementation relevant for the present work operates as
a stand-alone program package, its C++ structure allows to integrate in a straight
forward manner the elaborated and tested code directly in the GEANT simulation
project. A return for our simulation intentions is that this insertion will open
pathways to make use of the GEANT geometry package and its efficient resources
to implement complex geometric domain setups, such as a reactor core with its fuels
elements, control rods and structural details.

A few computational highlights emphasise the simulation’s efficiency by the
variety of results presented. The interaction probabilities such as the scattering
probabilities exemplified in Fig. 3.7 and 3.8 result from number-crunching with
standard computer architectures but attaining a simulation thread-time with 7.08 h×
thread, a subsequent data assessment thread-time with 6.25 h× thread and moreover
a reasonable memory administration with a maximum of 471 MB RAM per thread
and at a cost of 452.7 GB stored simulation data for an ensemble of initially
106 neutrons with its subsequent neutrons generated from fission. The results,
here for the spectral neutron flux, were parameterised which may be used in
other approaches such as analytical ones or even for the more classical energy
group approximations. In the latter, averages need the fluxes before-hand in order
to compute reaction rates consistently, which are available from the simulations
reported. Nevertheless, the results represent a scientific contribution on its own right
as a novel approach to attack solving the Boltzmann transport equation by means of
a physical Monte Carlo approach.

Evidently, there is need for further improvements by virtue of the discrepancy
of the removal and emission terms when inserting the obtained spectral neutron
flux in the Boltzmann equation. The only term in the equation, that was evaluated
numerically was the scattering integral, which clearly needs a thorough revision.
However, other approaches also fail to satisfy the Boltzmann equation by orders in
magnitude comparable or even worse than our result. Very specific improvements
necessary are in the energy ranges where the statistics is poorer but where cross
sections are typically higher. Consequently, using more smooth distributions for
scattering to evaluate the integrals in the Boltzmann equation will likely reduce a
significant source for errors. Furthermore, simulations with importance sampling in
the low statistics regions may improve the precision and smooth this part of the total
distribution. Concluding, further simulations with better statistics and more accurate
parametrisations certainly will open pathways for new optimised simulations and
may also provide essential physical details for future (semi-)analytical models.
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Chapter 4
A Boundary Integral Equation
Formulation for
Advection–Diffusion–Reaction
Problems with Point Sources

Luiz F. Bez, Rogério J. Marczak, Bardo E. J. Bodmann, and Marco T. Vilhena

4.1 Introduction

The advection–diffusion–reaction equation may be understood as an extension of
the continuity equation and thus represents the simplest model to describe dispersion
phenomena such as for particles, heat or more generally energy among others. Due
to its simplicity, in risk and safety analysis this model is usually the first one to
be employed to simulate and analyse consequences of events or even accidents in
the chemical or the nuclear industry, for instance. So far, comparisons of results
from the advection–diffusion–reaction model to experimental data, where they were
available, proved the usefulness of this idealization of the real world. Nevertheless,
there are some shortcomings, due to the difficulty with numerical representations
of realistic landscapes, which in general demands power computing resources to
produce acceptable solutions for the dispersion process. More specifically, problems
of this type if solved via traditional numerical domain methods, usually require fine
meshing, especially for problems with high velocity wind fields and large gradi-
ents, such as those from point sources, which demands significant computational
investments for numerical simulations [MeEtAl17, Ro72]. Another alternative are
analytical methods; however, so far they can be applied to problems with simple
regular domains but are hardly employed for realistic domains like the ones with
complex topography terrains [CuEtAl16]. One alternative is to employ analytical
solutions in order to analyse a simplified version of the problem. This, however, is
only practical for very specific circumstances and results in a loss in solution quality
when applied to realistic situations. Hence, the present contribution is a discussion in
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this line, where the boundary element method is presented as an efficient procedure
for computational simulations of the aforementioned issues.

Although, we consider a problem in a simple domain geometry, the forthcoming
discussion is to shed light on some highlights of the boundary element method and
its efficiency in numerically solving advection–diffusion–reaction type of problems.
Moreover, from the Green Function Theory, the solution of an arbitrary source
can readily be obtained from the knowledge of the solution for a point source.
Ikeuchi and Onishi [IkOn83] showed that the boundary element method (BEM)
can be used as an alternative for decreasing the problem size and maintaining
solution quality. Also, the upwind effect of the mean velocity field is accounted
for by the fundamental solution, allowing for the mesh which is being used to
be coarser while the solution remains numerically efficient and stable even for
very high local Peclet numbers [QiEtAl98]. In the further we present a BEM
formulation for a boundary integral equation applied to solve the advection–
diffusion–reaction problem for a point source in a rectangular domain. We also
report on the numerical performance of the method and its sensibility to changes
in the discretization, numerical integration quality and Peclet numbers, respectively.
The present formulation has potential to be extended and applied to other scenarios.

4.2 Mathematical Formulation

We consider an advection–diffusion–reaction problem with constant coefficients
and known source, as stated in Eq. (4.1).

v · ∇φ − d∇2φ + kφ = f (4.1)

Here φ is the concentration of a chemical substance, v is the advective velocity, d is
the diffusivity, k is the reaction coefficient, and f is the source term.

Associated with this differential formulation we have a fundamental solution,
which is of Green function type. In our case the fundamental solution φ∗i is the
solution to the problem Eq. (4.2), associated with a point source located at xi , and
with asymptotic behaviour φ∗i → 0 for increasing distance to the source.

v ·∇φ∗i + d ∇2φ∗i − k φ∗i = −δ(xi) (4.2)

The fundamental solution and its derivative, for a 2D problem, are shown in
Eqs. (4.3) and (4.4).

φ∗i (x) =
1

2πd
exp

(
−v · r

2d

)
K0(μr) (4.3)

∂φ∗i (x)
∂n

= − 1

2πd
exp

(
−v · r

2d

) (
μK1(μr)

r · n
r
+ v · n

2d
K0(μr)

)
(4.4)
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Here r = x − xi is the distance vector relative to the source location, Kν is the
modified Bessel function of the second kind of order ν, and μ is the coefficient
defined in Eq. (4.5).

μ =
√( v

2d

)2 + k

d
(4.5)

We will solve numerically a type of an inverse problem, in a weighted residual
sense, as stated in Eq. (4.6). Combining the latter with Eq. (4.2) and using the
filtering property of the Dirac delta functional, we arrive at Eq. (4.7), the boundary
integral equation (BIE).

−
∫
Ω

φ
(

v ·∇φ + d ∇2φ − k φ
)
dΩ +

∫
Γ

φ
(
d q∗i + vn φ

∗
i

)
dΓ (4.6)

−
∫
Γ

qn φ
∗
i dΓ =

∫
Ω

f φ∗i dΩ

ci φi +
∫
Γ

φ
(
d q∗i + vn φ

∗
i

)
dΓ −

∫
Γ

qn φ
∗
i dΓ =

∫
Ω

f φ∗i dΩ (4.7)

Here φi is the concentration at location xi, vn, qn, and q∗i are defined in Eqs. (4.8)
and n is a unit vector pointing outward and is normal to the boundary. The coefficient
ci depends on the location of the source and is given by Eq. (4.9).

vn = v · n
qn = ∇φ · n (4.8)

vn = ∇φ∗i · n

ci =

⎧⎪⎪⎨
⎪⎪⎩

0 if xi �∈ Ω
1 if xi ∈ Ω
θi
2π if xi ∈ Γ

(4.9)

Let α be the internal angle of the boundary, then at a smooth point of the boundary,
in a Lipschitz sense, the internal angle equals π , whereas in a corner point xi the
internal angle of the corner is θi . In a well posed boundary value problem one must
either know φ or qn in any portion of the boundary, with at least in one portion φ

shall be known.
If the source point is located outside of the domain, all the integrals in Eq. (4.7)

are regular. When the source point is on the boundary, the integrals containing
φ∗i have a weak integrable singularity, and the integrals containing q∗i have a
strong singularity and must be interpreted using the Cauchy principal value. In this
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contribution we will work with point sources located at the nodes which are used to
interpolate the boundary’s geometry.

4.3 Numerical Implementation

This section presents the numerical implementation of the method, and is divided
into the boundary discretization, the numerical integration, and source term treat-
ment.

4.3.1 Discretization and Matrix System

The boundary is discretized using linear continuous elements everywhere, except
for the points where the boundary has a corner or even a possible discontinuity as
boundary condition. This is necessary since, in a corner, the outward normal vector
does not have a well defined direction—its limits differ when we approach from
either side of the corner. Likewise, qn may differ at either side of the corner, as will
become apparent in the benchmark study.

The solution for the corner treatment used in this study was to apply a
discontinuous formulation for the corner node. This effectively duplicates the node
and pushes it somewhere into the boundary elements forming the corner, by some
parametric form. Using the boundary elements defined by N nodes we can write
Eq. (4.7) in its discrete form, recalling that the shape functions ψj referring to each
node j have compact support, while the fundamental solution φ∗i for each source
point i does not.

ci φi +
N∑
j=1

φj

∫
Γj

ψj
(
d q∗i + vn φ

∗
i

)
dΓj −

N∑
j=1

qnj

∫
Γj

ψj φ
∗
i dΓj =

∫
Ω

f φ∗i dΩ

(4.10)

Equations (4.11) and (4.12) define two matrices that will multiply the nodal
values of φ and qn, respectively, and Eq. (4.13) will define the source vector.

Hij = δij ci +
∫
Γj

ψj
(
d q∗i + vn φ

∗
i

)
dΓj (4.11)

Gij =
∫
Γj

ψj φ
∗
i dΓj (4.12)

bi =
∫
Ω

f φ∗i dΩ (4.13)
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Here δij is the usual Kronecker delta. After having carried out all the integrations,
the following system of equations arises:

Hijφj −Gijqnj = bi (4.14)

Combining Eqs. (4.10)–(4.13) by rearranging the columns of the matrices Hij and
Gij in such a way that all the boundary unknowns are collected in a vector χj , we
arrive at the final system of equations:

Aijχj = ai (4.15)

The system defined in Eq. (4.15) is then solved numerically. Matrix Aij is a full and
asymmetric matrix [BrEtAl84].

4.3.2 Numerical Integration

The integrations performed to assemble Hij and Gij can be either regular, weakly
singular, or strongly singular. Each requires a different kind of numerical treatment.
When the source point is on the element to be integrated, then the integral may be
singular, otherwise it is regular.

Starting with the regular integrals, every integral, where the source point is
located outside of the element to be integrated, is treated in the same way. This
requires some care, since when the source point is close to the integrated domain—
close but not in it—the integral is quasi-singular and needs special treatment to
improve accuracy. Telles [Te87] showed that these problems arise when the source
is too close to the domain to be integrated. By setting the discontinuity parameter α
to be greater than 0.1 there is no need for special treatment in any boundary integral.
When calculating concentration values in internal points, the point cannot be placed
too close to the boundary; however, this critical distance value changes depending
on the direction of the velocity vector. All regular integrals are evaluated with the
Gauss–Legendre quadrature.

Qiu [QiEtAl98] showed the asymptotic behaviour of the singularities present in
the 2D advection–diffusion–reaction problem. The Gij matrix has weakly singular
kernels to be calculated in its diagonal, and the Hij matrix has a combination of
strongly and weakly singular terms in its diagonal. Weakly singular kernels were
integrated using the cubic coordinate transformation proposed by Telles [Te87].

Using the Gauss–Legendre quadrature and the Telles transformation, the entireG
matrix can be calculated. However, the H matrix has terms that are strongly singular
and cannot be handled by a coordinate transformation. In Eq. (4.17) the H matrix
terms are to be integrated, nevertheless, the strongly and weakly singular parts may
be treated separately.
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Hii = ci +
∫ 1

−1
J (aiξ + bi) exp

(
−v · r

2d

)
× (4.16)

×
[
− 1

2π

(
μK1(μr)

r · n
r
+ vn

2d
K0(μr)

)
+ vn

2πd
K0(μr)

]
dξ

In Eq. (4.17) we have, from left to right, the Jacobian of the transformation into
normalized space, the shape function relating to the i-th node, the exponential term
representing the upwind effect, the terms with K1, which are strongly singular, and
finally the terms with K0 which are weakly singular.

In problems modelled with the Laplace fundamental solution and in advection–
diffusion problems (without reaction) the diagonal term of the H matrix can be
calculated indirectly, as proposed by Brebbia and Dominguez [BrDo92]. This
technique calculates the diagonal term, including the free coefficient ci , by com-
bining the terms of the other columns in the matrix. In problems with a reaction
contribution this technique cannot be applied.

In our case the geometrical interpolation is linear and as a consequence the
radius r is always perpendicular to the boundary normal vector, making the term
multiplying K1 to be identically zero on the integration domain, thus leaving only
terms with K0 to be integrated. Those terms are weakly singular and are handled
with the Telles coordinate transformation.

Figure 4.1 shows that the weakly singular kernels are regularized if the shape
function in question tends to zero at the source point. This means that the only
G-matrix terms that need the Telles transformation are the diagonal terms. This
transformation can also be applied to the terms that are regularized by the shape
functions.

Figure 4.2 shows the relative error of the weakly singular integrals, for an
increasing number of quadrature points and using the Telles transformation. As
shown in the figure, 12 points are needed to evaluate the kernels with a relative
error of 10−6, compared to a reference result obtained by the software Maple
[MoEtAl11].

4.3.3 Analytic Treatment of the Source Term

In the cases studied in this contribution, we are considering the source to be the
sum of M point sources. Modelling the point sources as Dirac delta distributions,
and using their filtering property, we can evaluate the domain integral in Eq. (4.13)
analytically. The source vector can then be evaluated as shown in Eq. (4.17).

bi =
∫
Ω

M∑
k=1

Sk δkφ
∗
i dΩ =

M∑
k=1

Skφ
∗
i (xk) (4.17)

Here Sk is the source strength, and δk is a Dirac delta distribution at the point xk.
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4.4 Benchmark Case

In this section we will test our implementation for a classical benchmark case.
Figure 4.3 shows schematically a unity square domain, with a uniform velocity
field in the positive x-direction. The left and right boundaries have primal boundary
conditions, corresponding to concentrations of zero and one, respectively. The top
and bottom boundaries have dual boundary conditions, with null flux and in this
problem no reaction term was present.

This case has an analytical solution, given by Eq. (4.18). Note, that the higher
the velocity, the higher the gradient presented by this solution, and traditionally the
harder it is to solve this problem numerically.

φ(x, y) = exp
(
vx
d

)− 1

exp
(
v
d

)− 1
(4.18)

This problem needs only boundary discretization and has no source term. Apply-
ing the methods described in Sect. 4.3 we will now analyse the errors presented by
the method in this benchmark case. Figure 4.4 shows the boundary results, in a case
with v = 5, d = 1, element size of 0.025 (resulting in 160 elements), and with 8
quadrature points for the integrals. In the following subsections, we will analyse the
behaviour of the implemented method for a set of Peclet numbers, different mesh
sizes, and different number of quadrature points.

4.4.1 Concentration Profiles for Various Peclet Numbers

Qiu [QiEtAl98] showed that the boundary element method for a problem with
constant coefficients and using the advection–diffusion–reaction fundamental solu-
tion is stable for any Peclet number, independent of the used mesh size, given
that the integrals are correctly evaluated. It is noteworthy, that for high Peclet
numbers the evaluation of the fundamental solution may be problematic. When
the scalar product of the velocity by the distance from the source point is large

Fig. 4.3 Schematic
description of the benchmark
problem and its boundary
conditions
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Fig. 4.4 Boundary results for the benchmark problem, with v = 5, d = 1, element size of 0.025,
and 8 quadrature points for the integrals

and negative, the argument of the exponential becomes too large (depending on
the floating point representation) and causes numerical overflow. At the same time,
the implementation of the Bessel function of the second kind will cause underflow,
while the product of the two should be a finite small number, but under these
conditions it becomes erroneous or simply cannot be evaluated numerically. This
shortcoming can be avoided by rewriting the fundamental solution as given in
Eq. (4.19). The product of the Bessel function of the second kind and the exponential
of the same argument in square brackets is called normalized Bessel function of the
second kind, and its evaluation can be accomplished without numerical underflow
or overflow. The same can be done for the derivatives of the fundamental solution.

φ∗i (x) =
1

2πd
exp(−v · r

2d
)K0(μr)

= 1

2πd
exp(−v · r

2d
− μr)

[
exp(μr)K0(μr)

]
(4.19)

Figure 4.5 shows the results for concentration profiles at internal points of the
domain (y = 0.5) of the benchmark problem. The problem is solved with 160
elements, 8 quadrature points for the integrals, d = 1, and with varying velocity.
Along the x-direction a homogeneous mesh with element size 0.05 was used
resulting in 20 elements along this direction. The Peclet numbers ran from 10−3

to 30 and the maximum relative error observed in these cases was of the order 10−4.

4.4.2 Mesh Size Sensitivity

Table 4.1 shows the maximum relative error and the mean square error for boundary
nodes and internal points (at y = 0.5) when varying the mesh size while keeping the
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Table 4.1 Relative errors for varying element size on the benchmark problem with v = 5, d = 1,
and 8 quadrature points

Error at boundary nodes Error at internal nodes

Element size Emax Esqrt Emax Esqrt

0.100 6.38% 1.20% 0.55% 0.03%

0.050 3.17% 0.46% 0.13% 0.01%

0.025 1.57% 0.17% 0.03% 0.002%

velocity constant v = 5, the diffusivity d = 1, and the number of integration points
set to 8. One observes that with relatively coarse meshes low numerical errors were
attained. Results for internal points produced errors even smaller than the ones on
the boundary nodes.
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Table 4.2 Relative errors for varying number of quadrature points of the benchmark problem with
v = 5, d = 1, and element size of 0.05

Error at boundary nodes Error at internal nodes

Quadrature points Emax Esqrt Emax Esqrt

4 3.51% 0.51% 0.15% 0.01%

8 3.17% 0.46% 20.13% 0.01%

16 3.17% 0.46% 0.13% 0.01%

4.4.3 Sensitivity to the Quadrature Order

Table 4.2 shows absolute and relative errors for boundary and interior points (at
y = 0.5) for three different numbers of quadrature points. A fixed mesh of element
size 0.05 (20 elements for each size of the square) was used to solve a problem with
velocity v = 5 and the diffusivity d = 1. Any difference in the numerical values
in Table 4.2 is due to the quality of the numerical integration performed. As can
be seen, no significant difference can be observed between routines using 8 or 16
quadrature points.

4.5 Applications with Point Sources

Once the solution of the advection–diffusion problem for one point source is
obtained, one may extend the solution to in principle any source distribution by
the use of the Green function theory. In the Fig. 4.6 the influence of the Peclet
number, i.e. the advective to the diffusive transport rate, for point source responses
is shown. The contour plots show in three different cases, with Peclet numbers of
2 (top), 20 (middle), and 200 (bottom) the increasing dominance of advection over
diffusion. In the three problems the diffusivity was set to d = 1, a non-zero velocity
was assumed for the x-direction only, no reactions were considered, and one point
source with magnitude 10 was taken into account. For the boundary conditions null
concentrations along the edge x = 0 and null diffusive fluxes on the remaining
boundaries was understood.
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4.6 Conclusions

In this work we solved the advection–diffusion–reaction equation in a rectangular
domain considering a point source. We also showed that the method is stable
for a large range of Peclet numbers and maintains precision even with relatively
coarse meshes and relatively few integration points. All singular integrals were
regularized by a coordinate transformation [Te87], so that the standard Gauss–
Legendre quadrature integration was efficient.

It is well known that the solution of an arbitrary domain subjected to a single
known source point is a Green function of the problem. Therefore, the present
formulation offers a numerical alternative to other methods provided the Green
function method may be applied. The present results show stability, accuracy, and
ability to capture the singularities around point sources, and can be used in principle
for an arbitrary number of sources. The formulation presented, along with only the
boundary discretization, has potential to be used in complex problems like those
considering actual terrain topographies and can be extended to the three dimensional
case without changing the presently prescribed procedure.
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Chapter 5
Displacement Boundary Value Problem
for a Thin Plate in an Unbounded
Domain

Christian Constanda and Dale Doty

5.1 Introduction

Many times, solutions of boundary value problems for a mathematical model cannot
be computed explicitly, but can be approximated to within acceptable tolerances
by means of expansions in a complete set of functions in a Hilbert space such as
L2. This method acquires additional interest and usefulness when the choice of the
functions in question is based on the structure of the layer potentials generated by
the problem.

An expansion of this type may encounter difficulties in the case of an infinite
domain, where the solution must fit a certain prescribed far-field pattern. Often, such
a pattern requires the a priori knowledge of what is known as a rigid displacement
in elasticity theory, which is not normally readily available.

In this chapter, we construct a generalized Fourier series method for the
approximation of the solution to the Dirichlet problem associated with the bending
of a thin elastic plate with transverse shear deformation that occupies a region
S− × [−h0/2, h0/2], h0 = const, in R

3, where S− is the complement to R
2 of a

finite domain S+ bounded by a simple, closed,C2-curve ∂S. After the completion of
the analytic part that describes and justifies the procedure, we illustrate the method
by means of two numerical examples in the case of a homogeneous and isotropic
material, with S− representing the outside of a circle.

The Dirichlet, Neumann, and Robin problems in S+ for this model have been
investigated in [CoDo17a, CoDo17b, CoDo18, CoDo19a, CoDo19b, CoDo19c,
CoDo20].
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5.2 The Plate Equations

In what follows, x(x1, x2) and y(y1, y2) are generic points in R
2, |x − y| is the

Cartesian distance between x and y, C0,α(∂S) and C1,α(∂S), α ∈ (0, 1), are
the spaces of Hölder continuous functions and Hölder continuously differentiable
functions on ∂S, respectively, ‖ · ‖ is the norm on L2(∂S), M(i), M(i), and M T are
the columns, rows, and transpose of a matrix M , and I is the identity operator or
matrix.

We denote by λ and μ the Lamé constants of the material, and by

(
x3u1(x1, x2), x3u2(x1, x2), u3(x1, x2)

)T

the three-dimensional displacement of the points in the plate. Since our mathe-
matical model is set up by means of averaging all the quantities involved in its
description over the thickness h0 of the plate, the unknown object in our analysis is
the vector function

u = (u1, u2, u3)
T.

The equilibrium system of partial differential equations when the body forces
and moments are negligible can be written as [Co16]

A(∂1, ∂2)u(x) = 0, (5.1)

where

A(∂1, ∂2) =
⎛
⎜⎝
h 2μΔ+ h 2(λ+ μ)∂2

1 − μ h 2(λ+ μ)∂1∂2 −μ∂1

h 2(λ+ μ)∂1∂2 h 2μΔ+ h 2(λ+ μ)∂2
2 − μ −μ∂2

μ∂1 μ∂2 μΔ

⎞
⎟⎠ ,

h = h0/
√

12, ∂α = ∂/∂xα , α = 1, 2, and Δ = ∂2
1 + ∂2

2 is the two-dimensional
Laplacian.

It is easily verified [Co16] that the columns f (i) of the matrix

F =
⎛
⎝ 1 0 0

0 1 0
−x1 −x2 1

⎞
⎠ , x ∈ R

2,

form a basis for the space F of rigid displacements, so an arbitrary rigid displace-
ment can be written as

f = Fc,
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where c = (c1, c2, c3)
T is a constant vector. Also, the restrictions f (i)|∂S , i = 1, 2, 3

form a basis for the null space of the boundary operator T .
The study of system (5.1) by means of the boundary integral equation method

requires the knowledge of a 3× 3 matrix D(x, y) of fundamental solutions. Such a
matrix, constructed in [Co16], has the symmetry

D(x, y) = DT(y, x) (5.2)

and is accompanied by its associated matrix of singular solutions

P(x, y) = (
T (∂y)D(y, x)

)T
, (5.3)

where T is the boundary moment-force operator defined by

T (∂1, ∂2) =
⎛
⎜⎝
h 2(λ+ 2μ)n1∂1 + h 2μn2∂2 h 2μn2∂1 + h 2λn1∂2 0

h 2λn2∂1 + h 2μn1∂2 h 2μn1∂1 + h 2(λ+ 2μ)n2∂2 0

μn1 μn2 μnα∂α

⎞
⎟⎠ ,

n = (n1, n2)
T is the unit of the outward normal to ∂S, and nα∂α = n1∂1 + n2∂2.

5.3 Dirichlet Boundary Value Problem

Adopting the notation xp(r, θ) for the point x in polar coordinates, we consider the
space A of vector functions in S− that, as r →∞, admits an asymptotic expansion
of the form

u1(r, θ) = r−1[m0 sin θ + 2m1 cos θ −m0 sin(3θ)+ (m2 −m1) cos(3θ)
]

+ r−2[(2m3 +m4) sin(2θ)+m5 cos(2θ)− 2m3 sin(4θ)+ 2m6 cos(4θ)
]

+ r−3[2m7 sin(3θ)+ 2m8 cos(3θ)+ 3(m9 −m7) sin(5θ)

+ 3(m10 −m8) cos(5θ)
]+O(r−4),

u2(r, θ) = r−1[2m2 sin θ +m0 cos θ + (m2 −m1) sin(3θ)+m0 cos(3θ)
]

+ r−2[(2m6 +m5) sin(2θ)−m4 cos(2θ)+ 2m6 sin(4θ)+ 2m3 cos(4θ)
]

+ r−3[2m10 sin(3θ)− 2m9 cos(3θ)+ 3(m10 −m8) sin(5θ)

+ 3(m7 −m9) cos(5θ)
]+O(r−4),
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u3(r, θ) = −(m1 +m2) ln r − [
m1 +m2 +m0 sin(2θ)+ (m1 −m2) cos(2θ)

]

+ r−1[(m3 +m4) sin θ + (m5 +m6) cos θ −m3 sin(3θ)+m6 cos(3θ)
]

+ r−2[m11 sin(2θ)+m12 cos(2θ)+ (m9 −m7) sin(4θ)

+ (m10 −m8) cos(4θ)
]+O(r−3),

(5.4)

where m1, . . . , m12 are arbitrary real constants. We also consider the set

A ∗ = A ⊕F .

In what follows, we assume that the origin lies in S+. Direct calculation shows
that, for y fixed, matrix D(xp, y) splits into the sum

D(xp, y) = DA (xp, y)+D∞(xp, y); (5.5)

here, DA is a matrix whose columns (DA )(i) are vector functions of class A , and
the entries of the residual D∞ are

D∞11(x, y) = −aμ2
{
x2

1 − x2
2

x2
1 + x2

2

+ 2+ ln(x2
1 + x2

2)

}
,

D∞21(x, y) = −2aμ2 x1x2

x2
1 + x2

2

,

D∞31(x, y) = a

{
− 4h2μ(λ+ 2μ)

x1

x2
1 + x2

2

+ μ2x1[1+ ln(x2
1 + x2

2)]
}
,

D∞12(x, y) = −2aμ2 x1x2

x2
1 + x2

2

,

D∞22(x, y) = −aμ2
{−x2

1 + x2
2

x2
1 + x2

2

+ 2+ ln(x2
1 + x2

2)

}
,

D∞32(x, y) = a

{
− 4h2μ(λ+ 2μ)

x2

x2
1 + x2

2

+ μ2x2[1+ ln(x2
1 + x2

2)]
}
,

D∞13(x, y) = −aμ2
{
(−x2

1 + x2
2)y1 − 2x1x2y2

x2
1 + x2

2

+ x1[1+ ln(x2
1 + x2

2)] − y1[2+ ln(x2
1 + x2

2)]
}
,
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D∞23(x, y) = −aμ2
{
(x2

1 − x2
2)y2 − 2x1x2y1

x2
1 + x2

2

+ x2[1+ ln(x2
1 + x2

2)] − y2[2+ ln(x2
1 + x2

2)]
}
,

D∞33(x, y) = a

{
− 4h2μ(λ+ 3μ)+ 4h2μ(λ+ 2μ)

x1y1 + x2y2

x2
1 + x2

2

+ 1
2 μ

2(x2
1 + x2

2) ln(x2
1 + x2

2)− 2h2μ(λ+ 2μ) ln(x2
1 + x2

2)

− μ2(x1y1 + x2y2)[1+ ln(x2
1 + x2

2)]
}
,

where

a = [8πh2μ2(λ+ 2μ)]−1.

Obviously, in view of (5.5), matrix P also splits into a sum of two terms, PA

and P∞, constructed from (5.3) with DA and D∞, respectively.
It is easily verified that, for x �= y,

AD∞ = ADA = 0 in S+ ∪ S−

and

P∞ = 0, P = PA .

Using the expressions of D∞ij converted to polar coordinates, we find that for a
vector function ψ on ∂S,

(
D∞(xp, y)ψ(y)

)
1

= −aμ2{[r(2 ln r + 1) cos θ ]ψ3

+ [2(ln r + 1)+ cos(2θ)](ψ1 − y1ψ3)+ sin(2θ)(ψ2 − y2ψ3)},
(
D∞(xp, y)ψ(y)

)
2

= −aμ2{[(2 ln r + 1) sin θ ]ψ3 + sin(2θ)(ψ1 − y1ψ3)

+ [2(ln r + 1)− cos(2θ)](ψ2 − y2ψ3)},
(
D∞(xp, y)ψ(y)

)
3

= a{[μ2r2 ln r − 4h2μ(λ+ 2μ) ln r − 4h2μ(λ+ 3μ)]ψ3
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+ [μ2r(2 ln r + 1)− 4h2μ(λ+ 2μ)r−1]
× [(cos θ)(ψ1 − y1ψ3)+ (sin θ)(ψ2 − y2ψ3)]}.

These formulas show that if
∫

∂S

(f (α))Tψ ds =
∫

∂S

[ψα(y)− yαψ3(y)] ds(y) = 0, α = 1, 2,

∫

∂S

(f (3))Tψ ds =
∫

∂S

ψ3(y) ds(y) = 0,

(5.6)

then
∫

∂S

(
D(xp, y)

)∞
ψ(y) ds(y) = 0,

which means that
∫

∂S

D(x, y)ψ(y) ds(y) =
∫

∂S

(
D(x, y)

)A
ψ(y) ds(y). (5.7)

The exterior Dirichlet problem consists in finding u ∈ C2(S−) ∩ C1(S̄−) that
satisfies

Au = 0 in S−,

u = D on ∂S,

u ∈ A ∗,

(5.8)

where D is a 3× 1 vector function prescribed on ∂S.
The next two statements are proved in [Co16].

Theorem 1 (Somigliana Representation Formula) If u ∈ A is a solution of
Au = 0 in S−, then

u(x) = −
∫

∂S

{D(x, y)T u(y)− P(x, y)D(y)} ds(y), x ∈ S−,

0 = −
∫

∂S

{D(x, y)T u(y)− P(x, y)D(y)} ds(y), x ∈ S+.

Theorem 2 Problem (5.8) has a unique solution u for any D ∈ C1,α(∂S).
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Given the definition of A ∗, we have the decomposition

u = uA + Fc, uA ∈ A . (5.9)

It is obvious that uA is the (unique) solution of the Dirichlet boundary value
problem

AuA = 0 in S−,

uA = D − Fc on ∂S,

uA ∈ A ,

so, by Theorem 1,

uA (x) = −
∫

∂S

{D(x, y)T uA (y)− P(x, y)(D − Fc)(y)} ds(y), x ∈ S−,

0 = −
∫

∂S

{D(x, y)T uA (y)− P(x, y)(D − Fc)(y)} ds(y), x ∈ S+.

(5.10)

Since T Fc = 0, we have

T u = T uA + T Fc = T uA .

Also, since ψ = T u is the Neumann boundary data of the solution, it follows that
(see [Co16])

∫

∂S

(f (i))Tψ ds = 0, i = 1, 2, 3, (5.11)

which is (5.6). Consequently, using (5.7) and (5.9), and the equality [Co16]

∫

∂S

P (x, y)(Fc)(y) ds(y) =
{
−(Fc)(x), x ∈ S+,
0, x ∈ S−,

we bring (5.10) to the form

uA (x) = −
∫

∂S

{DA (x, y)ψ(y)− P(x, y)D(y)} ds(y), x ∈ S−, (5.12)

0 = −
∫

∂S

{DA (x, y)ψ(y)− P(x, y)D(y)} ds(y)+ (Fc)(x), x ∈ S+.

(5.13)
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5.4 Generalized Fourier Series Method

The computational algorithm is constructed by means of an auxiliary simple, closed,
C2–curve ∂S∗ lying strictly inside S+.

Let {x(k), k = 1, 2, . . .} be a set of points densely distributed on ∂S∗, and let

G = {ϕ(ik), i = 1, 2, 3, k = 0, 1, 2, . . .}

be the set of vector functions on ∂S defined by

ϕ(i0)(x) = f (i)(x), i = 1, 2, 3,

ϕ(ik)(x) = (DA )(i)(x, x(k)), i = 1, 2, 3, k = 1, 2, . . . .

The functions ϕ(ik), k = 1, 2, . . . , can also be expressed in terms of the rows of
DA . From the symmetry (5.2) we deduce that

DA (y, x) = (DA )T(x, y),

where the left-hand side is the class A component of the asymptotic expansion with
respect to x after the points x and y have been interchanged in D. Then

(DA )(i)(y, x) = (
(DA )T

)(i)
(x, y) = (DA )(i)(x, y),

which leads to

ϕ(ik)(x) = (DA )(i)(x, x(k)) = (
(DA )(i)(x

(k), x)
)T
. (5.14)

Theorem 3 G is linearly independent on ∂S and complete in L2(∂S).

Proof Suppose that

3∑
j=1

N∑
k=0

αjkϕ
(jk)(x) = 0, x ∈ ∂S

for some positive integer N and real numbers αik , i = 1, 2, 3, k = 0, 1, 2, . . . , N.
Then the function

g(x) =
3∑
i=1

N∑
k=0

αikϕ
(ik)(x) =

3∑
i=1

αi0f
(i)(x)+

3∑
i=1

N∑
k=1

αik(D
A )(i)(x, x(k))
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is the unique solution of the homogeneous Dirichlet problem

Ag = 0 in S−,

g = 0 on ∂S,

g ∈ A ∗,

so g = 0 in S̄−. This implies [Co16] that

αi0 = 0, i = 1, 2, 3,

and

3∑
i=1

N∑
k=1

αik(D
A )(i)(x, x(k)) = 0, x ∈ S−. (5.15)

According to the asymptotic expansion of DA in [Co16], the entries DA
3j (x, x

(k))

become infinite as |x| → ∞. This contradicts (5.15) unless

αik = 0, i = 1, 2, 3, k = 1, 2, . . . , N,

which confirms the linear independence of the set G .
Next, let q ∈ L2(∂S) be such that

∫

∂S

(ϕ(i0))Tq ds =
∫

∂S

(f (i))Tq ds = 0, i = 1, 2, 3, (5.16)

∫

∂S

(ϕ(ik))Tq ds = 0, i = 1, 2, 3, k = 1, 2, . . . . (5.17)

Using (5.14), we see that (5.17) is the same as

∫

∂S

(DA )(i)(x
(k), y)q(y) ds(y) = 0, i = 1, 2, 3, k = 1, 2, . . . . (5.18)

The rest of the argument in this proof makes use of the properties of layer
potentials with an L2-density, discussed in [Co16]. Thus, by (5.17) and (5.7), the
single-layer potential

(V q)(x) = (V q)A (x) =
∫

∂S

DA (x, y)q(y) ds(y), x ∈ S+ ∪ S−,
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written in this form on the basis of (5.16), is continuous on ∂S∗. Given (5.18) and the
fact that the points x(k), k = 1, 2, . . . , are densely distributed on ∂S∗, we deduce
that V q is the unique solution of the Dirichlet problem

A(V q) = 0 in S+∗ ,

V q = 0 on ∂S∗,

which implies that

V q = 0 in S̄+∗ .

The analyticity of V q in S+ ∪ S− now yields

V q = 0 in S̄+.

Hence,
(
T (V q)

)+ = 0,

or, equivalently [Co16],

1
2 q(x)+

∫

∂S

T (∂x)D(x, y)q(y) ds(y) = 0 for a.a. x ∈ ∂S,

where the integral is understood as principal value. This leads to the conclusion
[Co16] that q ∈ C 0,α(∂S) and, therefore, it is continuous in R

2 and satisfies

A(V q) = 0 in S−,

V q = 0 on ∂S,

V q ∈ A .

By Theorem 1,

V q = 0 in S̄−,

so

(T (V q))− = 0 on ∂S.

Combining the limiting values
(
T (V q)

)±
(x) of

(
T (V q)

)
(x) as x approaches ∂S

from within S+ and S− (see [Co16]), we conclude that

q = 0,

which shows that the set G is complete in the Hilbert space L2(∂S). ��
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The elements of G are re-ordered as the sequence

ϕ(10), ϕ(20), ϕ(30), ϕ(11), ϕ(21), ϕ(31), ϕ(12), ϕ(22), ϕ(32), . . .

and re-indexed as

G = {ϕ(1), ϕ(2), ϕ(3), ϕ(4), ϕ(5), ϕ(6), ϕ(7), ϕ(8), ϕ(9), . . .},

where ϕ(j) in the new sequence is the same as ϕ(ik) in the original one with

j = i + 3k, i = 1, 2, 3, k = 0, 1, 2, . . . . (5.19)

5.5 Computational Procedure

Since the x(k) are points in S+, from (5.13) it follows that

∫

∂S

(DA )(i)(x
(k), x)ψ(x) ds(x) =

∫

∂S

P(i)(x
(k), x)D(x) ds(x)+ (Fc)i(x

(k)).

(5.20)

Given that G is a complete set, we may consider an expansion of the form

ψ =
∞∑
h=1

phϕ
(h).

Replacing (5.20) and truncating after n = 3N + 3 terms, where N is the number of
points x(k) on ∂S∗, we obtain the approximate equality

3N+3∑
h=1

ph

∫

∂S

(DA )(i)(x
(k), x)ϕ(h)(x) ds(x)

=
3N+3∑
h=1

ph

∫

∂S

(ϕ(j))T(x)ϕ(h)(x) ds(x)

=
∫

∂S

P(i)(x
(k), x)D(x) ds(x)+

3∑
l=1

clf
(l)
i (x(k)),

i = 1, 2, 3, k = 1, 2, . . . , N, j = i + 3k = 4, 5, . . . , 3N + 3,
(5.21)
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which gives rise to the approximation

ψ(n) =
n∑

h=1

phϕ
(h), n = 3N + 3, (5.22)

satisfying

lim
n→∞‖ψ − ψn‖ = 0. (5.23)

Taking the re-indexing (5.19) into account and making the notation

Mjh =
∫

∂S

(ϕ(j))T(x)ϕ(h)(x) ds(x),

βj =
∫

∂S

P(i)(x
(k), x)D(x) ds(x),

γjl = f
(l)
i (x(k)),

we re-write (5.21) in the form

3N+3∑
h=1

Mjhph −
3∑
l=1

γjlcl = βj , j = 4, 5, . . . , 3N + 3. (5.24)

This is a linear system of 3N equations in 3N + 6 unknowns ph and cl .
Consequently, we need six additional equations.

Three of these equations are constructed by choosing a point x̂ in S+, arbitrary
but distinct from the x(k) and the origin. Then (5.13) yields the system

3N+3∑
h=1

ph

∫

∂S

(DA )(i)(x̂, x)ϕ
(h)(x) ds(x)

=
∫

∂S

P(i)(x̂, x)D(x) ds(x)+
3∑
l=1

clf
l
i (x̂), i = 1, 2, 3,

or, with the notation

M̂ih =
∫

∂S

(DA )(i)(x̂, x)ϕ
(h)(x) ds(x),
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β̂i =
∫

∂S

P(i)(x̂, x)D(x) ds(x),

γ̂il =
3∑
l=1

f li (x̂),

the system

n∑
h=1

M̂ihch −
3∑
l=1

γ̂ilal = β̂i , i = 1, 2, 3. (5.25)

Since ψ = T u satisfies (5.11), it is reasonable to ask the approximation (5.22) to
do the same. Obviously, this condition translates as

3N+3∑
h=1

ph

∫

∂S

(ϕ(h))Tϕ(i) ds = 0, i = 1, 2, 3. (5.26)

Equations (5.24), (5.25), and (5.26) form a non-singular system for the compu-
tation of the 3N + 3 coefficients ph and the three coefficients cl , which determine
ψ(n) and the rigid displacement approximation

(Fc)(3N+3) = Fc(3N+3).

Representation formula (5.12) indicates that we should now define

(uA )(n)(x) = −
∫

∂S

DA (x, y)ψ(n)(y) ds(y)+
∫

∂S

P (x, y)D(y) ds(y), x ∈ S−,

(5.27)
and

u(n)(x) = (uA )(n)(x)+ F(x)c(n), x ∈ S−. (5.28)

In [Co16], the exact rigid displacement Fc component of u is given by an
expression involving D and the null space properties of a specific boundary integral
operator. This suggests that we may consider an alternative definition of u(n),
namely

u(n)(x) =
(
uA

)(n)
(x)+ (Fc)(x), x ∈ S−. (5.29)

Equality (5.29) is the form of choice in analytic arguments, and (5.28) in numerical
computation.
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Theorem 4 The vector function u(n) defined by (5.29) is an approximation of the
solution u of problem (5.1) in the sense that u(n) → u uniformly on any closed and
bounded subdomain S′ of S−.

Proof By (5.9), (5.29), (5.12), and (5.27),

u(x)− u(n)(x) = uA (x)−
(
uA

)(n)
(x)

= −
∫

∂S

DA (x, y)ψ(y) ds(y)+
∫

∂S

DA (x, y)ψ(n)(y) ds(y)

= −
∫

∂S

DA (x, y)
[
ψ(y)− ψ(n)(y)

]
ds(y), x ∈ S−,

so

|u(x)− u(n)(x)| ≤
3∑
i=1

‖(DA )(i)(x, ·)‖ ‖ψ − ψ(n)‖, x ∈ S′.

Since S′ is closed and bounded, the (DA )(i) are uniformly bounded on it [Co16],
and the statement of the assertion now follows from (5.23). ��

The numerical procedure described above is referred to as the row reduction
method.

5.6 Numerical and Graphical Illustration: Known Solution

Let S+ be the disk of radius 1 centered at origin, let ∂S∗ be the circle concentric with
∂S and of radius 1/2, and let the physical parameters of the elastic plate material,
after suitable rescaling and non-dimensionalization, be

h = 0.5, λ = μ = 1.

Remark 1 Our choice for ∂S∗ is motivated by the fact that if this curve is too far
away from ∂S, then the sequence G becomes “less linearly independent”. On the
other hand, if it is too close to ∂S, then G develops increasing sensitivity to the
singularities of matrices D and P on the boundary.
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Remark 2 The approximation accuracy depends on the selection of the points
{x(k)}. In the interest of computational symmetry, we decided to space these points
uniformly around ∂S∗; specifically, for N = 1, 2, . . . ,

{x(k) : k = 1, 2, . . . , N}Cartesian =
{(

1
2 ,

2πk

N

)
: k = 1, 2, . . . , N

}
Polar

.

It is clear that {x(k)}∞k=1 is the set of all points on ∂S∗ whose polar angle is of the
form 2πa, where a is any rational number such that 0 < a ≤ 1.

Remark 3 We have performed floating-point computation with machine precision
of approximately 16 digits. The most sensitive part of the process is the evaluation
of integrals in the inner products, for which we set a target of 11 significant digits.

We prescribe the boundary condition (in polar coordinates on ∂S)

D(xp) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2+ 2 cos θ + 3 sin θ − sin(2θ)+ 2 cos(3θ)− 7 sin(3θ)

+ 2 cos(4θ)+ 4 sin(4θ)

−4+ 3 cos θ + 2 sin θ − 3 cos(2θ)+ 2 sin(2θ)+ 7 cos(3θ)

+ 2 sin(3θ)− 4 cos(4θ)+ 2 sin(4θ)

−1− cos θ + 5 sin θ + cos(2θ)− 14 sin(2θ)+ 7 cos(3θ)

+ 14 sin(3θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which generates the exact solution (in S−)

u(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2+ (x2
1 + x2

2)
−1(2x1 + 3x2)

+ (x2
1 + x2

2 )
−2(−2x1x2 − 9x2

1x2 + 3x3
2 )

+ (x2
1 + x2

2)
−3(2x3

1 − 12x2
1x2 − 6x1x

2
2 + 4x3

2 + 2x4
1

+ 16x3
1x2 − 12x2

1x
2
2 − 16x1x

3
2 + 2x4

2)

−4+ (x2
1 + x2

2)
−1(3x1 + 2x2)

+ (x2
1 + x2

2 )
−2(−3x2

1 + 4x1x2 + 3x2
2 + 3x3

1 − 9x1x
2
2)

+ (x2
1 + x2

2)
−3(4x3

1 + 6x2
1x2 − 12x1x

2
2 − 2x3

2 − 4x4
1

+ 8x3
1x2 + 24x2

1x
2
2 − 8x1x

3
2 − 4x4

2)

−1− ln(x2
1 + x2

2)− 2x1 + 4x2 + (x2
1 + x2

2 )
−1(x1 + x2 − 6x1x2)

+ (x2
1 + x2

2 )
−2(x2

1 − 22x1x2 − x2
2 + x3

1 + 6x2
1x2 − 3x1x

2
2 − 2x3

2 )

+ (x2
1 + x2

2)
−3(6x3

1 + 36x2
1x2 − 18x1x

2
2 − 12x3

2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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or, in polar coordinates,

u(xp) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2+ r−1[2 cos θ + 3 sin θ − 3 sin(3θ)]
+ r−2[− sin(2θ)+ 2 cos(4θ)+ 4 sin(4θ)]

+ r−3[2 cos(3θ)− 4 sin(3θ)]
−4+ r−1[3 cos θ + 2 sin θ + 3 cos(3θ)]

+ r−2[−3 cos(2θ)+ 2 sin(2θ)− 4 cos(4θ)+ 2 sin(4θ)]
+ r−3[4 cos(3θ)+ 2 sin(3θ)]

r(−2 cos θ + 4 sin θ)− 2 ln r − 1

+ r−1[cos θ + sin θ + cos(3θ)+ 2 sin(3θ)]
+ r−2[cos(2θ)− 11 sin(2θ)]

+ r−3[6 cos(3θ)+ 12 sin(3θ)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This solution contains the class A vertical translation (0, 0,−2)T and the
additional rigid displacement

f (x) = (2f (1) − 4f (2) + f (3))(x) = (2,−4, 1− 2x1 + 4x2)
T.

If f is eliminated, then

(D − f )(xp) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 cos θ + 3 sin θ − sin(2θ)+ 2 cos(3θ)− 7 sin(3θ)

+ 2 cos(4θ)+ 4 sin(4θ)

3 cos θ + 2 sin θ − 3 cos(2θ)+ 2 sin(2θ)+ 7 cos(3θ)

+ 2 sin(3θ)− 4 cos(4θ)+ 2 sin(4θ)

−2+ cos θ + sin θ + cos(2θ)− 14 sin(2θ)+ 7 cos(3θ)

+ 14 sin(3θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

uA (xp) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r−1[2 cos θ + 3 sin θ − 3 sin(3θ)]
+ r−2[− sin(2θ)+ 2 cos(4θ)+ 4 sin(4θ)]

+ r−3[2 cos(3θ)− 4 sin(3θ)]
r−1[3 cos θ + 2 sin θ + 3 cos(3θ)]

+ r−2[−3 cos(2θ)+ 2 sin(2θ)− 4 cos(4θ)+ 2 sin(4θ)]
+ r−3[4 cos(3θ)+ 2 sin(3θ)]

−2 ln r − 2+ r−1[cos θ + sin θ + cos(3θ)+ 2 sin(3θ)]
+ r−2[cos(2θ)− 11 sin(2θ)]

+ r−3[6 cos(3θ)+ 12 sin(3θ)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Using the polar form of the solution, we can verify that uA = u − Fc fits the
far-field pattern (5.4) with the coefficients

m0 = 3, m1 = 1, m2 = 1, m3 = −2, m4 = 3, m5 = 0, m6 = 1,

m7 = −2, m8 = 1, m9 = −2, m10 = 1, m11 = −11, m12 = 1.

The entries of the approximation (uA )(57) computed from ψ(57) (with N = 18
points x(k) on ∂S∗) for r ≥ 1.01, 0 ≤ θ < 2π , and those of D − f on ∂S are
graphed in Fig. 5.1.

We took r ≥ 1.01 to avoid the influence of the singularities of D(x, y) and
P(x, y) for x ∈ S− very close to y ∈ ∂S. This problem can be mitigated by
increasing the floating-point accuracy in the vicinity of the boundary, but can never
be completely eliminated.

The graphs of the entries of (uA )(57) computed from ψ(57) for 1.01 < r ≤ 100,
0 ≤ θ < 2π , in Fig. 5.2, illustrate the class A behavior of the solution away from
the boundary. These graphs have been truncated for better visualization.

Figure 5.3 exhibits the graphs of the entries of the actual error (uA )(57) − uA .
Their approximation is 3–5 digits of accuracy near ∂S, but improves significantly
away from the boundary.

Figure 5.4 shows the boundary data function D in polar coordinates.
The components of a typical vector function ϕ(i) are graphed (in polar coordi-

nates) in Fig. 5.5.
The entries of ψ(57) as functions of the polar angle θ are displayed in Fig. 5.6.
Figure 5.7 shows the graphs of the error ψ(57) − T u in terms of θ .
Finally, the relative L2-error

‖ψ(3N+3) − T u‖
‖T u‖

as a function of N is shown with the best least square linear fit in Fig. 5.8, where
the vertical axis is displayed logarithmically to base 10. This plot indicates that the
relative error decreases exponentially as N increases. For this example, the relative
error is

1488.36× 10−0.301277N.

Figure 5.9 exhibits the relative error in the computation of the vector c that
characterizes the rigid displacement in the solution.
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Fig. 5.1 Components of
(uA )(57) and D − f
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Fig. 5.2 Components of
(uA )(57) away from the
origin
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Fig. 5.3 Components of the
error (uA )(57) − uA

Fig. 5.4 Components of D in
polar coordinates
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Fig. 5.5 Components of a
typical ϕ(i) in polar
coordinates

Fig. 5.6 Components of
ψ(57) in polar coordinates

Fig. 5.7 Components of
ψ(57) − T u in polar
coordinates

Fig. 5.8 Relative error
‖ψ(3N+3) − T u‖/‖T u‖ as a
function of N

Fig. 5.9 Relative error
‖c(3N+3) − c‖/‖c‖ as a
function of N
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5.7 Numerical and Graphical Illustration: Unknown
Solution

With the same choice of auxiliary curve and plate geometric and physical parameters
as in Sect. 5.6, we consider problem (5.8) with the boundary condition vector
function

D(xp) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.73+ cos θ − 4 sin θ − 7 cos(3θ)

+ 14 sin(3θ)− 4 sin(4θ)

2.51− 4 cos θ − sin θ + 4 cos(2θ)

− 14 cos(3θ)− 7 sin(3θ)+ 4 cos(4θ)

−0.43− 1.73 cos θ − 4.51 sin θ

− 7 cos(2θ)+ 21 sin(2θ)− 14 sin(3θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The exact solution of the problem is not known in this case.
The comments made in Remark 1 remain valid here as well.
Applying the row reduction method described in Sect. 5.5, we find that the

approximation of the rigid displacement computed with N = 20 points on ∂S∗
is

f (63) = 1.73205 f (1) + 2.50999 f (2) − 0.430001f (3). (5.30)

Our procedure requires f (63) to be subtracted from D when we approximate uA .
Figure 5.10 shows the graphs of the components of (uA )(63) obtained fromψ(63)

for r ≥ 1.01, 0 ≤ θ < 2π , those of the components of D − f (63), the points x(k),
and the auxiliary point x̂ = (1/4, 1/4) used in the calculation.

In Fig. 5.11, we have plotted the components of (uA )(63) for 1.01 ≤ r ≤ 100 and
0 ≤ θ ≤ 2π , to illustrate the class A behavior of the approximation of the solution
away from the boundary. The graphs have been truncated for better visualization.

The graphs (in polar coordinates) of the entries of D are shown in Fig. 5.12.
Figure 5.13 exhibits the graphs (in polar coordinates) of the approximation ψ(63).
Since the exact solution is not known in this example, we cannot perform a proper

error analysis. Instead, we try to validate our method indirectly by using ψ(63) as
the boundary condition for a Neumann problem and computing the approximate
boundary trace D̂ (63) of the latter. Adding f (63) from (5.30) to D̂ (63), we expect to
get close to D . The sum of these two functions and the difference between that sum
and D are shown in Figs. 5.14 and 5.15, respectively. The plots in Fig. 5.15 confirm
the robust nature of the generalized Fourier series method. This conclusion is further
strengthened by the fact that, when applying the scheme with N = 200, we obtain
the much smaller relative error

‖D̂ (603) + f (603) −D‖
‖D‖ = 2.11107× 10−57.
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Fig. 5.10 Components of
(uA )(63) and D − f (63)
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Fig. 5.11 Components of
(uA )(63) away from the
origin
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Fig. 5.12 Components of D
in polar coordinates

Fig. 5.13 Components of
ψ(63) in polar coordinates

Fig. 5.14 Components of
D̂ (63) + f (63) in polar
coordinates

Fig. 5.15 Components of
D̂ (63) + f (63) − D in polar
coordinates
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Chapter 6
A Dirichlet Spectral Problem in Domains
Surrounded by Thin Stiff and Heavy
Bands

Delfina Gómez, Sergey A. Nazarov, and Maria–Eugenia Pérez-Martínez

6.1 Introduction and Statement of the Problem

Let Ω be a bounded simply connected domain of the plane R
2 with a smooth

boundary Γ and let (ν, τ ) be the natural orthogonal curvilinear coordinates in a
neighborhood of Γ : τ is the arc length and ν the distance along the normal vector
to Γ ; ν < 0 inside Ω . Let � denote the length of the contour Γ and �(τ) its
curvature at the point τ . We assume that the domain Ω is surrounded by the thin
band ωε = {x : 0 < ν < εh} where ε > 0 is a small parameter and h is a positive
constant. Let Ωε be the domain Ωε = Ω ∪ ωε ∪ Γ and Γε = {x : ν = εh} the
boundary of Ωε (see Fig. 6.1).

We consider the spectral Dirichlet problem in Ωε for a second order differential
operator with piecewise constant coefficients:

− AΔxU
ε = λεUε in Ω, (6.1a)

− aε−tΔxu
ε = λεε−t−muε in ωε, (6.1b)

Uε = uε on Γ, (6.1c)

εtA∂νU
ε = a∂νu

ε on Γ, (6.1d)

uε = 0 on Γε. (6.1e)
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Fig. 6.1 Possible geometry
of Ωε

Here, A and a are two positive constants, while ∂ν denotes the derivative along the
outward normal vectors ν to the curve Γ ; t and m are two positive parameters.

The weak formulation of problem (6.1) reads: to find λε and {Uε, uε} ∈
H 1

0 (Ωε) \ {{0, 0}}, satisfying

A

∫
Ω
∇xUε · ∇xGdx+ a

εt

∫
ωε

∇xuε · ∇xg dx

= λε
(∫

Ω
Uε Gdx + 1

εt+m
∫
ωε

uε g dx

)
∀{G, g} ∈ H 1

0 (Ωε).

(6.2)

Here, and in what follows, we identify a function in L2(Ωε) with the pair of
functions {G, g}, where G stands for the restriction of the function to Ω and g

for the restriction of the function to ωε. In particular, the eigenpairs formed by the
eigenvalues λε and the corresponding eigenfunctions read (λε, {Uε, uε}).

For each ε > 0, problem (6.2) is a standard spectral problem in the couple of
spaces H 1

0 (Ωε) ⊂ L2(Ωε), with a positive and discrete spectrum. Let us consider

0 < λε1 ≤ λε2 ≤ · · · ≤ λεk ≤ · · · k→∞−−−−−−→∞ (6.3)

the sequence of eigenvalues repeated according to their multiplicity.
For each fixed k ∈ N and a small ε, we have

C ≤ λεk ≤ Ck when m ≤ 2,
Cεm−2 ≤ λεk ≤ Ckε

m−2 when m > 2,
(6.4)

where the positive constants C and Ck do not depend on ε, but Ck →∞ as k→∞
(see [GoEtAl20] for the proof based on the minimax principle and the Poincaré
inequality). Relations in (6.4) indicate the order of magnitude of the eigenvalues of
problem (6.2) for fixed k, the so-called low frequencies.
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We study the asymptotic behavior, as ε → 0, of the eigenvalues λε of (6.2)
and the corresponding eigenfunctions {Uε, uε}. This problem is of interest, for
instance, in the study of reinforcement problems for solid media and in vibrations
for a two-phase system in fluid mechanics. Here, the band ωε is both stiffer and
heavier. Parameters t and m deal with the physical characteristic of the medium and
it seems natural to have a different asymptotic behavior as ε→ 0 for the eigenpairs
(λε, {Uε, uε}) of (6.2) depending on their value.

This problem has been considered for the first time in [GoEtAl20] where the low
and high frequencies are studied when t ≥ 1 and m > 2 which are of order εm−2

and 1, respectively. There localization effects for the eigenfunctions corresponding
to low frequencies of (6.2) are shown around points τ0 of the boundary where the
curvature of Γ has a local extremum. These localization effects differ strongly in
previous papers (see below).

The aim of this paper is to study, for t = 1 and m > 2, the asymptotic behavior,
as ε → 0, of the eigenvalues λε of (6.2) and the corresponding eigenfunctions
{Uε, uε} in case the curvature of Γ is constant; that is, when the domain Ω is a disk.
Here, explicit computations for the eigenpairs of (6.1) can be done by means of the
Bessel functions and the eigenvalues of (6.1) are the roots of certain transcendental
equation (cf. Sect. 6.2). In order to describe their asymptotic behavior as ε→ 0, we
also provide the asymptotic expansions for the low and high frequencies when t = 1
and m > 2. In contrast with the case where the curvature is not constant (considered
in [GoEtAl20]), the corresponding eigenfunctions are now significant over the
whole domain Ωε, and no localization effects arise at points of the boundary.

Let us recall the results in [GoEtAl06a, GoEtAl06b, GoEtAl11] which are close
papers to the problem under consideration. There, the spectral Neumann problem is
considered for different values of t and m; that is, (6.1a)–(6.1d) and

∂νu
ε = 0 on Γε;

also it is assumed that ωε = {x : 0 > ν > −εh(τ)} where h is a strictly positive
function of the τ variable �-periodic, h ∈ C∞(S�) where S� stands for the circle
of length �. Note that ωε may vary with the arc length. A characterization of the
limiting problems for the eigenpairs of the Neumann problem for the different values
of t and m has been obtained in [GoEtAl06a] by means of asymptotic expansions.
Sharp bounds for convergence rates of the eigenpairs (λε, {Uε, uε}) in the case
where t = 1 andm = 0 are also given by using the so-called inverse-direct reduction
method (cf. [Na02, Na03, LoEtAl05]). A different approach for the eigenpairs is
provided in [GoEtAl06b] for the case where t > 1 and m = 0 where, in addition
to the convergence, a complete asymptotic expansion for the eigenpairs has been
obtained, and a connection of this problem with Wentzell problems with small
parameters has been shown. Also, both papers [GoEtAl06a, GoEtAl06b] describe
precise bounds for convergence rates for the low frequencies and the corresponding
eigenfunctions in the cases mentioned above m = 0 and t ≥ 1. We refer to
[GoEtAl06a, GoEtAl06b] for further references.
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Paper [GoEtAl11] deals with the Neumann problem in the case where t = 1 and
m > 0, and considers the low and high frequencies which are now of order εm and
1, respectively. The limiting problems associated with both kinds of frequencies are
obtained and information on the structure of the corresponding eigenfunctions is
also provided. These problems appear independently of the geometry of the band
ωε, but for m > 2 there are other limiting problems associated with the intermediate
frequencies, namely eigenvalues of order εm−2, which strongly depend on this
geometry: more precisely whether the function h is constant or not. Moreover, only
in the case where h is not constant, the eigenfunctions corresponding to the middle
frequencies are localized asymptotically in small neighborhoods of points τ0 of the
boundary where the function h presents a local maximum.

It should be pointed out that this paper contains two very different parts. These
parts are in Sects. 6.2 and 6.3–6.5, respectively. In Sect. 6.2, for fixed ε, we obtain
explicit formulas for the eigenelements of (6.1) when the domain Ω is a disk. In this
case, using separation of variables and the Bessel functions, we obtain some explicit
formulas for the eigenfunctions of (6.1) (cf. (6.11), (6.12), (6.14), (6.15)), whereas
the eigenvalues of (6.1) are described by means of the roots of a certain equation
(cf. (6.9)). This is valid for all t and m. But it does not provide much information on
the asymptotic behavior of the eigenvalues and the eigenfunctions when ε→ 0.

In Sects. 6.3–6.5, by means of asymptotic expansions, we describe the behavior,
as ε → 0, of the eigenvalues of (6.1) and the corresponding eigenfunctions
{Uε, uε}. Since the curvature of Γ is constant, these asymptotics are not provided
in [GoEtAl20] and here we complement the results in [GoEtAl20]. We consider
the low and high frequencies in the case where t = 1 and m > 2 which are of
order εm−2 and 1, respectively. More precisely, in Sect. 6.3, we construct three-term
asymptotic expansions of eigenvalues of (6.1) of order εm−2,

λε = εm−2(λ0 + ελ1 + ε2λ2 + o(ε2)),

and for the corresponding eigenfunctions, while the justification for these asymp-
totic expansions is given in Sect. 6.4. In particular, we provide estimates for the
convergence rate of the eigenvalues of (6.1) of order O(εm−2) and also of the
corresponding eigenfunctions as stated in Theorem 1. Finally, the eigenvalues of
order 1, that is, the high frequencies, are considered in Sect. 6.5.

6.2 Some Explicit Computations

When the domain Ω is a disk, explicit computations for the eigenpairs of (6.1)
can be performed by means of the Bessel functions. In this section, for ε > 0
fixed, we obtain some explicit formulas for the eigenfunctions of (6.1) (cf. (6.11),
(6.12), (6.14), (6.15)), whereas the eigenvalues of (6.1) are described by means of
roots of a certain transcendental equation (cf. (6.9)). We refer to [GoEtAl19] for
some explicit computations for a stiff problem posed in a rectangle composed of
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Fig. 6.2 Geometry for Ωε

when the curvature of Γ is
constant

two parts in which the stiffness constants are of different orders of magnitude. For
further dimensions and explicit computations, we also refer to [Pe95], [LoPe97],
and [LoEtAl03] for a stiff problem, [GoEtAl98], [GoEtAl99a], [GoEtAl99b], and
[CaEtAl05] for vibrating systems with concentrated masses, and [Pe03] dealing
with whispering gallery eigenmodes along interfaces.

We assume that the domain Ω is the disk with radius R > 0 centered at the
origin, namely Ω = B(O,R) = {x : ‖x‖ < R}. Thus, Γ and Γε are the circles
centered at the origin with radii R and R + εh, respectively, and the band is the
annulus ωε = {x : R < ‖x‖ < R+ εh} (see Fig. 6.2). To simplify, we also assume
that the constant A and a in (6.1) are equal to 1.

We introduce the polar coordinates x1 = r cos θ, x2 = r sin θ with r ∈ [0, R +
εh) and θ ∈ [0, 2π) in problem (6.1) and we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∂2
r U

ε − r−1∂rU
ε − r−2∂2

θ U
ε = λεUε for (r, θ) ∈ [0, R)× [0, 2π),

−∂2
r u

ε − r−1∂ru
ε − r−2∂2

θ u
ε = λεε−muε for (r, θ) ∈ (R,R + εh)× [0, 2π),

Uε(R, θ) = uε(R, θ) for θ ∈ [0, 2π),
εt ∂rU

ε(R, θ) = ∂ru
ε(R, θ) for θ ∈ [0, 2π),

uε(R + εh, θ) = 0 for θ ∈ [0, 2π).
(6.5)

Using separation of variables, we look for the eigenelements (λε, {Uε, uε}) of
(6.5) in the form

Uε(r, θ) = Rε(r)T ε(θ)

uε(r, θ) = rε(r)tε(θ),
(6.6)
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for certain functions Rε, T ε, rε, and tε. Replacing (6.6) in (6.5) we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2Rε ′′(r)+ rRε ′(r)
Rε(r)

+ λεr2 = −T
ε ′′(θ)
T ε(θ)

= με for (r, θ)∈[0, R)×[0, 2π),

r2rε ′′(r)+ rrε ′(r)
rε(r)

+ λεr2ε−m = − t
ε ′′(θ)
tε(θ)

= μ̂ε for (r, θ)∈(R,R + εh)×[0, 2π),

T ε(0) = T ε(2π), T ε ′(0) = T ε ′(2π),
tε(0) = tε(2π), tε ′(0) = tε ′(2π),
Rε(R)T ε(θ) = rε(R)tε(θ) for θ ∈ [0, 2π),

εtRε ′(R)T ε(θ) = rε ′(R)tε(θ) for θ ∈ [0, 2π)

rε(R + εh)tε(θ) = 0 for θ ∈ [0, 2π),

(6.7)

where με and μ̂ε are constants to be determined. It is easy to check that the only
values με and μ̂ε satisfying (6.7) with Uε(r, θ) = Rε(r)T ε(θ) �≡ 0 and uε(r, θ) =
rε(r)tε(θ) �≡ 0 are

μεk = μ̂εk = k2, with k ∈ N0 = N ∪ {0},

and, consequently,

T ε
k (θ) = tεk (θ) = sin(kθ) for θ ∈ [0, 2π), k ∈ N,

T ε
k (θ) = tεk (θ) = cos(kθ) for θ ∈ [0, 2π), k ∈ N0.

Thus, for k ∈ N0 fixed, (λε, {Rε, rε}) verifies

r2Rε ′′(r)+ rRε ′(r)+ (λεr2 − k2)Rε(r) = 0 for r ∈ [0, R), (6.8a)

r2rε
′′
(r)+ rrε

′
(r)+ (λεr2ε−m − k2)rε(r) = 0 for r ∈ (R,R + εh), (6.8b)

Rε(R) = rε(R), εtRε ′(R) = rε
′
(R), (6.8c)

rε(R + εh) = 0. (6.8d)

For ε > 0 and k ∈ N0 fixed, the solutions of (6.8a)–(6.8b) that have no singularity
at the origin are given by

Rε(r) = aεJk(
√
λεr) for r ∈ [0, R),

rε(r) = bεJk(
√
λεε−mr)+ b̃εYk(

√
λεε−mr) for r ∈ (R,R + εh),

where Jk(s) and Yk(s) denote the Bessel functions of the first and second kind,
respectively, and aε, bε, b̃ε are some constants. Using the conditions (6.8c)–(6.8d),
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it can be proved that only the values λ which are roots of the equation

(
Yk
(√

λε−m(R + εh)
)
J ′k(

√
λε−mR)−Jk

(√
λε−m(R + εh)

)
Y ′k(

√
λε−mR)

)
Jk(
√
λR)

=
(
Yk
(√

λε−m(R + εh)
)
Jk(

√
λε−mR)−Jk

(√
λε−m(R + εh)

)
Yk(

√
λε−mR)

)

∗ εt+m/2J ′k(
√
λR)

(6.9)

verify (6.8) with Rε �≡ 0 or rε �≡ 0. Moreover, in this case, namely when λ is a root
of (6.9), and if Jk(

√
λR) �= 0, it follows that

Rε
k(r) =

(
Yk
(√

λε−m(R + εh)
)
Jk(
√
λε−mR)

−Jk
(√

λε−m(R + εh)
)
Yk(
√
λε−mR)

)
(Jk(

√
λR))−1Jk(

√
λr)

rεk (r) = Yk
(√

λε−m(R + εh)
)
Jk(
√
λε−mr)− Jk

(√
λε−m(R + εh)

)
Yk(
√
λε−mr)

(6.10)

Thus, any root λ of (6.9) is an eigenvalue of (6.5) and the corresponding eigenfunc-
tions are

Uε
k (r, θ) = αεRε

k(r) sin(kθ) for (r, θ) ∈ [0, R)× [0, 2π),
uεk(r, θ) = αεrεk (r) sin(kθ) for (r, θ) ∈ [R,R + εh)× [0, 2π)

(6.11)

with k ∈ N, and

Uε
k (r, θ) = αεRε

k(r) cos(kθ) for (r, θ) ∈ [0, R)× [0, 2π)
uεk(r, θ) = αεrεk (r) cos(kθ) for (r, θ) ∈ [R,R + εh)× [0, 2π)

(6.12)

with k ∈ N0, where αε is a constant, Rε
k and rεk are given by (6.10); see Figs. 6.3,

6.4, 6.5, and 6.6 for some examples of eigenfunctions of (6.5) with R = 1, h = 2,
ε = 0.1 and different values of t , m, and k.

We observe that the eigenfunctions of (6.8) corresponding to the possible
eigenvalues λ = λε (roots of (6.9)) such that Jk(

√
λεR) = 0 with k ∈ N0 fixed,

are not included in (6.10). Each one of these values, λ = η2
k,jR

−2 with {ηk,j }∞j=1
zeros of the Bessel functions Jk(s), is eigenvalue of (6.8) (and, consequently, of
(6.5)) only for certain values of ε; those ε that satisfy the transcendental equation

Jk(ηk,j ε
−m/2)Yk

(
ηk,j ε

−m/2(1+ εhR−1)
)

− Yk(ηk,j ε
−m/2)Jk

(
ηk,j ε

−m/2(1+ εhR−1)
) = 0.
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Fig. 6.3 Eigenfunction (6.12) corresponding to λε ≈ 0.02 for R = 1, h = 2, t = 1, m = 3.5,
ε = 0.1, and k = 1, and its projection on the plane x1x2

In this case, J ′k(
√
λεR) = J ′k(ηk,j ) �= 0 and the corresponding eigenfunctions of

(6.8) are

Rε
k,j (r) =

(
Yk
(
ηk,j ε

−m/2(1+ εhR−1)
)
J ′k(ηk,j ε−m/2)

−Jk
(
ηk,j ε

−m/2(1+ εhR−1)
)
Y ′k(ηk,j ε−m/2)

)
∗(J ′k(ηk,j ))−1ε−t−m/2Jk(ηk,jR

−1r)

rεk,j (r) = Yk
(
ηk,j ε

−m/2(1+ εhR−1)
)
Jk(ηk,j ε

−m/2R−1r)

−Jk
(
ηk,j ε

−m/2(1+ εhR−1)
)
Yk(ηk,j ε

−m/2R−1r)

(6.13)

and, consequently, the eigenfunctions of (6.5) are

Uε
k,j (r, θ) = αεRε

k,j (r) sin(kθ) for (r, θ) ∈ [0, R)× [0, 2π),

uεk,j (r, θ) = αεrεk,j (r) sin(kθ) for (r, θ) ∈ [R,R + εh)× [0, 2π)
(6.14)
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Fig. 6.4 Eigenfunction (6.12) corresponding to λε ≈ 0.072 for R = 1, h = 2, t = 1, m = 3,
ε = 0.1, and k = 2, and its projection on the plane x1x2

with k ∈ N, and

Uε
k,j (r, θ) = αεRε

k,j (r) cos(kθ) for (r, θ) ∈ [0, R)× [0, 2π)

uεk,j (r, θ) = αεrεk,j (r) cos(kθ) for (r, θ) ∈ [R,R + εh)× [0, 2π)
(6.15)

with k ∈ N0, where αε is any constant, and Rε
k,j and rεk,j are given by (6.13); see,

for example, Figs. 6.7 and 6.8.

Remark 1 Note that with the explicit formulas we do not determine the eigenvalues
ordered as in the sequence (6.3).

Remark 2 Note that Figs. 6.7 and 6.8 show the graphic of some eigenfunctions
associated with high frequencies and, further specifying, with eigenvalues λε which
coincide with eigenvalues of the Dirichlet problem in Ω

{−ΔxU = λU in Ω,

U = 0 on ∂Ω.
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Fig. 6.5 Eigenfunction (6.12) corresponding to λε ≈ 0.079 for R = 1, h = 2, t = 1, m = 3,
ε = 0.1, and k = 3, and its projection on the plane x1x2

This is in good agreement with the results obtained in Sect. 6.5 for the high frequen-
cies. In this case, for certain sequences of ε, the corresponding eigenfunctions are
close to zero in ωε.

6.3 Asymptotic Expansions for Low Frequencies

In this section, we study the asymptotic behavior of the eigenvalues of (6.1) of
order O(εm−2) when m > 2 and t = 1, the so-called low frequencies, and their
corresponding eigenfunctions. Different limit behaviors appear for these frequencies
depending on whether the curvature � of Γ , the boundary of the fixed domain Ω ,
is constant or not. Here, we provide asymptotic expansions for the case where the
curvature is constant, namely �(τ) = �0 for all τ ∈ S�, while the justification for
these asymptotic expansions is given in Sect. 6.4. The asymptotic expansions and
the justification for the case where � is not a constant are provided in [GoEtAl20].
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Fig. 6.6 Eigenfunction (6.12) corresponding to λε ≈ 7.438 for R = 1, h = 2, t = 1, m = 3,
ε = 0.1, and k = 3, and its projection on the plane x1x2

Let us recall that in [GoEtAl20] new localization effects for the eigenfunctions of
(6.2) are shown around points τ0 of the boundary where the curvature of Γ has a
local extremum. However, when the curvature is constant, we state here that the
corresponding eigenfunctions are significant over the whole domain Ωε, and no
localization effects arise at points of the boundary.

Without loss of generality, we assume again that the domain Ω is the disk with
radius R > 0 centered at the origin, namely Ω = B(O,R) = {x : ‖x‖ < R}, and
the band ωε is the annulus ωε = {x : R < ‖x‖ < R + εh}.

In a neighborhood of Γ , the circle centered at the origin with radius R, let
(ν, τ ) be the natural orthogonal curvilinear coordinates: τ is the arc length and ν

the distance along the normal vector to Γ ; ν < 0 inside Ω (cf. Sect. 6.1). Now,
the length of the curve Γ is given by � = 2πR and its curvature is the constant
�0 = 1/R.
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Fig. 6.7 Eigenfunction (6.15) corresponding to λε ≈ 49.2186 for R = 1, h = 2, t = 1, m = 2,
ε = 0.078, and k = 1, and its projection on the plane x1x2

Also in a neighborhood of Γ , we introduce some local variables defined by

(ζ, τ ), ζ = ν

ε
, (6.16)

that transform the thin domain ωε into a band of length � and width O(1); namely,
{(ν, τ ) : ν ∈ (0, εh), τ ∈ S�} into {(ζ, τ ) : ζ ∈ (0, h), τ ∈ S�}.

Since a boundary layer phenomenon appears in a neighborhood of Γ , it proves
necessary to consider outer expansions for the eigenfunctions in Ω and inner
expansions in a neighborhood of Γ in the local coordinates (6.16). Thus, we write
the Laplace operator in curvilinear coordinates

Δν,τ = K(ν, τ)−1∂ν(K(ν, τ )∂ν)+K(ν, τ)−1∂τ (K(ν, τ )
−1∂τ ), (6.17)

being K(ν, τ) = 1 + ν�0, and introduce the local variable (6.16). Gathering the
coefficients at the different powers of ε, we write

Δζ,τ = ε−2 ∂2
ζ + ε−1 �0∂ζ − �2

0ζ∂ζ + ∂2
τ + · · · ; (6.18)
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Fig. 6.8 Eigenfunction (6.15) corresponding to λε ≈ 135.0198 for R = 1, h = 2, t = 1, m = 2,
ε = 0.075, and k = 2, and its projection on the plane x1x2

here and in the sequel the dots denote further asymptotic terms of different powers
of ε of no use in the present analysis.

We consider an asymptotic expansion for the eigenvalues λε and for the
corresponding eigenfunctions {Uε, uε} in Ω and ωε of the form:

λε = εm−2(λ0 + ελ1 + ε2λ2 + · · · ), (6.19)

Uε(x) = V (x)+ εV1(x)+ ε2V2(x)+ · · · , x ∈ Ω, (6.20)

uε(ζ, τ ) = v0(ζ, τ )+ εv1(ζ, τ )+ ε2v2(ζ, τ )+ · · · , ζ ∈ [0, h), τ ∈ S�,

(6.21)

respectively, where vi are �–periodic functions in τ . Besides, we assume that at
least one of the functions V or v0 in (6.20)–(6.21) are different from zero (see
normalization in (6.43) and convergence (6.45)).
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By replacing expansions (6.19)–(6.21) in problem (6.1), after considering equa-
tions (6.18), we collect coefficients of the same powers of ε. In a first step, we see
that the leading terms in (6.19)–(6.21) satisfy the following problem:

−AΔxV = 0 in Ω, (6.22)

−a∂2
ζ v0 = λ0v0, ζ ∈ (0, h), τ ∈ S�, (6.23)

V = v0 on Γ, (6.24)

a∂ζ v0(0, τ ) = 0, τ ∈ S�, (6.25)

v0(h, τ ) = 0, τ ∈ S�. (6.26)

From (6.23), (6.25), and (6.26), we deduce that λ0 is an eigenvalue of

{−ay′′0 = λ0y0 ζ ∈ (0, h),
y′0(0) = y0(h) = 0

(6.27)

and

v0(ζ, τ ) = y0(ζ )v(τ ), ζ ∈ (0, h), τ ∈ S�, (6.28)

where y0(ζ ) is an eigenfunction of (6.27) corresponding to λ0 and v(τ), at this stage,
is an arbitrary function of τ . Obviously, by assumption, v(τ) does not vanish on S�

(see (6.22), (6.24), and (6.28)). It is clear that the eigenvalues of (6.27) are given by

λ0,k = a(2k − 1)2π2

4h2 for k = 1, 2, . . . (6.29)

and the corresponding eigenfunctions can be chosen to be

y0,k(ζ ) = cos

(
(2k − 1)π

2h
ζ

)
for k = 1, 2, . . . , (6.30)

while v(τ) in (6.28) has to be determined.
In a second step, we obtain the problem

−a∂2
ζ v1 − a�0 ∂ζ v0 = λ0v1 + λ1v0, ζ ∈ (0, h), τ ∈ S�, (6.31)

a∂ζ v1(0, τ ) = 0, τ ∈ S�, (6.32)

v1(h, τ ) = 0, τ ∈ S�. (6.33)
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Since v0(ζ, τ ) = y0(ζ )v(τ ) verifies (6.23), (6.25), and (6.26), the compatibility
condition for the non-homogeneous problem (6.31)–(6.33) in the ζ–variable reads

−a�0v(τ)

∫ h

0
y′0(ζ )y0(ζ ) dζ = λ1v(τ)

∫ h

0
y0(ζ )

2 dζ, τ ∈ S�.

Moreover, by (6.30),
∫ h

0 y2
0 dζ = h

2 and
∫ h

0 y′0y0 dζ = 1
2 (y0(h)

2 − y0(0)2) = − 1
2 ,

and consequently we have

λ1 = a�0

h
. (6.34)

In addition, the functions v1 satisfying (6.31) and (6.32) can be written in the form

v1(ζ, τ ) = �0v(τ)y1(ζ ), ζ ∈ (0, h), τ ∈ S�,

where y1(ζ ) is a solution of

{
−ay′′1 − λ0y1 = ay′0 +

a

h
y0 ζ ∈ (0, h),

y′1(0) = y1(h) = 0.
(6.35)

In fact, for each fixed eigenpair (λ0, y0) of (6.27), we can choose the solution y1(ζ )

above to be the unique solution which satisfies
∫ h

0 y1(ζ )y0(ζ ) dζ = 0, and then, for
(λ0, y0) = (λ0,k, y0,k) verifying (6.29) and (6.30), we have v1(ζ, τ ) = v1,k(ζ, τ )

defined by

v1,k(ζ, τ ) = �0v(τ)y1,k(ζ ) (6.36)

where

y1,k(ζ ) =−
(
ζ

2
+ (8− (2k − 1)2π2)h

4(2k − 1)2π2

)
cos

(
(2k − 1)π

2h
ζ

)

− 1

(2k − 1)π
(ζ − h) sin

(
(2k − 1)π

2h
ζ

)
,

for k = 1, 2 . . . .
Following the process, in the next step, we have the problem for v2:

−a∂2
ζ v2 − a�0 ∂ζ v1 + a�2

0 ζ∂ζ v0 − a∂2
τ v0

= λ0v2 + λ1v1 + λ2v0, ζ ∈ (0, h), τ ∈ S�, (6.37)

a∂ζ v2(0, τ ) = A∂νV (0, τ ), τ ∈ S�, (6.38)

v2(h, τ ) = 0, τ ∈ S�. (6.39)



116 D. Gómez et al.

Since v0 verifies (6.23), (6.25), and (6.26), the compatibility condition for the non-
homogeneous problem (6.37)–(6.39) reads

A∂νV (0, τ )y0(0)− a

∫ h

0
(�0 ∂ζ v1(ζ, τ )− �2

0 ζ∂ζ v0(ζ, τ )+ ∂2
τ v0(ζ, τ ))y0(ζ ) dζ

= λ1

∫ h

0
v1(ζ, τ )y0(ζ ) dζ + λ2

∫ h

0
v0(ζ, τ )y0(ζ ) dζ.

Now, by virtue of (6.28), (6.30), (6.34), and (6.36) we get

A∂νV (0, τ )+ a�2
0dkv(τ )− v′′(τ )ah

2
= λ2v(τ)

h

2
,

where dk denotes the constant

dk = −h(4+ (2k − 1)2π2)

8(2k − 1)2π2 . (6.40)

The last compatibility condition gives a boundary condition for the function V

in Eq. (6.22). Thus, due to (6.24), (λ2, V ) in (6.19)–(6.20) is an eigenpair of the
spectral problem

⎧⎨
⎩
−AΔxV = 0 in Ω,

A∂νV = ah

2
∂2
τ V − a�2

0dkV + λ2
h

2
V on Γ.

(6.41)

Note that the spectral parameter and the second order tangential derivatives appear
in the boundary condition on Γ (cf. [GoEtAl06a]).

We consider the weak formulation (which does not depend on λ0): to find μ and
V ∈H 1,1(Ω, Γ ) \ {0}, such that

A

∫
Ω

∇xV · ∇xW dx + ah

2

∫
Γ

∂τV ∂τW dτ = μ
h

2

∫
Γ

VW dτ ∀W ∈ H 1,1(Ω, Γ ) ,

(6.42)

where the functional space H 1,1(Ω, Γ ) is defined as the completion of C∞(Ω)

with respect to the norm

‖W‖H 1,1(Ω,Γ ) =
(
‖W‖2

H 1(Ω)
+ ‖W‖2

H 1(Γ )

)1/2
.

Since adding the term h
2

∫
Γ
VW dτ to the left hand side of (6.42) one gets a scalar

product in H 1,1(Ω, Γ ) and the embeddings of this space in L2(Ω) and L2(Γ ) are
compact, we can write an eigenvalue problem for a non-negative, symmetric, and
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compact operator A on H 1,1(Ω, Γ ) defined by

(A U,W) = h

2

∫
Γ

UW dτ ∀U,W ∈H 1,1(Ω, Γ ),

whose eigenvalues are 0, with the corresponding eigenspace {U ∈ H 1,1(Ω, Γ ) :
U = 0 on Γ }, and (μ+ 1)−1 with finite multiplicity and μ an eigenvalue of (6.42).
Therefore, (6.42) has a discrete spectrum which we denote by {μp}∞p=1. Thus, (6.41)

also has a discrete spectrum given by μp + 2a�2
0dk/h with dk defined by (6.40),

which depends on λ0.
Hence, we have found the double sequences for the low frequencies

λε ∼ εm−2 a(2k − 1)2π2

4h2 + εm−1 a�0

h
+ εm

(
μp + 2a�2

0dk

h

)
, k, p = 1, 2 . . .

for which the corresponding eigenfunctions {Uε, uε} have asymptotics in Ωε given
by

Uε(x) ∼ V p(x) x ∈ Ω,

and

uε(ν, τ ) ∼ v
p

0,k(
ν

ε
, τ )+ εv

p

1,k(
ν

ε
, τ ), x ∈ ωε

where V p is an eigenfunction of problem (6.42) corresponding to μp, vp0,k(ζ, τ ) =
y0,k(ζ )V

p(0, τ ), y0,k is an eigenfunction of problem (6.27) corresponding to the
eigenvalue a(2k − 1)2π2h−24−1 (cf. (6.30)), and vp1,k is given by (6.36) for v(τ) ≡
V p(0, τ ).

6.4 On Convergence for Low Frequencies

In this section, we justify the asymptotic expansions in Sect. 6.3 up to a certain
degree which can be improved by constructing higher order terms in (6.19)–(6.21).
In particular, we provide estimates which establish the closeness of the eigenvalues
of (6.1) and

λ0 + ε
a�0

2
+ ε2λ2,

where (λ0, λ2) are pairs of eigenvalues of (6.27) and (6.41) (see (6.19) and (6.44)).
When justifying asymptotics (6.20) and (6.21) for the eigenfunctions {Uε, uε},
we deal with groups of eigenfunctions corresponding to eigenvalues λε of (6.1)
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verifying (6.44) and the approaches hold in the topology of H 1(Ωε) given by the
scalar product (6.43), in the way stated by the Theorem 1 (see (6.54)). Throughout
the section we assume that t = 1 and m > 2.

Let us note that choosing a suitable normalization for the eigenfunctions (cf.
(6.43)) is essential in order to obtain the results throughout the section.

We first introduce some notations and results for further use. For each ε > 0, let
us denote by H ε the space H 1

0 (Ωε) with the scalar product

({U, u}, {V, v})H ε = ε2A

∫
Ω

∇xU · ∇xV dx + εa

∫
ωε

∇xu · ∇xv dx (6.43)

for all {U, u}, {V, v} ∈ H 1
0 (Ωε). Let A ε be a positive, compact, and symmetric

operator on H ε defined by

(A ε{U, u}, {G, g})H ε = εm
∫
Ω

UGdx+1

ε

∫
ωε

ug dx ∀{U, u}, {G, g} ∈ H 1
0 (Ωε).

It is clear that the eigenvalues of A ε are {εm−2/λεk}∞k=1 where {λεk}∞k=1 are the
eigenvalues of (6.1).

In order to prove convergence results, we use a classical result on “almost eigen-
values and eigenvectors” from the spectral perturbation theory, namely Lemma 1
(see [ViLy57] and Chapter 6 in [BiSo87] for the proof).

Lemma 1 Let A : H −→ H be a linear, self-adjoint, positive, and compact
operator on a separable Hilbert space H . Let u ∈ H , with ‖u‖H = 1 and λ, r > 0
such that ‖Au − λu‖H ≤ r . Then, there exists an eigenvalue λi of the operator A
satisfying the inequality |λ − λi | ≤ r . Moreover, for any r∗ > r there is u∗ ∈ H ,
with ‖u∗‖H = 1, u∗ belonging to the eigenspace associated with all the eigenvalues
of the operator A lying on the segment [λ− r∗, λ+ r∗] and such that

‖u− u∗‖H ≤ 2r

r∗
.

Theorem 1 Let (λ0, y0) be an eigenpair of (6.27) such that ‖y0‖2
L2(0,h)

= h/2. Let

y1 be the solution of (6.35) such that
∫ h

0 y1y0 dζ = 0. Let (λ2, V ) be an eigenpair
of (6.41) where

dk = y0(0)
−1

(∫ h

0
ζy′0y0 dζ −

∫ h

0
y′1y0 dζ

)
,

(cf. (6.40)) and such that ‖V ‖−2
L2(Γ )

= h/2. Let us consider v0(ζ, τ ) = y0(ζ )V (0, τ )
for (ζ, τ ) ∈ ω. Then, if t = 1 and m > 2, there are eigenvalues λεk(ε) of problem
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(6.1) such that

∣∣∣∣∣
λεk(ε)

εm−2 − λ0 − ε
a�0

h
− ε2λ2

∣∣∣∣∣ ≤ C(ε3 + εm−1) (6.44)

where C is a constant independent of ε. Moreover, there is a linear combination of
eigenfunctions {Ũ ε, ũε} ∈ H 1(Ωε), {Ũ ε, ũε} corresponding to eigenvalues λεk(ε) of

(6.1) which satisfy λεk(ε)ε
2−m ∈ [λ0 − Kεϑ, λ0 + Kεϑ ] with K > 0 and 0 < ϑ <

min(2,m− 2), ‖{Ũ ε, ũε}‖H ε = 1, such that

‖Ũ ε − αεV ‖H 1(Ω) + ‖ũε − αεv0‖H 1(ω) ≤ Cεmin(2−ϑ,m−2−ϑ,1), (6.45)

where ũε(ζ, τ ) ≡ ũε(x) for (ζ, τ ) ∈ ω, and αε is a well determined constant (see
(6.46) and (6.55), αε → λ

−1/2
0 , as ε → 0. As a consequence, Ũ ε (ũε, respectively)

converge towards αV (αv0, respectively) inH 1(Ω) (H 1(ω), respectively) as ε→ 0,
the constant α being α = λ

−1/2
0 .

Proof Let λ0, λ2, y0, y1, V , and v0 be as the theorem states. Let us define
v1(ζ, τ ) = �0y1(ζ )V (0, τ ) for (ζ, τ ) ∈ ω. Note that v1 ∈ H 1(ω) verifies (6.31)–
(6.33) for λ1 = a�0

h
. Let us consider v2 ∈ H 1(ω) satisfying periodic conditions

on τ = 0 and τ = � and verifying problem (6.37)–(6.39); v1, v2 are determined
uniquely by prescribing the orthogonality conditions

∫ h

0
vi(ζ, τ )y0(ζ ) dζ = 0 for i = 1, 2.

Note that v0, v1, v2, and V are smooth functions, in particular, v0, v1, v2 ∈ H 2(ω)

and V ∈ H 2(Ω).
For sufficiently small ε, we consider the function {Wε,wε} defined by

{
Wε(x) = V (x)+ εPv1(x)+ ε2Pv2(x) if x ∈ Ω,

wε(ν, τ ) = v0(ν/ε, τ )+ εv1(ν/ε, τ )+ ε2v2(ν/ε, τ ) if 0 ≤ ν ≤ εh, τ ∈ S�,

(6.46)

where P : H 2(ω) → H 2(Ω) is the continuous operator such that, for any v ∈
H 2(ω), Pv is a harmonic function and (P v)|Γ = v(0, τ ). It is clear that {Wε,wε} ∈
H 1

0 (Ωε). In order to apply Lemma 1 we first prove the estimate

∣∣∣∣
(

A ε{W̃ ε, w̃ε} − 1

λ0 + ελ1 + ε2λ2
{W̃ ε, w̃ε}, {W,w}

)
H ε

∣∣∣∣
≤ C

(
ε3 + εm−1

)
‖{W,w}‖H ε ∀{W,w} ∈H ε,

(6.47)

where {W̃ ε, w̃ε} = {Wε,wε}‖{Wε,wε}‖−1
H ε and C is a constant independent of ε.
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Considering definitions of A ε and the scalar product (·, ·)H ε in (6.43), we write

(λ0 + ελ1 + ε2λ2)

(
A ε{Wε,wε} − 1

λ0 + ελ1 + ε2λ2
{Wε,wε}, {W,w}

)
H ε

=(λ0 + ελ1 + ε2λ2)

(
εm
∫
Ω

WεW dx + 1

ε

∫
ωε

wεw dx

)

−ε2A

∫
Ω

∇xWε · ∇xW dx − εa

∫
ωε

∇xwε · ∇xw dx. (6.48)

For the integrals in ωε, we perform the change of variables (6.16), and we denote
by ω the band (0, h)× S�. Let Kε(ζ, τ ) be the Jacobian of the transformation from
(x1, x2) to (ν, τ ) in the (ζ, τ ) variables, namely Kε(ζ, τ ) = 1 + εζ�0. Thus, the
integrals

1

ε

∫
ωε

wεw dx and ε

∫
ωε

∇xwε · ∇xw dx (6.49)

in (6.48) read

∫
ω

wεwKε dζdτ and
∫
ω

∂ζw
ε∂ζwKεdζdτ + ε2

∫
ω

∂τw
ε∂τwK−1

ε dζdτ

(6.50)

respectively, where now wε and w are written in the variables (ζ, τ ).
Now, taking into account the definition (6.46) of {Wε,wε}, the change (6.16),

and the formulas above (6.49) and (6.50), we consider the decomposition

(λ0 + ελ1 + ε2λ2)

(
A ε{Wε,wε} − 1

λ0 + ελ1 + ε2λ2
{Wε,wε}, {W,w}

)
H ε

= I1 + I2 + I3 + I4 + I5 + I6

,

where

I1 = λ0

∫
ω

v0w dζdτ − a

∫
ω

∂ζ v0∂ζw dζdτ ,

I2 = ε

(
λ0

∫
ω

v0wζ�0 dζdτ + λ0

∫
ω

v1w dζdτ + λ1

∫
ω

v0w dζdτ

−a
∫
ω

∂ζ v0∂ζwζ�0 dζdτ − a

∫
ω

∂ζ v1∂ζw dζdτ

)
,
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I3 = ε2
(
λ0

∫
ω

v1wζ�0 dζdτ + λ0

∫
ω

v2w dζdτ + λ1

∫
ω

v0wζ�0 dζdτ

)

+ λ1

∫
ω

v1w dζdτ + λ2

∫
ω

v0w dζdτ − A

∫
Ω

∇V · ∇W dx

−a
∫
ω

∂τ v0∂τw dζdτ − a

∫
ω

∂ζ v1∂ζwζ�0 dζdτ − a

∫
ω

∂ζ v2∂ζw dζdτ

)
,

I4 = ε3
(
λ0

∫
ω

v2wζ�0 dζdτ + λ1

∫
ω

v1wζ�0 dζdτ+λ2

∫
ω

v0wζ�0 dζdτ

+λ1

∫
ω

v2wKε dζdτ +λ2

∫
ω

(v1+εv2)wKε dζdτ− a

∫
ω

∂ζ v2∂ζwζ�0 dζdτ

)
,

I5 = −aε2
∫
ω

∂τ v0∂τw(K
−1
ε − 1) dζdτ − aε3

∫
ω

∂τ (v1 + εv2)∂τwK
−1
ε dζdτ,

I6 = (λ0 + ελ1 + ε2λ2)ε
m

∫
Ω

WεW dx −Aε3
∫
Ω

∇x(P v1 + εPv2) · ∇xW dx .

Then, we prove the estimate (6.47) for each Ii above.
Indeed, the fact that v0, v1, v2, V satisfy (6.23)–(6.26), (6.31)–(6.33), (6.37)–

(6.39), and (6.41), respectively, leads us to I1 = I2 = I3 = 0. In addition, on
account of (6.43), the change of variables (6.16) (see (6.49) and (6.50)) and the
boundary condition on Γε, we have

|I4| ≤ Cε3‖{W,w}‖H ε .

As regards I5, integrating by parts in ω and taking into account the smoothness of
v0, v1, and v2 and the definition of Kε and of the scalar product (6.43) yields

|I5| ≤ Cε3[‖∂2
τ v0‖L2(ω)‖w‖L2(ω) + ‖∂τ v0‖L2(ω)‖w‖L2(ω) + ‖∂2

τ v1‖L2(ω)‖w‖L2(ω)+
‖∂τ v1‖L2(ω)‖w‖L2(ω) + ‖∂τ v2‖L2(ω)‖∂τw‖L2(ω)] ≤ Cε3‖{W,w}‖H ε .

In order to obtain bounds for I6, we take into account the fact that W = w on Γ
and w = 0 on Γε, and the trace inequalities

‖W‖2
L2(Γ )

=
( ∫

Γ

∫ h

0
∂νw dνdτ

)2 ≤ Cε‖∇xw‖2
L2(ωε)

≤ C‖{W,w}‖2
H ε

∀{W,w} ∈ H 1
0 (Ωε).

(6.51)
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and

‖∂νU‖L2(Γ ) ≤ C‖U‖H 2(Ω) ∀U ∈ H 2(Ω). (6.52)

Then, integrating by parts in Ω and using definition of the operator P , the fact that
W = w on Γ , the definition (6.43), formula (6.51) and (6.52), we obtain

|I6| ≤ C[εm‖Wε‖L2(Ω)‖W‖L2(Ω) + ε3‖∂ν(Pv1)‖L2(Γ )‖W‖L2(Γ )

+ε4‖∇x(P v2)‖L2(Ω)‖∇xW‖L2(Ω)]
≤ C(εm−1 + ε3)‖{W,w}‖H ε .

Finally, considering the local coordinates (6.16), we verify that ‖{Wε,wε}‖2
H ε

→ ‖∂ζ v0‖2
L2(ω)

= λ0 as ε → 0, and we have proved that the estimate (6.47) holds
for sufficiently small ε.

Now, we apply Lemma 1 for H = H ε, A = A ε, λ = (λ0 + ελ1 + ε2λ2)
−1

and u = {W̃ ε, w̃ε} and r = C(ε3 + εm−1) which provides, for sufficiently small
ε, at least one eigenvalue λεk(ε) of (6.1) verifying |(λεk(ε)ε2−m)−1 − (λ0 + ελ1 +
ε2λ2)

−1| ≤ C(ε3 + εm−1), and consequently, we deduce (6.44). Moreover, if we
take, for instance, r∗ = εϑ with 0 < ϑ < min(2,m − 2), Lemma 1 also provides
a function {Ũ ε, ũε} ∈ H ε, with ‖{Ũ ε, ũε}‖H ε = 1, {Ũ ε, ũε} belonging to the
eigenspace associated with all the eigenvalues (λεk(ε)ε

2−m)−1 of A ε contained in

[(λ0 + ελ1 + ε2λ2)
−1 − εϑ , (λ0 + ελ1 + ε2λ2)

−1 + εϑ ], (6.53)

such that

‖{Ũ ε, ũε} − αε{Wε,wε}‖H ε ≤ C(ε3−ϑ + εm−1−ϑ) (6.54)

is satisfied where

αε = ‖{Wε,wε}‖−1
H ε . (6.55)

Now, from (6.46) and (6.43) and (6.16), we conclude that, for m > 2,

‖ũε − αεv0‖L2(ω) + ‖∂ζ (ũε − αεv0)‖L2(ω) ≤ Cεmin(3−ϑ,m−1−ϑ)

and

‖∂τ (ũε − αεv0)‖L2(ω) + ‖∇x(Ũ ε − αεV )‖L2(Ω) ≤ Cεmin(2−ϑ,m−2−ϑ,1).

Finally, since Ũ ε|Γ = ũε(0, τ ) and V |Γ = v0(0, τ ), Friedrichs’ inequality for
Ũ ε in Ω and the trace inequality for ũε in ω lead us to assert estimate (6.45) and
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Ũ ε (ũε, respectively) converge towards αV (αv0, respectively) in H 1(Ω) (H 1(ω),
respectively) as ε→ 0 being α = λ

−1/2
0 . Therefore, the theorem is proved.

6.5 High Frequencies

As occurs in many singularly perturbed problems (see, for instance, [LoPe97,
GoEtAl99a, GoEtAl04, LoEtAl05, GoEtAl11, GoEtAl20]), there are sequences of
eigenvalues of (6.1), λε = λεk(ε) with k(ε) → ∞, of order εβ for some β <

m − 2, whose corresponding eigenfunctions suitably normalized do not vanish
asymptotically. Here, we focus our attention on the eigenvalues of (6.1) of order
1, the so-called high frequencies.

Throughout this section we consider the case where m > 0. We first obtain the
limiting problem associated with the eigenvalues λε of (6.1) of order 1 by means
of asymptotic expansions. Later on, we show that the eigenvalues λε asymptotically
close to eigenvalues of the Dirichlet problem in Ω give rise to global vibrations in
the way stated by Theorem 2. It should be noted that convergence results hold for
all m > 0, while some restrictions and extensions for the asymptotic expansions for
certain values of m are in Remark 3.

For m > 2 (see Remark 3 for m ∈ (0, 2]), we assume an asymptotic expansion
for the eigenvalues λε and for the corresponding eigenfunctions {Uε, uε} in Ω and
ωε of the form:

λε = λ0 + ελ1 + ε2λ2 + · · · (6.56)

Uε(x) = V (x)+ εV1(x)+ ε2V2(x)+ · · · , x ∈ Ω, (6.57)

uε(ζ, τ ) = v0(ζ, τ )+ εv1(ζ, τ )+ ε2v2(ζ, τ )+ · · · , ζ ∈ [0, h), τ ∈ S�,

(6.58)

respectively, where (ζ, τ ) are the local coordinates given by (6.16), and vi are �–
periodic functions in τ . Besides, we suppose that at least one of the functions V or
v0 in (6.57) and (6.58) is different from zero.

By replacing (6.56), (6.57), and (6.58) in (6.1), on account of (6.18), we have
that the leading terms in the asymptotic expansions satisfy the equations

−AΔxV = λ0V in Ω,

0 = λ0v0, ζ ∈ (0, h), τ ∈ S�,

V = v0 on Γ.

Hence, λ0 = 0 or v0 ≡ 0. Since we are dealing with the eigenvalues of order 1,
we consider the case where λ0 �= 0, and consequently we have that (λ0, V ) is an



124 D. Gómez et al.

eigenpair of the Dirichlet problem

{−AΔxV = λ0V in Ω,

V = 0 on Γ.
(6.59)

As is known, problem (6.59) has a discrete spectrum, which can be computed
in case the domain Ω is the disk with radius R centered at the origin using polar
coordinates and separation of variables. Indeed, the eigenvalues are given by λ0 =
Aη2

k,jR
−2 where {ηk,j }∞j=1 zeros of the Bessel functions Jk(s) of first kind with

k ∈ N0. The corresponding eigenfunctions are

V (r, θ) = αJk(
√
A−1λ0 r) sin(kθ) = αJk(ηk,jR

−1r) sin(kθ), k ∈ N,

V (r, θ) = αJk(
√
A−1λ0 r) cos(kθ) = αJk(ηk,jR

−1r) cos(kθ), k ∈ N0,

for (r, θ) ∈ [0, R)× [0, 2π), α being any constant (compare these expressions with
formulae (6.14) and (6.15), respectively, in the fixed domain [0, R)× [0, 2π)).

As outlined for the asymptotics of the eigenfunctions corresponding to the low
frequencies, an appropriate normalization for the eigenfunctions must be prescribed
to obtain convergence for the high frequencies. We denote by Hε the space H 1

0 (Ωε)

with the scalar product

({W,w}, {G, g})Hε = A

∫
Ω

∇xW · ∇xG dx + a

εt

∫
ωε

∇xw · ∇xg dx (6.60)

for all {W,w}, {G, g} ∈ H 1
0 (Ωε).

Next, we state the convergence of sequences of eigenvalues of (6.1) towards
those of (6.59) and give bounds for the convergence rates for the eigenvalues and
eigenfunctions (cf. (6.61) and (6.62), respectively). The proof of this result can be
found in [GoEtAl20] in a much more general framework.

Theorem 2 Let (λ0, V ) be an eigenpair of the Dirichlet problem (6.59) such that
‖V ‖L2(Ω) = 1. Then, for m > 0 and t ≥ 1, there are eigenvalues λεk(ε) of problem
(6.1) such that

|λεk(ε) − λ0| ≤ Cε, (6.61)

where C is a constant independent of ε. In addition, there is a linear combination
of eigenfunctions {Ũ ε, ũε} ∈ H 1

0 (Ωε), {Ũ ε, ũε} corresponding to the eigenvalues
λεk(ε) of (6.1) in the segment [λ0 − Kεϑ, λ0 + Kεϑ ] with K > 0 and 0 < ϑ < 1,

‖{Ũ ε, ũε}‖Hε = 1, such that

‖Ũ ε − λ
−1/2
0 V ‖H 1(Ω) ≤ Cε1−ϑ . (6.62)
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Remark 3 It should be noted that the technique of asymptotic expansions through-
out this section also applies in the case where m ∈ (0, 2) and we obtain the same
limit problem (6.59). In this case we need to use further terms of the asymptotic
expansions of uε in ωε. As a matter of fact, for m �= 1 the expansion (6.21) must
be suitably modified by introducing other terms for different powers of ε, namely of
the order εp, with p > 0, p �∈ N, depending on the particular value of m. Moreover,
for m ∈ (0, 2), the convergence of the kth eigenvalue of (6.2), when ε→ 0, towards
the kth eigenvalue of (6.59) holds following the technique in [GoEtAl11] (see also
[GoEtAl04]).

In the case where m = 2, the asymptotic expansions (6.56)–(6.58) and (6.19)–
(6.21) provide two possibilities for λ0 that we state here without a proof. One is λ0 to
be an eigenvalue of (6.59) and the other is λ0 to be an eigenvalue of (6.27). However,
it remains to identify the eigenfunctions in (6.57), (6.58) and (6.20), (6.21) which
involve different normalization (see norms (6.43) and (6.60) to compare). This case
remains as an open problem.
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Chapter 7
Spectral Homogenization Problems in
Linear Elasticity with Large Reaction
Terms Concentrated in Small Regions
of the Boundary

Delfina Gómez, Sergey A. Nazarov, and Maria-Eugenia Pérez-Martínez

7.1 Introduction

In this paper, we study the asymptotic behavior of the vibrations of an elastic
body which has very large surface reaction terms concentrated in small regions.
We assume that the elastic material fills the domain Ω of the upper half-space R

3+,
and a part Σ of its surface lies on the plane {x3 = 0} and contains small regions T ε

of size rε, at a distance ε between them (cf. Fig. 7.1). The boundary conditions are
of Winkler–Robin type on T ε. Outside, the surface Σ is traction-free while the rest
of the surface ∂Ω \Σ is assumed to be fixed. Here ε and rε are two small parameters
rε # ε # 1.

As is well known, from the mechanical viewpoint, the small regions behave
as “springs” and the elastic coefficients of these springs are defined through the
so-called Robin reaction matrix, which we denote by β(ε)M(x). Matrix M(x)

depends on the point where the reaction regions T ε are placed, while the parameter
β(ε), which is referred to as the reaction parameter, can range from very small
to very large. The reaction regions T ε are assumed to be domains of the plane R

2

homothetics of a fixed domain T , with a Lipschitz boundary. Analyzing the different
relations between the three parameters of the problem, ε, rε and β(ε), is crucial to
detect several behaviors of the vibrations of the structure. We consider the associated
spectral problem and we address the asymptotic behavior of the eigenvalues and
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Fig. 7.1 Geometrical configuration of the problem

eigenfunctions when ε → 0. Namely, we obtain spectral homogenized problems
depending on the relations between ε, rε and β(ε).

The stationary problem, for an isotropic homogeneous media, cf. (7.54), and a
surface Σ which is stuck to the plane along the regions T ε, has been studied in
[LoPe87, LoPe88] and [BrEtAl90], where a critical size O(ε2) of the stuck regions
appears (cf. (7.1) with r0 > 0), which is somehow classical in the literature of
the applied mathematics. For this size, the asymptotic behavior of the solution is
intermediate between the extreme cases. Namely, for rε � ε2 the stuck regions are
large enough and the body behaves as if the whole Σ is stuck to the plane; for rε #
ε2 the stuck regions are very small and the surface behaves as if it would be free,
while for rε = O(ε2) a spring/Robin boundary condition is asymptotically imposed
as an intermediate condition between Dirichlet and Neumann. It contains the so-
called strange term and links stresses and displacements, the elastic coefficients of
this spring being given by a constant matrix, the so-called capacity matrix (cf. (7.20)
and (7.21) for Wl,x ≡ Wl independent of x).

Here, we deal with a different problem, and obtain the above-mentioned homog-
enized problems for a particular relation between the parameters. As a matter
of fact, in addition to the critical size, a critical relation for parameters appears
(cf. (7.3) with β∗ > 0) which also provides the asymptotic behavior of solutions
different from extreme cases. Now, several kinds of capacity matrices arise, which
are obtained from the microstructure of the problem and depend on the macroscopic
variable. This dependence is due to both the nonhomogeneous media Ω and the
non-constant Robin matrix M(x).

Notice that other different boundary homogenization problems in linear elasticity
have been addressed in the literature. Let us mention [NgSa85] and [GrMiOr15],
which consider stationary homogenization problems for the elasticity system in a
perforated media along a plane, the size rε of the perforations in the plane being
rε = O(ε). Also, [BrLoPe90, LoPe92] and [JaAdBr00] consider cylindrical bodies,
the regions where the displacements vanish being thin bands rolled around the body;
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a different critical size and capacity matrix appear on account of the geometrical
configuration of the domain. For the case of a certain non-periodical distribution
of the regions T ε, for extreme cases, let us mention [OlCh93] and [OlCh96]. For
a strongly oscillating boundary, see [Na08]. For the Stokes fluid problem in a
perforated domain along a plane, let us mention the works [Al83, Br92, BrEtAl16]
and [GoEtAl18] where, also, a so-called Stokes capacity matrix appears on the
transmission condition onΣ when rε = O(ε2); see also [SaSa82] for various effects
on the perforated wall. We mention [Sa85] and [Co87] for fluids flow in media
with perforated walls when rε = O(ε). For critical relations between parameters in
several fluid homogenization problems, see, e.g., [Co85] and [CiDoEn96]; also, see
[GoEtAl18] and [GoLoPe19] for further references in this connection.

Other papers addressing homogenization problems for the elasticity operator,
with the same geometrical configuration here considered, are [IoOnVel05] when
rε # ε and [GoNaPe18] for rε = O(ε). Both consider spectral problems with
alternating boundary conditions of Steklov type and, consequently, they differ
greatly from the problem here considered, the results also being very different.

All these works belong to a large class of boundary homogenization problems
studied for a long time in the literature of applied mathematics for several
operators. We mention a few related to scalar problems such as [Sa82, Mu85,
De87, Pi87, CiMu97, LoEtAl97, MaKh06, GoPeSh12] and [GoEtAl19], some of
which have introduced keywords such as critical sizes and strange terms (see
[CiMu97, MaKh06] and [GoEtAl19, GoPeSh12] for further references, in this con-
nection). [GoPeSh12, GoPeSh13] and [GoEtAl13] also address spectral problems
for the Laplacian with large parameters on the boundary of the perforations. See
[GoPeSh12, GoEtAl18, GoLoPe19] and [GoEtAl19] for an extensive bibliography
on homogenization for perforated domains along manifolds and large adsorption
parameters.

Let us introduce parameters r0, β0 and β∗ which play an important role in the
description of the homogenized problems. They are defined by three limits:

lim
ε→0

rε

ε2 = r0, (7.1)

lim
ε→0

rεβ(ε) = β0, (7.2)

and

lim
ε→0

β(ε)r2
ε

ε2
= β∗. (7.3)

In the case where r0 > 0, we deal with the classical critical size of the reaction
regions T ε mentioned above. Equation (7.2) provides a relation between sizes of
reaction regions and the reaction parameter which is important to determine the
local problems. The case where β∗ > 0 is referred to as critical relation between
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the parameters. It occurs when the total area of the reaction regions O(ε−2r2
ε )

multiplied by the parameter of reaction β(ε) is of order 1.
The most critical situation happens when r0 > 0 and β0 > 0 which also

amounts to r0 > 0 and β∗ > 0. In this case, the strange term has a character
which is completely different from that obtained in the literature. It contains a
so-called extended capacity matrix C e(x), cf. (7.16), which depends on the Robin
matrix M(x) in a non-trivial way. To have an idea of this dependence, one may
compare with the scalar case: although the homogenized problem remains linear, the
dependence on M(x) would be nonlinear (cf., e.g., [GoPeSh12] and [GoEtAl18]).
Matrix C e(x) also depends on the parameter β0, cf. (7.16), and (7.17).

The rest of the critical relations between parameters, for which a spring type
boundary condition intermediate between Dirichlet and Neumann is obtained, deal
with r0 > 0 and β0 = +∞ or β∗ > 0 and r0 = +∞. The first one, r0 > 0
and β0 = +∞ (also β∗ = +∞), asymptotically amounts to regions T ε stuck
to the plane because of the large reaction parameter and, consequently, the spring
boundary condition ignores M(x). It contains a new capacity matrix C (x), which
depends on the macroscopic variable x, but it is independent of M(x). When the
media in the original problem (7.8) is isotropic and homogeneous, cf. (7.53), this
matrix coincides with that obtained in [LoPe87] and [LoPe88]. The second relation
β∗ > 0 and r0 = +∞, always keeping rε = O(β(ε)−1/2ε), provides an averaged
spring type condition on Σ where the Robin reaction matrix is M(x) multiplied
by the averaged constant β∗|T |, cf. (7.22). Let us refer to [NaSoSp10] for other
extended capacity matrices in very different problems.

Finally, the structure of the paper is as follows. Section 7.2 contains the setting of
the spectral homogenization problem and some a priori estimates for the eigenvalues
which are useful for the asymptotic analysis. Section 7.3 contains the list of
spectral homogenized problems with the corresponding stationary local problems
(cf. Fig. 7.2); the macroscopic variable appears as a parameter in these local
problems. We obtain all these problems in Sect. 7.4 using asymptotic expansions
and matching principles. Section 7.5 addresses the setting of the homogenized and
local problems, in the suitable Sobolev spaces, when the media is isotropic (see
Remark 7.1, in this connection).

Ω

Σ
T

R
3+

ΓΩ

Fig. 7.2 The domains of setting for homogenized and local problems
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7.2 Setting of the Problem

Let Ω be an open bounded domain of R3 situated in the upper half-space R
3+ =

{x ∈ R
3 : x3 > 0}, with a Lipschitz boundary ∂Ω . LetΣ be the part of the boundary

in contact with the plane {x3 = 0} which is assumed to be non-empty and let ΓΩ
be the rest of the boundary of Ω: ∂Ω = Γ Ω ∪ Σ . Let T denote an open bounded
domain of the plane {x3 = 0} with a Lipschitz boundary. Without any restriction,
we can assume that both Σ and T contain the origin of coordinates.

Let ε be a small parameter ε # 1. Let rε be an order function such that rε #
ε. For k = (k1, k2) ∈ Z

2, we denote by x̃εk the point of the plane {x3 = 0} of
coordinates x̃εk = (k1ε, k2ε, 0), and by T ε

x̃k
the homothetic domain of T of ratio rε

after translation to the point x̃εk:

T ε
x̃k
= x̃εk + rεT .

If there is no ambiguity, we shall write x̃k instead of x̃εk , and T ε instead of T ε
x̃k

and
x̃εk is referred to as the center of T ε

x̃k
.

In this way, for a fixed ε, we have constructed a grid of squares in the plane
{x3 = 0} whose vertices are the centers of the regions T ε. Let J ε denote J ε =
{k ∈ Z

2 : T ε
x̃k
⊂ Σ}, while Nε denotes the number of elements of J ε:

Nε �
|Σ |
ε2 = O(ε−2).

Finally, if no confusion arises, we denote by
⋃
T ε the union of all the T ε contained

in Σ , namely,

⋃
T ε ≡

⋃
k∈J ε

T ε
x̃k
.

Also, in what follows x = (x1, x2, x3) denotes the usual Cartesian coordinates,
while by x̂ = (x1, x2) we refer to the two first components of x ∈ R

3.
The geometrical configuration in the plane is analogous to that in [Sa82, Mu85]

for scalar problems and that in [LoPe87, LoPe88, BrEtAl90, IoOnVel05] and
[GoNaPe18] for the elasticity system.

Under the basis that the domain Ω is filled by an elastic material, for i, j, k, l =
1, 2, 3, we denote by aijkl(x) the elastic coefficients of the material, which are
assumed to be continuous functions defined in Ω and satisfy the standard symmetry
and coercivity properties (cf., e.g., [OlShYo92] and [Te79])

aijkl(x) = ajikl(x) = aklij (x), i, j, k, l = 1, 2, 3, ∀x ∈ Ω,
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and

∃α1 > 0 : aijkl(x)ξij ξkl ≥ α1ξij ξij , ∀ξ 3× 3−matrix : ξij = ξji,

i, j = 1, 2, 3, ∀x ∈ Ω. (7.4)

Also, for a given displacement vector u(x) = (u1(x), u2(x), u3(x)) we use the
standard notations for stress and strain tensors σ(u) and e(u); namely, we denote by
(σij (u))i,j=1,2,3 the stress tensor which is related to the strain tensor (eij (u))i,j=1,2,3
by the Hooke’s law

σij (u) = aijkl(x)ekl(u), (7.5)

where

ekl(u) = 1

2

(∂uk
∂xl

+ ∂ul

∂xk

)
. (7.6)

Above, and in what follows, we use the convention of summation convention over
repeated indexes.

In connection with the reaction coefficients in the small regions T ε, let us
introduce a symmetric and positive definite 3× 3-matrix, Mij ∈ C(Σ):

∃α2 > 0 : Mij (x1, x2, 0)ξiξj ≥ α2ξ
2
i , ∀ξ ∈ R

3, ∀(x1, x2, 0) ∈ Σ. (7.7)

Let us consider the spectral problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∂σ
ε
ij

∂xj
= λεuεi in Ω ,

uε = 0 on ΓΩ ,

σ εij nj = 0 on Σ \⋃ T ε,

σ εij nj + β(ε)Miju
ε
j = 0 on

⋃
T ε ,

i = 1, 2, 3 (7.8)

where λε denotes the spectral parameter, and uε = (uε1, u
ε
2, u

ε
3) the corresponding

eigenvector. uε is related to stress and strain tensors by (7.5) and (7.6), respectively.
In particular, in (7.8) we have denoted by

σεij ≡ σij (u
ε) = aijklekl(u

ε),

while n stands for the unit outer normal to Ω along Σ , namely, n = (0, 0,−1). The
parameter β(ε) arising in the equations on T ε, linking stresses and displacements, is
a positive parameter which is referred to as the Robin/Winkler coefficient of reaction
(the reaction parameter, in short). It can range from very large to very small or it can
be of order 1.
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Above, we represent a spectral problem associated with a Winkler bed (the
foundation) composed by a block of an elastic material, which has a part of
its boundary ΓΩ clamped to a rigid support, while the part in contact with the
plane {x3 = 0} lies partially on a series of “springs” with the elastic coefficients
β(ε)M(x). Outside these springs, the reaction regions

⋃
T ε, the surface is traction-

free, cf., e.g., [At84] for scalar models in the framework of variational inequalities.
Throughout the paper, based on asymptotic expansions, we address the asymp-

totic behavior of (λε, uε) as ε→ 0, depending on the different values of r0, β0 and
β∗ in (7.1), (7.2) and (7.3), respectively.

7.2.1 The Spectrum and the Estimates for Eigenvalues

Let us denote by V the space {v ∈ (H 1(Ω))3 : v = 0 on ΓΩ} with the norm
generated by the scalar product

(u, v)V =
∫

Ω

eij (u)eij (v) dx . (7.9)

On account of the Korn’s inequality, (7.9) defines a norm in V.
For fixed ε > 0, the weak formulation of problem (7.8) reads: find λε ∈ R,

uε ∈ V, uε �= 0, satisfying

∫

Ω

σij (u
ε)eij (v) dx + β(ε)

∫
⋃
T ε

Miju
ε
i vj dx̂ = λε

∫

Ω

uεi vi dx, ∀v ∈ V. (7.10)

On account of (7.4) and (7.7), the left-hand side of (7.10) defines a bilinear,
symmetric continuous and coercive form on V ⊂ (L2(Ω))3. Consequently, (7.10)
has the discrete spectrum:

0 < λε1 ≤ λε2 ≤ · · · ≤ λεn ≤ · · · n→∞−−−−−−→+∞, (7.11)

where we have adopted the convention of repeated eigenvalues according to their
multiplicities. The corresponding eigenfunctions form a basis in V and (L2(Ω))3,
and we assume that they are subject to the orthonormalization condition

(
un,ε, un,ε

)
(L2(Ω))3

= δn,m. (7.12)

The following lemma gives bounds for the eigenvalues of (7.8).
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Lemma 7.1 For each fixed n ∈ N, there exist C and Cn constants independent of ε
such that

0 < C ≤ λεn ≤ Cn, ∀ε > 0. (7.13)

Proof The left-hand side of the inequality holds since

λεn ≥ λε1 =

∫
Ω

σij (u
1,ε)eij (u

1,ε) dx + β(ε)
∫

⋃
T ε

Miju
1,ε
i u

1,ε
j dx̂

∫
Ω

u
1,ε
i u

1,ε
i dx

≥ C,

where u1,ε denotes an eigenvector corresponding to the first eigenvalue λε1, and
the last inequality is a consequence of the Poincaré and Korn inequalities along
with (7.4) and (7.7).

On the other hand, according to the minimax principle,

λεn = min
En⊂V

max
v∈En,v �≡0

∫
Ω

σij (v)eij (v) dx + β(ε)
∫

⋃
T ε

Mij vivj dx̂

∫
Ω

vividx
, (7.14)

where the minimum is taken over the set of all the subspaces En of V of
dimension n. Let us take the particular space E∗n generated by the eigenvectors
[u1,0, u2,0, · · · , un,0] of the Dirichlet problem in Ω (cf. (7.24)), namely the eigen-
vectors associated with the eigenvalues corresponding with {λ0

1, λ
0
2, · · · λ0

n} in the
series (7.58). In (7.14) we write

λεn ≤ max
v∈E∗n,v �≡0

∫
Ω

σij (v)eij (v) dx

∫
Ω

vividx
= λ0

n ,

and the right-hand side of (7.13) is proved.

7.3 The Spectral Homogenized Problems

In order to make the reading of the paper easier, in this section, we state all the
spectral homogenized problems which depend on the different relations between
parameters. We also state the local problems that allow us to describe the strange
terms in the homogenized problems. We obtain all these problems in Sect. 7.4, by
using the technique of matched asymptotic expansions.
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(P1) In the most critical situation where β0 > 0 and r0 > 0, the homogenized
problem reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∂σij,x(u
0)

∂xj
= λ0u0

i in Ω

u0 = 0 on ΓΩ
σij,x(u

0)nj + r0C
e
ij u

0
j = 0 on Σ

, i = 1, 2, 3, (7.15)

where the matrix C e = (C e
il)i,l=1,2,3 is defined as

C e
il(x̂) =

∫

T

σ x̂i3,y(W
l,M,x̂)dŷ, (7.16)

Wl,M,x̂ being the solution of the M(x̂)-dependent local problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− ∂σ
x̂
ij,y (W

l,M,x̂ )

∂yj
= 0 in R

3+

σ x̂ij,y (W
l,M,x̂ )nj = 0 on {y3 = 0} \ T

σ x̂ij,y (W
l,M,x̂ )nj − β0Mij (x̂)(e

l
j −W

l,M,x̂
j ) = 0 on T

Wl,M,x̂ (y) −→ 0 as |y| → ∞, y3 > 0

, i = 1, 2, 3.

(7.17)

Above, and in what follows, variable y is an auxiliary variable in R
3, cf. (7.28),

and lower indexes x or y in the components of the stress and strain tensors
mean the variable for derivation. The upper index x̂ is a parameter which refers
to the elastic homogeneous media with constant elastic coefficients aijkl(x̂).
Namely, in (7.16) and (7.17),

σ x̂ij,y(V ) = aijkl(x̂)ekl,y(V ). (7.18)

Also, el stands for the unitary vector in the yl-direction, while l = 1, 2, 3.
(P2) For the critical size r0 > 0, when β0 = +∞, the homogenized problem reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∂σij,x(u
0)

∂xj
= λ0u0

i in Ω

u0 = 0 on ΓΩ
σij,x(u

0)nj + r0Cij u
0
j = 0 on Σ

, i = 1, 2, 3, (7.19)

where the matrix C = (Cil)i,l=1,2,3 is defined as

Cil (x̂) = −
〈
σi3,y(W

l,x̂ ), 1
〉
H−1/2(T )×H 1/2(T )

(7.20)
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Wl,x̂ being the solution of the x̂-dependent local problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∂σ
x̂
ij,y(W

l,x̂ )

∂yj
= 0 in R

3+

σ x̂ij,y(W
l,x̂ )nj = 0 on {y3 = 0} \ T

Wl,x̂ (y) = el on T
Wl,x̂ (y) −→ 0 as |y| → ∞, y3 > 0

, i = 1, 2, 3. (7.21)

σ x̂ij,y and el in (7.20) and (7.21) are defined as in the previous item (cf. (7.18)).
(P3) For the critical relation where β∗ > 0 with r0 = +∞, the homogenized

problem reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∂σij,x(u
0)

∂xj
= λ0u0

i in Ω

u0 = 0 on ΓΩ
σij,x(u

0)nj + β∗|T |Miju
0
j = 0 on Σ

, i = 1, 2, 3. (7.22)

Note that, in this case, to each reaction parameter β(ε) corresponds a new
critical size of the reaction regions rε = O(εβ(ε)−1/2), while to each size
rε corresponds a critical reaction parameter β(ε) = O(ε2r−2

ε ). The reaction
matrix β∗|T |M which appears in the boundary condition on Σ is referred to
as averaged reaction matrix.

(P4) For the extreme cases where β∗ = 0 or r0 = 0, the homogenized problem is

⎧⎪⎪⎨
⎪⎪⎩
−∂σij,x(u

0)

∂xj
= λ0u0

i in Ω

u0 = 0 on ΓΩ
σij,x(u

0)nj = 0 on Σ

, i = 1, 2, 3. (7.23)

(P5) For the extreme case where r0 = +∞ and, β0 > 0, or β0 = +∞, or β0 =
0 and β∗ = +∞, the homogenized problem is the Dirichlet eigenvalue
problem:

⎧⎨
⎩
−∂σij,x(u

0)

∂xj
= λ0u0

i in Ω

u0 = 0 on ∂Ω
, i = 1, 2, 3. (7.24)

The discreteness of the spectrum of problems (7.23) and (7.24) is well known
in the literature, that of problem (7.22) follows as that of (7.8), with minor
modifications, while that of (7.15) and (7.19) is a consequence of the properties
of matrices (7.16) and (7.20), respectively. That is, the discreteness of these spectra
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is linked to the setting of problems (7.17) and (7.21) as well as to the properties of
their respective solutions. This is addressed in Sect. 7.5.

7.4 Asymptotic Expansions

Taking into account (7.13) and (7.12), for each n = 1, 2, · · · we consider
the asymptotic expansions for the eigenvalue λε ≡ λεn and the corresponding
eigenvector uε ≡ un,ε of (7.8) as follows.

Assume

λε = λ0 + · · · , (7.25)

and an outer expansion for the eigenfunction

uε(x) = u0(x)+ · · · , in Ω ∩ {x3 > d} ∀d > 0, (7.26)

which in fact, is supposed to be valid for x “far” from regions the T ε
x̃k

, namely, at a
distance ρ � rε from the center x̃k. In addition, we assume a local expansion in a
neighborhood of each reaction region T ε

x̃k

uε(x) = V 0(y)+ · · · for y ∈ R3+. (7.27)

Above, and in what follows, we denote by

y = x − x̃k

rε
(7.28)

the local variable in a neighborhood of each center x̃k, k ∈ J ε, and by dots we
denote regular terms in the asymptotic series containing lower order functions of ε
that we are not using in our analysis.

By matching the local and outer expansions for uε, at the first order, we can write

lim|y|→∞V 0(y) = lim
x→x̃k

u0(x). (7.29)

By replacing (7.25) and (7.26) in (7.8) we obtain the following equations for u0:

⎧⎨
⎩
−∂σij,x(u

0)

∂xj
= λ0u0

i in Ω,

u0 = 0 on ΓΩ,
(7.30)

plus some boundary condition on Σ to be determined. In order to do this, we first
determine V 0(y) in the local expansion (7.27). Taking derivatives in (7.8) with



138 D. Gómez et al.

respect to y, cf. (7.28), we replace (7.25) and (7.27) in (7.8), and take into account
the continuity of the elastic coefficients aijkl(x) and Mij (x), and (7.29). Then, we
obtain that V 0 satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂σ
k
ij,y(V

0)

∂yj
= 0 in R

3+ ,

σ k
ij,y(V

0)nj = 0 on {y3 = 0} \ T ,

1

rε
σ k
ij,y(V

0)nj + β(ε)Mij (̃xk)V
0
j = 0 on T ,

V 0(y) −→ u0(̃xk) as |y| → ∞, y3 > 0 .

(7.31)

Above, and in what follows, for simplicity, we write the upper index k in the
strain tensor (7.18) when x̂ ≡ x̃k, namely,

σ k
ij,y(V ) = aijkl (̃xk)ekl,y(V ). (7.32)

We also note that the solution of (7.31) strongly depends on ε both because of the
condition at infinity and because of the Robin boundary condition

σ k
ij,y(V

0)nj + rεβ(ε)Mij (̃xk)V
0
j = 0 on T . (7.33)

Therefore, considering the three possible limits in (7.2), β0 = 0, β0 = +∞,
or β0 > 0, asymptotically, we obtain three different boundary conditions on T for
V 0:

(a) If β0 = 0, then, σ k
ij,y(V

0)nj ≈ 0 on T , which implies V 0(y) ≈ u0(̃xk),

∀y ∈ R
3+,

(b) If β0 = +∞, then, V 0(y) ≈ 0 on T ,
(c) If β0 > 0, then, σ k

ij,y(V
0)nj + β0Mij (̃xk)V

0
j ≈ 0 on T .

We observe that only in the case where β0 > 0, the dependence on the centers
of the reaction regions cannot be avoided. However, V 0 can be written as a
linear combination of solutions of three linear elasticity problems in the half-space
R

3+. These local problems avoid the dependence on the first term of the outer
expansion (7.26), and are considered in Sect. 7.4.1.

7.4.1 The Stationary Local Problems

We decompose V 0 as follows:

V 0(y) ≈ u0
l (̃xk)(e

l −Wl(y)), (7.34)
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where, for l = 1, 2, 3, Wl is the solution of different problems depending on the
values of β0 in (7.2):

(a) Wl ≡ 0 when β0 = 0.
(b) When β0 = +∞, then, Wl ≡ Wl,̃xk is the solution of

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∂σ
k
ij,y(W

l,̃xk)

∂yj
= 0 in R

3+ ,

σ k
ij,y(W

l,̃xk)nj = 0 on {y3 = 0} \ T ,

Wl,̃xk(y) = el on T ,

Wl,̃xk(y) −→ 0 as |y| → ∞, y3 > 0 .

(7.35)

Notice that for a homogeneous media in (7.8), problem (7.35) does not depend
on the parameter x̃k.

(c) When β0 > 0, then, Wl ≡ Wl,M,̃xk is the solution of

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∂σ
k
ij,y(W

l,M,̃xk)

∂yj
= 0 in R

3+ ,

σ k
ij,y(W

l,M,̃xk)nj = 0 on {y3 = 0} \ T ,

σ k
ij,y(W

l,M,̃xk)nj − β0Mij (̃xk)(e
l
j −W

l,̃xk
j ) = 0 on T ,

Wl,M,̃xk(y)→ 0 as |y| → ∞, y3 > 0 .
(7.36)

In (7.36) there is a nonhomogeneous Robin condition on T which depends on
the center of the regions T ε

x̃k
. Here, even if the media in (7.8) is homogeneous,

we obtain a parametric family of three local problems, the parameter of
dependence being x̃k. More specifically, in (7.36) the elastic constants of
the medium and those of the spring depend on x̃k: aijkl (̃xk) and Mij (̃xk),
respectively.

7.4.2 The Boundary Condition on Σ

Considering (7.30), in order to obtain the boundary condition on Σ for u0, we
perform an integration by parts over the equilibrium equations in coin-like domains,
neglecting the stresses across the lateral surface. We define one of these domains
as follows. Let us consider Σ1 an open domain contained in Σ such that ∂Σ1 does
not touch any region T ε

x̃k
. Let δ(ε) be positive, rε # δ(ε) # 1. We consider the

coin-like domain

Ω
δ(ε)
Σ1

= Ω ∩ (Σ1 × (0, δ(ε))). (7.37)
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Let Γδ(ε) denote the lateral boundary of Ωδ(ε)
Σ1

in such a way that

∂Ω
δ(ε)
Σ1

= Γδ(ε) ∪Σδ(ε)
1 ∪Σ1, (7.38)

where Σδ(ε)
1 denotes the set {x : (x1, x2, 0) ∈ Σ1, x3 = δ(ε)}. On Σ

δ(ε)
1 , we are

“far” from the reaction regions T ε
x̃k

and (7.26) hold. “Near” each region T ε, we need
to use the local expansion, which in terms of the macroscopic variable reads

uε(x) = V 0((x − x̃k)r
−1
ε

)+ · · · .
In particular, on each reaction region T ε

x̃k
we have (cf. (7.28) and (7.32))

σi3,x(u
ε) = σi3,x(V

0(y)) ≈ ai3kh(̃xk)
1

rε
ekh,y(V

0(y))+ · · · = 1

rε
σ k
i3,y(V

0(y))+ · · ·
(7.39)

Now, we multiply the divergence vector in (7.8) by ei and apply the Green
formula over Ωδ(ε)

Σ1
(cf. (7.37) and (7.38)) to obtain

∫

Σ1∩⋃ T ε
x̃k

σi3,x(u
ε)dx̂ =

∫

Ω
δ(ε)
Σ1

λεuεi dx +
∫

Γδ(ε)

σij,x(u
ε)njdΓδ +

∫

Σ
δ(ε)
1

σi3,x(u
ε)dx̂.

(7.40)

We observe that, by construction (cf. (7.13) and (7.12)), the two first integrals on the
right-hand side of (7.40) converge toward zero as ε→ 0. For the other integral, we
use the approximation (7.26), namely

σi3,x(u
ε)

∣∣∣
x3=δ(ε)

= σi3,x(u
0)

∣∣∣
x3=0

+ · · · .

Therefore, introducing this and (7.39) in (7.40), and performing the change of
variable (7.28), we write

∫

Σ1

σi3,x(u
0)dx̂ = lim

ε→0

∑
x̃k∈Σ1

∫

T ε
x̃k

σi3,x
(
V 0(x − x̃k

rε

))
dx̂

= lim
ε→0

rε
∑
x̃k∈Σ1

∫

T

σ k
i3,y(V

0(y))dŷ. (7.41)

Considering the case where β0 > 0 or β0 = +∞, cf. (7.2), in order to introduce
the decomposition (7.34), we notice that from the Green formula, the integrals on T
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(similarly on T ε
x̃k

) in (7.41) are in fact the duality products

〈
σ k
i3,y(V

0)
∣∣
T
, 1

〉
H−1/2(T )×H 1/2(T )

,

which is suitable, taking into account that σ k
i3,y(W

l)
∣∣{y3=0} is a distribution of

compact support on T .
Consequently, (7.34) and (7.41) lead us to

∫

Σ1

σi3,x(u
0)dx̂ = lim

ε→0
rε

∑
x̃k∈Σ1

u0
l (̃xk)

〈
σ k
i3,y(e

l −Wl) , 1
〉
H−1/2(T )×H 1/2(T )

= − lim
ε→0

rε
∑
x̃k∈Σ1

Bil (̃xk)u
0
l (̃xk), (7.42)

where, Wl ≡ Wl,M,̃xk is the solution of (7.36) when β0 > 0 and Wl ≡ Wl,̃xk is
the solution of (7.35) when β0 = +∞. In addition, we have introduced the matrix
B(̃xk) =

(
Bil (̃xk)

)
i,l=1,2,3 which is defined as follows:

Bil (̃xk) = −
∫

T

σ k
i3,y(e

l −Wl,M,̃xk)dŷ =
∫

T

σ k
i3,y(W

l,M,̃xk)dŷ, when β0 > 0,

(7.43)
and

Bil (̃xk) = −
〈
σ k
i3,y(e

l −Wl,̃xk) , 1
〉
H−1/2(T )×H 1/2(T )

= 〈
σ k
i3,y(W

l,̃xk) , 1
〉
H−1/2(T )×H 1/2(T )

, when β0 = +∞. (7.44)

That is, B(̃xk) = C e(̃xk) when β0 > 0, cf. (7.16), while B(̃xk) = C (̃xk) when
β0 = +∞, cf. (7.20).

In both cases, assuming a continuous dependence of B on the parameter x̂ ∈ Σ
(cf. [GoNaPe20]), and under the assumption that r0 > 0 in (7.1) we obtain
that (7.42) reads

∫

Σ1

σi3,x(u
0)dx̂ = −r0

∫

Σ1

Bil(x̂)u
0
l (x̂, 0) dx̂. (7.45)

Here, it is self-evident that the definition that we use for Bil(x̂) for x̂ ∈ Σ , is that
in (7.43) and (7.44) by replacing x̃k by x̂ in all the involved functions.

Obviously, when β0 > 0 or β0 = +∞ and r0 = 0, the condition

∫

Σ1

σi3,x(u
0)dx̂ = 0 (7.46)
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is asymptotically imposed.
The reasoning above must be slightly modified in the case where β0 > 0 or

β0 = +∞ and r0 = +∞ as follows. When r0 = +∞, we multiply both sides
of the equality in (7.40) by ε2r−1

ε . Since ε2r−1
ε → 0 as ε → 0, the reasoning

in (7.41)–(7.45) gives

0 = lim
ε→0

∑
x̃k∈Σ1

ε2
∫

T ε
x̃k

σ k
i3,y(V

0(y))dŷ = −
∫

Σ1

Bil(x̂)u
0
l (x̂, 0) dx̂, (7.47)

and by the properties of matrix Bil (cf. Sect. 7.5), we deduce that
∫

Σ1

u0
l dx̂ = 0.

Finally, in the case where r0 = +∞ and β0 = 0, we can distinguish between
the cases when β∗ > 0 or β∗ = 0 in (7.3). Indeed, recalling the relation (7.33), we
rewrite (7.41) as follows:

∫

Σ1

σi3,x(u
0)dx̂ = lim

ε→0

∑
x̃k∈Σ1

∫

T

rεσ
k
i3,y(V

0(y))dŷ

= − lim
ε→0

β(ε)r2
ε

∑
x̃k∈Σ1

∫

T

Mil (̃xk)V
0
l (y)dŷ.

Then, on account of item (a) below (7.33) and (7.34), we get

∫

Σ1

σi3,x(u
0)dx̂ = − lim

ε→0
β(ε)r2

ε ε
−2

∑
x̃k∈Σ1

ε2Mil (̃xk)u
0
l (̃xk)

∫

T

dŷ. (7.48)

Now, when β∗ = 0 in (7.3), (7.48) gives (7.46), while, when β∗ > 0 in (7.3), (7.48)
gives

∫

Σ1

σi3,x(u
0)dx̂ = −β∗|T |

∫

Σ1

Mil(x̂)u
0
l (x̂, 0)dx̂ . (7.49)

Obviously, in the two last cases β0 must be β0 = 0 to somehow compensate r0 =
+∞. Also, when β0 = 0, r0 = +∞ and β∗ = +∞, we follow the idea of (7.47).

Gathering all the possible limit behavior for parameters, cf. (7.1)–(7.3), on
account of the somewhat arbitrary choice of Σ1 ⊂ Σ , from (7.45)–(7.47) and (7.49)
we obtain the following boundary conditions on Σ to be added to (7.30) in order to
determine the first terms of the asymptotic expansions (7.25) and (7.26), namely the
pair (λ0, u0).

(P1) If β0 > 0 and r0 > 0, then we have σij,x(u0)nj + r0C
e
ilu

0
l = 0 on Σ. This

gives that (λ0, u0) is an eigenpair of problem (7.15).



7 Spectral Homogenization Problems 143

(P2) If β0 = +∞ and r0 > 0, then we have σij,x(u0)nj + r0Cilu
0
l = 0 on Σ. This

gives that (λ0, u0) is an eigenpair of problem (7.19).
(P3) If β∗ > 0 and r0 = +∞, then, σij,x(u0)nj + β∗|T |Milu

0
l = 0 on Σ. Here,

obviously, β0 = 0. This gives that (λ0, u0) is an eigenpair of problem (7.22).
(P4) If β∗ = 0 or r0 = 0, then σij,x(u

0)nj = 0 on Σ . Note that β∗ = 0 also
contains the case where β0 = 0 and r0 > 0. This gives that (λ0, u0) is an
eigenpair of problem (7.23).

(P5) If β0 > 0 or β0 = +∞, and r0 = +∞, then, u0 = 0 on Σ . This gives that
(λ0, u0) is an eigenpair of problem (7.24). The same holds when β0 = 0,
r0 = +∞ and β∗ = +∞.

7.5 Abstract Framework for Local and Homogenized
Problems

In this section, we provide the variational formulations for local and homogenized
problems. When dealing with problems (7.15) and (7.19) that contain the capacity
matrix, we need to restrict ourselves to the case of isotropic media, cf. (7.54). The
reason is that, in order to show the symmetry and positivity of the capacity matrices,
we need a thorough study of the behavior at infinity of the solutions Wl,M,x̂

and Wl,x̂ of the corresponding local problems. This is performed in Sect. 7.5.1
for isotropic media, leaving the study of anisotropic media for a forthcoming
publication, cf. [Na99, GoNaPe20].

As regards the local problem (7.35), in the general case of a nonhomogeneous
and anisotropic material, cf. (7.5), the centers x̃k become parameters arising in the
stress tensor (7.32), and we have a parametric family of local problems (7.35) whose
solutions satisfy the equilibrium equations for a homogeneous media filling the half-
space R

3+. The same applies to (7.21) and x̂ ∈ Σ . The proof of the existence and
uniqueness of solution of (7.21) follows the scheme in [LoPe88]. For the sake of
completeness, we introduce the result here below.

Let D(R3+) be the space of functions that are restrictions to R3+ of the elements
of D(R3), and let DT (R3+) be the space of functions of D(R3+) such that they
vanish in a neighborhood of T . Let us define the functional spaces W and W0 as the
completion of (D(R3+))3 and (DT (R3+))3 respectively, with the norm

( 3∑
i,j=1

∥∥eij,y(U);L2(R3+)
∥∥2
)1/2

. (7.50)

For each l = 1, 2, 3, we take a function Ψ l ∈ (D(R3+))3 such that Ψ l = el in a
neighborhood of T . Then, there is a unique solution Wl,x̂ ∈ Ψ l +W0 satisfying

∫

R3+

σ x̂ij,y(W
l,x̂ )eij,y(V )dy = 0 ∀V ∈ W0. (7.51)
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This is a weak formulation of problem (7.21)1–(7.21)3. The precise behavior at
infinity of Wl,x̂ for the isotropic media (7.54)) is a consequence of (7.57) (cf.
Lemma 7.2).

As regards the setting of the local problems (7.17), in the suitable Sobolev spaces,
this follows the scheme below.

Consider the space V completion of (D(R3+))3 with respect to the norm

‖U‖V =
⎛
⎝ 3∑
i,j=1

‖eij,y(U);L2(R3+)‖2 +
3∑
i=1

‖Ui;L2(T )‖2

⎞
⎠

1/2

.

Due to the Korn’s inequality over bounded domains, the continuous embedding V ⊂
(H 1

loc(R
3+))3 holds.

Let us define the bilinear, symmetric, continuous, and coercive form on V :

ax̂(U, V ) =
∫

R3+

σ x̂ij,y(U)eij,y(V ) dy + β0Mij (x̂)

∫

T

UiVj dŷ ∀U,V ∈ V ,

which, on account of (7.4) and (7.7), defines a norm in V equivalent to ‖·‖V ; x̂ ∈ Σ
being a parameter, cf. (7.18). Also, for l = 1, 2, 3, and x̂ ∈ Σ , let us consider the
linear continuous functional on V :

Fl,x̂(U) = β0Mil(x̂)

∫

T

Ui dŷ ∀U ∈ V .

Then, the Riesz theorem ensures that there exists a unique function Wl,M,x̂ ∈ V
satisfying

ax̂(W
l,M,x̂ , V ) = Fl,x̂(V ) ∀V ∈ V , (7.52)

which is a weak formulation of the problem (7.17)1–(7.17)3, l = 1, 2, 3. The
condition at infinity in (7.17)4 is provided below, in Sect. 7.5.1, when the original
media is isotropic, cf. (7.54).

7.5.1 The Case of an Isotropic Medium

The existence and uniqueness of solution of (7.21) as well as its precise behavior at
infinity, has been considered in [LoPe88] when the medium filling the domain Ω is
isotropic and homogeneous; that is, when (7.5) reads

σij,x(u) = λδij ekk,x(u)+ 2μeij,x(u), (7.53)
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λ and μ being the Lamé coefficients. In this case, the three local problems (7.21),
l = 1, 2, 3, are independent of x̂. However, the technique in [LoPe88], which uses
the Green tensor for an isotropic and homogeneous medium filling the half-space,
also can be applied to the case of an isotropic media (7.54), as we do below. Indeed,
we note that for

σij,x(u) = λ(x)δij ekk,x(u)+ 2μ(x)eij,x(u), (7.54)

the Lamé coefficients appearing in (7.21) are also constants:

σ x̂ij,y(U) = λ(x̂)δij ekk,y(U)+ 2μ(x̂)eij,y(U). (7.55)

In addition, the Lamé coefficients, the Young modulusE, and the Poisson coefficient
ς are related by:

λ(x̂) = E(x̂)ς(x̂)

(1+ ς(x̂))(1− 2ς(x̂))
, μ(x̂) = E(x̂)

2(1+ ς(x̂))

cf., e.g., [LaLi90] and [Te83].
First, let us introduce the Green tensor Gx̂ (see Section I.8 of [LaLi90]):

Gx̂
11 = g(x̂)

(
2(1− ς(x̂))ρ + ξ3

ρ(ρ + ξ3)
+ ξ2

1 (2ρ(ς(x̂)ρ + ξ3)+ ξ2
3 )

ρ3(ρ + ξ3)2

)
,

Gx̂
22 = g(x̂)

(
2(1− ς(x̂))ρ + ξ3

ρ(ρ + ξ3)
+ ξ2

2 (2ρ(ς(x̂)ρ + ξ3)+ ξ2
3 )

ρ3(ρ + ξ3)2

)
,

Gx̂
12 = g(x̂)

(
ξ1ξ2(2ρ(ς(x̂)ρ + ξ3)+ ξ2

3 )

ρ3(ρ + ξ3)2

)
, Gx̂

13 = g(x̂)

(
ξ1ξ3

ρ3
− (1− 2ς(x̂))ξ1

ρ(ρ + ξ3)

)
,

Gx̂
23 = g(x̂)

(
ξ2ξ3

ρ3
− (1− 2ς(x̂))ξ2

ρ(ρ + ξ3)

)
, Gx̂

33 = g(x̂)

(
ξ2

3

ρ3
+ 2(1− ς(x̂))

ρ

)
,

where

g(x̂) = 1+ ς(x̂)

2πE(x̂)
, ρ =

√
ξ2

1 + ξ2
2 + ξ2

3 , (ξ1, ξ2, ξ3) ∈ R
3+, Gx̂

ij = Gx̂
ji .

Then, we consider the solution Wl,M,x̂ ∈ V of (7.52), and the normal component
of the associated stress tensor on the plane {y3 = 0}, σ l,x̂ , which has a compact
support on T :

(σ
l,x̂
1 , σ

l,x̂
2 , σ

l,x̂
3 ) := (σ x̂13,y(W

l,M,x̂), σ x̂23,y(W
l,M,x̂), σ x̂33,y(W

l,M,x̂)),
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and, according to Section 4 in [LoPe88], we can write Wl,M,x̂ = Gx̂ ∗ σ l,x̂ whose
components are

W
l,M,x̂
i = Gx̂

ij ∗ σ x̂j3,y(W
l,M,x̂), i = 1, 2, 3.

Further specifying, for each (y1, y2, y3) ∈ R
3+, we write

W
l,M,x̂
i (y1, y2, y3) =

∫

T

σ
l,x̂
j (ξ1, ξ2)G

x̂
ij (y1 − ξ1, y2 − ξ2, y3)dξ1dξ2. (7.56)

In the case of an isotropic media and Wl,x̂ the solution of (7.51), the representa-
tion above reads

W
l,x̂
i (y1, y2, y3) =

〈
σ
l,x̂
j , Gx̂

ij (y1 − ·, y2 − ·, y3)
〉
H−1/2(T )×H 1/2(T )

, (7.57)

see Theorem 4.1 in [LoPe88] for the result.
Finally, using (7.56), (7.57) and the reasoning of Proposition 4.1 in [LoPe88], we

state the following lemma.

Lemma 7.2 For fixed x̂ ∈ Σ and the isotropic media in (7.55), there is a positive
constant Cx̂ such that for any y ∈ R

3+, l = 1, 2, 3, and Wl = Wl,M,x̂ or Wl =
Wl,M,x̂ , the following estimates hold

|Wl
i (y)| ≤ Cx̂

(
1

d(y, T )
+ 1

d(y, T )2

)
, i = 1, 2, 3.

∣∣∣∣∣
∂Wl

i

∂yj
(y)

∣∣∣∣∣ ≤ Cx̂

(
1

d(y, T )
+ 1

d(y, T )2

)
, i, j = 1, 2, 3.

7.5.2 Setting of the Homogenized Problems

As it has been outlined in Sect. 7.3, the variational formulation in terms of bilinear,
continuous, and coercive forms on a couple of Hilbert spaces with a compact and
dense embedding V ⊂ H is classical for problems (7.23) and (7.24) (cf., e.g.,
[SaSa89]). The variational formulation for (7.22) holds as that for (7.8), on account
of (7.4) and (7.7). Let us show that it is also classical for problems (7.15) and (7.19)
when the media is isotropic, cf. (7.54).

For each fixed x̂ ∈ Σ , the fact that matrix C (x̂), cf. (7.20), is symmetric and
positive definite has been shown in [LoPe88], as a consequence of the equality

Cil(x̂) =
〈
σij,ynj (W

l,x̂ ), 1
〉
H−1/2(T )×H 1/2(T )

=
∫

R3+

σpj,y(W
l,x̂ )epj,y(W

i,x̂ ) dy.
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We show that the matrix C e(x̂), cf. (7.16), is a symmetric and positive definite
matrix by performing an integration by parts as follows: For each fixed l, we
multiply the divergence vector in (7.17) by Wi,M,x̂ . Then, taking integrals over a
half-ball B(0, R) ∩ R

3+, we apply the Green formula and take limits as R → ∞;
because of Lemma 7.2, we obtain the chain of equalities

∫

R3+

σ x̂pj,y(W
l,M,x̂)epj,y(W

i,M,x̂) dy+β0Mpj (x̂)

∫

T

(el−Wl,M,x̂)j (e
i−Wi,M,x̂)p dŷ

= −β0Mij (x̂)

∫

T

(el −Wl,M,x̂)j dŷ = −
∫

T

σ x̂ij,y(W
l,M,x̂)nj dŷ = C e

ij (x̂).

In this way, the symmetry of C e comes from the symmetry of the coefficients
aijkl and Mij , while the positiveness of C e is due to (7.4) and (7.7). Indeed, it is
simple to verify that, ∀ᾱ ∈ R

3+,

ᾱC eᾱ% =
∫

R3+

σ x̂pj,y(αlW
l,M,x̂)epj,y(αlW

l,M,x̂) dy

+β0Mpj (x̂)

∫

T

αl(e
l −Wl,M,x̂)jαl(e

l −Wl,M,x̂)p dŷ.

Consequently, ᾱC ᾱ% ≥ 0 and ᾱC ᾱ% = 0 implies ᾱ = 0 as a consequence of
the behavior at the infinity for the functions Wl,M,x̂ . Here, ᾱ = (α1, α2, α3) and %
stands for transposition.

Finally, we state the weak formulation of each homogenized problem.

• For problem (7.15): find λ0 ∈ R, u0 ∈ V, u0 �= 0, satisfying

∫

Ω

σij,x(u
0)eij,x(v) dx + r0

∫

Σ

C e
ij (x̂)u

0
i vj dx̂ = λ0

∫

Ω

u0
i vi dx, ∀v ∈ V.

• For problem (7.19): find λ0 ∈ R, u0 ∈ V, u0 �= 0, satisfying

∫

Ω

σij,x(u
0)eij,x(v) dx + r0

∫

Σ

Cij (x̂)u
0
i vj dx̂ = λ0

∫

Ω

u0
i vi dx, ∀v ∈ V.

• For problem (7.22): find λ0 ∈ R, u0 ∈ V, u0 �= 0, satisfying

∫

Ω

σij,x(u
0)eij,x(v) dx + β∗|T |

∫

Σ

Mij (x̂)u
0
i vj dx̂ = λ0

∫

Ω

u0
i vi dx, ∀v ∈ V.
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• For problem (7.23): find λ0 ∈ R, u0 ∈ V, u0 �= 0, satisfying

∫

Ω

σij,x(u
0)eij,x(v) dx = λ0

∫

Ω

u0
i vi dx, ∀v ∈ V.

• For problem (7.24): find λ0 ∈ R, u0 ∈ (H 1
0 (Ω))3, u0 �= 0, satisfying

∫

Ω

σij,x(u
0)eij (v) dx = λ0

∫

Ω

u0
i vi dx, ∀v ∈ (H 1

0 (Ω))3.

On account of the Korn’s inequality all these problems have a discrete spectrum:

0 < λ0
1 ≤ λ0

2 ≤ · · · ≤ λ0
n ≤ · · · n→∞−−−−−−→+∞, (7.58)

while we can chose the corresponding eigenfunctions {un,0}∞n=1 to form an orthonor-
mal basis in (L2(Ω))3.

Remark 7.1 In order to show the convergence of the eigenvalues in (7.11) and of
the corresponding eigenfunctions, as ε → 0, toward those of the homogenized
problems, we need to show that the constantCx̂ arising in Lemma 7.2 is independent
of x̂. This will be proved in a forthcoming publication (cf. [Na99] and [GoNaPe20]),
as a consequence of certain smooth dependence of the solutions Wl,M,x̂ and Wl,x̂

on the parameter x̂. Obviously, this result holds true when the initial media in (7.8)
is isotropic and homogeneous, cf. (7.53), and also the Robin matrix M is constant.
Indeed, for a homogeneous and isotropic media Wl,x̂ ≡ Wl does not depend on x̂.
In addition, if M is a constant matrix, Wl,M,x̂ ≡ Wl,M is also independent of x̂.

Similarly, in [GoNaPe20] we provide the precise decay of the solution of the local
problems (7.21) and (7.17) when the original medium is anisotropic. This ends the
correct setting of problems (7.15) and (7.19) in nonhomogeneous and anisotropic
media.
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Chapter 8
The Mathematical Modelling
of the Motion of Biological Cells
in Response to Chemical Signals

Paul J. Harris

8.1 Introduction

The motion of biological cells in response to chemical signals in the medium in
which they are immersed has been observed in many experiments, such as those
reported in [MaEtAl00, HoKa07, NiEtAl07, La16] for example. It is thought that
the cells can sense and move in the direction in which the concentration of the
chemical is increasing. This process is known as chemotaxis. In many cases the
cells themselves secrete the chemical signal, often in the form of a protein, in order
to signal and attract other cells that are nearby. The cells then come together to form
clusters and ultimately form organs and other large structures.

Over the years a number of mathematical models for simulating how cells
cluster together by following chemical signals have been proposed. The most
common type of model used to solve this problem is the Keller–Segel model which
calculates the relative concentrations of both the cells and the signalling chemical
and simulates how the concentration of the cells changes in response to changes
in the concentrations of the chemical signal (see [ChEtAl12, GaZa98, KeSe71,
LaSc74] and the references therein). The concentrations of both the cells and
the chemical signal are modelled using coupled diffusion-reaction equations (see
[DeEtAl16, IsZa16, RiEtAl16] and the references therein). The advantage of such
models is that it is relatively cheap to implement a numerical method for finding
the solution of the governing equations. However, these models are not capable of
simulating the motion and behaviour of individual cells.

Alternative models which consider the motion of the individual cells have also
been developed. Harris [Ha17] proposed a simple method which models the motion
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of each individual cell by treating each cell as a rigid particle. The spread of the
chemical signal is modelled using a closed-form solution to the diffusion equation.
The gradient of the concentration of the chemical is treated as a force acting on
the cells and causing them to move in the direction in which the concentrations are
increasing. This model is discussed in Sect. 8.3.

A more sophisticated model which uses a combined boundary element and finite
element method to simulate both the fluid motion and the spread of the chemical
signal has been presented in [Ha19] and is discussed in Sect. 8.4. However, this
method is very computationally expensive and a new method that uses just the
boundary element method to model the motion, based on the model introduced in
[Ha18], is discussed in Sect. 8.5.

8.2 Description of the Problem

A complete mathematical model of the motion of a biological cell in response
to a chemical signal has to address a number of processes that are taking place
simultaneously. However each of these processes can potentially require a sophis-
ticated mathematical model to fully describe what is happening. In order to reduce
the complexity of the problem, the models considered here will make simplifying
assumptions about some of the stages.

1. The process by which the cell manufactures the chemical signal.
How a cell manufactures the chemical will not be considered in any detail in
this work as a complicated mathematical model would be needed to simulate
the process. Instead, it will be assumed that either a cell produces the chemical
over a very short time period so that it appears to manufacture it spontaneously,
or it will be treated as a source term in the differential equation that models
how the chemical spreads from the cells. Mathematically the former is easier to
model as it is only necessary to model the spread of a fixed mass of the chemical
from the secreting cell. However, the latter is more realistic as it simulates the
cell manufacturing the chemical over a time interval rather than producing the
chemical instantaneously.

2. The process by which the chemical signal spreads out from the cell which is
manufacturing it.
In cases where the cells are not moving, the spread of the chemical signal can be
modelled using the linear diffusion equation. The linear diffusion was also used
in the simple model proposed in Harris [Ha18] (and described in Sect. 8.3 below)
where it was assumed that the motion of the fluid can be neglected. However, the
cells are usually located in a fluid which is moving due to the motion of the
cells themselves. In this case the spread of the chemical signal can be modelled
using the convection-diffusion equation. Since the velocity term in the equation
is not constant in either space or time the convection-diffusion equation needs
to be solved numerically. Harris [Ha19] showed that it is possible to model the
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spread in moving fluid using finite element method. However this method, which
is discussed in Sect. 8.4 below, is computationally expensive. An alternative is
to use a simple linear diffusion model that moves with the emitting cell and this
will be discussed in Sect. 8.5.

3. How a separate cell detects and reacts to the chemical.
The cells detect the presence and concentration of the chemical through receptors
in their outer membrane, with the membrane moving towards regions of higher
concentration. This can be modelled as a loading term similar to a pressure term
acting on the boundary of the cell. This is the method used in the model described
in Sect. 8.5. In the combined finite element and boundary element model given
in Sect. 8.4 it is assumed that the cell has receptors throughout its interior, whilst
for the simple model in Sect. 8.3 the force is simply taken as proportional to the
gradient of the chemical concentrations as the centre of the cell.

4. The exact mechanism by which a cell moves in response to the chemical.
A finite element model of how a cell moves has been developed in [ElEtAl12] but
the use of this model here would be computationally expensive. In addition, there
is some experimental evidence that on the time-scale of their overall motion, the
cells essentially move as rigid bodies (see the images in [NiEtAl07] for example).
Therefore, in all the models presented here the cells are treated as rigid bodies
moving in response to the external forces acting on them. In addition, there may
be a stochastic element to the processes by which a cell detects the chemical
signal and so a cell may not follow the chemical gradient precisely. However, the
stochastic element of the cell motion has not been considered here.

5. The motion of the surrounding fluid due to the motion of the cells.
In the simple model (see Sect. 8.3) the motion of the fluid is neglected. In the
other models considered here, a Stokes flow model is used for the fluid motion
and the governing equations are solved using the boundary integral method.

6. What happens when two (or more) cells collide.
When two cells (or clusters of cells) collide, they usually combine to form a larger
cluster. In the simple model where the cells are modelled as rigid particles, when
the cells collide they simply stick together to form larger clusters. Quantities such
as the velocity of the new cluster are calculated using appropriate conservation
laws. In reality, the cells deform and change shape when they collide and such
effects need to be included in the more sophisticated models. This has not
been considered in the boundary integral type models presented here and the
simulation simply stops when two cells (or clusters) collide. A complete model
of cell collisions will be developed in the future.

In the models presented in this paper it is assumed that the layer of fluid containing
the cells is thin enough that the vertical variations of both the fluid motion and
concentrations of the chemical signal can be neglected so that the problem is two-
dimensional. This corresponds to a typical experimental situation where the motion
of the cells is observed through a microscope.
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8.3 A Simple Mathematical Model

This section presents a simple mathematical model for simulating how a number
of small clusters of biological cells can use chemical signals to attract other nearby
clusters to combine to form larger clusters. In this model the cells are assumed to
be rigid particles which have a simple geometric shape such as a circle. Further, the
motion of the fluid is not modelled it is assumed that the effect of the fluid on the
motion of a cell can be treated as a linear damping terms in the governing equations.

8.3.1 Description of the Model

Assume that the geometric shape of every cell is the same so that they can be
modelled as circles of radius r . Let (xi, yi) denote the coordinates of the centre of
the ith cell. If the cell is part of a cluster of cells, it is assumed that its position within
the cluster does not change and that its velocity and acceleration are the same as the
velocity and acceleration of the cluster. It is also assumed that all the cells have the
same density and hence they must all have the same mass as they are assumed to all
have the same radius.

The spread of the chemical signal through the fluid in which the cells are
immersed can be modelled using the linear diffusion equation

∂c

∂t
= D∇2c (8.1)

where D is the diffusion constant. In the problem under consideration here the
chemical signal is being manufactured and emitted by the cells, so let ci denote
the concentration of the chemical emitted by the ith cell and let

c(x, t) =
N∑
i=1

ci(x, t)

where N is the total number of cells present. If the ith cell spontaneously
manufactures and emits an amount Ai of the chemical signal at time ti , then the
concentration which satisfies (8.1) is given by

ci =
⎧⎨
⎩

Ai

D(t − ti + tε)
exp

(
− (x − x̃i )

2 + (y − ỹi )
2

4D(t − ti + tε)

)
t ≥ ti

0 t < ti

(8.2)

where (x̃i , ỹi ) is the location of the cell when t = ti and tε is a small time parameter
used to avoid computational problems if t = ti .
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All of the cells can sense the direction in which the concentration of the chemical
is increasing. This can be modelled as a force proportional to the gradient of the
concentrations acting on the cell. Therefore the force acting on the j th cell due to
the chemical signal is given by

fj = k∇c(xj , t) = k

N∑
i=1

∇ci(xj , t)

where k is a parameter to control how strongly a cell reacts to the gradient of
chemical concentrations. The total force due the chemical signal acting on a cluster
of cells is given by the sum of the force acting on each individual cell in the cluster.
Hence, if cluster Cj contains Nj cells, then the force acting on the cluster is

Fj =
Nj∑
i=1

fi = k

Nj∑
i=1

(
N∑
l=1

∇cl(xi , t)
)
. (8.3)

Using Newton’s second law, the acceleration aj of the cluster is given by

Nj m aj = Fj − λvj ⇒ dvj
dt

= 1

Nj m

(
Fj − λvj

)

where vj is the velocity of the j th cluster, λ is a constant which simulates the viscous
damping of the fluid and m is the mass of a single cell. If δxj is the displacement of
the cluster, then the equations of motion of the cluster are

d(δxj )
dt

= vj
dvj
dt

= 1

Nj m

(
Fj − λvj

)
.

(8.4)

Hence if the ith cell is contained in the j th cluster, its displacement is given by δxj .
Equations (8.2)–(8.4) give a system of differential equations in time that can

be solved to give the locations of the cells at different times. This system of
differential equations can be solved using any suitable numerical method, and an
adaptive fourth-order Runge–Kutta scheme (as described in Harris [Ha17]) has been
used here. Further details of this method, and other methods that could be used
to integrate the system through time, are given in one of the many text books on
numerical methods, such as [At89].

The only other aspect that needs to be considered is what happens when two
clusters collide. LetCi andCj denote the sets of cells which are contained in clusters
i and j , respectively. The two clusters will have collided if there exist a cell in Ci ,
with its centre located at xi , and cell in Cj , with its centre located at xj such that

|xi − xj | ≤ 2r.
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Once two clusters have collided they combine to form a single, larger cluster. Using
the conservation of momentum, the velocity vnew of the new cluster is given by

vnew = 1

Ni +Nj

(
Nivi +Njvj

)

where Ni denotes the number of cells in cluster i and vi is the velocity of cluster i.

8.3.2 Numerical Results with the Simple Model

The simple model described above has been used to model how cells and small
clusters of cells combine to form larger clusters. Here the values of parameters used
are D = 1, λ = 50 and k = 1. The distances are scaled so that the cells have
radius 1, the mass of each cell is 1 unit and the values given for the times are non-
dimensional.

Figure 8.1 shows a typical example with 497 cells which are initially in 200
small clusters, and where the initial locations of the cells and clusters were randomly
chosen. The result presented in Fig. 8.1 show that this model can be used to simulate
how cells can cluster together due to chemotaxis. Further examples which explore
how changing the physical parameters such as the D and λ affects how the cells
behave can be found in Harris [Ha17]. In addition, an example with a much larger
number of cells and an example in three space dimensions can also be found in
[Ha17].

Whilst the model is relatively simple to implement, and can rapidly simulate
the motion of a large number of cells, it does not model the motion of the fluid
in which the cells are immersed. The fluid effects need to be included as there is
some evidence from the results of using the more sophisticated models discussed in
Sects. 8.4 and 8.5 that as one cell moves the resulting fluid motion can push other
nearby cells causing them to move. Further, the simple model can only be used to
simulate the motion of circular cells, and most cells and clusters of cells are not
circular.

More sophisticated models which can simulate the motion of the fluid due to
the cell motion and more accurately portray the hydrodynamic forces on a cell are
considered in the following sections. However, the computational cost of using such
models means that they cannot be used with as many cells or clusters as this simple
model.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8.1 The locations of the cells showing how they can cluster together due to chemotaxis using
the simple model. (a) t = 0. (b) t = 100. (c) t = 200. (d) t = 300. (e) t = 400. (f) t = 500
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8.4 Combined Finite Element and Boundary Element
Methods

The model presented in Sect. 8.3 above has the advantage of being relatively simple
to implement and can simulate the motion of a large number of cells. However, it
is only appropriate to use this model with cells that have simple geometrical shapes
(such as circles or spheres) and it does not include the motion of the fluid which
surrounds the cells.

An alternative method that fully models the fluid flow as a Stokes flow has been
described in Harris [Ha18] which considered the motion of cells (and clusters of
cells) in response to an external chemical signal. This method was further developed
in Harris [Ha19] which uses the convection-diffusion equation to model the spread
of the chemical through the moving fluid. In [Ha19] the convection-diffusion is
solved using the finite element method and it is this model that is described in this
section. It is noted that the model presented here can be used for either simulating
the motion of individual cells or for simulating the motion of clusters of cells as a
cluster can be treated as being the same as a single large irregularly shaped cell.

8.4.1 Fluid Motion

Let Ω denote the region containing the cells and the surrounding fluid. Further, let
Ωi and Γi denote the interior and boundary of the ith cell, respectively. Finally, let
Γ0 denote the exterior boundary of the fluid region (which is needed to avoid the
well-known problems with Stokes’ paradox when considering a two-dimensional
Stokes flow, see [Li86]) and ΩF denote the fluid filled region inside Γ0 and exterior

to all of the cells. For convenience let Γ =
N⋃
i=0

Γi and ΩC =
N⋃
i=1

Ωi where N is the

total number of cells.
Since the size of a cell is very small (the radius of a typical cell is of the order of

10−5 m) and the velocity slow (typically a cell will take minutes or hours to move
a single diameter) then the Reynolds number of the flow is very small and at any
instant the fluid velocity u can be represented as a Stokes flow

−∇p + μ∇u = 0
∇ · u = 0

(8.5)

where p denotes the pressure in the fluid and μ is the dynamic viscosity. The
boundary conditions for this problem are

u(x) = vi − ωi J (x− xi ) x ∈ Γi
u(x) = 0 x ∈ Γ0

(8.6)
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where xi , vi and ωi denote the location of the centre of mass, the velocity and
angular velocity of the ith cell, respectively, and

J =
[

0 1
−1 0

]
.

The Stokes flow problem (8.5) subject to the boundary conditions (8.6) can be
solved using the boundary integral method. It is shown in [Po92] that

∮
Γ

T (x, x0)u(x) dΓx −
∮
Γ

G(x, x0)F(x) dΓx =
⎧⎨
⎩

u(x0) x0 ∈ ΩF
1
2 u(x0) x0 ∈ Γ

0 x ∈ ΩC

(8.7)

where F is the boundary force,

Tij (x, x0) = −r · n
πr4

rirj Gij (x, x0) = 1

4πμ

(
−δij ln(r)+ rirj

r2

)

r = x − x0, r = |r|, n is the unit normal to Γ directed onto the fluid domain
ΩF and δij is the Kronecker delta function. Equation (8.7) for x0 ∈ Γ yields a
Fredholm integral equation of the first kind for the surface forces F on the whole of
the boundary Γ . Once F has been found on Γ , (8.7) for x0 ∈ ΩF can be used to
find the velocity at any point in the fluid.

The boundary integral equation (8.7) for x0 ∈ Γ can be solved using the
boundary element method. In the work presented here a simple piecewise constant
boundary element formulation has been used. Further details are not given here as
a complete description of the boundary element method can be found in one of the
many texts on the subject, such as [BeEtAl09].

8.4.2 Spread of the Chemical Signal

The concentration of a substance spreading through a moving fluid can be modelled
using the convection-diffusion equation

∂c

∂t
= ∇ · (D(x, t) ∇c)−∇ · (c u(x, t))+ f (x, t) (8.8)

where D(x, t) is the diffusion parameter, f (x, t) is a source term and u(x, t) is
the fluid velocity. In the application under consideration here (8.8) is solved on the
whole of Ω , with D(x, t) taking different values depending on whether that at time
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t the point x is in the fluid or inside a cell. Hence

D(x, t) =
{
DF x ∈ ΩF

DC x ∈ ΩC
.

The source term in (8.8) can be used to simulate a cell manufacturing the chemical
signal. For example, choosing

f (x, t) =
{

1 x ∈ Ωi and t ≤ ti

0 otherwise

simulates the ith cell manufacturing them chemical at a unit rate over its two-
dimensional area for t ≤ ti . This is the source term that has been used in the results
presented here.

The differential equation (8.8) can be solved using the finite element method.
However, the domain Ω is large compared to the size of a typical cell, and it is not
computationally feasible to apply the finite element method to the whole domain.
Therefore Ω is approximated by a smaller domain Ωa . Generally, this is sufficient
provided this approximate domain is chosen to be large enough that the chemical
has not spread to its boundary when the end time of the simulation has been reached.

In Harris [Ha19] it is shown that the finite element approximation to (8.8) can be
expressed in matrix form as

M ċ = K(t)c+ f(t) (8.9)

where

Mij =
∫
Ωa

φi(x) φj (x) dx

Kij (t) = −
∫
Ωa

[
D(x, t) ∇φj (x)− φj (x) u(x, t)

] · ∇φi(x) dx

fi =
∫
Ωa

f (x, t) φi(x) dx

and {φi(x)} denotes the set of finite element basis functions. Linear triangular basis
functions have been used in this work and the full details of the finite element
method, including other choices of basis functions, can be found in [ZiTa89] for
example. The fluid velocity term u(x, t) can be computed using the boundary
integral equation (8.7) for x0 ∈ ΩF if the point x is in the fluid, or is taken to
be the velocity of the cell if the point is inside one of the cells.
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8.4.3 Time Integration

The total force acting on each cell is the sum of the fluid forces on the surface of the
cell, and the reaction of the cell in the direction in which the concentration of the
chemical signal is increasing over the interior of the cell. Hence the force acting on
the ith cell is

∫
Ωi

ki ∇c(x, t) dΩ +
∮
Γi

F(x, t) dΓ

where, as before, ki is a parameter which controls how strongly the cell reacts to the
gradient of the chemical concentration. However, this may not be a realistic model
of how a cell detects the gradient of the concentration of the chemical as generally
it is thought that cells only have chemical receptors in their outer membranes. A
more realistic way of determining the force due to the gradient of the chemical
concentration is discussed and used in the next section.

Using Newton’s second law the acceleration of the cell can be expressed as

ai (t) = dvi
dt
= 1

mi

[∫
Ωi

ki ∇c(x, t) dΩ +
∮
Γi

F(x, t) dΓ

]

where mi is the mass of the cell. Similarly, the angular acceleration of the cell can
be expressed as

αi = dωi
dt

= 1

Ii

[∫
Ωi

ki(x− xi )T J ∇c(x, t) dΩ +
∮
Γi

(x− xi )T J F(x, t) dΓ

]

where Ii is the moment of inertial of the ith cell, and recall that

J =
[

0 1
−1 0

]
.

The location and velocity of each of the cells can be updated using

vi (t + h) = vi (t)+ h ai (t)
ωi(t + h) = ωi(t)+ h αi(t)

xi (t + h) = xi (t)+ h

2
[vi (t)+ vi (t + h)]

θi(t + h) = θi(t)+ h

2
[ωi(t)+ ωi(t + h)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

i = 1, . . . , N

where θi is the rotation of the ith cell about its centre of mass.



162 P. J. Harris

8.4.4 Numerical Results Using the Combined Model

The results presented here are for some typical examples which can be used to study
how the chemical concentrations spread out from the cells and moves with the cells.
A more complete set of results which also consider the accuracy of the method can
be found in Harris [Ha19].

Figure 8.2 shows the results of using the combined finite element and boundary
integral method for modelling the motion of two circular cells in a viscous fluid
where the source term in the convection-diffusion equation (8.8) is

f (x, t) =
{

1 x ∈ Ω1 and t ≤ 3
0 otherwise.

In Fig. 8.2 the cell on the left is Ω1 and the cell on the right is Ω2. Here regions
with high concentrations of the chemical signal a coloured red, and regions with
low concentrations coloured blue. The corresponding results for two elongated cells
are shown in Fig. 8.3. It is noted that Fig. 8.3 shows that if the emitting cell is not
circular, then the chemical does not spread out from the cell in a circular pattern.

In the examples shown in Figs. 8.2 and 8.3 the chemical spreads out from the
emitting cell, as expected. The results also show that as the second cell starts to
move in response to the chemical signal, it causes the fluid to start moving and
in turn this causes the first cell also to move. Hence these results show that the
hydrodynamic effects of the cell motion are important and need to be included.
These effects are not included in the simple model discussed in Sect. 8.3 which is a
major disadvantage of the simple model.

The results also show that as the cell secreting the chemical moves and causes the
fluid around it to move, the chemical signal moves with cell and the fluid. Hence,
from the perspective of a point in the cell, the chemical seems to simply spread out
according to the linear diffusion equation as the concentrations are moving with the
cell. It might be possible to exploit this to avoid having to solve the convection-
diffusion equation. This would remove the need for using the finite element method
which, in turn, would greatly reduce the computational cost of the model. This
approach to simulating the cell motion is discussed in Sect. 8.5 below.

8.5 Simplified Boundary Integral Model

A version of the boundary integral method was used in Harris [Ha18] to model the
motion of cells due to a chemical signal which was simply present in the surrounding
fluid. The results presented in [Ha18] compared well to the motion of clusters
observed in experiments, although it is likely that the chemical signal was secreted
by a cell (or cluster of cells) that was outside the field of view in the experiments
rather than the chemical just being present in the fluid.
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(e) (f)

(a) (b)

(c) (d)

Fig. 8.2 The simulated motion of two circular cells and the concentrations of the chemical using
the combined finite element and boundary integral method. (a) t = 0.0. (b) t = 1.6. (c) t = 3.2.
(d) t = 4.8. (e) t = 6.4. (f) t = 8.0
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(a) (b)

(c) (d)

(e) (f)

Fig. 8.3 The simulated motion of two elongated cells and the concentrations of the chemical using
the combined finite element and boundary integral method. (a) t = 0.0. (b) t = 1.6. (c) t = 3.2.
(d) t = 4.8. (e) t = 6.4. (f) t = 8.0
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The main drawback of the combined finite element and boundary element model
introduced in Sect. 8.4 is the computational cost. Since the finite element stiffness
matrix appearing in (8.9) depends on the current locations of the cells it needs to
be calculated at each time step. This cost is further increased as the fluid velocity is
needed at every quadrature point used to find the stiffness matrix and this is found
by using (8.7) for x0 ∈ ΩF which requires the evaluation of the boundary integral
terms. From a computational perspective, it would be better if this could be avoided.

The results presented in Sect. 8.4.4 above show that when a moving cell secretes
the chemical signal the concentration of the spreading chemical moves with the cell.
Hence the concentrations of the spreading chemical can be expressed in terms of a
solution to the diffusion equation which moves with the cell.

In the case of a circular cell emitting the chemical, the concentration at the point
(x, y) can be expressed as

c(x, y, t) = A

D(t + tε)
exp

(
− (x − xi(t))

2 + (y − yi(t))
2

4D(t + tε)

)
(8.10)

where A is the magnitude of the chemical signal and tε is a small time that is
used to avoid computational problems when t = 0. Recall that D is the diffusion
parameter. However, if the cell is not circular, then the results in Fig. 8.3 above
show that the chemical will not spread out in a circular pattern and so for cells
which are not circular (8.10) is not the most appropriate way of representing the
chemical concentrations. An alternative method that can be used with cells that are
not circular is currently being developed.

Since the velocities of the cells are known at each time step, the same boundary
integral methods as described in Sect. 8.4.1 can be used to calculate the hydrody-
namic forces acting on the boundary of cell.

Since it is thought that cells only have receptors for the chemical in their outer
membrane, it is more realistic to calculate the force due to the chemical signal by
integrating over the boundary of the cell rather than over the interior of the cell.
Hence in this case the acceleration and angular acceleration of the cell are given by

ai (t) = 1

mi

[∮
Γi

k ∇c(x, t) dΓ +
∮
Γi

F(x, t) dΓ

]

and

αi = 1

Ii

[∮
Γi

k(x− xi )T J ∇c(x, t) dΓ +
∮
Γi

(x− xi ) J F(x, t) dΓ

]
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respectively. Here the required gradient of the chemical concentrations can be found
by differentiating (8.10). Hence the equations of motion for the cells are

dvi
dt
= ai

dxi
dt
= vi

dωi
dt

= αi
dθi
dt
= ωi

which can be integrated through time using a fourth-order Runge–Kutta scheme.
The full details of the Runge–Kutta scheme are not given here and can be found in
any text on numerical methods, such as [At89].

8.5.1 Numerical Results with the Boundary Integral Method

A test problem of five cells arranged in a cross pattern is used to validate the method.
The initial configuration of the cells can be seen in Fig. 8.4a, where each of the
outer cells are located the same distance from the central cell. In this example
the chemical signal is secreted by the central cell, and so the motion should be
symmetric in the sense that all of the outer cells should move the same distance
towards the central cell at each time step. Additionally, the central cell should remain
in the same position. The results in Fig. 8.4b, f show that the four outer cells move
towards the central cell as expected. Figure 8.5 shows the distance that each of the
four outer cells have moved towards the central cell over time. The four curves are
superimposed which shows that the motion of the cells has the expected symmetry.
Further, the distance moved by the central cell is of the order of 10−14 which is the
magnitude of the rounding error in the computer used to perform the calculations
and so can be considered to be zero, as expected. A second example is shown in
Fig. 8.6 where the boundary integral method has been used to simulate the motion
of 10 randomly placed cells.

These results show that this simple boundary integral method for the fluid
mechanics along with a simple representation of the concentrations of the chemical
secreted by one of the cells can be used to simulate the motion of cells due to
chemotaxis. Although the combined finite element and boundary element method
give a complete solution to the problem, there are major computational drawbacks
to use the combined model. For example, even when a coarse finite element mesh
is used the combined method can take over 24 h to simulate the motion of just two
cells on a typical PC, whilst the boundary integral method for simulating the motion
of the ten cells shown in Fig. 8.6 took less than 2 h on the same PC.

However, the boundary integral model, as presented here, can only be used
for circular cells. The results of using the combined method for elongated cells,
presented in Fig. 8.3, show that for such cells the concentrations of the chemical do
not spread out in a circular pattern. A modified method which can be used for cells
that are not circular is currently being developed.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8.4 The motion of five cells, initially arranged in a cross pattern, using the boundary element
method and (8.10) for the chemical concentrations. (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3.
(e) t = 4. (f) t = 5
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Fig. 8.5 The distance moved by each of the four outer cells towards the central cell

8.6 Conclusions and Future Work

This paper has discussed a number of methods for modelling the motion of cells
due to chemotaxis. The simple model discussed in Sect. 8.3 has the advantage that it
can rapidly calculate the motion of a large number of cells. The calculations for the
example presented here with 497 cells initially arranged in 200 small clusters took
approximately 1 h of CPU time to complete. By using this method it is possible to
quickly see the patterns that the cells form, but the model does not fully include the
fluid dynamics of the problem, and can only be used for circular cells.

The combined finite element and boundary element method gives a complete
simulation of the cell motion and fluid flow. However, the method is very expensive
computationally. The calculations with only two cells can often take over 24 h on
the same computer as used for the simple model unless very coarse finite element
and boundary element meshes are used. However, the method can be used for cells
that are not circular, and can be used for irregularly shaped clusters of cells.

As a compromise, a model using the boundary element method to compute
the fluid motion and a moving linear diffusion model for the concentrations of
the chemical signal is being developed. This model has the advantage that it
avoids having to use the finite element method to calculate the concentrations. The
calculations for the 10 cell example given in Sect. 8.5.1 required approximately
81 min CPU time on the same computer as was used for the other examples. This
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(a) (b)

(c) (d)

(e) (f)

Fig. 8.6 The simulated motion of ten randomly positioned circular cells using the simple
boundary integral method. (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3. (e) t = 4. (f) t = 5
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shows the considerable saving in CPU time that is obtained by avoiding having to
use the finite element method for calculating the chemical concentrations.

The drawback of the boundary element method described in Sect. 8.5 is that the
formula used for the chemical concentrations is only valid when the secreting cell is
circular, although there are no restrictions on the shapes of the other, non-emitting,
cells. An alternative method for modelling the secretions from a cell which is not
circular is currently begin developed.

Another deficiency of both the combined method and the boundary integral
method is that they do not include any simulations of what happens when two cells
or clusters of cells collide. When two cells do collide they usually deform as the
parts of their membranes that are in contact stick together causing the two cells to
change shape. Some of this process is analogous to the initial stages of two liquid
droplets combining together to form a single droplet, so the same methods could
be used to model cell collisions. A model that simulates the collision of two cells
will be developed in the future and incorporated into the boundary integral model
presented here.

Acknowledgments The author would like to thank Matteo Santin from Brighton Centre for
Regenerative Medicine and Devices for his help and advice with some of the biological aspects
of this work.
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Chapter 9
Numerical Calculation of Interior
Transmission Eigenvalues with Mixed
Boundary Conditions

Andreas Kleefeld and Jijun Liu

9.1 Introduction

A transmission eigenvalue problem is a non-classical boundary value problem for a
specified differential operator which acts on a pair of functions (u(x), v(x)) in some
given open and bounded domain D, where the functions u(x) and v(x) are coupled
on the boundary ∂D = Γ . The exterior normal on Γ is denoted by ν.

A typical example arising in acoustic wave scattering is the (classical) interior
transmission eigenvalue problem with specified refraction index n(x) ∈ L∞(D)
satisfying Re{n(x)} > 0 and Im{n(x)} ≥ 0. It is given by

⎧⎪⎪⎨
⎪⎪⎩
Δu+ k2u = 0 , x ∈ D ,

Δv + k2n(x)v = 0 , x ∈ D ,

u = v , ∂u
∂ν
= ∂u

∂ν
, x ∈ Γ ,

(9.1)

for which one tries to find k ∈ C\{0} such that there exists non-trivial solutions
(u, v) ∈ L2(D)× L2(D) and u− v ∈ H 2

0 (D). These values k are called (classical)
interior transmission eigenvalues (ITEs).

Originally, the distribution properties of the eigenvalues such as discreteness and
their asymptotic behavior have been studied in detail in order to determine charac-
teristics of media [CoMo87, CoMo88, Ki86] as well as the existence [CaGiHa10].
These properties are not trivial to derive due to the fact that the underlying eigen-
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value problem is neither elliptic nor self-adjoint. Hence, it cannot be investigated
by using standard spectral theory for differential operators. Hence, this interior
transmission problem is of interest to researchers working on non-standard spectral
problems. Additionally, researchers are interested in finding incident waves that do
not scatter which is closely related to the interior eigenvalue problem (9.1) (see for
example [GiPa13]).

Reconstruction algorithms for inverse scattering problems are, for example, the
linear sampling method and the factorization method [CaCo06, KiGr08] which are
not justified theoretically for wave numbers that are ITEs. Hence, researchers started
to compute such exceptional values. It has been shown that ITEs can be determined
from scattered data or far-field data [CaCoHa10]. Since then, a variety of new
methods such as FEM [LiHuLiLi15, Su11], BEM [Kl13, Kl15], and the inside-
outside-duality method [KiLe13] have appeared (see [KlPi18] for a recent and
detailed overview as well as the MFS method). However, the numerical calculation
of those is still an on-going and challenging research topic especially the calculation
of complex-valued ITEs whose existence is still open for general scatterer.

However, motivated by a more general physical configuration, the transmission
eigenvalue problems may be of a more complicated form. We consider the situation
where an inhomogeneous obstacle D is located in a perfect conducting substrate D2
with the boundary Γ2 ⊂ Γ , while the remaining part of the boundary Γ1 = Γ \ Γ2
contacts with the surface of background dielectric medium D1. See Fig. 9.1 for an
illustration of the situation. Then the following interior transmission problem with
mixed boundary condition arises (see also [YaMo14] and [LiLi16]):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δu+ k2u = 0 , x ∈ D ,

Δv + k2nv = 0 , x ∈ D ,

u = v , ∂u
∂ν
= ∂v

∂ν
, x ∈ Γ1 , (transmission condition)

u = v = 0 , x ∈ Γ2 , (hom. Dirichlet condition)

(9.2)

Fig. 9.1 Exemplary setup of
the physical configuration

D

 D
1

 D
2

1

2
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with Γ = Γ1 ∪ Γ2 assuming Γ1 �= ∅ and Γ2 �= ∅. Here, n(x) �= 1 is the real-valued
index of refraction. Although the distributions and the discreteness properties have
been analyzed in [LiLi16] for general complex-valued n(x), the efficient numerical
calculation of mixed interior transmission eigenvalues (MITEs) is still absent. This
is mainly due to the presence of the mixed boundary condition on Γ which causes
extra difficulties for the construction of suitable basis functions that are needed in
the finite element method.

But the boundary integral equation method is a powerful tool for solving
boundary value problems of partial differential equations (PDEs), especially when
the problem is homogeneous and the fundamental solution to the corresponding
PDE can be represented explicitly. The main advantage of solving boundary value
problems by this scheme is by representing the solution in potential form, the solu-
tion can be essentially converted into the task of finding a density function defined
on the boundary of the domain, and consequently the amount of computations can
be dramatically decreased (see [Kl12a]). By this motivation, we propose to solve
the mixed transmission eigenvalue problem (9.2) with constant refraction index
n(x) ≡ n (constant) in D ⊂ R

2 by the boundary integral equation method since
the fundamental solution can be given explicitly in analytic form.

9.1.1 Contribution Within This Chapter

First, a short summary for the existence and discreteness for the real-valued index
of refraction not equal to one is given in Sect. 9.2. Although the results are a
special case of [LiLi16], the sufficient conditions on the index of refraction as well
as the estimates of the lower bound of positive eigenvalues can be stated more
clearly. Second, a derivation of a system of boundary integral equations to solve
the mixed interior transmission problem including its approximation via boundary
element collocation method leading to a non-linear eigenvalue problem is given in
Sect. 9.3. Lastly, extensive numerical results for the computations of mixed interior
transmission eigenvalues are presented for the first time for various scatterers in two
dimensions in Sect. 9.4. In addition, the corresponding eigenfunctions are shown as
well. A short summary and conclusion is given in Sect. 9.5. Finally, for the special
case of the unit square an alternative method is given in the Appendix to find mixed
interior transmission eigenvalues.

9.2 A Review on Some Theoretical Results

To consider the numerical computations for the transmission eigenvalues of (9.2),
we first need the distribution properties of the eigenvalues. Although the properties
of the eigenvalues with classical boundary conditions have been thoroughly studied,
the theoretical results for eigenvalues using mixed boundary conditions as studied
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here are still rare (see [LiLi16]). Since our numerical scheme for computing the
eigenvalues by boundary integral equations is established for the constant index of
refraction n(x) ≡ n0 in D for 0 < n0 < 1 or n0 > 1, some existing results for the
distributions of eigenvalues under the assumption either n(x) ∈ (0, 1) or n(x) > 1
are applicable.

In this section, we give these theoretical properties of the transmission eigenval-
ues for n(x) ∈ C(D) with either positive lower point n− > 1 or positive upper
bound n+ < 1, which means that there are no zero points of n(x) − 1 in D. These
results can be considered as special cases established in [LiLi16] for both complex-
valued refraction index n(x) and complex-valued background medium. However, in
our case with real-valued index of refraction n(x), the corresponding results can be
much more simplified. To state the results clearly, we introduce the Sobolev space

H̃0,1(D) =
{
w ∈ L2(D), ∇w ∈ (L2(D))2 , Δw ∈ L2(D) ,

w = 0 on Γ , ν · ∇w = 0 on Γ1} ,

with scalar product

〈u, v〉
H̃0,1(D)

= (u, v)L2(D) + (∇u,∇v)L2(D) + (Δu,Δv)L2(D)

for two complex-valued functions u and v from H̃0,1(D). Then the transmission
eigenvalue problem (9.2) can be restated as: Find k ∈ C\{0} such that there exists a
non-zero pair (u, v) ∈ (L2(D))2 satisfying v − u ∈ H̃0,1(D) and

⎧⎪⎪⎨
⎪⎪⎩
Δu+ k2u = 0 , x ∈ D ,

Δv + k2nv = 0 , x ∈ D ,

u = v = 0 , x ∈ Γ2 . (hom. Dirichlet condition)

Note that the transmission conditions in (9.2) have been incorporated in the
requirement v − u ∈ H̃0,1(D). In the case Γ2 = ∅, it is well-known based on
the analytic Fredholm theorem that the set of ITEs is at most discrete with +∞ as
the only possible accumulation point. We will prove that such a property is also true
for our problem (9.2) with mixed boundary condition. Therefore, define z = v − u

and nc(x) = n(x)− 1 �= 0 in D. Since z ∈ H̃0,1(D) fulfills

Δz+ k2z = −k2vnc , (9.3)

by deleting v, z(x) satisfies the following differential equation of fourth order

(
Δ+ k2n(x)

) 1

nc(x)

(
Δ+ k2

)
z = 0 , x ∈ D . (9.4)
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Using (9.3) and the boundary condition v|Γ2 = 0, we have

1

nc(x)

(
Δ+ k2

)
z = 0 on Γ2 .

With z|Γ2 = v|Γ2 − u|Γ2 = 0 it can be further simplified to

1

nc(x)
Δz = 0 on Γ2 .

Therefore, we conclude that the transmission eigenvalues k ∈ C\{0} are those
values such that there exists some non-trivial solution z ∈ H̃0,1(D) satisfying

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Δ+ k2n(x)

) 1
nc(x)

(
Δ+ k2

)
z = 0 , x ∈ D ,

z = 0 , x ∈ Γ = Γ1 ∪ Γ2 ,

1
nc(x)

Δz = 0 , x ∈ Γ2 ,

∂z
∂ν
= 0 , x ∈ Γ1 .

(9.5)

The distributions of the transmission eigenvalues can be analyzed in terms of (9.5).
To this end, we need the following estimate for u ∈ H̃0,1(D) (see [YaMo14]),
which can be considered as a generalization of the Poincaré inequality, and can be
applied to estimate the lower bound of real-valued eigenvalues in order to qualify
the numerical results.

Lemma 9.1 For any w ∈ H̃0,1(D), we obtain the estimate

‖∇w‖2
L2(D)

≤ 1

λ(D)
‖Δw‖2

L2(D)
.

Here, λ(D) denotes the first eigenvalue of the buckled plate eigenvalue problem
given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δ2w = λΔw , in D ,

w = 0 , on Γ = Γ1 ∪ Γ2 ,

ν · ∇w = 0 , on Γ1 ,

Δw = 0 , on Γ2 .

For a real-valued index of refraction 0 < n(x) �= 1 inD, there exists two constant
n− > 0 and n+ > 0 such that

n+ ≥ n(x) ≥ n− > 1 , if n(x)|D > 1 ,

1 > n+ ≥ n(x) ≥ n− > 0 , if n(x)|D < 1 ,



178 A. Kleefeld and J. Liu

which ensures

1

|n(x)− 1| ≥ α > 0 , x ∈ D

for some small constant α > 0. Based on Lemma 9.1, the following results state the
distribution properties of the mixed interior transmission eigenvalues (MITEs).

Theorem 9.1 For a real-valued index of refraction 0 < n(x) �= 1 in D, we assume
that

0 <
1

n− − 1
< 1 , if n(x)|D > 1 ,

0 <
n+

1− n+
< 1 , if n(x)|D < 1 . (9.6)

Then the set of MITEs is at most discrete and does not accumulate at zero and all
the real-valued MITEs (if they exist) are such that

k2 ≥
{
λ(D)

n−−2
n−(n−−1) , if n(x)|D > 1 ,

λ(D)
1−2n+
1−n+ , if n(x)|D < 1 ,

where λ(D) is the first eigenvalue of (9.4).

This result is just a special case of [LiLi16, Theorem 3.3] since we have

0 <
1

|n(x)− 1| =
1

n(x)− 1
≤ 1

n− − 1
= α , if n(x)|D > 1 ,

0 <
1

|n(x)− 1| =
1

1− n(x)
≤ 1

1− n+
= α , if n(x)|D < 1 .

Therefore, we omit the details for the proof. As for the existence of mixed interior
transmission eigenvalues, [LiLi16, Theorem 3.7] leads to the following result.

Theorem 9.2 If (9.6) is replaced by the assumptions

0 <
1

n− − 1
<

1

8
, if n(x)|D > 1 ,

0 <
n+

1− n+
<

1

8
, if n(x)|D < 1 , (9.7)

then there exists an infinite number of transmission eigenvalues with +∞ as the
only possible accumulation point.

Remark 9.1 The assumption (9.6) or (9.7) can be explained easily. Roughly speak-
ing, in the case n(x)|D �= 1, if the values of n(x) are far away from the background
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index n0(x) ≡ 1, then there always exist discrete transmission eigenvalues (but not
necessarily being real-valued) with +∞ as the only possible accumulation point. In
Theorem 9.1, we need n(x) > n− > 2 for n(x) > 1 and n(x) < n+ < 1/2 for
0 < n(x) < 1. This condition is strengthened in Theorem 9.2 as n(x) > n− > 9 for
n(x) > 1 and n(x) < n+ < 1/9 for 0 < n(x) < 1.

Based on the theoretical results for the distributions of transmission eigenvalues
for a real-valued index of refraction n(x) �= 1, we consider the numerical calculation
of mixed interior transmission eigenvalues for n(x) being constant in D by focusing
on the boundary integral equation method in the next section.

9.3 System of Boundary Integral Equations and Its
Approximation

In this section, we derive a 4× 4 system of boundary integral equations to solve the
interior transmission problem with mixed boundary conditions.

Denote by Φk(x, y) = iH(1)
0 (k|x− y|)/4, x �= y the fundamental solution of the

two-dimensional Helmholtz equation with wave number k. The single- and double-
layer potentials for the Helmholtz equation over the surface Γ are given for x /∈ Γ

by

SLΓk [ψ] (x) =
∫
Γ

Φk(x, y)ψ(y) ds(y) ,

DLΓk [ψ] (x) =
∫
Γ

∂ν(y)Φk(x, y)ψ(y) ds(y) .

According to Green’s representation theorem (see [CoKr13, p. 17]), we have

u(x) = SLΓk [∂νu|Γ ] (x)− DLΓk [u|Γ ] (x) , x ∈ D . (9.8)

Due to the fact that Γ is the disjoint union of Γ1 and Γ2, we can rewrite (9.8) as

u(x) = SLΓ1
k

[
∂νu|Γ1

]
(x)+ SLΓ2

k

[
∂νu|Γ2

]
(x)

− DLΓ1
k

[
u|Γ1

]
(x)− DLΓ2

k

[
u|Γ2

]
(x) , x ∈ D (9.9)

and similarly we obtain

v(x) = SLΓ1
k
√
n

[
∂νv|Γ1

]
(x)+ SLΓ2

k
√
n

[
∂νv|Γ2

]
(x)

− DLΓ1
k
√
n

[
v|Γ1

]
(x)− DLΓ2

k
√
n

[
v|Γ2

]
(x) , x ∈ D . (9.10)
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By the boundary condition u|Γ2 = v|Γ2 = 0, Eqs. (9.9) and (9.10) can be simplified
to

u(x) = SLΓ1
k

[
∂νu|Γ1

]
(x)+ SLΓ2

k

[
∂νu|Γ2

]
(x)− DLΓ1

k

[
u|Γ1

]
(x) , (9.11)

v(x) = SLΓ1
k
√
n

[
∂νv|Γ1

]
(x)+ SLΓ2

k
√
n

[
∂νv|Γ2

]
(x)− DLΓ1

k
√
n

[
v|Γ1

]
(x) , (9.12)

where x ∈ D. The boundary integral operators over the surface Γi evaluated at a
point of Γj are defined as

S
Γi→Γj
k

[
ψ |Γi

]
(x) =

∫
Γi

Φk(x, y)ψ(y) ds(y) , x ∈ Γj ,

K
Γi→Γj
k

[
ψ |Γi

]
(x) =

∫
Γi

∂νi (y)Φk(x, y)ψ(y) ds(y) , x ∈ Γj ,

K%k
Γi→Γj [

ψ |Γi
]
(x) =

∫
Γi

∂νj (x)Φk(x, y)ψ(y) ds(y) , x ∈ Γj ,

T
Γi→Γj
k

[
ψ |Γi

]
(x) = ∂νj (x)

∫
Γi

∂νi (y)Φk(x, y)ψ(y) ds(y) , x ∈ Γj ,

where i, j ∈ {1, 2}.

9.3.1 First Boundary Integral Equation

Letting D � x → x ∈ Γ1 in (9.12) and (9.12) and using the jump relations (see
[CoKr13, p. 39]), yields

u|Γ1 = SΓ1→Γ1
k

[
∂νu|Γ1

]+ SΓ2→Γ1
k

[
∂νu|Γ2

]−
(

KΓ1→Γ1
k

[
u|Γ1

]− 1

2
u|Γ1

)
(9.13)

and

v|Γ1 = SΓ1→Γ1
k
√
n

[
∂νv|Γ1

]+ SΓ2→Γ1
k
√
n

[
∂νv|Γ2

]−
(

KΓ1→Γ1
k
√
n

[
v|Γ1

]− 1

2
v|Γ1

)
. (9.14)

Taking the difference of (9.13) and (9.14) and using the boundary conditions u|Γ1 =
v|Γ1 and ∂νu|Γ1 = ∂νv|Γ1 , gives the first boundary integral equation

0 =
(

SΓ1→Γ1
k − SΓ1→Γ1

k
√
n

) [
∂νu|Γ1

]+ SΓ2→Γ1
k

[
∂νu|Γ2

]

− SΓ2→Γ1
k
√
n

[
∂νv|Γ2

]− (
KΓ1→Γ1
k − KΓ1→Γ1

k
√
n

) [
u|Γ1

]
. (9.15)
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9.3.2 Second Boundary Integral Equation

Applying the same strategy as before for D � x → x ∈ Γ2 in (9.12) and (9.12),
yields

u|Γ2 = SΓ1→Γ2
k

[
∂νu|Γ1

]+ SΓ2→Γ2
k

[
∂νu|Γ2

]− KΓ1→Γ2
k

[
u|Γ1

]
(9.16)

and

v|Γ2 = SΓ1→Γ2
k
√
n

[
∂νv|Γ1

]+ SΓ2→Γ2
k
√
n

[
∂νv|Γ2

]− KΓ1→Γ2
k
√
n

[
v|Γ1

]
. (9.17)

Taking the difference of (9.16) and (9.17), setting u|Γ2 = v|Γ2 = 0, and applying the
boundary conditions u|Γ1 = v|Γ1 and ∂νu|Γ1 = ∂νv|Γ1 , gives the second boundary
integral equation

0 =
(

SΓ1→Γ2
k − SΓ1→Γ2

k
√
n

) [
∂νu|Γ1

]+ SΓ2→Γ2
k

[
∂νu|Γ2

]

− SΓ2→Γ2
k
√
n

[
∂νv|Γ2

]− (
KΓ1→Γ2
k − KΓ1→Γ2

k
√
n

) [
u|Γ1

]
. (9.18)

9.3.3 Third Boundary Integral Equation

Next, we apply the normal derivative to (9.12) and (9.12), let D � x → x ∈ Γ1, and
use the jump relations. This yields

∂νu|Γ1 = K%k
Γ1→Γ1 [

∂νu|Γ1

]+ 1

2
∂νu|Γ1 + K%k

Γ2→Γ1 [
∂νu|Γ2

]

− TΓ1→Γ1
k

[
u|Γ1

]
(9.19)

and

∂νv|Γ1 = K%
k
√
n

Γ1→Γ1 [
∂νv|Γ1

]+ 1

2
∂νv|Γ1 + K%

k
√
n

Γ2→Γ1 [
∂νv|Γ2

]

− TΓ1→Γ1
k
√
n

[
v|Γ1

]
. (9.20)

Taking the difference of (9.19) and (9.20) and using the boundary conditions u|Γ1 =
v|Γ1 and ∂νu|Γ1 = ∂νv|Γ1 , gives the third boundary integral equation

0 =
(

K%k
Γ1→Γ1 − K%

k
√
n

Γ1→Γ1
) [
∂νu|Γ1

]+ K%k
Γ2→Γ1 [

∂νu|Γ2

]

− K%
k
√
n

Γ2→Γ1 [
∂νv|Γ2

]− (
TΓ1→Γ1
k − TΓ1→Γ1

k
√
n

) [
u|Γ1

]
. (9.21)
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9.3.4 Fourth Boundary Integral Equation

Again, we apply the normal derivative to (9.12) and (9.12), let D � x → x ∈ Γ2,
and use the jump relations. This gives

∂νu|Γ2 = K%k
Γ1→Γ2 [

∂νu|Γ1

]+ K%k
Γ2→Γ2 [

∂νu|Γ2

]+ 1

2
∂νu|Γ2

− TΓ1→Γ2
k

[
u|Γ1

]
(9.22)

and

∂νv|Γ2 = K%
k
√
n

Γ1→Γ2 [
∂νv|Γ1

]+ K%
k
√
n

Γ2→Γ2 [
∂νv|Γ2

]+ 1

2
∂νv|Γ2

− TΓ1→Γ2
k
√
n

[
v|Γ1

]
. (9.23)

Equations (9.22) and (9.23) can be rewritten as

0 = K%k
Γ1→Γ2 [

∂νu|Γ1

]+ K%k
Γ2→Γ2 [

∂νu|Γ2

]− TΓ1→Γ2
k

[
u|Γ1

]

− 1

2
∂νu|Γ2 (9.24)

and

0 = K%
k
√
n

Γ1→Γ2 [
∂νv|Γ1

]+ K%
k
√
n

Γ2→Γ2 [
∂νv|Γ2

]− TΓ1→Γ2
k
√
n

[
v|Γ1

]

− 1

2
∂νv|Γ2 (9.25)

respectively. Taking the difference of (9.24) and (9.25) and using the boundary
conditions u|Γ1 = v|Γ1 and ∂νu|Γ1 = ∂νv|Γ1 , gives the fourth boundary integral
equation

0 =
(

K%k
Γ1→Γ2 − K%

k
√
n

Γ1→Γ2
) [
∂νu|Γ1

]+ K%k
Γ2→Γ2 [

∂νu|Γ2

]

− K%
k
√
n

Γ2→Γ2 [
∂νv|Γ2

]− (
TΓ1→Γ2
k − TΓ1→Γ2

k
√
n

) [
u|Γ1

]− 1

2
∂νu|Γ2

+ 1

2
∂νv|Γ2 . (9.26)
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9.3.5 System of Boundary Integral Equations

The four equations (9.15), (9.18), (9.21), and (9.26) can be written abstractly as

Z(k)g = 0 (9.27)

with Z(k) given by

⎛
⎜⎜⎜⎜⎜⎜⎝

SΓ1→Γ1
k

− SΓ1→Γ1
k
√
n

KΓ1→Γ1
k

− KΓ1→Γ1
k
√
n

SΓ2→Γ1
k

SΓ2→Γ1
k
√
n

SΓ1→Γ2
k

− SΓ1→Γ2
k
√
n

KΓ1→Γ2
k

− KΓ1→Γ2
k
√
n

SΓ2→Γ2
k

SΓ2→Γ2
k
√
n

K%
k

Γ1→Γ1 − K%
k
√
n

Γ1→Γ1 TΓ1→Γ1
k

− TΓ1→Γ1
k
√
n

K%
k

Γ2→Γ1 K%
k
√
n

Γ2→Γ1

K%
k

Γ1→Γ2 − K%
k
√
n

Γ1→Γ2 TΓ1→Γ2
k

− TΓ1→Γ2
k
√
n

K%
k

Γ2→Γ2 − 1
2 I K%

k
√
n

Γ2→Γ2 − 1
2 I

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.28)

and

g = (
α −β γ −δ )% ,

where we used the notation

α = ∂νu|Γ1 , β = u|Γ1 , γ = ∂νu|Γ2 , and δ = ∂νv|Γ2 . (9.29)

The matrix entries in (9.28) are boundary integral operator with a specific kernel.
If the operator O is of the form OΓi→Γj with i �= j , then the kernel is smooth.
Additionally, the kernel of the operator SΓ1→Γ1

k − SΓ1→Γ1
k
√
n

is smooth as well. The
remaining entries contain a kernel with a weak singularity which is of logarithmic
form (notice again that n �= 1 in D). In three dimensions the situation changes
slightly to a weak singularity. Hence, in both cases the system can easily be
approximated numerically to high accuracy by the boundary element collocation
method as developed in [KlLi11, KlLi12] which has been successfully used in
[AnChAk13, KiKl12, Kl12b, Kl12c] for the three-dimensional case.

To show that the operator is Fredholm of index zero and analytic for k ∈ C\R≤0,
one would follow the same arguments as given in [Co11, Theorem 5.3.9] or
[CoHa13]. The only difficulty is to use the correct Sobolev spaces of the form
H̃ s(Γi) (see [Mc00] for the definition of the Sobolev spaces) or alternatively the
Lions–Magenes spaces Hs

00(Γi) as given in [LiMa72].
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9.3.6 Approximation of the System

In this section, we shortly explain how to discretize the resulting boundary integral
operator via boundary element collocation method. An extensive explanation has
previously been given in [KlLi11, KlLi12] for the three-dimensional case and the
two-dimensional case works conceptually similar (see also [At97] for the Laplace
equation).

We consider two kinds of scatterers in two dimensions. The first class has a
boundary that can be described through polar coordinates and the second class has a
boundary that can be described through lines. For the first class, we define the set of
points through an equidistant use of the polar angle, whereas for the second class the
edges are subdivided into equal parts. The curved boundary for the scatterers of the
first class is now approximated by a polygon having the previously defined points
as vertices. The set of collocation points are the midpoints of each line segment
having m collocation points in total. Now, the approximation of each integral over
such a line segment can easily be carried out by numerical integration where we
assume that the unknown function is approximated by constant interpolation at a
midpoint. Note that we have at most a logarithmic singularity in the kernel if the
collocation point is situated on a line segment on which we are integrating over. A
Gauss–Kronrad quadrature can deal easily with such a singularity.

After the discretization, we can regard (9.28) as a non-linear eigenvalue problem
of the form Z(k)g̃ = 0 with Z(k) ∈ C

m×m and g̃ the discretized version of g
given by (9.29) which we solve with Beyn’s algorithm [Be12] as done in [CaKr17,
Kl13, Kl15, StUn12]. This algorithm uses complex-valued contour integration of
the resolvent to reduce the non-linear eigenvalue problem to a linear eigenvalue
problem of much smaller size based upon the famous Keldysh’s Theorem. For this
algorithm one has to specify a 2π -periodic contour in the complex plane and it
will find all non-linear eigenvalues situated in this contour to high accuracy due to
the fact that the approximation of a 2π -periodic function via the trapezoidal rule
yields exponential convergence. We therefore use a circle of radius R with center
C = (cx, cy i) with N = 40 nodes for the trapezoidal rule.

9.4 Numerical Results

In this section, we present extensive numerical results for some two-dimensional
scatterers although we can easily calculate them in three dimensions as shown in
[Kl13, Kl15] for the classic interior transmission eigenvalues. The reason is that we
can nicely present the corresponding eigenfunctions which is much more difficult
in three dimensions.

The first scatterer under consideration is the unit circle C, where we used Γ1
as the upper half of the circle and Γ2 as the lower half of the circle. The first five
MITEs are given by 1.6818, 2.3185, 2.9533, 3.0791, and 3.1409 where we used
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the index of refraction n = 4. After solving the non-linear eigenvalue problem
(9.27) using the parameters N = 40, R = 1/2, with centers C = (2, 0i)
and C = (3, 0i), respectively, we additionally obtain the discretized version of
the functions ∂νu|Γ1 = ∂νv|Γ1 , u|Γ1 = v|Γ1 , ∂νu|Γ2 , and ∂νv|Γ2 . We also have
u|Γ2 = v|Γ2 = 0 and hence we can insert these function approximations into (9.12)
and (9.12) in order to compute the approximate solution of u and v at any point
situated inside of the scatterer C. We denote with u(i) and v(i) the approximate
eigenfunctions corresponding to the i-th MITE. The absolute value of u(i) and v(i)

inside C for the first five MITEs is shown in Fig. 9.2. Note that we were also able
to find a complex-valued MITE pair 2.3596+ 0.3413i and 2.3592− 0.34134i. The
corresponding eigenfunctions u(cv) and v(cv) are also given in Fig. 9.2. Since we
used constant interpolation for the boundary element collocation method, a linear
convergence rate for the eigenvalues is expected and achieved. Note that we do not
know the exact MITE values. However, we observe that the error of the imaginary
part of the real-valued MITE halves if we double the number of collocation nodes
m. In Table 9.1 we clearly see the linear convergence order. Additionally, we get
the following complex-valued MITE pair 2.7340 + 0.3801i and 2.7334 − 0.3802i.
The corresponding eigenfunctions are shown in Fig. 9.3. Next, we calculate the
MITEs for an ellipse E with major semi-axis 1 and minor semi-axis 4/5 using the
same parameters as before. We obtain the four real-valued MITEs 1.9111, 2.4973,
3.1282, and 3.4609. If we use the major semi-axis 1 and minor semi-axis 1/2
for the ellipse with the same parameters as before, we obtain the first four real-
valued MITEs 2.7709, 3.1764, 3.7892, and 4.3916. A complex-valued MITE pair is
given by 3.8947 + 0.5352i and 3.8928 − 0.5365i. Using the minor semi-axis 3/10
yields the four real-valued MITEs 4.5026, 4.7231, 5.2731, and 5.7279. Note that
the classical interior transmission eigenvalues for various minor semi-axis are given
in [CaKr17, KlPi18] and a summary of the results for the various ellipses is given
in Table 9.2. In Table 9.3 we list the first four real-valued MITEs for deformed
ellipses given by the parametrization (3 cos(t)/4 + κ cos(2t), sin(t)), t ∈ [0, 2π)
for κ = 0, 1/10, 1/5, and 3/10 which has been used before in [CaKr17, KlPi18]
for classical interior transmission eigenvalues. We again used n = 4 and 1280
collocation points and the same boundary conditions as before.

The MITEs for the unit square S using the index of refraction n = 4 with
transmission conditions on the south and east part and homogeneous Dirichlet
conditions on the north and west part of the boundary are given by 3.0503, 4.2622,
and 5.1805 where we used 512 collocation points and R = 1 with the centers
C = (2, 0i), C = (3, 0i), and C = (4, 0i), respectively. Figure 9.4 shows the
absolute value of the first three eigenfunctions u(i) and v(i) for the unit square. In
Fig. 9.5 we display the first three eigenfunctions u(i) and v(i) for the unit square for
the eigenvalues 2.6717, 3.6662, and 4.8367, respectively, where we used the index
of refraction n = 4 with transmission conditions on the south part and homogeneous
Dirichlet condition on the remaining edges. We again used 512 collocation points
and R = 1 with the centers C = (2.5, 0i), C = (3.5, 0i), and C = (4.5, 0i),
respectively. Note that in this case it is possible to derive an analytic equation such
that its zeros are the MITEs (we refer the reader to Table 9.5 in the Appendix). We
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Fig. 9.2 The absolute value of the eigenfunctions u (first row and third row) and v (second row
and fourth row) for the first five real-valued MITEs and one complex-valued MITE for the unit
circle C using the index of refraction n = 4. The MITEs are 1.6818, 2.3185, 2.9533, 3.0791,
3.1409 and 2.3596 + 0.3413i, respectively. (a) |u(1)|. (b) |u(2)|. (c) |u(3)|. (d) |v(1)|. (e) |v(2)|.
(f) |v(3)|. (g) |u(4)|. (h) |u(5)|. (i) |u(cv)|. (j) |v(4)|. (k) |v(5)|. (l) |v(cv)|
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Fig. 9.3 The absolute value of the eigenfunctions u (first row and third row) and v (second row
and fourth row) for the first four real-valued MITEs and one complex-valued MITE for the ellipse
E using the index of refraction n = 4. The MITEs are 1.9111, 2.4973, 3.1282, 3.4609 and 2.7340+
0.3801i, respectively. (a) |u(1)|. (b) |u(2)|. (c) |u(3)|. (d) |v(1)|. (e) |v(2)|. (f) |v(3)|. (g) |u(4)|. (h)
|u(cv)|. (i) |v(4)|. (j) |v(cv)|
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Table 9.2 The first four real-valued MITEs for ellipses with major semi-axis 1 and various minor
semi-axis using the index of refraction n = 4

Minor semi-axis First MITE Second MITE Third MITE Fourth MITE

1 1.6818 2.3185 2.9533 3.0791

4/5 1.9111 2.4973 3.1282 3.4609

1/2 2.7709 3.1764 3.7892 4.3916

3/10 4.5026 4.7231 5.2731 5.7279

Table 9.3 The first four real-valued MITEs for deformed ellipses with various deformation
parameter κ using the index of refraction n = 4

κ First MITE Second MITE Third MITE Fourth MITE

0 1.9626 2.8575 3.2436 3.6951

1/10 1.9755 2.8404 3.2836 3.6542

1/5 2.0122 2.8087 3.3753 3.5941

3/10 2.0674 2.7899 3.4327 3.6203
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Fig. 9.4 The absolute value of the eigenfunctions u (first row) and v (second row) for the first
three real-valued MITEs for the unit square S using the index of refraction n = 4 with transmission
conditions on the south and east part and homogeneous Dirichlet conditions on the north and west
part of the boundary. The MITEs are 3.0503, 4.2622, and 5.1805, respectively. (a) |u(1)|. (b) |u(2)|.
(c) |u(3)|. (d) |v(1)|. (e) |v(2)|. (f) |v(3)|
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Fig. 9.5 The absolute value of the eigenfunctions u (first row) and v (second row) for the first
three real-valued MITEs for the unit square S using the index of refraction n = 4 with transmission
conditions on the south part and homogeneous Dirichlet conditions on the remaining edges. The
MITEs are 2.6717, 3.6662, and 4.8367, respectively. (a) |u(1)|. (b) |u(2)|. (c) |u(3)|. (d) |v(1)|.
(e) |v(2)|. (f) |v(3)|

obtain with a root finding algorithm 2.671 552 787 839 805, 3.666 034 666 514 623,
and 4.836 476 632 026 555 and hence the first four digits of the reported results
agree.

Next, we also present the first three real-valued MITEs for the unit square where
we impose homogeneous Dirichlet condition on the west part and transmission
condition on the remaining edges. We use the same parameters as before. We obtain
4.0802, 5.2285, and 5.7030. The corresponding three eigenfunctions u(i) and v(i)

are given in Fig. 9.6.
To complete our numerical results, we also present numerical results for the case

0 < n < 1 using the index of refraction n = 1/2. Again we use ellipses with various
minor axis similar as in Table 9.3. The results are summarized in Table 9.4.

To find the MITEs we use a circle with radius R = 1/2 and centers C = (3, 0i),
C = (4.5, 0i), and C = (6, 0i) in the non-linear eigenvalue solver for the unit circle
scatterer, whereas we use the centers C = (3.5, 0i), C = (4.5, 0i), C = (5.5, 0i),
and C = (6.5, 0i) for the ellipse with minor semi-axis 4/5. For the ellipse with
minor semi-axis 1/2 we use the centers C = (5, 0i), C = (6, 0i), C = (7, 0i), and
C = (8.5, 0i).

As a final remark, we would like to mention that we also tried different n not
satisfying (9.6) and (9.7). In all cases, we have an accumulation point at infinity and
no trouble computing the MITEs. This can also be verified numerically with (9.32)
for a variety of n and p.
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Fig. 9.6 The absolute value of the eigenfunctions u (first row) and v (second row) for the first three
real-valued MITEs for the unit square S using the index of refraction n = 4 with homogeneous
Dirichlet conditions on the west part and transmission conditions on the remaining edges. The
MITEs are 4.0802, 5.2285, and 5.7030, respectively. (a) |u(1)|. (b) |u(2)|. (c) |u(3)|. (d) |v(1)|.
(e) |v(2)|. (f) |v(3)|

Table 9.4 The first four real-valued MITEs for ellipses with major semi-axis 1 and various minor
semi-axis using the index of refraction n = 1/2

Minor semi-axis First MITE Second MITE Third MITE Fourth MITE

1 3.1620 4.5193 4.6482 5.8022

4/5 3.5798 4.8518 5.5187 6.2683

1/2 5.1115 6.1186 7.3248 8.4891

Additionally, all presented numerical results are indeed mixed interior transmis-
sion eigenvalues (not mixed exterior transmission eigenvalues), since we always
computed the corresponding eigenfunctions which are zero outside of the domain
D. Alternatively, one could impose the additional condition on the far field as done
in [CoHa13].

9.5 Summary and Conclusion

In this paper, existence and discreteness for mixed interior transmission eigenvalues
for a real-valued index of refraction are reviewed and sufficient conditions on the
index of refraction as well as the estimates of the lower bound of positive eigen-
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values are given. A new system of boundary integral equations to solve the mixed
interior transmission problem is derived. Further, it is explained how this system can
be approximated via the boundary element collocation method. The resulting non-
linear eigenvalue problem is then solved with complex-valued contour integrals.
Extensive numerical results for the computation of mixed interior transmission
eigenvalues are provided for the first time for a variety of two-dimensional scatterers
and might therefore serve as reference values for new algorithms in the future.
Further, an explicit expression for mixed interior transmission eigenvalues is given
for the unit square and can therefore be used to check the approximation quality of
new algorithms. Moreover, the eigenfunctions are shown as well. Hence, it might be
worthwhile studying the behavior of the eigenfunctions both for regular scatterers
as well as scatterers with corners (see [BlLiLiWa17]). Additionally, a rigorous
convergence analysis needs to be worked out in the future. In sum, this chapter
might provide a fundamental basis for a further study of this interesting eigenvalue
problem. One direction could be the investigation whether the inside-outside-duality
method (see [KiLe13, LePe14, PeKl16]) can be applied both theoretically and
practically to the mixed interior transmission problem.
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Appendix

We consider the unit square �̃ with transmission boundary condition on the north
part and homogeneous Dirichlet conditions on the remaining edges. Separation of
variables gives

u(x, y) = (A sin(πpx)+ B cos(πpx))
(
Ceλy +De−λy

)

v(x, y) =
(
Â sin(πpx)+ B̂ cos(πpx)

) (
Ĉeλ̂y + D̂e−λ̂y

)

with n the given index of refraction. Here λ = √
π2p2 − k2 and λ̂ = √

π2p2 − nk2.
Using the boundary condition u = v = 0 on the east part yields B = B̂ = 0, the
boundary condition u = v = 0 gives p ∈ N, and the boundary condition u = v = 0
on the south part yields D = −C and D̂ = −Ĉ. Hence, we have

u(x, y) = sin(πpx)
(
eλy − e−λy

)
, v(x, y) = c sin(πpx)

(
eλ̂y − e−λ̂y

)
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Table 9.5 The first twelve real-valued MITEs for �̃ using the index of refraction n = 4

2.671 552 787 839 805 (1) 3.666 034 666 514 623 (2) 4.836 476 632 026 555 (2)

5.037 735 005 038 399 (3) 5.735 963 618 893 019 (1) 5.883 918 727 662 464 (3)

6.294 288 796 613 341 (2) 6.516 005 567 788 862 (4) 7.024 814 731 040 726 (2)

7.038 184 014 872 755 (3) 7.160 899 902 925 930 (4) 7.695 549 983 552 737 (4)

with c ∈ R a free parameter. The first transmission condition on the north part
(y = 1) gives

c = {
eλ − e−λ

} \ {eλ̂ − e−λ̂
}
. (9.30)

The second transmission condition on the north part yields

(
eλ + e−λ

)
λ = c

(
eλ̂ + e−λ̂

)
λ̂ . (9.31)

Inserting (9.30) into (9.31) gives

(
eλ̂ − e−λ̂

) (
eλ + e−λ

)
λ− (

eλ − e−λ
) (

eλ̂ + e−λ̂
)
λ̂ = 0 . (9.32)

Hence, the function, say fp(k), on the right-hand side has to be solved for a given
p ∈ N with a root finding algorithm in order to obtain the MITE k. Note that the
function can be complex-valued and therefore we have to consider separately the
real and imaginary part. In Table 9.5 we summarize the highly accurate MITEs
using the index of refraction n = 4. In parentheses we list the used parameter p.
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Chapter 10
An Inequality for Hölder Continuous
Functions Generalizing a Result of Carlo
Miranda

Massimo Lanza de Cristoforis

10.1 Introduction

This paper concerns an inequality which can be used to prove that a continuously
differentiable real-valued function

u : Ω → R

defined on an open subset Ω of R
n is actually α-Hölder continuous for a given

α ∈]0, 1], and it develops an idea which has already been exploited by Agmon
et al. [AgDoNi59], and then by Miranda [Mi65] to prove regularity statements for
layer potentials.

If Ω =]0, 1[, then an elementary sufficient condition for u to be α-Hölder
continuous is that

|t |1−α|u′(t)| be bounded in t ∈]0, 1[ .

Then Agmon et al. [AgDoNi59, p. 717] have observed that if

Ω = Bn−1(0, 1)×]0, 1[,
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then a sufficient condition for the α-Hölder continuity of u ∈ C1(Ω) is that

|t |1−α|Du(x, t)| is bounded in (x, t) ∈ Bn−1(0, 1)×]0, 1[ ,

where Du(x, t) is the Jacobian matrix of u at the point (x, t). Miranda [Mi65] has
considered the case in which Ω is of class C1,α , a case in which Ω is locally
around its boundary points the translation of the rotation of the strict hypograph
of a function

γ ∈ C1,α(Bn−1(0, r), ] − δ, δ[)
for some r , δ ∈]0,+∞[. Then Miranda has observed that a sufficient condition for
the α-Hölder continuity of u ∈ C1(hypographs(γ )) is that

|γ (η)− t |1−α|Du(η, t)| is bounded in (η, t) ∈ hypographs(γ ) , (10.1)

where

hypographs(γ ) ≡ {(η, y) ∈ Bn−1(0, r)×] − δ, δ[: y < γ (η)}
is the strict hypograph of γ . As we have said above, Miranda has exploited such
inequality in order to prove a regularity result for a layer potential in case Ω is of
class C1,α for some α ∈]0, 1[. In an effort to simplify the proof of Miranda and to
refine his results, we wish to prove an inequality which on the one hand generalizes
the above inequality of Miranda, and which on the other hand could be “intrinsic,”
in the sense that it would not be expressed in terms of local coordinates. As a bypass
product, Miranda’s ideas become easier to understand. One “intrinsic” inequality for
a (bounded) u ∈ C1(Ω) to be α-Hölder continuous is the following:

Du(y)(dist(y, ∂Ω))1−α is bounded in y ∈ Ω , (10.2)

an inequality which holds in uniform domains (personal communication of Aikawa
[Ai19]). Such inequality or actually its variant

|Du(z)|(1− |z|2)1−α is bounded in z ∈ BCn(0, 1)

has been used in the analysis of spaces of analytic functions in the unit ballBCn(0, 1)
in C

n with center at 0 (cf. e.g., Zhu [Zh05, §7.2]). One could probably try with it, but
the disadvantage is that C1,1 is known to be the minimal regularity (in the Schauder
scale) to have a unique projection ξy on ∂Ω , i.e., a unique point ξy ∈ ∂Ω such that

|y − ξy | = dist(y, ∂Ω) ,

for all y ∈ R
n \ ∂Ω close to ∂Ω , and we are interested into the case C1,α with

α ∈]0, 1[. In this sense, it is hard to see how its use may simplify/improve the proof
of Miranda [Mi65] for layer potentials.
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Since all functions u ∈ C1(Ω) are locally Lipschitz continuous, the α-Hölder
continuity of u follows by the α-Hölder continuity of u close to the boundary, and
thus it suffices to prove an inequality of the α-Hölder continuity of u close to the
boundary.

Thus we face the problem of choosing a neighborhood of the boundary, and we
want to choose it in such a way that such a neighborhood be “globally parametrized.”
One may think of considering a set of the form

N(t1) ≡ {x + tνΩ(x) : t ∈] − t1, t1[, x ∈ ∂Ω} ,
where νΩ is the outward unit normal to ∂Ω and t1 > 0 is small enough, but the
problem with using N(t1) is that unfortunately the outward unit normal is only
of class C0,α , and thus not of class C0,1 as required for the map x + tνΩ(x) of
the variable (x, t) to be injective and open, to infer that N(t1) is actually an open
neighborhood of ∂Ω and to carry out our proof of Hölder continuity of u. So the
idea here in case Ω is of class C1,α , or perhaps only a Lipschitz set is to replace the
vector field νΩ by a vector field a such that the set

A(t1) ≡ {x + ta(x) : t ∈] − t1, t1[, x ∈ ∂Ω}
be an open neighborhood of ∂Ω and such that the map x+ta(x) of the variable (x, t)
be Lipschitz continuous, injective and open and to prove a variant of Miranda’s
inequality (10.1) in the set

A(t1)
+ ≡ {x + ta(x) : t ∈] − t1, 0[, x ∈ ∂Ω} .

We formulate a body of appropriate assumptions on a in Definition 10.4 of outer
nontangential unit vector field, and we note that such assumptions do not involve
the outward unit normal νΩ . Then we prove that to check the α-Hölder continuity
of a function u ∈ C1(Ω) in case Ω is a bounded open Lipschitz set, it suffices to
show the existence of a finite upper bound for

|t |1−α|Du(x + ta(x))|
when x belongs to ∂Ω and when t belongs to ] − t1, 0[ (see Proposition 10.1).
By exploiting such an inequality, one can simplify the proof of the result on layer
potentials of Miranda [Mi65] and weaken its assumptions on the kernel. This type
of application appears in the monograph [DaLaMu19, Ch. 2] with Dalla Riva and
Musolino.

In [La19], we discuss the existence of a nontangential unit vector field as a for a
bounded open Lipschitz set.

In [La19] we also show that the existence of an outer nontangential unit
vector field as a for a bounded open Lipschitz set implies that the scalar product
a(x) · νΩ(x) is bounded from below by a positive constant which is independent
of the point x ∈ ∂Ω at which the outward unit normal νΩ(x) exists and we note
that Fichera [Fi55, pp. 207–208] had already recognized the importance of the
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existence of a vector field a such that the essential infimum of a · νΩ is bounded
away from 0 for sets with a piecewise smooth boundary in the analysis of boundary
value problems for systems of partial differential equations, and in particular for the
analysis of boundary value problems with unilateral constraints (cf. Fichera [Fi84,
p. 413]). Then for Lipschitz sets, we mention Grisvard [Gr85, Lem 1.5.1.9]. The
main difference of our conditions on a and those of Fichera and Grisvard is that our
conditions are completely independent of the outward unit normal νΩ (which exists
only almost everywhere).

10.2 Preliminaries and Notation

We denote the norm on a normed space X by ‖ · ‖X . Let X and Y be normed
spaces. We endow the space X × Y with the norm defined by ‖(x, y)‖X ×Y ≡
‖x‖X + ‖y‖Y for all (x, y) ∈X × Y , while we use the Euclidean norm for Rn.

The symbol N denotes the set of natural numbers including 0. Let D ⊆ R
n. Then

D denotes the closure of D, and ∂D denotes the boundary and diam(D) denotes the
diameter of D, and “dist” is short for “distance.” If Ω is an open subset of Rn, then
we set

Ω− ≡ R
n \Ω .

Let n ∈ N \ {0}. We denote by On(R) the set of n× n orthogonal matrices with real
entries. Let A be a matrix. Then At denotes the transpose matrix of A.

The symbol | · | denotes the Euclidean modulus in R
n. For all R ∈]0,+∞[,

x ∈ R
n, xj denotes the j -th coordinate of x, and we set

Bn(x, R) ≡ {y ∈ R
n : |x − y| < R} .

Let Ω be an open subset of Rn. The space of m times continuously differentiable
real-valued functions on Ω is denoted by Cm(Ω). Let f ∈ Cm(Ω). Then Df

denotes the Jacobian matrix of f . Let η ≡ (η1, . . ., ηn) ∈ N
n, |η| ≡ η1 + . . .+ ηn.

Then Dηf denotes ∂ |η|f
∂x

η1
1 ...∂x

ηn
n

. The subspace of Cm(Ω) of those functions f

whose derivatives Dηf of order |η| ≤ m can be extended with continuity to
Ω is denoted Cm(Ω). The subspace of Cm(Ω) whose functions have m-th order
derivatives that are Hölder continuous with exponent α ∈]0, 1] is denoted Cm,α(Ω)

(cf. e.g., Gilbarg and Trudinger [GiTr83]). Let D ⊆ R
n. Then Cm,α(Ω,D) denotes{

f ∈ (
Cm,α(Ω)

)n : f (Ω) ⊆ D

}
.

Now let Ω be a bounded open subset of Rn. If f ∈ C0,α(Ω), then its Hölder

constant |f : Ω|α is defined as sup
{ |f (x)−f (y)|

|x−y|α : x, y ∈ Ω, x �= y
}

, and we also

write Lip(f ) ≡ |f : Ω|1. Then Cm(Ω) and Cm,α(Ω) are endowed with their usual
norm and are well known to be Banach spaces (cf. e.g., Troianiello [Tr87, §1.2.1]).
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We now wish to introduce the well-known definition of a set which is locally
around each of its boundary points a “rotated” strict hypograph of a continuous
function. We do so by requiring that if p is a boundary point of Ω , then the
translated set Ω − p can be rotated around the origin by means of a rotation R

(or more generally by R ∈ On(R)) so that the rotated set R(Ω−p) equals the strict
hypograph of a continuous function γ , at least around the point 0. To do so, we need
to introduce the following, which is in the wake of a corresponding terminology of
Burenkov [Bu98] for the analysis of Sobolev spaces on domains.

Definition 10.1 Let n ∈ N \ {0, 1}. Let Ω be an open subset of Rn. Let p ∈ ∂Ω ,
R ∈ On(R), r , δ ∈]0,+∞[. We say that the set

C(p,R, r, δ) ≡ p + Rt(Bn−1(0, r)×] − δ, δ[) ,
is a coordinate cylinder for Ω around p, provided that the intersection

R(Ω − p) ∩ (Bn−1(0, r)×] − δ, δ[)
equals the strict hypograph of a continuous function γ from Bn−1(0, r) to ] − δ, δ[
which vanishes at 0 and such that |γ (η)| < δ/2 for all η ∈ Bn−1(0, r), i.e., provided
that there exists γ ∈ C0(Bn−1(0, r), ] − δ, δ[) such that

R(Ω − p) ∩ (Bn−1(0, r)×] − δ, δ[) (10.3)

= {(η, y) ∈ Bn−1(0, r)×] − δ, δ[: y < γ (η)}
≡ hypographs(γ ) ,

|γ (η)| < δ/2 ∀η ∈ Bn−1(0, r) , γ (0) = 0 .

Given a coordinate cylinder C(p,R, r, δ) for Ω around p, the corresponding
function γ is uniquely determined and

γ (η) = sup {y ∈] − δ, δ[: (η, y) ∈ R(Ω − p) ∩ (Bn−1(0, r)×] − δ, δ[)}
for all η ∈ Bn−1(0, r). We also note that the continuity of γ implies that

R((∂Ω)− p) ∩ (Bn−1(0, r)×] − δ, δ[) (10.4)

= {(η, y) ∈ Bn−1(0, r)×] − δ, δ[: y = γ (η)}
≡ graph(γ ) .

We say that γ is the function which represents ∂Ω in the coordinate cylinder
C(p,R, r, δ) as a graph and that the function ψp from Bn−1(0, r) to R

n defined
by

ψp(η) ≡ p + Rt

(
η

γ (η)

)
∀η ∈ Bn−1(0, r) , (10.5)
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is the parametrization of ∂Ω around p in the coordinate cylinder C(p,R, r, δ).
Since the continuous function γ induces the homeomorphism (·, γ (·)) from

its domain onto its graph, the map ψp is a homeomorphism of Bn−1(0, r) onto
ψp(Bn−1(0, r)) = (∂Ω) ∩ C(p,R, r, δ).

We also note that hypographs(γ ) is easily seen to be path connected and that
accordingly

Ω ∩ C(p,R, r, δ) = p + Rt(hypographs(γ ))

is path connected. Hence, Ω ∩ C(p,R, r, δ) is contained in at most one connected
component of Ω . It is sometimes useful to know that by shrinking r we still obtain
a coordinate cylinder around the point p. More precisely, we have the following.

Remark 10.1 If C(p,R, r, δ) is a coordinate cylinder around the point p of ∂Ω ,
then also C(p,R, ρ, δ) is a coordinate cylinder around the point p of ∂Ω for each
ρ ∈]0, r[, and the restriction γ|Bn−1(0,ρ) represents ∂Ω in C(p,R, ρ, δ) as a graph.

In order to compactify our notation, we find convenient to set

C0,0 ≡ C0 . (10.6)

We are now ready to introduce the following.

Definition 10.2 Let n ∈ N \ {0, 1}. Let α ∈ [0, 1]. We say that an open subset Ω of
R
n is a local strict hypograph of class C0,α provided that for every point p ∈ ∂Ω ,

there exist R ∈ On(R) and r , δ ∈]0,+∞[ such that C(p,R, r, δ) is a coordinate
cylinder forΩ around p and that the corresponding function γ which represents ∂Ω
as a graph in C(p,R, r, δ) is of class C0,α(Bn−1(0, r)). (Here we understand that γ
has a unique extension to Bn−1(0, r) that is of class C0,α(Bn−1(0, r)) and that we
still denote with the same symbol γ .)

One could show that if a bounded open subset Ω of Rn is a local strict hypograph
of class C0, then the number of connected components of Ω and of its exterior Ω−
is necessarily finite (cf. e.g., [DaLaMu19]). Then we have the following “folklore”
statement. For the proof, we refer to the Appendix.

Lemma 10.1 Let n ∈ N \ {0, 1}. Let α ∈ [0, 1]. Let Ω be a bounded open local
strict hypograph of class C0,α . Let r∗, δ∗ ∈]0,+∞[. Then there exist r ∈]0, r∗[,
δ ∈]0, δ∗[, r < δ such that for each x ∈ ∂Ω there exists Rx ∈ On(R) such
that C(x,Rx, r, δ) is a coordinate cylinder for Ω around x and the corresponding
function γx satisfies the inequality

sup
x∈∂Ω

‖γx‖C0,α(Bn−1(0,r))
< +∞ .
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10.3 Definition of Outer Nontangential Unit Vector Field and
Introduction of a Neighborhood of the Boundary

If Ω is a bounded open subset of class C1, then one can exploit the continuity of the
outward unit normal νΩ and prove that if ϑ ∈]0, 1[, then there exist a vector field
a of class C1 in the closure of a neighborhood U of ∂Ω and τ ∈]0,+∞[ such that
the following conditions hold

|a(x)| = 1 ∀x ∈ ∂U , (10.7)

sup
∂Ω

|a − νΩ | < ϑ ,

inf
∂Ω

a · νΩ > 1− ϑ2

2
> 1− ϑ ,

|a(x) · (y − x)| ≤ ϑ |x − y| ∀x, y ∈ ∂Ω , |x − y| < τ ,

(see reference [DaLaMu19, Ch. 2] with Dalla Riva and Musolino). Then one can
exploit the properties of a in (10.7) and prove that there exists t1 ∈]0,+∞[ such
that the following statements hold.

(i) The map Ψ from (∂Ω)×] − t1, t1[ to R
n defined by

Ψ (x, t) = x + ta(x) ∀(x, t) ∈ (∂Ω)×] − t1, t1[ ,

is injective, and the set

A(t2) ≡ Ψ ((∂Ω)×] − t2, t2[) = {x + ta(x) : t ∈] − t2, t2[, x ∈ ∂Ω}

is an open neighborhood of ∂Ω for all t2 ∈]0, t1]
(ii)

x + ta(x) ∈ Ω ∀t ∈] − t1, 0[ , x + ta(x) ∈ Ω− ∀t ∈]0, t1[ ,

(cf. [DaLaMu19, Ch. 2]). We now wonder whether the existence of a vector field
a as in (10.7) around the boundary of an open set of class at least C0,1 implies the
existence of t1 ∈]0,+∞[ so that the map Ψ satisfies the conditions (i) and (ii),
which we need to prove a generalization of Miranda’s inequality (10.1) in the set
A(t2) ∩Ω for t2 ∈]0, t1] small enough.

Since sets of class C0,1 do not necessarily have an outward normal at all points
of the boundary, we need to formulate assumptions on a which do not involve the
outward unit normal. To do so, we need the following well-known definition.

Definition 10.3 Let n ∈ N \ {0, 1}. Let Ω be an open subset of Rn. Let x ∈ ∂Ω .
Let v ∈ R

n \ {0}.
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(i) We say that v points to the interior of Ω at x provided that there exists ςx,v > 0
such that

x + tv ∈ Ω ∀t ∈]0, ςx,v[ .

(ii) We say that v points to the exterior of Ω at x provided that there exists ςx,v > 0
such that

x + tv ∈ R
n \Ω ∀t ∈]0, ςx,v[ .

In general, we cannot expect that a unit vector v points either to the interior or
to the exterior of Ω , but this may happen under certain assumptions. Then we are
ready to introduce the following definition, which does not involve the existence of
the outward unit normal.

Definition 10.4 Let n ∈ N \ {0, 1}. Let Ω be a bounded open subset of Rn. Let
ϑ ∈]0, 1[. We say that a map a from ∂Ω to R

n is an outer nontangential unit vector
field for Ω with parameter ϑ provided that the following conditions are satisfied.

(i) |a(x)| = 1 for all x ∈ ∂Ω .
(ii) There exists τ ∈]0,+∞[ such that

|a(x) · (y − x)| ≤ ϑ |y − x| ∀x, y ∈ ∂Ω such that |x − y| < τ .

(iii) a(x) points to the exterior of Ω at all points x ∈ ∂Ω and −a(x) points to the
interior of Ω at all points x ∈ ∂Ω .

An outer nontangential unit vector field for Ω with parameter ϑ can play the
role of a normal in the definition of a tubular neighborhood of ∂Ω , as the following
statement shows (see also reference [LaRo08] with Rossi for a related result which
holds under stronger assumptions on Ω).

Lemma 10.2 Let Ω be a bounded open strict local hypograph of class C0. Let
ϑ ∈]0, 1[. Let n ∈ N \ {0, 1}. Let a ∈ C0,1(∂Ω,Rn) be an outer nontangential unit
vector field for Ω with parameter ϑ .

Then there exists t1 ∈]0,+∞[ such that the following statements hold.

(i) The map Ψ from (∂Ω)×] − t1, t1[ to R
n defined by

Ψ (x, t) = x + ta(x) ∀(x, t) ∈ (∂Ω)×] − t1, t1[ ,

is injective, and the set

A(t2) ≡ Ψ ((∂Ω)×] − t2, t2[) = {x + ta(x) : t ∈] − t2, t2[, x ∈ ∂Ω}

is an open neighborhood of ∂Ω for all t2 ∈]0, t1]
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(ii) We have

x + ta(x) ∈ Ω ∀t ∈] − t1, 0[ , x + ta(x) ∈ Ω− ∀t ∈]0, t1[ .

Proof Let τ be as in Definition 10.4(ii). By Lemma 10.1, there exist r , δ ∈]0,+∞[
such that

r < δ ≤ τ/2 ,

and such that for each x ∈ ∂Ω there exists Rx ∈ On(R), such that C(x,Rx, r, δ)
is a coordinate cylinder for Ω around x with γx ∈ C0(Bn−1(0, r), ] − δ, δ[) such
that γx(0) = x, |γx | < δ/2 as function which represents ∂Ω in C(x,Rx, r, δ) as a
graph. We first show the existence of t1 as in (i). Assume by contradiction that Ψ
is not injective for any choice of t1. Then for each j ∈ N there exist pairs (x′j , t ′j ),
(x′′j , t ′′j ) in ∂Ω×] − 2−j , 2−j [ such that

(x′j , t ′j ) �= (x′′j , t ′′j ) , Ψ (x′j , t ′j ) = Ψ (x′′j , t ′′j ) . (10.8)

In particular,

x′j �= x′′j ∀j ∈ N .

Indeed, if x′j = x′′j , then a(x′j ) = a(x′′j ) and the equality

x′j + t ′j a(x′j ) = x′′j + t ′′j a(x′′j )

implies that

t ′j a(x′j ) = t ′′j a(x′j ) ,

and thus t ′j = t ′′j , contrary to (x′j , t ′j ) �= (x′′j , t ′′j ). Possibly selecting a subsequence,
we can assume that there exist x′, x′′ ∈ ∂Ω such that

x′ = lim
j→∞ x′j , x′′ = lim

j→∞ x′′j .

Since a is continuous and limj→∞ t ′j = 0, the second equality of (10.8) implies that
x′ = x′′ ≡ x̃. By our contradiction assumption (10.8), we have the equality

0 = x′′j + t ′′j a(x′′j )− x′j − t ′j a(x′j ) ∀j ∈ N ,

which we rewrite as

0 = (x′′j − x′j )+ (t ′′j − t ′j )a(x′′j )+ t ′j (a(x′′j )− a(x′j )) ∀j ∈ N . (10.9)
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Then by dividing by |x′j − x′′j |, we obtain

t ′′j − t ′j
|x′′j − x′j |

a(x′′j ) = −
x′′j − x′j
|x′′j − x′j |

− t ′j
a(x′′j )− a(x′j )
|x′′j − x′j |

∀j ∈ N ,

and thus the triangular inequality implies that

∣∣∣∣∣
t ′′j − t ′j
|x′′j − x′j |

∣∣∣∣∣ ≤ 1+ |t ′j |Lip(a) ∀j ∈ N . (10.10)

Next we go back to the above equality (10.9) and take the scalar product with
x′′j−x′j
|x′′j−x′j |2

and obtain

0 = 1+ t ′′j − t ′j
|x′′j − x′j |

a(x′′j ) ·
x′′j − x′j
|x′′j − x′j |

+ t ′j
a(x′′j )− a(x′j )
|x′′j − x′j |

· x
′′
j − x′j

|x′′j − x′j |
∀j ∈ N .

In order to exploit condition (ii) of Definition 10.4, we choose j0 ∈ N so that

|x′′j − x′j | ≤ |x′′j − x̃| + |x̃ − x′j | ≤ τ ∀j0 ≤ j ∈ N ,

and thus inequality (10.10) and the above equality imply that

1 ≤ (1+ |t ′j |Lip(a))ϑ + |t ′j |Lip(a) ∀j0 ≤ j ∈ N .

Since limj→∞ t ′j = 0, we obtain 1 ≤ ϑ , a contradiction. Hence, there exists t1 ∈
]0,+∞[ such that Ψ is injective on (∂Ω)×] − t1, t1[.

Next we turn to show that A(t2) is open for all t2 ∈]0, t1]. Let t2 ∈]0, t1],
(x#, t#) ∈ A(t2). Since Ψ is injective, then the composition Ψ # of Ψ with the
continuous and injective map (x# + Rt

x#
(η, γ (η))t , t) of the variable (η, t), i.e., the

map

Ψ #(η, t) ≡ Ψ (x# + Rt
x#
(η, γ (η))t , t)

= x# + Rt
x#
(η, γ (η))t + ta(x# + Rt

x#
(η, γ (η))t )

for all (η, t) ∈ Bn−1(0, r)×] − t2, t2[, is continuous and injective. Then the
Theorem of Invariance of Domain (cf. e.g., Deimling [De85, Thm. 4.3]) implies
that Ψ #(Bn−1(0, r)×] − t2, t2[) is an open subset of Rn. Since

(x#, t#) ∈ Ψ #(Bn−1(0, r)×] − t2, t2[) ⊆ A(t2) ,

it follows that (x#, t#) is interior to A(t2). Hence, A(t2) is open.
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Next we turn to prove statement (ii). Let x ∈ ∂Ω . Then we set

A(x, t1)
+ ≡ {x + ta(x) : t ∈]− t1, 0[} , A(x, t1)

− ≡ {x + ta(x) : t ∈]0, t1[} .

Since Ψ is injective, we have

Ψ ({x}×] − t1, t1[) ∩ ∂Ω = {x} .

Indeed, if there exists t ∈] − t1, t1[ such that

y ≡ x + ta(x) ∈ ∂Ω ,

then

Ψ (y, 0) = Ψ (x, t)

and the injectivity of Ψ implies that x = y, t = 0. Hence,

A(x, t1)
± ⊆ R

n \ ∂Ω .

Since the arcs A(x, t1)± cannot intersect ∂Ω , they cannot contain both points of Ω
and of Ω−. We now show that

A(x, t1)
+ ⊆ Ω , A(x, t1)

− ⊆ Ω− ,

and we turn to prove the former inclusion. By assumption, −a(x) points to the
interior of Ω and thus there exists ςx,−a(x) > 0 such that

x + ta(x) ∈ Ω ∀t ∈] − ςx,−a(x), 0[ ,

and thus in particular for all t ∈] − min{ςx,−a(x), t1}, 0[. Hence, the connected
set A(x, t1)+ contains points of Ω and thus, as we have shown above, A(x, t1)+
cannot contain points of Ω− and we must have A(x, t1)+ ⊆ Ω . Then the inclusion
A(x, t1)

− ⊆ R
n \Ω can be proved similarly. ��

10.4 An Inequality for Hölder Continuous Functions
on Local Hypographs

Next we introduce the following two preliminary technical statements.

Lemma 10.3 Let n ∈ N \ {0, 1}. Let ϑ ∈]0, 1[. If v, w ∈ R
n and if

|v · w| ≤ ϑ |v| |w| ,
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then |v + w|2 ≥ (1− ϑ)(|v|2 + |w|2)+ ϑ(|v| − |w|)2.

Proof It suffices to note that

|v + w|2 = |v|2 + |w|2 + 2v · w
≥ |v|2 + |w|2 − 2|v · w| ≥ |v|2 + |w|2 − 2ϑ |v||w|
= (1− ϑ)(|v|2 + |w|2)+ ϑ(|v|2 + |w|2 − 2|v||w|)
= (1− ϑ)(|v|2 + |w|2)+ ϑ(|v| − |w|)2 .

��
Lemma 10.4 Let n ∈ N \ {0, 1}. Let Ω be a bounded open Lipschitz subset of Rn.
Let ϑ ∈]0, 1[. Let a ∈ C0,1(∂Ω,Rn) be an outer nontangential unit vector field for
Ω with parameter ϑ .

Let τ ∈]0,+∞[ satisfy the condition (ii) of Definition 10.4. Let t1 ∈]0,+∞[ be
as in Lemma 10.2. Let p ∈ ∂Ω . Let r , δ ∈]0,+∞[,

2δ < min{τ/2, t1} r < δ ,

and Rp ∈ On(R) be such that C(p,Rp, r, δ) is a coordinate cylinder for Ω around
p. Let γp ∈ C0,1(Bn−1(0, r)) represent ∂Ω in C(p,Rp, r, δ) as a graph. Let

C(p,Rp, r, δ) ∩Ω ⊆ A(t1)
+ ≡ {x + ta(x) : t ∈] − t1, 0[, x ∈ ∂Ω} .

Let

t2 ∈
]

0,min

{
r

4
,

(1− ϑ)1/2

2
√

2(Lip(a)+ 1)
,
t1

2

}[
.

If α ∈]0, 1], then there exists B ∈]0,+∞[ such that

|f : [p + Rt
p(Bn−1(0, r/4)×] − δ/4, δ/4[)] ∩ A(t2)+|α ≤ BMt1,α(f ) (10.11)

for all f ∈ C1(Ω) such that

Mt1,α(f ) ≡ sup{|t |1−α|Df (x + ta(x))| : (x, t) ∈ (∂Ω)×] − t1, 0[} < +∞ .

(10.12)

Proof If Mt1,α(f ) = 0, then Df = 0 on A(t1)+ and accordingly on the connected
set C(p,Rp, r, δ) ∩ Ω and f is constant on C(p,Rp, r, δ) ∩ Ω . Hence, the
inequality (10.11) holds true. Thus we can assume that Mt1,α(f ) > 0.

In order to estimate the Hölder constant of f as in (10.11), we take two arbitrary
points p′, p′′ ∈ [p + Rt

p(Bn−1(0, r/4)×] − δ/4, δ/4[)] ∩ A(t2)
+ and we turn to

estimate |f (p′)− f (p′′)|. In order to exploit condition (10.12) on f , we plan to to
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define a Lipschitz arc in A(t1)+ with endpoints p′ and p′′. Lemma 10.2 implies that
there exist x′, x′′ ∈ ∂Ω , t ′, t ′′ ∈] − t2, 0[ such that

p′ = x′ + t ′a(x′) , p′′ = x′′ + t ′′a(x′′) .

By the triangular inequality and by the equality |a(x′)| = 1, and by the inequality
t2 < r/4 < δ/4, we have

x′ ∈ Bn(p
′, t2) ⊆ [p + Rt

p(Bn−1(0, r/4)×] − δ/4, δ/4[)] + Bn(0, t2)

⊆ [p + Rt
p(Bn−1(0, r/2)×] − δ/2, δ/2[)] ,

and similarly, x′′ ∈ [p+Rt
p(Bn−1(0, r/2)×]−δ/2, δ/2[)]. Since x′, x′′ ∈ ∂Ω , then

there exist ξ ′, ξ ′′ ∈ Bn−1(0, r/2) such that

x′ = φp(ξ
′) = p + Rt

p(ξ
′, γp(ξ ′))t ,

x′′ = φp(ξ
′′) = p + Rt

p(ξ
′′, γp(ξ ′′))t .

Next we plan to introduce a Lipschitz arc on ∂Ω with endpoints x′ and x′′. To do
so, we note that the convexity of Bn−1(0, r/2) implies that

y(s) ≡ ξ ′ + s(ξ ′′ − ξ ′) ∈ Bn−1(0, r/2) ∀s ∈ [0, 1] .

Since γp is Lipschitz continuous, the arc

ψx′,x′′(s) ≡ p + Rt
p(y(s), γp(y(s))) ∀s ∈ [0, 1]

in ∂Ω is rectifiable and

length(ψξ ′,ξ ′′) ≤
∫ 1

0

√
|ξ ′ − ξ ′′|2 + Lip (γp)2|ξ ′ − ξ ′′|2 ds ≤ cγp |ξ ′ − ξ ′′|

where

cγp ≡
√

1+ Lip (γp)2 .

Next we introduce a Lipschitz arc in A+(t2) with endpoints p′ and p′′. By the
convexity of ] − t2, 0[, we have

(1− s)t ′ + st ′′ ∈] − t2, 0[ ∀s ∈ [0, 1] ,

and thus we have

Γ (s) ≡ ψx′,x′′(s)+ [(1− s)t ′ + st ′′]a(ψx′,x′′(s)) ∈ A+(t2) ∀s ∈ [0, 1] .
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Next we note that

Γ (s) ∈ [p + Rt
p(Bn−1(0, r/2)×] − δ/2, δ/2[)] + Bn(0, t2)

⊆ [p + Rt
p(Bn−1(0, 3r/4)×] − 3δ/4, 3δ/4[)] ∀s ∈ [0, 1] ,

Γ (0) = p′ , Γ (1) = p′′ .

Moreover,

length(Γ ) ≤ length(ψξ ′,ξ ′′)+ |t ′ − t ′′| + |t2|Lip (a)length(ψξ ′,ξ ′′)

≤ cγp |ξ ′ − ξ ′′| + |t ′ − t ′′| + |t2|Lip (a)cγp |ξ ′ − ξ ′′|
≤ |x′ − x′′|cγp (1+ |t2|Lip (a))+ |t ′ − t ′′| .

Next we set

d1 ≡ min{|p′ − p′′|, r/4}

and we exploit the curve Γ in order to define a curve in A(t1)+ with endpoints

x′ + (t ′ − d1)a(x
′) , x′′ + (t ′′ − d1)a(x

′′) .

To do so, we set

Γd1(s) ≡ Γ (s)− d1a(ψx′,x′′(s)) ∀s ∈ [0, 1] .

Since

(1− s)t ′ + st ′′ − d1 ∈] − t2 − d1, 0[
⊆] − (t1/2)− (r/4), 0[⊆] − (t1/2)− (t1/8), 0[⊆] − t1, 0[ ∀s ∈]0, 1[ ,

we have

Γd1(s) ∈ A(t1)+ ∀s ∈]0, 1[ .

Then we have

Γd1(s) ∈ [p+Rt
p(Bn−1(0, 3r/4)×]− 3δ/4, 3δ/4[)] +Bn(0, d1) ⊆ C(p,Rp, r, δ) ,

for all s ∈ [0, 1] and

Γd1(0) = x′ + (t ′ − d1)a(x
′) , Γd1(1) = x′′ + (t ′′ − d1)a(x

′′) .
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Moreover,

length(Γd1) ≤ length(Γ )+ d1Lip(a)length(ψξ ′,ξ ′′)

≤ (1+ d1Lip(a))
[|x′ − x′′|cγp (1+ |t2|Lip (a))+ |t ′ − t ′′|] .

Next we note that

x′ + (t ′ − sd1)a(x
′) ∈ [p + Rtp(Bn−1(0, 3r/4)×] − 3δ/4, 3δ/4[)] + Bn(0, d1)

⊆ C(p,Rp, r, δ) ∀s ∈ [0, 1] ,

and similarly

x′′ + (t ′′ − sd1)a(x
′′) ∈ C(p,Rp, r, δ) ∀s ∈ [0, 1] .

Then by the memberships

t ′ − sd1, t
′′ − sd1 ∈] − t2 − d1, 0[

⊆] − (t1/2)− (r/4), 0[⊆] − (t1/2)− (t1/8), 0[⊆] − t1, 0[ ∀s ∈ [0, 1] ,

we have

x′ + (t ′ − sd1)a(x
′) ∈ A(t1)+ , x′′ + (t ′′ − sd1)a(x

′′) ∈ A(t1)+ ∀s ∈ [0, 1] .

We now wish to estimate |x′ − x′′| and |t ′ − t ′′| in terms of |p′ − p′′|. There is no
loss of generality in assuming that

t ′′ < t ′ .

By assumption, we know that

∣∣∣∣a(x) · y − x

|y − x|
∣∣∣∣ ≤ ϑ ∀x, y ∈ C(p,Rp, r, δ) ∩ (∂Ω) , x �= y .

Indeed, |x−y| ≤ 2r+δ < τ for all x, y ∈ C(p,Rp, r, δ)∩(∂Ω). Then Lemma 10.3
implies that

|p′ − p′′| = |(x′ + t ′a(x′))− (x′′ + t ′′a(x′′))|
= |(x′ − x′′)+ (t ′ − t ′′)a(x′)+ t ′′(a(x′)− a(x′′))|
≥ |(x′ − x′′)+ (t ′ − t ′′)a(x′)| − |t ′′| |a(x′)− a(x′′)|
≥ (1− ϑ)1/2

√
|x′ − x′′|2 + |t ′ − t ′′|2|a(x′)|2 − t2Lip(a)|x′ − x′′| .
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Then by the elementary inequality

a1 + a2 ≤
√

2(a2
1 + a2

2)
1/2 ∀a1, a2 ∈ [0,+∞[ ,

we have

(1− ϑ)1/2
√
|x′ − x′′|2 + |t ′ − t ′′|2|a(x′)|2 − t2Lip(a)|x′ − x′′|

≥ (1− ϑ)1/2

√
2

(|x′ − x′′| + |t ′ − t ′′|)− t2Lip(a)|x′ − x′′|

=
(
(1− ϑ)1/2

√
2

− t2Lip(a)

)
|x′ − x′′| + (1− ϑ)1/2

√
2

|t ′ − t ′′|

≥ (1− ϑ)1/2

2
√

2
|x′ − x′′| + (1− ϑ)1/2

√
2

|t ′ − t ′′| .

Indeed, t2 ≤ (1−ϑ)1/2

2
√

2(1+Lip(a))
. Then we have

|t ′ − t ′′| ≤
√

2

(1− ϑ)1/2
|p′ −p′′| , |x′ −x′′| ≤ 2

√
2

(1− ϑ)1/2
|p′ −p′′| . (10.13)

We now assume that f ∈ C1(Ω) satisfies condition (10.12) and we turn to estimate

|f (p′)− f (p′′)| = |f (x′ + t ′a(x′))− f (x′′ + t ′′a(x′′))| (10.14)

≤ |f (x′ + t ′a(x′))− f (x′ + (t ′ − d1)a(x
′))|

+|f (x′ + (t ′ − d1)a(x
′))− f (x′′ + (t ′′ − d1)a(x

′′))|
+|f (x′′ + (t ′′ − d1)a(x

′′))− f (x′′ + t ′′a(x′′))|

≤
∫ t ′

t ′−d1

∣∣a(x′) ·Df (x′ + sa(x′))
∣∣ ds +

∫ 1

0
|Df (Γd1(s))| |Γ ′d1

(s)| ds

+
∫ t ′′

t ′′−d1

∣∣a(x′′) ·Df (x′′ + sa(x′′))
∣∣ ds

≤
∫ t ′

t ′−d1

Mt1,α(f )|s|α−1 ds

+
∫ 1

0
Mt1,α(f )|(1− s)t ′ + st ′′ − d1|α−1|Γ ′d1

(s)| ds

+
∫ t ′′

t ′′−d1

Mt1,α(f )|s|α−1 ds .
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Since

(1− s)t ′ + st ′′ − d1 ∈] − t2 − d1,−d1[ ∀s ∈ [0, 1] ,

we have

|f (p′)− f (p′′)| ≤ Mt1,α(f )

∫ |t ′|+d1

|t ′|
sα−1 ds (10.15)

+length(Γd1)Mt1,α(f )d
α−1
1 +Mt1,α(f )

∫ |t ′′|+d1

|t ′′|
sα−1 ds

≤ Mt1,α(f )

{
dα1

α
+ |p′ − p′′|dα−1

1 (1+ d1Lip(a))

×
[

2
√

2

(1− ϑ)1/2 cγp (1+ |t1|Lip(a))+
√

2

(1− ϑ)1/2

]
+ dα1

α

}
,

(cf. (10.13)). Next we observe that

|p′ − p′′|
d1−α

1

= |p′ − p′′|
min1−α{|p′ − p′′|, r/4}

≤
{ |p′ − p′′|α if |p′ − p′′| ≤ r/4 ,
|p′−p′′|
(r/4)1−α ≤ |p′ − p′′|α diam(Ω)1−α

(r/4)1−α if |p′ − p′′| ≥ r/4 .

Hence, inequality (10.15) implies the validity of inequality (10.11) and the proof is
complete. ��
Proposition 10.1 Let n ∈ N \ {0, 1}. Let Ω be a bounded open Lipschitz subset of
R
n. Let ϑ ∈]0, 1[. Let a ∈ C0,1(∂Ω,Rn) be an outer nontangential unit vector field

for Ω with parameter ϑ .
Let t1 ∈]0,+∞[ be as in Lemma 10.2. Let α ∈]0, 1]. Then there exist B ∈

]0,+∞[, and a compact subset K of Ω such that

sup
Ω

|f | + |f : Ω|α ≤ B max

{
sup
K

|f |, sup
K

|Df |,Mt1,α(f )

}

for all f ∈ C1(Ω) such that

Mt1,α(f ) ≡ sup{|t |1−α|Df (x + ta(x))| : (x, t) ∈ (∂Ω)×] − t1, 0[} < +∞ .

(10.16)

Proof Let τ ∈]0,+∞[ satisfy the condition (ii) of Definition 10.4. By our
assumption on Ω , for each point x ∈ ∂Ω there exists a coordinate cylinder
C(x,Rx, rx, δx) for Ω around x and if rx + δx is less than the distance between



214 M. Lanza de Cristoforis

∂Ω and R
n \ A(t1), then we have C(x,Rx, rx, δx) ⊆ A(t1). Thus we now choose

r∗, δ∗ ∈]0,+∞[ such that

r∗ + δ∗ < dist(∂Ω,Rn \ A(t1)) .

Since we plan to invoke Lemma 10.4, we also assume that

2δ∗ < min{τ/2, t1} .

Then by Lemma 10.1, there exist r ∈]0, r∗[, δ ∈]0, δ∗[, r < δ such that if x ∈ ∂Ω ,
then there exists Rx ∈ On(R) such that C(x,Rx, r, δ) is a coordinate cylinder for
Ω around x and the corresponding function γx satisfies the inequality

sup
x∈∂Ω

‖γx‖C0,1(Bn−1(0,r))
< +∞ . (10.17)

Since r + δ < dist(∂Ω,Rn \ A(t1)), we have

C(x,Rx, r, δ) ∩Ω ⊆ A(t1)
+ ≡ A(t1) ∩Ω ∀x ∈ ∂Ω .

Since ∂Ω is compact, there exists a finite family {x(j)}mj=1 of points of ∂Ω such that

∂Ω ⊆
m⋃
j=1

[x(j) + Rt
x(j)

(Bn−1(0, r/4)×] − δ/4, δ/4[)] ,

and we note that the right-hand side is an open neighborhood of ∂Ω . We now set

μ ≡ min
j=1,...,m

{
r/4,

(1− ϑ)1/2

2
√

2(Lip(a)+ 1)
,
t1

2
,

dist

(
∂Ω,Ω \

m⋃
j=1

[x(j) + Rt
x(j)

(Bn−1(0, r/4)×] − δ/4, δ/4[)]
)}

,

and we choose t2 ∈]0, μ[. In particular, we have

A(t2)
+ ⊆ A(t2) ⊆ {x ∈ Ω : dist(x, ∂Ω) < μ}

⊆
m⋃
j=1

[x(j) + Rt
x(j)

(Bn−1(0, r/4)×] − δ/4, δ/4[)] .

Then Lemma 10.4 implies that there exists Bj ∈]0,+∞[ such that

|f : [x(j) + Rt
x(j)

(Bn−1(0, r/4)×] − δ/4, δ/4[)] ∩ A(t2)+|α ≤ BjMt1,α(f ) ,

(10.18)
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for all j ∈ {1, . . . , m} and for all f ∈ C1(Ω) such that Mt1,α(f ) < +∞. Now let
Ω1 be an open subset of class C∞ of Ω such that

Ω \ A(t2)+ ⊆ Ω1 ⊆ Ω1 ⊆ Ω ,

(cf. Lemma 10.5 of the Appendix). Since Ω1 is of class C∞, we know that there
exists cα[Ω1] ∈]0,+∞[ such that

|f : Ω1|α ≤ cα[Ω1] sup

{
sup
Ω1

|f |, sup
Ω1

|Df |
}
, (10.19)

for all f ∈ C1(Ω1) (cf. e.g., [La91, §2], reference [DaLaMu19, Ch. 2] with Dalla
Riva and Musolino). We now take f ∈ C1(Ω) such that Mt1,α(f ) < +∞ and we
turn to estimate |f : Ω|α . To do so, we observe that

Ω ⊆ Ω1∪
m⋃
j=1

{
[x(j) + Rt

x(j)
(Bn−1(0, r/4)×] − δ/4, δ/4[)] ∩ A(t2)

}
. (10.20)

LetΛ be a Lebesgue number corresponding to the open cover ofΩ in the right-hand
side. We can clearly assume that

Λ < δ/4 .

If p′, p′′ ∈ Ω and |p′ − p′′| ≤ Λ, then both p′ and p′′ belong to at least one of the
open sets in the right-hand side of (10.20) and thus inequalities (10.18) and (10.19)
imply that

|f (p′)−f (p′′)| ≤ max

{
B̃Mt1,α(f ), cα[Ω1] sup

Ω1

|f |, cα[Ω1] sup
Ω1

|Df |
}
|p′−p′′|α ,

(10.21)
where

B̃ ≡ max
j∈{1,...,m}Bj .

In order to estimate |f (p′) − f (p′′)| in case |p′ − p′′| > Λ, we need to estimate
supΩ |f |. Indeed,

|f (p′)− f (p′′)| ≤ 2 supΩ |f |
Λα

|p′ − p′′|α

whenever |p′ − p′′| > Λ. To do so, we note that

x(j) − t2

2
a(x(j)) ∈ A(t2)+ ⊆ Ω ∀j ∈ {1, . . . , m} ,
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and that our assumptions t2 < μ < r/4, r < δ imply that

x(j) − t2

2
a(x(j)) ∈ Bn(x

(j), r/8) ⊆ x(j) + Rt
x(j)

(Bn−1(0, r/4)×] − δ/4, δ/4[)

for all j ∈ {1, . . . , m}. By Lemma 10.5 of the Appendix, there exists an open subset
Ω2 of class C∞ of Ω such that

Ω1 ∪
{
x(j) − t2

2
a(x(j)) : j ∈ {1, . . . , m}

}
⊆ Ω2 ⊆ Ω2 ⊆ Ω .

If p ∈ Ω \Ω2, then p ∈ Ω \Ω1 and

p ∈ A(t2)+ ⊆
m⋃
j=1

[x(j) + Rt
x(j)

(Bn−1(0, r/4)×] − δ/4, δ/4[)]

and accordingly, there exists j̃ ∈ {1, . . . , m} such that

p ∈ A(t2)+ ∩ [x(j̃ ) + Rt

x(j̃)
(Bn−1(0, r/4)×] − δ/4, δ/4[)] .

Since both p and x(j̃ ) − t2
2 a(x

(j̃ )) belong to

A(t2)
+ ∩ [x(j̃ ) + Rt

x(j̃)
(Bn−1(0, r/4)×] − δ/4, δ/4[)]

and x(j̃ ) − t2
2 a(x

(j̃ )) belongs to Ω2, we have

|f (p)| ≤ |f (p)− f (x(j̃ ) − t2

2
a(x(j̃ )))| + |f (x(j̃ ) − t2

2
a(x(j̃ )))|

≤ B̃Mt1,α(f )

∣∣∣∣p − x(j̃ ) − t2

2
a(x(j̃ ))

∣∣∣∣
α

+ sup
Ω2

|f | .

Since both p and x(j̃ ) − t2
2 a(x

(j̃ )) belong to

x(j̃ ) + Rt

x(j̃)
(Bn−1(0, r/4)×] − δ/4, δ/4[)

that has a diameter less than or equal to 2(r/4)+ 2(δ/4) < δ, we have

|f (p)| ≤ B̃Mt1,α(f )δ
α + sup

Ω2

|f | .
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If instead p ∈ Ω2, we certainly have |f (p)| ≤ supΩ2
|f |. Hence,

sup
Ω

|f | ≤ B̃Mt1,α(f )δ
α + sup

Ω2

|f |

and

|f : Ω|α
≤ max

{
max

{
B̃Mt1,α(f ), cα[Ω1] sup

Ω1

|f |, cα[Ω1] sup
Ω1

|Df |
}
,

2

Λα
sup
Ω

|f |
}
.

Then by taking K = Ω2, we conclude that B as in the statement does exist. ��

Appendix

Proof of Lemma 10.1 If x ∈ ∂Ω , then there exists a coordinate cylinder
C(x,Rx, rx, δx) around x and a corresponding function γ̃x which represents ∂Ω in
C(x,Rx, rx, δx). Now let

δ′x ∈]0,min{δx, δ∗}[ .

Since γ̃x is continuous, there exists r ′x ∈]0,+∞[ such that

r ′x < min{rx, r∗} , |γ̃x(η)| < 1

2
δ′x ∀η ∈ Bn−1(0, r

′
x) .

Then C(x,Rx, r
′
x, δ

′
x) is a coordinate cylinder for Ω around x and the restriction

γ̃x|Bn−1(0,r ′x) represents ∂Ω in C(x,Rx, r ′x, δ′x). By definition of C0,α-norm, we have

‖γ̃x|Bn−1(0,r ′x)‖C0,α(Bn−1(0,r ′x)) ≤ ‖γ̃x|Bn−1(0,rx )‖C0,α(Bn−1(0,rx ))
.

Since

{
x + Rt

x

(
Bn−1(0, r

′
x/4)×] − δ′x, δ′x[

)}
x∈∂Ω

is an open cover of ∂Ω and ∂Ω is compact there exists a finite family {x(j)}kj=1 of
points of ∂Ω such that

∂Ω ⊆
k⋃

j=1

[
x(j) + Rt

x(j)

(
Bn−1(0, r

′
x(j)

/4)×] − δ′
x(j)

, δ′
x(j)
[)] .
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To shorten our notation, we find convenient to set

Rj ≡ Rx(j) , r ′j ≡ r ′
x(j)

δ′j ≡ δ′
x(j)

, γj ≡ γ̃x(j)|Bn−1(0,r ′
x(j)

)

for all j ∈ {1, . . . , k}. Next we choose

δ ∈]0, 1

4
min

j∈{1,...,k} δ
′
j [ .

By the uniform continuity of the functions γj , there exists

r ∈]0, 1

4
min

j∈{1,...,k} r
′
j [

such that

|γj (η1)− γj (η2)| < δ/2 whenever η1, η2 ∈ Bn−1(0, rj ) , |η1 − η2| < r

(10.22)

for all j ∈ {1, . . . , k}. Next we fix an arbitrary x ∈ ∂Ω and we define a coordinate
cylinder for Ω around x. Let j ∈ {1, . . . , k} be such that

x ∈ x(j) + Rt
j

(
Bn−1(0, r

′
j /4)×] − δ′j , δ′j [

)
.

Then there exists ηx ∈ Bn−1(0, r ′j /4) such that

x = x(j) + Rt
j (ηx, γj (ηx))

t .

Since r < r ′j /4, we have

Bn−1(ηx, r) ⊆ Bn−1(0, r
′
j /2) .

Since δ < δ′j /4, we have

]γj (ηx)− δ, γj (ηx)+ δ[⊆] − (δ′j /2)− δ, (δ′j /2)+ δ[⊆] − (3δ′j /4), (3δ′j /4)[ .

Next we set

γx(η) ≡ γj (ηx + η)− γj (ηx) ∀η ∈ Bn−1(0, r) ,

and we claim that

C(x,Rj , r, δ)
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is a coordinate cylinder for Ω around x and that γx represents ∂Ω in C(x,Rj , r, δ).
To do so, we observe that

Rj (Ω − x) ∩ (Bn−1(0, r)×] − δ, δ[) (10.23)

= Rj

(
Ω − x(j) − Rt

j (ηx, γj (ηx))
t
)
∩ (Bn−1(0, r)×] − δ, δ[)

=
(
Rj (Ω − x(j))− (ηx, γj (ηx))

t
)

∩ ((Bn−1(ηx, r)×] − δ + γj (ηx), γj (ηx)+ δ[)− (ηx, γj (ηx))
t
)

= Rj (Ω − x(j)) ∩ (
Bn−1(ηx, r)×] − δ + γj (ηx), γj (ηx)+ δ[)− (ηx, γj (ηx))

t

= Rj (Ω − x(j)) ∩
(
Bn−1(0, r

′
j )×] − δ′j , δ′j [

)

∩ (Bn−1(ηx, r)×] − δ + γj (ηx), γj (ηx)+ δ[)− (ηx, γj (ηx))

= (hypographs(γj ))

∩ (Bn−1(ηx, r)×] − δ + γj (ηx), γj (ηx)+ δ[)− (ηx, γj (ηx)) .

Next we observe that

hypographs(γx) (10.24)

= {(η, y) ∈ Bn−1(0, r)×] − δ, δ[: y < γx(η)}
= {

(η, y) ∈ Bn−1(0, r)×] − δ, δ[: y + γj (ηx) < γj (ηx + η)
}

= {
(η, y) ∈ Bn−1(0, r)×] − δ, δ[: (η + ηx, y + γj (ηx)) ∈ hypographs(γj )

}
= {

(η, y) ∈ Bn−1(0, r)×] − δ, δ[: (η, y) ∈ hypographs(γj )− (ηx, γj (ηx))
}

=
{
(η, y) ∈ (

Bn−1(ηx, r)×] − δ + γj (ηx), γj (ηx)+ δ, [)− (ηx, γj (ηx)) :

(η, y) ∈ hypographs(γj )− (ηx, γj (ηx))

}

=
[

hypographs(γj )

∩ (Bn−1(ηx, r)×] − δ + γj (ηx), γj (ηx)+ δ, [)
]
− (ηx, γj (ηx)) .

Then by combining (10.23) and (10.24) we obtain

Rj (Ω − x) ∩ (Bn−1(0, r)×] − δ, δ[) = hypographs(γx) .
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By the definition of γx and by inequality (10.22), we have

γx(0) = 0 , |γx(η)| < δ/2 ∀η ∈ Bn−1(0, r) .

Moreover, γx has the same regularity of γj and if α > 0, we have

|γx : Bn−1(0, r)|α ≤ ‖γj‖C0,α(Bn−1(0,r ′j ))
≤ sup

l=1,...,k
‖γl‖C0,α(Bn−1(0,r ′l ))

< +∞ ,

and thus the proof is complete. ��
Lemma 10.5 Let Ω be an open subset of Rn. Let K be a compact subset of Ω .
Then there exists an open bounded subset Ω1 of Ω of class C∞ such that

K ⊆ Ω1 ⊆ Ω1 ⊆ Ω .

If we further assume that K is connected, then we can take Ω1 to be connected.

For a proof, we refer to [DaLaMu19, Ch. 2], which contains a proof due to G. De
Marco.1
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Chapter 11
Two-Phase Three-Component Flow in
Porous Media: Mathematical Modeling
of Dispersion-Free Pressure Behavior

Luara K. S. Sousa, Luana C. M. Cantagesso, Adolfo P. Pires,
and Alvaro M. M. Peres

11.1 Introduction

Expected ultimate recovery from oil reservoirs ranges between 10–40% under
primary depletion. Enhanced oil recovery (EOR) methods are designed to increase
the final recovery of a particular field by the injection of specific fluids into the
reservoir. Most of the EOR techniques can be classified into three major groups
according to their most important physical-chemical mechanism: Thermal (hot
waterflooding, steam drive, or in situ combustion), Chemical (alkaline flooding,
surfactant flooding, or micellar polymer flooding), or Solvent (miscible or partially
miscible carbon dioxide, hydrocarbon, nitrogen, or natural gas injection) [La89].

Regardless of the chosen method, an EOR project requires significant additional
investments. Thus, selecting the right EOR method for a given field is an important
step for the project’s technical and financial success. Given the large amount
of available EOR techniques, it is not feasible running full field compositional
3-D numerical simulation for each EOR method. It is necessary to perform a
previous screening to select the most promising techniques based on semi-analytical
solutions that are simple enough to generate fast results but accurate to model the
incremental oil production and injection pressures required. This work describes a
general procedure for obtaining these solutions by limiting the geometry to a single
dimension and representing the fluid by at most three components. To exemplify the
proposed procedure, we detail the solution for three usual oil recovery techniques
such as waterflooding, polymer flooding, and miscible flooding.

Next section presents the mathematical model for a general case, its main
hypothesis and solution procedure; followed by a detailed solution for each of the
selected applications. Next, some concluding remarks.
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11.2 Physical and Mathematical Model

In this work we solve the one-dimensional two-phase three-component flow in an
infinite porous media. We consider oil displacement by the injection of an enhanced
oil recovery fluid at constant rate qinj . The porous media is saturated with a liquid
(oil) phase at the initial state. After the beginning of the injection, three different
regions appear: a single-phase injected fluid region followed by a two-phase region
(displaced and displacing phases) where mass transfer may take place, and a single-
phase liquid region (Fig. 11.1).

The following hypothesis will be adopted in our mathematical model:

• Isothermal flow.
• Homogeneous porous media.
• Incompressible rock and fluid system for injection and two-phase regions.
• Slightly compressible rock and fluid for original liquid phase region.
• No chemical reactions.
• Gravity, dispersion, and capillary effects are negligible.
• Darcy’s law is valid.

Under these assumptions, the i-th component mass conservation is given by
[La89]:

∂
(
ϕ(
∑np

j=1(ρjSjωij ))+ (1− ϕ)ρsωis

)

∂t
+
∂
(∑np

j=1 ρjujωij

)

∂x
= 0 (11.1)

where ϕ is the porosity, ρj is the density of phase j , Sj is the saturation of phase j ,
ωij is the mass fraction of component i in phase j , and uj is the apparent velocity
of phase j . Subscript s refers to the solid phase.

Displacing-fluid single-phase

Displaced-fluid single-phase
Two-phase zone

q

Region 1 Region 2 Region 3

inj.

Fig. 11.1 Representation of the three regions
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The fractional flow function of a phase
(
fj
)

is defined as

fj = uj

uT
⇔ uj = fjuT (11.2)

and total velocity uT is given by the multicomponent multiphase horizontal Darcy’s
law:

uT = −k
⎡
⎣

Np∑
j=1

krj (So)

μj ( �C)

⎤
⎦ ∂p

∂x
(11.3)

where p is pressure, k denotes absolute permeability, krj is phase j relative
permeability, μj is the viscosity of phase j , So is the oil saturation, and �C is the
concentration vector.

The term inside the brackets in Eq. (11.3) represents the total mobility (λT ), so
this equation can be written as:

uT = −λT (So, �C)k ∂p
∂x

(11.4)

The problem is solved in two steps. First, the Riemann problem is solved for
saturation and concentration. Then, Darcy’s law is integrated over the spatial domain
for pressure determination.

11.3 Applications

In this section the solution procedure described previously is applied to three
different oil recovery problems: waterflooding, the most used technique of oil
production; polymer flooding accounting for adsorption, a chemical method of
enhanced oil recovery, and three-component miscible flooding with mass transfer
between phases.

11.3.1 Waterflooding

Water injection in reservoirs is the most popular method of oil recovery, it combines
low cost with ease of handling. Besides the previously presented hypothesis, in this
case we consider that there is only one component in each phase (oil component in
oil phase and water component in water phase) and the phases are immiscible, i.e.,
no mass transfer occurs.
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Table 11.1 Characteristic
waves for waterflooding

Eigenvalue Shock speed

λSw = uT
φ

∂fw
∂Sw

DBL = uT
φ

[fw ]
[Sw ]

Fig. 11.2 Water-oil relative
permeability

sw

k r

krw
kro

0 1

1

Following the described assumptions, Eq. (11.1) takes the following form for
each phase:

ϕ
∂Sj

∂t
+ uT

∂fj
(
Sj
)

∂x
= 0 (11.5)

where j = o,w. Since the sum of saturations equals one, only one of the
equations 11.5 needs to be solved. The solution of this problem is composed by
rarefaction waves and shocks (Table 11.1).

Using Corey’s model [CoEtAl56] for relative permeability (Fig. 11.2), the
fractional flow function for this example is presented in Fig. 11.3.

For the following initial and boundary conditions

{
Sw (x, t = 0) = S

(I)
w Sw (x = 0, t) = S

(J )
w (11.6)

the solution path is depicted in Fig. 11.3. The Riemann solution is composed by a
saturation rarefaction wave from injection point (J ) to the water saturation front (F )
and a Buckley–Leverett saturation shock type from point (F ) to the initial condition
(I ).

The water saturation versus distance profile is shown in Fig. 11.4. For this
waterflooding example, the first region (single-phase water) does not appear due
to the fractional flow curve value close to the injection point (J ) (see Fig. 11.3).
The saturation front position at any time is given by x = DBLt , where DBL is the
Buckley–Leverett type shock wave speed. This plot also shows the flow rate q curve
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Fig. 11.3 Fractional flow
function for waterflooding
including solution path

1
0

1

← F

f w

sw

J)(

I)(

(J) - (F)     (I)←

Fig. 11.4 Water saturation
profile and flow rate

DBLt x

s w

q
sw

x (t)ss

(R)

(I)
0

M : 0 < x < D tt BL
(2) M : D t < x < ∞t BL

(3)

M MM Mtt tt
3)()2((2)

and the steady state front (xss). Note that as DBLt < xss(t), the two-phase region
is within the steady-state region [Th97].

The pressure behavior at the inlet point can be calculated through the integration
of Darcy’s law. For the particular case of waterflooding, we find the following
expression:

pw (x = 0, t)− pi = qinj

λ
(3)
T kA

∫ DBLt

0

(
λ
(3)
T

λ
(2)
T

(
x
′
, t
) − 1

)
dx

′ + 1

λ
(3)
T kA

∫ ∞

0
qT

(
x
′
, t
)
dx

′

(11.7)

where A is the reservoir cross sectional area, qT is the total flow rate, and the
superscript in brackets denotes the region where total mobility was calculated.
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Fig. 11.5 Pressure behavior
at injection point

0
t

p w

Single-phase oil

Inject ion solut ion

Figure 11.5 presents the pressure behavior at the porous media injection point
together with the single-phase oil solution for the same volumetric flow rate. Note
that the curves separate with time, when two-phase region grows in porous media.

11.3.2 Polymer Flooding

Injection of water containing dissolved chemical components is classified as
chemical enhanced oil recovery. Among others, polymers are one of the most used
chemical additives, because it increases water viscosity and, as a consequence,
decreases water mobility, enhancing areal sweep [La89].

Oil displacement by water containing dissolved polymers is modeled by two
hyperbolic equations, representing water volume conservation and polymer mass
conservation:

{
ϕ ∂Sw

∂t
+ uT

∂fw(Sw,ω)
∂x

= 0

ϕ
∂(ωSw+((1−ϕ)/ϕ)(ρs/ρw)ωs)

∂t
+ uT

∂(ωfw(Sw,ω))
∂x

= 0
(11.8)

where ω is the polymer concentration in water phase and ωs is the amount adsorbed.
For the sake of simplicity, we recast the adsorbed concentration as:

a (ω) = 1− ϕ

ϕ

ρs

ρw
ωs (11.9)
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and system (11.8) becomes
{
ϕ ∂Sw

∂t
+ uT

∂fw(Sw,ω)
∂x

= 0

ϕ
∂(ωSw+a(ω))

∂t
+ uT

∂(ωfw(Sw,ω))
∂x

= 0
(11.10)

Note that for polymer flooding, the fractional flow function depends on water
saturation and polymer concentration in water phase. In order to close the sys-
tem (11.10), we need a relation for the thermodynamic equilibrium between the
polymer concentration in water and solid phase, the so-called adsorption isotherm.
In this work, we chose Langmuir isotherm (Fig. 11.6) for this purpose:

a (ω) = γ1ω

1+ γ2ω
(11.11)

where γ1 and γ2 are empirical constants.
Table 11.2 shows the characteristic waves for this problem.
Figure 11.7 presents the solution path in (Sw×fw) plane along the two fractional

flow functions, one calculated with the initial conditions (f Iw) and the other with
injection (boundary) conditions (f Jw ):

{
Sw (x, t = 0) = S

(I)
w ω (x, t = 0) = ω(I)

Sw (x = 0, t) = S
(J )
w ω (x = 0, t) = ω(J)

(11.12)

Fig. 11.6 Langmuir
adsorption isotherm

w

)
w(a

Γ Γ/

0

1 2

Table 11.2 Characteristic
waves for polymer flooding

Eigenvalues Shock speeds

λSw = uT
φ

∂fw
∂Sw

DBL = uT
φ

[fw ]
[Sw ]

λc = uT
φ

fw

Sw+ da
dω

Dc = uT
φ

[fw ]
[Sw ]+ [a]

[w]
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f w
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(J)
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←

← F
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w
(I) (s

w
,w(I))

f
w
(J) (s

w
,w(J) )

Fig. 11.7 Fractional flow for polymer flooding including solution path

Figure 11.8 zooms the high water saturation part of the solution. It starts with a
saturation rarefaction wave at polymer injection concentration between points (J )
and (1) followed by a jump from (1) to (F ) (concentration transition). A Buckley–
Leverett type shock connects points (F ) and (I ) after a constant state.

Water saturation and polymer concentration profiles are shown in Fig. 11.9. The
two-phase region is split in two sub-regions, separated by a concentration-saturation
shock at x = Dct . Region 2a is composed by a saturation rarefaction wave with
constant polymer concentration (ωJ ), whereas in region 2b both saturation and
concentration are constant (SFw and ωI ). At x = DBLt water saturation jumps from
(F ) to (I ) (initial water saturation).

Pressure at inlet is given by

pw(x = 0, t)−pi = qinj

λ
(3)
T kA

[∫ Dct

0

(
λ
(3)
T

λ
(2a)
T

(
x
′
, t
) − 1

)
dx

′ +
∫ DBLt

Dct

(
λ
(3)
T

λ
(2b)
T

− 1

)
dx

′
]

+ 1

λ
(3)
T kA

∫ ∞

0
qT

(
x
′
, t
)
dx

′
(11.13)
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sw

f w (1)

(J)

Fig. 11.8 Zoom of high water saturation region (polymer flooding)
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D tBLD tc x (t)ss
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a)2(
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b)2(

Mtt
3)(J)(

(R)

M : D t < x < ∞t BL
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Fig. 11.9 Saturation and polymer concentration profiles for polymer flooding and flow rate
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11.3.3 Miscible Flooding

In this part we present the solution for the miscible flooding problem, an enhanced
oil recovery technique that is more suitable for intermediate density reservoir fluids.
Recently, due to environmental concerns, carbon dioxide has become the most used
injection fluid.

For the case of three-component two-phase (gas and liquid) miscible flow, the
conservation law for each component is given by

∂
(
ϕ(ρlSlωil + ρgSgωig)

)
∂t

+ ∂
(
ρlulωil + ρgugωig

)
∂x

= 0 (11.14)

for i = 1, 2, 3.
For this problem, we will also consider that Amagat’s law [PrEtAl86] is valid

and that the pure component density is the same for all phases. From Amagat’s law
we find:

ρjωij = ρicij (11.15)

where cij is the volumetric concentration of component i in phase j and ρi is the
pure component i density at system pressure and temperature. Applying Amagat’s
law (Eq. (11.15)) and the constant pure component density hypothesis, Eq. (11.14)
becomes

ϕ
∂
(
Slcil + Sgcig

)
∂t

+ uT
∂
(
flcil + fgcig

)
∂x

= 0 (11.16)

We define total concentration (Ci) and total flow (Fi) variables for component i
as:

Ci =
np∑
j=1

Sj cij (11.17)

Fi =
np∑
j=1

fj cij (11.18)

Applying Eqs. (11.17) and (11.18) in Eq. (11.16), the following hyperbolic
system of equations is found:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ
∂C2

∂t
+ uT

∂F2

∂x
= 0

ϕ
∂C3

∂t
+ uT

∂F3

∂x
= 0

(11.19)
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Fig. 11.10 Ternary diagram PC2

PC1 PC3

L
V

L+V

Fig. 11.11 Ternary diagram
in Cartesian coordinates

α

β
←

PC2

PC PC1 3

The solution of the hyperbolic system (11.19) depends on the phase equilibrium
conditions at system pressure and temperature. For a three-component fluid, the
thermodynamic equilibrium at a fixed pressure and temperature is represented by
a ternary diagram (Fig. 11.10) [Pi05], where L and V denote the vapor (gas) and
liquid (oil) phases, respectively. If the overall composition of a fluid lays inside the
two-phase envelop (L + V region), the vapor and liquid equilibrium compositions
are determined by the intercepts of the tie lines with the binodal curve [Or07].
The three-component two-phase equilibrium can also be presented in Cartesian
coordinates (Fig. 11.11). In this case, the tie lines can be parameterized by two
thermodynamic geometric variables α and β [Be93], given by
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α = c2l − c2g

c3l − c3g
, (11.20)

β = c2g − αc3g (11.21)

The variable α represents the tie line slope, whereas the β value is the intercept of
the tie line with vertical axis. Using an equation of state, one may obtain several tie
lines for a given fluid. Each tie line yields a pair (α,β), and a relationship between
α and β can be built (α = α(β)).

In terms of the above defined geometric variables, system (11.19) becomes:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ
∂C

∂t
+ uT

∂F

∂x
= 0

ϕ
∂(αC + β)

∂t
+ uT

∂(αF + β)

∂x
= 0

(11.22)

where the simplified notation C = C3 and F = F3 is adopted.
The characteristic waves of this problem are found in Table 11.3.
The initial and boundary conditions for this problem are as follows:

{
C (x, t = 0) = C(I) β (x, t = 0) = β(I)

C (x = 0, t) = C(J) β (x = 0, t) = β(J )
(11.23)

The top part of Fig. 11.12 shows the binodal curve and the tie lines of the
initial and injected fluid compositions. The lower portion of Fig. 11.12 presents
the solution of this problem in F × C space. The solution path is given by : (J )
→ (1) − (2) → (3) → (I ), where → denotes a shock wave and − indicates a
rarefaction wave. The solution begins at injection conditions (J ), which corresponds
to single-phase gas (region 1), connected to point (1) in the two-phase region (region
2) through a concentration shock. From point (1) there is a concentration rarefaction
wave up to point (2). Next, there is a concentration-β shock linking points (2)
and (3), which is connected to initial conditions (I ) by a concentration shock.
Figure 11.13 shows a zoom of the solution near the injection point.

The gas saturation versus distance for the partially miscible gas injection is
shown in Fig. 11.14. Three regions appear; a small single-phase gas region near the
injection point, followed by a two-phase region and a single-phase original reservoir

Table 11.3 Characteristic
waves for miscible flooding

Eigenvalues Shock speeds

λc = uT
φ

∂F
∂C

Dc = DBL = uT
φ

[F ]
[C]

λβ = uT
φ

F dα
dβ
+1

C dα
dβ
+1

Dβ = uT
φ

F±+ [β]
[α]

C±+ [β]
[α]
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Fig. 11.12 Solution path for
miscible flooding including
solution path
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fluid region. In the two-phase region, there is a gas saturation rarefaction region and
a constant gas concentration region. A Buckley–Leverett type concentration shock
connects the two-phase region and the single-phase oil region. This shock is located
at x = DBLt .

The total mobility versus distance can be obtained from the gas saturation profile,
which allows a straightforward computation of the injection pressure from the
following expression:
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Fig. 11.13 Zoom of solution path for miscible flooding close to injection conditions
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Fig. 11.14 Gas saturation profile for miscible flooding and flow rate

pw(x = 0, t)−pi = qinj

λ
(3)
T kA

[∫ Dct

0

(
λ
(3)
T

λ
(1)
T

− 1

)
dx

′ +
∫ Dβt

Dct

(
λ
(3)
T

λ
(2a)
T

(
x
′
, t
) − 1

)
dx

′

+
∫ DBLt

Dβ t

(
λ
(3)
T

λ
(2b)
T

− 1

)
dx

′
]
+ 1

λ
(3)
T kA

∫ ∞

0
qT

(
x
′
, t
)
dx

′
(11.24)
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For gas injection the mobility ratio is greater than 1, thus all terms but the last in
the right-hand side of Eq. (11.24) are negative. Therefore, the injection pressure at
any time is lower than the pressure required for single-phase oil flow for the same
volumetric rate.

11.4 Summary and Conclusions

In this work a general procedure for the pressure calculation during EOR processes
in infinite reservoirs is presented. This technique was applied for the different
oil recovery techniques: waterflooding, polymer flooding, and partially miscible
flooding. The solution is divided into three regions: a single-phase injected fluid
region (beginning at porous media inlet) followed by a two-phase region (displaced
and displacing phases) where mass transfer may take place, and a single-phase
original reservoir liquid region. We considered the injected fluid region and two-
phase region incompressible; whereas the original reservoir fluid region was taken
as slightly compressible. The saturation and concentration profiles were obtained
using the method of characteristics; and the pressure profile through two-phase
Darcy’s law integration. The solutions developed are useful for screening the most
suitable enhanced oil recovery technique for a particular field.
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Chapter 12
Error Analysis and the Role
of Permutation in Dynamic Iteration
Schemes

Barbara Zubik-Kowal

12.1 Introduction

In this chapter, we investigate a class of dynamic iteration schemes applied to
systems written in the form

d

dt
x(t) = (L+D + ξU)x(t)+ g(t), t ∈ [0, T ], (12.1)

where ξ is a given positive parameter, g(t) is a given source function, and L and U
are lower and upper triangular matrices, respectively. Specifically, we let the entries
on the main diagonal of L and U be identically 0 and let D be a diagonal matrix.
System (12.1) is supplemented by the initial condition

x(0) = x0. (12.2)

Note that after applying the Gauss–Seidel waveform relaxation technique, it
is possible to obtain more than one dynamic iteration scheme depending on the
ordering of the differential equations in (12.1). For example, one possible scheme
obtained after the application of Gauss–Seidel waveform relaxation to (12.1) is
written in the form

d

dt
x(k+1)(t) = (L+D)x(k+1)(t)+ ξUx(k)(t)+ g(t), t ∈ [0, T ], (12.3)
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where k = 0, 1, 2, . . . and the successive dynamic iterates x(k)(t) are initiated from
an arbitrary starting function x(0)(t) defined over the entire interval [0, T ].

Scheme (12.3) is obtained if we apply Gauss–Seidel waveform relaxation to the
equations in (12.1) written in the form they are currently in, without reordering.
Therefore, the corresponding initial condition for (12.3) is given by the initial vector
from (12.2) and written in the form

x(k+1)(0) = x0. (12.4)

On the other hand, following only a change in the order in which the differential
equations in (12.1) are written, we obtain a modified dynamic iteration scheme,
which is distinctly different from the previous one. This is the case even though the
same Gauss–Seidel waveform relaxation technique is applied. We now formulate
another dynamic iteration scheme as follows. Let the matrices L, D, U represent
the matrix decomposition of (12.1) following some reordering of entire rows of the
matrices L, D, and U , respectively (the same reordering is applied to each matrix).
For example, ifL+D+U = [

aij
]n
i,j=1, then a possible reordering gives L+D+U =[

bij
]n
i,j=1, where bij = an+1−i,n+1−j and n is the size of the system. That is, the

rows of L + D + U and the rows of L + D + U form opposite sequences. Then,
an alternative dynamic iteration scheme (as opposed to (12.3)) can be written in the
following form,

d

dt
y(k+1)(t) = (ξL+ D)y(k+1)(t)+ Uy(k)(t)+ g(t). (12.5)

Rather than being supplemented by (12.4), system (12.5) is supplemented by the
alternative initial condition written in the form

y(0) = y0,

where the components of the initial vector y0 are ordered oppositely to those of the
initial vector x0.

Note that even though (12.5) is also obtained by the application of the
Gauss–Seidel waveform relaxation technique (similarly to (12.3)), schemes (12.3)
and (12.5) are different dynamic iteration schemes. Particularly, they have different
convergence properties. It will be demonstrated, in the following sections, that the
number k of iterations required for the successive iterates x(k)(t) and y(k)(t) to
converge to the exact solution xi(t) = yn+1−i (t), i = 1, 2, . . . , n, is different for
each of the applied schemes, indicating that the choice of permutation can impact
the rate of convergence.

Motivated by electrical system simulation, Lelarasmee et al. [LeEtAl82] intro-
duced waveform relaxation techniques which were later broadly developed by many
authors following applications of the technique to parallel computing environments.
Examples include [Bu95] and [MiNe96], for systems of ordinary differential equa-
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tions, [Bj94] and [Bj95] for systems of delay differential equations, and [ZuVa99],
[Zu00], [Zu04] for systems of more general functional differential equations.
However, neither these papers nor the references therein consider rearranging the
sequence of the equations in a given system as a way to optimize the process by
choosing the dynamic iteration scheme with the fastest rate of convergence. The
influence of the rearrangements of the sequence of equations on the convergence
of the resulting dynamic iteration schemes has been recently investigated in low-
dimensional systems in [Zu17] and [Zu19]. In this chapter, we expand previous
results by addressing this question for dimensions up to n = 4 and present a methods
comparison using the theoretical results.

More specifically, the goal of the chapter is to analyze the errors of the successive
iterates

ê(k)(t) = x(k)(t)− x(t) (12.6)

and

e(k)(t) = y(k)(t)− y(t) (12.7)

in order to address the question of whether or not, and why, there is a difference in
how the sequences of the successive iterates {x(k)(t)}∞k=0 and {y(k)(t)}∞k=0 converge
to the exact solution even though they both originate from an application of the
Gauss–Seidel waveform relaxation technique applied to the same given differential
system, and whether or not the reordering of the equations in the system affects the
rate of convergence of the resulting dynamic iteration schemes.

12.2 Alternative Dynamic Iteration Schemes and Their
Distinct Convergence Properties

In this section, we start from addressing the question of whether or not the
different dynamic iteration schemes obtained from the Gauss–Seidel waveform
relaxation technique applied to (12.1) converge in the same number of iterations
k. As demonstrated by the investigations developed in the following sections
of the chapter, we conclude that although Gauss–Seidel waveform relaxation is
applied to the same system of differential equations supplemented by the same
initial conditions, the different dynamic iteration schemes (obtained by reordering
the sets of differential equations (12.1) into different sequences) manifest distinct
convergence properties that depend on the reordering.
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As an example, the following two iterative schemes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
x
(k+1)
1 = a11x

(k+1)
1 + ξa12x

(k)
2 + ξa13x

(k)
3 + ξa14x

(k)
4 + g1(t),

d

dt
x
(k+1)
2 = a21x

(k+1)
1 + a22x

(k+1)
2 + ξa23x

(k)
3 + ξa24x

(k)
4 + g2(t),

d

dt
x
(k+1)
3 = a31x

(k+1)
1 + a32x

(k+1)
2 + a33x

(k+1)
3 + ξa34x

(k)
4 + g3(t),

d

dt
x
(k+1)
4 = a41x

(k+1)
1 + a42x

(k+1)
2 + a43x

(k+1)
3 + a44x

(k+1)
4 + g4(t),

(12.8)
and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
x
(k+1)
4 = a44x

(k+1)
4 + a43x

(k)
3 + a42x

(k)
2 + a41x

(k)
1 + g4(t),

d

dt
x
(k+1)
3 = ξa34x

(k+1)
4 + a33x

(k+1)
3 + a32x

(k)
2 + a31x

(k)
1 + g3(t),

d

dt
x
(k+1)
2 = ξa24x

(k+1)
4 + ξa23x

(k+1)
3 + a22x

(k+1)
2 + a21x

(k)
1 + g2(t),

d

dt
x
(k+1)
1 = ξa14x

(k+1)
4 + ξa13x

(k+1)
3 + ξa12x

(k+1)
2 + a11x

(k+1)
1 + g1(t),

(12.9)
are obtained if Gauss–Seidel waveform relaxation is applied to the same differential
equations but ordered oppositely. Scheme (12.8) is determined directly from (12.1)
and can be written in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
x1 = a11x1 + ξa12x2 + ξa13x3 + ξa14x4 + g1(t),

d

dt
x2 = a21x1 + a22x2 + ξa23x3 + ξa24x4 + g2(t),

d

dt
x3 = a31x1 + a32x2 + a33x3 + ξa34x4 + g3(t),

d

dt
x4 = a41x1 + a42x2 + a43x3 + a44x4 + g4(t),

(12.10)

and scheme (12.9) is determined by first writing down the differential equa-
tions (12.10) in the opposite order before Gauss–Seidel waveform relaxation
is applied. Both schemes (12.8) and (12.9) are initiated from arbitrary starting
functions, which in contrast to the parameter ξ , do not influence the rates of
convergence of the successive iterates x(k)(t) to the exact solution x(t), as shown in
the next section. Scheme (12.8) is supplemented by the initial condition x(k+1)(0) =
x0 = (x0,1, x0,2, x0,3, x0,4)

T and scheme (12.9) is supplemented by the initial
condition given by the initial vector (x0,4, x0,3, x0,2, x0,1)

T , where the components
of x0 are ordered as the differential equations written in (12.9).

Note that schemes (12.8) and (12.9) are different in a number of aspects. For
example, one difference is that the previous iterate x(k)1 (t) is used in (12.9) while
it is not used in (12.8). Another noteworthy example of a difference between
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Fig. 12.1 Numerical errors arising from the application of (12.8) in panel (a), and from (12.9) in
panel (b)

these schemes is that the previous iterate x
(k)
4 (t) is used in (12.8) while it is

not used in (12.9). Consequently, the parameters ξa14, ξa24, and ξa34 of the
governing equations serve as prefactors of the previous iterate in scheme (12.8),
whereas neither of these parameters are prefactors of any of the previous iterates in
scheme (12.9). These aspects give rise to differences in the rates of convergence of
both schemes, as demonstrated graphically in Fig. 12.1.

As illustrated in Fig. 12.1, the schemes characterize themselves by different rates
of convergence. Particularly, scheme (12.9) converges faster than scheme (12.8).
Although both dynamic iteration schemes (12.8) and (12.9) originate from an
application of the Gauss–Seidel waveform relaxation technique, applied to the
same system of differential equations (12.10), their errors converge towards zero
differently and consequently, their resulting approximations require a different
number of iterations to converge towards the exact solution within a given tolerance.
Namely, scheme (12.8) requires 16 iterations (as seen in Fig. 12.1, panel (a)), while
scheme (12.9) requires 12 iterations (as seen in Fig. 12.1, panel (a)). More numerical
examples and illustrations demonstrating various differences in convergence are
presented in Sect. 12.4.

The goal of the chapter is to theoretically investigate these differences and to
answer the question of what could be the possible reasons for why such similar
schemes, like (12.8) and (12.9), originating from an application the Gauss–Seidel
waveform relaxation technique, demonstrate convergence in a different number of
iterations.

From the theoretical analysis presented in Sect. 12.3, we conclude that there
is a difference in the rate of convergence of the sequences of successive iterates
because of the model parameters and it is recommended to consequently reorder
the given differential equations based on the values of the model parameters before
applying the Gauss–Seidel waveform relaxation technique to the model equations.
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Theoretical conclusions derived from the error analysis presented in Sect. 12.3 are
illustrated by means of numerical experiments in Sect. 12.4. Section 12.5 is devoted
to a methods comparison and finally, in Sect. 12.6, we finish with concluding
remarks and plans for future work.

12.3 Error Analysis

The goal of this section is to track the role of the values of the model parameters
in the propagation of errors in dynamic iteration schemes. To realize this goal,
we derive formulas for the errors that feature the model parameters explicitly, in
contrast to the application of matrix norms.

Let us establish the following notation. Suppose bii �= bjj , for i �= j , i, j =
1, 2, 3, 4, and let

v
(1)
1 = 1, v

(2)
1 = 0, v

(3)
1 = 0,

v
(1)
2 = −ξ∑1

j=1 b2j v
(1)
j

b22 − b11
, v

(2)
2 = 1, v

(3)
2 = 0,

v
(1)
3 = −ξ∑2

j=1 b3j v
(1)
j

b33 − b11
, v

(2)
3 = −ξ∑2

j=1 b3j v
(2)
j

b33 − b11
, v

(3)
3 = 1,

v
(1)
4 = −ξ∑3

j=1 b4j v
(1)
j

b44 − b11
, v

(2)
4 = −ξ∑3

j=1 b4j v
(2)
j

b44 − b11
, v

(3)
4 = −ξ∑3

j=1 b4j v
(3)
j

b44 − b11

and v(4)1 = v
(4)
2 = v

(4)
3 = 0, v(4)4 = 1.

Theorem 1 Suppose bii �= bjj , for i �= j , and

ηij (t) = v
(j)
i

(
etbjj − etbii

)
, i = 2, 3, 4, j = 1, 2, 3,

ζi(t) = v
(1+i)
3+i etb1+i,1+i − v

(1+i)
2+i v

(2+i)
3+i etb2+i,2+i

+ (v
(1+i)
2+i v

(2+i)
3+i − v

(1+i)
3+i )etb3+i,3+i , i = 0, 1,

σ = v
(1)
2 v

(2)
4 + v

(1)
3 v

(3)
4 − v

(1)
2 v

(2)
3 v

(3)
4 − v

(1)
4 ,

θ(t) = v
(1)
4 eb11t − v

(1)
2 v

(2)
4 eb22t + (v

(1)
2 v

(2)
3 − v

(1)
3 )v

(3)
4 eb33t + σeb44t .

Then, the error e(k)(t) of the dynamic iteration scheme (12.9) satisfies the following
relations:

e
(k+1)
1 (t) =

4∑
i=2

b1i

∫ t

0
eb11(t−s)e(k)i (s)ds (12.11)
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e
(k+1)
2 (t) =

4∑
i=2

b1i

∫ t

0
η21(t − s)e

(k)
i (s)ds +

4∑
i=3

b2i

∫ t

0
eb22(t−s)e(k)i (s)ds

(12.12)

e
(k+1)
3 (t) =

4∑
i=2

b1i

∫ t

0
ζ0(t − s)e

(k)
i (s)ds +

4∑
i=3

b2i

∫ t

0
η32(t − s)e

(k)
i (s)ds

+ b34

∫ t

0
eb33(t−s)e(k)4 (s)ds

(12.13)

e
(k+1)
4 (t) =

4∑
i=2

b1i

∫ t

0
θ(t − s)e

(k)
i (s)ds +

4∑
i=3

b2i

∫ t

0
ζ1(t − s)e

(k)
i (s)ds

+ b34

∫ t

0
η43(t − s)e

(k)
4 (s)ds

(12.14)

Proof Subtracting the left- and right-hand side of the system

d

dt
y(t) = (ξL+ D+ U)y(t)+ g(t),

from (12.5) and using definition (12.7), we obtain the relationship

d

dt
e(k+1)(t) = (ξL+ D)e(k+1)(t)+ Ue(k)(t).

Therefore,

e(k+1)(t) =
∫ t

0
e(t−s)(ξL+D)Ue(k)(s)ds,

where

e(t−s)(ξL+D) = V e(t−s)DV −1

and

V = [
v
(j)
i

]4
i,j=1.

Then,

V −1 =

⎡
⎢⎢⎢⎣

1 0 0 0
−v(1)2 1 0 0
v
(1)
2 v

(2)
3 − v

(1)
3 −v(2)3 1 0

σ v
(2)
3 v

(3)
4 − v

(2)
4 −v(3)4 1

⎤
⎥⎥⎥⎦ ,
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and

V e(t−s)D =

⎡
⎢⎢⎢⎣
eb11(t−s) 0 0 0
v
(1)
2 eb11(t−s) eb22(t−s) 0 0
v
(1)
3 eb11(t−s) v(2)3 eb22(t−s) eb33(t−s) 0
v
(1)
4 eb11(t−s) v(2)4 eb22(t−s) v(3)4 eb33(t−s) eb44(t−s)

⎤
⎥⎥⎥⎦ .

Therefore,

V etDV −1 =

⎡
⎢⎢⎣
eb11t 0 0 0
η21(t) e

b22t 0 0
ζ0(t) η32(t) e

b33t 0
θ(t) ζ1(t) η43(t) e

b44t

⎤
⎥⎥⎦ ,

and the matrix V etDV −1
U is equal to

⎡
⎢⎢⎣

0 b12e
b11t b13e

b11t b14e
b11t

0 b12η21(t) b13η21(t)+ b23e
b22t b14η21(t)+ b24e

b22t

0 b12ζ0(t) b13ζ0(t)+ b23η32(t) b14ζ0(t)+ b24η32(t)+ b34e
b33t

0 b12θ(t) b13θ(t)+ b23ζ1(t) b14θ(t)+ b24ζ1(t)+ b34η43(t)

⎤
⎥⎥⎦ .

We now replace t by t − s in the matrix, above, then multiply its first row by the
vector e(k)(s) = (

e
(k)
1 (s), e

(k)
2 (s), e

(k)
3 (s), e

(k)
4 (s)

)T , integrate with respect to s over
[0, t], and obtain the relationship (12.11). Similarly, by multiplying the second row
of the matrix by the vector e(k)(s) and integrating over [0, t] with respect to s, we
obtain the relationship (12.12). Then, using the third and fourth rows, we similarly
obtain (12.13) and (12.14), respectively. ��

Note that if ebii t ≈ ebjj t , for i, j = 1, 2, 3, 4, then the parameter ξ does
not influence the iterative errors e(k)i (t) much. This results from the fact that an
application of the relationships (12.12) and (12.13) lead to

e
(k+1)
2 (t) ≈

4∑
i=3

b2i

∫ t

0
eb22(t−s)e(k)i (s)ds

and

e
(k+1)
3 (t) ≈ b34

∫ t

0
eb33(t−s)e(k)4 (s)ds,

which are similar to (12.11), and from (12.14), we conclude that e(k+1)
4 (t) is small

and not influenced much by the parameter ξ .
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On the other hand, the parameter ξ influences the dynamic iteration
scheme (12.8) more significantly. This is because, for (12.8), we get

ê(k+1)(t) = ξ

∫ t

0
e(t−s)(L+D)Uê(k)(s)ds,

which implies that

ê(k+1)(t) = ξ2
∫ t

0
e(t−s)(L+D)U

∫ s

0
e(s−τ)(L+D)Uê(k−1)(τ )dτds = . . .

= ξk+1
∫ t

0
e(t−s)(L+D)U

∫ s

0
e(s−τ)(L+D)U . . .

. . .

∫ p

0
e(p−q)(L+D)Uê(0)(q)dqdp . . . dτds.

Therefore, eventually after k + 1 steps, the composition of the errors ê(k)(t),
ê(k−1)(t), . . . , ê(1)(t) down to ê(0)(t) results in the power ξk+1, which increases
exponentially as k increases if ξ > 1. This is not the case for the errors e(k)(t)
resulting from scheme (12.9). Consequently, if ξ > 1, the errors {e(k)(t)}∞k=0 are
smaller than the corresponding errors {ê(k)(t)}∞k=0.

In the following section, we present numerical experiments to illustrate this
conclusion and the corresponding numerical errors graphically.

12.4 Numerical Experiments and Illustrations

In this section, we present results of numerical experiments for linear systems of
differential equations in order to illustrate the results of Theorem 1.

We begin by presenting the results of Figs. 12.1 and 12.2. Each figure displays
numerical errors obtained by solving the same linear system via the application
of the Gauss–Seidel waveform relaxation technique. Although the same iteration
technique is applied to the same system of equations, evident differences are
observed between the errors presented in panel (a) and panel (b) of each figure.
The differences in the rates of convergence of the numerical solutions to the exact
solution are caused by the fact that using different permutations of the system
of differential equations before the Gauss–Seidel waveform relaxation technique
is applied leads to different dynamic iteration schemes. The resulting schemes
manifest different convergence rates as observed, for example, in Figs. 12.1, 12.2,
and 12.3, in which the maximal errors are presented as functions of the iteration
index k.
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Fig. 12.2 Numerical errors resulting from the application of (12.8) in panel (a), and from (12.9)
in panel (b)

The computations used to present Fig. 12.1 have been executed for system (12.1)
where ξ = 20 and

L =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣
−102 0 0 0

0 −9 0 0
0 0 −101 0
0 0 0 −100

⎤
⎥⎥⎦ , U =

⎡
⎢⎢⎣

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

(12.15)

For this system, we apply two different dynamic iteration schemes (12.8) and (12.9).
To integrate the schemes in time, we apply BDF3. The application of BDF3 to (12.8)
results in the following straightforward recursive algorithm

x
(k+1)
1,n+3 = η−1

1

(
18
11x

(k+1)
1,n+2 − 9

11x
(k+1)
1,n+1 + 2

11x
(k+1)
1,n

+ 6
11h

(
ξa12x

(k)
2,n+3 + ξa13x

(k)
3,n+3 + ξa14x

(k)
4,n+3 + g1,n+3

))

x
(k+1)
2,n+3 = η−1

2

(
18
11x

(k+1)
2,n+2 − 9

11x
(k+1)
2,n+1 + 2

11x
(k+1)
2,n

+ 6
11h

(
a21x

(k+1)
1,n+3 + ξa23x

(k)
3,n+3 + ξa24x

(k)
4,n+3 + g2,n+3

))

x
(k+1)
3,n+3 = η−1

3

(
18
11x

(k+1)
3,n+2 − 9

11x
(k+1)
3,n+1 + 2

11x
(k+1)
3,n

+ 6
11h

(
a31x

(k+1)
1,n+3 + a32x

(k+1)
2,n+3 + ξa34x

(k)
4,n+3 + g3,n+3

))

x
(k+1)
4,n+3 = η−1

4

(
18
11x

(k+1)
4,n+2 − 9

11x
(k+1)
4,n+1 + 2

11x
(k+1)
4,n

+ 6
11h

(
a41x

(k+1)
1,n+3 + a42x

(k+1)
2,n+3 + a43x

(k+1)
3,n+3 + g4,n+3

))
.

(12.16)
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Fig. 12.3 Numerical errors resulting from the application of (12.8) in panels (a), (c), and (e) and
from (12.9) in panels (b), (d), and (f). The numerical solutions in panels (a) and (b) were computed
using the step size h = 0.5, the solutions in panels (c) and (d) were computed using h = 0.1, while
the numerical solutions in panels (c) and (d) were computed using h = 10−3
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Here, h is the step size of the time integration, tn = nh, n = 0, 1, . . . N ,
are the corresponding grid points, k = 0, 1, 2, . . . is the iteration index, x(k)i,n are

approximations to the successive iterates x(k)i (tn) at the grid points, ηi = 1− 6
11haii

and gi,n+3 = gi(tn+3), for i = 1, 2, 3, 4.
The algorithm (12.16) is straightforward in the sense that the approximations

x
(k)
i,n can be computed recursively for k = 0, 1, 2, . . . , n = 0, 1, . . . , N without any

intermediate steps. A similar recursive algorithm is obtained after the application of
BDF3 to (12.9).

Note that since the current iterates xk+1(t) on the right-hand sides of (12.8)
and (12.9) are multiplied by the lower diagonal matrices L + D and L + D,
respectively, and the previous iterates xk(t) are multiplied by the upper diagonal
matrices U and U, respectively, the application of the Gauss–Seidel waveform
relaxation technique to (12.1) allows us to obtain the recursive algorithm (12.16)
straightforwardly. Particularly, it eliminates the computationally costly necessity of
determining the inverses (L+D+ ξU)−1 and (ξL+D+U)−1, which would have
been necessary if the technique would not have been used as an intermediate step
before the application of BDF3.

The numerical errors

max
0≤n≤N

∣∣x(k)i,n − xi(tn)
∣∣ (12.17)

for both dynamic iteration schemes (12.8) and (12.9) applied to (12.1) defined by
the matrices (12.15) are presented in Fig. 12.1a, b, respectively. The maximum
errors (12.17) are plotted as functions of the iteration index k for N such that
Nh = 10 and for i = 1, 2, 3, 4. Similarly, Figs. 12.2 and 12.3 present the maximum
errors (12.17) for the dynamic iteration schemes (12.8) (in panels (a), (c), (e))
and (12.9) (in panels (b), (d), (f)) applied to system (12.1), where the diagonal
matrix is defined by D = diag(−102,−100.9,−101,−100), the lower and upper
triangular matrices L and U are defined as in (12.15), and ξ = 20.

Note that after a sufficient number of iterations, the maximum errors presented
in Figs. 12.1 and 12.2 stay constant at a level of about 10−7. The errors that remain
constant in k (represented by the horizontal line segments) are time discretization
errors. Note that the dynamic iteration schemes (12.8) and (12.9) are systems of
differential equations and in order to solve them for the iterates x(k), they can be
integrated in time t and the error resulting from the integration of (12.8) and (12.9)
with respect to t is seen in the form of the errors that continue to remain constant
with respect to k in Figs. 12.1 and 12.2.

The errors presented in Figs. 12.1 and 12.2 have been obtained after the
integration of schemes (12.8) and (12.9) by an application of BDF3 (backward
differentiation formula of order 3) with the time step h = 10−2. Consequently, the
time discretization errors seen in Figs. 12.1 and 12.2 are on the order of about 10−7.
Using smaller values for the time step (as seen in Fig. 12.3) or using higher order
BDF methods (see Sect. 12.4, where we apply a backward differentiation formula
of order 6) lead to errors that remain constant at a level that is lower than 10−7 after
a sufficient number of iterations k.
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Figure 12.3 presents two features. The first feature is the manner in which the
accuracy (seen on the vertical axes) improves as the integration step size h decreases
and the second feature is the improvement of the rate of convergence of the dynamic
iteration schemes (seen on the horizontal axes). Panels (a) and (b) of Fig. 12.3
demonstrate numerical errors of about 10−4 when the step size h = 0.5 is used.
The errors decrease down to about 10−6 when the step size h = 0.1 is used, as seen
in panels (c) and (d) of Fig. 12.3. Even better improvement in the accuracy is seen
in panels (e) and (f), for which the step size h = 10−3 is used, leading to errors on
the order of about 10−12.

Improvement in the rate of convergence of the dynamic iteration schemes can be
observed in Figs. 12.1, 12.2, and 12.3. For example, from Fig. 12.1, we observe
that the maximum errors (12.17) resulting from the application of the dynamic
iteration scheme (12.9) (in panel (b)) manifest a faster rate of convergence than
the rate of convergence resulting from the application of scheme (12.8), in panel
(a). The successive iterates x(k)(t) resulting from the application of the dynamic
iteration scheme (12.8) converge (within the time discretization error of about 10−7)
to the exact solution x(t) in 15 iterations. On the other hand, when we apply
the Gauss–Seidel waveform relaxation technique after we change the arrangement
of the equations in system (12.1) by placing them in the opposite order than
that of (12.1), we obtain faster rates of convergence to the desired solution. The
maximum errors (12.17) presented in panel (b), generated from the application of
the dynamic iteration scheme (12.9), demonstrate the convergence of the successive
iterates x(k)(t) to x(t) in 11 iterations. This gives rise to a saving of 4 iterations in
computational cost in comparison with the results for (12.8), presented in panel (a).

We derive similar conclusions from Figs. 12.2 and 12.3. For example, the
maximum errors (12.17) resulting from the application of the dynamic iteration
scheme (12.9), presented in panel (b) of Fig. 12.2, manifest a faster rate of
convergence than that of the maximum errors resulting from the application of
scheme (12.8), presented in panel (a) of Fig. 12.2. In the application of the dynamic
iteration scheme (12.8), the successive iterates x(k)(t) converge to the exact solution
x(t) in 11 iterations. On the other hand, we obtain faster convergence when we
apply the dynamic iteration scheme (12.9), namely this scheme converges (for the
same problem) in 7 iterations. This means that we have again obtained a saving of 4
iterations in computational cost by changing only the arrangement of the equations
in a given system.

12.5 Methods Comparison

In this section, we compare the method obtained by considering model parameters in
dynamic iteration schemes with the solver ode15s. We apply the dynamic iteration
schemes and the solver ode15s to systems of differential equations written in the
form (12.1) and solve them numerically with similar accuracies (in such a way that
the accuracy of the dynamic iteration schemes combined with BDF is slightly better
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than the accuracy specified within the solver ode15s) and compare the CPU times
for both of these methods. We first apply the methods to the stiff system

⎧⎪⎪⎨
⎪⎪⎩

dx1

dt
= −200x1 + 0.01x2 + g1(t)

dx2

dt
= x1 − 0.01x2 + g2(t),

(12.18)

where the forcing terms are defined by the functions g1(t) = p ∗ cos(p ∗ t)+ 200 ∗
sin(p ∗ t)− 0.01 ∗ cos(q ∗ t) and g2(t) = −q ∗ sin(q ∗ t)− 1 ∗ sin(p ∗ t)+ 0.01 ∗
cos(q ∗ t), where p = 100 and q = 200. System (12.18) is supplemented by the
initial conditions x1(0) = x2(0) = 0.

The application of the Gauss–Seidel waveform relaxation technique to (12.18)
results in the dynamic iteration scheme written in the form

⎧⎪⎪⎨
⎪⎪⎩

d

dt
x
(k+1)
1 = −200x(k+1)

1 + 0.01x(k)2 + g1(t)

d

dt
x
(k+1)
2 = x

(k+1)
1 − 0.01x(k+1)

2 + g2(t),

(12.19)

where k = 0, 1, 2, . . . (note that the Gauss–Seidel waveform relaxation technique
generates also another dynamic iteration scheme that is different than (12.19)).
Scheme (12.19) is supplemented by the initial conditions x(k)1 (0) = x

(k)
2 (0) = 0.

The application of BDF3 to

⎧⎪⎪⎨
⎪⎪⎩

d

dt
x
(k+1)
1 = a11x

(k+1)
1 + a12x

(k)
2 + g1(t)

d

dt
x
(k+1)
2 = a21x

(k+1)
1 + a22x

(k+1)
2 + g2(t),

leads to the following recursive algorithm

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
(k+1)
1,n+3 = (1− 6

11ha11)
−1
(

18
11x

(k+1)
1,n+2 − 9

11x
(k+1)
1,n+1 + 2

11x
(k+1)
1,n

+ 6
11h

(
a12x

(k)
2,n+3 + g1(tn+3)

))

x
(k+1)
2,n+3 = (1− 6

11ha22)
−1
(

18
11x

(k+1)
2,n+2 − 9

11x
(k+1)
2,n+1 + 2

11x
(k+1)
2,n

+ 6
11h

(
a21x

(k+1)
1,n+3 + g2(tn+3)

))
,

(12.20)

where k = 0, 1, 2, . . . , n = 0, 1, . . . , N . Note that the algorithm (12.20) is straight-
forward in the sense that the approximations x(k)i,n can be computed recursively and
no intermediate steps are necessary. The algorithm (12.20) for (12.19) is defined by
the parameters a11 = −200, a12 = 0.01, a21 = 1, a22 = −0.01.
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Fig. 12.4 Numerical errors resulting from the application of the recursive algorithm (12.20) (b)
and from the solver ode15s (a)

The numerical errors

∣∣x1(tn)− x
(k)
1,n

∣∣, ∣∣x2(tn)− x
(k)
2,n

∣∣
for the recursive algorithm (12.20) are presented in Fig. 12.4b as functions of tn =
nh, for h = 5 · 10−5, where n = 0, 1, 2, . . . N , and N is such that Nh = 1, and
k = 3. Numerical errors resulting from the application of the solver ode15s are
presented in Fig. 12.4a.

System (12.18) was solved numerically using both methods over the time
interval [0, 1]. The numerical solution resulting from the use of the recursive
algorithm (12.20) was computed at the uniformly distributed grid points tn =
nh, while the numerical solution resulting from the use of the solver ode15s
was computed at the grid points that were determined from the steps selected
by ode15s. Maximum errors were computed over the corresponding meshes
generated by both methods.

The maximum error

max
{

max
0≤n≤N

∣∣x1(tn)− x
(k)
1,n

∣∣, max
0≤n≤N

∣∣x2(tn)− x
(k)
2,n

∣∣}

resulting from the application of (12.20) is 2.5 · 10−7 and the maximum error
resulting from the application of the solver ode15s is 2.7 · 10−7. The errors
resulting from the application of both methods are comparable. However, the CPU
time is 0.04 s when the recursive algorithm (12.20) is applied to (12.18) and it is
0.32 s when the solver ode15s is applied to the same problem, thus demonstrating
that (12.20) is faster than the solver ode15s.

We now compare the method obtained by considering model parameters in
dynamic iteration schemes with the solver ode15s when both methods are applied
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to solve system (12.1) with L, D, and U defined by (12.15) and ξ = 20.
We apply Theorem 1 to determine the optimal choice of the dynamic iteration
scheme. Through the application of Theorem 1, one of the conclusions that we
have reached in Sect. 12.3 is that, for example, the dynamic iterates x(k)(t) defined
by scheme (12.9) converge to the exact solution x(t) as k → ∞ faster than the
dynamic iterates defined by scheme (12.8). This faster rate of convergence of (12.9)
is illustrated by means of numerical experiments in Sect. 12.4. Therefore, in this
section, we consequently choose scheme (12.9) for the comparison of the two
methods—the dynamic iterations and the solver ode15s.

In Sect. 12.4, we applied BDF3 (of order 3) to integrate both systems (12.8)
and (12.9) in time t . We now apply higher order BDF6 (of order 6) to (12.9). This
application leads to the following straightforward recursive algorithm

x
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(k)
1,n+6 + g3,n+6

))

x
(k+1)
2,n+6 = η−1

2

(
360
147x

(k+1)
2,n+5 − 450

147x
(k+1)
2,n+4 + 400

147x
(k+1)
2,n+3 − 225

147x
(k+1)
2,n+2 + 72

147x
(k+1)
2,n+1

− 10
147x

(k+1)
2,n + 60

147h
(
ξa24x

(k+1)
4,n+6 + ξa23x

(k+1)
3,n+6 + a21x

(k)
1,n+6 + g2,n+6

))

x
(k+1)
1,n+6 = η−1

1

(
360
147x

(k+1)
1,n+5 − 450

147x
(k+1)
1,n+4 + 400

147x
(k+1)
1,n+3 − 225

147x
(k+1)
1,n+2 + 72

147x
(k+1)
1,n+1

− 10
147x

(k+1)
1,n + 60

147h
(
ξa14x

(k+1)
4,n+6 + ξa13x
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,

(12.21)

where x(k)i,n , i = 1, 2, 3, 4, k = 1, 2, 3, . . . , are approximations to the exact solutions
xi(tn) at the grid points tn = nh, for n = 0, 1, 2, . . . , N , the parameters aij , i, j =
1, 2, 3, 4, are defined by (12.15), ξ = 20, ηi = 1 − 60

147haii and gi,n+6 = gi(tn+6),
for i = 1, 2, 3, 4.

The numerical errors

∣∣xi(tn)− x
(k)
i,n

∣∣, i = 1, 2, 3, 4,

resulting from the application of the recursive algorithm (12.21) are presented in
Fig. 12.5b as functions of tn = nh, for h = 10−2, n = 0, 1, 2, . . . , N , where
N is such that Nh = 10, and k = 15. For comparison, the numerical solution
resulting from the application of the solver ode15s was computed over the same
time interval and the numerical errors are presented in Fig. 12.5a. The numerical
solution resulting from the use of the solver ode15s was computed at the grid
points determined from the steps selected by ode15s and the numerical error
resulting from the use of ode15s was computed at these grid points.
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Fig. 12.5 Numerical errors resulting from the application of the recursive algorithm (12.21) (b)
and from the solver ode15s (a)

The maximum error

max
i

{
max
n

∣∣xi(tn)− x
(k)
i,n

∣∣}

resulting from the application of (12.21) is 2.53 · 10−14 and the maximum error
resulting from the application of the solver ode15s is 3.90 · 10−13 (the maximum
error resulting from ode15swas computed at the grid points selected by ode15s).
The maximum error resulting from the application of (12.21) is approximately ten
times smaller than the maximum error resulting from the application of the solver
ode15s, yet the CPU time is 0.52 s when the solver ode15s is applied in contrast
to just 0.04 s when the recursive algorithm (12.21) is applied. This demonstrates
that (12.21) is more accurate and faster.

12.6 Concluding Remarks and Future Work

In this chapter, we have derived formulas for the errors of dynamic iteration schemes
applied to four-dimensional systems of differential equations and concluded that
the errors can decrease by rearranging the sequence of the equations in the given
system. We also concluded and demonstrated that the application of the theoretical
results and selection of appropriate dynamic iteration scheme gives rise to numerical
solutions that are faster than the solutions computed by the variable order method
widely applied to stiff differential systems. These findings are illustrated by means
of numerical experiments. Future work will address the role of the model parameters
in higher-dimensional systems on the rate of convergence and on the selection of the
optimal dynamic iteration scheme.
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