
Chapter 11
Nonlinear Deformations of an Elastic
Sphere with Couple Stresses
and Distributed Dislocations

Leonid M. Zubov

Abstract The problem of nonlinear moment theory of elasticity about the equilib-
rium of a hollow sphere with distributed dislocations is considered. For an arbitrary
isotropic micropolar elastic material and a spherically symmetric distribution of
screw and edge dislocations, the problem is reduced to a system of nonlinear ordi-
nary differential equations. In the case of a physically linear micropolar body model,
exact solutions are found for the eigenstresses in the sphere due to the spherically
symmetric distribution of edge dislocations.

Keywords Micropolar medium · Nonlinear elasticity · Spherical symmetry ·
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11.1 Introduction

In the present paper, we consider the spherically symmetric problems of the nonlinear
theory of dislocations taking into account couple stresses, i.e., in the framework of
the micropolar theory of elasticity. This model is also called the Cosserat continuum.
The model of a micropolar medium is used to describe granular polycrystalline
bodies, polymer composites, suspensions, liquid crystals, geophysical structures,
biological tissues, metamaterials, nanostructured materials, etc. [1–5]. The basics of
the nonlinearly theory of the Cosserat elastic continuum had been given in [6–10].

An important point of themicrostructure of solids is the defects of the crystal lattice
such as dislocations and disclinations [11–13]. The linear theory of continuously
distributed dislocations and disclinations in micropolar media is developed in [14–
16], and the nonlinear theory in [17, 18]. At present, only a very limited number of
exact solutions in nonlinear theory of dislocations and disclinations for micropolar
elastic media are known in the literature. Several solutions for isolated dislocations
and disclinations in the nonlinear elastic Cosserat continuum are found in [8]. The
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planar axisymmetric problem of large deformations of a micropolar medium with
distributed wedge disclinations is solved in [18].

Below in the paper, spherically symmetric solutions for large deformations of a
micropolar mediumwith distributed dislocations were found. Spherically symmetric
solutions of the nonlinear theory of dislocations without taking into account couple
stresses were found earlier [19, 20]. In the framework of the linear micropolar theory
of elasticity, spherically symmetric deformations of a hollow sphere with distributed
dislocations and disclinations were studied in [21].

11.2 Basic Relations of Nonlinear Micropolar Continuum

Deformation of an elastic medium is described by mapping from a reference con-
figuration to an actual one. In the case of micropolar continua, it is defined by two
kinematically independent fields of translations and rotations

r = r(R) = R + u(R), H = H(R),

whereR = Xk ik and Xk , r = xs is and xs are the position vectors and Cartesian coor-
dinates in the reference and actual configurations, respectively, ik are corresponding
constant base vectors (k = 1, 2, 3), u is the translation vector, and H is the proper
orthogonal tensor describing the rotational degrees of freedom of micropolar con-
tinua cold often microrotation tensor [6–8].

In what follows we use the following definitions of operators of gradient, diver-
gence, and rotor (curl) in the coordinates of the reference configuration:

Grad� = RN ⊗ ∂�

∂QN
, Div � = RN · ∂�

∂QN
,

Rot � = RN × ∂�

∂QN
, RN = ik

∂QN

∂Xk
,

(11.1)

where � is an arbitrary differentiable tensor field of any order, QN = QN (X1, X2,

X3), N = 1, 2, 3, are Lagrangian curvilinear coordinates,⊗ denotes the tensor prod-
uct, and cross and dot stand for vector and scalar products, respectively.

The governing equations of a micropolar elastic continuum are given by the fol-
lowing equations, see [6–10]:

Equilibrium equations:

Div D + ρf = 0, Div G + (
FT · D)

× + ρl = 0. (11.2)

Constitutive relations:
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D = P · H, G = K · H,

P = ∂W

∂E
, K = ∂W

∂L
, W = W (E,L).

(11.3)

Geometric relations:

E = F · HT,

L = 1

2
RN ⊗

(
∂H

∂QN
· HT

)

×
= 1

2
I tr

[
H · (RotH)T

] − H · (RotH)T ,

F = Grad r.

(11.4)

Here D and G are the stress and couples stress tensors of the first Piola–Kirchhoff
type, respectively, while P and K are these of the second Piola–Kirchhoff type, F
is deformation gradient, E and L are the strain tensors in the nonlinear micropolar
continuum called stretch and wryness tensors, respectively (see [6–10]), I is unit
tensor, ρ ismaterial density in the reference configuration, f is the external distributed
mass load, l is the external distributedmass couple load,W is the strain energydensity,
and �× denotes the vector invariant of the second-order tensor �

�× = (
ΦMNRM ⊗ RN

)
×

�= ΦMNRM × RN .

For isotropic micropolar continua strain energy W , stress and couples stressed
tensors P and K are isotropic functions of strain tensors E and L [9]. This implies
of the following relations:

W
(
QT · E · Q, (detQ)QT · L · Q) = W (E,L)

P
(
QT · E · Q, (detQ)QT · L · Q) = QT · P(E,L) · Q

K
(
QT · E · Q, (detQ)QT · L · Q) = (detQ)QT · K(E,L) · Q

(11.5)

for any arbitrary orthogonal tensorQ. In Eqs. (11.5) we take into account thatE andP
are the true second-order tensors, whileL andK are the second-order pseudotensors.

11.3 Continuously Distributed Dislocations

Let V be the area occupied by the elastic medium in the reference configuration. In
order to introduce the dislocation density in a micropolar medium, we consider the
problem of determining the displacement field u(R) of the medium from the tensor
fields E and H specified in the multiply connected area V . These tensor fields are
assumed to be differentiable and unambiguous in V . Considering that according to
(11.4)
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Grad u = F − I = E · H − I (11.6)

we see that in the case of a multiply connected area, the vector field u(R), and
therefore the vector field r(R), are not uniquely defined, in general. This means
the presence of isolated translational dislocations in the body [8], each of which is
characterized by Burgers vector bn , by virtue of (11.6)

bn =
∮

Γn

dR · (E · H − I) =
∮

Γn

dR · F, n = 1, 2, . . . , n0 (11.7)

Here Γn is a simple closed contour enclosing the line of the nth dislocation only. The
total Burgers vector of a discrete set of n0 dislocations according to (11.7) is defined
by the formula

B =
n0∑

n=1

bn =
n0∑

n=1

∮

Γn

dR · F. (11.8)

Due to known properties of curvilinear integrals, the sum of integrals in (11.8)
can be replaced by one integral along the closed contour Γ0 enclosing the lines of all
n0 dislocations

B =
∮

Γ0

dR · F. (11.9)

According to [17, 18], we passed from a discrete set of dislocations to their con-
tinuous distribution, transforming the curvilinear integral (11.9) to a surface integral
using Stokes’ formula

B =
∫∫

Σ0

N · Rot F dΣ. (11.10)

Here Σ0 is the surface drawn over the contour Γ0, N is the unit normal to Σ0.
The expression (11.10) allows to introduce the density of continuously distributed

dislocations as a second-order tensor α
�= Rot F. The flux of α through any surface is

equal to the total Burgers vector of dislocations crossing this surface. Hereinafter, the
dislocation density tensor is considered a given function of Lagrangian coordinates
QN , which must satisfy the solenoidity condition

Div α = 0. (11.11)
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If dislocations with a given tensor density are distributed in the body, then the dis-
placement field and the vector field r donot exist. In this case, the third equation (11.4)
is replaced by the incompatibility equation

Rot F = α (11.12)

and the tensor F is called the distortion tensor.
The complete system of equilibrium equations for a micropolar elastic body with

distributed dislocations contains tensor fields of distortion F and microrotation H
as unknown functions and consists of the equilibrium equation (11.2), the incom-
patibility equation (11.12), the constitutive equations (11.3), and the geometric rela-
tions (11.4)1, (11.4)2.

11.4 Spherically Symmetric State

We consider an elastic body in the form of a hollow sphere with an outer radius of R0

and an inner radius of R1. We introduce the spherical coordinates Q1 = R, Q2 = Φ

(longitude), Q3 = Θ (latitude) using the formulas

X1 = R cosΦ cosΘ, X2 = R sinΦ cosΘ, X3 = R sinΘ.

In what follows, we will use an orthonormal vector basis eR , eΦ , eΘ consisting of
unit vectors tangent to coordinate lines

eR = (i1 cosΦ + i2 sinΦ) cosΘ + i3 sinΘ,

eΦ = − i1 sinΦ + i2 cosΦ,

eΘ = − (i1 cosΦ + i2 sinΦ) sinΘ + i3 cosΘ.

(11.13)

According to [19] a second-order tensor field Swill be called spherically symmetric,
if its components in the basis eR , eΦ , eΘ on each spherical surface R = const are
identical in all points of the surface and the tensor S is invariant with respect to
rotations around the radial axis, i.e., around the vector eR . A general representation
of the spherically symmetric second-order tensor field has the form [19]

S = S1(R)g + S2(R)d + S3(R)eR ⊗ eR (11.14)

g = eΦ ⊗ eΦ + eΘ ⊗ eΘ, d = eΦ ⊗ eΘ − eΘ ⊗ eΦ.

Using Eqs. (11.13)–(11.14), the following relations are proved:
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Rot S = 1

R

d

dR

(
RS2

)
g +

(
S3 − S1

R
− dS1

dR

)
d + 2

R
S2eR ⊗ eR

Div S =
[
dS3
dR

+ 2

R

(
S3 − S1

)]
eR .

(11.15)

We assume that there are distributed dislocations in the sphere and their tensor density
is

α = α1(R)g + α2(R)d + α3(R)eR ⊗ eR . (11.16)

The first summand in Eq. (11.16) describes the distribution of screw dislocations
whose lines coincide with meridians and parallels. The second summand corre-
sponds to a spherically symmetric distribution of edge dislocations. And the third
one describes the distribution of screw dislocations with a radial axis.

Considering the equilibrium problem of an elastic sphere with distributed dis-
locations, unknown functions F and H will be sought in the form of spherically
symmetric tensor fields

F = F1(R)g + F2(R)d + F3(R)eR ⊗ eR (11.17)

H = H1(R)g + H2(R)d + H3(R)eR ⊗ eR (11.18)

The requirements H · HT = I, detH = 1, meaning that the rotation tensor is proper
orthogonal, lead to the equalities H 2

1 + H 2
2 = 1, H3 = 1. The expression (11.18)

takes the form

H = cosχ(R) g + sin χ(R)d + eR ⊗ eR . (11.19)

The geometrical meaning of Eq. (11.19) is that each elementary volume of the elastic
sphere rotates around a radial axis by an angle χ(R).

Using Eqs. (11.4), (11.17), (11.19), we find the strain and wryness tensors

E = (F1 cosχ + F2 sin χ) g + (F2 cosχ − F1 sin χ)d + F3eR ⊗ eR

L = sin χ

R
g + cosχ − 1

R
d + dχ

dR
eR ⊗ eR .

(11.20)

Considering a micropolar medium to be isotropic, let Q = Q1 = 2eR ⊗ eR − I,
detQ1 = 1 in relations (11.5). In accordance with (11.20) we obtain

QT
1 · E · Q1 = E, QT

1 · L · Q1 = L (11.21)

From Eqs. (11.5) and (11.21) follow the equalities

Q1 · P = P · Q1, Q1 · K = K · Q1 (11.22)
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whence follows

P = PRR eR ⊗ eR + PΦΦ eΦ ⊗ eΦ

+ PΦΘ eΦ ⊗ eΘ + PΘΦ eΘ ⊗ eΦ + PΘΘ eΘ ⊗ eΘ

K = KRR eR ⊗ eR + KΦΦ eΦ ⊗ eΦ

+ KΦΘ eΦ ⊗ eΘ + KΘΦ eΘ ⊗ eΦ + KΘΘ eΘ ⊗ eΘ.

(11.23)

Relations similar to Eqs. (11.21), (11.22) are also satisfied for the tensor Q =
Q2 = eR ⊗ eR + d, detQ2 = 1, whence we have

PΦΦ = PΘΘ, PΦΘ = −PΘΦ, KΦΦ = KΘΘ, KΦΘ = −KΘΦ (11.24)

Equations (11.23), (11.24) mean that upon deformation in the form of (11.17) and
(11.18) the stress and couple stress tensors for any isotropic homogeneous material
are spherically symmetrical

P = P1(R)g + P2(R)d + P3(R)eR ⊗ eR
K = K1(R)g + K2(R)d + K3(R)eR ⊗ eR .

(11.25)

In accordancewith Eqs. (11.3), (11.17), (11.19) the stress and couple stress tensors
of the first Piola–Kirchhoff typeD andG, respectively, are also spherically symmetric
and take the form

D = D1(R)g + D2(R)d + D3(R)eR ⊗ eR
G = G1(R)g + G2(R)d + G3(R)eR ⊗ eR

(11.26)

D1 = P1 cosχ − P2 sin χ, D2 = P1 sin χ + P2 cosχ, D3 = P3
G1 = K1 cosχ − K2 sin χ, G2 = K1 sin χ + K2 cosχ, G3 = K3

We suppose that mass loads are defined by spherically symmetric vector fields

f = f (R)eR, l = l(R)eR (11.27)

According to Eqs. (11.15), (11.17), (11.26) and (11.27), vector equilibrium equa-
tions (11.2) are reduced to two scalar equations

dD3

dR
+ 2(D3 − D1)

R
+ ρ f (R) = 0 (11.28)

dG3

dR
+ 2(G3 − G1)

R
+ 2F1D2 + ρ l(R) = 0 (11.29)

Tensor incompatibility equation (11.12) in the case of a spherically symmetric
deformation, by virtue of Eqs. (11.15)–(11.17), is equivalent to three scalar equations
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2F2 = Rα3,
d

dR

(
RF2

)
= Rα1, F3 = d

dR

(
RF1

)
+ Rα2 (11.30)

The solenoidity condition (11.11) of the dislocation density tensor according to
Eq. (11.15) leads to the following restriction on components of the tensor α

α1 = α3 + 1

2
R
dα3

dR
. (11.31)

Note that the density of edge dislocations α2 is not included in Eq. (11.31). This
means that α2(R) can be an arbitrary function, including the Dirac delta function.
Since the dislocation densities αm(R), m = 1, 2, 3 are considered to be given func-
tions, the first Eq. (11.30) defines the function F2(R); the second Eq. (11.30) is the
result of the first one and Eq. (11.31). The third Eq. (11.30) expresses the function
F3(R) through the function F1(R). The latter remains an unknown function. The val-
ues Dm , Gn , (m, n = 1, 2, 3) are expressed through this function as well as through
another unknown function χ(R) using the constitutive equations for isotropic mate-
rial. Hence the equilibrium equations (11.28), (11.29) form a system of nonlinear
ordinary differential equations with respect to F1(R), χ(R). Mass loads f (R), l(R)

are considered to be given functions.
We assume that an elastic sphere is loaded with uniformly distributed pressure:

p0 on the outer surface R = R0 and p1 on the inner surface R = R1. In addition, the
surfaces of the sphere is loaded with uniformly distributed torque with intensitiesm0

andm1 per unit surface area of the deformed body. Therefore the boundary conditions
for the specified system of equations are as follows:

D3 = −p0F
2
1 , G3 = m0F

2
1 at R = R0

D3 = −p1F
2
1 , G3 = m1F

2
1 at R = R1.

(11.32)

Thus, the problem of large deformations of an elastic sphere with a spherically
symmetric dislocation distribution is reduced to a nonlinear boundary value problem
for a system of ordinary differential equations in the case of an arbitrary isotropic
micropolar material.

11.5 Physically Linear Material

As a specific model of an isotropic micropolar body, we consider a physically linear
material [2, 7, 8] for which the specific strain energy is the quadratic form of tensors
E − I and L, while tensors P and K are linear functions of these tensors.
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2W = λ tr2 (E − I) + (μ + κ) tr
[
(E − I) · (

ET − I
)]

+ (μ − κ) tr (E − I)2 + γ1 tr
2 L + γ2 tr

(
L · LT

) + γ3 trL2.

P = λI tr (E − I) + (μ + κ) (E − I) + (μ − κ)
(
ET − I

)
,

K = γ1I trL + γ2L + γ3LT.

(11.33)

Here λ, μ, κ, γ1, γ2, γ3 are material constants. For a spherically symmetric state
based on Eqs. (11.3), (11.17)–(11.20), (11.26), (11.33) we get

D1 = λ(F3 + 2F1 cosχ − 3) cosχ + 2μ (F1 cosχ − 1) cosχ

+ 2κF1 sin
2 χ + (λ + μ − κ) F2 sin 2χ

D2 = λ(F3 + 2F1 cosχ − 3) sin χ + 2μ (F1 cosχ − 1) sin χ

− κF1 sin 2χ + 2λF2 sin
2 χ + (μ + κ)F2 − (μ − κ)F2 cos 2χ

D3 = λ(F3 + 2F1 cosχ − 3) + 2μ (F3 − 1) + 2λF2 sin χ (11.34)

G1 = 1

R

[
γ1

(
R cosχ

dχ

dR
+ sin 2χ

)
+ γ2 sin χ + γ3 (sin 2χ − sin χ)

]

G2 = 1

R

[
γ1 sin χ

(
R
dχ

dR
+ 2 sin χ

)
+ γ2

(
1 − cosχ

)
+ γ3 (cosχ − cos 2χ)

]

G3 =
(
γ1 + γ2 + γ3

)dχ

dR
+ 2γ

R
sin χ

Relations (11.28)–(11.32), (11.34) form a nonlinear boundary value problem of the
equilibrium of a sphere with distributed dislocations in the case of a physically linear
micropolar material.

11.6 Exact Solution of the Eigenstress Problem

Eigenstresses in the theory of dislocations are called stresses in an elastic body that
are caused only by dislocations but with no any of external loads. Assuming f = 0,
l = 0, p0 = 0, p1 = 0,m0 = 0,m1 = 0 in Eqs. (11.28), (11.29), (11.32), (11.34), we
obtain the formulation of the boundary spherically symmetric eigenstress problem
for physically linear micropolar material.

We consider a special case about the distribution of dislocations when α1(R) = 0,
α3(R) = 0, and α2(R) is an arbitrary function. Then, by virtue of (11.30), we obtain
F2(R) = 0. The couple equilibrium equation (11.29) is satisfied ifχ(R) = 0. Indeed,
then according to Eq. (11.34) we get D2 = 0, G1 = G2 = G3 = 0, and stress is
expressed as follows:
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D1 = 2μ

1 − 2ν

(
F1 + νF3 − 1 − ν

)
,

D3 = 2μ

1 − 2ν

[
2νF1 + (ν − 1)F3 − 1 − ν

] (11.35)

ν = λ

2(λ + μ)

Inverting Eq. (11.35) we get

F1 = (1 − ν)D1 − νD3

2μ(1 + ν)
+ 1, F3 = D3 − 2νD1

2μ(1 + ν)
+ 1. (11.36)

The equilibrium equation (11.28), the incompatibility equation (11.30)3, and expres-
sions (11.36) give the differential equation for the function D3(R)

d2D3

dR2
+ 4

R

dD3

dR
= β(R), β(R)

�= 4μ(1 + ν)α2(R)

(ν − 1)R
. (11.37)

Equation (11.37) has the following general solution

D3(R) = − 1

3R3

R∫

R1

r4β(r) dr + 1

3

R∫

R1

rβ(r) dr + C1 + C2R
−3. (11.38)

Constants C1 and C2 are determined from the boundary conditions D3(R0) = 0,
D3(R1) = 0 and have the form

C1 = −C2

R3
1

, C2 = R3
0R

3
1

3(R3
0 − R3

1)

⎡

⎣
R0∫

R1

rβ(r) dr − 1

R3
0

.

R0∫

R1

r4β(r) dr

⎤

⎦ (11.39)

The stress D1(R) is expressed via solution (11.38), (11.39) using Eq. (11.28), and
then the distortion components are found on the basis of Eq. (11.36).

The obtained exact solution of the nonlinear eigenstress problem is characterized
by the absence of couple stresses. It turns out that there is another exact solution of this
eigenstress problem in which the couple stresses are not identically equal to zero. In
this solution, the microrotation field is a half-turn (i.e., a 180-degree rotation) around
the radial axis. This field of microrotations corresponds to the equality χ(R) = ±π .
As it follows fromEq. (11.34), with cosχ = −1we obtainG1 = 0,G2 �= 0,G3 = 0,
D2 = 0 and the couple equilibrium equation (11.29) for l = 0 is satisfied, as well as
the couple boundary conditions (11.32) for m0 = m1 = 0. The stress D1 and D3 at
cosχ = −1 on the basis of Eq. (11.34) are written as follows:
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D1 = 2μν

1 − 2ν

(
F1 − νF3 + 1 + ν

)
,

D3 = 2μν

1 − 2ν

[
(1 − ν)F3 − 2νF1 − 1 − ν

] (11.40)

From Eq. (11.40) we get

F1 = (1 − ν)D1 + νD3

2μ(1 + ν)
− 1, F3 = 2νD1 + D3

2μ(1 + ν)
+ 1. (11.41)

The equation for D3(R) arising from Eq. (11.28), the third of Eq. (11.30), and
Eq. (11.41) will take the form

d2D3

dR2
+ 4

R

dD3

dR
− 4νD3

(1 − ν)R2
= γ (R), (11.42)

γ (R)
�= 4μ(1 + ν)

(1 − ν)R2

[
2 − Rα2(R)

]

Equation (11.42) has the following solution

D3(R) =
√

1 − ν

9 + 7ν

⎡

⎣Rλ1

R∫

R1

rλ2+4γ (r) dr

−Rλ2

R∫

R1

rλ1+4γ (r) dr + B1R
λ1 + B2R

λ2

⎤

⎦

(11.43)

λ1 = −3

2
+ 1

2

√
9 + 7ν

1 − ν
, λ2 = −3

2
− 1

2

√
9 + 7ν

1 − ν

Constants B1, B2 are determined from the boundary conditions D3(R1) = D3(R0) =
0.

Thus, within the framework of a physically linear micropolar material model, two
exact solutions are found for eigenstresses in a nonlinearly elastic sphere with bound-
ary dislocations distributed with density α = α2(R)(eΦ ⊗ eΘ − eΘ ⊗ eΦ) where
α2(R) is an arbitrary function. One of these solutions is characterized by the absence
of couple stresses. In the other solution, couple stresses are non-zero and are described
by the formula

G = 2(γ2 − γ3)

R

(
eΦ ⊗ eΘ − eΘ ⊗ eΦ

)
(11.44)
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11.7 Conclusion

In this paper, the stress state at large spherically symmetric deformations of an elastic
spheremade of amicropolarmaterial is studied. A spherically symmetric distribution
of screw and edge dislocations is specified in the sphere. Hydrostatic pressures and
distributed couple loads are applied on the outer and inner surfaces of the sphere.
Using the theory of spherically symmetric tensor fields and the properties of isotropic
tensor functions, we reduce the original three-dimensional problem to a boundary
value problem for a nonlinear system of ordinary differential equations. The problem
is reduced to ordinary differential equations for an arbitrary isotropic micropolar
elastic material. As a special case, the eigenstress problem is studied, that is, the
problem of a self-balanced stress state that exists with no external force and couple
loads.Within the framework of the physically linearmicropolarmediummodel, exact
analytical solutions to the eigenstresses problem in a sphere caused by a spherically
symmetric distribution of edge dislocations are found. It is established that for the
same dislocation density, there are two self-balanced spherical symmetric states of
the sphere. In one of them, couple stresses are identical to zero, and in the other there
is a non-trivial field of couple stresses.
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