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15.1 Introduction

Real-world data often present characteristics that affect classification: noise, missing
values, inexact or incorrect values, inadequate data size, poor representation in data
sampling, etc. The imbalanced dataset problem represents a field of interest as it
occurs when the number of instances that represent one class(rare events) [1] is
much larger than the other classes, a common problem in certain areas such as
fraud detection, cancer gene expressions, natural disasters, software defects, and
risk management [2]. Rare events are difficult to detect because of their infrequency
and casualness; misclassification of rare events could often result in heavy costs.
For example, for smart computer security threat detection [3], dangerous connection
attempts may only appear out of hundreds of thousands log records, but failing to
identify a serious vulnerability breach would cause enormous losses.

Then, in the case of the datasets with binary class, it can be defined that it is
balanced if it has an approximately equal percentage of examples in the concepts to
be classified, that is, if the distribution of examples by classes is uniform, otherwise
it is unbalanced. To measure the degree of imbalance of a problem, [4] defined the
imbalance ratio (IR) as
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IR = |C+|
|C−| ≥ 1.5 (15.1)

where

C+ is the number of instances that belongs to the majority class
C− is the number of instances that belongs to the minority class

Therefore, a dataset is imbalanced when it has a marked difference (IR ≥ 1.5)
between the examples of the classes. This difference causes low predictive accuracy
for the infrequent class as classifiers try to reduce the global error without taking
into account the distribution of the data. In imbalanced sets, the original knowledge
is usually labeled as oddities or noise, focusing exclusively on global measurements
[5]. The problem with the imbalance is not only the disproportion of representatives
but also the high overlap between the classes. To overcome this problem, diverse
strategies have been developed and can be divided into four groups: at the data level
[6, 7], at the learning algorithm level [8], cost-sensitive learning [9], and based on
multiple classifiers [10]; where the techniques at the data level are the most used
because its use is independent of the classifier that is selected.

One of the best-known algorithms within data-level techniques is the Synthetic
Minority Oversampling Technique (SMOTE) [7, 11] for the generation of synthetic
instances. One of SMOTE’s shortcomings is that it generalizes the minority area
without regard to the majority class leading to a problem commonly known as
overgeneralization; this has been solved with the use of cleaning methods such
as SMOTE—Tomek links (TL) [6, 11], SMOTE—ENN [6, 11], Borderline—
SMOTE1 [11, 12], SPIDER [13], SMOTE—RSB* [14], ADASYN [6], among
others. These algorithms have been designed to operate with values of both discrete
and continuous features for problems with imbalances in their two classes; most of
them use the KNN to obtain the synthetic instances, and although this is a method
that offers good results, it does not take into account the dependency relationships
between attributes, which can influence the correct classification of the examples of
the minority class.

A way to obtain the dependency relation of the attributes is Probabilistic Graph-
ical Models (PGMs) [15] that represent joint probability distributions where nodes
are random variables and arcs are conditional dependence relationships. Generally,
PGMs have four fundamental components: semantics, structure, implementation,
and parameters. As part of the PGMs, there are Gaussian Networks that are graphic
interaction models for the multivariate normal distribution [16], and some use the
Covariance Matrix (CM) to analyze the relationships between variables.

This chapter proposes an algorithm based on SMOTE and the Covariance Matrix
estimation to balance datasets with continuous attributes and binary class, exploding
the dependency relationships between attributes and obtaining AUC [17] values
similar to the algorithms of the state-of-the-art.

An experimental study was performed ranking two SMOTE-Cov variants,
SMOTE-CovI (which generates new values within the interval of each attribute)
and SMOTE-CovO (which allows some values to be outside the interval of the
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attributes), against SMOTE, SMOTE-ENN, SMOTE-Tomek Links, Borderline-
SMOTE, ADASYN, SMOTE-RSB*, and SPIDER, using 7 datasets from the UCI
repository [18] with different imbalance ratios and using C4.5 as a classifier. The
performance of the classifier was evaluated using AUC and hypothesis testing
techniques as proposed by [19, 20] for statistical analysis of the results.

15.2 Oversampling Based on the Covariance Matrix

This section introduces oversampling based on the Covariance Matrix. First, we
describe the Covariance Matrix that allows the computation of variable dependency.
Then, we give an overview of our proposed algorithm. Finally, we describe our
experimental setup in four steps: tool, dataset selection, evaluation methodology,
and classifier used.

Covariance Matrix

In statistics and probability theory, the covariance matrix is a matrix that contains
the covariance between the elements of a vector, where it measures the linear
relationship between two variables. If the vector-column entries are

X =
⎡
⎢⎣

X1
...

Xn

⎤
⎥⎦ (15.2)

then the covariance matrix
∑

ij is the matrix, whose (i, j) entry is the covariance

∑
ij

= E
[
(Xi − μi)(Xj − μj )

]
(15.3)

where the operator E denotes the expected value (mean) of its argument

μi = E(Xi) (15.4)

The Covariance Matrix allows determining if there is a dependency relationship
between the variables and it is also the data necessary to estimate other parameters.
In addition, it is the natural generalization to higher dimensions of the concept of
the variance of a scalar random variable [20].
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SMOTE-Cov

The Algorithm 5 shows the steps of SMOTE-Cov to balance datasets. During the
loading of the dataset in the first step, the algorithm expects continuous valued
attributes and a binary class. Then, it uses the formula 1 to verify whether the
dataset is balanced or not. If it is imbalanced, the algorithm computes the Covariance
Matrix. The Covariance Matrix allows the detection of the dependency relationship
between attributes. Then, from the estimated covariance matrix, new synthetic
instances are generated to balance the minority class. This process stops when an
equilibrium between the two classes is reached. The algorithm checks that all the
new values generated from the covariance are obligatorily within the interval of each
attribute, in the case that some are outside the interval, what is done is to take it to
the minimum or maximum, making a kind of REPAIR of the value.

Algorithm 5: SMOTE-Cov steps
Input: Dataset X,inRange[Boolean]
Output: Balanced dataset X

Data: Dataset X

Step 1: Load dataset X;
Step 2: Compute X IR using Eq. 15.1;
if IR ≥ 1.5 then

Step 3: Estimate covariance matrix using Eq. 15.3, this will provide us with a
probabilistic distribution of the dataset;
Step 4: For each attribute, a range is determined by it min-max value;
while X is not in equilibrium do

Step 5: Generate new instance y according to the covariance matrix;
if range �= true then

add y to X;
else

for i ← 0 to Yi do
if Yi < min Yi then

Yi = min Yi ;
else if Yi > max Yi then

Yi = max Yi ;
else

continue;
end

end
end

end
else

return X;
end
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15.3 Tools and Experimental Setup

The algorithm was developed using the R language because it is designed for
statistical processing and has the cov() function for calculating the covariance. In
order to evaluate the behavior of the proposed algorithm, it was compared against
the state-of-the-art algorithms of oversampling data balancing; two variants are
taken into account: when the attributes are inside or outside of the dependence range.
Seven datasets from the UCI repository were chosen with IR ≥ 1.5, see Table 15.1,
with continuous attributes and binary class. This experiment uses fivefold cross-
validation, and the data are split into two subsets: the training/calibration set (80%)
and the test set (20%). The final result is the mean of the 5 result sets. The partitions
were made using KEEL in such a way that the number of instances per class
remained uniform. The partitioned datasets are available on the KEEL website [21].

The training datasets are balanced, generating new synthetic instances from the
minority class to complete the quantities of the majority class and using a sample
of the control test, which remains imbalanced and without any modification. The
new datasets are generated from the obtained instances, using the SMOTE-Cov
algorithm, and a classifier is used as a mean to measure the performance using other
techniques.

The classifier used for the experimental study is C4.5 (implemented in the Weka
package as J48) [22], which has been referred to as a statistical classifier and one
of the top 10 algorithms in Data Mining that is widely used in imbalance problems
[14].

The Area Under the Curve (AUC) (15.5) is used to measure the performance
of classifiers over imbalanced datasets using the graph of the Receiver Operating
Characteristic (ROC) [17]. In these graphics, the trade-off between the benefits
(TPrate) and cost(FPrate) can be visualized, which represent the fact that the
capacity of any classifier cannot increase the number of true positives without also
increasing the false positives. AUC summarizes the performance of the learning
algorithm in a number.

AUC = 1 + T P rate − FPrate

2
(15.5)

Table 15.1 Description of
the datasets used in the
experiments

Dataset Instances Attributes IR

ecoli2 336 7 5.4

glass-0-1-2-3_vs_4-5-6 274 9 3.20

glass1 214 9 1.81

Iris 150 4 2

newthyroid2 215 5 5.14

Pima 768 8 1.86

vehicle3 846 18 2.99
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where

T P rate are the correctly classified positive cases that belong to the positive class
FPrate are the negative cases that were misclassified as positive examples

Experimental Study

The AUC result values are studied with this already balanced dataset. Table 15.2
shows that the AUC results of the data-balancing algorithm applying the Covariance
Matrix with its CovI and CovO variants are similar or comparable with respect to
the state-of-the-art oversampling algorithms, using C4.5 as a classifier.

For the statistical analysis of the results, hypothesis-testing techniques were used
[19, 20]. In both experiments, the Friedman and Iman-Davenport tests were used
[23], in order to detect statistically significant differences between groups of results.
The Holms test was also carried out [24] with the aim of finding significantly higher
algorithms. These tests are suggested in the studies presented in [19, 20, 23], where
it is stated that the use of these tests is highly recommended for the validation of
results in the field of automated learning. Table 15.3 shows the ranking obtained by
the Friedman test for the experiment. Although the algorithm with the best ranking
was ADASYN, Holm’s test performed below will demonstrate to what extent this
algorithm can be significantly superior to the one proposed in the research.

Table 15.4 summarizes the results of Holms test, taking ADASYN as a control
method, all hypotheses with p–values ≤ 0.05 are rejected, showing that ADASYN
is significantly superior to the SMOTE-CovI and Borderline-SMOTE algorithms.

Table 15.2 AUC of the data balancing algorithms with the generation of oversampling classes of
the state-of-the-art, CovI and CovO

glass-

0-1-2-3_

vs new

Algorithms Iris glass1 Pima vehicle3 _4-5-6 ecoli2 thyroid2

ADASYN 1 0.74 0.73 0.74 0.88 0.91 0.98
Borderline–SMOTE 0.99 0.77 0.70 0.65 0.82 0.89 0.95

SMOTE–ENN 0.99 0.74 0.74 0.71 0.93 0.89 0.92

SMOTE–RSB 0.97 0.72 0.75 0.73 0.90 0.89 0.96

SMOTE–TL 0.99 0.74 0.72 0.79 0.90 0.89 0.93

SMOTE 1 0.77 0.74 0.72 0.84 0.92 0.92

SPIDER 0.99 0.74 0.72 0.71 0.92 0.89 0.95

Original 1 0.72 0.75 0.72 0.90 0.85 0.96

SMOTE–CovO 1 0.71 0.72 0.71 0.92 0.86 0.95

SMOTE–CovI 0.95 0.72 0.70 0.72 0.86 0.86 0.96

The bold values represent the best AUC obtained by each algorithm for each dataset
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Table 15.3 Friedman’s test Algorithms Ranking

ADASYN 3.4286

Borderline–SMOTE 6.9286

SMOTE–ENN 5.4286

SMOTE–RSB 4.9286

SMOTE–TL 5.2857

SMOTE 4.5714

SPIDER 5.6429

Original 5

SMOTE–CovO 6.3571

SMOTE–CovI 7.4286

Table 15.4 Holms test with α = 0.05, taking ADASYN as a control method

i Algorithms Z = (Ro−Ri)
SE

p-value Holm Hypothesis

9 SMOTE–CovI 2.47 0.01 0.005 Reject

8 Borderline–SMOTE 2.16 0.03 0.006 Reject

7 SMOTE–CovO 1.80 0.07 0.007 Accept

6 SPIDER 1.36 0.17 0.008 Accept

5 SMOTE–ENN 1.23 0.21 0.01 Accept

4 SMOTE–TL 1.14 0.25 0.012 Accept

3 Original 0.97 0.33 0.01 Accept

2 SMOTE–RSB 0.92 0.35 0.02 Accept

1 SMOTE 0.70 0.48 0.05 Accept

In the case of SMOTE-CovO, SPIDER, SMOTE_ENN, SMOTE_TL, Original,
SMOTE-RSB and SMOTE, the null hypothesis is accepted, which means that there
are no significant differences between ADASYN and them, so it can be concluded
that they are as effective.

15.4 Conclusions and Future Work

In this chapter, a new algorithm is proposed to generate synthetic instances of the
minority class, using the Covariance Matrix. The experimental study carried out
shows the effectiveness of the proposed algorithm compared to eight recognized
state-of-the-art algorithms. SMOTE-Cov showed similar or comparable results,
taking into account the results of the AUC curve of the C4.5 classifier and using
nonparametric tests to demonstrate that there are no significant differences between
them, with the exception of the ADASYN versus the SMOTE-CovI variant. This
can be influenced because the attributes present in the studied datasets come from
other intervals and not from the actual attribute within the dataset.
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Having results comparable to those of the state-of-the-art, these datasets allow
extending the experimentation in the future to datasets with tens, hundreds or
thousands of attributes and with strong dependency relationships. It is also intended
to use covariance regularization (Shrinkage) to balance data, where the number of
positive instances is less than the number of attributes.
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