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Abstract The evolution of brain computer interface startedwith the needof subject’s
disability of verbal or written communication or to control immediate environment.
Now days this field has been expanded other than neuroprosthetics applications
and includes eminent areas of research like education, communication, entertain-
ment, marketing and monitoring. This chapter focus on past 15 years, this assistive
technology has attracted potentials numbers of users as well as researchers from
multidiscipline.
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1 Introduction

The growth in the BCI research groups, journals, conferences, articles and number
of attendees are evidences of the speedy growth the research field. Apart from these
evidences, numerous projects are approved by different companies to develop BCI
related applications. They also have announced their roadmaps to collaborate with
different research groups for the development of BCI-based applications.

There aremany annual conferences, workshops and seminar, which transmit latest
developments in the field and give platform to prominent scientists to present their
research projects such as National Center for Medical Rehabilitation Research of
the National Institute of Child Health and Human Development of the National
Institutes (USA), international conferences on Multimodal Interaction (ICMI), the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Intelli-
gent User Interfaces (IUI), IEEE Transactions on Neural Systems and Rehabilitation
Engineering, Journal of Neural Engineering etc.
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An incursion of researchers from assorted disciplines, including rehabilitation,
psychology, computer science, mathematics, medical physics, neurology and neuro-
surgery and biomedical engineering is the justification behind the unusual growth
of BCI research. Brain-Computer Interface is at the Innovation Trigger stage of the
emerging technologymega-trends in the Gartner’s 2018, 2017 and 2016Hype Cycle.
The predictions in the Gartner’s Hype Cycle suggest that mainstream embracing will
occur in more than 10 years for BCI research. This phenomenon is captured in Fig. 1.

The requisite knowledge of complex BCI designing involves BCI modes of oper-
ation, experimental strategy, signal recording, types of measurable brain signals and
feedback system [1–6]. The type of BCI can be divided on the basis of their mode of
operation like synchronous or asynchronous, exogenous or endogenous. An exoge-
nous BCI uses brain signals generated by the brain in the presence of external stimuli
like visual or auditory stimuli that can elicit large response in the form of neuron
activity. Steady State Visual Evoked Potentials (SSVEPs) and P300 are the example
of control signals used by the exogenous BCI. Therefore the response of the exoge-
nous is spontaneously generated brain patterns which don’t require extensive user
training. The advantages of such systems are less minimal training to user, single
channel recording, easy and quick set-up of control signals, high information transfer
rate. However user has to be more focused during the training phase which may

Fig. 1 Gartner’s Hype Cycle
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cause tiredness, fatigue. In contrast with exogenous BCI, an endogenous BCI uses
the self-regulated brain rhythms and potentials generated in the brain without any
external stimuli. User needs extensive neurofeedback training to learn to generate
specific brain patterns. This category of BCI is directly dependent on the user’s
will and capability of learning the patterns. The endogenous BCI is beneficial for
cursor control application using brain activity and for the users with sensory disabil-
ities. The other criteria for the bifurcation of BCI systems is input data processing
modality i.e. synchronous or asynchronous BCI. Synchronous BCI systems are the
cue-based systems in which first set of features extracted and processed, then only
another set of features are allowed to be extracted and processed. A predefined time
window is decided and the signals belongs to that window are analyzed first. This
system allows user to send commands only in predefined time frame. Regardless of
user ability of modulating his/her brain signals, early and accurate detection of the
control task can be acquired by using cueing process. This results into increase in
confidence, sovereignty and interest of the userwhile taking the training ofBCI skills.
Beside easy and simple designing and evaluation of synchronous BCI as compare
to asynchronous BCI, synchronous BCI is not very helpful in real world set-ups.
However asynchronous or non-cue based BCI offers more practical approach for
human-computer interaction. It does not require any sequence to extract and process
the feature set. There is no predefined time frame for accepting and processing
the feature set. User can act more normal and can initiate the communication by
his/her will. It is also known as self-pace BCI. Independent of cue, this BCI system
continuously analyzes the user’s brain activity which leads it to real world set-ups.

Invasive BCI uses surgical implantation of microelectrode arrays inside the grey
material of brain. Electrocortigography (ECoG) and Intracortical Neuron recording
are the two invasive modalities in BCI research. Furthermore, in electrocortigog-
raphy or intracortical neuron recording microelectrodes are placed on the surface of
cortex. It could be Epidural Electrocortigography in which electrodes placed outside
the duramater or Subdural electrocortigography inwhich electrodes placed under the
dura mater [1–6]. On the other hand, Intracortical neuron recording places the micro-
electrodes inside the cortex. Both the modality involves significant risk of infection
and tissue damage in brain. Also scar-tissue build-up leads to issues related to long
term stability. Though invasive modality leads to reasonable risk, it provides high
quality of signals, very good spatial resolution and a higher frequency range.

Non-invasive BCI does not require any excruciating surgical procedure. The elec-
trical activity generated by the millions of neuron can be recorded by placing small
disc shape sensors known as electrodes on the scalp. This conventional and cost
effective method has been used successfully in clinical and BCI research settings. It
records signals at good temporal resolution i.e. change in signals within a specific
time interval. However, the spatial resolution and frequency range is limited due to
brain and non-brain artifacts. This results in the decrease in signal to noise ratio
(SNR) as the frequency increases.

The brain computer interface is not a solitary mission. This vast multidiscipline
endeavor includes neurology, concepts of instrumentation engineering and brain
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activitymeasurements, signal processing, computer science algorithms and statistical
methods for brain activity pattern identification, training and feedback to the user.

2 Brain Anatomy

Most imperative part of the BCI systems is human brain. With advancement in the
neuroscience researches, researchers are able to describe the complex structure and
functions of the human brain. It is indispensable to know the anatomy of human
brain, its different activities, measurable signals and prerequisite of BCI design.

2.1 Essential Brain Anatomy Brief

The human’s central nervous system is consists of brain and spinal cord. The periph-
eral nervous system connects the central nervous system to rest of the body. Human
brain is the center of the whole body. It gives the instruction to other body parts
like sensory organs, other organs, muscles, glands, blood vessels through peripheral
nervous system. The anatomy of brain divides the brain into cerebrum, cerebellum,
and brainstem. The largest part of the brain is cerebrum which is composed of left
and right hemispheres. Both of the hemispheres are connect to each other via corpus
callosum (collection of white matter fibers). These hemispheres are further divided
into four lobes known as: the frontal lobe, the parietal lobe, the occipital lobe and
temporal lobe. The different responsibilities of these lobes are given in Table 1.
Interpreting touch, vision and hearing, speech, reasoning, emotions, learning, and
fine control of movement is associated with different locations on the cerebrum.
Maintaining the body balance and body posture, coordination of muscles move-
ments are the functions of cerebellum. It is located under the cerebrum. The last but
not the least is brainstem which connects the cerebrum and cerebellum to the spinal
cord. The heart rate, breathing body temperature, digestion, sneezing, wake-up and
sleep cycles, vomiting, swallowing, coughing are main functions of brainstem.

Billions of neurons in human brain connected via thousands of synapses generate
an electrochemical pulse called as action potential. This potential can be measured
as electrical waveform known as brain wave or brain rhythm. These brain waves
transmit the information via a specialized connection synapse to neighboring neuron
which is received through dendrites connected to that neuron. In this way brain forms
a dynamic neural network every time brain experience new facts or new remem-
bered event. This network grows stronger with increase of transmission of signals
between the neurons. Other than electrical signals, human brain contains thousands
of neurotransmittersmolecules in vesicles of axon,which amplify relay andmodulate
signals between neurons. Glutamate, GABA, acetylcholine, dopamine, adrenaline,
histamine, serotonin and melatonin are some common neurotransmitters of human
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Table 1 Different responsibilities human brain lobes

Brain component Functions

Cerebrum: frontal lobe • Personality, behavior, emotions
• Reasoning, judgment, planning, problem solving
• Speech: speaking and writing
• Movement, planning
• Intelligence, concentration, self awareness

Parietal lobe • Interpretation of language, words
• Sense of touch, pain, orientation
• Interprets signals from vision, hearing, motor, sensory and memory,
recognition

• Perception

Occipital lobe • Vision interpretation (processing of colors, light, movement)
• Integrates visual experiences

Temporal lobe • Understanding and interpretation of auditory stimuli
• Language understanding, parts of speech
• Memory
• Organization and sequencing

Cerebellum • Also known as “little brain”
• Maintaining the body balance and body posture
• Coordination of muscles movements

Brainstems • Connects cerebrum and cerebellum to spinal cord
• Heart rate, breathing body temperature, digestion, sneezing, wake-up
and sleep cycles, vomiting, swallowing, coughing

brain. These chemical messengers help the brain wave to travel through neurons and
information transmission is between the neurons achievedwith the help of chemicals.

3 Brain Computer Interface

In 1999, First International meeting on Brain Computer Interface technology [5]
took place in USA with 50 participants from 22 research group. BCI taxonomy,
methods and approaches had proposed in review.Twomain following approaches had
discussed: (1) Operant Conditioning Approach, (2) Pattern Recognition Approach.
Former approach considers the self-regulation of brain potentials or rhythms. The
thought-translation device (TTD) developed in 2003 by authors [3] was based on
self-regulations slow cortical potentials (SCP). The author’s Wolpaw et al. [7] also
used the self-regulations of brain rhymes for BCI. In this approach, no stimuli is
present to user anduser should know the real time feedback, enforced correct behavior
according to the feedback and right training to user [8]. The later approach i.e. pattern
recognition approach for BCI uses different mental task which activate potentials
at specific cortical area of brain. These mental tasks include motor imagery tasks,
arithmetic baseline tasks, visual tasks, and speech and emotion task. Different mental
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Fig. 2 Typical framework of brain computer interface

task activate the different patterns in EEG closed to the cortical areas detectable by
scalp electrodes. Many BCIs [9–13] are based on this approach.

3.1 BCI Components

Figure 2 demonstrates the typical framework of brain computer interface comprising
signal acquisition, pre-processing of acquired signals, feature extraction and selec-
tion, classification of these features into control actions and finally feedback to user
for training of their minds. The orchestration of these components decides the perfor-
mance measure of whole brain computer interface. The feature extraction, feature
selection and classification can be replaced by deep learning algorithms too [14].
The following section will demonstrate each step in detail.

3.1.1 Signal Acquisition

There are different types of signals comprise of thermal, mechanical, electrical,
chemical metabolic and magnetic activities inside the human brain generated due
to intrinsic ignition. These signals can be recorded and become basis for alterna-
tive modes of communication and control. As discussed earlier, brain signals can be
acquired by three methods (1) Non-invasive, (2) Partially invasive and (3) Invasive
acquisition of signals. Figure 3 demonstrates positioning of electrodes on human
brain according to acquisition method. Only non-invasive method does not involve
any surgical procedure while others requires surgical procedure to place the electrode
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Fig. 3 Brain’s electrical
activity acquisition methods

inside the skull. Scalp Electroencephalography (EEG), epidural electrodes and elec-
trocorticography (ECoG), Local Field Potentials (LFPs), intracranial EEG (iEEG)
are different methods to measure the electrical activity of human brain. Magne-
toencephalography (MEG) [15] is the neuroimaging technique to measure magnetic
fields produced by the electrical activity of the brain. The blood flow inside the brain
also creates the neural activity which again can be imaged using functional magnetic
resonance imaging (fMRI) and positron emission tomography (PET).Magnetic reso-
nance spectroscopy (MRS) measures the chemicals (neurotransmitters) produces by
the neural activity of brain. Invasive and non-invasive are two approaches of acquiring
the brain signals [1–6].

Electroencephalograph (EEG)

Among all the various methods, EEG is most explored and experimented method for
BCI systems. Electroencephalography is a non-surgical method used for measuring
the electrical activity generated inside the brain. The temporal resolution of EEG is
in milliseconds or better which is very good in terms of signal processing. But the
spatial resolution is poor and in the range of centimeters. Spatial resolution depends
upon the number of electrodes placed on the scalp. The position of electrodes also
referred as channel and the distance between these channels is in few centimeters.
The available EEG recording cap uses maximum 256 channels for recording. The
amplitude and frequency are two basic features to characterize the EEG signals.
The amplitude of EEG signals vary between 10 and 100 μV and frequency ranges
between 10 and 1000 Hz. EEG patterns can be tracked above 256 Hz sampling rate
and its frequency component ranges approximately between 10 and 100 Hz [16–19].
Figure 4 gives a glimpse of International 10/20 Standard for 64 + 2 channels EEG
placement positions [20] for signal acquisition.

The electrical activity never stops as brain remains active always even when one is
in sleep or unconsciousness. However, it does not mean that there would be general
patterns. Brain waves are so irregular most of the time. According to Allison [21]
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Fig. 4 International 10/20 standard for 64 + 2 channels EEG placement positions [20]

activity of anyneural networkmakes a pattern or visible inEEGsignal if the following
prerequisites meet: (1) the sign of electrical activity produced by each neuron should
be same; (2) the specific axis of electrical activity generated by most of the neurons
should be perpendicular to the scalp; (3) neuronal synchrony of neurons should be
high; (4) neuronal dendrites should be aligned in parallel to summate the potential
which results into a production of signal and this signal could be detectable at some
distance. Therefore finding patterns for neuronal communication is a complex task.
Nevertheless, there exist some characteristics of EEG, which could be the basis
of BCI system: (1) rhythmic brain activity; (2) Event-related potentials (ERP); (3)
Event-related synchronization (ERS) and Event-related desynchronization (ERD)
[1–3].

Brain Rhythms Brain is always working and depending upon the perception level,
it shows different rhythmic activity. The rhythms are affected by thoughts and prepa-
ration of actions, for example eye blink can attenuate particular rhythm. The reality
that sheer thoughts distress the rhythms can become the basis for the BCI system.
Different brain rhythms can be identified in EEG with different range of frequencies
[22]. They have given Greek letters delta, theta, alpha, beta, gamma, and mu (δ, θ,
α, β, γ, and μ) to represent them. The order and meaning of letters is not logical.
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Fig. 5 Different brain waves [23]

Figure 5 is demonstrates different brain wave patterns available in brain electrical
activity [23].

The delta wave can be recorded from 0.1 to 3.5 Hz of frequency range and with
amplitude of 50–100μV.This irregular rhythmic activity has found in infants (around
2 months) in waking stage. In adult’s delta rhythm found only in deep sleep stage
and below 3.5 Hz of frequency range. Hence this wave is not useful in BCI research.
Next in the queue is theta wave whose frequency and amplitude ranges from 4 to
7.5 Hz and below 100μV respectively [24]. It can be recording on the frontal midline
area on scalp. It rarely found in children of age two or below in waking stage. In
adults theta waves can be recorded in drowsiness and during the sleep especially in
females. It can be blocked by the eye opening and disappear with the occurrence of
alpha activity. It had been used in different applications like Quadcopter [25]. Alpha
wave has already been used in many BCI applications. Its frequency ranges from 8 to
13 Hz and its amplitude varies but stays below 50 μV. It appears in EEGmostly over
the posterior regions of the brain, mostly on the occipital areas. It can be seen clearly
in EEG during the conditions of physical relaxation and relative mental inactivity.
It can be attenuated by attention especially due to visual attention. Other important
brain rhythm ismu rhythm. Its frequency and amplitude is same as alphawave (10Hz
and below 50 μV respectively) but topographically and physiologically dissimilar
from later one. This wave is present over the precentral motor cortex basically at
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EEG C3, Cz and C4 electrode placement [7]. It can be blocked or attenuated when
person perform motor activity or after training when person visualizing the motor
activity. Instead of suppression, it shifts from ideal state to high frequency when
motor action is performed. These facts about mu rhythm make it important in BCI
research. Beta rhythm comes next in the list which ranges from 13 to 30 Hz and
amplitude is around 30 μV. Beta is present over frontal and central region of brain.
It is again divided into beta 1 (13–20 Hz), beta 2 (21–30 Hz) and gamma (30–60 Hz)
[26]. Beta waves involve in conscious focus, problem solving, memorizing and tend
to have a simulating effect. In adults it can be observed in awaken state while thinking
and logical reasoning. It also plays an important role in BCI research. The summary
of the brain rhythms are listed in Table 2.

Pineda [27] studied the use of the mu rhythm in BCI and concluded that “mu
rhythm is not only modulated by the expression of self-generated movement but also
by the observation and imagination ofmovement.”Wolpaw andMcFarland [28] have
used the self-regulation of the mu rhythm or central beta rhythm amplitude in their
BCI.

Event Related Potentials (ERP)

Event related potential recording technique is useful for human electrophysiology
research. It has good and precise temporal resolution which can be the basis for
testing the theories of perception, attention and cognition that are unobservable with
behavioral methods. It allows recording the brain activity from 1 ms or above in the
presence of stimuli or an event occurs. The potential changes are so small that in order
to find the pattern, EEG samples are averaged. Further event-related potentials can be
alienated into exogenous and endogenous depending upon the temporal resolution.
It is exogenous potentials if resolution is under 100 ms and endogenous potentials
occur after 100ms onwards after the stimulus onset. They depend upon the properties
of stimulus, physiological and behavioral processes related to the event. The main
characteristics of ERP are polarity (positive or negative going signals), sensitivity to
task manipulation, spatial distribution and time. Figure 6 is showing ERP generated
in response to visual as well as audio stimuli presented to user [29].

P300 is most commonly explored ERP. This positive component of ERP occurs
in brain at peak 300 ms or more (up to 900 ms) after onset stimuli. As it peaks above
100ms, it is an endogenousERPactivity.AP300basedBCI systemhave advantage of
minimal user training. In this system, users have to choose the one of the choices given
in stimulus and designate this as the target. Evoked potentials (EP) are the subset of
ERPs caused by the sensory stimulation in response of in physical stimulus (auditory,
visual, somatosensory etc.). It ranges from 1 μV to few microvolts. They are present
at different areas of brain like cerebral cortex, brain stem, spinal cord, peripheral
nerves. Visual evoked potentials (VEP), auditory evoked potentials (AEP), steady
state evoked potentials (SSEP) are some typical evoked potentials that reflects the
output features of pathways of different brain sensory activities. Thought-translation
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Table 2 Different brain rhythms [29]

Brain wave Frequency
range (in Hz)

Amplitude (in
μV)

Brain area Found in age
group

Use in BCIs

Delta (δ) 0.1–3.5 50–100 Cerebral cortex Infants
(2 months) in
waking state,
deep sleep stage
of adults

No

Theta (θ) 4–7.5 Below 100 Frontal midline
region

In Infants wake
up stage;
In adults in
drowsiness and
sleep stage

Yes

Alpha (α) 8–13 Below 50 Occipital area In children
3 years (8 Hz);
In adults
(10 Hz)
During eyes
closed and
under relaxation
and relative
mental
inactivity

Yes

Mu (μ) Below 10 Hz Below 50 Motor cortex
and
somatosensory
cortex

All ages;
thought of
movement or in
the presence of
light tactile
stimuli

Yes

Beta (β) 13–30 Above 30 Frontal and
central regions

In adults while
cognitive task
related to
stimulus
assessment and
decision
making

Yes

Mu and alpha waves is topologically and physiologically different from each other

device (TTD), a training device and spelling program was developed by Birbaumer
et al. [3], for completely paralyzed patients using slow cortical potentials.

Event-Related Desynchronization (ERD) and Event Related Synchronization
(ERS)

Event related desynchronization is decrease in certain rhythms due to movement or
preparation of movement. Contrary to this, increase in the amplitude of the rhythm
results event-related. Mostly mu and beta rhythms are the rhythms involved for ERD
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Fig. 6 Different evoked
potentials present in brain
electrical activity [29]

and ERS. ERD and ERS can be presented in both spatial and time domain. ERS/ERD
can be measured by calculating the amplitude of certain brain wave before and after
the presence of external/internal stimulus over a number of EEG trials. Then averaged
power over a number of trials is measured in terms of percentage in relation to power
of referential interval e.g. 1 s interval i.e. between 3.5 and 2.5 s before and after the
event.

The interval between the two events should be random and not shorter than second
to keep power at reference interval. In 1990, Pfurtscheller and Berghold [24] has
developed Graz-BCI mu rhythm ERD/ERS based system using imagery of motor
action as the mental task. Generalized ERS and ERS w.r.t. constant referencing
scheme has been demonstrated in Fig. 7 [30].

Electrocorticogram (ECoG)

Electrocorticogram are the signals recorded at the surface of brain by placing the
electrodes at the surface of cortex [31]. The surgical procedure “craniotomy” is
used for opening the skull and cutting the membrane which covers the brain. ECoG



Brain Computer Interface: A New Pathway to Human Brain 111

Fig. 7 Generalized ERS and
ERS w.r.t. constant
referencing scheme [30]

signals are like EEG signals but have better spatial resolution and attenuation due
to absence of skull and scalp. The location and arrangement of electrodes as well as
implant duration is variable and depends solely upon the application requirements.
The electrodes used for recoding are typically platinum electrodes with 4 mm diam-
eter and arranged in a grid of 8 × 8 or in strip of 4–6 electrodes. The distance
between the electrodes is more often 10 mm. The spatial resolution and amplitude of
ECoG signals vary from 1.25 to 1.4 mm and 50 to 100 μV respectively. Also, they
are less affected by the brain and non-brain artifacts as the task related signals are
larger than the noise floor of the amplifier/digitizer. Thus, the signal to noise ratio of
ECoG signals is much higher than the EEG signals. It also concludes that they carry
substantial amount of information about cognitive, motor and language tasks. The
brain neurons stays undamaged as the electrodes do not penetrate the brain. From the
literature [32], it can be concluded that ECoG electrodes are likely to provide longer
stability than fully invasive intracortical electrodes. In spite of its advantages over
EEG and intracortical recording, ECoG signals generally are not used for research
need as there major surgery is involved. Typically used for medical implications
especially for actual site and extent of epilepsy symptoms [33]. Perhaps, the future
of nanotechnologies that might develop nano-detectors to be implanted inertly in the
brain, may provide a definite solution to the problems of long-term invasive appli-
cations. Further, a link between the microelectrode and external hardware that uses
wireless technology is needed to reduce the risks of infection. Wireless transmission
of neuronal signals has already been tested in animals [34–36]. Further refinements
of recording and analysis techniques will probably increase the performance of both
invasive and non-invasive modalities.

3.1.2 Preprocessing of Acquired EEG Signals

Digital EEG data recordings have advantages of flexibility, user specific montage
selection, horizontal scaling likes compression and time resolution, filters, vertical
scaling of sensitivity etc. EEG data recordings are digital time series or set of discrete
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time series, thus it makes possible application of variety of digital signal processing
techniques. Raw EEG data is contaminated with the other neurological or non-
neurological signals which are known as artifacts e.g. eye blink, muscle activity,
electrode movement etc. [37, 38]. Electromyogram (EMG) is class of artifacts due
to muscle activity like facial movement, tongue movement, neck movement etc. the
noise created by eye blink are electroculogram (EOG) signals and have high ampli-
tude then neural signals. These artifacts results into interference in control signals for
BCIs, poor signal to noise ratio (SNR) and change in the distinctiveness of specific
interest of EEG data. Thus, removal of the artifacts from raw EEG data is necessary
for improved SNR signals and BCI performance.

The EEG signal must be amplified, filtered, digitized and referenced before
extracting the features out of it. There are many signal preprocessing methods exists,
only EEG signal preprocessing methods are discussed here. The EEG signal must be
boosted, amplified from few microvolt signals to million-fold to avoid the artifacts.
The amplified signal then filtered in the range of 0.5–50 Hz to include necessary
oscillatory components of EEG and to filter out high frequency signals like muscle
activities (EMG) (>50 Hz), eye blinks (EOG) etc. Most of the researchers have used
subject dependent band filter to filter the raw EEG signal like Notch, Finite Impulse
response etc. [39–44]. This method is also known as temporal filtering and elim-
inates low as well as high and frequencies from signal. Signals can be spatially
filtered using referencing schemes like common average referencing (CAR) [45],
bipolar referencing, surface Laplacian. These filters use high pass spatial filtering to
enhance the focal activity like mu and beta rhythms from local sources. The authors
[46, 47] has used subject specific filtering using Independent Component Analysis
(ICA) for blind source separation which assumes EEG data as linear superposition of
independent components to remove the artifacts. The artifacts fNIRS due to breathing
and heart beat can be filtered by moving average filters [48], IIR low pass filters [43],
wavelet denoising [49].

3.1.3 Feature Extraction

The identification of signal’s characteristics (features) that might help in identifying
the specific pattern related to user intends present in filtered, amplified, digitized and
referenced EEG signal is known as feature extraction process in BCI design. These
features can be the basis of pattern recognition algorithms that leads to classification
of mental activity [7]. The aim of feature extraction step is to find most distinctive
features and thus, enhancing the signal to noise ratio (SNR). This important step
becomes difficult when signals and noise are similar e.g. EOG is very similar to beta
rhythms and EMG is very similar to slow cortical potentials (SCPs). EEG signals
are spread over space, time and frequency. It can be studied in many domains like
time domain, frequency domain or time-frequency domain. Bashashati et al. [50]
reviewed different types of feature extraction methods in 2007. Many features like
amplitude values of signal, auto regressive model coefficients (AR), band power,
power spectrum density (PSD), correlation coefficients, entropy, wavelet coefficients
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etc. are studied and proven to be good for pattern matching algorithms. Common
spatial patterns (CSP) are the most of efficient method for feature extraction from
EEG signals [51]. Several variants of CSP method established for grasping spatial
information of brain signals like Probabilistic common spatial patterns [52], bank
regularized common spatial pattern ensemble [53]. Signal power/energy levels at
different location over the scalp are known as band power (BP) features [1, 2]. After
band power estimation of signals, these values can be used to find the event related
synchronization/event related desychronization (ERS/ERD)maps to visualize certain
activity/events in the signal. The raw signal should be band passed filtered within
defined frequency bands and then squared and then averaged for consecutive time
intervals. Visualize ERS/ERD for these values for each subject and then selection of
bands with most distinctive information is stored for further classification [6]. The
authors [54] has compared theCSP andBP features for four classBCI experiment and
tackled the BP feature by adding phase information with time information. Power
Spectrum Density (PSD) is the power distribution with frequency in signals/time
series. The power of a signal can be power only or can be squared value of signal.
The PSD feature only exists if the signal is wide-sense stationary process. PSD is
the Fourier transform (FT) of autocorrelation of the wide-sense stationary signal. It
does not exist in non-stationary signals as autocorrelation function must have two
variables. However some researchers have estimated time varying spectral density
as distinctive feature [55].Autoregressive (AR)model coefficients also have shown
good results for classification of different mental task/event using EEG signals [56–
59]. The linear regression of current series data against one ormore prior series of data
is used to find autoregressive model coefficients. Many variants of linear regression
can be applied for estimation of autoregressive like least square regression, recursive-
least-square methods etc. Another Burgmethod is well knownmethod for estimating
reflection coefficients for autoregressive models. Differentials Entropy is also used
as distinctive feature by authors of [60, 61].MoreoverWaveletCoefficients also have
been employed to extract features for EEGsignal classifications [62–64]. Thewavelet
fuzzy approximate entropy, clustering techniques, cross-correlation techniques and
many techniques exists for feature extraction from raw EEG signals. Following are
some discussion points that might be of interest in deciding the feature to be used:

• Usage of BCI: BCI can be used as online or offline. Feature extraction for
designing online BCI application is more complex than offline BCI design. Thus,
low complexity features within small time frame would be advised choice for the
design.

• Robust BCI: the noisy EEG signals have poor SNR andmore sensitive to outliers.
Thus, robustness towards artifacts and noisemust be taken care for theBCI design.

• Distinctiveness: higher distinctiveness of extracted features towards brain events,
easier and accurate is the classification task. This uniqueness can be measured
with measure/index e.g. Fisher Index, DBI [6] or direct accuracy of classifier.

• Non-stationarity: for designing online BCI systems, non-stationarity based time
varying shift detection in intra or inter session changes of EEG data could be a
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point of interest. Some features like approximate entropy is less affected by these
shift variation in EEG signals.

The choice of features and application of the BCI system are correlated. Feature
can be ignored/selected on the basis of application of BCI system. Traditional feature
extraction techniques like AR model, PSD or band power assumes the EEG signal
as superimposition independent wave (mostly sinusoidal) components and avoid the
phase information. Higher order statistics and non-linear feature extraction can be
used to tackle this problem [65, 66].

3.1.4 Feature Selection

The features extracted can be high dimension vectors depends upon the number of
channels, number of trials, number of sessions from multiple modality and sampling
rate of modality. It is neither realistic nor useful to consider all features for clas-
sification. So selecting a smaller subset of distinctive feature set or feature space
projection is an important step in pattern recognition for classification. The aim of
feature selection process is to remove the redundant and uninformative features along
with finding unique features which do not over fit the training set and classify the
real dataset with higher accuracy even in the presence of noise and artifacts [67].
Projection techniques can be useful when the relevant information is spread in all
over feature space and data is transformed in order to retrieve the discriminative
information. In some applications channel selection might be helpful by setting the
score to features of different channels. Then, channels having features with highest
score is selected for further classification. Thus, there could be three approaches to
handle the problem of high dimensionality:

• Feature Selection: here the goal is to find best combination of subset features
using search base methods like genetic algorithms, wrapper’s approach, filter
approach, Sequential forward floating search etc. there is basic two criteria to find
the good feature set (1) an optimized search method (2) a performance measure to
evaluate the selected subset of features searched by (1). Finding the appropriate
subset of features is considered as NP-hard [68]. Figure 8 depicts the four stage
feature selection process demonstrated by authors Liu and Yu [69].

original                                   Subset

Dataset

Goodness of subset

No                                                       Yes

Subset Crea�on Subset of features

Valida�on of 
result

Decision 
Criteria

Fig. 8 Feature selection steps [69]
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Both heuristic and intuitive search methods can be used for the searching purpose.
Based on these factors,Wrapper approach and filter approach can be used to evaluate
the performance of feature subset. Inwrapper approach classifier is definedfirst, takes
subset of feature as an input to classifier for training, then classification accuracy is
evaluated in validation testing phase and finally these accuracies are compared across
each subset. On the other hand, filter approach evaluate the goodness of features on
the basis of measures/indexes independent of classifier. Distance measures in cluster
like Davies-Bouldin Index (DBI) [6], information measures like information gain,
dependency measure like coefficient of correlated feature or similarity index etc.
There is a hybrid approach which uses both wrapper and filter to reach the higher
accuracy in less computational cost [65].

• Dimensionality Reduction: here reduction of feature space is done by projecting
high dimensional features into lower dimensional feature space. To deal with
this curse of dimensionality, these methods can be divided into categories like
linear/non-linear, supervised/unsupervised. Linearmethods like principal compo-
nent analysis (PCA), factor analysis (FA) consider covariance of data and trans-
form it linearly to reduce the dimensions of observable random variables. Most
nonlinear unsupervisedmethod for dimensionality reduction is based onmanifold
learning theory. In these methods a weighted graph of data points depending upon
the neighboring relation, are projected into lower dimensional space [65]. These
methods uses structural knowledge like locality or proximity relation while main-
tain the relationship among the data points. These methods can be categorized
in the following three methods [70]: (1) methods which preserve local prop-
erties of data in lower dimension e.g. Isomap, Kernal PCA (2) method which
preserve global properties of data in lower dimension e.g. Laplacian Eigenmaps
(3)methodswhich alignmixture of linearmodels globally e.g.ManifoldCharting.

• Channel Selection: here main aim is to find combination of channels which are
generating most relevant and distinctive information specific to application. In
some cases these methods are advantages than feature selection methods e.g.
finding the spatial distribution of motor imagery events. The first approach for
channel selection is to apply the feature selectionmethods and thenmapping these
features with associated channels. Thismethod is limited to some specific applica-
tions. On the other hand, direct channel selection incorporate prior knowledge into
analysis of results or in the selection process which leads to better understanding
of spatial information, further can be used to implement required control.

3.1.5 Pattern Matching

The ultimate goal of BCI design is to translate the mental event of user into control
commands. The acquired raw EEG signal has to be converted into real action in
surrounding environment. So, classification or pattern matching of the signal into
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Training Phase (calibration)

Testing Phase 

Fig. 9 Typical classification approach for EEG based BCI design

predefined classes is naturally the next step after preprocessing and feature extrac-
tion and selection. Machine learning has played an important role not only in identi-
fying the user intent but also handle the variation in ongoing user’s signals. Consid-
ering traditional approach of pattern matching [71], the classification algorithms for
mental task recognition inside the EEG signals can be categorized in four categories:
(1) adaptive classifiers, (2) transfer learning based classifiers, (3) matrix and tensor
classifiers and (4) deep learning based classifiers.

• Adaptive Classifiers: In mid-2000s adaptive classifiers were used for EEG based
BCI design [72–74]. The adaptive classifiers update the parameters (e.g. weights,
error) incrementally over time and classifiers adapt the changes in the incoming
EEG data. This enables the classifier work efficiently even if there is drift in the
dataset. These classifiers can use supervised or unsupervised adaption [75, 76].
The former adaption uses previous knowledge of output classes. Figure 9 demon-
strates the typical supervised classification approach for EEG-based BCI design.
The dotted lines denote the algorithm which can be optimized from available
data in training phase. The optimized algorithms then can be used for testing
phase or original use to translate electrical brain signals into real time control
commands. The real time or free BCI cannot take advantage from supervised
adaption techniques as the true label of raw EEG data is unknown. Whereas, the
unsupervised adaption approach do not use any previous knowledge of output
classes and thus, output labels are unknown. The class label estimation can be
done based on retraining/updating of classifiers or adaption with unknown class
labels e.g. by updating mean or correlation matrix of variables. The combination
of both type of adaption is known as semi-supervised adaption. These adaptions
consider both the unlabeled and labeled dataset for training the classifier. First the
classifier is trained with available dataset along with output class label. Then unla-
beled testing data is classified by this supervised trained dataset. Finally, classifier
is retrained/updated incrementally with unlabeled and available labeled dataset.
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Various state-of-art classification algorithms have been employed by different
groups to infer the mental task. Linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA) [72], adaptive Bayesian classifier [77], adaptive support
vector machine (SVM) [78, 79], adaptive probabilistic neural network [80], radial
basis function (RBF) kernels [81], L2-regularized linear logistic regression classi-
fiers [82] are combination of linear or nonlinear state-of-art algorithms for supervised
adaption approach. Ensemble and extreme leaning has also been implemented by Li
and Zhang [83]. The unsupervised learning is complex and difficult to implement
due unavailability of class specific information. Adaptive LDAandGaussianMixture
model (GMM) [84], Adaptive LDA with Fuzzy C-means [85], Incremental logistic
regression [86], Incremental SVM [87], Semi-supervised SVM [88], Unsupervised
linear classifier [89] are some semi- or unsupervised algorithms used in different
modalities in BCI design.

• Matrix and Tensor Based Classifiers: These classifiers works on the alternate
approach as used for adaptive classifiers i.e. feature extraction and then selecting
the relevant features. Instead of optimizing dual problem, these classifiers do the
mapping of the data directly to classification domain e.g. geographical space. The
idea behind these classifiers is the assumption that spatial distribution and power
can be considered fixed and thus, can be represented in covariancematrices. These
covariancematrices can be used directly as an input to classifier. Figure 10 demon-
strate both adaptive feature learning and direct learning of matrices approaches
for pattern matching in EEG signal classification. This approach can be applied to

Fig. 10 Two approaches for classification of EEG data. The dotted area is interchangeable
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both oscillation based BCI and ERP based BCI systems. A regularized discrim-
inative framework for EEG analysis in which data is represented as augmented
covariance matrices has used this approach [90]. Riemannian Geometry Classi-
fiers (RGC) in [91] are also based on the same concept in which data is directly
mapped into geographical space with suitable matrices. These approaches bene-
fits in the form of higher accuracy but complexity, high dimensionality of these
classifiers is more demanding than tradition approaches.

Tensors are multi-way arrays and used to generate high order tensors from EEG
data format. For example, 3rd-order tensor for EEG classification can be represented
as space× frequency× time. These modes define the order of tensor, also known as
dimensions of tensors. Almost all classification algorithms can be generalized using
tensors but this field is yet be explored [92, 93].

• Transfer Learning: The hypothesis which most of the machine learning algo-
rithms follows that the data set for training and testing belongs to same data
domain with same probability domain. Opposite to this hypothesis, in BCI design
data distribution is different in real time testing phase across time or subject.
Transfer learning handles this problem by exploiting the knowledge about one
task, while learning another related task. So, effectiveness of transfer learning is
totally depends upon the correlation in these task. For instance, motor imagery
task performed by two subjects is more effective than performing motor imagery
task and p300 speller task by same subject. Transfer learning plays important role
where domain data is labeled for one task, and target domain contains the scarce
to acquire another task. Transfer learning can be categories in two types based
upon domains, tasks and learning setting.Homogeneous transfer learning is the
learning where source domain task and target domain task is same, and adaption
of the probability distribution or conditional probability distribution is not same in
source and target domain. Whereas, Inductive transfer learning is where source
task and target task are different in labeled data in both source and target domain.
For instance, there could be left hand and right hand movement is labeled in
both source and target domain, whilst target domain involves tongue movement.
Another situation, Transductive transfer learning is the situation where source
and target domain are different but tasks are similar. It happens frequently in
BCI systems, as there is inter/intra session variability or inter-subject variability
usually arises.

Many transfer learning approaches evolve by transformation of data tomatch their
distribution. This could be linear or non-linear transformation. Figure 11 illustrates an
example of domain adaption and transfer learning where source domain and target
domain are differently labeled. A normal classifier trained on source domain will
perform poorly on target domain. But by applying domain adaption technique [94]
transfer the dataset distribution as to match the source and target domain distribution.
A detailed survey has been presented by Pan and Yang [95] on transfer learning for
more detailed illustration on transfer learning.
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(a) Source domain (b) Target Domain (c) Domains after adaption

Fig. 11 Domain adaption [94] in transfer learning

• Deep Learning: is special branch of machine learning algorithms which directly
learn from the data set instead of learning from extracted feature set. It is based on
the deep learning done by the human brainwhich created the pattern from data and
learn from it for decision making. In recent year deep learning has shown good
classification results and improved accuracy of the pattern recognition system.
Like machine learning, it is also supervised, unsupervised or semi-supervised. An
inbuilt cascade of feature extractor modules handles the non-linearity of available
data domain. Figure 12 demonstrates the difference between tradition machine
learning algorithms and deep learning algorithms.

Deep Boltzmann Machine (DBM), Recurrent Neural Network (RNN), Recursive
NeuralNetwork (RvNN),DeepBeliefNetwork (DBN),ConvolutionNeuralNetwork
(CNN), and Auto Encoder (AE) are some examples of deep learning algorithms.

Deep Extreme Learning Machine (ELM) has used by authors of [96] for finding
slow cortical potentials (SCP) in EEG signals. This ELM contains multilayer of
extreme learning machine ending with last layer of kernel ELM. The motion onset
visual evoked potential BCI features have been extracted using deep brief network
(DBN). The DBN deep learning machine is composed of three Restricted Boltzmann
machine (RBM) [97]. Yin and Zhang [98] employed adaptive deep neural network
(DNN) to classify both workload as well as emotions. They compose the stack of
Auto Encoder (AE). They retrained the first layer of network with adaptive learning
algorithm taking labeled input with estimated class.

The deep learning classifiers are advantageous as it leads to better features and
classifying accuracy. But they need large number of training dataset for calibration.

Traditional machine learning approach 

Deep Learning approach

Fig. 12 Traditional versus deep learning approach
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BCI is user specific application, subject have to perform thousands of relevant task
for calibration before actual use of it. For online systems, it is quite expensive in
terms of money as well as time.

3.1.6 System Feedback and User Training

Finally, before providing feedback to user about a specific mental state is recognized
or not, EEG signals should be classified on the basis of selected features to convert
the EEG signal into a control command. Thus, system feedback and user training is
an important step in BCI design. Many research findings have shown that inaccurate
feedback to user causes the impeded accuracy of BCI system [18]. Feedback can be
continuous/discrete audio video signal, virtual/realistic 1D, 2D and 3D environment.
Feedbackmakes the BCI design as adaptive closed loop system between human brain
and computer.

4 BCI Performance Measures

Evaluation of BCI system is different depending upon the design of BCI system and
target application. Some of the commonBCI performancemeasures are classification
accuracy, kappa metric, bit rate, area under the curve (AUC), uncertainty and mutual
information, the receiver operating characteristic (ROC) curve and entropy. Every
step of BCI design has different components for performance evaluation in closed
loop BCI dependent upon the design. The basic and most commonly used method
is classification accuracy specifically for the equally distributed samples per class
and for unbiased classifiers [77–81]. Another Kappa metrics or the confusion matrix
is used to measure the sensitivity-specificity pair for unbalanced classes and less
biased data [54]. A bit rate, an information transfer rate is used in account to both
accuracy and speed of a BCI [99]. Channel capacity has to be calculated with several
assumptions in bits/min. Entropy and uncertainty of a classifier can also be used to
appraise the performance of a BCI system [60].

5 Conclusion

This newpathway to human brain can openmany doors to complex and unimaginable
solutions to many applications. Many more type of diseases can be diagnosed. There
is a great scope of enhancement in existing BCIs using artificial intelligence and
machine learning algorithms. Use of high computing electronic devices and transfer
learning, tensor and deep learning algorithms could serve the purpose. Security and
privacy issues open challenge has gained significant attention and can further be
explored [100].
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